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PREFACE 
  
 
 
 
 
Typically freshman students are introduced to classical laws that they apply to physical problems that can be understood 
intuitively and solved in closed form.  As they advance to the second year, they are introduced to a contradictory view—that the 
atomic-scale world is nonphysical, counterintuitive, and incapable of being understood in physical, intuitive terms.  In addition, 
they are asked to take for granted many fantastical concepts such as electrons being probability waves having an infinite number 
of energies and positions simultaneously, until measured, spooky actions at a distance, and virtual particles which occupy every 
point in space but can not be detected.  With the introduction of quantum mechanics, which is not a theory of physical reality, 
students are taught to abandon all that they initially learned for laboratory scale systems and to accept that these laws do not 
apply to atomic systems; even though, they learned by direct experimental observation that these laws worked perfectly well and 
that laboratory scale objects are made up of atoms. 

This non-physical treatment of atomic electrons is propagated into molecular theory.  Repulsion between opposite 
charges is an undeniable reality; yet quantum theoreticians teach the opposite: chemical bonding is due to negative charges 
overlapping wherein the more negative charges occupying the same space, the stronger the bond; except that the electrons are 
also simultaneously repulsive requiring the addition of quantum mechanical wave function electron-electron repulsion terms.  
Even regions of empty space devoid of nuclei and electrons together with many other ad hoc, inconsistent, often nonphysical, 
and non-unique terms further comprise the quantum mechanical treatment of the nature of the chemical bond. 

Many paradoxes and internal inconsistencies arise in quantum mechanics such as the requirement that two or more 
contradictory results exist simultaneously, the existence of infinities, non-locality, and violation of causality, to mention a few.  
Unlike the solutions learned in the freshman year, none of the solutions are unique—algorithms to remove infinities and to add 
fantastical corrections are totally discretionary [1-17].  One exception is the one-electron atom, but the Schrödinger equation is 
not a directly experimentally testable relationship.  Rather, it is postulated.  The solutions make no physical sense.  Electron spin 
is missed completely.  And, in many cases, the solutions contradict experimental observations [1-17]. 

To add to this confusion, Newton’s Laws of mechanics are presented as invalid.  With the assumption of Galilean 
transformations, they fail to remain invariant at high speed.  Special relativity is introduced as an independent mechanics theory 
based on the constant maximum of the speed of light, which was demonstrated by the Michelson-Morley experiment.  But, this 
experiment addressed light propagation and not mechanics, except for disproving the ether and a universal reference frame in the 
sense of the speed of light.  Maxwell’s equations, which govern light propagation, remain since they are consistent with special 
relativity and predict c  based on universal properties of spacetime.  No connection to mass or mechanics is given despite the 
result of the equivalence of mass and electromagnetic energy from special relativity.  There is no connection to particle masses 
and atomic theory.  And, the infinite sea of virtual particles of atomic theory is paradoxically an ether which was abandoned with 
special relativity.   

Furthermore, it is taught that the validity of Maxwell’s equations is restricted only to the macro-scale and that they do not 
apply to the atomic scale.  This is inconsistent with the application of special relativity to the mechanics of atomic particles at 
high speed and the radiation of accelerating atomic particles wherein, paradoxically, Maxwell’s equations give the 
electromagnetic wave equation that governs the emitted radiation.  Yet, when the particle motion is thought of as a current, 
Maxwell’s equations predict the radiation of atomic particles as well.  Then, contradictory, postulated quantum mechanical rules 
apply to the radiation or stability of electrons in atoms, which should be treated electrodynamically.  Neither a special relativistic 
or Maxwellian approach to the radiation is deemed to apply even though the Maxwellian Coulomb potential and special 
relativistic corrections to the electron mass are invoked.  Even more disconcerting is that supposedly special relativity is the basis 
of electron spin in the Dirac equation.  But, the solution requires an infinite sea of virtual particles that is equivalent to the ether.  
This constitutes a glaring internal inconsistency because the absence of both an ether and an absolute frame is the basis of special 
relativity in the first place.  In addition, considering the simplest atom, hydrogen, no physical mechanism for the existence of 



Preface xxviii

discrete radiative energy levels or the stability of the n  1 state exists—only circular reasoning between the empirical data and a 
postulated wave equation with an infinite number of solutions that was parameterized to match the Rydberg lines [1-17]. 

Furthermore, the elimination of absolute frame by special relativity results in the elimination of inertial mass and 
Newton’s Second law, foundations of mechanics, and gives rise to the twin paradox and an infinite number of energy inventories 
of the universe based on the completely arbitrary definition of the observer’s frame of reference.  Newton’s Law of gravitation is 
also to be unlearned.  It is replaced by a postulated tensor relationship that only applies to massive gravitating objects.  The 
replacement theory is explained in terms of warping of spacetime without any connection to the physical laws learned as a 
freshman or any connection to atoms that make up the massive gravitating bodies.  General relativity predicts singularities and a 
deceleration cosmology—the opposite of that which is observed [18-19].  It is to be accepted with quantum mechanics as the 
correct atomic theory even though these theories are mutually incompatible.  It is further disconcerting that the Uncertainty 
Principle of quantum mechanics—one of its fundamental tenets—predicts a continuum of particle masses and gives no 
mechanism for the existence of atomic particles of precise inertial and gravitational mass in the first place.  And, the infinite sea 
of virtual particles and vacuum energy fluctuations throughout the entire universe requires an infinite cosmological constant that 
is obviously not observed [20]. 

This confused approach to physics is not due to nature, and it can be avoided.  Physics can become transparent and 
intuitive on all scales and understood conceptually at all levels of specialization.  The same is true for chemistry wherein the 
multitudes of ad hoc, nonphysical, inconsistent, nonunique, adjustable atomic and molecular modeling algorithms of quantum 
theory are replaced by exact physical solutions comprising fundamental constants only [3-7].  The fundamental laws of physics 
and chemistry of Maxwell’s equations and Newton’s Laws of mechanics and gravitation were developed after direct 
experimental observation of phenomena such as electricity and magnetism, mechanics, and gravity.  Electricity and magnetism 
were unified with the prediction and later confirmation of electromagnetic waves.  These laws, developed in the mid 1800’s, 
with the extension to the atomic scale and taking into account the appropriate spacetime metric are sufficient for describing all 
phenomena in the universe.  For objects moving with speeds approaching the speed of light, Newton’s Laws must include the 
limiting maximum speed that is inherent in Maxwell’s equations and determined by the permeability and permittivity of 
spacetime.  In mechanics, the metric is Minkowskian wherein the speed relative to light speed must be invoked and Galilean 
transformations become Lorentzian.  Similarly, when a photon transforms to a particle, any signal capable of transporting energy 
with a limiting velocity must propagate as a light wave front, and the limiting velocity is the speed of light.  Thus, for particle 
production, the electromagnetic front of the photon and the gravitational front due to the particle must have a limiting speed c , 
the speed of light.  As a consequence, the metric is required to be the Schwarzschild metric rather than Minkowskian.  
Specifically, fundamental particle production occurs when the energy of the particle given by the Planck equation, Maxwell’s 
Equations, and Special Relativity is equal to   mc2 , and the proper time is equal to the coordinate time according to Schwarzschild 
metric.  The gravitational equations with the equivalence of the particle production energies permit the equivalence of mass-
energy and the absolute spacetime wherein a “clock” is defined which measures “clicks” on an observable in one aspect, and in 
another, it is the ruler of spacetime of the universe with the implicit dependence of spacetime on matter-energy conversion.  The 
masses of the leptons, the bosons, the quarks, and nucleons are derived from this metric of spacetime.  Then, the gravitational 
equations with the equivalence of the particle production energies require the conservation relationship of mass-energy, 

  E  mc2 , and spacetime, 
  

c3

4G
 3.22 X  1034

 
kg

sec
.  Spacetime expands as mass is released as energy which provides the basis of 

absolute space and the atomic, thermodynamic, and cosmological arrows of time.  The observations of the acceleration of the 
cosmic expansion, the absence of time dilation in redshifted quasars, and the absence of a Big Bang origin of the universe 
confirm the absolute nature of spacetime.  

With the conditions of the metric being Minkowskian for Newtonian mechanics and the Schwarzschild metric for 
Newtonian gravity, all of the fundamental laws of nature are directly derived from experiments.  The universe is not 
mathematical; it is physical.  A separate theory for near light speed mechanics, special relativity as it now exists, is unnecessary 
and incomplete.  For example, in addition to the problems raised previously, the famous equation   E  mc2  does not predict 
fundamental particle masses, inertial or gravitational or why they are equivalent.  Furthermore, separate theories of atomic 
physics such as quantum mechanics and quantum electrodynamics, separate nuclear theories such as quantum chromodynamics, 
a separate theory for particles such as the standard model, a separate theory for gravity, general relativity as it now exists, and 
separate theories for cosmology such as the Big Bang, inflation, and dark energy are artificial, internally inconsistent, incorrect, 
incomplete, and not based on physical laws.  The correct basis of the spacetime relationships of special relativity and general 
relativity are inherent in the classical laws that further predict all natural phenomena of physics and chemistry and compositions 
of matter and energy of any complexity from the scale of quarks to the cosmos in terms of the fundamental constants of nature 
only. 
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INTRODUCTION 
  
 
 
 
 
GENERAL CONSIDERATIONS 
Toward the end of the 19th century, many physicists believed that all of the principles of physics had been discovered.  The 
accepted principles, now called classical physics, included laws relating to Newton’s mechanics, Gibbs’ thermodynamics, 
LaGrange’s and Hamilton’s elasticity and hydrodynamics, Maxwell-Boltzmann molecular statistics, and Maxwell’s equations.  
However, the discovery that the intensity of blackbody radiation goes to zero, rather than infinity as predicted by the prevailing 
laws, provided an opportunity for new principles to be discovered.  In 1900, Planck made the revolutionary assumption that 
energy levels were quantized, and that atoms of the blackbody could emit light energy only in amounts given by h , where   is 
the radiation’s frequency and h  is a proportionality constant (now called Planck’s constant).  This assumption also led to our 
understanding of the photoelectric effect and ultimately to the concept of light as a particle called a photon.  A similar course 
arose in the development of the model of the electron.  In 1923, de Broglie suggested that the motion of an electron has a wave 

aspect where the wavelength,  , is inversely proportional to the electron’s momentum, p , as 
h

p
  .  This concept seemed 

unlikely according to the familiar properties of electrons such as charge, mass and adherence to the laws of particle mechanics.  
But the wave nature of the electron was confirmed by Davisson and Germer in 1927, by observing diffraction effects when 
electrons were reflected from metals. 

Experiments by the early part of the 20th century had revealed that both light and electrons behave as waves in certain 
instances and as particles in others.  This was unanticipated from preconceptions about the nature of light and the electron.  Early 
20th century theoreticians proclaimed that light and atomic particles have a “wave-particle duality” that was unlike anything in 
our common-day experience.  The wave-particle duality is the central mystery of the presently accepted atomic model, quantum 
mechanics (QM), the one to which all other mysteries could ultimately be reduced.  The central equation, the Schrödinger 
equation, and its associated postulates, are now the basis of quantum mechanics, and it is the basis for the world view that the 
atomic realm including the electron and photon cannot be described in terms of “pure” wave and “pure” particle but in terms of a 
wave-particle duality.  The wave-particle duality based on the fundamental principle that physics on an atomic scale is very 
different from physics on a macroscopic scale is central to present day atomic theory [1].  Further founding assumptions 
maintained from the earlier theories of Bohr and Schrödinger to what is dubbed “modern quantum mechanics” are that 
phenomena such as stability, quantization, and spin are intrinsic aspects of matter at the atomic scale and the electron is a 
probability wave requiring that the electron have infinite numbers of positions and energies including negative and infinite 
energies simultaneously.  It is inherent that physical laws such as Maxwell’s equations, Newton’s laws, conservation of energy 
and angular momentum are not exactly obeyed.  The exactness and determinism of classical physics are replaced by the 
Heisenberg Uncertainty Principle, an inequality defining the limitations of the existence of physical reality that has recently been 
tested for the first time and experimentally disproved [2].  Recently a new measuring technique that exploits superposition (i.e. 
interference) of two short pulses of light with different wavelengths circumvented the limitation formulated by the father of 
quantum physics, Werner Heisenberg, in 1927.  According to Heisenberg's uncertainty principle (HUP), it is not possible to 
determine the position and the speed of an electron at the same instant.  However, Isinger et al. [3] have shown definitively that it 
can be done and thereby experimentally disproving the HUP.  Since the HUP is an inherent consequence of the theory of 
quantum mechanics (QM), QM is proven wrong as well. 

The Schrödinger equation was originally postulated in 1926 as having a solution of the one-electron atom.  It gives the 
principal energy levels of the hydrogen atom as eigenvalues of eigenfunction solutions of the Laguerre differential equation.  
But, as the principal quantum number n>>1, the eigenfunctions become nonsensical.  Despite its wide acceptance, on deeper 
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inspection, the Schrödinger solution is plagued with many failings as well as difficulties in terms of physical interpretations that 
have caused it to remain controversial since its inception.  Only the one-electron atom may be solved without approximations, 
but it fails to predict electron spin, leads to models with nonsensical consequences such as negative energy states of the vacuum, 
infinities, and negative kinetic energy, and it fails to predict the stability of the atomic hydrogen 1n   state except for an 
arbitrary definition1 [4-15].  In addition to many predictions that simply do not agree with observations even regarding the one-
electron atom [4-20], the Schrödinger equation predicts noncausality, nonlocality, spooky actions at a distance or quantum 
telepathy, perpetual motion, and many internal inconsistencies where contradicting statements have to be taken true 
simultaneously.  The behavior of free electrons in superfluid helium is but one example of a phenomenon that forces the issue of 
the meaning of the wavefunction.  Electrons form bubbles in superfluid helium, which reveal that the electron is real and that a 
physical interpretation of the wavefunction is necessary.  Furthermore, when irradiated with light of energy of about a 0.5 to 
several eV [21], the electrons carry current at different rates as if they exist with different sizes.  It has been proposed that the 
behavior of free electrons in superfluid helium can be explained in terms of the electron breaking into pieces at superfluid helium 
temperatures [21].  Yet, the electron has proven to be indivisible even under particle accelerator collisions at 90 GeV (LEPII).  
The nature of the wavefunction must now be addressed.  It is time for the physical rather than the mathematical nature of the 
wavefunction to be determined.  

A new approach has been developed to explain the seemingly mysterious physics of the atomic scale.  The theory of 
classical physics (CP) now applied correctly to solving the structure of the electron is based on the foundation that laws of 
physics valid in the macroworld do hold true in the microworld of the atom.  In the present case, the predictions, which arise 
from the equations of light and atomic particles are completely consistent with observation, including the wave-particle duality 
of light and atomic particles.  Furthermore, it is shown herein that the quantization of atomic energy levels arises classically 
without invoking new physics.  Continuous motion such as electronic transitions between quantized states and translational 
motion restores continuity and causality with the continuous nature of spacetime itself restored consistent with first principles 
and observation.  Using Maxwell’s equations, the structure of the electron is derived as a boundary-value problem wherein the 
electron comprises the source current of time-varying electromagnetic fields during transitions with the constraint that the 
bound n  1  state electron cannot radiate energy.  The postulates and mathematical constructs of quantum mechanics are 
erroneous.  Physical laws are shown to apply to the atomic scale in refutation to QM.  This issue of treating the wavefunction 
physically is even more imperative given that classical physics predicts hydrogen atomic transitions below the inalienable 
quantum “ground state” and these predictions are experimentally confirmed [22-42] with the further result that the corresponding 
fractional principal quantum states match the observations of free electrons in superfluid helium [14].  (See Free Electrons in 
Superfluid Helium are Real in the Absence of Measurement Requiring a Connection of   to Physical Reality section.) 

QM has never dealt with the nature of fundamental particles.  Rather, it postulates the impossible situation that they 
occupy no volume; yet are everywhere at once.  In contrast, CP solves the structure of the electron using the constraint of 
nonradiation based on Maxwell’s equations.  CP gives closed-form physical solutions for the electron in atoms, the free electron, 
and excited states that match the observations.  With these solutions, conjugate parameters can be solved for the first time, and 
atomic theory is at last made predictive and intuitive.  Application of Maxwell’s equations precisely predicts hundreds of 
fundamental spectral observations and atomic and molecular solutions in exact equations with no adjustable parameters 
(fundamental constants only).  Moreover, unification of atomic and large-scale physics, the ultimate objective of natural theory, 
is enabled.  The result gives a natural relationship between Maxwell’s equations, special relativity, and general relativity.  CP 
holds over a scale of spacetime of 85 orders of magnitude—it correctly predicts the nature of the universe from the scale of the 
quarks to that of the cosmos. 

The Maxwellian approach allows the solution of previously intractable problems such as the equations of the masses of 
fundamental particles.  Exemplary relations between fundamental particles are shown in Table I.1. 
 

 
1 The Schrödinger equation can only yield integer eigenvalue solutions by selection or definition from an infinite number of possibilities since the solution 
is over all space with no boundary (i.e. 0 to  ).  In contrast, wave equation solutions with integers are common for boundary-constrained systems such as 
waveguides and resonators. 
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Table I.1.   The relations between the lepton masses and neutron to electron mass ratio are given in terms of the dimensionless 
fine structure constant   only. 
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a Experimental according to the 1998 CODATA and the Particle Data Group [43-44]. 
 
CP successfully predicted the mass of the top quark before it was reported and correctly predicted the acceleration of the 
expansion of the universe before it was observed [45].  It correctly predicts the behavior of free electrons in superfluid helium 
and further predicts the existence of new states of hydrogen that are lower in energy than the 1n   state that represents a new 
energy source and a new field of chemistry that has far reaching technological implications in power generation, materials, 
lighting, and lasers.  The existence of such states has been confirmed by the data presented in over 100 published journal articles 
and over 50 independent test reports and articles [22]. 
 

CP APPROACH TO THE SOLUTION OF THE BOUND ELECTRON 
CP solves the electron by a different approach than that used to solve the Schrödinger wave equation.  Rather than using a 
postulated wave equation with time eliminated in terms of the energy of the electron in a Coulomb field and solving the charge 
wave (Schrödinger interpretation) or the probability wave (Born interpretation), the solution for the scalar (charge) and vector 
potential (current) functions of the electron are sought based on first principles.  Since the hydrogen atom is stable and 
nonradiative, the electron has constant energy.  Furthermore, it is time dynamic with a corresponding current that serves as a 
source of electromagnetic radiation during transitions.  The wave equation solutions of the radiation fields permit the source 
currents to be determined as a boundary-value problem.  These source currents match the field solutions of the wave equation for 
two dimensions plus time when the nonradiation condition is applied.  Then, the mechanics of the electron can be solved from 
the two-dimensional wave equation plus time in the form of an energy equation wherein it provides for conservation of energy 
and angular momentum, as given in the Electron Mechanics and the Corresponding Classical Wave Equation for the Derivation 
of the Rotational Parameters of the Electron section. 

Specifically, CP first assumes that the functions that physically describe the mass and charge of the electron in space and 
time comprise time-harmonic multipole source currents of time-varying electromagnetic fields between transitions.  Rather than 
use the postulated Schrödinger boundary condition: “ 0  as r  ,” which leads to a purely mathematical model of the 
electron, the constraint is based on the experimental observation that the moving charge must not radiate in the 1n   state of 
hydrogen.  The condition for nonradiation based on Maxwell’s equations after Haus [46] is that its spacetime Fourier transform 
does not possess components that are synchronous with waves traveling at the speed of light.  Jackson [47] gives a generalized 
expansion in vector spherical waves that are convenient for electromagnetic boundary-value problems possessing spherical 
symmetry properties and for analyzing multipole radiation from a localized source distribution.  The special case of nonradiation 
determines that the current functions are confined to two-spatial dimensions plus time and match the electromagnetic wave-
equation solutions for these dimensions.  The boundary-value solutions for the current-density functions comprise spherical 
harmonic functions and time harmonic functions confined to two dimensions (  and  ) plus time.  In order for the current to be 
positive definite, a constant function corresponding to the electron spin function is added to each of the spherical harmonic 
functions corresponding to orbital angular momentum to give the charge (mass)-density functions of the bound electron as a 
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function of time called an electron atomic orbital.  The integral of the constant function over the atomic orbital is the total charge 
(mass) of the electron.  The integral of a spherical harmonic function over the atomic orbital is zero; thus, it modulates the spin 
function.  These functions comprise the well-known s, p, d, f, etc. electrons or orbitals.  In the case that such an electron state 
arises as an excited state by photon absorption, it is radiative due to a radial dipole term in its current-density function since it 
possesses spacetime Fourier components synchronous with waves traveling at the speed of light, as shown in the Instability of 
the Excited States section. 

The excited states involving the corresponding multipole photon radiation are solved including the radii of the atomic 
orbitals using Maxwell’s equations with the traditional source current boundary constraints at the electron.  Quantization arises 
from the equation of the photon and the electron—not from the solution of the electron alone.  After all, each solution models an 
excited state created by the absorption of a photon.  The solutions are analogous to those of excited resonator modes except that 
the cavity is dynamic.  The photon field is described by a Dirac delta function at the radius of the electron,  nr r  , and due to 

relativistic effects the field is radially local at the electron.  The field lines from the proton superimpose with those of the photon 
at the electron and end on the current-density function of the electron such that the electric field is zero for nr r , where nr  is the 

radius of the electron.  The trapped photons are solutions of Maxwell’s equations.  The electrodynamic field of the photon is a 
constant function plus a time and spherical harmonic function that is in phase with source currents at the electron, which is given 
by a constant plus a time and spherical harmonic function.  Only particular solutions are possible as resonant photons of the 
electron, which is a dynamic resonator cavity.  The results are in agreement with first principle physics and experimental 
observations of the hydrogen atom, excited states, free electron, and free space photon including the wave particle duality 
aspects. 
 
SPIN AND ORBITAL PARAMETERS ARISE FROM FIRST PRINCIPLES ONLY IN THE 
CASE OF CP 
An electron is a two-dimensional spherical surface, called an electron atomic orbital, that can exist in a bound state only at 
specific radii nr  from the nucleus.  (See Figures I.1 and I.2 for a pictorial representation of an atomic orbital.)  The result for the 

1n   state of hydrogen is that the charge-density function remains constant with each point on the surface moving at the same 
angular and linear velocity.  The constant function corresponds to the spin function that has a corresponding spin angular 
momentum that may be calculated from r p  applied directly to the current-density function that describes the electron.  The 
radius of the nonradiative ( 1n  ) state is solved using the electromagnetic force equations of Maxwell relating the charge and 
mass-density functions wherein the angular momentum of the electron is   (Eq. (1.253)).  The reduced mass arises naturally 
from an electrodynamic interaction between the electron and the proton, rather than from a point mass revolving around a point 
nucleus in the case of Schrödinger wave equation solutions, which presents an internal inconsistency since the wave functions 
are spherically symmetrical. 

CP gives closed form solutions for the resonant photons and excited state electron functions.  The free space photon also 

comprises a radial Dirac delta function, and the angular momentum of the photon given by   41
Re ( )

8
dx

c
   m r E B*   in 

the Photon section is conserved for the solutions for the resonant photons and excited state electron functions.  It can be 
demonstrated that the resonance condition between these frequencies is to be satisfied in order to have a net change of the energy 
field [48].  In the present case, the correspondence principle holds.  That is the change in angular frequency of the electron is 
equal to the angular frequency of the resonant photon that excites the resonator cavity mode corresponding to the transition, and 
the energy is given by Planck’s equation.  The predicted energies, Lamb shift, fine structure splitting, hyperfine structure, 
resonant line shape, line width, selection rules, etc., are in agreement with observation.   

The radii of excited states are solved using the electromagnetic force equations of Maxwell relating the field from the 
charge of the proton, the electric field of the photon, and charge and mass-density functions of the electron wherein the angular 
momentum of the electron is   (Eq. (1.253)). 

For excited states of the hydrogen atom, the constant function corresponds to the spin function.  Each spherical harmonic 
function modulates the constant spin function and corresponds to an orbital function of a specific excited state with a 
corresponding phase-matched trapped photon and orbital angular momentum.  Thus, the spherical harmonic function behaves as 
a charge-density wave, which travels time harmonically on the surface of the atomic orbital about a specific axis.  (See Figure 
1.2 for a pictorial representation for several   values.)  The amplitude of the corresponding orbital energy may be calculated 
from Maxwell’s equations.  Since the constant function is modulated harmonically, the time average of the orbital energy is zero 
except in the presence of a magnetic field.  Nondegeneracy of energy levels arises from spin, orbital, and spin-orbit coupling 
interactions with the applied field.  The electrodynamic interaction with the magnetic field gives rise to the observed hyperfine 
splitting of the hydrogen spectrum. 

Many inconsistencies arise in the case of the corresponding solutions of the Schrödinger wave equation.  For example, 
where is the photon in excited states given by the Schrödinger equation?  A paradox also arises for the change in angular 
momentum due to photon absorption.  The Schrödinger equation solutions for the kinetic energy of rotation rotK  is given by Eq. 

(10) of Ref. [14] and the value of the electron angular momentum L  for the state  ,lmY    is given by Eq. (11) of Ref. [14].  

They predict that the excited state rotational energy levels are nondegenerate as a function of the   quantum number even in the 
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absence of an applied magnetic field, and the predicted energy is over six orders of magnitude of the observed nondegenerate 
energy in the presence of a magnetic field.  In the absence of a magnetic field, no preferred direction exists.  In this case, the   
quantum number is a function of the orientation of the atom with respect to an arbitrary coordinate system.  Therefore, the 
nondegeneracy is nonsensical and violates conservation of angular momentum of the photon.   

In quantum mechanics, the spin angular momentum of the electron is called the “intrinsic angular momentum” since no 
physical interpretation exists.  The Schrödinger equation is not Lorentz invariant in violation of special relativity.  It fails to 
predict the results of the Stern-Gerlach experiment that indicates the need for an additional quantum number.  Quantum 
Electrodynamics (QED) was proposed by Dirac in 1926 to provide a generalization of quantum mechanics for high energies in 
conformity with the theory of special relativity and to provide a consistent treatment of the interaction of matter with radiation.  
It is fatally flawed.  From Weisskopf [16], “Dirac’s quantum electrodynamics gave a more consistent derivation of the results of 
the correspondence principle, but it also brought about a number of new and serious difficulties.”  Quantum electrodynamics: (i) 
does not explain nonradiation of bound electrons; (ii) contains an internal inconsistency with special relativity regarding the 
classical electron radius—the electron mass corresponding to its electric energy is infinite (the Schrödinger equation fails to 
predict the classical electron radius); (iii) it admits solutions of negative rest mass and negative kinetic energy; (iv) the 
interaction of the electron with the predicted zero-point field fluctuations leads to infinite kinetic energy and infinite electron 
mass;  (v) Dirac used the unacceptable states of negative mass for the description of the vacuum; yet, infinities still arise.  
Dirac’s equation, which was postulated to explain spin, relies on the unfounded notions of negative energy states of the vacuum, 
virtual particles, and gamma factors.  All of these features are untenable or are inconsistent with observation.  These problems 
regarding spin and orbital angular momentum and energies and the classical electron radius are nonexistent with CP solutions. 

From the time of its inception, quantum mechanics (QM) has been controversial because its foundations are in conflict 
with physical laws and are internally inconsistent.  Interpretations of quantum mechanics such as hidden variables, multiple 
worlds, consistency rules, and spontaneous collapse have been put forward in an attempt to base the theory in reality.  
Unfortunately, many theoreticians ignore the requirement that the wave function must be real and physical in order for it to be 
considered a valid description of reality.  These issues and other such flawed philosophies and interpretations of experiments that 
arise from quantum mechanics are discussed in the Retrospect section and Ref. [10, 12, 14].  Reanalysis of old experiments and 
many new experiments including electrons in superfluid helium and data confirming the existence of hydrinos challenge the 
Schrödinger equation predictions.  Many noted physicists rejected quantum mechanics, even those whose work undermined 
classical laws.  Feynman attempted to use first principles including Maxwell’s Equations to discover new physics to replace 
quantum mechanics [49] and Einstein searched to the end.  “Einstein [...] insisted [...] that a more detailed, wholly deterministic 
theory must underlie the vagaries of quantum mechanics [50].”  He believed scientists were misinterpreting the data.  Examples 
of quantum mechanical misinterpretations of experiments are given in Box I.1.  (See the following sections: The One-Electron 
Atom, Electron in Free Space, Classical Photon and Electron Scattering, Three- Through Twenty-Electron Atoms, 
Superconductivity, Gravity, Wave-Particle Duality, and Refs. [9, 10, 12].) 
 
  
BOX I.1 MISINTERPRETATIONS OF OBSERVATIONS AS WEIRDNESS 
OF QUANTUM MECHANICS IS REVEALED TO BE DUE TO ATOMIC-
SCALE CLASSICAL PHYSICS  
 
QM:  The rise in current of free electrons in superfluid helium when irradiated with low-energy light and the formation of an 

unexpected plethora of exotic negative charge carriers in superfluid helium with mobilities greater than that of the normal 
electron are due to the electron breaking into fractional pieces. 

 

CP:  Fractional principal quantum energy states of the electron in liquid helium match the photoconductivity and mobility 
observations without requiring that the electron is divisible. 

 
QM:  Virtual particles surround the electron, and as the electron’s center is approached, they shield the electron’s charge less 

effectively. 
 

CP:  The electron is an extended particle, rather than a point, and the charge density is greatest in the center. 
 
QM:  Spooky actions at a distance are predicted. 
 

CP:  Photon momentum is conserved on a photon-by-photon basis rather than statistically as predicted by quantum mechanics 
which predicts photon coincidence counts at separated detectors (Aspect experiment). 

 
QM:  The purely postulated Hund’s Rule and the Pauli Exclusion Principle of the assignment of unique quantum numbers to all 

electrons are “weird spooky action” phenomena unique to quantum mechanics that require all electrons in the universe to 
have instantaneous communication and coordination with no basis in physical laws such as Maxwell’s equations. 
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CP: The observations that all electrons have unique quantum numbers and that the electron configuration of atoms follows a 
pattern based on solutions of Laplace’s equation are phenomenological consequences of physical laws such as Maxwell’s 
equations. 

 
QM:  Since fundamental particles are probability waves and their position and energy are uncertain according to the 

Uncertainty Principle, they can “magically” appear on the other side of a supposedly insurmountable energy barrier based 
on their energy on the initial side of the barrier; thus, they defy physical laws and tunnel through the barrier. 

 

CP:  Fundamental particles such as an electron are real, extended particles each of size equal to its de Broglie wavelength, 
rather than a point-particle-probability-wave.  Potential energy is gained as the particle traverses the barrier that is 
cleared; even though its initial kinetic energy was less than the barrier height.  Energy conservation is obeyed at all times.  
Tunneling arises from physical laws. 

 

QM:  A 
9 Be

 ion may be in two separate locations at once. 
 

CP:  The fluorescence emission spectrum of a Penning trapped 9Be  ion shows interference peaks due to coupling between 
oscillator modes and a Stern Gerlach transition. 

 
QM:  Supercurrent may go in both directions at once. 
 

CP:  The energy difference of a superconducting loop observed by Friedman et al. [1] matches the energy corresponding to the 
flux linkage of the magnetic flux quantum by the ensemble of superconducting electrons in their entirety with a reversal 
of the corresponding macroscopic current. 

 
QM:  O’Connell et al. [2] claimed to have achieved a quantum state of motion for a mechanical object by causing a Josephson 

junction qbit to be entangled with a macroscopic mechanical resonator and thereby extending, in their opinion, the weird 
rules of quantum mechanics such as zero-order vibration and entanglement to the macroworld. 

 

CP:  In reality, the device that O’Connell’s team fabricated and tested is no more than a variant of a SQUID, a known classical 
(Chp. 42) macrodevice, except that it uniquely exploits piezoelectricity to form the weak link of a superconducting loop 
to enable the device.  It demonstrates quantized excitation independently of the qbit and cannot exhibit zero-order 
vibration due to the nature of the SQUID; moreover, zero-order vibration is experimentally shown to be nonexistent in 
measurements with the qbit. 

 
QM:  Perpetual motion is predicted. 
 

CP:  Perpetual motion is not permitted nor observed. 
 
QM:  A weak force is observed between the two precision-machined plates with minuscule separation because the plates serve 

to limit the number of virtual particle modes between the plates, as opposed to those outside the plates, and the resulting 
imbalance in pressure between two infinite quantities gives rise to the feeble force known as the Casimir effect. 

 

CP:  The Casimir effect is predicted by Maxwell’s equations wherein the attractive force is due only to the interactions of the 
material bodies themselves.  Charge and current fluctuations in a material body with a general susceptibility serve as 
source terms for Maxwell’s equations, i.e. classical fields, subject to the boundary conditions presented by the body 
surfaces.  In the limiting case of rarefied media, the van der Waals force of interaction between individual atoms is 
obtained [3-4]. 

 

QM:  The postulated Quantum Electrodynamics (QED) theory of 
2

g
 is based on the determination of the terms of a postulated 

power series in /   where each postulated virtual particle is a source of postulated vacuum polarization that gives rise 
to a postulated term.  The algorithm involves scores of postulated Feynman diagrams corresponding to thousands of 
matrices with thousands of integrations per matrix requiring decades to reach a consensus on the “appropriate” postulated 
algorithm to remove the intrinsic infinities. 

 

CP:  The remarkable agreement between Eqs. (1.236) and (1.237) of the Electron g Factor section demonstrates that 
2

g
 may 

be derived in closed form from Maxwell’s equations in a simple straight forward manner that yields a result with eleven-
figure agreement with experiments—the limit of the experimental capability is the measurement of the fundamental 
constants that determine  . 

 
QM:  The muon g  factor g

 is required to be different from the electron g  factor in the standard model due to the mass 

dependent interaction of each lepton with vacuum polarizations due to virtual particles.  The BNL Muon (g-2) 
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Collaboration used a “magic” 29.3   which satisfied the BMT equation identically for the theoretical value of 
2

g  with 

assumption that 
2 2

e
g g   and obtained a measured result that was internally consistent. 

 

CP:  Rather than indicating an expanded plethora of postulated super-symmetry virtual particles, which make contributions 
such as smuon-neutralino and sneutrino-chargino loops, the muon, like the electron, is a lepton with   of angular 
momentum, and the muon and electron g  factors are predicted by classical physics to be identical.  Using the 

experimental “magic” 29.3   and 
2 2

e
g g   in the BMT equation, the predicted measurement exactly matched 

2

g  

measured by the BNL Muon (g-2) Collaboration proving that their assumption that the 29.3   condition eliminated the 

effect of the electrostatic field on 
a

  was flawed and showed the equivalence of the muon and electron g  factors. 

 
QM:  The expansion of the universe is accelerating due to the presence of “dark energy” throughout all space. 
 

CP:  The constant maximum speed c  for the propagation of light and gravity results in the conservation relationship of mass-

energy, 2E mc  and spacetime, 
3

34
 3.22  10

4 sec

c kg
X

G
 .  Spacetime expands as mass is converted to energy, and the 

predictions match the observed Hubble constant and the acceleration of the expansion. 
 
QM:  In the double-slit experiment, single electrons break into pieces, go through both slits at once, and interfere with 

themselves over all space. 
 

CP:  Electrons are not divisible and comprise an extended current distribution with   of angular momentum that is conserved 
with the electrodynamic interaction of the charged propagating electron with the conducting electrons of the material of 
the slits such that an angular momentum vector change corresponds to a translational displacement.  In the far-field, the 
transverse momentum pattern is given by the Fourier transform of the slit aperture pattern, and the characteristic 
interference pattern is observed even with single electrons over time. 

 
QM:  In photon diffraction through slits, light-wave crests and troughs superimpose to cancel to give dark spots; whereas, 

superposition of crest with crest and trough with trough reinforces the intensity and gives bright spots. 
 

CP:  Photons are not destroyed by other photons.  They interact with the electrons of the slit material, and the electrodynamic 
currents reradiate the light to give the characteristic interference pattern as by the Fourier transform of the slit aperture 
pattern.  

 
QM:  According to Nesvizhevsky et al. [5], a step in the transmission of falling neutrons through a variable-height channel 

comprising a mirror on the bottom and an absorber at the top occurred at a height of 13 m  because neutrons fell in 
quantized jumps. 

 

CP:  The de Broglie wavelength in the vertical direction corresponding to the scattering of a falling neutron from the mirror to 

the absorber was given by  
2 / 3

1/ 3

1

1
12.6 

2
n

h
z g m

m
 
  

 
 
 

 where h  is Planck’s constant, 
n

m  is the mass of the neutron, 

and g  is the acceleration due to gravity.  For absorber heights greater than 13 m , the height was greater than the de 
Broglie wavelength; thus, a step in the transmission of falling neutrons occurred at 13 m .  The observed transmission 
matched identically that predicted by Newton’s Law of Gravitation; no quantum gravity effect was observed. 

 
QM:  The nature of the chemical bond is based on a nonphysical “exchange integral,” a “strictly quantum mechanical 

phenomena,” that is a consequence of a postulated linear combination of product wavefunctions wherein it is implicit that 
each point electron with infinite self-electric-and-magnetic-field energies must exist as a “probability-wave cloud” and be 
in two places at the same time (i.e. centered on two nuclei simultaneously).  

 

CP:  The nature of the chemical bond solved using first principles including stability to radiation requires that the electron 
charge of the molecular orbital is a prolate spheroid, a solution of the Laplacian as an equipotential minimum energy 
surface in the natural ellipsoidal coordinates compared to spheroidal in the atomic case, and the current is time harmonic 
and obeys Newton’s laws of mechanics in the central field of the nuclei at the foci of the spheroid. 

 
QM:  The electron clouds mutually shield the nuclear charge to provide an adjustable parameter, “effective nuclear charge”; 

yet, neither has any self-shielding effect; even though the clouds are mutually indistinguishable and must classically 
result in a self-interaction force equivalent to 1/2 the central attractive force.  Furthermore, the electron–electron 
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repulsion term in the Hamiltonian can be infinite in atoms and molecules; yet, electron overlap is the basis of bonding in 
molecules.  

 

CP:  Electrons are concentric spherical shells in atoms and two-dimensional prolate spheroids in molecules such that there is 
no electron-electron repulsion, and bonding is due to the attraction between the oppositely charged electrons and nuclei at 
the origin and foci of the spheroids, respectively. 

 
QM:  The lowest energy vibrational state of any molecule is not zero rather, in violation of the second law of thermodynamics 

and experimental observation such as the formation of a Bose-Einstein condensate of molecules, it is the zero order 

vibration of 
1 1

2 2

k
h


  that is equivalent to zero point energy.  Moreover, the basis of zero order vibration, the 

Heisenberg Uncertainty Principle, has been experimentally disproved [6]. 
 

CP:  The lowest energy vibrational state of any molecule is zero as its lowest vibrational and rotational energies, and the 
molecules can be solved using first principles in closed form equations in agreement with experimental observations 
including the difference in bond energies and vibrational energies with isotope substitution. 

 
QM:  Since flux is linked by a superconducting loop with a weak link in quantized units of the magnetic flux quantum, 

2

h

e


  , the basis of superconductivity is interpreted as arising from the formation of electron pairs corresponding to the 

2e  term in the denominator; the so-called Cooper pairs form even though electrons repel each other, the electron 
repulsion should increase the resistance to electron flow, and such pairs cannot form at the critical temperature of high 

c
T  

superconductors. 
 

CP:  To conserve the electron’s invariant angular momentum of  , flux is linked by each electron in quantized units of the 

magnetic flux quantum, 
2

h

e


  , and the basis of superconductivity is a correlated flow of an ensemble of individual 

electrons such that no energy is dissipated (i.e. superconductivity arises when the lattice is a band-pass for the magnetic 
field of an array of magnetic dipoles; therefore, no energy is dissipated with current flow). 

 
QM:  In a realization of Wheeler’s delayed-choice gedanken experiment, modulated output is observed at two orthogonal 

detectors that has a trigonometric dependence on the phase angle with a relative phase angle of   between the outputs 
when an electro-optical modulator (EOM) is active because the absence of knowledge determines that each single photon 
must travel back in time, change history, travel along two paths simultaneously, and interfere with itself. 

 

CP:  An EOM is not a time machine.  The interference results are predicted in terms of the classical nature of each linearly 
polarized single photon being comprised of two oppositely circular polarized components that conserve angular 

momentum when each interacts with the EOM at a tilt angle 
4

  relative to the axis of linear polarization.  The orthogonal 

circular polarizations input to the EOM each rotate in opposite directions by 
4

 , and the action of the EOM on the 

opposite circular polarized component vectors is antisymmetrical about the axes with the interchange of initial direction 
of the linear polarization from yE  to xE  to cause the appearance of interference at the outputs. 
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THREE ATOMIC THEORIES 
It is possible to arrive at the Rydberg formula using the wrong physics.  The statement “the results justify the means” is a 
fundamental argument for the validity of quantum mechanics no matter how strained the explanations or the consequences.  
Consider that in fact, the mathematics of the three theories of Bohr, Schrödinger, and presently CP converge to Eq. (I.1) as the 
principal energy levels of the hydrogen atom. 

   
2

2 2
0

13.598 

8n
H

e eV
E

n a n
     (I.1) 

 1,2,3,...n   (I.2)  

where Ha  is the Bohr radius for the hydrogen atom (52.947 pm), e  is the magnitude of the charge of the electron, and o  is the 

vacuum permittivity.  The theories of Bohr and Schrödinger depend on specific postulates to yield Eq. (I.1).  A mathematical 
relationship exists between the theories of Bohr and Schrödinger with respect to CP that involves these postulates.  CP solves the 
source currents of spherical multipole radiation fields.  The current-density functions are the same as the spherical-harmonic and 
time-harmonic functions of the spherical electromagnetic waves, but are confined to a two-dimensional sphere of fixed radius 
except between transitions involving emission or absorption of the corresponding multipole radiation.  Then, the currents match 
the wave equation solutions for two dimensions, the angular and time-dependent solutions of the wave equation.  The Fourier 
transform of the current-density function is a solution of the three-dimensional wave equation in frequency  ,k   space.  

Whereas, the Schrödinger-equation solutions are three dimensional in spacetime.  The energy is given by:  

 2* H dv E dv  
 

 
  ; (I.3) 

 2 1dv



  (I.4) 

Thus, 

 * H dv E 



  (I.5) 

In the case that the potential energy of the Hamiltonian, H , is a constant times the wavenumber, the Schrödinger equation 
becomes the well-known Bessel equation.  Then, with one of the solutions for  , Eq. (I.5) is equivalent to an inverse Fourier 
transform.  According to the duality and scale change properties of Fourier transforms, the energy equation of CP and that of 
quantum mechanics are identical, the energy of a radial Dirac delta function of radius equal to an integer multiple of the radius of 
the hydrogen atom (Eq. (I.1)).  Bohr obtained the same energy formula by postulating nonradiative states with angular 
momentum 
 zL m   (I.6) 

and solving the energy equation classically.   
The mathematics of all three theories result in Eq. (I.1).  However, the physics is quite different.  CP is derived from first 

principles and holds over a scale of spacetime of 85 orders of magnitude—it correctly predicts the nature of the universe from 
the scale of quarks to that of the cosmos.  The two other theories are more or less mathematical curve fits to the Rydberg formula 
with inherent physical and mathematical flaws.  

Specifically, the Bohr theory has inherent physical shortcomings such as failing to predict the spectrum of hydrogen in a 
magnetic field and the inability to solve helium and other multi-electron atoms and the nature of the chemical bond as well as the 
prediction of infinite angular momentum according to Eq. (I.6).  Its success can be attributed to the rigging of the angular 
momentum to give rise to the Rydberg formula with the dismissal of the radiative stability problem. 

The electron in the Schrödinger model is a singularity that exists over all space simultaneously at each instantaneous time 
point that is physically impossible and violates all first principles including stability to radiation.  It is not relativistically 
invariant and fails to predict electron spin, the electron’s magnetic moment, the g factor, the Stern-Gerlach experimental results, 
the Lamb shift, the fine structure, and the hyperfine structure.  Furthermore, the Schrödinger equation is mathematically 
inconsistent in the excited state quantum numbers and does not give the proper quantization of the one-electron atom energy 
states. 

In contrast, the stable electron current at the 1n   state and the quantized excited states and their lifetimes can be solved 
precisely in closed-form equations containing fundamental constants only using physical laws that do not miss the Lamb shift, 
fine structure, hyperfine structure, magnetic moment, Stern Gerlach experimental results, g factor, and relativistic invariance as 
the Schrödinger equation does.  Eq. (I.100) is also the de Broglie matter wave condition used heuristically in the Bohr model to 
give the Rydberg formula, but in this case, the standing wave involves the photon.  Furthermore, the quantization involves 
excitation of discrete resonator modes imposed by the spherical cavity.  In quantum mechanics, quantization is purely 
mathematical, but similarly dependent on the integer spherical periodicity of the spherical harmonics, and the principal quantum 
is defined in a manner to give integer angular quantum numbers of complete harmonic wavelengths as well as fit the Rydberg 
formula.  However, the result is not even mathematically consistent.  The principal quantum number is defined as the integer 
radial quantum number minus the integer angular quantum number.  But, experimentally the angular or orbital quantum number 
is multi-valued for any principal quantum number causing the internal inconsistency that the radial quantum number must be 
multi-valued for a given principal quantum number [51].  In contrast, as shown by Eq. (I.103), Eq. (I.100) gives the angular 
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harmonic solutions and the corresponding integer radial and angular quantum numbers for physical states. 
Specifically, there is an inescapable inconsistency in the mathematics of quantum mechanics identified in Section 11.3 of 

Margenau and Murphy [51] regarding the definition of the quantum numbers in the solutions of the Schrödinger equation.  With 
the mathematical constraints of normalization and power series termination, the hydrogen atomic energy levels given by 
Margenau and Murphy are: 

 
 

4
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1

2 *

me
W
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 (I.7) 

wherein *n  is the quantum number of the solution of separable radial function and l  is the independent quantum number of the 
solution of the separable angular  function.  The quantity  *n l  is then denoted by n  and called the total quantum number such 

that the energy states of the hydrogen atom may be written as: 
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Now, let’s say that the hydrogen atom is in the 5n   state.  If the angular quantum number is 0l  , then the radial quantum 
number must be * 5n  , but if the mathematically independent angular quantum number is 1l  , then the radial quantum number 
must be * 6n  .  Thus, an internal inconsistency arises due to the mathematics of the separable functions and independent 
quantum numbers of the corresponding solutions such as the requirement that the radial quantum number be both * 5n   and 

* 6n   for the state 5n  .  Indeed as n  , each principal quantum state has the possibility of an infinite number of radial 
functions corresponding to the degenerate energy level of that state which is impossible.  Specifically, it is impossible for the 
different radial wave functions having different expectation values for the radius of a given energy state to be both physical and 
energy degenerate for an electron in an inverse-squared Coulomb field. 

Other problems exist with QM.  QM makes inescapable predictions that do not match observations.  For example, at page 
365, Margenau and Murphy [51] state: 
 

 but with the term   2

2

1

2mr

  
 added to the normal potential energy.  What is the meaning of that term?  In classical 

mechanics, the energy of a particle moving in three dimensions differs from that of a one-dimensional particle by the 

kinetic energy of rotation, 2 21

2
mr  .  This is precisely the quantity   2

2

1

2mr

  
, for we have seen that   21    is the certain 

value of the square of the angular momentum for the state Y , in classical language  22mr   which is divided by 22mr , 

gives exactly the kinetic energy of rotation. 
 
From these equations, zero rotational energy and zero angular momentum are predicted for the 1n   state, but these conditions 
are impossible since the electron is bound in a Coulomb field and must have nonzero instantaneous motion.  Thus, the 
Schrödinger equation solutions further predict that the ionized electron may have infinite angular momentum.  The Schrödinger 
equation solutions also predict that the excited state rotational energy levels are nondegenerate as a function of the   quantum 
number even in the absence of an applied magnetic field, and the predicted energy is over six orders of magnitude greater than 
the typically observed nondegenerate energy in the presence of a magnetic field.  In the absence of a magnetic field, no preferred 
direction exists.  In this case, the   quantum number is a function of the orientation of the atom with respect to an arbitrary 
coordinate system.  Therefore, the nondegeneracy is nonsensical and violates conservation of angular momentum of the photon.  
Furthermore, as the principal quantum number and therefore   go to infinity, the rotational energy and angular momentum 
become infinite while the wavefunction becomes sinusoidal over all space and is not normalizable [51].  In the latter case, a strict 
mathematical constraint of the founding postulates is violated.  Thus, the theory is not mathematically consistent besides being 
physically impossible.  It does not properly give rise to the observed quantized states of the hydrogen atom. 

Moreover, only CP predicts reciprocal integers as “allowed” in the Rydberg energy equation.  Explicitly, CP gives Eq. 
(I.1) as the energy-level equation for atomic hydrogen, but the restriction on “ n ,” Eq. (I.2), should be replaced by Eq. (I.9). 

 
1 1 1

1,2,3,...,  ,  , , ,...
2 3 4

n and n   (I.9) 

Experimental observations lead to the conclusion that atomic hydrogen can exist in fractional quantum states that are at lower 
energies than the traditional “ground” ( 1n  ) state [22-42], and the observation of 54.4 eV  and 122.4 eV  short-wavelength-
cutoff continuum radiation from hydrogen alone [23-29, 31] confirms CP in the prediction of hydrinos and directly disproves 
atomic theories such as the Bohr theory and the Schrödinger and Dirac equations based on the definition of 1n   as the ground 
state, the defined state below which it is impossible to go.  Thus, postulates were established to give the correct formula for the 
principal energies of the excited states of atomic hydrogen, but being devoid of the correct physics, the resulting mathematical 
models failed to predict unanticipated results and are disproved experimentally. 
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MATHEMATICAL RELATIONSHIP BETWEEN THE THEORIES OF BOHR AND 
SCHRÖDINGER WITH RESPECT TO CLASSICAL ATOMIC THEORY 
The mathematical relationship whereby the Schrödinger equation may be transformed into a form consistent with first principles 
is shown infra.  In the case that the potential energy of the Hamiltonian, H , is a constant times the wavenumber, the Schrödinger 
equation is the well-known Bessel equation.  Then, one of the solutions for the wavefunction   (a current-density function 
rather than a probability wave) is equivalent to an inverse Fourier transform.  According to the duality and scale change 
properties of Fourier transforms, the energy equation of CP and that of quantum mechanics are identical, the energy of a radial 
Dirac delta function of radius equal to an integer multiple of the radius of the hydrogen atom. 

Historically, J. J. Balmer showed, in 1885, that the frequencies for some of the lines observed in the emission spectrum of 
atomic hydrogen could be expressed with a completely empirical relationship.  This approach was later extended by J. R. 
Rydberg who showed that all of the spectral lines of atomic hydrogen were given by the equation: 
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where 110,967,758 R m , 1, 2,3,...fn  , 2,3,4,...in  , and i fn n .  In 1911, Rutherford proposed a planetary model for the 

atom where the electrons revolve about the nucleus (which contained the protons) in various orbits.  There was, however, a 
fundamental conflict with this model and the prevailing classical physics.  According to classical electromagnetic theory, an 
accelerated particle radiates energy as electromagnetic waves.  Thus, an electron in a Rutherford orbit, circulating at constant 
speed but with a continually changing direction of its velocity vector is being accelerated whereby the electron should constantly 
lose energy by radiating and spiral into the nucleus. 

An explanation was provided by Bohr in 1913 when he assumed that the energy levels were quantized and the electron 
was constrained to move in only one of a number of allowed states.  Niels Bohr’s theory for atomic hydrogen was based on an 
unprecedented postulate of stable circular orbits that do not radiate.  Although no explanation was offered for the existence of 
stability for these orbits, the results gave energy levels in agreement with Rydberg’s equation.  Bohr’s theory was a 
straightforward application of Newton’s laws of motion and Coulomb’s law of electric force.  According to Bohr’s model, the 
point particle electron was held to a circular orbit around the relatively massive point particle nucleus by the balance between the 
Coulomb force of attraction between the proton and the electron and centrifugal force of the electron. 
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Bohr postulated the existence of stable orbits in defiance of classical physics (Maxwell’s equations), but he applied classical 
physics according to Eq. (I.11).  Bohr then realized that the energy formula Eq. (I.1) was given by postulating nonradiative states 
with angular momentum 
 1,2,3...z eL m vr n n    (I.12) 

and by solving the energy equation classically.  The Bohr radius is given by substituting the solution of Eq. (I.12) for v  into Eq. 
(I.11). 
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The total energy is the sum of the potential energy and the kinetic energy.  In the present case of an inverse squared central field, 
the total energy (which is the negative of the binding energy) is one half the potential energy [52].  The potential energy,   r , 

is given by Poisson’s equation 
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For a point charge at a distance r  from the nucleus the potential is: 
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Thus, the total energy is given by: 
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Substitution of Eq. (I.13) into Eq. (I.16) with the replacement of the electron mass by the reduced electron mass gives Eq. (I.1). 
Bohr’s model was in agreement with the observed hydrogen spectrum, but it failed with the helium spectrum, and it 

could not account for chemical bonds in molecules.  The prevailing wisdom was that the Bohr model failed because it was based 
on the application of Newtonian mechanics for discrete particles.  Its limited applicability was attributed to the unwarranted 
assumption that the energy levels are quantized. 

In 1923, de Broglie suggested that the motion of an electron has a wave aspect— 
h

p
  .  This was confirmed by 

Davisson and Germer in 1927 by observing diffraction effects when electrons were reflected from metals.  Schrödinger reasoned 
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that if electrons have wave properties, there must be a wave equation that governs their motion.  In 1926, he proposed the 
Schrödinger equation 
 H E    (I.17) 
where   is the wave function, H  is the wave operator, and E  is the energy of the wave.  To give the sought three quantum 
numbers, the Schrödinger equation solutions are three-dimensional in space and four-dimensional in spacetime. 
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 (I.18) 

where ( , , , )r t   according to quantum theory is the probability-density function of the electron, as described below.  When 
the time harmonic function is eliminated [53-54], the result is 
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 (I.19) 

where  U r  is the classical Coulomb potential energy which in MKS units is: 
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e
U r

r
   (I.20) 

The Schrödinger equation (Eq. (I.19)) can be transformed into a sum comprising a part that depends only on the radius and a part 
that is a function of angle only obtained by separation of variables and linear superposition in spherical coordinates.  The general 
form of the solutions for  , ,r    is: 

      
,

, , ,lm lm
l m

r f r Y      (I.21) 

where l  and m  are separation constants.  The solutions for the full angular part of Eq. (I.19),  ,lmY   , are the spherical 

harmonics. 
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 (I.22) 

In general, the Schrödinger equation has an infinite number of solutions.  To arrive at the solution, which represents the 
electron, a suitable boundary condition must be imposed.  Schrödinger postulated the boundary condition: “ 0  as r  ,” 
which leads to a purely mathematical model of the electron.  In addition, to arrive at the Rydberg series for the principal energy 
levels, further definitions of constants in the corresponding Laguerre differential equation are required [14-15].  The historical 
solution [54] may be approached differently to arrive at a solution that is based in physics.  The angular part of Eq. (I.19) is the 
generalized Legendre equation which is derived from the Laplace equation by Jackson ([55] at Eq. (3.9)).  For the case that the 
potential energy is a constant times the wavenumber of the electron, k  (a constant times the inverse of the de Broglie 

wavelength of the electron—
2

;   
h

k
p

 


  ), the radial part of Eq. (I.19) is just the Bessel equation, Eq. (3.75) of Jackson [55] 

with 
1

2
l   .  (In the present case of an inverse squared central field, the magnitude of each of the binding energy and the 

kinetic energy is one half the potential energy [52], and the de Broglie wavelength requires that the kinetic energy, 
2

2 e

p

m
, is a 

constant times the wavenumber squared.)  Thus, the solution for  lmf r  is: 

      1/ 2 1/ 21/ 2 1/ 2
lm lm

lm l l

A B
f r J kr N kr

r r    (I.23) 

It is customary to define the spherical Bessel, Neumann, and Hankel functions, denoted by        1,2,  ,  ,l l lj x n x h x  as follows: 
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 (I.24) 

For 0l   the explicit forms are: 
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Eq. (I.19) has the general form: 
 H E   (I.26) 
The energy is given by:  

 2H dv E dv  
 

 

  ; (I.27) 

Typically, the solutions are normalized. 

 2 1dv




  (I.28) 

thus, 

 H dv E 




  (I.29) 

A physical interpretation of Eq. (I.26) is sought.  Schrödinger interpreted *( ) ( )e x x   as the charge density or the amount of 
charge between x  and x dx  ( *  is the complex conjugate of  ).  Presumably, then, he pictured the electron to be spread 
over large regions of space.  Three years after Schrödinger’s interpretation, Max Born, who was working with scattering theory, 
found that this interpretation led to logical difficulties, and he replaced the Schrödinger interpretation with the probability of 
finding the electron between x  and x dx  as: 

 ( ) *( )x x dx   (I.30) 

Born’s interpretation is generally accepted.  Nonetheless, interpretation of the wave function is a never-ending source of 
confusion and conflict.  Many scientists have solved this problem by conveniently adopting the Schrödinger interpretation for 
some problems and the Born interpretation for others.  This duality allows the electron to be everywhere at one time—yet to 
have no volume.  Alternatively, the electron can be viewed as a discrete particle that moves here and there (from 0r   to 
r   ), and *  gives the time average of this motion.  According to the Copenhagen interpretation, every observable exists 
in a state of superposition of possible states, and observation or the potential for knowledge causes the wavefunction 
corresponding to the possibilities to collapse into a definite state.  The postulate of quantum measurement asserts that the process 
of measuring an observable forces the state vector of the system into an eigenvector of that observable, and the value measured 
will be the eigenvalue of that eigenvector.  Thus, Eq. (I.26) corresponds to collapsing the wave function, and E  is the eigenvalue 
of the eigenvector. 

However, an alternative interpretation of Eq. (I.26) and the corresponding solutions for   exists.  In this case,   is a 
function given by Eqs. (I.23-I.25), and Eq. (I.19) is equivalent to an inverse Fourier transform.  The spacetime inverse Fourier 
transform in three dimensions in spherical coordinates is given [56-57], as follows: 

 

2
2( , ) ( , , ) exp( 2 [cos cos sin sin cos( )]) sinM s r i sr r drd d

 

         


  

          (I.31) 

With circular symmetry [56]: 
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       (I.32) 

With spherical symmetry [56], 
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 (I.33) 

By substitution of the eigenvalues corresponding to the angular part [54] of Eq. (I.21), the Schrödinger equation becomes the 
radial equation,  R r , given by: 
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 (I.34) 

Consider the case that   = 0, that the potential energy is a constant times the wavenumber, and that the radial function is a 

spherical Bessel function as given by Eqs. (I.23-I.25).  In this case, multiplication of both sides of Eq. (I.34) by 
2

sin 2
4

2

sr

sr
  
 
 

 

followed by integration with respect to the radius over its limits (0 to  ) gives 
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 (I.35) 

Eq. (I.33) is the Fourier transform integral in spherical coordinates with spherical symmetry.  The left hand side (LHS) of Eq. 
(I.35) is equivalent to the LHS of Eq. (I.29) wherein   is given by Eq. (I.25).  Then the LHS of Eq. (I.35) is the Fourier 

transform integral of H  wherein the kernel is 2 sin 2

2

sr
r

sr
.  The integral of Eq. (I.29) gives E  which is a constant.  The energy 

E  of Eq. (I.26) is a constant such as b .  Thus, H  according to Eq. (I.26) is a constant times  . 
 H b   (I.36) 
Since b  is an arbitrary constant, consider the following case wherein b  is the Rydberg quantized energy formula: 
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Z e
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Then the energy of Eq. (I.29) is that given by Eq. (I.1).  However, the Schrödinger equation can be solved to give the energy 
corresponding to the radial function given by Eq. (I.59) of CP.  The radial function used to calculate the energy is a delta 
function that corresponds to an inverse Fourier transform of the solution for  .  

   ( )ns s s    (I.38) 

With a change of variable, Eq. (I.38) becomes Eq. (I.59).  Eq. (I.35) can be expressed, as follows: 
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It follows from Eq. (I.33) that the right side integral is the Fourier transform of a radial Dirac delta function: 
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Substitution of Eq. (I.36) into Eq. (I.39) gives: 
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Substitution of Eq. (I.40) and Eq. (I.41) into Eq. (I.39) gives: 
    n nb s s E s s     (I.42) 

Consider the case where b  is given by: 
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 (I.43) 

and ns  is given by: 

 n Hs na  (I.44) 
where n Hr na .  According to the duality and change of scale properties of Fourier transforms [58], the energy equation of CP 

and that of QM are identical, the energy of a radial Dirac delta function of a radius that’s equal to an integer multiple of the 
radius of the hydrogen atom.  The total energy of the electron is given by Gauss’ law for the potential and the relationship that 
the total energy is one half the potential energy in the case of an inverse squared central force [52]: 
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           (I.45) 

Thus, the mathematical relationship of CP and QM is based on the Fourier transform of the radial function.  CP requires 
that the electron is real and physically confined to a two-dimensional surface comprising source currents that match the wave 
equation solutions for spherical waves in two dimensions (angular) and time.  The corresponding Fourier transform is a wave 
over all space that is a solution of the three-dimensional wave equation (e.g. the Schrödinger equation).  In essence, QM may be 
considered as a theory dealing with the Fourier transform of an electron, rather than the physical electron.  By Parseval’s 
theorem, the energies may be equivalent, but the quantum mechanical case is nonphysical—only mathematical.  It may 
mathematically produce numbers that agree with experimental energies as eigenvalues, but the mechanisms lack internal 
consistency and conformity with physical laws.  If these are the criteria for a valid solution of physical problems, then QM has 
never successfully solved any problem.  The theory of Bohr similarly failed. 
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SHORTCOMINGS OF QUANTUM THEORY AND REASONS FOR A COMPLETE 
REVISION OF ATOMIC THEORY 
In general, QM has proved to be a deadend towards unification of the fundamental forces including gravity and further failed to 
give the basis of the inertial and gravitational masses, the equivalence of these masses, predicting the masses of fundamental 
particles, and the acceleration behavior of the cosmos.  Fundamentally, quantum mechanics based on the Schrödinger equation 
and modifications of the Schrödinger equation has encountered several obstacles that have proved insurmountable even from the 
beginning with the hydrogen atom, as was the case with the Bohr theory (See the Retrospect section, and Mills’ publications [4-
15]).  The Schrödinger equation mathematically gives the Rydberg equation as a set eigenvalues.  On this basis alone, it is 
justified despite its inconsistency with physical laws and numerous experimental observations such as: 
 

• The appropriate eigenvalue must be postulated and the variables of the Laguerre differential equation must be defined 
as integers in order to obtain the Rydberg formula. 

 
• The Schrödinger equation is not Lorentz invariant. 
 
• The Schrödinger equation violates first principles, including special relativity and Maxwell’s equations [4-20, 59]. 
 
• The Schrödinger equation gives no basis why excited states are radiative and the 13.6 eV state is stable.  Mathematics 

does not determine physics; it only models physics. 
 
• The Schrödinger equation solutions, Eq. (36) and Eq. (37) of Ref. [15], predict that the ground state electron has zero 

angular energy and zero angular momentum, respectively. 
 
• The Schrödinger equation solution, Eq. (37) of Ref. [15], predicts that the ionized electron may have infinite angular 

momentum. 
 
• The Schrödinger equation solutions, Eq. (36) and Eq. (37) of Ref. [15], predict that the excited state rotational energy 

levels are nondegenerate as a function of the   quantum number even in the absence of an applied magnetic field, and 
the predicted energy is over six orders of magnitude of the observed nondegenerate energy in the presence of a 
magnetic field.  In the absence of a magnetic field, no preferred direction exists.  In this case, the   quantum number is 
a function of the orientation of the atom with respect to an arbitrary coordinate system.  Therefore, the nondegeneracy 
is nonsensical and violates conservation of angular momentum of the photon. 

 
• The Schrödinger equation predicts that each of the functions that corresponds to a highly excited state electron is not 

integrable and cannot be normalized; thus, each is infinite. 
 
• The Schrödinger equation predicts that the ionized electron is sinusoidal over all space and cannot be normalized; thus, 

it is infinite. 
 
• The Heisenberg Uncertainty Principle arises as the standard deviation in the electron probability wave, but 

experimentally it is not the basis of wave-particle duality [12, 60]. 
 
• The correspondence principle does not hold experimentally. 
 
• The Schrödinger equation does not predict the electron magnetic moment and misses the spin quantum number 

altogether. 
 
• The Schrödinger equation provides no rational basis for the phenomenon of spin, the Pauli exclusion principle, or 

Hund’s rules.  Instantaneous exchange of information between particles is required, which violates special relativity.  
 
• The Schrödinger equation is not a wave equation since it gives the velocity squared proportional to the frequency. 
 
• The Schrödinger equation is not consistent with conservation of energy in an inverse potential field wherein the binding 

energy is equal to the kinetic energy and the sum of the binding energy and the kinetic energy is equal to the potential 
energy. 

 
• The Schrödinger equation permits the electron to exist in the nucleus, a state that is physically nonsensical with infinite 

potential energy and infinite negative kinetic energy. 
 
• The Schrödinger equation interpreted as a probability wave of a point particle cannot explain neutral scattering of 

electrons from hydrogen. 
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• The Schrödinger equation interpreted as a probability wave of a point particle gives rise to infinite magnetic and electric 

energy in the corresponding fields of the electron.  For example, the electron must spin in one dimension and give rise 

to a Bohr magneton; yet, classically the energy of a magnetic moment is 
2

3r


 which in the present case is infinity (by 

substitution of 0r   for the model that the electron is a point particle), not the required 2mc .  This interpretation is in 
violation of Special Relativity [61]. 

 

• A modification of the Schrödinger equation was developed by Dirac to explain spin.2  The postulated QED theory of 
2

g
 

is based on the determination of the terms of a postulated power series in /   where each postulated virtual particle is 
a source of postulated vacuum polarization that gives rise to a postulated term.  The algorithm involves scores of 
postulated Feynman diagrams corresponding to thousands of matrices with thousands of integrations per matrix 
requiring decades to reach a consensus on the “appropriate” postulated algorithm to remove the intrinsic infinities.3 

 
These failures of QM are attributed to the unwarranted assumption that atomic-size particles obey different physical laws 

than macroscopic objects.  Specifically, QM is incorrect in its basis that first principles such as Maxwell’s Equations do not 
apply to the electron and the notion that the electron is described by a probability distribution function of a point particle.  
Quantum mechanics is based on engendering the electron with a wave nature, as suggested by the Davisson-Germer experiment 
and fabricating a set of associated postulates and mathematical rules for wave operators.  QM is in violation of Maxwell’s 
equations, as shown through application of the Haus condition to the Schrödinger wave functions (See Schrödinger 
Wavefunction in Violation of Maxwell’s Equation section).  Nonradiation based on Maxwell’s equations is a necessary 
boundary constraint, since nonradiation is observed experimentally.  The shortcomings of QM regarding violation of Maxwell’s 
equations and other first principles are further discussed in the Retrospect section and Mills’ publications [4-15].  These issues 
indicate that QM atomic theory requires revision. 
 

CLASSICAL ATOMIC THEORY 
The physics of numerous phenomena in electricity and magnetism, optics, celestial and orbital mechanics, heat, hydrodynamics, 
aerodynamics, elasticity, and others obey equations containing the Laplacian: 
 
 2 0   is Laplace’s equation (I.46) 
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2
2 2
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a t

 


   is the wave equation (I.47) 

 

 2
2
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a t




   is the diffusion or heat-conduction equation (I.48) 

 
The wave equation is useful to describe electric and magnetic fields and orbiting bodies, as well as in the form of an energy 
equation wherein it can provide for conservation of energy and angular momentum.  Thus, it is the logical choice to solve for the 
nature of the bound electron as a boundary-value problem.  In contrast, the time-dependent Schrödinger equation has the form of 
Eq. (I.48) and is not a true wave equation.  The current QM theory based on the time dependent and time independent 
Schrödinger equation has many problems, is not based on physical laws, and is not predictive, as discussed previously [4-20].  
QM has never dealt with the nature or structure of fundamental particles.  They are treated as zero-dimensional points that 
occupy no volume and are everywhere at once.  This view is impossible since occupying no volume would preclude their 
existence; the inherent infinities are not observed nor are they possible, and the possibility of a particle being everywhere at once 
violates all physical laws including conservation of energy and causality.  Now, a physical approach is followed based on the 
classical wave equation and the condition for nonradiation from Maxwell’s equations.   
 

 
2 In the old quantum theory the spin angular momentum of the electron is called the “intrinsic angular momentum.”  This term arises because it is difficult 
to provide a physical interpretation for the electron's spin angular momentum.  Dirac's Quantum Electrodynamics (QED) attempts a physical interpretation 
by proposing that the “vacuum” contains fluctuating electric and magnetic fields called “zero point energy,” negative energy states of the vacuum, virtual 
particles and their corresponding “polarization” of vacuum space, and arbitrarily disregarding infinities that even Dirac opposed.  These aspects render 
QED fatally flawed in terms of predicting a corresponding inescapable infinite cosmological constant and the unobserved requirement of particle emission 
by blackholes called Hawking radiation.  (See the Wave-Particle Duality section and prior publications [4-15], especially Ref. [10].) 
3 In the Electron g Factor section and Ref. [10], the closed-form Maxwellian result (eleven figure agreement with experiment—the limit of the 
experimental capability of the measurement of the fundamental constants that determine  ) is contrasted with the QED algorithm of invoking virtual 
particles, zero point fluctuations of the vacuum, and negative energy states of the vacuum. 
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ONE-ELECTRON ATOMS 
NONRADIATION CONDITION 
One-electron atoms include the hydrogen atom, He , 2Li  , 3Be  , and so on.  In each case, the nucleus contains Z  protons and 
the atom has a net positive charge of ( 1)Z e .  To arrive at the solution that represents the electron, a suitable boundary 
condition must be imposed.  It is well known from experiments that the single atomic electron of hydrogen radiates to the same 
stable state.  Thus, CP uses the physical boundary condition of nonradiation of the bound electron to be imposed on the solution 
for the charge- and current-density functions of the electron.  The condition for radiation by a moving point charge given by 
Haus [46] is that its spacetime Fourier transform possesses components that are synchronous with waves traveling at the speed of 
light.  Conversely, it is proposed that the condition for nonradiation by an ensemble of moving charge that comprises a current-
density function is  
 

For non-radiative states, the current-density function must not possess spacetime Fourier  
components that are synchronous with waves traveling at the speed of light. 

 
The Haus derivation and the condition for nonradiation are given in Appendix I: Nonradiation Condition wherein the 
nonradiative condition is also derived directly by the determination of the electrodynamic fields with the electron current-density 
function as the source current.  Given the infinite number of possible current-density functions, it is fortuitous that the spherical 
radiation corresponding to the symmetry and the conditions for emission and absorption of such radiation provide the additional 
boundary conditions to determine the current-density functions. 
 
ELECTRON SOURCE CURRENT 
Since the hydrogen atom is stable and nonradiative, the electron has constant energy.  Furthermore, it is time dynamic with a 
corresponding current that serves as a source of electromagnetic radiation during transitions.  The wave equation solutions of the 
radiation fields permit the source currents to be determined as a boundary-value problem.  These source currents match the field 
solutions of the wave equation for two dimensions plus time and the nonradiative 1n   state when the nonradiation condition 
is applied.  Then, the mechanics of the electron can be solved from the two-dimensional wave equation plus time in the form of 
an energy equation wherein it provides for conservation of energy and angular momentum, as given in the Electron Mechanics 
and the Corresponding Classical Wave Equation for the Derivation of the Rotational Parameters of the Electron section.  Once 
the nature of the electron is solved, all problems involving electrons can be solved in principle.  Thus, in the case of one-electron 
atoms, the electron radius, binding energy, and other parameters are solved after solving for the nature of the bound electron. 

As shown in Appendix I, for time-varying spherical electromagnetic fields, Jackson [47] gives a generalized expansion in 
vector spherical waves that are convenient for electromagnetic boundary-value problems possessing spherical symmetry 
properties and for analyzing multipole radiation from a localized source distribution.  The Green function  ,G x' x  which is 

appropriate to the inhomogeneous Helmholtz equation  

      2 2 ,k G     x' x x' x  (I.49) 

in the infinite domain with the spherical wave expansion for the outgoing wave Green function is: 
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Jackson [47] further gives the general multipole field solution to Maxwell’s equations in a source-free region of empty space 
with the assumption of a time dependence i te : 
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 (I.51) 

where the cgs units used by Jackson are retained in this section.  The radial functions  f kr  and  g kr  are of the form: 

          1 1 2 2g kr A h A h       (I.52) 

,mX  is the vector spherical harmonic defined by: 
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where 

  1

i
 L r  (I.54) 
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The coefficients  ,Ea m  and  ,Ma m  of Eq. (I.51) specify the amounts of electric  ,m  multipole and magnetic  ,m  

multipole fields, and are determined by sources and boundary conditions as are the relative proportions in Eq. (I.52).  Jackson 
gives the result of the electric and magnetic coefficients from the sources as 
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and 
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respectively, where the distribution of charge  , t x , current  , tJ x , and intrinsic magnetization  , txM  are harmonically 

varying sources:    i tex ,   i teJ x , and   i texM . 

The electron current-density function can be solved as a boundary value problem regarding the time varying 
corresponding source current   i teJ x  that gives rise to the time-varying spherical electromagnetic fields during transitions 

between states with the further constraint that the electron is nonradiative in a state defined as the 1n   state.  The potential 
energy,  V r , is an inverse-radius-squared relationship given by Gauss’ law, which for a point charge or a two-dimensional 

spherical shell at a distance r  from the nucleus the potential is: 

  
2

04

e
V r

r
   (I.57) 

Thus, consideration of conservation of energy would require that the electron radius must be fixed.  Additional constraints 
requiring a two-dimensional source current of fixed radius are matching the delta function of Eq. (I.49) with no singularity, no 
time dependence and consequently no radiation, absence of self-interaction (See Appendix II: Stability and Absence of Self 
Interaction and Self Energy), and exact electroneutrality of the hydrogen atom wherein the electric field is given by 

  1 2
0

s


  n E E  (I.58) 

where n  is the normal unit vector, 1E  and 2E  are the electric field vectors that are discontinuous at the opposite surfaces, s  is 

the discontinuous two-dimensional surface charge density, and 2 0E .  Then, the solution for the radial electron function that 

satisfies the boundary conditions is a delta function in spherical coordinates—a spherical shell [62]: 

 
2

1
( ) ( )nf r r r

r
   (I.59) 

where nr  is an allowed radius.  This function defines the charge density on a spherical shell of a fixed radius (See Figure I.1), not 

yet determined, with the charge motion confined to the two-dimensional spherical surface.  The integer subscript n  here and in 
Eqs. (I.60-I.62) is determined during photon absorption as given in the Excited States of the One-Electron Atom (Quantization) 
section.  It is shown in this section that the force balance between the electric fields of the electron and proton plus any 
resonantly absorbed photons gives the result that 1nr nr  wherein n  is an integer in an excited state.  In general, leptons such as 

the electron are indivisible, perfectly conducting, and possess an inalienable   of intrinsic angular momentum such that any 
inelastic perturbation involves the entire particle wherein the intrinsic angular momentum remains unchanged.  Bound state 
transitions are allowed involving the exchange of photons between states, each having   of angular momentum in their fields. 
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Figure I.1.  A bound electron is a constant two-dimensional spherical surface of charge (zero thickness, total charge of e , 
and total mass of em ), called an electron atomic orbital.  The corresponding uniform current-density function having intrinsic 

angular momentum components of 
4xy L


 and 
2z L


 following Larmor excitation in a magnetic field give rise to the 

phenomenon of electron spin. 
 

 
 

Given time harmonic motion and a radial delta function, the relationship between an allowed radius and the electron wavelength 
is given by: 
 2 n nr   (I.60) 

Based on conservation of the electron’s angular momentum of  , the magnitude of the velocity and the angular frequency for 
every point on the surface of the bound electron are: 
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To further match the required multipole electromagnetic fields between transitions of states, the trial nonradiative source current 
functions are time and spherical harmonics, each having an exact radius and an exact energy.  Then, each allowed electron 

charge-density (mass-density) function is the product of a radial delta function 
2

1
( ( ) ( ))nf r r r

r
  , two angular functions 

(spherical harmonic functions ( , ) (cos )m m imY P e     ), and a time-harmonic function nim te .  The spherical harmonic 
0

0 ( , ) 1Y     is also an allowed solution that is in fact required in order for the electron charge and mass densities to be positive 

definite and to give rise to the phenomena of electron spin.  The real parts of the spherical harmonics vary between 1  and 1.  
However, the mass of the electron cannot be negative; and the charge cannot be positive.  Thus, to insure that the function is 
positive definite, the form of the angular solution must be a superposition: 
 0

0 ( , ) ( , )mY Y      (I.63) 

The current is constant at every point on the surface for the s orbital corresponding to 0
0 ( , )Y   .  The quantum numbers of the 

spherical harmonic currents can be related to the observed electron orbital angular momentum states.  The currents 
corresponding to s, p, d, f, etc. orbitals are:  
 = 0 

    0
02

( , , , ) [ ( )] , ,
8

m
n

e
r t r r Y Y

r
       


      (I.64) 

  ≠ 0  

     0
02

( , , , ) [ ( )] , Re ,
4

       


    
nim tm

n

e
r t r r Y Y e

r
 (I.65) 

where  ,mY    are the spherical harmonic functions that spin about the z-axis with angular frequency n  with  0
0 ,Y    the 
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constant function.        Re , cos cos      
ni tm m

nY e P m m t  to keep the form of the spherical harmonic of quantum 

number m  as a traveling wave about the z-axis at angular frequency n .  

The Fourier transform of the electron charge-density function is a solution of the four-dimensional wave equation in 
frequency space (k,  -space).  Then, the corresponding Fourier transform of the current-density function ( , , )mK s 

  is 

given by multiplying it by the constant angular frequency n  given by Eq. (1.36) corresponding to a potentially emitted photon. 
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    (I.66) 

wherein ( , )mG s 
  and ( , , )mH s  

  are the spherical-coordinate Fourier transforms of  , cosm
mN P    and ime  , respectively.  

The motion on the atomic orbital is angular; however, a radial correction exists due to Special Relativistic effects.  Consider the 
wave vector of the sinc function.  When the velocity is c  corresponding to a potentially emitted photon. 

 n n n n   s v s c  (I.67) 

the relativistically corrected wavelength given by Eq. (1.279) is: 

 n nr    (I.68) 

Substitution of Eq. (I.68) into the sinc function results in the vanishing of the entire Fourier transform of the current-density 

function.  Thus, spacetime harmonics of n k
c


  or 

0

n k
c

 


 , for which the Fourier transform of the current-density function 

is nonzero, do not exist.  Radiation due to charge motion does not occur in any medium when this boundary condition is met.  
There is acceleration without radiation.  (Also see Abbott and Griffiths and Goedecke [63-64]).  Nonradiation is also shown 
directly using Maxwell’s equations in Appendix I: Nonradiation Based on the Electromagnetic Fields and the Poynting Power 
Vector.  However, in the case that such a state arises as an excited state by photon absorption, it is radiative due to a radial dipole 
term in its current-density function since it possesses spacetime Fourier transform components synchronous with waves traveling 
at the speed of light, as shown in the Instability of Excited States section.  The radiation emitted or absorbed during electron 
transitions is the multipole radiation given by Eq. (I.50) as given in the Excited States of the One-Electron Atom (Quantization) 
section and the Equation of the Photon section wherein Eqs. (4.18-4.23) give a macro-spherical wave in the far-field. 

Thus, a bound electron is a constant two-dimensional spherical surface of charge (zero thickness and total charge of e ) 
called an electron atomic orbital that can exist in a bound state at only specified distances from the nucleus determined by an 
energy minimum for the 1n   state and integer multiples of this radius due to the action of resonant photons as shown in the 
Determination of Atomic Orbital Radii section and Excited States of the One-Electron Atom (Quantization) section, 
respectively.  The bound electron is not a point, but it is point-like (behaves like a point at the origin).  The free electron is 
continuous with the bound electron as it is ionized and is also point-like, as shown in the Electron in Free Space section.  The 
total function that describes the spinning motion of each electron atomic orbital is composed of two functions.  One function, the 
spin function (see Figure I.1 for the charge function and Figure I.2 for the current function), is spatially uniform over the atomic 
orbital, where each point moves on the surface with the same quantized angular and linear velocity, and gives rise to spin angular 
momentum.  It corresponds to the nonradiative 1n  ,   = 0 state of atomic hydrogen, which is well known as an s state or 
orbital.  The other function, the modulation function, can be spatially uniform—in which case there is no orbital angular 
momentum and the magnetic moment of the electron atomic orbital is one Bohr magneton—or not spatially uniform—in which 
case there is orbital angular momentum.  The modulation function rotates with a quantized angular velocity about a specific (by 
convention) z-axis.  The constant spin function that is modulated by a time and spherical harmonic function as given by Eq. 
(I.65) is shown in Figure 1.2 for several   values.  The modulation or traveling charge-density wave that corresponds to an 
orbital angular momentum in addition to a spin angular momentum are typically referred to as p, d, f, etc. orbitals and 
correspond to an   quantum number not equal to zero. 

 
MOMENT OF INERTIA AND SPIN AND ROTATIONAL ENERGIES 
In the derivation of the rotational energy and related parameters, first consider that the electron atomic orbital experiences a 
constant potential energy because it is fixed at nr r .  The boundary condition is that the modulation of the charge density by a 

traveling wave is not dissipative corresponding to absence of radiation and further has a time average of zero kinetic energy.  
The mechanics of motion is such that there is a time and spatially harmonic redistribution of matter and kinetic energy that flows 
on the surface such that the total of either is unchanged.  Wave motion has such behavior and the corresponding equation is a 
wave equation that is solved with energy degeneracy and a time average of zero for the charge and energy flow as the boundary 
constraints.  In this case, the energy degeneracy is only lifted due to the electrodynamic interaction with an applied field 
consistent with experimental observations, as given in the Orbital and Spin Splitting section. 

The moments of inertia and the rotational energies as a function of the   quantum number for the solutions of the time-
dependent electron charge-density functions (Eqs. (I.64-I.65)) are solved using the classical wave equation.  With rotation about 
the designated z-axis, the velocity of the spherical shell depends on the angular position on the surface and consequently is a 
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function of 0
0 ( , )Y   .  By expressing the wave equation in the energy form, the angular dependent velocity may be eliminated, 

and this equation can be solved using the boundary constraints.  The corresponding equation is the well known rigid rotor 
equation [65]: 
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The resulting parameters for the spin and orbital angular momentum given in the Rotational Parameters of the Electron (Angular 
Momentum, Rotational Energy, Moment of Inertia) section are: 
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    z total z spin z orbitalL L L   (I.77) 

  0z orbitalL   (I.78) 

   0rotational orbitalE   (I.79) 

The orbital rotational energy arises from a spin function (spin angular momentum) modulated by a spherical harmonic angular 
function (orbital angular momentum).  The time-averaged mechanical angular momentum and rotational energy associated with 
the wave-equation solution comprising a traveling charge-density wave on the atomic orbital is zero as given in Eqs. (I.78) and 
(I.79), respectively.  Thus, the principal levels are degenerate except when a magnetic field is applied.  In the case of an excited 
state, the angular momentum of   is carried by the fields of the trapped photon.  The amplitudes that couple to external magnetic 
and electromagnetic fields are given by Eq. (I.76) and (I.77), respectively.  The rotational energy due to spin is given by Eq. 
(I.72), and the total kinetic energy is given by Eq. (I.73).   
 

SPIN FUNCTION 
It is known from the Stern-Gerlach experiment that a beam of silver atoms is split into two components when passed through an 
inhomogeneous magnetic field.  This implies that the electron is a spin 1/2 particle or fermion with an intrinsic angular 

momentum of 
2




 that can only exist parallel or antiparallel to the direction of the applied field (spin axis), and the magnitude of 

the angular momentum vector, which precesses about the spin axis is 
4

 .  Furthermore, the magnitude of the splitting implies 

a magnetic moment of B , a full Bohr magneton, given by Eq. (1.131) corresponding to   of total angular momentum on the 

axis of the applied field, implying an impossibility of being classically reconciled with the 
2




 electron angular momentum.  

Yet, the extraordinary aspects of the magnetic properties and behavior of the electron are the basis to solve its structure that gives 
rise to these observations.  In general, the Maxwell’s-equations solution for the source of any magnetic field is unique.  Thus, the 
electron field requires a corresponding unique current according to Maxwell's equations that matches the boundary condition 
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imposed by the results of the Stern-Gerlach experiment.  The solution is given in the Atomic Orbital Equation of Motion For   = 
0 Based on the Current Vector Field (CVF) section. 

The current density function 0
0 ( , ) Y  (Eqs. (I.64-I.65)) that gives rise to the magnetostatic spin of the electron comprises 

a constant charge (current) density function with moving charge confined to a two-dimensional spherical shell and comprises a 
uniform complete coverage.  It is generated as a continuum of correlated orthogonal great-circle current loops wherein each 
point charge(current)-density element moves time harmonically with constant angular velocity, n , given by Eq. (I.62) and 

velocity, nv , in the direction of the current given by Eq. (I.61).  Orthogonal great-circle current-density elements (one 

dimensional “current loops”) serve as basis elements to form two distributions of an infinite number of great circles wherein 
each covers one-half of a two-dimensional spherical shell and is defined as a basis element current vector field (“BECVF”) and 
an atomic orbital current-vector field (“OCVF”).  Then, the continuous uniform electron current density function 0

0 ( , ) Y  (part 

of Eqs. (I.64-I.65)) that covers the entire spherical surface as a distribution of an infinite number of great circles is generated 
using the CVFs. 

First, the generation of the BECVF is achieved by rotation of two great circle basis elements, one in the x’z’-plane and 
the other in the y’z’-plane, about the  , , 0 x y zi i i  axis by an infinite set of infinitesimal increments of the rotational angle over a 

span of   wherein the current direction is such that the resultant angular momentum vector of the basis elements of 
2 2


 is 

stationary on this axis.   
 

GENERATION OF THE BECVF 
Consider two infinitesimal charge(mass)-density elements at two separate positions or points, one and two, of the first pair of 
orthogonal great-circle current loops that serve as the basis set for generation of the BECVF as shown in Figure 1.4.  The 
rotating Cartesian coordinates, x',y',z', in which the basis element great circles are fixed is designated the basis-set reference 
frame.  In this frame at time zero, element one is at ' 0x , '  ny r , and ' 0z , and element two is at '  nx r , ' 0y , and ' 0z .  

Let element one move on a great circle clockwise toward the -z'-axis, and let element two move counter clockwise on a great 
circle toward the -z'-axis, as shown in Figure 1.4.  .  The equations of motion, in the basis-set reference frame with 0t  defined 
at the points (0,1,0) and (1,0,0), respectively, are given by 
 
point one:   

 1
' 0x  

1

' cos( ) n ny r t  1
' sin( )  n nz r t  (I.80) 

 
point two:   

 2
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' sin( )  n nz r t  (I.81) 

 
The great circle basis elements and rotational matrix of the BECVF are given by: 
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GENERATION OF THE OCVF 
The generation of the OCVF is achieved by rotation of two great circle basis elements, one in the x’y’-plane and the other in the 

plane that bisects the x'y'-quadrant and is parallel to the z'-axis, about the 
1 1

, ,
2 2

  
 

x y zi i i -axis by an infinite set of 

infinitesimal increments of the rotational angle over a span of   wherein the current direction is such that the resultant angular 

momentum vector of the basis elements of 
2


 having components of 

2 2
xy L


 and 

2 2
z L


 is stationary on this axis.  For 

the generation of the OCVF, consider two charge(mass)-density elements, point one and two, in the basis-set reference frame at 
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time zero.  Element one is at '
2

 nrx , '
2

 nry , and ' 0z , and element two is at '  nx r , ' 0y , and ' 0z .  Let element one 

move clockwise on a great circle toward the -z'-axis, and let element two move counter clockwise on a great circle toward the y'-
axis as shown in Figure 1.8.  The equations of motion, in the basis-set reference frame are given by: 
 
point one:   

 1
' sin cos( )
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n nx r t  1
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n ny r t  1
' sin( )  n nz r t  (I.83) 

 
point two:   

 2
' cos( ) n nx r t  2

' sin( ) n ny r t  2
' 0z  (I.84) 

 
The great circle basis elements and rotational matrix of the OCVF are given by: 
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GENERATION OF 0
0 ( , ) Y  

Then, the uniform great-circle distribution 0
0 ( , ) Y  is exactly generated from the CVFs.  The BECVF is convolved with the 

OCVF over a 2  span that results in the placement of a BECVF at each great circle of the OCVF.  Since the angular momentum 
vector of the BECVF is matched to twice that of one of the OCVF great circle basis elements and the span is over a 2 , the 
resultant angular momentum of the distribution is the same as that of the OCVF, except that coverage of the spherical surface is 
complete.  This current vector distribution is normalized by scaling the constant current of each great circle element resulting in 
the exact uniformity of the distribution independent of time since 0 K  along each great circle.  There is no alteration of the 
angular momentum with normalization since it only affects the density parallel to the angular momentum axis of the distribution, 

the 
1 1

, ,
2 2

  
 

x y zi i i -axis.  Then, the boundary conditions of 0
0 ( , ) Y  having the desired angular momentum components, 

coverage, element motion, and uniformity are shown to have been achieved by designating the 
1 1

, ,
2 2

  
 

x y zi i i -axis as the z-

axis.  Specifically, this uniform spherical shell of current (Figure I.2) meets the boundary conditions of having an angular 

velocity magnitude at each point on the surface given by Eq. (I.62), and angular momentum projections of /
4xy   L


 
and 

2



zL  (Eqs. (1.127-1.128) and Figure 1.23)4 that give rise to the Stern Gerlach experiment and the phenomenon corresponding 

to the spin quantum number as shown in the Magnetic Parameters of the Electron (Bohr Magneton) section, and in the Electron g 
Factor section. 

 

 
4 /   designates both the positive and negative vector directions along an axis in the xy-plane. 
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Figure I.2.   The bound electron exists as a spherical two-dimensional supercurrent (electron atomic orbital), an extended 
distribution of charge and current completely surrounding the nucleus.  Unlike a spinning sphere, there is a complex pattern of 
motion on its surface (indicated by vectors) that generates two orthogonal components of angular momentum (Figure I.1) that 

give rise to the phenomenon of electron spin.  A representation of the 
1 1

, ,
2 2

  
 

x y zi i i -axis view of the total uniform 

supercurrent-density pattern of the 0
0 ( , ) Y  atomic orbital with 144 vectors overlaid on the continuous bound-electron current 

density giving the direction of the current of each great circle element (nucleus not to scale) is shown. 
 

 
 

As shown in the Atomic Orbital Equation of Motion for  = 0 Based on the Current Vector Field (CVF) section, the 
application of a magnetic field to the atomic orbital gives rise to a precessing angular momentum vector S  directed from the 

origin of the atomic orbital at an angle of 
3

   relative to the applied magnetic field.  The precession of S  with an angular 

momentum of   forms a cone in the nonrotating laboratory frame to give a perpendicular projection of 
3

4  S   (Eq. (1.129)) 

and a projection onto the axis of the applied magnetic field of 
2

 ||S


 (Eq. (1.130)).  The superposition of the 
2


 z-axis 

component of the atomic orbital angular momentum and the 
2


 z-axis component of S  gives   corresponding to the observed 

magnetostatic electron magnetic moment of a Bohr magneton.  The   of angular momentum along S  has a corresponding 
precessing magnetic moment of 1 Bohr magneton.   The magnetostatic dipole magnetic field corresponding to B  is shown in 

Figure I.3. 
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Figure I.3.   The three-dimensional cut-away representation of the magnetic field of an electron atomic orbital showing the 
nucleus (not to scale).  The field is a dipole outside the atomic orbital. 
 

 
In contrast to the QM and QED cases (See Ref [10]), the fourth quantum number arises naturally in CP as derived in the 

Electron g Factor section.  The Stern-Gerlach experiment implies a magnetic moment of one Bohr magneton and an associated 
angular momentum quantum number of 1/2.  Historically, this quantum number is called the spin quantum number, s 

(
1 1

;  
2 2ss m   ).  Conservation of angular momentum of the atomic orbital permits a discrete change of its “kinetic angular 

momentum” ( )mr v  with respect to the field of 
2


, and concomitantly the “potential angular momentum” ( )er A  must 

change by 
2




.  The flux change,  , of the atomic orbital for nr r  is determined as follows: 
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In order that the change of angular momentum, L , equals zero,   must be 
2

h

e  , the magnetic flux quantum.  Thus, to 

conserve angular momentum in the presence of an applied magnetic field, the atomic orbital magnetic moment can be parallel or 
antiparallel to an applied field as observed with the Stern-Gerlach experiment, and the flip between orientations is accompanied 
by the “capture” of the magnetic flux quantum by the atomic orbital.  During the spin-flip transition, power must be conserved.  
Power flow is governed by the Poynting power theorem, 

 0 0

1 1
( )

2 2t t
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Eq. (I.90) derived in the Electron g Factor section gives the total energy of the flip transition, which is the sum of the energy of 
reorientation of the magnetic moment (1st term), the magnetic energy (2nd term), the electric energy (3rd term), and the 
dissipated energy of a fluxon treading the atomic orbital (4th term), respectively. 
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The spin-flip transition can be considered as involving a magnetic moment of g  times that of a Bohr magneton.  The g  factor is 

now designated the fluxon g  factor as opposed to the unwarranted historical anomalous g  factor.  The calculated value of 
2

g
 is 

1.001  159  652  137 .  The experimental value [66] of 
2

g
 is 1.001  159  652  188(4) . 

 

FORCE BALANCE EQUATION 
The radius of the nonradiative ( 1n  ) state is solved using the electromagnetic force equations of Maxwell relating the charge 
and mass density functions wherein the angular momentum of the electron is given by  .  The reduced mass arises naturally 
from an electrodynamic interaction between the electron and the proton of mass pm . 
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where Ha  is the radius of the hydrogen atom and the electron velocity is given by Eq. (I.61). 

 

ENERGY CALCULATIONS 
From Maxwell’s equations, the potential energy V , kinetic energy T , electric energy or binding energy eleE  are: 
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The calculated Rydberg constant is 110,967,758 m , and the experimental Rydberg constant is 110,967,758 m .  For increasing 
Z , the velocity becomes a significant fraction of the speed of light; thus, special relativistic corrections were included in the 
calculation of the ionization energies of one-electron atoms that are given by 
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THE NATURE OF THE PHOTON IS THE BASIS OF QUANTIZATION AND 
EXISTENCE OF EXCITED AND HYDRINO STATES OF ATOMIC HYDROGEN 
It is well known that resonator cavities can trap electromagnetic radiation of discrete resonant frequencies.  The atomic orbital is 
a resonator cavity that traps photons of discrete frequencies.  The radius of an atomic orbital increases with the absorption of 
electromagnetic energy.  The solutions to Maxwell’s equations for modes that can be excited in the atomic orbital resonator 
cavity give rise to four quantum numbers, and the energies of the modes are the experimentally known hydrogen spectrum 
including the Lamb shift, fine structure, and hyperfine structure. 

The excited states involving the corresponding multipole photon radiation are solved including the radii of the atomic 
orbitals using Maxwell’s equations with the traditional source current boundary constraints at the electron.  The “trapped 
photon” is a “standing electromagnetic wave” which actually is a circulating wave that propagates along the current density of 
the atomic orbital.  The time-function factor, ( )k t , for the “standing wave” is identical to the time-function factor of the atomic 
orbital in order to satisfy the boundary (phase) condition at the atomic orbital surface.  Thus, the angular frequency of the 
“trapped photon” has to be identical to the angular frequency of the electron atomic orbital, n .  Furthermore, the phase 

condition requires that the angular functions of the “trapped photon” have to be identical to the spherical harmonic angular 
functions of the electron atomic orbital.  Combining ( )k t  with the  -function factor of the spherical harmonic gives    ni m m te  
for both the electron and the “trapped photon” functions.  The photon can be considered a solution of Laplace’s equation in 
spherical coordinates that is “glued” to the inner atomic orbital surface corresponding to a radial Dirac delta function at the 
electron radius,  nr r  , and due to relativistic effects the field is radially local at the electron.  The field lines from the proton 

superimpose with those of the photon at the electron and end on the current-density function of the electron such that the electric 
field is zero for nr r , where nr  is the radius of the electron.  The corresponding photon source current given by Gauss’ law in 
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two dimensions determines the stability condition. 
The instability of excited states, as well as the stability of the 1n   state arises naturally in CP.  The central field of the 

proton corresponds to an integer charge of one.  Excited states comprise an electron with a trapped photon.  In all energy states 
of hydrogen, the photon has an electric field that superposes with the field of the proton.  In the 1n   state, the sum is one, and 
the sum is zero in the ionized state.  In an excited state, the sum is a fraction of one (i.e. between zero and one), specifically, 

1

integer
.  The relationship between the electric field function and the “trapped photon” source charge-density function is given 

by Gauss’ law in two dimensions, Eq. (I.102) where n  is the radial normal unit vector, 1 0E  ( 1E  is the electric field outside of 

the atomic orbital), 2E  is given by the total electric field at n Hr na , and s  is the equivalent surface charge density.  The 

electric field of an excited state is fractional; therefore, the source charge function is fractional corresponding to a radiative 
current-density function.  Thus, an excited electron is unstable and decays to the first nonradiative state corresponding to an 
integer field, 1n   (i.e. a field of integer one times the central field of the proton).  

Equally valid from first principles are electronic states where the magnitude of the sum of the electric field of the photon 
and the proton central field are an integer times the central field of the proton.  These states are nonradiative.  A catalyst can 
effect a transition between these states via a nonradiative energy transfer to form hydrinos, stable hydrogen atoms having energy 

levels below the ground state and corresponding to principal quantum numbers 
1 1 1 1

1, , , ,...,
2 3 4

n
p

 ; 137p   replaces the well 

known parameter integern   in the Rydberg equation for hydrogen excited states.  Hydrinos and the corresponding hydrino 
hydride ions and molecular hydrinos have been confirmed experimentally as shown in the Data section.  Until now, this 
predicted discovery was missed entirely due to the erroneous concept of the hydrogen atom “ground state” based on its definition 
regarding the Schrödinger equation since the Schrödinger equation does not physically explain the observation that spontaneous 
emission of radiation does not occur for the state having a binding energy of 13.6 eV.  Nor, does the Schrödinger equation 
provide a physical basis for the existence of the integern   excited states or absorption or emission of radiation.  (See 
Schrödinger Wavefunction in Violation of Maxwell’s Equation section, the Retrospect section, and papers by Mills’ [4-15]). 
 

EXCITED STATES 
CP gives closed form solutions for the resonant photons and excited state electron functions.  The angular momentum of the 
photon given by  

   41
Re ( )

8
dx

c
   m r E B*    (I.99) 

is conserved [67].  The change in angular velocity of the electron is equal to the angular frequency of the resonant photon.  The 
energy is given by Planck’s equation.  The predicted energies, Lamb shift, hyperfine structure, resonant line shape, line width, 
selection rules, etc. are in agreement with observation. 

The discretization of the angular momentum of the electron and the photon gives rise to quantized electron radii and 
energy levels.  Transitions occur in integer units of the electron’s inalienable intrinsic angular momentum of   (Appendix II) 
such that the exciting photons carry an integer multiple of  .  Thus, for e em r v p  to be constant, the radius increases by a 

factor of the integer and the electron velocity decreases by the factor of the integer.  This quantization condition is equivalent to 
that of Bohr except that the electron angular momentum is  , the angular momentum of one or more photons that give rise to an 
excited state is n , and the photon field changes the central force balance.  Also, the standing wave regards the photon field and 
not the electron that comprises an extended current and is not a wave function.  Thus, the quantization condition can also be 
considered as arising from the discretization of the photon standing wave including the integer spherical periodicity of the 
spherical harmonics of the excited state of the bound electron as a spherical cavity. 

The atomic orbital is a dynamic spherical resonator cavity which traps photons of discrete frequencies.  The relationship 
between an allowed radius and the “photon standing wave” wavelength is 
 2 r n   (I.100) 
where n  is an integer.  The relationship between an allowed radius and the electron wavelength is:  
 1 12 ( ) 2 n nnr r n       (I.101) 

where 1,2,3,4,...n  .  The radius of an atomic orbital increases with the absorption of electromagnetic energy due to a 
corresponding decrease in the central field.  The radii of excited states are solved using the electromagnetic force equations of 
Maxwell relating the field from the charge of the proton, the electric field of the photon, and charge and mass density functions 
of the electron wherein the angular momentum of the electron is given by   (Eq. (1.37)).  The solutions to Maxwell’s equations 
for modes that can be excited in the atomic orbital resonator cavity give rise to four quantum numbers, and the energies of the 
modes are the experimentally known hydrogen spectrum.  The relationship between the electric field equation and the “trapped 
photon” source charge-density function is given by Maxwell’s equation in two dimensions. 

  1 2
0




  n E E  (I.102) 

The photon standing electromagnetic wave is phase matched with the electron 
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For Hr na  and 0m  , the total radial electric field is: 
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When an electron in the 1n   state absorbs a photon of energy sufficient to take it to a new resonant state, 2,3, 4,...,n   
force balance must be maintained with the reduction of the central field caused by the superposition of the electric field of the 
proton and the photon trapped in the atomic orbital, a spherical resonator cavity.  According to Eq. (I.105), the central field is 

equivalent to that of a central charge of 
e

n
, and the excited-state force balance equation is  
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where 1r  is the 1n   state radius of the electron, nr  is the nth excited state radius of the electron, and the electron velocity is 

given by Eq. (I.61).  The radius of the nth excited state given by Eq. (I.106) is  
 n Hr na  (I.107) 

The energy of the photon that excites a mode in the electron spherical resonator cavity from radius Ha  to radius Hna  is 
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The change in angular velocity of the atomic orbital for an excitation from 1n   to n n  is:  
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The kinetic energy change of the transition is 
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The change in angular velocity of the electron atomic orbital is identical to the angular velocity of the photon necessary for the 
excitation,  photon .  The correspondence principle holds.  It can be demonstrated that the resonance condition between these 

frequencies is to be satisfied in order to have a net change of the energy field [48].   
 
INSTABILITY OF EXCITED STATES 
For the excited energy states of the hydrogen atom,  photon , the two-dimensional surface charge due to the “trapped photons” at 

the electron atomic orbital, given by Eq. (I.102) and Eq. (I.103) is: 
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where n  2,3,4,.. .,.  Whereas, electron , the two dimensional surface charge of the electron atomic orbital given by Eq. (I.65) is 
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The superposition of  photon  (Eq. (I.111)) and electron  (Eq. (I.112)) is equivalent to the sum of a radial electric dipole represented 

by a doublet function and a radial electric monopole represented by a delta function: 

 
      0 0

0 02

1 1
      , ( ) , ( ) 1 Re , ( )

4 ( )


 

        




 

              


n

photon electron

im tm
n n n

n

e
Y r r Y r r Y e r r

r n n

 (I.113) 



 Introduction 29 

where 2,3,4,...,n  .  Due to the radial doublet, excited states are radiative since spacetime harmonics of 
n

c
 k  or 

0

n k
c

 


  

do exist for which the spacetime Fourier transform of the current density function is nonzero.  An excited state is meta-stable 
because it is the sum of nonradiative (stable) and radiative (unstable) components and de-excites with a transition probability 
given by the ratio of the power to the energy of the transition [68].  There is motion in the radial direction only when the energy 
of the system is changing, and the radiation emitted or absorbed during electron transitions is the multipole radiation given by 
Eq. (I.50) as given in the Excited States of the One-Electron Atom (Quantization) section and the Equation of the Photon section.  
The discontinuous harmonic radial current in Eq. (I.55) that connects the initial and final states of the transition is: 
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where   is the lifetime of the transition given by Eq. (2.107) and 't  is time during the transition as given in the Excited States of 
the One-Electron Atom (Quantization) section.  The vector potential of the current that connects the initial and final states of a 
transition, each having currents of the form given by Eq. (1.12), is: 
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The magnetic and electric fields are derived from the vector potential and are used in the Poynting power vector to give the 
power.  The transition probability or Einstein coefficient kiA

 

for initial state in  and final state fn  of atomic hydrogen given by 

the power divided by the energy of the transition is: 
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which matches the NIST values for all transitions extremely well as shown in Excited States of the One-Electron Atom 
(Quantization) section. 
 

HYDRINO STATES 

EXTENSION OF THE RYDBERG STATES TO LOWER LEVELS 
For a spherical resonator cavity, the nonradiative boundary condition and the relationship between the electron and the photon 
give the hydrogen energy states that are quantized as a function of the parameter n .  That is the nonradiative boundary condition 
and the relationship between an allowed radius and the photon standing wave wavelength (Eq. (I.100)) gives rise to Eq. (I.101), 
the boundary condition for allowed radii and allowed electron wavelengths as a function of the parameter n .  Each value of n  
corresponds to an allowed transition effected by a resonant photon that excites the transition in the atomic orbital resonator 

cavity.  In addition to the traditional integer values (1, 2, 3,...,) of n , values of 
1

integer
  are allowed by Eq. (I.101) which 

correspond to transitions with an increase in the central field and decrease in the radius of the atomic orbital.  This occurs, for 
example, when the electron couples to another electronic transition or electron transfer reaction that can absorb energy—an 
energy sink.  This transition reaction of the electron of hydrogen to a lower energy state occurs by the absorption of an energy 
hole by the hydrogen atom.  The absorption of an energy hole destroys the balance between the centrifugal force and the 
resulting increased central electric force.  Consequently, the electron undergoes a transition to a lower energy nonradiative state. 

From energy conservation, the energy hole of a hydrogen atom that excites resonator modes of radial dimensions 
aH

m 1
 

is 

 m  27.2 eV , (I.117) 

where m  is an integer.  After resonant absorption of the energy hole, the radius of the atomic orbital, aH , shrinks to 
aH

m 1
 and 

after t  cycles of transition, the radius is 
aH

mt  1
.  In other words, the radial ground state field can be considered as the 

superposition of Fourier components.  The removal of negative Fourier components of energy m  27.2 eV , where m  is an 
integer increases the positive electric field inside the spherical shell by m  times the charge of a proton.  The resultant electric 
field is a time harmonic solution of Laplace’s Equations in spherical coordinates.  In this case, the radius at which force balance 

and nonradiation are achieved is 
aH

m 1
 where m  is an integer.  In decaying to this radius from the 1n   state, a total energy of 

2 2[( 1) 1 ] 13.6 m eV    is released.  The process involving the transition reaction is hereafter referred to as the BlackLight 
Process.  The source of energy holes may not be consumed in the transition reaction; therefore they serve as a hydrogen catalyst. 
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 The increased-binding-energy hydrogen atom is called a hydrino atom having a binding energy of:  
  

 Binding Energy 
13.6 eV

n2  (I.118) 

where  

  n 
1

2
,
1

3
,
1

4
,...,

1

p
 (I.119) 

and p  is an integer greater than 1.  Hydrino atoms designated as  1/H p  have a radius of /Ha p , the hydrogen atom divided by 

an integer.  The potential energy diagram of the hydrogen atom is extended to lower Rydberg states, as given in Figure I.4. 
 
Figure I.4.  Potential energy well of a hydrogen atom. 
 

 
 
The size of the electron atomic orbital as a function of potential energy is given in Figure I.5.  
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Figure I.5.  Quantized sizes of hydrogen atoms where n  is an integer for excited states and n  1
p  for hydrino states where 

p  is an integer. 
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PHOTONIC EQUATION 
As shown previously, the hydrino photonic equation must be a solution of Laplace’s equation in spherical coordinates.  The 
“trapped photon” field comprises an electric field that provides force balance and a nonradiative state.  Following the 
Maxwellian approach given for excited states in the Excited States section (Eq. (I.103)), the solution to this boundary value 
problem of the radial photon electric field is: 
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The quantum numbers of the electron are p ,  , m , and sm  as given in the Electron Source Current section and the Excited 

States section wherein the principal quantum number of excited states is replaced by 1/n p .  (Also, see Hydrino Theory—
BlackLight Process section.) 
 
STABILITY OF THE “GROUND” AND HYDRINO STATES 
For the below “ground” (fractional quantum number) energy states of the hydrogen atom,  photon , the two-dimensional surface 

charge due to the “trapped photon” at the electron atomic orbital, is given by Eqs. (I.120) and (I.102).   
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And, electron , the two-dimensional surface charge of the electron atomic orbital is: 
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The superposition of  photon  (Eq. (I.121)) and electron  , (Eq. (I.122)) where the spherical harmonic functions satisfy the 

conditions given in the Electron Source Current section is a radial electric monopole represented by a delta function. 
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As given in the Spacetime Fourier Transform of the Electron Function section, the radial delta function does not possess 
spacetime Fourier components synchronous with waves traveling at the speed of light (Eqs. (I.66-I.68)).  Thus, the below 
“ground” (fractional quantum) energy states of the hydrogen atom are stable.  The “ground” ( 1n   quantum) energy state is just 
the first of the nonradiative states of the hydrogen atom; thus, it is the state to which excited states decay. 
 
CATALYTIC LOWER-ENERGY HYDROGEN ELECTRONIC TRANSITIONS 
Classical physics gives closed-form solutions of the hydrogen atom, the hydride ion, the hydrogen molecular ion, and the 
hydrogen molecule and predicts corresponding species having fractional principal quantum numbers.  The nonradiative state of 
atomic hydrogen, which is historically called the “ground state” forms the basis of the boundary condition of CP to solve the 
bound electron.  The solutions for electron states having principal energy levels with quantum numbers that are integers and 

those where 
1

integer
n   each reveal the corresponding mechanism of the transitions.  In the case of excited states, the 

superposition given by Eq. (I.113) involves the sum of a delta function with a fractional charge (radial monopole term) and two 
delta functions of charge plus one and minus one that is a doublet function (radial dipole term).  The radial dipole is radiative.  
Whereas, in the case of lower-energy states, the superposition given by Eq. (I.123) involves integer charge (equivalent) only.  As 

given in Appendix I these states having a radial delta function are nonradiative since spacetime harmonics of 
n

c
 k  or 

0

n k
c

 


  for which the Fourier transform of the current-density function is nonzero do not exist.   

Therefore, for the excited-energy states of atomic hydrogen given by Eq. (I.1) with 1n  , the 1n   state is the “ground” 
state for spontaneous pure photon transitions, and conversely, the 1n   state can absorb a photon and go to an excited electronic 
state.  However, the 1n   state cannot directly release a photon and go to a lower-energy electronic state.  An electron transition 
from the 1n   state to a lower-energy state is only possible by a nonradiative energy transfer such as multipole coupling or a 

resonant collision mechanism to form the lower-energy states have fractional quantum numbers, n 
1

integer
. 
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Processes such as the transition reaction that occur without photons and that require collisions or nonradiative energy 
transfer are common.  For example, the exothermic chemical reaction of H H  to form H2  does not occur with the emission of 
a photon.  Rather, the reaction requires a collision with a third body, M , to remove the bond energy- H  H  M  H2  M * 
[69].  The third body distributes the energy from the exothermic reaction, and the end result is the H2  molecule and an increase 
in the temperature of the system.  Some commercial phosphors are based on nonradiative energy transfer involving multipole 
coupling.  For example, the strong absorption strength of Sb3  ions along with the efficient nonradiative transfer of excitation 
from Sb3  to Mn2 , are responsible for the strong manganese luminescence from phosphors containing these ions [70]. 

Thus, it is well known that the electric field of an absorbed photon superimposes that of the proton such that the electron 
of H  moves to a higher-energy excited state at a radius that is greater than that of the 1n   state.  Similarly, in order to conserve 
energy, a resonant nonradiative energy transfer from H  to a catalyst (source of an energy hole) of m  27.2 eV  results in an 
increased interaction between the electron and the central field that is equivalent to 1m   times that of a proton.  The increased 
interaction then causes the radius to decrease with the further release of energy such that a total energy of 2 2[( 1) 1 ] 13.6 m eV    
is released. 
 
CATALYST REACTION MECHANISM AND PRODUCTS 
Classical physics (CP) gives closed-form solutions of the hydrogen atom, the hydride ion, the hydrogen molecular ion, and the 
hydrogen molecule and predicts corresponding species having fractional principal quantum numbers.  The nonradiative state of 
atomic hydrogen, which is historically called the ”ground state“ forms the basis of the boundary condition of CP to solve the 
bound electron.  CP predicts a reaction involving a resonant, nonradiative energy transfer from otherwise stable atomic hydrogen 
to a catalyst capable of accepting the energy to form hydrogen in lower-energy states than previously thought possible called a 

hydrino atom designated as Ha
H

p

 
 
 

 where Ha  is the radius of the hydrogen atom.  Specifically, CP predicts that atomic 

hydrogen may undergo a catalytic reaction with certain atoms, excimers, ions, and diatomic hydrides which provide a reaction 
with a net enthalpy of an integer multiple of the potential energy of atomic hydrogen, 27.2 hE eV  where hE  is one Hartree.  

Specific species (e.g. He , Ar , Sr , K , Li , HCl , NaH , and 2H O ) identifiable on the basis of their known electron energy 

levels are required to be present with atomic hydrogen to catalyze the process.  The reaction involves a nonradiative energy 
transfer of an integer multiple of 27.2 eV  from atomic hydrogen to the catalyst followed by 13.6 q eV  continuum emission or 

13.6 q eV  transfer to another H  to form extraordinarily hot, excited-state H  and a hydrogen atom that is lower in energy than 
unreacted atomic hydrogen that corresponds to a fractional principal quantum number.  That is, in the formula for the principal 
energy levels of the hydrogen atom: 
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     (I.124) 

 1, 2,3,...n   (I.125)  

where Ha  is the Bohr radius for the hydrogen atom (52.947 pm), e  is the magnitude of the charge of the electron, and o  is the 

vacuum permittivity, fractional quantum numbers: 

 
1 1 1 1

 1, , , ,...,
2 3 4

n
p

 ;   137p   is an integer (I.126) 

replace the well known parameter integern   in the Rydberg equation for hydrogen excited states.  Then, similar to an excited 

state having the analytical solution of Maxwell’s equations given by Eq. (2.15), a hydrino atom also comprises an electron, a 

proton, and a photon as given by Eq. (5.27).  However, the electric field of the latter increases the binding corresponding to 

desorption of energy rather than decreasing the central field with the absorption of energy as in an excited state, and the resultant 

photon-electron interaction of the hydrino is stable rather than radiative. 

The 1n   state of hydrogen and the 
1

integer
n   states of hydrogen are nonradiative, but a transition between two 

nonradiative states, say 1n   to 1/ 2n  , is possible via a nonradiative energy transfer.  Hydrogen is a special case of the stable 

states given by Eqs. (I.124) and (I.126) wherein the corresponding radius of the hydrogen or hydrino atom is given by: 

 Ha
r

p
 , (I.127) 

where 1, 2,3,...p  .  In order to conserve energy, energy must be transferred from the hydrogen atom to the catalyst in units of  

 27.2 m eV , 1, 2,3, 4,....m   (I.128) 
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and the radius transitions to Ha

m p
. The catalyst reactions involve two steps of energy release: a nonradiative energy transfer to 

the catalyst followed by additional energy release as the radius decreases to the corresponding stable final state.  Thus, the 

general reaction is given by: 

 27.2 * 27.2 
( )

q rq H Ha a
m eV Cat H Cat re H m eV

p m p
     

             
 (I.129) 

 2 2* [( ) ] 13.6 27.2 
( ) ( )

H Ha a
H H p m p eV m eV

m p m p

   
             

 (I.130) 

   27.2 q r qCat re Cat m eV        (I.131) 

And, the overall reaction is: 

 2 2[( ) ] 13.6 
( )

H Ha a
H H p m p eV

p m p

   
          

 (I.132) 

q , r , m , and p  are integers.  
 

* Ha
H

m p

 
  

 has the radius of the hydrogen atom (corresponding to 1 in the denominator) and a 

central field equivalent to  m p  times that of a proton, and 
 

Ha
H

m p

 
  

 is the corresponding stable state with the radius of 

 
1

m p
 that of H .  As the electron undergoes radial acceleration from the radius of the hydrogen atom to a radius of 

 
1

m p
 

this distance, energy is released as characteristic light emission or as third-body kinetic energy.  The emission may be in the form 

of an extreme-ultraviolet continuum radiation having an edge at 2 2[( ) 2 ] 13.6 p m p m eV     or 
2 2

91.2

[( ) 2 ]
nm

p m p m  
 and 

extending to longer wavelengths.  In addition to radiation, a resonant kinetic energy transfer to form fast H  may occur (See the 
Dipole-Dipole Coupling section).  Subsequent excitation of these fast  1H n   atoms by collisions with the background 2H  

followed by emission of the corresponding  3H n   fast atoms gives rise to broadened Balmer   emission.  Alternatively, fast 

H is a direct product of H or hydrino serving as the catalyst or source of energy holes as given by Eqs. (5.60), (5.65), (5.70), and 

(5.83) wherein the acceptance of the resonant energy transfer regards the potential energy rather than the ionization energy.  

Conservation of energy gives a proton of the kinetic energy corresponding to one half the potential energy in the former case and 

a catalyst ion at essentially rest in the latter case.  The H recombination radiation of the fast protons gives rise to broadened 

Balmer   emission that is disproportionate to the inventory of hot hydrogen consistent with the excess power balance [22-42]. 
As given in Disproportionation of Energy States section, hydrogen atoms  1/   1, 2,3,...137H p p   can undergo further 

transitions to lower-energy states given by Eqs. (I.124) and (I.126) wherein the transition of one atom is catalyzed by a second 

that resonantly and nonradiatively accepts 27.2 m eV  with a concomitant opposite change in its potential energy.  The overall 
general equation for the transition of  1/H p  to   1/H p m  induced by a resonance transfer of 27.2 m eV  to  1/ 'H p  

given by Eq. (5.87) is represented by: 
       2 21/ ' 1/ 1/ ( ) 2 ' 1 13.6 H p H p H H p m pm m p eV            (I.133) 

Hydrogen atoms may serve as a catalyst wherein 1m  , 2m  , and 3m   for one, two, and three atoms, respectively, acting as 

a catalyst for another.  The rate for the two-atom-catalyst, 2H , may be high when extraordinarily fast H as reported previously 

[22-42] collides with a molecule to form the 2H  wherein two atoms resonantly and nonradiatively accept 54.4 eV  from a third 
hydrogen atom of the collision partners.  By the same mechanism, the collision of two hot 2H  provide 3 H  to serve as a catalyst 

of 3 27.2 eV  for the fourth.  The EUV continua at 22.8 nm and 10.1 nm and extraordinary (>100 eV) Balmer   line 

broadening are observed consistent with predictions [22-42].  
The catalyst product,  1/H p , may also react with an electron to form a hydrino hydride ion  1/H p , or two 

 1/H p  may react to form the corresponding molecular hydrino  2 1/H p .  Specifically, the catalyst product,  1/H p , may 

also react with an electron to form a novel hydride ion  1/H p  with a binding energy BE  (Eq. (7.74)) derived in the Hydrino 

Hydride Ion section: 
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where integer 1p   , 1 / 2s  ,   is Planck's constant bar, o  is the permeability of vacuum, em  is the mass of the electron, e  

is the reduced electron mass given by 

3
4

e p
e

e
p

m m

m
m

 


 where pm  is the mass of the proton, oa  is the Bohr radius, and the ionic 

radius is   0
1 1 1

a
r s s

p
    (Eq. (7.73)).  From Eq. (I.134), the calculated ionization energy of the hydride ion is 

0.75418 eV , and the experimental value given by Lykke [71] is 16082.99 0.15 cm  (0.75418 eV). 

Upfield-shifted NMR peaks are direct evidence of the existence of lower-energy state hydrogen with a reduced radius 

relative to ordinary hydride ion and having an increase in diamagnetic shielding of the proton.  The shift is given by the sum of 
the contributions of the diamagnetism of the two electrons and the trapped photon field of magnitude p  (Eq. (7.87)): 
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where the first term applies to H   with 1p   and integer >1p   for  1/H p  and   is the fine structure constant.   

  1/H p  may react with a proton and two  1/H p  may react to form  2 1/H p

 and  2 1/H p , respectively.  The 

hydrogen molecular ion and molecular charge and current density functions, bond distances, and energies were solved in the 

Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section from the Laplacian in ellipsoidal 

coordinates with the constraint of nonradiation.  

 ( ( ) ( ( ) ( ( ) 0R R R R R R     
          
     

          (I.136) 

The total energy TE  of the hydrogen molecular ion having a central field of pe  at each focus of the prolate spheroid molecular 

orbital is (Eqs. (11.192-11.193)) 
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where p  is an integer, c  is the speed of light in vacuum, and   is the reduced nuclear mass.  The total energy of the hydrogen 

molecule having a central field of pe  at each focus of the prolate spheroid molecular orbital is (Eqs. (11.240-11.241)). 
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 The bond dissociation energy, DE , of the hydrogen molecule  2 1/H p  is the difference between the total energy of the 

corresponding hydrogen atoms and TE  

  (2 1/ )D TE E H p E   (I.139) 

where [72] 
   2(2 1/ ) 27.20 E H p p eV   (I.140) 

DE  is given by Eqs. (I.139-I.140) and (I.138): 
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The NMR of catalysis-product gas provides a definitive test of the theoretically predicted chemical shift of  2 1/H p .  In 

general, the 1H  NMR resonance of  2 1/H p  is predicted to be upfield from that of 2H  due to the fractional radius in elliptic 

coordinates wherein the electrons are significantly closer to the nuclei.  The predicted shift, TB

B


, for  2 1/H p  is given by the 

sum of the contributions of the diamagnetism of the two electrons and the trapped photon field of magnitude p  (Eqs. (11.415-

11.416)). 

  
2

2
0

0

2 1
4 2 ln 1

362 1
T

e

B pe
p

B a m
 
  

      
 (I.142) 

  2 328.01 1.49  10TB
p p X ppm

B


    (I.143) 

where the first term applies to 2H  with 1p   and integer >1p   for  2 1/H p .  The experimental absolute 2H  gas-phase 

resonance shift of -28.0 ppm [73-76] is in excellent agreement with the predicted absolute gas-phase shift of -28.01 ppm (Eq. 

(I.143)). 
 The vibrational energies, vibE , for the 0   to 1   transition of hydrogen-type molecules  2 1/H p  are (Eq. (11.223)) 

 2 0.515902 vibE p eV  (I.144) 

where p  is an integer and the experimental vibrational energy for the 0   to 1   transition of 2H ,  2 0 1HE     , is given by 

Beutler [77] and Herzberg [78]. 
 The rotational energies, rotE , for the J  to 1J   transition of hydrogen-type molecules  2 1/H p  are (Eq. (12.74)). 
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where p  is an integer, I  is the moment of inertia, and the experimental rotational energy for the 0J   to 1J   transition of 2H  

is given by Atkins [79].  Ro-vibrational emission of  2 1/ 4H  was observed on e-beam excited molecules in gases and trapped 

in solid matrix [31, 35] and by Raman spectroscopy [23, 31-35]. 
 The 2p  dependence of the rotational energies results from an inverse p  dependence of the internuclear distance and the 

corresponding impact on the moment of inertia I .  The predicted internuclear distance 2 'c  for  2 1/H p  is: 
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2

2 oa
c

p
   (I.146) 

The calculated and experimental parameters of 2H , 2D , 2H  , and 2D  from the Chemical Bond of Hydrogen-Type Molecules 

section are given in Table I.2. 
 
Table I.2.   The Maxwellian closed form calculated and experimental parameters of 2H , 2D , 2H   and 2D . 

 
Parameter Calculated Experimental Eqs. Ref. for Exp.

2
H  Bond Energy 4.478 eV 4.478 eV 11.300 24 

2
D  Bond Energy 4.556 eV 4.556 eV 11.302 24 

2
H   Bond Energy 2.654 eV 2.651 eV 11.269 24 

2
D  Bond Energy 2.696 eV 2.691 eV 11.271 25 

2
H  Total Energy 31.677 eV 31.675 eV 11.296 24, 30, 19a 

2
D  Total Energy 31.760 eV 31.760 eV 11.297 20, 25b 

2
H  Ionization Energy 15.425 eV 15.426 eV 11.298 30 

2
D  Ionization Energy 15.463 eV 15.466 eV 11.299 25 

2
H   Ionization Energy 16.253 eV 16.250 eV 11.267 24, 19c  

2
D  Ionization Energy 16.299 eV 16.294 eV 11.268 20, 25d 

2
H   Spin Magnetic Moment 0.5

B
  0.5

B
  12.24 31 

Absolute 
2

H  Gas-Phase NMR Shift 
-28.0 ppm -28.0 ppm 11.416 32-33 

2
H  Quadrupole Moment 

0.4764 X 10-16 cm2 0.38 0.15 X 10-16 cm2 11.430-11.431 46 

2
H  Internuclear Distance 0.7411 Å 0.741 Å 12.75 34 

2
D   Internuclear Distance 0.7411 Å 0.741 Å 12.75 34 

2
H   Internuclear Distance 1.0577 Å 1.06 Å 12.81 24 

2
D  Internuclear Distance 1.0577 Å 1.0559 Å 12.81 25 

2
H  Vibrational Energy 0.517 eV 0.516 eV 11.308 27, 28 

2
D  Vibrational Energy 0.371 eV 0.371 eV 11.313 14, 20 

2
H  e e

x  120.4 1cm  121.33 1cm  11.310 25 

2
D  e e

x  60.93 1cm  61.82 1cm  11.314 20 

2
H   Vibrational Energy 0.270 eV 0.271 eV 11.277 14, 20 

2
D  Vibrational Energy 0.193 eV 0.196 eV 11.281 20 

2
H  J=1 to J=0 Rotational Energy 0.01511 eV 0.01509 eV 12.77 24 

2
D  J=1 to J=0 Rotational Energy 0.007557 eV 0.00755 eV 12.78 24 

2
H   J=1 to J=0 Rotational Energy 0.00742 eV 0.00739 eV 12.83 24 

2
D  J=1 to J=0 Rotational Energy 0.0037095 eV 0.003723 eV 12.84 25 
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CATALYSTS 
He , Ar , Sr , Li , K ,  NaH , and 2H O  are predicted to serve as catalysts since they meet the catalyst criterion—a chemical 

or physical process with an enthalpy change equal to an integer multiple of the potential energy of atomic hydrogen, 27.2 eV , or 

have a potential energy of m  27.2 eV .  Specifically, an exemplary catalytic system is provided by the ionization of t  electrons 

from an atom each to a continuum energy level such that the sum of the ionization energies of the t  electrons is approximately 

27.2 m eV  where m  is an integer.  One such catalytic system involves lithium atoms.  The first and second ionization energies 

of lithium are 5.39172 eV  and 75.64018 eV , respectively [72].  The double ionization ( 2t  ) reaction of Li  to 2Li   then, has a 

net enthalpy of reaction of 81.0319 eV , which is equivalent to 3 27.2 eV . 

 
  2 2 281.0319 2 [( 3) ] 13.6 

( 3)
H Ha a

eV Li m H Li e H p p eV
p p

    
              

 (I.147) 

  2 2 81.0319 Li e Li m eV     (I.148) 

And, the overall reaction is: 

 2 2[( 3) ] 13.6 
( 3)

H Ha a
H H p p eV

p p

   
          

 (I.149) 

 
where 3m   in Eq. (I.128).  The energy given off during catalysis is much greater than the energy lost to the catalyst.  The 
energy released is large compared to conventional chemical reactions.  For example, when hydrogen and oxygen gases undergo 

combustion to form water (   2 2 2

1
( ) ( )  ( )

2
H g O g H O l  ) the known enthalpy of formation of water is 286 /fH kJ mole    or 

1.48  eV per hydrogen atom.  By contrast, each ( 1n  ) ordinary hydrogen atom undergoing a catalysis step to 
1

2
n   releases a 

net of 40.8 eV .  Moreover, further catalytic transitions may occur: 
1 1 1 1 1 1

,  ,  ,
2 3 3 4 4 5

n      and so on.  Once catalysis 

begins, hydrinos autocatalyze further in a process called disproportionation discussed in the Disproportionation of Energy States 
section.   

Certain molecules may also serve to affect transitions of H to form hydrinos.  In general, a compound comprising 

hydrogen such as MH , where M is an element other than hydrogen, serves as a source of hydrogen and a source of catalyst.  A 

catalytic reaction is provided by the breakage of the M H  bond plus the ionization of t  electrons from the atom M  each to a 

continuum energy level such that the sum of the bond energy and ionization energies of the t  electrons is approximately 
  27.2 m eV , where m  is an integer.  One such catalytic system involves sodium hydride.  The bond energy of NaH  is 

1.9245 eV  [80], and the first and second ionization energies of Na  are 5.13908 eV  and 47.2864 eV , respectively [72].  Based 

on these energies NaH  molecule can serve as a catalyst and H  source, since the bond energy of NaH  plus the double 

ionization ( 2t  ) of Na  to 2Na   is 54.35 eV  ( 2 27.2 eV ).  The concerted catalyst reactions are given by 

 

2 2 254.35 2 [3 1 ] 13.6 
3
Ha

eV NaH Na e H eV           
 (I.150) 

 2 2 54.35 Na e H NaH eV      (I.151) 

And, the overall reaction is: 

 2 2[3 1 ] 13.6 
3
Ha

H H eV
      

 (I.152) 

With 2m  , the product of catalyst NaH is  1/ 3H  that may further rapidly react to form  1/ 4H , then molecular hydrino, 

 2 1/ 4H .  Specifically, in the case of a high hydrogen atom concentration, the further transition given by Eq. (I.133) of 

 1/ 3H  ( 3p  ) to  1/ 4H  ( 4p m  ) with H  as the catalyst ( ' 1p  ; 1m  ) can be fast: 

    1/ 3 1/ 4 95.2 HH H eV   (I.153) 

A molecule that accepts   27.2 m eV  from atomic H with a decrease in the magnitude of the potential energy of the 

molecule by the same energy may serve as a catalyst.  For example, the potential energy of H2O given by Eq. (13.201) is 

 
2 2 2

2 2 2 2
0

3 2
ln 81.8715 

2 8
e

e a a b
V eV

a b a a b
      

    
 (I.154) 

The catalysis reaction  3m   is: 
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  281.6 2 3 * 81.6 
4
H

H

a
eV H O H a H O e H eV            

 (I.155) 

 * 122.4 
4 4
H Ha a

H H eV
          

 (I.156) 

 22 3 81.6 H O e H O eV        (I.157) 

And, the overall reaction is: 

   81.6 122.4 
4
H

H

a
H a H eV eV

     
 (I.158) 

wherein *
4
Ha

H
 
  

 has the radius of the hydrogen atom and a central field equivalent to 4 times that of a proton and 
4
Ha

H
 
  

 is 

the corresponding stable state with the radius of 1/4 that of H. 

Hydrogen and hydrinos may serves as catalysts.  As given in the Disproportionation of Energy States section hydrogen 
atoms  1/   1, 2,3,...137H p p   can undergo transitions to lower-energy states given by Eqs. (I.124) and (I.126) wherein the 

transition of one atom is catalyzed by a second that resonantly and nonradiatively accepts 27.2 m eV  with a concomitant 
opposite change in its potential energy.  The overall general equation for the transition of  1/H p  to   1/H m p  induced by 

a resonance transfer of 27.2 m eV  to  1/ 'H p  is represented by Eq. (I.133).  Thus, hydrogen atoms may serve as a catalyst 

wherein 1m  , 2m  , and 3m   for one, two, and three atoms, respectively, acting as a catalyst for another.  The rate for the 

two- or three-atom-catalyst case would be appreciable only when the H  density is high.  But, high H densities are not 

uncommon.  A high hydrogen atom concentration permissive of 2H or 3H serving as the energy acceptor for a third or fourth 

may be achieved under several circumstances such as on the surface of the Sun and stars due to the temperature and gravity 

driven density, on metal surfaces that support multiple monolayers, and in highly dissociated plasmas, especially pinch hydrogen 

plasmas.  Additionally, a three-body H interaction is easily achieved when two H  atoms arise with the collision of a hot H  with 

2H .  This event can commonly occur in plasmas having a large population of extraordinarily fast H as reported previously [36-

42].  This is evidenced by the unusual intensity of atomic H emission.  In such cases, energy transfer can occur from a hydrogen 

atom to two others within sufficient proximity, being typically a few angstroms as given in the Dipole-Dipole Coupling section.  

Then, the reaction between three hydrogen atoms whereby two atoms resonantly and nonradiatively accept 54.4 eV  from the 

third hydrogen atom such that 2H  serves as the catalyst is given by: 

 54.4 2 2 2 * 54.4 
3
H

fast

a
eV H H H e H eV          

 (I.159) 

 * 54.4 
3 3
H Ha a

H H eV
          

 (I.160) 

 2 2 2 54.4 fastH e H eV     (I.161) 

And, the overall reaction is: 

 2 2[3 1 ] 13.6 
3
Ha

H H eV
      

 (I.162) 

Characteristic continuum emission starting at 22.8 nm (54.4 eV ) and continuing to longer wavelengths was observed as 

predicted for this transition reaction as the energetic hydrino intermediate *
3
Ha

H
 
  

 decays [23-29, 31].  Alternatively, fast H is 

producted by the mechanism of Eq. (I.161) or a resonant kinetic energy transfer to form fast H  may occur consistent with the 
observation of extraordinary Balmer   line broadening corresponding to high-kinetic energy H [31, 36-42]. 

In another H -atom catalyst reaction involving a direct transition to 
4
Ha 

  
 state, two hot 2H  molecules collide and 

dissociate such that three H  atoms serve as a catalyst of 3 27.2 eV  for the fourth.  Then, the reaction between four hydrogen 

atoms whereby three atoms resonantly and nonradiatively accept 81.6 eV  from the fourth hydrogen atom such that 3H  serves 

as the catalyst is given by: 

 81.6 3 3 3 * 81.6 
4
H

fast

a
eV H H H e H eV          

 (I.163) 



40 Introduction 

 * 122.4 
4 4
H Ha a

H H eV
          

 (I.164) 

 3 3 3 81.6 fastH e H eV     (I.165) 

And, the overall reaction is: 

 2 2[4 1 ] 13.6 
4
Ha

H H eV
      

 (I.166) 

The extreme-ultraviolet continuum radiation band due to the *
4
Ha

H
 
  

 intermediate of Eq. (I.163) is predicted to have short 

wavelength cutoff at 122.4 eV  (10.1 nm) and extend to longer wavelengths.  This continuum band was confirmed 

experimentally [23-29, 31].  In general, the transition of H  to 
1

Ha
H

p m

 
   

 due by the acceptance of 27.2 m eV  gives a 

continuum band with a short wavelength cutoff and energy 
1

Ha
H H

p m

E  
      

 given by: 

 2

1

13.6 
Ha

H H
p m

E m eV  
      

   (I.167) 

 
2

1

91.2
 

 Ha
H H

p m

nm
m

  
      

  (I.168) 

and extending to longer wavelengths than the corresponding cutoff.  Considering the 91.2 nm continuum shown in Figures 17 

and 31 of Ref. [81] and the results shown in Figures 3-8 of Ref. [26], hydrogen may emit the series of 10.1 nm, 22.8 nm, and 

91.2 nm continua. 
 
OUTLINE OF THE RESULTS OF THE UNIFIED THEORY DERIVED FROM 
FIRST PRINCIPLES  
To overcome the limitations of quantum mechanics (QM), physical laws that are exact on all scales are sought.  Rather than 
engendering the electron with a wave nature, as suggested by the Davisson-Germer experiment and fabricating a set of 
associated postulates and mathematical rules for wave operators, a new theory is derived from first principles. 
 

FOUNDATIONS 
• Start with first principles 

– Conservation of mass-energy 
– Conservation of linear and angular momentum 
– Maxwell’s Equations 
– Newton’s Laws 
– Lorentz transforms of Special Relativity 
 

• Highly predictive– application of Maxwell’s equations precisely predicts hundreds of fundamental spectral observations in 
exact equations with no adjustable parameters (fundamental constants only).  

 
• In addition to first principles, the only assumptions needed to predict the Universe over 85 orders of magnitude of scale 

(Quarks to Cosmos): 
– Four-dimensional spacetime 
– The fundamental constants that comprise the fine structure constant 
– Fundamental particles including the photon have   of angular momentum 
– The Newtonian gravitational constant G 
– The spin of the electron neutrino  

 
Classical Physics (CP) now comprises the unified Maxwell’s Equations, Newton’s Laws, and General and Special 

Relativity.  The closed form calculations of a broad spectrum of fundamental phenomena containing fundamental constants only 
are given in subsequent sections.  CP gives closed form solutions for the atom that give four quantum numbers, the Rydberg 
constant, the stability of the 1n   state and the instability of the excited states, relativistic invariance of the wave equation, the 
equations of the photon and electron in excited states, the equations of the free electron, and photon which predict the wave 
particle duality behavior of particles and light.  The current and charge-density functions of the electron may be directly 
physically interpreted.  For example, spin angular momentum results from the motion of negatively charged mass moving 
systematically, and the equation for angular momentum,  r p  , can be applied directly to the wave function (a current-density 



 Introduction 41 

function) that describes the electron.  The following observables are derived in closed-form equations based on Maxwell’s 
equations: the magnetic moment of a Bohr magneton, Stern Gerlach experiment, electron and muon g factors, fine structure 
splitting, Lamb shift, hyperfine structure, muonium hyperfine structure interval, resonant line width and shape, selection rules, 
correspondence principle, wave particle duality, excited states, reduced mass, rotational energies and momenta, spin-orbit 
coupling, Knight shift and spin-nuclear coupling, closed form solutions for multielectron atoms, excited states of the helium 
atom, elastic electron scattering from helium atoms, proton scattering from atomic hydrogen, the nature of the chemical bond, 
bond energies, vibrational energies, rotational energies, and bond distances of hydrogen-type molecules and molecular ions, the 
solutions for all major functional groups that give the exact solutions of an infinite number of molecules, solutions to the 
bonding in the major classes of materials, Davisson Germer experiment, Aspect experiment, Durr experiment on the Heisenberg 
Uncertainty Principle, Penning trap experiments on single ions, hyperfine structure interval of positronium, magnetic moments 
of the nucleons, beta decay energy of the neutron, the binding energy of deuterium, and alpha decay.  The theory of collective 
phenomena including statistical mechanics, superconductivity and Josephson junction experiments, integral and fractional 
quantum Hall effects, and the Aharonov-Bohm effect, is given.  The calculations agree with experimental observations. 

From the closed form solution of the helium atom, the predicted electron scattering intensity is derived.  The closed form 
scattering equation matches the experimental data; whereas, calculations based on the Born model of the atom utterly fail at 
small scattering angles.  The implications for the invalidity of the Schrödinger and Born models of the atom and the dependent 
Heisenberg Uncertainty Principle are discussed. 

For any kind of wave advancing with limiting velocity and capable of transmitting signals, the equation of front 
propagation is the same as the equation for the front of a light wave.  By applying this condition to electromagnetic and 
gravitational fields at particle production, the Schwarzschild metric (SM) is derived from the classical wave equation, which 
modifies general relativity to include conservation of spacetime, in addition to momentum and matter/energy and identifies 
absolute space.  The result gives a natural relationship between Maxwell’s equations, special relativity, and general relativity.  It 
gives gravitation from the atom to the cosmos.  The gravitational equations with the equivalence of the particle production 
energies permit the equivalence of mass-energy and the spacetime that determine the nature of absolute space wherein a “clock” 
is defined that measures “clicks” on an observable in one aspect, and in another, it is the ruler of spacetime of the universe with 
the implicit dependence of spacetime on matter-energy conversion.  The masses of the leptons, the quarks, and nucleons are 
derived from this metric of spacetime that gives the equivalence of the gravitational and inertial masses.  The universe is time 
harmonically oscillatory in matter, energy, and spacetime expansion and contraction with a minimum radius that is the 
gravitational radius.  In closed form equations with fundamental constants only, CP gives the basis of the atomic, 
thermodynamic, and cosmological arrows of time, the deflection of light by stars, the precession of the perihelion of Mercury, 
the Hubble constant, the age of the universe, the observed acceleration of the expansion, the power of the universe, the power 
spectrum of the universe, the microwave background temperature, the primary uniformity of the microwave background 
radiation, the polarization and microkelvin temperature spatial variation of the microwave background radiation, the observed 
violation of the GZK cutoff, the mass density of the universe, the large scale structure of the universe, and the identity of dark 
matter which matches the criteria for the structure of galaxies and emission from interstellar medium and the Sun which have 
been observed in the laboratory [23-29, 31].  In a special case wherein the gravitational potential energy density of a blackhole 
equals that of the Planck mass, matter converts to energy and spacetime expands with the release of a gamma ray burst.  The 
singularity in the SM is eliminated.  The basis of the antigravitational force is presented with supporting experimental evidence.   

In addition to the above known phenomena and characteristics of fundamental particles and forces, the theory predicts the 
existence of a previously unknown form of matter—hydrogen atoms and molecules having electrons of lower energy than the 
conventional “ground” state called hydrinos and molecular hydrinos, respectively, where each energy level corresponds to a 
fractional quantum number.  The existence of hydrinos has been confirmed experimentally proving GUT-CP, and this identity 
additionally resolves many celestial mysteries [23-29, 31].  It provides resolution to many otherwise inexplicable celestial 
observations with (a) the identity of dark matter being hydrinos, (b) the hydrino-transition radiation being the radiation source 
heating the warm-hot interstellar medium (WHIM) and behind the observation that diffuse H  emission is ubiquitous 
throughout the Galaxy requiring widespread sources of flux shortward of 912 Å , and (c) the energy and radiation from the 
hydrino transitions being the source of extraordinary temperatures and power regarding the solar corona problem, the cause of 
sunspots and other solar activity, and why the Sun emits X-rays [23-29, 31]. 
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PHYSICAL CONCEPTS THAT ARISE FROM CP DERIVATIONS ON THE SCALE 
RANGE OF 85 ORDERS OF MAGNITUDE 
Starting from the simple observation that the bound electron of the hydrogen atom is experimentally observed to be stable to 
radiation, the classical electromagnetic wave equation is used to solve the electron source current by matching it to emitted 
electromagnetic waves with the constraint that a bound electron in the 1n   state cannot radiate energy.  The solution is based 
on Maxwell’s equations and other experimentally confirmed physical laws.  The resulting CP gives predictions that are 
unprecedented in success, achieving highly accurate agreement with observations over 85 orders of magnitude from the scale of 
fundamental particles to that of the cosmos.  A summary of some of the salient features of the theory derived in subsequent 
sections follows: 
 

• Bound electrons are described by a charge-density (mass-density) function which is the product of a radial delta 
function ( ( ) ( )nf r r r  ), angular functions, and a time function.  The latter comprise a constant angular function, a 

time and spherically harmonic function, and linear combinations of these functions.  Thus, a bound electron is a 
constant two-dimensional spherical surface of charge (zero thickness and total charge of e ), called an electron atomic 
orbital that can exist in a bound state at only specified distances from the nucleus determined by the force balance 
between the electric fields of the electron and proton plus any resonantly absorbed photons. 

 

• The uniform current density function 0
0 ( , ) Y  (Eqs. (I.63-I.65)) that gives rise to the spin of the electron is generated 

from two current-vector fields (CVFs).  Each CVF comprises a continuum of correlated orthogonal great circle 
current-density elements (one dimensional "current loops").  The current pattern comprising each CVF is generated 
over a half-sphere surface by a set of rotations of two orthogonal great circle current loops that serve as basis elements 

about each of the  , , 0 x y zi i i  and 
1 1

, ,
2 2

  
 

x y zi i i -axis; the span being   radians.  Then, the two CVFs are 

convoluted, and the result is normalized to exactly generate the continuous uniform electron current density function 
0

0 ( , ) Y  covering a spherical shell and having the three angular momentum components of /
4xy   L


 and 
2




zL . 

 

• Then, the total function that describes the spinning motion of each electron atomic orbital is composed of two 
functions.  One function, the spin function, is spatially uniform over the atomic orbital, where each point moves on the 
surface with the same quantized angular and linear velocity, and gives rise to spin angular momentum.  The other 
function, the modulation function, can be spatially uniform—in which case there is no orbital angular momentum and 
the magnetic moment of the electron atomic orbital is one Bohr magneton—or not spatially uniform—in which case 
there is orbital angular momentum.  The modulation function moves harmonically on the surface as a charge-density 
wave with a quantized angular velocity about a specific (by convention) z-axis.  Numerical values for the angular 
velocity, radii of allowed atomic orbitals, energies, and associated quantities are calculated. 

 

• Atomic orbital radii are calculated by setting the centripetal force equal to the electric and magnetic forces. 
 

• The atomic orbital is a resonator cavity which traps photons of discrete frequencies.  The radius of an atomic orbital 
increases with the absorption of electromagnetic energy.  The solutions to Maxwell’s equations for modes that can be 
excited in the atomic orbital resonator cavity give rise to four quantum numbers, and the energies of the modes are the 
experimentally known hydrogen spectrum.  The spectrum of helium is the solution of Maxwell’s equations for the 
energies of modes of this resonator cavity with a contribution from electron-electron spin and orbital interactions. 

 

• Excited states are unstable because the charge-density function of the electron plus photon have a radial doublet 
function component which corresponds to an electric dipole.  The doublet possesses spacetime Fourier components 
synchronous with waves traveling at the speed of light; thus it is radiative.  The charge-density function of the electron 

plus photon for the 1n   principal quantum state of the hydrogen atom as well as for each of the 
1

integer
n   states 

mathematically is purely a radial delta function.  The delta function does not possess spacetime Fourier components 
synchronous with waves traveling at the speed of light; thus, each is nonradiative. 

 

• The spectroscopic line-width arises from the classical rise-time band-width relationship, and the Lamb Shift is due to 
conservation of energy and linear momentum and arises from the radiation reaction force between the electron and the 
photon. 

 

• The photon is an atomic orbital with electric and magnetic field lines along orthogonal great circles. 
 

• Upon ionization, the atomic orbital radius goes to infinity and the electron becomes a plane wave (consistent with 
double-slit experiments) with the de Broglie wavelength, /h p  .  

 

• The energy of atoms is stored in their electric and magnetic fields.  Chemical bonding occurs when the total energy of 
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the participant atoms can be lowered with the formation of two-dimensional equipotential energy surfaces (molecular 
orbitals (MO)) where the current motion in the case of 2H  is along orbits, each comprising an elliptic plane cross 

section of a spheroidal MO through the foci, and a general form of the nonradiative boundary condition is met.  
 

• Certain atoms and ions serve as catalysts to release energy from hydrogen to produce an increased binding energy 

hydrogen atom having a binding energy of 2

13.6 

1

eV

p

 
 
 

 where p  is an integer greater than 1, designated as Ha
H

p
 
  

 

where Ha  is the radius of the hydrogen atom.  Increased binding energy hydrogen atoms called hydrinos are predicted 

to form by reacting an ordinary hydrogen atom with a catalyst having a net enthalpy of reaction of about the potential 
energy of hydrogen in its first nonradiative state, 27.2 m eV , where m  is an integer, or have a potential energy of 
m  27.2 eV .  This catalysis releases energy from the hydrogen atom with a commensurate decrease in size of the 
hydrogen atom, n Hr na .  For example, the catalysis of ( 1)H n   to ( 1/ 2)H n   releases 40.8 eV , and the hydrogen 

radius decreases from Ha  to 
1

2 Ha .  One such atomic catalytic system involves H itself.  The potential energy of H is 

27.2 eV ; thus, one or more ( m ) H atoms may accept an integer m  times 27.2 eV  from another that undergoes a 
transition to a corresponding hydrino state   1/ 1H m  .  The process is hereafter referred to as the BlackLight 

Process. 
 

• The existence of hydrinos as the product of the BlackLight Process—a new energy source—has been confirmed 
experimentally. 

 

• For any kind of wave advancing with limiting velocity and capable of transmitting signals, the equation of front 
propagation is the same as the equation for the front of a light wave.  By applying the condition to electromagnetic and 
gravitational fields at particle production, the Schwarzschild metric (SM) is derived from the classical wave equation, 
which modifies general relativity to include conservation of spacetime, in addition to momentum and matter/energy.  
The result gives a natural relationship between Maxwell’s equations, special relativity, and general relativity, and 
defines absolute space that rescues Newton’s Second law, resolves the twin paradox, and preserves the energy 
inventory of the universe.  It gives gravitation from the atom to the cosmos. 

 

• The Schwarzschild metric gives the relationship whereby matter causes relativistic corrections to spacetime that 
determines the curvature of spacetime and is the origin of gravity.  The correction is based on the boundary conditions 
that no signal can travel faster than the speed of light including the gravitational field that propagates following particle 
production from a photon wherein the particle has a finite gravitational velocity given by Newton’s Law of Gravitation.   

 

• The limiting velocity c  results in the contraction of spacetime due to particle production.  The contraction is given by 
2 gr  where gr  is the gravitational radius of the particle.  This has implications for the expansion of spacetime when 

matter converts to energy. 
 

• The spacetime contraction during particle production is analogous to Lorentz length contraction and time dilation of an 
object in one inertial frame relative to another moving at constant relative velocity.  In the former case, the 
corresponding correction is a function of the square of the ratio of the gravitational velocity to the speed of light.  In the 
latter case, the corresponding correction is a function of the square of the ratio of the relative velocity of two inertial 
frames to the speed of light. 

 

• Fundamental particle production occurs when the energy of the particle given by the Planck equation, Maxwell’s 
Equations, and Special Relativity is equal to 2mc , and the proper time is equal to the coordinate time according to the 
Schwarzschild metric.  The gravitational equations with the equivalence of the particle production energies permit the 
equivalence of mass-energy and the absolute spacetime wherein a “clock” is defined which measures “clicks” on an 
observable in one aspect, and in another, it is the ruler of spacetime of the universe with the implicit dependence of 
spacetime on matter-energy conversion.  The masses of the leptons, the quarks, and nucleons are derived from this 
metric of spacetime. 

 

• The gravitational equations with the equivalence of the particle production energies require the conservation 

relationship of mass-energy, 2E mc , and spacetime, 
3

34
 3.22  10

4 sec

c kg
X

G
 .  Spacetime expands as mass is released 

as energy which provides the basis of absolute space and the atomic, thermodynamic, and cosmological arrows of time.  
Entropy and the expansion of the universe are large scale consequences.  The universe is closed independently of the 
total mass of the universe, and different regions of space are isothermal even though they are separated by greater 
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distances than that over which light could travel during the time of the expansion of the universe.  The universe is 
oscillatory in matter/energy and spacetime with a finite minimum radius, the gravitational radius; thus, the gravitational 
force causes celestial structures to evolve on a time scale corresponding to the period of oscillation.  The equation of 

the radius of the universe,  , is  3 32

3

2 2
cos

2

4 4

U U U

U

Gm cm cm t
Gmc cc
cG G




 

        
   

  

 which predicts the observed acceleration 

of the expansion.  The calculated Hubble constant is 0 78.5 
sec

km
H

Mpc



.  Presently, stars and large-scale structures 

exist that are older than the elapsed time of the present expansion, as stellar and celestial evolution occurred during the 
contraction phase.  The maximum energy release of the universe that occurs at the beginning of the expansion phase 

is:
5

51
 2.88  10

4U

c
P X W

G
  . 

 

• The relationship between inertial and gravitational mass is based on the result that only fundamental particles having an 
equivalence of the inertial and gravitational masses at particle production are permitted to exist since only in these 
cases are Maxwell’s equations and the conditions inherent in the Schwarzschild metric of spacetime satisfied 
simultaneously wherein space must be absolute.  The equivalence is maintained for any velocity thereafter due to the 
absolute nature of space and the absolute speed of light.  The invariant speed, c , is set by the permittivity and 
permeability of absolute space, which determines the relativity principle based on propagation of fields and signals as 
light-wave fronts. 

 

• In addition to the propagation velocity, the intrinsic velocity of the particle and the geometry of this 2-dimensional 
velocity surface with respect to the limiting speed of light determine that the particle such as an electron may have 
gravitational mass different from its inertial mass.  A constant velocity confined to a spherical surface corresponds to a 
positive gravitational mass equal to the inertial mass (e.g. particle production or a bound electron).  A constant angular 
velocity function confined to a flat surface corresponds to a gravitational mass less than the inertial mass, which is zero 
in the limit of an absolutely unbound particle (e.g. absolutely free electron).  A hyperbolic velocity function confined to 
a spherical surface corresponds to a negative gravitational mass (e.g. hyperbolic electron). 

 

• Superconductivity arises when electron plane waves extend throughout the lattice, and the lattice is a band-pass for the 
magnetic field of an array of magnetic dipoles; so, no energy is dissipated with current flow. 

 

• The Quantum Hall Effect arises when the forces of crossed electric and magnetic fields balance, and the lattice is a 
band-pass for the magnetic field of an array of magnetic dipoles. 

 

• The vector potential component of the electron’s angular momentum gives rise to the Aharonov-Bohm Effect. 
 

• Alpha decay occurs as a transmission of a plane wave through a potential barrier. 
 

• The proton and neutron functions each comprise a linear combination of a constant function and three orthogonal 
spherical harmonic functions resulting in three quark/gluon functions per nucleon.  The nucleons are locally two-
dimensional.   

 
 
SUMMARY OF FOUNDATIONS AND PHYSICAL PHENOMENA SOLVED BY 
CLASSICAL PHYSICS 
The electron current-density functions are solved to match time-harmonic multipole source currents of time-varying 
electromagnetic fields during transitions with the constraint that a bound electron in the 1n   state cannot radiate energy.  The 
mathematical formulation for zero radiation based on Maxwell’s equations follows from a derivation by Haus [46].  The function 
that describes the motion of the electron corresponding to a potentially emitted photon must not possess spacetime Fourier 
components that are synchronous with waves traveling at the speed of light.  Classical physics gives closed form solutions for 
the atom including the stability of the 1n   state and the instability of the excited states, relativistic invariance of the wave 
equation, the equations of the photon and electron in excited states, and the equations of the free electron and photon which also 
predict the wave-particle duality behavior of particles and light.  The current and charge-density functions of the electron may be 
directly physically interpreted.  For example, spin angular momentum results from the motion of negatively charged mass 
moving systematically, and the equation for angular momentum,  r p  , can be applied directly to the wave function (a 
current-density function) that describes the electron.  A partial listing of well-known and documented phenomena, which are 
derivable in closed form from classical physics, especially Maxwell’s equations are given in Table I.3.  The calculations agree 
with experimental observations. 
 



 Introduction 45 

Table I.3.   Partial List of Physical Phenomena Solved by Classical Physics. 
 
 
• Stability of the atom to radiation  
• Magnetic moment of a Bohr magneton and relativistic 

invariance of each of 
e

e
m

 of the electron, the electron 

angular momentum of  , and the electron magnetic 
moment of B  from the spin angular momentum 

• De Broglie relationship 
• Stern Gerlach experiment 
• Electron and muon g factors 
• Rotational energies and momenta 
• Reduced electron mass 
• Ionization energies of multi-electron atoms 
• Special relativistic effects 
• Excited states 
• Resonant line width and shape 
• Selection rules 
• State Lifetimes and line intensities 
• Correspondence principle 
• Orbital and spin splitting 
• Stark effect 
• Lamb Shift 
• Knight shift 
• Spin-orbit coupling (fine structure) 
• Spin-nuclear coupling (hyperfine structure) 
• Hyperfine structure interval of muonium 
• Nature of the free electron 
• Nature of the photon 
• Photoelectric effect 
• Compton effect 
• Wave-particle duality 
• Double-slit experiment for photons and electrons 

• Davisson Germer experiment 
• Elastic electron scattering from helium atoms 
• Ionization energies of multielectron atoms 
• Hydride ion binding energy and absolute NMR shift 
• Hydride lattice parameters and energies 
• Excited states of the helium atom with singlet and triplet 

vector diagrams 
• Proton scattering from atomic hydrogen 
• Nature of the chemical bond 
• Bond energies, vibrational energies, rotational energies, 

bond distances, magnetic moment and fields of hydrogen-
type molecules and molecular ions, absolute NMR shift 
of 2H  

• Molecular Ion and Molecular Excited States 
• Parameters of polyatomic molecules 
• Superconductivity and Josephson junction experiments 
• Integral and fractional quantum Hall effects 
• Aharonov-Bohm effect 
• Aspect experiment 
• Durr experiment on the Heisenberg Uncertainty Principle 
• Penning trap experiments on single ions 
• Mobility of free electrons in superfluid helium 
• Gravitational behavior of neutrons 
• Hyperfine structure interval of positronium 
• Structure of nucleons 
• Magnetic moments of the nucleons 
• Beta decay energy of the neutron 
• Binding energy of deuterium 
• Alpha decay 
• Nature of neutrinos 
• Proton radius puzzle 
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For the first time in history, the key building blocks of organic chemistry have been solved from two basic equations.  
Now, the true physical structure and parameters of an infinite number of organic molecules up to infinite length and complexity 
can be obtained to permit the engineering of new pharmaceuticals and materials at the molecular level.  The solutions of the 
basic functional groups of organic chemistry were obtained by using generalized forms of a geometrical and an energy equation 
for the nature of the H-H bond.  The geometrical parameters and total bond energies of about 800 exemplary organic molecules 
were calculated using the functional group composition [4].  The results obtained essentially instantaneously match the 
experimental values typically to the limit of measurement.  The solved functional groups are given in Table I.4. 
 
Table I.4.   Partial List of Organic Functional Groups Solved by Classical Physics. 
 

Continuous-Chain Alkanes 
Branched Alkanes 
Alkenes 
Branched Alkenes 
Alkynes 
Alkyl Fluorides 
Alkyl Chlorides 
Alkyl Bromides 
Alkyl Iodides 
Alkenyl Halides 
Aryl Halides 
Alcohols 
Ethers 
Primary Amines 
Secondary Amines 
Tertiary Amines 
Aldehydes 
Ketones 
Carboxylic Acids 
Carboxylic Acid Esters 
Amides 
N-alkyl Amides 

N,N-dialkyl Amides 
Urea  
Carboxylic Acid Halides 
Carboxylic Acid Anhydrides 
Nitriles 
Thiols 
Sulfides 
Disulfides 
Sulfoxides 
Sulfones 
Sulfites 
Sulfates 
Nitroalkanes 
Alkyl Nitrates 
Alkyl Nitrites 
Conjugated Alkenes 
Conjugated Polyenes 
Aromatics 
Naphthalene 
Toluene 
Chlorobenzene 
Phenol

Aniline 
Aryl Nitro Compounds 
Benzoic Acid Compounds 
Anisole  
Pyrrole 
Furan 
Thiophene 
Imidizole 
Pyridine 
Pyrimidine 
Pyrazine 
Quinoline 
Isoquinoline 
Indole 
Adenine 
Fullerene (C60) 
Graphite 
Phosphines 
Phosphine Oxides 
Phosphites 
Phosphates 
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The two basic equations, one for geometrical parameters and the other for energy parameters that solves organic 
molecules were applied to bulk forms of matter containing trillions of trillions of electrons.  For example, using the same alkane- 
and alkene-bond solutions as elements in an infinite network, the nature of the solid molecular bond for all known allotropes of 
carbon (graphite, diamond, C60, and their combinations) were solved.  By further extension of this modular approach, the solid 
molecular bond of silicon and the nature of the semiconductor bond were solved.  The nature of other fundamental forms of 
matter such as the nature of the ionic bond, the metallic bond, and additional major fields of chemistry such as that of silicon, 
organometallics, and boron were solved exactly such that the position and energy of each and every electron is precisely 
specified.  These results agree with observations to the limit of measurement.  The implication of these results is that it is 
possible using physical laws to solve the structure of all types of matter.  Some of the solved forms of matter of infinite extent, as 
well as additional major fields of chemistry, are given in Table I.5. 
 
Table I.5.   Partial List of Additional Molecules and Compositions of Matter Solved by Classical Physics. 
 

Solid Molecular Bond of the Three Allotropes 
of Carbon 

Diamond  
Graphite 
Fullerene (C60) 

Dipole-Dipole Bonding 
Hydrogen Bonding 
Van der Waals Bonding 

Solid Ionic Bond of Alkali-Hydrides 
Alkali-Hydride Crystal Structures 

Lithium Hydride 
Sodium Hydride 
Potassium Hydride 
Rubidium & Cesium Hydride 
Potassium Hydrino Hydride 

Solid Metallic Bond of Alkali Metals 
Alkali Metal Crystal Structures 

Lithium Metal 
Sodium Metal  
Potassium Metal 
Rubidium & Cesium Metals 

Alkyl Aluminum Hydrides 
Silicon Groups and Molecules 

Silanes 
 Alkyl Silanes and Disilanes 
Solid Semiconductor Bond of Silicon 

Insulator-Type Semiconductor Bond 
Conductor-Type Semiconductor Bond 

Boron Molecules 
Boranes 

Bridging Bonds of Boranes 
Alkoxy Boranes 

Alkyl Boranes  

Alkyl Borinic Acids 
Tertiary Aminoboranes 
Quaternary Aminoboranes 
Borane Amines 

 Halido Boranes  
Organometallic Molecular Functional Groups 
and Molecules 

Alkyl Aluminum Hydrides 
Bridging Bonds of 
Organoaluminum Hydrides 

Organogermanium and Digermanium 
Organolead 
Organoarsenic  
Organoantimony 
Organobismuth 

Organic Ions 
1° Amino 
2° Amino 
Carboxylate 
Phosphate 
Nitrate 
Sulfate 
Silicate 

Proteins 
Amino Acids 
Peptide Bonds 

DNA 
Bases 
2-deoxyribose 
Ribose 
Phosphate Backbone  

Water 
Condensed Noble Gases
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For any kind of wave advancing with limiting velocity and capable of transmitting signals, the equation of front 

propagation is the same as the equation for the front of a light wave.  By applying this condition to electromagnetic and 
gravitational fields at particle production, the Schwarzschild metric (SM) is derived from the classical wave equation, which 
modifies general relativity to include conservation of spacetime in addition to momentum and mass-energy.  The result gives a 
natural relationship between Maxwell’s equations, special relativity, and general relativity and identifies absolute space to give 
the basis and the equivalence of the inertial and gravitational masses.  It gives gravitation from the atom to the cosmos.  The 
universe is time harmonically oscillatory in matter, energy, and spacetime expansion and contraction with a minimum radius that 
is the gravitational radius.  A partial listing of the particle and cosmological phenomena derivable from classical physics in 
closed form equations with fundamental constants only is given in Table I.6. 
 
Table I.6.   Partial List of Particle and Cosmological Phenomena Solved by Classical Physics. 
 

• Equivalence of the inertial and gravitational masses 
• Newton’s second law 
• Deflection of light by stars 
• Precession of the perihelion of Mercury 
• Lepton masses 
• Quark masses 
• Boson masses 
• Hubble constant 
• Age of the universe 
• Observed acceleration of the expansion 
•Absence of antimatter 
• Absence of a Big Bang origin of the Universe 
• Identity of dark matter 
• Identity of UV crisis/Cosmic EUV continuum emission 

• Identity of the Diffuse Interstellar Bands (DIBs) 
• Origin of hot interstellar medium 
• Solar corona temperature problem 
• Power of the universe  
• Power spectrum of the universe 
• Microwave background temperature 
• Uniformity of the microwave background radiation 
• Microkelvin spatial variation of the cosmic microwave 

background radiation (CMBR) 
• Polarization of the CMBR data 
• Observed violation of the GZK cutoff 
• Mass density of the universe 
• Web-like, large scale structure of the universe 
 

 
Classical physics further gives the identity of dark matter, which matches the criteria for the structure of galaxies and spectral 
emission from interstellar medium and the Sun that have been observed in the laboratory [23-29, 31].  In a special case wherein 
the gravitational potential energy density of a blackhole equals that of the Planck mass, matter converts to energy and spacetime 
expands with the release of a gamma ray burst.  The singularity in the SM is eliminated.  The predictions of classical physics are 
unprecedented in that agreement with observations is achieved over 85 orders of magnitude from the scale of fundamental 
particles to that of the cosmos.  

From the success at predicting the vast scope of known phenomena, it can be appreciated that CP is anticipated to predict 
new, previously unknown phenomena, as well as now solve previously unsolvable mysteries for which old theories were 
incapable.  In this book, the structure of the bound electron is solved using classical laws and from there a unification theory is 
developed based on those laws called the Grand Unified Theory of Classical Physics (GUTCP) with results that match 
observations for the basic phenomena of physics and chemistry from the scale of the quarks to the cosmos.  In addition to the 
observables on the hydrogen atom that are known, it further predicts that atomic hydrogen may undergo a catalytic reaction with 
certain atomized elements and ions which singly or multiply ionize at integer multiples of the potential energy of atomic 
hydrogen, m  27.2 eV  wherein m  is an integer or have a potential energy of m  27.2 eV .  Recently, there has been the 
announcement of some unexpected astrophysical results that support the existence of hydrinos.  In the 1995 Edition of the 
GUTCP, the prediction [45] that the expansion of the universe was accelerating was made from the same equations that correctly 
predicted the mass of the top quark before it was measured.  To the astonishment of cosmologists, this was confirmed by 2000.  
Another prediction about the nature of dark matter based on GUTCP may be close to being confirmed.  Based on recent 
evidence, Bournaud et al. [82-83] suggest that dark matter is hydrogen in dense molecular form that somehow behaves 
differently in terms of being unobservable except by its gravitational effects.  Theoretical models predict that dwarfs formed 
from collisional debris of massive galaxies should be free of nonbaryonic dark matter.  So, their gravity should tally with the 
stars and gas within them.  By analyzing the observed gas kinematics of such recycled galaxies, Bournaud et al. [82-83] have 
measured the gravitational masses of a series of dwarf galaxies lying in a ring around a massive galaxy that has recently 
experienced a collision.  Contrary to the predictions of Cold-Dark-Matter (CDM) theories, their results demonstrate that they 
contain a massive dark component amounting to about twice the visible matter.  This baryonic dark matter is argued to be cold 
molecular hydrogen, but it is distinguished from ordinary molecular hydrogen in that it is not traced at all by traditional methods, 
such as emission of CO lines.  These results match the predictions of the dark matter being molecular hydrino.  Additionally, 
astronomers Jee at al. [84] using data from NASA’s Hubble Telescope have mapped the distribution of dark matter, galaxies, and 
hot gas in the core of the merging galaxy cluster Abell 520 formed from a violent collision of massive galaxy clusters and have 
determined that the dark matter had collected in a dark core containing far fewer galaxies than would be expected if dark matter 
was collisionless with dark matter and galaxies anchored together.  The collisional debris left behind by the galaxies departing 
the impact zone behaved as hydrogen did, another indication that the identity of dark matter is molecular hydrino. 
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The best evidence yet for the existence of dark matter is its direct observation as a source of massive gravitational mass 
evidenced by gravitational lensing of background galaxies that does not emit or absorb light as shown in Figure I.6 [85].  
Hydrogen transitions to hydrinos that comprise the dark matter can be observed celestially and in the laboratory.  Characteristic 

EUV continua of hydrino transitions following radiationless energy transfer with cutoffs at 
HH

aH

pm1



















91.2

m2  
 nm  are 

observed from hydrogen plasmas in the laboratory that match significant celestial observations and further confirm hydrino as 
the identity of dark matter [23-29, 31].  Hydrinos have been isolated in the laboratory and confirmed by a number of analytical 
techniques [22-42]. 

The continua spectra directly and indirectly match significant celestial observations.  Hydrogen self-catalysis and 

disproportionation may be reactions occurring ubiquitously in celestial objects and interstellar medium comprising atomic 

hydrogen.  Stars are sources of atomic hydrogen and hydrinos as stellar wind for interstellar reactions wherein very dense stellar 

atomic hydrogen and singly ionized helium, He , serve as catalysts in stars.  Hydrogen continua from transitions to form 

hydrinos matches the emission from white dwarfs, provides a possible mechanism of linking the temperature and density 

conditions of the different discrete layers of the coronal/chromospheric sources, and provides a source of the diffuse ubiquitous 

EUV cosmic background with a 10.1 nm continuum matching the observed intense 11.0-16.0 nm band in addition to resolving 

the identity of the radiation source behind the observation that diffuse H  emission is ubiquitous throughout the Galaxy and 

widespread sources of flux shortward of 912 Å  are required.  Moreover, the product hydrinos provides resolution to the identity 

of dark matter [23-29, 31]. 
 

 
Figure I.6.   Dark matter ring in galaxy cluster.  This Hubble Space Telescope composite image shows a ghostly "ring" of dark 
matter in the galaxy cluster Cl 0024+17.  The ring is one of the strongest pieces of evidence to date for the existence of dark 
matter, a prior unknown substance that pervades the universe.  Courtesy of NASA/ESA, M.J. Jee and H. Ford (Johns Hopkins 
University), Nov. 2004. 
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The recent experimental confirmation of the predictions for transitions of atomic hydrogen to form hydrinos, such as 
power production and characterization of hydrino reaction products [22-42], as well as pumped catalyst states, fast H, 
characteristic continuum radiation, and the hydrino product have profound implications theoretically, scientifically, and 
technologically in that they (1) confirm GUTCP in the prediction of hydrinos, (2) directly disprove atomic theories such as the 
Schrödinger and Dirac equation theories based on the definition of 1n   as the ground state, the defined state below which it is 
impossible to go, as expected based on many physical failings and preexisting mathematical inconsistencies [4-20], (3) offer 
resolution to many otherwise inexplicable celestial observations with (a) the identity of dark matter being hydrinos, (b) the 
hydrino-transition radiation being the radiation source heating the WHIM and behind the observation that diffuse H  emission 
is ubiquitous throughout the Galaxy requiring widespread sources of flux shortward of 912 Å , and (c) the energy and radiation 
from the hydrino transitions being the source of extraordinary temperatures and power regarding the solar corona problem, the 
cause of sunspots and other solar activity, and why the Sun emits X-rays [23-29, 31], and (4) directly demonstrate a new field of 
hydrogen chemistry and a powerful new energy source. 

The purpose of a physpcal theory is to not only explain obsservations but predict novel ones such as the acceleration of 
the expansion of the universe, the absence of a Big Bang origin of the Universe, and the mass of the top quark [45].  Our entire 
modern technological society was created and depends on engineering using classical physical laws.  For example, 
electromagnetic waves were predicted by Maxwell’s equations before they were discovered as a transformational technology.  A 
partial listing of new disruptive technologiues invented using classical physics is given in Table I.7. 
 
Table I.7.   Partial List of New Disruptive Technologies Invented Using Classical Physics. 
 

• Hydrino power 
• Energetic materials and propellants 
• Magnetic materials 
• Photonic computer 
• Single-molecule super conducting quantum interference devices (SQUIDs) 
• Molecular SQUID magnetometer, detectors, switches, gates, logic elements 
• Photon torpedoes 
• Space drive 
• Neutrino communications 
• Molecular laser (visible to X-ray wavelength regions) 
• Infrared to X-ray light sources 
• Hydrino catalyzed fusion tritium production 
• Laser wavelength doubler 
• High temperature superconductors 
• Millsian molecular modeling 
• Alternative intelligence 
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Chapter 1 
  
THE ONE-ELECTRON ATOM 
  
 
 
 
 
One-electron atoms include the hydrogen atom, He , 2Li  , 3Be  , and so on.  In each case, the nucleus contains Z  protons and 
the atom has a net positive charge of ( 1)Z e .  The mass-energy and angular momentum of the electron are constant and the 
flow of current must be conservative and without radiation.  A point charge undergoing periodic motion accelerates and as a 
consequence radiates power according to the Larmor formula.  The condition for radiation by a moving point charge derived 
from Maxwell’s equations by Haus [1] is that its spacetime Fourier transform does possess components that are synchronous 
with waves traveling at the speed of light.  The Haus derivation applies to a moving charge-density function as well because 
charge obeys superposition.  Thus, the general condition extended beyond one-dimension is that to radiate, the spacetime Fourier 
transform of the current-density function must possess components synchronous with waves traveling at the speed of light [1].  
Although an accelerated point particle radiates, an extended distribution modeled as a continuous superposition of accelerating 
charges does not have to radiate [1-2].  Then, conversely, the nonradiative condition is 

 
For non-radiative states, the current-density function must not possess spacetime Fourier  

components that are synchronous with waves traveling at the speed of light. 
 
The Haus derivation and the condition for nonradiation are given in Appendix I: Nonradiation Condition wherein the 
nonradiative condition is also derived directly by the determination of the electrodynamic fields with the electron current-density 
function as the source current during electron transitions.  Given the infinite number of possible current-density functions, it is 
fortuitous that the spherical radiation corresponding to the symmetry and the conditions for emission and absorption of such 
radiation provide the additional boundary conditions to determine the current-density functions. 
 

ELECTRON SOURCE CURRENT 
Leptons such as the electron (Leptons section) are indivisible, perfectly conducting, and possess an inalienable   of intrinsic 
angular momentum such that any inelastic perturbation involves the entire particle wherein the intrinsic angular momentum 
remains unchanged.  Bound state transitions are allowed involving the exchange of photons between states, each having   of 
angular momentum in their fields (Appendix II: Stability and Absence of Self Interaction and Self Energy).  A physical approach 
to solving the structure of the bound electron is followed based on the principles of radiation and the corresponding electron 
energy state change: 
 
Using Maxwell’s equations, the structure of the electron is derived as a boundary-value problem wherein the electron comprises 

the source current of time-varying electromagnetic fields during transitions with the constraint that the bound 1n   state 
electron cannot radiate energy. 

 
Since the hydrogen atom is stable and nonradiative, the electron has constant energy.  Furthermore, it is time dynamic with a 
corresponding current that serves as a source of electromagnetic radiation during transitions.  The wave equation solutions of the 
radiation fields permit the source currents to be determined as a boundary-value problem.  These source currents match the field 
solutions of the wave equation for two dimensions plus time and the nonradiative 1n   state when the nonradiation condition 
is applied.  Then, the mechanics of the electron can be solved from the two-dimensional wave equation plus time in the form of 
an energy equation, wherein it provides for conservation of energy and angular momentum as given in the Electron Mechanics 
and the Corresponding Classical Wave Equation for the Derivation of the Rotational Parameters of the Electron section.  Once 
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the nature of the electron is solved, all problems involving electrons can be solved in principle.  Thus, in the case of one-electron 
atoms, the electron radius, binding energy, and other parameters are solved after solving for the nature of the bound electron. 

As shown in Appendix I: Nonradiation Condition, for time-varying spherical electromagnetic fields, Jackson [3] gives a 
generalized expansion in vector spherical waves that are convenient for electromagnetic boundary-value problems possessing 
spherical symmetry properties and for analyzing multipole radiation from a localized source distribution.  The Green function 
 ,G x' x  that is appropriate to the inhomogenous Helmholtz equation  

      2 2 ,k G     x' x x' x  (1.1) 

in the infinite domain with the spherical wave expansion for the outgoing wave Green function is: 
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Jackson [3] further gives the general multipole field solution to Maxwell’s equations in a source-free region of empty space with 
the assumption of time dependence i te : 
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where the cgs units used by Jackson are retained in this section.  The radial functions  f kr  and  g kr  are of the form: 

          1 1 2 2g kr A h A h       (1.4) 

,mX  is the vector spherical harmonic defined by: 
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where 

  1

i
 L r  (1.6) 

The coefficients  ,Ea m  and  ,Ma m  of Eq. (1.3) specify the amounts of electric  , m  multipole and magnetic  , m  

multipole fields, and are determined by sources and boundary conditions as are the relative proportions in Eq. (1.4).  Jackson 
gives the result of the electric and magnetic coefficients from the sources as 
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respectively, where the distribution of charge  , t x , current  , tJ x , and intrinsic magnetization  , txM  are harmonically 

varying sources:    i tex ,   i teJ x , and   i texM . 

The electron current-density function can be solved as a boundary value problem regarding the time varying 
corresponding source current   i teJ x  that gives rise to the time-varying spherical electromagnetic fields during transitions 

between states with the further constraint that the electron is nonradiative in a state defined as the 1n   state.  The potential 
energy,  V r , is an inverse-radius-squared relationship given by Gauss’ law, which for a point charge or a two-dimensional 

spherical shell at a distance r  from the nucleus, the potential is: 

  
2

04

e
V r

r
   (1.9) 

Thus, consideration of conservation of energy would require that the electron radius must be fixed.  Additional constraints 
requiring a two-dimensional source current of fixed radius are matching the delta function of Eq. (1.1) with no singularity, no 
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time dependence and consequently no radiation, absence of self-interaction (See Appendix II: Stability and Absence of Self 
Interaction and Self Energy), and exact electroneutrality of the hydrogen atom wherein the electric field is given by: 

  1 2
0

s


  n E E  (1.10) 

where n  is the normal unit vector, 1E  and 2E  are the electric field vectors that are discontinuous at the opposite surfaces, s  is 

the discontinuous two-dimensional surface charge density, and 2 0E .  Then, the solution for the radial electron function, which 

satisfies the boundary conditions, is a delta function in spherical coordinates—a perfect spherical shell [4] 

 
2

1
( ) ( )nf r r r

r
   (1.11) 

where nr  is an allowed radius.  The perfect spherical nature of a bound electron has been confirmed experimentally by a zero 

electric dipole moment ed  to an upper limit of 3010.5 10  ed X e m  [5].  The function of Eq. (1.11) defines the charge density 

on a spherical shell of a fixed radius, not yet determined where the integer subscript n  is determined during photon absorption, 
as given in the Excited States of the One-Electron Atom (Quantization) section.  It is shown in this section that the force balance 
between the electric fields of the electron and proton plus any resonantly absorbed photons gives the result that 1nr nr  wherein 

n  is an integer in an excited state.  To further match the required multipole electromagnetic fields between transitions of states, 
the trial nonradiative source current functions are time and spherical harmonics, each having an exact radius and an exact energy.  

Then, each allowed electron charge-density (mass-density) function is the product of a radial delta function 
2

1
( ( ) ( ))nf r r r

r
  , 

two angular functions (spherical harmonic functions), and a time-harmonic function.  The corresponding currents J  are 

 

    

     

    

2

2

2

[ ( )]Re ,
2 4

  '[ ( )] cos cos
2 4

ˆ '[ ( )] cos cos sin
2 4

   
 
    
 
     
 

    

   

  







mn
n

n

mn
n n

n

mn
n n

n

m e
N r r Y t

r

m e
N r r P m m t

r

m e
N r r P m m t

r

J u r

u r  (1.12) 

where N  and 'N  are normalization constants.  The vectors are defined as: 
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 “^” denotes the unit vectors û 
u

u
, non-unit vectors are designated in bold, and the current function is normalized.   

The Fourier transform of the radial Dirac delta function is a sinc function as shown in Appendix I.  Given time harmonic 
motion with angular velocity n  corresponding to a potentially emitted photon, and a radial delta function, the relationship 

between an allowed radius and the electron wavelength is given by 
 2 n nr   (1.15) 

Consider the sinc function when the velocity is c  corresponding to a potentially emitted photon where Eq. (1.15) applies.  In this 
case, the relativistically corrected wavelength (Eq. (1.279)) is 
 n nr   (1.16) 

Substitution of Eq. (1.16) into the sinc function results in the vanishing of the entire Fourier transform of the current-density 

function.  Thus, spacetime harmonics of n k
c


  or 

0

n k
c

 


  do not exist for which the Fourier transform of the current-

density function is nonzero.  Radiation due to charge motion does not occur in any medium when this boundary condition is met.  
(Note that in contrast the purely mathematical boundary condition for the solution of the radial function of the hydrogen atom 
with the Schrödinger equation is 0  as r   wherein the electron exists everywhere at once and has the maximum of the 
squared wavefunction at the origin inside of the nucleus.) 

In addition to satisfaction of the Haus’ condition given, the electron currents given by Eq. (1.12) are shown to be 
nonradiative with the same condition as that of Eq. (1.16) applied to the vector potential based on the electromagnetic fields and 
the Poynting power vector as shown in Appendix I: Nonradiation Condition.  From Eq. (1.12), the charge and intrinsic 
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magnetization terms are zero.  Also, the current  , tJ x  is in the ̂  direction; thus, the  ,Ea m  coefficient given by Eq. (1.7) is 

zero since 0 r J .  Substitution of Eq. (1.12) into Eq. (1.8) gives the magnetic multipole coefficient  ,Ma m : 
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For the electron source current given by Eq. (1.12), each comprising a multipole of order  ,m  with a time dependence i te , the 

far-field solutions to Maxwell’s equations given by Eq. (1.3) are: 
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and the time-averaged power radiated per solid angle 
 ,dP m

d


 is: 
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where  ,Ma m  is given by Eq. (1.17).  In the case that k  is the lightlike 0k , then /nk c  regarding an emitted photon, in Eq. 

(1.17), and Eqs. (1.18-1.19) vanishes for: 

 n n ns vT R r      (1.20) 

There is no radiation.   
There is no radiation due to the azimuthal charge density wave even in an excited state.  However, for excited states there 

exists a radial dipole that is unstable to radiation as shown in the Instability of Excited States section, and this instability gives 
rise to a radial electric dipole current.  In a nonradiative state, there is no emission or absorption of radiation corresponding to the 
absence of radial motion wherein Eq. (1.7) is zero since 0 r J .  Conversely, there is motion in the radial direction only when 
the energy of the system is changing, and the radiation emitted or absorbed during electron transitions is the multipole radiation 
given by Eq. (1.2) as given in the Excited States of the One-Electron Atom (Quantization) section and the Equation of the Photon 
section wherein Eqs. (4.18-4.23) give a macro-spherical wave in the far-field.  Thus, radial motion corresponds to the emission 
or absorption of photons.  The form of the radial solution during a transition is then the corresponding electron source current 
comprising a time-dependent radial Dirac delta function that connects the initial and final states as boundary conditions.  The 
photon carries fields and corresponding angular momentum.  The physical characteristics of the photon and the electron are the 
basis of physically solving for excited states according to Maxwell’s equations.  The discontinuous harmonic radial current in 
Eq. (1.7) that connects the initial and final states of the transition is: 
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where   is the lifetime of the transition given by Eq. (2.107) and 't  is time during the transition as given in the Excited States of 
the One-Electron Atom (Quantization) section.  The vector potential of the current that connects the initial and final states of a 
transition, each having currents of the form given by Eq. (1.12), is: 
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The magnetic and electric fields are derived from the vector potential and are used in the Poynting power vector to give the 
power.  The transition probability or Einstein coefficient kiA

 

for initial state in  and final state fn  of atomic hydrogen given by 

the power divided by the energy of the transition is: 
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which matches the NIST values for all transitions extremely well as shown in Excited States of the One-Electron Atom 
(Quantization) section.   

THE BOUND ELECTRON “ATOMIC ORBITAL” 
From Eqs. (1.27-1.29), the electron angular functions are the spherical harmonics, ( , ) (cos )    

m m imY P e .  The spherical 

harmonic 0
0 ( , ) 1  Y  is also an allowed solution that is in fact required in order for the electron charge and mass densities to be 
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positive definite and to give rise to the phenomena of electron spin.  The real parts of the spherical harmonics vary between 1  
and 1.  But, the mass of the electron cannot be negative, and the charge cannot be positive.  Thus, to insure that the function is 
positive definite, the form of the angular solution must be a superposition: 

 0
0 ( , ) ( , )    

mY Y  (1.24) 

(Note that ( , ) (cos )    
m m imY P e  are not normalized here as given by Eq. (3.53) of Jackson [6]; however, it is implicit that the 

magnitude is made to satisfy the boundary condition that the function is positive definite and Eq. (1.26) is satisfied.)  0
0 ( , ) Y  is 

called the angular spin function corresponding to the quantum numbers s

1 1
s ;  m

2 2
    as given in the Atomic Orbital Equation 

of Motion For   = 0 Based on the Current Vector Field (CVF) section.  Thus, bound electrons are described by a charge-density 
(mass-density) function that is the product of a radial delta function, Eq. (1.11), two angular functions (spherical harmonic 
functions), and a time harmonic function.  This radial function implies that allowed states are two-dimensional spherical shells 
(zero thickness 1) of charge density (and mass density) at specific radii nr .  Thus, a bound electron is a constant two-dimensional 

spherical surface of charge (zero thickness, total charge of e , and total mass of em ), called an electron atomic orbital shown in 

Figure 1.1, that can exist in a bound state at only specified distances from the nucleus determined by an energy minimum for the 
n=1 state and integer multiples of this radius due to the action of resonant photons as shown in the Determination of Atomic 
Orbital Radii section and the Equation of the Electric Field Inside the Atomic Orbital section, respectively. 
 
Figure 1.1.  A bound electron is a constant two-dimensional spherical surface of charge (zero thickness, total charge of e , 
and total mass of em ), called an electron atomic orbital.  For the 1n  state of the hydrogen atom, the atomic orbital has the 

Bohr radius of the hydrogen atom,  Hr a .  It is a nonradiative, minimum-energy surface, that is absolutely stable except for 

quantized state changes with the corresponding balanced forces in the n  1  state providing a pressure equivalent of twenty 
million atmospheres. 
 

 
 

The equipotential, uniform or constant charge-density function (Eq. (1.27)) further comprises a current pattern given in the 
Atomic Orbital Equation of Motion For   = 0 Based on the Current Vector Field (CVF) section and corresponds to the spin 
function of the electron.  It also corresponds to the nonradiative 1n ,   = 0 state of atomic hydrogen.  The uniform current 
density function 0

0 ( , ) Y  (Eqs. (1.27-1.29)) that gives rise to the spin of the electron is generated from two current-vector fields 

(CVFs).  Each CVF comprises a continuum of correlated orthogonal great circle current-density elements (one dimensional 
“current loops”).  The current pattern comprising each CVF is generated over a half-sphere surface by a set of rotations of two 

 
1 The atomic orbital has zero thickness, but in order that the speed of light is a constant maximum in any frame including that of the gravitational field that 
propagates out as a light-wave front at particle production, it gives rise to a spacetime dilation equal to 2  times the Newtonian gravitational or 

Schwarzschild radius 
  
r

g


2Gm
e

c2
 1.3525 X  1057  m  according to Eqs. (32.36) and (32.140b) and the discussion at the footnote after Eq. (32.40).  This 

corresponds to a spacetime dilation of   8.4980 X  1057  m  or 2.8346 X  1065  s .  Although the atomic orbital does not occupy space in the third spatial 
dimension, its mass discontinuity effectively “displaces” spacetime wherein the spacetime dilation can be considered a “thickness” associated with its 
gravitational field.  The inertial frame of the orbital motion of the bound electron and the atom in motion is with respect to absolute space of the electron 
and proton as given in the Equivalence of Inertial and Gravitational Masses due Absolute Space and Absolute Light Velocity.  



Chapter 1 

 

58

 

orthogonal great circle current loops that serve as basis elements about each of the  , ,0 x y zi i i  and 
1 1

, ,
2 2

  
 

x y zi i i -axis; 

the span being   radians.  Then, the two CVFs are convoluted, and the result is normalized to exactly generate the continuous 
uniform electron current density function 0

0 ( , ) Y  covering a spherical shell and having the three angular momentum 

components of /
4xy   L


 and 
2




zL  (Figure 1.23)2.  There is acceleration without radiation, in this case, centripetal 

acceleration.  A static charge distribution exists even though there is acceleration along a great circle at each point on the surface.  
Haus' condition predicts no radiation for the entire ensemble. 

In cases of orbitals of heavier elements and excited states of one-electron atoms and atoms or ions of heavier elements 
which are not constant as given by Eq. (1.29), the constant spin function is modulated by a time and spherical harmonic function.  
The modulation or traveling charge-density wave corresponds to an orbital angular momentum, in addition to a spin angular 
momentum.  These states are typically referred to as p, d, f, etc. orbitals and correspond to an   quantum number not equal to 
zero.  Haus’ condition also predicts nonradiation for a constant spin function modulated by a time and spherically harmonic 
orbital function.  However, in the case that such a state arises as an excited state by photon absorption, it is radiative due to a 
radial dipole term in its current-density function since it possesses spacetime Fourier transform components synchronous with 
waves traveling at the speed of light, as given in the Instability of Excited States section. 

In the case of an excited state, the charge-density function of the electron atomic orbital can be modulated by the 
corresponding “trapped” photon to give rise to orbital angular momentum about the z-axis.  The “trapped photon” is a “standing 
electromagnetic wave” which actually is a circulating wave that propagates around the z-axis.  Its source current superimposes 
with the current-density of the atomic orbital at its radius corresponding to a radial Dirac delta function at the electron radius, 
 nr r  , and due to relativistic effects the field is radially local at the electron.  In order to satisfy the boundary (phase) 

condition at the atomic orbital surface, the angular and time functions of the photon must match those of its source current which 
modulates the atomic orbital charge-density function as given in the Equation of the Electric Field Inside the Atomic Orbital 
section.  The time-function factor, k(t), for the photon “standing wave” is identical to the time-function factor of the atomic 
orbital.  Thus, the angular frequency of the “trapped photon” has to be identical to the angular frequency of the electron atomic 
orbital, n  given by Eq. (1.36).  However, the linear velocity of the multipole modulation component is not given by Eq. 

(1.35)—the orbital angular frequency is with respect to the z-axis; thus, the distance from the z-axis, sinnr  , must be 

substituted for the atomic orbital radius of Eq. (1.35).   
( , ) 

mY  is called the angular orbital function corresponding to the quantum numbers 

0, 1, 2, 3, 4,...;  m  - , -  + 1, ..., 0, ..., +     .  ( , ) 
mY  can be thought of as a modulation function.  The charge density of the 

entire atomic orbital is the total charge divided by the total area, 
24



n

e

r
.  The fraction of the charge of an electron in any area 

element is given by: 

 0 2
0 ( , ) ( , ) sin ,        

m
nN Y Y r d d  (1.25) 

where N  is the normalization constant.  Therefore, the normalization constant is given by: 

 
2

2 0
0

0 0

( , ) ( , ) sin
 

            
m

ne Nr Y Y d d  (1.26) 

For   = 0, 
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.  For   ≠ 0, 
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r
.  The quantum numbers of the spherical harmonic currents can be related to the 

observed electron orbital angular momentum states.  The current is constant at every point on the surface for the s orbital 
corresponding to 0

0 ( , ) Y .  The charge-density functions including the time-function factor corresponding to s, p, d, f, etc. 

orbitals are 
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2 /   designates both the positive and negative vector directions along an axis in the xy-plane. 



The One-Electron Atom 

 

59

        0
02

( , , , ) [ ( )] , Re ,
4

m
n z n

n

e
r t r r Y R t Y

r
         


      (1.28) 

 

     0
02

( , , , ) [ ( )] , Re ,
4

nim tm
n

n

e
r t r r Y Y e

r
       


      (1.29) 

where to keep the form of the spherical harmonic as a traveling wave about the z-axis   zR  is the representation of the 

rotational matrix about the z-axis zR  (Eq. (1.82)) in the space of functions       , ,        
m m

z n nR t Y Y m t  and 

      Re , cos cos      
nim tm m

nY e P m m t 3.  Each of the Eqs. (1.28-1.29) represents a traveling charge-density wave that 

moves on the surface of the atomic orbital about the z-axis with frequency n  and modulates the atomic orbital corresponding to 

 = 0.  The latter gives rise to spin angular momentum as given in the Spin Angular Momentum of the Atomic Orbital 0
0 ( , ) Y  

with   = 0 section.  The spin and orbital angular momentum may couple as given in the Orbital and Spin Splitting section.  In 
the cases that 0  and 0m , the charge is moving or rotating about the z-axis with frequency n , but the charge density is not 

time dependent.  The photon equations that correspond to the atomic orbital states, Eqs. (1.27-1.29), are given in the Excited 
States of the One-Electron Atom (Quantization) section. It is shown in Appendix I: Nonradiation Condition that in addition to 
Haus' condition, the atomic orbital states given by Eqs. (1.27-1.29) are nonradiative with the same relationships given by Eqs. 
(1.15-1.16) applied to the vector potential. 

For n = 1, and   = 0, m = 0, and s = 1/2, the charge (and mass) distribution is spherically symmetric and 
2

1,0,0,1/2 4.553  M Cm  everywhere on the atomic orbital.  Similarly, for 2n ,   = 0, 0m , and 1/ 2s , the charge 

distribution everywhere on the sphere is 2
2,0,0,1/2 1.138  M Cm .  For n = 2,   = 1, m = 0, and s = 1/2, the charge distribution 

varies with  .  0
1 ( , ) Y  is a maximum at 0    and the charge density is also a maximum at this point, 

2
2,1,0,1/2 ( 0 ) 2.276     M Cm .  The charge density decreases as   increases; a minimum in the charge density is reached at 

2
2,1,0,1/2180 ,  ( 180 ) 0       M Cm . 

For   = 1 and 1 m , the spherical harmonics are complex, and the angular functions comprise linear combinations of 

 1, sin cos xY  (1.30) 

 1, sin sin yY  (1.31) 

Each of 1,xY  and 1, yY  is the component factor part of a phasor.  They are not components of a vector; however, the x  and y  

designation corresponds, respectively, to the historical xp  and yp  probability-density functions of quantum mechanics.  1,xY  is a 

maximum at 90    and 0   ; 2
2,1,x,1/2 (90 ,0 ) 1.138    M Cm .  Figure 1.2 gives pictorial representations of how the 

modulation function changes the electron density on the atomic orbital for several   values4.  Figure 1.3 gives a pictorial 
representation of the charge-density wave of a p orbital that modulates the constant spin function and rotates around the z-axis.  
A single time point is shown for   = 1 and 1 m  in Eqs. (1.28-1.29). 
 

 
3 In Eq. (1.28), 

  
Y

0

0  , , a constant function, is added to a spherical harmonic function wherein each term      Re ,   
m

z nR t Y  and 

  Re ,  
nim tmY e  represents a modulation function rotated in time.  The latter is defined as a phasor corresponding to the modulation function 

spinning about the z-axis.  This is equivalent to the constant function (first term) modulated by the spherical harmonic function (second term) that spins 
around the z-axis and comprises a traveling modulation wave.  One rotation of the spherical harmonic function occurs in one period. 
4 When the electron charge appears throughout this text in a function involving a linear combination of the spin and orbital functions, it is implicit that the 
charge is normalized.  The integral of the constant mass-density function corresponding to spin over the atomic orbital is the mass of the electron.  The 
integral of any spherical harmonic modulation function corresponding to orbital angular momentum over the atomic orbital is zero.  The modulated mass-
density function has a lower limit of zero due to the trapped photon that is phase-locked to the modulation function.  And, the mass density cannot be 
negative.  Thus, the maximum magnitude of the unnormalized spherical harmonic function over all angles must be one.  The summation of the constant 
function and the orbital function is normalized. 
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Figure 1.2. The orbital function modulates the constant (spin) function, (shown for t = 0; three-dimensional view). 
 

 
 

Figure 1.3.  A pictorial representation of the charge-density wave of a p orbital that modulates the constant spin function 
and travels on the surface of the atomic orbital around the z-axis.  A single time point is shown for    = 1 and 1m    in Eq. 
(1.36).  The charge density increases from red to violet.  The z-axis is the vertical axis. 
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CLASSICAL PHYSICS OF THE DE BROGLIE RELATION 
Consider the constant function 0

0 ( , )Y    of Eqs. (1.27-1.29). The angular velocity must be constant (at a given n ) because r  is 

constant and the energy and angular momentum are constant.  Given time-harmonic motion and a radial delta function, the 
relationship between an allowed radius and the electron wavelength is given by Eq. (1.15).  The allowed angular frequencies are 
related to the allowed frequencies by: 

 2n n   (1.32) 

The allowed velocities are related to allowed frequencies and wavelengths by: 

 n n nv    (1.33) 

The allowed velocities and angular frequencies are related to nr  by: 

 2n n n n nv r r     (1.34) 

such that magnitude of the velocity and the angular frequency for every point on the surface of the bound electron and their 
relationships with the wavelengths and nr  are: 
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where the velocity (Eq. (1.35)) and angular frequency (Eq. (1.36)) are determined by the boundary conditions that the angular 
momentum density at each point on the surface is constant and the magnitude of the total angular momentum of the atomic 
orbital L  must also be constant.  The constant total is   given by the integral: 
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 (1.37) 

Special relativity requires that the mathematical equations expressing the laws of nature must be covariant, invariant in form, 
under the transformations of the Lorentz group [7].  The integral of the magnitude of the angular momentum of the electron is 
always   for any state and is relativistically invariant since as shown by Eq. (1.37) the angular momentum is invariant of radius 
or velocity.  It is a Lorentz scalar L   with respect to the radius of the state.  The vector projections of the atomic orbital spin 
angular momentum relative to the Cartesian coordinates arrived at by summation of the contributions from the electron current 
elements are given in the Spin Angular Momentum of the Atomic Orbital 0

0 ( , ) Y  with   = 0 section.  The same relationship 

applies to the photon as well as given by Eq. (4.1).  Eq. (1.35) also gives the de Broglie relationship: 

 n
n e n

h h

p m v
    (1.38) 

 The free electron is equivalent to a continuum-excited state with conservation of the parameters of the bound electron.  
Thus, the de Broglie relationship applied to the free electron is again due to conservation of the electron’s angular momentum of 
 .  Specifically, it is shown in the Free Electron section that the free electron is a two-dimension lamina of charge with an 
azimuthal current with a corresponding angular momentum of  .  The linear velocity of the free electron can be considered to be 
due to absorption of photons that excite surface currents corresponding to a decreased electron de Broglie wavelength: 

 02o
e z

h

m v
    (1.39) 

The relationship between the electron wavelength, its radius, 0 , and its linear velocity is: 

 1
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e z z

v
k

m v

 
 

   


 (1.40) 

In this case, the angular frequency z  is given by: 

 
2
0

z
em







 (1.41) 

which conserves the photon’s angular momentum of   with that of the electron. 
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 It is further shown (Eq. (3.51)) that the total energy TE , is given by the sum of the change in the free-electron 

translational kinetic energy, T , the rotational energy of the azimuthal current, rotE , and the corresponding magnetic potential 

energy, magE : 

 2 2 2 2

2 2 2 2
0 0 0 0

1 5 5 1
     

2 4 4 2

T rot mag

e e e e

E T E E

m m m m   

  

   
     (1.42) 

Thus, the total energy, TE , of the excitation of a free-electron transitional state by a photon having   of angular momentum and 

an energy given by Planck’s equation of   is: 
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      (1.43) 

where   is the de Broglie wavelength.  The angular momentum of the free electron of   is unchanged.  The energies in the 
currents in the plane lamina are balanced so that the total energy is unchanged.  The radius 0  decreases to match the de Broglie 

wavelength and frequency at an increased velocity.  At this velocity, the kinetic energy matches the energy provided by the 
photon wherein the de Broglie frequency matches the photon frequency and both the electron-kinetic energy and the photon 
energy are given by Planck’s equation. 

The correspondence principle is the basis of the de Broglie wavelength relationship.  The de Broglie relationship is not an 
independent fundamental property of matter in conflict with physical laws as formalized in the wave-particle-duality-related 
postulates of quantum mechanics and the corresponding Schrödinger wave equation.  The Stern-Gerlach experimental results 
and the double-slit interference pattern of electrons are also predicted classically as given in the Physics of Classical Electron 
Diffraction Resolves the Wave-Particle Duality Mystery of Quantum Mechanics section. 
 

ROTATIONAL PARAMETERS OF THE ELECTRON (ANGULAR 
MOMENTUM, ROTATIONAL ENERGY, AND MOMENT OF INERTIA) 
The spin function corresponds to 0 .  The electron atomic orbital experiences a constant potential energy because it is fixed at 

nr r .  In general, the kinetic energy for an inverse squared electric force is half the potential energy.  It is the rotation of the 

atomic orbital, projections of the uniform current density, that causes spin angular momentum.  The rotational energy of a 
rotating body, rotE , is 
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21 1

2 2rot

v
E I I

r
     

 
 (1.44) 

where I is the moment of inertia and   is the angular velocity.  The angular momentum is given by: 

 zIL i  (1.45) 

The angular velocity must be constant (at a given n ) because r  is constant and the energy and angular momentum are constant.  
The total kinetic energy, T , of the atomic orbital spin function 0

0 ( , )Y    is: 

 21

2 e nT m v  (1.46) 

Substitution of Eq. (1.35) gives: 
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 (1.47) 

One result of the correlated motion along great circles is that some of the kinetic energy is not counted in the rotational energy 
(i.e. for any spin axis, there will be an infinite number of great circles with planes passing through that axis with   angles other 
than 90 ).  All points on any one of these great circles will be moving, but not all of that motion will be part of the rotational 
energy; only that motion perpendicular to the spin axis will be part of the rotational energy.  Thus, the rotational kinetic energy 
will always be less than the total kinetic energy.  Furthermore, the following relationships must hold. 

 2 21 1

2 2rotational eE I T m v    (1.48) 

 I L     (1.49) 



The One-Electron Atom 

 

63

 2
eI m r  (1.50) 

Additionally, it is known from the Stern-Gerlach experiment that a beam of silver atoms splits into two components when passed 
through an inhomogeneous magnetic field.  This experiment implies a magnetic moment of one Bohr magneton and an 
associated angular momentum quantum number of 1/2.  Historically, this quantum number is called the spin quantum number, 
and that designation will be retained.  The angular momentum can be thought of as arising from a spin component or 
equivalently from an orbital component of the spin.  The z-axis projection of the spin angular momentum was derived in the 
Atomic Orbital Equation of Motion For   = 0 Based on the Current Vector Field (CVF) section and is: 

 
2z zI  L i


 (1.51) 

where  is given by Eq. (1.36); so, for   = 0 
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Thus, 
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From Eq. (1.44), 
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From Eqs. (1.36) and (1.53), 
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 (1.55) 

 

ELECTRON MECHANICS AND THE CORRESPONDING CLASSICAL WAVE 
EQUATION FOR THE DERIVATION OF THE ROTATIONAL PARAMETERS OF THE 
ELECTRON 
When   ≠ 0, the spherical harmonic is not a constant and the charge-density function is not uniform over the atomic orbital.  
Thus, the angular momentum can be thought of arising from a spin component and an orbital component.  The charge, mass, 
energy, and angular momentum of the electron are constant, and the flow of current must be conservative and without radiation.  
The corresponding dynamic charge and mass-density functions are time and spherically harmonic and are interchangeable by the 
conversion factor of the corresponding ratio /em e .  In order to match the source current condition of Maxwell’s equations, the 

multipole of the current density must be constant.  Then, the spatial and time motion obeys a classical wave equation.  The 
boundary conditions on conservation of kinetic energy and angular momentum, for azimuthal current flow about a defined axis 
at the angular frequency n  given by Eq. (1.36), require classical wave behavior, as well, and the corresponding rotational 

energy equation is given by the rigid rotor equation [8].   
In the derivation of the rotational energy and related parameters, first consider that the electron atomic orbital experiences 

a constant potential energy because it is fixed at nr r .  The boundary condition is that the modulation of the charge density by a 

traveling wave is not dissipative corresponding to absence of radiation and further has a time average of zero kinetic energy.  
The mechanics of motion is such that there is a time and spatially harmonic redistribution of matter and kinetic energy that flows 
on the surface such that the total of either is unchanged.  Wave motion has such behavior and the corresponding equation is a 
wave equation that is solved with energy degeneracy and a time average of zero for the charge and energy flow as the boundary 
constraints.  In this case, the energy degeneracy is only lifted due to the electrodynamic interaction with an applied field 
consistent with experiential observations, as given in the Orbital and Spin Splitting section. 

The general form of the classical wave equation5 applies to the mechanics of the bound electron 
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 (1.56) 

where ( , , , )r t    is the function of the electron in time and space.  Here, the current densities of ( , , , )r t    comprise time 

 
5 This is not to be confused with the Schrödinger equation that is not a proper wave equation; rather, it is a diffusion equation. 
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harmonics and the spherical harmonics on a two-dimensional spherical surface (Eqs. (1.28-1.29)) for the temporal and spatial 
functions.  Thus, the mechanics equation is given by 
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Since the rotation is defined to be about the z-axis, the velocity v  in Eq. (1.57) is not constant, but has the same angular 
dependence as the corresponding spherical harmonic  ,mY    where the motion is azimuthal to the radius.  In general, the 

spherical harmonic charge density functions satisfy the equation [3]: 
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     (1.58) 

which may be written in the form: 

      2
, ,, 1 ,m mL Y Y    
     (1.59) 

The charge/mass flow corresponding to Eq. (1.12) and Eqs. (1.28-1.29) time averages to zero and corresponds to modulation of 
the constant spin function.  Similarly, the current densities are eigenfunctions such that kinetic energy flow time averages to zero 
and corresponds to the modulation of the constant kinetic energy of the spin function.  The amplitude of the orbital rotational 
energy can be solved from the mechanics equation (Eq. (1.57)) operating on   Re ,  

nim tmY e .  Since the motion of the atomic 

orbital is transverse to the radius, the motion constitutes an inertial frame that is relativistically invariant, as given in the Special 
Relativistic Effect on the Electron Radius and the Relativistic Ionization Energies section.  The total spin angular momentum of 
the electron is an invariant Lorentz scalar L   [7], as given in the Atomic Orbital Equation of Motion For   = 0 Based on the 
Current Vector Field (CVF) section, and the time-averaged orbital angular momentum is zero that is also a Lorentz scalar 0L .  
By expressing the wave equation in the energy form, the angular dependent velocity may be eliminated, and this equation can be 
solved using the boundary constraints.  The time and angular functions are separable. 
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where 
2

1
( , , , ) ( ) ( , , ) ( ) ( , , )  ( , , ) ( , ) ( )nr t f r A t r r A t and A t Y k t

r
               .  The mass of an electron is superimposable 

with its charge.  That is, the angular mass-density function, ( , , )A t  , is also the angular charge-density function.  Elimination of 
the separable time function of Eq. (1.60) gives: 
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Eq. (1.61) can be expressed in terms of the wavenumber and wavelength: 

  2 2 , 0mk Y         (1.62) 
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  (1.63) 

Using Eq. (1.44) and the de Broglie relationship (Eq. (1.38)) based on conservation of angular momentum gives the 
relationships: 
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Substitution of Eq. (1.64) into Eq. (1.63) gives the well-known rigid rotor equation [8]: 
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The energies corresponding to Eq. (1.65) are given by [8]: 
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and the solution of Eq. (1.65) for L , the orbital angular momentum defined to be about the z-axis, is 

 ( 1) z L i    (1.67) 

where the moment of inertia, I , assumed by McQuarrie [8] is that of a point particle, 2
nmr .  It is demonstrated by Eq. (1.37) that 

the total integrated magnitude of the angular momentum density over the surface of the electron atomic orbital is  ; therefore, 
the magnitude of the angular momentum of an electron atomic orbital about the z-axis must be less than  , and the 
corresponding moment of inertia must be less than that given by 2

e nm r .  For example, the moment of inertia of the uniform 

spherical shell, RSI ,  

is [9]: 

 22

3RS nI mr  (1.68) 

The current density of the electron is a two-dimensional shell with a constant or a constant plus a spherical harmonic angular 
dependence.  In this case, the relationships given by Eqs. (1.48-1.50) must hold.  Eq. (1.65) can be expressed in terms of the 
variable x  that is substituted for cos .  The resulting function ( )P x  is called Legendre’s equation and is a well-known equation 
in classical physics.  It occurs in a variety of problems that are formulated in spherical coordinates.  When the power series 
method of solution is applied to ( )P x , the series must be truncated in order that the solutions be finite at 1x   .  The solution to 

Legendre’s equation given by Eq. (1.66) is the maximum term of a series of solutions corresponding to the m  and   values [8, 

10].  The rotational energy must be normalized by the total number of states—each corresponding to a set of quantum numbers 
of the power series solution.  As demonstrated in the Excited States of the One-Electron Atom (Quantization) section, the 
quantum numbers of the excited states are: 
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 (1.69) 

In the case of an atomic orbital excited state, each rotational state solution of Eq. (1.65) (Legendre’s equation) corresponds to a 
multipole moment of the charge-density function (Eqs. (1.28-1.29)).  The orbital rotational energy  rotational orbitalE  is given by 

normalizing rotE  (Eq. (1.66)) using ,sN , the total number of multipole moments where each corresponds to an   and m  

quantum number of an energy level corresponding to a principal quantum number of n : 
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     (1.70) 

Multiplication of Eq. (1.66) by the normalization factor 1
,sN 
  given by Eq. (1.70) and substitution of the angular velocity given 

by Eq. (1.36) results in: 
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Multiplication of Eq. (1.67) by the normalization factor 1
,sN 
  given by Eq. (1.70) and using Eq. (1.36) gives the corresponding 

orbital angular momentum, orbitalL , and moment of inertia , orbitalI , of the atomic orbital where   ≠ 0: 
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where 
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 (1.74) 

consistent with Eq. (1.50). 
In the case of the excited states with 0 , the atomic orbital charge-density functions are given by Eqs. (1.28-1.29), and 

the total angular momentum is the sum of two functions of equal magnitude.  ztotalL  is given by the sum of the spin and orbital 

angular momentum.  The principal energy levels of the excited states are split when a magnetic field is applied.  The energy 
shifts due to spin and orbital angular momentum are given in the Orbital and Spin Splitting section. 
    z total z spin z orbitalL L L   (1.75) 

Similarly, the orbital rotational energy arises from a spin function (spin angular momentum) modulated by a spherical harmonic 
angular function (orbital angular momentum).  The time-averaged mechanical angular momentum and rotational energy 
associated with the traveling charge-density wave on the atomic orbital is zero: 
  0z orbitalL   (1.76) 
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   0rotational orbitalE   (1.77) 

In the case of an excited state, the angular momentum comprising a Lorentz scalar L   is carried by the fields of the trapped 
photon.  The energy and angular momentum amplitudes that couple to external magnetic and electromagnetic fields are given by 
Eq. (1.71) and (1.72), respectively.  The rotational energy due to spin is given by Eq. (1.55), and the total kinetic energy is given 
by Eq. (1.47).   
 

THE ATOMIC ORBITAL EQUATION OF MOTION FOR   = 0 BASED ON 
THE CURRENT VECTOR FIELD (CVF) 
 

STERN-GERLACH-EXPERIMENT BOUNDARY CONDITIONS 
It is known from the Stern-Gerlach experiment that a beam of silver atoms is split into two components when passed through an 
inhomogeneous magnetic field.  This implies that the electron is a spin 1/2 particle or fermion with an intrinsic angular 

momentum of 
2




 that can only exist parallel or antiparallel to the direction of the applied field (spin axis), and the magnitude of 

the angular momentum vector, which precesses about the spin axis, is 
4

 .  Furthermore, the magnitude of the splitting implies 

a magnetic moment of B , a full Bohr magneton, given by Eq. (1.131) corresponding to   of total angular momentum on the 

axis, implying an impossibility of being classically reconciled with the 
2




 electron angular momentum.  Yet, the extraordinary 

aspects of the magnetic properties and behavior of the electron are the basis to solve its structure that gives rise to these 
observations. 

Experimentally, the electron has a measured magnetic field and corresponding magnetic moment of a Bohr magneton 

that can only exist parallel or antiparallel to the direction of the applied magnetic field and behaves as if it possesses only 
2


 of 

intrinsic angular momentum.  For any magnetic field, the Maxwell's-equations solution for the corresponding source current is 
unique.  Thus, the electron field requires a corresponding unique current according to Maxwell's equations.  Several boundary 
conditions must be satisfied, and the atomic orbital equation of motion for   = 0 is solved as a boundary value problem.  The 
boundary conditions are: 
 

(1) to maintain electroneutrality, force balance, absence of a magnetic or electric multipole, and give the proper 
Lorentz invariant angular momentum, each point position on the atomic orbital surface designates a charge(mass)-
density element, and each point element must have the same magnitude of linear and angular velocity given by Eqs. 
(1.35) and (1.36), respectively; 
 
(2) according to condition 1, every such infinitesimal point element must move along a great circle and the current-
density distribution must be uniform; 
 
(3) the electron magnetic moment must align completely parallel or antiparallel with an applied magnetic field in 
agreement with the Stern-Gerlach experiment; 
 
(4) it is shown infra that according to condition #3, the projection of the intrinsic angular momentum of the atomic 

orbital onto the z-axis must be 
2




, and the projection into the transverse plane must be 
4




 to achieve the spin 1/2 

aspect; 
 
(5) it is further shown that the Larmor excitation of the electron in the applied magnetic field must give rise to a 
component of electron spin angular momentum that precesses about the applied magnetic field such that the 

contribution along the z-axis is 
2




 and the projection onto the orthogonal axis which precesses about the z-axis must 

be 
3

4
  ; 

 
(6) due to conditions #4 and #5, the angular momentum components corresponding to the current of the atomic 
orbital and that due to the Larmor precession give rise to a total angular momentum on the applied-field axis of  ; 
 
(7) due to condition #6, the precessing electron has a magnetic moment of a Bohr magneton, and 
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(8) the energy of the transition of the alignment of the magnetic moment with an applied magnetic field must be given 
by Eqs. (1.226-1.227) wherein the g factor and Bohr magneton factors are due to the extended-nature of the electron 
such that it links flux in units of the magnetic flux quantum and has a total angular momentum on the applied-field 
axis of  . 

 
The algorithm to generate the spin function designated as 0

0 ( , ) Y  (part of Eqs. (1.27-1.29)) and called the electron 

atomic orbital is developed in this section.  It was shown in the Classical Physics of the De Broglie Relationship section that the 
integral of the magnitude of the angular momentum over the atomic orbital must be constant.  The constant is   as given by Eq. 

(1.37).  It is shown in this section that the projection of the intrinsic atomic orbital angular momentum onto the spin axis is 
2




, 

and the projection onto S, the axis that precesses about the spin axis, is   with a precessing component in the perpendicular 

plane of 
4

  and a component on the spin axis of 
2




.  Thus, the mystery of an intrinsic angular momentum of 
2




 and a total 

angular momentum in a resonant RF experiment of  zL  is resolved since the sum of the intrinsic component and the spin-axis 

projection of the precessing component is  .  The Stern-Gerlach experiment implies a magnetic moment of one Bohr magneton 
and an associated angular momentum quantum number of 1/2.  Historically, this quantum number is called the spin quantum 

number, s (
1 1

;  
2 2

  ss m ), and that designation is maintained.  

Consider the derivation of Eq. (1.65).  The moment of inertia of a point particle orbiting an axis is 2mr , and that of a 

globe spinning about some axis is 22

3
I mr .  For   = 0, the electron mass and charge are uniformly distributed over the atomic 

orbital, a two-dimensional spherical shell, but the atomic orbital is not analogous to a globe.  The velocity of a point mass on a 
spinning globe is a function of  , but the magnitude of the velocity at each point of the atomic orbital is not a function of  .  To 
picture the distinction, it is a useful concept to consider that the continuous current density of the atomic orbital is comprised of 
an infinite number of point elements that move on the spherical surface.  Then, each point on the sphere with mass im  has the 

same angular velocity, n , the same magnitude of linear velocity, nv , and the same moment of inertia, 2
i nm r .  The motion at each 

point of the atomic orbital is along a great circle, and the motion along each great circle is correlated with the motion on all other 
great circles such that the sum of all the contributions of the corresponding angular momentum is different from that of an 
orbiting point or a globe spinning about an axis.  The atomic orbital angular momentum is directed along two orthogonal axes 

having three angular momentum components of /
4xy   L


 and 
2




zL . 

The atomic orbital spin function comprises a constant uniform charge (current) density with moving charge confined to a 
two-dimensional spherical shell.  The current-density is continuous, but it may be modeled as a current pattern comprising a 
superposition of an infinite series of correlated orthogonal great-circle current loops.  The equation of motion for each charge-
density element (and correspondingly for each mass-density element) corresponds to that of a current on a one-dimensional great 
circle wherein each point charge(current)-density element moves time harmonically with constant angular velocity, n , given by 

Eq. (1.36) and has the corresponding velocity, nv , on the surface in the direction of the current given by Eq. (1.35).  The 

distribution of the great circles is such that all of the boundary conditions are satisfied.   
The uniform, equipotential charge-density function of the atomic orbital having only a radial discontinuous field at the 

surface according to Eq. (1.10) is constant in time due to the motion of the current along great circles.  The current flowing into 
any given point of the atomic orbital equals the current flowing out to satisfy the current continuity condition, 0 J  as in the 
case of any macrocurrent carried by an ensemble of electrons.  There are many crossings amongst great circle elements at single, 
zero-dimensional points on the two-dimensional surface of the electron embedded in a three-dimensional space.  Thus, the 
velocity direction is multivalued at each point.  But, there is nothing in Maxwell’s equations in two dimensions that precludes 
this result, since these laws only regard fields external to the two-dimensional charge density and current density sources.  As in 
the macro-case, the continuous two-dimensional atomic orbital current density distribution constitutes a uniform, constant two-
dimensional supercurrent (See Figure 1.22 for the vector supercurrent pattern) wherein the crossings have no effect on the 
current pattern.  Each one-dimensional element is independent of the others, and its contribution to the angular momentum and 
magnetic field independently superimposes with that of the others.   

The aspect of no interaction at local zero-dimensional crossings of a two-dimensional fundamental particle has the same 
properties as the superposition properties of the electric and magnetic fields of a photon from which the electron forms.  Field 
lines of photons traveling at the speed of light also superimpose with the field- and velocity-direction vectors multivalued at each 
point that they cross.  Indeed, the photon field pattern of a single photon shown in the Equation of the Photon section is very 
similar to the great-circle pattern of the atomic orbital shown infra.  As shown in the Excited States of the One-Electron Atom 
(Quantization), the Creation of Matter from Energy, Pair Production, and the Leptons sections, the angular momentum in the 
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electric and magnetic fields is conserved in excited states and in the creation of an electron from a photon in agreement with 
Maxwell's equations.  Thus, it is useful to regard an electron as a special-state photon. 

Thus, the electron as an indivisible fundamental particle is related to the concepts of current and momentum elements, 
but the great-circle-current-loop basis elements used to generate and represent the bound electron current corresponding to spin 
should be considered more fundamentally in terms of sources of electric and magnetic field and sources of momentum that in 
aggregate gives the corresponding properties of the electron as a whole.  In fact, as shown in the Gravity section, all physical 
observables including the laws of nature and the fundamental constants can ultimately only be related to others and have no 
independent meaning.  Then, the basis elements of an electron are understood in terms of what they do when added in aggregate 
to constitute an electron.  The nomenclature used to describe the elements reflects the analogous macroscopic sources and is 
adopted for convenience. 
 

GENERATION OF THE ATOMIC ORBITAL CVFS 
The atomic orbital spin function comprises a constant charge(current)-density function with moving charge confined to a two-
dimensional spherical shell and comprises a uniform complete coverage.  The uniform magnetostatic current-density function 

0
0 ( , ) Y  of the atomic orbital spin function comprises a continuum of correlated orthogonal great-circle current loops wherein 

each point charge(current)-density element moves time harmonically with constant angular velocity, n , given by Eq. (1.36) and 

velocity, nv , in the direction of the current given by Eq. (1.35).  The current-density function of the atomic orbital is generated 

from orthogonal great-circle current-density elements (one dimensional “current loops”) that serve as basis elements to form 
two distributions of an infinite number of great circles wherein each covers one-half of a two-dimensional spherical shell and is 
defined as a basis element current vector field (“BECVF”) and an atomic orbital current-vector field (“OCVF”).  Then, the 
continuous uniform electron current density function 0

0 ( , ) Y  (part of Eqs. (1.27-1.29)) that covers the entire spherical surface 

as a distribution of an infinite number of great circles is generated using the CVFs. 
First, the generation of the BECVF is achieved by rotation of two great circle basis elements, one in the x’z’-plane and 

the other in the y’z’-plane, about the  , ,0 x y zi i i  axis by an infinite set of infinitesimal increments of the rotational angle 

wherein the current direction is such that the resultant angular momentum vector of the basis elements of 
2 2


 is stationary on 

this axis.  The generation of the OCVF is achieved by rotation of two great circle basis elements, one in the x’y’-plane and the 

other in the plane that bisects the x'y'-quadrant and is parallel to the z'-axis, about the 
1 1

, ,
2 2

  
 

x y zi i i  axis by an infinite set 

of infinitesimal increments of the rotational angle wherein the current direction is such that the resultant angular momentum 

vector of the basis elements of 
2


 having components of 

2 2
xy L


 and 

2 2
z L


 is stationary on this axis.  The operator to 

form each CVF comprises a convolution of the rotational matrix of great circles basis elements with an infinite series of delta 
functions of argument of the infinitesimal angular increment.  Then, the uniform great-circle distribution 0

0 ( , ) Y  is exactly 

generated from the CVFs.  The BECVF is convolved with the OCVF over a 2  span that results in the placement of a BECVF 
at each great circle of the OCVF.  Since the angular momentum vector of the BECVF is matched to twice that of one of the 
OCVF great circle basis elements and the span is over 2 , the resultant angular momentum of the distribution is the same as 
that of the OCVF, except that coverage of the spherical surface is complete.  This current vector distribution is normalized by 
scaling the constant current of each great circle element resulting in the exact uniformity of the distribution independent of time 
since 0 K  along each great circle.  There is no alteration of the angular momentum by normalization since it only affects 

the density parallel to the angular momentum axis of the distribution, the 
1 1

, ,
2 2

  
 

x y zi i i -axis.  Then, the boundary 

conditions of 0
0 ( , ) Y  having the desired angular momentum components, coverage, element motion, and uniformity are shown 

to have been achieved by designating the 
1 1

, ,
2 2

  
 

x y zi i i -axis as the z-axis.  The resulting exact uniform current distribution 

(Figure 1.22) has the angular momentum components of /
4xy   L


 and 
2




zL  (Eqs. (1.127-1.128) and Figure 1.23). 

The z-projection of the angular momentum of a photon given by its orthogonal electric and magnetic fields is 

  41
Re ( )

8
    dx

c
m r E B*  (Eq. (4.1)).  When an electron is formed from a photon as given in the Leptons section, the 

angular momentum is conserved in the projections of the orthogonal great circle current loops that serve as the basis elements of 
the atomic orbital.  Special relativity requires that the mathematical equations expressing the laws of nature must be covariant, 
that is, invariant in form, under the transformations of the Lorentz group.  As shown by Eq. (1.37) the angular momentum is 
invariant of radius or velocity.  It is a Lorentz scalar L   [7] with respect to the radius of the state.  The vector projections of 
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the atomic orbital spin angular momentum relative to the Cartesian coordinates arrived at by summation of the contributions 
from the electron current elements of the current distribution are given in the Spin Angular Momentum of the Atomic Orbital 

0
0 ( , ) Y  with   = 0 section.  The time-independent current pattern is obtained by defining a basis set for generating the current 

distribution over the surface of a spherical shell of zero thickness. 
As such a basis set, consider that the electron current is distributed within the basis elements and then distributed evenly 

amongst all great circles such that the final distribution 0
0 ( , ) Y  possesses   of angular momentum before and after 

normalization.  First, the basis element BECVF is generated from two orthogonally linked great-circle current loops having 
4


 

apiece and a resultant angular momentum of 
2 2


.  The OCVF is generated from two orthogonally linked great-circle current 

loops having an angular momentum of 
2 2


 apiece and a resultant angular momentum of 

2


.  The current pattern of each CVF 

is generated over the surface by a corresponding infinite set of infinitesimal rotations of the two orthogonal great-circle current 

loops that serve as basis elements by   radians about the  , ,0 x y zi i i -axis for the BECVF and 
1 1

, ,
2 2

  
 

x y zi i i -axis for the 

OCVF.  The BECVF is convolved with the OCVF resulting in the BECVF of matched angular momentum substituting for the 
great circle basis elements of the OCVF over its great-circle distribution, and the resulting current vector pattern is normalized 
numerically by individually scaling the current density of each great circle element as given in the Uniformity of 0

0 ( , ) Y  

section.  In the generation of 0
0 ( , )Y   , the rotations of the basis elements comprising the convolutions are about the resultant 

angular momentum axis of the basis elements that leaves the resultant vector unchanged, and the angular momentum is 

unaffected by normalization.  Then, after reorienting the resultant angular momentum vector from along the 
1 1

, ,
2 2

  
 

x y zi i i -

axis to along the z-axis, it is trivial to confirm that the boundary-condition components of having components of /
4xy   L


 

and 
4




zL  is met while further achieving the condition that the magnitude of the velocity at any point on the surface is given by 

Eq. (1.35).  Since the final distribution is uniform, the electron charge, current, mass, and angular momentum density can be 
obtained by equating the surface area integral to e ,  ne , em , and  , respectively.  Then, the physical properties are derived 

in the Spin Angular Momentum of the Atomic Orbital 0
0 ( , ) Y  with   = 0 section and are shown to match the boundary 

conditions.  The derivation of the matrix mechanics to generate the electron spin current distribution called the electron atomic 
orbital 0

0 ( , ) Y  and its uniform charge and current resulting from normalization are considered first and then utilized herein. 

 

GENERATION OF THE BECVF 
Next, consider two infinitesimal charge(mass)-density elements at two separate positions or points, one and two, of the first pair 
of orthogonal great-circle current loops that serve as the basis set for generation of the BECVF as shown in Figure 1.4.  The 
rotating Cartesian coordinates, x',y',z', in which the basis element great circles are fixed is designated the basis-set reference 
frame.  In this frame at time zero, element one is at ' 0x , '  ny r , and ' 0z , and element two is at '  nx r , ' 0y , and ' 0z .  

Let element one move on a great circle clockwise toward the -z'-axis, and let element two move counter clockwise on a great 
circle toward the -z'-axis, as shown in Figure 1.4.  The equations of motion, in the basis-set reference frame with 0t  defined at 
the points (0,1,0) and (1,0,0), respectively, are given by: 
 
point one:   

 1
' 0x  

1

' cos( ) n ny r t  1
' sin( )  n nz r t  (1.78) 

 
point two:   

 2
' cos( ) n nx r t  2

' 0y  2
' sin( )  n nz r t  (1.79) 
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Figure 1.4.   The BECVF is generated from two orthogonal great-circle current loops that serve as basis elements.  The current 
on the great circle in the y'z'-plane moves clockwise and the current on the great circle in the x'z'-plane moves counter clockwise 
as indicated by arrows.  Each point or coordinate position on the continuous two-dimensional BECVF defines an infinitesimal 
charge (mass)-density element, which moves along a geodesic orbit comprising a great circle.  Two such infinitesimal charges 
(masses) are shown at point one, moving clockwise on the great circle in the y'z'-plane, and at point two moving counter 
clockwise on the great circle in the x'z'-plane.  The xyz-system is the laboratory frame, and the orthogonal-current-loop basis set 

is rigid with respect to the x'y'z'-system that rotates about the  , ,0 x y zi i i -axis by   radians to generate the elements of the 

BECVF.  The resultant angular momentum vector of the orthogonal great-circle current loops that is stationary in the xy-plane 

that is evenly distributed over the half-surface is 
2 2


 in the direction of  , ,0 x y zi i i . 

 
 

The orthogonal great circle basis set to generate the BECVF is shown in Figure 1.4.  It is generated by the rotation of the 
two orthogonal great circles about the  , ,0 x y zi i i -axis by an infinite set of infinitesimal increments of the rotational angle 

totaling a span of  .  As shown in Figure 1.4, the current direction is such that the resultant angular momentum vector of the 

basis elements of magnitude 
2 2


 is stationary on this axis wherein one basis-element great circle is initially in the yz-plane 

having angular momentum 
4x  L


 and the other is initially in the xz-plane having angular momentum 
4y L


.  The operator 

to form the BECVF comprises a convolution [11] of the rotational matrix of great circles basis elements with an infinite series of 
delta functions of argument of the infinitesimal angular increment.   

The principal rotations in Cartesian coordinates are around each of the orthogonal axes, x, y, and z.  Rotations about other 
axes can be obtained as a noncommutative combination of rotations that rotates one of the principal axes to align on the desired 
rotational axis relative to the Cartesian coordinates, the principal-axis rotation is applied, and then the matrices to rotate the 
principal axis to its Cartesian original coordinates are applied.  A nonprincipal axis of rotation can be further rotated to a desired 
position.  This can be achieved by rotating the axis about a principal axis relative to the Cartesian coordinates that is unchanged 
in the process.  Principal rotational matrices with a clockwise rotation defined as a positive angle are given in Fowles [12].  The 
rotational matrix about the x-axis by  ,  xR , is given by: 

      

   

   1         0              0

    0    cos       sin

   

   0   sin    cos  

  

 

 
 
 
 
 
 
  

xR  (1.80) 

The rotational matrix about the y-axis by  ,  yR , is given by: 

  

   

   

cos    0   sin

      0        1          0

sin     0     cos

 



 

 
 
 
 
 
 
 
 

yR  (1.81) 
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The rotational matrix about the z-axis by  ,  zR , is given by: 

  

   

   

cos    sin     0

 sin   cos    0

 

      0          0         1

 

  

 
 
 
  
 
 
 
 

zR  (1.82) 

The rotational matrix about the  , ,0 x y zi i i -axis by  ,    
, ,0




R
x y zi i i

, is given by: 

      
, ,0 4 4

  


       
   

z x zR R R R
x y zi i i

 (1.83) 

Then, using Eqs. (1.78-1.80, 1.82-1.83), the great circle basis elements and rotational matrix are given by: 
 
BECVF MATRICES (    

, ,0



R

x y zi i i
)

 

 

1 cos 1 cos sin
       

2 2 2 2 2 cos' 0
1 cos 1 cos sin

'            cos 0
2 2 2 2 2

' sinsin
sin sin

                            cos
2 2

  


   


  

     
       
                     
              

  

n

n

nn

rx

y r

z rr 
 (1.84)

 
Using Eq. (1.84), the BECVF matrix representation of the convolution is given by: 

            
, ,0 0 , , ,0 ,

0 1

   lim

m

basis basis
M

m

BECVF R GC GC m





   







  

       
x y z x y z x y zi i i i i i i i i

 (1.85) 

wherein    
, ,0




R
x y zi i i

 is the rotational matrix about the  , ,0 x y zi i i -axis,  0 , ,

basisGC
x y zi i i

 and  ,0 ,

basisGC
x y zi i i

 are the great circle basis 

elements initially in the yz and xz planes, respectively, and   designates the convolution with the delta function of the 
infinitesimal incremental angle  Mm .  The integral form of the convolution is 

            
, ,0 0 , , ,0 ,

0 10

  lim

m

basis basis
M

m

BECVF R GC GC m d


 


    







  

    x y z x y z x y zi i i i i i i i i
 (1.86) 

The integration gives the infinite sum of great circles that constitute the BECVF: 

          , ,0 0 , , ,0 ,
0 1

 lim

m

basis basis
M

m

BECVF R m GC GC













  

     
x y z x y z x y zi i i i i i i i i

 (1.87) 

The BECVF given by Eqs. (1.84-1.87) can also be generated by each of rotating a great circle basis element initially in 
the yz or the xz-planes about the  , ,0 x y zi i i -axis over the range of 0 to 2  as shown in Figures 1.5 and 1.6, respectively.  The 

BECVF of Figure 1.6 with vectors overlaid giving the direction of the current of each great circle element is shown in Figure 
1.7.  The current pattern of the BECVF generated by the rotations of the orthogonal great-circle current loops is a continuous 
half coverage of the spherical surface, but it is shown as visual representations using 6 degree increments of   for Eqs. (1.84) 
and (1.87) in Figures 1.5-1.7 wherein the incremental angle becomes discrete rather than the actual continuous distribution in the 
limit that the incremental angle approaches zero.  The same applies to the case of the representations of the OCVF and 0

0 ( , )Y    

given infra. 
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Figure 1.5.  The current pattern of the BECVF given 
by Eqs. (1.84) and (1.87) shown with 6 degree increments 
of   from the perspective of looking along the z-axis.  The 
yz-plane great circle current loop that served as a basis 
element that was initially in the yz-plane is shown as red.   

 

 
 
Figure 1.7.   A representation of the z-axis perspective view of the BECVF shown in Figure 1.6 with 30 vectors overlaid 
giving the direction of the current of each great circle element. 
 

 

Figure 1.6.   The current pattern of the BECVF shown with 
6 degree increments of   from the perspective of looking 
along the z-axis.  The great-circle current loop that served as 
a basis element that was initially in the xz-plane is shown as 
red. 
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GENERATION OF THE OCVF 
For the generation of the OCVF, consider two charge(mass)-density elements, point one and two, in the basis-set reference frame 

at time zero.  Element one is at '
2

 nrx , '
2

 nry , and ' 0z , and element two is at '  nx r , ' 0y , and ' 0z .  Let element 

one move clockwise on a great circle toward the -z'-axis, and let element two move counter clockwise on a great circle toward 
the y'-axis as shown in Figure 1.8.  The equations of motion, in the basis-set reference frame are given by 
 
point one:   

 1
' sin cos( )

4

    
 

n nx r t  1
' cos cos( )

4

    
 

n ny r t  1
' sin( )  n nz r t  (1.88) 

 
point two:   

 2
' cos( ) n nx r t  2

' sin( ) n ny r t  2
' 0z  (1.89) 

 
Figure 1.8.   In the generation of the OCVF, the current on the great circle in the plane that bisects the x'y'-quadrant and is 
parallel to the z'-axis moves clockwise, and the current on the great circle in the x'y'-plane moves counter clockwise.  Rotation of 

the great circles about the 
1 1

, ,
2 2

  
 

x y zi i i -axis by   radians generates the elements of the OCVF.  The stationary resultant 

angular momentum vector of the orthogonal great-circle current loops along the 
1 1

, ,
2 2

  
 

x y zi i i -axis is 
2


 corresponding to 

each of the z and -xy-components of magnitude 
2 2


. 

 
 
The orthogonal great-circle basis set for the OCVF is shown in Figure 1.8.  It is generated by the rotation of the two orthogonal 

basis-element great circles about the 
1 1

, ,
2 2

  
 

x y zi i i -axis by an infinite set of infinitesimal increments of the rotational angle 

totaling a span of  .  As shown in Figure 1.8, the current direction is such that the resultant angular momentum vector of the 

basis elements of magnitude 
2


 is stationary on this axis wherein one basis-element great circle is initially in the plane that 

bisects the xy-quadrant and is parallel to the z-axis having angular momentum in the xy plane of 
2 2

xy L


 and the other is 

initially in the xy-plane having angular momentum 
2 2

z L


.  The operator to form the OCVF comprises a convolution [11] of 

the rotational matrix of great circles basis elements with an infinite series of delta functions of argument of the infinitesimal 
angular increment.   

An equivalent distribution to that of the OCVF may be generated by the rotation of a great circle in the yz-plane about the 

 ,0 , x y zi i i -axis by 2  followed by a rotation about the z-axis by 
4


.  The coordinates of the great circle in the yz-plane are 

given by the matrix: 
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    T T
', ', ' 0, cos , sin  n nx y z r r  (1.90) 

The rotational matrix about the  ,0 , x y zi i i -axis by  ,    
,0 ,




R
x y zi i i

, followed by a rotation about the z-axis by 
4


,  zR , is 

given by: 

      
,0 ,4 4 4 4

    


              
       

z z y z yR R R R R R
x y zi i i

 (1.91) 

In this case, the angular momentum vector of the great circle basis element over a 2  span is not equivalent to a stationary 

vector on the 
1 1

, ,
2 2

  
 

x y zi i i -axis.  In order to achieve this result, the OCVF is generated by a  1 1
, ,

2 2

  
 

R
x y zi i i

 rotation of 

the great circle basis-element that bisects the xy-quadrant and is parallel to the z-axis over a 2  span.  The coordinates of the 

great circle are given by the matrix that rotates a great circle in the yz-plane about the z-axis by 
4


: 

    
T

T Tcos cos
', ', ' , , sin 0, cos , sin

42 2

    
           

n n
n z n n

r r
x y z r R r r  (1.92) 

Since the OCVF is given by the 2 ,    
,0 ,4

 


 
 
 

zR R
x y zi i i

 rotation of the yz-plane basis-element great circle (Eqs. (1.90-1.91)), 

the equivalent result may be obtained by first rotating the great circle given by Eq. (1.90) about the z-axis by 
4


 , 

4

  
 

zR , 

then applying Eq. (1.91).  This combination is equivalent to a rotation about the 
1 1

, ,
2 2

  
 

x y zi i i -axis by  , 

 1 1
, ,

2 2

  
 

R
x y zi i i

, and is given by:  

        1 1 ,0 ,, ,
2 2

4 4 4 4 4 4

          
 

                         
           

z y z y z z zR R R R R R R R R
x y z

x y z
i i ii i i

 (1.93) 

Then, the great circle basis-element that bisects the xy-quadrant and is parallel to the z-axis given by Eq. (1.92) is input to the 
rotational matrix given by Eq. (1.93) to give the desired stationary rotation about the great circle angular momentum axis, the 

1 1
, ,

2 2

  
 

x y zi i i -axis.  The equivalent OCVF is also generated by the rotation of a great circle in the xy-plane about the 

1 1
, ,

2 2

  
 

x y zi i i -axis by 2  wherein the great circle is given by: 

    T T
', ', ' cos , sin ,0  n nx y z r r  (1.94) 

Then, using Eqs. (1.92-1.94) and Eqs. (1.81-1.82), the great circle basis elements and rotational matrix are given by: 
 
OCVF MATRICES (  1 1

, ,
2 2

  
 

R
x y zi i i

) 

 

     

     

 

1 1 1
1 3cos                      1 cos 2 2 sin   2 2cos 2 sin

4 4 4'
1 1 1

' 1 cos 2 2 sin   1 3cos                     2 2cos 2 sin
4 4 4

'
1 1 cos 1

sin         2 2cos 2 sin                
2 42

    

    


  

      

      

 
  

 
 
 
   

 
 

x

y

z
2

cos

2 cos
cos

 sin
2

0
sin

cos
2








 

 



    
    
     
     
     

      
         

n

n
n

n

n

r

r
r

r

r

 (1.95) 

Using Eq. (1.95), the OCVF matrix representation of the convolution is given by: 

 

     1 1 1 1 , ,0, , , ,0 1 2 2 2 2

  lim

m

basis basis
M

m

OCVF R GC GC m





   




            

   
       

      


x y z
x y z x y z

i i ii i i i i i
 (1.96) 

wherein  1 1
, ,

2 2

  
 

R
x y zi i i

 is the rotational matrix about the 
1 1

, ,
2 2

  
 

x y zi i i -axis, 
1 1

, ,
2 2

 
 
 

basisGC
x y zi i i

 and  , ,0

basisGC
x y zi i i

 are the great 

circle basis elements initially in the plane that bisects the xy-quadrant and is parallel to the z-axis and xy-plane, respectively, and 
  designates the convolution with the delta function of the infinitesimal incremental angle  Mm .  The integral form of the 

convolution is: 



The One-Electron Atom 

 

75

      1 1 1 1 , ,0, , , , 0 10 2 2 2 2

 lim

m

basis basis
M

m

OCVF R GC GC m d


 


    




            

  
     

    
 x y z

x y z x y z
i i ii i i i i i

 (1.97) 

The integration gives the infinite sum of great circles that constitute the OCVF: 

    1 1 1 1 , ,0, , , ,0 1 2 2 2 2

  lim
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The OCVF given by Eq. (1.95) can also be generated by each of rotating a great circle basis element initially in the plane 

that bisects the xy-quadrant and is parallel to the z-axis or in the xy-plane about the 
1 1

, ,
2 2

  
 

x y zi i i -axis over the range of 0 

to 2  as shown in Figures 1.9 and 1.10, respectively.  The OCVF of Figure 1.10 with vectors overlaid giving the direction of the 
current of each great circle element is shown in Figure 1.11. 
 
Figure 1.9.   The current pattern of the OCVF given by 
Eqs. (1.95) and (1.98) shown with 6 degree increments of 
  from the perspective of looking along the z-axis.  The 
great-circle current loop that served as a basis element that 
was initially in the plane that bisects the xy-quadrant and 
was parallel to the z-axis is shown as red.   
 

   
 
Figure 1.11.   A representation of the z-axis perspective view of the OCVF shown in Figure 1.10 with 30 vectors overlaid 
giving the direction of the current of each great circle element. 
 

 
 

The CVFs, BECVF and OCVF, are used to generate 0
0 ( , )Y   .  Each CVF involves a unique combination of the initial 

and final directions of the primed coordinates and orientations of the angular momentum vectors due to the rotation of the basis-
element great circles as summarized in Table 1.1.  The angular momentum vector of the BECVF is stationary along its rotational 

Figure 1.10.   The current pattern of the OCVF shown with 
6 degree increments of   from the perspective of looking 
along the z-axis.  The great-circle current loop that served as a 
basis element that was initially in the xy-plane is shown as 
red.   
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axis, the  , ,0 x y zi i i -axis, and the angular momentum vector of the OCVF is stationary along its rotational axis, the 

1 1
, ,

2 2

  
 

x y zi i i -axis.   

 

Table 1.1.   Summary of the results of the matrix rotations of the two sets of two orthogonal current loops to generate the 
CVFs. 
 

 
CVF 

Initial Direction of Angular 
Momentum Components 

( ˆˆr K )a 

Final Direction of Angular 
Momentum Components 

( ˆˆr K )a

Initial to Final Axis Transformation  

xyL  
 

zL  

BECVF 
1 1

, ,0
2 2

  
 

x y zi i i  
1 1

, ,0
2 2

  
 

x y zi i i  

'

'

'


 
 

x y

y x

z z

 
2 2


 0 

  

OCVF 
1 1

, ,
2 2

  
 

x y zi i i  
1 1

, ,
2 2

  
 

x y zi i i  

1 1 1
' , ,

2 2 2

1 1 1
' , ,

2 2 2

1 1
' , ,0

2 2

     
 
    
 
   
 

x

y

z

 
2 2


 

2 2



a K is the current density, r is the polar vector of the great circle, and “^” denotes the unit vectors ˆ u
u

u
. 

 

GENERATION OF 0
0 ( , )Y    

The further constraint that the current density is uniform such that the charge density is uniform, corresponding to an 
equipotential, minimum energy surface is satisfied by using the CVFs to generate the uniform great-circle distribution 0

0 ( , )Y    

by the convolution of the BECVF with the OCVF followed by normalization.  Consider that the BECVF (Eq. (1.84)) for the 

OCVF convolution can also be generated by rotating a great circle basis element initially in the yz-plane about the  , ,0 x y zi i i -

axis by 2  radians as shown in Figure 1.5.  Similarly, the OCVF (Eq. (1.95)) can also be generated by rotating a great circle 

basis element initially in the plane that bisects the xy-quadrant and is parallel to the z-axis about the 
1 1

, ,
2 2

  
 

x y zi i i -axis 

over the range of 0 to 2  as shown in Figure 1.9.  The convolution operator treats each CVF independently and results in the 
placement of a BECVF at each great circle of the OCVF such that the resultant angular momentum of the distribution is the same 
as that of the OCVF.  This is achieved by rotating the orientation, phase6, and vector-matched basis-element, the BECVF, about 
the same axis as that which generated the OCVF.  Thus, the BECVF replaces one great circle basis element, in this case, the one 
initially in the plane that bisects the xy-quadrant and is parallel to the z-axis.  To match to the resultant angular momentum of 

both great circle basis elements, the angular momentum of the BECVF is 
2

xy L


 (Figure 1.8) along the  , ,0 x y zi i i -axis.  

Then, 0
0 ( , )Y    is generated by rotation of the BECVF, about the 

1 1
, ,

2 2

  
 

x y zi i i -axis by an infinite set of infinitesimal 

increments of the rotational angle.  The current direction is such that the resultant angular momentum vector of the BECVF basis 

element rotated over the 2  span is equivalent to that of both of the OCVF great circle basis elements, 
2


 having components of 

 
6 The resultant angular momentum vector,  LR

, is along i
x
,i

y
,0i

z ; thus, the angular momentum is constant for any rotation about this axis which 

establishes it as a  C -axis relative to the angular momentum.  However, rotation about this axis does change the phase (coordinate position relative to the 

starting position) of the BECVF.  For example, a rotation by    about the i
x
,i

y
,0i

z -axis using Eqs. (1.83) and (1.84) causes the BECVF basis-

element great circle to rotate by 
 


2

 about the z-axis such that its position changes between the xz and yz-planes. 
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2 2
xy L


 and 

2 2
z L


 that is stationary on the 

1 1
, ,

2 2

  
 

x y zi i i -axis.  Since the resultant angular momentum vector of 

the BECVF over the 2  span matches that of the replaced great circle basis elements and is stationary on the rotational axis as 
in the case of the OCVF, the resultant angular momentum of the distribution is the same as that of the OCVF, except that 
coverage of the spherical surface is complete.  The resulting uniformity of the distribution is achieved by normalization as shown 
in the Uniformity of 0

0 ( , )Y    section. 

The operator to form 0
0 ( , )Y    comprises the BECVF convolution [11] of the rotational matrix of great circles basis 

element about the  , ,0 x y zi i i -axis with an infinite series of delta functions of argument of the infinitesimal angular increment 

that is further convolved with the OCVF convolution of the rotational matrix of great circles basis element about the 
1 1

, ,
2 2

  
 

x y zi i i -axis with an infinite series of delta functions of argument of the infinitesimal angular increment.  Using the 

BECVF matrix representation of its convolution operation (Eq. (1.85)) and the OCVF matrix representation of its convolution 
operation (Eq. (1.96)), the 0

0 ( , )Y    matrix representation of the convolution is given by: 

 

   

        

2

 
1 1 1 1

, , , ,0 1 2 2 2 2

0
0 2

 
, ,0 0 , ,

0 1

  lim

( , )  

   lim

m

basis
M

m

n

basis
N

n

R GC m

Y OCVF BECVF

R GC n











   

 

   




            







  

                  
 
         
 





x y z x y z

x y z x y z

i i i i i i

i i i i i i




 
 
 


 
 
 
  

 (1.99) 

where the commutative property of convolutions [11] allows for the interchange of the order of CVFs, but the rotational matrices 
are noncommutative [12].  The integral form of the convolution is 
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  (1.101) 
The integration gives the infinite double sum of great circles that constitute 0

0 ( , )Y   : 
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 (1.102) 

Using Eq. (1.102), a discrete representation of the current distribution 0
0 ( , )Y    that shows a finite number of current 

elements can be generated by showing the BECVF as a finite sum of the convolved great circle elements using Eqs. (1.84) and 
(1.87) and by showing the continuous convolution of the BECVF with the OCVF as a superposition of discrete incremental 
rotations of the position of the BECVF rotated according to Eqs. (1.95) and (1.98) corresponding to the matrix which generated 
the OCVF.  In the case that the discrete representation of the BECVF comprises N  great circles and the number of convolved 
BECVF elements is M , the representation of the current density function showing current loops is given by Eq. (1.103) and 

shown in Figure 1.12.  The 
1 1

, ,
2 2

  
 

x y zi i i -axis view of this representation with 144 vectors overlaid giving the direction of 

the current of each great circle element is shown in Figure 1.13.  The corresponding mass(momentum) density is also 
represented by Figures 1.12 and 1.13 wherein the charge and mass are interchangeable by the conversion factor /em e . 
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 (1.103) 

 
Figure 1.12.   A representation of the z-axis view of the 
current pattern of 0

0 ( , )Y    shown with 30 degree 

increments ( 12 N M  in Eq. (1.103)) of the angle to 
generate the BECVF corresponding to Eqs. (1.84) and (1.87) 
and 30 degree increments of the rotation of this basis 

element about the 
1 1

, ,
2 2

  
 

x y zi i i -axis corresponding to 

Eqs. (1.95) and (1.98). 
 

   
 
 
 

 

Figure 1.13.   A representation of the 
1 1

, ,
2 2

  
 

x y zi i i -

axis view of 0
0 ( , )Y    shown in Figure 1.12 with 144 vectors 

overlaid giving the direction of the current of each great 
circle element. 
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A BECVF can also be generated to replace the great circle basis element of the OCVF that lies in the xy-plane.  In the 
case that the current is counter clockwise with the angular momentum in the direction of the z-axis, the equivalent rotational 
transformations that maintain the resultant angular momentum stationary on the z-axis over a 2  rotation is the combination of 

a 
4


  rotation about the y-axis followed by a 2  rotation of the tilted great circle about the z-axis.  The angular-momentum-

and-orientation-matched distribution shown in Figure 1.14 is generated by: 

      T T
', ', '   cos , sin ,0

4

  
   

 
z y n nx y z R R r r  (1.104) 

In order to match phase with the OCVF rotational axis, 
1 1

, ,
2 2

  
 

x y zi i i -axis, Eq. (1.104) must be rotated about the z-axis by 

4


 using 

4

 
 
 

zR  using Eq. (1.82).  In this case, the BECVF is aligned on the xy-plane and the resultant angular momentum 

vector, RL , is also along the z-axis.  The final phase-matched distribution shown in Figure 1.15 is given by: 

      T T
', ', '   cos , sin ,0

4 4

   
       

   
z z y n nx y z R R R r r  (1.105) 

 
Figure 1.14.   The current pattern given by Eq. (1.104) 
shown with 6 degree increments of   from the perspective of 
looking along the z-axis.  The great circle current loop that 
served as a basis element that was initially in the xy-plane is 
shown as red.   
 

 
   
 
Then, using Eq. (1.105) and Eqs. (1.81-1.82), the great circle basis elements and rotational matrix are given by: 
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Using the procedure of Eqs. (1.85-1.87) on Eq. (1.106), the infinite sum of great circles that constitute the BECVF is: 

      

2

, ,0
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  lim 4 4






  





  

                 


m
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m
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 (1.107) 

 
Using Eqs. (1.99-1.102), and (1.107), the corresponding infinite double sum of great circles that constitute 0

0 ( , )Y    is given by: 

Figure 1.15.   The current pattern given by Eq. (1.105) 
shown with 6 degree increments of   from the perspective of 
looking along the z-axis.  The great circle current loop that 
served as a basis element that was initially in the xy-plane is 
shown as red. 
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Using Eq. (1.108), a discrete representation of the current distribution 0
0 ( , )Y    that shows a finite number of current 

elements can be generated by showing the BECVF as a finite sum of the convolved great circle elements using Eqs. (1.106-
1.107) and by showing the continuous convolution of the BECVF with the OCVF as a superposition of discrete incremental 
rotations of the position of the BECVF rotated according to Eqs. (1.95) and (1.98) corresponding to the matrix which generated 
the OCVF.  In the case that the discrete representation of the BECVF comprises N  great circles and the number of convolved 
BECVF elements is M , the representation of the current density function showing current loops is given by Eq. (1.109) and 

shown in Figure 1.16.  The 
1 1

, ,
2 2

  
 

x y zi i i -axis view of this representation with 144 vectors overlaid giving the direction of 

the current of each great circle element is shown in Figure 1.17.  The corresponding mass(momentum) density is also 
represented by Figures 1.16 and 1.17 wherein the charge and mass are interchangeable by the conversion factor /em e . 
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Figure 1.16.  A representation of the z-axis view of the 
current pattern of the 0

0 ( , )Y    shown with 30 degree 

increments ( 12 N M  in Eq. (1.109)) of the angle to 
generate the BECVF corresponding to Eqs. (1.106) and 
(1.107) and 30 degree increments of the rotation of this basis 

element about the 
1 1

, ,
2 2

  
 

x y zi i i -axis corresponding to 

Eqs. (1.95) and (1.98).  The great circle current loop that 
served as a basis element of the BECVF is shown as red. 
 

    
 

UNIFORMITY OF 0
0 ( , )Y    

By using the rotational matrices to generate 0
0 ( , )Y   , it is shown to be uniform about the angular momentum axis that is 

permissive of normalization such that the spherical uniformity and angular momentum boundary conditions are met.  Consider 
the 0

0 ( , )Y    convolution in summation form given by Eqs. (1.99) and (1.102).  The BECVF is periodic in   with a period of   

wherein the basis elements interchange.  Thus, only one basis need be considered with the range increased to 2 : 
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wherein 
1 1

, ,
2 2

 
 
 

basisBECVF
x y zi i i

 is the distribution that replaced the great circle basis element of the OCVF distribution in the 

convolution given by Eqs. (1.87), (1.92), (1.98), and (1.99), respectively.  Consider the rotation of both sides of Eq. (1.110) 

about the  , ,0x y zi i i -axis, the orthogonal axis to that which generated the BECVF, by
4
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The rotation of a sum is the same as the sum of the rotations 
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 (1.112) 

Figure 1.17.   A representation of the 
1 1

, ,
2 2

  
 

x y zi i i -axis view of 0
0 ( , )Y    shown in Figure 

1.16 with 144 vectors overlaid giving the direction of the 
current of each great circle element. 
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When the distribution given by Eq. (1.98) having its C -axis along the 
1 1

, ,
2 2

  
 

x y zi i i -axis is rotated about the  , ,0x y zi i i -

axis by 
4


, the resulting distribution having the C -axis along the  , ,0 x y zi i i -axis is equivalent to the distribution given by 

Eq. (1.87) of matching C -axis.  Substitution of Eq. (1.87) into Eq. (1.112) gives: 
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Substitution of Eq. (1.87) for BECVF and using the   periodicity property of the great circle basis elements gives: 
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Using the distributive property of the double sum gives: 
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Rotation of the BECVF about its C -axis, the  , ,0x y zi i i -axis, leaves the BECVF distribution unchanged. 
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Eq. (1.116) represents the properties of the distribution perpendicular to the 
1 1

, ,
2 2

  
 

x y zi i i -axis since the distribution was 

rotated about the  , ,0x y zi i i -axis to align the 
1 1

, ,
2 2

  
 

x y zi i i -axis with the  , ,0 x y zi i i -axis.  This result confirms that the 

distribution is uniform about the 
1 1

, ,
2 2

  
 

x y zi i i -axis since the 
1 1

, ,
2 2

 
 
 

basisBECVF
x y zi i i

 that served to generate the distribution of 

0
0 ( , )Y    is azimuthally uniform.  This is an important result since the spherically uniform distribution can be obtained by 

normalizing the distribution given by Eq. (1.102).  Since any density normalization is along the 
1 1

, ,
2 2

  
 

x y zi i i -axis, there is 

no change in the angular momentum since the distribution was formed by rotation of the basis elements about the angular 

momentum axis, the 
1 1

, ,
2 2

  
 

x y zi i i -axis.  Furthermore, the motion on the great circles maintains the uniform distribution 

since the normalization only scales the constant current on each to achieve uniformity. 
Consider the color-scale rendering of the BECVF current density distribution shown in Figure 1.18.  It was determined 

using a computer algorithm [13] that assigns a given number of points to a great circle basis element of Eqs. (1.84) and (1.87), 
generates the BECVF distribution of points along the great circles using a designated number of rotations about the 

 , ,0 x y zi i i -axis over a span of 2  radians, and for each point on the half-sphere, it calculates the number of points in a unit 

circular region in the neighborhood of each point.  The radius of each point’s neighborhood was taken to be 100 times smaller 
than the radius of the half-spherical distribution.   
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Figure 1.20.   The z-axis view of the numerically 
determined unnormalized current density of 0

0 ( , )Y    

wherein the density distribution is displayed as a 
distance and a color scale, and the view is rotated by 
180 relative to Figure 1.19. 

Figure 1.18.   The numerically determined current density of the BECVF given by Eqs. (1.84) and (1.87) shown with 500 
points on the great circle basis element and 0.72 degree increments of   from the perspective of looking along the z-axis. 
 

 
 
As shown in Figures 1.5 and 1.18 the great circle number of the BECVF is conserved, and the perimeter on the half sphere 
through which each great circle traverses can be defined by a bisecting plane that is parallel to the  v plane and 2C  axis.  At the 

center of the distribution, the circles traverse a perimeter having a circumference of 2 nr .  The corresponding circumference at 

an angle sc  from the center of the distribution is 2 cos n scr  wherein sc  is the spherical coordinate and not the rotational angle 

  of the CVFs.  This gives rise to a cossc  dependency of the loop density for 0
4sc

  .  In addition, the great circles 

converge as the perimeter becomes smaller.  Since the distribution of 0
0 ( , )Y    is given by the superposition of the current 

density of the BECVF as a function of the rotation of the BECVF about the 
1 1

, ,
2 2

  
 

x y zi i i -axis, the 0
0 ( , )Y    current 

density is given by the azimuthal integral of the current density of the BECVF.  This superposition is difficult to integrate, but a 
convenient method of determining the density is by numerical integration.  The unnormalized 0

0 ( , )Y    current density was 

determined using the computer algorithm that assigns a given number of points to each great circle basis element, generates the 
distribution given by Eq. (1.103), and calculates the number of points in a unit circular neighborhood of each point on the 
surface.  The numerically determined density is shown in color scale on the sphere in Figure 1.19.  The density distribution is 
displayed as a distance and a color scale in Figure 1.20. 
 
Figure 1.19.   The z-axis view of the numerically determined 
unnormalized current density of 0

0 ( , )Y    shown with 100 points per 

great circle basis element, 3.6 degree increments ( 100 N M  in 
Eq. (1.103)) of the angle to generate the BECVF corresponding to 
Eqs. (1.84) and (1.87), and 3.6 degree increments of the rotation of 

this basis element about the 
1 1

, ,
2 2

  
 

x y zi i i -axis corresponding 

to Eqs. (1.95) and (1.98). 
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The normalization of the 0
0 ( , )Y    current pattern given by Eqs. (1.102) and (1.103) was performed using the numerical 

procedure developed by Bujnak and Hlucha [13].  It is based on forming a uniform great-circle normal-vector distribution.  This 
is equivalent to a uniform great-circle current distribution due to the one-to-one map on the sphere between the former and latter.  
For a total of GCN  great circles distributed over the sphere, the algorithm treats the normal vector of each great circle as 

coincident with the corresponding angular momentum axis as given by the right hand rule and assigns a dot of integer index i  to 
the intersection of this vector and the spherical shell.  For each dot i , the number of other dots iD  within a local neighborhood 

of dot i  are counted, and the corresponding normalization factor factor
iN  is given by 

 

1factor
i iN D  (1.117) 

Then, the linear current density on the great circle iGC  corresponding to the dot of index i  is normalized by factor
iN .  The 

program treats the linear current density as a series of evenly spaced mass(current)-density elements (“points”) with the initial 
condition that the total number of points on each great circle is the constant initialP .  Thus, the normalization scales the linear 

density, and in the discrete case, this is achieved by scaling the mass of each of the points on the great circle by the factor given 
by Eq. (1.117).  This is repeated over all great circles.  Since 0

0 ( , )Y    is given by the superposition of all points, using Eq. 

(1.117), the final total effective or weighted number of points on the surface 
0

0 ( , )
final
YP    is given by the normalized sum: 

 

0
0 ( , )

final initial
1

GCN
Y factor

i
i

P N P 



   (1.118) 

Eq. (1.118) is representative of the total mass and current on the surface.  The normalization is confirmed by determining the 
existence of a constant current density at multiple random positions on the sphere.  Here, for any point that defines a position on 
the sphere of integer index k , the factor factor

jN  of the other points of integer index j  within a local neighborhood of fixed area 

of position k  are counted, and uniformity is confirmed when the following condition is met over many cases: 

 

constantfactor
j

j

N   (1.119) 

where j  runs through the points in the small circular neighborhood. 
The angular momentum components corresponding to the unnormalized and normalized distributions were calculated 

numerically.  According to the numerical algorithm, the total magnitude of the angular momentum over all of the great circles is 
set equal to   with the initial direction due to the great circle basis element in the y’z’-plane along the  1,0,0 -axis.  Then, in 

the unnormalized case, the magnitude of the contribution from each great circle is given by: 

 

1
1GCi N

GCj

L
N



 

 

 (1.120) 

Since the direction of the angular momentum of the other great circles of the distribution are given by  ,BECVF OCVF
i iR   , the 

rotation by the two angles ,BECVF OCVF
i i   corresponding to the convolution of the respective CVFs, the total angular momentum 

TotalL  is given by: 

 

   , 1,0,0
GC GCN N

BECVF OCVF
Total i i i

i i GC

L L R
N

     
 (1.121) 

In the normalized case, the magnitude of the contribution from each great circle is given by: 

 

1

GC

factor
i

i N factor
jj

N
L

N






 (1.122) 

Then, the total angular momentum TotalL  is given by: 

 

   
1

, 1,0,0
GC GC

GC

N N factor
BECVF OCVFi

Total i i iN factor
i i jj

N
L L R

N
 



   



 (1.123) 

In both cases, the calculated results are given as follows: 
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4

0.248
4
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2 2
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 (1.124) 
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     2 2 2
0.495

2
total total total

Total x y zL L L L  
    (1.126) 

These results confirm that the normalization does not affect the angular momentum.  The numerically normalized 0
0 ( , )Y    

(Figure 1.21) gives the desired spherical uniformity and is permissive of demonstrating the motion of the current in time over the 
entire surface according to the great circle pattern having constant current per loop each weighted by the normalization 
algorithm.  An ideal representation overlaid with the great-circle pattern showing the vector direction of the current is shown in 
Figure 1.22. 
 
Figure 1.21.   The z-axis view of the numerically 
normalized current density of 0

0 ( , )Y    shown with 100 

points per great circle basis element, 3.6 degree increments 
( 100 N M  in Eq. (1.103)) of the angle to generate the 
BECVF corresponding to Eqs. (1.84) and (1.87), and 3.6 
degree increments of the rotation of this basis element about 

the 
1 1

, ,
2 2

  
 

x y zi i i -axis corresponding to Eqs. (1.95) 

and (1.98).  As the number of points increased and the size of 
the local neighborhood decreased, the exact uniformity was 
numerically approached. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The electron current shown in Figure 1.22 is consistent with Maxwell’s equations, other first principles, and the boundary 
conditions implied by the Stern Gerlach experiment.  The crossings reveal an intrinsic property regarding self-interactions of 
fundamental particles having angular momentum, mass, and an extended nature.  Extrinsic fundamental particle scattering 
interactions depend on the cross section for momentum or energy transfer.  These cross sections can vary over an enormous 
range.  Neutrinos and neutrons, for example, have negligible cross sections with condensed matter compared to charged 
particles.  The cross section for interaction amongst photons or field lines within a single photon is zero.  The electron is an 
indivisible special state of a 510 keV photon, and the cross section for momentum transfer amongst current elements of the 
electron is likewise experimentally zero.  This is consistent with the original boundary condition that momentum transfer among 
fundamental particles having   of angular momentum occurs in quantized units of   requiring that electron momentum transfer 
must involve its intrinsic angular momentum in its entirety as discussed in Appendix II7.  Computer modeling of the analytical 
equations to generate the atomic orbital current vector field and the uniform current (charge) density function  0

0 , Y  is 

available on the web [13-14].  Also, the precession motion of the free electron over time in the presence of an applied magnetic 
field generates the equivalent current pattern and the angular momentum of 0

0 ( , ) Y  of the bound electron as shown in the 

Electron in Free Space section and Appendix IV.  Given the angular momentum projections of the bound electron shown in 
Figure 1.23 and that the free electron has   of angular momentum on the z-axis due to in-plane current loops, the free-electron 

 

7 The angular momentum of neutrinos are 
2


 which accounts for their negligible interaction cross section as discussed in the Neutrinos section. 

Figure 1.22.   An ideal representation of the uniform 
current pattern of 0

0 ( , )Y    comprising the superposition of 

an infinite number of great circle elements generated by 
normalizing the distribution of Eqs. (1.102) and (1.103).  
The constant uniform current density is overlaid with 144 
vectors giving the direction of the current of each great 
circle element for 30 degree increments ( 12 N M  in Eq. 
(1.103)) of the angle to generate the BECVF corresponding 
to Eqs. (1.84) and (1.87) and 30 degree increments of the 

rotation of this basis element about the 
1 1

, ,
2 2

  
 

x y zi i i -

axis corresponding to Eqs. (1.95) and (1.98).  The 

perspective is along the 
1 1

, ,
2 2

  
 

x y zi i i -axis. 
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angular momentum can be considered to partition into two orthogonal, equal magnitude components of 
2 2


 and the current, 

carried on great circle elements, to rescale to form a uniform density due to binding to the central field. 
 
 

SPIN ANGULAR MOMENTUM OF THE ATOMIC ORBITAL  0
0 ,Y    WITH   

= 0 
Consider the vector current directions shown in Figure 1.8.  The orthogonal great-circle basis set is rotated about the 

1 1
, ,

2 2

  
 

x y zi i i -axis.  The resultant angular momentum vector is along this axis.  Thus, the resultant angular momentum 

vector of magnitude 
2


 is stationary throughout the rotations that transform the axes as given in Table 1.1.  The convolution 

operation of the BECVF with the OCVF is also about the resultant angular momentum axis, the 
1 1

, ,
2 2

  
 

x y zi i i -axis.  Here, 

the resultant angular momentum vector of the one BECVF of 
2


 in the direction of the  , ,0 x y zi i i -axis over a 2  span is 

matched to and replaces that of the basis element great circles.  Thus, the resultant angular momentum of 
2


 having components 

of 
2 2

xy L


 and 
2 2

z L


 is stationary on this axis for all rotations.  There is no alteration of the angular momentum with 

normalization since it only affects the density parallel to the angular momentum axis of the distribution, the 
1 1

, ,
2 2

  
 

x y zi i i -

axis.  This was proven by numerical integration of the normalized distribution.   
Next, it is shown that the properties of 0

0 ( , ) Y  match the boundary conditions of having the desired angular momentum 

components, coverage, element motion, and uniformity by designating the 
1 1

, ,
2 2

  
 

x y zi i i -axis as the z-axis.  The resulting 

reoriented initial angular momentum component vectors and their new projections relative to the laboratory Cartesian 
coordinates are shown in Figure 1.23.   
 
Figure 1.23.   With the application of a magnetic field the magnetic moment corresponding to the intrinsic angular momentum 

of the electron of 
2


 aligns with the applied field direction designated the z-axis.  Thus, the resultant angular momentum initially 

along the 
1 1

, ,
2 2

  
 

x y zi i i -axis aligns with the z-axis.  The new projections relative to the Cartesian coordinates are shown. 
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Referring to the new coordinates, the new angular momentum components are 
2


 along the z-axis, 

2 2


 along the 

1 1
, ,

2 2

  
 

x y zi i i  and 
1 1

, ,
2 2

  
 

x y zi i i -axes, and the xy-plane projections of the latter of /
4

 


 along the  , ,0x y zi i i -

axis.  (Note that the crossed vectors in Figure 1.22 are the source of the orthogonal components of 
2 2


.)  Then, the Zeeman-

splitting-active vector projections of the angular momentum that give rise to the Stern Gerlach phenomenon and other aspects of 
spin are those components that are onto the xy-plane and the z-axis. 
 
Zeeman L Components 

 /
4xy   L


 (1.127) 

 
2z L


 (1.128) 

where /   designates both the positive and negative vector directions along an axis in the xy-plane such as the  , , 0x y zi i i -

axis.  Consider the behavior of the electron in the presence of an applied magnetic field wherein the Zeeman-active angular 

momentum of 0
0 ( , ) Y  (Figure 1.24) for a right-handed circularly polarized photon is 

4



xyL  and 
2




zL  (Eqs. (1.127-1.128)).  

As shown in the Resonant Precession of the Spin-1/2-Current-Density Function Gives Rise to the Bohr Magneton section, the 
electron undergoes resonant Larmor-precession excitation.  The angular momentum of the photon of the Larmor excited state 
electrodynamically interacts with one component of xyL  depending on its handedness to establish a torque balance that results in 

the orientation of the   of angular momentum of the photon such that its vector projections are 
3

4xy L   in a Larmor rotating 

frame and 
2z L


 such that the total angular momentum onto the z-axis, sum of the photon and electron contributions, is  .  

These results meet the boundary condition for the unique current having an angular velocity magnitude at each point on the 
surface given by Eq. (1.36) and give rise to the result of the Stern Gerlach experiment as shown infra, in the Magnetic 
Parameters of the Electron (Bohr Magneton) section, and in the Electron g Factor section.   
 
Figure 1.24.   The atomic orbital is a two dimensional spherical shell of zero thickness with the Bohr radius of the hydrogen 

atom,  Hr a , having intrinsic angular momentum components of 
4




xyL  and 
2




zL  following Larmor excitation in a 

magnetic field. 
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RESONANT PRECESSION OF THE SPIN-1/2-CURRENT-DENSITY 
FUNCTION GIVES RISE TO THE BOHR MAGNETON 
The Stern Gerlach experiment described below demonstrates that the magnetic moment of the electron can only be parallel or 
antiparallel to an applied magnetic field.  In spherical coordinates, this implies a spin quantum number of 1/2 corresponding to 

an angular momentum on the z-axis of 
2


.  However, the Zeeman splitting energy corresponds to a magnetic moment of B  and 

implies an electron angular momentum on the z-axis of —twice that given by Eq. (1.128).  Consider the case of a magnetic 
field applied to the atomic orbital.  As shown in Figure 1.23, the atomic orbital comprises an angular momentum component of 

2


 along the z-axis and two 

4


 angular momentum components in opposite directions in the xy-plane.  The magnetic moment 

corresponding to the angular momentum along the z-axis results in the alignment of the z-axis of the atomic orbital with the 

magnetic field while one of the 
4


 vectors in the xy-plane causes precession about the applied field.  The precession arises from 

a Larmor excitation by a corresponding resonant photon that couples to one of the 
4


 angular momentum components to 

conserve the angular momentum of the photon such that the precession direction matches the handedness of the Larmor photon.  
An example given in Figure 1.25 regards a right-hand polarized photon that excites the right-handed Larmor precession by 

coupling to the corresponding 
4


 angular momentum component as shown.  The precession frequency is the Larmor frequency 

given by the product of the gyromagnetic ratio of the electron, 
2

e

m
, and the magnetic flux B  [15].  The energy of the precessing 

electron corresponds to Zeeman splitting—energy levels corresponding to the parallel or antiparallel alignment of the electron 
magnetic moment with the magnetic field and the excitation of transitions between these states by flipping the orientation along 
the field by a further resonant photon of the Larmor frequency.  Thus, the energy of the transition between these states is that of 

the resonant photon.  The angular momentum of the precessing atomic orbital comprises the initial 
2


 projection on the z-axis 

and the initial 
4


 vector component in the xy-plane that then precesses about the z-axis with the Larmor photon.  As shown in the 

Excited States of the One-Electron Atom (Quantization) section, conservation of the angular momentum of the photon of   

gives rise to   of electron angular momentum that gives rise to a 
2


 contribution to the angular momentum along the magnetic-

field or z-axis.  The parameters of the photon standing wave for the Zeeman effect are given in the Magnetic Parameters of the 
Electron (Bohr Magneton) section and Box 1.1. 

The angular momentum of the atomic orbital in a magnetic field comprises the static 
2


 projection on the z-axis (Eq. 

(1.128)) and the 
4


 vector component in the xy-plane (Eq. (1.127)) that precesses about the z-axis at the Larmor frequency.  The 

precession at the Larmor frequency as well as the excitation of a spin-flip transition is equivalent to the excitation of an excited 
state as given in the Excited States of the One-Electron Atom (Quantization) section.  Consider the first resonant process.  A 
resonant excitation of the Larmor precession frequency gives rise to a trapped photon with   of angular momentum along a 
precessing S -axis.  In the coordinate system rotating at the Larmor frequency (denoted by the axes labeled RX , RY , and RZ  in 

Figure 1.25), the RX -component of magnitude 
4


 and S  of magnitude   are stationary.  The 

4


 angular momentum along RX  

with a corresponding magnetic moment of 
4

B  (Eq. (28) of Box 1.1) causes S  to rotate in the RY RZ -plane to an angle of 
3

   

such that the torques due to the RZ -component of 
2


 and the orthogonal RX -component of 

4


 are balanced.  Then the RZ -

component due to S  is cos
3 2


  

 .  The reduction of the magnitude of S  along RZ  from   to 
2


 corresponds to the ratio of 
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the RX -component and the static RZ -component of 
14
2

2






8 .  Since the RX -component is 

4


, the RZ -component of S  is 

2


 

which adds to the initial 
2


 component to give a total RZ -component of  . 

 
8 The torque balance can be appreciated by considering that S is aligned with Z

R

 if the X
R

-component is zero, and the three vectors are mutually 

orthogonal if the  X R
-component is 

2


.  The balance can be shown by considering the magnetic energies resulting from the corresponding torques when 

they are balanced.  Using Eqs. (23) and (25) of Box 1.1, the potential energy E
V

 due to the projection of S's angular momentum of   along Z
R

 having 
2


 

of angular momentum is 

 
1 1

cos cos cos
2 2B BV B B

E B B           (1) 

where 
 
B


B

 is the flux due to a magnetic moment of a Bohr magneton and 


B

 is the corresponding gyromagnetic frequency.  The application of a 

magnetic moment along the  X R
-axis causes S to precess about the Z

R
 and X

R
-axes.  In the X

R
Y

R
Z

R
-frame rotating at 


B

, S precesses about the X
R

-

axis.  The corresponding precession energy 
 
E

X
R

 of S about the X
R

-component of 
4


 is the corresponding Larmor energy 

 
1

4R BX
E     (2) 

The energy 
 
E

Z
R

 of the magnetic moment corresponding to S rotating about Z
R

 having 
2


 of angular momentum is the corresponding Larmor energy:  

 
1

2R BZ
E    (3) 

At torque balance, the potential energy is equal to the sum of the Larmor energies:  

 

1
1 1 141 cos

12 4 2 2

2

R R B B BZ X
E E           

 
  

      
 


   (4) 

Balance occurs when 
 
 



3
.  Thus, the intrinsic torques are balanced.  Furthermore, energy is conserved relative to the external field as well as to the 

intrinsic, Z
R

 and X
R

-components of the atomic orbital, and the Larmor relationships for both the gyromagnetic ratio and the potential energy of the 

resultant magnetic moment are satisfied as shown in Box 1.1.  
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Figure 1.25.   The angular momentum components of the atomic orbital and S  in the rotating coordinate system RX , RY , and 

RZ  that precesses at the Larmor frequency about RZ  such that the vectors are stationary. 
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In summary, since the vector S  that precesses about the z-axis is at an angle of 
3

   with respect to this axis, has an 

RX RY -plane projection at an angle of 
2

   with respect to xyL  given by Eq. (1.127), and has a magnitude of  , the S  

projections in the RX RY -plane and along the RZ -axis are: 

 
3

sin  
3 4


     

RYS i  (1.129) 

 || cos  
3 2 RZ


   S i

  (1.130) 

The plus or minus sign of Eqs. (1.129) and (1.130) corresponds to the two possible vector orientations which are observed with 
the Stern-Gerlach experiment described below.  The sum of the torques in the external magnetic field is balanced unless an RF 
field is applied to cause a Stern-Gerlach transition as discussed in Box 1.1.   
 
Figure 1.26.   The angular momentum components of the atomic orbital and S  in the stationary coordinate system.  S  and the 
components in the xy-plane precess at the Larmor frequency about the z-axis.   
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Figure 1.27.   The orientation of the atomic orbital and S  that has the angular momentum components shown in Figure 1.26.  
The applied magnetic field is in the z-axis direction.  The dipole-current spins about the S -axis at angular velocity n  given by 

Eq. (1.36) and the atomic orbital and S  precess at the Larmor frequency about the z-axis. 
 

 
 

As shown in Figures 1.26 and 1.27, S forms a cone in time in the nonrotating laboratory frame with an angular 
momentum of   that is the source of the known magnetic moment of a Bohr magneton (Eq. (28) of 1.1) as shown in the 

Magnetic Parameters of the Electron (Bohr Magneton) section.  The projection of this angular momentum onto the z-axis of 
2


 

adds to the z-axis component before the magnetic field was applied to give a total of  .  Thus, in the absence of a resonant 

precession, the z-component of the angular momentum is 
2


, but the excitation of the precessing S  component gives —twice 

the angular momentum on the z-axis.  In addition, rather than a continuum of orientations with corresponding energies, the 
orientation of the magnetic moment must be only parallel or antiparallel to the magnetic field.  This arises from conservation of 
angular momentum between the “static” and “dynamic” z-axis projections of the angular momentum with the additional 
constraint that the angular momentum has a “kinetic” as well as a “potential” or vector potential component.  To conserve 

angular momentum, flux linkage by the electron is quantized in units of the magnetic flux quantum, 
2

h

e  , as shown in Box 

1.1 and in the Electron g Factor section.  Thus, the spin quantum number is
1 1

;  
2 2ss m   , but the observed Zeeman splitting 

corresponds to a full Bohr magneton due to   of angular momentum.  This aspect was historically felt to be inexplicable in 
terms of classical physics and merely postulated in the past. 

The demonstration that the boundary conditions of the electron in a magnetic field are met appears in Box 1.1.  The 

observed electron parameters are explained physically.  Classical laws give (1) a gyromagnetic ratio of 
2

e

m
, (2) a Larmor 

precession frequency of 
2

e

m

B
, (3) the Stern-Gerlach experimental result of quantization of the angular momentum that implies a 

spin quantum number of 1/2 corresponding to an angular momentum of 
2


 on the z-axis, and (4) the observed Zeeman splitting 

due to a magnetic moment of a Bohr magneton 
2B

e

e

m
 


 corresponding to an angular momentum of   on the z-axis.  

Furthermore, the solution is relativistically invariant as shown in the Special Relativistic Effect on the Electron Radius and the 
Relativistic Ionization Energies section.  Dirac originally attempted to solve the bound electron physically with stability with 
respect to radiation according to Maxwell’s equations with the further constraints that it was relativistically invariant and thus 
gave rise to electron spin [16].  He was unsuccessful and resorted to the current mathematical probability-wave model that has 
many problems as discussed in Refs. [17-18]. 
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MAGNETIC PARAMETERS OF THE ELECTRON (BOHR MAGNETON) 

THE MAGNETIC FIELD OF AN ATOMIC ORBITAL FROM SPIN 
The atomic orbital with  = 0 is a shell of negative charge current comprising correlated charge motion along great circles.  The 

superposition of the vector projection of the atomic orbital angular momentum on the z-axis is 
2


 with an orthogonal component 

of 
4


.  As shown in the Atomic Orbital Equation of Motion For   = 0 Based on the Current Vector Field (CVF) section, the 

application of a magnetic field to the atomic orbital gives rise to a precessing angular momentum vector S  directed from the 

origin of the atomic orbital at an angle of 
3

   relative to the applied magnetic field.  The precession of S  with an angular 

momentum of   forms a cone in the nonrotating laboratory frame to give a perpendicular projection of 
3

4  S   (Eq. 

(1.129)) and a projection onto the axis of the applied magnetic field of 
2

 ||S


 (Eq. (1.130)).  The superposition of the 
2


 z-

axis component of the atomic orbital angular momentum and the 
2


 z-axis component of S  gives   corresponding to the 

observed magnetostatic electron magnetic moment of one Bohr magneton.  The   of angular momentum along S  has a 
corresponding precessing magnetic moment of 1 Bohr magneton [19]: 

 24 1
 9.274  10

2B
e

e
X JT

m
   


 (1.131) 

The rotating magnetic field of S  is discussed in Box 1.1.  The magnetostatic magnetic field corresponding to B  derived below 

is given by 

 
3

( cos sin )r
e n

e

m r   H i i


 for nr r  (1.132) 

 

 
3

( 2cos sin )
2 r

e

e

m r   H i i


 for nr r  (1.133) 

It follows from Eq. (1.131), the relationship for the Bohr magneton, and relationship between the magnetic dipole field and the 
magnetic moment m  [20] that Eqs. (1.132) and (1.133) are the equations for the magnetic field due to a magnetic moment of a 
Bohr magneton, B zm i  where cos sin  z ri i i .  Note that the magnetic field is a constant for nr r .  See Figures 1.28 

and 1.29.  It is shown in the Magnetic Parameters of the Electron (Bohr Magneton) section that the energy stored in the magnetic 
field of the electron atomic orbital is 
 

 
2 2

0
, 2 3

1
mag total

e

e
E

m r





 (1.134) 

 
Figure 1.28.  The two-dimensional cut-away 
representation of the magnetic field of an electron atomic 
orbital.  The field is a dipole outside the atomic orbital and 
uniform inside the atomic orbital. 

 

Figure 1.29.  The three-dimensional cut-away representation
of the magnetic field of an electron atomic orbital.  The field is
a dipole outside the atomic orbital and uniform inside the
atomic orbital. 
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DERIVATION OF THE MAGNETIC FIELD 
For convenience the angular momentum vector with a magnitude in the stationary frame of   will be defined as the z-axis as 
shown in Figures 1.28 and 1.299 .  The magnetic field must satisfy the following relationships: 

 
 H 0   in free space   (1.135) 
 
   ( )a bX  n H H K  (1.136) 

 
 ( ) 0a b  n H H  (1.137) 

 
  H  (1.138) 
 
Since the field is magnetostatic, the current is equivalent to that of current loops extending along the z-axis with the current 
direction perpendicular to the z-axis.  Then, the component of the current about the z-axis, i , for a current loop of total charge, 

e , oriented at an angle   with respect to the z-axis, is given by the product of the charge, the angular velocity given by Eq. 
(1.36), and sin  since the projection of the current of the atomic orbital perpendicular to the z-axis which carries the 
incremental current, i , is a function of sin . 

 
2

ˆsin
e n

e
i

m r i


 (1.139) 

where î  is the unit vector.  The angular function of the current density of the atomic orbital is normalized by the geometrical 

factor N  [9] given by: 
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 (1.140) 

corresponding to the angular momentum of  .  (Eq. (1.140) can also be expressed in spherical coordinates for the density of a 

uniform shell divided by the integral in   and   of that of a spherical dipole squared [8].  The integration gives 
8

3


 which 

normalized by the uniform mass-density factor of 4  gives the geometrical factor of 
1

2

3


 
 
 

.)  The current density îK  along the 

z-axis having a vector orientation perpendicular to the angular momentum vector is given by dividing the magnitude of i  (Eq. 

(1.139)) by the length nr .  The current density of the atomic orbital in the incremental length dz  is: 

 
3 3

3ˆ ˆ ˆ( , , )
2e n e n

e e
z i i N i

m r m r     K
 

 (1.141) 

Because 
 cosz r   (1.142) 
the differential length is given by: 
 sin ndz r d    (1.143) 

and so the current density in the differential length nr d  as measured along the periphery of the atomic orbital is a function of 

sin  as given in Eq. (1.139).  From Eq. (1.141), the surface current-density function of the atomic orbital about the z-axis (S -
axis) is given by: 

 
3

3ˆ ˆ( , , ) sin
2 e n

e
r i i

m r   K


 (1.144) 

Substitution of Eq. (1.144) into Eq. (1.136) gives:  

 
3

3
sin

2
a b

e n

e
H H

m r   


 (1.145) 

 
9 As shown in Box 1.1, the angular momentum of   on the S-axis is due to a photon standing wave that is phase-matched to a spherical harmonic source 

current, a spherical harmonic dipole   Yl

m  ,  sin  with respect to the S-axis.  The dipole spins about the S-axis at the angular velocity given by Eq. 

(1.36).  Since the field is magnetostatic in the RF rotating frame, the current is equivalent to current loops along the S-axis.  Thus, the derivation of the 
corresponding magnetic field is the same as that of the stationary field given in this section. 
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To obtain H , the derivative of   with respect to   must be taken, and this suggests that the   dependence of   be taken as 

cos .  The field is finite at the origin and is zero at infinity; so, solutions of Laplace’s equation in spherical coordinates are 
selected because they are consistent with these conditions [21]. 
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The negative gradients of these potentials are  
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where ri  and i  are unit vectors.  The continuity conditions of Eqs. (1.136), (1.137), (1.144), and (1.145) are applied to obtain 

the following relationships among the variables: 
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Solving the variables algebraically gives the magnetic fields of an electron: 
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The field is that of a Bohr magneton which matches the observed boundary conditions given in the Atomic Orbital Equation of 
Motion For   = 0 Based on the Current Vector Field (CVF) section including the required spherical symmetry.  The 
demonstration that the boundary conditions of the electron in a magnetic field are met appears in Box 1.1. 
 

DERIVATION OF THE ENERGY 
The energy stored in the magnetic field of the electron is: 
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BOX 1.1  BOUNDARY CONDITIONS OF THE ELECTRON IN A MAGNETIC FIELD 
ARE MET 
As shown in the Electron g Factor section, when a magnetic field with flux B is applied to an electron in a central field which 
comprises current loops, the orbital radius of each does not change due to the Lorentz force provided by B, but the velocity 
changes as follows [1]: 

 
2 e

erB
v

m
   (1) 

corresponding to a precession frequency of 

 
2 e

e

v eB
B

r m
 
    (2) 

where e  is the electron gyromagnetic ratio and   is the Larmor frequency.  Eq. (1) applies to the current perpendicular to the 

magnetic flux.  Since the atomic orbital is a uniformly-charged spherical shell, the magnetically induced current according to 
Lenz’ law gives rise to a corresponding moment of inertia I  [2], due to circulation about the z-axis of: 

 2
1

2

3 eI m r  (3) 

From Eqs. (2) and (3), the corresponding angular momentum L  and rotational energy rotE  are: 
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2

3 e eL I m r B    (4) 

and 
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2 3rot e eE I m r B    (5) 

respectively.  The change in the magnetic moment corresponding to Eq. (1) is [1]: 
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Using Eqs. (2-6), in the case of a very strong magnetic flux of 10 T applied to atomic hydrogen: 
 11 18.794  10  secX rad    (7) 
 51 21.701  10  I X kg m   (8) 

 391.496  10  L X J s   (9) 
 28 96.576  10 4.104  10  rotE X J X eV    (10) 

and 
 28 11.315  10m X J T     (11) 
where the radius is given by Eq. (1.260) and 2 / 3 , the geometrical factor of a uniformly charged spherical shell [2], was used in 
the case of Eq. (11).  Thus, these effects of the magnetic field are very small when they are compared to the intrinsic angular 
momentum of the electron of  
 341.055  10  L X J s    (12) 
The electronic angular frequency of hydrogen given by Eqs. (1.36) and (1.260) 

 16 1
1 2

1

4.134  10  sec
e

X rad
m r

   


 (13) 

the total kinetic energy given by Eq. (1.262) 
  13.606 T eV  (14) 
and the magnetic moment of a Bohr magneton given by Eq. (1.131) 

 24 1
 9.274  10

2B
e

e
X JT

m
   


 (15) 

rotE  is the energy that arises due to the application of the external flux B.  Thus, the external work required to apply the field is 

also given by Eq. (10).  Since the atomic orbital is uniformly charged and is superconducting, this energy is conserved when the 
field is removed.  It is also independent of the direction of the magnetic moment due to the intrinsic angular momentum of the 
atomic orbital of  .  The corresponding magnetic moment given by Eq. (6) does not change when the intrinsic magnetic moment 
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of the electron changes orientation.  Thus, it does not contribute to the energy of a spin-flip transition observed by the Stern 
Gerlach experiment.  It always opposes the applied field and gives rise to the phenomenon of the diamagnetic susceptibility of 
materials which Eq. (6) predicts with very good agreement with observations [1].  Eq. (6) also predicts the absolute chemical 
shifts of hydride ions that match experimental observations as shown in the Hydrino Hydride Ion Nuclear Magnetic Resonance 
Shift section.  

As shown in the Spin Angular Momentum of the Atomic Orbital 0
0 ( , ) Y  with   = 0 section, the angular momentum of 

the atomic orbital in a magnetic field comprises the initial 
2


 projection on the z-axis and the initial 

4


 vector component in the 

xy-plane that precesses about the z-axis.  A resonant excitation of the Larmor precession frequency gives rise to an additional 
component of angular momentum, which is consistent with Maxwell’s equations.  As shown in the Excited States of the One-
Electron Atom (Quantization) section, conservation of the   of angular momentum of a trapped photon can give rise to   of 
electron angular momentum along the S-axis.  The photon standing waves of excited states are spherical harmonic functions 
which satisfy Laplace’s equation in spherical coordinates and provide the force balance for the corresponding charge (mass)-
density waves.  Consider the photon in the case of the precessing electron with a Bohr magneton of magnetic moment along the 
S-axis.  The radius of the atomic orbital is unchanged, and the photon gives rise to current on the surface that satisfies the 
condition 
 0J   (16) 
corresponding to a rotating spherical harmonic dipole [3] that phase-matches the current (mass) density of Eq. (1.144).  Thus, the 
electrostatic energy is constant, and only the magnetic energy need be considered as given by Eqs. (23-25). The corresponding 
central field at the atomic orbital surface given by the superposition of the central field of the proton and that of the photon 
follows from Eqs. (2.10-2.17): 

       0
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Y Y e r r
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where the spherical harmonic dipole  , sinmY     is with respect to the S -axis.  Force balance according to Eq. (1.253) is 

maintained by the equivalence of the harmonic modulation of the charge and the mass where / ee m  is invariant as given in the 

Special Relativistic Effect on the Electron Radius and the Relativistic Ionization Energies section.  The dipole spins about the S -
axis at the angular velocity given by Eq. (1.36).  In the frame rotating about the S -axis, the electric field of the dipole is 
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The resulting current is nonradiative as shown in Appendix I: Nonradiation Condition.  Thus, the field in the RF rotating frame is 
magnetostatic as shown in Figures 1.28 and 1.29 but directed along the S -axis.  The time-averaged angular momentum and 
rotational energy due to the charge density wave are zero as given by Eqs. (1.76) and (1.77).  However, the corresponding time-
dependent surface charge density   that gives rise to the dipole current of Eq. (1.144) as shown by Haus [4] is equivalent to 

the current due to a uniformly charged sphere rotating about the S -axis at the constant angular velocity given by Eq. (1.36).  The 
charge density is given by Gauss’ law at the two-dimensional surface: 
 

1 10 0| |r r r r        n n E  (20) 

From Eq. (19),   is 
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  (21) 

and the current (Eq. (1.144)) is given by the product of Eq. (21) and the constant angular frequency (Eq. (1.36)).  The precession 
of the magnetostatic dipole results in magnetic dipole radiation or absorption during a Stern-Gerlach transition.  The application 
of a magnetic field causes alignment of the intrinsic electron magnetic moment of atoms of a material such that the population of 
electrons parallel versus antiparallel is a Boltzmann distribution, which depends on the temperature of the material.  Following 
the removal of the field, the original random-orientation distribution is restored as is the original temperature.  The distribution 
may be altered by the application of an RF pulse at the Larmor frequency. 

The application of a magnetic field with a resonant Larmor excitation gives rise to a precessing angular momentum 

vector S of magnitude   directed from the origin of the atomic orbital at an angle of 
3

   relative to the applied magnetic 

field.  S rotates about the axis of the applied field at the Larmor frequency.  The magnitude of the components of S  that are 

parallel and orthogonal to the applied field (Eqs. (1.129-1.130)) are 
2


 and 

3

4
 , respectively.  Since both the RF field and the 

orthogonal components shown in Figure 1.25 rotate at the Larmor frequency, the RF field that causes a Stern Gerlach transition 
produces a stationary magnetic field with respect to these components as described by Patz [5]. 
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The component of Eq. (1.130) adds to the initial 
2


 parallel component to give a total of   in the stationary frame 

corresponding to a Bohr magneton, B , of magnetic moment.  Eqs. (2) and (6) also hold in the case of the Stern Gerlach 

experiment.  Superposition holds for Maxwell’s equations, and only the angular momentum given by Eqs. (1.127-1.128) and the 
source current corresponding to Eq. (17) need be considered.  Since it does not change, the diamagnetic component given from 
Eq. (1) does not contribute to the spin-flip transition as discussed supra.  The potential energy of a magnetic moment m in the 
presence of flux B [6] is: 
 E  m B  (22) 
The angular momentum of the electron gives rise to a magnetic moment of B .  Thus, the energy spin

magE  to switch from parallel 

to antiparallel to the field is given by Eq. (1.168) 
  2 2 cos 2spin

mag B BE B B      B zi B  (23) 

 
In the case of an applied flux of 10 T, Eq. (23) gives: 
 22 31.855  10 1.158  10spin

magE X J X eV     (24) 
spin
magE  is also given by Planck’s equation.  It can be shown from conservation of angular momentum considerations (Eqs. (26-

32)) that the Zeeman splitting is given by Planck’s equation and the Larmor frequency based on the gyromagnetic ratio (Eq. (2)).  
The electron’s magnetic moment may only be parallel or antiparallel to the magnetic field rather than at a continuum of angles 
including perpendicular according to Eq. (22).  No continuum of energies predicted by Eq. (22) for a pure magnetic dipole are 
possible.  The energy difference for the magnetic moment to flip from parallel to antiparallel to the applied field is: 
 22 32 1.855  10 1.158  10spin

magE X J X eV       (25) 

corresponding to magnetic dipole radiation.   
As demonstrated in the Atomic Orbital Equation of Motion For   = 0 Based on the Current Vector Field (CVF) section, 

2


 of the atomic orbital angular momentum designated the static component is initially parallel to the field.  An additional 

2


 

parallel component designated the dynamic component comes from the   of angular momentum along S.  The angular 
momentum in the presence of an applied magnetic field is [7] 
 ( )em e  L r v A  (26) 

where A is the vector potential evaluated at the location of the atomic orbital.  The circular integral of A is the flux linked by the 
electron.  During a Stern-Gerlach transition a resonant RF photon is absorbed or emitted, and the   component along S reverses 
direction.  It is shown by Eqs. (29-32) that the dynamic parallel component of angular momentum corresponding to the vector 

potential due to the lightlike transition is equal to the “kinetic angular momentum” ( )mr v  of 
2


.  Conservation of angular 

momentum of the atomic orbital requires that the static angular momentum component concomitantly flips.  The static 
component of angular momentum undergoes a spin flip, and concomitantly the “potential angular momentum” ( )er A  of the 

dynamic component must change by 
2




 due to the linkage of flux by the electron such that the total angular momentum is 

conserved.   
In spherical coordinates, the relationship between the vector potential A and the flux B is 

 22 rA r B   (27) 
Eq. (27) can be substituted into Eq. (26) since the magnetic moment m  is given [6] as: 
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and the corresponding energy is consistent with Eqs. (23) and (25) in this case as follows: 
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The boundary condition that the angular momentum is conserved is shown by Eqs. (1.165-1.167).  It can be shown that 
Eq. (29) is also consistent with the vector potential along the axis of the applied field [8] given by: 
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Substitution of Eq. (30) into Eq. (29) gives: 
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with the geometrical factor of 2 / 3  [2] and the current given by Eq. (1.144).  Since k  is the lightlike 0k , then /nk c  

corresponding to the RF photon field.  The relativistic corrections of Eq. (31) are given by Eqs. (1.250) and (1.251) and the 
relativistic radius cr    given by Eq. (1.249).  The relativistically corrected Eq. (31) is: 
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1 0
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1
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B
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e e

e e
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m i


 (32) 

The magnetic flux of the electron is given by: 
  A B  (33) 
Substitution of Eq. (30) into Eq. (33) gives 1/2 the flux of Eq. (1.153). 

From Eq. (28), the 
2


 of angular momentum before and after the field is applied corresponds to an initial magnetic 

moment on the applied-field-axis of 
2

B .  After the field is applied, the contribution of 
2

B  from Eq. (29) with Eq. (27) gives a 

total magnetic moment along the applied-field-axis of B , a Bohr magneton, wherein the additional contribution (Eq. (28)) 

arises from the angular momentum of   on the S -axis.  Thus, even though the magnitude of the vector projection of the angular 

momentum of the electron in the direction of the magnetic field is 
2


, the magnetic moment corresponds to   due to the 

2


 

contribution from the dynamic component, and the quantized transition is due to the requirement of angular momentum 
conservation as given by Eq. (28). 

Eq. (22) implies a continuum of energies; whereas, Eq. (29) shows that the static-kinetic and dynamic vector potential 

components of the angular momentum are quantized at 
2


.  Consequently, as shown in the Electron g Factor section, the flux 

linked during a spin transition is quantized as the magnetic flux quantum:  

 
2

h

e   (34) 

Only the states corresponding to: 

 
1

2sm    (35) 

are possible due to conservation of angular momentum.  It is further shown using the Poynting power vector with the 
requirement that flux is linked in units of the magnetic flux quantum, that the factor 2 of Eqs. (23) and (25) is replaced by the 
electron g factor.   
 Thus, in terms of flux linkage, the electron behaves as a superconductor with a weak link [9] as described in the 
Josephson Junction, Weak Link section and the Superconducting Quantum Interference Device (SQUID) section.  Consider the 
case of a current loop with a weak link comprising a large number of superconducting electrons (e.g. 1010 ).  As the applied field 
increases, the Meissner current increases.  In equilibrium, a dissipationless supercurrent can flow around the loop driven by the 
difference between the flux   that threads the loop and the external flux x  applied to the loop.  Based on the physics of the 

electrons carrying the supercurrent, when the current reaches the critical current, the kinetic angular momentum change of 
2


 

equals the magnitude of the potential angular momentum change corresponding to the vector potential according to Eqs. (26) and 
(31).  As a consequence, the flux is linked in units of the magnetic flux quantum as shown in the Electron g Factor section. 
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ELECTRON G FACTOR 
As demonstrated by Purcell [15], when a magnetic field is applied to an electron in a central field which comprises a current 
loop, the orbital radius does not change, but the velocity changes as follows: 

 
2 e

erB
v

m
   (1.163) 

This corresponds to diamagnetism and gives rise to precession with a corresponding resonance as shown in Box 1.1.  The 
angular momentum in the presence of an applied magnetic field is [15]: 
 ( )em e  L r v A  (1.164) 

where A is the vector potential evaluated at the location of the atomic orbital.  Conservation of angular momentum of the atomic 

orbital permits a discrete change of its “kinetic angular momentum” ( )mr v  with respect to the field of 
2


, and concomitantly 

the “potential angular momentum” ( )er A  must change by 
2




.  The flux change,  , of the atomic orbital for nr r  is 

determined as follows [15]: 
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In order that the change in angular momentum, L , equals zero,   must be 
2

h

e  , the magnetic flux quantum.  Thus, to 

conserve angular momentum in the presence of an applied magnetic field, the atomic orbital magnetic moment can be parallel or 
antiparallel to an applied field as observed with the Stern-Gerlach experiment, and the flip between orientations is accompanied 
by the “capture” of the magnetic flux quantum by the atomic orbital “coils” comprising infinitesimal loops of charge moving 
along geodesics (great circles).  A superconducting loop with a weak link also demonstrates this effect [22]. 

The energy to flip the orientation of the atomic orbital due to its magnetic moment of a Bohr magneton, B , is: 

  2spin moment
mag BE B   (1.168) 

where 
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 (1.169) 

During the spin-flip transition, power must be conserved.  Power flow is governed by the Poynting power theorem, 
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STORED MAGNETIC ENERGY 
Energy superimposes; thus, the calculation of the spin-flip energy is determined as a sum of contributions.  The energy change 
corresponding to the “capture” of the magnetic flux quantum is derived below.  From Eq. (1.161) for one electron, 
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is the energy stored in the magnetic field of the electron.  The atomic orbital is equivalent to a Josephson junction which can trap 

integer numbers of fluxons where the quantum of magnetic flux is 
2

h

e  .  Consider Eq. (1.171).  During the flip transition a 

fluxon treads the atomic orbital at the speed of light; therefore, the radius of the atomic orbital in the lab frame is 2  times the 
relativistic radius in the fluxon frame as shown in the Special Relativistic Effect on the Electron Radius and the Relativistic 
Ionization Energies section.  Thus, the energy of the transition corresponding to the “capture” of a fluxon by the atomic orbital, 

fluxon
magE , is: 
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where A  is the area and   is the magnetic flux quantum. 
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where the nth fluxon treading through the area of the atomic orbital is equivalent to the applied magnetic flux.  Furthermore, the 
term in brackets can be expressed in terms of the fine structure constant,  , as follows: 
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Substitution of Eq. (1.35) gives: 
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Substitution of 
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and 
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gives  
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The fluxon treads the atomic orbital at v c  ( k  is the lightlike 0k , then /nk c ).  Thus, 
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  (1.181) 

 

STORED ELECTRIC ENERGY 
The superposition of the vector projection of the atomic orbital angular momentum on the z-axis is 

2


 with an orthogonal 

component of 
4


.  Excitation of a resonant Larmor precession gives rise to   on an axis S that precesses about the spin axis at an 

angle of 
3

  .  S rotates about the z-axis at the Larmor frequency.  S , the transverse projection, is 
3

4
   (Eq. (1.129)), and 

||S , the projection onto the axis of the applied magnetic field, is 
2




 (Eq. (1.130)).  As shown in the Spin Angular Momentum of 

the Atomic Orbital 0
0 ( , ) Y  with   = 0 section, the superposition of the 

2


 z-axis component of the atomic orbital angular 

momentum and the 
2


 z-axis component of S  gives   corresponding to the observed electron magnetic moment of a Bohr 

magneton, B .  The reorientation of S and the atomic orbital angular momentum from parallel to antiparallel due to the magnetic 

field applied along the z-axis gives rise to a current.  The current is acted on by the flux corresponding to  , the magnetic flux 

quantum, linked by the electron during the transition which gives rise to a Hall voltage.  The electric field corresponding to the 

Hall voltage corresponds to the electric power term, 0

1

2t

 


   
E E , of the Poynting power theorem (Eq. (1.170)).  

Consider a conductor in a uniform magnetic field and assume that it carries a current driven by an electric field 
perpendicular to the magnetic field.  The current in this case is not parallel to the electric field, but is deflected at an angle to it 
by the magnetic field.  This is the Hall Effect, and it occurs in most conductors.  A spin-flip transition is analogous to the 
Quantum Hall Effect given in the corresponding section wherein the applied magnetic field quantizes the Hall conductance.  The 
current is then precisely perpendicular to the magnetic field, so that no dissipation (that is, no ohmic loss) occurs.  This is seen in 
two-dimensional systems, at cryogenic temperatures, in quite high magnetic fields.  Furthermore, the ratio of the total electric 
potential drop to the total current, the Hall resistance, HR , is precisely equal to: 
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The factor n  is an integer in the case of the Integral Quantum Hall Effect, and n  is a small rational fraction in the case of the 
Fractional Quantum Hall Effect.  In an experimental plot [23] as the function of the magnetic field, the Hall resistance exhibits 
flat steps precisely at these quantized resistance values; whereas, the regular resistance vanishes (or is very small) at these Hall 
steps.  Thus, the quantized Hall resistance steps occur for a transverse superconducting state. 

Consider the case that an external magnetic field is applied along the x-axis to a two dimensional superconductor in the 
yz-plane which exhibits the Integral Quantum Hall Effect.  (See Figure 1.30.)  Conduction electrons align with the applied field 
in the x direction as the field permeates the material.  The normal current carrying electrons experience a Lorentz force, LF , due 

to the magnetic flux.  The y-directed Lorentz force on an electron having a velocity v  in the z direction by an x-directed applied 
flux, B, is: 
 L e F v B  (1.183) 

The electron motion is a cycloid where the center of mass experiences an E B  drift [24].  Consequently, the normal Hall Effect 
occurs.  Conduction electron energy states are altered by the applied field and by the electric field corresponding to the Hall 
Effect.  The electric force, HF , due to the Hall electric field, yE , is: 

 H yeF E  (1.184) 

When these two forces are equal and opposite, conduction electrons propagate in the z direction alone.  For this special case, it is 
demonstrated in Jackson [24] that the ratio of the corresponding Hall electric field HE  and the applied magnetic flux is: 
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(1.185) 

where v  is the electron velocity.  And, it is demonstrated in the Integral Quantum Hall Effect section that the Hall resistance, 

HR , in the superconducting state is given by: 
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where n  is an integer. 
 
Figure 1.30.   Coordinate system of crossed electric field, yE , 

corresponding to the Hall voltage, magnetic flux, xB , due to 

applied field, and superconducting current zi . 
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Consider the case of the spin-flip transition of the electron.  In the case of an exact balance between the Lorentz force 
(Eq. (1.183)) and the electric force corresponding to the Hall voltage (Eq. (1.184)), each superconducting point mass-density 
element of the electron propagates along a great circle where  
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(1.187) 

where v  is given by Eq. (1.35).  Substitution of Eq. (1.35) into Eq. (1.187) gives: 
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(1.188) 

Eq. (1.185) is the condition for superconductivity in the presence of crossed electric and magnetic fields.  The electric field 
corresponding to the Hall voltage corresponds to the electric energy term, eleE , of the Poynting power theorem (Eq. (1.170)). 
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       E E  (1.189) 

The electric term for this superconducting state is derived as follows using the coordinate system shown in Figure 1.31. 
The current is perpendicular to rE , thus there is no dissipation.  This occurs when: 

 e e E v B   (1.190) 
or 
 E B v  (1.191) 
The electric field corresponding to the Hall voltage is: 
  E v B   (1.192) 
Substitution of Eq. (1.192) into Eq. (1.189) gives: 

Figure 1.31.   Coordinate system of crossed electric 
field, rE , corresponding to the Hall voltage, magnetic 

flux, B , due to applied field, and superconducting 

current i . 
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        (1.193) 

The spin flip transition may be induced by the absorption of a resonant photon.  The velocity is determined from the distance 
traversed by each point element and the time of the transition due to capture of a photon resonant with the spin-flip transition 
energy.  The current i  corresponding to the Hall voltage and rE  is given by the product of the electron charge and the 

frequency f  of the photon where the correspondence principle holds as given in the Photon Absorption section. 
 i ef  (1.194) 
The resistance of free space for the propagation of a photon is the radiation resistance of free space,  . 

 0

0




  (1.195) 

The power rP  of the electron current induced by the photon as it transitions from free space to being captured by the electron is 

given by the product of the corresponding current and the resistance R  which is given by Eq. (1.195). 
 2

rP i R  (1.196) 

Substitution of Eq. (1.194) and Eq. (1.195) gives 

 2 2 0

0
rP e f




  (1.197) 

It follows from the Poynting power theorem (Eq. (1.170)) with spherical radiation that the transition time   is given by the ratio 
of the energy and the power of the transition [25].   

 
energy

power
   (1.198) 

The energy of the transition, which is equal to the energy of the resonant photon, is given by Planck’s equation. 
 E hf   (1.199) 
Substitution of Eq. (1.197) and Eq. (1.199) into Eq. (1.198) gives: 
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hf

e f





  (1.200) 

The distance   traversed by the electron with a kinetic angular momentum change of 
2


 is: 

 
2

2 2

r 
   (1.201) 

where the wavelength is given by Eq. (1.15).  The velocity is given by the distance traversed divided by the transition time.  Eq. 
(1.200) and Eq. (1.201) gives: 
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    (1.202) 

The relationship for a photon in free space is: 
 c f  (1.203) 
As shown in the Unification of Spacetime, the Forces, Matter, and Energy section, the fine structure constant given by Eq. 
(1.179) is the dimensionless factor that corresponds to the relativistic invariance of charge. 
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 (1.204) 

It is equivalent to one half the ratio of the radiation resistance of free space, 0

0




, and the Hall resistance, 
2

h

e
.  The radiation 

resistance of free space is equal to the ratio of the electric field and the magnetic field of the photon (Eq. (4.10)).  Substitution of 
Eq. (1.203) and Eq. (1.204) into Eq. (1.202) gives: 
 v c  (1.205) 
Substitution of Eq. (1.205) into Eq. (1.193) gives: 
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          (1.206) 

where 
 0B H  (1.207) 

The relationship between the speed of light, c , and the permittivity of free space, 0 , and the permeability of free space, 0 , is 

 
0 0

1
c

 
  (1.208) 

Thus, Eq. (1.206) may be written as: 
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         (1.209) 

Substitution of Eq. (1.157) gives 
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 (1.210) 

The magnetic flux, B , is quantized in terms of the Bohr magneton because the electron links flux in units of the magnetic flux 
quantum, 

 0 2

h

e
   (1.211) 

Substitution of Eqs. (1.171-1.181) gives: 

 22
2

3 2ele BE B
 


   
 

 (1.212) 

 

DISSIPATED ENERGY 
The J E  energy over time is derived from the electron current corresponding to the Larmor excitation and the electric field 
given by Faraday’s law due to the linkage of the magnetic flux of the fluxon during the spin-flip.  Consider the electron current 
due to the external field.  The application of a magnetic field with a resonant Larmor excitation gives rise to a precessing angular 

momentum vector S of magnitude   directed from the origin of the atomic orbital at an angle of 
3

   relative to the applied 

magnetic field.  As given in the Spin Angular Momentum of the Atomic Orbital 0
0 ( , ) Y  with   = 0 section, S rotates about the 

axis of the applied field at the Larmor frequency.  The magnitude of the components of S that are parallel and orthogonal to the 

applied field (Eqs (1.129-1.130)) are 
2


 and 

3

4
 , respectively.  Since both the RF field and the orthogonal components shown 

in Figure 1.25 rotate at the Larmor frequency, the RF field that causes a Stern Gerlach transition produces a stationary magnetic 
field with respect to these components as described in Box 1.1.  The corresponding central field at the atomic orbital surface 
given by the superposition of the central field of the proton and that of the photon follows from Eqs. (2.10-2.17) and Eq. (17) of 
Box 1.1: 

       0
0 12

, Re ,
4

    


    
nim tm

o

e
Y Y e r r

r r yE i i  (1.213) 

where the spherical harmonic dipole  , sinmY     is with respect to the S-axis.  The dipole spins about the S-axis at the 

angular velocity given by Eq. (1.36).  The resulting current is nonradiative as shown in Appendix I: Nonradiation Condition.  
Thus, the field in the RF rotating frame is magnetostatic as shown in Figures 1.28 and 1.29 but directed along the S-axis.  Thus, 
the corresponding current given by Eq. (1.144) is 
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e
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 (1.214) 

Next consider Faraday’s equation for the electric field  

 0

C S

d
d d

dt
    E s H a  (1.215) 

As demonstrated by Purcell [15], the velocity of the electron changes according to Lenz’s law, but the change in centrifugal 
force is balanced by the change in the central field due to the applied field.  The magnetic flux of the electron given by Eq. 
(1.152) is 
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      for nr r  (1.216) 

From Eq. (1.181), the magnetic flux B J E  of the fluxon is: 
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 (1.217) 

The electric field E  is constant about the line integral of the atomic orbital.  Using Eq. (1.215) with the change in flux in units of 
fluxons along the z-axis given by Eq. (1.217) gives: 
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Substitution of Eq. (1.217) into Eq. (1.219) gives: 
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Thus, 

 0
2

1

2

3 2 e

e

m r t 



 


E i


 (1.222) 

The dissipative power density E J  can be expressed in terms of the surface current density K as: 

    
V S

tdv tda     E J E K  (1.223) 

Using the electric field from Eq. (1.222) and the current density from Eq. (1.214) gives: 
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 (1.224) 

Substitution of Eqs. (1.171-1.181) into Eq. (1.224) gives: 
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   E J  (1.225) 

 

TOTAL ENERGY OF SPIN-FLIP TRANSITION 
The principal energy of the transition corresponding to a reorientation of the atomic orbital is given by Eq. (1.168).  And, the 
total energy of the flip transition is the sum of Eq. (1.168), and Eqs. (1.181), (1.212), and (1.225) corresponding to the magnetic 
energy, the electric energy, and the dissipated energy of a fluxon treading the atomic orbital, respectively.  
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 (1.226) 

 spin
mag BE g B   (1.227) 

where the stored magnetic energy corresponding to the 0

1

2t

 


   
H H  term increases, the stored electric energy corresponding 

to the 0

1

2t

 


   
E E  term increases, and the J E  term is dissipative.  The magnetic moment of Eq. (1.168) is twice that from 

the gyromagnetic ratio as given by Eq. (28) of Box 1.1.  The magnetic moment of the electron is the sum of the component 
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corresponding to the kinetic angular momentum, 
2


, and the component corresponding to the vector potential angular 

momentum, 
2


, (Eq. (1.164)).  The spin-flip transition can be considered as involving a magnetic moment of g  times that of a 

Bohr magneton.  The g  factor is redesignated the fluxon g  factor as opposed to the anomalous g  factor, and it is given by Eq. 
(1.226). 
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22 4
1

2 2 3 2 3 2

g   
  

         
   

 (1.228) 

For 1 137.03604(11)    [26]  

 1.001  159  652  120
2

g
  (1.229) 

The experimental value [27] is:  

 1.001  159  652  188(4)
2

g
  (1.230) 

The calculated and experimental values are within the propagated error of the fine structure constant.  Different values of the fine 
structure constant have been recorded from different experimental techniques, and 1   depends on a circular argument between 
theory and experiment [28].  One measurement of the fine structure constant based on the electron g  factor is 

1 137.036006(20)
eg
   [29].  This value can be contrasted with equally precise measurements employing solid state techniques 

such as those based on the Josephson effect [30] ( 1 137.035963(15)J
  ) or the quantized Hall effect [31] 

( 1 137.035300(400)H
  ).  A method of the determination of 1   that depends on the circular methodology between theory and 

experiment to a lesser extent is the substitution of the independently measured fundamental constants 0 , e , c , and h  into Eq. 

(1.204).  The following values of the fundamental constants are given by Weast [26]: 

 7 1
0 4   10X Hm     (1.231) 

 191.6021892(46)  10e X C  (1.232) 

 8 12.99792458(12)  10c X ms  (1.233) 

 34 16.626176(36)  10h X JHz   (1.234) 

For these constants,  

 1 137.03603(82)   (1.235) 

Substitution of the 1   from Eq. (1.235) into Eq. (1.228) gives 

 1.001  159  652  137
2

g
  (1.236) 

The experimental value [27] is  

 1.001  159  652  188(4)
2

g
  (1.237) 

Conversely, the fine structure calculated for the experimental 
2

g
 and Eq. (1.228) is 1 137.036 032 081  . 

The postulated QED theory of 
2

g
 is based on the determination of the terms of a postulated power series in /   where 

each postulated virtual particle is a source of postulated vacuum polarization that gives rise to a postulated term.  The algorithm 
involves scores of postulated Feynman diagrams corresponding to thousands of matrices with thousands of integrations per 
matrix requiring decades to reach a consensus on the “appropriate” postulated algorithm to remove the intrinsic infinities.  The 
solution so obtained using the perturbation series further requires a postulated truncation since the series diverges.  The 

remarkable agreement between Eqs. (1.236) and (1.237) demonstrates that 
2

g
 may be derived in closed form from Maxwell’s 

equations in a simple straightforward manner that yields a result with eleven figure agreement with experiment—the limit of the 
experimental capability of the measurement of the fundamental constants that determine  .  In Ref. [17], the Maxwellian result 
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is contrasted with the QED algorithm of invoking virtual particles, zero point fluctuations of the vacuum, and negative energy 
states of the vacuum.  Rather than an infinity of radically different QED models, an essential feature is that Maxwellian solutions 
are unique.   

The muon, like the electron, is a lepton with   of angular momentum.  The magnetic moment of the muon is given by 
Eq. (1.169) with the electron mass replaced by the muon mass.  It is twice that predicted using the gyromagnetic ratio (given in 
Eq. (2) of Box 1.1) in Eq. (2.65) of the Orbital and Spin Splitting section wherein the intrinsic angular momentum for the spin 

1/2 fermion is 
2


.  As is the case with the electron, the magnetic moment of the muon is the sum of the component 

corresponding to the kinetic angular momentum, 
2


, and the component corresponding to the vector potential angular 

momentum, 
2


, (Eq. (1.164)).  The spin-flip transition can be considered as involving a magnetic moment of g times that of a 

Bohr magneton of the muon.  The g factor is equivalent to that of the electron given by Eq. (1.228). 
The muon anomalous magnetic moment has been measured in a new experiment at Brookhaven National Laboratory 

(BNL) [32].  Polarized muons were stored in a superferric ring, and the angular frequency difference a  between the spin 

precession and orbital frequencies was determined by measuring the time distribution of high-energy decay positrons.  The 
dependence of a  on the magnetic and electric fields is given by the BMT equation which is the relativistic equation of motion 

for spin in uniform or slowly varying external fields [33].  The dependence on the electric field is eliminated by storing muons 
with the “magic” 29.3  , which corresponds to a muon momentum 3.09 /p GeV c .  Hence measurement of a  and of B 

determines the anomalous magnetic moment. 
The “magic”   wherein the contribution to the change of the longitudinal polarization by the electric quadrupole 

focusing fields are eliminated occurs when  

 
1

0
2

g


   (1.238) 

where g  is the muon g factor which is required to be different from the electron g  factor in the standard model due to the 

dependence of the mass dependent interaction of each lepton with vacuum polarizations due to virtual particles.  For example, 
the muon is much heavier than the electron, and so high energy (short distance) effects due to strong and weak interactions are 
more important here [29].  The BNL Muon (g-2) Collaboration [32] used a “magic” 29.3   which satisfied Eq. (1.238) 

identically for 
2

g ; however, their assumption that this condition eliminated the effect of the electrostatic field on a  is flawed 

as shown in Appendix III: Muon g Factor.  Internal consistency was achieved during the determination of 
2

g  using the BMT 

equation with the flawed assumption that 
2 2

e
g g  .  The parameter measured by Carey et al. [32] corresponding to 

2

g  was the 

sum of a finite electric term as well as a magnetic term.  The calculated result based on the equivalence of the muon and electron 
g factors: 

 1.001 165 923
2

g   (1.239) 

is in agreement with the result of Carey et al. [32]: 

  1.001 165 925 15
2

g   (1.240) 

Rather than indicating an expanded plethora of postulated super-symmetry virtual particles which make contributions 
such as smuon-neutralino and sneutrino-chargino loops as suggested by Brown et al. [34], the deviation of the experimental 

value of 
2

g  from that of the standard model prediction simply indicates that the muon g factor is equivalent to the electron g 

factor. 
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DETERMINATION OF ATOMIC ORBITAL RADII 
The one-electron atomic orbital is a spherical shell of negative charge (total charge = e ) of zero thickness at a distance nr  from 

the nucleus of charge Ze .  It is well known that the field of a spherical shell of charge is zero inside the shell and that of a point 
charge at the origin outside the shell [35].  See Figure 1.32. 
 
Figure 1.32.   The point-like electric fields of a proton, a bound electron, and their superposition as the hydrogen atom 
corresponding to a minimum energy and no electron self interaction.  The electron’s field is normal and finite only radially 
distant from its surface, being zero inside of the electron shell according to Gauss’ and Faraday’s laws which is also consistent 
with experiments showing zero self field inside of a charged perfect conductor.  Thus, only the proton’s central field at the 
electron determines the force balance which causes the flat 2-D geometry of a free electron to transition to the 2-D bubble-like 
geometry of the atomic orbital. 
 

 
 
Thus, for a nucleus of charge Z, the force balance equation for the electron atomic orbital is obtained by equating the forces on 
the mass and charge densities.  For the ground state, 1n  , the centrifugal force of the electron is given by: 
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e
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r r


v
F  (1.241) 

where 
2

14
em

r
 is the mass density of the atomic orbital.  The centripetal force is the electric force, eleF , between the electron and 

the nucleus. 

 
2 2

1 0 14 4ele

e Ze

r r 
F  (1.242) 

where 0  is the permittivity of free-space.   

The second centripetal force is an electrodynamic force or radiation reaction force, a force dependent on the second 
derivative of charge position, with respect to time, which arises between the electron and the nucleus.  This force given in 
Sections 6.6, 12.10, and 17.3 of Jackson [36] achieves the condition that the sum of the mechanical momentum and 
electromagnetic momentum is conserved.  The motion of each point in the magnetic field of the nucleus will cause a relativistic 
central force, magF , which acts on each point mass.  The magnetic central force is derived as follows from the Lorentz force, 

which is relativistically corrected.  Each infinitesimal point of the atomic orbital moves on a great circle, and the charge density 

at each point is 
24 n

e

r
.   As given in the Proton and Neutron section, the proton is comprised of a linear combination of three 

constant functions and three orthogonal spherical harmonic quark/gluon functions.  The magnetic field front due to the motion of 
the electron propagates at the speed of light.  From the photon inertial reference frame at the radius of each infinitesimal point of 
the electron atomic orbital, the proton charge distribution is given as the product of the quark and gluon functions, which gives 
rise to a uniform distribution.  The magnetic flux of the proton in the v c  inertial frame at the electron radius follows from 
McQuarrie [19]:  

 0
32 p n

e

m r


B


 (1.243) 
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And, the magnetic flux due to a nucleus of charge Z and mass m is: 

 0
32 n

Ze

mr


B


 (1.244) 

The motion of each point will cause a relativistic central force,  i magF , which acts on each point mass.  The magnetic central force 

is derived as follows from the Lorentz force which is relativistically corrected. The Lorentz force density on each point moving 
at velocity v  is: 

 
24mag

n

e

r
 F v B  (1.245) 

For the hydrogen atom with 1Z   and pm m , substitution of Eq. (1.35) for v and Eq. (1.244) for B gives:  
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 (1.246) 

The term in brackets can be expressed in terms the fine structure constant   wherein the radius of the electron relative to the 
v c  frame ( k  is the lightlike 0k , then /nk c  regarding a potentially emitted photon), *r , is the corresponding relativistic 

radius.  From Eq. (1.15), the relationship between the radius and the electron wavelength is: 

 2 r   (1.247) 

Using the de Broglie Eq. (1.38) with v c  

 
h h

mv mc
    (1.248) 

With substitution of Eq. (1.248) into Eq. (1.247) 

 *
0cr a

mc   
   (1.249) 

The radius of the electron atomic orbital in the v c  frame is C , where v c  corresponds to the magnetic field front 

propagation velocity which is the same in all inertial frames, independent of the electron velocity as shown by the velocity 
addition formula of special relativity [37].  From Eqs. (1.179) and (1.249), 

 
2

0 2
2 e n

e

m r

   (1.250) 

where C  is the Compton wavelength bar substituted for nr , and oa  is the Bohr radius.   

From Lorentz transformations with the electron’s invariant angular momentum of   (Eq. (1.37)), it can be shown that the 
relativistic correction to Eq. (1.246) is the reciprocal of Eq. (1.250).  Consider an inertial frame following a great circle of radius 

nr  with v c  (Here, constant angular velocity as well as constant velocity constitutes an inertial frame for relativistic effects in a 

general sense, as shown in Chp. 34).  The motion is tangential to the radius; thus, nr  is Lorentz invariant.  But, as shown in the 

Special Relativistic Correction to the Ionization Energies section, the tangential distance along a great circle is 2 nr  in the 

laboratory frame and nr  in the v c  frame ( k  is the lightlike 0k , then /nk c ).  In addition, the corresponding radius is 

reduced by   for the light speed radial field.  Thus, the term in brackets in Eq. (1.246) is the inverse of the relativistic correction 
'  for the electrodynamic central force. 

The electron’s magnetic moment of a Bohr magneton B  given by Eq. (1.131) is also invariant as well as its angular 

momentum of  .  The electron is nonradiative due to its angular motion as shown in Appendix I: Nonradiation Condition and 
the Stability of Atoms and Hydrinos section.  Furthermore, the angular momentum of the photon given in the Equation of the 

Photon section is   41
Re ( )

8
dx

c
   m r E B*  .  It is conserved for the solutions for the resonant photons and excited state 

electron functions given in the Excited States of the One-Electron Atom (Quantization) section and the Equation of the Photon 
section.  Thus, the electrodynamic angular momentum and the inertial angular momentum are matched such that the 

correspondence principle holds.  It follows from the principle of conservation of angular momentum that 
e

e

m
 of Eq. (1.131) is 

invariant.  The same applies for the intrinsic magnetic moment B  and angular momentum   of the free electron since it is 

given by the projection of the bound electron into a plane as shown in the Electron in Free Space section.  However, special 
relativity must be applied to physics relative to the electron’s center of mass due to the invariance of charge and the invariant 
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four momentum as given by Purcell [37]. 
The correction to the term in brackets of Eq. (1.246) also follows from the Lorentz transformation of the electron’s 

invariant magnetic moment as well as its invariant angular momentum of  .  Consider a great circle of the electron atomic 
orbital.  As shown in the Special Relativistic Effect on the Electron Radius and the Relativistic Ionization Energies section, the 
tangential distance along a great circle is 2 nr  in the laboratory frame and nr  in the v c  frame.  The corresponding relativistic 

electron mass density regarding the invariant angular momentum increases by a factor of 2  (Eq. (1.281)).  Furthermore, due to 
invariance of charge under Gauss’ Integral Law, with the radius given by (1.209), the charge corresponding to the source current 
of the magnetic field must be corrected by 1 .  Thus, from the perspective of the invariance of B , the term in brackets in Eq. 

(1.246) is the inverse of the relativistic correction for the electrodynamic central force. 
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 (1.251) 

Therefore, the force is given by: 
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The force balance equation is given by equating the centrifugal and centripetal force densities: 
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 (1.253) 

where 1Z   and pm m  for the hydrogen atom and the velocity is given by Eq. (1.35).  (Since the surface-area factor cancels in 

all cases, this factor will be left out in subsequent force calculations throughout this book).  From the force balance equation: 
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 (1.254) 

where the reduced electron mass, e , is: 
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 (1.255) 

The Bohr radius is: 
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 (1.256) 

And, the radius given by force balance between the centrifugal force and central electrostatic force alone is: 
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 (1.257) 

And, for hydrogen, m  of Eq. (1.255) is: 

 pm m  (1.258) 

Substitution of the reduced electron mass for the electron mass gives, Ha , the Bohr radius of the hydrogen atom. 
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e

a
e







 (1.259) 

Thus, Eq. (1.254) becomes 

 1
Ha

r
Z

  (1.260) 

where 1Z   for the hydrogen atom.  The results can also be arrived at by the familiar minimization of the energy. 
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ENERGY CALCULATIONS 
The potential energy V between the electron and the nucleus separated by the radial distance radius 1r  considering the force 

balance between the centrifugal force and central electrostatic force alone is 

 
2 2 2

2 18 2
 

0 1 0 0

4.3598  10 27.212 
4 4

Ze Z e
V Z X J Z eV

r a 
 

         (1.261) 

Because this is a central force problem, the kinetic energy, T , is 
1

2
V . 

 
2 2

2

0 0

13.606 
8

Z e
T Z eV

a
    (1.262) 

The same result can be obtained from 2
1

1

2 eT m v  and Eq. (1.35).  Alternatively, the kinetic energy T and the binding energy BE , 

which are each equal to the change in stored electric energy, eleE , can be calculated from  

 2
0

1

2

r

eleT E Z dv




    E  where 
2

04

e

r
  rE i  (1.263) 

Thus, as the atomic orbital shrinks from 1  to r , 
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8 8B

Ze Z e
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r a 
           (1.264) 

The calculated Rydberg constant R  using Eq. (1.259) in Eqs. (1.261-1.264) which includes the relativistic correction 
corresponding to the magnetic force given by Eq. (1.252) is 110,967,758 m .  The experimental Rydberg constant is 

110,967,758 m .  Furthermore, a host of parameters can be calculated for the hydrogen atom, as shown in Table 1.2. 
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Table 1.2.    Some calculated parameters for the hydrogen atom ( 1n  ). 
 

 
 

radius 1 Hr a  11
 5.294654  10X m  

potential energy 
2

04 H

e
V

a


  27.196 eV  

kinetic energy 
2

08 H

e
T

a
  13.598 eV  

angular velocity (spin) 1 2
1em r

 


 16 1
 4.1296  10  X rad s  

linear velocity 1 1 1v r  6 1
 2.1865  10X ms  

wavelength 1 12 r   10
 3.325  10X m  

spin quantum number 
1

2
s   

1

2
 

moment of Inertia 
2

1

2
em r

I   51 21.277  10  X kgm  

angular kinetic energy 2
1

1

2angularE I  6.795 eV  

magnitude of the  
angular momentum 
 

  34
 1.0545  10X Js  

projection of the  
angular momentum  
onto the transverse-axis  
 

4


 35

 2.636  10X Js  

projection of the  
angular momentum 
onto the z-axis 2zS 


 35

 5.273  10X Js  

mass density 2
14

em

r
 11 2

 2.589  10X kgm   

charge density 2
14

e

r
 24.553 Cm  
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Table 1.3 gives the radii and energies for some one-electron atoms.  In addition to the energies, the wavelength, angular 
frequency, and the linear velocity can be calculated for any one-electron atom from Eqs. (1.38), (1.36), and (1.35).  Values are 
given in Table 1.4. 
 
Table 1.3.   Calculated energies (non-relativistic) and calculated ionization energies for some one-electron atoms. 
 

 
 
a from Equation (1.257) 

b from Equation (1.262) 
c from Equation (1.261) 
d from Equation (1.264)  
e experimental  
 
It is noteworthy that the potential energy is a constant (at a given n) because the electron is at a fixed distance, nr , from the 

nucleus.  And, the kinetic energy and velocity squared are constant because the atom does not radiate at nr  and the potential 

energy is constant. 
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Table 1.4.  Calculated radii, angular frequencies, linear velocities, and wavelengths for the n=1 state of some one-electron 
atoms (non-relativistic). 
 

 
 
It should be noted that the linear velocity is an appreciable percentage of the velocity of light for some of the atoms in Table 
1.4—5.9% for 7O   for example.  Relativistic corrections must be applied before a comparison between the total energy and 
ionization energy (Table 1.3) is made. 
 

SPECIAL RELATIVISTIC EFFECT ON THE ELECTRON RADIUS AND THE 
RELATIVISTIC IONIZATION ENERGIES 
The electron current constitutes an orbit relative to the laboratory frame.  Muons and electrons are both leptons.  The increase in 
the lifetime of muonic decay due to relativistic motion in a cyclotron orbit relative to a stationary laboratory frame provides 

strong confirmation of time dilation and confirms that the electron’s frame is an inertial frame [38].  
e

eB

m
 bunching of electrons in 

a gyrotron [39] occurs because the cyclotron frequency is inversely proportional to the relativistic electron mass.  This further 
demonstrates that the electron frame is an inertial frame and that relativistic electron mass increase and time dilation occur 
relative to the laboratory frame.  The special relativistic relationship in polar coordinates is derived.  The result of the treatment 
of the electron motion relative to the laboratory frame is in excellent agreement with numerous experimental observables such as 
the electron g factor, the invariance of the electron magnetic moment of B  and angular momentum of  , the fine structure of 

the hydrogen atom, and the relativistic ionization energies of one and two electron atoms found infra and in the Excited States of 
the One-Electron Atom (Quantization) and the Two-Electron Atoms sections. 

Following the same derivation as given by Beiser [40], it can be shown that the consequences of maintaining a constant 
maximum speed of light with preservation of physical laws independent of inertial frames of reference for the bound electron 
requires that the coordinate transformations are Lorentzian.  First, the consequences for the electron in its frame are considered.  
The motion at each infinitesimal point of the atomic orbital is on a great circle as shown in the Atomic Orbital Equation of 
Motion For   = 0 Based on the Current Vector Field (CVF) section.  The electron motion is tangential to the radius; thus, r

n
 for 

the electron-frame is Lorentz invariant.  A further consequence of the electron’s motion always being perpendicular to its radius 
is that the electron’s angular momentum of   is invariant as shown by Eq. (1.37).  The electron’s magnetic moment of a Bohr 
magneton  B

 given by Eq. (1.131) is also invariant as well as its angular momentum of  .   

Further using the required Lorentz transforms, the special relativistic effects for the laboratory frame are determined on 
the bound electron by considering lightlike events where there is a decrease in the electron wavelength and period due to 
relativistic length contraction and time dilation of the electron motion in the laboratory inertial frame relative to the lightlike 
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frame as shown infra10.  A lightlight event regards the nature of an electron, excited state since only excited states of the bound 
electron can emit radiation.  The nature of excited states depends on the properties of photons as well as the bound electron.  The 
angular momentum of the electric and magnetic fields of the photon given in the Equation of the Photon section is  .  It is 
conserved for the solutions for the resonant photons and excited state electron functions given in the Excited States of the One-
Electron Atom (Quantization) section and the Equation of the Photon section.  The photons emitted during the formation of each 
one-electron atom are its excited state photons.  Thus, the electrodynamic angular momentum and the inertial angular 
momentum are matched such that the correspondence principle holds.  It follows from the principle of conservation of angular 

momentum of   that 
 

e

m
e

 of Eq. (1.131) is invariant (See the Determination of Atomic Orbital Radii section). Since charge is 

invariant according to special relativity, the electron mass of the atomic orbital must also be invariant.  But, as shown infra, the 

electron radius in the laboratory frame goes to a factor of 
1

2
 of that in the lightlike ( v  c ) frame.  Thus, the effect of special 

relativity is to increase the mass and charge densities identically such that 
e

m
e

 is a constant invariant.  In the present case, the 

electron mass density increases by factor of  2  relative to that in the lightlike frame.  The remarkable agreement between the 
calculated and observed value of the fine structure of the hydrogen atom which depends on the conditions of the invariance of 

the electron’s charge and charge-to-mass ratio 
 

e

m
e

 as given in the Spin-Orbit Coupling section further confirms the validity of 

this result.  A further consequence of the decrease of the radius of the atomic orbital by a factor of  2  relative to that in the 
lightlike frame is that the bound electron is nonradiative due to its angular motion even in the case that   0 .  This is shown by 
using the relativistic wavelength to radius relationship given by Eq. (1.279) in Appendix I: Nonradiation Condition and in the 
Stability of Atoms and Hydrinos section.  The radiative instability of excited states is due to a radial dipole term in the function 
representative of the excited state due to the interaction of the photon and the excited state electron as shown in the Instability of 
Excited States section. 

Specifically, to derive the relativistic relationships consider that the electron is in constant angular velocity and is an 
inertial frame of reference relative to absolute space as given in the Equivalence of Inertial and Gravitational Masses Due to 
Absolute Space and Absolute Light Velocity section.  This can be defined as the laboratory frame of the electron’s motion upon 
which the spatial and temporal Lorentzian transforms may be applied.  The motion of a possible photon is also relative to 
absolute space.  The nature of an exited state as shown in the Excited States of the One-Electron Atom (Quantization) section is 
a superposition of an electron and a photon comprising two-dimensional shells of current and field lines, respectively, at the 
same radius defined by  r  r

n .  Due to the further nature of the photon possessing light-speed angular motion, the electron 

motion and corresponding spatial and temporal parameters may be considered relative to light speed for the laboratory frame of 
the electron’s constant angular velocity.  The derivation of Eqs. (1.279) and (1.280) regards the use of Lorentz spatial and 
temporal transforms for the case of constant angular velocity along a path on a great-circle element.  Such transforms are 
unconventional from the standard transforms on rectilinear motion, but they are perfectly physical as shown in the Newton’s 
Absolute Space Was Abandoned by Special Relativity Because Its Nature Was Unknown section. 

The equation of a photon is given in the Equation of the Photon section.  An emitted free-space photon comprises a field-
line pattern called a photon electric and magnetic vector field (e&mvf) similar to the atomic orbital wherein the former is 
generated from two orthogonal great circle field lines rather than two great circle current loops as in the case of the electron spin 
function.  The motion along each field line is at light speed.  The angular momentum, m, of the electric and magnetic fields of 

the emitted photon given by Eq. (4.1) is   41
Re ( )

8
dx

c
   m r E B*  .  The equation of the photon of an exited state is 

given by Eq. (2.15).  The absorption or emission of a photon regards an excited state given in the Excited States of the One-
Electron Atom (Quantization) section.  The excited state comprises a two-dimension field surface of great-circle field lines at the 
inner surface of the electron atomic orbital that has a slow component of motion phase-locked with and propagating the electron 
modulation wave ( 0 ) that travels about the z-axis with angular frequency n .  The corresponding change in electron angular 
frequency between states matches the frequency of the photon that excited the transition, and the angular momentum of the fields 
(Eq. (4.1)) is conserved in the excited state.  In addition, the motion along each great-circle field line is at velocity c ; so, the 

 
10 Many problems arise in the case of applying special relativity to standard quantum mechanical solutions for one-electron atoms as discussed in the 
Quantum Theory Past and Future section, the Shortcomings of Quantum Theory section, and Refs. [16-17].  Spin was missed entirely by the Schrödinger 
equation, and it was forced by spin matrices in the Dirac equation.  It does not arise from first principles, and it results in nonsensical consequences such as 
infinities and “a sea of virtual particles.”  These are not consistent with observation and paradoxically the virtual particles constitute an ether, the 
elimination of which was the basis of special relativity and is the supposed basis of the Dirac equation.  In addition, the electron motion in the Schrödinger 
and Dirac equations is in all directions; consequently, the relativistic increase in electron mass results in an instability since the electron radius is inversely 
proportional to the electron mass.  Since the electron mass in special relativity is not invariant, but the charge is, the electron magnetic moment of a Bohr 
magneton 

B
 as well as its angular momentum of   cannot be invariant in contradiction with experimental observations known to 14-figure accuracy [26].  
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relative electron to absorbed-photon velocity is c .  This is also the velocity that must be considered for the emission of a photon 
by the bound electron since this state must form in order for emission to occur.  The corresponding source current follows from 

  
n  E

1
 E

2  


0

 (Eq. (2.11)), and the relativistically corrected wavelength given by Eq. (1.279) is n  rn .  This is Eq. (41) of 

the Appendix I that determines the nonradiative property of the atomic orbital and its time and spherically harmonic angular 
functions as given by Eqs. (38) and (70) and (73) of Appendix I9.  Emission or absorption corresponds to an energy-state 
transition.  The corresponding change in electron radius with emission or absorption of a photon is the source current for a free-
space photon as given in the State Lifetimes and Line Intensities section. 

Consider that the motion at each infinitesimal point on the atomic orbital is on a great circle, and that each point-charge 

element has the charge density 
24 n

e

r
 and mass density 

24
e

n

m

r
 as shown in the Atomic Orbital Equation of Motion For   = 0 

Based on the Current Vector Field (CVF) section.  Next, consider a charge-density element (and correspondingly a mass-density 
element) of a great-circle current loop of the electron atomic orbital in the y'z'-plane as shown in Figure 1.4.  The distance on a 
great circle is given by: 

 
2

2

0
0

2n n nr d r r


     (1.265) 

Due to relative motion, the distance along the great circle must contract and the time must dilate due to special relativity.  The 
special relativistic length contraction relationship observed for a laboratory frame relative to an inertial frame moving at constant 
velocity v  is: 

 
2

1o

v
l l

c
    
 

 (1.266) 

Consider a point initially at (0,0,1) moving clockwise on a great circle in the Cartesian y’z’-plane.  The relationship between 
polar and Cartesian coordinates used for special relativity11 is given by: 

 1
' 0x   1

' sin( ) n ny r t  1
' cos( )n nz r t  (1.267) 

where n  is given by Eq. (1.36), nr  is from Eq. (1.257), and 

 nt   (1.268) 

Due to relativity, a contracted wavelength arises.  The distance on the great circle undergoes length contraction only in the ̂  
direction as v c .  Thus, as v c  the distance on a great circle approaches its radius which is the relativistically contracted 
electron wavelength since the relationship between the radius and the wavelength given by Eq. (1.15) is 

 2 n nr   (1.269) 

With v c ,  

 *r   (1.270) 

where * indicates the relativistically corrected parameter.  Thus, 

  *
2

nrr


  (1.271) 

The relativistically corrected mass *m  follows from Eq. (1.271) with maintenance of the invariance of the electron angular 
momentum of   given by Eqs. (1.35) and (1.37). 

 e
e

m m r
m r

 r v


 (1.272) 

 
 
 
 
 
 

 
11 The Cartesian coordinate system as compared to general coordinates is special with regard to a fundamental aspect of Lorentz transforms on Cartesian 
coordinates discussed in the Relativity section. 
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With Eq. (1.271), the relativistically corrected mass *m  corresponding to an increase in its density only is12 

 * 2 em m  (1.273) 

The effect of the relativistic contraction of the distance along a great circle loop is to change the angle of constant motion 
in Eq. (1.267) with a corresponding decrease in the electron wavelength.  For the point initially at (0,0,1) moving clockwise on a 
great circle in the Cartesian y’z’-plane as shown in Figure 1.4, the relativistically corrected wavelength that follows from Eqs. 
(1.265-1.269) is given by the sum of the relativistic electron motion along the great circle (y' direction) and that projected along 
the radial axis (z' direction): 

 
*
, '2

* * *
, '

0 0

sin cos
n zr

n n yr d dr


       (1.274) 

where the * indices correspond to the relativistically corrected parameters in the y' and z' directions.  The length contraction is 
only in the direction of motion that is orthogonal to the radius and constant as a function of angle.  Thus, Eq. (1.268) is given by 

 
2

' * ' *2 1 sin cosn n n

v
r r

c
       

 
 (1.275) 

The projection of the angular motion onto the radial axis is determined by determining the relativistic angle *  corresponding to 
a decrease in the electron wavelength and period due to relativistic length contraction and time dilation of the electron motion in 
the laboratory inertial frame.  Substitution of Eq. (1.36) into Eq. (1.268) gives: 

 
2n

e n

t t
m r

  


 (1.276) 

The correction for the time dilation and length contraction due to electron motion gives the relativistic angle *  as: 

 

3/22 2
*

2 2

2

1 1

1

n
e nn

e

v v
t t t

c m r cr
m

v
c

 
 
 
 
 
 
 
  
 

                 

   
 

 
 (1.277) 

 
12 The magnitude of the total angular momentum of the atomic orbital L  must be constant.  The constant total is   given by the integral 

   4
2

1

4 e n e n
e n

m r r dx m r
m rr




    m r v
   (1) 

where the corresponding velocity is given by Eq. (1.35).  The integral of the magnitude of the angular momentum of the electron is   in any inertial frame 
and is relativistically invariant. 

According to special relativity, the electron's relative motion with respect to the laboratory frame causes the distance along the great circle to 
contract and the time to dilate such that a contracted radius arises as given by Eq. (1.280).  As v  c  the relativistically corrected radius in the laboratory 
frame    r *  is given by 

 
  
 r* 

r
n

2
 (2) 

where  rn
 is the radius in the electron frame.  Eq. (1.271) applies for both the mass and charge densities that are interchangeable by the ratio 

e

m
e

.  Thus, 

the ratio is invariant. 
However, a relativistically corrected mass   m *  can be defined from Eq. (1.271) with maintenance of the invariance of the electron angular 

momentum of   given by Eqs. (1.35) and (1.37).  Due to spherical symmetry, the correction is the same along each great circle of the atomic orbital.  
Thus, the motion of the mass density of the electron along a great circle may be considered.  Then, 

 
e

e

m m r
m r

 r v


 (3) 

With Eq. (1.271), the relativistically corrected mass   m *  corresponding to an increase in its density only is 

   m*  2m
e  (4) 

In other words, the correction of the radius gives an effective relativistic mass as follows: 

 * * *2
2 2 2

2

e e

e e
e

r r r
m m m m m r v

r m r m r
m


  



     r v
  

  (5) 

where v is the electron velocity in its frame given by Eq. (1.35).   
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The period for a wavelength due to electron motion is: 

 
2

T
v

 


   (1.278) 

Only the elements of the second y'z'-quadrant need be considered due to symmetry and continuity of the motion.  Thus, using 
Eqs. (1.276-1.277) for a quarter period of time, Eq. (1.275) becomes: 

 

3/2 3/22 2 2
' '2 1 sin 1 cos 1

2 2n n n

v v v
r r

c c c

  
                                           

 (1.279) 

Using a phase matching condition, the wavelengths of the electron (Eq. (1.269)) and laboratory (Eq. (1.279)) inertial frames are 
equated, and the corrected radius is given by: 

 

3/2 3/22 2 2
' 1

1 sin 1 cos 1
2 2 2n n

v v v
r r

c c c

 


                                               

  (1.280) 

which gives a relativistic factor *  of: 

 *

3/2 3/22 2 2

2

2 1 sin 1 cos 1
2 2

v v v
c c c


 


                                          

 (1.281) 

where the velocity is given by Eq. (1.35) with the radius given by Eq. (1.254).  Plots of ratio of the radii from Eq. (1.280) and *  
(Eq. (1.281)) as a function of the electron velocity v  relative to the speed of light c  are given in Figures 1.33 and 1.34, 
respectively. 

As the electron velocity goes to the speed of light ( v c ) corresponding to any real or potentially emitted phase-locked 

photon, the electron radius in the laboratory frame goes to a factor of 
1

2
 of that in the lightlike electron frame (

'

1

2
n

n

r

r 
 ).  

Thus, with v c , due to symmetry the electron motion corresponds to an atomic orbital of radius 
1

2
 that of the radius in the 

lightlike frame.  In the case where the velocity is the speed of light, the relativistic behavior predicts that the production masses 
of leptons are each the rest mass times the speed of light squared calculated from each of the Planck-equation, electric, and 
magnetic energies in the Leptons section.  The radius correction given by Eq. (1.280) and shown in Figure 1.33 also correctly 
predicts the nonradiation condition, the force corresponding to the reduced electron mass in the radius of the hydrogen atom, 
spin-orbit coupling, the electron pairing force, and other relativistic observables given in this and subsequent chapters. 
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Figure 1.33.   The normalized radius as a function of /v c  due to relativistic contraction. 
 

 
 
Figure 1.34.   The relativistic factor *  as a function of /v c . 
 

 
 

Next, a convenient way to determine the relativistic ionization energies is to use the relativistic total energy equation 
[41].  Consider the motion of the electron in its frame of reference.  Since its motion is perpendicular to the radius, the radius 
(Eq. (1.260)) is invariant to length contraction, the charge is invariant, and only the dependency of the radius on the relativistic 
mass needs to be considered.  The force balance equation (Eq. (1.253)) given by equating the centrifugal and centripetal force 
densities applies in the relativistic case as well where  e em m v  is the relativistic electron mass, Z  is the nuclear charge, 

pm Am  is the nuclear mass with A  being the atomic mass number, and the velocity given by Eq. (1.35) is due to conservation 

of angular momentum which must be obeyed in the relativistic case as well as the nonrelativistic one.  From the force balance 
equation: 

 
2

0 0 0 0
2

0

4
1o e e e e

e e p e p

m m a m m
r

Ze m m m A Z m m A

    
         

   


 (1.282) 
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Using the relativistic velocity (Eq. (1.35) with  e em m v ) and the radius from the force balance equation, the relativistic 

parameter   is: 

 
0 0 0

01 1
e e e e

e e
e p p

v

c m cr a m m a m
m c m c

Z m m A Z m A

    
   
       

   

    (1.283) 

Eqs. (1.178) and (1.179) give a relationship between the fine structure constant and the constants of Eq. (1.283): 

 
2 22 2

0 0 0
2

0 0 0 0 0 0 0

4

4 4 4 e e

e c ae e

c a ca e m m ca

 
  

   
 

  
 (1.284) 

Then, from Eqs. (1.283) and (1.284), the relativistic parameter   simplifies to: 

 

1 e

p

v Z

c m

m A

  
 
  

 

 (1.285) 

The relativistic mass is given by the Lorentz transformation: 

   0 0

2 2

2

1
1

e e
e e

m m
m v m

v
c


  




 (1.286) 

Next, a relationship for the velocity in the relativistic correction for the electron mass is determined from the boundary 
constraints.  In the nonrelativistic limit, Eq. (1.282) reduces to Eq. (1.259) even in the case that Eq. (1.286) is substituted into Eq. 
(1.285); however, at any finite velocity the spin-nuclear interaction becomes velocity dependent according to Eqs. (1.285-1.286).  
Since the interaction arises from the invariant magnetic moments corresponding to the invariant angular momentum of the 
electron and proton, the  e em m v  parameter in Eq. (1.285) must be the fixed constant of 0em .  The corresponding relativistic 

invariant magnetic moment of the nucleus is the nuclear magneton N given by 

 
2N

p

e

m
 


 (1.287) 

such that the relativistic mass ratio for the spin-nuclear interaction is 0

2
e

p

m

m
.  Thus, Eq. (1.285) is given by: 
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2
e
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v Z

c m
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 (1.288) 

Thus, from Eqs. (1.282), (1.286), and (1.288), the relativistic radius of the bound electron is given by: 
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 (1.289) 

The ionization energy or ionization potential IP  is given by the negative of the sum of the potential V  and kinetic 
energies T : 

  IP V T    (1.290) 

The potential energy is given by Eq. (1.261), and the relativistic kinetic energy from Eq. (34.17) is [41]: 

 2
0 2

1
1

1

eT m c
v
c

   
       

 (1.291) 

Thus, IP is given by: 
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Substitution of Eqs. (1.288-1.289) into Eq. (1.292) gives: 
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 (1.293) 

where Eqs. (28.8-28.9) were used.  In the case that the electron spin-nuclear interaction is negligible, Eq. (1.293) reduces to: 

   22
0 1 1eIP m c Z    (1.294) 

In the special case where the velocity is the speed of light and 1Z  , the relativistic behavior predicts that the production 
masses of fundamental particles are the same in both the particle and laboratory frames as given in the Leptons and Quarks 
sections.  The energies given by Eq. (1.293) are plotted in Figure 1.35 and are given in Table 1.5.  The agreement between the 
experimental and calculated values is excellent.  The small deviation is anticipated to be due to the Lamb shift [42] and 
experimental error. 
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Figure 1.35.   The relativistic one-electron-atom ionization energies as a function of the nuclear charge Z.   
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Table 1.5.   Relativistic ionization energies for some one-electron atoms. 
 

One e 
Atom 

Z   
(Eq. (1.288)) 

 

Theoretical 
Ionization 
Energies 

(eV)  

(Eq. (1.293)) 

Experimental 
Ionization 
Energies 

(eV) a 

Relative 
Difference 
between 

Experimental and 
Calculated b 

 
H  1 0.00730 13.59847 13.59844 -0.000002 

He  2 0.01459 54.41826 54.41778 -0.000009 
2Li   3 0.02189 122.45637 122.45429 -0.000017 
3Be   4 0.02919 217.72427 217.71865 -0.000026 

4B   5 0.03649 340.23871 340.2258 -0.000038 
5C   6 0.04378 490.01759 489.99334 -0.000049 
6N   7 0.05108 667.08834 667.046 -0.000063 
7O   8 0.05838 871.47768 871.4101 -0.000078 
8F   9 0.06568 1103.220 1103.1176 -0.000093 
9Ne   10 0.07297 1362.348 1362.1995 -0.000109 
10Na   11 0.08027 1648.910 1648.702 -0.000126 
11Mg   12 0.08757 1962.945 1962.665 -0.000143 

12Al   13 0.09486 2304.512 2304.141 -0.000161 
13Si   14 0.10216 2673.658 2673.182 -0.000178 
14P   15 0.10946 3070.451 3069.842 -0.000198 
15S   16 0.11676 3494.949 3494.1892 -0.000217 
16Cl   17 0.12405 3947.228 3946.296 -0.000236 
17Ar   18 0.13135 4427.363 4426.2296 -0.000256 
18K   19 0.13865 4935.419 4934.046 -0.000278 
19Ca   20 0.14595 5471.494 5469.864 -0.000298 
20Sc   21 0.15324 6035.681 6033.712 -0.000326 
21Ti   22 0.16054 6628.064 6625.82 -0.000339 
22V   23 0.16784 7248.745 7246.12 -0.000362 
23Cr   24 0.17514 7897.827 7894.81 -0.000382 
24Mn   25 0.18243 8575.426 8571.94 -0.000407 
25Fe   26 0.18973 9281.650 9277.69 -0.000427 
26Co   27 0.19703 10016.63 10012.12 -0.000450 
27Ni   28 0.20432 10780.48 10775.4 -0.000471 
28Cu   29 0.21162 11573.34 11567.617 -0.000495 
29Zn   30 0.21892 12395.35 12388.93 -0.000518 
30Ga   31 0.22622 13246.66 13239.49 -0.000542 
31Ge   32 0.23351 14127.41 14119.43 -0.000565 
32As   33 0.24081 15037.75 15028.62 -0.000608 
33Se   34 0.24811 15977.86 15967.68 -0.000638 
35Kr   36 0.26270 17948.05 17936.21 -0.000660 
36Rb   37 0.27000 18978.49 18964.99 -0.000712 
41Mo   42 0.30649 24592.04 24572.22 -0.000807 

53Xe   54 0.39406 41346.76 41299.7 -0.001140 
91U   92 0.67136 132279.32 131848.5 -0.003268 

a From theoretical calculations, interpolation of H isoelectronic and Rydberg series, and experimental data [42-45]. 
b (Experimental-theoretical)/experimental. 
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The electron possesses an invariant angular momentum and magnetic moment of   and a Bohr magneton, respectively.  
This invariance feature provides for the stability of multielectron atoms and the existence of excited states wherein electrons 
magnetically interact as shown in the Two-Electron Atoms section, the Three- Through Twenty-Electron Atoms section, and the 
Excited States of Helium section.  The electron’s motion corresponds to a current which gives rise to a magnetic field with a 
field strength that is inversely proportional to its radius cubed wherein the magnetic field is a relativistic effect of the electric 
field as shown by Jackson [46].  As there is no electrostatic self-energy as shown in the Determination of Atomic Orbital Radii 
section and Appendix II, there is also no magnetic self-energy for the bound electron since the magnetic moment is invariant for 
all states and the surface current is the source of the discontinuous field that does not exist inside of the electron as given by Eq. 
(1.136),   ( )a bX  n H H K .  No energy term is associated with the magnetic field unless another source of magnetic field is 

present.  In general, the corresponding relativistic correction can be calculated from the effect of the electron’s magnetic field on 
the force balance and energies of other electrons and the nucleus, which also produce magnetic fields.  In the case of one-
electron atoms, the nuclear-electron magnetic interaction is the only factor.  Thus, for example, the effect of the proton was 
included in the derivation of Eq. (1.260) for the hydrogen atom. 
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Chapter 2 
  
EXCITED STATES OF THE ONE-ELECTRON ATOM 
(QUANTIZATION) 
  
 
 
 
 
EQUATION OF THE ELECTRIC FIELD INSIDE THE ATOMIC ORBITAL 
It is well known that resonator cavities can trap electromagnetic radiation of discrete resonant frequencies.  The atomic orbital is 
a resonator cavity that traps single photons of discrete frequencies.  Thus, photon absorption occurs as an excitation of a 
resonator mode.  The “trapped photon” is a “standing electromagnetic wave” which actually is a circulating wave that propagates 
around the z-axis, and its source current superimposes with each great circle current loop of the atomic orbital.  The time-
function factor, ( )k t , for the “standing wave” is identical to the time-function factor of the atomic orbital in order to satisfy the 
boundary (phase) condition at the atomic orbital surface.  Thus, the angular frequency of the “trapped photon” has to be identical 
to the angular frequency of the electron atomic orbital, n , given by Eq. (1.36).  Furthermore, the phase condition requires that 

the angular functions of the “trapped photon” have to be identical to the spherical harmonic angular functions of the electron 
atomic orbital.  Combining ( )k t  with the  -function factor of the spherical harmonic gives    ni m m te  for both the electron and 
the “trapped photon” function.   

Consider the hydrogen atom.  The atom and the “trapped photon” caused by a transition to a resonant state other than the 
1n   state have neutral charge.  As shown infra, the photon’s electric field superposes that of the proton such that the radial 

electric field has a magnitude proportional to /Z n  at the electron where 1, 2,3,...n   for excited states and 
1 1 1 1

 , , ,...,
2 3 4 137

n   

for lower energy states given in the Hydrino Theory—BlackLight Process section.  This causes the charge density of the electron 
to correspondingly decrease and the radius to increase for states higher than 13.6 eV and the charge density of the electron to 
correspondingly increase and the radius to decrease for states lower than 13.6 eV as shown in Figure 5.2.  Thus, the field lines of 
the proton always end on the electron.  A way to conceptualize the effect of the photon “standing wave” in an electronic state 
other than 1n   is to consider a solution of Laplace’s equation in spherical coordinates with source currents “glued” to the 
electron and to the nucleus and phase-locked to the rotating electron current density with a radial electric field that only exists at 
the electron.  Or, alternatively to a source current at the nucleus, a Poisson equation solution may comprise a delta function 
inhomogeneity at the origin [1].  Thus, the “trapped photon” is analogous to a gluon described in the Proton and Neutron section 
and a photon in free space as described in the Equation of the Photon section.  However, the true nature of the photon field does 
not change the nature of the electrostatic field of the nucleus or its energy except at the position of the electron.  The photon 
“standing wave” function further comprises a radial Dirac delta function that “samples” the Laplacian equation solution only at 
the position infinitesimally inside of the electron current-density function and superimposes with the proton field to give a field 
of radial magnitude proportional to /Z n , and the Fourier transform of the photon “standing wave” of the electronic states other 

than the 1n   state is continuous over all frequencies in rs -space and is given by 
sin r

r

s r

s r
.  The free space photon also comprises 

a radial Dirac delta function, and the angular momentum of the photon given by   41
Re ( )

8
dx

c
   m r E B*   in the Photon 

section is conserved [2] for the solutions for the resonant photons and excited state electron functions given infra.  It can be 
demonstrated that the resonance condition between these frequencies is to be satisfied in order to have a net change of the 
electromagnetic energy field [3].  In the present case, the correspondence principle holds.  That is the change in angular 
frequency of the electron is equal to the angular frequency of the resonant photon that excites the resonator cavity mode 
corresponding to the transition, and the energy is given by Planck’s equation.  The predicted energies, Lamb shift, fine structure, 
hyperfine structure, resonant line shape, line width, selection rules, etc. are in agreement with observation as shown infra. 
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The discretization of the angular momentum of the electron and the photon gives rise to quantized electron radii and 
energy levels.  Transitions occur in integer units of the electron’s inalienable intrinsic angular momentum of   (Appendix II) 
wherein the exciting photons carry an integer multiple of  .  Thus, for e em r v p  to be constant, the velocity of the electron 

source current decreases by a factor of the integer, and the radius increases by the factor of the integer.  Concomitantly, the 
photon field superimposes that of the proton causing a resultant central field of a reciprocal integer that establishes the force 
balance at the excited state radius.  This quantization condition is equivalent to that of Bohr except that the electron angular 
momentum is  , the angular momentum of one or more photons that give to an excited state is n , and the photon field changes 
the central force balance.  Also, the standing wave regards the photon field and not the electron that comprises an extended 
current and is not a wave function.  Thus, the quantization condition can also be considered as arising from the discretization of 
the photon standing wave including the integer spherical periodicity of the spherical harmonics of the excited state of the bound 
electron as a spherical cavity. 

For a spherical resonator cavity, the relationship between an allowed radius and the “photon standing wave” wavelength 
is  

 2 nr n    (2.1) 

where n  is an integer.  Now, the question arises: given that this is a resonator cavity, which resonant states are possible where 
the transition is effected by a “trapped photon?”  For the electron atomic orbital, a spherical resonator cavity, the relationship 
between an allowed radius and the electron wavelength is: 

 1 12 ( ) 2 n nnr r n       (2.2) 

where  
 1, 2,3,4,...n  , and 

 
1 1 1

, , ,...
2 3 4

n   

 1  is the allowed wavelength for 1n   

 1r  is the allowed radius for 1n   

(The mechanism for transitions to the reciprocal integer states involves coupling with another resonator called a catalyst as given 
in the Hydrino Theory—BlackLight Process section.)  An electron in the ground state, 1n  , is in force balance including the 
electrodynamic force which is included by using the reduced electron mass as given by Eqs. (1.254), (1.259), and (1.260). 

 
2 2
1

2
1 0 14

em v Ze

r r
  (2.3) 

When an electron in the ground state absorbs a photon of sufficient energy to take it to a new resonant state, 2,3,4,...,n   force 

balance must be maintained.  This is possible only if the central field is equivalent to that of a central charge of 
Ze

n
, and the 

excited state force balance equation is:  

 
2 2

2
0

1

4
e n

n n

m v Ze

r n r
  (2.4) 

where 1r  is the “ground” state radius of the electron, and nr  is the nth excited state radius of the electron.  The radius of the nth 

excited state follows from Eq. (1.260) and Eq. (2.4).  

 n Hr na  (2.5) 

The reduction of the effective charge from Ze  to 
Ze

n
 is caused by trapping a photon in the atomic orbital, a spherical resonator 

cavity.  (This condition for excited states is also determined by considering the boundary condition for the multipole expansion 
of the excited states as solutions of Maxwell’s equations wherein the angular momentum and energy of each resonant photon are 
quantized as   and  , respectively, as given in the Excited States of Helium section.)  The photon’s electric field creates a 

“standing wave” in the cavity with an effective charge of 
1

1  (  )nZe at r
n

    
.  The total charge experienced by the electron is the 

sum of the proton and “trapped photon” charge components.  The equation for these “trapped photons” can be solved as a 
boundary value problem of Laplace’s equation.  For the hydrogen atom, the boundary conditions are that the electric field is in 
phase with the atomic orbital and that the radial function for the electric field of the “trapped photon” at nr  is:  

 
  2

0

1
1

4
r photon

n

e

n r
     

E     2,3, 4,...,n   (2.6) 

The general form of the solution to Laplace’s equation in spherical coordinates is: 
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All ,mA  are zero because the electric field given by the potential must be inversely proportional to the radius to obtain force 

balance.  The electric field is the gradient of the potential: 
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Thus, 
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Given that 
2

04proton
n

e

r


E , and that the electric fields of the proton and “trapped photon” must superimpose to yield a field 

equivalent to a central point charge of 
Ze

n


, the “trapped photon” electric field for each mode is determined as follows.  The 

time-function factor and the angular-function factor of the charge-density function of the atomic orbital (Eqs. (1.27) and (1.28-
1.29)) at force balance must be in phase with the electric field of the “trapped photon.”  The relationship between the electric 
field equation and the “trapped photon” source charge-density function is given by Maxwell’s equation in two dimensions. 

  1 2
0




  n E E  (2.11) 

where n  is the radial normal unit vector, 1 0E  ( 1E  is the electric field outside of the atomic orbital), 2E  is given by the total 

electric field at n Hr na , and   is the surface charge-density.  Thus, 
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 1, 2,3,4,...n   
  0,1,2,..., 1n   
 m    , –  1,...,0,...,    

rtotalE  is the sum of the “trapped photon” and proton electric fields, 
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For Hr na  and 0m  , the total radial electric field is: 
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e

n na
E  (2.17) 
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Photons carry electric field, and the direction of field lines change with relative motion as required by special relativity.  
They increase in the direction perpendicular to the propagation direction.  As shown by Eq. (4.9), the linear velocity of each 
point along a great circle of the photon atomic orbital is c .  And, as shown in the Special Relativistic Correction to the Ionization 
Energies section and by Eq. (1.280), when the velocity along a great circle is light speed, the motion relative to the non-light 
speed frame is purely radial.  In the case of the electric field lines of a trapped resonant photon of an excited state, the relativistic 
electric field is radial1.  It is given by Eq. (2.15), and it exists only at  nr r  .  Thus, the photon only changes the radius and 

energy of the electron directly.  Since the electric field of the photon at the electron superimposes that of the nucleus, the excited-
state-energy levels are given by Eq. (2.18), and the hydrogen atom, for example, remains neutral. 

The spherical harmonic function has a velocity less than light speed given by Eq. (1.35) and is phase-matched with the 
electron such that angular momentum is conserved during the excited state transition.  This radial field can be considered a 
corresponding surface charge density as given in the Instability of Excited States section and the Stability of Atoms and 
Hydrinos section.  All boundary conditions are met for the electric fields and the wavelengths of the “trapped photon” and the 
electron.  Thus, Eq. (2.16) is the solution for the excited modes of the atomic orbital, a spherical resonator cavity.  And, the 
quantum numbers of the electron are n ,  , m , and sm  (Described in the Stern-Gerlach Experiment section).  A xp  or yp  

atomic-hydrogen excited state is shown in Figure 2.1. 
 
Figure 2.1.   The electron atomic orbital is a resonator cavity wherein the radii of the excited states are related by integers.  
The electronic charge-density function of a xp  or yp  atomic-hydrogen excited state is shown with positive and negative charge-

density proportional to red intensity and blue intensity, respectively.  The function corresponds to a charge density wave on the 
two-dimensional spherical surface of radius 0na  that travels time harmonically about the z-axis at the angular frequency given 

by Eq. (1.36).  It is comprised of a linear combination of a constant function modulated by time and spherically harmonic 
functions.  The centrifugal force is balanced by the electric field of its photon that is phase-locked to the spinning electron.  The 
brightness corresponds to the intensity of the two-dimensional radial photon field. 
 

 
 
In the limit, the electric field of a photon cancels that of the proton ( n   in Eq. (2.17)), and the electron ionizes.  The radius 
of the spherical shell (electron atomic orbital) goes to infinity as in the case of a spherical wavefront of light emitted from a 
symmetrical source, but it does not achieve an infinite radius.  Rather it becomes ionized as shown in Figure 2.2 with the free 
electron propagating as a plane wave with linear velocity, zv , and the size of the electron is the de Broglie wavelength, /h p  , 

as given in the Electron in Free Space section. 
In general, the mechanism of photon absorption to form an excited state is given in the Transitions section wherein 

ionization is a special case.  The extrema excited state photon is annihilated as the electron is ionized.  The ionized electron gains 
kinetic energy with free electron radiation reaction field cancellation of the remnant extrema photon field.  Specifically, as the 
electron radius goes to infinity, the photon field intensity goes to zero, but an infinite radius electron is not physical without 
interaction.  So, the extrema comprising the  n    state is a limiting state that cannot be achieved.  Instead, the electron is 
ionized with finite kinetic energy whereby there is a radiation reaction during the corresponding electron acceleration to gain the 
kinetic energy, and the remnant extrema photon field is annihilated.  The field equations follow the superposition of excited 
states into free states.   

 
1 A positive electric field is given by a trapped photon of an excited state if the velocity of the field lines is in the direction of the field line, and a negative 
central field is given if they are in opposite directions.  The “trapped” photon can be considered the superposition of two free space photons given in the 
Photon section generated according to Eqs. (4.4-4.7) with the magnetic and electric fields interchanged such that when the two are superposed the great 
circle electric field lines add and the great circle magnetic field lines cancel. 

Photons can transition into particles at rest through a transition state.  A transition state atomic orbital of particle production is very similar to a 
trapped photon of an excited state as given in the Particle Production section, the Lepton section, and the Quarks section. 
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Figure 2.2.   Time-lapsed image of electron ionization.  With the absorption of a photon of energy in excess of the binding 
energy, the bound electron’s radius increases and the electron ionizes as a plane-wave with the de Broglie wavelength.  Similar 
to the mechanism of the propagation of a current in a classical conductor, ionization of an inner shell electron proceeds by 
successive displacement of contiguous outer shell electrons until the most outer shell electron ionizes. 

 
 
PHOTON ABSORPTION 
The energy of the photon, which excites a mode in a stationary spherical resonator cavity from radius Ha  to radius Hna  is 
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After multiplying Eq. (2.18) by 
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, where Ha  is given by Eq. (1.259), photon  is:  

 
2 2

1
1photon

e Hm a n
     


 (2.19) 

In the case of an electron atomic orbital, the resonator possesses kinetic energy before and after the excitation.  The kinetic 
energy is always one-half of the potential energy because the centripetal force is an inverse squared central force.  As a result, 
the energy and angular frequency to excite an electron atomic orbital are only one-half of the values above, Eqs. (2.18) and 
(2.19).  From Eq. (1.36), the angular velocity of an electron atomic orbital of radius Hna  is 

 
 2n

e Hm na
 


 (2.20) 

The change in angular velocity of the atomic orbital for an excitation from 1n   to 1n   is:  
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The kinetic energy change of the transition is 
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wherein Eq. (2.22) is also the equation for the ionization energy.  The change in angular velocity of the electron atomic orbital, 
Eq. (2.21), is identical to the angular velocity of the photon necessary for the excitation, photon  (Eq. (2.19)).  The energy of the 

photon necessary to excite the equivalent transition in an electron atomic orbital is one-half of the excitation energy of the 
stationary cavity because the change in kinetic energy of the electron atomic orbital supplies one-half of the necessary energy.  
The change in the angular frequency of the atomic orbital during a transition and the angular frequency of the photon 
corresponding to the superposition of the free space photon and the photon corresponding to the kinetic energy change of the 
atomic orbital during a transition are equivalent.  The correspondence principle holds.  It can be demonstrated that the resonance 
condition between these frequencies is to be satisfied in order to have a net change of the energy field [3].  Similarly photons are 
emitted when an electron is bound.  Relations between the free space photon wavelength, radius, and velocity to the 
corresponding parameters of a free electron as it is bound are given in the Equation of the Photon section. 

The excited states of hydrogen are given in Table 2.1. 
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Table 2.1.  Calculated energies (non-relativistic; no spin-orbit interaction; no electronic spin/nuclear spin interaction) and 
ionization energies for the hydrogen atom in the ground state and some excited states. 
 

 
 
a from Eq. (2.5) 

b from 
1

2
T V   

c from Eq. (1.261) 
d from Eq. (2.22) 
e experimental 
 

INSTABILITY OF EXCITED STATES  
Satisfaction of the Haus condition [4] of the presence of spacetime Fourier components of the current density synchronous with 

those traveling at the speed of light, k
c


 , gives rise to radiation.  For the excited (integer quantum number) energy states of 

the hydrogen atom,  photon , the two-dimensional surface charge due to the “trapped photons” at the atomic orbital, is given by 

Eqs. (2.6) and (2.11). 

       0 0
0 02

1
, , Re , ( )

4 ( )
       


        


nim tm

photon n
n

e
Y Y Y e r r

r n
  2,3, 4,...,n   (2.23) 

Whereas, electron , the two-dimensional surface charge of the electron atomic orbital is 
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The superposition of  photon  (Eq. (2.23)) and electron  (Eq. (2.24)) where the spherical harmonic functions satisfy the conditions 

given in the Bound Electron “Atomic Orbital” section is equivalent to the sum of a radial electric dipole represented by a doublet 
function and an radial electric monopole represented by a delta function. 
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 2,3,4,...,n    
where  

  ( ) ( ) ( )n n nr r r r r r  


       (2.26) 

is the Dirac doublet function [5] which is defined by the property 

 
     

     

x t t x t

x t d x t



   

 

  



 

 
 (2.27) 

or equivalently by the property 

      0x t t dt x
  



   (2.28) 

The Dirac doublet is the impulse response of an ideal differentiator and corresponds to the radial electrostatic dipole.                  
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The symbol  t


 is appropriate since operationally the doublet is the derivative of the impulse. 

The doublet does possess spacetime Fourier components synchronous with waves traveling at the speed of light.  
Whereas, the radial delta function does not.  The Spacetime Fourier Transform of the atomic orbital comprising a radial Dirac 
delta function is given in Appendix I: Nonradiation Condition:   
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wherein ( , )mG s 
  and ( , , )mH s  

 are the spherical-coordinate Fourier transforms of  , cosm
mN P    and ime  , respectively.  

The radial doublet function is the derivative of the radial Dirac delta function; thus, the Fourier transform of the doublet function 
can be obtained from the Fourier transform of the Dirac delta function, Eq. (2.29), and the differentiation property of Fourier 
transforms [6]. 
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From Eq. (2.29) and Eq. (2.30), the spacetime Fourier transform of Eq. (2.25), the superposition of  photon  (Eq. (2.23)) and 

electron   (Eq. (2.24)) is 
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In the case of time harmonic motion, the current-density function is given by the time derivative of the charge-density function.  
Thus, the current-density function is given by the product of the constant angular velocity and the charge-density function.  The 
Fourier transform of the current-density function of the excited-state atomic orbital is given by the product of the constant 
angular velocity and Eq. (2.32): 
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Consider the wave vector of the cosine function of Eq. (2.33).  When the velocity is c  corresponding to a potentially emitted 
photon 
 n n n n   s v s c  (2.34) 

the relativistically corrected wavelength (Eq. (1.280)) is: 
 n nr   (2.35) 

Substitution of Eq. (2.35) into the cosine function does not result in the vanishing of the Fourier transform of the current-density 

function.  Thus, spacetime harmonics of n k
c


  or 

0

n k
c

 


  do exist for which the Fourier transform of the current-density 

function is nonzero.  An excited state is metastable because it is the sum of nonradiative (stable) and radiative (unstable) 
components and de-excites with a transition probability given by the ratio of the power to the energy of the transition [7].  
Alternatively, the radiative fields may be considered directly.  In the case of the nonradiative currents of nonexcited states, the 
corresponding far fields have a vanishing Poynting power vector as shown in Appendix I.  In contrast, regarding the dipole, the 
vector -/+ can flip to +/- and radiate the well known current dipole radiation having a finite Poynting power vector in the far field 
[8]. 
 

SOURCE CURRENT OF EXCITED STATES 
As shown in Appendix I, for time-varying electromagnetic fields, Jackson [2] gives a generalized expansion in vector spherical 
waves that are convenient for electromagnetic boundary-value problems possessing spherical symmetry properties and for 
analyzing multipole radiation from a localized source distribution.  The Green function  ,G x' x  which is appropriate to the 

equation:  

      2 2 ,k G     x' x x' x  (2.36) 

in the infinite domain with the spherical wave expansion for the outgoing wave Green function is: 
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Jackson [2] further gives the general multipole field solution to Maxwell’s equations in a source-free region of empty space with 
the assumption of a time dependence ni te  : 
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where the cgs units used by Jackson are retained in this section.  The radial functions  f kr  and  g kr  are of the form: 

          1 1 2 2g kr A h A h       (2.39) 

,mX  is the vector spherical harmonic defined by: 
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where 
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i
 L r  (2.41) 

The coefficients  ,Ea m  and  ,Ma m  of Eq. (2.38) specify the amounts of electric  ,m  multipole and magnetic  ,m  

multipole fields, and are determined by sources and boundary conditions as are the relative proportions in Eq. (2.39).  Jackson 
gives the result of the electric and magnetic coefficients from the sources as: 
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and 
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respectively, where the distribution of charge  , t x , current  , tJ x , and intrinsic magnetization  , txM  are harmonically 

varying sources:    i tex ,   i teJ x , and   i texM .  The currents corresponding to Eq. (1.27) and the first term of Eqs. 

(1.28-1.29) are static.  Thus, they are trivially nonradiative.  The current due to the time dependent term of Eq. (1.29) 
corresponding to p, d, f, etc. orbitals is: 
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where N  and 'N   are normalization constants.  J  corresponds to a spherical harmonic traveling charge-density wave of 
quantum number m  that moves on the surface of the atomic orbital, spins about the z-axis at angular frequency n , and 

modulates the constant atomic orbital at frequency nm .  The vectors are defined as: 
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 ˆ ˆ r̂    (2.46) 

 “^” denotes the unit vectors û 
u

u
, non-unit vectors are designed in bold, and the current function is normalized.  From Eq. 

(2.44), the charge and intrinsic magnetization terms are zero.  Also, the current  , tJ x  is in the ̂  direction; thus, the  ,Ea m  

coefficient given by Eq. (2.42) is zero since 0 r J .  Substitution of Eq. (2.44) into Eq. (2.43) gives the magnetic multipole 
coefficient  ,Ma m : 
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For the electron source current given by Eq. (2.44), each comprising a multipole of order  ,m  with a time dependence i te , the 

far-field solutions to Maxwell’s equations given by Eq. (2.38) are: 
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and the time-averaged power radiated per solid angle 
 ,dP m

d


 is: 
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where  ,Ma m  is given by Eq. (2.47).  In the case that k  is the lightlike 0k , then /nk c  regarding a potentially emitted 

photon, in Eq. (2.47), and Eqs. (2.48-2.49) vanishes for: 

 n n ns vT R r      (2.50) 

There is no radiation.  Thus, there is no radiation due to the azimuthal charge density wave even in an excited state.  However, 
for excited states there exists a radial dipole that is unstable to radiation as shown in the Instability of Excited States section.  
This instability gives rise to a radial electric dipole current considered next. 

In a nonradiative state, there is no emission or absorption of radiation corresponding to the absence of radial motion 
wherein Eq. (2.42) is zero since 0 r J ; conversely, there is motion in the radial direction only when the energy of the system is 
changing.  The same physical consequence can also be easily shown with a matter-wave dispersion relationship.  Thus, radial 
motion corresponds to the emission or absorption of photons.  The form of the radial solution during a transition is then the 
corresponding electron source current comprising a time-dependent radial Dirac delta function that connects the initial and final 
states as boundary conditions.  The photon carries fields and corresponding angular momentum.  This aspect is ignored in 
standard quantum mechanics as shown in the Schrödinger Wavefunction in Violation of Maxwell’s Equations section and Refs. 
[9-17] where the radii of excited states are purely mathematical probability-wave eigenfunctions and are not square integrable, 
but are infinite in highly-excited states and have many discrepancies with observations as discussed previously [18].  In contrast, 
the physical characteristics of the photon and the electron are the basis of physically solving for excited states according to 
Maxwell’s equations.  The discontinuous harmonic radial current in Eq. (2.42) that connects the initial and final states of the 
transition is: 
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Where   is the lifetime of the transition given by Eq. (2.107) and 't  is time during the transition. 
 
SELECTION RULES  
The multipole fields of a radiating source can be used to calculate the energy and angular momentum carried off by the radiation 
[19].  For definiteness we consider a linear superposition of electric (  , m) multipoles with different m values, but all having the 
same  , and following Eq. (16.46) of Jackson [19], write the fields as: 
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For harmonically varying fields, the time-averaged energy density is: 
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In the radiation zone, the two terms are equal.  Consequently, the energy in a spherical shell between r  and ( )r dr  
(  1)for kr   is: 
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where the asymptotic form (Eq. (16.13) of Jackson [19]) of the spherical Hankel function has been used.  With the orthogonality 
integral (Eq. (16.44) of Jackson [19]) this becomes: 
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independent of the radius.  For a general superposition of electric and magnetic multipoles, the sum over m becomes a sum over 

  and m and 
2

Ea  becomes 
2 2

E Ma a .  The total energy in a spherical shell in the radiation zone is thus an incoherent sum 
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over all multipoles. 
The time-averaged angular-momentum density is: 
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The triple cross product can be expanded, and the electric field substituted to yield, for a superposition of electric multipoles, 
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Then the angular momentum in a spherical shell between r  and ( r dr ) in the radiation zone is: 
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With the explicit form (Eq. (16.43) of Jackson [19]) for lmX , Eq. (2.58) can be written 
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From the properties of mLY  listed in Eq. (16.28) of Jackson [19] and the orthogonality of the spherical harmonics, we obtain the 

following expressions for the Cartesian components of 
dM

dr  
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These equations show that for a general  th order electric multipole that consists of a superposition of different m values, only 
the z component of the angular momentum is relatively simple. 

For a multipole with a single m value, xM  and yM  vanish, while a comparison of Eq. (2.62) and Eq. (2.55) shows that 

 zdM m dU

dr dr


 
 (2.63) 

Independent of r  [19].  Experimentally, the photon can carry   units of angular momentum.  Thus, during excitation the spin, 
orbital, or total angular momentum of the atomic orbital can change by zero or    .  The electron transition rules arise from 
conservation of angular momentum.  The selection rules for multipole transitions between quantum states arise from 
conservation of total angular momentum and component angular momentum where the photon carries   of angular momentum. 
 

ORBITAL AND SPIN SPLITTING 
The ratio of the square of the angular momentum, 2M , to the square of the energy, 2U , for a pure (  ,m) multipole follows from 
Eqs. (2.54-2.55) and Eqs. (2.60-2.62) [19] 
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The magnetic moment is defined [20] as: 

  
charge x angular momentum

2 x mass
   (2.65) 

The radiation of a multipole of order (  , m) carries m  units of the z component of angular momentum comprised of   per 
photon of energy  .  Thus, the z component of the angular momentum of the corresponding excited state electron atomic 
orbital is: 

 zL m   (2.66)  

Therefore, 
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where B  is the Bohr magneton.  The presence of a magnetic field causes the principal excited state energy levels of the 

hydrogen atom (Eq. (2.22)) to split by the energy orb
magE  corresponding to the interaction of the magnetic flux with the magnetic 
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moment given by Eq. (2.67).  This energy is called orbital splitting. 

 orb
mag BE m B  (2.68) 

As is the case with spin splitting given by one half the energy of Eq. (1.227) which corresponds to the transition between spin 
states, the energy of the electron is increased in the case that the magnetic flux is antiparallel to the magnetic moment, or the 
energy of the electron is decreased in the case that the magnetic flux is parallel to the magnetic moment.  The spin and orbital 
splitting energies superimpose; thus, the principal excited state energy levels of the hydrogen atom (Eq. (2.22)) are split by the 
energy /spin orb

magE  
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where it follows from Eq. (2.15) that 
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Based on the vector multipolarity of the corresponding source currents and the quantization of the angular momentum of photons 
in terms of  , the selection rules for the electric dipole transition after Jackson [19] are: 
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Splitting of the energy levels in addition to that given by Eq. (2.69) occurs due to a relativistic effect described in the Spin-Orbit 
Coupling (Fine Structure) section.  Also, a very small shift that is observable by radio-frequency spectroscopy is due to the 
radiation reaction force between the electron and the photon and conservation of energy and linear momentum involving recoil 
during emission.  This so-called Lamb shift is described in the Resonant Line Shape, and Hydrogen and Muonic Hydrogen Lamb 
Shift sections. 

Decaying spherical harmonic currents on the surface of the atomic orbital give rise to spherical harmonic radiation fields 
during emission; conversely, absorbed spherical harmonic radiation fields produce spherical harmonic currents on the surface of 
the atomic orbital to effect a transition.  Excited states are radiative according to Maxwell’s equations as given in the Instability 
of Excited States section, and the transition probabilities or A  coefficients are shown to be a function of the initial and final radii 
in the State Lifetime and Line Intensities section.  The distribution of multipole radiation and the multipole moments of the 
atomic orbital for absorption and emission are derived by Jackson [7].  Some of the simpler angular distributions are listed in 
Table 2.2. 

 
Table 2.2.  Some of the simpler angular distributions of multipole radiation and the multipole moments of the atomic orbital 
for absorption and emission. 

    2

, ,l m  X  

  
 m  

0  1  2 

1  
Dipole 23

sin
8




  23
1 cos

16



  

 

2  
Quadrupole 2 215

sin cos
8

 


  2 45
1 3cos 4cos

16
 


   45

1 cos
16




  

 



Chapter 2 136 

STARK EFFECT 
Similarly to the splitting of the energy levels due to an external applied magnetic field, an applied electric field lifts the 
degeneracy of the principal energy levels of the one-electron atom to give rise to a splitting called the Stark Effect.  Since the 
magnetic field is a relativistic effect of the electric field as shown by Jackson [21] and the electron’s charge, e , charge-to-mass 

ratio, 
e

e

m
, angular momentum of  , and the magnetic moment of B  are relativistically invariant, it is not surprising as shown 

in this section that the energy, StarkE , of a one-electron atom in an electric field follows from Eqs. (2.68-2.69) with the magnetic 

dipole moment replaced by the electric dipole moment and the magnetic flux replaced by the electric field appliedE .  Considering 

only an electric dipole zp  and the direct influence of the external field, the energy is: 

 Stark appliedE  zp E  (2.72) 

The bound electron has a field equivalent to that of a point charge at the origin for a radius greater than that of the atomic 
orbital as given in the Determination of Atomic Orbital Radii section.  The electric field of the nucleus is also equivalent to that 
of a point particle at the origin.  This condition also holds for the spherically and time harmonic excited-state charge-density 
waves on the surface of the atomic orbital given in the Excited States of the One-Electron Atom (Quantization) section.  In these 
cases, the dipole moment over the angular integrals is zero, but excited-state Stark splittings with the equivalent of the 
corresponding electric dipole moments given by Eq. (2.72) exist due to the interaction of the applied electric field and the 
angular momentum of the excited-state photon field.  

As further shown in the Excited States of the One-Electron Atom (Quantization) section, quantization is trivial given that 
the bound electron forms a cavity and the photon has quantized energy and angular momentum corresponding to the 
multipolarity of the excited-state photon.  According to Eq. (2.64), the angular momentum of the excited-state-photon field of 
energy   carries m  units of angular momentum to excite the orbital having the quantum number m .  Then, the transition 

with 1m    of Eq. (2.71) gives the result of Eq. (4.1), and the superposition principle of photons gives the general case 

corresponding to Eq. (2.64). 
The photon-field is phase-locked to the electron charge-density wave of matching multipole moment, and both rotate 

about the z-axis at the angular velocity given by Eq. (2.20).  The rotation is without dissipation; thus, it is a supercurrent.  It can 
be shown that the maintenance of the supercurrent condition and the quantization of the photon-field in terms of m  quantizes 

the electric dipole moment of Eq. (2.72) in terms of the quantum number m .  According to Eq. (2.69), the energy of the excited 

state due to the orbital angular momentum caused by the excited-state photon in the presence of a magnetic flux B  is: 
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where the velocity, nv , is given by Eq. (1.35), the geometric factor of 
3

sin
2



 

is given by Eq. (1.144), and the radii of the excited 

states are given by Eq. (2.5).   
It is shown in the Stored Electric Energy section that during a Stern-Gerlach transition, the applied flux gives rise to a 

Lorentz force on the atomic orbital current resulting in a crossed electric field corresponding to a Hall voltage.  With an exact 
balance between the Lorentz force (Eq. (1.183)) and the electric force corresponding to the Hall voltage (Eq. (1.184)), each 
superconducting charge-density element of the electron propagates along a great circle according to Eq. (1.187) which is the 
condition for superconductivity in the presence of crossed electric and magnetic fields.  Consider the case of a Stark-split 
transition of the electron wherein the applied electric field causes a current that gives rise to a magnetic flux xB .  In this case, the 

superconductor condition for the vectors shown in Figure 2.3 is 

 
/ sinnE B v 

 
(2.74) 

Figure 2.3.   Coordinate system of crossed electric field, zE , corresponding to the applied field, magnetic flux, xB , due to 

photon field, and superconducting current yi . 

 
 
The magnetic field xB  that is crossed with the applied electric field arises when the electron flips by 180° which doubles the 

energy of Eq. (2.73).  Then, the energies due to an applied electric field are given by the substitution of Eq. (2.74) into Eq. (2.73) 
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and the multiplication of the result by 2: 
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From Eqs. (2.72) and (2.75), the eccentric dipole zp  is: 
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wherein m  is given by Eq. (2.70). 

There is no Stark effect unless the charge density is time-dependent modulated by the photon-field.  Since the degeneracy 
is lifted by the external electric field by the induction of an effective electric dipole moment in the atom, transitions between all 
m  levels are allowed corresponding to the maximum value of the quantum number   of each level.  In this case, the 

superconductor condition is met since the amplitude of the rotational energy of the charge-density wave given by Eq. (1.71): 
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 (2.77) 

is that corresponding to the photon as given by Eqs. (2.16) and (2.23), and the corresponding supercurrent component of the 
photon is given by the frequency (Eqs. (1.32) and (1.36)) times the charge e .  Thus, the allowed quantum numbers for the state 
with principal quantum number n  having an effective electric dipole that is a function of principal quantum number n  are: 
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    (2.78) 

The splitting of the energy level with principal quantum number n  into  2 1n   equidistant sub-levels determined by the 

quantum number m  for the 1n   to 6n   levels is given in Table 2.3.  The predictions given by Eq. (2.75) for hydrogen match 

those given in Ryde [22]2. 

 

 
2 The theory of the Stark Effect according to quantum mechanics does not arise naturally, rather it must be forced by simultaneously using internally 
inconsistent spherical and parabolic quantum numbers.  The theory also requires the “mutual perturbation” of orbitals involving a single electron in the 
absence of a transition which is nonphysical [22-23].  Hund’s-Rule and Pauli-Exclusion-Principle-type violations are encountered by this “mutual 
perturbation” as well as by the existence of more than one set of quantum numbers for the same state.  Moreover, lines corresponding to the redundant, 
nonunique quantum numbers are predicted that are not observed. 

The agreement between the predictions of Eq. (2.75) and observations also confirms that the radius of the atomic-hydrogen-excited states is given 

by   na
0
 rather than   n

2a
0
 as incorrectly given by the Bohr, Schrödinger, and Dirac equations.  These theories are further internally inconsistent because the 

one-electron-atom wave functions cannot give rise to the electric dipole moments given by Eq. (2.76).  In fact, except for the directional orbitals such as 

 np
z
, there are no electric dipole moments possible, and the requirement of the localization of the entire charge of the electron along the z-axis violates the 

Uncertainty Principle as well as all physical laws for a charge bound in a Coulombic central field.  Furthermore, mixing of orbitals to give an electric 

dipole of   nea
0
 requires the hydrogen atom to have positive and negative poles separated by na

0
 in contradiction to the experimental observation that its 

symmetric neutrality does not change in an electric field.   

The argument that such an enormous electric dipole of nea
0
 exists only in an excited state does not save the quantum-mechanical basis of the 

Stark effect.  The dielectric susceptibility of any atom is a function of any induced electric dipole moment.  Hydrogen has a dielectric constant different 
from vacuum in the ground state.  The physics for the dipole moment of any excited state must also apply to the ground state.  Since the experimentally 
observed susceptibility and thus the induced moment is many orders of magnitude less than that predicted for hydrogen, the quantum mechanical basis for 
the Stark Effect of electric polarization is disproved.  The need to reject the quantum mechanical premise is further easily appreciated by considering the 
enormous predicted, but unobserved, change in reactivity of hydrogen due to the application of even a very weak electric field. 
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Table 2.3.   The splitting of the energy level with principal quantum number n  into  2 1n   equidistant sub-levels determined 

by the quantum number m  for the 1n   to 6n   levels. 

 
 

n     m  
 

E a

1 0 0 0 
 
2 1 

1
0 
-1 

2a
0 

-2a 
 
 
3 

 
2 

2
1 
0 
-1 
-2 

6a
3a 
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-3a 
-6a 

 
 
 
4 
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3
2 
1 
0 
-1 
-2 
-3 

12a
8a 
4a 
0 

-4a 
-8a 
-12a 
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4 

4
3 
2 
1 
0 
-1 
-2 
-3 
-4 

20a
15a 
10a 
5a 
0 

-5a 
-10a 
-15a 
-20a 

 
 
 
 
 
6 

 
 
 
 
5 

5
4 
3 
2 
1 
0 
-1 
-2 
-3 
-4 
-5

30a
24a 
18a 
12a 
6a 
0 

-6a 
-12a 
-18a 
-24a 
-30a

a Eq. (2.75) with 
0

3

2
applied

ea E  defined as a. 

 
Here, as shown in the Instability of Excited States section, the excited states are radiative due to a radial electric dipole term.  
The spectral line emitted as a transition between energy levels in  and fn  of the hydrogen atom consists of numerous 

components.  The selection rules for electric dipole transitions in the presence of an applied electric field are given by:  

 
   

       
1 1

0,1,2.... 1 1 0,1,2.... 2
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 (2.79) 

where the subscripts i  and f  denote the initial and final states, respectively.  Due to the vector multipolarity of the 
corresponding source currents and the quantization of the angular momentum of photons in terms of  , these components are 
either linearly polarized parallel to the vector of the external field, E, or circularly polarized in the plane perpendicular to E.  The 
polarization is determined by the parity of the sum of the change in the   and m  quantum numbers after Jackson [19]; so, that 

 
 
 

even integers    -components

odd integers     -components  

m

m





    

    







 (2.80) 

The zero components are forbidden except for the  -component when   is odd such that the state change conserves the 
angular momentum of the photon.  The intensities of the lines are determined by Eq. (2.107) where the multipolarity of the 
photon is a z-oriented dipole. 

From Table 2.3 and Eq. (2.80), L  (  =1215 Å) is split into a triplet comprising a central 0E  ,  -component and 
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two external 2E a   ,  -components.  L  (  =1025 Å) is split up into two inner 3E a   ,  -components and two 

6E a   ,  -components having twice the displacement.  L  (  =972 Å) comprises 4  - and three  -components.  The 

middle undisplaced line being a  -component and the other alternating  - and  -components.  In general, the number of 
Lyman lines is equal to the number of sublevels of the initial emitting state  2 1n  .  The lines comprise n   -components and 

1n    -components except that the zero component is absent when it is a  -component.  In this case, 2 2n   lines are observed 
comprising each of 1n    - and  -components.  The predicted splitting of the Lyman lines and their corresponding 
polarizations and energies match those observed experimentally [22]. 

The three sublevels of L  form the final states in the emission of Balmer lines.  Theoretically, the number of components 

into which the Balmer lines are split is 3 1n    -components and 3 2n    -components except that the zero component is 
absent when it is a  -component.  For H  (  =6562 Å), there are eight  -components with 2 ,  3 ,  4 ,  and 8E a a a a      , 

and seven  -components with 0,  1 ,  5 ,  and 6E a a a     .  Again, the predictions match the experimental data [22]. 

For H ( =4861Å), ten  -components with 2 ,  6 ,  8 ,  10 ,  and 14E a a a a a       , and ten  -components with 

2 ,  4 ,  6 ,  10 , and 12E a a a a a        are predicted.  All of these lines have been recorded except the faintest ones, the 

outermost  -components with 14E a    [22].  For H  (  =4340 Å), the energy shifts of the predicted  - and  -

components are 2 ,  5 ,  8 ,  12 ,  15 ,  18 ,  and 22E a a a a a a a          and 0,  3 ,E a    

7 ,  10 ,  13 ,  17 ,  and 20a a a a a     , respectively.  For H  (  =4101 Å), the energy shifts of the predicted  - and  -

components are 4 ,  8 ,  12 ,  16 ,  20 ,  24 ,E a a a a a a         28 ,  and 32a a   and 

2 ,  6 ,  10 ,  14 ,  18 ,  22 ,  26 ,  and 30E a a a a a a a a          , respectively.  All of the theoretically predicted H  and H  

lines have been observed by Stark and others [22-24].  For Balmer lines having odd n , no  - and  -components coincide, but 
this does not apply for some components of lines with even n .  Such components are consequently partially polarized.  
Furthermore, zero components only appear in  -polarization when n  is odd (i.e. for H , H , ...H ) corresponding to the case 

where   is odd.  This confirms the basis of the selection and polarization rules as the conservation of angular momentum 
between the initial and final states and the emitted multipole radiation. 
 

STATE LIFETIMES AND LINE INTENSITIES 
The power radiated from an excited state can be calculated from the oscillating current corresponding to the motion of the 
electron from the initial to the final radius.  It is evident from Maxwell’s equations that oscillating currents are required in order 
to generate electromagnetic radiation: 
 X i  E H  (2.81) 
 X i  H J E  (2.82) 
From the electron-transition current J, the electric and magnetic fields can be solved through an auxiliary function to Eqs. (2.81-
2.82) called the vector potential A: 
 X B A  (2.83) 
Using Eqs. (2.81-2.83) the inhomogeneous wave equation is derived [25]: 
 2 2     A A J  (2.84) 
which has the solution 
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 (2.85) 

where k   , r  is the vector-potential position, r' is the position vector of the sources, and r r'  is the distance between 

the observation point r and the source point r'. 
The radial current for an electric dipole transition is only finite during the movement of the electron from a state with 

quantum numbers , , ,i sn m m  and radius 
inr  to another state with quantum numbers , 1, ,f sn m m   and radius 

fnr .  As shown by 

Eq. (2.66), the photon carries quantized units of m  of angular momentum along the z-axis.  Consequently, for an electric dipole 
transition, the selection rule on the   quantum number that conserves the angular momentum of the electron and emitted photon 
given by Eq. (2.71) is  
 1    (2.86) 

In this case, the multipolarity of the radiation and that of the source current correspond to spherical harmonics that are 
related by Eq. (2.42).  The radial and azimuthal transition currents over the transition lifetime   are: 
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and 
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respectively, where the lifetime  of the transition is given by Eq. (2.107), f i      is the final angular frequency minus the 

initial, n f ir r r  

 

is the final discrete radius minus the initial, t' is time during the transition, and t is the continuous time 

variable independent of the transition. 
As shown in the Photon section, the photon-field equation gives rise to a Green function given by Eqs. (4.18-4.23) with 

the superposition of many photons.  The spherical-wave radiation that propagates in the radial direction has the same form as the 
source radial current.  Due to the spherical symmetry and the time harmonic nature of the electron transition current, the vector 
potential corresponds to a current dipole at the origin and is a solution of Eq. (2.84).  The Green function solution (Eq. (2.85)) 
matches a spherical radiation wave comprised of photons (Eq. (4.23)) wherein the quantized electron transition current and 
photon field are basis elements for the macroscopic (continuous) Maxwellian solutions for source current and the corresponding 
radiation fields. 

The vector potential and power can be solved using the constraints of conservation of power and linear and angular 
momentum between the outgoing discrete (quantized) photon field with the change of the current densities between the initial 
and final discrete (quantized) states for an electric dipole transition.  The electric dipole selection rule is given by Eq. (2.86).  In 
order to conserve the photon’s quantized angular momentum along the z-axis, the   quantum number corresponding to the 
angular momentum of the excited electronic state must change by 1  corresponding to the transition from initial quantum states 

, , ,i sn m m  and radius 
inr  to the final state with quantum numbers , 1, ,f sn m m   and radius 

fnr .  The angular dependence of the 

current which connects the initial and final states is conserved in the photon field.  Since there is no special preparation of the 
states, the radiation pattern is isotropic, and the power and concomitantly, the intensity of each electric dipole transition 
connecting states with the same initial and final principal quantum numbers are the same.  However, the multiplicity of a given 
  state does change the relative intensities based on statistical population distributions as discussed infra. 

During an electronic transition, the current-density comprises a radially propagating constant spherical shell of current 
that is modulated by a traveling charge density wave.  The angular integral of the vector potential is given by  
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 (2.89) 

The radial electric dipole current for the selection-rule condition of Eq. (2.86) is: 

 zJ 
r

J i
r

 (2.90) 

In order to achieve conservation of energy and power flow as well as angular momentum: 
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 (2.91) 

where Eqs. (1.36) and (1.35) were used for the angular and linear velocity, respectively.  The current that gives rise to quantized 
radiation comprises two terms.  One corresponds to the quantized angular frequency change that matches the angular frequency 
of the corresponding emitted photon, and the other corresponds to the quantized wavenumber change with the transition from the 
initial to final radius.  Using Eq. (1.280), the relationship between the electron radius and wavelength in the lightlike frame is 
given by Eq. (1.16).  The radial current from the initial to final radius must be one wavelength in order to be phase-matched with 
the photon wavelength.  Thus, the electron wavenumber corresponding to the propagating photon traveling at v c  is given by  
the difference in the lightlike electron wavelength in going from the initial to final radius: 
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From Eqs. (2.89-2.92), the quantized current changes in the radial integral of the vector potential are:  
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where the current is a function of 
i fn nr r  in order to conserve the electron and photon angular momentum as in the case of Eq. 

(1.37).  Due to spherical symmetry, the electric dipole current is equivalent to that of a dipole at the origin.  With ' 0r   in the 
Green function,  rA  is: 
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 (2.94) 

Applying Eq. (2.83) to  rA  given by Eq. (2.94) gives the magnetic field H: 
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 (2.95) 

where 
 cos sinz r   i i i  (2.96) 

Outside the dipole source, the corresponding electric field E of the radiation with angular frequency   is given by Ampere’s 
law: 
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 (2.97) 

wherein a further phase match between the electron and photon wavelengths gives the replacement of   by rk c  corresponding 

to the Haus condition [4] k
c


  given in the Instability of Excited States section.  The photon and the electron wave 

relationships are given in the Equation of the Photon section.  For the initial conditions of an unbound electron at rest, the ratio 
of the linear velocity of the subsequently bound electron to the emitted free-space photon given by (Eq. (4.5)) is: 
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2
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n n n

photonphoton photon photon
photon

v r

c r

  
 



    (2.98) 

where the n  subscripts refer to atomic orbital.  The relations between the free space photon wavelength, radius, and velocity and 
the corresponding parameters of a free electron as it is bound are: 

(1) ,n photonr , the radius of the photon electric and magnetic vector field (photon-e&mvf), is equal to n H
n n

c c
r na

v v
  , the 

electron atomic orbital radius given by Eqs. (2.2) and (2.5) times the product of   and the ratio of the speed of light 
c  and nv , the velocity of the atomic orbital given by Eq. (1.35): 

 ,n photon n H
n n

c c
r r na

v v
   (2.99) 

(2) photon , the photon wavelength, is equal to n
n

c

v
 , where n  is the atomic orbital de Broglie wavelength: 

 photon n
n

c

v
   (2.100) 

(3) 
2

photon

c


 , the photon angular velocity, is equal to n , the atomic orbital angular velocity given by Eq. (1.36): 
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In the far field, the photon radiation is that of a spherical wave as given in the Equation of the Photon section.  In this 

case 1rk r  , and the terms having powers of   1

rk r


 vanish.  The corresponding radiation fields are: 

 
1

sin
2 4

r

i f

ik r
r

e n n

ike e

m r r r 
 






H i


 (2.102) 

 0

0

1
sin

2 4

r

i f

ik r
r

e n n

ike e

m r r r 
 
  






E i


 (2.103) 

The time-averaged power density in the radiation zone is given by 
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The total radiated power P  is given by integrating the Poynting power density (Eq. (2.104)) over the surface of a sphere at 
radius r : 
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 (2.105) 

Eq. (2.105) is the form of the Maxwellian result for continuous fields and the corresponding source current.  As shown in the 
Equation of the Photon section, atomic transitions are quantized and the continuous-field result of Eq. (2.105) is given by the 
superposition of many photons as the number goes to infinity. 

The discrete or quantized power must further include the conservation of linear momentum of the radiating electron with 
that of the photon.  Since power is the energy divided by the lifetime, the correction to the power is the same as that of the 
energy.  The application of the correction for linear momentum conservation given by Eq. (2.153) gives the power of the 
quantized transition of energy   as: 
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The transition probability 
1


 or kiA  coefficient  is given by Jackson [7]: 
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Substitution of Eqs. (2.106) and (2.148) into Eq. (2.107) gives the electric dipole electronic transition probability from initial 
quantum states , , ,i sn m m  and radius 

inr  to the final state with quantum numbers , 1, ,f sn m m   and radius 
fnr :   
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 (2.108) 

where Eq. (2.5) was used for the radii and   is defined as 
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The reciprocal of Eq. (2.108) gives the mean state lifetime3: 
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 (2.110) 

where Eq. (2.5) was used for the radii.  Using Eqs. (2.108-2.2110), the parameters of representative hydrogen emission series of 
lines are given in Tables 2.4-2.16. 

Since there is no special preparation of the states, the radiation pattern is isotropic, and the power and concomitantly the 
intensity of each electric dipole transition connecting states with the same initial and final principal quantum numbers are the 
same.  However, the multiplicity of a given   state does change the relative intensities based on the statistical population of 
states of the same principal quantum number n , but different   quantum numbers.  As given in Jackson, the “sum rule” for the 
squares of the ,mY ’s is 
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 (2.111) 

Furthermore, the total number of states N  for a given principal quantum number n  is given by (Eq. (1.70)): 
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3 A mean lifetime arises due to the superposition of transitions over an ensemble of individual atoms.  Each atom has an exact lifetime due to an exact 
transition involving specific initial, final, and any intermediate  , m states and the corresponding exact photon in space relative to the states.  The mean 
lifetime arises from the mean current given by Eq. (2.87) and the spherical radiation field due to the superposition of emitted photons.  Similarly, 
Maxwell’s equations apply to macroscopic fields that are in actuality the superposition of quantized photons.  Thus, deterministic physics arises as the 
aggregate behavior of entities that also in turn obey deterministic physics. 
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where each state corresponds to an   and m  quantum number of an energy level corresponding to the principal quantum 

number n .  Consequently, a source comprised of a set of multipoles of order  , independent of m  gives rise to an isotropic 
radiation distribution when the multipoles superimpose incoherently.  This is the typical case in atomic and nuclear radiative 
transitions unless the initial state has been prepared in a special way.  In the case that the   states can be distinguished, the 
relative intensities are given statistically by the ratios of the multiplicity of each state divided by the total number of states.  
Thus, the relative intensity of state   is given by 

 
2

2 1

n


 (2.113) 

Using Eq. (2.113), the relative line intensities for the transitions 2 0 2
3/2 1/2P S  and 2 2 0

5/2 3/2D P  wherein are 1  and 2  are 

3:5 which closely matches the NIST observed relative intensities of 120:180 [26].   
 
Table 2.4.   The parameters of the Lyman series of emission lines. 
 

in  
f

n   a 1 2 1/
in     1/ b  c 

2 1 2.50E-01 1.00 6.70E+08 1.49E-09 
3 1 1.11E-01 0.44 2.98E+08 3.36E-09 
4 1 6.25E-02 0.25 1.67E+08 5.97E-09 
5 1 4.00E-02 0.16 1.07E+08 9.34E-09 
6 1 2.78E-02 0.11 7.44E+07 1.34E-08 
7 1 2.04E-02 0.08 5.47E+07 1.83E-08 
8 1 1.56E-02 0.06 4.18E+07 2.39E-08 
9 1 1.23E-02 0.05 3.31E+07 3.02E-08 

10 1 1.00E-02 0.04 2.68E+07 3.73E-08 
11 1 8.26E-03 0.03 2.21E+07 4.52E-08 
12 1 6.94E-03 0.03 1.86E+07 5.38E-08 
13 1 5.92E-03 0.02 1.58E+07 6.31E-08 
14 1 5.10E-03 0.02 1.37E+07 7.32E-08 
15 1 4.44E-03 0.02 1.19E+07 8.40E-08 
16 1 3.91E-03 0.02 1.05E+07 9.56E-08 
17 1 3.46E-03 0.01 9.27E+06 1.08E-07 
18 1 3.09E-03 0.01 8.27E+06 1.21E-07 
19 1 2.77E-03 0.01 7.42E+06 1.35E-07 
20 1 2.50E-03 0.01 6.70E+06 1.49E-07 

 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
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Table 2.5.   The parameters of the Balmer series of emission lines. 

in  
f

n   a 2 3 2/
in     1 / b  c 

3 2 2.78E-02 1.00 7.44E+07 1.34E-08 
4 2 1.56E-02 0.56 4.18E+07 2.39E-08 
5 2 1.00E-02 0.36 2.68E+07 3.73E-08 
6 2 6.94E-03 0.25 1.86E+07 5.38E-08 
7 2 5.10E-03 0.18 1.37E+07 7.32E-08 
8 2 3.91E-03 0.14 1.05E+07 9.56E-08 
9 2 3.09E-03 0.11 8.27E+06 1.21E-07 

10 2 2.50E-03 0.09 6.70E+06 1.49E-07 
11 2 2.07E-03 0.07 5.53E+06 1.81E-07 
12 2 1.74E-03 0.06 4.65E+06 2.15E-07 
13 2 1.48E-03 0.05 3.96E+06 2.52E-07 
14 2 1.28E-03 0.05 3.42E+06 2.93E-07 
15 2 1.11E-03 0.04 2.98E+06 3.36E-07 
16 2 9.77E-04 0.04 2.62E+06 3.82E-07 
17 2 8.65E-04 0.03 2.32E+06 4.32E-07 
18 2 7.72E-04 0.03 2.07E+06 4.84E-07 
19 2 6.93E-04 0.02 1.85E+06 5.39E-07 
20 2 6.25E-04 0.02 1.67E+06 5.97E-07 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 

 
Table 2.6.   The parameters of the Paschen series of emission lines. 

in  
f

n   a 3 4 3/
in     1/ b  c 

4 3 6.94E-03 1.00 1.86E+07 5.38E-08 
5 3 4.44E-03 0.64 1.19E+07 8.40E-08 
6 3 3.09E-03 0.44 8.27E+06 1.21E-07 
7 3 2.27E-03 0.33 6.07E+06 1.65E-07 
8 3 1.74E-03 0.25 4.65E+06 2.15E-07 
9 3 1.37E-03 0.20 3.67E+06 2.72E-07 

10 3 1.11E-03 0.16 2.98E+06 3.36E-07 
11 3 9.18E-04 0.13 2.46E+06 4.07E-07 
12 3 7.72E-04 0.11 2.07E+06 4.84E-07 
13 3 6.57E-04 0.09 1.76E+06 5.68E-07 
14 3 5.67E-04 0.08 1.52E+06 6.59E-07 
15 3 4.94E-04 0.07 1.32E+06 7.56E-07 
16 3 4.34E-04 0.06 1.16E+06 8.60E-07 
17 3 3.84E-04 0.06 1.03E+06 9.71E-07 
18 3 3.43E-04 0.05 9.18E+05 1.09E-06 
19 3 3.08E-04 0.04 8.24E+05 1.21E-06 
20 3 2.78E-04 0.04 7.44E+05 1.34E-06 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 



Excited States of the One-Electron Atom (Quantization) 145

 

Table 2.7.   The parameters of the Brackett series of emission lines. 

in  
f

n   a 4 5 4/
in     1/ b  c 

5 4 2.50E-03 1.00 6.70E+06 1.49E-07 
6 4 1.74E-03 0.69 4.65E+06 2.15E-07 
7 4 1.28E-03 0.51 3.42E+06 2.93E-07 
8 4 9.77E-04 0.39 2.62E+06 3.82E-07 
9 4 7.72E-04 0.31 2.07E+06 4.84E-07 

10 4 6.25E-04 0.25 1.67E+06 5.97E-07 
11 4 5.17E-04 0.21 1.38E+06 7.23E-07 
12 4 4.34E-04 0.17 1.16E+06 8.60E-07 
13 4 3.70E-04 0.15 9.90E+05 1.01E-06 
14 4 3.19E-04 0.13 8.54E+05 1.17E-06 
15 4 2.78E-04 0.11 7.44E+05 1.34E-06 
16 4 2.44E-04 0.10 6.54E+05 1.53E-06 
17 4 2.16E-04 0.09 5.79E+05 1.73E-06 
18 4 1.93E-04 0.08 5.17E+05 1.94E-06 
19 4 1.73E-04 0.07 4.64E+05 2.16E-06 
20 4 1.56E-04 0.06 4.18E+05 2.39E-06 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 

 
Table 2.8.   The parameters of the Pfund series of emission lines. 

in  
f

n   a 5 6 5/
in     1/ b  c 

6 5 1.11E-03 1.00 2.98E+06 3.36E-07 
7 5 8.16E-04 0.73 2.19E+06 4.57E-07 
8 5 6.25E-04 0.56 1.67E+06 5.97E-07 
9 5 4.94E-04 0.44 1.32E+06 7.56E-07 

10 5 4.00E-04 0.36 1.07E+06 9.34E-07 
11 5 3.31E-04 0.30 8.85E+05 1.13E-06 
12 5 2.78E-04 0.25 7.44E+05 1.34E-06 
13 5 2.37E-04 0.21 6.34E+05 1.58E-06 
14 5 2.04E-04 0.18 5.47E+05 1.83E-06 
15 5 1.78E-04 0.16 4.76E+05 2.10E-06 
16 5 1.56E-04 0.14 4.18E+05 2.39E-06 
17 5 1.38E-04 0.12 3.71E+05 2.70E-06 
18 5 1.23E-04 0.11 3.31E+05 3.02E-06 
19 5 1.11E-04 0.10 2.97E+05 3.37E-06 
20 5 1.00E-04 0.09 2.68E+05 3.73E-06 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 

 



Chapter 2 146 

Table 2.9.   The parameters of the 6in   to 6fn   series of emission lines. 

in  
f

n   a 6 7 6/
in     1/ b  c 

7 6 5.67E-04 1.00 1.52E+06 6.59E-07 
8 6 4.34E-04 0.77 1.16E+06 8.60E-07 
9 6 3.43E-04 0.60 9.18E+05 1.09E-06 

10 6 2.78E-04 0.49 7.44E+05 1.34E-06 
11 6 2.30E-04 0.40 6.15E+05 1.63E-06 
12 6 1.93E-04 0.34 5.17E+05 1.94E-06 
13 6 1.64E-04 0.29 4.40E+05 2.27E-06 
14 6 1.42E-04 0.25 3.80E+05 2.63E-06 
15 6 1.23E-04 0.22 3.31E+05 3.02E-06 
16 6 1.09E-04 0.19 2.91E+05 3.44E-06 
17 6 9.61E-05 0.17 2.57E+05 3.88E-06 
18 6 8.57E-05 0.15 2.30E+05 4.36E-06 
19 6 7.69E-05 0.14 2.06E+05 4.85E-06 
20 6 6.94E-05 0.12 1.86E+05 5.38E-06 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 

 
Table 2.10.   The parameters of the 7in   to 7fn   series of emission lines. 

in  
f

n   a 7 8 7/
in     1/ b  c 

8 7 3.19E-04 1.00 8.54E+05 1.17E-06 
9 7 2.52E-04 0.79 6.75E+05 1.48E-06 

10 7 2.04E-04 0.64 5.47E+05 1.83E-06 
11 7 1.69E-04 0.53 4.52E+05 2.21E-06 
12 7 1.42E-04 0.44 3.80E+05 2.63E-06 
13 7 1.21E-04 0.38 3.23E+05 3.09E-06 
14 7 1.04E-04 0.33 2.79E+05 3.59E-06 
15 7 9.07E-05 0.28 2.43E+05 4.12E-06 
16 7 7.97E-05 0.25 2.13E+05 4.68E-06 
17 7 7.06E-05 0.22 1.89E+05 5.29E-06 
18 7 6.30E-05 0.20 1.69E+05 5.93E-06 
19 7 5.65E-05 0.18 1.51E+05 6.61E-06 
20 7 5.10E-05 0.16 1.37E+05 7.32E-06 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 

 
Table 2.11.   The parameters of the 8in   to 8fn   series of emission lines. 

in  
f

n   a 8 9 8/
in     1/ b  c 

9 8 1.93E-04 1.00 5.17E+05 1.94E-06 
10 8 1.56E-04 0.81 4.18E+05 2.39E-06 
11 8 1.29E-04 0.67 3.46E+05 2.89E-06 
12 8 1.09E-04 0.56 2.91E+05 3.44E-06 
13 8 9.25E-05 0.48 2.48E+05 4.04E-06 
14 8 7.97E-05 0.41 2.13E+05 4.68E-06 
15 8 6.94E-05 0.36 1.86E+05 5.38E-06 
16 8 6.10E-05 0.32 1.63E+05 6.12E-06 
17 8 5.41E-05 0.28 1.45E+05 6.91E-06 
18 8 4.82E-05 0.25 1.29E+05 7.74E-06 
19 8 4.33E-05 0.22 1.16E+05 8.63E-06 
20 8 3.91E-05 0.20 1.05E+05 9.56E-06 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
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Table 2.12.   The parameters of the 100in   to 1fn   series of emission lines. 

in  
f

n   a 1 101 1/
in     1/ b  c 

101 1 9.80E-05 1.00 2.63E+05 3.81E-06 
102 1 9.61E-05 0.98 2.57E+05 3.88E-06 
103 1 9.43E-05 0.96 2.52E+05 3.96E-06 
104 1 9.25E-05 0.94 2.48E+05 4.04E-06 
105 1 9.07E-05 0.93 2.43E+05 4.12E-06 
106 1 8.90E-05 0.91 2.38E+05 4.20E-06 
107 1 8.73E-05 0.89 2.34E+05 4.28E-06 
108 1 8.57E-05 0.87 2.30E+05 4.36E-06 
109 1 8.42E-05 0.86 2.25E+05 4.44E-06 
110 1 8.26E-05 0.84 2.21E+05 4.52E-06 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
 

Table 2.13.   The parameters of the 100in   to 100fn   series of emission lines. 

in  
f

n   a 100 101 100/
in     1/ b  c 

101 100 9.80E-09 1.00 2.63E+01 3.81E-02 
102 100 9.61E-09 0.98 2.57E+01 3.88E-02 
103 100 9.43E-09 0.96 2.52E+01 3.96E-02 
104 100 9.25E-09 0.94 2.48E+01 4.04E-02 
105 100 9.07E-09 0.93 2.43E+01 4.12E-02 
106 100 8.90E-09 0.91 2.38E+01 4.20E-02 
107 100 8.73E-09 0.89 2.34E+01 4.28E-02 
108 100 8.57E-09 0.87 2.30E+01 4.36E-02 
109 100 8.42E-09 0.86 2.25E+01 4.44E-02 
110 100 8.26E-09 0.84 2.21E+01 4.52E-02 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
 

Table 2.14.   The parameters of the 500in   to 1fn   series of emission lines. 

in  
f

n   a 1 501 1/
in     1/ b  c 

501 1 3.98E-06 1.00 1.07E+04 9.37E-05 
502 1 3.97E-06 1.00 1.06E+04 9.41E-05 
503 1 3.95E-06 0.99 1.06E+04 9.45E-05 
504 1 3.94E-06 0.99 1.05E+04 9.49E-05 
505 1 3.92E-06 0.98 1.05E+04 9.52E-05 
506 1 3.91E-06 0.98 1.05E+04 9.56E-05 
507 1 3.89E-06 0.98 1.04E+04 9.60E-05 
508 1 3.88E-06 0.97 1.04E+04 9.64E-05 
509 1 3.86E-06 0.97 1.03E+04 9.67E-05 
510 1 3.84E-06 0.97 1.03E+04 9.71E-05 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
 

Table 2.15.   The parameters of the 500in   to 100fn   series of emission lines. 

in  
f

n   a 100 501 100/
in     1/ b  c 

501 100 3.98E-10 1.00 1.07E-00 9.37E-01 
502 100 3.97E-10 1.00 1.06E-00 9.41E-01 
503 100 3.95E-10 0.99 1.06E-00 9.45E-01 
504 100 3.94E-10 0.99 1.05E-00 9.49E-01 
505 100 3.92E-10 0.98 1.05E-00 9.52E-01 
506 100 3.91E-10 0.98 1.05E-00 9.56E-01 
507 100 3.89E-10 0.98 1.04E-00 9.60E-01 
508 100 3.88E-10 0.97 1.04E-00 9.64E-01 
509 100 3.86E-10 0.97 1.03E-00 9.67E-01 
510 100 3.84E-10 0.97 1.03E-00 9.71E-01 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
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Table 2.16.   The parameters of the 500in   to 500fn   series of emission lines. 

in  
f

n   a 500 501 500/
in     1/ b  c 

501 500 1.59E-11 1.00 4.27E-02 2.34E+01 
502 500 1.59E-11 1.00 4.25E-02 2.35E+01 
503 500 1.58E-11 0.99 4.23E-02 2.36E+01 
504 500 1.57E-11 0.99 4.22E-02 2.37E+01 
505 500 1.57E-11 0.98 4.20E-02 2.38E+01 
506 500 1.56E-11 0.98 4.18E-02 2.39E+01 
507 500 1.56E-11 0.98 4.17E-02 2.40E+01 
508 500 1.55E-11 0.97 4.15E-02 2.41E+01 
509 500 1.54E-11 0.97 4.13E-02 2.42E+01 
510 500 1.54E-11 0.97 4.12E-02 2.43E+01 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
 

The lifetime of the Balmer   transition of 81.34  10  X s  given in Table 2.5 is in good agreement with the experimental 
upper limit of 81.5  10  X s  [26-27].  The relative line intensities are dependent on the electron temperature which causes a 
Boltzmann-distribution skewing [28] of the predominantly lifetime-determined state populations..  However, states that are close 
in energy are expected to be close to the theoretical limit with greater deviations as the energy differences become larger.  The 
experimental Balmer-series line intensities are given with the calculated intensities in Table 2.17.  As expected the predicted and 
experimental intensities match well for the lowest levels and deviate at the higher levels. 
 

Table 2.17.   The parameters of the Balmer series of emission lines. 

in  
f

n   a 2 3 2/
in     2 3 2/

in    X 300 NIST [26] Balmer 
Line Intensities 

3 2 2.78E-02 1.00 300 300 
4 2 1.56E-02 0.56 169 160 
5 2 1.00E-02 0.36 108 60 
6 2 6.94E-03 0.25 75 30 
7 2 5.10E-03 0.18 55 8 
8 2 3.91E-03 0.14 42 6 
9 2 3.09E-03 0.11 33 5 

a Eq. (2.109). 
 

Ornstein and Burger [29-30] studied the relative emission intensities of Balmer and Paschen lines having the same initial 
states in order to eliminate the uncertainty of the number of atoms in each initial state.  The results of the relative intensities from 
each state having the same initial number of atoms is given in Table 2.18.  The calculated and experimental results agree very 
well.  In contrast, standard quantum mechanics has many shortcomings in this result as well as in general4. 
 

Table 2.18.   The parameter   and the calculated and experimental intensity ratios of selected Balmer and Paschen emission 
lines. 

in  
f

n   a , ,/
i iPaschen n Balmer n   Experimental 

Intensity Ratio [29-30] ,

,
i

i

Paschen n

Balmer n
 

4 2 1.56E-02    / 4 2 : 4 3H P        2.25 2.6 

4 3 6.94E-03

5 2 1.00E-02    / 5 2 : 5 3H P        2.25 2.5 

5 3 4.44E-03

6 2 6.94E-03    / 6 2 : 6 3H P        2.25 2 

6 3 3.09E-03

a Eq. (2.109). 
 

 
The radii of all one-electron atoms are given by Eq. (1.260).  For He , 

 
4 The quantum mechanical calculation of the line intensities is also based on classical electrodynamics [32], but there are many internally inconsistent 
features that arise due to the intrinsic nonphysical aspects peculiar to quantum mechanics.  The possibility that l  1  is not treated.  The A coefficients 

are not symmetrical with respect to excitation and de-excitation as they must be.  The  sini


 dependence of the current dipole is ignored.  The 

calculation of the current multipole based on integration of the products of wavefunctions over all space is not physical.  The electron can not be 
“everywhere at once,” and even the frequency times the average radial displacement during a transition results in an electron velocity that exceeds the 
speed of light.  The calculations are extraordinarily complicated involving hypergeometric series, and the results contain products of terms raised to 
enormously high and low powers (e.g. power of ~  20 for even the Balmer lines).  The results do not match the experimental results by significant factors. 
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 0
1 2

a
r   (2.114) 

Substitution of Eq. (2.114) into Eqs. (2.108) and (2.110) gives the electric dipole electronic transition probability from initial 
quantum states , , ,i sn m m  and radius 

inr  to the final state with quantum numbers , 1, ,f sn m m   and radius 
fnr and the 

corresponding state lifetime, respectively:   
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 (2.116) 

where   is given by Eq. (2.109).  The predicted lifetimes for He  are 1/16 those of atomic hydrogen.  The equations for the 
excited-state lifetimes and line intensities can be condensed as given in Box 2.1. 
 
 

BOX 2.1  CONDENSED FORMULA FOR THE EXCITED-STATE LIFETIMES AND 
LINE INTENSITIES 
Using 

 
2

04

e

c






 (1) 

Allows the substitutions 

 
2

0
0 2

4

e e

a
e m m c




 
 

 (2) 

and 
 2

04e c    (3) 

such that the equations for the excited-state lifetimes and line intensities can be condensed [31].  Eq. (2.108) can be written as 
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This can be transformed to 
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and the corresponding Eq. (2.110) becomes: 
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The result confirms that:  
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Alternatively, Eq. (2.110) in condensed form is: 
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And, Eq. (2.116) becomes 

    2 25 11
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 (9) 

 
Maxwell made an absolute measurement of the lifetime of excited states of He  formed by narrow-beam, electron-

impact excitation [30, 33].  The excited He  ions were spread by a transverse electric field which did not appreciably affect the 
ionizing electron beam because a controlling longitudinal magnetic field was applied.  The time-of-flight to radiating was 
recorded as the distance-of-flight and gave the probability distribution of the lifetimes of the excited states.  By studying the 
spatial distribution of the light intensity, Maxwell inferred the mean lifetimes of the excited-state ions.  For the 6n   states of 
He , an average lifetime of   81.1 0.2   10  X s  was observed.  From Tables 2.4-2.8, the average life time of the 6n   state of 

H  is 71.48  10  X s , and from Eq. (2.116), the corresponding average lifetime of He  is 99.3  10  X s .  The lifetimes of states of 
He  were found to be 1/16 those of H .  The agreement between the experimental and calculated results is excellent. 

In addition to the electron electric dipole transitions, Eq. (2.107) can be applied to transitions with a multipole 
distribution in the radial direction such as in the case of nuclear decay given in the Nuclear and X-ray Multipole Radiation 
section.  The transition probability in the case of the electric multipole moment given by Jackson [7] as: 
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 (2.118) 

Eq. (2.118) gives very predictive results as shown by Jackson [7]. 
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RESONANT LINE SHAPE 
The spectroscopic linewidth arises from the classical rise-time band-width relationship, and the Lamb shift is due to the radiation 
reaction force between the electron and the photon and conservation of energy and linear momentum involving recoil during 
emission.  It follows from the Poynting Power Theorem (Eq. (7.43)) with spherical radiation that the transition probabilities are 
given by the ratio of power and the energy of the transition [7].  The lifetime   for an electric dipole transition is derived in the 
State Lifetime and Line Intensities section.  This rise-time gives rise to  , the spectroscopic line-width.  The relationship 
between the rise-time and the band-width is given by Siebert [34]. 
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By application of the Schwartz inequality, the relationship between the rise-time and the band-width is5: 
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From Eq. (2.118), the line-width is proportional to the ratio of the Quantum Hall resistance, 
2

h

e
, and,  , the radiation resistance 

of free space. 
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  (2.122) 

And, the Quantum Hall resistance given in the Quantum Hall Effect section was derived using the Poynting Power Theorem.  
Also, from Eq. (2.118), the line-width is proportional to the fine structure constant,  , 
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During a transition, the total energy of the system decays exponentially.  Applying Eqs. (2.119) and (2.120) to the case of 
exponential decay,  
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where the rise-time,  , is the time required for ( )h t  of Eq. (2.124) to decay to 1/ e  of its initial value and where the band-width, 
 , is the half-power bandwidth, the distance between points at which:  

    0

2

H
H f   (2.126) 

From Eq. (2.119) [34], 
 T   (2.127) 
From Eq. (2.120) [34], 

 
1

T
   (2.128) 

 
5 Eq. (2.121) is erroneously interpreted as a physical law of the indeterminate nature of conjugate parameters of atomic particles, such as position and 
momentum or energy and time.  This so called Heisenberg Uncertainty Principle is not a physical law; rather it is a misinterpretation of applying the 
Schwartz Inequality to a probability-wave model of a particle [35].  The mathematical consequence is that a particle, such as an electron, can have a 
continuum of momenta and positions with a continuum of energies simultaneously, which cannot be physical.  This result is independent of error or 
limitations introduced by measurement.  Jean B. Fourier was the first to discover the relationship between time and frequency compositions of physical 
measurables.  Eq. (2.121) expresses the limitation of measuring these quantities since an impulse contains an infinity of frequencies, and no instrument has 
such bandwidth.  Similarly, an exact frequency requires an infinite measurement time, and all measurements must be finite in length.  Thus, Eq. (2.121) is 
a statement about the limitations of measurement in time and frequency.  It is further a conservation statement of energy of a signal in the time and 
frequency domains.  Werner Heisenberg’s substitution of momentum and position for a single particle, probability-wave into this relationship says nothing 
about conjugate parameters of a particle in the absence of their measurement or the validity of the probability-wave model.  In fact, this approach was 
shown to be flawed experimentally (See Wave-Particle Duality section and Refs. [8-11]). 
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From Eq. (2.127) and Eq. (2.128), the relationship between the rise-time and the band-width for exponential decay is: 

 
1


   (2.129) 

Bosons obey Bose-Einstein statistics as given in the Statistical Mechanics section.  The emitted radiation, the summation 
of an ensemble of emitted photons each of an exact frequency and energy given by Eq. (4.8), appears as a wave train with 
effective length /c  .  Such a finite pulse of radiation is not exactly monochromatic but has a frequency spectrum covering an 
interval of the order  .  The exact shape of the frequency spectrum is given by the square of the Fourier transform of the electric 
field.  Thus, the amplitude spectrum is proportional to 
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The coefficient t  corresponds to the spectroscopic linewidth and also to a shift in frequency that arises from the radiation 

reaction force between the electron and the photon.  The energy radiated per unit frequency interval is therefore: 
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 (2.131) 

where 
0

I  is the total energy radiated.  The spectral distribution is called a resonant line shape.  The width of the distribution at 
half-maximum intensity is called the half-width or line-breadth and is equal to  .  Shown in Figure 2.4 is such a spectral line.  
Because of the reactive effects of radiation the line is shifted in frequency.  The small radiative shift of the energy levels of 
atoms was first observed by Lamb in 1947 [36] and is called the Lamb shift in his honor. 
 
Figure 2.4.   Broadening of the spectral line due to the rise-time and shifting of the spectral line due to the radiative reaction.  
The resonant line shape has width  .  The level shift is  . 
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HYDROGEN LAMB SHIFT 
The Lamb shift corresponding to the transition energy from the 2

1/2P  state to the 2
1/2S  state of the hydrogen atom having the 

quantum numbers 2,  1,  0n m    and 2,  0,  0n m   , respectively, is calculated from the radiation reaction force and 

the atom recoil energy due to photon emission.  For a transition between initial and final states having quantum numbers in  and 

fn , respectively, the time-averaged power density in the radiation zone is given by Eq. (2.104).  The total radiated power P  

given by integrating the Poynting power density (Eq. (2.104)) over the surface of a sphere at radius r  is given by Eq. (2.105).  
The corresponding radiation reaction force is derived from the relativistically corrected fields of the radiated power.  Consider 

that the power is proportional to E H  and then 
2

H  (Eq. (2.104)).  A radiation reaction force due to current flow to form the 

trigonometric current distribution of the 1/22P  state from the uniform 1/22S  state given in Sections 6.6, 12.10, and 17.3 of Jackson 
[37] achieves the condition that the sum of the mechanical momentum and electromagnetic momentum is conserved.  Since the 
change in angular momentum between the initial and final atomic states is conserved by the photon's angular momentum, the 
angular momentum, m, of the emitted photon follows from the time-averaged angular-momentum density given by Eq. (24.61) 
of Jackson [2] in cgs units: 

   41
Re ( )

8
dx

c
   m r E B*   (2.132) 

The corresponding energy, E, is given from the Poynting power density [38]: 
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 4Re( )
4

c
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  E× H*   (2.133) 

As shown by Eqs. (1.280-1.281) and Eq. (29.9), each of the magnetic and electric field is corrected by the product of the factors 
2 and  , respectively.  Also, the field in excited states scales as 1 / n  due to the corresponding central field from the 
superposition of the excited-state photon’s and proton’s fields (Eqs. (2.17)).  Thus, using each relativistic and central field 
correction given by 2  and 1/ 2 , respectively, and using the limit of 

i fn nr r r   with the radiation reaction perturbation with 

respect to r , the radiation reaction power PRR  given by Eq. (2.105) is 
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The radiation reaction force RRF  is given by the power (Eq. (2.108)) divided by the electron velocity v  (Eq. (1.35)): 
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 (2.135) 

The radius of the hydrogen atom given by Eqs. (2.4-2.5) and Eq. (1.253), with 2n  , is 2 Hr a .  The radiation reaction force 

perturbs the force balance and consequently the radius between the electron and proton relative to the condition in its absence.  

The outward centrifugal force on the electron is balanced by the electric force and the magnetic force (Eqs. (1.253) and (2.4)), 
and the radiation reaction force (Eq. (2.135)) corresponding to the current flow to achieve the current distribution of the 1/22P  

state: 
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 1.99999744 Hr a  (2.138) 

where Eq. (1.35) was used for the velocity and Ha  is the radius of the hydrogen atom given by Eq. (1.259). 
 

ENERGY CALCULATIONS 
The change in the electric energy of the electron  H Lamb

eleE  due to the slight shift of the radius of the atom is given by the 

difference between the electric energies associated with the unperturbed and radiation-reaction-force-perturbed radius.  Each 
electric energy is given by the substitution of the corresponding radius given by Eq. (2.138) into Eqs. (1.264) and (2.4): 
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wherein the unperturbed radius given by Eq. (2.5) is 0 2 Hr a . 

In addition, the change in the magnetic energy  H Lamb
magE  of the electron is given by Eqs. (1.161-1.162) with the 

substitution of the corresponding radii:  
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 (2.140) 

where B  is the Bohr magneton. 

The 2n   state comprises an electron, a photon, and a proton having the analytical solution of Maxwell’s equations 
given by Eq. (2.15).  The recoil energy of this photon gives rise to an energy contribution to the Lamb shift that is calculated by 
applying conservation of energy and linear momentum to the emitted photon and atom.  The photon emitted by an excited state 
atom carries away energy, linear momentum, and angular momentum.  The initial and final values of the energies and 
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momentum must be conserved between the atom, the electron, and the photon6.  Consider an isolated atom of mass M having an 
electron in an excited state level at an energy E.  The atom is moving with velocity V along the direction in which the excited-
state photon is to be emitted (the components of motion perpendicular to this direction remain unaffected by the emission and 
may be ignored).  The energy above the “ground” state at rest is 

 21

2
E M

  
 

V  (2.141) 

When a photon of energy hE   is emitted, the atom and/or electron recoils and has a new velocity 

 V v  (2.142) 
(which is a vector sum in that V and v may be opposed), and a total energy of: 
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2
M V v  (2.143) 

By conservation of energy, 

  221 1

2 2hE M E M   V V v  (2.144) 

so, that the actual energy of the photon emitted is given by: 
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 (2.145) 

The photon is thus deficient in energy by a recoil kinetic energy 

 21

2RE M v  (2.146) 

which is independent of the initial velocity V, and by a thermal or Doppler energy 
 DE M vV  (2.147) 

which depends on V; therefore, it can be positive or negative. 
Momentum must also be conserved in the emission process.  The energy, E, of the photon is given by Eq. (4.8) 
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From special relativity, 
 2E mc   (2.149) 
Thus, p, the momentum of the photon is: 

 hE
mc

c
 p  (2.150) 

where c is the velocity of light, so that: 

   hE
M M

c
  V V v  (2.151) 

And, the recoil momentum is: 

 hE
M

c
 v  (2.152) 

Thus, the recoil energy is given by: 
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  (2.153) 

and depends on the mass of the atom and the energy of the photon.  The Doppler energy, DE , is dependent on the thermal 

motion of the atom, and will have a distribution of values which is temperature dependent.  A mean value, DE , can be defined 

which is related to KE , the mean kinetic energy per translational degree of freedom [39-40]: 
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2DE kT  (2.154) 

by 
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where k is Boltzmann’s constant and T is the absolute temperature7.  As a result, the statistical distribution in energy of the 
emitted photons is displaced from the true excited-state energy by RE  and broadened by DE  into a Gaussian distribution of 

width 2 DE .  The distribution for absorption has the same shape but is displaced by RE . 

 
6 Conservation of angular momentum is used to derive the photon’s equation in the Equation of the Photon section. 
7 This relationship may also apply to an electron undergoing bonding as given in the Doppler Energy Term of Hydrogen-Type Molecular Ions section. 
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For the photon of the hydrogen atom, the linear momentum of the emitted photon is balanced by the recoil momentum of 
the entire atom of mass Hm , and the corresponding recoil energy adds to the energy due to the radiation reaction force.  The 

recoil energy  H Lamb
recoilE  for the electron in the 2n   and the corresponding frequency shift  H Lamb

recoilf of the hydrogen atom is given 

by Eq. (2.153): 
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where hE   corresponds to the recoil energy (Eqs. (2.153) and (2.22)) is 
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 (2.158) 

wherein 2n  8.  
Then, the total energy of the hydrogen Lamb shift is given by the sum of Eqs. (2.139-2.140) and (2.156): 
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 (2.159) 

The Planck relationship (Eq. (2.148)) gives  H Lamb
totalf , the Lamb shift energy expressed in terms of frequency: 
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    (2.160) 

The experimental Lamb shift is [42] 
   experimental 1057.845 H Lamb

totalf MHz   (2.161) 

There is good agreement between the theoretical and experimental values given the 100 MHz natural linewidth of the 2P  state.  
The 0.07% relative difference is within the propagated errors in the fundamental constants of the equations.  In addition to the 
Lamb shift, the spectral lines of hydrogen are Zeeman split by spin-orbit coupling and electron-nuclear magnetic interactions 
given in the Fine Structure and Hyperfine Structure sections, respectively. 
 

MUONIC HYDROGEN LAMB SHIFT 
The Lamb shift corresponding to the transition energy from the 2

1/2P  state to the 2
1/2S  state of the muonic hydrogen atom having 

the quantum numbers 2,  1,  0n m    and 2,  0,  0n m   , respectively, is also calculated from the radiation reaction 

force and the atom recoil energy due to photon emission.  The radiation reaction force RRF  of muonic hydrogen comprises three 

terms that follow from Eq. (2.135) and arise from lepton-photon-momentum transfer during the 2 2
1/2 1/2P S  transition wherein 

the photon couples with the three possible states of the electron mass corresponding to the three possible leptons.  The electron, 

muon, and tau masses are based on the relativistic corrections of the Planck, electric, and magnetic energies, respectively, as 

given in Eq. (32.48).  The masses of the heavier leptons, the muon and tau are dependent on the first lepton’s mass, the electron 

mass, and each can be considered a relativistic effect of the electron mass.  Specifically, the muon is a resonant state of an 

electron given by a relativistic effect of the electron mass as given by Eqs. (36.5-36.6), wherein the muon decays to the electron: 
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Likewise, the tau mass having a dependency on the electron mass is given by Eqs. (36.7-36.8): 
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8 As a further example, conservation of linear momentum of the photon is central to the Mössbauer phenomenon.  See Mills patent [41]. 
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Thus, the radiation reaction force of relativistic origin is determined by the action on the electron mass with each mass hierarchy 
requiring an additional relativistic correction factor of 2 .  Then, using Eqs. (2.135) and (32.48), the first radiation reaction 

term  2
2  regards the photon coupling to the electron whose mass is based on the Planck equation.  The second term  3

2  

regards the relativistically corrected electric energy whereby the photon couples to the electron via the muon, and the third term 

 4
2  regards the magnetic energy which is a relativistic correction to the electric energy whereby the photon couples to the 

electron via a possible tau state.  The first and second radiation reaction terms are negative since the mass-energy of the electron 
and muon are less than or equal to the mass-energy of the bound particle in muonic H with the lower energy state being relative 
to the energy of the state involving an electron.  The third term is positive since it is a loss term for a possible, but not obtained 
mass-energy state.  The second and third terms involve lepton couplings between two and three leptons, respectively. 

Since the magnetic force between the muon and proton magnetic moment given by Eqs. (1.243-1.252) is also a 

relativistic electrodynamic force involving the lepton mass, it must be corrected by the ratio of the electron to muon mass.  The 

radiation reaction force in the muonic hydrogen atom also perturbs the force balance between the muon and proton relative to the 

condition in its absence.  The outward centrifugal force on the muon is balanced by the electric force and the mass-ratio-

corrected magnetic force (Eqs. (1.253) and (2.4)), and the three-term-expanded radiation reaction force (Eq. (2.135)) 
corresponding to the current flow to achieve the current distribution of the 1/22S  from the 1/22P  state: 
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 32.0005735 9.6755983  10p Hr a X a
   (2.169) 

where Eq. (1.35) was used for the velocity, Ha  is the radius of the hydrogen atom given by Eq. (1.259), and pa  is defined as 

e
H

m
a

m

.  The radius in the absence of the radiation reaction force is 3
0 2 9.6728246  10p Hr a X a

  . 

 

ENERGY CALCULATIONS 
The change in the electric energy of the muon  p Lamb

eleE  due to the slight shift of the radius of the atom is given by the difference 

between the electric energies associated with the unperturbed and radiation-reaction-force-perturbed radius.  Each electric energy 
is given by the substitution of the corresponding radius given by Eq. (2.167) into Eqs. (1.264) and (2.4): 
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wherein the unperturbed radius given by Eq. (2.5) and Eqs. (1.253-1.259) is 0 2 pr a . 

In addition, the change in the magnetic energy  p Lamb
magE  of the muon is given by Eqs. (1.161-1.162) with the substitution 

of the corresponding radii  
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where B
  is the muon Bohr magneton.   

 For the photon of the muonic hydrogen atom, the linear momentum of the emitted photon is balanced by the recoil 
momentum of the entire atom of mass pm , and the corresponding recoil energy adds to the energy due to the radiation reaction 

force.  The recoil energy  p Lamb
recoilE  for the muon in the 2n   state and the corresponding frequency shift  p Lamb

recoilf  of the muonic 
hydrogen atom is given by Eqs. (2.153): 
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where hE   corresponds to the recoil energy (Eqs. (2.153) and (2.22)) for muonic H is: 
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wherein 2n  . 
Then, the total energy of the muonic hydrogen Lamb shift corresponding to the transition 2 2

1/2 1/2P S  is given by the 

sum of Eqs. (2.170-2.172): 
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The Planck relationship (Eq. (2.148)) gives  p Lamb
totalf  , the magnitude of the muonic hydrogen Lamb shift energy corresponding 

to the transition 2 2
1/2 1/2P S  expressed in terms of frequency: 
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The literature energies for 2
3/2 1/22 2FP P

E  
, the 2 2

3/2
FP   level shift with respect to the unperturbed 2

1/2P  level, and, 1
1/22 FS

E  , the 

2 1
1/2
FS   level shift with respect to the unperturbed 2

1/2S  level, are [43]: 
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Then, using Eqs. (2.175) and (2.177-2.178), the total energy of the muonic hydrogen Lamb shift corresponding to the transition 
2 2

3/2 1/2 2  1P F S F    is: 
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The Planck relationship (Eq. (2.148)) gives 
2 2

3/2 1/2 2  1p Lamb P F S F
totalf     , the magnitude of the muonic hydrogen Lamb shift energy 

expressed in terms of frequency: 
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The magnitude of the experimental muonic hydrogen Lamb shift matching the 2
1/2S  state lower than the 2

1/2P  and states 2
3/2P  is 

[43]: 

  2 2
3/2 1/2  2  1 experimental 49,881.88 p Lamb P F S F

totalf GHz      (2.181) 

There is good agreement between the theoretical and experimental values given the 18.6 GHz natural linewidth of the 2P  state.  
The 0.0058% relative difference is within the measurement error and propagated errors in the fundamental constants of the 
equations.  For example, the relative difference is 0.0025% using the 2002 CODATA constants [44].  These results solve the 
proton radius puzzle wherein QED erroneously invokes the proton radius in computation of the muonic hydrogen Lamb shift. 
 

HYDROGEN SPIN-ORBIT COUPLING (FINE STRUCTURE) 
For the 2P  level, the possible quantum numbers are 2,  1,  0n m    and 2,  1,  1n m     corresponding to the states 
2

1/2P  and 2
3/2P , respectively.  Thus, for 1 , the electron may or may not possess orbital angular momentum in addition to spin 

angular momentum corresponding to 1m    and 0m  , respectively.  As a consequence, the energy of the 2P  level is split by 

a relativistic interaction between the spin and orbital angular momentum as well as the corresponding radiation reaction force.  
The corresponding energy for the transition 2 2

1/2 3/2P P  is known as the hydrogen fine structure. 

The electron’s motion in the hydrogen atom is always perpendicular to its radius; consequently, as shown by Eq. (1.37), 
the electron’s angular momentum of   is invariant.  Furthermore, the electron is nonradiative due to its angular motion as shown 
in Appendix I and the Stability of Atoms and Hydrinos section.  The radiative instability of excited states is due to a radial dipole 
term in the function representative of the excited state due to the interaction of the photon and the excited-state electron as shown 
in the Instability of Excited States section.  The angular momentum of the photon given in the Equation of the Photon section is 
given by Eqs. (2.132) and (4.1).  It is conserved for the solutions for the resonant photons and excited-state electron functions 
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given in the Excited States of the One-Electron Atom (Quantization) section and the Equation of the Photon section.  Thus, the 
electrodynamic angular momentum and the inertial angular momentum are matched such that the correspondence principle 

holds.  It follows from the principle of conservation of angular momentum that 
e

e

m
 of Eq. (1.131) is invariant (See the 

Determination of Atomic Orbital Radii section).   
A magnetic field is a relativistic effect of the electrical field as shown by Jackson [21].  No energy term is associated with 

the magnetic field of the electron of the hydrogen atom unless another source of magnetic field is present.  In the case of spin-
orbit coupling, the invariant   of spin angular momentum and orbital angular momentum each give rise to a corresponding 
invariant magnetic moment of a Bohr magneton, and their corresponding energies superimpose as given in the Orbital and Spin 
Splitting section.  The interaction of the two magnetic moments gives rise to a relativistic spin-orbit coupling energy.  The vector 
orientations of the momentum must be considered as well as the condition that flux must be linked by the electron in units of the 
magnetic flux quantum in order to conserve the invariant electron angular momentum of  .  The energy may be calculated with 

the additional conditions of the invariance of the electron’s charge and charge-to-mass ratio 
e

e

m
.   

As shown in the Electron g Factor section (Eq. (1.181)), flux must be linked by the electron atomic orbital in units of the 
magnetic flux quantum that treads the atomic orbital at v c  with a corresponding energy of: 
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  (2.182) 

As shown in the Atomic Orbital Equation of Motion for  = 0 Based on the Current Vector Field (CVF) section, the Two-
Electron Atoms section, and Appendix VI, the maximum projection of the rotating spin angular momentum of the electron onto 

an axis is 
3

4
 .  From Eq. (2.65), the magnetic flux due to the spin angular momentum of the electron is [20]: 
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where   is the magnetic moment.  The maximum projection of the orbital angular momentum onto an axis is   as shown in the 

Orbital and Spin Splitting section with a corresponding magnetic moment of a Bohr magneton B .  Substitution of the magnetic 

moment of B  corresponding to the orbital angular momentum and Eq. (2.183) for the magnetic flux corresponding to the spin 

angular momentum into Eq. (2.182) gives the spin-orbit coupling energy /s oE . 
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The Bohr magneton corresponding to the orbital angular momentum is invariant and the corresponding invariant electron charge 
e  is common with that which gives rise to the magnetic field due to the spin angular momentum.  The condition that the 
magnetic flux quantum treads the atomic orbital at v c  with the maintenance of the invariance of the electron’s charge-to-mass 

ratio 
e

e

m
 and electron angular momentum of   requires that the radius and the electron mass of the magnetic field term of Eq. 

(2.184) be relativistically corrected.  As shown by Eq. (1.280) and in Appendix I and the Determination of Atomic Orbital Radii 
sections, the relativistically corrected radius *r  follows from the relationship between the electron wavelength and the radius. 
 2 r   (2.185) 
The phase matching condition requires that the electron wavelength be the same for orbital and spin angular momentum.  Using 
Eq. (1.280) with v c : 
 *r   (2.186) 
Thus, 
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r
r


  (2.187) 

The relativistically corrected mass *m  follows from Eq. (2.187) with maintenance of the invariance of the electron angular 
momentum of   given by Eqs. (1.35) and (1.37). 
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With Eq. (2.187), the relativistically corrected mass *m  is: 
 * 2 em m  (2.189) 
With the substitution of Eq. (2.187) and Eq. (2.189) into Eq. (2.184), the spin-orbit coupling energy /s oE  is given by 

 

 

2 2
0 0

/ 3 2 3

3 3
2

2 2 4 4
2 2

2

s o
e e

e

e ee
E

m m rr
m

 





 
  

  
 
 

 
 (2.190) 
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(The magnetic field in this case is equivalent to that of a point electron at the origin with 
3

4
  of angular momentum.)   

In the case that 2n  , the radius given by Eq. (2.5) is 02r a .  The predicted energy difference between the 2
1/2P  and 

2
3/2P  levels of the hydrogen atom, /s oE , given by Eq. (2.190) is:  
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wherein 1  and both levels are equivalently Lamb shifted.   

/s oE  may be expressed in terms of the mass energy of the electron.  The energy stored in the magnetic field of the 

electron atomic orbital (Eq. (1.183)) is:  
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As shown in the Pair Production section with the v c  condition, the result of the substitution of o Ca    for nr , the relativistic 

mass, 2 em , for em , and multiplication by the relativistic correction,  , which arises from Gauss’ law surface integral and the 

relativistic invariance of charge is: 
 2

mag eE m c  (2.193) 

Thus, Eq. (2.191) can be expressed as: 
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Using the Planck equation, the corresponding frequency, /s of , is: 

 / 10,927.02 s of MHz   (2.195) 

As in the case of the 2 2
1/2 1/2P S  transition, an additional term arises in the fine structure interval from the radiation 

reaction force involving electron-photon-momentum transfer during the 2 2
1/2 3/2P P  transition corresponding to the rotating 

orbital dipole that couples with the spin angular momentum.  The radiation reaction force RRF  is given by Eq. (2.135) having the 

additional relativistic correction factor of 2  with an additional geometrical correction factor of 
3

4
 matching the rotating 

projection of the spin angular momentum: 
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The outward centrifugal force on the electron is balanced by the electric force and the magnetic force (Eqs. (1.253) and (2.4)), 

and the radiation reaction force (Eq. (2.196)): 
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 1.99999990 Hr a  (2.199) 

where Eq. (1.35) was used for the velocity and Ha  is the radius of the hydrogen atom given by Eq. (1.259). 

 

ENERGY CALCULATIONS 
The change in the electric energy of the electron H FS

eleE  due to the slight shift of the radius of the atom is given by the difference 

between the electric energies associated with the unperturbed and radiation-reaction-force-perturbed radius.  Each electric energy 
is given by the substitution of the corresponding radius given by Eq. (2.199) into Eqs. (1.264) and (2.4): 
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wherein the unperturbed radius given by Eq. (2.5) is 0 2 Hr a . 

In addition, the change in the magnetic energy H FS
magE  of the electron is given by Eqs. (1.161-1.162) with the substitution 

of the corresponding radii:  
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 (2.201) 

where B  is the Bohr magneton. 

Then, the total radiation reaction energy of the hydrogen fine structure  H FS
RRtotalE  is given by the sum of Eqs. (2.200-

2.201): 
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The Planck relationship (Eq. (2.148)) gives  H FS
RRtotalf , the radiation reaction energy contribution expressed in terms of frequency: 
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Then, the total energy of the hydrogen fine structure H FS
totalE  is given by the sum of Eqs. (2.194) and (2.202): 
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The Planck relationship (Eq. (2.148)) gives  H FS
totalf , the fine structure energy expressed in terms of frequency: 
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    (2.205) 

The experimental hydrogen fine structure is [42] 
   experimental 10,969.05 H FS

totalf MHz   (2.206) 

The large natural widths of the hydrogen 2P  levels limits the experimental accuracy [45]; yet, given this limitation, the 
agreement between the theoretical and experimental fine structure (0.005% relative difference) is excellent and within the cited 
and propagated errors.  
 

HYDROGEN KNIGHT SHIFT 
In an external magnetic field, the unpaired electron of the hydrogen atom gives rise to a uniform magnetic field contribution at 
the nucleus which is given by Eq. (1.152). 
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 (2.207) 

Multiplication of Eq. (2.207) by the permeability of free space, 0 , and substitution of the Bohr radius of the hydrogen atom, 

Ha , given by Eq. (1.259) for nr  of Eq. (2.207) gives the magnetic flux, sB , at the nucleus due to electron spin. 
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 (2.208) 

The shift of the NMR frequency of a nucleus by an unpaired electron is called the Knight Shift.  The Knight Shift of the 
hydrogen atom is given by the magnetic flux (Eq. (2.208)) times the proton gyromagnetic ratio of 142.5775 MHzT  .  The 
experimental value is unknown; however, magnetic hyperfine structure shifts of Mössbauer spectra corresponding to magnetic 
fluxes of 100 T or more due to unpaired electrons are common. 
 

SPIN - NUCLEAR COUPLING (HYPERFINE STRUCTURE) 
The radius of the hydrogen atom is increased or decreased very slightly due to the Lorentz force on the electron due to the 
magnetic field of the proton and its orientation relative to the electron’s angular momentum vector.  The additional small 
centripetal magnetic force is the relativistic corrected Lorentz force, magF , as also given in the Two-Electron Atoms section and 

the Three- Through Twenty-Electron Atoms section.   
The atomic orbital with  = 0 is a shell of negative charge current comprising correlated charge motion along great 

circles.  The superposition of the vector projection of the atomic orbital angular momentum on the z-axis is 
2z L


 (Eq. (1.128)) 
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with an orthogonal component of 
4xy L


 (Eq. (1.127)).  The magnetic field of the electron at the nucleus due to zL  after 

McQuarrie [20] is 

 0
32 e

e

m r


B


 (2.209) 

where 0  is the permeability of free-space ( 7 2
 4   10 /X N A  ).  An electrodynamic force or radiation reaction force, a force 

dependent on the second derivative of the charge’s position with respect to time, arises between the electron and the proton.  
This force given in Sections 6.6, 12.10, and 17.3 of Jackson [37] achieves the condition that the sum of the mechanical 
momentum and electromagnetic momentum is conserved. 

The magnetic moment of the proton,  P , aligns in the direction of zL , but experiences a torque due to the orthogonal 

component xyL .  As shown in the Atomic Orbital Equation of Motion for = 0 Based on the Current Vector Field (CVF) 

section, the magnetic field of the atomic orbital gives rise to the precession of the magnetic moment vector of the proton directed 

from the origin of the atomic orbital at an angle of 
3

   relative to the z-axis.  The precession of  P  forms a cone in the 

nonrotating laboratory frame to give a perpendicular projection of: 

 
3

4P P     (2.210) 

after Eq. (1.129) and a projection onto the z-axis of: 

 
2

P
P

  ||  (2.211) 

after Eq. (1.130).  At torque balance, xyL  also precesses about the z-axis at 90° with respect to P || .  Using Eq. (2.209), the 

magnitude of the force magF  between the antiparallel field of the electron and P  is:  
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B 
 (2.212) 

The radiation reaction force corresponding to photon emission or absorption is radial as given in the Equation of the Electric 
Field inside the Atomic Orbital section.  The reaction force on the electron due to the force of the electron’s field on the 
magnetic moment of the proton is the corresponding relativistic central force, magF , which acts uniformly on each charge (mass)-

density element of the electron.  The magnetic central force is derived as follows from the Lorentz force which is relativistically 
corrected.  The Lorentz force at each point of the electron moving at velocity v  due to a magnetic flux B is: 
 mag e F v B  (2.213) 

Eqs. (2.212) and (2.213) may be expressed in terms of the electron velocity given by Eq. (1.35): 

 0
32 2

P
mag

e

e e
F

m r r

 
  v B


 (2.214) 

where B is the magnetic flux of the proton at the electron.  (The magnetic moment m of the proton is given by Eq. (37.29), and 
the magnetic field of the proton follows from the relationship between the magnetic dipole field and the magnetic moment m as 
given by Jackson [46] where P zm i .)  In the lightlike frame, the velocity v is the speed of light, and B corresponds to the 

time-dependent component of the proton magnetic moment given by Eq. (2.210).  Thus, the central force is:  

 0
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e c
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  F  (2.215) 

where the relativistic factor from Eq. (1.249) is   (Eq. (1.205) also gives the velocity as c ), the plus sign corresponds to 
antiparallel alignment of the magnetic moments of the electron and proton, and the minus sign corresponds to parallel alignment.  
The outward centrifugal force (Eq. (1.241)) on the electron is balanced by the electric force (Eq. (1.242)) and the magnetic forces 
given by Eqs. (1.252) and (2.215): 
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Using Eq. (1.35), 
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where e  is the reduced electron mass given by Eq. (1.255), Ha  is the Bohr radius of the hydrogen atom given by Eq. (1.259), 

the plus sign corresponds to parallel alignment of the magnetic moments of the electron and proton, and the minus sign 
corresponds to antiparallel alignment. 
 

ENERGY CALCULATIONS 
The magnetic energy to flip the orientation of the proton’s magnetic moment, P , from antiparallel to parallel to the direction of 

the magnetic flux sB  of the electron (180° rotation of the magnetic moment vector) given by Eqs. (1.168), (2.209), and (2.210) 

is: 
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where the Bohr magneton, B , is given by Eq. (1.131). 

The change in the electric energy of the electron due to the slight shift of the radius of the electron is given by the 
difference between the electric energies associated with the two possible orientations of the magnetic moment of the electron 
with respect to the magnetic moment of the proton, parallel versus antiparallel.  Each electric energy is given by the substitution 
of the corresponding radius given by Eq. (2.221) into Eq. (1.264).  The change in electric energy for the flip from antiparallel to 
parallel alignment, /S N

eleE , is:  
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In addition, the interaction of the magnetic moments of the electron and proton increases the magnetic energy, magE , of 

the electron given by Eqs. (1.161-1.162).  The term of magE  for the hyperfine structure of the hydrogen atom is similar to that of 

muonium given by Eq. (2.244) in the Muonium Hyperfine Structure Interval section: 
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 (2.224) 

where the contribution corresponding to electron spin gives the first term, 1, and the second term, 
2

2

3
 
 
 

, corresponds to the 

rotation of the electron about the z-axis corresponding to the precession of xyL .  The geometrical factor of 
2

3
 for the rotation is 

given in the Derivation of the Magnetic Field section in Chapter One (Eq. (1.140)) and by Eq. (11.391), and the energy is 
proportional to the magnetic field strength squared according to Eq. (1.154).  The relativistic factor from Eq. (1.249) and Eqs. 

(1.161) and (2.190) is   times 
2

cos
3

 
 
 

 where the latter term is due to the nuclear magnetic moment oriented 
3

   relative to 

the z-axis.  The energy is proportional to the magnetic field strength squared according to Eq. (1.154). 
The total energy of the transition from antiparallel to parallel alignment, /S N

totalE , is given as the sum of Eqs. (2.222-

2.224): 
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The energy is expressed in terms of wavelength using the Planck relationship, Eq. (2.148): 
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 (2.226) 

The experimental value from the hydrogen maser is [47]: 

 / 21.10611 S N
total cm   (2.227) 

The 21 cm line is important in astronomy for the determination of the presence of hydrogen.  There is remarkable agreement 
between the calculated and experimental values of the hyperfine structure that is only limited by the accuracy of the fundamental 
constants in Eqs. (2.221-2.224). 
 

MUONIUM HYPERFINE STRUCTURE INTERVAL 
Muonium ( ,  e M  ) is the hydrogenlike bound state of a positive muon and an electron.  The solution of the ground state 

( 2
1/21 S ) hyperfine structure interval of muonium, Mu , is similar to that of the hydrogen atom.  The electron binds to the muon 

as both form concentric atomic orbitals with a minimization of energy.  The outward centrifugal force (Eq. (1.241)) on the outer 
electron is balanced by the electric force (Eq. (1.242)) and the magnetic forces due to the inner positive muon given by Eqs. 
(1.252) and (2.215).  The resulting force balance equation is the same as that for the hydrogen atom given by Eq. (2.216) with 
the muon mass, m , replacing the proton mass, m , and the muon magnetic moment,  , replacing the proton magnetic moment, 

P .  The radius of the electron, 2r , is given by: 
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Using Eq. (1.35), 
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where ,e   is the reduced muonium-electron mass given by Eq. (1.255) with the mass of the proton replaced by the mass of the 

muon, a  is the Bohr radius of the muonium atom given by Eq. (1.259) with the reduced electron mass, e  (Eq. (1.255)), 

replaced by ,e  .  The plus sign corresponds to parallel alignment of the magnetic moments of the electron and muon, and the 

minus sign corresponds to antiparallel alignment. 
The radii of the muon, 1r , in different spin states can be determined from 2r , the radii of the electron (Eqs. (2.232-

2.233)), and the opposing forces on the muon due to the bound electron.  The outward centrifugal force (Eq. (1.241)) on the 
muon is balanced by the reaction forces given by Eq. (2.228): 
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Using Eq. (1.35),  
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Using Eqs. (2.232-2.233) for 2r , 
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where the plus sign corresponds to parallel alignment of the magnetic moments of the electron and muon and the minus sign 
corresponds to antiparallel alignment. 
 

ENERGY CALCULATIONS 
The magnetic energy,  spin

mag MuE   , to flip the orientation of the muon’s magnetic moment,  , from antiparallel to parallel to 

the direction of the magnetic flux sB  of the electron (180° rotation of the magnetic moment vector) given by Eq. (2.222) is: 
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wherein the muon magnetic moment replaces the proton magnetic moment and the electron Bohr magneton, B , is given by Eq. 

(1.131). 
An electric field equivalent to that of a point charge of magnitude e  at the origin only exists for 1 2r r r  .  Thus, the 

change in the electric energy of the electron due to the slight shift of the radius of the electron is given by the difference between 
the electric energies associated with the two possible orientations of the magnetic moment of the electron with respect to the 
magnetic moment of the muon, parallel versus antiparallel.  Each electric energy is given by the substitution of the 
corresponding radius given by Eq. (2.231) into Eq. (1.264) or Eq. (2.223).  The change in electric energy for the flip from 
antiparallel to parallel alignment,  ele MuE   , is:  
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For each lepton, the application of a magnetic field with a resonant Larmor excitation gives rise to a precessing angular 

momentum vector S of magnitude   directed from the origin of the atomic orbital at an angle of 
3

   relative to the applied 

magnetic field.  As given in the Spin Angular Momentum of the Atomic Orbital 0
0 ( , )Y    with  = 0 section, S rotates about the 

axis of the applied field at the Larmor frequency.  The magnitude of the components of S that are parallel and orthogonal to the 

applied field (Eqs. (1.129-1.130)) are 
2


 and 

3

4
 , respectively.  Since both the RF field and the orthogonal components shown 

in Figure 1.25 rotate at the Larmor frequency, the RF field that causes a Stern Gerlach transition produces a stationary magnetic 
field with respect to these components as described by Patz [48].  The corresponding central field at the atomic orbital surface 
given by the superposition of the central field of the lepton and that of the photon follows from Eqs. (2.10-2.17) and Eq. (17) of 
Box 1.1: 
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where the spherical harmonic dipole  , sinmY     is with respect to the S-axis.  The dipole spins about the S -axis at the 

angular velocity given by Eq. (1.36).  The resulting current is nonradiative as shown in Appendix I: Nonradiation Condition.  
Thus, the field in the RF rotating frame is magnetostatic as shown in Figures 1.28 and 1.29 but directed along the S-axis.   

The interaction of the magnetic moments of the leptons increases their magnetic energies given by Eqs. (1.161-1.162) 
with the mass of the corresponding lepton: 
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where (1) the radii of the electron and muon are given by Eq. (2.232-2.233) and Eqs. (2.239-2.240)), respectively, (2) ,B   is the 

muon Bohr magneton given by Eq. (1.131) with the electron mass replaced by the muon mass, (3) the first term is due to lepton 

spin, (4) the second term, 
2

2
cos

3 3

 
 
 

 is due to S, oriented 
3

   relative to the z-axis, wherein the geometrical factor of 
2

3
 

corresponds to the source current of the dipole field (Eq. (2.243)) given in the Derivation of the Magnetic Field section (Eq. 
(1.140)) and by Eq. (11.391), and the energy is proportional to the magnetic field strength squared according to Eq. (1.154), and 
(5) the relativistic factor from Eq. (1.249) and Eqs. (1.161) and (2.190) is  . 

The energy of the ground state ( 2
1/21 S ) hyperfine structure interval of muonium,  MuE   , is given by the sum of Eqs. 

(2.241-2.242) and (2.244-2.245): 
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Using Planck’s equation (Eq. (2.148)), the interval frequency, Mu , and wavelength, Mu , are: 

  4.46330328 Mu GHz   (2.247) 

  6.71682919 cmMu   (2.248) 

The experimental hyperfine structure interval of muonium [49] is: 
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 (2.249) 

There is remarkable (7 to 8 significant figure-) agreement between the calculated and experimental values of Mu  that is only 

limited by the accuracy of the fundamental constants in Eqs. (2.239-2.240), (2.241-2.242), and (2.244-2.245) as shown by using 
different CODATA values [50-51]. 
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Chapter 3 
  
ELECTRON IN FREE SPACE 
  
 
 
 
 
CHARGE-DENSITY FUNCTION 
The radius of a spherical wavefront of light goes to infinity as it propagates from a spherically-symmetrical source such that its 
propagation in the far-field is given by the plane-wave equation: 
 0

zik zE eE  (3.1) 

Light and electrons display identical propagation and diffraction behavior.  (This is expected because an electron is created from 
a photon as derived in the Pair Production section).  Electrons behave as two-dimensional wavefronts with the de Broglie 
wavelength, /h p  , in double-slit experiments (Davisson-Germer experiment) [1].  The plane wave nature of free electrons is 
demonstrated in the Electron Scattering by Helium section1.  The results of the double-slit experiment are derived classically in 
the Two-Slit Interference (Wave-Particle Duality) section.  Analogous to the behavior of light, the radius of the spherically-
symmetrical electron atomic orbital increases with the absorption of electromagnetic energy [2].   

Consider an idealized hypothetical state.  With the absorption of exactly the ionization energy, the atomic radius r goes to 
infinity, the electron momentum goes to zero, and the de Broglie relationship given by Eq. (1.15) predicts that the electron 
wavelength concomitantly goes to infinity corresponding to an infinitely large electron.  The interaction radius of an infinitely 
large atom goes to infinity also.  Such a state is not physical; so, let’s consider the case observed.  In order for the atom to 
become ionized to form a free electron, the atom must absorb energy greater than its ionization energy.  The radius of the 
spherical shell (electron atomic orbital) goes to infinity as in the case of a spherical wavefront of light emitted from a 
symmetrical source, but it does not achieve an infinite radius.  Rather it becomes ionized with the free electron propagating with 
linear velocity, zv , and the de Broglie wavelength is finite as shown in Figure 3.1.  The ionized electron is a plane wave that 

propagates as a wavefront with the de Broglie wavelength where the size of the electron is the de Broglie wavelength, /h p  , 
as shown below. 
 
Figure 3.1.   Time-lapsed image of spherical to plane-wave front continuity that determines the boundary conditions for 
atomic electron ionization.  With the absorption of a photon of energy in excess of the binding energy, the bound electron’s 
radius increases, and the electron ionizes as a plane-wave. 

 
 

1 Particles such as the proton and neutron also demonstrate interference patterns during diffraction.  The observed far-field position distribution is a picture 

of the particles’ transverse momentum distribution after the interaction.  The momentum transfer is given by k  where 
2

k



  is the wave number.  The 

wavelength   is the de Broglie wavelength associated with the momentum of the particles which is transferred through interactions.  An example is the 
interference pattern for rubidium atoms given in the Wave-Particle Duality is Not Due to the Uncertainty Principle Section. 
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The ionized electron traveling at constant velocity, zv , is nonradiative and is a two-dimensional surface having a total 

charge of e and a total mass of em .  The spacetime charge-density function of the ionized electron is solved as a boundary value 

problem as described previously for the bound electron in the One Electron-Atom section.  The de Broglie wavelength 
relationship given by Eq. (1.38) must hold independent of the radius of the electron.  The relationship between the electron 
atomic orbital radius and its wavelength, is given by Eq. (1.15).  The integral of the magnitude of the angular momentum density 
is   (Eq. (1.37)) independent of the electron radius; thus, for both the bound electron and the free electron, the total magnitude 
of the angular momentum is  .  The spacetime plane-wave charge-density function of the free electron is a solution of the 
classical wave equation (Eq. (1.56)).  The current-density function possesses no spacetime Fourier components synchronous 
with waves traveling at the speed of light; thus it is nonradiative.  As shown below, the solution of the boundary value problem 
of the free electron is given by the projection of the atomic orbital into a plane that linearly propagates along an axis 
perpendicular to the plane.  The velocity of the plane and the atomic orbital is given by Eq. (1.35) where the radius of the atomic 
orbital in spherical coordinates is equal to the radius of the free electron in cylindrical coordinates. 

Consider an electron atomic orbital of radius 0r .  The boundary condition that the de Broglie wavelength holds and the 

angular momentum is conserved as shown infra for any electron radius requires that the ionized electron is the projection of the 
atomic orbital into ( )z , the Cartesian xy-plane that propagates linearly along the z-axis with the same linear velocity as the 

electron atomic orbital.  The mass-density function,  , ,m z   , of the electron with linear velocity along the z-axis of zv  in the 

inertial frame of the proton2 given by Eq. (1.35): 

 
0 0

z
e n e em r m r m 

  v
  

 (3.2) 

is given by the projection into the xy-plane of the convolution,  , of the xy-plane, ( )z , with an atomic orbital of radius 0r .  

The convolution is  

 2 2 2 2
0 0 0( ) ( ) ( )z r r r z r r z         (3.3) 

where the atomic orbital function is given in spherical coordinates.  The equation of the free electron is given as the projection of 
Eq. (3.3) into the xy-plane which in cylindrical coordinates is: 
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 (3.4) 

where N  is the normalization factor for the charge and mass plane-wave defined by 
02




  
 
 

 which represents a two-

dimensional disc or plane-lamina disc of radius 0 .  In spherical coordinates, Eq. (3.4) is given by sin , the projection of the 

charge density of a spherical shell into a plane.  The total mass is em .  Thus, the normalization factor N  in Eq. (3.4) is given by: 
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        (3.5) 
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  (3.6) 

The mass-density function of a free electron is a two-dimensional disc (essentially zero thickness equal to its Schwarzschild 

radius 57
2

2
1.3525  10  e

g

Gm
r X m

c
   according to Eqs. (32.36) and (32.140b)).  The mass-density distribution,  , ,m z   , and 

charge-density distribution,  , ,e z   , in the xy-plane at  z  are: 

 
2 The universe is electrically neutral and contains no antimatter according to the particle production equation (Eq. (32.172)) of the contracting phase of the 
oscillatory universe.  Particle production proceeds through a neutron pathway that gives the number of electrons of the universe equal to the number of 
protons.  The wavelength and the radius of the electron must depend on the velocity relative to the proton’s inertial frame in order that relativistic 
invariance of charge holds and the universe is electrically neutral.  In the case of an observer in an inertial frame with constant relative motion with respect 
to the direction perpendicular to the two-dimensional plane containing the free-electron, the de Broglie wavelength of the electron in both the proton frame 
(the special frame of origin of the free electron) and the second inertial frame are the same.  The radius of the electron is also the same in both frames and 
is given by  

 
0

 
z

p


 (1) 

where 
z

p  is the electron momentum in the z-direction relative to the proton.  There is no Lorentz contraction in the second frame since the electron is 

oriented perpendicular to the direction of relative motion.  Eq. (1) further satisfies the conditions that the moving electron acquires velocity by acceleration 
with concomitant photon emission in quantized units of   and that the electric field of the moving electron is no longer that of the electron at rest.  
Conservation of angular momentum and energy gives rise to the de Broglie relationship as given in the Classical Physics of the de Broglie Relationship 
section. 
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and 
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respectively, where 
2
0

em


 is the average mass density and 

2
0

e


 is the average charge density of the free electron.  The magnitude 

of each distribution is shown in Figure 3.2.  The charge-density distribution of the free electron given by Eq. (3.8) and shown 
in Figure 3.2 has recently been confirmed experimentally [3,4].  Researchers working at the Japanese National Laboratory for 
High Energy Physics (KEK) demonstrated that the charge of the free electron increases toward the particle’s core and is 
symmetrical as a function of  . 
 
Figure 3.2A.   The angular-momentum-axis view of the magnitude of the continuous mass(charge)-density function in the xy-
plane of a polarized free electron propagating along the z-axis and the side view of this electron.  For the polarized electron, the 
angular momentum axis is aligned along the direction of propagation, the z-axis. 
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Figure 3.2B.   The magnitude plotted along the z-axis of the mass(charge)-density function of the free electron traveling at 
510  /m s  relative to the observer.  From Eq. (3.29), the radius of the xy-plane-lamina disc is 91.16  10  X m , and from Eqs. (3.7) 

and (3.8), the maximum mass density and charge density at 0   are 13 23.25  10  /X kg m  and 20.0571 C/m , respectively. 
 

 
 

This surface has an electric field equivalent to a point charge at the origin along the z-axis as shown in the Electric Field of a 
Free Electron section.   
 

ELECTRIC FIELD OF A FREE ELECTRON 
The electrical neutrality of the universe must be maintained.  A free electron is a continuum excited state of a state bound in an 
inverse r-squared positive electric field as given in the Excited States of the One-Electron Atom (Quantization).  A free electron 
is tethered to photon electromagnetic field that created the free electron state away from the proton field and changed its radius 
  and velocity zv  according to Eq. (3.45).  Specifically, the photon that excites the state is glued to the linearly traveling 

electron and maintains its radius  , charge density function, angular momentum, and velocity as shown in the Force Balance 
Based on the Radiation-Reaction Force section and the Classical Physics of the de Broglie Relation section.  (The only exception 
to this configuration is when all fields have been cancelled to form a free electron with no gravitational mass as given in the 
Positive, Zero, and Negative Gravitational Mass section.)  As given in the Force Balance Based on the Radiation-Reaction Force 
section, the current density of the free electron can be modeled as a continuum of circular current elements having the same 
rotational frequency.  The photon field lines propagate along these current elements.  The photon field lines and the free electron 
charge density only exist at the position of the two-dimensional plane of the free electron and superimpose only at that plane.  
Considering electrodynamic interactions (Eqs. (3.30-3.52)), the charge and current densities are determined to be absent any in-
plane forces; thus, the charge density comprises an equipotential such that the electric field lines at the surface of the free 
electron are normal to the surface.  The relationship between the electric field and the source charge density is given by Gauss’ 
law and Faraday’s law equation in two dimensions [5-7]: 

  1 2
0




  n E E  (3.9) 

where n  is the radial normal unit vector, 1E  is the electric field on one side of the free electron, 2E  is the electric field on the 

other side of the free electron, and   is the surface charge density distribution of the free electron given by Eq. (3.8).  Based on 
symmetry, the condition that the free electron comprises an equipotential surface requiring the absence of an in-plane electric 
field component at  z , and by using the substitution of 0 sin    in Eqs. (3.8) and (3.9), the electric field at each surface is 

given by: 
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The charge distribution and z-axis field is the spherical harmonic  1
0 ,Y   , an allowed spherical harmonic solution of an excited 

state, which is required for the selection rules based on conservation of electron and photon angular momentum and continuity of 
excited states though the continuum series. 

Since the photon field only exists in the two-dimensional plane, the electric potential of a free electron for 0z   is given 
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by Poisson’s Equation for a charge-density function, ( ', ', ')x y z  given by Eq. (3.8): 
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 (3.11) 

For 2 2 2
0r x y z     , the magnitude of the integral over the charge density is e , and  
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4

e
r

r
    (3.12) 

Eq. (3.12) is equivalent to the potential of a point charge at the origin.  The electric field, E , is the gradient of the electric 
potential given by Eqs. (3.11-3.12): 
  E  (3.13) 
A numerical plot of the electric field out of plane is shown in Figure 3.3 wherein the plot is discontinuous at the plane wherein 
the normal direct field at  z is given by Eq. (3.10) corresponding to an equipotential membrane due to the superposition of the 

photon field with the electron charge only at the plane of the free electron.  
 
Figures 3.3A-B.   The electric potential and electric field of the free electron.  A.  Three-dimensional cutaway view of the 
electric potential of a free electron that approaches that of a point charge at the center-of-mass in the far field.  B.  The two-
dimensional cross section of the electric field lines of a free electron.  The electric field is symmetrical about the z-axis and 
approaches that of a point charge at the center-of-mass in the far-field. 

 
 

(A) 
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(B) 

 

CURRENT-DENSITY FUNCTION 
In general, the current-density function is the product of the charge-density function times the angular velocity function.  If the 
intrinsic electron current was variable over time, then radiation would result, and the electron would be unstable.  A current that 
changes over time is also inconsistent with the Lorentz invariant electron magnetic moment of one Bohr magneton.  Thus, in 
order for the current to be stable over time, the current must be constant as a function of the radial distance and given by the 
product of  , the free-electron charge density (Eq. (3.8)) and a constant angular velocity.  The magnitude of the angular velocity 
of the atomic orbital is given by Eq. (1.36):  

 
2

em r
 


 (3.14) 

Rather than being confined to a spherical shell, the free electron possesses time harmonic charge motion in the xy-plane at a 
constant angular frequency.  That is, at each point on the free electron, the current moves along a flat current loop time 
harmonically.  This holds for all points such that the current confined to a plane is constant.  Since the charge density is 
determined, the boundary condition on the angular velocity is applied next to solve the current density function of the free 
electron.  Consider the boundary condition that arises during the ionization of a bound electron to form a free electron.  During 
ionization of the electron, the scalar sum of the magnitude of the angular momentum,  , must be conserved.  The current-
density function of a free electron propagating with velocity zv  along the z-axis in the inertial frame of the proton is given by 

the product of the charge density and the constant angular velocity.  Since the mass to charge ratio of the electron is invariant, 
the corresponding boundary condition is that the angular momentum of   is conserved.  The projection of the constant angular 
velocity of the atomic orbital into the plane of the free electron gives the angular velocity of the form 

 
2
0e

N
m





 (3.15) 

where N  is the normalization constant that gives   of angular momentum.  The angular momentum, L , is given by: 

 2
z em  Li  (3.16) 

Consider the case that 
5

2
N   such that: 
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Substitution of the mass density, m , given by Eq. (3.7) and the angular frequency,  , given by Eq. (3.17) into Eq. (3.16) gives 

the angular momentum-density function L  which is shown in Figures 3.4A and 3.4B. 
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Figure 3.4A.   The plot as a function of   of the angular momentum density in the plane of a free electron having 

100 /z m sv . 

 
 
Figure 3.4B.   The cut-away, relief view of the angular momentum density in the plane of a free electron having 

100 /z m sv . 

 
 
The total angular momentum of the free electron is given by integration over the two-dimensional disc having the angular-
momentum density given by Eq. (3.18).  Using integral #211 of Lide [8] gives: 
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 z Li   (3.20) 

Thus, the constant angular velocity at each point on the two-dimensional lamina is given by Eq. (3.17). 
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The intrinsic current-density function of the free electron is given by the product of the angular velocity   and the 
charge-density function given by Eqs. (3.17) and (3.8), respectively.  The total current density ( , , , )z t J  additionally 
comprises the component due to translational motion.  The total current-density function is given by: 
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 (3.21) 

The intrinsic current is shown in Figure 3.5. 
 
Figure 3.5.   The magnitude plotted along the z-axis of the current-density function, J , of the free electron traveling at 

5 110  ms  relative to the observer.  From Eq. (3.29), the radius of the xy-plane-lamina disc is 91.16 10  X m , and from Eq. (3.21), 
the maximum current density at 0   is 13 21.23  10X Am . 
 

 
 
The spacetime Fourier transform of Eq. (3.21) is [9,10]: 
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where s  is the wavenumber 
0

2


.  The condition for nonradiation of a moving charge-density function is that the spacetime 

Fourier transform of the current-density function must not possess components synchronous with waves traveling at the speed of 

light, that is synchronous with 

c

 or synchronous with 
0

 
c

 where   is the dielectric constant of the medium.  The Fourier 

transform of the current-density function of the free electron is given by Eq. (3.22).  Consider the radial part of, J , the Fourier 

transform of the current-density function where the z spatial dimensional transform is not zero:   
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For time harmonic motion corresponding to the electron parameters 0  and 0s , Eq. (1.15),  

 0 02   (3.24) 

The charge motion of the free electron is angular, and consequently the radius undergoes Lorentz contraction as shown in the 
Special Relativistic Correction to the Ionization Energies section.  Consider the wave vector of the sinc function. When the 
velocity is c  corresponding to a potentially emitted photon, s  is the lightlike 0s  wherein 
 0   s v s c  (3.25) 

The relativistically corrected wavelength given by Eq. (1.280) is: 
 0 0   (3.26) 

as also shown in Appendix I: Nonradiation Based on the Electromagnetic Fields and the Poynting Power Vector.  Substitution of 
Eq. (3.26) into the sinc function results in the vanishing of the entire Fourier transform of the current-density function.  Thus, 

spacetime harmonics of 
0

  k or k
c c

  


   do not exist.  Radiation due to charge motion does not occur in any medium when 
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this boundary condition is met.  Furthermore, consider the z spatial dimensional transform of, J , the Fourier transform of the 

current-density function: 
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The only nonzero Fourier components are for: 
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where   is the angle between zk  and zv .  Thus, no Fourier components that are synchronous with light velocity with the 

propagation constant z c


k  exist.  Radiation due to charge motion does not occur when this boundary condition is met.  It 

follows from Eq. (3.2) and Eq. (3.24) that the wavelength of the free electron is: 

 0 02
e z

h

m v
    (3.29) 

which is the de Broglie wavelength.   
 

FORCE BALANCE BASED ON THE RADIATION-REACTION FORCE  
Consideration must be made of the free electron as a continuum excited electronic state caused by absorption of a photon.  The 
physics of excited states is continuous with the free electron or continuum excited states.  For excited states given in the 
Equation of the Electric Field inside the Atomic Orbital section, the vector direction of the photon electric field was determined 
directly by considering the relativistic effect of its motion relative to the electron.  In the case of the free electron, the 
electrodynamic field may be treated as a magnetic field since a magnetic field is a relativistic effect of the corresponding electric 
field.  The free electron is a two-dimensional disc with a charge distribution given by Eq. (3.8) having a radius 0  given by Eq. 

(3.29) and an in-plane electric field given by Eqs. (3.8 and (3.9).  This distribution is a minimum energy, two-dimensional 

surface3.  An attractive magnetic force exists between current circles in the xy-plane, and the force balance equation is given by 
equating the centrifugal and the centripetal forces.  

The centripetal force, magF , between the current loops is the electrodynamic or radiation-reaction magnetic force as given 

in the One Electron Atom—Determination of Atomic Orbital Radii section and the Two-Electron Atoms section.  Here, each 
infinitesimal point (mass or charge-density element) of the free electron moves azimuthally about the angular-momentum axis 
on a circle at the same angular velocity given by Eq. (3.17) at a radius 00    , and each point has the mass density and 

charge density given by Eqs. (3.7) and (3.8), respectively.  Due to the relative motion of the charge-density elements of each 
electron current loop, a radiation reaction force arises between each loop.  This force given in Sections 6.6, 12.10, and 17.3 of 
Jackson [11] achieves the condition that the sum of the mechanical momentum and electromagnetic momentum is conserved.  
The magnetic central force is derived from the Lorentz force, which is relativistically corrected.  The magnetic field at the 

 
3 This relation shows that only a 2-D geometry meets the criterion for a fundamental particle.  This is the nonsingularity geometry that is no longer 
divisible.  It is the dimension from which it is not possible to lower dimensionality.  In this case, there is no electrostatic self-interaction since the 
corresponding potential is continuous across the surface according to Faraday’s law in the electrostatic limit, and the field is discontinuous and normal to 
the charge according to Gauss’ law [8-10].  Thus, only the continuous current density function need be considered.   

It was shown in the Electron g Factor section that as a requirement of the conservation of angular momentum, the magnetic moment of the 
electron can only be parallel or antiparallel to an applied magnetic field.  Similarly, in order to conserve angular momentum, any internal change in the 
bound-electron current distribution and its corresponding angular momentum requires emission of a photon that carries angular momentum in its electric 
and magnetic fields only in discrete units of   as given in the Equation of the Photon section.  Conservation of angular momentum also requires that this 
condition be met for the free electron.  Self interaction of the current of the free electron having the angular momentum distribution given in the Current-
Density Function section and the Stern-Gerlach Experiment section requires the emission of a photon having an angular momentum that is a fraction of   
which is not possible according to Maxwell’s equations as given in the Excited States of the One-Electron Atom (Quantization) section.  Thus, any self 

interaction is a radiation-reaction type wherein k is also the lightlike k 0  such that k  
n

/ c .  Any such light-like interaction can only be central.  Since 

the velocity of each point of the electron for a given   is the same, the current of the atomic orbital is confined to a circle in the  v  c  frame as well as 

the lab frame as given by Eq. (1.280).  Since the current is orthogonal to the central vector at the same   for each circular current-density element, there is 

no self interaction, but there is an interaction between circular current-density elements for different values of   that balances the centrifugal force as 

given by Eq. (3.30) and Eqs. (3.37-3.38) to maintain the free electron as an equipotential 2-D surface.. 
As given by Eq. (3.15), the total angular momentum confined to the plane of the free electron is  .  The radiation reaction force requires 

conservation of the reaction photon’s angular momentum of  .  Thus, this force is only present for the free electron as opposed to the bound electron 
since the radial direction in the bound case is perpendicular to the surface and a photon of   of angular momentum may only be emitted through a release 
of energy due to the central field. 

Furthermore, since fundamental particles such as the electron are superconducting, nonresonant collisions cannot change the intrinsic angular 
momentum.  Such collisions involve the entire particle.  And, the intrinsic angular momentum remains unchanged, except when a resonant photon is 
emitted or absorbed according to the Maxwellian-based conservation rules given in the Excited States section and the Equation of the Photon section. 

Similar to the case of the electric field, a discontinuity in surface mass density gives rise to a discontinuity in the curvature of spacetime 
originating at the two-dimensional surface.  Thus, in addition to the absence of electric self-interaction (Appendix II), the Virial theorem does not apply 
regarding gravitational self-interaction.  The derivation of the gravitational field is given in the Gravity section. 
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electron current loop at position 0   due to the electron current loop at position 0  follows from Eq. (1.130) after McQuarrie 

[12]:  
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 (3.30) 

wherein the intrinsic angular momentum during photon interaction is the same as that of a bound electron as shown in the Stern-

Gerlach Experiment section and 0  is the permeability of free-space ( 7 2
 4   10 /X N A  ).  The motion at each position of the 

electron loop at radius 0   in the presence of the magnetic field of the current loop at position 0  gives rise to a central force 

which acts at each charge density element of the former.  The Lorentz force at each element moving at velocity v  is 
 mag e e   F v B B  (3.31) 

Substitution of Eq. (3.17) for   and Eq. (3.30) for B based on the angular momentum of the free electron of   gives:  

 
2 2

0
2 3 4
0 0 0 0

5 5

2 2 2 2
o

mag
e e e e

e ee

m m m m

  
   

   
    

   
F

 
 (3.32) 

Furthermore, the term in brackets can be expressed in terms of the fine structure constant  .  The radius of the electron loop in 
the light-like frame is C .  From Eq. (1.250) 
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Based on the relativistic invariance of 
e

e

m
 corresponding to the invariance of B  given by Eq. (1.131) as well as its invariant 

angular momentum of  , it can be shown that the relativistic correction to Eq. (3.32) is the reciprocal of Eq. (3.33).  
Specifically, as shown previously in the One Electron Atom—Determination of Atomic Orbital Radii section and the Two-
Electron Atoms section, the relativistic correction '  due to the light speed electrodynamic central force is:  

   1
' 2    (3.34) 

Thus, Eq. (3.32) becomes:  
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 (3.35) 

Eq. (3.35) gives the force as a function of the radius  .   
The centrifugal force due to each charge density element on each current loop about the angular-momentum axis is 

balanced by the centripetal force magF .  During the radiation reaction event, the centrifugal force,  i centrifugalF , at each point of the 

free electron of mass im  is given by: 
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 F i i  (3.36) 

(An equation for magF  that is also proportional to the angular frequency squared that parallels that of Eq. (3.41) is given by 

expressing the magnetic flux in terms of the current given by the charge times the angular frequency [13].)  The velocity v  at 
each point follows from the angular velocity (Eq. (3.17)) and is given by: 
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where   is the radius of the point.  Substitution of Eq. (3.37) into Eq. (3.36) gives: 
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 (3.38) 

The integral over the density gives the total force centrifugalF .  As in the case of magF , centrifugalF  for the radiation reaction event is 

linear in   such that the force per unit area is equal over the two-dimensional lamina to maintain the constraints that the electron 

is an equipotential, minimum-energy surface and the corresponding energy is proportional to   of a photon.  Thus, centrifugalF , 

the linear factor for centrifugalF  is given by multiplication of Eq. (3.38) by 
0




, substitution of the mass density (Eq. (3.7)) for im , 

and integration over the plane lamina: 
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 (3.39) 

centrifugalF  is also the magnitude of the total centrifugal force of the ensemble of current loops that is equally distributed 

throughout the plane lamina.  It is also given by using Eq. (3.36) in another form: 

 2
 i centrifugal im 

 


F i  (3.40) 

Substitution of the total angular momentum given by Eqs. (3.18-3.20), the angular velocity given by Eq. (3.17), and the total 
radius 0  into Eq. (3.40) gives centrifugalF : 
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Using Eq. (3.39) or Eq. (3.41), centrifugalF  is given by: 
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centrifugalF  is further given by the derivative of rotE : 
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 (3.43) 

where rotE  is given by Eq. (3.50).  From Eqs. (3.42-3.43) and (3.35), the outward centrifugal force, centrifugalF , due to each 

element on each current loop about the angular-momentum axis is balanced by the centripetal force magF  due to the magnetic 

interactions between the current loops. 
Furthermore, the free electron possesses a total charge e , a total mass em , and an angular momentum of  .  The 

magnetic moment is given by Eq. (2.65); thus, 
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 (3.44) 

which is the Bohr magneton.  Conservation of angular momentum with the linking of flux in discrete increments of the magnetic 
flux quantum gives rise to the spin quantum number, sm , and the g  factor which is the same as given previously in the Electron 

g Factor section.  The behavior of the free electron in a magnetic field is given in the Stern-Gerlach Experiment section.  It is 
shown next that the intrinsic angular momentum of   is unchanged as the electron acquires linear velocity with a concomitant 
change in its de Broglie wavelength. 
 

CLASSICAL PHYSICS OF THE DE BROGLIE RELATIONSHIP 
As shown in Appendix IV, the plane-lamina of the free electron generates a spherical current-density pattern over time during 
the interaction with photons designated 0

0 ( , ) Y .  The angular momentum of the photon given by 

  41
Re ( )

8
dx

c
   m r E B*   in the Photon section is conserved [14] for the solutions for the resonant photons and excited 

state electron functions given in the Excited States of the One-Electron Atom (Quantization) section.  It can be demonstrated that 
the resonance condition between these frequencies is to be satisfied in order to have a net change of the energy field [15].  In this 
case, the correspondence principle holds.  That is the change in angular frequency of the electron is equal to the angular 
frequency of the resonant photon that excites the resonator cavity mode corresponding to the transition, and the energy is given 
by Planck’s equation.  The same conditions apply to the free electron, and the correspondence between the principles of the 
bound and free electrons further hold in the case of the Stern-Gerlach experiment as given in the Stern-Gerlach Experiment 
section. 

The linear velocity of the free electron can be considered to be due to absorption of photons that excite surface currents 
corresponding to a decreased de Broglie wavelength where the free electron is equivalent to a continuum excited state with 
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conservation of the parameters of the bound electron discussed supra.  The relationship between the electron wavelength and the 
linear velocity is  

 1
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 (3.45) 

In this case, the angular frequency z  is given by: 
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which conserves the photon’s angular momentum of   with that of the electron relative to its center of mass.  The angular 
momentum conservation relationship of   is the same as that of the bound electron given by Eq. (1.37) where the velocity is zv  

given by Eq. (3.2) and the radius is 0  given by Eq. (3.29).  In addition, the electron kinetic energy T  is given by 
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The potential energy, magE , corresponding to magF  is given by the integral over the radius: 
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The rotational kinetic energy, rotE , of the free electron corresponding to the angular momentum given by Eqs. (3.18-3.20) is: 

 2 21 1 1

2 2 2rot eE L I m v     (3.49) 

Using Eqs. (3.17), (3.20), and (3.49) gives: 
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Similarly to Eq. (3.48), rotE  is also given by the integral of the corresponding force, centrifugalF , given by Eq. (3.43). 

The total energy, TE , is given by the sum of the change in the free-electron translational kinetic energy, T , the rotational 

energy, rotE , corresponding to the current of the loops, and the potential energy, magE , due to the radiation reaction force magF , 

the magnetic attractive force between the current loops due to the relative rotational or current motion: 
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Thus, the total energy, TE , of the excitation of a free-electron transitional state by a photon having   of angular momentum and 

an energy given by Planck’s equation of   is:  
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      (3.52) 

where   is de Broglie wavelength.  The angular momentum of the free electron of   is unchanged, the energies in the currents 
in the plane lamina are balanced so that the total energy is unchanged, and the radius 0  changes to match the de Broglie 

wavelength and frequency at an increased velocity.  At this velocity, the kinetic energy matches the energy provided by the 
photon wherein the de Broglie frequency matches the photon frequency and both the electron-kinetic energy and the photon 
energy are given by Planck’s equation. 

Eq. (3.52) is identical to Eq. (2.22) that gives the relationship between the energy and frequency of a photon that causes a 
bound excited state and the corresponding change in the electron's kinetic energy.  A photon of the same energy as Eq. (3.52) is 
emitted due to acceleration of the free electron by an applied electric field to acquire the velocity zv  in agreement with the 

Abraham-Lorentz equation of motion [16].  This relationship is identical to that of the binding energy and kinetic energy of the 
bound electron in the central field of the proton given in the Photon Absorption section.  The exception is that the photon-bound-
electron interaction results in a trapped photon with the electron in a different orbit with a maintained eccentricity of zero and a 
decreased angular and linear velocity; whereas, the eccentricity of the orbit for the photon-free-electron interaction goes to 
infinity corresponding to a hyperbolic orbit that approaches rectilinear motion with an increased linear velocity.  The angular 
distribution of radiation emitted by an accelerated charge and the distribution in frequency and angle of energy radiated by 
accelerated charges is also given classically in Sections 14.3 and 14.5 of Jackson [17,18]. 

The correspondence principle is the basis of the de Broglie wavelength relationship.  Stated in other words, the de 
Broglie relationship is not an independent fundamental property of matter in conflict with physical laws as formalized in the 
wave-particle-duality-related postulates of quantum mechanics and the corresponding Schrödinger wave equation.  Nothing is 
waving including probability.  The relationship arises from the correspondence principle that is based on Maxwell's equations 
and conservation of angular momentum and energy.  The other fundamental misconceptions of quantum mechanics that serve as 
its foundations are the impossibility of explaining the Stern-Gerlach experimental results and the double-slit interference pattern 
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of electrons classically.  In contradiction to widely accepted beliefs, these phenomena are also shown to be exactly predicted 
from first principles (Stern-Gerlach Experiment section and in the Two-Slit Interference (Wave-Particle Duality) section).  
 

STERN-GERLACH EXPERIMENT 
The Stern Gerlach experiment demonstrates that the magnetic moment of the electron can only be parallel or antiparallel to an 

applied magnetic field.  This implies a spin quantum number of 1/2 corresponding to an angular momentum on the z-axis of 
2


.  

However, the Zeeman splitting energy corresponds to a magnetic moment of a Bohr magneton B  and implies an electron 

angular momentum on the z-axis of —twice that expected.  This in turn implies that the gyromagnetic ratio is twice that 
expected for a classical magnetic moment generated by a current loop.  Historically, this dilemma was felt to be inexplicable and 
could only be resolved by purely mathematical approaches rather than physics.  It is shown infra that this is not the case.  The 
Stern-Gerlach results are completely predictable from first principles, and the results are intuitive. 

The free electron arises during pair production and ionization.  In both cases, the production photon or the ionizing 
photon carries   of angular momentum.  The derivations of the parameters of the free electron given supra were made with the 
conservation of the photon angular momentum implicit.  The vector and scalar parameters of the bound electron in a magnetic 
field given in the Atomic Orbital Equation of Motion for   = 0 Based on the Current Vector Field (CVF) section and the 
Magnetic Parameters of the Electron (Bohr Magneton) Stern-Gerlach Experiment section are also conserved in the case of a free 
electron in a magnetic field. 

Consider the case of a magnetic field applied to the free electron.  The direction of the electron's intrinsic angular 
momentum of   and the corresponding magnetic moment of B  can change orientation with the application of a magnetic field 

or an electric field.  It is also reoriented by interaction with photons.  Randomly-directed fields and random photon interactions 
give rise to random orientations.  Thus, in the absence of an applied orienting field or a specific procedure to produce a polarized 
state, the free electron is unpolarized.  The Bohr magneton of magnetic moment of the free electron corresponding to its   of 
angular momentum is initially in a random direction relative to the z-axis, the axis of an applied magnetic field.  The center of 
mass of the electron propagates at the original constant velocity zv  in Eq. (3.2).   

Then, a small diamagnetic azimuthal current in the plane of the lamina opposes an applied field according to Lenz's law 
as given for the bound electron in Box 1.1.  Furthermore, the application of the magnetic field causes a resonant excitation of the 
Larmor precession as in the case of the bound electron wherein the energy arises from that stored in the applied magnetic field.  
The excitation can be described in terms of photons in the same manner as in the case of photon emission or absorption due to an 
applied electric field that causes the free electron to accelerate.  The Larmor precession frequency is given by the product of the 

gyromagnetic ratio of the electron, 
2

e

m
, and the magnetic flux B [19].  As in the case of the bound electron, the precessing free 

electron is a spin-1/2 particle (
2




zL ), but the stationary resultant angular momentum projection that is either parallel or 

antiparallel to the applied-field axis is   corresponding to a full Bohr magneton of magnetic moment.  Here, each of the resonant 
photons which excites the Larmor precession and the intrinsic angular momentum of the free electron (Eq. (3.20)) contribute 
equally to the resultant z-axis projection.  As shown in the Excited States of the One-Electron Atom (Quantization) section, 
conservation of the angular momentum of the photon of   gives rise to   of electron angular momentum in the excited state.  
The photon having the Larmor frequency corresponding to the energy given by Eq. (1.227) and   of angular momentum initially 
along an axis in the transverse (xy)-plane causes the electron and the photon to precess about both the z-axis and the transverse-
axis.  Then, as a time average the angular momentum of the precessing electron contributes one-half of its intrinsic angular 

momentum of   to the projection on the z-axis, and the photon angular momentum also contributes 
2


 to the z-projection. 

As shown in Appendix IV, with the electron current in the counter clockwise direction, the Larmor precession of the 
angular momentum vector of the free electron is about two axes simultaneously, the  ,0 ,x y zi i i -axis and the laboratory-frame z-

axis defined by the direction of the applied magnetic field.  The precessions are about the opposite axes with the current in the 
opposite direction.  The motion generates CVFs equivalent to those of the bound electron given in the Atomic Orbital Equation 
of Motion for   = 0 Based on the Current Vector Field (CVF) section.  Over one time period, the first motion sweeps out the 
equivalent of a BECVF, and the rotation about the z-axis sweeps out the equivalent of an OCVF.  The combined motions sweep 
out the equivalent of the convolution of the BECVF with the OCVF, an angular-momentum distribution equivalent to 0

0 ( , ) Y  

of the bound electron.  The Larmor excited precessing electron can further interact with another resonant photon that gives rise 
to Zeeman splitting—energy levels corresponding to flipping of the parallel or antiparallel alignment of the electron magnetic 
moment of a Bohr magneton with the magnetic field.  

The parameters of the photon standing wave for the Larmor precession and the Zeeman effect of the free electron follow 
from those of the bound electron given in the Magnetic Parameters of the Electron (Bohr Magneton) section and Box 1.1.  To 
cause the Larmor excitation and the spin-flip transition, the corresponding photon gives rise to surface currents in the plane of 
the free electron that are equivalent to the projection of the time- and spherically-harmonic dipole Larmor currents of the bound 
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electron into the free-electron plane.  The currents cause a precession of the disc to form a time-averaged bi-conical cavity that is 
azimuthally symmetrical about the  ,0 ,x y zi i i -axis (Figure 3.8).  The time-averaged angular momentum and rotational energy of 

the currents that are phase-locked to the photon field is zero as given by Eqs. (1.76-1.77), but the photon's angular momentum is 
  corresponding to a magnetic moment of one Bohr magneton B  as shown for the case of the Larmor resonant excitation of a 

bound electron in Box 1.1. 
The   of angular momentum of the photon that excites the Larmor precession is initially along an axis in the transverse 

(xy)-plane.  This causes a torque on the z-axis-directed   of angular momentum of the electron and causes it to rotate into the 
xy-plane.  This in turn causes a torque on the angular momentum of the photon.  As a result the electron and the photon undergo 
mutual precession about both the  ,0 ,x y zi i i -axis and the z-axis.  The motion is more easily analyzed by first considering a 

coordinate system that rotates about the z-axis.  In the coordinate system rotating at the Larmor frequency (denoted by the axes 
labeled RX , RY , and RZ  in Figure 3.6), the positive RX -component of magnitude   corresponding to the photon and a negative 

RX -component of magnitude 
2


 (Eq. (3.65)), corresponding to the current generated by the rotation of the free electron about 

the RX -axis, are stationary.  The angular momentum vector of the free electron of magnitude   corresponding to a magnetic 

moment of one Bohr magneton B  is designated by zS .  The photon's positive   of angular momentum along RX  with a 

corresponding magnetic moment of B  (Eq. (28) of Box 1.1) causes the zS  to rotate about RX .  As the RZ -axis precesses about 

the RX -axis, it causes a reactive torque such that the RX -axis also rotates about the RZ -axis.  Consequently, the two vectors 

shown in Figure 3.6 precess about both the  ,0 ,x y zi i i -axis and the z-axis.   

 
Figure 3.6.   The initial angular momentum components of the free electron and positive and negative RX  components in the 

rotating coordinate system ( RX , RY , RZ ) that precesses at the Larmor frequency about RZ  such that the vectors are stationary.  

The electron is initially in the RX RY -plane. 
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For further convenience, a second primed Cartesian coordinate system refers to the axes that rotate with the  ,0 ,x y zi i i -

axis about the z-axis at the Larmor frequency wherein the x'y'-plane of the plane-lamina disc of the free electron aligns with the 
xy-plane time harmonically at this frequency.  Then, each of the RX -, RY , and RZ -axis is designated the x'-, y', and z'-axis, 

respectively.  The initial corresponding precession of the plane lamina in the x'y'-plane about each of the z- and x-axes results in 
a precession about the  ,0 ,x y zi i i -axis as shown in Figure 3.7.  The electron precession motion about the  ,0 ,x y zi i i -axis which 

is stationary in the rotating frame generates a BECVF as given in Appendix IV which is a solid version of the BECVF for the 
case of the bound electron.  The rotation of the BECVF in the laboratory frame generates the 0

0 ( , ) Y  distribution. 
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Figure 3.7.   In the Larmor-frequency rotating ( RX , RY , RZ ) frame, the plane-lamina disc of the free electron rotates about the 

 ,0 ,x y zi i i -axis.  The resultant angular momentum vector of 2  (red vector) having projections onto each of the RZ -axis 

(green vector) and the RX -axis (blue vector) of   is stationary on the rotating  ,0 ,x y zi i i -axis.  The electron precession motion 

about the  ,0 ,x y zi i i -axis generates the free electron BECVF.  The green and blue vectors can be assigned to the intrinsic 

electron and photon angular momentum at 0t , respectively.  These components rotate about the  ,0 ,x y zi i i -axis and 

harmonically interchange at each one-half period of rotation.  Thus, z-axis component of   comprises a time-averaged 

contribution of 
2


 from each of the electron and the photon. 
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The Larmor excitation comprises a double precession.  The z-axis angular momentum projection before and after the 
excitation of the Larmor precession is  , and the energy of the photon to cause the precession of the  ,0 ,x y zi i i -axis about the 

z-axis at the Larmor frequency is given by Eq. (25) of Box 1.1.  Therefore, only the torque balance of the precession of the 
electron about the  ,0 ,x y zi i i -axis in the Larmor-frequency rotating ( RX , RY , RZ ) frame (Figure 3.7) needs to be considered.  

The derivation of the corresponding current density about the x'-axis follows that for the bound electron given in the Magnetic 
Parameters of the Electron (Bohr Magneton) section.  The magnetic moment (angular momentum) can be determined from the 
current (mass)-density function.  The magnetic moment of a current loop of area 2' y  due to a point charge element of charge ie  

that has an angular velocity of  x' x'i  is given by 

 2'  
2

x
ie y


 '

x' x'm i  (3.53) 

The angular momentum of a point mass element of mass im  at a distance 'y  from the rotation axis with an angular velocity of 

 x ' x'i  is given by 

 2'     i x x xm y Ix' ' x' ' x'L i i  (3.54) 

where xI  is the moment of inertia.  If the free electron simply rotated as a rigid plane-lamina disc with the mass density 

maintained in the plane as given by Eq. (3.7) and as shown in Figure 3.2, then the moment of inertia xI  corresponding to a 

rotation of the disc about the x'-axis would be given by  
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Using the integral with respect to 'y  given by #210 of Lide [20], Eq. (3.55) becomes 
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Evaluation at the integration limits gives 
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The multiplication and integration of each term followed by evaluation at the limits gives 

 

0

0

2 3 5
4 0
03

0 -

5 5
5 20 0
0 03

0

2 '3 '
'   

16 3 5

4 23 1
   2    

16 3 5 5








  


 
   

 

 
    

 

e
x x

e
x e x

m x x
I x

m
m

' '

' '

i

i i

 (3.58) 

which is 1/2 the moment of inertia of a uniform disc as shown by Fowles [21]. 
The angular momentum x'L  follows from Eq. (3.54) as Eq. (3.58) times the constant angular velocity x' x'i .  It is shown 

infra that the torque due to the photon's angular momentum of   initially along the x'-axis does cause zS  to rotate such that the 

mass-density function and the magnitude of the angular momentum-density function about the x'-axis are the same as those 
about the z-axis given by Eqs. (3.7) and (3.17), respectively.   

By the perpendicular-axis theorem [21], the corresponding angular momentum about the x'-axis is 1/2 that about the z-
axis.  This is easily shown since Eq. (3.19) can be expanded as 
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Then the angular momentum about the x'-axis is 
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which is 1/2 that of Eq. (3.59) since the number of symmetrical axes of integration was reduced to 1/2.  This result can also be 
shown directly.  Then, the angular momentum along the x'-axis corresponding to a rotation of the mass of the electron about this 
axis during a Larmor excitation is given by  
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with the mass density and  x'  equivalent to that of Eq. (3.19) but directed around the x'-axis and   d d  was replaced by 

' 'dy dx .  Using the integral with respect to 'y  given by # 210 of Lide [20], Eq. (3.61) becomes 
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The integration of each term with respect to 'x  followed by evaluation at the limits gives: 
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which is 1/2 the angular momentum of the free electron given by Eqs. (3.19-3.20).  
The torque N in rotating coordinates is given by [22] 

   
x'N L i L  (3.65) 

The electron's angular momentum of   is conserved.  Thus, the torque pN  on the electron's angular momentum of   due to the 

photon's angular momentum of   and corresponding magnetic moment of B  is 

   xp 'N i  (3.66) 

The torque cN  corresponding to the centrifugal force cF  for a rotating system is given by: 

 2 2 2
'         xr mr Ic c x' x' x' x'N F i i L i  (3.67) 

Substitution of Eq. (3.64) into Eq. (3.67) gives 

 
2
 


c x'N i  (3.68) 

The rotating mass/charge density gives rise to an angular momentum of 
2


 (Eq. (3.64)) and a corresponding magnetic moment of 

2

B  (Eq. (28) of Box 1.1) that opposes the magnetic moment of the photon.  The corresponding torque is: 

 ' 2
    


x x' x' x'N L i i  (3.69) 

The required torque balance is: 

 ' 0
2 2

        
 

 c x xp 'N N N i  (3.70) 

The result of Eq. (3.70) confirms the match of the mass-density function and magnitude of the angular frequency function of 
Eqs. (3.59-3.64) with those of Eq. (3.19). 

Thus, the application of a magnetic field causes a resonant excitation of the Larmor precession.  The   of angular 
momentum on the z'-axis and the   of angular momentum on the x'-axis gives a resultant stationary projection of 2  onto the 

 ,0 ,x y zi i i -axis.  The static projection of the resultant onto the z-axis is  .  The precessing electron can further interact with a 

resonant photon directed along the x-axis that rotates the z-axis-directed static projection of the resultant of   such that it flips it 
to the opposite direction.  Thus, absorption of an RF photon gives rise to a Zeeman transition corresponding to flipping of the 
parallel or antiparallel alignment of the electron magnetic moment of a Bohr magneton with respect to the magnetic field 
wherein the energy of the transition between Zeeman states is that of the resonant photon given by Eq. (1.227). 

The parameters of the photon standing wave for the Zeeman effect of the free electron follow from those of the bound 
electron given in the Magnetic Parameters of the Electron (Bohr Magneton) section and Box 1.1.  The charge density of the free 
electron is given by the projection of the atomic orbital into a plane as given in the Charge-Density Function section.  To cause 
the Larmor excitation and the spin-flip transition, the corresponding photon gives rise to surface currents in the plane of the free 
electron that are also equivalent to the projection of the time- and spherically-harmonic dipole Larmor currents of the bound 
electron into the free-electron plane.  Specifically, the photon gives rise to a current on the surface of the disc that corresponds to 
a rotating time- and polar-harmonic dipole that phase-matches the mass (charge) density of Eqs. (3.7-3.8). 

The current of the free electron is initially azimuthally symmetrical about the z-axis.  The resonant Larmor photon 
induces transient currents in the xy-plane to give rise to   of angular momentum initially along the x-axis.  The corresponding 
torque causes the electron to precess about the x- and z-axes giving rise to Larmor precession about the  ,0 ,x y zi i i -axis and the 

z-axis at steady state depending on the initial direction of the free-electron magnetic moment relative to the applied magnetic-
field direction.  Thus, the currents cause a precession of the disc to form a time-averaged bi-conical cavity shown in Figure 3.8 

that is azimuthally symmetrical about the  ,0 ,x y zi i i -axis, and this distribution further precesses about the z-axis to generate the 
0

0 ( , ) Y  distribution. 

The photon-induced surface current satisfies the condition 
 0 J  (3.71) 
And, the radius, 0 , of the free electron is unchanged.  The time-averaged angular momentum and rotational energy of the 

currents that are phase-locked to the photon field are zero as given by Eqs. (1.76-1.77), but the photon's angular momentum is   
corresponding to a magnetic moment of one Bohr magneton B  as shown for the case of the Larmor resonant excitation of a 

bound electron in Box 1.1.  Thus, the electrostatic energy is constant, and only the magnetic energy need be considered as given 
by Eqs. (23-25) of Box 1.1.  



Chapter 3 186

The photon-field is central according to special relativity as given in the Equation of the Electric Field inside the Atomic 
Orbital section.  The corresponding central field at the free-electron surface follows from Eq. (17) of Box 1.1 and the force 
balance condition between the centrifugal force and the electric-field force: 

       2 2
03

0 0

3
Re , '

2


       
 

  
m i t

n n

e
Y e zE i  (3.72) 

where the spherical harmonic dipole  , sin  
mY  is with respect to the xy-plane of the free electron and gives the magnitude 

at position n  in the plane, the centrifugal force is given by Eq. (3.67), and   is given by Eq. (3.17).  The mass density given by 

Eq. (3.7) may be given in terms of spherical coordinates as follows: 
Let  

 0 cos    (3.73) 

Then 
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Force balance is maintained by the equivalence of the harmonic modulation of the charge and the mass where / ee m  is invariant. 

The in-plane time- and polar-harmonic dipole further spins about the z-axis at the Larmor frequency, L .  By 

considering the Larmor frequency component and the motion at the frequency given by Eq. (3.17), the free-electron motion in a 
magnetic field parallels that of the bound electron that also has two components of motion.  The angular frequency about the 
rotation axis of the bound electron is given by Eq. (1.36), and the resulting dipole current rotates about the z-axis at the Larmor 
frequency.  The parallels continue.  In the free-electron frame rotating about the z-axis, the electric field of the dipole is 

      2 2
03

0 0

3
sin sin '

2         
 

   n n

e
t zE i  (3.75) 

corresponding to Eq. (18) of Box 1.1.  From Eqs. (20) and (21), the corresponding photon surface current is equivalent to the 
projection of the charge of a uniformly-charged spherical shell rotating at constant angular velocity of   about the z-axis into 
the free-electron plane.  Given that the charge moving azimuthally and time-harmonically at the constant frequency is equivalent 
to the planar projection of a spherical dipole, the resulting current is nonradiative as shown for this condition in Appendix I.  The 

z-axis directed field in the laboratory frame and the field in frames rotating about the  ,0 ,x y zi i i -axis are magnetostatic as 

shown in Figures 1.32 and 1.33 but directed along the respective axis.  The precession of the magnetostatic dipole results in 
magnetic dipole radiation or absorption during a Stern-Gerlach transition.   

Consider next the physics of the free-electron Zeeman splitting based on the electron structure and corresponding 
behavior in magnetic and photon fields based on Maxwell’s equations.  The free electron is a two-dimensional plane lamina 
comprised of a series of concentric circular current loops in the xy-plane (  -plane) that circulate about the z-axis as given in the 
Current-Density Function section.  Each current loop can be considered a great-circle basis element analogous to those given in 
the Atomic Orbital Equation of Motion for   = 0 Based on the Current Vector Field (CVF) section.  The rotation of each such 

great circle about the  ,0 ,x y zi i i - axis by 2  during a period generates the equivalent of the current pattern of a BECVF.  

Furthermore, the rotation of the free-electron disc having a continuous progression of larger current loops along   forms two 

conical surfaces over a period that join at the origin and face in the opposite directions along the  ,0 ,x y zi i i -axis, the axis of 

rotation, as shown in Figure 3.8.  At each position of 0  , there exists a BECVF of that radius that is concentric to the one of 

infinitesimally larger radius to the limit at 0  .  The BECVFs at each position   generated over a period by the precession 

about the  ,0 ,x y zi i i -axis by 2  is given in Appendix IV.   

Over one time period, the first motion about the  ,0 ,x y zi i i -axis by 2 sweeps out the equivalent of a BECVF, and the 

rotation about the z-axis sweeps out the equivalent of an OCVF.  The combined motions sweep out the equivalent of the 
convolution of the BECVF with the OCVF, an angular-momentum distribution equivalent to 0

0 ( , ) Y  of the bound electron.  A 

discrete representation from Appendix IV as a series of great circle current loops is shown in Figure 3.9 
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Figure 3.8.   A view of one of the two conical surfaces 
formed by rotation of the plane-lamina disc comprised of 

concentric great circles about the  ,0 ,x y zi i i -axis that join at 

the origin and face in the opposite directions along the axis of 
rotation, the  ,0 ,x y zi i i -axis. 

    

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Now, consider the dynamics when the precessing electron further interacts with a resonant photon that gives rise to 

Zeeman splitting.  As shown in Appendix IV, the combined rotations about the  ,0 ,x y zi i i -axis and the z-axis generates a 

distribution over a period of motion that is equivalent to the current pattern and angular momentum of 0
0 ( , ) Y  of the bound 

electron.  The absorbed Larmor-frequency-resonant photon provides   of angular momentum along the x-axis that causes the 
0

0 ( , ) Y  distribution to rotate about the x-axis by   to flip the magnetic moment in the opposite direction while maintaining the 

distribution with the currents reversed.  
Since the Larmor precession sweeps out the form of the 0

0 ( , ) Y  distribution for each position of   and the current of 

each concentric shell along   obeys superposition, the free electron in aggregate behaves as a shell of charge, current, and 

angular-momentum density of the free-electron radius 0  having a total magnitude of angular momentum of   and the 

projection 
2




zL .  Then, the resulting time-averaged azimuthally uniform spherical momentum density interacts with the 

external applied magnetic field in a manner that is equivalent to that of the atomic orbital equation of motion, 0
0 ( , ) Y , of the 

bound electron of radius 0nr .  Note the parallels between the bound and free electrons wherein the free electron angular 

momentum was considered as the plane projection of the constant angular momentum density of a bound electron confined to a 

spherical shell of radius 0  having a total magnitude of angular momentum of   and the projection 
2




zL  (Eqs. (3.2-3.4) and 

(3.19-3.20)).   

Figure 3.9.   A representation of the uniform current 
pattern of the 0

0 ( , ) Y  free electron motion over a period of 

both precessional motions shown with 30 degree increments 
of the angle to generate the free electron BECVF and 30 
degree increments of the rotation of this basis element about 
the z-axis.  The perspective is along the x-axis.  The great 
circle current loop that served as a basis element that was 
initially in the xy-plane of each free electron BECVF is 
shown as red. 
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FREE-ELECTRON g FACTOR 
Since the projection of the time-averaged intrinsic free electron angular momentum and that of the resonant photon that excites 

the Larmor precession onto the z-axis are both 
2


, and the angular motion distribution of the free electron is spherically 

symmetric, the Larmor-excited free electron behaves equivalently to the bound electron in a magnetic field during a spin flip 

transition.  Flux must be linked in the same manner in units of the magnetic flux quantum, 0 2
 

h

e
.  Consequently, the g factor 

for the free electron is the same as that of the bound electron, and the energy of the transition between these states is that of the 
resonant photon given by Eq. (1.227). 
 

Consider the bound electron.  As demonstrated in the Atomic Orbital Equation of Motion for   = 0 Based on the Current 

Vector Field (CVF) section, 
2


 of the atomic orbital angular momentum designated the static component is initially parallel to 

the field.  An additional 
2


 parallel component designated the dynamic component comes from the   of angular momentum 

along S .  The angular momentum in the presence of an applied magnetic field is [23]: 
 ( )  em eL r v A  (3.76) 

where A  is the vector potential evaluated at the location of the atomic orbital.  The circular integral of A  is the flux linked by 
the atomic orbital.  During a Stern-Gerlach transition a resonant RF photon is absorbed or emitted, and the   component along 
S  reverses direction.  Referring to Box 1.1, it is shown by Eqs. (29-32) that the dynamic parallel component of angular 
momentum corresponding to the vector potential due to the lightlike transition is equal to the “kinetic angular momentum” 

( )mr v  of 
2


.  Conservation of angular momentum of the electron requires that the static angular momentum component 

concomitantly flips.  The static component of angular momentum undergoes a spin flip, and concomitantly the “potential angular 

momentum” ( )er A  of the dynamic component must change by 
2




 due to the linkage of flux by the electron such that the 

total angular momentum is conserved.   
In the case of the free electron, the application of a further   component along the x'-axis with the absorption of a 

resonant photon causes the 0
0 ( , ) Y  distribution to flip about the x-axis to reverse the magnetic moment with respect to the 

applied magnetic field.  The photon having   of angular momentum along the positive x’-axis of the free electron has an energy 
that is equivalent to that of the spin-flip transition given by Eq. (1.227).  Here also, the dynamic parallel component of angular 
momentum corresponding to the vector potential due to the lightlike transition is equal to the "kinetic angular momentum" 

( )mr v  of 
2


.  Conservation of angular momentum of the 0

0 ( , ) Y  distribution requires that the static angular momentum 

component concomitantly flips.  The static component of angular momentum undergoes a spin flip, and concomitantly the 

“potential angular momentum” ( )er A  of the dynamic component must change by 
2




 due to the linkage of flux by the 

electron such that the total angular momentum is conserved. 

From Eq. (28) of Box 1.1, the 
2


 of intrinsic angular momentum after the field is applied corresponds to a magnetic 

moment on the applied-field-axis of 
2

B  in the case of the free electron as well as the atomic orbital.  The resonant Larmor-

precession-angular-momentum contribution of 
2


 corresponds to another 

2

B  of magnetic moment that gives a total magnetic 

moment along the applied-field-axis of B , a Bohr magneton.  The additional contribution (Eq. (28)) arises from the angular 

momentum of   on the S -axis and the x'-axis for the atomic orbital and free electron, respectively.  Thus, even though the 

magnitude of the vector projection of the angular momentum of the electron in the direction of the magnetic field is 
2


, the 

magnetic moment corresponds to   due to the 
2


 contribution from the dynamic component, and the quantized transition is due 

to the requirement of angular momentum conservation as given by Eq. (28) of Box 1.1. 
Eq. (22) of Box 1.1 implies a continuum of energies; whereas, Eq. (29) of Box 1.1 shows that the static-kinetic and 

dynamic vector potential components of the angular momentum are quantized at 
2


.  Consequently, as shown in the Electron g 

Factor section, the flux linked during a spin transition is quantized as the magnetic flux quantum:  
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2 
h

e
 (3.77) 

Only the states corresponding to:  

 
1

2
 sm  (3.78) 

are possible due to conservation of angular momentum.  It is further shown using the Poynting power vector with the 
requirement that flux is linked in units of the magnetic flux quantum, that the factor 2 of Eqs. (23) and (25) of Box 1.1 is 
replaced by the electron g factor.   

In summary, since the corresponding properties of the free electron are equivalent to those of the bound electron, 
conservation of angular momentum of the electron permits a discrete change of its “kinetic angular momentum” ( )mr v  with 

respect to the field of 
2


, and concomitantly the “potential angular momentum” ( )er A  must change by 

2



 (Eqs. (1.171-

1.174)).  Consequently, flux linkage by the electron is quantized in units of the magnetic flux quantum, 
2 
h

e
, and the 

electron magnetic moment can be parallel or antiparallel to an applied field as observed with the Stern-Gerlach experiment (See 
Box 1.1 and in the Electron g Factor section).  Rather than a continuum of orientations with corresponding energies, the energy, 

 spin
magE , of the spin flip transition corresponding to the 

1

2
 sm  quantum number is given by Eq. (1.227): 

  spin
mag BE g B  (3.79) 

The Stern-Gerlach experiment implies a magnetic moment of one Bohr magneton and an associated angular momentum 
quantum number of 1/2.  Historically, this quantum number is called the spin quantum number, sm , and that designation is 

maintained. 
The Stern Gerlach experiment was historically felt to be inexplicable in terms of classical physics.  Past explanations 

based on associated postulates were purely mathematical.  However, the observed electron parameters are explained physically.  

Classical laws give (1) a gyromagnetic ratio of 
2

e

m
, (2) a Larmor precession frequency of 

2

e

m

B
, (3) the Stern-Gerlach 

experimental result of quantization of the angular momentum that implies a spin quantum number of 1/2 corresponding to an 

angular momentum of 
2


 on the z-axis, and (4) the observed Zeeman splitting due to a magnetic moment of a Bohr magneton 

2
 


B

e

e

m
 corresponding to an angular momentum of   on the z-axis.  Furthermore, the solution is relativistically invariant as 

shown in the Special Relativistic Correction to the Ionization Energies section.  Dirac originally attempted to solve the bound 
electron physically with stability with respect to radiation according to Maxwell's equations with the further constraints that it 
was relativistically invariant and gave rise to electron spin [24].  He was unsuccessful and resorted to the current mathematical-
probability-wave model that has many problems as discussed in Refs. [25-26].  

 

FREE-ELECTRON BINDING 
The free electron comprises a planar disc wherein the azimuthal charge density increases towards the origin of the disc according 
to Eq. (3.8).  When an electron undergoes binding by a nucleus, the opposite of the reversible and time-symmetrical process of 
electron ionization, any linear kinetic energy is lost as radiation such that the initial de Broglie wavelength and radius 0  are 

large according to Eq. (3.2).  During binding in the nuclear central field, the electron current pattern over time is equivalent to 
the pattern traced out over time by the planar great circle of radius 0  of a free electron undergoing a precession in a magnetic 

field during a spin flip transition.  In the binding case, as the free electron undergoes a wobble rotational motion, the concentric 
planar great circles of current shown in Figure 3.2A flow from the disc origin to the perimeter edge at 0  and successively 

spread the electron charge density over a BECVF such as that shown in Figures 1.5-1.7.  Next, a wobble rotational motion of the 
BECVF spreads the charge over a spherical shell as a uniform density to comprise the bound electron atomic orbital 0

0 ( , )Y    of 

spherical radius R  as shown in Figures 1.12, 1.13, 1.16, 1.17, and 1.22. 
Specifically, consider the rotation of the angular momentum vector of the free electron current about two axes, the 

 ,0 ,x y zi i i -axis in a first step and the laboratory-frame z-axis in a second step as shown in Appendix IV.  The corresponding 

motion of the perimeter great circle current loop at 0  in the plane perpendicular to the angular momentum vector generates 

CVFs equivalent to those of the bound electron given in the Atomic Orbital Equation of Motion for  = 0 Based on the Current 
Vector Field (CVF) section.  Specifically, the first rotation sweeps out the equivalent of a BECVF (Figure IV.1), wherein the 
concentric planar great circle current loops shown in Figure 3.2A flow from the disc origin to the perimeter edge at 0  during 

the rotation to successively spread the charge density over the BECVF.  The second rotation of the BECVF sweeps out the 
equivalent of the convolution of the BECVF with the OCVF given in Figure IV.5.  The result is a charge and current density 
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distribution equivalent to 0
0 ( , )Y    of the bound electron wherein charge density of the bound electron has the same angular 

frequency and linear velocity everywhere on the surface.  During binding, the radii of the great circles of the BECVF and 
0

0 ( , )Y    may change with the emssion of the equivalent of at least one excited state photon.  However, due to the indivisiblity of 

the electron and conservation of energy in an inverse squared Coulomb nuclear field, the time average radius of the BECVF or 
0

0 ( , )Y   must change as an ensemble wherein the time average of the kinetic energy, T  , for any circular or elliptical motion 

in an inverse-squared field is 1/ 2  that of the time average of the magnitude of the potential energy, V  .  1/ 2T V     

[27].  The common radial current of a bound electon during an excited state transition and the corresponding lifetime is given in 
the State Lifetimes and Line Intensities section.  The reversible and time-symetric mechanism of the emission or absorption of 
photons by the bound electron is given in the Transitions section.  The uninform charge density is proportional to the spherical 
coordinate term 0 sin   relative to the z-axis which follows from Eq. (3.8) with the substitution of 0 cos    as given by Eq. 

(3.74).  Additionally, the bound electron may comprise time and spherical harmonic modulation functions given by Eq. (1.28) 
depending on the electron configuration.  The opposite process to binding described herein occurs during electron ionization. 

Specifically, consider the free electron traveling along the z-axis with plane of the electron disc in the xz-plane as it 
approaches the proton at the origin.  The bonding proceeds by the rotation of the angular momentum vector of the free electron 
current about two axes, the  ,0 ,x y zi i i -axis in a first step and the laboratory-frame z-axis in a second step as shown in Appendix 

IV.  The corresponding motion of the perimeter great circle current loop at 0  in the plane perpendicular to the angular 

momentum vector generates CVFs equivalent to those of the bound electron given in the Atomic Orbital Equation of Motion for 
ℓ  = 0 Based on the Current Vector Field (CVF) section.  Specifically, the first rotation sweeps out the equivalent of a BECVF 
(Figure IV.1), wherein the concentric planar great circle current loops shown in Figure 3.2A flow from the disc origin to the 
perimeter edge at 0  during the rotation to successively spread the charge density over the BECVF as the disc converters into an 

annulus with the inner radius increasing to 
0
 at the step completing the BECVF.  The second rotation of the BECVF sweeps 

out the equivalent of the convolution of the BECVF with the OCVF given in Figure IV.5 to form the uniform charge, mass, 
current density, and momentum-density function Y0

0  , .   
Electron binding is a continuous process with continuous current flow.  An equation providing visualization in discrete 

steps that generates the angular momentum vectors of the bound electron follows from Eq. (18) of Appendix IV.   
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Consider that the free electron translates along the z-axis towards the proton at the origin.  To maintain an equipotential, the N 
rotations of the free electron disc (Eq. (3.80)) commences at a distance from the proton equal to the outer radius of the disc 

0
.  

The current within the disc flows towards the outer radius 
0
 to form a set of time-delayed concentric great circles.  At each step 

of the rotation to transfer a great circle current element from the free electron current density to that of the forming BECVF 
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according to Eq. (Eq. (3.80)), as a great circle of radius 
0
 is transferred to the forming BECVF a next great circle replaces it 

such that the remaining electron disc current density forms an annulus with a constant outer radius   
0
 and an increasing 

inner radius 
  
 

n

N


0 .  The center of mass of the forming BECVF/annulus translates a distance of 
  

0

N
 along the z-axis towards 

the proton for each  n  rotation step such that the proton is in the coordinate origin of the BECVF at the end of the N rotations.  
Next, the M rotations of the BECVF form the spherical shell with the proton at the center.  During the formation of the BECVF, 
each point of the forming BECVF surface and the disc are equipotential relative to the Coulomb field between the proton and 
electron.  Computer modeling of the analytical equations to generate the free electron current vector field, the current vector 
fields during electron binding, and the azimuthally uniform momentum-density function  0

0 , Y  is available on the web [28].  

Excerpts of the animation of the continuous electron binding process are shown in Figure 3.10.  The discrete representation of 
the current distribution 0

0 ( , ) Y  that shows a finite number of current elements wherein the BECVF comprises N  great circles 

and the number of convolved BECVF elements is M is shown in Figures 3.11 and 3.12.   
 
Figure 3.10.   Representations of stages of the bound electron current pattern of the 0

0 ( , ) Y  formed by free electron binding 

to a proton (Eq. (3.80)) wherein the current density of the free electron disc is converted into great circles covering a two-
dimensional spherical shell. 
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Figures 3.11 and 3.12.   Representations of the current pattern of the 0
0 ( , ) Y  formed by electron binding with 30 degree 

increments ( 12 N M  in Eq. (3.80)) of the angle to generate the free electron binding BECVF and 30 degree increments of 
the rotation of this BECVF about the z-axis to form the bound electron current vector field.  The free electron disc that served as 
the source of great circle basis element current loops that was initially in the xy-plane is shown as red 
 
Figure 3.11.  The perspective is along the z-axis. Figure 3.12.  The perspective is along the x-axis. 
 

   
The z-axis view of this representation with 144 vectors overlaid giving the direction of the current of each great circle element is 
shown in Figure 3.13.  The corresponding mass (momentum) density is also represented by Figures 3.11 and 3.12 wherein the 
charge and mass are interchangeable by the conversion factor /em e . 

 
Figure 3.13.   An ideal representation of the uniform current pattern of 0

0 ( , )Y    comprising the superposition of an infinite 

number of great circle elements generated by normalizing the distribution of Eq. (3.80).  The constant uniform current density is 
overlaid with 144 vectors giving the direction of the current of each great circle element for 30 degree increments ( 12 N M  
in Eq. (3.80)) of the angle to generate the BECVF and 30 degree increments of the rotation of this basis element about the z-axis.  
The perspective is along the z-axis.  The corresponding uniform current-density function having intrinsic angular momentum 

components of  and  following Larmor excitation in a magnetic field give rise to the phenomenon of electron 

spin. 

 
 
 
The result is a charge and current density distribution equivalent to 0

0 ( , )Y    of the bound electron wherein charge 

density of the bound electron has the same angular frequency and linear velocity everywhere on the surface.  During binding, the 
radii of the great circles of the BECVF and 0

0 ( , )Y    may change with the emssion of the equivalent of at least one excited state 

photon.  However, due to the indivisiblity of the electron and conservation of energy in an inverse squared Coulomb nuclear 
field, the time average radius of the BECVF or 0

0 ( , )Y   must change as an ensemble wherein the time average of the kinetic 

energy, T  , for any circular or elliptical motion in an inverse-squared field is 1/ 2  that of the time average of the magnitude 
of the potential energy, V  .  1/ 2T V     [27].  The common radial current of a bound electon during an excited state 



Electron in Free Space 193

transition and the corresponding lifetime is given in the State Lifetimes and Line Intensities section.  The reversible and time-
symetric mechanism of the emission or absorption of photons by the bound electron is given in the Transitions section.  The 
uninform charge density is proportional to the spherical coordinate term 0 sin   relative to the z-axis which follows from Eq. 

(3.8) with the substitution of 0 cos    as given by Eq. (3.74).  Additionally, the bound electron may comprise time and 

spherical harmonic modulation functions given by Eq. (1.28) depending on the electron configuration.  The opposite process to 
binding described herein occurs during electron ionization. 
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Chapter 4 
  
EQUATION OF THE PHOTON 
  
 
 
 
 
RIGHT AND LEFT HAND CIRCULAR AND ELLIPTICALLY POLARIZED PHOTONS 
The equation of the photon in free space is derived as a boundary value problem involving the transition from the ground state to 
an excited state of the hydrogen atom.  The “ground” state function of the hydrogen atom is an atomic orbital given in the 
Atomic Orbital Equation of Motion 0  Based on the Current Vector Field (CVF) section, and the excited-state function 
comprising the atomic orbital and a resonant trapped photon is given in the Excited States of the One-Electron Atom 
(Quantization) section.  The atomic orbital CVF equations are given by Eqs. (1.78-1.98), and the CVFs are shown in Figures 1.4-
1.11.  The “trapped photon” of an excited state is given by Eq. (2.15).  The latter gives rise to a corresponding phase-matched 
source current given by Eq. (2.11).  During the transition from the excited state to the ground state, the excited-atomic-state 
angular momentum given by Eq. (2.66) and the emitted-photon angular momentum are quantized in unit of   such that Eq. (9.2) 
is obeyed.  Since the change in angular momentum between the initial and final atomic states is conserved by the photon’s 
angular momentum, the angular momentum, m, of the emitted photon follows from the time-averaged angular-momentum 
density given by Eq. (16.61) of Jackson [1]:  

   41
Re ( )

8
dx

c
   m r E B*   (4.1) 

Thus, the photon equation is given by the superposition of two atomic orbital-type current-vector fields at the same radius—one 
with electric field lines, which follow great circles and one with magnetic field lines, which follow great circles.  The magnetic 

current-vector field is rotated 
2


 relative to the electric current-vector field; thus, the magnetic field lines are orthogonal to the 

electric field lines 
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where the magnitude of the electric and magnetic fields are give by Eq. (4.1) with the boundary condition that photon angular 
momentum is  . 

A photon comprising a field-line pattern called a photon electric and magnetic vector field (e&mvf) similar to the atomic 
orbital is generated from two orthogonal great circle field lines shown in Figure 4.1 rather than two great circle current loops as 
in the case of the electron spin function.  Consider the fields of the photon to be generated from two orthogonal great circles field 
lines, one for E and one for B.  The Cartesian coordinate system wherein a first great circle magnetic field line lies in the x'z'-
plane, and a second great circle electric field line lies in the y'z'-plane is designated the basis-set reference frame, and the xyz 
Cartesian-coordinate frame is the laboratory frame as given in the Atomic Orbital Equation of Motion 0  Based on the 
Current Vector Field (CVF) section.   
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Figure 4.1.   The stationary Cartesian coordinate system xyz wherein the first great circle magnetic field line lies initially in 
the xz-plane, and the second great circle electric field line lies initially in the yz-plane.  The rotated coordinates are primed.  
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Consider a point on each of the two orthogonal great-circle field lines, one and two, in the basis-set reference frame at 
time zero wherein initially the first loop lies in the xz-plane, and the second loop lies in the yz-plane.  Point one is at ' nx r , 

' 0y  , and ' 0z   and point two is at ' 0x  , ' 0y  , and ' nz r .  Let point one move clockwise on the great circle in the x'z'-
plane toward the positive z'-axis, and let point two move counterclockwise on the great circle in the y'z'-plane toward the 
negative y'-axis, as shown in Figure 4.1.  The equations of motion, in the sub-basis-set reference frame are given by: 
 
point one (H FIELD):   

 2
' cos( )n nx r t  2

' 0y   2
' sin( )n nz r t  (4.4) 

point two (E FIELD):   

 1
' 0x   1

' sin( )n ny r t   1
' cos( )n nz r t  (4.5) 

The right-handed-circularly-polarized photon electric and magnetic vector field (RHCP photon-e&mvf) and the left-
handed-circularly-polarized photon electric and magnetic vector field (LHCP photon-e&mvf) are generated by rotating the great 

circles about the  , ,0x y zi i i -axis or the  , ,0x y zi i i -axis by 
2


, respectively.  The corresponding primed Cartesian coordinate 

system refers to the axes that rotate with the great circles relative to the xyz-system and determines the basis-element reference 
frame.  The fields are continuous on the spherical surface, but they can be visualized by a discrete-element representation 

wherein each element of the field-line density function is obtained with each incremental rotation of a series over the span of 
2


.  

Thus, the two points, one and two, are on the first member pair of the orthogonal great circles of an infinite series that comprises 
a representation of a photon. 

The right-handed-circularly-polarized photon electric and magnetic vector field (RHCP photon-e&mvf) shown in Figure 
4.2 is generated by the rotation of the basis elements comprising the great circle magnetic field line in the xz-plane and the great 

circle electric field line in the yz-plane about the  , ,0x y zi i i -axis by 
2


 corresponding to the output of the matrix given by Eq. 

(4.6). 
 
RHCP PHOTON E FIELD and H FIELD: 
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The left-handed-circularly-polarized photon electric and magnetic vector field (LHCP photon-e&mvf) is generated by the 
rotation of the basis elements comprising the great circle magnetic field line in the xz-plane and the great circle electric field line 

in the yz-plane about the  , ,0x y zi i i -axis by 
2


 corresponding to the output of the matrix given by Eq. (4.7).  The mirror image 

of the RHCP photon-e&mvf, the left-handed circularly polarized photon-e&mvf, is shown with three orthogonal views in Figure 
4.3.  
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LHCP PHOTON E FIELD and H FIELD: 
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Figure 4.2.   The field-line pattern given by Eq. (4.6) from three orthogonal perspectives of a RHCP photon-e&mvf 
corresponding to the first great circle magnetic field line and the second great circle electric field line shown with 6 degree 
increments of the angle  .  (Electric field lines red; Magnetic field lines blue). 
 

 
 
Figure 4.3.   The field-line pattern given by Eq. (4.7) from three orthogonal perspectives of a left-handed circularly polarized 
photon-e&mvf corresponding to the first great circle magnetic field line, and the second great circle electric field line shown 
with 6 degree increments of the angle  .  (Electric field lines red; Magnetic field lines blue). 
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FIELDS BASED ON INVARIANCE UNDER GAUSS’ INTEGRAL LAW 
The angular velocity of the photon-e&mvf is equal to the change in angular velocity of the electron atomic orbital for a de-
excitation from the energy level with principal quantum number in n  to fn n , where i fn n , given by Eq. (2.21) for 1fn  .  

From Eq. (2.22), the photon is an electromagnetic wave that carries energy, E , given by: 
 E    (4.8) 

Given the relationships, Eqs. (4.2) and (4.3) for the electric and magnetic fields, the solution of the classical wave 
equation Eq. (I.45) requires that the linear velocity at each point along a great circle of the photon-e&mvf is c ,  

 
0 0

1
c

 
  (4.9) 

and, that the velocity of the photon in the lab frame is c .  Therefore, with the velocity addition property of special relativity, the 
velocity in all frames of reference is c  including the rest frame.  Thus, the zero rest mass concept of the photon can be discarded.  
The “mass” of the photon in any frame is actually momentum contained in its electric and magnetic fields as given by Eqs. 
(2.150) and (4.1).  An additional consequence of the light speed in all frames is that the radius of the photon is invariant.  The 
field lines in the lab frame follow from the relativistic invariance of charge as given by Purcell [2].  The relationship between the 
relativistic velocity and the electric field of a moving charge is shown schematically in Figure 4.4A and 4.4B. 
 
Figure 4.4A.   The electric field of a moving point charge 

(
1

3
v c ). 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
The field invariance under Gauss’ Integral Law also applies to the fields of the photon-e&mvf.  From Eqs. (4.4-4.7) and 

as shown in Appendix V, the electric and magnetic fields are harmonic in space and time wherein 
2

c



  is satisfied which is 

a solution of the wave equation for an electromagnetic wave, and the fields are orthogonal such that Faraday’s and Ampere’s 
Laws are satisfied.  The photon equation in the lab frame (shown in Figures 4.5 and 4.6) of a right-handed circularly polarized 
photon-e&mvf is: 
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with a wavelength of: 

 2
c 


  (4.11) 

The relationship between the photon-e&mvf radius and wavelength is:  
 2 photonr   (4.12) 

The wavelength (radius) changes for moving observers according to the Doppler formula of Lorentz transforms.  In terms of 
Eqs. (4.4-4.7), 0E  of the photon is given by the boundary condition that the angular momentum given by Eq. (4.1) is  ; thus, the 

energy is given by Planck’s equation (Eq. (2.18)) as shown by Eqs. (2.56-2.64).  The relationship between Planck’s equation and 
Maxwell’s equations is also consistent with regard to the energies of excited states as given by Eqs. (2.18-2.22). 
 

Figure 4.4B.   The electric field of a moving point charge 

(
4

5
v c ). 
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Figure 4.5.  The direction of rotation of the electric field 
lines of a right-handed circularly polarized photon-e&mvf as 
seen along the axis of propagation in the lab inertial reference 
frame as it passes a fixed point. 
 

 
 
 

 
 
 
 
 
 
 
 
The cross-sectional area,  , transverse to the propagation direction of the photon is 

 
2

2

      
 (4.13) 

The geometric cross section (Eq. (4.13)) is consistent with the Rayleigh scattering formula, which is derived from Maxwell’s 
equations [3]. 

The photon-e&mvf may comprise basis element magnetic and electric field lines that are constant in magnitude as a 
function of angle over the surface, or the magnitude of the fields of the basis elements may vary as a function of angular position 
( , )   on the photon-e&mvf.  The general photon equation for the electric field in its frame is:  

     0
, 02
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1
1 , Re ,
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nim tm
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e
Y Y e r

r n


 
    

 
               

E    (4.14) 

where photonr  is the radius of the photon-e&mvf and 
2

n

c


  is the photon angular velocity which is equal to  , the change 

in atomic orbital angular velocity given by Eq. (2.21) and the light speed changes the direction of the field lines to the transverse 
direction.   

Similarly photons are emitted when an electron is bound.  Using Eq. (1.34) for the photon and the electron wave 
relationships for the initial conditions of an unbound electron at rest, the ratio of the linear velocity of the subsequently bound 
electron to the emitted free-space photon is given by: 

 2

2

n
n

n n n

photonphoton photon photon
photon

v r

c r

  
 



    (4.15) 

where the n  subscripts refer to atomic orbital quantities and the far-right-hand-side relationship follows from Eq. (2.2) and Eq. 
(4.12).  From Eq. (4.15), the relations between the free space photon wavelength, radius, and velocity and the corresponding 
parameters of a free electron as it is bound are: 

(1) photonr , the radius of the photon-e&mvf, is equal to n H
n n

c c
r na

v v
  , the electron atomic orbital radius given by Eqs. 

(2.2) and (2.5) times the product of   and the ratio of the speed of light c  and nv , the velocity of the atomic orbital given by Eq. 

(1.35),  

(2) photon , the photon wavelength, is equal to n
n

c

v
 , where n  is the atomic orbital de Broglie wavelength, and  

(3) 
2

photon

c


 , the photon angular velocity, is equal to n , the atomic orbital angular velocity given by Eq. (1.36).   

The magnetic field photon-e&mvf is given by Eqs. (4.14) and (4.2).  In the case of  , 0mY     in Eq. (4.14), a right-

handed and a left-handed circularly polarized photon-e&mvf are superimposed to comprise a linearly polarized photon-e&mvf.  
A right-handed or left-handed circularly polarized photon is obtained by attenuating the oppositely polarized component.  For 
Eq. (4.14), the power density per unit area, S, is:  

  S E B*  (4.16) 
 

Figure 4.6.   The electric field rotation as a function of z  
of a right-handed circularly polarized photon-e&mvf as seen 
transverse to the z-axis, axis of propagation, in the lab 
inertial reference frame at a fixed time wherein 2 photonr   
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LINEAR POLARIZED PHOTONS 
The linearly polarized photon is given by the superposition of the right-handed circularly polarized photon-e&mvf shown in 
Figure 4.2 and its mirror image, the left-handed circularly polarized photon-e&mvf, shown in Figure 4.3.  The field-line pattern 
of a linearly polarized (LP) photon-e&mvf shown from the perspective of looking along the z-axis is shown in Figure 4.7.  Thus, 
the LP photon-e&mvf is obtained by rotation of the basis-element-great-circle electric and magnetic fields lines about each of the 

 , , 0x y zi i i - and  , , 0x y zi i i -axes by 
2


.  The analytical functions and matrices to generate the RHCP, LHCP, and LP photon-

e&mvfs are given in Appendix V, and the RHCP, LHCP, and LP photon-e&mvfs are visually demonstrated by computer 
simulations [4].  The conditions whereby a photon becomes an electron and a positron are given in the Pair Production and the 
Leptons sections. 
 
Figure 4.7.   The field-line pattern of a linearly polarized photon-e&mvf shown with 6 degree increments of the angle   from 
the perspective of looking along the z-axis.  (Electric field lines red; Magnetic field lines blue). 
 

 
 

The linearly polarized photon-e&mvf equation in the lab frame is 
 0

zjk z j tE e e  E  (4.17) 

In the case of ( , ) 0mY     in Eq. (4.14), a right-handed and a left-handed elliptically polarized photon-e&mvf are superimposed 

to comprise a linearly polarized photon-e&mvf with the plane of polarization rotated relative to the case of ( , ) 0mY    .  A 
right-handed or left-handed elliptically polarized photon is obtained by attenuating the oppositely polarized component. 
 

SPHERICAL WAVE 
Photons superimpose and the amplitude due to N  photons is: 
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When the observation point is very far from the source as shown in Figure 4.8, the distance in Eq. (4.18) becomes: 
 ˆ' 'r   r r r r  (4.19) 

where r̂  is the radial unit vector.  Substitution of Eq. (4.19) into Eq. (4.18) gives:  
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where we neglect ˆ 'r r  in the denominator, and  
 ˆkk r  (4.21) 
For an assembly of incoherent emitters  
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 k r  (4.22) 

Thus, in the far field, the emitted wave is a spherical wave  

 0

ikr
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e
E
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E  (4.23) 

which is shown by Bonham to be required in order to insure continuity of power flow for wavelets from a single source [5].  
Also, as a conservation law at the photon level, the density of photons decreases as the number of photons divided by the area of 
the outgoing spherical wave front.  The Green Function, (Eq. (6.62) of Jackson [1]) is given as the solution of the wave equation 



Equation of the Photon 201

(Eq. (6.58) of Jackson [1]).  Thus, the superposition of photons gives the classical result.  As r  goes to infinity, the spherical 
wave given by Eq. (4.23) becomes a plane wave.  The double slit interference pattern is derived in Eqs. (8.15-8.23).  From the 
equation of a photon (Eqs. (4.4-4.7), the wave-particle duality arises naturally.  The energy is always given by Planck’s equation; 
yet, an interference pattern is observed when photons add over time or space. 
 
Figure 4.8.   Far field approximation. 

 

 
 

The photon spin angular momentum corresponding to the first term of Eq. (4.14) and the orbital angular momentum 
corresponding to the second term of Eq. (4.14) are conserved during electronic excitation as described in the Excited States of 
the One-Electron Atom (Quantization) section.  And, the spin and orbital angular momentum of photons superimpose to give the 
classical result.  For example, second harmonic generation has been obtained by Dholakia et al. [6] by use of Laguerre-Gaussian 
beams in a variety of mode orders.  Each mode becomes doubled in frequency and transformed to a higher order, which is shown 
to be a consequence of the phase-matching conditions.  The experiment is consistent with the interpretation that the orbital 
angular momentum of the Laguerre-Gaussian mode is directly proportional to the azimuthal mode index   where each photon 
possesses orbital angular momentum of   in addition to any spin angular momentum due to its state of polarization. 

The macroscopic Maxwell’s equations for reflection and refraction arise from the superposition of individual photon 
behavior at a bulk material surface.  A totally internally reflected photon incident at an angle greater than the critical angle giving 
rise to a surface wave and an evanescent field arises from charge separation in the reflecting matter.  Free or polarization current 
and charge produce the corresponding purely decaying electric and magnetic fields.   
 

PHOTON TORPEDOES 
Recent evidence suggests that energy packets like photon torpedoes are creeping toward reality [7].  The possibility of solutions 
of the scalar wave equation and Maxwell’s equations that describe localized, slowly decaying transmission of energy in 
spacetime has been suggested by several groups in recent years.  These include exact pulse solutions such as focus wave modes 
[8-9], electromagnetic directed energy pulse trains [10], splash modes [11], transient beams [12], continuous-wave modes 
(Bessel beams) [13], and asymptotic fields (electromagnetic missiles [14], electromagnetic bullets [15], Gaussian wave packets 
[16]). 

A macroscopic surface current having a distribution given as an atomic orbital transition comprises a means to emit 
electromagnetic energy having electric and magnetic field lines which comprise a photon-e&mvf.  In this case, energy is not 
diminished in intensity as the electromagnetic wave propagates through space.  Thus, “photon torpedoes” can be realized.  High 
power densities can be achieved by increasing the magnitude of the electric and magnetic fields of the photon where the energy 
is given by Eq. (1.263) and Eq. (1.154).  Also, neutrino-type photons described in the Weak Nuclear Force: Beta Decay of the 
Neutron section represent a means to transfer energy without scattering or attenuation between matched emitters and receivers.  
Applications in both cases include power transfer, communications, and weapons.  An example of a device that produces photon 
torpedoes is a mode-locked femtosecond laser. 
 

PHOTOELECTRIC EFFECT 
Electrons are ejected, and a photocurrent is observed when a clean surface of a metal such as sodium is irradiated with ultraviolet 
light in the wavelength range 2000–400 Å in an evacuated vessel.  The photoelectric current, which is the amount of charge 
arriving at a collection plate per unit time, is proportional to the rate of liberation of electrons from the metal surface; that is, if 

en  is the number of free electrons produced in the time interval t  and i is the current, 

 en i

t e





 (4.24) 
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To determine the velocity with which the photoelectrons travel, a potential is applied to a grid mounted between the 
metal surface and the collection plate.  The potential creates an electric field, which decelerates the photoelectrons.  As the 
potential difference between the grid and the emitting metal is increased, a stopping voltage sV  is observed, the value above 

which the electrons are stopped before they reach the plate and the current ceases to flow.  At the stopping voltage, the initial 
kinetic energy of the photoelectrons liberated from the metal by the light has all been converted to potential energy; thus 

 21

2 smv eV  (4.25) 

The number of electrons produced per second and their maximum kinetic energy as functions of the intensity I and frequency   
of the incident light is determined by measuring i and sV . 

Physicists of the early 20th century had a misconception regarding classical wave theory and the photoelectric effect that 
has been promulgated to the present.  They erroneously predicted that the energy of the radiation should be continuously 
absorbed by the electrons in the metal.  After an electron has absorbed an amount of energy in excess of its binding energy 0eV , 

it may be ejected from the surface.  The adjustable potential sV  is used to stop electrons whose energy exceeds 0eV  by seV  or 

less.  Since the intensity I of the light is the rate at which energy is propagated by the radiation waves, an increase in intensity 
should increase the average kinetic energy of ejected electrons which implies that the stopping voltage sV  is proportional to I. 

It is experimentally observed that sV  is proportional to the frequency of the light and independent of the intensity. As 

shown in Figure 4.9, if the frequency   is below a certain threshold value 0 , no photoelectric current is produced.  At 

frequencies greater than 0 , the empirical equation for the stopping voltage is:  

  0–sV k    (4.26) 

where k  is a constant independent of the metal used, but 0  varies from one metal to another.  Although there is no relation 

between sV  and the light intensity, it is found that the photoelectric current, and therefore the number of electrons liberated per 

second, is proportional to I . 
 
Figure 4.9.   The stopping voltage sV  of photoelectrons as a function of the frequency   of the incident light. 

 

 
 

These results are not in disagreement with expectations from the classical wave theory based on the equations of a photon 
(Eqs. (4.4-4.7)).  The electric and magnetic fields of a photon carry   of angular momentum as given by Eq. (4.1), and the 
corresponding energy is given by Planck’s equation (Eq. (4.8)).  As shown in the Excited States of the One-Electron Atom 
(Quantization) section, the angular momentum of the photon is conserved [1] for the solutions for the resonant photons and 
excited state electron functions.  It can be demonstrated that the resonance condition between these corresponding frequencies is 
to be satisfied in order to have a net change of the energy field [17].  Thus, the correspondence principle holds.  That is the 
change in angular frequency of the electron is equal to the angular frequency of the resonant photon that excites the resonator 
cavity mode corresponding to the transition, and the energy is given by Planck’s equation.  In the case of photoelectrons, the 
resonant transition is from a bound state in the metal to a continuum level.  Thus, a photon of energy h  strikes a bound 
electron, which may absorb the photon energy.  If h  is greater than the binding energy (or work function) 0eV , the electron is 

liberated.  Thus, the threshold frequency 0  is given by: 

 0
0

eV

h
   (4.27) 

Since 0V  is a characteristic of the particular metal, which is used in the experiment, 0  depends upon the metal, in accordance 

with the experimentally observed result. 
For a photon of energy h , the total energy of the excited electron is h , with the excess over the potential energy 0eV  

required to escape from the metal appearing as kinetic energy.  Conservation of energy requires that the kinetic energy is the 
difference between the energy of the absorbed photon and the work function of the metal, which is the binding energy.  The 
relationship is: 
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 2
0

1
–

2 smv h eV eV   (4.28) 

which is identical to Eq. (4.26), with /k h e .  The photoelectric effect provides another means to determine Planck’s constant 
h  originally used by Planck for blackbody radiation and by Bohr for the hydrogen spectrum. 

Furthermore, since the energy of each photon is h , the intensity of the radiation is not related to the energy of each 
photon, but instead determines the number of photons striking the metal surface per second.  The rate of electron ejection is 
expected to be proportional to the rate at which the photons impinge upon the metal surface; thus, an increase in light intensity is 
predicted to increase the photoelectric current, as observed.  Because the amount of energy absorbed by an electron is h  
regardless of the rate at which photons impinge on the surface, the kinetic energy of the ejected electrons should be independent 
of the intensity of the light.  Thus, all of the predictions of the photon mechanism for the photoelectric effect are in agreement 
with the experimental results. 
 

COMPTON EFFECT 
An experiment that is related to the photoelectric effect is the Compton effect.  This experiment, which provides more detailed 
information about the interaction of radiation and matter was performed in the early 1920’s and analyzed by Compton in 1923.  
The experiment comprises the irradiation of a sample of material such as a paraffin hydrocarbon with X-rays or  -rays, high-
frequency radiation.  The photons are scattered from bound electrons, which are ionized.  The wavelength of the scattered 
radiation and the energy of the emitted electron are determined as a function of angle, relative to the incident beam.  It is found 
that the radiation scattered from the material contains not only wavelengths equal to that of the incident radiation  , but also 
wavelengths of the order of a few hundredths of an Angstrom longer than  .  The dependence of the scattered wavelength   
upon the angle   between the primary and scattered beams is found to be:  

 2 sin
2

k
       
 

 (4.29) 

where k  is a constant. 
Physicists of the early 20th century had a misconception regarding classical wave theory and the Compton effect that has 

been promulgated to the present. They erroneously predicted that the wavelength of the radiation would increase based on the 
Doppler effect since an electron in the sample would be accelerated by the impinging radiation and would therefore emit waves 
with longer wavelengths. The Doppler effect does not correctly explain the observations, however, since (a) the Doppler shift is 
proportional to the wavelength of the primary radiation and (b) the Doppler shift increases with the electron velocity and 
therefore should increase with time, since the electrons are accelerated continuously while they absorb energy during the 
irradiation. Neither of these predictions is corroborated by the experimental results, not as a consequence of the failure of 
classical theory, but because of an erroneous misconception about the nature of the photon and its interaction with matter. As 
was the case for the photoelectric effect, the observations can be explained quantitatively by the photon theory of radiation given 
supra and the laws of conservation of energy and momentum for particles including photons and electrons. 

According to Eqs. (2.148-2.150), the incident photon with wavelength   and frequency /v c   has a momentum 
/h c .  Correspondingly, the scattered photon, which has a longer wavelength  , and therefore a lower frequency /c    , 

has a lower momentum /h c  .  Since   is in the X-ray region  ~ 1–10 Å , the energy  ~ 1000 eVh  is so much greater 

than the binding energy of the electrons  10 eV  that to a first approximation the latter be neglected.  Thus, the electron is 

ejected in the direction   with a momentum mv , which is calculable from an energy and momentum balance for the process as 
shown in Figure 4.10.  The classical equations of conservation of energy and of the two components of the linear momentum are: 

 21

2 eh h m v     (energy) (4.30) 

  cos  cos e

h h
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Figure 4.10.  The Compton effect based on conservation of energy and momentum of a scattered photon and an electron. 
 

 
 

 
Eliminating v  and   from these equations, introducing   by the definition /c  , and making the approximation that 

2   , gives:  

 2– 2  sin
2e

h

m c

        
 

 (4.33) 

in agreement with Eq. (4.29).  For   in Angstroms, Eq. (4.33) gives: 

 20.0485 sin
2

     
 

 (4.34) 

If the ejected electron is treated relativistically with its total energy given by Eq. (34.17): 

  
2

1/22 4 2 2 2 1 e
e e e

v
E m c p c m c

c
      
 

 (4.35) 

and the kinetic energy is obtained by subtracting the rest energy 2
em c , Eq. (4.33) can be derived without using the approximation 

that    .  The maximum shift is seen to occur for   , where   = 0.0485 Å. 
The photon mechanism was tested by using  -rays of energy 610  eV , and the scattered photon and the Compton 

electron were recorded by means of scintillation counters.  Cross and Ramsey [18] found that the angles   and   for an electron 

and a photon which were simultaneously detected were within 1   of those required by the conservation laws (Eqs. 4.30-4.32)). 
The analysis of the photoelectric and Compton effects shows that the particle viewpoint and Newtonian mechanics lead 

to a simple and quantitatively correct interpretation of these experiments, and that predictions based upon the classical wave 
theory are not wrong, but must be understood from the nature of the photon given by Eqs. (4.4-4.7).  Individual photons behave 
as particles with energy given by Planck’s equation (Eq. (4.8)).  As shown by Eqs. (4.18-4.23), photons superimpose to give a 
spherical wave which gives rise to certain other phenomena such as diffraction and interference which are typically ascribed to 
wave theory with waves as an independent aspect of photons.  The character exhibited by radiation, whether wave-like or 
particle-like, depends upon the type of experiment that is done.  If the interaction of radiation with matter produces a measurable 
change in the matter, such as the ejection of an electron, the phenomenon appears to require the photon theory for its 
interpretation.  If the interaction produces a measurable change in the spatial distribution of the radiation, such as diffraction at a 
slit, but produces no measurable change in the matter, invoking the wave theory seems appropriate as shown in the Classical 
Scattering of Electromagnetic Radiation section.  Superficially, these results suggest that a synthesis of the two points of view is 
required which takes into account the nature of the experiment being analyzed; that is, the measuring process itself must be 
included in the theory.  In actuality, both particle and wave aspects arise naturally from the particle-like photons which 
superimpose in time or space to form a wave which accounts precisely for the wave-particle duality of light. 

 

TRANSITIONS 
Other interactions involving electromagnetic radiation and matter are given classically wherein the photon carries   of 

angular momentum in its electric and magnetic fields as given by Eq. (4.1) with a corresponding energy given by Planck’s 
equation (Eq. (4.8)).  Bremsstrahlung radiation is given classically as radiation due to acceleration of charged particles by 
Jackson [19].  Cherenkov radiation occurs when charges moving at constant velocity in a medium different from vacuum 
possess spacetime Fourier components of the current that are synchronous with a wave traveling at the speed of light as given by 

a radiative condition derived from Maxwell’s equations by Haus [20].  That is spacetime harmonics of 
0

n k
c

 


  do exist for 

which the Fourier transform of the current-density function is nonzero [20].   
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Although Einstein did not anticipate the physics of the lifetimes of excited states as given in the State Lifetimes and Line 
Intensities section, lasing, or laser devices, the concept of stimulated emission originated in 1917, ten years before the 
Schrödinger equation was postulated, when Einstein proposed that Planck’s formula for blackbody radiation could better curve 
fit the data if an ensemble of atoms with quantized energy levels underwent stimulated as well as spontaneous emission [21].  
Stimulated emission can occur for an inverted population in a suitable resonator cavity to such an extent that amplification or 
lasing occurs.  The maser and its extension to shorter wavelengths, the laser, are predicted by Maxwell’s equations1 as shown by 
Lamb [23] and Townes [24], respectively.  From this approach, Townes invented first the maser, and he latter extended his work 
to optical wavelengths with the invention of the laser.  The kiB  coefficient for lasing can be calculated from the kiA  coefficient 

using Eq. (6) of Carmichael [25].  The kiA  coefficient given by Eq. (2.108) is calculated from the excited-state electron source 

current in the State Lifetimes and Line Intensities section. 
Photons possess both wave and particle characteristics.  The physical basis of the wave behavior is given in the Spherical 

Wave section, and particle behavior is observed during the photoelectron and Compton effects given in the corresponding 
sections.  Another manifestation of particle behavior is the absorption and emission of indivisible photons each having an 
irreducible quantized angular momentum of  (Eq. (4.1)).  Electrons and photons both have conserved angular momentum of  
such that the inalienability of the quantization is intrinsic to the transition partners and the conservative physical laws.  Except 
for the case of particle production, the radius of two-dimensional sphere of the photon comprising the photon-e&mvf and being 
proportional to the photon wavelength is typically orders of magnitude larger than the dimensions of the photon-absorbing 
electron (Eqs. (2.98-2.101)).  The photon travels at light speed and a collision with an electron can only initially involve a small 
fraction of the photon-e&mvf; yet, the entire photon is either elastically scattered or entirely absorbed.  Consider the relationship 
between the radius and wavelength of an electron and a photon of the resonant frequency that excites an electronic transition of 
the electron to form an electronic excited state given by Eq. (4.15) wherein the photon angular frequency and energy match the 
change in energy and angular frequency of the electron that is excited by the photon (Eqs. (2.18-2.22)).  When the photon 
collides with the electron, the photon excites a resonator mode of the spherical superconducting electron resonator cavity such 
that the photon wavelength decreases to match the dimensions of the electron absorbing the photon akin to the process of total 
internal reflection wherein the two-dimensional ensemble of field lines propagates along the inner surface of the electron 
membrane.  In the case of a macrocavity excitation, the field comprises the superposition of many photons with fields ending on 
time-dependent surface source charges and currents.  In contrast, each electric field line of the quantum excitation by a single 
photon is closed onto itself.  Moreover, uniquely the energy in the electric and magnetic fields of a free-space photon are equal, 
and the magnetic field is dependent on the electric field with both propagating at light speed.  Consequently, as the photon 
initially traveling in free space at the speed of light is trapped by the atomic, ionic, or molecular electron undergoing excitation, 
the photon magnetic field lines transition to electric field lines.  The result is a corresponding transition-state-evf (TS-evf) 

comprising only the electric field lines of the free space photon with the intensity increased by a factor or 2  corresponding an 
increase in the electric energy by a factor of 2 according to Eq. (1.189).  For example, consider the left-handed-circularly-
polarized photon electric and magnetic vector field (LHCP photon-e&mvf) given by the output of the matrix of Eq. (4.7) and 
shown in Figure 4.3.  With the transition of the magnetic field to electric field according to Faraday’s law (Eq. (4.2)), the 
corresponding left-handed-transition-state electric vector field (LHTS-evf) is generated by the rotation of a basis element 

comprising a great circle electric field line in the yz-plane about the i
x
,i

y
,0i

z  -axis by 

2

 wherein the radius r
n
 is equal to the 

spherical radius of the excited state atomic or ionic electron or the ellipsoidal radius 
n
 of the excited state molecular orbital, 

respectively.   
 

 
1 The development of the laser was impeded by quantum mechanics since its existence disproves the Heisenberg Uncertainty Principle as discussed by 

Carver Meade [22]: 
As late as 1956, Bohr and Von Neumann, the paragons of quantum theory, arrived at the Columbia laboratories of Charles Townes, who was in the 
process of describing his invention.  With the transistor, the laser is one of the most important inventions of the twentieth century.  Designed into 
every CD player and long-distance telephone connection, lasers today are manufactured by the billions.  At the heart of laser action is perfect 
alignment of the crests and troughs of myriad waves of light.  Their location and momentum must be theoretically knowable.  But this violates the 
holiest canon of Copenhagen theory: Heisenberg Uncertainty.  Bohr and Von Neumann proved to be true believers in Heisenberg’s rule.  Both denied 
that the laser was possible.  When Townes showed them one in operation, they retreated artfully. 
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Free space photons, transition states, and excited state photons carry electric field as given by Eqs. (4.6), (4.7), (4.36), 
and (2.15).  The directions of field lines change with relative motion as required by special relativity.  They increase in the 
direction perpendicular to the propagation direction.  As shown by Eq. (4.9), the linear velocity of each point along a great circle 
of the photon atomic orbital is c .  The same applies to the transition state.  And, as shown in the Special Relativistic Correction 
to the Ionization Energies section and by Eq. (1.280), when the velocity along a great circle is light speed, the motion relative to 
the non-light speed frame is purely radial.  In the case of the electric field lines of a trapped resonant photon of an excited state, 
the relativistic electric field is radial.  It is given by Eq. (2.15), and it exists only at  nr r   wherein r

n
 is the radius of the 

excited electron.   
The bound electron is an equipotential, equi-energy surface comprising the uniform current density function Y

0
0  , .  

The radial field of the TS-evf only covers 1/4th of the inner surface of the electron membrane.  Thus, the imbalance in central 

force on the spherical surface gives rise to a rotation over the range of 

2

 to 2  about the axis that forms the TS-evf.  In the case 

of excitation by a RHCP photon, the rotation is about the i
x
,i

y
,0i

z -axis to form the corresponding right-handed transition state 

basis element electric vector field (RHTSBE-evf).  In turn, the RHTSBE-evf undergoes a transition that distributes the field lines 
uniformly over the surface of a spherical electric field vector membrane corresponding to a convolution operator acting on the 

RHTSBE-evf about the 
1

2
i

x
,

1

2
i

y
,i

z







 -axis.  In the case of excitation by a LHCP photon the rotation is about the 

i
x
,i

y
,0i

z  -axis to form the corresponding left-handed transition state basis element electric vector field (LHTSBE-evf).  

Likewise, the LHTSBE-evf is transitioned to the uniform field distribution by the convolution operator acting on the LHTSBE-

evf about the 
1

2
i

x
,

1

2
i

y
,i

z







-axis.  Both are convolved over the range 0 to 2  to form the uniform excited state electric 

vector field (ES-evf) that matches the uniform current density distribution of the electron wherein each convolution is 
normalized to produce a central field given by Eq. (2.15).   

The uniform distribution current density function Y
0
0  ,  corresponds to electron’s spin that is matched by the ES-evf 

corresponds to electron spin (Eq. (1.27-1.28)).  Consider the exemplary case to generate the ES-evf using the same the matrices 
as those used to generate the electron spin current density function given in the Generation of the Atomic Orbital CVFS section.  
Two current loops, one in the yz-plane and one in the xz-plane, serve as great circle basis elements for the electron current 
density pattern called the basis element current vector field (BECVF) that is formed by the rotation of the basis elements about 

the i
x
,i

y
,0i

z  -axis as given by Eqs. (1.84) and (1.87).  The LHCP photon and corresponding LHTS-evf and LHTSBE-evf may 

also be generated by rotation of the electric and magnetic field basis elements and the electric field basis element, respectively, 

about the i
x
,i

y
,0i

z  -axis wherein the current loop in the yz-plane is replaced with an electric field great circle, the current loop 

in the xz-plane is replaced with a magnetic field great circle, and   of the  , ,0x y zi i i -axis rotation (Eqs. (1.84) and (1.87)) is 

replaced by  .  With 0E  given by Eq. (29) of Appendix V and 0
0

E
H


  according to Eq. (19) of Appendix V, the LHCP 

photon-e&mvf is given by Eq. (4.37) for 1 21;  1a a  , 0   to   

2

; the LHTS-evf given by Eq. (4.37) for 1 22;  0a a  , 

0   to 
2

   , and the LHTSBE-evf is given by Eq. (4.37) for 1 22;  0a a  , 0   to 2   .  The LHTSBE-evf is 

shown in Figure 4.11. 
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Figure 4.11.  The photon electric field pattern of the LHTSBE-evf corresponding to the electron BECVF shown with 6-
degree increments of   from the perspective of looking along the z-axis.  The yz-plane great circle electric field loop that served 
as a basis element that was initially in the yz-plane is shown as red. 

 
 
The exemplary transition of the LHTSBE-evf to the uniform distribution that matches the equipotential, equi-energy condition of 
the atomic orbital is given by the convolution of the output of Eq. (4.37) with the matrix given by Eq. (1.95) corresponding to a 

convolution about the   
1

2
i

x
,

1

2
i

y
,i

z







-axis wherein the output of the matrix of Eq. (1.95) called the orbital current vector 

field (OCVF) used to generate the uniform electron current distribution corresponding to electron spin.  Due to symmetry over a 
range of 2 , the LHTSBE-evf is also given for   positive in Eq. (4.37).  Using (1.103), a discrete representation of the electric 

field distribution Y
0

0( ,) is generated.  The continuous convolution of the LHTSBE-evf about the 
1

2
i

x
,

1

2
i

y
,i

z







-axis to 

form the ES-evf is shown as a superposition of discrete incremental rotations of the position of the LHTSBE-evf rotated 
according to Eqs. (1.95) and (1.98) corresponding to the matrix which generated the OCVF of the electron spin current function.  
In the case that the discrete representation of the LHTSBE-evf comprises N  great circle electric field element and the number of 
convolved RHTSBE-evf elements is M , the representation of the ES-evf function showing electric field loops is given by Eq. 

(4.38) with E
0
 given by Eq. (2.15), and the 

1

2
i

x
,

1

2
i

y
,i

z







-axis view with 144 vectors overlaid giving the initial free-

photon-frame direction of each great circle electric field element is shown in Figure 4.12.   
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Figure 4.12.   A representation of the 
1

2
i

x
,

1

2
i

y
,i

z







-axis view of ES-evf comprising the Y
0

0( ,) distribution matching 

the electron spin function shown with 144 vectors overlaid giving the initial free-photon-frame direction of the electric field of 
each great circle basis element. 

 
 

As shown by Eq. (2.11) and (2.15) the ES-evf obeys some of the properties of electrostatic charge.  In addition to 
matching the spin function of the excited electron, the  angular momentum in the electric and magnetic fields of the excitation 
photon given by Eq. (4.1) must be conserved as electron angular momentum.  Thus, the ES-evf must possess a spherical 
harmonic modulation component that matches an allowed spherical harmonic electron current distribution given by Eqs. (1.27-
1.29) wherein the ES-evf obeys the corresponding properties of rotating electrostatic charge.  The spherical harmonic function 
has a velocity less than light speed given by Eq. (1.35) and is phase-matched with the electron such that angular momentum is 
conserved during the excited state transition.  The multipole of the photon is conserved in the spherical harmonic of the excited 
state having the corresponding orbital angular momentum given by Eq. (1.72).  Moreover, the radial field can be considered a 
corresponding surface charge density according to Eq. (2.11)).  The effect of the nature of this photon charge-equivalent on the 
stability and lifetime of excited states is given in the Instability of Excited States section, the State Lifetimes and Line Intensities 
section, and the Stability of Atoms and Hydrinos section.  All boundary conditions are met for the electric fields and the 
wavelengths of the “trapped photon” and the electron.  Eq. (2.16) is the solution for the excited modes of the atomic orbital, a 
spherical resonator cavity.  And, the quantum numbers of the electron are n , ℓ , mℓ , and m

s  (Described in the Stern-Gerlach 
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Experiment section).  A p
x
 or p

y
 atomic-hydrogen excited state is shown in Figure 4.13. 

 
Figure 4.13.   The electron atomic orbital is a resonator cavity wherein the radii of the excited states are related by integers.  
The electronic charge-density function of a p

x
 or p

y
 atomic-hydrogen excited state is shown with positive and negative charge-

density proportional to red intensity and blue intensity, respectively.  The function corresponds to a charge density wave on the 
two-dimensional spherical surface of radius na

0
 that travels time harmonically about the z-axis at the angular frequency given by 

Eq. (1.36).  It is comprised of a linear combination of a constant function modulated by time and spherically harmonic functions.  
The centrifugal force is balanced by the electric field of its photon that is phase-locked to the rotating electron.  The brightness 
corresponds to the intensity of the two-dimensional radial photon field. 
 

 
 

Regarding the energy balance of the transition to an excited state, the effect of the deceleration of the electron during the 
transition and the consequence for the ES-evf must be considered.  Upon collision of a photon with an electron, the photon 
electric fields induce a decelerating current component along impacted great circle basis elements of the current vector field 
(CVF) of the electron given in the Generation of Y

0
0( ,) section.  Decelerating current results in radiation.  Given the 

indivisibility of the electron, the deceleration current produces a field along every great circle current element of the electron.  
The photon scatters elastically except in the case that the correspondence principle holds whereby the frequency of the photon 
matches the allowed frequency change of the electron as given in the Photon Absorption section.  In the latter resonance case, 
the photon e&mvfs transition to the ES-evf, and the superposition of the field energy of the photon and the equivalent radiation 
field energy from the decrease in kinetic energy due to resonant electron current deceleration gives rise to the central photonic 
field along every great circle.  The lifetime   of this process is very small based on the time for a resonant photon to transverse 
the dimensions of a bound electron at lightspeed (e.g. 3 X 1019 s  for a 1 Å diameter electron).  In superposition, the photon 
field reduces central nuclear field at the position of the electron only.  In case of the hydrogen atom, the excitation photon 
decreases the central spherical field to that of a reciprocal integer of the fundamental charge at the central nucleus, wherein ½ of 
the excitation energy is contributed by the resonant photon and ½ of the energy is contributed by the decrease in kinetic energy 
due to electron deceleration during the transition as shown by Eqs. (2.18-2.22).  Consequently, the radius of the electron 
increases to give rise to a radial current.  The energy and angular momentum of the photon given by Eqs. (4.1) and (4.8), 
respectively, are conserved in the corresponding excited electronic state.  The multipole of the photon is conserved in the 
spherical harmonic of the excited state having the corresponding orbital angular momentum given by Eq. (1.72).  The transition 
probability and state lifetime are given by the ratio of the power and energy of the transition determined by the radial and angular 
source currents of photon absorption and emission events as given in the State Lifetimes and Line Intensities section.  
Absorption and emission of a photon are reversible, time-symmetrical processes wherein the opposite process to a that described 
herein occurs during photon emission.  Computer modeling of the analytical equations of the mechanism of photon absorption 
and corresponding emission by time reversal is available on the web [26]. 
 

FREE ELECTRON PHOTON ABSORPTION 
Consider next the physics of the free-electron photon absorption based on the free electron structure and corresponding 

behavior in the electric and magnetic photon fields based on Maxwell’s equations.  The free electron is a two-dimensional plane 
lamina comprised of a series of concentric circular current loops in the xy-plane (  -plane) that circulate about the z-axis as 
given in the Current-Density Function section.  The circulation corresponds to rotational kinetic energy, and additionally the free 
electron center of mass may undergo linear translation corresponding to linear kinetic energy wherein the sum of these two 
components comprises the total energy of the free electron.  With conservation of photon energy, the rotational and linear kinetic 
energies of a free electron can be arbitrarily large starting from a bound electron by absorption of a single high energy photon or 
starting from a bound electron that is ionized to form a low-energy free electron that then absorbs a series of photons.  In either 
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case, the ionization of a bound electron to produce a free electron of any final total energy may proceed through a series of 
excited state levels each having a principal, orbital, and spin quantum number wherein the orbital quantum number   may 
comprise a superposition of   quantum numbers.  The superposition may comprise a Fourier series of corresponding spherical 
harmonics wherein the orbital quantum number   may approach infinity as the principal quantum number approaches infinity.  
In general, the physics of photon emission and absorption obeys time-reversal symmetry and superposition of states akin to 
Hess’s law on a macroscopic scale.  Consider the physics of the bound-electron absorption of a photon having energy excess of 
the ionization energy to form a free electron.  The energy excess of the ionization energy is conserved in the free electron 
rotational energy, corresponding to the plane-lamina circular current with   of angular momentum, and the linear kinetic energy, 
corresponding to a linear velocity that derive from Eqs. (3.29) and (3.52).  From a bound electronic state, free electron total 
energies each comprising a given set of rotational and linear kinetic energy states of arbitrary high energies can be achieved by 
absorption of a photon equal to the sum of the bound electron ionization energy and the total energy of the free electron.  
Alternatively, a free electron may absorb a plurality of photons with a concomitant increase in its rotational and linear kinetic 
energies to any final total energy that may be achieved starting from a bound state wherein the summation of the photon energies 
is conserved.   

As shown by Eqs. (3.29) and (3.52), the radius 0  decreases and the linear velocity increases to match the conservation 

condition that the change in the disc radius 0  is given by Eq. (3.29), and the velocity increase corresponds to a kinetic energy 

increase that is exactly ½ the energy of the photon (Eq. (3.52)).  The resulting energy balance is given by Eqs. (3.51) and (3.52).  
Specifically, using Eqs. (3.29) and (3.52), the absorption of a photon of frequency photon  by a free electron with an initial 

velocity along the z-axis of zv  gives rise to the radius decrease 0  and the linear velocity increase zv  of 
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wherein based on the kinetic energy increase (Eq. 3.52)) for velocities v
z
 c: 
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Substitution of Eq. (4.40) into Eq. (4.39) gives 

 0

1 1

e zphoton
z

e

m v
v

m




 
 
    
  
 




 (4.41) 

To obey time time-reversal symmetry and superposition of states, the mechanism of absorption or emission of a photon 
by a free electron with a change in the free electron rotational and linear kinetic energies involves the formation of a transient, 
free-electron excited state.  The spherically symmetric electronic state comprises a photon that provides the binding radial 
electric field force; whereafter the state decays as the photon applies equal average magnitude radial and linear forces on the 
excited state electron.  The electric field of an exited state photon given in the Equation of the Electric Field inside the Atomic 
Orbital section comprises electric field great circles that are matched to each great circle of the bound electron and further 
circulate at light speed along each electron great circle wherein additionally the photon field intensity is modulated by time and 
spherical harmonics that are phase matched to any modulation of the electron current.  Consequentially, the relativistic direction 
of the photon electric field lines is radial.  To match the boundary conditions on nature of electron excited states and the required 
direction of the photon-electric-field-sourced radial and linear electronic forces, the excited electronic state electron comprises a 
charge and current density distribution equivalent to 0

0 ( , )Y    of the bound electron that is modulated by a Fourier series of time 

and spherically harmonic functions.  The 0
0 ( , )Y    current density of the bound electron has the same angular frequency and 

linear velocity everywhere on the surface corresponding to electron spin, and the time and spherically harmonic modulation 
current densities correspond to orbital angular momentum.  The photon modulated current density function that provides the 
required forces can be determined by considering the corresponding modulation of each great circle current of the free electron 
excited state.  The modulated current density that matches the boundary conditions of the resultant photon force fields can be 
generated from an initial free electron great circle basis element with cylindrical radius 0   comprising a constant function 

modulated by a time-constant trigonometric function that undergoes the series of BECVF and OCVF rotations to generate the 
free electron excited state.  With the conversion of energy of the photon field to angular and linear kinetic energies as the 
electron ionizes to a new free state, each electron great circle transitions to a smaller radius, and the free electron is linearly 
accelerated in the direction perpendicular to the plane of the initial free electron basis element reference frame.  

Specifically, consider the incidence of a linearly polarized photon having   of angular momentum aligned on the x-axis 
and propagating along the x-axis with a free electron in the xy-plane having   of angular momentum aligned on the z-axis and 
propagating along the z-axis.  The photon angular momentum of the free electron creates a torque to cause the rotation of the 
angular momentum vector of the free electron current about two axes, the  ,0 ,x y zi i i -axis in a first step and the laboratory-frame 

z-axis in a second step.  The corresponding motion of the perimeter great circle current loop at 0  in the plane perpendicular to 
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the angular momentum vector generates CVFs equivalent to those of the bound electron given in the Atomic Orbital Equation of 
Motion for  = 0 Based on the Current Vector Field (CVF) section.  Specifically, as given by Eq. (3.80) and shown in Figure 
3.10 the first rotation sweeps out the equivalent of a BECVF, wherein the concentric planar great circle current loops shown in 
Figure 3.2A flow from the disc origin to the perimeter edge at 0 .  The remaining electron disc current density at each rotational 

angle forms an annulus with a constant outer radius 0   and an increasing inner radius during the rotation to successively 

spread the charge density over the BECVF.  The second rotation of the BECVF sweeps out the equivalent of the convolution of 
the BECVF with the OCVF.  The result is a charge and current density distribution equivalent to 0

0 ( , )Y    of the bound electron 

wherein charge density of the bound electron has the same angular frequency and linear velocity everywhere on the surface. 
The field of a bound photon replaces the proton as the source of central field to create equivalent event as the binding of 

the electron to a proton as given Eq. (3.80) and shown in Figure 3.10 wherein the equations of a free linearly polarized and 
bound photon are given by Eqs. (4.6-4.7) and (4.38), and Figures 4.7 and 4.12, respectively.  In the absence of the central field of 
a nucleus, the trapped photon field from Eq. (2.16) has the form: 

       0
0Re , , nim tm

r nY Y e r r      E   (4.42) 

except that the trapped photon of a free electron comprises a Fourier series of spherical harmonics that result in a central force 
and a linear force along the z-axis wherein the orthogonal components are equal on average.  The photon field of the free 
electron excited state comprises a Fourier series of time harmonic and spherically harmonic functions that can be constructed 
from a great circle electric field basis element having a time-constant trigonometrically modulated photon intensity along the 
great circle current basis element.  The corresponding time-constant, relativistic radial electrical field of the photon field basis 
element that is phase matched to the great circle current basis element is given by: 

    01 cos      E  (4.43) 

wherein for when   , the vector i  is in the direction of the positive x-axis of the original free electron reference frame 

before excitation by the incident photon.  The electron great circle current density is spatially modulated in phase with the 
electric field modulation wherein the spatial modulation is constant in time.  Electron ionization of the free electron excited state 
is a continuous process with continuous current flow.  An equation providing visualization in discrete steps that generates the 
angular momentum vectors of the bound electron is given by Eq. (3.80), but time reversed with the spherical and cylindrical radii 
scaled sequentially according to the average of the forces acting of the electron current during each step of the event.  The 
visualization of the ionization event is given by the reverse sequence shown in Figure 3.10 with the excited state photon 
substituting for the proton and with a scaling factor applied.  The scaling factor S  of the spatial dimensions that multiples the 
output of the reverse sequence of Eq. (3.80) corresponding the indices in the direction m = M to m = 1 and n= N to n = 1 is given 
by 

 0
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1
1 1

n
S

N




       
  

 (4.44) 

Considering the translational acceleration over the ionization event, the linear velocity concomitantly incrementally increases by 
the factor S ': 

 S '  1
n1

N

v
z

vz







 (4.45) 

The absorbed photon must form a spherical bound state in the moving reference frame of the free electron to result in an 
inelastic event.  Time reversal symmetry resulting in ionization favors the photon kinetic energy contribution to add positively to 
the initial velocity of the free electron.  Additionally, conservation of energy for a single absorption event favors the absorbed 
photon contributing the positive addition to the initial velocity.  Consider the magnitude of the increase in electron linear 
momentum due to photon absorption compared to the linear momentum of the absorbed photon of angular frequency   given 
by 

 p
c





 (4.46) 

The relativistic three vector momentum for rectilinear motion along the z-axis (Eq. (34.12)) is 

 0

2

1

em
p v

v
c


   
 

 (4.47) 

wherein v  is the three velocities.  Considering that ½ of the energy of an absorbed photon is converted to electron linear kinetic 
energy, the increase in electron linear kinetic energy T  corresponding to an increase in linear velocity v  from rest in the 
electron’s absolute frame given by Eqs. (1.291) and (3.52) is 
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Using Eq. (4.48), the increase in linear velocity is given by 

 

2

0

02

1

2

e

e

m
v c

m
c


 
 
  
      


 (4.49) 

Using Eq. (4.47), the relativistic three vector momentum for rectilinear motion along the z-axis is 
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 (4.50) 

Consider the case of a microwave photon of frequency f  of 5 GHz ( 243.3  10X J ).  The corresponding photon linear 

momentum (Eq. (4.50)) is 32 11.1  10X kgms   and the corresponding increase in electron linear momentum is 27 11.73  10X kgms   
which is five orders of magnitude greater. 

A free space photon having   in its electric and magnetic fields is not divisible, and the electric field of a photon cannot 
be translated by an external action due to the properties of spacetime.  Photon propagation in free space at an exact velocity of 

0 0

1
c

 
  is based on the permittivity 0  and permeability 0  of free space.  The relationship between the energies of a photon 

as it converts to mass due to angular frequency, electric field, magnetic field, gravitational energy, and space time contraction are 
given by Eqs. (32.48a-32.48b) wherein the relationship between spacetime contraction and expansion due to energy to matter 
conversion and vice versa is given by Eqs. (32.140a-32.140b).  Kinetic energy contributes to the inertial mass of an electron 
according to Eq. (1.291).  Photons and free electrons each have zero gravitational mass; consequently, there is no violation of 
particle production laws by the absorption of a photon by an electron to increase its kinetic mass/energy.   

In effect spacetime of the photon field-free electron interaction serves as the body that conserves momentum from the 
free-electron photon absorption event wherein the photon angular momentum is partially converted to linear momentum.  This 
phenomenon is enabling of a novel propulsion device that drives against spacetime called space drive. 

The mechanisms of technologies almost without exception are also observed in Nature.  This is also the case with space-
drive phenomenon as the mechanism of the formation of sprites formed during lightning storms.  Specifically, electrons are 
accelerated to relativistic energies in the direction away from the Earth during atmospheric discharges called red sprites and blue 
jets (Figure 4.14).  These comprise large-scale vertically ascending pillars of emission from electrons accelerated from the tops 
of thunderclouds out into space that are associated with gamma ray bursts during lightning events.  The Italian Space Agency’s 
AGILE observatory found that the energy spectrum of terrestrial gamma-ray flashes extends up to 100 MeV.  These otherwise 
inexplicable observations can be resolved as being due to the space drive mechanism.  The high voltage within clouds or 
between clouds and Earth directionally accelerates electrons during a lightening discharge.  The high current of lightning causes 
a strong vector magnetic field.  The directional relativistic electron flow directly and the flow in the presence of the directional 
magnetic field results in the emission of microwaves that are absorbed by an upward (downward) flow of plasma causing the 
electrons to accelerate selectively in the upward (downward) direction by the space-drive effect.  Ions such as H

3
  are dragged 

by the directionally accelerated electrons.  Predominantly collisional air molecular excitation as well as recombination of upward 
ion and electron flow in the high-altitude atmosphere emit the high-altitude light emission of a sprite.  In addition to the 
traditional colliding counter flowing ice particles mechanism, the upward space drive current may serve to further positively 
charge clouds to achieve run-away relativistic electron energies of greater than 100 MeV to give rise to the extraordinarily 100 
MeV gamma ray flashes. 
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Figure 4.14.   Upward jet of electrons accelerated away from the Earth at near light speed associated with gamma ray bursts 
during lightning events. 

 
 
The same mechanism may be the source of the gamma rays of extraordinary energies of over 1 TeV emitted by the Sun [27], 
beyond those anticipated from magnetic field acceleration of electrons [28]. 
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Chapter 5 
  
HYDRINO THEORY – BLACKLIGHT PROCESS 
  
 
 
 
 
 
BLACKLIGHT PROCESS 
Classical physics (CP) gives closed-form solutions of the hydrogen atom, the hydride ion, the hydrogen molecular ion, and the 
hydrogen molecule and predicts corresponding species having fractional principal quantum numbers.  The nonradiative state of 
atomic hydrogen, which is historically called the “ground state” forms the basis of the boundary condition of CP to solve the 
bound electron.  CP predicts a reaction involving a resonant, nonradiative energy transfer from otherwise stable atomic hydrogen 
to a catalyst capable of accepting the energy to form hydrogen in lower-energy states than previously thought possible called a 

hydrino atom designated as Ha
H

p

 
 
 

 where Ha  is the radius of the hydrogen atom.  Specifically, CP predicts that atomic 

hydrogen may undergo a catalytic reaction with certain atoms, excimers, ions, and diatomic hydrides which provide a reaction 
with a net enthalpy of an integer multiple of the potential energy of atomic hydrogen, 27.2 hE eV  where hE  is one Hartree.  

Specific species (e.g. He , Ar , Sr , K , Li , HCl , NaH , and 2H O ) identifiable on the basis of their known electron energy 

levels are required to be present with atomic hydrogen to catalyze the process.  The reaction involves a nonradiative energy 
transfer of an integer multiple of 27.2 eV  from atomic hydrogen to the catalyst followed by 13.6 q eV  continuum emission or 

13.6 q eV  transfer to another H  to form extraordinarily hot, excited-state H  and a hydrogen atom that is lower in energy than 
unreacted atomic hydrogen that corresponds to a fractional principal quantum number.  That is, in the formula for the principal 
energy levels of the hydrogen atom: 

   
2

2 2

13.598 

8n
o H

e eV
E

n a n
     (5.1) 

 1,2,3,...n   (5.2)  

where Ha  is the Bohr radius for the hydrogen atom (52.947 pm), e  is the magnitude of the charge of the electron, and o  is the 

vacuum permittivity, fractional quantum numbers: 

 
1 1 1 1

 1, , , ,...,
2 3 4

n
p

 ;   137p   is an integer (5.3) 

replace the well known parameter integern   in the Rydberg equation for hydrogen excited states.  Then, similar to an excited 

state having the analytical solution of Maxwell’s equations given by Eq. (2.15), a hydrino atom also comprises an electron, a 

proton, and a photon as given by Eq. (5.27).  However, the electric field of the latter increases the binding corresponding to 

desorption of energy rather than decreasing the central field with the absorption of energy as in an excited state, and the resultant 

photon-electron interaction of the hydrino is stable rather than radiative. 

The 1n   state of hydrogen and the 
1

integer
n   states of hydrogen are nonradiative, but a transition between two 

nonradiative states, say 1n   to 1/ 2n  , is possible via a nonradiative energy transfer.  Hydrogen is a special case of the stable 

states given by Eqs. (5.1) and (5.3) wherein the corresponding radius of the hydrogen or hydrino atom is given by: 
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 Ha
r

p
 , (5.4) 

where 1,2,3,...p  .  In order to conserve energy, energy must be transferred from the hydrogen atom to the catalyst in units of  

 27.2 m eV , 1,2,3,4,....m   (5.5) 

and the radius transitions to Ha

m p
. The catalyst reactions involve two steps of energy release: a nonradiative energy transfer to 

the catalyst followed by additional energy release as the radius decreases to the corresponding stable final state.  Thus, the 

general reaction is given by: 

 27.2 * 27.2 
( )

q rq H H
fast

a a
m eV Cat H Cat re H m eV

p m p
     

             
 (5.6) 

 2 2* [( ) ] 13.6 27.2 
( ) ( )

H Ha a
H H p m p eV m eV

m p m p

   
             

 (5.7) 

   27.2 q r q
fastCat re Cat m eV        (5.8) 

And, the overall reaction is: 

 2 2[( ) ] 13.6 
( )

H Ha a
H H p m p eV

p m p

   
          

 (5.9) 

q , r , m , and p  are integers.  
 

* Ha
H

m p

 
  

 has the radius of the hydrogen atom (corresponding to 1p  ) and a central field 

equivalent to  m p  times that of a proton, and 
 

Ha
H

m p

 
  

 is the corresponding stable state with the radius of 
 

1

m p
 that 

of H .  As the electron undergoes radial acceleration from the radius of the hydrogen atom to a radius of 
 

1

m p
 this distance, 

energy is released as characteristic light emission or as third-body kinetic energy.  The emission may be in the form of an 

extreme-ultraviolet continuum radiation having an edge at 2 2[( ) 2 ] 13.6 p m p m eV     or 
2 2

91.2

[( ) 2 ]
nm

p m p m  
 and 

extending to longer wavelengths.  In addition to radiation, a resonant kinetic energy transfer to form fast H  may occur.  
Subsequent excitation of these fast  1H n   atoms by collisions with the background 2H  followed by emission of the 

corresponding  3H n   fast atoms gives rise to broadened Balmer   emission. 

As given in Disproportionation of Energy States section, hydrogen atoms  1/   1, 2,3,...137H p p   can undergo further 

transitions to lower-energy states given by Eqs. (5.1) and (5.3) wherein the transition of one atom is catalyzed by a second that 

resonantly and nonradiatively accepts 27.2 m eV  with a concomitant opposite change in its potential energy.  The overall 
general equation for the transition of  1/H p  to   1/H p m  induced by a resonance transfer of 27.2 m eV  to  1/ 'H p  

given by Eq. (5.75) is represented by: 
       2 21/ ' 1/ 1/ ( ) 2 ' 1 13.6 H p H p H H p m pm m p eV            (5.10) 

Hydrogen atoms may serve as a catalyst wherein 1m  , 2m  , and 3m   for one, two, and three atoms, respectively, acting as 

a catalyst for another.  The rate for the two-atom-catalyst, 2H , may be high when extraordinarily fast H as reported previously 

[1-7] collides with a molecule to form the 2H  wherein two atoms resonantly and nonradiatively accept 54.4 eV  from a third 
hydrogen atom of the collision partners.  By the same mechanism, the collision of two hot 2H  provide 3 H  to serve as a catalyst 

of 3 27.2 eV  for the fourth.  The EUV continua at 22.8 nm and 10.1 nm and extraordinary (>100 eV) Balmer   line 

broadening are observed consistent with predictions [1-9].  
The catalyst product,  1/H p , may also react with an electron to form a hydrino hydride ion  1/H p , or two 

 1/H p  may react to form the corresponding molecular hydrino  2 1 /H p .  Specifically, the catalyst product,  1/H p , may 

also react with an electron to form a novel hydride ion  1/H p  with a binding energy BE  (Eq. (7.74)) derived in the Hydrino 

Hydride Ion section: 
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 (5.11) 

where integer 1p   , 1/ 2s  ,   is Planck's constant bar, o  is the permeability of vacuum, em  is the mass of the electron, e  

is the reduced electron mass given by 

3
4

e p
e

e
p

m m

m
m

 


 where pm  is the mass of the proton, oa  is the Bohr radius, and the ionic 

radius is   0
1 1 1

a
r s s

p
    (Eq. (7.73)).  From Eq. (5.11), the calculated ionization energy of the hydride ion is 0.75418 eV , 

and the experimental value given by Lykke [10] is 16082.99 0.15 cm  (0.75418 eV).   

Upfield-shifted NMR peaks are direct evidence of the existence of lower-energy state hydrogen with a reduced radius 

relative to ordinary hydride ion and having an increase in diamagnetic shielding of the proton.  The shift is given by the sum of 
the contributions of the diamagnetism of the two electrons and the trapped photon field of magnitude p  (Eq. (7.87)): 
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B m a s s
  

     
 

 (5.12) 

where the first term applies to H   with 1p   and integer >1p   for  1/H p  and   is the fine structure constant. 

  1/H p  may react with a proton and two  1/H p  may react to form  2 1/H p

 and  2 1 /H p , respectively.  The 

hydrogen molecular ion and molecular charge and current density functions, bond distances, and energies were solved in the 

Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section from the Laplacian in ellipsoidal 

coordinates with the constraint of nonradiation.  

 ( ( ) ( ( ) ( ( ) 0R R R R R R     
          
     

          (5.13) 

The total energy TE  of the hydrogen molecular ion having a central field of pe  at each focus of the prolate spheroid molecular 

orbital is (Eqs. (11.192-11.193)) 
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 (5.14) 

where p  is an integer, c  is the speed of light in vacuum, and   is the reduced nuclear mass.  The total energy of the hydrogen 

molecule having a central field of pe  at each focus of the prolate spheroid molecular orbital is (Eqs. (11.240-11.241)) 
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 (5.15) 

 The bond dissociation energy, DE , of the hydrogen molecule  2 1 /H p  is the difference between the total energy of the 

corresponding hydrogen atoms and TE  

  (2 1/ )D TE E H p E   (5.16) 

where [11] 
   2(2 1/ ) 27.20 E H p p eV   (5.17) 

DE  is given by Eqs. (5.16-5.17) and (5.15): 
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 (5.18) 

The calculated and experimental parameters of 2H , 2D , 2H  , and 2D  are given in Table 11.1. 

The NMR of catalysis-product gas provides a definitive test of the theoretically predicted chemical shift of  2 1 /H p .  In 

general, the 1H  NMR resonance of  2 1 /H p  is predicted to be upfield from that of 2H  due to the fractional radius in elliptic 

coordinates wherein the electrons are significantly closer to the nuclei.  The predicted shift, TB

B


, for  2 1 /H p  is given by the 

sum of the contributions of the diamagnetism of the two electrons and the trapped photon field of magnitude p  (Eqs. (11.415-

11.416)): 
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  2 328.01 1.49  10TB
p p X ppm

B


    (5.20) 

where the first term applies to 2H  with 1p   and integer >1p   for  2 1 /H p .  The experimental absolute 2H  gas-phase 

resonance shift of -28.0 ppm [12-15] is in excellent agreement with the predicted absolute gas-phase shift of -28.01 ppm (Eq. 

(5.20)). 
 The vibrational energies, vibE , for the 0   to 1   transition of hydrogen-type molecules  2 1 /H p  are (Eq. (11.223)) 

 2 0.515902 vibE p eV  (5.21) 

where p  is an integer and the experimental vibrational energy for the 0   to 1   transition of 2H ,  2 0 1HE     , is given by 

Beutler [16] and Herzberg [17]. 
 The rotational energies, rotE , for the J  to 1J   transition of hydrogen-type molecules  2 1 /H p  are (Eq. (12.74)) 

    
2

2
1 1 1 0.01509 rot J JE E E J p J eV

I     


 (5.22) 

where p  is an integer, I  is the moment of inertia, and the experimental rotational energy for the 0J   to 1J   transition of 

2H  is given by Atkins [18]. 

 The 2p  dependence of the rotational energies results from an inverse p  dependence of the internuclear distance and the 

corresponding impact on the moment of inertia I .  The predicted internuclear distance 2 'c  for  2 1 /H p  is: 
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   (5.23) 

The data from a broad spectrum of investigational techniques strongly and consistently indicates that hydrogen can exist 

in lower-energy states than previously thought possible and support the existence of these states called hydrino, for “small 

hydrogen”, and the corresponding hydride ions and molecular hydrino.  Some of these prior related studies supporting the 

possibility of a novel reaction of atomic hydrogen, which produces hydrogen in fractional quantum states that are at lower 

energies than the traditional “ground” ( 1n  ) state, include extreme ultraviolet (EUV) spectroscopy, characteristic emission 

from catalysts and the hydride ion products, lower-energy hydrogen emission, chemically-formed plasmas, Balmer   line 

broadening, population inversion of H  lines, elevated electron temperature, anomalous plasma afterglow duration, power 

generation, and analysis of novel chemical compounds. 
 

ENERGY TRANSFER MECHANISM 
Consider the excited energy states of atomic hydrogen given by Eq. (5.1) with 2,3,4,...n   (Eq. (5.2)).  The 1n   state is the 
“ground” state for “pure” photon transitions (the 1n   state can absorb a photon and go to an excited electronic state, but it 
cannot release a photon and go to a lower-energy electronic state).  However, an electron transition from the 1n   state to a 
lower-energy state hydrino state is possible by a nonradiative energy transfer such as multipole coupling or a resonant collision 
mechanism.  Processes that occur without photons and that require collisions are common.  For example, the exothermic 
chemical reaction of H H  to form 2H  does not occur with the emission of a photon.  Rather, the reaction requires a collision 

with a third body, M , to remove the bond energy: 2 *H H M H M     [19].  The third body distributes the energy from the 

exothermic reaction, and the end result is the 2H  molecule and an increase in the temperature of the system.  Further exemplary 

of an inelastic collision with resonant energy transfer is the Franck-Hertz experiment wherein an excited state atom [20] is 
formed.  Additionally, some commercial phosphors are based on nonradiative energy transfer involving multipole coupling.  For 
example, the strong absorption strength of 3Sb   ions along with the efficient nonradiative transfer of excitation from 3Sb   to 

2Mn   are responsible for the strong manganese luminescence from phosphors containing these ions [21]1.  Another example of 
resonant, nonradiative energy transfer involves atomic hydrogen wherein resonant energy transfer from excited *

2Ne  excimer 

formed in high pressure microhollow cathode discharges to hydrogen atoms in the ground state occurs with high efficiency to 
give predominantly Lyman   and Lyman   emission [22-24] in the absence of excimer emission observed with pure neon 
plasmas.  Thus, the normal emission is consequently quenched as H emits.   

Similarly, the 1n   state of hydrogen and the 
1

integer
n   states of hydrogen are nonradiative, but a transition between 

two nonradiative states is possible via a nonradiative energy transfer, say 1n   to 1/ 4n  .  In these cases, during the transition 
the H electron couples to another electron transition, electron transfer reaction, or inelastic scattering reaction that can absorb the 

 
1 An example of nonradiative energy transfer is the basis of commercial fluorescent lamps.  Consider 2Mn   which when excited sometimes 

emits yellow luminescence.  The absorption transitions of 2Mn   are spin-forbidden.  Thus, the absorption bands are weak, and the 2Mn   ions cannot be 

efficiently raised to excited states by direct optical pumping.  Nevertheless, 2Mn   is one of the most important luminescence centers in commercial 

phosphors.  For example, the double-doped phosphor   3 2

5 4 3
: ,Ca PO F Sb Mn   is used in commercial fluorescent lamps where it converts mainly 

ultraviolet light from a mercury discharge into visible radiation.  When 2536 Å mercury radiation falls on this material, the radiation is absorbed by the 
3Sb   ions rather than the 2Mn   ions.  Some excited 3Sb   ions emit their characteristic blue luminescence, while other excited 3Sb   ions transfer their 

energy to 
2Mn 

 ions.  These excited 
2Mn 

 ions emit their characteristic yellow luminescence.  The efficiency of transfer of ultraviolet photons through 

the 3Sb   ions to the 2Mn   ions can be as high as 80%.  The strong absorption strength of 3Sb   ions along with the efficient transfer of excitation from 
3Sb 

 to 
2Mn 

 are responsible for the strong manganese luminescence from this material.   
This type of nonradiative energy transfer is common.  The ion which emits the light and which is the active element in the material is called the 

activator; and the ion that helps to excite the activator and makes the material more sensitive to pumping light is called the sensitizer.  Thus, the sensitizer 
ion absorbs the radiation and becomes excited.  Because of a coupling between sensitizer and activator ions, the sensitizer transmits its excitation to the 
activator, which becomes excited, and the activator may release the energy as its own characteristic radiation.  The sensitizer to activator transfer is not a 
radiative emission and absorption process, rather a nonradiative transfer.  The nonradiative transfer may be by electric or magnetic multipole interactions.  
In the transfer of energy between dissimilar ions, the levels will, in general, not be in resonance, and some of the energy is released as a phonon or 
phonons.  In the case of similar ions the levels should be in resonance, and phonons are not needed to conserve energy. 

Sometimes the host material itself may absorb (usually in the ultraviolet) and the energy can be transferred nonradiatively to dopant ions.  For 

example, in 3

4
:YVO Eu  , the vanadate group of the host material absorbs ultraviolet light, then transfers its energy to the 3Eu   ions which emit 

characteristic 3Eu   luminescence. 
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exact amount of energy that must be removed from the hydrogen atom to initiate the transition.  These reactions comprise a 
resonant energy sink generally referred to as an energy hole.  Thus, a catalyst is a source of an energy hole because it provides a 
net positive enthalpy of reaction of 27.2 m eV  (i.e. it absorbs or provides an energy sink of 27.2 m eV ).  The reaction of 
hydrogen-type atoms to lower-energy states may also be referred to as a transition reaction.  The certain atoms or ions that serve 
as transition reaction catalysts resonantly accept energy from hydrogen atoms and release the energy to the surroundings to 
effect electronic transitions to hydrino states comprising energy levels corresponding to fractional quantum numbers in the 
Rydberg formula.  The catalysis of hydrogen involves the nonradiative transfer of energy from atomic hydrogen to a catalyst to 
form an intermediate (Eq. (5.7)) that may then release the additional energy by radiative and nonradiative mechanisms.  Thus, as 
a consequence of the nonradiative energy transfer, the hydrogen atom becomes unstable and emits further energy until it 
achieves a lower-energy nonradiative state having a principal energy level given by Eqs. (5.1) and (5.3).  Characteristic 
continuum radiation and extraordinary (>100 eV) Balmer   line broadening corresponding to fast H observed from mixed 
hydrogen plasmas containing a hydrino catalyst [1-9] are signatures of the reaction to form hydrinos.  The latter release may 
occur via a collisional or nonradiative energy transfer from the corresponding formed metastable intermediate to yield the fast 

 1H n  .  The mechanism of energy release may be akin to a quenching reaction [25-26] that is selection rule dependent. 

 
ENERGY HOLE CONCEPT 
For a spherical resonator cavity, the nonradiative boundary condition and the relationship between the electron and the photon 
give the “allowed” hydrogen energy states that are quantized as a function of the parameter n .  That is, the nonradiative 
boundary condition and the relationship between an allowed radius and the photon standing wave wavelength (Eq. (2.1)) give 
rise to Eq. (2.2), the boundary condition for allowed radii and allowed electron wavelengths as a function of the parameter n .  
Each value of n  corresponds to an allowed transition caused by a resonant photon, which excites the transition in the atomic 
orbital resonator cavity from the initial to the final state.  In addition to the traditional integer values (1, 2, 3,...) of n , fractional 
values are allowed by Eq. (2.2) which correspond to transitions between energy states with an increase in the central field 
(effective charge) and decrease in the radius of the atomic orbital.  This occurs, for example, when the atomic orbital couples to 
another resonator cavity, which can absorb energy.  This is the absorption of an energy hole by the hydrogen-type atom.  The 
absorption of an energy hole destroys the balance between the centrifugal force and the increased central electric force.  
Consequently, the electron undergoes a transition to a stable lower energy state.  Thus, the corresponding reaction from an initial 
energy state to a lower energy state requiring an energy hole is called a transition reaction and the resonant energy acceptor 
including a catalyst that is unchanged in the over all reaction to form hydrinos can generally be considered a source of energy 
holes. 

From energy conservation, the energy hole of a hydrogen atom, which excites resonator modes of radial dimensions 

1
Ha

m 
 is: 

 27.2 m eV , (5.24) 
 where 1,2,3,4,....m   

After resonant absorption of the energy hole, the radius of the atomic orbital, Ha , shrinks to 
1

Ha

m 
 and after t  cycles of 

transition, the radius is 
1

Ha

mt 
.  In other words, the radial ground state field can be considered as the superposition of Fourier 

components.  The removal of negative Fourier components of energy 27.2 m eV , where m  is an integer, increases the positive 
electric field inside the spherical shell by m  times that of a proton charge.  The resultant electric field is a time harmonic 
solution of Laplace’s Equations in spherical coordinates.  In this case, the radius at which force balance and nonradiation are 

achieved is 
1

Ha

m 
 where m  is an integer.  In decaying to this radius from the “ground” state, a total energy of 

2 2[( 1) 1 ] 13.6 m eV    is released.  The process is called the Atomic BlackLight Process. 

For the hydrogen atom, the radius of the ground state atomic orbital is Ha .  This atomic orbital contains no photonic 

waves and the centrifugal force and the electric force balance including the electrodynamic force, which is included by using the 
reduced electron mass as given by Eqs. (1.254), (1.259), and (1.260) is: 

 
2 2
1

2
04

e

H H

m v e

a a
  (5.25) 

where 1v  is the velocity in the “ground” state.  It was shown in the Excited States of the One-Electron Atom (Quantization) 

section that the electron atomic orbital is a resonator cavity, which can trap electromagnetic radiation of discrete frequencies.  
The photon electric field functions are solutions of Laplace’s equation.  The “trapped photons” decrease the effective nuclear 
charge or nuclear charge factor effZ  to 1/ n  and increase the radius of the atomic orbital to Hna .  The new configuration is also 

in force balance. 
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 (5.26) 

Similarly a transition to a hydrino state occurs because the effective nuclear charge increases by an integer, m , when 
Eqs. (5.26-5.28) are satisfied by the introduction of an energy hole.  The source of energy holes may not be consumed in the 
transition reaction; therefore it serves as a catalyst.  The catalyst provides energy holes and causes the transition from the initial 

radius Ha

p
 and an effective nuclear charge of p  to the second radius Ha

p m
 and an effective nuclear charge of p m .  Energy 

conservation and the boundary condition that “trapped photons” must be a solution to Laplace’s equation determine that the 
energy hole to cause a transition is given by Eq. (5.24).  As a result of coupling, the hydrogen atom nonradiatively transfers 

27.2 m eV  to the catalyst.   
Stated another way, the hydrogen atom absorbs an energy hole of 27.2 m eV .  The energy hole absorption causes a 

standing electromagnetic wave (“photon”) to be trapped in the hydrogen atom electron atomic orbital having the same form of 
Maxwellian solution of electromagnetic radiation of discrete energy trapped in a resonator cavity as for excited states given in 
the Excited States of the One-Electron Atom (Quantization) section.  As shown previously, the photonic equation must be a 
solution of Laplace’s equation in spherical coordinates.  The “trapped photon” field comprises an electric field, which provides 
force balance and a nonradiative electron current.  Following that given for excited states (Eq. (2.15)), the solution to this 
boundary value problem of the radial photon electric field is given by:  
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  (5.27) 

 
1

n
p

  

 2 137p   

   0,1,2,..., 1p   

 m  -  , -  1,...,0,...,    

 
1

2sm    

The quantum numbers of the electron are p ,  , m , and sm  as described in the Excited States of the One-Electron Atom 

(Quantization) section wherein the principal quantum number of excited states is replaced by 
1

n
p

 .  It is apparent from this 

equation that given an initial radius of Ha

p
 and a final radius of Ha

p m
, the central field is increased by m  with the absorption of 

an energy hole of 27.2 m eV .  The potential energy decreases by this energy; thus, energy is conserved.  However, the force 
balance equation is not initially satisfied as the effective nuclear charge increases by m .  Further energy is emitted as force 
balance is achieved at the final radius.  By replacing the initial radius with the final radius, and by increasing the charge by m  in 
Eq. (5.26).  

     2
23

3 2
0

[ ]
4e H H

p m e e
p m p m

m a a


  


 (5.28) 

Force balance is achieved and the electron is non-radiative.  The energy balance for 1m   is as follows.  An initial energy of 
27.2 eV  is transferred as the energy hole absorption event.  This increases the nuclear charge (effective nuclear charge factor) 
by one elementary charge unit and decreases the potential by 27.2 eV .  More energy is emitted until the total energy released is 

2 2[( 1) ] 13.6 p p eV   .  The potential energy diagram of the electron is given in Figure 5.1. 
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Figure 5.1.   Potential Energy well of a Hydrogen Atom. 
 

 
 

The energy hole ( 27.2 m eV ) required to cause a hydrogen atom to undergo a transition reaction to form a given hydrino atom 

(
1

Ha
H

m
 
  

) as well as the corresponding radius (
( 1)

Ha

m 
), effective nuclear charge factor ( 1effZ m  ) and energy parameters 

of several states of atomic hydrogen are given in Table 5.1. 
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Table 5.1.  Principal quantum number, radius, potential energy, kinetic energy, effective nuclear charge factor, energy hole 
required to form the hydrino from atomic hydrogen (n=1), and hydrino binding energy, respectively, for several states of 
hydrogen.  
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The size of the electron atomic orbital as a function of potential energy is given in Figure 5.2.  
 

Figure 5.2.   Quantized sizes of hydrogen atoms where n  is an integer for excited states and 1n p . for hydrino states where 

p  is an integer. 
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CATALYSTS 
A source of energy holes that is not consumed in the reaction serves as a catalyst that provides a net positive enthalpy of reaction 

of 27.2 m eV  (i.e. it resonantly accepts the nonradiative energy transfer from hydrogen atoms and releases the energy to the 

surroundings to affect electronic transitions to fractional quantum energy levels).  K , He , Ar , Sr , Li , K , NaH , and 

2H O , for example, are predicted to serve as catalysts since they meet the catalyst criterion—a chemical or physical process with 

an enthalpy change equal to an integer multiple of the potential energy of atomic hydrogen, 27.2 eV , or have a potential energy 

of 27.2 m eV .  Specifically, an exemplary catalytic system is provided by the ionization of t  electrons from an atom each to a 

continuum energy level such that the sum of the ionization energies of the t  electrons is approximately 27.2 m eV  where m  is 

an integer.  One such catalytic system involves potassium atoms. K  can serve as a catalyst since the ionization of K  to 3K   is 

about 81.6 eV  ( 3 27.2 eV ).  As a consequence of the nonradiative energy transfer, the hydrogen atom becomes unstable and 

emits further energy until it achieves a lower-energy nonradiative state having a principal energy level given by Eqs. (5.1) and 

(5.3).  Thus, the catalysis releases energy from the hydrogen atom with a commensurate decrease in size of the hydrogen atom, 

n Hr na  where n  is given by Eq. (5.3).  For example, the catalysis of ( 1)H n   to ( 1/ 4)H n   releases 204 eV , and the 

hydrogen radius decreases from Ha  to 
1

4 Ha .  Specifically, the first, second, and third ionization energies of potassium are 

4.34066 eV , 31.63 eV , 45.806 eV , respectively [11].  The triple ionization ( 3t  ) reaction of K  to 3K  , then, has a net 

enthalpy of reaction of 81.7767 eV , which is equivalent to 3m   in Eq. (5.24). 

   3 2 281.7767 3 [( 3) ] 13.6 
( 3)

H Ha a
eV K m H K e H p p eV

p p
    

              
 (5.29) 

  3 3 81.7767 K e K m eV     (5.30) 

And, the overall reaction is 

 2 2[( 3) ] 13.6 
( 3)

H Ha a
H H p p eV

p p

   
          

 (5.31) 

The potassium-atom catalyst ( K ) and the 3  ion ( 3K  ) that arises from the resonant energy transfer are solved in the Three-
Through Twenty-Electron Atoms section and are shown in Figure 5.3. 
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Figure 5.3.  Cross Section of Charge-Density Functions of K and 3K   Shown in Color Scale.  The electrons of 
multielectron atoms exist as concentric atomic orbitals (“bubble-like” charge-density functions) of discrete radii, which are given 
by nr  of the radial Dirac delta function, ( )nr r   and serve as resonator cavities during the resonant nonradiative energy transfer 

that gives rise to ionization.  Each s orbital is a constant current-density function which gives rise to spin, and the charge-density 
of each p orbital is a superposition of a constant and a spherical and time harmonic function.  The corresponding charge-density 
wave on the surface gives rise to electron orbital angular momentum that superimposes the spin angular momentum.  The insert 
on the right shows the atom and ions at a lower magnification to view the outer 4s electron of K . 
 

 
 

The energy given off during catalysis is much greater than the energy lost to the catalyst.  The energy released is large as 

compared to conventional chemical reactions.  For example, when hydrogen and oxygen gases undergo combustion to form 

water (   2 2 2

1
( ) ( )  ( )

2
H g O g H O l  ) the known enthalpy of formation of water is 286 /fH kJ mole    or 1.48  eV per 

hydrogen atom.  By contrast, each ( 1n  ) ordinary hydrogen atom undergoing a catalysis step to 
1

2
n   releases a net of 

40.8 eV .  Moreover, further catalytic transitions may occur: 
1 1 1 1 1 1

,  ,  ,
2 3 3 4 4 5

n      and so on.  Once catalysis begins, 

hydrinos autocatalyze further in a process called disproportionation discussed in the Disproportionation of Energy States section.   
Helium ions can serve as a catalyst because the second ionization energy of helium is 54.417 eV , which is equivalent to 

2 27.2 eV .  In this case, 54.417 eV  is transferred nonradiatively from atomic hydrogen to He  which is resonantly ionized.  
The electron decays to the 1/ 3n   state with the further release of 54.417 eV  as given in Eq. (5.7).  The full catalysis reaction 
invoving an energetic intermediate formed by the energy transfer to the catalyst is: 

   254.417 * 54.4 
3
H

H

a
eV He H a He e H eV           

 (5.32) 

 * 54.4 
3 3
H Ha a

H H eV
          

 (5.33) 

 2 54.417 He e He eV       (5.34) 
And, the overall reaction is: 

   54.4 54.4 
3
H

H

a
H a H eV eV

     
 (5.35) 

wherein *
3
Ha

H
 
  

 has the radius of the hydrogen atom and a central field equivalent to 3 times that of a proton and 
3
Ha

H
 
  

 is 

the corresponding stable state with the radius of 1/3 that of H.  As the electron undergoes radial acceleration from the radius of 
the hydrogen atom to a radius of 1/3 this distance, energy is released as characteristic light emission or as third-body kinetic 
energy. 

Hydrogen catalysts capable of providing a net enthalpy of reaction of approximately 27.2 m eV  where m  is an integer 
to produce a hydrino (whereby t  electrons are ionized from an atom or ion) are given in Table 5.2.  The atoms or ions given in 



Hydrino Theory—BlackLight Process 

 

227

the first column are ionized to provide the net enthalpy of reaction of 27.2 m eV  given in the tenth column where m  is given in 
the eleventh column.  The electrons that participate in ionization are given with the ionization potential (also called ionization 
energy or binding energy).  The ionization potential of the n th electron of the atom or ion is designated by nIP  and is given by 

the CRC [11].  That is for example, 5.39172 Li eV Li e     and 275.6402 Li eV Li e     .  The first ionization 
potential, 1 5.39172 IP eV , and the second ionization potential, 2 75.6402 IP eV , are given in the second and third columns, 

respectively.  The net enthalpy of reaction for the double ionization of Li  is 81.0319 eV  as given in the tenth column, and 
3m   in Eq. (5.24) as given in the eleventh column. 

 
Table 5.2.  Hydrogen Catalysts. 
 

Catalyst IP1 IP2 IP3 IP4 IP5 IP6 IP7 IP8 Enthalpy  m
Li 5.39172 75.6402  81.032 3 
Be 9.32263 18.2112  27.534 1 
K 4.34066 31.63 45.806 81.777 3 
Ca 6.11316 11.8717 50.9131 67.27 136.17 5 
Ti 6.8282 13.5755 27.4917 43.267 99.3 190.46 7 
V 6.7463 14.66 29.311 46.709 65.2817 162.71 6 
Cr 6.76664 16.4857 30.96 54.212 2 
Mn 7.43402 15.64 33.668 51.2 107.94 4 
Fe 7.9024 16.1878 30.652 54.742 2 
Fe 7.9024 16.1878 30.652 54.8 109.54 4 
Co 7.881 17.083 33.5 51.3 109.76 4 
Co 7.881 17.083 33.5 51.3 79.5 189.26 7 
Ni 7.6398 18.1688 35.19 54.9 76.06 191.96 7 
Ni 7.6398 18.1688 35.19 54.9 76.06 108 299.96 11
Cu 7.72638 20.2924  28.019 1 
Zn 9.39405 17.9644  27.358 1 
Zn 9.39405 17.9644 39.723 59.4 82.6 108 134 174 625.08 23
As 9.8152 18.633 28.351 50.13 62.63 127.6 297.16 11
Se 9.75238 21.19 30.8204 42.945 68.3 81.7 155.4 410.11 15
Kr 13.9996 24.3599 36.95 52.5 64.7 78.5 271.01 10
Kr 13.9996 24.3599 36.95 52.5 64.7 78.5 111 382.01 14
Rb 4.17713 27.285 40 52.6 71 84.4 99.2 378.66 14
Rb 4.17713 27.285 40 52.6 71 84.4 99.2 136 514.66 19
Sr 5.69484 11.0301 42.89 57 71.6 188.21 7 
Nb 6.75885 14.32 25.04 38.3 50.55 134.97 5 
Mo 7.09243 16.16 27.13 46.4 54.49 68.8276 220.10 8 
Mo 7.09243 16.16 27.13 46.4 54.49 68.8276 125.664 143.6 489.36 18
Pd 8.3369 19.43  27.767 1 
Sn 7.34381 14.6323 30.5026 40.735 72.28 165.49 6 
Te 9.0096 18.6  27.61 1 
Te 9.0096 18.6 27.96 55.57 2 
Cs 3.8939 23.1575  27.051 1 
Ce 5.5387 10.85 20.198 36.758 65.55 138.89 5 
Ce 5.5387 10.85 20.198 36.758 65.55 77.6 216.49 8 
Pr 5.464 10.55 21.624 38.98 57.53 134.15 5 
Sm 5.6437 11.07 23.4 41.4 81.514 3 
Gd 6.15 12.09 20.63 44 82.87 3 
Dy 5.9389 11.67 22.8 41.47 81.879 3 
Pb 7.41666 15.0322 31.9373 54.386 2 
Pt 8.9587 18.563  27.522 1 
He+  54.4178  54.418 2 
Na+  47.2864 71.6200 98.91 217.816 8 
Rb+  27.285  27.285 1 
Fe3+    54.8 54.8 2 
Mo2+   27.13 27.13 1 
Mo4+    54.49 54.49 2 
In3+    54 54 2 
Ar+  27.62  27.62 1 
Sr+  11.03 42.89 53.92 2 
2K+ to K 

and K2+ 
4.34 31.63  27.28 1 

2Ba2+ to Ba+  
and  Ba3+ 

5.21 10 37.3 27.3 1 

 

Certain molecules may also serve to affect transitions of H to form hydrinos.  In general, a compound comprising 

hydrogen such as MH , where M is an element other than hydrogen, serves as a source of hydrogen and a source of catalyst.  A 

catalytic reaction is provided by the breakage of the M H  bond plus the ionization of t  electrons from the atom M  each to a 

continuum energy level such that the sum of the bond energy and ionization energies of the t  electrons is approximately 
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  27.2 m eV , where m  is an integer.  One such catalytic system involves sodium hydride.  The bond energy of NaH  is 

1.9245 eV  [27], and the first and second ionization energies of Na  are 5.13908 eV  and 47.2864 eV , respectively [11].  Based 

on these energies NaH  molecule can serve as a catalyst and H  source, since the bond energy of NaH  plus the double 

ionization ( 2t  ) of Na  to 2Na   is 54.35 eV  ( 2 27.2 eV ).  The concerted catalyst reactions are given by: 

 

2 2 254.35 2 [3 1 ] 13.6 
3
Ha

eV NaH Na e H eV           
 (5.36) 

 2 2 54.35 Na e H NaH eV      (5.37) 

And, the overall reaction is: 

 2 2[3 1 ] 13.6 
3
Ha

H H eV
      

 (5.38) 

A molecule that accepts   27.2 m eV  from atomic H with a decrease in the magnitude of the potential energy of the 

molecule by the same energy may serve as a catalyst.  For example, the potential energy of H2O given by Eq. (13.201) is: 

 
2 2 2

2 2 2 2
0

3 2
ln 81.8715 

2 8
e

e a a b
V eV

a b a a b
      

    
 (5.39) 

The full catalysis reaction  3m   is: 

  281.6 2 3 * 81.6 
4
H

H fast

a
eV H O H a H O e H eV            

 (5.40) 

 * 122.4 
4 4
H Ha a

H H eV
          

 (5.41) 

 22 3 81.6 fastH O e H O eV        (5.42) 

And, the overall reaction is: 

   81.6 122.4 
4
H

H

a
H a H eV eV

     
 (5.43) 

wherein *
4
Ha

H
 
  

 has the radius of the hydrogen atom and a central field equivalent to 4 times that of a proton and 
4
Ha

H
 
  

 is 

the corresponding stable state with the radius of 1/4 that of H. 
 
ENERGY HOLE AS A MULTIPOLE EXPANSION 
The potential energy (Eq. (1.261)) of the hydrino states of radius Ha

p
 having a central field of magnitude p  is:  

 2 27.2 p eV   (5.44) 

where p  is an integer.  The potential energy is given as the superposition of   energy-degenerate quantum states corresponding 
to a multipole expansion of the central electromagnetic field.  Based on the selection rules given in the Excited States of the One-
Electron Atom (Quantization) section that are enabled by multipole coupling, one multipole moment of all those possible, need 
be excited to stimulate the below “ground” state transition.  The total number, N , of multipole moments where each 
corresponds to an   and m  quantum number of an energy level corresponding to a principal quantum number of p  is:  

 
1 1

2

0 0

1 2 1
p n

m

N p
  

  

     




  
  (5.45) 

Thus, the energy hole to stimulate a transition of a hydrogen atom from radius Ha

p
 to radius 

1
Ha

p 
 with an increase in the 

central field from p  to 1p   where p  is an integer is: 

 2
2

1
( 1) 27.2 27.2 

( 1)
p eV

p
   


 (5.46) 

Eq. (5.46) obeys superposition such that the energy hole for the excitation of m  multipoles is 27.2 m eV .  Energy conservation 
occurs during the absorption of an energy hole.  For a hydrogen atom with a principal quantum number of p  having a radius of 

Ha

p
, the absorption of an energy hole of 27.2 m eV  instantaneously decreases the potential energy by 27.2 m eV .  The 

calculation of the instantaneous electric field of the photon standing wave corresponding to the absorbed energy hole is 
determined by the conservation of the potential energy change due to the absorption of the energy hole of equal but opposite 
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energy.  It is given by the summation over all possible multipoles of the integral of the product of the electric field of the photon 
standing wave and the multipoles of the electron charge-density function.  The multipole of the photon standing wave and each 
multipole of the electron charge-density function correspond to an   and m  quantum number. 

 

DISPROPORTIONATION OF ENERGY STATES 
Hydrogen and hydrinos may serves as catalysts.  As given infra hydrogen atoms  1/   1, 2,3,...137H p p   can undergo 

transitions to lower-energy states given by Eqs. (5.1) and (5.3) wherein the transition of one atom is catalyzed by a second that 

resonantly and nonradiatively accepts 27.2 m eV  with a concomitant opposite change in its potential energy.  The overall 
general equation for the transition of  1/H p  to   1/H m p  induced by a resonance transfer of 27.2 m eV  to  1/ 'H p  is 

represented by (Eq. (5.75)) 
       2 21/ ' 1/ 1/ ( ) 2 ' 1 13.6 H p H p H H m p pm m p eV            (5.47) 

Thus, hydrogen atoms may serve as a catalyst wherein 1m  , 2m  , and 3m   for one, two, and three atoms, respectively, 

acting as a catalyst for another.  The rate for the two- or three-atom-catalyst case would be appreciable only when the H  density 

is high.  But, high H densities are not uncommon.  A high hydrogen atom concentration permissive of 2H or 3H serving as the 

energy acceptor for a third may be achieved under several circumstances such as on the surface of the Sun and stars due to the 

temperature and gravity driven density, on metal surfaces that support multiple monolayers, and in highly dissociated plasmas, 

especially pinched hydrogen plasmas.  Additionally, a three-body H interaction is easily achieved when two H  atoms arise with 
the collision of a hot H  with 2H .  This event can commonly occur in plasmas having a large population of extraordinarily fast 

H as reported previously [1-7].  This is evidenced by the unusual intensity of atomic H emission.  In such cases, energy transfer 

can occur from a hydrogen atom to two others within sufficient proximity, being typically a few angstroms as given in the 

Dipole-Dipole Coupling section.  Then, the reaction between three hydrogen atoms whereby two atoms resonantly and 

nonradiatively accept 54.4 eV  from the third hydrogen atom such that 2H  serves as the catalyst is given by: 

 54.4 2 2 2 * 54.4 
3
H

fast

a
eV H H H e H eV          

 (5.48) 

 * 54.4 
3 3
H Ha a

H H eV          
 (5.49) 

 2 2 2 54.4 fastH e H eV     (5.50) 

And, the overall reaction is: 

 2 2[3 1 ] 13.6 
3
Ha

H H eV
      

 (5.51) 

*
2 1

Ha
H

 
  

 has the radius of the hydrogen atom (corresponding to the 1 in the denominator) and a central field equivalent to 3 

times that of a proton, and 
3
Ha

H
 
  

 is the corresponding stable state with the radius of 1/3 that of H.  As the electron undergoes 

radial acceleration from the radius of the hydrogen atom to a radius of 1/3 this distance, energy is released as characteristic light 

emission or as third-body kinetic energy.  The emission may be in the form of an extreme-ultraviolet continuum radiation having 

an edge at 54.4 eV  (22.8 nm) and extending to longer wavelengths.  Alternatively, H is the lightest atom; thus, it is the most 

probable fast species in collisional energy exchange from the H intermediate (e.g. *
2 1

Ha
H

 
  

).  Additionally, H is unique with 

regard to the energetic transition state intermediate (generally represented by * Ha
H

m p

 
  

) in that all these species are energy 

states of hydrogen with corresponding harmonic frequencies.  Thus, the cross section for H excitation by a nonradiative energy 

transfer to form fast H is predicted to be large since it is a resonant process.  Efficient energy transfer can occur by common 

through-space mechanisms such as dipole-dipole interactions as described by Förster's theory infra.  Consequently, in addition to 

radiation, a resonant kinetic energy transfer to form fast H may occur.  Alternatively, fast H is a direct product of H or hydrino 

serving as the catalyst or source of energy holes as given by Eqs. (5.48), (5.53), (5.58), and (5.71) wherein the acceptance of the 

resonant energy transfer regards the potential energy rather than the ionization energy.  Conservation of energy gives a proton of 
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the kinetic energy corresponding to one half the potential energy in the former case and a catalyst ion at essentially rest in the 

latter case.  The H recombination radiation of the fast protons gives rise to broadened Balmer   emission that is 

disproportionate to the inventory of hot hydrogen consistent with the excess power balance.  Conservation of momentum in the 
formation of fast protons also gives rise to hot hydrinos that heat H.  Subsequent excitation of these fast  1H n   atoms by 

collisions with the background 2H  followed by emission of the corresponding  3H n   fast atoms gives rise to broadened 

Balmer   emission but of less intensity than directly formed hot protons that emit by recombination.  With increasingly lower-

energy states formed over time as the reaction progresses, very large kinetic energies are predicted throughout the cell.  Only 

isotropic non-directional broadening of hydrogen atomic lines is predicted with an increase in fast H with time.  These features 

have been confirmed experimentally [1-7], especially regarding closed hydrogen plasmas or water vapor plasmas that become 

predominantly H plasmas in time [1-3].  Overall, the EUV continuum radiation and fast H were observed with hydrogen plasmas 

wherein 2H served as the catalyst [8-9].  Astrophysical soft X-ray continuum radiation bands are observed at 10.1 nm, 22.8 nm, 

and 91.2 nm as predicted for mH  catalyst, 1m  , 2m  , and 3m  , respectively [8].  Soft X-ray continuum radiation having a 

10.1 nm cutoff was also observed in the laboratory as predicted for H2O catalyst [8].  Thus, the predictions corresponding to 

transitions of atomic hydrogen to form hydrinos were experimentally confirmed.   
The predicted product of 2H (Eqs. (5.48-5.51)) catalyst reaction is  1/ 3H .  In the case of a high hydrogen atom 

concentration, the further transition given by Eq. (5.47) of  1/ 3H  ( 3p  ) to  1/ 4H  ( 4m p  ) with H  as the catalyst 

( ' 1p  ; 1m  ) can be fast: 

    1/ 3 1/ 4 95.2 HH H eV   (5.52) 

In another H -atom catalyst reaction involving a direct transition to 
4
Ha 

  
 state, two hot 2H  molecules collide and 

dissociate such that three H  atoms serve as a catalyst of 3 27.2 eV  for the fourth.  Then, the reaction between four hydrogen 

atoms whereby three atoms resonantly and nonradiatively accept 81.6 eV  from the fourth hydrogen atom such that 3H  serves 

as the catalyst is given by: 

 81.6 3 3 3 * 81.6 
4
H

fast

a
eV H H H e H eV          

 (5.53) 

 * 122.4 
4 4
H Ha a

H H eV
          

 (5.54) 

 3 3 3 81.6 fastH e H eV     (5.55) 

And, the overall reaction is 

 2 2[4 1 ] 13.6 
4
Ha

H H eV
      

 (5.56) 

The extreme-ultraviolet continuum radiation band due to the *
3 1

Ha
H

 
  

 intermediate of Eq. (5.53) is predicted to have short 

wavelength cutoff at 122.4 eV  (10.1 nm) and extend to longer wavelengths.  This continuum band also formed by H2O catalyst 

was confirmed experimentally [8].  In general, the transition of H  to 
1

Ha
H

p m

 
   

 due by the acceptance of 27.2 m eV  gives 

a continuum band with a short wavelength cutoff and energy 
1

Ha
H H

p m

E  
      

 given by: 

 

2

1

2

1

13.6 

91.2
 

 

H

H

a
H H

p m

a
H H

p m

E m eV

nm
m



  
      

  
      

 


 (5.57) 

and extending to longer wavelengths than the corresponding cutoff.  The radiation band is in the region from zero to the cutoff 

wavelength with a Bremsstrahlung profile that is predominantly in the high-energy region. 

Consistent with Eq. (5.57) with 1m  , a 91.2 nm continuum in argon plasma with trace hydrogen was observed where 

the catalyst reaction Ar  to 2Ar   has a net enthalpy of reaction of 27.63 eV  [28].  Two hydrogen atoms may react to give the 
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same continuum band by a reaction similar to those given by Eqs. (5.48-5.51).  The reaction whereby one H resonantly and 

nonradiatively accepts 27.2 eV  from the other hydrogen atom such that it serves as the catalyst is given by: 

 27.2 * 27.2 
2
H

fast

a
eV H H H e H eV          

 (5.58) 

 * 13.6 
2 2
H Ha a

H H eV
          

 (5.59) 

 27.2 fastH e H eV     (5.60) 

And, the overall reaction is: 

 2 2[2 1 ] 13.6 
2
Ha

H H eV
      

 (5.61) 

The emission from Eq. (5.59) may be in the form of an extreme-ultraviolet continuum radiation having an edge at 13.6 eV  (91.2 

nm) and extending to longer wavelengths.  This band was also observed in pulsed pure hydrogen plasmas using the normal 

incidence spectrometer, but temporal studies are required in order to eliminate the background hydrogen molecular band.  These 

bands were eliminated previously in the argon plasma with trace hydrogen [28] wherein H is highly dissociated.  Hydrogen may 

emit the series of 10.1 nm, 22.8 nm, and 91.2 nm continua as shown in Ref. [8].   
Since the products of the catalysis reactions (e.g. Eqs. (5.48-5.51)) have binding energies of 27.2 m eV , they may 

further serve as catalysts.  Thus, further catalytic transitions may occur: 
1 1 1 1

,  ,
3 4 4 5

n     and so on.  Thus, lower-energy 

hydrogen atoms, hydrinos, can act as catalysts by resonantly and nonradiatively accepting energy of 27.2 m eV  from another H 
or hydrino atom (Eq. (5.24)).  The process can occur by several mechanisms: metastable excitation, resonance excitation, and 
ionization energy of a hydrino atom is 27.2 m eV  (Eq. (5.24)).  The transition reaction mechanism of a first hydrino atom 
affected by a second hydrino atom involves the resonant coupling between the atoms of m  degenerate multipoles each having 
27.2 eV  of potential energy.  (See the Energy Hole as a Multipole Expansion section).   

The energy transfer of 27.2 m eV  from the first hydrino atom to the second hydrino atom causes the central field of the 

first to increase by m  and the electron of the first to drop m  levels lower from a radius of Ha

p
 to a radius of Ha

p m
.  The second 

lower-energy hydrogen is excited to a metastable state, excited to a resonance state, or ionized by the resonant energy transfer.  
The resonant transfer may occur in multiple stages.  For example, a nonradiative transfer by multipole coupling may occur 

wherein the central field of the first increases by m , then the electron of the first drops m  levels lower from a radius of Ha

p
 to a 

radius of Ha

p m
 with further resonant energy transfer.  The energy transferred by multipole coupling may occur by a mechanism 

that is analogous to photon absorption involving an excitation to a virtual level.  Or, the energy transferred by multipole coupling 
during the electron transition of the first hydrino atom may occur by a mechanism that is analogous to two-photon absorption 
involving a first excitation to a virtual level and a second excitation to a resonant or continuum level [29-31].  Similarly to the 
case with H as the catalyst, the transition energy greater than the energy transferred to the second hydrino atom may appear as a 
characteristic light emission in a vacuum medium or extraordinary fast H.   

The transition of the hydrino intermediate from its radius to the corresponding hydrino radius gives rise to continuum 
radiation.  By time reversal symmetry, the hydrino can serve as a catalyst to accept the energy difference between its state and a 
corresponding intermediate state at the radius of the intermediate wherein the decay to the hydrino radius releases the transferred 
energy.  The release may be as continuum radiation or fast H. 

For example, 
'

Ha
H

p

 
 
 

 may serve as a source of energy holes for Ha
H

p

 
 
 

.  In general, the transition of Ha
H

p

 
 
 

 to 

Ha
H

p m

 
  

 induced by a resonance transfer of 27.2 m eV  (Eq. (5.24)) with a metastable state excited in 
'

Ha
H

p

 
 
 

 is represented 

by: 

 27.2 * *  27.2  
' '

H H H Ha a a a
m eV H H H H m eV

p p p p m

       
                    

 (5.62) 

 * 27.2 
' '

H Ha a
H H m eV

p p

   
     

   
 (5.63) 

  2 2* 13.6 27.2 H Ha a
H H p m p eV m eV

p m p m

                    
 (5.64) 
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where p , 'p , and m  are integers and the asterisk represents an excited metastable state.  And, the overall reaction is: 

 2 2 [( ) ]  13.6  H Ha a
H H p m p eV

p p m

   
          

 (5.65) 

The short-wavelength cutoff energy of the continuum radiation given by Eq. (5.57) is the maximum energy release of the 

hydrino intermediate as it decays.  For example, both the reaction of H with 
'

Ha
H

p

 
 
 

 as the source of an energy hole of 

3 27.2 eV  to form 
4
Ha

H
 
  

 and the reaction of 
5
Ha

H
 
  

 with 
'

Ha
H

p

 
 
 

 as the source of an energy hole of 27.2 eV  to form 

6
Ha

H
 
  

 gives rise to a cutoff of 10.1 nm (122.4 eV ) wherein the magnitude of the potential energy of 
'

Ha
H

p

 
 
 

 is greater than 

27.2 m eV  for each case. 

In another mechanism, the transition of Ha
H

p

 
 
 

 to Ha
H

p m

 
  

 induced by a multipole resonance transfer of 27.2 m eV  

(Eq. (5.24)) and a transfer of  22[( ') ' ' ]  13.6 27.2 p p m eV m eV      with a resonance state of 
' '

Ha
H

p m

 
  

 excited in 

'
Ha

H
p

 
 
 

 is represented by: 

     22 2 2[ ( ) ' ' ' ]  13.6 
' ' '

H H H Ha a a a
H H H H p m p p p m eV

p p p m p m

       
                        

 (5.66) 

where p , 'p , m , and 'm  are integers. 

In two other mechanisms, the hydrino atom that serves as the source of the energy hole may be ionized by the resonant 

energy transfer.  Consider the transition cascade for the pth cycle of the hydrogen-type atom, Ha
H

p

 
 
 

, with the hydrogen-type 

atom, 
'

Ha
H

p

 
 
 

, that is ionized as the source of energy holes that causes the transition.  The equation for the absorption of an 

energy hole of 27.2 m eV  (Eq. (5.24)) equivalent to the binding energy of 
'

Ha
H

p

 
 
 

, is represented by: 

 27.2 *  27.2  
'

H H Ha a a
m eV H H H e H m eV

p p p m
      

                 
 (5.67) 

 

  2 2* 13.6 27.2 H Ha a
H H p m p eV m eV

p m p m

                    
 (5.68) 

 13.6 
1
Ha

H e H eV        
 (5.69) 

And, the overall reaction is: 

 2 22 ' 1 13.6 
' 1 ( )

H H H Ha a a a
H H H H pm m p eV

p p p m

                              
 (5.70) 

wherein 227.2 ' 13.6 m eV p eV   . 

Alternatively, the energy transfer may affect the potential energy of the acceptor rather than the total energy.  The energy 

transfer from a first hydrogen-type atom Ha
H

p

 
 
 

 to a second acceptor hydrogen-type atom 
'

Ha
H

p

 
 
 

 serving as a catalyst causes 

the electric potential energy of the acceptor hydrogen-type atom to become zero, and the energy conservation gives rise to a hot 

proton with the ionization of the energy acceptor hydrogen-type atom.  The transition reaction equation for the pth cycle 

transition cascade of the hydrogen-type atom, Ha
H

p

 
 
 

, with the hydrogen-type atom, 
'

Ha
H

p

 
 
 

, that is ionized with the 

absorption of an energy hole of 27.2 m eV  (Eq. (5.24)) equivalent to its potential energy, is represented by: 
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 27.2 *  27.2  
'

H H H
fast

a a a
m eV H H H e H m eV

p p p m
      

                 
 (5.71) 

  2 2* 13.6 27.2 H Ha a
H H p m p eV m eV

p m p m

                    
 (5.72) 

  1 13.6 
1
H

fast

a
H e H m eV         

 (5.73) 

And, the overall reaction is: 

 22 1 13.6 
' 1 ( )

H H H Ha a a a
H H H H pm m m eV

p p p m

                              
 (5.74) 

wherein 227.2 ' 27.2 m eV p eV   .  Consider all stable states of hydrogen and their ability to serve as a source of energy holes 

regarding a general reaction involving a transition of hydrogen to a lower-energy state caused by another hydrogen or hydrino.  

In the case that H is the source of energy hole involving either mechanism (Eq (5.70) or Eq. (5.74)), the reaction is given by 
       2 21/ ' 1/ 1/ ( ) 2 ' 1 13.6 H p H p H H m p pm m p eV            (5.75) 

where p , 'p , and m  are integers with ' 1m p  . 

The laboratory results of the formation of hydrinos with emission of continuum radiation has celestial implications.  

Hydrogen self-catalysis and disproportionation may be reactions occurring ubiquitously in celestial objects and interstellar 

medium comprising atomic hydrogen.  Stars are sources of atomic hydrogen and hydrinos as stellar wind for interstellar 

reactions wherein very dense stellar atomic hydrogen and singly ionized helium, He , serve as catalysts in stars.  H2O catalyst 

may also be active in interstellar medium.  Hydrogen continua from transitions to form hydrinos matches the emission from 

white dwarfs, provides a possible mechanism of linking the temperature and density conditions of the different discrete layers of 

the coronal/chromospheric sources, and provides a source of the diffuse ubiquitous EUV cosmic background with a 10.1 nm 

continuum matching the observed intense 11.0-16.0 nm band in addition to resolving the identity of the radiation source behind 
the observation that diffuse H  emission is ubiquitous throughout the Galaxy and widespread sources of flux shortward of 912Å 

are required.  Moreover, the product hydrinos provides resolution to the identity of dark matter [8-9].   

Disproportionation reactions of hydrinos are predicted to given rise to features in the X-ray region.  As shown by Eqs. 

(5.40-5.43) the reaction product of HOH catalyst is 
4
Ha

H  
  

.  Consider a likely transition reaction in hydrogen clouds containing 

H2O gas wherein the first hydrogen-type atom Ha
H

p

 
 
 

 is an H atom and the second acceptor hydrogen-type atom 
'

Ha
H

p

 
 
 

 

serving as a catalyst is 
4
Ha

H  
  

.  Since the potential energy of 
4
Ha

H  
  

 is 24 27.2 16 27.2 435.2 eV eV eV    , the transition 

reaction is represented by: 

 16 27.2 *  16 27.2  
4 1 17
H H H

fast

a a a
eV H H H e H eV                       

 (5.76) 

 H *
a

H

17









 H

a
H

17









  3481.6 eV  (5.77) 

 H
fast
  e  H

a
H

1









  231.2 eV  (5.78) 

And, the overall reaction is: 

 H
a

H

4









  H

a
H

1









 H

a
H

1









  H

a
H

17









  3712.8 eV  (5.79) 

The extreme-ultraviolet continuum radiation band due to the H *
a

H

p m









  intermediate (e.g. Eq. (5.72) and Eq. (5.7) is predicted 

to have a short wavelength cutoff and energy E
HH

aH

pm





















 given by: 
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2 2

2 2

13.6 27.2 

91.2
 

2  

H

H

a
H H

p m

a
H H

p m

E p m p eV m eV

nm
p m p m



  
     

  
     

       


    

 (5.80) 

and extending to longer wavelengths than the corresponding cutoff.  Here the extreme-ultraviolet continuum radiation band due 

to the decay of the H *
a

H

17









  intermediate is predicted to have a short wavelength cutoff at E  3481.6 eV ;  0.35625 nm  and 

extending to longer wavelengths.  A broad X-ray peak with a 3.48 keV cutoff was recently observed in the Perseus Cluster by 

NASA’s Chandra X-ray Observatory and by the XMM-Newton [32-34] that has no match to any known atomic transition.  The 

3.48 keV feature assigned to dark matter of unknown identity by BulBul et al. [32, 34] matches the 

4 1 17
H H Ha a a

H H H                
 transition and further confirms hydrinos as the identity of dark matter. 

 

DIPOLE-DIPOLE COUPLING 
The process referred to as the Atomic BlackLight Process described in the Hydrino Theory—BlackLight Process section 
comprises the transition of ordinarily stable hydrogen atoms with 1n   in Eq. (5.1) to lower-energy stable states via an initial 
resonant nonradiative energy transfer to an acceptor comprising a source of an energy hole.  Comparing the implications of the 
source-current-to-stability relationship (Eqs. (2.23-2.25) and (6.7-6.9)) of Rydberg transitions to excited 1,2,3,...n   states as 

opposed to the transitions to hydrino states having 
1 1 1 1

1, , , ,...,
2 3 4

n
p

 , it can be appreciated that the former transitions directly 

involve photons; whereas, the latter do not.  Transitions are symmetric with respect to time.  Current-density functions, which 
give rise to photons are created by photons by the reverse process.  Excited energy states correspond to this case.  And, current-
density functions, which do not directly give rise to photons are not created by photons by the reverse process.  Hydrino energy 
states correspond to this case.  But, radiationless processes generally classified as atomic collisions involving an energy hole can 
cause a stable H state to undergo a transition to a lower-energy stable state.  Examples of radiationless energy transfer 
mechanisms are given in the Energy Transfer Mechanism section. 

Since the initial state in each case is not a radiative multipole as described in the Excited States of the One-Electron Atom 
(Quantization) section, the transitions to lower energy states of hydrogen are forbidden.  However, forbidden transitions can 
become allowed by coupling.  For example, forbidden electronic transitions in transition metal complexes couple to vibrational 
transitions with a dramatic increase in the absorption cross section that results in absorption.  This is well known as vibronic 
coupling [35].  In addition to direct physical collision, several interactions can be generally classified as “collisions” that perturb 
the current density function of a hydrogen atom.  Catalyst ions can electrostatically polarize the current density of the hydrogen 
atom.  Similarly induced polarization may occur by the same mechanism that gives rise to van der Waals forces.  In addition, all 
hydrogen atoms and hydrinos have a single unpaired electron that can interact through a magnetic dipole interaction.  Once the 
current density function is altered energy transfer may occur between the hydrogen atom or hydrino and the catalyst. 

In an otherwise radiative system containing two fluorescent species such that the emission spectrum of one (the “donor”) 
overlaps the absorption spectrum of the other (the “acceptor”), the excitation energy of the donor atoms may be transferred by a 
resonance Coulombic electromagnetic interaction mechanism over relatively large distances to the acceptor species (energy 
hole) rather than the donors radiating into free space.  The total Coulombic interaction may be taken as the sum of terms 
including dipole-dipole, dipole-quadrupole, and terms involving higher order multipoles.  Multipole-multipole resonance such as 
dipole-dipole resonance initially occurs in the electro and magnetostatic limit rather than involving transverse fields as in the 
case of pure radiation coupling.  The Förster theory [36-40] is general to dipole-dipole energy transfer, which is often 
predominant.  A modification of Förster theory applies to the case of transitions to or between hydrino states.  The mechanism 
for the coupling between the 1/n p  ( 1,2,3,...p  )-state electron of the hydrogen atom and the catalyst may involve direct 
coupling between existing multipoles, or the catalyst may induce a multipole in the reactant H or hydrino atom.  Mechanisms for 
the catalyst to induce a multipole in the electron current include collisional perturbations and polarizations by electric or 
magnetic field interactions. 

The hydrogen-type electron atomic orbital is a spherical shell of negative charge (total charge = e ) of zero thickness at 
a distance nr  from the nucleus (charge = Ze ).  It is well known that the field of a spherical shell of charge is zero inside the 

shell and that of a point charge at the origin outside the shell [41].  The electric field of the proton is that of a point charge at the 
origin.  And, the superposition, E , of the electric fields of the electron and the proton is that of a point charge inside the shell 
and zero outside. 

 
2

04

e

r
E  for nr r  (5.81) 
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 0E  for nr r  (5.82) 

The magnetic field of the electron, H , is derived in the Derivation of the Magnetic Field section: 
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     for nr r  (5.83) 
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 for nr r  (5.84) 

Power flow is governed by the Poynting power theorem, 

 0 0

1 1
( )

2 2t t

  
 

                  
E H H H E E J E  (5.85) 

It follows from Eqs. (5.81-5.85) that ( ) E H  is zero until an interaction occurs between a hydrogen-type atom and a catalyst.  
Here, a nonradiative transition can couple to one that is radiative.  As given in Jackson [42], each current distribution can be 
written as a multipole expansion.  A catalytic interaction or collision gives rise to radiative terms including a dipole term.  (There 
is at least current in the radial direction until force balance is achieved again at the next nonradiative level).  Förster’s theory [36] 
gives the following equation for  n R , the nonradiative transfer rate constant: 

        
2

5 4 6 4
0

9000 ln10
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D A
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d
n R f

n N R

   
  


   (5.86) 

where  A   is the molar decadic extinction coefficient of the acceptor (at wave-number  ),  Df   is the spectral distribution 

of the fluorescence of the donor (measured in quanta and normalized to unity on a wave-number scale), AN  is Avogadro’s 

number, D  is the mean lifetime of the excited state, D  is the quantum yield of the fluorescence of the donor, n  is the 

refractive index , R  is the distance between the donor and acceptor, and   is an orientation factor which for a random 

distribution equals 

1

22

3
 
 
 

. 

Adaptation of Förster’s theory gives the transfer rate constant.  In this case, the form of the equation is the same except 
that  A   is the molar decadic energy acceptor cross section (at wave-number  ),  Df   is the spectral distribution of the 

transferred energy of the donor (measured in quanta and normalized to unity on a wave-number scale), D  is the mean lifetime 

of the transition, and   is a factor dependent on the mutual orientation of the donor and acceptor transition moments which for a 

random distribution equals 

1

22

3
 
 
 

.  D  is the transition probability of the donor that is dependent on establishing a radiative state 

in both the acceptor and donor via the nonradiative resonant energy transfer.  D  is analogous to the excitation probability to a 

doubly excited state. 
The collision of two hydrino atoms will result in an elastic collision, an inelastic collision with a hydrogen-type 

molecular reaction, or an inelastic collision with a disproportionation reaction as described in the Disproportionation of Energy 
States section.  An estimate of the transition probability for electric multipoles is given by Eq. (16.104) of Jackson [43].  For an 
electric dipole 1 , and Eq. (16.104) of Jackson is: 
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 (5.87) 

where a  is the radius of the hydrogen-type atom, and k  is the wave-number of the transition.  Substitution of: 

 k
c


  (5.88) 

into Eq. (5.87) gives: 
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 (5.89) 

From Eq. (5.89), the transition probability is proportional to the frequency cubed.  Thus, the disproportionation reaction of 
hydrinos is favored over molecular bond formation because it is the most energetic transition for the donor hydrino atom, and 
bond formation further requires a third body to remove the bond energy. 

In one example wherein nonradiative energy transfer occurs between two hydrino atoms, the mean lifetime of the 
transition of Eq. (5.86), D , is taken as the vibrational period of the corresponding dihydrino molecule that serves as a model of 

the transition state.  The lifetime follows from Eq. (11.223) and Planck’s Equation (Eq. (2.148)).  The distance between the 
donor and acceptor, R , is given by the internuclear distance which is twice 'c  of Eq. (11.203), and the orientation factor,  , 
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equals one because of the spherical symmetry of the hydrino atoms.  Electronic transitions of hydrino atoms occur only by an 
initial nonradiative energy transfer, and the transition probability based on a physical collision approaches one in the limit.  
Thus, D , is set equal to one.  Ideally, in free space, the overlap integral between the frequency-dependent energy acceptor 

cross-section and the transferred energy of the donor (energy of 27.2 m eV  given by Eq. (5.24)) is also one.   
Consider the following disproportionate reaction where the additional energy release for the transition given by 1m  , 

' 2m   and 2p   in Eqs. (5.67-5.70) involving the absorption of an energy hole of 27.21 eV , 1m   in Eq. (5.24), is 13.6 eV . 

 2

2 3

Ha
H

H Ha a
H H

 
           

 (5.90) 

The transfer rate constant,  n R , for Eq. (5.90) using Eq. (5.86) is: 
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According to the adaptation of Förster’s theory [40], the efficiency E  of such nonradiative energy transfer given by the product 
of the transfer rate constant and the mean lifetime of the transition may be expressed by: 
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where r  is the distance between the donor and the acceptor, J  is the overlap integral between the frequency-dependent energy 
acceptor cross section and the transferred energy of the donor, and   is the dielectric constant.  In the case that the radius of Eq. 
(5.91) is a fraction of the Bohr radius, the efficiency of energy transfer may be high and approaches one in the limit. 

The reaction rate of oxygen with carbon and hydrocarbons is very low at room temperature; however, once the material 
is ignited, the oxidation reaction can be very fast.  This is due to the formation of free radicals that cause a chain reaction known 
as pyrolysis, which dominates the reaction rate.  The formation of hydrinos by a first catalyst such as He , Li , K , nH , or 

2H O  gives rise to subsequent disproportionation reactions to additional lower energy states.  Analogously, the latter reactions 

may dominate the power released if a substantial concentration of hydrinos may be maintained as shown in the Power Density of 
Gaseous Reactions section. 
 

INTERSTELLAR DISPROPORTIONATION RATE 
Disproportionation may be the predominant mechanism of hydrogen electronic transitions to lower energy levels of interstellar 
hydrogen and hydrinos.  The reaction rate is dependent on the collision rate between the reactants and the coupling factor for 
resonant energy transfer.  The collision rate can be calculated by determining the collision frequency.  The collision frequency, 
f , and the mean free path,  , for a gas containing un  spherical particles per unit volume, each with radius r  and velocity v  is 

given by Bueche [44]. 
 24 2 uf n r v  (5.93) 
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The average velocity, avgv , can be calculated from the temperature, T , [44]. 

 21 3

2 2H avgm v kT  (5.95) 

where k  is Boltzmann’s constant.  Substitution of Eq. (5.95) into Eq. (5.93) gives the collision rate, 
Ha

H
p

f  
 
 

, in terms of the 

temperature, T , the number of hydrogen or hydrino atoms per unit volume, Hn , and the radius of each hydrogen atom or 

hydrino, Ha

p
. 
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The rate constant of the disproportionation reaction, , ',m m pk , to the transition reaction, Eqs. (5.67-5.70), is given by the product of 

the collision rate per atom, Eq. (5.96), and the coupling factor for resonant energy transfer, , ',m m pg . 
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Using an upper limit of the coupling factor , ',m m pg  for resonant energy transfer consistent with the efficiencies of dipole-dipole 

resonant energy transfers [36-40], an estimate of the rate constant of the disproportionation reaction, , ',m m pk , to cause the 

transition reaction, Eqs. (5.67-5.70), is given by substitution of , ', 1m m pg   into Eq. (5.97). 
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The rate of the disproportionation reaction, , ',m m pr , to cause the transition reaction, Eqs. (5.67-5.70), is given by the product of 

the rate constant, , ',m m pk  given by Eq. (5.98), and the total number of hydrogen or hydrino atoms, HN . 
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The factor of one half in Eq. (5.99) corrects for double counting of collisions [45].  The power, , ',m m pP , is given by the product of 

the rate of the transition, Eq. (5.99), and the energy of the transition, Eq. (5.70). 
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where V  is the volume. 
 

POWER DENSITY OF GASEOUS REACTIONS 
The reaction of atomic hydrogen or hydrinos to lower-energy states releases energy intermediate that of typical chemical 
reactions and nuclear reactions.  However, in order to be consequential as a power source celestially in processes such as heating 
the corona of the Sun [9] or terrestrially as an alternative to conventional sources such as combustion or nuclear power, the rate 
of the reaction must be nontrivial.  A hydrino is formed by reaction of atomic hydrogen with a source of energy holes, and 
hydrinos may subsequently undergo transitions to successively lower states in reactions involving the initial source of energy 
holes or by disproportionation.  Once it starts, the latter process has the potential to be a predominant source of power depending 
on the maintenance of a substantial concentration of hydrinos in steady state.  The power contribution can be conservatively 
calculated considering only a single relative low-energy transition. 

The disproportionation reaction rate, , ',m m pr , Eqs. (5.67-5.70), is dependent on the collision rate between the reactants and 

the efficiency of resonant energy transfer.  It is given by the product of the rate constant, , ',m m pk ,(Eq. (5.98)), the total number of 

hydrogen or hydrino atoms, HN , and the efficiency, E , of the transfer of the energy from the donor hydrino atom to the energy 

hole provided by the acceptor hydrino atom given by Eq. (5.93).  Thus, the rate of the disproportionation reaction, , ',m m pr , to 

cause a transition reaction is 
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The factor of one half in Eq. (5.101) corrects for double counting of collisions [45].  The power, , ',m m pP , is given by the product 

of the rate of the transition, Eq. (5.101), and the energy of the disproportionation reaction (Eq. (5.70)). 
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where V  is the volume.  For a disproportionation reaction in the gas phase with D  and the overlap integral both equal to one, 

the energy transfer efficiency is one as given by Eq. (5.92).  The power given by substitution of 

 3 191,  2,  1,  ' 2,  1 ,  3  10 ,  675 E p m p V m N X T K         (5.103) 

into Eq. (5.102) is: 

 , ', 100 m m pP kW  (5.104) 

corresponding to 3100 /mW cm . 
Next, the power due to a reaction involving a catalyst such as an atom to form hydrinos is considered.  In the case that the 

reaction of hydrogen to lower-energy states occurs by the reaction of a catalytic source of energy holes with hydrogen or hydrino 
atoms, the reaction rate is dependent on the collision rate between the reactants and the efficiency of resonant energy transfer.  
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The hydrogen-or-hydrino-atom/catalyst-atom collision rate per unit volume, 
  Catalyst

aHH
p

Z  
 
  

, for a gas containing Hn  hydrogen or 

hydrino atoms per unit volume, each with radius Ha

p
 and velocity Hv  and Cn  catalyst atoms per unit volume, each with radius 

 Catalystr  and velocity Cv  is given by the general equation of Levine [45] for the collision rate per unit volume between atoms of 

two dissimilar gases. 
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The average velocity, avgv , can be calculated from the temperature, T , [46]. 

 21 3

2 2H avgm v kT  (5.106) 

where k  is Boltzmann’s constant.  Substitution of Eq. (5.106) into Eq. (5.105) gives the collision rate per unit volume, 
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, in terms of the temperature, T . 
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The rate of the catalytic reaction, ,m pr , to cause a transition reaction is given by the product of the collision rate per unit volume, 
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aHH
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, the volume, V , and the efficiency, E , of resonant energy transfer given by Eq. (5.92). 
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The power, ,m pP , is given by the product of the rate of the transition, Eq. (5.108), and the energy of the transition, Eq. (5.9). 
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In the exemplary case that the efficiency is 410E  , the power for the Li  catalyst reaction given by Eqs. (5.32-5.34) with the 
substitution of 
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into Eq. (5.109) is: 

 , 144  m pP kW  (5.111) 

corresponding to 3144 /mW cm . 
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HYDRINO CATALYZED FUSION (HCF) 
Fusion reaction rates are extraordinarily small [47].  In fact, fusion is virtually impossible in the laboratory.  A high relative 
kinetic energy corresponding to extraordinary temperatures of the participating nuclei must be sufficient to overcome their 
repulsive potential energy.  The recent NIF experimental results confirm that so called “ignition” requires 250,000,000°C and a 
deuterium-tritium density of ten times that of lead to achieve about 0.2% fusion power over that input to the NIF lasers.  In this 
case, the lasers consumed 500 trillion watts of power, 33 times the peak power of the entire world!1   

Cold fusion regarding hydrogen loading, excess hydrogen absorbed in a metal lattice, to force nuclei together is not 
possible since the Coulombic energy barrier is 0.1 MeV [47].  Whereas the vibrational energies within crystals are much less, 
about 0.01 eV.  Coulombic screening is also not plausible based on the known crystalline structure of metal hydrides.  Given the 
relationship between temperature and energy, 11,600 K/eV, the disparity in temperature in both cases is 1.16 X 107 versus 116 
K, a factor of one hundred thousand.   

Albeit, it is still high-energy physics involving colliders, muonic catalyzed fusion may propagate at a high rate at more 
conventional plasma temperatures.  Rather than directly using high temperature and density conditions, fusion occurs by a 
muonic catalyzed mechanism involving forming muons in a high-energy accelerator that transiently replace electrons in atoms 
and molecules (time scale of the muon half-life of 2.2 s).  In muon catalyzed fusion [48-49], the internuclear separation of 

muonic H
2
 is reduced by a factor of 207 that of electron H

2
 (the muon to electron mass ratio), and the fusion rate increases by 

about 80 orders of magnitude.  A few hundred fusion events can occur per muon (vanishingly small compared to Avogadro’s 

number of 6.022 X1023).  To be permissive of even this miniscule rate of fusion, the muonic molecules provide the same 
conditions as those at high energies.  Correspondingly, the vibrational energies regarding the movement of the nuclei towards 
each other in an oscillating linear manner can be very large in the muonic hydrogen case, E

vib
207 X  0.517 eV 107 eV  

wherein   is the vibrational quantum number.  During the close approach of the vibrational compression phase, the nuclei can 
assume an orientation that allows the mutual electric fields to induce multipoles in the quarks and gluons to trigger a transition to 
a fusion product.  The highest vibrational energy states such as the state   9 with E

vib
107 eV  9X107 eV  963 eV  are at 

the bond dissociation limit.  Given the extraordinary confinement time in a bound state, these muonic molecules have 
sufficiently large kinetic energy to overcome the Coulombic barrier for fusion of the heavy hydrogen isotopes of tritium with 
deuterium at just detectable rates.  

Fusion in the Sun occurs due to extreme gravitational compression and thermal temperatures that provide sufficient 
confinement time, enormous reactant densities, and incredible energies.  But even here, the Sun considered as a fusion machine 
of 301.412 X10  liter  outputting 263.846 10  X W  corresponds to a feeble 272 /W liter .  Fusion bombs (e.g. Tsar Bomba) 

require ignition by a fission bomb that produces power density on the order of   
15

12

-3 7

240 10  
  8.8 10  /

10  2.7 10  

X J
X W liter

s X liters
 , 

16 3.2 10X  times the average power density of the Sun.2   
Next, consider the feasibility of hydrino catalyzed fusion (HCF) based on a similar mechanism to that of muonic 

catalyzed fusion.  Once a deuterium or tritium hydrino atom is formed by a catalyst, further catalytic transitions 

n 
1

2


1

3
, 

1

3


1

4
,  

1

4


1

5
,  and so on may occur to a limited extent in competition with molecular hydrino formation that 

terminates this cascade.  The hydrino atom radius can be reduced to 1 p  that of the n 1 state atom.  Analogous to muonic 

catalyzed fusion, the internuclear separation in the corresponding hydrino molecules is 1 p  that of ordinary molecular hydrogen 
as given in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section (Eq. (11.204)).  As the 
internuclear separation decreases due to high p  states, fusion is more probable.  As p  becomes large, relativistic effects 
become appreciable for the energy transferred from a hydrino atom and accepted by the catalyst that provides the corresponding 
energy hole.  As in the nonrelativistic case, the energy transferred is the potential energy of the hydrogen-type atom H 1/ p   
that transitions to a lower energy state, divided by p2, the total number of multipole modes of the state according to Eq. (5.45).  
Due to similar relativistic effects in hydrino atoms of similar p  states, hydrino atoms may serve as the catalyst by 
disproportionation reactions such as ones given by Eqs. (5.62-5.80).  Disproportionation reactions may propagate or cascade to 
very low hydrino energy states of corresponding very high p  values.  The corresponding hydrino molecules have vastly shorter 

 
1 It is also remarkable that the NIF device cost $3.5B, and the fusion pellet cost $1M for a single shot that requires months to 
repeat.  The product was less than one cents worth of radioactive thermal as an explosive shock wave. 
2 Arc current detonation of hydrated silver shots and other conductive solid fuels comprising a source of hydrogen and a source 
of HOH catalyst yielded power densities comparable to those of nuclear weapons [50-54].  
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internuclear distances (Eq. (11.204)) such that finite rates of nuclear reactions may occur in the case of heavy hydrogen isotopes, 
deuterium and tritium.   

In the case that the electron spin-nuclear interaction is negligible, using Eq. (1.292), the relativistic potential energy of a 
hydrino atom H 1/ p   of a given state p  is 
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wherein the radius given by Eq. (1.289) is 

  20 1
a

r p
p

   (5.113) 

and Eqs. (28.8-28.9) were used.  Thus, the energy hole according to Eqs. (5.112), (5.5), and (5.45) is  

 m
 2m

e0
c2

1  p 2
 (5.114) 

which in the low-speed limit is 27.2 m eV  given by Eq. (5.5).  Using Eq. (1.294) and Eqs. (5.6-5.9), the energy released from a 
hydrino state p  during the transition involving an energy hole of quanta m  is given by the difference in ionization energies 
between the initial and final energy states wherein the final p

f
 state is p

f
 p  m: 

 E  m
e0

c2 1  p 2
 1  p  m  2





 (5.115) 

In the low-speed-limit the energy released is given by Eq. (5.9).  Note as given previously, p 137  is the highest value of p  

physically possible corresponding to a minimum radius of 0.022926a
0
 8.853X1015 m  8.853 fm, 8.9 times times the radius of 

a proton of 1 fm, and one thirtieth the radius of the muonic atom. 
The non-relativistic vibrational energies are given by Eq. (11.223) as E

vib
 p20.517 eV , and the relativistic atomic radii 

are given by Eq. (5.113).  A sufficiently high p  can provide vibrational energies and close approach of nuclei of corresponding 

molecules sufficient for fusion to ensue.  Considering the 2p  dependency of the vibrational energies of H2 1/ p , and excitation 

of highest vibrational energy state at the bond dissociation limit (e.g.   9), the state p 15 can achieve comparable vibrational 
energies as muonic molecules; yet, the 15p   hydrino atomic radius (Eq. (5.113) and corresponding molecular hydrino 
internuclear distance are about 14 times greater than those of the muonic species.  The p  state that achieves comparable 
dimensions to those of muonic atoms and molecules is 115p   (Eq. (5.113)) which has a corresponding nonrelativistic 
vibrational energy of 6840 eV.  Only the lowest energy vibrational state would likely be populated with the energy from bond 

formation p2 4.478eV  (Eq. 11.252)) since the temperature required to excite 7 keV vibrational modes is on the order of 108 K, 
compared to an ordinary plasma temperature of about 1000 K.  Considering that each muon catalyzes hundreds of fusion events, 
the cross section to populate the molecule hydrino vibration state is essential to match fusion rates comparable to muonic 
catalyzed fusion of tritium with deuterium since hydrino catalyzed fusion occurs as single events. 

Consider the limit of the highest p value for a hydrino state H 1/ p  .  Using Eq. (5.115), the energy for the cascade of 

two hydrogen atoms, each to the final state of H 1/137  results in an energy release of 61 10  X eV .  In comparison, the fusion 

equation for deuterium and tritium is 

    2 3 414.1 3.5H H n MeV He MeV    (5.116) 

Nuclear fusion (i) requires accelerator-produced, radioactive tritium, (ii) it is a highly radioactive dangerous process, and (iii) it 
requires a steam cycle involving massive scale and a water-body coolant source such as a river as well as an electrical 
distribution grid.  Production of chemical power as light and supersonic plasma flow enabling compact photovoltaic and 
magnetohydrodynamic conversion, respectively, that is devoid of any fuels or distribution infrastructure is much more practical 
and economically competitive as a commercial power technology.   

Fusion has other utility such as production of (i) neutrons (D + T and D + D fusion), and (ii) 3He , tritium, and high 
energy protons (D + D fusion) which have industrial applications.  In the case of extraordinarily high p states approaching p = 
137, bonding with inner shell electrons may result in fusion of heavier elements than hydrogen isotopes.  Energetic fusion 
products may also initiate subsequent nuclear reactions.  Using heavy hydrogen, trace production of tritium by HCF may be 
competitive with atomic accelerators and hot fusion reactors.  According to a study by Kovari [55], D-D tritium breeding might 
cost $2 billion per kilogram produced.  Tritium stockpiles are projected to be depleted near term wherein Savannah River’s 
tritium facilities are the United States' only source of tritium, an essential component in nuclear weapons. 
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Fusion requires a hydrino transition reaction cascade such as one propagated by disproportionation reactions to hydrino 
states of high p.  The cascade is favored by (i) massive kinetics, (ii) hydrino and plasma confinement, and (iii) increasing 
duration of the hydrino reaction.  One exemplary system to cause massive kinetics and hydrino and plasma confinement is 
detonation of hydrino reactant solid fuels under arc current conditions [50-54].  Hydrino confinement is achieved by using as a 
component of the hydrino reactant mixture at least one of (i) a solid material to absorb hydrino atoms such as a metal surface or 
bulk such as one that also absorbs H atoms (e.g. Ni, Ti, Pd, Pt, Nb, or Ta) [54], (ii) a magnetic material such as FeOOH or Fe2O3, 
that favors magnetic bonding of hydrinos [54], and (iii) an oxide such as a metal oxide such as GaOOH or Ga2O3 that binds 
hydrinos [56]. 
 

MOLECULAR BLACKLIGHT PROCESS 
BELOW “GROUND” STATE TRANSITIONS OF HYDROGEN-TYPE MOLECULES AND 
MOLECULAR IONS 
As is the case with the hydrogen atom, higher and lower molecular energy states are equally valid wherein the central field of 
molecular hydrogen ions and molecules can also be a reciprocal integer or an integer value of that of the ordinary states 
corresponding to molecular excited states and molecular hydrino states as given in the Diatomic Molecular Energy States section 
and the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section, respectively.  The photon 
changes the effective charge at the MO surface where the central field is ellipsoidal and arises from the protons at the foci and 
the “trapped photon” as effectively at the foci of the MO.  Force balance is achieved at a series of two-dimensional ellipsoidal 
equipotential surfaces.  The “trapped photons” are solutions of the Laplacian in ellipsoidal coordinates, Eq. (11.27).  Thus, each 
molecular state comprises two electrons, two protons, and a photon, but the excited states are radiative; whereas, the hydrino 
states are stable.  Excited and hydrino electronic states are created when photons of discrete frequencies are trapped in the 
ellipsoidal resonator cavity of the MO by resonant photon absorption and resonant nonradiative energy transfer, respectively. 
 

ENERGY HOLES 
From Eqs. (11.207) and (11.208), the magnitude of the elliptic field corresponding to a below “ground state” transition of the 
hydrogen molecule is an integer.  The potential energy equations of hydrogen-type molecules are: 
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where  
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and where p is an integer.  The quantum number p is a scaling parameter of the molecular dimensions and energies.  In the latter 
case it corresponds to the effective nuclear charge factor.  Using the convention defined in the Energy Hole Concept section, this 

factor effectiveZ is given by 1
neffectiveZ p   where the principal quantum number 1n p .  From energy conservation, the 

resonance energy hole of a hydrogen-type molecule which causes the transition 
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 (5.122) 

is  
 2

  48.6 mp X eV  (5.123) 
where m and p are integers.  During the transition, the elliptic field is increased from magnitude p to magnitude p + m.  The 
corresponding potential energy change equals the energy absorbed by the energy hole. 
 2

   48.6 e pEnergy hole V V mp X eV     (5.124) 

Further energy is released by the hydrogen-type molecule as the internuclear distance “shrinks.”  The total energy, TE , released 

during the transition is:  
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 (5.125) 

A schematic drawing of the total energy well of hydrogen-type molecules and molecular ions is given in Figure 5.4.  The 
exothermic reaction involving transitions from one potential energy level to a lower level is also hereafter referred to as the 
Molecular BlackLight Process. 

 
Figure 5.4.   The total energy well of hydrogen-type molecules and molecular ions. 
 

 
 

A hydrogen-type molecule with its electrons in a lower than “ground state” energy level corresponding to a fractional 
quantum number is hereafter referred to as a dihydrino molecule.  The designation for a dihydrino molecule of internuclear 

distance, 02
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p
 , where p  is an integer, is 0
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.  A schematic drawing of the size of hydrogen-type molecules 

as a function of total energy is given in Figure 5.5. 
 



Hydrino Theory—BlackLight Process 

 

243

Figure 5.5.   The size of hydrogen-type molecules as a function of total energy where 1n p  for dihydrino states, p  is an 

integer, and 2c’ is the internuclear distance. 
 

 
 
 

The magnitude of the elliptic field corresponding to the first below “ground state” transition of the hydrogen molecule is 
2  times the magnitude of a reference field defined by two elementary charges e  at a distance of 2 'c  from each other.  From 
energy conservation, the resonance energy hole of a hydrogen molecule, which excites the transition of the hydrogen molecule 

with internuclear distance 2 ' 2 oc a  to the first below “ground state” with internuclear distance 0

1
2 '

2
c a  is given by Eqs. 

(5.112-5.116) where the elliptic field is increased from magnitude one to magnitude two: 
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  48.6 e pEnergy hole V V eV     (5.128) 

In other words, the elliptic “ground state” field of the hydrogen molecule can be considered as the superposition of 
Fourier components.  The removal of negative Fourier components of energy  
   48.6 m X eV  (5.129) 
where m  is an integer, increases the positive electric field inside the ellipsoidal shell by m  times the charge of a proton at each 
focus.  The resultant electric field is a time harmonic solution of the Laplacian in ellipsoidal coordinates.  The corresponding 
potential energy change equals the energy absorbed by the energy hole. 
    48.6 e pEnergy hole V V m X eV     (5.130) 

Further energy is released by the hydrogen molecule as the internuclear distance “shrinks.”  The hydrogen molecule with 
internuclear distance 2 ' 2 oc a  is caused to undergo a transition to the below “ground state” level, and the internuclear distance 

for which force balance and nonradiation are achieved is 02
2 '

1

a
c

m



.  In decaying to this internuclear distance from the “ground 

state,” a total energy of:  
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is released. 
 

CATALYTIC ENERGY HOLES FOR HYDROGEN-TYPE MOLECULES 
An efficient catalytic system that hinges on the coupling of three resonator cavities involves iron and lithium.  For example, the 
fourth ionization energy of iron is 54.8 eV .  This energy hole is obviously too high for resonant absorption.  However, Li  
releases 5.392 eV  when it is reduced to Li .  The combination of 3Fe   to 4Fe   and Li  to Li , then, has a net energy change of 
49.4 eV . 
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 4 3 49.4 Li Fe Li Fe eV       (5.133) 
And, the overall reaction is: 
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Note that the energy given off as the molecule shrinks is much greater than the energy lost to the energy hole.  And, the energy 
released is large compared to conventional chemical reactions. 

An efficient catalytic system that hinges on the coupling of three resonator cavities involves scandium.  For example, the 
fourth ionization energy of scandium is 73.47 eV .  This energy hole is obviously too high for resonant absorption.  However, 

3Sc   releases 24.76 eV  when it is reduced to 2Sc  .  The combination of  3Sc   to 4Sc   and 3Sc   to 2Sc  , then, has a net energy 
change of 48.7 eV . 

 3 3 4 2 0
2 0 2

2
48.7 2 ' 2 2 ' 94.9 

2

a
eV Sc Sc H c a Sc Sc H c eV     

           
 

 (5.135) 

 2 4 3 3 48.7 Sc Sc Sc Sc eV        (5.136) 
And, the overall reaction is: 

 0
2 0 2

2
2 ' 2 2 ' 94.9 

2

a
H c a H c eV

 
      

 
 (5.137) 

An efficient catalytic system that hinges on the coupling of three resonator cavities involves gallium and lead.  For 
example, the fourth ionization energy of gallium is 64.00 eV .  This energy hole is obviously too high for resonant absorption.  
However, 2Pb   releases 15.03 eV  when it is reduced to Pb .  The combination of 3Ga   to 4Ga   and 2Pb   to Pb , then, has a 
net energy change of 48.97 eV . 

 3 2 4 0
2 0 2

2
48.97 2 ' 2 2 ' 94.9 

2

a
eV Ga Pb H c a Ga Pb H c eV     

           
 

 (5.138) 

 4 3 2 48.97 Ga Pb Ga Pb eV        (5.139) 
And, the overall reaction is: 

  0
2 0 2

2
2 ' 2 2 ' 94.9 

2

a
H c a H c eV

 
      

 
 (5.140) 

The rate of an electronic transition of a molecule is a function of the change in internuclear distance during the transition.  
Transitions between electronic states that have equivalent internuclear distances at some point during their vibrational cycles 
have much greater rates than transitions that require the energy level of the electrons to change as well as the internuclear 
distance to change simultaneously.  As shown in Figure 5.4, the transition from the 1n   state to the 1/ 2n   state of molecular 
hydrogen is not favored for this reason.  A more likely transition pathway is a vibrational excitation of molecular hydrogen 
( 1n  ) that breaks the bond, followed by a transition reaction of each of the hydrogen atoms via a 27.2 eV  energy hole catalyst 
as given in the Hydrino Theory—BlackLight Process section, followed by reaction of the two hydrino atoms ( 1/ 2n  ) to form a 
dihydrino molecule ( 1/ 2n  ). 
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Chapter 6 
  
STABILITY OF ATOMS AND HYDRINOS 
  
 
 
 
 
The central field of the proton corresponds to integer one charge.  Excited states comprise an electron with a trapped photon.  In 
all energy states of hydrogen, the photon has an electric field that superposes with the field of the proton.  In the 1n   state, the 
sum is one, and the sum is zero in the ionized state.  In an excited state, the sum is a fraction of one (i.e. between zero and one).  
Derivations from first principles given in the Excited States of the One-Electron Atom section demonstrate that each “allowed” 

fraction corresponding to an excited state is 
1

integer
.  Following the derivation given in the Excited States of the One-Electron 

Atom (Quantization) section, the relationship between the electric field equation and the “trapped photon” source charge-density 
function is given by Maxwell’s equation in two-dimensions. 

  1 2
0




  n E E  (6.1) 

where n  is the radial normal unit vector, 1 0E  ( 1E  is the electric field outside of the atomic orbital), 2E  is given by the total 

electric field at n Hr na , and   is the surface charge-density.  The electric field of an excited state is fractional; therefore, the 

source charge function is fractional.  It is well known that fractional charge is not “allowed.”  The reason given in the Instability 
of Excited States section is that fractional charge typically corresponds to a radiative current-density function.  The excited states 
of the hydrogen atom are examples.  They are radiative; consequently, they are not stable.  Thus, an excited electron decays to 
the first nonradiative state corresponding to an integer field, 1n   (i.e. a field of integer one times the central field of the proton).  
Specifically, the superposition of  photon  (Eq. (2.23)) and electron  (Eq. (2.24)) is equivalent to the sum of a radial electric dipole 

represented by a doublet function and a radial electric monopole represented by a delta function given in Eq. (2.25).  Due to the 

radial doublet, excited states are radiative since spacetime harmonics of n k
c


  or 

0

n k
c

 


  do exist for which the spacetime 

Fourier transform of the current density function is nonzero.  
Equally valid from first principles are electronic states where the magnitude of the sum of the electric field of the photon 

and the proton central field are an integer greater than one times the central field of the proton.  These states are nonradiative.  A 
catalyst can effect a transition between these states as described in the Hydrino Theory—BlackLight Process section. 

The condition for radiation by a moving charge is derived from Maxwell’s equations.  To radiate, the spacetime Fourier 
transform of the current-density function must possess components synchronous with waves traveling at the speed of light [1].  
Alternatively,  

For non-radiative states, the current-density function must not possess spacetime Fourier components that are 
synchronous with waves traveling at the speed of light. 

As given in the One-Electron Atom section, the relationship between the radius and the wavelength of the electron is: 
 n n nv f  (6.2) 

 2n n n n nv r f f    (6.3) 

 2 n nr   (6.4) 

Consider the wave vector of the sinc function of Eq. (38) of Appendix I, the Spacetime Fourier Transform of the Electron 
Function.  When the velocity is c  corresponding to a potentially emitted photon 
 n n n n   s v s c  (6.5) 

the relativistically corrected wavelength (Eq. (1.280)) is given by: 
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 n nr   (6.6) 

Substitution of Eq. (6.6) into the sinc function results in the vanishing of the entire Fourier transform of the current-density 

function.  Thus, spacetime harmonics of n k
c


  or 

0

n k
c

 


  do not exist for which the Fourier transform of the current-

density function is nonzero. 
In the case of below “ground” (fractional quantum number) energy states, the sum of the source current corresponding to 

the photon and the electron current results in a radial Dirac delta function as shown in the Stability of Atoms and Hydrinos 
section.  Whereas, in the case of above “ground” or excited (integer quantum number) energy states, the sum of the source 
current corresponding to the photon and the electron current results in a radial doublet function which has Fourier components of 

n k
c


 .  Thus, excited states are radiative as shown in the Instability of Excited States section. 

 

STABILITY OF “GROUND” AND HYDRINO STATES 
For the below “ground” (fractional quantum number) energy states of the hydrogen atom,  photon , the two-dimensional surface 

charge due to the “trapped photon” at the electron atomic orbital, is given by Eqs. (5.27) and (2.11). 
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nim tm
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n

e
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And,  electron , the two-dimensional surface charge of the electron atomic orbital is: 
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, Re , ( )
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nim tm
electron n

n

e
Y Y e r r

r
 (6.8) 

The superposition of  photon  (Eq. (6.7)) and electron , (Eq. (6.8)) where the spherical harmonic functions satisfy the conditions 

given in the Bound Electron “Atomic Orbital”section is a radial electric monopole represented by a delta function. 

     0
02

1 1
, 1 Re , ( )

4 ( )
      


           


nim tm

photon electron n
n

e
Y Y e r r

r n n
  

1 1 1
1, , , ,...

2 3 4
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In the case of lower-energy states or hydrino states, the superposition given by Eq. (6.9) involves integer charge only.  Whereas, 
in the case of excited states, the superposition given by Eq. (2.25) involves the sum of a delta function with a fractional charge 
(radial monopole term) and two delta functions of charge plus one and minus one which is a doublet function (radial dipole 
term).  As given in the Spacetime Fourier Transform of the Electron Function section, the radial delta function does not possess 
spacetime Fourier components synchronous with waves traveling at the speed of light.  Thus, the below “ground” (fractional 
quantum number) energy states of the hydrogen atom are stable.  The “ground” ( 1n   quantum number) energy state is just the 
first of the nonradiative states of the hydrogen atom; thus, it is the state to which excited states decay based on the nature of 
photon and corresponding electron source current of excited as opposed to the hydrino states as given in the Excited States of the 
One-Electron Atom (Quantization) section and Hydrino Theory—BlackLight Process section, respectively.  The stability is also 
shown using the Poynting power theorem applied to the electric and magnetic fields from the electron source current as shown in 
Appendix I. 
 

NEW “GROUND” STATE 
Hydrogen atoms can undergo transitions to energy states below the 1n   state until the potential energy of the proton is 
converted to kinetic energy and total energy (the negative of the binding energy), and a state is formed, which is stable to both 
radiation and nonradiative energy transfer.  The potential energy V  of the electron and the proton separated by the radial 
distance radius 1r  is: 

 
2

0 14

e
V

r


  (6.10) 

where the radius 1r  is the proton radius given by Eq. (29.1) 

 15
 1.3  10pr X m  (6.11) 

Substitution of Eq. (6.11) into Eq. (6.10) gives the total potential energy V  of the electron and the proton 
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e
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   (6.12) 

In the present case of an inverse squared central field, the binding energy and the kinetic energy are each equal to one half the 
potential energy [2] in the electron frame, and the lab-frame relativistic correction is given by correcting the radius as given in 
the Special Relativistic Correction to the Ionization Energies section.  The relativistic invariance of the magnetic moment B  

and angular momentum   of the electron may be used to characterize the limiting v c  case as shown in the One-Electron 
Atom—Determination of Atomic Orbital Radii section.  Considering the consequences of special relativity, the size of a 
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hydrogen atom in the true ground state is limited not to be less than  , the electron Compton wavelength bar, 

 ' '
0

e

r a
m c

  
  (6.13) 
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  (6.14) 

since the tangential electron velocity (Eq. (1.35)) is the speed of light at this radius.  Eq. (1.35) and Eq. (1.254) gives the 
relationship between the electron speed and the speed of light, which gives the limit on the quantum state p  as: 

 1, 2,3...
v

pZ p
c

   (6.15) 

With 1Z  , 137p   due to the limiting speed of light.  In Eq. (6.13) '  is the radius in the electron frame, and   in Eq. (6.14) 
is the radius in the laboratory frame according to Eq. (1.280).  From Eq. (6.14), the proton radius given by Eq. (6.11) cannot be 
reached.  As given previously in the Hydrino Catalyzed Fusion (HCF) section, 137p   is the highest value of p  physically 

possible corresponding to a minimum radius of 0.022926a
0
 8.853X1015 m  8.853 fm, 8.9 times the radius of a proton of 1 

fm, and one thirtieth the radius of the muonic atom. 
As shown in the Spacetime Fourier Transform of the Electron Function section and the Special Relativistic Correction to 

the Ionization Energies section, there can be no radiation from the electron at light speed in the laboratory inertial frame.  
Nonradiative energy transfer is also forbidden since this requires the impossible formation of a photon standing wave at light 

speed relative to the electron at light speed.  Electronic transitions below the 
1

Ha
H



 
  

 state are not possible since no energy 

transfer mechanism is possible.   
However, for this electronic state, it may be possible for the proton to decay to gamma rays with the capture of the 

electron.  With electron capture, the electron atomic orbital superimposes that of the proton, and a neutral particle is formed that 
is energy deficient with respect to the neutron.  To conserve spin, electron capture requires the concurrent capture of an electron 
antineutrino with decay to a photon and an electron neutrino as given in the Gravity section.  Disproportionation reactions to the 
lowest-energy states of hydrogen followed by electron capture with gamma ray emission may be a source of nonthermal  -ray 

bursts from interstellar regions [3].  A branch of the decay path may also be similar to that of the 0  meson.  Gamma and pair 
production decay would result in characteristic 511 keV annihilation energy emission.  This emission has been recently been 
identified with dark matter [4-5].  Alternatively, the diffuse 511 keV radiation by interstellar medium is consistent with the role 
of hydrino as dark matter in pair production from incident cosmic radiation [6-8]. 

Hydrinos present in neutron stars may facilitate HCF.  This may be the mechanism of gamma emission by neutron stars.  
With sufficient energy/mass release, a chain reaction of neutron decay to release electron antineutrinos, which react with 
hydrinos according to Eq. (24.173) may be the cause of  -ray bursts.  Another more likely mechanism based on a particle of the 
Planck Mass is given in the Gravity section. 

 

SPIN-NUCLEAR AND ORBITAL-NUCLEAR COUPLING OF HYDRINOS 
The “trapped photon” given by Eq. (5.27) is a “standing electromagnetic wave” which actually is a circulating wave that 
propagates along each great circle current loop of the atomic orbital.  The time-function factor, ( )k t , for the “standing wave” is 
identical to the time-function factor of the atomic orbital in order to satisfy the boundary (phase) condition at the atomic orbital 
surface.  Thus, the angular frequency of the “trapped photon” has to be identical to the angular frequency of the electron atomic 
orbital, n .  Furthermore, the phase condition requires that the angular functions of the “trapped photon” have to be identical to 

the spherical harmonic angular functions of the electron atomic orbital. 
Photons obey Maxwell’s equations.  At the two-dimensional surface of the atomic orbital containing a “trapped photon,” 

the relationship between the photon’s electric field and its two-dimensional charge density at the atomic orbital is: 

  1 2
0




  n E E  (6.16) 

Thus, the photon’s electric field acts as surface charge.  According to Eq. (6.16), the “photon standing wave” in the electron 
atomic orbital resonator cavity gives rise to a two-dimensional surface charge at the atomic orbital two dimensional surface.  The 
surface charge is given by Eq. (6.16) for a central field strength equal in magnitude to that of a central charge pe .  This surface 
charge possesses the same angular velocity as the atomic orbital; thus, it is a current with a corresponding magnetic field.  The 
rotational parameters of the surface current of the “photon standing wave” are given in the Rotational Parameters of the Electron 
(Angular Momentum, Rotational Energy, Moment of Inertia) section.  The solution to Legendre’s equation given by Eq. (1.66) is 
the maximum term of a series of solutions corresponding to the m  and   values [9-10].  From Eq. (1.72), L , the amplitude of 
the orbital angular momentum along the z-axis is 

 
1

 
 zL i



 (6.17) 
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Therefore, from Eq. (2.65), the corresponding magnetic moment is: 

 
2 1 1B

e

e

m
    

 z zi i
  

 
 (6.18) 

where B  is the Bohr magneton.  The magnetic moment gives rise to a magnetic field at the nucleus, which superimposes that 

due to spin.  Thus, from Eqs. (2.215) and (6.18), the central force after the derivations in the Spin-Nuclear Coupling (Hyperfine 
Structure) section is:  

 0
3

3 1
 

4 2 1mag Pe c
r

 
 

     
F


  (6.19) 

where the plus corresponds to antiparallel alignment of the magnetic moments of the electron and proton, and the minus 
corresponds to parallel alignment.  The outward centrifugal force (Eq. (1.241)) on the electron is balanced by the electric force 
(Eq. (1.242)) and the magnetic force given by Eq. (6.19) 
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where the central field of the hydrino atom has a magnitude that is equivalent to p  times that of the “ground” state ( 1n p  ) 

hydrogen atom and Pm  is the mass of the proton.  Using Eq. (1.35), 
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where Ha  is the radius of the hydrogen atom and the plus corresponds to parallel alignment of the magnetic moments of the 

electron and proton, and the minus corresponds to antiparallel alignment. 
 

ENERGY CALCULATIONS 
The magnetic energy magdipoleE  to flip the orientation of the proton’s magnetic moment, P , from parallel to antiparallel to the 

direction of the magnetic flux sB  due to electron spin and the magnetic flux oB  due to the orbital angular momentum of the 

electron (180° rotation of the magnet moment vector) given by Eqs. (1.168), (2.222), (2.210), and (6.18) is: 

 0
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 (6.23) 

where the Bohr magneton, B , is given by Eq. (1.131), the radius of the hydrino atom is Ha

p
, and the central field of the hydrino 

atom has a magnitude that is equivalent to p  times that of the “ground” state ( 1n p  ) hydrogen atom. 
The change in the electric energy of the electron due to the slight shift of the radius of the electron due to spin-nuclear 

and orbital-nuclear interactions is given by the difference between the electric energies associated with the two possible 
orientations of the magnetic moment of the electron with respect to the magnetic moment of the proton, parallel versus 
antiparallel.  The electric energy is given by the substitution of the corresponding radius given by Eq. (6.22) into Eq. (1.264) 
where Z p .  The change in electric energy for the flip from antiparallel to parallel alignment, /  /S N O N

eleE , is:  
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In addition, the interaction of the magnetic moments of the electron and proton increases the magnetic energy of the 
electron given by Eq. (2.224).  The change in the magnetic energy of the electron /  /S N O N

magE  due to the slight shift of the radius 

of the electron due to spin-nuclear and orbital-nuclear interactions is: 
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 (6.25) 
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The orbital rotational energy arises from a spin function (spin angular momentum) modulated by a spherical harmonic angular 
function (orbital angular momentum).  The amplitude of the orbital rotational energy   orbitalrotationalE  is: 

 
2

  22 1rotational orbital
e n

E
m r

    
 


 (6.26) 

However, the time-averaged mechanical angular momentum and rotational energy associated with the traveling charge-density 
wave on the atomic orbital is zero: 
  0z orbitalL   (6.27) 

    0rotational orbitalE   (6.28) 

Thus, a term corresponding to Eq. (6.26) was not added to Eq. (6.25).  Only the coupling of the dynamic angular momentum to 
the radiative reaction need be considered as given in Eqs. (6.19) and (6.23). 

The total energy of the transition from antiparallel to parallel alignment due to spin-nuclear and orbital-nuclear 
interactions, /  /S N O N

totalE , is given as the sum of Eqs. (6.23-6.25): 

 /  / /  / /  /S N O N S N O N S N O N
total magdipole ele magE E E E        (6.29) 
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 (6.30) 

For the case that 0 , the hydrino hyperfine structure radius and energy /S N
totalE  given by Eqs. (2.221) and (2.225) respectively, 

are the same as those of ordinary hydrogen with 1p   in Eqs. (6.22) and (6.31): 
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 (6.31) 

The frequency, f , can be determined from the energy using the Planck relationship, Eq. (2.148). 

 
S/N O/N
totalE

f
h


  (6.32) 

From Eqs. (6.22), (6.30), (6.31), and the Planck relationship, Eq. (2.148), the energy, the wavelength, and the frequency 
corresponding to the spin-nuclear and orbital-nuclear coupling energy of the hydrino atom with the lower energy state quantum 

numbers p  and   and with the radius Ha

p
 are given in Table 6.1. 

 
Table 6.1.   The spin-nuclear and orbital-nuclear coupling energies of the hydrino atom with the lower energy state quantum 

numbers p  and   and with the radius Ha

p
. 

 

p    Energy 

( 23  10J X ) 

Wavelength  
( cm ) 

Wave Number  

( 1cm ) 

Frequency  
( GHz ) 

1 0 0.094117 21.106 0.047380 1.4204 
2 0 2.2736 0.87369 1.1446 34.314 
2 1 5.4890 0.36189 2.7633 82.840 
3 0 12.806 0.15512 6.4466 193.27 
3 1 30.916 0.064253 15.564 466.58 
3 2 33.718 0.058914 16.974 508.87 
4 0 42.520 0.046718 21.405 641.71 
4 1 102.65 0.019351 51.677 1549.2 
4 2 111.96 0.017743 56.360 1689.6 
4 3 116.17 0.017100 58.480 1753.2 
5 0 106.81 0.018598 53.769 1611.9 
5 1 257.86 0.0077036 129.81 3891.6 
5 2 281.23 0.0070635 141.57 4244.2 
5 3 291.81 0.0068074 146.90 4403.9 
5 4 297.87 0.0066688 149.95 4495.5 
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A COEFFICIENT 
An estimate of the transition probability for magnetic multipoles is given by Eq. (16.105) of Jackson [11].  For a magnetic dipole 

1 , and Eq. (16.105) of Jackson is: 
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 (6.33) 

where M  is the mean life of the magnetic multipole.  Substitution of: 

 k
c


  (6.34) 

into Eq. (6.33) gives 
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 (6.35) 

From Eq. (6.35), the transition probability is proportional to the frequency cubed.  The experimental A coefficient for hydrogen 
 1H n   [12] is 

 15 1
 2.87  10 secA X    (6.36) 

The frequencies for the spin/nuclear hyperfine transition of hydrogen  1H n   and hydrino  1/ 2H n   are given in Table 6.1.  

The A coefficient for hydrino  1/ 2H n   is given by Eq. (6.35) and Eq. (6.36) and the frequencies of Table 6.1. 
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INTENSITY OF SPIN-NUCLEAR AND ORBITAL-NUCLEAR COUPLING 
TRANSITIONS OF HYDRINOS 
The intensity, I , of spin-nuclear and orbital-nuclear coupling transitions of hydrinos can be calculated from the column density 
of hydrino atoms, ( )N H , and the A coefficient, ulA .  The column density is given by the product of the number of hydrino 

atoms per unit volume, Hn , and the path length,  , which is calculated in steradians from its integral.  

 
1 1

( )
4 4ul ul HI A N H A n
 

    (6.38) 

wherein ulA  is given by Eq. (6.37).  The number of hydrino atoms per unit volume, Hn , can be estimated from the experimental 

results of the integrated continuum emission for a selected transition from a celestial source.  The number of electronic 
transitions per atom per second, 1k  (Eq. (5.105)), estimated to be equivalent to the number of photons per atom per second ( ulA  

(Eq. (6.38)) for the hydrino transition).  Equating intensities of integrated photon flux (Eq. (6.38)) and the rate of the 
disproportionation reaction, , ',m m pr  Eq. (5.106), gives: 
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 (6.39) 

where ( ) HN H n   is the column density and , 1m pg   (the result is equivalent to Förster’s theory for the efficiencies of dipole-

dipole resonant energy transfers).  ( )N H , the column density of hydrino atoms, Ha
H

p
 
 
 

, can be calculated along the selected 

sight-line and substituted into Eq. (6.38) to give the intensity of the spin-nuclear and orbital-nuclear coupling transitions of 
hydrinos as a function of the path length,  , which is calculated in steradians from its integral. 
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Chapter 7 
  
TWO-ELECTRON ATOMS 
  
 
 
 
 
As is the case for one-electron atoms shown in the corresponding section, two-electron atoms can also be solved exactly.  Two-
electron atoms comprise two indistinguishable electrons bound to a nucleus of Z .  Each electron experiences a centrifugal 
force, and the balancing centripetal force (on each electron) is produced by the electric force between the electron and the 
nucleus and the magnetic force between the two electrons causing the electrons to pair.  
 
DETERMINATION OF ATOMIC ORBITAL RADII 
As shown in the One-Electron Atom section, bound electrons are described by a charge-density (mass-density) function, which 
is the product of a radial delta function ( ( ) ( )nf r r r  ), two angular functions (spherical harmonic functions), and a time 

harmonic function.  Thus, an electron is a two-dimensional spherical current-density surface that can exist in a bound state at 
only specified distances from the nucleus.  More explicitly, the uniform current-density function 0

0 ( , )Y    (Eqs. (1.27-1.29)) 

called the electron atomic orbital (shown in Figure 1.22) that gives rise to the spin of the electron is generated from two current-
vector fields (CVFs).  Each CVF comprises a continuum of correlated orthogonal great circle current-density elements (one 
dimensional "current loops").  The current pattern comprising each CVF is generated over a half-sphere surface by a set of 

rotations of two orthogonal great circle current loops that serve as basis elements about each of the  , ,0 x y zi i i  and 

1 1
, ,

2 2

  
 

x y zi i i -axis; the span being   radians.  Then, the two CVFs are convoluted, and the result is normalized to exactly 

generate the continuous uniform electron current density function 0
0 ( , ) Y  covering a spherical shell and having the three 

angular momentum components of /
4xy   L


 and 
2




zL  (Figure 1.23)1.   

Each one-electron atomic orbital is a static two-dimensional spherical shell of moving negative charge 
( total charge e  ) of zero thickness at a distance nr  from the nucleus ( charge Ze  ).  It is well known that the field of a 

spherical shell of charge is zero inside the shell and that of a point charge at the origin outside the shell [1] (See Figure 1.32).  
Thus, for a nucleus of charge Z , the force balance equation for the electron atomic orbital is obtained by equating the forces on 
the mass and charge densities.  The centrifugal force of each electron is given by2   

 
2

24
e n

centrifugal
n n

m

r r


v
F  (7.1) 

where nr  is the radius of electron n  which has velocity nv .  In order to be nonradiative, the velocity for every point on the 

atomic orbital is given by Eq. (1.35). 

 n
e nm r

v
  (7.2) 

Helium can be formed by the binding of two electrons simultaneously to 2He  .  It can also be formed by the binding of 
an electron to He .  The same boundary condition, that helium has no spin, applies in both cases.  The forces must be consistent 
with the binding of both electrons at the same radius such that their currents corresponding to spin are identical mirror images 

 
1 /   designates both the positive and negative vector directions along an axis in the xy-plane. 
2 In this section,   n  1 or  2  for electron one and electron two, respectively, not to be confused with the previous use of  n  as the principal quantum 
number. 
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and consequently identically cancel.  This implies that the forces at balance are equivalent for the two electrons.  As an approach 

to the helium solution using these constraints, now consider electron 1 initially at 0
1

a
r r

Z
   (the radius of the one-electron atom 

of charge Z  given in the One-Electron Atom section where 
2

0
0 2

4

e

a
e m





 and the spin-nuclear interaction corresponding to the 

electron reduced mass (Eq. (1.255)) is not used here since the electrons have no field at the nucleus upon pairing) and electron 2 

initially at nr   .  Each electron can be treated as e  charge at the nucleus with 
2

04

e

r


E  for nr r  and 0E  for nr r  

where nr  is the radius of the electron atomic orbital.  The centripetal force is the electric force, eleF , between the electron and the 

nucleus.  Thus, the electric force between electron 2 and the nucleus is: 

 
2

(  2) 2
0 2

( 1)

4ele electron

Z e

r


F  (7.3) 

where 0  is the permittivity of free-space.  The second centripetal force, magF , on the electron 2 (initially at infinity) from 

electron 1 (at 1r ) is the magnetic force.  Each infinitesimal point (mass or charge-density element) of each atomic orbital moves 

on a great circle, and each point has the charge density 
24 n

e

r
.  Due to the relative motion of the charge-density elements of each 

electron, a radiation reaction force arises between the two electrons.  This force given in Sections 6.6, 12.10, and 17.3 of Jackson 
[2] achieves the condition that the sum of the mechanical momentum and electromagnetic momentum is conserved3.  The 
magnetic central force is derived from the Lorentz force that is relativistically corrected. 

The magnetic force is derived by first determining the interaction of the two electrons due to the field of the outer 
electron 2 acting on the magnetic moments of electron 1 and vice versa.  Insight to the behavior is given by considering the 
physics of a single bound electron in an externally applied uniform magnetic field.  As shown in the Resonant Precession of the 
Spin-1/2-Current-Density Function Gives Rise to the Bohr Magneton section, the angular momentum of the atomic orbital in the 

magnetic field of an external applied field zBi  comprises the static 
2


 projection on the z-axis (Eq. (1.128)) and the 

4


 vector 

component in the xy-plane (Eq. (1.127)) that precesses about the z-axis at the Larmor frequency, L .  A resonant excitation of 

the Larmor precession frequency gives rise to a trapped photon with   of angular momentum along the precessing S -axis.  As 
shown in Box 1.1, the photon standing wave is phase-matched to a spherical harmonic source current, a spherical harmonic 
dipole  , sinmY     with respect to the S -axis.  The dipole spins about the S -axis at the angular velocity given by Eq. 

(1.36).   
In the coordinate system rotating at the Larmor frequency (denoted by the axes labeled RX , RY , and RZ  in Figure 7.1), 

the RX -component of magnitude 
4


 and S  of magnitude   are stationary.  The 

4


 angular momentum along RX  with a 

corresponding magnetic moment of 
4

B  (Eq. (28) of Box 1.1) causes S  to rotate in the RY RZ -plane to an angle of 
3

   such 

that the torques due to the RZ -component of 
2


 and the orthogonal RX -component of 

4


 are balanced.  Then the RZ -component 

due to S  is cos
3 2


  

 , and the RY -component of S  is 
3

sin
3 4


    . 

 

 
3 The angular momentum of the two electrons cancels with pairing, and the conserved angular momentum is carried with the   of angular momentum of 
the photon corresponding to the radiation reaction force and energy.  The energy of the Coulombic field is also conserved with the emission of photons of 
quantized energy wherein the radial acceleration during binding gives rise to the radiation as given in the Excited States of the One-Electron Atom 
(Quantization) section.  
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Figure 7.1.   The angular momentum components of the atomic orbital and S  in the rotating coordinate system RX , RY , and 

RZ  that precesses at the Larmor frequency about RZ  such that the vectors are stationary. 
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As shown in Figure 7.2, S  forms a cone in time in the nonrotating laboratory frame with an angular momentum of   that 
is the source of the known magnetic moment of a Bohr magneton (Eq. (2.65)) as shown in the Magnetic Parameters of the 

Electron (Bohr Magneton) section.  The projection of this angular momentum onto the z-axis of 
2


 adds to the z-axis component 

before the magnetic field was applied to give a total of  .  Thus, in the absence of a resonant precession, the z-component of the 

angular momentum is 
2


, but the excitation of the precessing S  component gives —twice the angular momentum on the z-

axis. 
 

Figure 7.2.   The angular momentum components of the atomic orbital and S  in the stationary coordinate system.  S  and the 
components in the xy-plane precess at the Larmor frequency about the z-axis.   
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In summary, since the vector S  that precesses about the z-axis at an angle of 
3

   and an angle of 
2

   with respect 

to xyL  given by Eq. (1.127) and has a magnitude of  , the S  projections in the RX RY -plane and along the RZ -axis (Eqs. (1.129-

1.130)) are 
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3

sin  
3 4 RY


   S i   (7.4) 

 || cos  
3 2 RZ


   S i

  (7.5) 

The plus or minus sign of Eqs. (7.4) and (7.5) corresponds to the two possible vector orientations. 
Consider the case that the external field is due to electron 2 on the moments of electron 1 and vice versa.  In the limit, the 

magnetic moments of electrons 1 and 2 will cancel as they spin pair to form an energy minimum.  In this case, the radii will be 
equal (i.e. 1 2r r ).  Cases other than the bound case correspond to excited states, which are solved for helium in the Excited 

States of Helium section.  These states correspond to the atom having trapped photons.  The central magnetic force to determine 
the bound state with 1 2r r  is derived by first determining the magnetic moments and fields of the interacting electrons from the 

corresponding angular momenta due to the trapped photons.   
Unlike the external-applied-field case, each of the two interacting electrons have two orthogonal components of angular 

momentum.  Each has 
2


 along the principal-axis (Eq. (1.128)) and 

4


 along an axis in the transverse-plane (Eq. (1.127)).  For 

each electron, torque balance is also achieved when a photon standing wave is phase-matched to a spherical harmonic source 
current, a spherical harmonic dipole  , sinmY     with respect to the S -axis.  The dipole spins about the S -axis at the 

angular velocity given by Eq. (1.36) as in the external-applied-field case, but the orientations are as shown in Figures 7.3A and 
7.3B rather than that shown in Figures 7.1 and 7.2.   

In the stationary coordinate system of electron 2 (denoted by the axes labeled X , Y , and Z  in Figure 7.3A), the 
4


 of 

intrinsic angular momentum is along X , the 
2


 of intrinsic angular momentum is along Y , and the photon angular momentum 

vector 2S  of magnitude   is in the XZ -plane at an angle of 
6

   relative to the Z -axis.  The Z -axis projection of 2S  is 

3

4
 , and the X -axis projection of 2S  is 

2



. 

In the stationary coordinate system of electron 1 (denoted by the axes labeled 'X , 'Y , and 'Z  in Figure 7.3B), the 
4


 of 

intrinsic angular momentum is along 'X , the 
2


 of intrinsic angular momentum is along 'Y , and the photon angular momentum 

vector 1S  of magnitude   is in the ' 'Y Z -plane at an angle of 
3

   relative to the 'Y -axis.  The 'Z -axis projection of 1S  is 

3

4
 , and the 'Y -axis projection of 1S  is 

2


. 

The torques from the corresponding magnetic moments given by Eq. (2.65) are balanced in the absence of Larmor 
precession for the angular momentum projections of electron 2 shown in Figure 7.3A relative to those of electron 1 shown in 

Figure 7.3B.  The photonic 
2




X -axis projection of 2S  with a corresponding magnetic moment of 
2

B  cancels the 

superposition of the 
4


 of intrinsic angular momentum of electrons 1 and 2 along 'X  and X , respectively, each with a 

corresponding magnetic moment of 
4

B  (Eq. (2.65)).  The 
2


 of intrinsic angular momentum of electron 2 along Y  gives rise to 

a magnetic field corresponding to 
2

B  in the direction of the 
3

4
  'Z -axis projection of 1S  of electron 1.  The 

2


 of intrinsic 

angular momentum of electron 1 along 'Y  and the 'Y -axis projection of 1S  of 
2


 gives rise to a magnetic field corresponding to 

B  in the direction of the 
3

4
  Z -axis projection of 2S  of electron 2. 

 



Two-Electron Atoms 259

Figure 7.3.   The relative angular momentum components of electron 1 and electron 2 to determine the magnetic interactions 
and the central magnetic force.  (A) The atomic orbital and 

2
S  of electron 2 in the stationary coordinate system X,Y,Z that is 

designated the unprimed spherical coordinate system relative to the Z-axis as shown.  The photon angular momentum vector 
2

S  

of magnitude   is in the XZ-plane at an angle of 
6


   relative to the Z-axis.  (B) The angular momentum components of the 

atomic orbital and 
1

S  of electron 1 in the stationary coordinate system X',Y',Z' that is designated the primed spherical coordinate 

system relative to the Z'-axis as shown.  The photon angular momentum vector 
1

S  of magnitude   is in the Y'Z'-plane at an angle 

of 
3


   relative to the Y'-axis. 
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When the electrons pair, the photon is emitted as the corresponding excited state decays and the orientation of the 
magnetic moments of electron 1 relative to those of electron 2 rotate as shown in Figure 7.4 compared to Figures 7.3A and 7.3B.  
In the paired orientation, the angular momenta and the corresponding magnetic fields identically cancel. 
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Figure 7.4.   The angular momentum components of the superimposed atomic orbitals of electron 1 and 2 in the stationary 
coordinate system X,Y,Z when binding occurs and the magnetic moments cancel. 
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The magnetic central force is due to the interaction of the magnetic field of the electron 2 and the current dipole of the 

photon at the radius of electron 1 and vice versa.  Considering the angular momentum vectors given in Figures 7.3A and 7.3B, 

the magnetostatic magnetic flux of electron 2 and electron 1 corresponding to 
2

B  and B , respectively, follow from Eqs. 

(1.132) and (1.133) and after McQuarrie [3]: 
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e
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  (7.7) 

where 0  is the permeability of free-space ( 7 2
 4   10 /X N A  ) and the coordinates of the magnetic field due to electron 2 acting 

on the magnetic moments of electron 1 is designated as the primed system and the magnetic field of electron 1 acting on the 
magnetic moments of electron 2 is designated as the unprimed system.  It follows from Eq. (1.131), the relationship for the Bohr 
magneton, and relationship between the magnetic dipole field and the magnetic moment m  [4] that Eqs. (1.132) and (1.137) are 

the equations for the magnetic field due to a magnetic moment of one half a Bohr magneton, 
2

B zm i  and one Bohr magneton, 

B zm i , respectively, where cos sin  z ri i i .  In each case, the spherical harmonic dipole  , sinmY     spins about 

the S-axis at the angular velocity given by Eq. (1.36).  Thus, angular velocity ̂  and linear velocity v  projections onto each 
( ')Z Z -axis are: 

 , '2
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3
ˆ

4 Z Z
em r
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 (7.8) 

 , '
1

3
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 (7.9) 

The Lorentz force density at each point moving at velocity v  given by Eq. (7.9) is 

 
2

24mag

e

r
 F v B  (7.10) 

Substitution of Eq. (7.9) and Eqs. (7.6-7.7) into Eq. (7.10) while maintaining the designation of the coordinates of the magnetic 
field of electron 2 acting on the magnetic moments of electron 1 as the primed system and the coordinates of the magnetic field 
of electron 1 acting on the magnetic moments of electron 2 as the unprimed system gives: 
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As shown in Eqs. (7.16-7.24), the relativistic form of Eq. (7.11) results in the equivalence of the velocity at the two radii; thus, 1r  

may be substituted for 2r  in the velocity factor of the second term to give: 
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The 'ri  unit vector is transformed to ri  by substituting   with 
2

   in the second term of Eq. (7.12): 
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The magF i  and 'magF i  average to zero over the surface for 0    .  The relativistic correction given infra. is based on 

quantized-angular-momentum conservation with the emission of a photon.  The relativistic correction for the lightlike frame 
causes the circumferential distances on the surface to dilate to the radial dimension alone as given infra. and in the Special 
Relativistic Correction to the Ionization Energies section.  This causes the angular force to vanish since it averages to zero such 
that only the radial force remains.  Since there is no net angular force on the electron, only the resultant radial force need be 
considered: 
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Eq. (7.14) may be written in the form 

 
2 2

0
2 3

2 1 2

1
( 1)

4 2mag r
e e

e
s s

r m r m r




 
   

 
F i


 (7.15) 

where 1/ 2s   and 
3

( 1)
4

s s    is the historical designation of the spin-angular momentum magnitude factor. 

Furthermore, the term in brackets can be expressed in terms of the fine structure constant  .  The radius of the electron 
atomic orbital in the v c  frame4 is C , where v c  corresponds to the magnetic field front propagation velocity which is the 

same in all inertial frames, independent of the electron velocity as shown by the velocity addition formula of special relativity 
[5].  From Eq. (1.35) and Eqs. (1.179-1.180) 
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where v c .  Based on the relativistic invariance of the electron’s magnetic moment of a Bohr magneton B  given by Eq. 

(1.131) as well as its invariant angular momentum of  , it can be shown that the relativistic correction to Eq. (7.15) is 
1

Z
 times 

the reciprocal of Eq. (7.16).  As shown previously in the One-Electron Atom—Determination of Atomic Orbital Radii section, 
the radius term in the brackets of Eq. (7.15) is relativistically corrected due to invariance of charge under Gauss’ Integral Law 
[6].  The radius of the electron relative to the v c  frame, *r , is relativistically corrected as follows.  The wave equation 

relationship is: 
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v



  (7.17) 

 
 
 

 
4 For the radiation-reaction force, v in Eq. (7.10) is not the electron velocity relative to the laboratory frame. 
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It can be demonstrated that the velocity of the electron atomic orbital satisfies the relationship for the velocity of a wave by 
substitution of Eqs. (1.15) and (1.36) into Eq. (7.17), which gives Eq. (1.35).  The result of the substitution into Eq. (7.17) of c  
for nv , n  given by Eq. (2.2): 

 1 12 ( ) 2 n nnr r n       (7.18) 

 
with 1r  given by Eq. (1.260): 
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for  , and of n  given by Eq. (1.36)  
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where *  is the relativistic factor corresponding to the radius, c is given by Eq. (1.178), and   is given by Eq. (2.123).  It 

follows from Eq. (7.22) that the radius 1r  of Eq. (7.15) must be corrected by the factor   1
Z 

. 

Due to relativistic invariance of 
e

e

m
 corresponding to the invariance of B , the correction of the electron mass of the 

bracketed term of Eq. (7.15) is 2  as given in the One-Electron Atom—Determination of Atomic Orbital Radii section (Eq. 
(1.273)).  By correcting the radius and the mass, the relativistic correction '  due to the light speed electrodynamic central force 
is  
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where v c 5.  Thus, 
1

Z
 is substituted for the term in brackets in Eq. (7.15).  Thus, Eq. (7.15) becomes: 
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The radiation-reaction force between the two electrons that achieves the condition that the sum of the mechanical 
momentum and electromagnetic momentum is conserved can also be derived from the relativistically invariant relationship 
between momentum and energy.  As shown in the Excited States of the One-Electron Atom (Quantization) section and the 
Excited States of Helium section, in general, for a macroscopic multipole with a single m  value, a comparison of Eq. (2.62) and 
Eq. (2.55) shows that the relationship between the angular momentum zM , energy U , and angular frequency   is given by Eq. 

(2.63): 

 zdM m dU

dr dr
  (7.25) 

independent of r  where m  is an integer.  Furthermore, the ratio of the square of the angular momentum, 2M , to the square of 
the energy, 2U , for a pure (  , m ) multipole follows from Eq. (2.55) and Eqs. (2.60-2.62) as given by Eq. (2.64): 
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From Jackson [7], the quantum mechanical interpretation is that the radiation from such a multipole of order (  , m ) carries off 
m  units of the z component of angular momentum per photon of energy  .  However, the photon and the electron can each 
possess only   of angular momentum which requires that Eqs. (7.25-7.26) correspond to a state of the radiation field containing 
m  photons.  Then, the magnetic energy due to the interaction of the magnetic moment of each electron and the magnetic field of 
the opposite member of the pair is quantized in terms of the magnetic field as well as the magnetic moment as opposed to being a 
continuous function of magnetic flux B in the case of the energy due to an applied field.  In the applied-field case, the energy 

magE  of interaction of a magnetic moment m and flux B is given by Eq. (1.168) 

 
5 The same relativistic correction is obtained by consideration of the kinetic and vector potential components of the angular momentum in the light-like 
frame as shown in Box 1.1. 
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 cosmagE mB   m B  (7.27) 

In the case of the interaction of the magnetic moments of two electrons of two-electron atoms, Eq. (7.27) does not apply due to 
the result of Eq. (7.26). 

The quantized energy for an electron spin
magE  to switch from parallel to antiparallel to an applied field B  is given by Eq. 

(1.168) 
  2 2 cos 2 2spin

mag B B LE B B        B zi B   (7.28) 

where L  is the Larmor frequency given by Eq. (2) of Box 1.1.  In the case of the interaction between the two electrons, the 

frequency must satisfy Eq. (7.26).  From Eq. (7.8), the angular velocity ˆL  is: 
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Energy is conserved between the electric and magnetic energies of the helium atom as shown by Eq. (7.42).  Since charge is 
relativistically invariant under Gauss’ Integral Law, the relationships between the parameters of Eqs. (7.25) and (7.26) due to 
quantization of angular momentum   and energy    requires the normalization of the energy U  by the central field Z  such 
that the magnetic-force dependence on the nuclear charge is the reciprocal of that of the electric force.  Then, the radial electric 

field has a magnitude proportional to Z  and the magnetic interaction has a magnitude of 
1

Z
 such that the corresponding 

magnetic energy U  is decreased by the factor of 
2

1

Z
 corresponding to the electric energy given by Eqs. (1.263-1.264).  Using 

Eqs. (7.26) and (7.29) with 2m   for the magnetic dipole interaction and the invariance of charge gives 
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The corresponding magnetic force is given as the gradient of the energy: 
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The outward centrifugal force on electron 2 (Eqs. (7.1-7.2)) is balanced by the electric force (Eq. (7.3)) and the magnetic 
force (on electron 2) (Eqs. (7.24) and (7.31)): 
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From Eq. (1.35) and Eq. (7.2) 
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Then, 
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Solving for 2r ,  

 
 
 2 1 0

11 1
;  

1 1 2

s s
r r a s

Z Z Z

 
    
   

 (7.35) 

That is, the final radius of electron 2, 2r , is given by Eq. (7.35); this is also the final radius of electron 1.  The energies and radii 

of several two-electron atoms are given in Table 7.1. 

(Since the density factor always cancels, it will not be used in subsequent force balance equations). 
 
ENERGY CALCULATIONS 
The electric work to bring electron 2 to 2 1r r  is given by the integral of the electric force from infinity to 1r , 
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And, the electric energy is the negative of the electric work, 
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The potential energy of each electron at 1r r , is given as:  
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The kinetic energy is 21

2 em v , where v  is given by Eq. (1.35). 
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The magnetic work is the integral of the magnetic force from infinity to 1r , 
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CONSERVATION OF ENERGY  
Energy is conserved.  Thus, the potential energy (electron 2 at 1r ) with the nucleus plus the magnetic work (electron 2 going 

from infinity to 1r ) must equal the sum of the negative of the electric work (electron 2 going from infinity to 1r ) and the kinetic 

energy (electron 2 at 1r ).  This is shown below with Eq. (7.41) and Eq. (7.42). 
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 and using 1r  from Eq. (7.35), 
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This is also the potential energy of electron 1 where their potential energies are indistinguishable when 1 2r r , but once one is 

excited they are distinguishable 6. 

 
6 The decrease in the central force of electron 1 from that corresponding to Z  to that corresponding to Z 1  as given by Eq. (7.42) allows the potential 
energies of the two electrons to match upon pairing.  This is possible according to Maxwell’s equations by the relationship between the two-dimensional 
surface charge density of each binding electron and the field: 

 

  
n  E

1
 E

2  


0

 (1) 

Whenever there is a potential energy difference in any perfect conductor, current will flow to redistribute the charge and, thus, the field lines, until an 
equipotential is achieved.  This is true even in the case of the two-dimensional layer of charge of paired electrons.  However, in this case, the orientation of 
the field lines changes since current flow in the radial direction is not possible.  Reverse-directed field lines partially cancel the central field of the nucleus 
at the shell such that the equipotential condition is met for the shell. 

In the case of helium for example, the two spin-paired electrons comprise a single two-dimensional shell (zero thickness) at radius 0.566987a
0
.  

They satisfy Maxwell’s source charge equation (Eq. (1)) and Gauss’ law (Eq. (33.6)) while achieving a minimum energy, equipotential surface with one 
half of the combined field lines directed radial inward and one half directed radial outward from the surface of the shell.  The inward-directed lines are 
cancelled by those of the 2e  charged nucleus.  The result is that each electron of the superposition of the two comprising the shell of 2e  total charge 
experiences a central field of e .  The minimum energy is achieved by spin pairing with a significant reduction in the radius of the initial electron 2 due to 
the spin pairing force (Eq. (7.24)) in Eq. (7.34) relative to the pure Lorentz force (Eq. (7.15)).  Using r

1
 0.5a

0
 from Eq. (1.260) as a first-order 

approximation of the multibody unpaired-electron problem, the corresponding radius without spin pairing is 0.999a
0
.  Using Eq. (7.37), the corresponding 

binding energy of electron 2 is 13.61 eV  compared to the case with spin pairing of 24.58750 eV .  Thus, spin pairing lowers the total energy of the system 
of interacting electrons by 10.98 eV  even though the electrons become indistinguishable upon pairing. 

As a consequence of the spin-pairing interaction and associated stabilization, it is not possible to assign an independent energy to any single 
electron of He .  Rather, the total system must be considered.  Only for a one-electron atom is the electron's energy equal to the total energy.  Specifically, 

the electrons of He  in the ground state are paired in the same shell and are indistinguishable. That does not mean that the ionization of He  to He2  is 
twice 24.58750 eV .  Both electrons cannot be ionized from the position r1  r2  0.566987a

0
 to a continuum level without becoming unpaired since 

paired free electrons at the same position is energetically unobtainable.  In excited states, the electrons are distinguishable; yet, dependent in terms of their 
positions and energies.  With photon absorption, one electron moves to a greater radius and the other moves closer to the nucleus.  It is a sequential 
quantized process as shown in the Excited States of Helium section.  In the limit, the total energy of the photon required for one of the initially 

indistinguishable electrons to be ionized with the other moving to the radius of 0.5a
0
 is 24.58750 eV  (Eqs. (7.44-7.46)).  The corresponding He ion has 

an ionization energy of 54.423 eV (Eqs. (1.260) and (1.264))).  Thus, the total binding energy of He  in the ground state is 24.58750 eV  54.423 eV . 

An energy balance can be assigned to the two electrons.  From Eq. (1.264), the binding energy of He  is 

   EB
He

   54.423 eV  (2) 

The spin pairing of the two electrons with the binding of an electron 2 to He  with an electron 1 causes an energy change corresponding to the central 
field at electron 1 to decrease by an integer such that both electrons are bound with the same force and are equivalent.  The binding or ionization energy 
change given by Eq. (1.264) is 

 

  
E

B
 

Ze2

8
0
r

1

 
e2

8
0
a

0

2

0.5


1

0.566987






 30.42654 eV  (3) 

where the radius of He  (Eq. (1.260)) is 0.5a
0

 and the radius of He  is 0.566987a
0
 (Eq. (7.35)).  From Eq. (7.45), the electric energy of either of the 

equivalent electrons at r
1
 r

2
 0.566987a

0
 is 

 

  
E(electric)  

e2

8
0
0.566987a

0

 23.996467 eV  (4) 

With the contribution of the magnetic energy (Eqs. (7.44) and (7.46))), the binding energy of either of the equivalent electrons of helium (Eqs. (7.44-
7.46)) is  

   EB
He  24.58741 eV  (5) 

With the ionization of either electron 1 or electron 2, the central field of the unionized electron, say electron 1, increases by one.  The electric and magnetic 

fields are conservative, and the energy E
B

e
1

  of the unionized electron is given by the negative of the sum of Eqs. (3) and (4): 

 
  
E

B
e

1
   E

B
 E(electric)   30.42654 eV  23.996467 eV  54.423 eV  (6) 

which matches Eq. (2).  Thus, the total ionization energy of helium EBT He   given by the sum of the first and second ionization energies is 

 
  
E

BT
He  IP

1
 IP

2
 54.423 eV  24.58741 eV  79.011 eV  (7) 

where IP  is the ionization potential. 
The central field lines of the nucleus of two-electron atoms end equally on each electron.  Thus, the difference in energy of electron 1 before and 

after pairing given by Eq. (3) can be considered the energy of pairing that is conserved upon unpairing of the electrons such that the binding energy is 
increased by the negative of Eq. (3).  In general, the matched potential of the binding electrons is that which achieves a minimum energy of the atom, ion, 
molecular ion, or molecule and obeys Maxwell’s source charge equation (Eq. (1)) and Gauss’ law (Eq. (33.6)) for the total charge and total fields across 
the shell comprised of two or more electrons bound by at least one of spin- and orbital- interactions.  Further examples of the application of the equal 
potential condition for the binding of multi-electrons per shell are the cases of the hydride ion, three- through twenty-electron atoms, and molecules given 
in the corresponding sections. 
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IONIZATION ENERGIES 
During ionization, power must be conserved.  Power flow is governed by the Poynting power theorem, 

 0 0
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2 2t t

  
 

                  
E H H H E E J E  (7.43) 

Energy is superposable; thus, the calculation of the ionization energy is determined as a sum of the electric and magnetic 
contributions.  Energy must be supplied to overcome the electric force of the nucleus, and this energy contribution is the negative 
of the electric work given by Eq. (7.37).  Additionally, the electrons are initially spin-paired at 1 2 00.566987r r a   producing no 

magnetic fields; whereas, following ionization, the electrons possess magnetic fields and corresponding energies.  For helium, 
the contribution to the ionization energy is given as the energy stored in the magnetic fields of the two electrons at the initial 
radius where they become spin-unpaired.  Part of this energy and the corresponding relativistic term corresponds to the 
precession of the outer electron about the z-axis due to the spin angular momentum of the inner electron.  These terms are the 
same as those of the corresponding terms of the hyperfine structure interval of muonium as given in the Muonium Hyperfine 
Structure Interval section.  Thus, for helium, which has no electric field beyond 1r  the ionization energy is given by the general 

formula: 
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where, 
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Eq. (7.46) is derived for each of the two electrons as Eq. (1.161) of the Magnetic Parameters of the Electron (Bohr Magneton) 
section with the radius given by Eq. (7.35).  By substituting the radius given by Eq. (7.35) into Eq. (1.35), the velocity v  is given 
by: 
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 (7.47) 

with 1Z   where Eqs. (1.204) and (1.208) were used.  For increasing Z, the velocity becomes a significant fraction of the speed 
of light; thus, special relativistic corrections were included in the calculation of the ionization energies of two-electron atoms 
given in Table 7.1.  The relativistic corrections follow from those given in the Special Relativistic Correction to the Ionization 
Energies section wherein the nuclear-electron magnetic interactions as well as the electron-electron interactions of two-electron 
atoms must be included to be precise. 

For a nuclear charge Z  greater than two, a central electric field equal to that of an elementary charge quanta of 2Z   
exists outside of the atomic orbital of the unionized atom.  During ionization, the energy contribution of the expansion of the 
atomic orbital of the ionized electron (electron 2) from 1r  to infinity in the presence of the electric fields present inside and 

outside of the atomic orbital is calculated as the J E  term of the Poynting theorem.  This energy contribution can be 
determined by designing an energy cycle and considering the individual contributions of each electron (electron 1 and electron 2) 
in going from the initial unionized to the final ionized state.  Consider two paired atomic orbitals.  Expansion of an atomic orbital 
in the presence of an electric field which is positive in the outward radial direction requires energy, and contraction of an atomic 
orbital in this field releases energy.  Thus, the contribution of the J E  term to ionization is the difference in the energy required 
to expand one atomic orbital (electron 2) from 1r  to infinity and to contract one atomic orbital (electron 1) from infinity to 1r .  

The energy contribution for the expanding atomic orbital follows the derivation of Eq. (1.225) of the Electron g Factor section as 
follows (the vector direction is taken to give a positive dissipated energy). 
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DISSIPATED ENERGY 
The J E  energy over time is derived from the central electric field from the nucleus against which electron 2 expands and the 
current of the expanding electron 2 wherein the latter is dependent on the magnetic field of the inner electron 1.  The magnetic 
field of electron 1 gives rise to a Lorentz force on electron 2, and the dissipative current density of electron 2 depends on this 
force wherein the superconducting condition given by Eq. (1.187) is maintained with the electric field of electron 1.  The 
magnitude of the magnetic flux at electron 2 due to electron 1 is given by that of the Bohr magneton at the origin that follows 
from McQuarrie [3]: 
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The magnetic force on electron 2 due to the magnetic field of electron 1 is the Lorentz force given by Eq. (1.183).  Substitution 
of Eq. (1.35) for v  and Eq. (7.48) for the magnetic flux into Eq. (1.183) gives 
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Furthermore, the velocity of electron 1 is proportional to the nuclear charge as given by Eqs. (1.35) and (1.257).  Thus, in order 
to maintain the superconducting condition given by Eq. (1.187), the magnetic force corresponding to B  must be given by 
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The expansion of the atomic orbital of electron 2 produces a current.  The current over time t J  is:  
  ft t  J E  (7.51) 

where J  is the current density, t  is the time interval,   is the conductivity, and fE  is the effective electric field defined as 

follows:  
  , fq  F E  (7.52) 

where F  is the magnetic force given by Eq. (7.50), and  ,q    is the angular charge density given as follows: 
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The orbit expands in free space; thus, the relation for the conductivity is: 
 0t    (7.54) 

The electric field provided by the nucleus for the expanding atomic orbital is: 
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where 0  is the permittivity of free space ( 12 2 2
 8.854  10 /X C N m  ).  Using Eqs. (7.50-7.55), the J E  energy density over 

time for the expansion of electron 2 with the contraction of electron 1 is: 
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The J E  energy over time is the volume integral of the energy density over time 
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The J E  energy over time involving the electric field external to the atomic orbital of electron 2 is 
 2Z

Z


 times the 

magnetic energy stored in the space external to the atomic orbital as given by Eq. (1.170).  The left and right sides of the 
Poynting theorem must balance.  Given the form of the J E  energy over time involving the electric field external to the atomic 
orbital of electron 2 and given that the electric field inside of the atomic orbital is 1Z   times the electric field of a point charge, 

the J E  energy over time involving the electric field internal to the atomic orbital of electron 2 is 
 1Z

Z


 times the magnetic 

energy stored inside of the atomic orbital as given by Eq. (1.159).  This energy is  
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Thus, the total J E  energy over time of electron 2 is the sum of Eqs. (7.58) and (7.59).   
The J E  energy over time of electron 1 during contraction from infinity to 1r  is negative, and the equations for the 

external and internal contributions are of the same form as Eqs. (7.58) and (7.59) where the appropriate effective charge is 
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substituted.  The J E  energy over time involving the electric field external to the atomic orbital of electron 1 is 
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And, the J E  energy over time involving the electric field internal to the atomic orbital of electron 1 is: 
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The difference,  , between the J E  energy over time for expanding electron 2 from 1r  to infinity and contracting electron 1 

from infinity to 1r  is 
1

Z
  times the stored magnetic energy given by Eq. (7.46). 
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Thus, the ionization energies are given by 

 
1

   Ionization Energy Electric Energy Magnetic Energy
Z

    (7.63) 

The energies of several two-electron atoms are given in Table 7.1.  The relativistic factor *  involving the spin pairing between 
the two electrons is derived in the Special Relativistic Effect on the Electron Radius and the Relativistic Ionization Energies 
section. 
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Table 7.1.  Relativistically corrected ionization energies for some two-electron atoms. 
 

2 e 
Atom 

Z 
1r  

( oa ) a 

Electric 

Energy b 
(eV) 

Magnetic 

Energy c 
(eV) 

Velocity 

(m/s) d 

*  e 

 

Theoretical 
Ionization 

Energies f 
(eV)

Experimental 
Ionization 

Energies g 
(eV) 

Relative 

Error h 

He  2 0.566987 23.996467 0.590536 3.85845E+06 1.000021 24.58750 24.58741 -0.000004

Li  3 0.35566 76.509 2.543 6.15103E+06 1.00005 75.665 75.64018 -0.0003 

2Be   4 0.26116 156.289 6.423 8.37668E+06 1.00010 154.699 153.89661 -0.0052 

3B   5 0.20670 263.295 12.956 1.05840E+07 1.00016 260.746 259.37521 -0.0053 
4C   6 0.17113 397.519 22.828 1.27836E+07 1.00024 393.809 392.087 -0.0044 

5N   7 0.14605 558.958 36.728 1.49794E+07 1.00033 553.896 552.0718 -0.0033 

6O   8 0.12739 747.610 55.340 1.71729E+07 1.00044 741.023 739.29 -0.0023 

7F   9 0.11297 963.475 79.352 1.93649E+07 1.00057 955.211 953.9112 -0.0014 
8Ne   10 0.10149 1206.551 109.451 2.15560E+07 1.00073 1196.483 1195.8286 -0.0005 

9Na   11 0.09213 1476.840 146.322 2.37465E+07 1.00090 1464.871 1465.121 0.0002 

10Mg   12 0.08435 1774.341 190.652 2.59364E+07 1.00110 1760.411 1761.805 0.0008 

11Al   13 0.07778 2099.05 243.13 2.81260E+07 1.00133 2083.15 2085.98 0.0014 

12Si   14 0.07216 2450.98 304.44 3.03153E+07 1.00159 2433.13 2437.63 0.0018 

13P   15 0.06730 2830.11 375.26 3.25043E+07 1.00188 2810.42 2816.91 0.0023 
14S   16 0.06306 3236.46 456.30 3.46932E+07 1.00221 3215.09 3223.78 0.0027 

15Cl   17 0.05932 3670.02 548.22 3.68819E+07 1.00258 3647.22 3658.521 0.0031 

16Ar   18 0.05599 4130.79 651.72 3.90705E+07 1.00298 4106.91 4120.8857 0.0034 
17K   19 0.05302 4618.77 767.49 4.12590E+07 1.00344 4594.25 4610.8 0.0036 
18Ca   20 0.05035 5133.96 896.20 4.34475E+07 1.00394 5109.38 5128.8 0.0038 

19Sc   21 0.04794 5676.37 1038.56 4.56358E+07 1.00450 5652.43 5674.8 0.0039 

20Ti   22 0.04574 6245.98 1195.24 4.78241E+07 1.00511 6223.55 6249 0.0041 

21V   23 0.04374 6842.81 1366.92 5.00123E+07 1.00578 6822.93 6851.3 0.0041 

22Cr   24 0.04191 7466.85 1554.31 5.22005E+07 1.00652 7450.76 7481.7 0.0041 

23Mn   25 0.04022 8118.10 1758.08 5.43887E+07 1.00733 8107.25 8140.6 0.0041 

24Fe   26 0.03867 8796.56 1978.92 5.65768E+07 1.00821 8792.66 8828 0.0040 

25Co   27 0.03723 9502.23 2217.51 5.87649E+07 1.00917 9507.25 9544.1 0.0039 

26Ni   28 0.03589 10235.12 2474.55 6.09529E+07 1.01022 10251.33 10288.8 0.0036 

27Cu   29 0.03465 10995.21 2750.72 6.31409E+07 1.01136 11025.21 11062.38 0.0034 

a From Eq. (7.35). 
b From Eq. (7.45). 
c From Eq. (7.46), except Eq. (7.44) for neutral He . 
d From Eq. (7.47). 
e From Eq. (1.281) with the velocity given by Eq. (7.47). 
f From Eq. (7.44) for neutral atom helium, and ions from Eq. (7.63) with  E electric  of Eq. (7.45) relativistically corrected by 

*
  according to Eq. (1.281). 

g From theoretical calculations for ions 
8

Ne


 to 
27

Cu


 [8-9]. 
h (Experimental-theoretical)/experimental. 

 
The agreement between the experimental and calculated values of Table 7.1 is within the experimental capability of the 

spectroscopic determinations at large Z, which relies on X-ray spectroscopy.  In this case, the experimental capability is three to 
four significant figures, which is consistent with the last column.  The helium atom isoelectronic series is given in Table 7.1 [8-
9] to much higher precision than the capability of X-ray spectroscopy, but these values are based on theoretical and interpolation 
techniques rather than data alone.  Ionization energies are difficult to determine since the cut-off of the Rydberg series of lines at 
the ionization energy is often not observed, and the ionization energy must be determined from theoretical calculations, 
interpolation of He isoelectronic and Rydberg series, as well as direct experimental data.   

The theoretical values for low Z can be improved by calculating the spin-nuclear relativistic factor, which corresponds to 
the reduced mass for one-electron atoms given in the Determination of Atomic Orbital Radii section. 
 
HYDRIDE ION 
The hydride ion comprises two indistinguishable electrons bound to a proton of 1Z   .  Each electron experiences a centrifugal 
force, and the balancing centripetal force (on each electron) is produced by the electric force between the electron and the 
nucleus.  In addition, a magnetic force exists between the two electrons causing the electrons to pair. 
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DETERMINATION OF THE ATOMIC ORBITAL RADIUS, RN 
Consider the binding of a second electron to a hydrogen atom to form a hydride ion.  The second electron experiences no central 
electric force because the electric field is zero outside of the radius of the first electron.  However, the second electron 
experiences a magnetic force due to electron 1 causing it to pair with electron 1.  Thus, electron 1 experiences the reaction force 
of electron 2 which acts as a centrifugal force.  The force balance equation can be determined by equating the total forces acting 
on the two bound electrons taken together.  The force balance equation for the paired electron atomic orbital is obtained by 
equating the forces on the mass and charge densities.  The centrifugal force of both electrons is given by Eq. (7.1) and Eq. (7.2) 
where the mass is 2 em .  Electric field lines end on charge.  Since both electrons are paired at the same radius, the number of 

field lines ending on the charge density of electron 1 equals the number that end on the charge density of electron 2.  The electric 
force is proportional to the number of field lines; thus, the centripetal electric force, eleF , between the electrons and the nucleus is  
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where 0  is the permittivity of free space.  The outward magnetic force on the two paired electrons is given by the negative of 

Eq. (7.24) where the mass is 2 em .  The outward centrifugal force and magnetic forces on electrons 1 and 2 are balanced by the 

electric force 
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where 1Z  .  Solving for 2r ,  

   2 1 0

1
1 1 ;  

2
r r a s s s      (7.66) 

where 0a  is given by Eq. (1.256).  That is, the final radius of electron 2, 2r , is given by Eq. (7.66); this is also the final radius of 

electron 1. 
 
IONIZATION ENERGY 
Since the hydrogen atom is neutral, the ionization energy of the hydride ion is determined from the magnetic energy balance.  
During ionization, electron 2 is moved to infinity.  By the selection rules for absorption of electromagnetic radiation dictated by 
conservation of angular momentum, absorption of a photon causes the spin axes of the antiparallel spin-paired electrons to 
become parallel.  The unpairing energy, ( )unpairingE magnetic , is given by Eq. (7.46) and Eq. (7.66) multiplied by two because the 

magnetic energy is proportional to the square of the magnetic field as derived in Eqs. (1.154-1.161).  The magnetic energy of 
electron 1 following ionization of the hydride ion,  1 ( )electron finalE magnetic , is given by Eq. (1.161) and Eq. (1.260). 

In addition, a third ionization energy term arises from the interaction of the two electrons during ionization.  A magnetic 
force exists on the electron to be ionized due to the spin-spin interaction.  The energy to move electron 2 to a radius which is 
infinitesimally greater than that of electron 1 is zero.  In this case, the only force acting on electron 2 is the magnetic force.  Due 
to conservation of energy, the potential energy change to move electron 2 to infinity to ionize the hydride ion can be calculated 
from the magnetic force of Eq. (7.65).  The magnetic work, magworkE , is the negative integral of the magnetic force (the second 

term on the right side of Eq. (7.65)) from 2r  to infinity, 
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where 2r  is given by Eq. (7.66).  The result of the integration is: 
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where 
1

2
s  .  By moving electron 2 to infinity, electron 1 moves to the radius 1 Hr a , and the corresponding magnetic energy, 

 1 ( )electron finalE magnetic , is given by Eq. (7.46).  In the present case of an inverse squared central field corresponding to the 

reaction force on electron 1, the magnitude of the binding energy is one half the magnitude of the potential energy [10], which is 
equivalent to that of Eq. (7.68).  Thus, the ionization energy is given by subtracting the two magnetic energy terms from one half 

the magnetic work (Eq. (7.68)) wherein em  is the electron reduced mass 
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 due to the electrodynamic magnetic 
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energy that arises from the force between the unpaired electrons and the nucleus which follows from Eqs. (1.253-1.255) and Eq. 
(7.67)7.  The electrodynamic force goes to zero as the two electrons pair due to the cancellation of the electron currents and 
magnetic fields.  Thus, the corresponding reduced mass only appears in the magworkE  term and in the magnetic energy of the free 

hydrogen atom term,  1 ( )electron finalE magnetic .  Thus, the ionization energy of the hydride ion is given by: 
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 (7.69) 

 
From Eq. (7.69), the calculated ionization energy of the hydride ion is 0.75418 eV.   

 
The experimental value given by Lykke [11] is 16082.99 0.15 cm   (0.75418 eV).   

 
Without deriving the details of the nuclear structure of the deuterium nucleus and its magnetic moment, the 

electrodynamic magnetic energy term of the deuterium hydride ion due to the corresponding force between the interacting 
electrons and the nucleus with two nucleons may be taken as twice that of hydrogen, which has only one nucleon.  From Eqs. 

(1.253-1.255) and Eq. (7.68), the corresponding reduced electron mass in Eq. (7.69) is 
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.   

From Eq. (7.69), the calculated ionization energy of the deuterium hydride ion is 0.75471 eV.   
 

The experimental value given by Lykke [11] is 16086.2 0.6 cm  (0.75457 eV). 
 

 
7The electrodynamic force between the unpaired electrons and the nucleus which follows from Eqs. (1.253-1.255) goes to zero as the two electrons pair 
due to the cancellation of the electron currents and magnetic fields.  During ionization, the corresponding energy due to the unpaired electrons is given by 
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where the mass in Eq. (1.246) is   2m
e
.  Eq. (7.67) with the inclusion of the electrodynamic energy given by Eq. (1) is 
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Thus, Eq. (7.68) with the electrodynamic energy is given by 
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where the reduced electron mass is 
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HYDRINO HYDRIDE ION 
The hydrino atom  1/ 2H  can form a stable hydride ion.  The central field is twice that of the hydrogen atom, and it follows 

from Eq. (7.65) that the radius of the hydrino hydride ion  1/ 2H n   is one half that of atomic hydrogen hydride,  1H n  , 

given by Eq. (7.66). 

   0
2 1

1
1 1 ;  

2 2

a
r r s s s      (7.70) 

The energy follows from Eq. (7.69) and Eq. (7.70) where due to the invariance of /e m  and   for lower-energy states as well as 
excited states as shown in the Spin-Orbit Coupling section, the relativistic correction to the binding of the electron to a hydrogen 
atom or hydrino atom is the energy stored in the magnetic field of the hydrogen atom. 
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 (7.71) 

From Eq. (7.71), the calculated ionization energy of the hydrino hydride ion  1/ 2H n   is 3.047 eV  which corresponds to a 

wavelength of 407 nm  . 
In general, the central field of hydrino atom  1/ ;  integerH n p p   is p  times that of the hydrogen atom.  Thus, the 

force balance equation is: 
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where 1Z   because the field is zero for 1r r .  Solving for 2r ,  
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From Eq. (7.73), the radius of the hydrino hydride ion  1/ ;  integerH n p p    is 
1

p
 that of atomic hydrogen hydride, 

 1H n  , given by Eq. (7.66).  The energy follows from Eq. (7.69) and Eq. (7.73). 
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 (7.74) 

From Eq. (7.74), the calculated ionization energy of the hydrino hydride ion  1/H n p   as a function of p  is given in Table 

7.2. 
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Table 7.2.   The ionization energy of the hydrino hydride ion  1/H n p   as a function of p. 

 

 
a from Eq. (7.73). 
b, c from Eq. (7.74). 
 
HYDRINO HYDRIDE ION NUCLEAR MAGNETIC RESONANCE SHIFT 
The proton gyromagnetic ratio, / 2p  , is  

 1/ 2 42.57602  P MHz T    (7.75) 

The NMR frequency, f , is the product of the proton gyromagnetic ratio given by Eq. (7.75) and the magnetic flux, B . 

 1/ 2 42.57602  Pf MHz T   B B  (7.76) 

A typical radio frequency (RF) is 400 MHz .  According to Eq. (7.76) this corresponds to a flux of 9.39496 T  provided by a 
superconducting NMR magnet.  With a constant magnetic field, the frequency is scanned to yield the spectrum where the 
frequency scan is typically achieved using a Fourier transform on the free induction decay signal following a radio frequency 

pulse.  Historically, the radiofrequency was held constant, the applied magnetic field, 0H  ( 0
0

B
H


 ), was varied over a small 

range, and the frequency of energy absorption was recorded at the various values for 0H .  By convention based on this historic 

mode of operation, the radiofrequency spectrum is converted into the corresponding applied magnetic field, 0H  ( 0
0

B
H


 ), of 

energy absorption and displayed as a function of increasing 0H .  The protons that would absorb energy at a lower 0H  give rise 
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to a downfield absorption peak; whereas, the protons that would absorb energy at a higher 0H  give rise to an upfield absorption 

peak.  The electrons of the compound of a sample influence the field at the nucleus such that it deviates slightly from the applied 
value.  For the case that the chemical environment has no NMR effect, the value of 0H  at resonance with the radiofrequency 

held constant at 400 MHz  is 

 
  

01
0 0

2 400 2

42.57602  P

MHzf
H

MHz T


      (7.77) 

In the case that the chemical environment has a NMR effect, a different value of 0H  is required for resonance.  This chemical 

shift is proportional to the electronic magnetic flux change at the nucleus due to the applied field that in the case of each hydrino 
hydride ion is a function of its radius. 

The change in the magnetic moment, m , of each electron of the hydride ion due to an applied magnetic flux B  is [12] 
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The two electrons are spin-paired and the velocities are mirror opposites.  Thus, the change in velocity of each electron treated 
individually (Eq. (10.3)) due to the applied field would be equal and opposite.  However, as shown in the Three Electron Atom 
section, the two paired electrons may be treated as one with twice the mass where em  is replaced by 2 em  in Eq. (7.78).  In this 

case, the paired electrons spin together about the applied field axis, the z-axis, to cause a reduction in the applied field according 
to Lenz’s law.  Then, the radius in Eq. (7.78) corresponds to the coordinate   in cylindrical coordinates since it is perpendicular 
to the direction of the applied field along the z-axis.  The integral over the entire flux linked by the hydride ion atomic orbital is 
given by 
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where 1r  is the radius of the hydride ion [13].  The change in magnetic flux B  at the nucleus due to the change in magnetic 

moment, m , given by Eq. (7.79) follows from Eq. (1.132). 
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where 0  is the permeability of vacuum.  Substitution of Eq. (7.79) into Eq. (7.80) gives the absolute upfield chemical shift 
B

B


 

of  1/H p  relative to a bare proton: 
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where p  is an integer. 
It follows from Eqs. (7.73) and (7.81) that the diamagnetic flux (flux opposite to the applied field) at the nucleus is 

inversely proportional to the radius,   0
1 1 1

a
r s s

p
   .  For resonance to occur, 0H , the change in applied field from that 

given by Eq. (7.77), must compensate by an equal and opposite amount as the field due to the electrons of the hydrino hydride 
ion.  According to Eq. (7.73), the ratio of the radius of the hydrino hydride ion  1/H p  to that of the ordinary hydride ion H   

is the reciprocal of an integer p .  It follows from Eqs. (7.75-7.81) that compared to a proton with no chemical shift, the ratio of 

0H  for resonance of the proton of the hydrino hydride ion  1/H p  to that of the ordinary hydride ion H   is a positive 

integer.  That is, if only the size is considered, the absolute absorption peak of the hydrino hydride ion (i.e. relative to a proton 
with no shift) occurs at a value of 0H  that is a multiple of p  times the value that is resonant for H  .  However, the source 

current of the state must be considered in addition to the reduced radius. 
As shown in the Stability of “Ground” and Hydrino States section, for the below “ground” (fractional quantum number) 

energy states of the hydrogen atom,  photon , the two-dimensional surface charge due to the “trapped photon” at the electron 

atomic orbital and phase-locked with the electron atomic orbital current, is given by Eqs. (6.7) and (6.8) wherein the principal 

quantum number of excited states is replaced by 
1

n
p
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And,  electron , the two-dimensional surface charge of the electron atomic orbital is 
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The superposition of  photon  (Eq. (7.82)) and electron , (Eq. (7.83)) where the spherical harmonic functions satisfy the conditions 

given in the Bound Electron “Atomic Orbital” section is: 
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The ratio of the total charge distributed over the surface at the radius of the hydride ion of the hydrino hydride ion  1/H p  to 

that of the ordinary hydride ion H   is an integer p , and the corresponding total source current of the hydrino hydride ion is 
equivalent to an integer p  times that of an electron.  The “trapped photon” obeys the phase-matching condition given in Excited 
States of the One-Electron Atom (Quantization) section, and the source current of the state must be considered in addition to the 
reduced radius. 

In the case that the photons and corresponding source current spin in opposite directions for the two electrons, the orbital 
magnetic moments cancel.  However, as given in the Pair Production section, a photon having an energy equivalent to that of the 
mass energy of the electron may undergo particle production to form an electron. To maintain continuity, the photon surface 
current of a hydrino hydride state must behave as the charge equivalent to its energy during the interaction of the electrons and 
the phased locked photon-field surface current with the external magnetic field such that the photon component gives rise to a 
proportional diamagnetic effect as well.  The photon diamagnetic component is given by Eqs. (29.10-29.11) as the charge 
equivalent to its energy that superimposes with the diamagnetism of the two electrons.  The relativistic term after Eq. (29.10) and 
the central field magnitude term for the hydrino hydride state having principle quantum number p  are 2  and p , respectively.  

The photon contribution to the change in flux SRB  for hydrino hydride  1/H p  given by applying the corresponding 

relativistic factor of 2
SR   to Eq. (7.80) is 
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Thus, using Eqs. (7.81) and (7.86), the upfield chemical shift SRB

B


 due to the photon contribution of the ion  1/H p  

corresponding to the lower-energy state with principal quantum energy state p  is given by: 
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The total shift TB

B


 for  1/H p  is given by the sum of that of the two electrons given by Eq. (7.81) and that of the photon 

given by Eq. (7.86): 
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where the first term applies to H   with 1p   and integer >1p   for  1/H p .  The experimental absolute resonance shift of 

TMS is -31.5 ppm relative to the proton’s gyromagnetic frequency [14-15].  Thus, the theoretical shift of  1/H p  relative to 

TMS standard is given by the difference of Eq. (7.87) and -31.5 ppm. 
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Hydrino Hydride Ion Hyperfine Lines 
For the ordinary hydride ion H  , a continuum is observed at shorter wavelengths of the ionization or binding energy referred to 
as the bound-free continuum.  For typical conditions in the photosphere, Figure 4.5 of Stix [16] shows the continuous absorption 

coefficient 
C
   of the Sun.  In the visible and infrared spectrum, the hydride ion H   is the dominant absorber.  Its free-free 

continuum starts at   1.645 m, corresponding to the ionization energy of 0.745 eV  for H   with strongly increasing 
absorption towards the far infrared.  The ordinary hydride spectrum recorded on the Sun is representative of the hydride 
spectrum in a very hot plasma. 

The reaction of a hydrogen atom with a second electron to form ordinary hydride ion comprising two paired electrons in 
a single shell releases continuum radiation to longer wavelengths with a cutoff of the binding energy of the second electron of 
the hydride ion as shown by Stix [16].  However, hydrino hydride ion and the corresponding emission of a hydrino atom binding 
a second electron are unique.  Hydrino hydride ion comprises an unpaired electron which results the emission of the binding 
energy of the second electron being released with additional quantized units of energy based on linkage of flux increments of the 

fluxon or magnet flux quantum 
h

2e
.  Specifically, hydrino H  1/ p comprises (i) two electrons bound in a minimum energy, 

equipotential, spherical, two-dimensional current membrane wherein the electrons of H  1/ p  are unpaired in the same shell at 

the same position r  and (ii) a photon that increases the central field by an integer of the fundamental charge at the nucleus 
centered on the origin of the sphere.  The interaction of the hydrino state photon electric field with each electron gives rise to a 
nonradiative radial monopole such that the state is stable.  The combination of two electrons into a single atomic orbital (AO) 
while maintaining the radiationless integer photonic central field gives rise to the special case of a doublet AO state in hydrino 
hydride ion rather than a singlet state as in the case of ordinary hydride ion.  The singlet state is nonmagnetic; whereas, the 
doublet state has a net magnetic moment of a Bohr magneton 

B
. 

Specifically, the basis element of the current of the atomic orbital is a great circle as shown in the Generation of the 
Atomic Orbital-CVFS section.  As shown in the Equation of the Electric Field inside the Atomic Orbital section, (i) photons 
carry electric field and comprise closed field line loops, (ii) a hydrino atom comprises a trapped photon wherein the photon field-
line loops each travel along a mated great circle current loop basis element in the same vector direction, (iii) the direction of each 
field line increases in the direction perpendicular to the propagation direction with relative motion as required by special 
relativity, and (iv) since the linear velocity of each point along a field line loop of a trapped photon is light speed c, the electric 
field direction relative to the laboratory frame is purely perpendicular to its mated current loop and it exists only at  nr r  .  

The paired electrons of the H   atomic orbital comprise a singlet state having no net magnetic moment.  However, the photon 
field lines of a hydrino hydride ion can only propagate in one direction to avoid cancellation and give rise to a central field to 
provide force balance between the centrifugal and central forces (Eq. (7.72)).  This special case gives rise to a doublet state in 
hydrino hydride ion.   

The hydrino hydride AO may be treated as a linear combination of the great circles that comprise the current density 
function of each electron as given in the Generation of the Orbitsphere-CVFS section.  To meet the boundary conditions that the 
photon is matched in direction with the electron current and that the electron angular momentum is  are satisfied, one half of 
electron 1 and one half of electron 2 may be spin up and matched with the photon, and the other half of electron 1 may be spin 
up and the other half of electron 2 may be spin down such that one half of the currents are paired and one half of the currents are 
unpaired.  Given the indivisibility of each electron and the condition that the AO comprises two identical electrons, the force of 
the photon is transferred to the totality of the electron AO comprising a linear combination of the two identical electrons to 
satisfy Eq. (7.72).  The resulting angular momentum and magnetic moment of the unpaired current density are  and a Bohr 
magneton 

B
, respectively.  As given in the Electron g Factor section, flux is linked by an unpaired electron in quantized units 

of the fluxon or magnetic flux quantum 
  

h

2e
.   

Hydride ions formed by the reaction of hydrogen or hydrino atoms with free electrons with a kinetic energy distribution 
give rise to the bound-free emission band to shorter wavelengths than the ionization or binding energy due to the release of the 
electron kinetic energy and the hydride ion binding energy.  As shown by Eq. (7.74) compared to Eq. (7.71), the energies for the 
formation of hydrino hydride ions are much greater, and with sufficient spectroscopic resolution, it may be possible to resolve 
the unique hyperfine structure in the corresponding bound-free band due to interactions of the free and bound electrons during 
the formation of hydrino hydride ion.  The derivation of the hyperfine lines of the unique doublet state follows. 

Consider a free electron binding to a hydrino atom to form a hydrino hydride ion.  The total angular momentum of an 
electron is  .  During binding of the free electron, the bound electron produces a magnetic field at the free electron given by Eq. 
(1.133).  Thus, for radial distances greater than the radius of the hydride ion, the magnetic field is equivalent to that of a 
magnetic dipole of a Bohr magneton at the origin.  The energy of interaction of a magnetic dipole with the magnetic field of the 
bound electron ssE , the spin-spin energy, is given by Eq. (1.227)—the product of the electron g factor given by Eq. (1.226), the 

magnetic moment of the free electron, a Bohr magneton given by Eq. (1.131), and the magnetic flux which follows from Eq. 
(1.133). 
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 (7.88) 

where 0  is the permeability of free space, r  is the radius of the hydride ion  1/H p  given by Eq. (7.73), and p  is an integer.  

ssE  for  1/ 2H   is given by 

 0.011223 ssE eV  (7.89) 
where the radius given by Eq. (7.73) for 2p   is:  

 1 00.93301r a  (7.90) 

From Eqs. (7.74) and (7.73), the binding energy BE  of  1/ 2H   is: 

 3.0471 BE eV  ( 4069.0 Å) (7. 91) 

When a free electron binds to the hydrino atom  1/ 2H  to form a hydride ion  1/ 2H  , a photon is emitted with a minimum 

energy equal to the binding energy ( 3.0471 BE eV ).  Any kinetic energy that the free electron possesses must increase the 

energy of the emitted photon.  The interaction of the two electrons quantizes this emission by the same mechanism as that 
observed in the Stern Gerlach experiment—quantization of flux linkage.  Superconducting Quantum Interference Devices 
(SQUIDs) or wire loops linked to SQUIDs also show quantization of flux and the corresponding energies as shown in the 
Schrödinger Fat Cats—Another Flawed Interpretation section. 

In the Stern-Gerlach experiment, a magnetic field is applied along the z-axis called the spin axis.  The superposition of 

the vector projection of the atomic orbital angular momentum on the z-axis is 
2


 with an orthogonal component of 

4


.  

Excitation of a resonant Larmor precession gives rise to   on an axis S  that precesses about the spin axis at an angle of 
3

  .  

S  rotates about the z-axis at the Larmor frequency.  S , the transverse projection ( RY -axis of Figure 1.25), is 
3

4
  , and ||S , the 

projection onto the axis of the applied magnetic field (z-axis), is 
2




.  As shown in the Spin Angular Momentum of the Atomic 

Orbital 0
0 ( , )Y    section, the superposition of the 

2


 z-axis component of the atomic orbital angular momentum and the 

2


 z-axis 

component of S  gives   corresponding to the observed electron magnetic moment of a Bohr magneton, B .  As given in the 

Electron g Factor section, the electron links flux in units of the magnetic flux quantum 
2

h

e   during a Stern-Gerlach 

transition, which conserves the angular momentum of the electron of  .  Due to the field of the bound electron, the free electron 
possessing kinetic energy will precess about the z-axis as it orbits the bound electron giving an additional component of angular 
momentum.  A resonance exists when the transverse precessional angular momentum along the RY -axis of Figure 1.25 is an 

integer number of 
 1s s 


 such that its projection onto the S -axis is  .  In order to conserve angular momentum of both 

electrons as the bound electron links an integer number of fluxons due to the free electron, the corresponding fluxon energy E  

due the free electron’s RY -axis component of 
 1

j
s s 


 follows from Eq. (1.226) wherein the angular momentum 

corresponding to the Bohr magneton,  , is replaced by 
 1

j
s s 


, and the magnetic flux density B  is given by the ratio of the 

flux to the area. 
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 (7.92) 

where j  is an integer, 1/ 2s  , and A  is the area linked by the integer number of fluxons as given in the Electron g Factor 
section.  The additional angular momentum due to the kinetic energy of the binding free electron is conserved in rotational 
energy of the resulting hydride ion.  The flux linkage energy applies to each of the two electrons; thus, a factor of two in Eq. 
(7.92) is required.  This is analogous to mutual induction.  The electrons flip in opposite directions and conserve angular 
momentum by linking flux in integer units of the magnetic flux quantum, which corresponds to the term  2g  .  With the 
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radius given by Eq. (7.73), the fluxon energy E  of  1/ 2H   for both electrons is given by 

  
 

2 2 50
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 (7.93) 

The energies of the hyperfine lines HFE , are given by the sum of the binding energy (Eqs. (7.74) and (7.91)), the spin-spin 

energy (Eqs. (7.88) and (7.89)), and the fluxon energy (Eqs. (7.92) and (7.93)). 
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 ( j  is an integer) (7.94) 

The observation of bound-free hyperfine peaks requires an electron-binding threshold with a large cross section.  
Ordinary hydride ion does not have a fine structure transition; thus, it shows only a hydride binding energy continuum [17].  The 
existence of fine structure transitions in  1/ 2H  provides a mechanism to observe a peak corresponding to the formation of a 

free hydride ion by the binding of an electron.  The predicted energy difference between the 1/21/ 2P , 1/21/ 2S  and 3/21/ 2P  levels 

of the hydrogen atom, the fine structure splitting given by Eq. (2.194), is:  

  25 2 -3
/

3
8 2 2.8922  10  

4s o eE m c X eV    (7.95) 

From Eq. (2.69) and the Spin-Nuclear Coupling section, the spin-orbit coupling is proportional to the applied flux due to spin 
and orbital angular momentum.  With the requirement of the quantization of flux in integer units of the magnetic flux quantum 
during binding as shown in the Electron g Factor section, the corresponding emission is at a longer wavelength having an energy 
of the binding energy minus an integer times the fine structure energy.  The peak due to the binding energy (Eqs. (7.91)) with 
excitation of the fine structure splitting (Eq. (7.95)) is given by: 

 -3
/ / 3.0471 2.8922  10  3.0442 Bs o B s oE E E eV X eV eV      ( 4071.7 air  Å) (7.96) 

The 3/21/ 2P , 1/21/ 2P , and 1/21/ 2S  levels are also split by spin-nuclear and orbital-nuclear coupling.  1/21/ 2S — 3/21/ 2P  and 

1/21/ 2P — 3/21/ 2P  transitions occur between hyperfine levels; thus, the transition energy is the sum of the fine structure and the 

corresponding hyperfine energy.  The hyperfine splitting of  1/ 2H  given in the Spin-Nuclear Coupling section are 
-41.4191  10  X eV  and -43.426  10  X eV  for 0  and 1 , respectively.  In addition to a continuum, the binding of an electron 

to  1/ 2H  has a resonance emission with excitation of transitions between hyperfine levels of the fine structure levels.   

The ionization of Rb  and an electron transfer between two K   ions (Eqs. (5.6-5.9)) provide a reaction with a net 
enthalpy of an integer multiple of the potential energy of atomic hydrogen, 27.2 eV .  The corresponding Group I nitrates 
provide these reactants as volatilized ions directly or as atoms by undergoing decomposition or reduction to the corresponding 
metals that are ionized in a plasma.  The presence of each of the reactants identified as providing an enthalpy of 27.2 eV  formed 
a low-applied temperature, extremely-low-voltage plasma in atomic hydrogen called a resonant transfer or rt-plasma having 

strong vacuum ultraviolet (VUV) emission [18-20].  The catalyst product of Rb  and two K  , H 1/ 2 , was predicted to be a 

highly reactive intermediate which further reacts to form a hydrino hydride ion H  1/ 2  .   
H  1/ 2   ions form by the reaction of H 1/ 2  atoms with free electrons that have a kinetic energy distribution.  The 

release of the electron kinetic energies and the hydrino hydride ion binding energy gives rise to the bound-free emission band to 
shorter wavelengths than the ionization or binding energy of the corresponding hydride ion.  Due to the requirement that flux is 

linked by H 1/ 2  in integer units of the magnetic flux quantum, the energy is quantized, and the emission due to H  1/ 2   
formation comprises a series of hyperfine lines in the corresponding bound-free band.  From the electron g factor and using the 

observed binding energy peak E
B
* , the bound-free hyperfine structure lines due to interactions of the free and bound electrons 

have predicted energies E
HF

 given by the sum of the fluxon energy E
, the spin-spin energy E

ss
, and the observed binding 

energy peak E
B
* : 

  (7.97) 
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where j = integer.  This is compared to E
HF

 j23.00213 X  105  3.0583   eV  with the unperturbed E
B
 given by Eqs. (7.73) 

and (7.74).  The predicted spectrum is an inverse Rydberg-type series that converges at increasing wavelengths and terminates at 
3.0563 eV, the hydride binding energy with the fine structure plus the spin-pairing energies.  The high-resolution visible plasma 
emission spectra in the region of 4000 Å to 4060 Å shown in FIGURE 62 matched the predicted emission lines to 1 part in 105.  

Specifically, the predicted 3.0471 eV  binding energy of H  1/ 2   was observed as a continuum threshold at 3.047 eV 

(
air
 4068 Å).  The experimental H  1/ 2   peak E

B
* at 4070.6 Å (air wavelength) was used to calculate the peak positions of 

the bound-free hyperfine lines by substitution of the corresponding energy of 3.0451 eV into Eq. (7.97) for E
B

 to give the 

bound-free hyperfine structure lines of H  1/ 2  .  The high resolution visible plasma emission lines in the region of 3995 Å to 

4060 Å, comprising an inverse Rydberg-type series from 3.0563 eV to 3.1012 eV matched the predicted hyperfine splitting 
emission energies E

HF
 given by Eq. (7.97) for j  1 to j  39 with the series edge at 3996.3 Å up to 1 part in 105 [18-20].  The 

flat intensity profile matches that of Josephson junctions such as ones of superconducting quantum interference devices 

(SQUIDs) that also link magnetic flux in quantized units of the magnetic flux quantum 
h

2e
. 
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Chapter 8 
  
CLASSICAL PHOTON AND ELECTRON SCATTERING 
  
 
 
 
 
CLASSICAL SCATTERING OF ELECTROMAGNETIC RADIATION 
Light is an electromagnetic disturbance that is propagated by vector wave equations that are readily derived from Maxwell’s 
equations.  The Helmholtz wave equation results from Maxwell’s equations.  The Helmholtz equation is linear; thus, 
superposition of solutions is allowed.  Huygens’ principle is that a point source of light will give rise to a spherical wave 
emanating equally in all directions.  Superposition of this particular solution of the Helmholtz equation permits the construction 
of a general solution.  An arbitrary wave shape may be considered as a collection of point sources whose strength is given by the 
amplitude of the wave at that point.  The field, at any point in space, is simply a sum of spherical waves.  Applying Huygens’ 
principle to a disturbance across a plane aperture gives the amplitude of the far field as the Fourier transform of the aperture 
distribution, i.e., apart from constant factors, 

 , ( ) exp ( x y)
ik

x y A d d
f

      
 

       
 

 (8.1) 

Here ( )A    describes the amplitude and phase distribution across the aperture and ,x y    describes the far field [1] where f  
is the focal length. 
 

DELTA FUNCTION 
In many diffraction and interference problems, it proves convenient to make use of the Dirac delta function.  This function is 
defined by the following property: let ( )f   be any function (satisfying some very weak convergence conditions which need not 
concern us here) and let ( ')    be a delta function centered at the point ' ; then: 

 ( ) ( ') ( ') ( ' );  0 
b

a

f d f a b otherwise           (8.2) 

We note, therefore, that: 

 ( ') 1d   




   (8.3) 

the Fourier transform of the delta function is given by: 

 
x

( ') exp
ik

x d
f

    
 

      
 

 (8.4) 

which by definition of the delta function becomes: 

 
x '

exp
ik

x
f


 

    
 

 (8.5) 

The amplitude is constant and the phase function 
x 'ik

f

 
 
 

 depends on the origin. 
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THE ARRAY THEOREM 
A large number of interference problems involve the mixing of similar diffraction patterns.  That is, they arise in the study of the 
combined diffraction patterns of an array of similar diffracting apertures.  This entire class of interference effects can be 
described by a single equation, the array theorem.  This unifying theorem is easily developed as follows: Let ( )   represent the 
amplitude and phase distribution across one aperture centered in the diffraction plane, and let the total diffracting aperture 
consist of a collection of these elemental apertures at different locations n .  We require first a method of representing such an 

array.  The appropriate representation is obtained readily by means of the delta function.  Thus, if an elemental aperture is 
positioned such that its center is at the point n , the appropriate distribution function is ( )n   .  The combining property of 

the delta function allows us to represent this distribution as follows: 
 ( ) ( )n n d                 (8.6) 

The integral in Eq. (8.6) is termed a “convolution” integral and plays an important role in Fourier analysis.  Thus, if we wish to 
represent a large number N  of such apertures with different locations, we could write the total aperture distribution ( )  as a 
sum, i.e., 

 
1

N

n
n

   


       (8.7) 

Or in terms of the delta function we could write, combining the features of Eqs. (8.6) and (8.7), 

 
1

( ) ( )
N

n
n

d       


       (8.8) 

Eq. (8.8) may be put in a more compact form by introducing the notation 

 
1

( )
N

n
n

A    


     (8.9) 

thus, Eq. (8.8) becomes: 
 ( ) ( )A d           (8.10) 
which is physically pleasing in the sense that ( )A   characterizes the array itself.  That is, ( )A   describes the location of the 
apertures and ( )   describes the distribution across a single aperture.  We are in a position to calculate the far field or 
Fraunhofer diffraction pattern associated with the array.  We have the theorem that the Fraunhofer pattern is the Fourier 
transform of the aperture distribution.  Thus, the Fraunhofer pattern (x)  of the distribution ( )  is given by 

     2
x exp

f

i
d

  


      
 

x  (8.11) 

substituting from Eq. (8.10) gives: 

   2
x ( ) ( ) exp

f

i
A d d

      


          
x  (8.12) 

A very important theorem of Fourier analysis states that the Fourier transform of a convolution is the product of the individual 
Fourier transforms [1].  Thus, Eq. (8.12) may be written as: 

 (x) (x) (x)A     (8.13) 

where (x)  and (x)A  are the Fourier transforms of ( )   and ( )A  .  Eq. (8.13) is the array theorem and states that the 
diffraction pattern of an array of similar apertures is given by the product of the elemental pattern (x)  and the pattern that 

would be obtained by a similar array of point sources, (x)A .  Thus, the separation that first arose in Eq. (8.10) is retained.  To 
analyze the complicated patterns that arise in interference problems of this sort, one may analyze separately the effects of the 
array and the effects of the individual apertures. 
 
APPLICATIONS OF THE ARRAY THEOREM 
TWO-SLIT INTERFERENCE (WAVE-PARTICLE DUALITY) 
Photons superimpose such that in the far field, the emitted wave is a spherical wave where the total electric field is given by Eq. 
(4.23): 

 0

ikr

total

e
E

r



E  (8.14) 

which is shown by Bonham to be required in order to insure continuity of power flow for wavelets from a single source [2].  The 
Green Function, (Eq. (6.62) of Jackson [3]) is given as the solution of the wave equation (Eq. (6.58) of Jackson [3]).  Thus, the 
superposition of photons gives the classical result.  As r  goes to infinity, the spherical wave given by Eq. (8.14) or Eq. (4.23) 
becomes a plane wave.  The double slit interference pattern is derived in Eqs. (8.15-8.23).  From the equations of a photon given 
in the Equation of the Photon section, the wave-particle duality arises naturally.  The energy is always given by Planck’s 
equation as also shown in the Equation of the Photon section; yet, an interference pattern is observed when photons add over 
time or space. 

Similarly, rather than a point, the electron is an extended particle which may impinge on a double slit one electron at a 
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time.  As shown in the Electron in Free Space section, the ionized electron is a plane-lamina disc of charge (mass)-density given 
by Eqs. (3.7-3.8) and current (momentum)-density given by Eqs. (3.19) and (3.20) with a radius 0  such that 0 02   wherein 

0  is the de Broglie wavelength.  In the case that the electron de Broglie wavelength (Eq. (3.24)) and therefore the size of the 

electron is comparable to the slit size and/or separation, the resulting intensity pattern of electrons striking a detector beyond the 
slits is equivalent to a wave interference pattern.  This result arises even though the electrons are not physically interacting with 
each other.  Nothing is actually interfering.  As in the case of the photon, the wave-particle duality nature of the electron arises 
classically. 

The electron-slit interaction is mediated by photons, each of which have quantized angular momentum in units of  .  
This angular momentum and the   of angular momentum of the electron is conserved during the interaction such that the de 
Broglie relationship holds as given in the Classical Physics of the de Broglie Relationship section.  For photon diffraction, the   
of angular momentum of the photon is conserved during an interaction directly.  In each case, the pattern in the far-field is a map 
of the conserved momentum density of the particles incident on the slit or slits. 

We use Eq. (8.13) to describe the simplest of interference experiments, Young’s double-slit experiment in one dimension.  
The individual aperture will be described by 
 (   | | ; 0  | | ) ( | )C a a rec a          (8.15) 
Here C is a constant representing the amplitude transmission of the apertures.  This is essentially a one-dimensional problem and 
the diffraction integral may be written as 

    x exp exp
f f

a

a

ik ik
d C d

   


            
    

x x  (8.16) 

The integral in Eq. (8.16) is readily evaluated to give: 
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  (8.17)  

The notation 
sin

sinc



  is frequently used and in terms of this function (x)  may be written as: 
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  (8.18) 

Thus, the result is that the elemental distribution in the Fraunhofer plane is Eq. (8.18).  The array in this case is simply two delta 
functions; thus, 
 ( ) ( )A b b           (8.19) 
The array pattern is, therefore,  

   2
(x) ( ) ( ) exp

f

i
A b b d

     


       
 

x  (8.20) 

Eq. (8.20) is readily evaluated by using the combining property of the delta function, thus, 
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Finally, the diffraction pattern of the array of two slits is: 
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  (8.22) 

The intensity is 

 2 2 2 22 x 2 x
(x) 16 sinc cos
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 (8.23) 

From Eq. (8.23), it is clear that the resulting pattern has the appearance of cosine-squared fringes of period /f b  with an 

envelope  2sinc 2 x /a f  .  

In the case of photon diffraction, the far field interference pattern given by Eqs. (8.22-8.23) is due to conservation of 
angular momentum of the photon interaction with the slits.  The pattern is not due to constructive and destructive interference of 
photon electric fields.  Photons cannot be created or destroyed by superimposing.  If this were true, it would be possible to cool a 
room or to cloak an object by illumination.  Constructive and destructive interference violates the first and second laws of 
thermodynamics1.  The correct physics is based on conservation of the   of photon angular momentum and   of photon 
energy. 

The incident photons have a size comparable to their wavelength as given in the Equation of the Photon section.  A 
 

1 Similarly, the constructive and destructive interference of probability waves makes no sense.  Nor does negative probability or probability that is based 
on noncausality.  The interference pattern is a map of the momentum density.  This physical basis applies to photon and particle diffraction as given infra. 
wherein the particle, photon, and consequently the slit interaction is quantized in units of  .  The double-slit experiment is predicted by classical laws that 
dispel the belief that quantum weirdness must be invoked to explain the double-slit experiment. 
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diffraction pattern is observed when the slit dimensions are comparable to the photon wavelength.  The physical basis of the 
mechanism is that each photon interacts with the slit apparatus to give rise to an electron or polarization current.  Each photon is 
reemitted, and the regions of high and low intensity due to more or less photons impinging at locations of the detector are 
generated, as the number of photons diffracted grows large.  The pattern is based on conservation of the momentum of the slit-
source currents and re-emitted photon distribution.  Here, in the case of each incident and diffracted photon, the transverse 
displacement is related to the change in the transverse component of the angular momentum of the photon.  The corresponding 
pattern is representative of the aggregate momentum distribution of slit-apparatus current induced by many photon interactions.  
The same physics of momentum conservation in the electric and magnetic radiation fields determines the radiation pattern of a 
multipole source as given in the Excited States of the One-Electron Atom (Quantization) section.  Photon diffraction is shown 
schematically in Figure 8.1. 
 
Figure 8.1.   (A) The incident photon is emitted from a source and travels to the slit apparatus in the distance.  The photon’s 
electric and magnetic fields are confined on its two-dimensional surface.  (B) The photon contacts the double slit apparatus.  (C) 
The photon’s electric and magnetic fields give rise to electron or polarization currents at both slits (blue).  As in the case with the 
application of a voltage to an object, there is an effect at a distance.  The transition of the photon’s fields from incident to 
transmitted is shown translucently.  (D) The slit’s currents cause reemission of a photon in the direction of the detector in the far 
field.  (E) The transverse displacement of the reemitted photon conserves the angular momentum of the source current.  The 
superposition of reemitted photons from the interaction of many incident photons over time forms a photon field characteristic of 
the slits as their source.  The source is equivalent to a uniform-electric-field silhouette of the slits given by Eqs. (8.15) and 
(8.19).  (F) In the far field, the distribution of photons corresponding to the intensity pattern is the Fourier transform of the slit 
pattern. 
 

 
 

Eq. (8.22) also applies to two-slit diffraction of other particles as well as photons wherein the amplitude reflects the 
transverse momentum density of the particles.  The proton and neutron as well as photons and electrons demonstrate interference 
patterns during diffraction.  An example is the interference pattern for rubidium atoms given in the Wave-Particle Duality is Not 
Due to the Uncertainty Principle Section.  Particle-particle interactions may be involved, and in other cases the interference 
pattern arises without fundamental-particle-particle interaction.  In these cases, the pattern-generating interaction can be 
attributed to that between the particle and the diffraction apparatus with conservation of the angular momentum of the particle 
and any photons involved in mediating the interaction wherein even neutral particles such as neutrons comprise charged sub-
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particles such as quarks and also possess magnetic moments that can give rise to induced electrodynamic currents and fields of a 
scatterer during interaction. 

Conservation of the photon’s angular momentum of   gives rise to the de Broglie relationship of the electron as given in 
the Classical Physics of the de Broglie Relationship section.  This result also applies to other fundamental particles.  Since all 
particle-slit interactions are mediated by photons, and the angular momentum change must be conserved in the far-field, the 
corresponding amplitude function that arises from the electron-aperture function is equivalent to that of a corresponding photon-
front aperture function.  Both amplitude functions are given by Eq. (8.22). 

In Michelson interferometry, photons interact with the optical elements wherein the velocity is slower than free space.  
There is dispersion in velocity based on phase such that photons speed up and slow down relative to each other and are bunched 
to create a pattern of concentration or compression and rarefaction of photon spatial density over each period of the incident 
electromagnetic wave.  The redistribution is observed as dark and light bands that repeat every photon wavelength based on the 
periodicity of the light wave comprising an ensemble of photons. The distribution pattern observed with diffracting electrons is 
equivalent to that for diffracting light.  Note that Eq. (8.16) represents a plane wave.  In the case of the Davison-Germer 
experiment, the intensity is given by Eq. (8.13) as the product of the Fourier transforms of the elemental pattern corresponding to 
a plane wave of wavelength /h p   and the array pattern of the nickel crystal. 

In general, the observed far-field position distribution is a picture of the particle transverse momentum distribution after 
the interaction.  As shown in the Classical Wave Theory of Electron Scattering section, the phase of the amplitude of the 
angular-momentum-distribution function contains the term ( )i s l k k r , where i sk k  is proportional to the momentum change 

of the incident particle upon scattering, since ik  is the initial momentum and sk  is the final momentum of the scattered 

particle such as an electron.  The wavelength,  , is the de Broglie wavelength associated with the momentum of the particle 

which is transferred through interactions corresponding to the wavenumber 
2

k



 .  Since the two-slit aperture pattern is the 

convolution of the single-slit pattern with two delta functions, the intensity of the two-slit experiment is given as cosine squared 
fringes of the single-slit pattern as given by Eq. (8.23) wherein the extended particle interacts with both slits with conservation of 
momentum to give the modulation of the single-slit momentum pattern.   

The energy is proportional to the square of the momentum.  The conservation of power flow requires that the intensity 
distribution representing the number of particles incident on the detector at a given position is given by the amplitude of the 
momentum-distribution function squared. 

During electron diffraction, the initially unpolarized electron becomes polarized to minimize the energy of interaction 
with the slit such that the angular momentum of the polarized free electron is parallel or antiparallel to the direction of 
propagation.  If the forward momentum is unchanged, then the electron is detected at x 0  in the far field.  However, the 
interaction with the slit can cause momentum transfer to the transverse direction that can be mediated by photons having   of 
angular momentum.  Each photon provides a torque to change the direction of the angular momentum vector; concomitantly, the 
linear momentum is redirected to have a transverse component.  The momentum transfer from the z-axis to the transverse or x-
axis in the far field depends on the strength and the time duration of a photon-generated torque as given in the Stern-Gerlach 
Experiment subsection of the Free Electron section.  The spatial distribution of the electron positions is determined by the 
conservation of momentum.  With sufficient application of torque the angular momentum vector is reversed.  The interaction of 
the free electron with the slit to reverse the angular momentum corresponds to a sign change of the amplitude, and periodic 
reversals of the angular momentum gives rise to maximum and minima of the amplitude.  Since the magnitude of the angular 
momentum change depends on the strength and duration of the torque, which has a finite half-life, the amplitude decreases 
steeply as a function of transverse momentum. 
 

CLASSICAL WAVE THEORY OF ELECTRON SCATTERING 
The following mathematical development of scattering is adapted from Bonham [4] with the exception that the CP model is a 
Fourier optics derivation for an exact elemental pattern, a plane wave, and an exact array pattern, an atomic orbital.  In contrast, 
Bonham derives similar scattering equations for an incident plane wave via an averaged probability density function description 
of the electron, the Born model. 

In scattering experiments in which Fraunhofer diffraction is the most important mode for scattering, measurements are 
made in momentum or reciprocal space.  The data is then transformed in terms of real space, where the structure of the scatterer 
is expressed in terms of distances from its center of mass.  There are, fortunately, well known mathematical techniques for 
making this transformation.  If we are given a model of the scattering system, we can, in general, uniquely calculate the results to 
be expected in reciprocal space for scattering from the model.  Unfortunately, the converse—deducing the nature of the scatterer 
uniquely by transforming the experimental results obtained in reciprocal space—is not always possible.  But, as we will see, 
certain possibilities can be eliminated because they violate fundamental physical laws such as Special Relativity. 

In classical optics, a diffraction pattern results whenever light is scattered by a slit system whose dimensions are small 
compared to the wavelength of light.  In order to develop a mathematical model for diffraction scattering, let us represent the 
amplitude of an incident plane wave traveling from left to right as ( )i te  k r , where the absolute magnitude of the wave vector k  

is 
2


k .  The quantity   is the wavelength of the incident radiation and k  is the momentum p .  The vector r  represents 

the position in real space at which the amplitude is evaluated, and   and t  are the angular frequency and time, respectively.  A 
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plane wave traveling in the opposite direction is ( )i te   k r  where the sign of k r  changes, but not the sign of t .  That is, we may 
reflect a wave from a mirror and reverse its direction, but we cannot change the sign of the time since that would indicate a 
return to the past.  The intensity of a classical wave is the square magnitude of the amplitude, and thus the intensity of a plane 
wave is constant in space and time.  If a plane wave is reflected back on itself by a perfectly reflecting mirror, then the resultant 
amplitude is ( ) ( ) 2cosi t i t i te e e         k r k r k r , and the intensity is 24cos i t i tI e e  k r  which is independent of time and 
given as 24cos k r  which clearly exhibits maxima and minima dictated by the wavelength of the radiation and the position in 
space at which intensity is measured. 
In an experiment, we measure the intensity of scattered particles, which is related to plane waves in a simple fashion.  To see 
this, consider a collimated plane-wave source, whose width is small compared to the scattering angle region where the scattering 
is to be investigated, incident upon a diffraction grating.  If we integrate the incident intensity over a time interval t , we obtain 
a number proportional to the energy content of the incident wave.  We may safely assume in most cases that the scattering power 
of the diffraction image does not change with time, so that a constant fraction of the incident radiation and hence constant energy 
will be transferred into the scattered wave.  We further assume that the effect of the diffraction grating on the incident radiation 
occurs only in a region very close to the grating in comparison to its distance from the detection point.  For elastic scattering (no 
energy transfer to the grating), once the scattered portion of the wave has left the field of influence of the scatterer, all parts of 
the scattered amplitude at the same radial distance from the scatterer must travel at the velocity of the incident wave.  For 
simplicity, we neglect resonance effects, which can introduce significant time delays in the scattering process even if the waves 
are scattered elastically.  The effects of resonance states on the scattering at high energies, is usually negligible and hence will 
not be discussed here.  In the case of inelastic scattering, in which waves are scattered with various velocities, we can focus our 
attention successively on parts of the outgoing scattered radiation that have velocities falling within a certain narrow band, and 
the following argument will hold for each such velocity segment.  The result of the integration of a constant-velocity segment of 
the scattered intensity over the volume element, 
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    (8.24) 

is proportional to the energy content in that portion of the scattered wave, and the result must be independent of R .  This 
restriction, which is a direct consequence of conservation of energy, then demands that the outgoing scattered waves have in 
polar coordinates the form: 

  ( , , ) ,
ikR

sc

e
R f

R
      (8.25) 

where the term 1/ R  is a dilution effect to guarantee energy on an ever-spreading wave. 

sc  only describes the scattered amplitude after the scattered wave has left the field of influence of the scatterer and is 

thus an asymptotic form.  The function ( )f    is called the scattered amplitude and depends on the nature of the scatterer.  The 
classical theory tells us that the scattered intensity is proportional to the square magnitude of the scattered amplitude; so, the 

intensity will be directly proportional to 
2

2

f

R

    
. 

Let us next consider the expression for the scattering of a plane wave by a number of disturbances in some fixed 
arrangement in space.  Consider the scatterers comprising a nucleus and electrons; this would correspond to a plane wave 
scattered by an atom. 

We shall choose the center of mass of the scatterer as our origin and shall for the most part consider dilute-gas electron 
scattering in the keV energy range, where the electron wavelength   lies in the range 0.03 Å 0.1 Å  .  The scattering 
experimental conditions are such that to a high degree of approximation, at least within 0.1% or better, we can consider the 
scattering as a single electron scattered by a single atom.  Note also that no laboratory to center-of-mass coordinate system 
transformation is required because the ratio of the electron mass to the mass of the target will be on the order of 310  or smaller. 

Let us consider an ensemble of scattering centers as shown in Figure 8.2. 
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Figure 8.2.   An ensemble of scattering centers. 

 
 
We may write the total scattered amplitude in the first approximation as a sum of amplitudes, each of which is produced by 
scattering from one of the single scattering centers.  In this view, we generally neglect multiple scattering, the re-scattering of 
portions of the primary scattered amplitudes whenever they come in contact with other centers, except in the case of elastic 
scattering in the heavier atoms.  Clearly a whole hierarchy of multiple-scattering processes may result.  The incident wave  may 
experience a primary scattering from one center, a portion of the scattered amplitude may re-scatter from a second center, and 
part of this amplitude may in turn be scattered by a third center (which can even be the first center), and so on. 

An incident plane wave will obviously travel a distance along the incident direction before scattering from a particular 
center, depending on the instantaneous location of that center.  To keep proper account of the exact amplitude and phase of the 
incident wave at the instant it scatters from a particular center, we select our origin, as mentioned previously, to lie at the center 
of mass.  The phase of the scattered wave depends on the total distance traveled from the center of mass to the detector.  We can 
now write the scattered amplitude as:  
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 (8.26) 

where l lz  R r  is the distance traveled from a plane perpendicular to the incident direction and passing through the center of 

mass and  ,lf    is the scattered amplitude characteristic of the l th  scattering center.  It should be clear at this point that the 

term  
exp

,l
l

l

ik
f  

       

R r

R r
 is made up of a plane wave in the scattered direction with the dilution factor 

1

lR r
 to account 

for energy conservation and with allowances made through  ,lf    for any special influence that the scatterer may have on the 

scattering because of the detailed structure of the scatterer.  The additional term 1ikze  enters whenever two or more scattering 
centers are encountered and accounts for the fact that the instantaneous location of our scattering centers may not coincide with 
planes of equal amplitude of the incident plane wave.  That is, in a  two-center case, the first particle may scatter a plane wave of 
amplitude +1 while at the same time a second scatterer may encounter an amplitude of -1.  The amplitudes of the incident plane 
wave which the various particles encounter depend on their separation from each other along the z-axis and on the wavelength of 
the incident radiation.  By adding to the phase, the projections of the various lr  vectors onto the incident direction, referenced to 

the same origin, this problem is automatically corrected.  As long as our composite scatterer is on the order of atomic 
dimensions, the magnitude of R  will be enormously larger than either lz  or lr .  This allows us to expand lR r  in a binomial 

expansion through first-order terms as lR
 

   
 

R
r

R
.  In the denominator, the first-order correction term R  can be neglected but 

not in the phase. 

To see this, suppose that R  is 6  10X  and l
R

r
R

 is / 2 .  Clearly / 2  would seem negligible compared to 6 10X , 

but look what a difference the value of a sine or cosine function has if / 2  is retained or omitted from the sum of the two terms.  
The product lkz  may be rewritten as lik r , where the subscript i on k  denotes the fact that ik  is a vector parallel to the incident 
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direction magnitude 
2

k



 .  Similarly, since 
R

R
 is a unit vector whose sense is essentially in the direction of the scattered 

electron, we may write lk 
R

r
R

 as s lk r  where sk  is a wave vector in the scattering direction.  The phase of Eq. (8.26) now 

contains the term ( )i s l k k r , where i sk k  must be proportional to the momentum change of the incident particle on 

scattering, since ik  is the initial momentum and sk  is the final momentum of the scattered electron.  This vector difference is 

labeled by the symbol s .  The asymptotic total amplitude is now expressible as: 
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   s r  (8.27) 

 
CLASSICAL WAVE THEORY APPLIED TO SCATTERING FROM ATOMS AND MOLECULES 
Let us first apply Eq. (8.27) to scattering from atoms.  We will consider the theoretical side of high-energy electron scattering 
and X-ray scattering from gaseous targets as well.  In the X-ray case, the intensity for an X-ray scattered by an electron is found 
experimentally to be a constant, usually denoted by clI , which varies inversely as the square of the mass of the scatterer where 

clI  is the Thompson X-ray scattering constant.  This means that X-rays are virtually un-scattered by the nucleus, since the ratio 

of electron to nuclear scattering will be greater than 
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, where pm  is the proton rest mass and em  is the 

electron rest mass.  The total amplitude for X-ray scattering by an atom can then be written as: 
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where cl  is a phase factor introduced because of a possibility that the X-ray scattered amplitude may be complex.  The intensity 

can be written as: 
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where lk l k r r r  is an inter-electron distance.  Both expressions, Eqs. (8.28) and (8.29), correspond to a fixed arrangement of 

electrons in space.  For electrons, the intensity of scattering by another charged particle proceeds according to the Rutherford 

experimental law 
2

4
eI Z

I
s

 , where Z  is the charge of the scatterer and eI  is a characteristic constant.  Note that both clI  and eI  

include the 
2

1

R
 dilution factor and depend on the incident X-ray or electron beam flux 0I  and on the number 0N  of target 

particles per cubic centimeter in the path of the incident beam as the product 0 0I N .  We may take 

   2, expel
Z

f I i Z
s

         
,where  Z  is again an unknown phase shift introduced because of the possibility that the 

amplitude may be complex.  In the X-ray case for scattering by an atom, the intensity is independent of the phase cl , and we 

need not investigate it further.  In electron scattering, this term is different for electrons and nuclei since they contain charges of 
opposite sign and usually different magnitude.  The amplitude for this case is: 
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which for an atom simplifies further, since the nuclear position vector nr  is zero because the nucleus lies at the center of mass.  

The term  Z  is the nuclear phase and  1   is the phase for scattering by an individual electron.  The notation 1  signifies a 

unit negative charge on each electron as opposed to Z  on the nucleus, where Z  is the atomic number.  The intensity with 
0n r  becomes: 
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Note that the last two terms on the right in Eq. (8.31) are identical to those in Eq. (8.29).  

According to Huygens’ principle, the function 
i=1

i

N
ie  s r  of Eq. (8.30) represents the sum over each spherical wave source 

arising from the scattering of an incident plane wave from each point of the electron function where the wavelength of the 
incident plane wave is given by the de Broglie equation /h p  .  The sum is replaced by the integral over   and   of the 
single point element aperture distribution function.  The single point element aperture distribution function, ( , , )a z  , for the 
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scattering of an incident plane wave by an atom is given by the convolution of a plane wave function with the electron atomic 
orbital function.  The convolution is  0( , , ) ( ) [ ( )] ,ma z z r r Y         where ( , , )a z   is given in cylindrical coordinates, 

( )z , the xy-plane wave is given in Cartesian coordinates with the propagation direction along the z-axis, and the atomic 

orbital function,  0[ ( )] ,mr r Y    , is given in spherical coordinates.  Using cylindrical coordinates, 
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The general Fourier transform integral is given in reference [5]. 
For an aperture distribution with circular symmetry, ( )F s , the Fourier transform of the aperture array distribution 

function, ( )A z , is [5]: 
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 ( )F s  (8.35) 

The same derivation applies for the two-point term i j
N N

i

i j i j

e


 
 s r

 of Eq. (8.31).  The sum is replaced by the integral over   and 

 of the single point element autocorrelation function, ( , , )z r , of the single point element aperture distribution function.  For 
circular symmetry [5] : 
 ( , , ) ( , , ) ( , , )z a z a z      r  (8.36) 
and 
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and  
 ( ) ( ) ( )R z A z A z  (8.39) 

For closed shell atoms in single states such as rare gases, ( )Y   , the spherical harmonic angular function of the electron 
function is a constant, and only two expressions are possible from all orders of averaging over all possible orientations in space.  
For the X-ray case the scattered intensities are: 
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and 
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while for electrons, the scattered intensities are: 
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           (8.43) 

where the subscript 1 denotes an amplitude derivation and 2 an intensity derivation.  The aperture function of the nucleus is a 
delta function of magnitude Z , the nuclear charge.  The Fourier transform is a constant of magnitude Z  as appears in Eqs. 
(8.42) and (8.43).  Note that the Fourier convolution theorem proves the equivalence of Eq. (8.40) and Eq. (8.41) and the 
equivalence of Eq. (8.42) and Eq. (8.43). 

The aperture array distribution function,  A z , Eq. (8.34), corresponds to the electron radial distribution function of 

Bonham, and the aperture array autocorrelation function  R z , Eq. (8.38), corresponds to the electron pair correlation function 

of Bonham [4]. 
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ELECTRON SCATTERING EQUATION FOR THE HELIUM ATOM BASED ON THE 
ATOMIC ORBITAL MODEL 
The closed form solution of all two electron atoms is given in the Two Electron Atom section.  In the helium ground state, both 
electrons atomic orbitals are at a radius where: 
 1 00.567r a  (8.44) 

The helium atom comprises a central nucleus of charge 2e  which is at the center of an infinitely thin spherical shell comprising 
two bound electrons of 2e .  Thus, the helium atom is neutrally charged, and the electric field of the atom is zero for 

00.567r a .  The Rutherford scattering equation for isolated charged particles does not apply.  The appropriate scattering 
equation for helium in the ground state can be derived as a Fourier optics problem as given in the Classical Scattering of 
Electromagnetic Radiation section.  The incident plane-wave free electron given in the Electron in Free Space section scatters 
from the helium atom by time-symmetrically deforming onto and from the surface of the helium atom as shown in Figure 8.3 
such that the far field intensity pattern of many electrons is modeled by Huygens’s Principle. 
 
Figure 8.3.   The time-symmetrical elastic scattering behavior of a free electron from a helium atom. 
 

 
 

The aperture distribution function, ( , , )a z  , for the scattering of an incident plane wave by the He atom is given by the 

convolution of the plane wave function with the two electron atomic orbital Dirac delta function of 00.567radius a  and 

charge/mass density of 
2

0

2

4 0.567 )a 
.  For radial units in terms of 0a  

 02
0

2
( , , ) ( ) [ ( 0.567 )]

4 0.567 )
a z z r a

a
  


  


 (8.45) 

where ( , , )a z   is given in cylindrical coordinates, ( )z , the xy-plane wave is given in Cartesian coordinates with the 

propagation direction along the z-axis, and the He atom atomic orbital function, 02
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, is given in 

spherical coordinates. 
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For circular symmetry [5], 
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Eq. (8.47) may be expressed as: 
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Substitute 
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Substitution of the recurrence relationship, 
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into Eq. (8.49),  and, using the general integral of Apelblat [6] : 
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with 0a z w  and 0b z s  gives: 
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The magnitude of the single point element autocorrelation function, | ( , , ) |z r , is given by the convolution of the magnitude of 
the single point element aperture distribution function, ( , , )a z  , with itself. 
 | ( , , ) | | ( , , ) | | ( , , ) |z a z a z      r  (8.53) 
The Fourier convolution theorem permits Eq. (8.53) to be determined by Fourier transformation. 
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where C  is an integration constant for which ( )R   equals zero at 1.134 or a  
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 0 0 00 2 ;  0.567z z z a     

Eq. (8.56) was derived from a similar transform by Bateman [7].  The electron elastic scattering intensity is given by a constant 
times the square of the amplitude given by Eq. (8.52).   
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RESULTS 
The magnitude of the single point element aperture distribution function, ( , , )a z  , convolved with the function 0( 0.567 )z a   

is shown graphically in Figure 8.4 in units of 0a .  The function was normalized to 2. 

The magnitude of the single point element autocorrelation function, ( , , )z r , convolved with the function 

0( 1.134 )z a   is shown graphically in Figure 8.5 in units of 0a .  The function was normalized to 2 and the constant of 

0.352183 was added to meet the boundary condition for the convolution integral. 
The experimental setup for the measuring the intensity of elastically scattered 500 eV electrons from an atomic beam of 

helium is shown in Figure 8.6. 
The experimental results of Bromberg [8], the extrapolated experimental data of Hughes [8], the small angle data of 

Geiger [9], and the semi-experimental results of Lassettre [8] for the elastic differential cross section for the elastic scattering of 
electrons by helium atoms are shown graphically in Figure 8.7.  The elastic differential cross section as a function of angle 
numerically calculated by Khare [8] using the first Born approximation and first-order exchange approximation also appear in 
Figure 8.7. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 8.6.   The incident electron and electron beams intersect and the scattered free electrons are detected in the far field. 
 

 

Figure 8.5.   The magnitude of the single point element 
autocorrelation function, ( , , )z r , convolved with the 

function 0( 1.134 )z a   is shown graphically in units of 0a .  

Figure 8.4.   The magnitude of the single point element 
aperture distribution function, ( , , )a z  , convolved with the 

function 0( 0.567 )z a   in units of 0a . 
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Figure 8.7. The experimental results of Bromberg [8], the extrapolated experimental data of Hughes [8], the small angle 
data of Geiger [9], and the semi-experimental results of Lassettre [8] for the elastic differential cross section for the elastic 
scattering of electrons by helium atoms and the elastic differential cross section as a function of angle numerically calculated by 
Khare [8] using the first Born approximation and first-order exchange approximation.   

 
These results, which are based on a quantum mechanical model, are compared with experimentation [8, 9].  The closed-form 
function (Eqs. (8.57) and (8.58)) for the elastic differential cross section for the elastic scattering of electrons by helium atoms is 
shown graphically in Figure 8.8.  The scattering amplitude function, ( )F s  (Eq. (8.52)), is shown as an insert. 
 
Figure 8.8.   The closed form function (Eqs. (8.57) and (8.58)) for the elastic differential cross section for the elastic scattering 
of electrons by helium atoms.  The scattering amplitude function, ( )F s  (Eq. (8.52)), is shown as an insert. 
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DISCUSSION 
The magnitude of the single point element autocorrelation function, ( , , )z r , convolved with the function 0( 1.134 )z a   

(Figure 8.5) and the electron pair correlation function, ( )P r , of Bonham [10] are similar.  According to Bonham [10], the 
electron radial distribution function, ( )D r , calculated from properly correlated CI wave functions for He is similar in shape to 
the ( )P r  function but its maximum occurs at a value of r  almost exactly half of that for ( )P r .  Thus, the function ( )D r  is 
similar to the magnitude of the single point element aperture distribution function, ( , , )a r z , (Figure 8.4).  ( )D r  and ( )P r  lead 
to a most probable structure for the He atom in which the electrons and the nucleus are collinear with the nucleus lying between 
the two electrons [4].  This is an average picture that is an ad hoc modification of the true model involving a three-point-body 
atom and a point-particle incident electron for which it is impossible to get neutral scattering, let alone the observed pattern 
shown in Figure 8.7.  Furthermore, even with this unjustified modification, it is apparent from Figure 8.7 that the modified 
quantum mechanical calculations fail completely at predicting the experimental results at small scattering angles; whereas, Eq. 
(8.57) predicts the correct scattering intensity as a function of angle.  Another problem for the quantum mechanical model is that 
the helium wave equation used to calculate the scattering is not the solution of the Schrödinger equation for the helium atom that 
gives the correct ionization energy.  Since it involves three bodies, the exact solution is impossible to be obtained.  Many 
solutions have been obtained with great effort using various perturbation and adjustable-parameter methods as given by 
McQuarrie [11].  Such solutions are very dubious in that they are non-unique, not based on physical laws, and are better 
classified as curve fitting techniques in that they use up to 1000 adjustable parameters to obtain the ionization energy [11]. 

In the far field, the solution of the Schrödinger equation for the amplitude of the scattered plane wave incident on a three 
dimensional static potential field ( )U r  is identical to Eq. (8.26) only if one assumes a continuous distribution of individual 

scattering points and replaces the sum over   in Eq. (8.26) with an integral over the scattering power lf  of point   replaced by 
the instantaneous value of the potential at the same point.  This result is the basis of the failures of Schrödinger’s interpretation 
that ( )x  is the amplitude of the electron over three-dimensional space in some sense since the entire electron must correspond 
to each point   and the superseding interpretation of Born that ( )x  represents a probability function of a point electron.  The 
Born interpretation can only be valid if the speed of the electron is equal to infinity.  (The electron must be in all positions 
weighted by the probability density function during the time of the scattering event).  The correct aperture function for the Born 
interpretation is a Dirac delta function, ( )r , having a Fourier transform of a constant divided by 2s  which is equivalent to the 
case of the point nucleus (Rutherford Equation).  The Born interpretation must be rejected because the electron velocity cannot 
exceed c  without violating special relativity.   

Solutions to the Schrödinger equation involve the set of Laguerre functions, spherical Bessel functions, and Newmann 
functions.  From the infinite set of solutions to real problems, a linear combination of functions and the amplitude and phases of 
these functions are sought which gives results that are consistent with scattering experiments.  The Schrödinger equation is a 
statistical model representing an approximation to the actual nature of the bound electron.  Statistical models are good at 
predicting averages as exemplified by the reasonable agreement between the calculated and experimental scattering results at 
large angles.  However, in the limit of zero scattering angle, the results calculated via the Schrödinger equation are not in 
agreement with experimentation.  In the limit, the “blurred” representation cannot be averaged, and only the exact description of 
the electron will yield scattering predictions which are consistent with the experimental results. 

Also, a contradiction arises in the quantum mechanical scattering calculation.  For hydrogen electron orbitals, the n    
orbital is equivalent to an ionized electron.  According to the quantum mechanical scattering model, the incident ionized electron 
is a plane wave.  However, substitution of n    into the solution of the Schrödinger equation yields a radial function that has an 
infinite number of nodes and exists over all space.  The hydrogen-like radial functions have 1n    nodes between 0r   and 
r   .  In fact, as n   the Schrödinger equation becomes the equation of a linear harmonic oscillator [12].  The wavefunction 
shows sinusoidal behavior; thus, the wavefunction for the free electron can not be normalized and is infinite.  In addition, the 
angular momentum of the free electron is infinite since it is given by   21    where  .  The results of the Davison-

Germer experiment confirm that the ionized electron is a plane wave.  In contrast, for the present atomic orbital model, as n  
goes to infinity the electron is a plane wave with wavelength /h p   as shown in the Electron in Free Space section. 

Although there are parallels in the mathematical derivations wherein the Schwartz inequality is invoked, the physics of 
the Heisenberg Uncertainty Principle is quite distinct from the physics of the rise-time/band-width relationship of classical 
mechanics [13] as given in the Resonant Line Shape and Lamb Shift section.  The Heisenberg Uncertainty Principle is derived 
from the probability model of the electron by applying the Schwartz inequality [14] to obtain the “indefiniteness” in the 
conjugate electron position and momentum in the absence of measurement; whereas, the physical rise-time/band-width 
relationship of classical mechanics is an energy conservation statement according to Parseval’s Theorem.  The Born model of the 
electron violates Special Relativity.  The failure of the Born and Schrödinger model of the electron to provide a consistent 
representation of the states of the electron from a bound state to an ionized state to a scattered state also represents a failure of 
the dependent Heisenberg Uncertainty Principle. 

In contrast, the Maxwellian, exact atomic orbital model provides a continuous representation of all states of the electron 
including the ionized state as a plane wave having the de Broglie wavelength as given in the Electron in Free Space section.  
Using the exact, unique solution of the helium atom given in the Two-Electron Atom section, in a closed-form solution, the 
Maxwellian model predicts the experimental results of the electron scattering from helium for all angles.  The solution of the 
helium atom is further proven to be correct since it is used to solve up through twenty-electron atoms in the Three- Through 
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Twenty-Electron Atoms section and 100 excited-state energy levels in the Excited States of Helium section.  In the former case, 
the physical approach was applied to multielectron atoms that were solved exactly disproving the deep-seated view that such 
exact solutions cannot exist according to quantum mechanics.  The predictions from general solutions for one through twenty-
electron atoms are in remarkable agreement with the experimental values known for 400 atoms and ions.  In the latter case, the 
results given for any given n  and   quantum number in the equations agree remarkably well—up to 6 significant figures where 
the data is obtainable to that accuracy.  These consistent results and the failure of the true quantum mechanical model as well as 
the unphysical Born approximation disprove the nature of the electron as a point particle which further disproves the primary 
assumption of quantum mechanics.  The results directly prove that the electron is an extended particle and specifically show, in 
the case of the helium atom, that the electron function comprises two paired, electron atomic orbitals at a radius given by Eq. 
(8.44) as derived in the Two-Electron Atom section.  Furthermore, the deep-seated notion that probability waves are required to 
explain the nature of the double-slit experiment is dispelled by classical predictions using the correct nature of the electron 
considered next. 
 
PHYSICS OF CLASSICAL ELECTRON DIFFRACTION RESOLVES THE WAVE-
PARTICLE DUALITY MYSTERY OF QUANTUM MECHANICS 
The beginning of the Wave-Particle Duality section describes how early 20th century theoreticians proclaimed that light and 
atomic particles have a wave-particle duality that was unlike anything in our common everyday experience.  The wave-particle 
duality is the central mystery of quantum mechanics—the one to which all others could ultimately be reduced.  The current 
mental picture of the two-slit experiment is shown in Figures 42.1-42.4.  The classical depiction of the two-slit-experiment 
shown in Figures 8.9-8.11 is very similar to the depiction of the quantum notion of the wave-particle duality shown in Figure 
42.4.  In fact, the mathematics of the quantum mechanical and classical pictures is essentially identical including the relationship 
between the transverse momentum and position given by Eqs. (8.60) and (8.61).  However, what is very different is the physics.  
Consider the quantum conundrum due to the nature of the photon and electron being point particles.  If each electron passes 
individually through one slit, with what does it “interfere?”  Although each electron arrives at the target at a single place and a 
single time, it seems that each has passed through—or somehow felt the presence of both slits at once.  Thus, the electron is 
understood in terms of a wave-particle duality as represented in Figure 42.4. 

Here, the point electron or photon is everywhere at once—rather than being local to the slits of nanometer dimensions it 
exits as a probability wave of equal amplitude from positive to negative infinity, simultaneously!  It is incident to and transmitted 
through both slits simultaneously, “guided” by the probability wave over all space with a phase that depends on the Heisenberg 
Uncertainty Principle: 

 
2

x  p


 (8.59) 

The phase contains the term ( )i s l k k r , where i sp  k k  is interpreted as the contribution to the uncertainty in the 

momentum of the incident particle on scattering, since ik  is the initial momentum and sk  is the final momentum of the 

scattered particle such as an electron.  In the classical picture, the phase also contains the term ( )i s l k k r , where i sk k  is the 

physical momentum change of the incident particle on scattering, since ik  is the initial momentum and sk  is the final 

momentum of the scattered particle.  In both cases, x  corresponds to the transverse displacement of the particle due to 
diffraction. 

Furthermore, each electron only goes through one slit classically, but it is imprinted with the wave character of the 
photon that it creates across both slits due to its interaction with the slit.  An electromagnetic wave exits.  Quantum mechanics 
reproduces the mathematics that corresponds to this physical electromagnetic wave by invoking a nonsensical waving 
probability.  Thus, it is stuck with the unfortunate result that the “wave-particle duality is unlike anything in our common 
everyday experience.”  Physics can now be reinstated over mysticism for this simple experiment based on an understanding of 
the physical nature of fundamental particles.  An outline of the classical explanation of the observations made on the double-slit 
experiment is shown in Figures 8.9A-F, 8.10, and 8.11. 
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Figure 8.9.   The electron-slit interaction is mediated by electron-induced radiation of photons from the split aperture that 
causes transverse electron displacements with the photon-momentum distribution imprinted onto that of the diffracting electrons 
such that the transverse momentum distribution in the far-field is a result of this interaction and is characteristic of the slit 
pattern.  (A) The approaching charged electron interacts with both slits by inducing slit mirror currents (blue).  (B) The slit’s 
electron mirror currents that mediate its interaction with the approaching charged electron cause emission of photons.  (C) The 
superposition of the photons forms a photon field characteristic of the slits as its source.  (D) The electron angular momentum 
vector precesses about that of an absorbed photon from the slit photon field.  (E) The photon is readmitted and the electron 
gained transverse momentum depending on the strength and duration of the electron’s interaction with the photon field wherein 
the photon’s angular momentum is conserved according to the change in the electron’s de Broglie wavelength.  (F) Rather than 

uncertainty in position and momentum according to the Uncertainty Principle: 2x  p
 , p  is the physical momentum change 

of the incident electron and x  is the physical distance change from the incident direction such that the electron distribution in 
the far field is the Fourier transform of the slit pattern. 
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Consider a beam of electrons propagating in the z-axis direction.  The electron is a plane-wave with momentum zk   

initially along the z-axis only.  The   of angular momentum of the free electron is perpendicular to the plane lamina and is 
initially in a random orientation relative to the z-axis.  To minimize the energy of interaction, the slit polarizes the electron such 
that its angular momentum becomes aligned parallel or antiparallel to the z-axis (Figure 8.9A).  The slit is comprised of matter 
having electrons that can provide image charges due to the electric field of the incident electron (Figure 8.9A).  The slit’s 
electron-mirror currents that mediate its interaction with the approaching charged electron cause emission of photons (Figure 
8.9B).  When one interacts with the electron (Figure 8.9C), the electron angular-frequency change corresponding to the elctron-
de-Broglie-wavelength change matches the frequency of the photon as given in the Classical Physics of the de Broglie 
Relationship section.  The result of this interaction over time is the reorientation and transverse displacement of the electron’s 
angular elastic diffraction, the energies are low, and the photons are large, encompassing and emanating from both slits.  Each 
photon has a quantized angular momentum of  .  The   of angular momentum of the electron precesses about the   of angular 
momentum vector of the absorbed photon to cause a momentum transfer from the z-axis to the transverse axis.  The photon is 
reemitted (Figure 8.9E), and the electron gained transverse momentum depending on the strength and duration of the electron’s 
interaction with the photon field wherein the photon’s angular momentum is conserved according to the change in the electron’s 
de Broglie wavelength. 

Over time, the electron beam statistically produces a uniform distribution across the slits.  (Here, the statistics are 
deterministic and local/causal unlike the quantum mechanical case.)  The photon pattern is also uniform across the slit.  Since the 
electron and each photon that mediates the slit-electron interaction have quantized angular momentum in units of  , the photon 
far-field pattern is imprinted on the electron beam pattern over time.  The resulting transverse-momentum map is given by the 
Fourier transform of the two-slit aperture which arises classically from a consideration of conservation of power flow.  The 
amplitude is periodically positive and negative corresponding to the cyclical reversal of the electron angular momentum as 
shown in Figure 8.10.  The amplitude decreases from the center line due to the requirement of an increasing momentum transfer 
along the transverse axis from the center line with a decreasing probability for a long-duration photon-electron interaction or 
coupling with multiple photons to achieve increasing transverse momentum transfer. 
 
Figure 8.10.   The amplitude of the transverse electron momentum is a sinc function due to the decreasing probability of 
photon interactions causing a periodic reversal of the electron’s angular momentum vector with an increasing transverse 
momentum transfer. 
 

 
 

Since the number of electrons hitting a given position over time goes as the electron kinetic energy, the intensity pattern is given 
by the square of the amplitude.  The predicted result shown in Figure 8.11 is the observed classical double slit interference 
pattern. 
 
Figure 8.11.   The classically predicted far-field electron distribution of the two-slit experiment matches that observed. 
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EQUATIONS OF CLASSICAL DIFFRACTION 
Consider the double-slit electron diffraction experiment shown in Figure 8.9.  The interaction with the slit can cause momentum 
transfer to the transverse direction that can be mediated by photons having   of angular momentum.  If the forward momentum 
is unchanged, then the electron is detected at x 0  in the far field.  However, momentum transfer from the z-axis to along the x-
axis in the far field may occur depending on the strength and the time duration of a photon-generated torque as given in the 
Stern-Gerlach Experiment subsection of the Free Electron section.  Also see Patz [15] and Slichter [16].  The spatial distribution 
of the electron position is determined by the conservation of momentum.  Thus, the electron source at the aperture is analogous 
to an antenna, and the spatial electron-density pattern has as a parallel to the radiation pattern of the antenna as given by Kong 
[17].  If each point on the electron across a diffraction slit can act as a point source of a spherical wave according to Huygens’ 
Principle, then the momentum pattern in the far field is given as the Fourier transform of the momentum-aperture function, and 
the electron density is given as the square of the amplitude of the Fourier transform.   

Thus, the result of the double-slit experiment given by Eq. (8.23) can be interpreted as the positions of the electrons due 
to conservation of momentum following a semi-elastic interaction with the slit apparatus.  The interaction is a time-dynamic 
equipotential and the forces statistically2 cause the electrons over time to propagate as spherical waves from each point of a 
Laplacian surface according to Huygens’ Principle.  The incident pattern over time is determined by the superposition of the 
position and momenta of the incident individual electrons.  The Fourier transform result given by Eq. (8.23) can be shown to 
arise by considering the diffraction of each electron individually. 

The free electron is unpolarized, but the minimum energy constraint with slit-interrelations causes the polarization of the 
incident electrons.  The angular momentum of the polarized electron may be parallel or antiparallel (negative direction) with 
respect to the z-axis.  As shown in the Electron in Free Space section, there is a correspondence between the properties of the 
states of the free electron based on interactions with photons and those of bound-excited-state electrons.  The time- and spherical 
harmonic current-density functions of bound and free-electron states comprise source currents for electromagnetic fields that are 
solutions of the wave equation as given in the Electron Source Current section.  As shown in the Selection Rules section, 
multipole fields of an electron follow the same Maxwellian physics as that of a macroscopic radiating source.  The radiation of a 
multipole of order (  , m ) carries m  units of the z component of angular momentum comprised of   per photon of energy 

 . 
The distribution as a function of the position of the detector must conserve the angular momentum of the electron having 

an intrinsic angular momentum of   and an induced multipole of order (  , m ).  The asymptotic electron-momentum total 

amplitude in the far field due to the scattering interactions of N  electrons with the slit mediated by photons with   of angular 
momentum follows from Eq. (8.27) given in the Classical Wave Theory of Electron Scattering section and Eq. (8.32) in the 
Classical Wave Theory Applied to Scattering from Atoms and Molecules section.  Consider the assembly of N  coherently 
scattered electrons.  The slit-electron interaction is an energy minimum or equipotential.  The angular terms of Eq. (8.27) sum to 

unity.  According to Huygens’ principle, the function 
i=1

i

N
ie  s r  of Eq. (8.32) represents the sum over each spherical wave source 

arising from the scattering of an incident plane wave from each point of the slit where the wavelength of the incident plane wave 
is given by the de Broglie equation /h p  .  (The Green Function of Eqs. (8.25-8.27), is also given by Eq. (6.62) of Jackson 
[3] as the solution of the wave equation (Eq. (6.58) of Jackson [3]) as given in the Spherical Wave subsection of the Equation of 
the Photon section.)  The sum is replaced by the integral over   of the single point element aperture distribution function.  For 
the case of a single slit, the aperture function is given by Eq. (8.15).  Then, the amplitude of the scattering in the far field given 
by Eqs. (8.16) and (8.32) is: 
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wherein the phase contains the term ( )i s l k k r , where i sk k  is proportional to the momentum change of the incident particle 

on scattering, since ik  is the initial momentum and sk  is the final momentum of the scattered electron.  This vector difference 
labeled by the symbol s  is given by: 
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The single-slit-momentum-amplitude pattern is then given by Eq. (8.22).  The intensity of electrons is proportional to their 
kinetic energy which carry the electrons to the analyzer where it was shown by Bonham to be required in order to insure 
continuity of power flow for wavelets from a single source [4] and was used as the basis of Eqs. (8.27) and (8.32).  The intensity 
pattern of electrons is then given as the square of the amplitude and, thus, the square of the momentum which is proportional to 
the electron energy.  It follows that the single-slit pattern is given as the square of Eq. (8.18) and the double-slit pattern is given 

 
2 Here, the underlying physics is deterministic.  Quantum mechanics postulates that the electron is a point-particle-probability wave wherein its sampling 
or measurement creates the statistics corresponding to a stochastic reality.  In general, the theory of statistics is based on deterministic but unknown 
information.  The concepts of quantum mechanics of an underlying distribution in a state of indeterminism as well as negative probability are nonsensical 
and are not a part of this classical result. 
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by Eq. (8.23). 
The double-slit experiment may be modeled physically, and a computer simulation outlined in the Computer Simulation 

of Classical Electron Diffraction section is posted on the web [18].  The interaction of each incoming electron with the slit or 
slits causes a redistribution of the incident momentum that is shown visually as a corresponding trajectory from the aperture to 
the detector. 

 
The algorithm uses N  electrons that statistically form a uniform distribution at the aperture.  To get the points of 

impact, the momentum-distribution pattern is calculated using Eq. (8.22) that arise from classical statistics.
 
 For diffraction at a 

single slit, the transverse-momentum-density map is given by: 

  2aCsin k x  (8.62) 

which is spatially diluted according to k x  and scaled according to the far field factor of 
a

f
.  The sine dependence of Eq. (8.62) 

is equivalent to that of the dot product of the plane lamina of the free electron with the z-axis.  Each incident electron that is 
initially polarized by the slit interaction precesses due to the photon mediated, interaction-generated torque to reorient the plane 
lamina wherein the cross section of the interaction is proportional to this dot product.  The sine dependence can easily be 
appreciated by considering that the interaction is concentrated at one end of the plane-lamina free electron when it is oriented 
perpendicularly to the slit; whereas, it is evenly distributed throughout the plane lamina when it is parallel to the slit. 

The intensity of the one-slit pattern is then given as the square of the amplitude.  Since the two-slit aperture pattern is the 
convolution of the single-slit pattern with two delta functions, the intensity of the two-slit experiment is given as cosine squared 
fringes of the single-slit pattern as given by Eq. (8.23) wherein the extended electron interacts with both slits with conservation 
of momentum to give the modulation of the single-slit momentum pattern.  Thus, the superposition of electrons gives the 
classical result.  The double-slit interference pattern associated with the wave-particle duality arises naturally whether electrons 
add over time or space. 

CP predicts that the angular momentum of electrons or photons periodically reverses direction as a function of the 
transverse distance in the far field of the one-, two- or n-slit diffraction experiment.  The pattern is not due to constructive 
interference of electron- or photon-probability waves; rather it is a map of the transverse momentum.  The intensity is given by 
the amplitude squared, since energy and, thus, the number of electrons or photons is proportional to the amplitude of the 
momentum squared.  The amplitude varies from a maximum to a minimum at which point the angular momentum of the photon 
or electron reverses direction, then it goes to a maximum again over a periodic cycle.  The amplitude decreases away from the 
longitudinal axis of the slit in the transverse direction since the probability of multiple reversals is low.  The amplitude also 
decreases when there is a large change in the angular momentum that is redirected to a transverse momentum component 
corresponding to a large torque or a long interaction time. 

This can be tested with electrons by polarizing a beam using a Stern-Gerlach analyzer before the slit to select only 
electrons polarized parallel or antiparallel to the z-axis (the propagation direction of the beam).  These electrons are then 
analyzed in the far field with a second Stern-Gerlach-type analyzer, which determines the polarization as a function of position 
in the transverse plane or along a transverse axis.  Alternate polarization as a function of transverse distance confirms this 
mechanism of the n-slit pattern.   

Recently, it was shown that the induction of surface currents on a metal sheet parallel to the propagation direction of the 
electron beam of a double-slit experiment interfered with the pattern as expected [19-20].  Furthermore, the double slit 
experiment has been demonstrated on a macroscopic scale using droplets bouncing on a vertically vibrated bath [21].  Here the 
localized droplets are coupled to surface waves generated in the bath and random transverse deviations imposed by restrictions 
of two slits results in a double slit pattern over many flights of droplets to a detector analogous to the transverse deviations of 
localized electrons or photons during flight due to interactions with the slits and corresponding currents and electromagnetic 
waves described here.  In other recent experiments, the classical mechanism of the double slit experiment has been directly 
confirmed for photons.  The results of Kocsis et al. [22] are consistent with the interpretation that photons have a determined 
position and momentum, and with an appropriately sensitive measurement apparatus, the causal transverse momentum and 
position change imparted by close double slits over an ensemble of photons that individually travel through a slit of the pair can 
be determined wherein the far-field pattern of the superposition of the transverse displacements imparted by the slit interaction 
over the ensemble is an interference pattern.  The old view of constructive and destructive interference of waves is disproved.  
Photons cannot be created or destroyed by constructive or destructive interference, respectively.  The pattern is merely due to 
photon trajectories corresponding to conservation of momentum altered by photons propagating through close slits.  The 
uncertainty principle as the mechanism of the double-slit interference pattern is similarly disproved by the experiments of Durr et 
al. [23] as shown in the Wave-Particle Duality is Not Due to the Uncertainty Principle section.  Again, the appearance and 
cancellation of the interference pattern, which in this case involves 85Rb  atoms diffracted from standing light waves as the 
atomic states are manipulated, is predicted classically as a transverse position density pattern corresponding to the transverse 
momentum distribution caused by the interaction of the manipulated states in the atoms with the standing light waves. 
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Chapter 9 
 
EXCITED STATES OF HELIUM 
  
 
 
 
 
Bound electrons are described by a charge-density (mass-density) function that is the product of a radial delta function 
( ( ) ( )nf r r r  ), two angular functions (spherical harmonic functions), and a time harmonic function.  Thus, a bound electron 

is a dynamic “bubble-like” charge and current-density function.  The two-dimensional spherical surface can exist in a bound 
state at only specified distances from the nucleus.  More explicitly, the uniform current-density function 0

0 ( , )Y    (Eqs. (1.27-

1.29)) called the electron atomic orbital that gives rise to the spin of the electron is generated from two current-vector fields 
(CVFs).  Each CVF comprises a continuum of correlated orthogonal great circle current-density elements (one dimensional 
"current loops").  The current pattern comprising each CVF is generated over a half-sphere surface by a set of rotations of two 

orthogonal great circle current loops that serve as basis elements about each of the  , ,0 x y zi i i  and 
1 1

, ,
2 2

  
 

x y zi i i -axis; 

the span being   radians.  Then, the two CVFs are convoluted, and the result is normalized to exactly generate the continuous 
uniform electron current density function 0

0 ( , ) Y  covering a spherical shell and having the three angular momentum 

components of /
4xy   L


 and 
2




zL  (Figure 1.23)1.   

The spin function of the electron corresponds to the nonradiative 1n  ,   = 0 state which is well known as an s state or 
orbital.  (See Figure 1.1 for the charge function and Figure 1.22 for the current function.)  In cases of orbitals of excited states 
with the   quantum number not equal to zero and which are not constant as given by Eq. (1.27), the constant spin function is 
modulated by a time and spherical harmonic function as given by Eq. (1.29) and shown in Figure 1.2.  The modulation or 
traveling charge-density wave corresponds to an orbital angular momentum in addition to a spin angular momentum.  These 
states are typically referred to as p, d, f, etc. orbitals. 

Each atomic orbital is a spherical shell of negative charge ( total charge e  ) of zero thickness at a distance nr  from the 

nucleus ( charge Ze  ).  It is well known that the field of a spherical shell of charge is zero inside the shell and that of a point 
charge at the origin outside the shell [1] (See Figure 1.32).  The field of each electron can be treated as that corresponding to a 

e  charge at the origin with 
2

04

e

r


E  for nr r  and 0E  for nr r  where nr  is the radius of the electron atomic orbital.  

Thus, as shown in the Two-Electron Atoms section, the central electric fields due to the helium nucleus are 
2

0

2

4

e

r
E  and 

2
04

e

r
E  for 1r r  and 1 2r r r  , respectively.  In the ground state of the helium atom, both electrons are at 1 2 00.567r r a  .  

When a photon is absorbed, one of the initially indistinguishable electrons called electron 1 moves to a smaller radius, and the 
other called electron 2 moves to a greater radius.  In the limiting case of the absorption of an ionizing photon, electron 1 moves 
to the radius of the helium ion, 1 00.5r a , and electron 2 moves to a continuum radius, 2r   .  When a photon is absorbed by 

the ground state helium atom it generates an effective charge, P effZ  , within the second atomic orbital such that the electrons 

move in opposite radial directions while conserving energy and angular momentum.  We can determine P effZ   of the “trapped 

photon” electric field by requiring that the resonance condition is met for photons of discrete energy, frequency, and wavelength 
for electron excitation in an electromagnetic potential energy well. 

 
1 /   designates both the positive and negative vector directions along an axis in the xy-plane. 
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It is well known that resonator cavities can trap electromagnetic radiation of discrete resonant frequencies.  The atomic 
orbital is a resonator cavity that traps single photons of discrete frequencies.  Thus, photon absorption occurs as an excitation of 
a resonator mode.  The free space photon also comprises a radial Dirac delta function, and the angular momentum of the photon 

given by   41
Re ( )

8
dx

c
   m r E B*   in the Photon section is conserved [2] for the solutions for the resonant photons and 

excited state electron functions as shown for one-electron atoms in the Excited States of the One-Electron Atom (Quantization) 
section.  The correspondence principle holds.  That is the change in angular frequency of the electron is equal to the angular 
frequency of the resonant photon that excites the resonator cavity mode corresponding to the transition, and the energy is given 
by Planck’s equation.  It can be demonstrated that the resonance condition between these frequencies is to be satisfied in order to 
have a net change of the energy field [3].   

In general, for a macroscopic multipole with a single m  value, a comparison of Eq. (2.62) and Eq. (2.55) shows that the 
relationship between the angular momentum zM , energy U , and angular frequency   is given by Eq. (2.63): 

 zdM m dU

dr dr
  (9.1) 

independent of r  where m  is an integer.  Furthermore, the ratio of the square of the angular momentum, 2M , to the square of 
the energy, 2U , for a pure (  , m ) multipole follows from Eq. (2.55) and Eqs. (2.60-2.62) as given by Eq. (2.64): 

 
2 2

2 2

M m

U 
  (9.2) 

From Jackson [4], the quantum mechanical interpretation is that the radiation from such a multipole of order (  , m ) carries off 
m  units of the z component of angular momentum per photon of energy  .  However, the photon and the electron can each 
possess only   of angular momentum which requires that Eqs. (9.1-9.2) correspond to a state of the radiation field containing m  
photons.   

As shown in the Excited States of the One-Electron Atom (Quantization) section during excitation the spin, orbital, or 
total angular momentum of the atomic orbital can change by zero or    .  The selection rules for multipole transitions between 
quantum states arise from conservation of the photon’s multipole moment and angular momentum of  .  In an excited state, the 
time-averaged mechanical angular momentum and rotational energy associated with the traveling charge-density wave on the 
atomic orbital is zero (Eqs. (1.76-1.77)), and the angular momentum of   of the photon that excites the electronic state is carried 
by the fields of the trapped photon.  The amplitudes of the rotational energy, angular momentum, and moment of inertia that 
couple to external magnetic and electromagnetic fields are given by Eqs. (1.71), (1.72), and (1.73), respectively.  Furthermore, 
the electron charge-density waves are nonradiative due to the angular motion as shown in the Appendix I: Nonradiation 
Condition.  But, excited states are radiative due to a radial dipole that arises from the presence of the trapped photon as shown in 
the Instability of Excited States section corresponding to 1m   in Eqs. (9.1-9.2). 

Then, as shown in the Excited States of the One-Electron Atom (Quantization) section and the Electron Mechanics and 
the Corresponding Classical Wave Equation for the Derivation of the Rotational Parameters of the Electron section, the total 
number of multipoles, ,sN , of an energy level corresponding to a principal quantum number n  where each multipole 

corresponds to an   and m  quantum number is:  

  
1 1

2 2 2
,

0 0

1 2 1 1 2 1
n n

s
m

N n
  

  

          





  

     (9.3) 

Any given state may be due to a direct transition or due to the sum of transitions between all intermediate states wherein the 
multiplicity of possible multipoles increases with higher states.  Then, the relationships between the parameters of Eqs. (9.1) and 
(9.2) due to transitions of quantized angular momentum  , energy  , and radiative via a radial dipole are given by substitution 
of 1m   and normalization of the energy U  by the total number of degenerate multipoles, 2n .  This requires that the photon’s 
electric field superposes that of the nucleus for 1 2r r r   such that the radial electric field has a magnitude proportional to /e n  

at the electron 2 where 2,3,4,...n   for excited states such that U  is decreased by the factor of 21/ n . 
Energy is conserved between the electric and magnetic energies of the helium atom as shown by Eq. (7.42).  The helium 

atom and the “trapped photon” corresponding to a transition to a resonant excited state have neutral charge and obey Maxwell’s 
equations.  Since charge is relativistically invariant, the energies in the electric and magnetic fields of the electrons of the helium 
atom must be conserved as photons are emitted or absorbed.  The corresponding forces are determined from the requirement that 
the radial excited-state electric field has a magnitude proportional to /e n  at electron 2. 

The “trapped photon” is a “standing electromagnetic wave” which actually is a traveling wave that propagates on the 
surface around the z-axis, and its source current is only at the atomic orbital.  The time-function factor, ( )k t , for the “standing 
wave” is identical to the time-function factor of the atomic orbital in order to satisfy the boundary (phase) condition at the atomic 
orbital surface.  Thus, the angular frequency of the “trapped photon” has to be identical to the angular frequency of the electron 
atomic orbital, n , given by Eq. (1.36).  Furthermore, the phase condition requires that the angular functions of the “trapped 

photon” have to be identical to the spherical harmonic angular functions of the electron atomic orbital.  Combining ( )k t  with the 

 -function factor of the spherical harmonic gives  ni m te    for both the electron and the “trapped photon” function. 
The photon “standing wave” in an excited electronic state is a solution of Laplace’s equation in spherical coordinates 
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with source currents given by Eq. (2.11) “glued” to the electron and phase-locked to the electron current density wave that travel 
on the surface with a radial electric field.  As given in the Excited States of the One-Electron Atom (Quantization) section, the 
photon field is purely radial since the field is traveling azimuthally at the speed of light even though the spherical harmonic 
function has a velocity less than light speed given by Eq. (1.35).  The photon field does not change the nature of the electrostatic 
field of the nucleus or its energy except at the position of the electron.  The photon “standing wave” function comprises a radial 
Dirac delta function that “samples” the Laplace equation solution only at the position infinitesimally inside of the electron 
current-density function and superimposes with the proton field to give a field of radial magnitude corresponding to a charge of 

/e n  where 2,3, 4,...n  .   

The electric field of the nucleus for 1 2r r r   is: 

 
2

04nucleus

e

r
E  (9.4) 

From Eq. (2.15), the equation of the electric field of the “trapped photon” for 2r r  where 2r  is the radius of electron 2, is:  

       
2

0
  , , | 02

0 2

1
1 , Re ,

4
    



         
nim tm

r photon n l m nr r

e
Y Y e r r

r n
E  (9.5) 

The total central field for 2r r  is given by the sum of the electric field of the nucleus and the electric field of the “trapped 
photon.” 
 total nucleus photon E E E  (9.6) 

Substitution of Eqs. (9.4) and (9.5) into Eq. (9.6) gives for 2r r , 
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 (9.7) 

For 2r r  and 0m  , the total radial electric field is: 

 
2

0

1

4r total

e

n r
E  (9.8) 

The result is equivalent to Eq. (2.17) of the Excited States of the One-Electron Atom (Quantization) section. 
In contrast to shortcomings of quantum-mechanical equations, with classical physics (CP), all excited states of the helium 

atom can be exactly solved in closed form.  The radii of electron 2 are determined from the force balance of the electric, 
magnetic, and centrifugal forces that corresponds to the minimum of energy of the system.  The excited-state energies are then 
given by the electric energies at these radii.  All singlet and triplet states with 0  or 0  are solved exactly except for small 
terms corresponding to the magnetostatic energies in the magnetic fields of excited-state electrons, spin-nuclear interactions, and 
the very small term due to spin-orbit coupling.  Spin-nuclear interactions resulted in the use of Hea  calculated from Eq. (1.259) 

using the reduced electron mass (Eqs. (1.252-1.255)) rather than 0a  given by Eq. (1.255).  Furthermore, a table of the spin-orbit 

energies was calculated for 1  to compare to the effect of different   quantum numbers.  For over 100 states, the agreement 
between the predicted and experimental results is remarkable. 
 
SINGLET EXCITED STATES WITH 0  ( 12 11 1s s ns  

  ) 
With 0 , the electron source current in the excited state is a constant function given by Eq. (1.27) that spins as a globe about 
the z-axis: 

    0
02

( , , , ) [ ( )] , ,
8

m
n

e
r t r r Y Y

r
       


      (9.9) 

As given in the Derivation of the Magnetic Field section in Chapter One and by Eq. (11.391), the current is a function of sin  
which gives rise to a correction of 2/3 to the field given by Eq. (7.6) and, correspondingly, the magnetic force of two-electron 
atoms given by Eq. (7.24).  The vector orientations of the electrons and the derivation of the magnetic force is given in Appendix 
VI.  The balance between the centrifugal and electric and magnetic forces follows from Eq. (7.32): 

 
2 2 2 2

3 2 3
2 2 0 2 2

1 2 1
( 1)

4 3 2
e

e e

m v e
s s

r m r n r n m r
   
 

 (9.10) 

with the exceptions that the electric and magnetic forces are reduced by a factor of 
1

n
 since the corresponding charge from Eq. 

(9.8) is 
e

n
 and the magnetic force is further corrected by the factor of 2/3.  With 

1

2
s  , 

 2

3
4

3 Her n a

 
 
  
 

        2,3, 4,...n   (9.11) 
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The excited-state energy is the energy stored in the electric field, eleE , given by Eqs. (1.263), (1.264), and (10.102) which 
is the energy of electron 2 relative to the ionized electron at rest having zero energy: 

 
2

0 2

1

8ele

e
E

n r
   (9.12) 

where 2r  is given by Eq. (9.11) and from Eq. (9.8), 1/Z n  in Eq. (1.264).  The energies of the various singlet excited states of 

helium with 0  appear in Table 9.1. 
As shown in the Special Relativistic Correction to the Ionization Energies section the electron possesses an invariant 

charge-to-mass ratio (
e

e

m
) angular momentum of  , and magnetic moment of a Bohr magneton ( B ).  This invariance feature 

provides for the stability of multielectron atoms as shown in the Two-Electron Atoms section and the Three- Through Twenty-
Electron Atoms section.  This feature also permits the existence of excited states wherein electrons magnetically interact.  The 
electron’s motion corresponds to a current which gives rise to a magnetic field with a field strength that is inversely proportional 
to its radius cubed as given in Eq. (9.10) wherein the magnetic field is a relativistic effect of the electric field as shown by 
Jackson [5].  Since the forces on electron 2 due to the nucleus and electron 1 (Eq. (9.10)) are radial/central, invariant of 1r , and 

independent of 1r  with the condition that 1 2r r , 2r  can be determined without knowledge of 1r .  But, once 2r  is determined, 1r  

can be solved using the equal and opposite magnetic force of electron 2 on electron 1 and the central Coulombic force 
corresponding to the nuclear charge of 2e .  Using Eq. (9.10), the force balance between the centrifugal and electric and 
magnetic forces is 
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 (9.13) 

With 
1

2
s  , 

 3 3 3
1 2 1 2

12 6
0

3 3

n n
r r r r    

 
        2,3,4,...n   (9.14) 

where 2r  is given by Eq. (9.11) and 1r  and 2r  are in units of Hea .  To obtain the solution of cubic Eq. (9.14) [6], let 

 3
2

6

3

n
g r              2,3,4,...n   (9.15) 

Then, Eq. (9.14) becomes: 
 3

1 12 0r gr g    (9.16) 
and the roots are: 
 11r A B   (9.17) 

 12 3
2 2

A B A B
r i

 
    (9.18) 

 13 3
2 2

A B A B
r i

 
    (9.19) 

where 

 
2 3

33 3
8

2 4 27 2

g g g g
A z      (9.20) 

and 

 
2 3

33 3
8

2 4 27 2

g g g g
B z      (9.21) 

The complex number z  is defined by 

  32
1 1 cos sin

27
iz i g re r i          (9.22) 

where the modulus, r , and argument,  , are 

 
32

27
r g  (9.23) 

and 

  1sin 1/
2

r
    (9.24) 

respectively.  The cube roots are: 
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 /33 3 3 cos sin
3 3

iz re r i      
 

 (9.25) 

 /33 3 3 cos sin
3 3

iz re r i       
 

 (9.26) 

so, 

 3 cos sin
2 3 3

g
A r i

    
 

 (9.27) 

and 

 3 cos sin
2 3 3

g
B r i

    
 

 (9.28) 

The physical root 1r  is from the roots that are real and distinct: 

 
1/6 1/6 1/6

11 12 13

8 8 8
2 cos ; cos 3 sin ; cos 3 sin

27 3 27 3 3 27 3 3
r g r g r g

                                   
 (9.29) 

 

Table 9.1.  Calculated and experimental energies of He I singlet excited states with 0  (  12 11 1s s ns ). 

 
n  

 

1r  

( Hea ) 
a
  

 

2r  

( Hea ) 
b
  

 
Term  

Symbol 

 

eleE  

 
CP  

He I Energy Levels 
c
 

(eV)

 
NIST  

He I Energy 
Levels 

d
 

(eV) 

 
Difference 
CP-NIST 

(eV) 

 
Relative 

Difference 
e 

 
(CP-NIST) 

2 0.501820 1.71132 1s2s 1S -3.97465 -3.97161 -0.00304 0.00077 

3 0.500302 2.71132 1s3s 1S -1.67247 -1.66707 -0.00540 0.00324 

4 0.500088 3.71132 1s4s 1S -0.91637 -0.91381 -0.00256 0.00281 

5 0.500035 4.71132 1s5s 1S -0.57750 -0.57617 -0.00133 0.00230 

6 0.500016 5.71132 1s6s 1S -0.39698 -0.39622 -0.00076 0.00193 

7 0.500009 6.71132 1s7s 1S -0.28957 -0.2891 -0.00047 0.00163 

8 0.500005 7.71132 1s8s 1S -0.22052 -0.2202 -0.00032 0.00144 

9 0.500003 8.71132 1s9s 1S -0.17351 -0.1733 -0.00021 0.00124 

10 0.500002 9.71132 1s10s 1S -0.14008 -0.13992 -0.00016 0.00116 

11 0.500001 10.71132 1s11s 1S -0.11546 -0.11534 -0.00012 0.00103 

   Avg. -0.00144 0.00175
a Radius of the inner electron 1 from Eq. (9.29). 
b Radius of the outer electron 2 from Eq. (9.11). 
c Classical physics (CP) calculated energy levels given by the electric energy (Eq. (9.12)). 
d Experimental NIST levels [7] with the ionization potential defined as zero. 
e (Theoretical-Experimental)/Experimental. 
 

TRIPLET EXCITED STATES WITH 0  ( 12 11 1   
 s s ns ) 

For the 0  singlet state, the time-averaged spin angular momentum of electron 2 is zero as given in Appendix VI.  A triplet 
state requires the further excitation to unpair the spin states of the two electrons.  The angular momentum corresponding to the 
excited state is   and the angular momentum change corresponding to the spin-flip is also   as given in the Magnetic 
Parameters of the Electron (Bohr Magneton) section.  Then, the triplet state comprises spin interaction terms between the two 
electrons plus a contribution from the unpairing photon.  As shown in the Resonant Precession of the Spin-1/2-Current-Density 
Function Gives Rise to the Bohr Magneton section, the electron spin angular momentum gives rise to a trapped photon with   of 
angular momentum along an S -axis.  Then, the spin state of each of electron 1 and 2 comprises a photon standing wave that is 
phase-matched to a spherical harmonic source current, a spherical harmonic dipole  , sinmY     with respect to the S -axis.  

The dipole spins about the S -axis at the angular velocity given by Eq. (1.36) with   of angular momentum.  To conserve 
angular momentum, electron 2 rotates in the opposite direction about S , the axis of the photon angular momentum due to the 

spin, and this rotation corresponds to 
2

3
   of angular momentum relative to S .  The corresponding angular momentum 

components of electron 2 due to spin, unpairing, and rotation are: 



Chapter 9 306

 
3 3 2 3 4 3

4 4 3 4 3 4Z Z Z

 
    
 

S i i     (9.30a) 
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S i i
   

 (9.30b) 

The corresponding angular momentum components of electron 1 are   and 
3

4
 , respectively.  The magnetic interaction of 

each electron is equivalent to the magnetic field corresponding to a magnetic moment of B  interacting with an aligned 

magnetic momentum of 
4 3

3 4 B .  Since the triplet electron-electron interactions are twice those of the singlet case, the triplet 

magnetic force for electron 2 is twice that of the singlet states as shown in Appendix VI:  

 
2 2 2 2

3 2 3
2 2 0 2 2

1 2 1
2 ( 1)

4 3 2
e

e e

m v e
s s

r m r n r n m r
   
 

 (9.31) 

With 
1

2
s  , 
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3
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        2,3, 4,...n   (9.32) 

The excited-state energy is the energy stored in the electric field, eleE , given by Eq. (9.12) where 2r  is given by Eq. (9.32).  The 

energies of the various triplet excited states of helium with 0  appear in Table 9.2. 
Using 2r  (Eq. (9.32)), 1r  can be solved using the equal and opposite magnetic force of electron 2 on electron 1 and the 

central Coulombic force corresponding to the nuclear charge of 2e .  Using Eq. (9.31), the force balance between the centrifugal 
and electric and magnetic forces is: 
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With 
1

2
s  , 

 3 3 3
1 2 1 2
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0
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        2,3, 4,...n   (9.34) 

where 2r  is given by Eq. (9.32) and 1r  and 2r  are in units of Hea .  To obtain the solution of cubic Eq. (9.34), let 

 3
2

3

3

n
g r              2,3, 4,...n   (9.35) 

Then, Eq. (9.34) becomes: 
 3

1 12 0r gr g    (9.36) 

Using Eqs. (9.16-9.29), the physical root 1r  is from the roots that are real and distinct: 
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Table 9.2.   Calculated and experimental energies of He I triplet excited states with 0  (  12 11 1s s ns ). 

 
n  

 

1r  

( Hea ) 
a
  

 

2r  

( Hea ) 
b
  

 
Term 

Symbol 

 

eleE  

 
CP  

He I Energy Levels 
c
 

(eV)

 
NIST  

He I Energy 
Levels 

d
 

(eV) 

 
Difference 
CP-NIST 

(eV) 

 
Relative 

Difference 
e 

 
(CP-NIST) 

2 0.506514 1.42265 1s2s 3S -4.78116 -4.76777 -0.01339 0.00281 

3 0.500850 2.42265 1s3s 3S -1.87176 -1.86892 -0.00284 0.00152 

4 0.500225 3.42265 1s4s 3S -0.99366 -0.99342 -0.00024 0.00024 

5 0.500083 4.42265 1s5s 3S -0.61519 -0.61541 0.00022 -0.00036 

6 0.500038 5.42265 1s6s 3S -0.41812 -0.41838 0.00026 -0.00063 

7 0.500019 6.42265 1s7s 3S -0.30259 -0.30282 0.00023 -0.00077 

8 0.500011 7.42265 1s8s 3S -0.22909 -0.22928 0.00019 -0.00081 

9 0.500007 8.42265 1s9s 3S -0.17946 -0.17961 0.00015 -0.00083 

10 0.500004 9.42265 1s10s 3S -0.14437 -0.1445 0.00013 -0.00087 

11 0.500003 10.42265 1s11s 3S -0.11866 -0.11876 0.00010 -0.00087 

    Avg. -0.00152 -0.00006
a Radius of the inner electron 1 from Eq. (9.37). 
b Radius of the outer electron 2 from Eq. (9.32). 
c Classical physics (CP) calculated energy levels given by the electric energy (Eq. (9.12)). 
d Experimental NIST levels [7] with the ionization potential defined as zero. 
e (Theoretical-Experimental)/Experimental. 
 
SINGLET EXCITED STATES WITH 0  
With 0 , the electron source current in the excited state is the sum of constant and time-dependent functions where the latter, 
given by Eq. (1.29), travels about the z-axis.  The current due to the time dependent term of Eq. (1.29) corresponding to p, d, f, 
etc. orbitals is: 
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 (9.38) 

where to keep the form of the spherical harmonic as a traveling wave about the z-axis, '
n nm   and N  and 'N  are 

normalization constants.  The vectors are defined as: 
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 (9.39) 

 ˆ ˆ r̂    (9.40) 

“^” denotes the unit vectors û 
u

u
, non-unit vectors are designated in bold, and the current function is normalized. 

Jackson [8] gives the general multipole field solution to Maxwell’s equations in a source-free region of empty space with 
the assumption of a time dependence ni te  : 
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 (9.41) 

where the cgs units used by Jackson are retained in this section.  The radial functions  f kr  and  g kr  are of the form: 

          1 1 2 2g kr A h A h       (9.42) 

,mX  is the vector spherical harmonic defined by: 
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where 

  1

i
 L r  (9.44) 

The coefficients  ,Ea m  and  ,Ma m  of Eq. (9.41) specify the amounts of electric  , m  multipole and magnetic  , m  

multipole fields, and are determined by sources and boundary conditions as are the relative proportions in Eq. (9.42).  Jackson 
gives the result of the electric and magnetic coefficients from the sources as 
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and 
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respectively, where the distribution of charge  , t x , current  , tJ x , and intrinsic magnetization  , txM  are harmonically 

varying sources:   nte  x ,   nte J x , and   nte xM .  From Eq. (9.38), the charge and intrinsic magnetization terms are zero.  

Since the source dimensions are very small compared to a wavelength ( max 1kr  ), the small argument limit can be used to give 

the magnetic multipole coefficient  ,Ma m  as: 
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where              2 1 !
2 1 !! 2 1 2 1 2 3 5 3 1
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 and the magnetic multipole moments are: 
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From Eq. (1.140), the geometrical factor of the surface current-density function of the atomic orbital about the z-axis is 
1

2

3


 
 
 

.  

Using the geometrical factor, Eqs. (9.47-9.48), and Eqs. (24.101) and (24.102) of Jackson [9], the multipole coefficient 

 ,Maga m  of the magnetic force of Eq. (7.24) is: 

    

1/2
3

1 12,
2 1 !! 2Maga m

      


  
 (9.49) 

For singlet states with 0 , a minimum energy is achieved with conservation of the photon’s angular momentum of   when 
the magnetic moments of the corresponding angular momenta relative to the electron velocity (and corresponding Lorentz forces 
given by Eq. (7.10)) superimpose negatively such that the spin component is radial ( ri -direction) and the orbital component is 

central ( ri -direction).  The amplitude of the orbital angular momentum   rotational orbitalL , given by Eq. (1.76) is: 
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 (9.50) 

Thus, using Eqs. (7.24), (9.8), (9.49-9.50), and Eq. (36) of Appendix VI, the magnetic force between the two electrons is: 
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 (9.51) 

and the force balance equation from Eq. (7.32) which achieves the condition that the sum of the mechanical momentum and 
electromagnetic momentum is conserved as given in Sections 6.6, 12.10, and 17.3 of Jackson [10] is: 

 
 

1/22 2 2 2

3 2 3
2 2 0 2

3
1 1 1 1 12 ( 1)

4 2 1 !! 2 2 1
e

e e

m v e
s s

r m r n r n m r
               

   
   

 (9.52) 

with 
1

2
s  , 
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        2,3, 4,...n   (9.53) 

The excited-state energy is the energy stored in the electric field, eleE , given by Eq. (9.12) where 2r  is given by Eq. (9.53).  The 

energies of the various singlet excited states of helium with 0  appear in Table 9.3. 
Using 2r  (Eq. (9.53)), 1r  can be solved using the equal and opposite magnetic force of electron 2 on electron 1 and the 

central Coulombic force corresponding to the nuclear charge of 2e .  Using Eq. (9.52), the force balance between the centrifugal 
and electric and magnetic forces is: 
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 (9.54) 

with 
1
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 2,3, 4,...n   

where 2r  is given by Eq. (9.53) and 1r  and 2r  are in units of Hea .  To obtain the solution of cubic Eq. (9.55), let 
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             2,3, 4,...n   (9.56) 

Then, Eq. (9.55) becomes: 

 3
1 12 0r gr g    (9.57) 

Three distinct cases arise depending on the value of  .  For 1  or 2 , g  of Eq. (9.56) is negative and A  and B  of Eqs. 
(9.20) and (9.21), respectively, are real:  

 33
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2 27
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and 
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The only real root is: 
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g
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 (9.60) 

while 12r  and 13r  are complex conjugates.  When 3  the magnetic force term (2nd term on RHS) of Eq. (9.52) is zero, and the 

force balance trivially gives: 

 1 0.5 Her a  (9.61) 

When 4,5,6... , g  (Eq. (9.56)) is positive; so, all three roots are real, but, the physical root is 13r .  In this case, note that 5n  , 

4 ; so, the factor g  of Eq. (9.56) is large ( 810 ).  Expanding 13r  (Eq. (9.29)) for large values of g  gives: 
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 (9.62) 
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Table 9.3.   Calculated and experimental energies of He I singlet excited states with 0 . 

 
n  

 
  

 

1r  

( Hea ) 
a  

 

2r  

( Hea ) 
b
  

 
Term 

Symbol 

 

eleE  

 
CP  

He I Energy Levels 
c

(eV)

 
NIST  
He I 

Energy 
Levels 

d
 

(eV) 

 
Difference 
CP-NIST 

(eV) 

 
Relative 

Difference 
e 

 
(CP-NIST) 

2 1 0.499929 2.01873 1s2p 1P0 -3.36941 -3.36936 -0.0000477 0.0000141 

3 2 0.499999 3.00076 1s3d 1D -1.51116 -1.51331  0.0021542 -0.0014235 

3 1 0.499986 3.01873 1s3p 1P0 -1.50216 -1.50036 -0.0017999 0.0011997 

4 2 0.500000 4.00076 1s4d 1D -0.85008 -0.85105  0.0009711 -0.0011411 

4 3 0.500000 4.00000 1s4f 1F0 -0.85024 -0.85037  0.0001300 -0.0001529 

4 1 0.499995 4.01873 1s4p 1P0 -0.84628 -0.84531    -0.0009676 0.0011446 

5 2 0.500000 5.00076 1s5d 1D -0.54407 -0.54458  0.0005089 -0.0009345 

5 3 0.500000 5.00000 1s5f 1F0 -0.54415 -0.54423 0.0000764 -0.0001404 

5 4 0.500000 5.00000 1s5g 1G -0.54415 -0.54417 0.0000159 -0.0000293 

5 1 0.499998 5.01873 1s5p 1P0 -0.54212 -0.54158    -0.0005429 0.0010025 

6 2 0.500000 6.00076 1s6d 1D -0.37784 -0.37813 0.0002933 -0.0007757 

6 3 0.500000 6.00000 1s6f 1F0 -0.37788 -0.37793 0.0000456 -0.0001205 

6 4 0.500000 6.00000 1s6g 1G -0.37788 -0.37789 0.0000053 -0.0000140 

6 5 0.500000 6.00000 1s6h 1H0 -0.37788 -0.37788    -0.0000045 0.0000119 

6 1 0.499999 6.01873 1s6p 1P0 -0.37671 -0.37638    -0.0003286 0.0008730 

7 2 0.500000 7.00076 1s7d 1D -0.27760 -0.27779 0.0001907 -0.0006864 

7 3 0.500000 7.00000 1s7f 1F0 -0.27763 -0.27766 0.0000306 -0.0001102 

7 4 0.500000 7.00000 1s7g 1G -0.27763 -0.27763 0.0000004 -0.0000016 

7 5 0.500000 7.00000 1s7h 1H0 -0.27763 -0.27763 0.0000006 -0.0000021 

7 6 0.500000 7.00000 1s7i 1I -0.27763 -0.27762    -0.0000094 0.0000338 

7 1 0.500000 7.01873 1s7p 1P0 -0.27689 -0.27667    -0.0002186 0.0007900 

    Avg. 0.0000240 -0.0000220
a Radius of the inner electron 1 from Eq. (9.60) for 1  or 2 , Eq. (9.61) for 3 , and Eq. (9.62) for 4,5,6... . 
b Radius of the outer electron 2 from Eq. (9.53). 
c Classical physics (CP) calculated energy levels given by the electric energy (Eq. (9.12)). 
d Experimental NIST levels [7] with the ionization potential defined as zero. 
e (Theoretical-Experimental)/Experimental. 
 
TRIPLET EXCITED STATES WITH 0   
For triplet states with 0 , a minimum energy is achieved with conservation of the photon’s angular momentum of   when the 
magnetic moments of the corresponding angular momenta superimpose negatively such that the spin component is central and 
the orbital component is radial.  Furthermore, as given for the triplet states with 0 , the spin component in Eqs. (9.51) and 
(9.52) is doubled.  Thus, the force balance equation derived in Appendix VI is given by: 
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         (9.64) 

 2,3, 4,...n   

The excited-state energy is the energy stored in the electric field, eleE , given by Eq. (9.12) where 2r  is given by Eq. (9.64).  The 

energies of the various triplet excited states of helium with 0  appear in Table 9.4. 



Excited States of Helium 

 

311

Using 2r  (Eq. (9.64)), 1r  can be solved using the equal and opposite magnetic force of electron 2 on electron 1 and the 

central Coulombic force corresponding to the nuclear charge of 2e .  Using Eq. (9.63), the force balance between the centrifugal 
and electric and magnetic forces is: 
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1
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 2,3, 4,...n   

where 2r  is given by Eq. (9.64) and 1r  and 2r  are in units of Hea .  To obtain the solution of cubic Eq. (9.66), let: 
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             2,3, 4,...n   (9.67) 

Then, Eq. (9.66) becomes: 

 3
1 12 0r gr g    (9.68) 

Using Eqs. (9.16-9.29), g  (Eq. (9.67)) is positive, and the physical root 1r  is from the roots that are real and distinct: 

 
1/6 1/6 1/6

11 12 13

8 8 8
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Table 9.4.   Calculated and experimental energies of He I triplet excited states with 0 . 

n    1r  

( Hea ) 
a
  

2r  

( Hea ) 
b
  

Term 
Symbol 

eleE  

 
CP  

He I Energy Levels 
c
 

(eV)

NIST  
He I Energy

Levels 
d
 

(eV) 

Difference 
CP-NIST 

(eV) 

Relative 
Difference 

e 
 

(CP-NIST) 

2 1 0.500571 1.87921 1s2p 3P0
2

-3.61957 -3.6233 0.0037349 -0.0010308 

2 1 0.500571 1.87921 1s2p 3P0
1

-3.61957 -3.62329 0.0037249 -0.0010280 

2 1 0.500571 1.87921 1s2p 3P0
0

-3.61957 -3.62317 0.0036049 -0.0009949 

3 1 0.500105 2.87921 1s3p 3P0
2

-1.57495 -1.58031 0.0053590 -0.0033911 

3 1 0.500105 2.87921 1s3p 3P0
1 -1.57495 -1.58031 0.0053590 -0.0033911 

3 1 0.500105 2.87921 1s3p 3P0
0 -1.57495 -1.58027 0.0053190 -0.0033659 

3 2 0.500011 2.98598 1s3d 3D3
-1.51863 -1.51373 -0.0049031 0.0032391 

3 2 0.500011 2.98598 1s3d 3D2
-1.51863 -1.51373 -0.0049031 0.0032391 

3 2 0.500011 2.98598 1s3d 3D1
-1.51863 -1.51373 -0.0049031 0.0032391 

4 1 0.500032 3.87921 1s4p 3P0
2

-0.87671 -0.87949 0.0027752 -0.0031555 

4 1 0.500032 3.87921 1s4p 3P0
1

-0.87671 -0.87949 0.0027752 -0.0031555 

4 1 0.500032 3.87921 1s4p 3P0
0

-0.87671 -0.87948 0.0027652 -0.0031442 

4 2 0.500003 3.98598 1s4d 3D3
-0.85323 -0.85129 -0.0019398 0.0022787 

4 2 0.500003 3.98598 1s4d 3D2
-0.85323 -0.85129 -0.0019398 0.0022787 
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n    1r  

( Hea ) 
a
  

2r  

( Hea ) 
b
  

Term 
Symbol 

eleE  

 
CP  

He I Energy Levels 
c
 

(eV)

NIST  
He I Energy

Levels 
d
 

(eV) 

Difference 
CP-NIST 

(eV) 

Relative 
Difference 

e 
 

(CP-NIST) 

4 2 0.500003 3.98598 1s4d 3D1
-0.85323 -0.85129 -0.0019398 0.0022787 

4 3 0.500000 3.99857 1s4f 3F0
3

-0.85054 -0.85038 -0.0001638 0.0001926 

4 3 0.500000 3.99857 1s4f 3F0
4

-0.85054 -0.85038 -0.0001638 0.0001926 

4 3 0.500000 3.99857 1s4f 3F0
2

-0.85054 -0.85038 -0.0001638 0.0001926 

5 1 0.500013 4.87921 1s5p 3P0
2

-0.55762 -0.55916 0.0015352 -0.0027456 

5 1 0.500013 4.87921 1s5p 3P0
1

-0.55762 -0.55916 0.0015352 -0.0027456 

5 1 0.500013 4.87921 1s5p 3P0
0

-0.55762 -0.55915 0.0015252 -0.0027277 

5 2 0.500001 4.98598 1s5d 3D3
-0.54568 -0.54472 -0.0009633 0.0017685 

5 2 0.500001 4.98598 1s5d 3D2
-0.54568 -0.54472 -0.0009633 0.0017685 

5 2 0.500001 4.98598 1s5d 3D1
-0.54568 -0.54472 -0.0009633 0.0017685 

5 3 0.500000 4.99857 1s5f 3F0
3

-0.54431 -0.54423 -0.0000791 0.0001454 

5 3 0.500000 4.99857 1s5f 3F0
4

-0.54431 -0.54423 -0.0000791 0.0001454 

5 3 0.500000 4.99857 1s5f 3F0
2

-0.54431 -0.54423 -0.0000791 0.0001454 

5 4 0.500000 4.99988 1s5g 3G4
-0.54417 -0.54417 0.0000029 -0.0000054 

5 4 0.500000 4.99988 1s5g 3G5
-0.54417 -0.54417 0.0000029 -0.0000054 

5 4 0.500000 4.99988 1s5g 3G3
-0.54417 -0.54417 0.0000029 -0.0000054 

6 1 0.500006 5.87921 1s6p 3P0
2

-0.38565 -0.38657 0.0009218 -0.0023845 

6 1 0.500006 5.87921 1s6p 3P0
1

-0.38565 -0.38657 0.0009218 -0.0023845 

6 1 0.500006 5.87921 1s6p 3P0
0

-0.38565 -0.38657 0.0009218 -0.0023845 

6 2 0.500001 5.98598 1s6d 3D3
-0.37877 -0.37822 -0.0005493 0.0014523 

6 2 0.500001 5.98598 1s6d 3D2
-0.37877 -0.37822 -0.0005493 0.0014523 

6 2 0.500001 5.98598 1s6d 3D1
-0.37877 -0.37822 -0.0005493 0.0014523 

6 3 0.500000 5.99857 1s6f 3F0
3

-0.37797 -0.37793 -0.0000444 0.0001176 

6 3 0.500000 5.99857 1s6f 3F0
4

-0.37797 -0.37793 -0.0000444 0.0001176 

6 3 0.500000 5.99857 1s6f 3F0
2

-0.37797 -0.37793 -0.0000444 0.0001176 

6 4 0.500000 5.99988 1s6g 3G4
-0.37789 -0.37789 -0.0000023 0.0000060 

6 4 0.500000 5.99988 1s6g 3G5
-0.37789 -0.37789 -0.0000023 0.0000060 

6 4 0.500000 5.99988 1s6g 3G3
-0.37789 -0.37789 -0.0000023 0.0000060 

6 5 0.500000 5.99999 1s6h 3H0
4

-0.37789 -0.37788 -0.0000050 0.0000133 

6 5 0.500000 5.99999 1s6h 3H0
5

-0.37789 -0.37788 -0.0000050 0.0000133 

6 5 0.500000 5.99999 1s6h 3H0
6

-0.37789 -0.37788 -0.0000050 0.0000133 

7 1 0.500003 6.87921 1s7p 3P0
2

-0.28250 -0.28309 0.0005858 -0.0020692 

7 1 0.500003 6.87921 1s7p 3P0
1

-0.28250 -0.28309 0.0005858 -0.0020692 

7 1 0.500003 6.87921 1s7p 3P0
0

-0.28250 -0.28309 0.0005858 -0.0020692 

7 2 0.500000 6.98598 1s7d 3D3
-0.27819 -0.27784 -0.0003464 0.0012468 

7 2 0.500000 6.98598 1s7d 3D2
-0.27819 -0.27784 -0.0003464 0.0012468 

7 2 0.500000 6.98598 1s7d 3D1
-0.27819 -0.27784 -0.0003464 0.0012468 

7 3 0.500000 6.99857 1s7f 3F0
3

-0.27769 -0.27766 -0.0000261 0.0000939 

7 3 0.500000 6.99857 1s7f 3F0
4

-0.27769 -0.27766 -0.0000261 0.0000939 

7 3 0.500000 6.99857 1s7f 3F0
2

-0.27769 -0.27766 -0.0000261 0.0000939 
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n    1r  

( Hea ) 
a
  

2r  

( Hea ) 
b
  

Term 
Symbol 

eleE  

 
CP  

He I Energy Levels 
c
 

(eV)

NIST  
He I Energy

Levels 
d
 

(eV) 

Difference 
CP-NIST 

(eV) 

Relative 
Difference 

e 
 

(CP-NIST) 

7 4 0.500000 6.99988 1s7g 3G4
-0.27763 -0.27763 -0.0000043 0.0000155 

7 4 0.500000 6.99988 1s7g 3G5
-0.27763 -0.27763 -0.0000043 0.0000155 

7 4 0.500000 6.99988 1s7g 3G3
-0.27763 -0.27763 -0.0000043 0.0000155 

7 5 0.500000 6.99999 1s7h 3H0
5

-0.27763 -0.27763 0.0000002 -0.0000009 

7 5 0.500000 6.99999 1s7h 3H0
6

-0.27763 -0.27763 0.0000002 -0.0000009 

7 5 0.500000 6.99999 1s7h 3H0
4

-0.27763 -0.27763 0.0000002 -0.0000009 

7 6 0.500000 7.00000 1s7 i3I5 -0.27763 -0.27762 -0.0000094 0.0000339 

7 6 0.500000 7.00000 1s7i 3I6 -0.27763 -0.27762 -0.0000094 0.0000339 

7 6 0.500000 7.00000 1s7i 3I7 -0.27763 -0.27762 -0.0000094 0.0000339 

      Avg. 0.0002768 -0.0001975
a Radius of the inner electron 1 from Eq. (9.69). 
b Radius of the outer electron 2 from Eq. (9.64). 
c Classical physics (CP) calculated energy levels given by the electric energy (Eq. (9.12)). 
d Experimental NIST levels [7] with the ionization potential defined as zero. 
e (Theoretical-Experimental)/Experimental. 
 
ALL EXCITED HE I STATES 

The combined energies of the various states of helium appear in Table 9.5.  A plot of the predicted and experimental 
energies of levels assigned by NIST [7] appears in Figure 9.1.   
 
Figure 9.1.  A plot of the predicted and experimental energies of levels assigned by NIST [7]. 

 
 

For over 100 states, the r-squared value is 0.999994, and the typical average relative difference is about 5 significant figures, 
which is within the error of the experimental data.  The agreement is remarkable. The color scale, translucent views of the charge 
densities of exemplary spherical harmonics that modulate the time-independent spin function are shown in Figure 9.2.  For 

0 , the modulation functions propagate about the z-axis as spatially and temporally harmonic charge-density waves. 
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Figure 9.2.   Exemplary color scale, translucent views of the charge-densities of the inner and outer electrons of helium 
excited states.  The outer-electron orbital function modulates the time-constant (spin) function, (shown for t = 0; three-
dimensional view).  The inner electron is essentially that of He  (nuclei red, not to scale). 
 
 

The hydrino states given in the Hydrino Theory—
BlackLight Process section are strongly supported by the 
calculation of the helium excited states as well as the hydrogen 
excited states given in the Excited States of the One-
Electron Atom (Quantization) section since the electron-photon 
model is the same in both the excited states and in the lower-
energy states of hydrogen except that the photon provides a 

the hydrino case and 1/ n  in the central field of magnitude n  in 
excited-state case. 
 
Table 9.5.   Calculated and experimental energies of states 
of helium. 

n    1r  

( Hea ) 
a
  

2r  

( Hea ) 
b
  

Term 
Symbol 

eleE  
 

CP 
He I EnergyLevels 

c

(eV)

NIST  
He I Energy

Levels 
d
 

(eV) 

Difference 
CP-NIST 

(eV) 

Relative 
Difference 

e 
 

(CP-NIST) 

1 0 0.56699 0.566987 1s2 1S -24.58750 -24.58741 -0.000092 0.0000038 

2 0 0.506514 1.42265 1s2s 3S -4.78116 -4.76777 -0.0133929 0.0028090 

2 0 0.501820 1.71132 1s2s 1S -3.97465 -3.97161 -0.0030416 0.0007658 

2 1 0.500571 1.87921 1s2p 3P0
2

-3.61957 -3.6233 0.0037349 -0.0010308 

2 1 0.500571 1.87921 1s2p 3P0
1

-3.61957 -3.62329 0.0037249 -0.0010280 

2 1 0.500571 1.87921 1s2p 3P0
0

-3.61957 -3.62317 0.0036049 -0.0009949 

2 1 0.499929 2.01873 1s2p 1P0 -3.36941 -3.36936 -0.0000477 0.0000141 

3 0 0.500850 2.42265 1s3s 3S -1.87176 -1.86892 -0.0028377 0.0015184 

3 0 0.500302 2.71132 1s3s 1S -1.67247 -1.66707 -0.0054014 0.0032401 

3 1 0.500105 2.87921 1s3p 3P0
2

-1.57495 -1.58031 0.0053590 -0.0033911 

3 1 0.500105 2.87921 1s3p 3P0
1  -1.57495 -1.58031 0.0053590 -0.0033911 

3 1 0.500105 2.87921 1s3p 3P0
0  -1.57495 -1.58027 0.0053190 -0.0033659 

3 2 0.500011 2.98598 1s3d 3D3
-1.51863 -1.51373 -0.0049031 0.0032391 

3 2 0.500011 2.98598 1s3d 3D2
-1.51863 -1.51373 -0.0049031 0.0032391 

3 2 0.500011 2.98598 1s3d 3D1
-1.51863 -1.51373 -0.0049031 0.0032391 

3 2 0.499999 3.00076 1s3d 1D -1.51116 -1.51331 0.0021542 -0.0014235 

3 1 0.499986 3.01873 1s3p 1P0 -1.50216 -1.50036 -0.0017999 0.0011997 

4 0 0.500225 3.42265 1s4s 3S -0.99366 -0.99342 -0.0002429 0.0002445 

4 0 0.500088 3.71132 1s4s 1S -0.91637 -0.91381 -0.0025636 0.0028054 

He 1s2s 1S 1s3s 1S 1s4s 1S

 1s2p 1P0 1s3p 1P0 1s4p 1P0

  1s3d 1D 1s4d 1D
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n    1r  

( Hea ) 
a
  

2r  

( Hea ) 
b
  

Term 
Symbol 

eleE  
 

CP 
He I EnergyLevels 

c

(eV)

NIST  
He I Energy

Levels 
d
 

(eV) 

Difference 
CP-NIST 

(eV) 

Relative 
Difference 

e 
 

(CP-NIST) 

4 1 0.500032 3.87921 1s4p 3P0
2

-0.87671 -0.87949 0.0027752 -0.0031555 

4 1 0.500032 3.87921 1s4p 3P0
1

-0.87671 -0.87949 0.0027752 -0.0031555 

4 1 0.500032 3.87921 1s4p 3P0
0

-0.87671 -0.87948 0.0027652 -0.0031442 

4 2 0.500003 3.98598 1s4d 3D3
-0.85323 -0.85129 -0.0019398 0.0022787 

4 2 0.500003 3.98598 1s4d 3D2
-0.85323 -0.85129 -0.0019398 0.0022787 

4 2 0.500003 3.98598 1s4d 3D1
-0.85323 -0.85129 -0.0019398 0.0022787 

4 2 0.500000 4.00076 1s4d 1D -0.85008 -0.85105 0.0009711 -0.0011411 

4 3 0.500000 3.99857 1s4f 3F0
3

-0.85054 -0.85038 -0.0001638 0.0001926 

4 3 0.500000 3.99857 1s4f 3F0
4

-0.85054 -0.85038 -0.0001638 0.0001926 

4 3 0.500000 3.99857 1s4f 3F0
2

-0.85054 -0.85038 -0.0001638 0.0001926 

4 3 0.500000 4.00000 1s4f 1F0 -0.85024 -0.85037 0.0001300 -0.0001529 

4 1 0.499995 4.01873 1s4p 1P0 -0.84628 -0.84531 -0.0009676 0.0011446 

5 0 0.500083 4.42265 1s5s 3S -0.61519 -0.61541 0.0002204 -0.0003582 

5 0 0.500035 4.71132 1s5s 1S -0.57750 -0.57617 -0.0013253 0.0023002 

5 1 0.500013 4.87921 1s5p 3P0
2

-0.55762 -0.55916 0.0015352 -0.0027456 

5 1 0.500013 4.87921 1s5p 3P0
1

-0.55762 -0.55916 0.0015352 -0.0027456 

5 1 0.500013 4.87921 1s5p 3P0
0

-0.55762 -0.55915 0.0015252 -0.0027277 

5 2 0.500001 4.98598 1s5d 3D3
-0.54568 -0.54472 -0.0009633 0.0017685 

5 2 0.500001 4.98598 1s5d 3D2
-0.54568 -0.54472 -0.0009633 0.0017685 

5 2 0.500001 4.98598 1s5d 3D1
-0.54568 -0.54472 -0.0009633 0.0017685 

5 2 0.500000 5.00076 1s5d 1D -0.54407 -0.54458 0.0005089 -0.0009345 

5 3 0.500000 4.99857 1s5f 3F0
3

-0.54431 -0.54423 -0.0000791 0.0001454 

5 3 0.500000 4.99857 1s5f 3F0
4

-0.54431 -0.54423 -0.0000791 0.0001454 

5 3 0.500000 4.99857 1s5f 3F0
2

-0.54431 -0.54423 -0.0000791 0.0001454 

5 3 0.500000 5.00000 1s5f 1F0 -0.54415 -0.54423 0.0000764 -0.0001404 

5 4 0.500000 4.99988 1s5g 3G4
-0.54417 -0.54417 0.0000029 -0.0000054 

5 4 0.500000 4.99988 1s5g 3G5
-0.54417 -0.54417 0.0000029 -0.0000054 

5 4 0.500000 4.99988 1s5g 3G3
-0.54417 -0.54417 0.0000029 -0.0000054 

5 4 0.500000 5.00000 1s5g 1G -0.54415 -0.54417 0.0000159 -0.0000293 

5 1 0.499998 5.01873 1s5p 1P0 -0.54212 -0.54158 -0.0005429 0.0010025 

6 0 0.500038 5.42265 1s6s 3S -0.41812 -0.41838 0.0002621 -0.0006266 

6 0 0.500016 5.71132 1s6s 1S -0.39698 -0.39622 -0.0007644 0.0019291 

6 1 0.500006 5.87921 1s6p 3P0
2

-0.38565 -0.38657 0.0009218 -0.0023845 

6 1 0.500006 5.87921 1s6p 3P0
1

-0.38565 -0.38657 0.0009218 -0.0023845 

6 1 0.500006 5.87921 1s6p 3P0
0

-0.38565 -0.38657 0.0009218 -0.0023845 

6 2 0.500001 5.98598 1s6d 3D3
-0.37877 -0.37822 -0.0005493 0.0014523 

6 2 0.500001 5.98598 1s6d 3D2
-0.37877 -0.37822 -0.0005493 0.0014523 

6 2 0.500001 5.98598 1s6d 3D1
-0.37877 -0.37822 -0.0005493 0.0014523 

6 2 0.500000 6.00076 1s6d 1D -0.37784 -0.37813 0.0002933 -0.0007757 

6 3 0.500000 5.99857 1s6f 3F0
3

-0.37797 -0.37793 -0.0000444 0.0001176 

6 3 0.500000 5.99857 1s6f 3F0
4

-0.37797 -0.37793 -0.0000444 0.0001176 
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n    1r  

( Hea ) 
a
  

2r  

( Hea ) 
b
  

Term 
Symbol 

eleE  
 

CP 
He I EnergyLevels 

c

(eV)

NIST  
He I Energy

Levels 
d
 

(eV) 

Difference 
CP-NIST 

(eV) 

Relative 
Difference 

e 
 

(CP-NIST) 

6 3 0.500000 5.99857 1s6f 3F0
2

-0.37797 -0.37793 -0.0000444 0.0001176 

6 3 0.500000 6.00000 1s6f 1F0 -0.37788 -0.37793 0.0000456 -0.0001205 

6 4 0.500000 5.99988 1s6g 3G4
-0.37789 -0.37789 -0.0000023 0.0000060 

6 4 0.500000 5.99988 1s6g 3G5
-0.37789 -0.37789 -0.0000023 0.0000060 

6 4 0.500000 5.99988 1s6g 3G3
-0.37789 -0.37789 -0.0000023 0.0000060 

6 4 0.500000 6.00000 1s6g 1G -0.37788 -0.37789 0.0000053 -0.0000140 

6 5 0.500000 5.99999 1s6h 3H0
4

-0.37789 -0.37788 -0.0000050 0.0000133 

6 5 0.500000 5.99999 1s6h 3H0
5

-0.37789 -0.37788 -0.0000050 0.0000133 

6 5 0.500000 5.99999 1s6h 3H0
6

-0.37789 -0.37788 -0.0000050 0.0000133 

6 5 0.500000 6.00000 1s6h 1H0 -0.37788 -0.37788 -0.0000045 0.0000119 

6 1 0.499999 6.01873 1s6p 1P0 -0.37671 -0.37638 -0.0003286 0.0008730 

7 0 0.500019 6.42265 1s7s 3S -0.30259 -0.30282 0.0002337 -0.0007718 

7 0 0.500009 6.71132 1s7s 1S -0.28957 -0.2891 -0.0004711 0.0016295 

7 1 0.500003 6.87921 1s7p 3P0
2

-0.28250 -0.28309 0.0005858 -0.0020692 

7 1 0.500003 6.87921 1s7p 3P0
1

-0.28250 -0.28309 0.0005858 -0.0020692 

7 1 0.500003 6.87921 1s7p 3P0
0

-0.28250 -0.28309 0.0005858 -0.0020692 

7 2 0.500000 6.98598 1s7d 3D3
-0.27819 -0.27784 -0.0003464 0.0012468 

7 2 0.500000 6.98598 1s7d 3D2
-0.27819 -0.27784 -0.0003464 0.0012468 

7 2 0.500000 6.98598 1s7d 3D1
-0.27819 -0.27784 -0.0003464 0.0012468 

7 2 0.500000 7.00076 1s7d 1D -0.27760 -0.27779 0.0001907 -0.0006864 

7 3 0.500000 6.99857 1s7f 3F0
3

-0.27769 -0.27766 -0.0000261 0.0000939 

7 3 0.500000 6.99857 1s7f 3F0
4

-0.27769 -0.27766 -0.0000261 0.0000939 

7 3 0.500000 6.99857 1s7f 3F0
2

-0.27769 -0.27766 -0.0000261 0.0000939 

7 3 0.500000 7.00000 1s7f 1F0 -0.27763 -0.27766 0.0000306 -0.0001102 

7 4 0.500000 6.99988 1s7g 3G4
-0.27763 -0.27763 -0.0000043 0.0000155 

7 4 0.500000 6.99988 1s7g 3G5
-0.27763 -0.27763 -0.0000043 0.0000155 

7 4 0.500000 6.99988 1s7g 3G3
-0.27763 -0.27763 -0.0000043 0.0000155 

7 4 0.500000 7.00000 1s7g 1G -0.27763 -0.27763 0.0000004 -0.0000016 

7 5 0.500000 6.99999 1s7h 3H0
5

-0.27763 -0.27763 0.0000002 -0.0000009 

7 5 0.500000 6.99999 1s7h 3H0
6

-0.27763 -0.27763 0.0000002 -0.0000009 

7 5 0.500000 6.99999 1s7h 3H0
4

-0.27763 -0.27763 0.0000002 -0.0000009 

7 5 0.500000 7.00000 1s7h 1H0 -0.27763 -0.27763 0.0000006 -0.0000021 

7 6 0.500000 7.00000 1s7 i3I5
-0.27763 -0.27762 -0.0000094 0.0000339 

7 6 0.500000 7.00000 1s7i 3I6 -0.27763 -0.27762 -0.0000094 0.0000339 

7 6 0.500000 7.00000 1s7i 3I7
-0.27763 -0.27762 -0.0000094 0.0000339 

7 6 0.500000 7.00000 1s7i 1I -0.27763 -0.27762 -0.0000094 0.0000338 

7 1 0.500000 7.01873 1s7p 1P0 -0.27689 -0.27667 -0.0002186 0.0007900 

8 0 0.500011 7.42265 1s8s 3S -0.22909 -0.22928 0.0001866 -0.0008139 

8 0 0.500005 7.71132 1s8s 1S -0.22052 -0.2202 -0.0003172 0.0014407 

9 0 0.500007 8.42265 1s9s 3S -0.17946 -0.17961 0.0001489 -0.0008291 

9 0 0.500003 8.71132 1s9s 1S -0.17351 -0.1733 -0.0002141 0.0012355 
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n    1r  

( Hea ) 
a
  

2r  

( Hea ) 
b
  

Term 
Symbol 

eleE  
 

CP 
He I EnergyLevels 

c

(eV)

NIST  
He I Energy

Levels 
d
 

(eV) 

Difference 
CP-NIST 

(eV) 

Relative 
Difference 

e 
 

(CP-NIST) 

10 0 0.500004 9.42265 1s10s 3S -0.14437 -0.1445 0.0001262 -0.0008732 

10 0 0.500002 9.71132 1s10s 1S -0.14008 -0.13992 -0.0001622 0.0011594 

11 0 0.500003 10.42265 1s11s 3S -0.11866 -0.11876 0.0001037 -0.0008734 

11 0 0.500001 10.71132 1s11s 1S -0.11546 -0.11534 -0.0001184 0.0010268 

     Avg. -0.000112 0.0000386
a Radius of the inner electron 1 of singlet excited states with 0  from Eq. (9.29); triplet excited states with 0  from Eq. (9.37); singlet excited states 

with 0  from Eq. (9.60) for 1  or 2  and Eq. (9.61) for 3 , and Eq. (9.62) for 4, 5, 6... ; triplet excited states with 0  from Eq. (9.69), 

and 1s2 1S from Eq. (7.35). 
b Radius of the outer electron 2 of singlet excited states with 0  from Eq. (9.11); triplet excited states with 0  from Eq. (9.32); singlet excited states 

with 0  from Eq. (9.53); triplet excited states with 0  from Eq. (9.64), and 1s2 1S from Eq. (7.35). 
c Classical physics (CP) calculated excited-state energy levels given by the electric energy (Eq. (9.12)) and the energy level of 1s2 1

S is given by Eqs. 
(7.44-7.46). 

d Experimental NIST levels [7] with the ionization potential defined as zero. 
e (Theoretical-Experimental)/Experimental. 
 
SPIN-ORBIT COUPLING OF EXCITED STATES WITH   ≠ 0 
The energy of the 2P  level is split by a relativistic interaction between the spin and orbital angular momentum as well as the 
corresponding radiation reaction force.  The corresponding energy H FS

totalE  and frequency H FS
totalf  for the transition 2 2

1/2 3/2P P  

is known as the hydrogen fine structure and is given by the sum of the spin-orbital coupling energy (Eq. (2.194)): 

 
 25

2 24
/

2 3
7.24043  10  

8 4s o eE m c X J
     (9.70) 

 
and the radiation reaction force that shifts the H radius from 0 2 Hr a  to: 

  3 3
2 2 1.99999990

6 4H H
e

r a a
m c

  


 (9.71) 

given by Eqs. (2.198-2.199).  The radiation reaction energy of the hydrogen fine structure  H FS
RRtotalE  is given as the sum of the 

electric and magnetic energy changes (Eqs. (2.200-2.202)): 

 

2
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 (9.72) 

Then, the total energy of the hydrogen fine structure H FS
totalE  is given by the sum (Eq. (2.204)): 

   24 26 24
/ 7.24043  10  2.74606  10  7.26789  10  H FS H FS

total s o RRtotalE E E X J X J X J          (9.73) 
The fine structure energy expressed in terms of frequency (Eq. (2.205)) is 
  10,968.46 H FS

totalf MHz   (9.74) 
The experimental hydrogen fine structure (Eq. (2.206)) is: 
   experimental 10,969.05 H FS

totalf MHz   (9.75) 
Given the large natural linewidth of the 2P  state, the 0.005% relative difference is within the measurement error and propagated 
errors in the fundamental constants of the equations.  Using 2r  given by Eq. (9.53), the spin-orbital energies were calculated for 

1  using Eq. (9.70) to compare to the effect of different   quantum numbers.  There is agreement between the magnitude of 
the predicted results given in Table 9.6 and the experimental dependence on the   quantum number as given in Table 9.5. 
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Table 9.6.   Calculated spin-orbital energies of He I singlet excited states with 1  as a function of the radius of the outer 
electron. 

 
n  

 

2r  

( Hea ) 
a
  

Term Symbol 
/s oE  

spin-orbit 
coupling 

b
 

(eV)
2 2.01873 1s2p 1P0 0.0000439 

3 3.01873 1s3p 1P0 0.0000131 

4 4.01873 1s4p 1P0 0.0000056 

5 5.01873 1s5p 1P0 0.0000029 

6 6.01873 1s6p 1P0 0.0000017 

7 7.01873 1s7p 1P0 0.0000010 
a Radius of the outer electron 2 from Eq. (9.53). 
b The spin-orbit coupling energy of electron 2 from Eq. (9.70) using 2r  from Eq. (9.53). 
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Chapter 10 
  
THREE- THROUGH TWENTY-ELECTRON ATOMS 
  
 
 
 
 
Three- through twenty-electron atoms are solved in this section with supporting material on the magnetic forces given in the 
Two-Electron Atoms section and Appendix VI.  The charge-density functions of one- through twenty-electron atoms and their 
corresponding positive ions are shown in Figures 10.1 and 10.2, respectively.  The electrons of multielectron atoms and ions 
exist as concentric atomic orbitals (“bubble-like” charge-density functions) of discrete radii that are given by nr  of the radial 

Dirac delta function, ( )nr r   as shown by the exemplary sectional view of the potassium atom in Figure 10.3.  

 
THREE-ELECTRON ATOMS 
As is the case for one and two-electron atoms shown in the corresponding sections, three through ten-electron atoms can also be 
solved exactly using the results of the solutions of the preceding atoms.  For example, three-electron atoms can be solved exactly 
using the results of the solutions of the one and two-electron atoms. 
 
THE LITHIUM ATOM 
For Li , there are two spin-paired electrons in an atomic orbital with: 

 1 2 0

3
1 4
2 6

r r a

 
 
   
 

 (10.1) 

as given by Eq. (7.35) where nr  is the radius of electron n  which has velocity nv .  The next electron is added to a new atomic 

orbital because of the repulsive diamagnetic force between the two spin-paired electrons and the spin-unpaired electron.  This 
repulsive diamagnetic force is due to the interaction of the magnetic field of the outer spin-unpaired electron on the electron 
current of the two spin-paired electrons of the inner shell.  The diamagnetic force on the outer electron is determined by first 
considering the central force on each electron of the inner shell due to the magnetic flux B  of the outer electron that follows 
from Purcell [1]: 

 
2 e nm v v

r


 rF i  (10.2) 

where ri  is defined as the radial vector in the direction of the central electric field of the nucleus and 

 
2 e

v eB

r m


  (10.3) 
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Figure 10.3.   A sectional view of the potassium atom showing the radii of the paired 1s, paired 2s, three sets of paired 2p, 
paired 3s, and three sets of paired 3p inner electrons and the unpaired 4s outer electron. 
 

 
 
The velocity nv  is given by the boundary condition for no radiation as follows: 

 1
1e

v
m r




 (10.4) 

where 1r  is the radius of the first atomic orbital; therefore, the force on each of the inner electrons is given as follows: 
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eB

m r
 rF i


 (10.5) 

The change in magnetic moment, m , of each electron of the inner shell due to the magnetic flux B  of the outer electron is [1]: 
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e r B
m

m
    (10.6) 

The diamagnetic force on the outer electron due to the two inner shell electrons is in the opposite direction of the force given by 
Eq. (10.5), and this diamagnetic force on the outer electron is proportional to the sum of the changes in magnetic moments of the 
two inner electrons due to the magnetic flux B  of the outer electron.  The two electrons are spin-paired and the velocities are 
mirror opposites.  Thus, the change in velocity of each electron treated individually (Eq. (10.3)) due to the magnetic flux B  
would be equal and opposite.  However, the two paired electrons may be treated as one with twice the mass where em  is replaced 

by 2 em  in Eq. (10.6).  In this case, the paired electrons spin together about the field axis to cause a reduction in the flux 

according to Lenz’s law.  It is then apparent that the force given by Eq. (10.5) is proportional to the flux B  of the outer electron; 
whereas, the total of the change in magnetic moments of the inner shell electrons given by Eq. (10.6) applied to the combination 
of the inner electrons is proportional to one eighth of the flux, B .  Thus, the force on the outer electron due to the reaction of the 
inner shell to the flux of the outer electron is given as follows: 
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 (10.7) 

where 1r  is the radial distance of the first atomic orbital from the nucleus.  The magnetic flux, B , is supplied by the constant 

field inside the atomic orbital of the outer electron at radius 3r  and is given by the product of 0  times Eq. (1.152). 
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The result of substitution of Eq. (10.8) into Eq. (10.7) is: 

 
2 2

0
2

3 1 32 4diamagnetic
e e

e

m r m r r

 
   

 
rF i


 (10.9) 

 



Three- Through Twenty-Electron Atoms 

 

323

The term in brackets can be expressed in terms of the fine structure constant,  .  From Eqs. (1.176-1.180) 
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   (10.10) 

It is demonstrated in the Two-Electron Atoms section that the relativistic correction to Eq. (10.9) is 
1

Z
 times the reciprocal of 

Eq. (10.10).  Z  for electron three is one; thus, one is substituted for the term in brackets in Eq. (10.9). 

The force must be corrected for the   3
1

4
s s    vector projection of the velocity onto the z-axis as given in the Two-

Electron Atoms section and Appendix VI.  Thus, Eq. (10.9) becomes:  
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 (10.11) 

 

THE RADIUS OF THE OUTER ELECTRON OF THE LITHIUM ATOM 
The radius for the outer electron is calculated by equating the outward centrifugal force to the sum of the electric and 
diamagnetic forces as follows: 
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 (Eq. (1.35)), 1 0
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 (Eq. (7.35)), and 
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2
s  , we solve for 3r . 
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 3 02.5559 r a  

 

THE IONIZATION ENERGY OF LITHIUM 
From Eq. (1.264), the magnitude of the energy stored in the electric field is: 
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The magnetic field of the outer electron changes the angular velocities of the inner electrons.  However, the magnetic field of the 
outer electron provides a central Lorentz force that exactly balances the change in centrifugal force because of the change in 
angular velocity [1].  Thus, the electric energy of the inner atomic orbital is unchanged upon ionization.  The magnetic field of 
the outer electron, however, also changes the magnetic moment, m , of each of the inner atomic orbital electrons.  From Eq. 
(10.6), the change in magnetic moment, m , (per electron) is:  
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where B  is the magnetic flux of the outer electron given by the product of o  times Eq. (1.152).  
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Substitution of Eq. (10.16) and 2 em  for em  (because there are two electrons) into Eq. (10.15) gives: 
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Furthermore, we know from Eqs. (10.9) and (10.11) that the term in brackets is replaced by ( 1)s s  . 
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Substitution of Eq. (10.1) for 1r , Eq. (10.13) for 3r , and given that the magnetic moment of an electron is one Bohr magneton 

according to Eq. (1.131), 
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the fractional change in magnetic moment of an inner shell electron, fm , is given as follows: 

 

2
1

2
3

( 1)

4

2

e
f

e

e r s s

m r
m

e
m



 



  (10.20) 

 
2

1
2

3

1
( 1)

2

r
s s

r
   (10.21) 

With 1r  given by Eq. (10.1), 3r  given by Eq. (10.13), and 
1

2
s  , the fractional change in magnetic moment of the two inner shell 

electrons is: 
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 (10.22) 

 0.016767fm   

We add one (corresponding to fm ) to fm  which is the fractional change in the magnetic moment.  The energy stored in the 

magnetic field is proportional to the magnetic field strength squared as given by Eq. (1.144); thus, the sum is squared 
 2(1.016767) 1.033815  (10.23) 

Thus, the change in magnetic energy of the inner atomic orbital is 3.382 % , so that the corresponding energy magE  is 

   0.033815 2.543 0.08599 magE eV eV    (10.24) 

where the magnetic energy of the inner electrons given in Table 7.1 is 2.543 eV .  Then the ionization energy of the lithium atom 
is given by Eqs. (10.13-10.14) and (10.24): 
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The experimental ionization energy of lithium is 5.392 eV  [2-3]. 
 

THREE ELECTRON ATOMS WITH A NUCLEAR CHARGE Z>3 
Three-electron atoms having 3Z   possess an electric field of: 
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for 3r r .  For three-electron atoms having 3Z  , the diamagnetic force given by Eq. (10.11) is unchanged.  However, for 

three-electron atoms having 3Z  , an electric field exists for 3r r .  This electric field gives rise to an additional diamagnetic 

force term which adds to Eq. (10.11).  The additional diamagnetic force is derived as follows.  The diamagnetic force repels the 
third (outer) electron, and the electric force attracts the third electron.  Consider the reverse of ionization where the third electron 
is at infinity and the two spin-paired electrons are at 1 2r r  given by Eq. (7.35). 

Power must be conserved as the net force of the diamagnetic and electric forces cause the third electron to move from 
infinity to its final radius.  Power flow is given by the Poynting Power Theorem: 
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During binding, the radius of electron three decreases.  The electric force where: 
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increases the stored electric energy which corresponds to the power term, 0

1

2t

 


    
E E , of Eq. (10.27).  The diamagnetic 
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force given by Eq. (10.7) changes the stored magnetic energy which corresponds to the power term, 0

1

2t

 


    
H H , of Eq. 

(10.27).  An additional diamagnetic force arises when 3 0Z   .  This diamagnetic force corresponds to that given by Purcell [1] 
for a charge moving in a central field having an imposed magnetic field perpendicular to the plane of motion.  The second 
diamagnetic force  2diamagneticF  is given by  
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where v  is derived from Eq. (10.3).  The result of substitution of v  into Eq. (10.29) is: 
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The magnetic flux, B , at electron three for 3r r  is given by the product of o  times Eq. (1.152).  The result of the substitution 

of the flux into Eq. (10.30) is:  
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The term in brackets can be expressed in terms of the fine structure constant,  .  From Eqs. (1.176-1.181) 
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It is demonstrated in the Two-Electron Atoms section that the relativistic correction to Eq. (10.31) is 
1

Z
 times the reciprocal of 

Eq. (10.32).  Consider the case wherein 1Z  of Eq. (10.32) is different from 2Z Z  of Eq. (7.22) in order to maintain relativistic 

invariance of the electron angular momentum and magnetic moment.  The relativistic correction to Eq. (10.31) can be considered 
the product of two corrections—a correction of electron three relative to electron one and two, and electron one and two relative 
to electron three.  In the former case, 1Z  and 2 1Z   which corresponds to electron three.  In the latter case, 1 3Z Z  , and 

2 2Z Z   which corresponds to 3r
 , infinitesimally greater than the radius of the outer atomic orbital and 3r

 , infinitesimally 

less than the radius of the outer atomic orbital, respectively, where Z  is the nuclear charge.  Thus, 
3

2

Z

Z




 is substituted for the 

term in brackets in Eq. (10.31). The force must be corrected for the   3
1

4
s s    vector projection of the velocity onto the z-

axis as given in the Two-Electron Atoms section and Appendix VI.  Thus, Eq. (10.31) becomes:  
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As given previously in the Two Electron section, this force corresponds to the dissipation term of Eq. (10.27), J E .  The 
current J  is proportional to the sum of one for the outer electron and two times two—the number of spin-paired electrons.  For 
the inner electrons, the factor of two arises because they possess mutual inductance which doubles their contribution to J .  
(Recall the general relationship that the current is equal to the flux divided by the inductance.)  Thus, the second diamagnetic 
force is:  
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THE RADIUS OF THE OUTER ELECTRON OF THREE-ELECTRON ATOMS WITH A 
NUCLEAR CHARGE Z>3 
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric and diamagnetic 
forces as follows: 
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With 3
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 (Eq. (1.35)), 
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s  , we solve for 3r  using the quadratic formula or 

reiteratively. 
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The quadratic equation corresponding to Eq. (10.37) is: 
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The solution of Eq. (10.38) using the quadratic formula is: 
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The positive root of Eq. (10.42) must be taken in order that 3 0r  . 

 



Three- Through Twenty-Electron Atoms 

 

327

THE IONIZATION ENERGIES OF THREE-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>3 
The energy stored in the electric field, ( )E electric , is:  
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   (10.43) 

where 3r  is given by Eq. (10.42).  The magnetic field of the outer electron changes the velocities of the inner electrons.  

However, the magnetic field of the outer electron provides a central Lorentz field which balances the change in centrifugal force 
because of the change in velocity.  Thus, the electric energy of the inner atomic orbital is unchanged upon ionization.  The 
change in the velocities of the inner electrons upon ionization gives rise to a change in kinetic energies of the inner electrons.  
The change in velocity, v , is given by Eq. (10.3) 
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Substitution of the flux, B , given by the product of 0  and Eq. (1.152), into Eq. (10.44) is: 
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It is demonstrated in the One-Electron Atom section and the Two-Electrons Atom section (at Eq. (7.23)) that the relativistic 

correction to Eq. (10.45) is 
1

Z
 times the reciprocal of the term in brackets.  In this case, Z  corresponding to electron three is 

one; thus, one is substituted for the term in brackets in Eq. (10.45).  Thus, Eq. (10.45) becomes, 
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wherein 1r  given by Eq. (7.35), and 3r  is given by Eq. (10.42).  The change in kinetic energy, TE , of the two inner shell 

electrons is given by: 

 21
2

2T eE m v    (10.47) 

The ionization energy is the sum of the electric energy, Eq. (10.43), and the change in the kinetic energy, Eq. (10.47), of the 
inner electrons. 
 ( ) ( ) TE Ionization E Electric E   (10.48) 

The relativistic correction to Eq. (10.48) is given by (1) relativistically correcting the radius of the inner paired electrons 1r , (2) 

using the relativistically corrected 1r  to determine 3r  which is then relativistically corrected.  The relativistically corrected 1r  is 

given by dividing the radius given Eq. (7.35) by *  of Eq. (1.281) 
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where the velocity is given by Eq. (1.35) with the radius given by Eq. (7.35).  Similarly, the relativistically corrected 3r  is given 

by dividing the radius given Eq. (10.41) by *  of Eq. (1.281) 
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 (10.50) 

where 1r  is given by Eq. (10.49) and the velocity is given by Eq. (1.35) with the radius given by Eq. (10.42).  The ionization 

energies are given by Eq. (10.48) wherein the relativistically corrected radii given by Eqs. (10.49-10.50) are used in the sum of 
the electric energy, Eq. (10.43), and the change in the kinetic energy, Eq. (10.47), of the inner electrons.  The ionization energies 
for several three-electron atoms are given in Table 10.1. 
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Table 10.1.   Ionization energies for some three-electron atoms. 

3 e 
Atom 

Z 
1r  

( 0a ) 
a
 

3r  

( 0a ) 
b
 

Electric 
Energy 

c
 

(eV) 

v  
d
 

(m/s) 
TE e 

(eV) 
 

Theoretical 
Ionization 
Energies 

f
 

(eV)

Experimental 
Ionization 
Energies 

g
 

(eV) 

Relative 
Error 

h
 

Li  3 0.35566 2.55606 5.3230 1.6571E+04 1.5613E-03 5.40390 5.39172 -0.00226
Be  4 0.26116 1.49849 18.1594 4.4346E+04 1.1181E-02 18.1706 18.21116 0.00223

2B   5 0.20670 1.07873 37.8383 7.4460E+04 3.1523E-02 37.8701 37.93064 0.00160
3C   6 0.17113 0.84603 64.3278 1.0580E+05 6.3646E-02 64.3921 64.4939 0.00158
4N   7 0.14605 0.69697 97.6067 1.3782E+05 1.0800E-01 97.7160 97.8902 0.00178
5O   8 0.12739 0.59299 137.6655 1.7026E+05 1.6483E-01 137.8330 138.1197 0.00208
6F   9 0.11297 0.51621 184.5001 2.0298E+05 2.3425E-01 184.7390 185.186 0.00241
7Ne   10 0.10149 0.45713 238.1085 2.3589E+05 3.1636E-01 238.4325 239.0989 0.00279
8Na   11 0.09213 0.41024 298.4906 2.6894E+05 4.1123E-01 298.9137 299.864 0.00317
9Mg   12 0.08435 0.37210 365.6469 3.0210E+05 5.1890E-01 366.1836 367.5 0.00358

10Al   13 0.07778 0.34047 439.5790 3.3535E+05 6.3942E-01 440.2439 442 0.00397
11Si   14 0.07216 0.31381 520.2888 3.6868E+05 7.7284E-01 521.0973 523.42 0.00444
12P   15 0.06730 0.29102 607.7792 4.0208E+05 9.1919E-01 608.7469 611.74 0.00489
13S   16 0.06306 0.27132 702.0535 4.3554E+05 1.0785E+00 703.1966 707.01 0.00539
14Cl   17 0.05932 0.25412 803.1158 4.6905E+05 1.2509E+00 804.4511 809.4 0.00611
15Ar   18 0.05599 0.23897 910.9708 5.0262E+05 1.4364E+00 912.5157 918.03 0.00601

16K   19 0.05302 0.22552 1025.6241 5.3625E+05 1.6350E+00 1027.3967 1033.4 0.00581
17Ca   20 0.05035 0.21350 1147.0819 5.6993E+05 1.8468E+00 1149.1010 1157.8 0.00751
18Sc   21 0.04794 0.20270 1275.3516 6.0367E+05 2.0720E+00 1277.6367 1287.97 0.00802
19Ti   22 0.04574 0.19293 1410.4414 6.3748E+05 2.3106E+00 1413.0129 1425.4 0.00869
20V   23 0.04374 0.18406 1552.3606 6.7135E+05 2.5626E+00 1555.2398 1569.6 0.00915
21Cr   24 0.04191 0.17596 1701.1197 7.0530E+05 2.8283E+00 1704.3288 1721.4 0.00992
22Mn   25 0.04022 0.16854 1856.7301 7.3932E+05 3.1077E+00 1860.2926 1879.9 0.01043
23Fe   26 0.03867 0.16172 2019.2050 7.7342E+05 3.4011E+00 2023.1451 2023 -0.00007
24Co   27 0.03723 0.15542 2188.5585 8.0762E+05 3.7084E+00 2192.9020 2219 0.01176
25Ni   28 0.03589 0.14959 2364.8065 8.4191E+05 4.0300E+00 2369.5803 2399.2 0.01235
26Cu   29 0.03465 0.14418 2547.9664 8.7630E+05 4.3661E+00 2553.1987 2587.5 0.01326

a Radius of the paired inner electrons of three-electron atoms from Eq. (10.49). 
b Radius of the unpaired outer electron of three-electron atoms from Eq. (10.50). 
c Electric energy of the outer electron of three-electron atoms from Eq. (10.43). 
d Change in the velocity of the paired inner electrons due to the unpaired outer electron of three-electron atoms from Eq. (10.46). 
e Change in the kinetic energy of the paired inner electrons due to the unpaired outer electron of three-electron atoms from Eq. (10.47). 
f Calculated ionization energies of three-electron atoms from Eq. (10.48) for 3Z   and Eq. (10.25) for Li. 
g From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
h (Experimental-theoretical)/experimental. 

 
The agreement between the experimental and calculated values of Table 10.1 is well within the experimental capability 

of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures, which is consistent with the last column.  The lithium atom 
isoelectronic series is given in Table 10.1 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of Li isoelectronic and Rydberg series, as well as direct experimental 
data.   
 The ionization energies of four- through twenty-electron atoms are calculated next using the electric energy at the radius 
of the force balance between the outward centrifugal force and the sum of the Coulombic force and any magnetic forces to the 
order r3 .  The agreement between the experimental and calculated values is excellent, but could even be improved, especially 
for lower Z ions, by considering higher order magnetic terms involving the interaction between the outer electron and any lower-
lying inner shell electrons. 
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FOUR-ELECTRON ATOMS 
Four-electron atoms can be solved exactly using the results of the solutions of one, two, and three-electron atoms. 
 

RADII OF THE OUTER ELECTRONS OF FOUR-ELECTRON ATOMS 
For each three-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35): 
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 (10.51) 

and an unpaired electron with a radius 3r  given by Eq. (10.42).  For 4Z  , the next electron which binds to form the 

corresponding four-electron atom becomes spin-paired with the outer electron such that they become indistinguishable with the 
same radius 3 4r r .  The corresponding spin-pairing force magF  is given by Eq. (7.24): 

 
2

3
4

1
( 1)mag

e

s s
Z m r

  rF i


 (10.52) 

The central forces given by Eq. (10.36) and Eq. (10.52) act on the outer electron to cause it to bind wherein the electric 
force on the outer-most electron due to the nucleus and the inner three electrons is given by Eq. (10.28) with the appropriate 
charge and radius: 
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for 3r r .  

In addition to the paramagnetic spin-pairing force between the third electron initially at radius 3r , the pairing causes the 

diamagnetic interaction between the outer electrons and the inner electrons given by Eq. (10.11) to vanish, except for an 
electrodynamic effect for 4Z   described in the Two-Electron Atoms section, since upon pairing the magnetic field of the outer 
electrons becomes zero.  Therefore, the corresponding force 2magF  is in the same direction as the spin-pairing force and is given 

by substitution of Eq. (7.6) with the radius 4r  into Eq. (10.5): 
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Then, from Eqs. (10.54) and (7.6-7.24), the paramagnetic force is given by: 
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The outward centrifugal force on electron 4 is balanced by the electric force and the magnetic forces (on electron 4).  The radius 
of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.53)), diamagnetic 
(Eqs. (10.11) and (10.35) for 4r ), and paramagnetic (Eqs. (10.52) and (10.55)) forces as follows: 
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Substitution of 4
4e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.56) gives: 
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The quadratic equation corresponding to Eq. (10.58) is 
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The solution of Eq. (10.61) using the quadratic formula is: 

 

2

10

0 2

1 11
 4 3 1 0

3 3
3 34 4 101 1
2 44

3 33
1 1 1 14 41 1 4( 3) ( 3)( 3)
4 44

,     
2

Z
ra

ZZ Za

Z ZZ
Z r Z rZ r

r r r in units of a

   
                 

    
                                      (10.62) 

where 1r  is given by Eq. (10.51) and also Eq. (7.35).  The positive root of Eq. (10.62) must be taken in order that 4 0r  .  The 

final radius of electron 4, 4r , is given by Eq. (10.62); this is also the final radius of electron 3.  The radii of several four-electron 

atoms are given in Table 10.2. 
 

ENERGIES OF THE BERYLLIUM ATOM 
The energy stored in the electric field, ( )E electric , is given by Eq. (10.43) with the appropriate charge and radius:  
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The ionization energy is given by the sum of the electric energy and the diamagnetic and paramagnetic energy terms.  The 
magnetic energy, ( )E magnetic , for an electron corresponding to a radius nr  given by Eq. (7.46) is: 
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Since there is no source of dissipative power, J E  of Eq. (10.27), to compensate for any potential change in the magnetic 
moments, m , of the inner electrons due to the ionization of an outer electron of the beryllium atom, there is a diamagnetic 
energy term in the ionization energy for this atom that follows from the corresponding term for the lithium atom.  This term is 
given by Eqs. (10.15-10.24) wherein 1r  is given by Eq. (10.51) with 4Z   and 3 4r r  is given by Eq. (10.62).  Thus, the change 

in magnetic energy of the inner atomic orbital is 5.144 % , so that the corresponding energy magE  is: 

 0.05144  6.42291 0.33040 magE X eV eV    (10.65) 

where the magnetic energy of the inner electrons is 6.42291 eV .  In addition, there is a paramagnetic energy term ( )E magnetic  
corresponding to the ionization of a spin-paired electron from a neutral atom with a closed s-shell.  The energy follows from that 
given for helium by Eqs. (7.44) and (7.46) wherein the electron radius for helium is replaced by the radius 4r  of Eq. (10.62).  

Then, the ionization energy of the beryllium atom is given by Eqs. (7.44), (7.46), (10.25), and (10.62-10.65): 
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The experimental ionization energy of beryllium is 9.32263 eV  [3]. 
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THE IONIZATION ENERGIES OF FOUR-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>4 
The ionization energies for the four-electron atoms with 4Z   are given by the sum of the electric energy, ( )E electric , given by 
Eq. (10.63) and the magnetic energies.  The paramagnetic energy term corresponding to the ionization of a spin-paired electron 
from an atom with an external electric field is given by Eqs. (7.46) and (7.63) wherein the electron radius for helium is replaced 
by the radius 4r  of Eq. (10.62): 
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    (10.67) 

Once the outer electrons of four-electron atoms with 4Z   become spin unpaired during ionization, the corresponding 
magnetic field changes the velocities of the inner electrons in the same manner as shown for the case of the outer electron of 
three-electron atoms with 3Z  .  The magnetic effect is calculated for the remaining electron 3 at the radius 4r  corresponding to 

condition of the derivation of Eq. (10.67) that follows from Eqs. (7.46) and (7.63).  Thus, change in velocity, v , in the four-
electron-atom case is that of three-electron atoms given by Eq. (10.46) wherein the electron radius 3r  is replaced by the radius 4r  

of Eq. (10.62). 
Since the velocities of electrons one and two decrease during ionization in the case of four-electron atoms rather than 

increase as in the case of three-electron atoms, the corresponding kinetic energy decreases and the kinetic energy term given by 
Eq. (10.47) is the opposite sign in Eq. (10.48).  Thus, the ionization energies of four-electron atoms with 4Z   given by Eqs. 
(10.48) and (10.67) with the electric energy (Eq. (10.63)), the magnetic energy (Eq. (10.64)), and the change in the kinetic 
energy of the inner electrons (Eq. (10.47)) are 
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The ionization energies for several four-electron atoms are given in Table 10.2. Since the radii, 4r , are greater than 10% of 0a  

corresponding to a velocity of less than 71.5 10  /m s , the relativistic corrections are negligible and are not included in Table 
10.2. 
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Table 10.2.  Ionization energies for some four-electron atoms.  
 

4 e 
Atom 

Z 
1r  

( 0a ) 
a
 

3r  

( 0a ) 
b
 

Electric 
Energy 
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(eV) 
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v  
e
 

(m/s X 5
10

 ) 
TE f 

(eV) 
 

Theoretical 
Ionization 
Energies 

g
 

(eV)

Experimental 
Ionization 
Energies 

h
 

(eV) 

Relative 
Error 

i
 

Be  4 0.26116 1.52503 8.9178 0.03226 0.4207 0.0101 9.28430 9.32263 0.0041 
B  5 0.20670 1.07930 25.2016 0.0910 0.7434 0.0314 25.1627 25.15484 -0.0003 

2C   6 0.17113 0.84317 48.3886 0.1909 1.0688 0.0650 48.3125 47.8878 -0.0089 
3N   7 0.14605 0.69385 78.4029 0.3425 1.3969 0.1109 78.2765 77.4735 -0.0104 
4O   8 0.12739 0.59020 115.2148 0.5565 1.7269 0.1696 115.0249 113.899 -0.0099 
5F   9 0.11297 0.51382 158.8102 0.8434 2.0582 0.2409 158.5434 157.1651 -0.0088 
6Ne   10 0.10149 0.45511 209.1813 1.2138 2.3904 0.3249 208.8243 207.2759 -0.0075 
7Na   11 0.09213 0.40853 266.3233 1.6781 2.7233 0.4217 265.8628 264.25 -0.0061 
8Mg   12 0.08435 0.37065 330.2335 2.2469 3.0567 0.5312 329.6559 328.06 -0.0049 

9Al   13 0.07778 0.33923 400.9097 2.9309 3.3905 0.6536 400.2017 398.75 -0.0036 
10Si   14 0.07216 0.31274 478.3507 3.7404 3.7246 0.7888 477.4989 476.36 -0.0024 
11P   15 0.06730 0.29010 562.5555 4.6861 4.0589 0.9367 561.5464 560.8 -0.0013 
12S   16 0.06306 0.27053 653.5233 5.7784 4.3935 1.0975 652.3436 652.2 -0.0002 
13Cl   17 0.05932 0.25344 751.2537 7.0280 4.7281 1.2710 749.8899 749.76 -0.0002 
14Ar   18 0.05599 0.23839 855.7463 8.4454 5.0630 1.4574 854.1849 854.77 0.0007 

15K   19 0.05302 0.22503 967.0007 10.0410 5.3979 1.6566 965.2283 968 0.0029 
16Ca   20 0.05035 0.21308 1085.0167 11.8255 5.7329 1.8687 1083.0198 1087 0.0037 
17Sc   21 0.04794 0.20235 1209.7940 13.8094 6.0680 2.0935 1207.5592 1213 0.0045 
18Ti   22 0.04574 0.19264 1341.3326 16.0032 6.4032 2.3312 1338.8465 1346 0.0053 
19V   23 0.04374 0.18383 1479.6323 18.4174 6.7384 2.5817 1476.8813 1486 0.0061 
20Cr   24 0.04191 0.17579 1624.6929 21.0627 7.0737 2.8450 1621.6637 1634 0.0075 
21Mn   25 0.04022 0.16842 1776.5144 23.9495 7.4091 3.1211 1773.1935 1788 0.0083 

22Fe   26 0.03867 0.16165 1935.0968 27.0883 7.7444 3.4101 1931.4707 1950 0.0095 
23Co   27 0.03723 0.15540 2100.4398 30.4898 8.0798 3.7118 2096.4952 2119 0.0106 
24Ni   28 0.03589 0.14961 2272.5436 34.1644 8.4153 4.0264 2268.2669 2295 0.0116 
25Cu   29 0.03465 0.14424 2451.4080 38.1228 8.7508 4.3539 2446.7858 2478 0.0126 

a Radius of the paired inner electrons of four-electron atoms from Eq. (10.51). 
b Radius of the paired outer electrons of four-electron atoms from Eq. (10.62). 
c Electric energy of the outer electrons of four-electron atoms from Eq. (10.63). 
d Magnetic energy of the outer electrons of four-electron atoms upon unpairing from Eq. (7.46) and Eq. (10.64). 
e Change in the velocity of the paired inner electrons due to the unpaired outer electron of four-electron atoms during ionization from Eq. (10.46). 
f Change in the kinetic energy of the paired inner electrons due to the unpaired outer electron of four-electron atoms during ionization from Eq. (10.47). 
g Calculated ionization energies of four-electron atoms from Eq. (10.68) for 4Z   and Eq. (10.66) for Be. 
h From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
 i (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.2 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The beryllium atom 
isoelectronic series is given in Table 10.2 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of Be isoelectronic and Rydberg series, as well as direct experimental 
data. 
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2P-ORBITAL ELECTRONS BASED ON AN ENERGY MINIMUM 
For each four-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)) and two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62).  For 5Z  , the next electron which binds to form 
the corresponding five-electron atom is attracted by the central Coulomb field and is repelled by diamagnetic force due to the 
spin-paired inner electrons such that it forms an unpaired atomic orbital at radius 5r . 

The central Coulomb force, eleF , acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner four electrons is given by Eq. (10.28) with the appropriate charge and radius: 
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for 4r r .  The same form of force equation also applies to six through ten-electron atoms as well as five-electron atoms: 
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for 1nr r   where n  corresponds to the number of electrons of the atom and Z  is its atomic number.  In each case, the magnetic 

field of the binding outer electron changes the angular velocities of the inner electrons.  However, in each case, the magnetic 
field of the outer electron provides a central Lorentz force which exactly balances the change in centrifugal force because of the 
change in angular velocity [1].  The inner electrons remain at their initial radii, but cause a diamagnetic force according to 
Lenz’s law.   

The diamagnetic force, diamagneticF , for the formation of an s orbital given by Eq. (10.11) with the appropriate radii is: 
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However, with the formation of a third shell, a nonuniform distribution of charge is possible that achieves an energy 
minimum.  Minimum energy configurations are given by solutions to Laplace’s Equation.  The general form of the solution (Eq. 
(10.449)) is: 
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As shown in the Excited States of the One-Electron Atom (Quantization) section, this general solution in the form of a 
source matching the wave-equation gives the functions of the resonant photons of excited states.  From Eqs. (2.15-2.16): 
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 1, 2,3,4,...n   
  1,2,..., 1n   
 m    , –  1,...,0,...,    

rtotalE  is the sum of the “trapped photon” and proton electric fields, 
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As shown in the Bound Electron “Atomic Orbital” section and the Instability of Excited States section, the angular part of the 
charge-density functions are eigenfunctions of Eq. (1.59), match the angular functions of the inhomogeneous Helmholtz 
equation, and include the time-harmonic function factor (Eqs. (1.27-1.29)) that comprises the electron source current of the 
corresponding electromagnetic waves.  The latter are solutions of the wave-equation (Eqs. (1.1)) and arise with a change in 
electron radius: 
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where to keep the form of the spherical harmonic as a traveling wave about the z-axis   zR  is the representation of the 

rotational matrix about the z-axis zR  (Eq. (1.82)) in the space of functions       , ,        
m m

z n nR t Y Y m t  and 
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      Re , cos cos      
nim tm m

nY e P m m t .  In the cases that 0m  , Eq. (10.77) is a traveling charge-density wave that 

moves on the surface of the atomic orbital about the z-axis with frequency n  and modulates the atomic orbital corresponding to 

  = 0 at nm .  These functions comprise the well known s, p, d, f, etc. orbitals wherein the constant function  0
0 ,Y    

corresponds to the spin function having spin angular momentum and the modulation function   Re ,  
nim tmY e  corresponds to 

the orbital function having orbital angular momentum as given in the Bound Electron “Atomic Orbital” section and the 
Rotational Parameters of the Electron (Angular Momentum, Rotational Energy, Moment of Inertia) section. 

Similar to the phenomenon observed for spherical conductors [4-5], spherical harmonic charge-density waves may be 
induced in the inner electron atomic orbitals with the addition of one or more outer electrons, each having an orbital quantum 
number 0  as given by Eq. (10.77).  With 5Z  , an energy minimum is achieved when the fifth through tenth electrons of 
each five through ten-electron atom fills a p orbital with the formation of orthogonal complementary charge-density waves in the 
inner shell electrons.  To maintain the symmetry of the central charge and the energy minimum condition given by solutions to 
Laplace’s equation (Eq. (10.72)), the charge-density waves on electron atomic orbitals at 1r  and 3r  complement those of the 

outer orbitals when the outer p orbitals are not all occupied by at least one electron, and the complementary charge-density 
waves are provided by electrons at 3r  when this condition is met.  Since the angular harmonic charge-density waves are 
nonradiative as shown in Appendix I: Nonradiation Condition, the time-averaged central field is inverse r -squared even though 
the central field is modulated by the concentric charge-density waves.  The modulated central field maintains the spherical 
harmonic orbitals that maintain the spherical-harmonic phase according to Eq. (10.72).  For 1  and 1m   , the spherical 
harmonics  ,mY    given by Eqs. (1.30-1.31) are: 

 1, sin cosxY    (10.78) 

 1, sin sinyY    (10.79) 

wherein the x  and y  designation corresponds, respectively, to the historical xp  and yp  probability-density functions of 

quantum mechanics.  The xp  and yp  charge-density waves rotate in the same direction such that their individual contributions to 

the diamagnetic force add, or they rotate in opposite directions such that their contributions cancel.  In addition, for 1  and 
0m  , the spherical harmonic  ,mY    is: 

 1, coszY   (10.80) 

wherein the z  designation corresponds to the historical zp  probability-density function of quantum mechanics. 
As shown by Eq. (10.9), the diamagnetic force is dependent on the integral of the charge-density squared over the surface 

of the atomic orbital with the further constant of the invariance of charge under Gauss’s integral law.  The correction to the force 
due to a time and spatially-dependent spherical harmonic current-density wave is given by the normalization term for spherical 
harmonics given by Eq. (3.53) of Jackson [6] and Eq. (6-76) of McQuarrie [7]: 
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Since the spin function is constant and the orbital function is a traveling wave, only the latter contributes to the diamagnetic and 
paramagnetic-force contributions of an unpaired electron.  Substitution of Eq. (10.81) into Eq. (10.11) gives the contribution of 
each orbital to the diamagnetic force, diamagneticF , which is summed over the orbitals: 
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where the contributions from orbitals having 1m   add positively or negatively. 

For each five-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-
paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and an unpaired electron in an atomic orbital at 5r  

given by Eq. (10.113).  For 6Z  , the next electron which binds to form the corresponding six-electron atom is attracted by the 
central Coulomb field and is repelled by diamagnetic force due to the spin-paired inner electrons.  A paramagnetic spin-pairing 
force to form a filled s orbital is also possible, but the force due to the spin-pairing of the electrons (Eq. (7.24) with the radius 6r ) 
reduces the energy of the atom less than that due to the alternative forces on two unpaired p electrons in an atomic orbital at the 
same radius 6r . 

In general, a nonuniform distribution of charge achieves an energy minimum with the formation of a third shell due to the 
dependence of the magnetic forces on the nuclear charge and orbital energy (Eqs. (10.52), (10.55), and (10.93)).  The outer 
electrons of atoms and ions that are isoelectronic with the series boron through neon half-fill a 2p level with unpaired electrons at 
nitrogen, then fill the level with paired electrons at neon.  Thus, it is found that the purely postulated Hund’s Rule and the Pauli 
Exclusion Principle of the assignment of unique quantum numbers to all electrons are not “weird spooky action” phenomena 
unique to quantum mechanics that require all electrons in the universe to have instantaneous communication and coordination 
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with no basis in physical laws such as Maxwell’s equations.  Rather they are phenomenological consequences of those laws.   
Each outer 2p electron contributes spin as well as orbital angular momentum.  The former gives rise to spin pairing to 

another 2p electron when an energy minimum is achieved.  The corresponding force, 2magF , given by Eq. (10.52) is: 
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The orbital angular momenta of spin-paired electrons may add to double the spin-pairing force of each individual p electron such 
that the resultant force is four times that of Eq. (10.83) in agreement with the energy (and force) relationship of magnetic fields 
(Eq. (1.154)): 
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Or, the orbital angular momenta of spin-paired electrons may add negatively to cancel such that  2magF  due to the contribution 

from spin-pairing alone is equivalent to that given by Eq. (10.83). 
The electron velocity given by Eq. (1.35) is: 
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The velocity (Eq. (1.35)) and angular frequency (Eq. (1.36)) are determined by the boundary conditions that the angular 
momentum density at each point on the surface is constant and the magnitude of the total angular momentum of the atomic 
orbital L  must also be constant.  The constant total is   given by the integral: 
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The integral of the magnitude of the angular momentum of the electron is   in any inertial frame and is relativistically invariant 
as a Lorentz scalar L  .  The vector projections of the atomic orbital spin angular momentum relative to the Cartesian 
coordinates are given in the Spin Angular Momentum of the Atomic Orbital 0

0 ( , ) Y  with  = 0 section.  The orbital and spin 

angular momentum of excited states is also quantized in units of   as shown in the Orbital and Spin Splitting section.  The 
orbital moment of inertia, orbitalI , corresponding to orbital quantum number   (Eq. (1.147)) is: 
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The spin and orbital angular momentum can superimpose positively or negatively: 
    z total z spin z orbitalL L L   (10.88) 

Thus, the contribution of the orbital angular momentum to the paramagnetic force is also that given by Eq. (10.83). 
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And, the total force is given as the sum over the orbital and spin angular momenta that may add positively or negatively to 
achieve an energy minimum while maintaining the conservation of angular momentum.  

The amplitude of the corresponding rotational energy,  orbitalrotationalE , given by Eq. (1.71) is: 
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 (10.90) 

Since the orbital rotational energy arises from a spin function (spin angular momentum) modulated by a spherical harmonic 
angular function (orbital angular momentum), the time-averaged orbital rotational energy having an amplitude given by Eq. 
(1.71) (Eq. (10.90)) is zero:  
   orbital 0rotationalE   (10.91) 

However, the orbital energy is nonzero in the presence of a magnetic field. 
N-electron atoms having Z n  possess an electric field of: 
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 rE i  (10.92) 

for nr r .  Since there is a source of dissipative power, J E  of Eq. (10.27), the magnetic moments of the inner electrons may 

change due to the outer electron such that the energy of the n-electron atom is lowered.  The diamagnetic force, 2diamagneticF , due 

to a relativistic effect with an electric field for nr r  (Eq. (10.35)) is dependent on the amplitude of the orbital energy.  Using the 

orbital energy with 1  (Eq. (10.90)), the energy 2
em v  of Eq. (10.29) is reduced by the factor of 

2
1

2

 
  

 
 due to the 

contribution of the charge-density wave of the inner electrons at 3r .  Thus, 2diamagneticF  is given by: 
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 (10.93) 

Using the forces given by Eqs. (10.70), (10.82-10.84), (10.89), (10.93), and the radii 3r  given by Eq. (10.62), the radii of 
the 2p electrons of all five through ten-electron atoms may be solved exactly.  The electric energy given by Eq. (10.102) gives 
the corresponding exact ionization energies.  eleF  and 2diamagneticF  given by Eqs. (10.70) and (10.93), respectively, are of the same 

form for all atoms with the appropriate nuclear charges and atomic radii.  diamagneticF  given by Eq. (10.82) and 2magF  given by 

Eqs. (10.83-10.84) and (10.89) are of the same form with the appropriate factors that depend on the minimum-energy electron 
configuration.  The general equation and the summary of the parameters that determine the exact radii and ionization energies of 
all five through ten-electron atoms are given the General Equation For The Ionization Energies of Five Through Ten-Electron 
Atoms section and in Table 10.9. 
 

FIVE-ELECTRON ATOMS 
Five-electron atoms can be solved exactly using the results of the solutions of one, two, three, and four-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE BORON 
ATOM 
For each four-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)) and two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62).  For 5Z  , the next electron which binds to form 
the corresponding five-electron atom is attracted by the central Coulomb field and is repelled by diamagnetic force due to the 
spin-paired inner electrons such that it forms an unpaired atomic orbital at radius 5r .  The resulting electron configuration is 

2 2 11 2 2s s p , and the orbital arrangement is: 

 

     2p state

                    

   1       0     -1

  (10.94) 

corresponding to the ground state 2 0
1/2P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner four electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 4r r . 

The single p orbital of the boron atom produces a diamagnetic force equivalent to that of the formation of an s orbital due 
to the induction of complementary and spherically symmetrical charge-density waves on electron atomic orbitals at 1r  and 3r  in 

order to achieve a solution of Laplace’s equation (Eq. (10.72)).  The inner electrons remain at their initial radii, but cause a 
diamagnetic force according to Lenz’s law that is two times that of Eqs. (10.11) and (10.71) since the two electrons at 1 2r r  act 

on the two electrons at 3 4r r  which in turn act of the outer electron.  diamagneticF  is also given by Eq. (10.82) with 0  and the 

appropriate radii when the contributions from the three orthogonal spherical harmonics are summed over including those 
induced: 
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 (10.96) 

The charge induction forms complementary mirror charge-density waves which must have opposing angular momenta 
such that momentum is conserved.  In this case, 2magF  given by Eq. (10.89) is zero: 

  2 0mag F  (10.97) 

The outward centrifugal force on electron 5 is balanced by the electric force and the magnetic force (on electron 5).  The 
radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.95)) and 
diamagnetic (Eq. (10.96)) forces as follows: 
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Substitution of 5
5e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.98) gives: 
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Substitution of 3

0

1.07930
r

a
  (Eq. (10.62) with 5Z  ) into Eq. (10.100) gives: 

 5 01.67000351r a  (10.101) 

In general, the energy stored in the electric field, ( )E electric , is given by Eq. (10.43) with the appropriate charge and 
radius:  
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   (10.102) 

where n  corresponds to the number of electrons of the atom and Z  is its atomic number.  The ionization energy is given by the 
sum of the electric energy and the energy corresponding to the change in magnetic-moments of the inner shell electrons.  Since 
there is no source of dissipative power, J E  of Eq. (10.27), to compensate for any potential change in the magnetic moments, 

m , of the inner electrons due to the ionization of the outer electron of the boron atom, there is a diamagnetic energy term in the 
ionization energy for this atom that follows from the corresponding term for the lithium atom.  Since the diamagnetic force for 
the boron atom (Eq. (10.96)) is twice that of the corresponding force (Eq. (10.11)) of the lithium atom, this term is given by 
twice that of Eqs. (10.15-10.24), with 5Z  , 3r  given by Eq. (10.62), and 5r  given by Eq. (10.101).  Thus, the change in 

magnetic energy of the inner atomic orbital at 3r  is 85.429321 % , so that the corresponding energy magE  is: 

  2 0.85429321  0.09100214 0.15548501 magE X eV eV    (10.103) 

where the magnetic energy of the inner electrons is 0.09100214 eV  (Eqs. (10.64) and (10.101)).  Then, the ionization energy of 
the boron atom is given by Eqs. (10.101-10.102) and (10.103): 
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The experimental ionization energy of the boron atom is 8.29803 eV  [3]. 
 
THE IONIZATION ENERGIES OF FIVE-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>5 
Five-electron atoms having 5Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  From Eq. (10.82), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the xp , yp , and 

zp  orbitals corresponding to m  = 1, -1, and 0, respectively: 
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 (10.105) 

With 5Z  , the charge induction forms complementary mirror charge-density waves such that the angular momenta do not 
cancel.  From Eq. (10.89),  2magF  corresponding to the orbital angular momentum of the single xp  electron is 
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 (10.106) 

The second diamagnetic force,  2diamagneticF , due to the binding of the p-orbital electron having an electric field outside of its 

radius is given by Eq. (10.93): 
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In the case that 5Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.95)) and diamagnetic (Eqs. (10.105) and (10.107)), and paramagnetic (Eq. (10.106)) forces as follows: 
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Substitution of 5
5e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.108) gives: 
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The quadratic equation corresponding to Eq. (10.109) is: 
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 (10.111) 

 
The solution of Eq. (10.111) using the quadratic formula is: 
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    (10.113) 

 
where 3r  is given by Eq. (10.62).  The positive root of Eq. (10.113) must be taken in order that 5 0r  .  The radii of several five-

electron atoms are given in Table 10.3. 
The ionization energies for the five-electron atoms with 5Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, 5r , given by Eq. (10.113)): 
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    (10.114) 

Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured five-electron 
atoms are given in Table 10.3. 
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Table 10.3.   Ionization energies for some five-electron atoms. 

5 e 
Atom 

Z 
1r  

( oa ) a 
3r  

( oa ) b 
5r  

( oa ) c 

Theoretical 
Ionization 
Energies d 

(eV)

Experimental 
Ionization 
Energies e

 
(eV)

Relative 
Error f 

B  5 0.20670 1.07930 1.67000 8.30266 8.29803 -0.00056 
C  6 0.17113 0.84317 1.12092 24.2762 24.38332 0.0044 

2N   7 0.14605 0.69385 0.87858 46.4585 47.44924 0.0209 
3O   8 0.12739 0.59020 0.71784 75.8154 77.41353 0.0206 
4F   9 0.11297 0.51382 0.60636 112.1922 114.2428 0.0179 
5Ne   10 0.10149 0.45511 0.52486 155.5373 157.93 0.0152 
6Na   11 0.09213 0.40853 0.46272 205.8266 208.5 0.0128 
7Mg   12 0.08435 0.37065 0.41379 263.0469 265.96 0.0110 

8Al   13 0.07778 0.33923 0.37425 327.1901 330.13 0.0089 
9Si   14 0.07216 0.31274 0.34164 398.2509 401.37 0.0078 

10P   15 0.06730 0.29010 0.31427 476.2258 479.46 0.0067 
11S   16 0.06306 0.27053 0.29097 561.1123 564.44 0.0059 
12Cl   17 0.05932 0.25344 0.27090 652.9086 656.71 0.0058 
13Ar   18 0.05599 0.23839 0.25343 751.6132 755.74 0.0055 

14K   19 0.05302 0.22503 0.23808 857.2251 861.1 0.0045 
15Ca   20 0.05035 0.21308 0.22448 969.7435 974 0.0044 
16Sc   21 0.04794 0.20235 0.21236 1089.1678 1094 0.0044 
17Ti   22 0.04574 0.19264 0.20148 1215.4975 1221 0.0045 
18V   23 0.04374 0.18383 0.19167 1348.7321 1355 0.0046 
19Cr   24 0.04191 0.17579 0.18277 1488.8713 1496 0.0048 
20Mn   25 0.04022 0.16842 0.17466 1635.9148 1644 0.0049 
21Fe   26 0.03867 0.16165 0.16724 1789.8624 1799 0.0051 
22Co   27 0.03723 0.15540 0.16042 1950.7139 1962 0.0058 
23Ni   28 0.03589 0.14961 0.15414 2118.4690 2131 0.0059 
24Cu   29 0.03465 0.14424 0.14833 2293.1278 2308 0.0064 

a Radius of the first set of paired inner electrons of five-electron atoms from Eq. (10.51). 
b Radius of the second set of paired inner electrons of five-electron atoms from Eq. (10.62). 
c Radius of the outer electron of five-electron atoms from Eq. (10.113) for 5Z   and Eq. (10.101) for B. 
d Calculated ionization energies of five-electron atoms given by the electric energy (Eq. (10.114)) for 5Z   and Eq. (10.104) for B. 
e From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
f (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.3 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The boron atom isoelectronic 
series is given in Table 10.3 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these values are based 
on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine since the cut-off 
of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be determined from 
theoretical calculations, interpolation of B isoelectronic and Rydberg series, as well as direct experimental data. 
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SIX-ELECTRON ATOMS 
Six-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, and five-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE CARBON 
ATOM 
For each five-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and an unpaired electron in an atomic orbital at 5r  

given by Eq. (10.113).  For 6Z  , the next electron which binds to form the corresponding six-electron atom is attracted by the 
central Coulomb field and is repelled by diamagnetic force due to the spin-paired inner electrons.  A paramagnetic spin-pairing 
force to form a filled s orbital is also possible, but the force due to the spin-pairing of the electrons (Eq. (7.24) with the radius 6r ) 

reduces the energy of the atom less than that due to the alternative forces on two unpaired p electrons in an atomic orbital at the 
same radius 6r .  The resulting electron configuration is 2 2 21 2 2s s p , and the orbital arrangement is: 

 

     2p state

                

   1        0     -1

   (10.115) 

corresponding to the ground state 3
0P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner five electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 5r r . 

The two orthogonal electrons form charge-density waves such that the total angular momentum of the two outer electrons 
is conserved which determines the diamagnetic force according to Eq. (10.82).  diamagneticF  is: 
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 (10.117) 

corresponding to 1m  . 
The charge induction forms complementary mirror charge-density waves which must have opposing angular momenta 

such that momentum is conserved.  In this case, 2magF  given by Eq. (10.89) is zero: 

  2 0mag F  (10.118) 

The outward centrifugal force on electron 6 is balanced by the electric force and the magnetic forces (on electron 6).  The 
radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.116)) and 
diamagnetic (Eq. (10.117)) forces as follows: 
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Substitution of 6
6e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.119) gives: 
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Substitution of 3

0

0.84317
r

a
  (Eq. (10.62) with 6Z  ) into Eq. (10.121) gives: 

 6 01.20654r a  (10.122) 

The ionization energy of the carbon atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 6r , 

given by Eq. (10.122)): 
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     (10.123) 

where 6 01.20654r a  (Eq. (10.122)) and 6Z  .  The experimental ionization energy of the carbon atom is 11.2603 eV  [3]. 
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THE IONIZATION ENERGIES OF SIX-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>6 
Six-electron atoms having 6Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  From Eq. (10.82), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the xp , yp , and 

zp  orbitals corresponding to 1,  1,  and 0,m    respectively: 
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 (10.124) 

With 6Z  , the charge induction forms complementary mirror charge-density waves such that the angular momenta do 
not cancel.  From Eq. (10.89),  2magF  corresponding to the orbital angular momentum of the two p electrons in addition to 

complementary charge-density waves is: 
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 (10.125) 

The second diamagnetic force,  2diamagneticF , due to the binding of the p-orbital electron having an electric field outside of 

its radius, is given by Eq. (10.93): 
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In the case that 6Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.116)), diamagnetic (Eqs. (10.124) and (10.126)), and paramagnetic (Eq. (10.125)) forces as follows: 
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Substitution of 6
6e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.127) gives: 
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The quadratic equation corresponding to Eq. (10.128) is: 
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The solution of Eq. (10.130) using the quadratic formula is: 
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where 3r  is given by Eq. (10.62).  The positive root of Eq. (10.132) must be taken in order that 6 0r  .  The final radius of 

electron 6, 6r , is given by Eq. (10.132); this is also the final radius of electron 5.  The radii of several six-electron atoms are 

given in Table 10.4. 
The ionization energies for the six-electron atoms with 6Z   are given by the electric energy, ( )E electric , (Eq. (10.102) 

with the radii 6r , given by Eq. (10.132)): 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured six-electron 
atoms are given in Table 10.4. 
 
Table 10.4.   Ionization energies for some six-electron atoms. 
 

6 e 
Atom 

Z 
1r  

( 0a ) a 
3r  

( 0a ) b 
6r  

( 0a ) c 

Theoretical 
Ionization 
Energies d 

(eV)

Experimental 
Ionization 
Energies e 

(eV)

Relative 
Error f 

C  6 0.17113 0.84317 1.20654 11.27671 11.2603 -0.0015 
N   7 0.14605 0.69385 0.90119 30.1950 29.6013 -0.0201 

2O   8 0.12739 0.59020 0.74776 54.5863 54.9355 0.0064 
3F   9 0.11297 0.51382 0.63032 86.3423 87.1398 0.0092 
4Ne   10 0.10149 0.45511 0.54337 125.1986 126.21 0.0080 
5Na   11 0.09213 0.40853 0.47720 171.0695 172.18 0.0064 
6Mg   12 0.08435 0.37065 0.42534 223.9147 225.02 0.0049 

7Al   13 0.07778 0.33923 0.38365 283.7121 284.66 0.0033 
8Si   14 0.07216 0.31274 0.34942 350.4480 351.12 0.0019 
9P   15 0.06730 0.29010 0.32081 424.1135 424.4 0.0007 

10S   16 0.06306 0.27053 0.29654 504.7024 504.8 0.0002 
11Cl   17 0.05932 0.25344 0.27570 592.2103 591.99 -0.0004 
12Ar   18 0.05599 0.23839 0.25760 686.6340 686.1 -0.0008 

13K   19 0.05302 0.22503 0.24174 787.9710 786.6 -0.0017 
14Ca   20 0.05035 0.21308 0.22772 896.2196 894.5 -0.0019 
15Sc   21 0.04794 0.20235 0.21524 1011.3782 1009 -0.0024 
16Ti   22 0.04574 0.19264 0.20407 1133.4456 1131 -0.0022 
17V   23 0.04374 0.18383 0.19400 1262.4210 1260 -0.0019 
18Cr   24 0.04191 0.17579 0.18487 1398.3036 1396 -0.0017 
19Mn   25 0.04022 0.16842 0.17657 1541.0927 1539 -0.0014 
20Fe   26 0.03867 0.16165 0.16899 1690.7878 1689 -0.0011 
21Co   27 0.03723 0.15540 0.16203 1847.3885 1846 -0.0008 
22Ni   28 0.03589 0.14961 0.15562 2010.8944 2011 0.0001 
23Cu   29 0.03465 0.14424 0.14970 2181.3053 2182 0.0003 

a Radius of the first set of paired inner electrons of six-electron atoms from Eq. (10.51). 
b Radius of the second set of paired inner electrons of six-electron atoms from Eq. (10.62). 
c Radius of the two unpaired outer electrons of six-electron atoms from Eq. (10.132) for 6Z   and Eq. (10.122) for C. 
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d Calculated ionization energies of six-electron atoms given by the electric energy (Eq. (10.133)). 
e From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
f (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.4 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The carbon atom 
isoelectronic series is given in Table 10.4 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of C isoelectronic and Rydberg series, as well as direct experimental data.   
 

SEVEN-ELECTRON ATOMS 
Seven-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, and six-electron 
atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
NITROGEN ATOM 
For each six-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and two unpaired electrons in an atomic orbital at 

6r  given by Eq. (10.132).  For 7Z  , the next electron which binds to form the corresponding seven-electron atom is attracted 

by the central Coulomb field and is repelled by diamagnetic force due to the spin-paired inner electrons.  A paramagnetic spin-
pairing force is also possible, but the force due to the spin-pairing of the electrons (Eq. (7.24) with the radius 7r ) reduces the 

energy of the atom less than that due to the alternative forces on three unpaired p electrons in an atomic orbital at the same radius 

7r .  The resulting electron configuration is 2 2 31 2 2s s p , and the orbital arrangement is: 

 

     2p state

            

   1        0     -1

    (10.134) 

corresponding to the ground state 4 0
3/2S . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner six electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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4ele

Z e
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 rF i  (10.135) 

for 6r r . 

The energy is minimized with conservation of angular momentum when the angular momenta of the two orthogonal xp  

and yp  electrons cancel such that the diamagnetic force (Eq. (10.82)), diamagneticF , is: 
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 (10.136) 

corresponding to 0m  . 
From Eq. (10.89),  2magF  corresponding to the orbital angular momentum of the zp  electron is: 
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 (10.137) 

The outward centrifugal force on electron 7 is balanced by the electric force and the magnetic forces (on electron 7).  The 
radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.135)), 
diamagnetic (Eq. (10.136)), and paramagnetic (Eq. (10.137)) forces as follows: 

 
2 2 2 2
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 (10.138) 

Substitution of 7
7e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.138) gives: 
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 (10.141) 

Substitution of 3

0

0.69385
r

a
  (Eq. (10.62) with 7Z  ) into Eq. (10.141) gives: 

 7 00.93084r a  (10.142) 

The ionization energy of the nitrogen atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 7r , 

given by Eq. (10.142)): 

 
2

0 7

( 6)
( ;  )  14.61664 

8

Z e
E ionization N Electric Energy eV

r


     (10.143) 

where 7 00.93084r a  (Eq. (10.142)) and 7Z  .  The experimental ionization energy of the nitrogen atom is 14.53414 eV  [3]. 

 
THE IONIZATION ENERGIES OF SEVEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>7 
Seven-electron atoms having 7Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  From Eq. (10.82), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the xp , yp , and 

zp  orbitals corresponding to m  = 1, -1, and 0, respectively: 
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 (10.144) 

With 6Z  , the charge induction forms complementary mirror charge-density waves such that the angular momenta do 
not cancel.  From Eq. (10.89),  2magF  corresponding to the orbital angular momentum of the three p electrons in addition 

complementary charge-density waves is 
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e
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 (10.145) 

The second diamagnetic force,  2diamagneticF , due to the binding of the p-orbital electron having an electric field outside of 

its radius is given by Eq. (10.93): 
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 (10.146) 

In the case that 7Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.135)), diamagnetic (Eqs. (10.10.144) and (10.146)), and paramagnetic (Eq. (10.145)) forces as follows: 
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Substitution of 7
7e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.147) gives: 
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The quadratic equation corresponding to Eq. (10.148) is 
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The solution of Eq. (10.150) using the quadratic formula is: 
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    (10.152) 

 
where 3r  is given by Eq. (10.62).  The positive root of Eq. (10.152) must be taken in order that 7 0r  .  The final radius of 

electron 7, 7r , is given by Eq. (10.152); this is also the final radius of electrons 5 and 6.  The radii of several seven-electron 

atoms are given in Table 10.5. 
The ionization energies for the seven-electron atoms with 7Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, 7r , given by Eq. (10.152)): 
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    (10.153) 

Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured seven-electron 
atoms are given in Table 10.5. 
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Table 10.5.   Ionization energies for some seven-electron atoms. 
 

7 e 
Atom 

Z 
1r  

( 0a ) a 
3r  

( 0a ) b 
7r  

( 0a ) c 

Theoretical 
Ionization 
Energies d 

(eV)

Experimental 
Ionization 
Energies e 

(eV)

Relative 
Error f 

N  7 0.14605 0.69385 0.93084 14.61664 14.53414 -0.0057 
O  8 0.12739 0.59020 0.78489 34.6694 35.1173 0.0128 

2F   9 0.11297 0.51382 0.67084 60.8448 62.7084 0.0297 
3Ne   10 0.10149 0.45511 0.57574 94.5279 97.12 0.0267 
4Na   11 0.09213 0.40853 0.50250 135.3798 138.4 0.0218 
5Mg   12 0.08435 0.37065 0.44539 183.2888 186.76 0.0186 

6Al   13 0.07778 0.33923 0.39983 238.2017 241.76 0.0147 
7Si   14 0.07216 0.31274 0.36271 300.0883 303.54 0.0114 
8P   15 0.06730 0.29010 0.33191 368.9298 372.13 0.0086 
9S   16 0.06306 0.27053 0.30595 444.7137 447.5 0.0062 
10Cl   17 0.05932 0.25344 0.28376 527.4312 529.28 0.0035 
11Ar   18 0.05599 0.23839 0.26459 617.0761 618.26 0.0019 

12K   19 0.05302 0.22503 0.24785 713.6436 714.6 0.0013 
13Ca   20 0.05035 0.21308 0.23311 817.1303 817.6 0.0006 
14Sc   21 0.04794 0.20235 0.22003 927.5333 927.5 0.0000 
15Ti   22 0.04574 0.19264 0.20835 1044.8504 1044 -0.0008 
16V   23 0.04374 0.18383 0.19785 1169.0800 1168 -0.0009 
17Cr   24 0.04191 0.17579 0.18836 1300.2206 1299 -0.0009 
18Mn   25 0.04022 0.16842 0.17974 1438.2710 1437 -0.0009 
19Fe   26 0.03867 0.16165 0.17187 1583.2303 1582 -0.0008 
20Co   27 0.03723 0.15540 0.16467 1735.0978 1735 -0.0001 
21Ni   28 0.03589 0.14961 0.15805 1893.8726 1894 0.0001 
22Cu   29 0.03465 0.14424 0.15194 2059.5543 2060 0.0002 

a Radius of the first set of paired inner electrons of seven-electron atoms from Eq. (10.51). 
b Radius of the second set of paired inner electrons of seven-electron atoms from Eq. (10.62). 
c Radius of the three unpaired paired outer electrons of seven-electron atoms from Eq. (10.152) for 7Z   and Eq. (10.142) for N. 
d Calculated ionization energies of seven-electron atoms given by the electric energy (Eq. (10.153)). 
e From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
f (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.5 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The nitrogen atom 
isoelectronic series is given in Table 10.5 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of N isoelectronic and Rydberg series, as well as direct experimental data.   
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EIGHT-ELECTRON ATOMS 
Eight-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, and seven-electron 
atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE OXYGEN 
ATOM 
For each seven-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and three unpaired electrons in an atomic orbital at 

7r  given by Eq. (10.152).  For 8Z  , the next electron which binds to form the corresponding eight-electron atom is attracted by 

the central Coulomb field and is repelled by diamagnetic force due to the spin-paired inner electrons.  A paramagnetic spin-
pairing force that results in the formation of a filled s orbital is also possible, but the force due to the spin-pairing of the electrons 
(Eq. (7.24) with the radius 8r ) reduces the energy of the atom less than that due to the alternative forces on two paired electrons 

in a xp  orbital and two unpaired electrons in yp  and zp  orbitals of an atomic orbital at the same radius 8r .  The resulting 

electron configuration is 2 2 41 2 2s s p , and the orbital arrangement is: 

 

     2p state

           

   1        0     -1

     (10.154) 

corresponding to the ground state 3
2P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner seven electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 7r r . 

The energy is minimized with conservation of angular momentum by the cancellation of the orbital angular momentum 
of a xp  electron by that of the yp  electron with the pairing of electron eight to fill the xp  orbital.  Then, the diamagnetic force is 

that of N  given by Eq. (10.136) corresponding to the zp -orbital electron (Eq. (10.82) with 0m  ) as the source of 

diamagnetism with an additional contribution from the uncanceled xp  electron (Eq. (10.82) with 1m  ).  diamagneticF  for the 

oxygen atom is: 
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From Eqs. (10.83) and (10.89),  2magF  is 
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 (10.157) 

corresponding to the spin-angular-momentum contribution alone of the xp  electron and the orbital angular momentum of the zp  

electron, respectively. 
The outward centrifugal force on electron 8 is balanced by the electric force and the magnetic forces (on electron 8).  The 

radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.155)), 
diamagnetic (Eq. (10.156)), and paramagnetic (Eq. (10.157)) forces as follows: 
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Substitution of 8
8e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.158) gives: 
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Substitution of 3

0

0.59020
r

a
  (Eq. (10.62) with 8Z  ) into Eq. (10.161) gives: 

 8 0r a  (10.162) 

The ionization energy of the oxygen atom is given by the negative of ( )E electric  given by Eq. (10.102) with the 
appropriate charge and radius: 
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     (10.163) 

where 8 0r a  (Eq. (10.162)) and 8Z  .  The experimental ionization energy of the oxygen atom is 13.6181 eV  [3]. 

 
THE IONIZATION ENERGIES OF EIGHT-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>8 
Eight-electron atoms having 8Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  From Eq. (10.82), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the xp , yp , and 

zp  orbitals corresponding to m  = 1, -1, and 0, respectively: 
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The filled p orbitals with the maintenance of symmetry according to Eq. (10.72) requires that the diamagnetic force is 
only due to the electrons at 3r .  From Eqs. (10.84) and (10.89), 2magF  is: 
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corresponding to the spin and orbital angular momenta of the paired xp  electrons and the orbital angular momentum of each of 

the yp  and zp  electrons, respectively. 

The second diamagnetic force,  2diamagneticF , due to the binding of the p-orbital electron having an electric field outside of 

its radius is given by Eq. (10.93). 
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In the case that 8Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.155)), diamagnetic (Eqs. (10.164) and (10.166)), and paramagnetic (Eq. (10.165)) forces as follows: 
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Substitution of 8
8e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.167) gives: 
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The quadratic equation corresponding to Eq. (10.168) is 
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The solution of Eq. (10.170) using the quadratic formula is: 
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    (10.172) 

where 3r  is given by Eq. (10.62).  The positive root of Eq. (10.172) must be taken in order that 8 0r  .  The final radius of 

electron 8, 8r , is given by Eq. (10.172); this is also the final radius of electrons 5, 6, and 7.  The radii of several eight-electron 

atoms are given in Table 10.6. 
The ionization energies for the eight-electron atoms with 8Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, 8r , given by Eq. (10.172)): 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured eight-electron 
atoms are given in Table 10.6. 
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Table 10.6.   Ionization energies for some eight-electron atoms. 

8 e 
Atom 

Z 
1r  

( 0a ) a 
3r  

( 0a ) b 
8r  

( 0a ) c 

Theoretical 
Ionization 
Energies d 

(eV)

Experimental 
Ionization 
Energies e 

(eV)

Relative 
Error f 

O  8 0.12739 0.59020 1.00000 13.60580 13.6181 0.0009 
F   9 0.11297 0.51382 0.7649 35.5773 34.9708 -0.0173 

2Ne   10 0.10149 0.45511 0.6514 62.6611 63.45 0.0124 
3Na   11 0.09213 0.40853 0.5592 97.3147 98.91 0.0161 
4Mg   12 0.08435 0.37065 0.4887 139.1911 141.27 0.0147 

5Al   13 0.07778 0.33923 0.4338 188.1652 190.49 0.0122 
6Si   14 0.07216 0.31274 0.3901 244.1735 246.5 0.0094 
7P   15 0.06730 0.29010 0.3543 307.1791 309.6 0.0078 
8S   16 0.06306 0.27053 0.3247 377.1579 379.55 0.0063 
9Cl   17 0.05932 0.25344 0.2996 454.0940 455.63 0.0034 
10Ar   18 0.05599 0.23839 0.2782 537.9756 538.96 0.0018 

11K   19 0.05302 0.22503 0.2597 628.7944 629.4 0.0010 
12Ca   20 0.05035 0.21308 0.2434 726.5442 726.6 0.0001 
13Sc   21 0.04794 0.20235 0.2292 831.2199 830.8 -0.0005 
14Ti   22 0.04574 0.19264 0.2165 942.8179 941.9 -0.0010 
15V   23 0.04374 0.18383 0.2051 1061.3351 1060 -0.0013 
16Cr   24 0.04191 0.17579 0.1949 1186.7691 1185 -0.0015 
17Mn   25 0.04022 0.16842 0.1857 1319.1179 1317 -0.0016 
18Fe   26 0.03867 0.16165 0.1773 1458.3799 1456 -0.0016 
19Co   27 0.03723 0.15540 0.1696 1604.5538 1603 -0.0010 
20Ni   28 0.03589 0.14961 0.1626 1757.6383 1756 -0.0009 
21Cu   29 0.03465 0.14424 0.1561 1917.6326 1916 -0.0009 

a Radius of the first set of paired inner electrons of eight-electron atoms from Eq. (10.51). 
b Radius of the second set of paired inner electrons of eight-electron atoms from Eq. (10.62). 
c Radius of the two paired and two unpaired outer electrons of eight-electron atoms from Eq. (10.172) for 8Z   and Eq. (10.162) for O. 
d Calculated ionization energies of eight-electron atoms given by the electric energy (Eq. (10.173)). 
e From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
f (Experimental-theoretical)/experimental. 

 
The agreement between the experimental and calculated values of Table 10.6 is well within the experimental capability 

of the spectroscopic determinations including the values at large Z that relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The oxygen atom 
isoelectronic series is given in Table 10.6 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of O isoelectronic and Rydberg series, as well as direct experimental data.   
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NINE-ELECTRON ATOMS 
Nine-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, and eight-
electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
FLUORINE ATOM 
For each eight-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and two paired and unpaired electrons in an atomic 

orbital at 8r  given by Eq. (10.172).  For 9Z  , the next electron which binds to form the corresponding nine-electron atom is 

attracted by the central Coulomb field and is repelled by diamagnetic force due to the spin-paired inner electrons.  A 
paramagnetic spin-pairing force that results in the formation of a filled s orbital is also possible, but the force due to the spin-
pairing of the electrons (Eq. (7.24) with the radius 9r ) reduces the energy of the atom less than that due to the alternative forces 

on an unpaired electron in a yp  orbital and two pairs of electrons of opposite spin in xp  and zp  orbitals of an atomic orbital at 

the same radius 9r .  The resulting electron configuration is 2 2 51 2 2s s p , and the orbital arrangement is: 

 

      2p state

           

   1         0       -1

      (10.174) 

corresponding to the ground state 2 0
3/2P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner eight electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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2
0 9

( 8)

4ele

Z e

r


 rF i  (10.175) 

for 8r r . 

The energy is minimized and the angular momentum is conserved with the pairing of electron nine to fill the zp  orbital 

when the orbital angular momenta of each set of xp  and zp  spin-paired electrons adds negatively to cancel.  Then, the 

diamagnetic force (Eq. (10.82)), diamagneticF , is: 
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9 3
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3 4diamagnetic
e
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 (10.176) 

corresponding to 1m    for the unpaired yp  electron. 

From Eqs. (10.83) and (10.89),  2magF  is: 

  
2 2

 2 2 2
9 3 9 3

1 1 3
1 1 1 ( 1) ( 1)mag

e e

s s s s
Z m r r Z m r r

     r rF i i
 

 (10.177) 

corresponding to the spin-angular-momentum contribution alone from each of the xp  and zp  orbitals and the orbital-angular-

momentum contribution of the yp  electron, respectively. 

The outward centrifugal force on electron 9 is balanced by the electric force and the magnetic forces (on electron 9).  The 
radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.175)), 
diamagnetic (Eq. (10.176)), and paramagnetic (Eq. (10.177)) forces as follows: 
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 (10.178) 

Substitution of 9
9e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.178) gives: 
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3

,     
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1 3 4( 8)
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a
r r in units of a

Z
Z r



    
 

 (10.181) 

Substitution of 3

0

0.51382
r

a
  (Eq. (10.62) with 9Z  ) into Eq. (10.181) gives: 

 9 00.78069r a  (10.182) 

The ionization energy of the fluorine atom is given by the negative of ( )E electric  given by Eq. (10.102) with the 
appropriate charge and radius: 

 
2

0 9

( 8)
( ;  )  17.42782 

8

Z e
E ionization F Electric Energy eV

r


     (10.183) 

where 9 00.78069r a  (Eq. (10.183)) and 9Z  .  The experimental ionization energy of the fluorine atom is 17.42282 eV  [3]. 

 
THE IONIZATION ENERGIES OF NINE-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>9 
Nine-electron atoms having 9Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  From Eq. (10.82), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the xp , yp , and 

zp  orbitals corresponding to  = 1, 1, and 0,m   respectively: 

 
2 2

2 2
9 3 9 3

2 2 1 5
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r rF i i
 

 (10.184) 

The filled p orbitals with the maintenance of symmetry according to Eq. (10.72) requires that the diamagnetic force is 
only due to the electrons at 3r .  From Eqs. (10.84) and (10.89), 2magF  is: 
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 (10.185) 

corresponding to the spin and orbital angular momenta of the paired xp  and zp  electrons and the orbital angular momentum of 

the unpaired yp  electron, respectively. 

The second diamagnetic force,  2diamagneticF , due to the binding of the p-orbital electron having an electric field outside of 

its radius is given by Eq. (10.93): 
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 (10.186) 

In the case that 9Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.175)), diamagnetic (Eqs. (10.184) and (10.186)), and paramagnetic (Eq. (10.185)) forces as follows: 
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Substitution of 9
9e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.187) gives: 
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The quadratic equation corresponding to Eq. (10.188) is 
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The solution of Eq. (10.190) using the quadratic formula is: 
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    (10.192) 

where 3r  is given by Eq. (10.62).  The positive root of Eq. (10.192) must be taken in order that 9 0r  .  The final radius of 

electron 9, 9r , is given by Eq. (10.192); this is also the final radius of electrons 5, 6,7, and 8.  The radii of several nine-electron 

atoms are given in Table 10.7. 
The ionization energies for the nine-electron atoms with 9Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, 9r , given by Eq. (10.192)): 
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    (10.193) 

Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured nine-electron 
atoms are given in Table 10.7. 
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Table 10.7.  Ionization energies for some nine-electron atoms. 
 

9 e 
Atom 

Z 
1r  

( 0a ) a 
3r  

( 0a ) b 
9r  

( 0a ) c 

Theoretical 
Ionization 
Energies d 

(eV)

Experimental 
Ionization 
Energies e 

(eV)

Relative 
Error f 

F  9 0.11297 0.51382 0.78069 17.42782 17.42282 -0.0003 
Ne  10 0.10149 0.45511 0.64771 42.0121 40.96328 -0.0256 

2Na   11 0.09213 0.40853 0.57282 71.2573 71.62 0.0051 
3Mg   12 0.08435 0.37065 0.50274 108.2522 109.2655 0.0093 

4Al   13 0.07778 0.33923 0.44595 152.5469 153.825 0.0083 
5Si   14 0.07216 0.31274 0.40020 203.9865 205.27 0.0063 
6P   15 0.06730 0.29010 0.36283 262.4940 263.57 0.0041 
7S   16 0.06306 0.27053 0.33182 328.0238 328.75 0.0022 
8Cl   17 0.05932 0.25344 0.30571 400.5466 400.06 -0.0012 
9Ar   18 0.05599 0.23839 0.28343 480.0424 478.69 -0.0028 

10K   19 0.05302 0.22503 0.26419 566.4968 564.7 -0.0032 
11Ca   20 0.05035 0.21308 0.24742 659.8992 657.2 -0.0041 

12Sc   21 0.04794 0.20235 0.23266 760.2415 756.7 -0.0047 
13Ti   22 0.04574 0.19264 0.21957 867.5176 863.1 -0.0051 
14V   23 0.04374 0.18383 0.20789 981.7224 976 -0.0059 
15Cr   24 0.04191 0.17579 0.19739 1102.8523 1097 -0.0053 
16Mn   25 0.04022 0.16842 0.18791 1230.9038 1224 -0.0056 
17Fe   26 0.03867 0.16165 0.17930 1365.8746 1358 -0.0058 
18Co   27 0.03723 0.15540 0.17145 1507.7624 1504.6 -0.0021 
19Ni   28 0.03589 0.14961 0.16427 1656.5654 1648 -0.0052 
20Cu   29 0.03465 0.14424 0.15766 1812.2821 1804 -0.0046 

a Radius of the first set of paired inner electrons of nine-electron atoms from Equation (10.51). 
b Radius of the second set of paired inner electrons of nine-electron atoms from Equation (10.62). 
c Radius of the one unpaired and two sets of paired outer electrons of nine-electron atoms from Eq. (10.192) for 9Z   and Eq. (10.182) for F. 
d Calculated ionization energies of nine-electron atoms given by the electric energy (Eq. (10.193)). 
e From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
f (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.7 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The fluorine atom 
isoelectronic series is given in Table 10.7 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of F isoelectronic and Rydberg series, as well as direct experimental data.   
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TEN-ELECTRON ATOMS 
Ten-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, and 
nine-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE NEON 
ATOM 
For each nine-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and two sets of paired and an unpaired electron in 

an atomic orbital at 9r  given by Eq. (10.192).  For 10Z  , the next electron which binds to form the corresponding ten-electron 

atom is attracted by the central Coulomb field and is repelled by diamagnetic force due to the spin-paired inner electrons.  A 
paramagnetic spin-pairing force that results in the formation of a filled s orbital is also possible, but the force due to the spin-
pairing of the electrons (Eq. (7.24) with the radius 10r ) reduces the energy of the atom less than that due to the alternative forces 

on three pairs of electrons of opposite spin in xp , yp , and zp  orbitals of an atomic orbital at the same radius 10r .  The resulting 

electron configuration is 2 2 61 2 2s s p , and the orbital arrangement is: 

 

       2p state

          

   1         0       -1

       (10.194) 

corresponding to the ground state 1
0S . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner nine electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 9r r . 

The energy is minimized and the angular momentum is conserved with the pairing of electron ten to fill the yp  orbital 

when the orbital angular momenta of each set of the xp , yp , and zp  spin-paired electrons add negatively to cancel.  Then, the 

diamagnetic force (Eq. (10.82)), diamagneticF , is zero: 

 0diamagnetic F  (10.196) 

 From Eq. (10.83),  2magF  is 
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 (10.197) 

corresponding to the spin-angular-momentum contribution alone from each of the xp , yp , and zp  orbitals. 

The outward centrifugal force on electron 10 is balanced by the electric force and the magnetic forces (on electron 10).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.195)), 
diamagnetic (Eq. (10.196)), and paramagnetic (Eq. (10.197)) forces as follows: 
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Substitution of 10
10e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.198) gives: 
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Substitution of 3

0

0.45511
r

a
  (Eq. (10.62) with 10Z  ) into Eq. (10.201) gives: 

 10 00.63659r a  (10.202) 

The ionization energy of the neon atom is given by the negative of ( )E electric  given by Eq. (10.102) with the 
appropriate charge and radius: 
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     (10.203) 

where 10 00.63659r a  (Eq. (10.202)) and 10Z  .  The experimental ionization energy of the neon atom is 21.56454 eV  [3]. 

 
THE IONIZATION ENERGIES OF TEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>10 
Ten-electron atoms having 10Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  From Eq. (10.82), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the xp , yp , and 

zp  orbitals corresponding to m  = 1, -1, and 0, respectively: 
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 (10.204) 

The filled p orbitals with the maintenance of symmetry according to Eq. (10.72) requires that the diamagnetic force is 
only due to the electrons at 3r .  From Eq. (10.84), 2magF  is 
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 (10.205) 

corresponding to the spin and orbital angular momenta of the paired xp , yp , and zp  electrons. 

The second diamagnetic force,  2diamagneticF , due to the binding of the p-orbital electron having an electric field outside of 

its radius is given by Eq. (10.93): 
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In the case that 10Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.195)), diamagnetic (Eqs. (10.204) and (10.206)), and paramagnetic (Eq. (10.205)) forces as follows: 
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Substitution of 10
10e

v
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 (Eq. (1.35)) and 
1

2
s   into Eq. (10.207) gives: 
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The quadratic equation corresponding to Eq. (10.208) is 
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The solution of Eq. (10.210) using the quadratic formula is: 
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    (10.212) 

where 3r  is given by Eq. (10.62).  The positive root of Eq. (10.212) must be taken in order that 10 0r  .  The final radius of 

electron 10, 10r , is given by Eq. (10.62); this is also the final radius of electrons 5, 6, 7, 8, and 9.  The radii of several ten-electron 

atoms are given in Table 10.8. 
The ionization energies for the ten-electron atoms with 10Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, 10r , given by Eq. (10.212)): 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured ten-electron 
atoms are given in Table 10.8. 
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Table 10.8.  Ionization energies for some ten-electron atoms. 
 

10 e 
Atom 

Z 
1r  

( 0a ) a 
3r  

( 0a ) b 
10r  

( 0a ) c 

Theoretical 
Ionization 
Energies d 

(eV)

Experimental 
Ionization 
Energies e 

(eV)

Relative 
Error f 

Ne  10 0.10149 0.45511 0.63659 21.37296 21.56454 0.00888 
Na  11 0.09213 0.40853 0.560945 48.5103 47.2864 -0.0259 

2Mg   12 0.08435 0.37065 0.510568 79.9451 80.1437 0.0025 
3Al   13 0.07778 0.33923 0.456203 119.2960 119.992 0.0058 
4Si   14 0.07216 0.31274 0.409776 166.0150 166.767 0.0045 
5P   15 0.06730 0.29010 0.371201 219.9211 220.421 0.0023 
6S   16 0.06306 0.27053 0.339025 280.9252 280.948 0.0001 
7Cl   17 0.05932 0.25344 0.311903 348.9750 348.28 -0.0020 
8Ar   18 0.05599 0.23839 0.288778 424.0365 422.45 -0.0038 

9K   19 0.05302 0.22503 0.268844 506.0861 503.8 -0.0045 
10Ca   20 0.05035 0.21308 0.251491 595.1070 591.9 -0.0054 
11Sc   21 0.04794 0.20235 0.236251 691.0866 687.36 -0.0054 
12Ti   22 0.04574 0.19264 0.222761 794.0151 787.84 -0.0078 
13V   23 0.04374 0.18383 0.210736 903.8853 896 -0.0088 
14Cr   24 0.04191 0.17579 0.19995 1020.6910 1010.6 -0.0100 
15Mn   25 0.04022 0.16842 0.19022 1144.4276 1134.7 -0.0086 
16Fe   26 0.03867 0.16165 0.181398 1275.0911 1266 -0.0072 
17Co   27 0.03723 0.15540 0.173362 1412.6783 1397.2 -0.0111 
18Ni   28 0.03589 0.14961 0.166011 1557.1867 1541 -0.0105 
19Cu   29 0.03465 0.14424 0.159261 1708.6139 1697 -0.0068 
20Zn   30 0.03349 0.13925 0.153041 1866.9581 1856 -0.0059 

a Radius of the first set of paired inner electrons of ten-electron atoms from Equation (10.51). 
b Radius of the second set of paired inner electrons of ten-electron atoms from Equation (10.62). 
c Radius of three sets of paired outer electrons of ten-electron atoms from Eq. (10.212) for 10Z   and Eq. (10.202) for Ne. 
d Calculated ionization energies of ten-electron atoms given by the electric energy (Eq. (10.213)). 
e From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
f (Experimental-theoretical)/experimental. 

 

The agreement between the experimental and calculated values of Table 10.8 is well within the experimental capability 
of the spectroscopic determinations, including the values at large Z, which rely on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures, which is consistent with the last column.  The neon atom isoelectronic 
series is given in Table 10.8 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these values are based 
on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine since the cut-off 
of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be determined from 
theoretical calculations, interpolation of Ne isoelectronic and Rydberg series, as well as direct experimental data.   
 
GENERAL EQUATION FOR THE IONIZATION ENERGIES OF FIVE THROUGH 
TEN-ELECTRON ATOMS 
Using the forces given by Eqs. (10.70), (10.82-10.84), (10.89), (10.93), and the radii 3r  given by Eq. (10.62), the radii of the 2p 

electrons of all five through ten-electron atoms may be solved exactly.  The electric energy given by Eq. (10.102) gives the 
corresponding exact ionization energies.  A summary of the parameters of the equations that determine the exact radii and 
ionization energies of all five through ten-electron atoms is given in Table 10.9. 

eleF  and  2diamagneticF  given by Eqs. (10.70) and (10.93), respectively, are of the same form for all atoms with the 

appropriate nuclear charges and atomic radii.  diamagneticF  given by Eq. (10.82) and 2magF  given by Eqs. (10.83-10.84) and (10.89) 

are of the same form with the appropriate factors that depend on the electron configuration wherein the electron configuration 
must be a minimum of energy. 

For each n-electron atom having a central charge of Z  times that of the proton and an electron configuration 
2 2 41 2 2 ns s p  , there are two indistinguishable spin-paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eqs. 

(7.35) and (10.51): 
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two indistinguishable spin-paired electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62): 
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where 1r  is given by Eq. (10.214), and 4n   electrons in an atomic orbital with radius nr  given by: 

 

 

 

 

 

2

3

0
0

3 3

3
3 0

1

3
( 1 )

8 2

3
( 1 ) 28 2 20 3 1

1 2

3
( 1 )

8 2
,      

2n

A B
Z n

Z r
a

a
A B

Z n Z nZ r r
Z n

A B
Z n

Z r
r r in units of a

 
             


                           

       
    (10.216) 

where 3r  is given by Eq. (10.215), the parameter A  given in Table 10.9 corresponds to the diamagnetic force, diamagneticF , (Eq. 

(10.82)), and the parameter B  given in Table 10.9 corresponds to the paramagnetic force,  2magF  (Eqs. (10.83-10.84) and 

(10.89)).  The positive root of Eq. (10.216) must be taken in order that 0nr  .  The radii of several n-electron atoms are given in 

Tables 10.3-10.8. 
The ionization energy for the boron atom is given by Eq. (10.104).  The ionization energies for the n-electron atoms are 

given by the negative of the electric energy, ( )E electric , (Eq. (10.102) with the radii, nr , given by Eq. (10.216)). 
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    (10.217) 

Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured n-electron atoms 
are given by Eqs. (10.217) and (10.216) in Tables 10.3-10.8. 
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Table 10.9.   Summary of the parameters of five through ten-electron atoms. 
 

Atom Type Electron 
Configuration

Ground
State 

Term 
a

Orbital 
Arrangement 

of  2p Electrons 
(2p state) 

Diamagnetic 
Force 
Factor 

A b

 

Paramagnetic
Force 
Factor 

B c 

Neutral 5 e Atom 
B  

2 2 11 2 2s s p  2 0
1/2P                     

  1       0     -1


 

 
2  

 
0 

Neutral 6 e Atom 
C  

2 2 21 2 2s s p  3
0P                 

  1        0     -1

 
 

2

3
 

 
0 

Neutral 7 e Atom 
N  

2 2 31 2 2s s p  4 0
3/2S             

  1        0     -1

  
 

1

3
 

 
1 

Neutral 8 e Atom 
O  

2 2 41 2 2s s p  3
2P            

  1        0     -1

   
 

 
1 

 
2 

Neutral 9 e Atom 
F  

2 2 51 2 2s s p  2 0
3/2P            

  1         0       -1

    
 

2

3
 

 
3 

Neutral 10 e Atom 
Ne  

2 2 61 2 2s s p  1
0S           

  1         0       -1

     
 

 
0  

 
3 

5 e Ion 2 2 11 2 2s s p  2 0
1/2P                     

  1       0     -1


 

5

3
 

 
1 

6 e Ion 2 2 21 2 2s s p  3
0P                 

  1        0     -1

 
 

5

3
 

 
4 

7 e Ion 2 2 31 2 2s s p  4 0
3/2S             

  1        0     -1

  
 

5

3
 

 
6 

8 e Ion 2 2 41 2 2s s p  3
2P            

  1        0     -1

   
 

5

3
 

 
6 

9 e Ion 2 2 51 2 2s s p  2 0
3/2P            

  1         0       -1

    
 

5

3
 

 
9 

10 e Ion 2 2 61 2 2s s p  1
0S           

  1         0       -1

     
 

5

3
 

 
12 

a The theoretical ground state terms match those given by NIST [8]. 

b Eq. (10.82). 
c Eqs. (10.83-10.84) and (10.89). 
 

ELEVEN-ELECTRON ATOMS 
Eleven-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, and ten-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE SODIUM 
ATOM 
For each ten-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and three sets of paired electrons in an atomic 

orbital at 10r  given by Eq. (10.212).  For 11Z  , the next electron which binds to form the corresponding eleven-electron atom is 

attracted by the central Coulomb field and is repelled by diamagnetic forces due to the 3 sets of spin-paired inner electrons such 
that it forms an unpaired atomic orbital at radius 11r . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner ten electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 10r r . 
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The spherically symmetrical closed 2p shell of eleven-electron atoms produces a diamagnetic force, diamagneticF , that is 

equivalent to that of a closed s shell given by Eq. (10.11) with the appropriate radii.  The inner electrons remain at their initial 
radii, but cause a diamagnetic force according to Lenz’s law that is 
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 (10.219) 

In addition to the spin-spin interaction between electron pairs, the three sets of 2p electrons are orbitally paired.  The 
single s orbital of the sodium atom produces a magnetic field at the position of the three sets of spin-paired 2p electrons.  In 
order for the electrons to remain spin and orbitally paired, a corresponding diamagnetic force,  3diamagneticF , on electron eleven 

from the three sets of spin-paired electrons is given by: 
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 (10.220) 

corresponding to the xp  and yp  electrons with no interaction from the orthogonal zp  electrons (Eq. (10.84)).  As demonstrated 

by Eqs. (7.15-7.23), the maintenance of the invariance of the electron’s angular momentum of  , mass to charge ratio, 
e

e

m
, and 

corresponding magnetic moment of a Bohr magneton, B , requires that the term in brackets is be replaced by 
1

Z
 corresponding 

to the relativistic correction given by Eq. (7.23).  Thus, 3diamagneticF  is given by: 
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 (10.221) 

where the vector projection of the spin interaction of   3
1

4
s s    is given in the Two-Electron Atoms section and Appendix 

VI. 
The outward centrifugal force on electron 11 is balanced by the electric force and the magnetic forces (on electron 11).  

The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.218)) 
and diamagnetic (Eqs. (10.219) and (10.221)) forces as follows: 
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Substitution of 11
11e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.222) gives: 
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Substitution of 10

0

0.56094
r

a
  (Eq. (10.212) with 11Z  ) into Eq. (10.225) gives: 

 11 02.65432r a  (10.226) 

The ionization energy of the sodium atom is given by the negative of ( )E electric  given by Eq. (10.102) with the 
appropriate charge and radius: 
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     (10.227) 

where 11 02.65432r a  (Eq. (10.226)) and 11Z  .  The experimental ionization energy of the sodium atom is 5.13908 eV  [3]. 

 



Chapter 10 

 

362

 

THE IONIZATION ENERGIES OF ELEVEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>11 
Eleven-electron atoms having 11Z   possess an external electric field given by Eq. (10.92).  Since there is a source of 
dissipative power, J E  of Eq. (10.27), the magnetic moments of the inner electrons may change due to the outer electron such 
that the energy of the eleven-electron atom is lowered.  The orbital angular momenta of the paired xp  and yp  electrons give rise 

to the paramagnetic force given by Eq. (10.89), which is also equivalent to that given by Eq. (10.55): 
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The diamagnetic force,  2diamagneticF , due to a relativistic effect with an electric field for nr r  (Eq. (10.35)) may be 

determined by considering the corresponding force due to the binding of a 2p electron.  It was shown in the Five-Electron Atom 
section, that  2diamagneticF  for five through ten-electron atoms, is dependent on the amplitude of the orbital energy.  Using the 

orbital energy with 1  (Eq. (10.90)), the energy 2
em v  of Eq. (10.29) is reduced by the factor of 

2
1

2

 
  

 
 due to the 

contribution of the charge-density wave of the inner electrons at 3r .  Thus, 2diamagneticF  is given by Eq. (10.93).  Conversely, the 

binding of a 3s electron increases the energy 2
em v  of Eq. (10.29) by the factor of 

2
1

2

 
  

 
 such that  2diamagneticF  becomes 
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In the case that 11Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.218)), diamagnetic (Eq. (10.229)), and paramagnetic (Eq. (10.228)) forces as follows: 
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Substitution of 11
11e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.230) gives: 
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The quadratic equation corresponding to Eq. (10.231) is 
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The solution of Eq. (10.233) using the quadratic formula is: 
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where 10r  is given by Eq. (10.212).  The positive root of Eq. (10.235) must be taken in order that 11 0r  .  The radii of several 

eleven-electron atoms are given in Table 10.10. 
The ionization energies for the eleven-electron atoms with 11Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, 11r , given by Eq. (10.235)): 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured eleven-electron 
atoms are given in Table 10.10. 
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Table 10.10.   Ionization energies for some eleven-electron atoms. 
 

11 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

11r  

( oa ) 
d
 

Theoretical 
Ionization 
Energies 

e
 

(eV)

Experimental 
Ionization 
Energies 

f
 

(eV)

Relative 
Error 

g
 

Na  11 0.09213 0.40853 0.560945 2.65432 5.12592 5.13908 0.0026 
Mg  12 0.08435 0.37065 0.510568 1.74604 15.5848 15.03528 -0.0365 

2Al   13 0.07778 0.33923 0.456203 1.47399 27.6918 28.44765 0.0266 
3Si   14 0.07216 0.31274 0.409776 1.25508 43.3624 45.14181 0.0394 
4P   15 0.06730 0.29010 0.371201 1.08969 62.4299 65.0251 0.0399 
5S   16 0.06306 0.27053 0.339025 0.96226 84.8362 88.0530 0.0365 
6Cl   17 0.05932 0.25344 0.311903 0.86151 110.5514 114.1958 0.0319 
7Ar   18 0.05599 0.23839 0.288778 0.77994 139.5577 143.460 0.0272 
8K   19 0.05302 0.22503 0.268844 0.71258 171.8433 175.8174 0.0226 
9Ca   20 0.05035 0.21308 0.251491 0.65602 207.3998 211.275 0.0183 

10Sc   21 0.04794 0.20235 0.236251 0.60784 246.2213 249.798 0.0143 
11Ti   22 0.04574 0.19264 0.222761 0.56631 288.3032 291.500 0.0110 
12V   23 0.04374 0.18383 0.210736 0.53014 333.6420 336.277 0.0078 
13Cr   24 0.04191 0.17579 0.19995 0.49834 382.2350 384.168 0.0050 
14Mn   25 0.04022 0.16842 0.19022 0.47016 434.0801 435.163 0.0025 
15Fe   26 0.03867 0.16165 0.181398 0.44502 489.1753 489.256 0.0002 
16Co   27 0.03723 0.15540 0.173362 0.42245 547.5194 546.58 -0.0017 
17Ni   28 0.03589 0.14961 0.166011 0.40207 609.1111 607.06 -0.0034 
18Cu   29 0.03465 0.14424 0.159261 0.38358 673.9495 670.588 -0.0050 
19Zn   30 0.03349 0.13925 0.153041 0.36672 742.0336 738 -0.0055 

a Radius of the first set of paired inner electrons of eleven-electron atoms from Eq. (10.51). 
b Radius of the second set of paired inner electrons of eleven-electron atoms from Eq. (10.62). 
c Radius of three sets of paired inner electrons of eleven-electron atoms from Eq. (10.212). 
d Radius of unpaired outer electron of eleven-electron atoms from Eq. (10.235) for 11Z   and Eq. (10.226) for Na. 
e Calculated ionization energies of eleven-electron atoms given by the electric energy (Eq. (10.236)). 
f From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
g (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.10 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z, which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures, which is consistent with the last column.  The sodium atom 
isoelectronic series is given in Table 10.10 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of Na isoelectronic and Rydberg series, as well as direct experimental 
data.   

 
TWELVE-ELECTRON ATOMS 
Twelve-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, and eleven-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
MAGNESIUM ATOM 
For each eleven-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), and an unpaired electron in an atomic orbital at 11r .  For 12Z  , the next electron which binds to form 

the corresponding twelve-electron atom is attracted by the central Coulomb field and the spin-pairing force with the unpaired 3s 
inner electron and is repelled by diamagnetic forces due to the 3 sets of spin-paired inner electrons such that it forms an unpaired 
atomic orbital at radius 12r . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner eleven electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 11r r . 

The outer electron which binds to form the corresponding twelve-electron atom becomes spin-paired with the unpaired 
inner electron such that they become indistinguishable with the same radius 11 12r r  corresponding to a filled 3s shell.  The 

corresponding spin-pairing force magF  is given by Eq. (7.24). 
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The spherically symmetrical closed 2p shell of twelve-electron atoms produces a diamagnetic force, diamagneticF , that is 

equivalent to that of a closed s shell given by Eq. (10.11) with the appropriate radii.  The inner electrons remain at their initial 
radii, but cause a diamagnetic force according to Lenz’s law that is: 

 
2

2
12 10

( 1)
4diamagnetic

e

s s
m r r

   rF i


 (10.239) 

In addition to the paramagnetic spin-pairing force between the eleventh electron initially at radius 11r , the pairing causes 

the diamagnetic interaction between the outer electrons and the inner electrons given by Eq. (10.11) to vanish, except for an 
electrodynamic effect for 12Z   described in the Two-Electron Atoms section, since upon pairing the magnetic field of the 
outer electrons becomes zero.  Using Eq. (10.55), 2magF  due to the three 2p orbitals is given by: 
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In addition to the spin-spin interactions between electron pairs, the three sets of 2p electrons are orbitally paired.  The s 
electrons of the magnesium atom produce a magnetic field at the position of the three sets of spin-paired 2p electrons.  In order 
for the electrons to remain spin and orbitally paired, the corresponding diamagnetic force,  3diamagneticF  (Eq. (10.221)), on electron 

twelve from the three sets of spin-paired electrons is given by: 
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corresponding to the xp , yp , and zp  electrons. 

The outward centrifugal force on electron 12 is balanced by the electric force and the magnetic forces (on electron 12).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.237)), 
diamagnetic (Eqs. (10.239) and (10.241)) and paramagnetic (Eqs. (10.238) and (10.240)) forces as follows: 
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Substitution of 12
12e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.242) gives: 
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Substitution of 10

0

0.51057
r

a
  (Eq. (10.212) with 12Z  ) into Eq. (10.245) gives: 

 12 01.79386r a  (10.246) 

The ionization energy of the magnesium atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 

12r , given by Eq. (10.246)). 
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where 12 01.79386r a  (Eq. (10.246)) and 12Z  .  The experimental ionization energy of the magnesium atom is 7.64624 eV  

[3]. 
 
THE IONIZATION ENERGIES OF TWELVE-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>12 
Twelve-electron atoms having 12Z   possess an external electric field given by Eq. (10.92).  Since there is a source of 
dissipative power, J E  of Eq. (10.27), the magnetic moments of the inner electrons may change due to the outer electron such 
that the energy of the twelve-electron atom is lowered with conservation of angular momentum.  Of the possible forces based on 
Maxwell’s equations, those that give rise to an energy minimum are used to calculate the atomic radii and energies.  With this 
constraint, the only paramagnetic force is that given by Eq. (10.89) due to the spin angular momenta of the paired 2 xp , yp , and 

zp  electrons interacting equivalently with each of the 3s electrons.  This force, which is also equivalent to that given by Eq. 

(10.145), is: 
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From Eq. (10.229), the diamagnetic force, 2diamagneticF , due to a relativistic effect with an electric field for 12r r  (Eq. 

(10.35)) is:  
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In the case that 12Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.237)), diamagnetic (Eq. (10.249)), and paramagnetic (Eq. (10.248)) forces as follows: 
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Substitution of 12
12e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.250) gives: 
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The quadratic equation corresponding to Eq. (10.251) is 

 
22 2 2

2 10
12 12

0 10

( 11) 1 6 3 12 2 3
1 10 0

4 4 4 11 2 4e e e

rZ e Z
r r

Z m r m Z m
                           

 
 (10.252) 

 

22
10

2
12 122 2 2 2

0 10 0 10

12 2 3
1 10

11 2 4
0

( 11) 1 6 3 ( 11) 1 6 3
4 4 4 4 4 4

ee

e e

rZ
Z mm

r r
Z e Z e

Z m r Z m r 

          
                

      



 
  (10.253) 



Three- Through Twenty-Electron Atoms 

 

367

The solution of Eq. (10.253) using the quadratic formula is: 
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where 10r  is given by Eq. (10.212).  The positive root of Eq. (10.255) must be taken in order that 12 0r  .  The radii of several 

twelve-electron atoms are given in Table 10.11. 
 The ionization energies for the twelve-electron atoms with 12Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, 12r , given by Eq. (10.255)). 

 
2

0 12

( 11)
( )  

8

Z e
E Ionization Electric Energy

r


    (10.256) 

Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured twelve-electron 
atoms are given in Table 10.11. 
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Table 10.11.   Ionization energies for some twelve-electron atoms. 
 

12 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

Theoretical 
Ionization 
Energies 

e
 

(eV)

Experimental 
Ionization 
Energies 

f
 

(eV) 

Relative 
Error 

g
 

Mg  12 0.08435 0.37065 0.51057 1.79386 7.58467 7.64624 0.0081 

Al  13 0.07778 0.33923 0.45620 1.41133 19.2808 18.82856 -0.0240 
2Si   14 0.07216 0.31274 0.40978 1.25155 32.6134 33.49302 0.0263 
3P   15 0.06730 0.29010 0.37120 1.09443 49.7274 51.4439 0.0334 
4S   16 0.06306 0.27053 0.33902 0.96729 70.3296 72.5945 0.0312 
5Cl   17 0.05932 0.25344 0.31190 0.86545 94.3266 97.03 0.0279 
6Ar   18 0.05599 0.23839 0.28878 0.78276 121.6724 124.323 0.0213 

7K   19 0.05302 0.22503 0.26884 0.71450 152.3396 154.88 0.0164 
8Ca   20 0.05035 0.21308 0.25149 0.65725 186.3102 188.54 0.0118 
9Sc   21 0.04794 0.20235 0.23625 0.60857 223.5713 225.18 0.0071 

10Ti   22 0.04574 0.19264 0.22276 0.56666 264.1138 265.07 0.0036 
11V   23 0.04374 0.18383 0.21074 0.53022 307.9304 308.1 0.0006 
12Cr   24 0.04191 0.17579 0.19995 0.49822 355.0157 354.8 -0.0006 
13Mn   25 0.04022 0.16842 0.19022 0.46990 405.3653 403.0 -0.0059 
14Fe   26 0.03867 0.16165 0.18140 0.44466 458.9758 457 -0.0043 
15Co   27 0.03723 0.15540 0.17336 0.42201 515.8442 511.96 -0.0076 
16Ni   28 0.03589 0.14961 0.16601 0.40158 575.9683 571.08 -0.0086 
17Cu   29 0.03465 0.14424 0.15926 0.38305 639.3460 633 -0.0100 
18Zn   30 0.03349 0.13925 0.15304 0.36617 705.9758 698 -0.0114 

a Radius of the first set of paired inner electrons of twelve-electron atoms from Eq. (10.51). 
b Radius of the second set of paired inner electrons of twelve-electron atoms from Eq. (10.62). 
c Radius of three sets of paired inner electrons of twelve-electron atoms from Eq. (10.212). 
d Radius of paired outer electrons of twelve-electron atoms from Eq. (10.255) for 12Z   and Eq. (10.246) for Mg. 
e Calculated ionization energies of twelve-electron atoms given by the electric energy (Eq. (10.256)). 
f From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
g (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.11 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures, which is consistent with the last column.  The magnesium atom 
isoelectronic series is given in Table 10.11 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of Mg isoelectronic and Rydberg series, as well as direct experimental 
data.   

 

3P-ORBITAL ELECTRONS BASED ON AN ENERGY MINIMUM 
For each thirteen through eighteen-electron atom having a central charge of Z  times that of the proton, there are two 
indistinguishable spin-paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two 

indistinguishable spin-paired electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired 

electrons in an atomic orbital at 10r  given by Eq. (10.212), and two indistinguishable spin-paired electrons in an atomic orbital 

with radii 11r  and 12r  both given by Eq. (10.255).  For 12Z  , the next electron which binds to form the corresponding n-

electron atom (13 18n  ) is attracted by the central Coulomb field and is repelled by diamagnetic forces and attracted by 
paramagnetic forces due to the 3 sets of spin-paired inner 2p electrons and two spin-paired inner 3s electrons such that it forms 
an atomic orbital comprising all of the 3p electrons at radius nr .  The resulting electron configuration is 2 2 6 2 121 2 2 3 3 ns s p s p  . 

The central Coulomb force, eleF , acts on the outer electron to cause it to bind wherein this electric force on the outer-most 

electron due to the nucleus and the inner 1n   electrons is given by Eq. (10.70). 
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for 1nr r   where n  corresponds to the number of electrons of the atom and Z  is its atomic number.  In each case, the magnetic 

field of the binding outer electron changes the angular velocities of the inner electrons.  However, in each case, the magnetic 
field of the outer electron provides a central Lorentz force which exactly balances the change in centrifugal force because of the 
change in angular velocity [1].  The inner electrons remain at their initial radii, but cause a diamagnetic force according to 
Lenz’s law.   

As shown in the 2P-Orbital Electrons Based on an Energy Minimum section the quantum numbers 1  1m    and 
1  0m   correspond to spherical harmonics solutions,  ,mY   , of Laplace’s equation designated the 2 xp , 2 yp , and 2 zp  

orbitals, respectively.  Similarly, for 13 18n  , the energy may be lowered by filling 3p orbitals in the same manner to achieve 
an energy minimum relative to other configurations and arrangements.  In general, a nonuniform distribution of charge achieves 
an energy minimum with the formation of a fifth shell due to the dependence of the magnetic forces on the nuclear charge and 
orbital energy (Eqs. (10.70), (10.258-10.264), and (10.268)).  The outer electrons of atoms and ions that are isoelectronic with 
the series aluminum through argon half-fill a 3p level with unpaired electrons at phosphorous, then fill the level with paired 
electrons at argon. 

Similarly to the case of the 2p orbitals, spherical harmonic charge-density waves may be induced in the inner electron 
atomic orbitals with the addition of one or more outer electrons to the 3p orbitals.  An energy minimum is achieved when the 
thirteenth through eighteenth electrons of each thirteen through eighteen-electron atom fills a 3p orbital with the formation of 
orthogonal complementary charge-density waves in the inner shell 2p and 3s electrons.  To maintain the symmetry of the central 
charge and the energy minimum condition given by solutions to Laplace’s equation (Eq. (10.72)), the charge-density waves on 
electron atomic orbitals at 10r  and 12r  complement those of the outer orbitals when the outer 3p orbitals are not all occupied by at 

least one electron, and the complementary charge-density waves are provided by electrons at 12r  when this condition is met.  In 

the case of the 3p electrons, an exception to the trends in 2p orbital forces arises due to the interaction between the 2p, 3s, and 3p 
electrons due to magnetic fields independent of induced complementary charge-density waves.  The spin and angular momenta 
of the 2p electrons give rise to corresponding magnetic fields that interact with the two 3s electrons.  The filled 2p orbitals with 
the maintenance of symmetry according to Laplace’s equation (Eq. (10.72)) requires that the 2p as well as the 3s electrons 
contribute forces to the 3p electrons due to the electrons at 10r  acting on the electrons at 12r  which complies with the reactive 

force,  2diamagneticF , having the factor 
2

1
2

 
 

 
 and given by Eq. (10.229). 

The total orbital contribution to the diamagnetic force, diamagneticF , given by Eq. (10.82) is: 
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where the contributions from orbitals having 1m   add positively or negatively.  From Eq. (10.204), the diamagnetic force, 

diamagneticF , contribution from the 2p electrons is given by the sum of the contributions from the xp , yp , and zp  orbitals 

corresponding to m  = 1, -1, and 0, respectively: 
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where 12r  is given by Eq. (10.255).  Due to the 2p-3s-3p interaction, the 3s electrons provide spin or orbital angular momentum 

in order conserve angular momentum of the interacting orbitals.  In the case that an energy minimum is achieved with 3s orbital 
angular momentum, the diamagnetic force, diamagneticF , contribution is given by Eqs. (10.82) and (10.258) where m  = 1, -1, or 0 

corresponding to induced charge-density waves.  The contribution from the 3s orbital is added to the contributions from the 3p 
and the 2p orbitals until the 3p orbitals are at least half filled.  Then the diamagnetic force is only due to 3p and 3s electrons 
since the induced charge-density waves only involve the inner-most shell, the 3s orbital. 

As given by Eq. (10.89), the contribution of the orbital angular momentum of an unpaired 3p electron to the 
paramagnetic force,  2magF , is: 
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Each outer 3p electron contributes spin as well as orbital angular momentum.  The former gives rise to spin pairing to another 3p 
electron when an energy minimum is achieved.  In the case that the orbital angular momenta of paired 3p electrons cancel, the 
contribution to  2magF  due to spin alone given by Eq. (10.83) is equivalent to that due to orbital angular momentum alone (Eq. 

(10.260)).  Due to the 2p-3s-3p interaction, the 3s electrons can also provide a paramagnetic force,  2magF , contribution given by 

Eqs. (10.82) and (10.260) due to spin angular momentum corresponding to induced charge-density waves. 
N-electron atoms having Z n  possess an electric field given by Eq. (10.92) for nr r .  Since there is a source of 

dissipative power, J E  of Eq. (10.27), the magnetic moments of the inner electrons may change due to the outer electron such 
that the energy of the n-electron atom is lowered.  diamagneticF , is given by Eqs. (10.82) and (10.258).  Due to the 2p-3s-3p 

interaction, the 2p level contributes to the forces even when the filling of the 3p level is half or greater, and the 3s electrons may 
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provide orbital angular momentum in order conserve angular momentum of the interacting orbitals.  In the case that an energy 
minimum is achieved with 3s orbital angular momentum, the diamagnetic force, diamagneticF , contribution is given by Eqs. (10.82) 

and (10.258) where m  = 1, -1, or 0 corresponding to induced charge-density waves.  The contribution from the 3s orbital is 
added to the contributions from the 3p and the 2p orbitals. 

Due to the 2p-3s-3p interaction with Z n , 2magF  has a contribution from the 2p, 3s, and 3p orbitals.  The filled 2p 

orbitals with the maintenance of symmetry according to Eq. (10.72) requires that the diamagnetic force,  2magF , contribution is: 
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corresponding to the spin and orbital angular momenta of the paired 2 xp , yp , and zp  electrons (Eq. (10.205)).  The 3s electrons 

can provide a  2magF  contribution of: 
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corresponding to coupling to the spin and induced orbital angular momentum wherein the orbitals interact such that this 
contribution superimposes negatively or positively to the contributions from the 2p and 3p orbitals.  Each outer 3p electron 
contributes spin as well as orbital angular momentum.  Each unpaired 3p electron can spin and orbitally pair with a 2p orbital.  
The corresponding force,  2magF , contribution given by Eq. (10.84) is: 
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The 3p electrons spin-pair upon further filling of the 3p orbital.  Two spin-paired 3p electrons interacting with two spin-paired 
2p orbital electrons double the corresponding force, 2magF , contribution: 
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The sum of the magnitude of the angular momentum of the electron is   in any inertial frame and is relativistically 
invariant.  The vector projections of the atomic orbital spin angular momentum relative to the Cartesian coordinates are given in 
the Spin Angular Momentum of the Atomic Orbital 0

0 ( , ) Y  with   = 0 section.  The magnitude of the z-axis projection of the 

spin angular momentum, zL , the moment of inertia about the z-axis, zI , and the rotational energy about the z-axis,    rotational spinE , 

given by Eqs. (1.51-1.55) are: 
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N-electron atoms having Z n  possess an electric field given by Eq. (10.92) for nr r .  Since there is a source of 

dissipative power, J E  of Eq. (10.27), the magnetic moments of the inner electrons may change due to the outer electron such 
that the energy of the n-electron atom is lowered.  As shown in the P-Orbital Electrons Based on an Energy Minimum section for 

 2diamagneticF  given by Eq. (10.93), the corresponding diamagnetic force for 2p electrons,  2diamagneticF , due to a relativistic effect 

with an electric field for nr r  (Eq. (10.35)) is dependent on the amplitude of the orbital energy.  Using the orbital energy with 

1  (Eq. (10.90)), the energy 2
em v  of Eq. (10.29) is reduced by the factor of 

2
1

2

 
 

 
 due to the contribution of the charge-

density wave of the inner electrons at 12r .  In addition, the two 3s electrons contribute an energy factor based on Eq. (1.55) since 

the filled 2p orbitals with the maintenance of symmetry according to Eq. (10.72) requires that the diamagnetic force is due to the 
electrons at 10r  acting on the electrons at 12r  which complies with the reactive force, 2diamagneticF , given by Eq. (10.229).  Thus, 

 2diamagneticF  for 3p electrons with Z n  is given by: 
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The total diamagnetic and paramagnetic forces are given as the sum over the orbital and spin angular momenta that may 
add positively or negatively while maintaining the conservation of angular momentum.  Of the possible forces based on 
Maxwell’s equations, those which give rise to an energy minimum are used to calculated the atomic radii and energies.  In 
general, an energy minimum is achieved by minimizing diamagneticF  while maximizing 2magF  with conservation of angular 
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momentum. 
Using the forces given by Eqs. (10.257-10.264), (10.268), and the radii 12r  given by Eq. (10.255), the radii of the 3p 

electrons of all thirteen through eighteen-electron atoms may be solved exactly.  The electric energy given by Eq. (10.102) gives 
the corresponding exact ionization energies.  eleF  and 2diamagneticF  given by Eqs. (10.257) and (10.268), respectively, are of the 

same form for all atoms with the appropriate nuclear charges and atomic radii.  diamagneticF  given by Eq. (10.258) and 2magF  given 

by Eqs. (10.260-10.264) are of the same form with the appropriate factors that depend on the minimum-energy electron 
configuration.  The general equation and the summary of the parameters that determine the exact radii and ionization energies of 
all thirteen through eighteen-electron atoms are given the General Equation For The Ionization Energies of Thirteen Through 
Eighteen-Electron Atoms section and in Table 10.18. 
 

THIRTEEN-ELECTRON ATOMS 
Thirteen-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, and twelve-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
ALUMINUM ATOM 
For each twelve-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), and two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given 

by Eq. (10.255).  For 13Z  , the next electron which binds to form the corresponding thirteen-electron atom is attracted by the 
central Coulomb field and is repelled by diamagnetic forces due to the 3 sets of spin-paired inner 2p electrons and two spin-
paired inner 3s electrons such that it forms an unpaired atomic orbital at radius 13r .  The resulting electron configuration is 

2 2 6 2 11 2 2 3 3s s p s p , and the orbital arrangement is: 

 

     3p state

                    

   1       0     -1

  (10.269) 

corresponding to the ground state 2 0
1/2P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner twelve electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 12r r . 

As in the case of the boron atom given in the Five-Electron Atom section, the single p orbital of the aluminum atom 
produces a diamagnetic force equivalent to that of the formation of an s orbital due to the induction of complementary and 
spherically symmetrical charge-density waves on electron atomic orbitals at 10r  and 12r  in order to achieve a solution of 

Laplace’s equation (Eq. (10.72)).  The inner electrons remain at their initial radii, but cause a diamagnetic force according to 
Lenz’s law that is given by Eq. (10.96) with the appropriate radii.  In addition, the contribution of the diamagnetic force, 

diamagneticF , due to the 2p electrons is given by Eqs. (10.105) and (10.259) as the sum of the contributions from the xp , yp , and 

zp  orbitals corresponding to m  = 1, -1, and 0, respectively.  Thus, diamagneticF  is given by: 
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The charge induction forms complementary mirror charge-density waves which must have opposing angular momenta 
such that momentum is conserved.  In this case, 2magF  given by Eq. (10.260) is zero: 

  2 0mag F  (10.272) 

The outward centrifugal force on electron 13 is balanced by the electric force and the magnetic force (on electron 13).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.270)) 
and diamagnetic (Eq. (10.271)) forces as follows: 
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Substitution of 13
13e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.273) gives: 
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Substitution of 12

0

1.41133
r

a
  (Eq. (10.255) with 13Z  ) into Eq. (10.275) gives: 

 13 02.28565r a  (10.276) 

The energy stored in the electric field of the aluminum atom, ( )E electric , is given by Eq. (10.102) with the appropriate 

with the radius, 13r , given by Eq. (10.276)): 
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where 13 02.28565r a  (Eq. (10.276)) and 13Z  .  The ionization energy is given by the sum of the electric energy and the 

energy corresponding to the change in magnetic-moments of the inner shell electrons.  Since there is no source of dissipative 
power, J E  of Eq. (10.27), to compensate for any potential change in the magnetic moments, m , of the inner electrons due to 
the ionization of the outer electron of the aluminum atom, there is a diamagnetic energy term in the ionization energy for this 
atom that follows from the corresponding term for the lithium atom given by Eqs. (10.15-10.24), with 13Z  , 12r  given by Eq. 

(10.255), and 13r  given by Eq. (10.276).  Thus, the change in magnetic energy of the inner atomic orbital at 12r  is 76.94147 % , 

so that the corresponding energy magE  is 

 0.7694147  0.04069938 0.0313147 magE X eV eV    (10.278) 

where the magnetic energy of the inner electrons is 0.04069938 eV  (Eqs. (10.64) and (10.276)).  Then, the ionization energy of 
the aluminum atom is given by Eqs. (10.276-10.278): 
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       (10.279) 

The experimental ionization energy of the boron atom is 5.98577 eV  [3]. 
 
THE IONIZATION ENERGIES OF THIRTEEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>13 
Thirteen-electron atoms having 13Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum 
is achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 

 2magF  is maximized.  From Eq. (10.258), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the 

2 xp , yp , and zp  orbitals corresponding to m  = 1, -1, and 0, respectively: 
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wherein the contribution due to the 3 xp  ( m  = 1) is canceled by the mirror charge-density wave with m  = -1 induced in the 3s 

orbital according to Eq. (10.258). 
With 13Z  , the charge induction forms complementary mirror charge-density waves such that the angular momenta do 

not cancel.  The filled 2p orbitals with the maintenance of symmetry according to Eq. (10.72) requires that the diamagnetic force 
is due to the electrons at 10r  acting on the electrons at 12r  which complies with the reactive force,  2diamagneticF , given by Eq. 

(10.249).  From Eq. (10.261),  2magF  is: 

  
2 2

2 2
13 12 13 12

 2
1 1 12

4 4 4 ( 1) ( 1)mag
e e

s s s s
Z m r r Z m r r

     r rF i i
 

 (10.281) 

corresponding to the spin and orbital angular momenta of the paired 2 xp , yp , and zp  electrons wherein the contribution due to 

the 3 xp  ( m  = 1) is canceled by the mirror charge-density wave with = 1m   induced in the 3s orbital according to Eq. (10.262). 

The diamagnetic force,  2diamagneticF , due to the binding of the 3p-orbital electron having an electric field outside of its 

radius is given by Eq. (10.268): 
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In the case that 13Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
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of the electric (Eq. (10.270)) and diamagnetic (Eqs. (10.280) and (10.282)), and paramagnetic (Eq. (10.281)) forces as follows: 
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Substitution of 13
13e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.283) gives: 
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The quadratic equation corresponding to Eq. (10.284) is: 
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The solution of Eq. (10.286) using the quadratic formula is: 
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where 12r  is given by Eq. (10.255).  The positive root of Eq. (10.288) must be taken in order that 13 0r  .  The radii of several 

thirteen-electron atoms are given in Table 10.12. 
The ionization energies for the thirteen-electron atoms with 13Z   are given by the electric energy, ( )E electric , (Eq. (10.102) 

with the radii, 13r , given by Eq. (10.288)). 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured thirteen-electron 
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atoms are given in Table 10.12. 
 
Table 10.12.   Ionization energies for some thirteen-electron atoms. 
 

13 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) d 

13r  

( oa ) 
e
 

Theoretical 
Ionization 
Energies 

f
 

(eV)

Experimental 
Ionization 
Energies 

g
 

(eV) 

Relative 
Error 

h
 

Al  13 0.07778 0.33923 0.45620 1.41133 2.28565 5.98402 5.98577 0.0003 
Si  14 0.07216 0.31274 0.40978 1.25155 1.5995 17.0127 16.34585 -0.0408 

2P   15 0.06730 0.29010 0.37120 1.09443 1.3922 29.3195 30.2027 0.0292 
3S   16 0.06306 0.27053 0.33902 0.96729 1.1991 45.3861 47.222 0.0389 
4Cl   17 0.05932 0.25344 0.31190 0.86545 1.0473 64.9574 67.8 0.0419 
5Ar   18 0.05599 0.23839 0.28878 0.78276 0.9282 87.9522 91.009 0.0336 

6K   19 0.05302 0.22503 0.26884 0.71450 0.8330 114.3301 117.56 0.0275 
7Ca   20 0.05035 0.21308 0.25149 0.65725 0.7555 144.0664 147.24 0.0216 
8Sc   21 0.04794 0.20235 0.23625 0.60857 0.6913 177.1443 180.03 0.0160 
9Ti   22 0.04574 0.19264 0.22276 0.56666 0.6371 213.5521 215.92 0.0110 

10V   23 0.04374 0.18383 0.21074 0.53022 0.5909 253.2806 255.7 0.0095 
11Cr   24 0.04191 0.17579 0.19995 0.49822 0.5510 296.3231 298.0 0.0056 
12Mn   25 0.04022 0.16842 0.19022 0.46990 0.5162 342.6741 343.6 0.0027 
13Fe   26 0.03867 0.16165 0.18140 0.44466 0.4855 392.3293 392.2 -0.0003 
14Co   27 0.03723 0.15540 0.17336 0.42201 0.4583 445.2849 444 -0.0029 
15Ni   28 0.03589 0.14961 0.16601 0.40158 0.4341 501.5382 499 -0.0051 
16Cu   29 0.03465 0.14424 0.15926 0.38305 0.4122 561.0867 557 -0.0073 
17Zn   30 0.03349 0.13925 0.15304 0.36617 0.3925 623.9282 619 -0.0080 

a Radius of the paired 1s inner electrons of thirteen-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of thirteen-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of thirteen-electron atoms from Eq. (10.212). 
d Radius of the paired 3s inner electrons of thirteen-electron atoms from Eq. (10.255). 
e Radius of the unpaired 3p outer electron of thirteen-electron atoms from Eq. (10.288) for 13Z   and Eq. (10.276) for Al. 
f Calculated ionization energies of thirteen-electron atoms given by the electric energy (Eq. (10.289)) for 13Z   and Eq. (10.279) for Al. 
g From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
h (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.12 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z, which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures, which is consistent with the last column.  The aluminum atom 
isoelectronic series is given in Table 10.12 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of Al isoelectronic and Rydberg series, as well as direct experimental 
data. 
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FOURTEEN-ELECTRON ATOMS 
Fourteen-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, twelve, and thirteen-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE SILICON 
ATOM 
For each thirteen-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given by 

Eq. (10.255), and an unpaired electron in an atomic orbital with radius 13r  given by Eq. (10.288).  For 14Z  , the next electron 

which binds to form the corresponding fourteen-electron atom is attracted by the central Coulomb field and is repelled by 
diamagnetic forces due to the 3 sets of spin-paired inner 2p electrons and two spin-paired inner 3s electrons.  A paramagnetic 
spin-pairing force to form a filled s orbital is also possible, but the force due to the spin-pairing of the electrons (Eq. (7.24) with 
the radius 14r ) reduces the energy of the atom less than that due to the alternative forces on two unpaired 3p electrons in an 

atomic orbital at the same radius 14r .  The resulting electron configuration is 2 2 6 2 21 2 2 3 3s s p s p , and the orbital arrangement is: 

 

     3p state

                

   1        0     -1

   (10.290) 

corresponding to the ground state 3
0P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner thirteen electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 13r r . 

As in the case of the carbon atom given in the Six-Electron Atom section, the two orthogonal 3p electrons form charge-
density waves such that the total angular momentum of the two outer electrons is conserved which determines the diamagnetic 
force according to Eq. (10.82) (Eq. (10.258)).  The contribution is given by Eq. (10.117) corresponding to 1m  .  In addition, the 
contribution of the diamagnetic force, diamagneticF , due to the 2p electrons is given by Eq. (10.105) (Eq. (10.259)) as the sum of the 

contributions from the 2 xp , yp , and zp  orbitals corresponding to m  = 1, -1, and 0, respectively.  Thus, diamagneticF  is given by: 
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The charge induction forms complementary mirror charge-density waves which must have opposing angular momenta 
such that momentum is conserved.  In this case, 2magF  given by Eq. (10.89) (Eq. (10.260)) is zero: 

  2 0mag F  (10.293) 

The outward centrifugal force on electron 14 is balanced by the electric force and the magnetic forces (on electron 14).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.291)) 
and diamagnetic (Eq. (10.292)) forces as follows: 
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Substitution of 14
14e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.294) gives: 
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Substitution of 12

0

1.25155
r

a
  (Eq. (10.255) with 14Z  ) into Eq. (10.296) gives: 

 14 01.67685r a  (10.297) 
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The ionization energy of the silicon atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 14r , 

given by Eq. (10.297)): 
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     (10.298) 

where 14 01.67685r a  (Eq. (10.297)) and 14Z  .  The experimental ionization energy of the silicon atom is 8.15169 eV  [3]. 

 
THE IONIZATION ENERGIES OF FOURTEEN-ELECTRON ATOMS WITH A 
NUCLEAR CHARGE Z>14 
Fourteen-electron atoms having 14Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum 
is achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 

 2magF  is maximized.  With a half-filled 3p shell, the diamagnetic force due to the orbital angular momenta of the 3p electrons 

cancels that of the 2p electrons.  Thus, diamagneticF  is minimized by the formation of a charge-density wave in the 3s orbital 

corresponding to  = 1m   in Eq. (10.258) to form the equivalent of a half-filled 3p shell such that the contribution due to the 2p 
shell is canceled.  From Eq. (10.258), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the 3 xp  

and zp  orbitals corresponding to m  = 1 and 0, respectively, and the negative contribution due to the charge-density wave with 

m  = -1 induced in the 3s orbital according to Eq. (10.258): 
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From Eq. (10.261),  2magF  corresponding to the spin and orbital angular momenta of the paired 2 xp , yp , and zp  
electrons is: 
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and the contribution from the 3p shell is 
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corresponding to the 3 xp  and zp  electrons wherein the contribution due to the 3 xp  ( m  = 1) electron is canceled by the mirror 

charge-density wave with  = 1m   induced in the 3s orbital (Eq. (10.262)).  Thus, the total of  2magF  is 
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The diamagnetic force,  2diamagneticF , due to the binding of the 3p-orbital electron having an electric field outside of its 

radius is given by Eq. (10.268): 
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In the case that 14Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.291)), diamagnetic (Eqs. (10.299) and (10.303)), and paramagnetic (Eq. (10.302)) forces as follows: 
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Substitution of 14
14e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.304) gives: 
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The quadratic equation corresponding to Eq. (10.305) is 
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The solution of Eq. (10.307) using the quadratic formula is: 

 

22

2 2

2

0 12

2 2

2

0 12 12

2 2

0 12

14

( 13) 1 16 3
4 12 4

( 13) 1 16 3
14 2 1 34 12 4 1 10
13 2 2 4

4
( 13) 1 16 3

4 12 4

2

e

e

e

e

e

e

m

Z e
Z m r

m

Z e
ZZ m r r

m Z

Z e
Z m r

r







 
 
 
            


                     

      
  











 (10.308) 

 

2

12

0
0

12 12

12

14 12 0

1

1 8 3
( 13)

24

1 8 3
( 13) 14 2 124 20 3 1

13 2 2

1 8 3
( 13)

24
,     

2

Z
Z r

a
a

Z ZZ r r
Z

Z
Z r

r r in units of a

 
            


                         

      
    (10.309) 

where 12r  is given by Eq. (10.255).  The positive root of Eq. (10.309) must be taken in order that 14 0r  .  The final radius of 

electron 14, 14r , is given by Eq. (10.309); this is also the final radius of electron 13.  The radii of several fourteen-electron atoms 

are given in Table 10.13. 
The ionization energies for the fourteen-electron atoms with 14Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii 14r , given by Eq. (10.309)). 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured fourteen-
electron atoms are given in Table 10.13. 
 



Chapter 10 

 

378

 

Table 10.13.   Ionization energies for some fourteen-electron atoms. 
 

14 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

14r  

( oa ) 
e
 

Theoretical 
Ionization 
Energies 

f
 

(eV)

Experimental 
Ionization 
Energies 

g
 

(eV) 

Relative 
Error 

h
 

Si  14 0.07216 0.31274 0.40978 1.25155 1.67685 8.11391 8.15169 0.0046 
P  15 0.06730 0.29010 0.37120 1.09443 1.35682 20.0555 19.7694 -0.0145 

2S   16 0.06306 0.27053 0.33902 0.96729 1.21534 33.5852 34.790 0.0346 
3Cl   17 0.05932 0.25344 0.31190 0.86545 1.06623 51.0426 53.4652 0.0453 
4Ar   18 0.05599 0.23839 0.28878 0.78276 0.94341 72.1094 75.020 0.0388 
5K   19 0.05302 0.22503 0.26884 0.71450 0.84432 96.6876 99.4 0.0273 
6Ca   20 0.05035 0.21308 0.25149 0.65725 0.76358 124.7293 127.2 0.0194 
7Sc   21 0.04794 0.20235 0.23625 0.60857 0.69682 156.2056 158.1 0.0120 
8Ti   22 0.04574 0.19264 0.22276 0.56666 0.64078 191.0973 192.10 0.0052 
9V   23 0.04374 0.18383 0.21074 0.53022 0.59313 229.3905 230.5 0.0048 
10Cr   24 0.04191 0.17579 0.19995 0.49822 0.55211 271.0748 270.8 -0.0010 
11Mn   25 0.04022 0.16842 0.19022 0.46990 0.51644 316.1422 314.4 -0.0055 
12Fe   26 0.03867 0.16165 0.18140 0.44466 0.48514 364.5863 361 -0.0099 
13Co   27 0.03723 0.15540 0.17336 0.42201 0.45745 416.4021 411 -0.0131 
14Ni   28 0.03589 0.14961 0.16601 0.40158 0.43277 471.5854 464 -0.0163 
15Cu   29 0.03465 0.14424 0.15926 0.38305 0.41064 530.1326 520 -0.0195 
16Zn   30 0.03349 0.13925 0.15304 0.36617 0.39068 592.0410 579 -0.0225 

a Radius of the paired 1s inner electrons of fourteen-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of fourteen-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of fourteen-electron atoms from Eq. (10.212). 
d Radius of the paired 3s inner electrons of fourteen-electron atoms from Eq. (10.255). 
e Radius of the two unpaired 3p outer electrons of fourteen-electron atoms from Eq. (10.309) for 14Z   and Eq. (10.297) for Si. 
f Calculated ionization energies of fourteen-electron atoms given by the electric energy (Eq. (10.310)). 
g From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
h (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.13 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The silicon atom 
isoelectronic series is given in Table 10.13 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of Si isoelectronic and Rydberg series, as well as direct experimental 
data.   
 

FIFTEEN-ELECTRON ATOMS 
Fifteen-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, twelve, thirteen and fourteen-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
PHOSPHOROUS ATOM 
For each fourteen-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-
paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given by 

Eq. (10.255), and two unpaired electrons in an atomic orbital with radius 14r  given by Eq. (10.288).  For 15Z  , the next 

electron which binds to form the corresponding fifteen-electron atom is attracted by the central Coulomb field and is repelled by 
diamagnetic forces due to the 3 sets of spin-paired inner 2p electrons and two spin-paired inner 3s electrons.  A paramagnetic 
spin-pairing force to form a filled s orbital is also possible, but the force due to the spin-pairing of the electrons (Eq. (7.24) with 
the radius 15r ) reduces the energy of the atom less than that due to the alternative forces on three unpaired 3p electrons in an 

atomic orbital at the same radius 15r .  The resulting electron configuration is 2 2 6 2 31 2 2 3 3s s p s p , and the orbital arrangement is 
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     3p state

            

   1        0     -1

    (10.311) 

corresponding to the ground state 4 0
3/2S . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner fourteen electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 14r r . 

The diamagnetic force, diamagneticF , is only due to 3p and 3s electrons when the 3p shell is at least half filled since the 

induced charge-density waves only involve the inner-most shell, the 3s orbital.  Thus, diamagneticF , is given by Eq. (10.259) as the 

sum of the contributions from the 3 xp , yp , and zp  orbitals corresponding to m  = 1, -1, and 0, respectively: 
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The energy is minimized with conservation of angular momentum when the spin angular momentum of the 3s orbital 
superimposes negatively with the orbital angular momentum of the 3p orbitals.  From Eq. (10.260),  2magF  corresponding to the 

orbital angular momentum of the 3 xp , yp , and zp  orbitals minus the contribution from the 3s orbital is 
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 (10.314) 

The outward centrifugal force on electron 15 is balanced by the electric force and the magnetic forces (on electron 15).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.312)), 
diamagnetic (Eq. (10.313)), and paramagnetic (Eq. (10.314)) forces as follows: 
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Substitution of 15
15e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.315) gives: 
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Substitution of 12

0

1.09443
r

a
  (Eq. (10.255) with 15Z  ) into Eq. (10.318) gives: 

 15 01.28900r a  (10.319) 

The ionization energy of the phosphorous atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 

15r , given by Eq. (10.319)): 
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     (10.320) 

where 15 01.28900r a  (Eq. (10.319)) and 15Z  .  The experimental ionization energy of the phosphorous atom is 10.48669 eV  

[3]. 
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THE IONIZATION ENERGIES OF FIFTEEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>15 
Fifteen-electron atoms having 15Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  With a half-filled 3p shell, the diamagnetic force due to the orbital angular momenta of the 3p electrons cancels 
that of the 2p electrons.  Thus, the diamagnetic force (Eq. (10.258)), diamagneticF , is zero: 

 0diamagnetic F  (10.321) 

From Eqs. (10.205) and (10.261),  2magF  corresponding to the spin and orbital angular momenta of the paired 2 xp , yp , 

and zp  electrons is: 
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and the contribution from the 3p level is: 
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 (10.323) 

corresponding to the 3 xp , yp , and zp  electrons.  Thus, the total of 2magF  is: 
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The diamagnetic force,  2diamagneticF , due to the binding of the 3p-orbital electron having an electric field outside of its 

radius is given by Eq. (10.268): 
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In the case that 15Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.312)), diamagnetic (Eqs. (10.321) and (10.325)), and paramagnetic (Eq. (10.324)) forces as follows: 
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Substitution of 15
15e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.326) gives: 
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The quadratic equation corresponding to Eq. (10.327) is: 
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The solution of Eq. (10.329) using the quadratic formula is: 
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   (10.331) 

where 12r  is given by Eq. (10.255).  The positive root of Eq. (10.331) must be taken in order that 15 0r  .  The final radius of 

electron 15, 15r , is given by Eq. (10.331); this is also the final radius of electrons 13 and 14.  The radii of several fifteen-electron 

atoms are given in Table 10.14. 
The ionization energies for the fifteen-electron atoms with 15Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii 15r , given by Eq. (10.331)): 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured fifteen-electron 
atoms are given in Table 10.14. 
 
Table 10.14.   Ionization energies for some fifteen-electron atoms. 
 

15 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

15r  

( oa ) 
e
 

Theoretical 
Ionization 
Energies 

f
 

(eV)

Experimental 
Ionization 
Energies 

g
 

(eV) 

Relative 
Error 

h
 

P  15 0.06730 0.29010 0.37120 1.09443 1.28900 10.55536 10.48669 -0.0065
S   16 0.06306 0.27053 0.33902 0.96729 1.15744 23.5102 23.3379 -0.0074 

2Cl   17 0.05932 0.25344 0.31190 0.86545 1.06759 38.2331 39.61 0.0348 
3Ar   18 0.05599 0.23839 0.28878 0.78276 0.95423 57.0335 59.81 0.0464 

4K   19 0.05302 0.22503 0.26884 0.71450 0.85555 79.5147 82.66 0.0381 
5Ca   20 0.05035 0.21308 0.25149 0.65725 0.77337 105.5576 108.78 0.0296 
6Sc   21 0.04794 0.20235 0.23625 0.60857 0.70494 135.1046 138.0 0.0210 
7Ti   22 0.04574 0.19264 0.22276 0.56666 0.64743 168.1215 170.4 0.0134 
8V   23 0.04374 0.18383 0.21074 0.53022 0.59854 204.5855 205.8 0.0059 
9Cr   24 0.04191 0.17579 0.19995 0.49822 0.55652 244.4799 244.4 -0.0003 
10Mn   25 0.04022 0.16842 0.19022 0.46990 0.52004 287.7926 286.0 -0.0063 
11Fe   26 0.03867 0.16165 0.18140 0.44466 0.48808 334.5138 330.8 -0.0112 
12Co   27 0.03723 0.15540 0.17336 0.42201 0.45985 384.6359 379 -0.0149 
13Ni   28 0.03589 0.14961 0.16601 0.40158 0.43474 438.1529 430 -0.0190 
14Cu   29 0.03465 0.14424 0.15926 0.38305 0.41225 495.0596 484 -0.0229 
15Zn   30 0.03349 0.13925 0.15304 0.36617 0.39199 555.3519 542 -0.0246 

a Radius of the paired 1s inner electrons of fifteen-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of fifteen-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of fifteen-electron atoms from Eq. (10.212). 
d Radius of the paired 3s inner electrons of fifteen-electron atoms from Eq. (10.255). 
e Radius of the three unpaired 3p outer electrons of fifteen-electron atoms from Eq. (10.331) for 15Z   and Eq. (10.319) for P. 
f Calculated ionization energies of fifteen-electron atoms given by the electric energy (Eq. (10.332)). 
g From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
h (Experimental-theoretical)/experimental. 
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The agreement between the experimental and calculated values of Table 10.14 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The phosphorous atom 
isoelectronic series is given in Table 10.14 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of P isoelectronic and Rydberg series, as well as direct experimental data.   
 

SIXTEEN-ELECTRON ATOMS 
Sixteen-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, twelve, thirteen, fourteen, and fifteen-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE SULFUR 
ATOM 
For each fifteen-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given by 

Eq. (10.255), and three unpaired electrons in an atomic orbital with radius 15r  given by Eq. (10.331).  For 16Z  , the next 

electron which binds to form the corresponding sixteen-electron atom is attracted by the central Coulomb field and is repelled by 
diamagnetic forces due to the 3 sets of spin-paired inner 2p electrons and two spin-paired inner 3s electrons.  A paramagnetic 
spin-pairing force to form a filled s orbital is also possible, but the force due to the spin-pairing of the electrons (Eq. (7.24) with 
the radius 16r ) reduces the energy of the atom less than that due to the alternative forces on a set of paired and two unpaired 3p 

electrons in an atomic orbital at the same radius 16r .  The resulting electron configuration is 2 2 6 2 41 2 2 3 3s s p s p , and the orbital 

arrangement is: 

 

     3p state

           

   1        0     -1

     (10.333) 

corresponding to the ground state 3
2P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner fifteen electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 15r r . 

The diamagnetic force, diamagneticF , is only due to 3p and 3s electrons when the 3p shell is at least half filled since the 

induced charge-density waves only involve the inner-most shell, the 3s orbital.  The energy is minimized with conservation of 
angular momentum when the induced orbital angular momentum of the 3s orbital superimposes positively with the orbital 
angular momenta of the other 3 xp  and the 3 zp -orbital electrons and the orbital angular momentum of one of the spin-paired 

3 xp  electrons is canceled by the 3 yp  electron.  Thus, diamagneticF , is given by Eq. (10.258) as the sum of the contributions from 

the 3 xp  and zp  orbitals corresponding to m  = 1 and 0, respectively, and the induced contribution from the 3s orbital 

corresponding to m  = 0: 
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The energy is minimized with conservation of angular momentum when the spin angular momentum the 3s orbital 
superimposes negatively with the spin angular momentum of the 3 xp  orbital-electron and the orbital angular momentum of the 

3 zp -orbital electron.  From Eq. (10.260),  2magF  corresponding to the orbital angular momentum of the 3 xp , yp , and zp  orbitals 

minus the contribution from the 3s orbital is: 
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 (10.336) 

The outward centrifugal force on electron 16 is balanced by the electric force and the magnetic forces (on electron 16).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.334)), 
diamagnetic (Eq. (10.335)), and paramagnetic (Eq. (10.336)) forces as follows: 
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Substitution of 16
16e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.337) gives: 
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Substitution of 12

0

0.96729
r

a
  (Eq. (10.255) with 16Z  ) into Eq. (10.340) gives: 

 16 01.32010r a  (10.341) 

The ionization energy of the sulfur atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 16r , 
given by Eq. (10.341)). 
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     (10.342) 

where 16 01.32010r a  (Eq. (10.341)) and 16Z  .  The experimental ionization energy of the sulfur atom is 10.36001 eV  [3]. 

 
THE IONIZATION ENERGIES OF SIXTEEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>16 
Sixteen-electron atoms having 16Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  With a half-filled 3p shell, the diamagnetic force due to the orbital angular momenta of the 3p electrons cancels 
that of the 2p electrons.  Thus, diamagneticF  is minimized by the formation of a charge-density wave in the 3s orbital corresponding 

to  = 1m  in Eq. (10.258) that cancels the orbital angular momentum of one of the 3 xp  electrons to form the equivalent of a half-

filled 3p shell.  Then, the contribution due to the 2p level is canceled.  From Eq. (10.82), the diamagnetic force, diamagneticF , is 

given by the sum of the contributions from the 3 yp  and zp  orbitals corresponding to = 1,  and 0,m   respectively, and the 

negative contribution due to the charge-density wave with m  = 1 induced in the 3s orbital (Eq. (10.258)). 
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From Eq. (10.261),  2magF  corresponding to the spin and orbital angular momenta of the paired 2 xp , yp , and zp  
electrons is 
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and the contribution from the 3p level is: 
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corresponding to the 3 xp  (Eq. (10.264)) and zp  (Eq. (10.263)) electrons wherein the contribution due to the 3 xp  ( m  = 1) 
electron is canceled by the mirror charge-density wave with m  = 1 induced in the 3s orbital (Eq. (10.262)).  Thus, the total of 

 2magF  is 
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The diamagnetic force,  2diamagneticF , due to the binding of the 3p-orbital electron having an electric field outside of its 

radius is given by Eq. (10.268): 
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In the case that 16Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.334)), diamagnetic (Eqs. (10.343) and (10.347)), and paramagnetic (Eq. (10.346)) forces as follows: 
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Substitution of 16
16e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.348) gives: 
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The quadratic equation corresponding to Eq. (10.349) is 
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The solution of Eq. (10.351) using the quadratic formula is: 
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where 12r  is given by Eq. (10.255).  The positive root of Eq. (10.353) must be taken in order that 16 0r  .  The final radius of 

electron 16, 16r , is given by Eq. (10.353); this is also the final radius of electrons 13, 14, and 15.  The radii of several sixteen-

electron atoms are given in Table 10.15. 
 The ionization energies for the sixteen-electron atoms with 16Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii 16r , given by Eq. (10.353)). 



Three- Through Twenty-Electron Atoms 

 

385

 
2

0 16

( 15)
( )  

8

Z e
E Ionization Electric Energy

r


    (10.354) 

Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured sixteen-electron 
atoms are given in Table 10.15. 
 
Table 10.15.   Ionization energies for some sixteen-electron atoms. 
 

16 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

16r  

( oa ) 
e
 

Theoretical 
Ionization 
Energies 

f
 

(eV)

Experimental 
Ionization 
Energies 

g
 

(eV) 

Relative 
Error 

h
 

S  16 0.06306 0.27053 0.33902 0.96729 1.32010 10.30666 10.36001 0.0051 
Cl  17 0.05932 0.25344 0.31190 0.86545 1.10676 24.5868 23.814 -0.0324 

2Ar   18 0.05599 0.23839 0.28878 0.78276 1.02543 39.8051 40.74 0.0229 
3K   19 0.05302 0.22503 0.26884 0.71450 0.92041 59.1294 60.91 0.0292 
4Ca   20 0.05035 0.21308 0.25149 0.65725 0.82819 82.1422 84.50 0.0279 
5Sc   21 0.04794 0.20235 0.23625 0.60857 0.75090 108.7161 110.68 0.0177 
6Ti   22 0.04574 0.19264 0.22276 0.56666 0.68622 138.7896 140.8 0.0143 
7V   23 0.04374 0.18383 0.21074 0.53022 0.63163 172.3256 173.4 0.0062 
8Cr   24 0.04191 0.17579 0.19995 0.49822 0.58506 209.2996 209.3 0.0000 
9Mn   25 0.04022 0.16842 0.19022 0.46990 0.54490 249.6938 248.3 -0.0056 

10Fe   26 0.03867 0.16165 0.18140 0.44466 0.50994 293.4952 290.2 -0.0114 
11Co   27 0.03723 0.15540 0.17336 0.42201 0.47923 340.6933 336 -0.0140 
12Ni   28 0.03589 0.14961 0.16601 0.40158 0.45204 391.2802 384 -0.0190 
13Cu   29 0.03465 0.14424 0.15926 0.38305 0.42781 445.2492 435 -0.0236 
14Zn   30 0.03349 0.13925 0.15304 0.36617 0.40607 502.5950 490 -0.0257 

a Radius of the paired 1s inner electrons of sixteen-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of sixteen-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of sixteen-electron atoms from Eq. (10.212). 
d Radius of the paired 3s inner electrons of sixteen-electron atoms from Eq. (10.255). 
e Radius of the two paired and two unpaired 3p outer electrons of sixteen-electron atoms from Eq. (10.353) for 16Z   and Eq. (10.341) for S. 
f Calculated ionization energies of sixteen-electron atoms given by the electric energy (Eq. (10.354)). 
g From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
h (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.15 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The sulfur atom isoelectronic 
series is given in Table 10.15 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these values are 
based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine since the 
cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be determined 
from theoretical calculations, interpolation of S isoelectronic and Rydberg series, as well as direct experimental data.   
 
SEVENTEEN-ELECTRON ATOMS 
Seventeen-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, twelve, thirteen, fourteen, fifteen, and sixteen-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
CHLORINE ATOM 
For each sixteen-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given by 

Eq. (10.255), and two paired and two unpaired electrons in an atomic orbital with radius 16r  given by Eq. (10.353).  For 17Z  , 

the next electron which binds to form the corresponding seventeen-electron atom is attracted by the central Coulomb field and is 
repelled by diamagnetic forces due to the 3 sets of spin-paired inner 2p electrons and two spin-paired inner 3s electrons.  A 
paramagnetic spin-pairing force to form a filled s orbital is also possible, but the force due to the spin-pairing of the electrons 
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(Eq. (7.24) with the radius 17r ) reduces the energy of the atom less than that due to the alternative forces on two sets of paired 

electrons and an unpaired 3p electron in an atomic orbital at the same radius 17r .  The resulting electron configuration is 
2 2 6 2 51 2 2 3 3s s p s p , and the orbital arrangement is: 

 

      3p state

           

   1         0       -1

      (10.355) 

corresponding to the ground state 2 0
3/2P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner sixteen electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 16r r . 

The diamagnetic force, diamagneticF , is only due to 3p and 3s electrons when the 3p shell is at least half filled since the 

induced charge-density waves only involve the inner-most shell, the 3s orbital.  Thus, diamagneticF , is given by Eq. (10.258) as the 

contribution from the 3 yp  orbital corresponding to = 1m   with the cancellation of the orbital angular momenta of the spin-

paired 3 xp  and zp  electrons: 
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 (10.357) 

The energy is minimized with conservation of angular momentum when the spin angular momentum of the 3s orbital 
superimposes negatively with the angular momenta of the 3p orbitals.  From Eq. (10.260), 2magF  corresponding to the sum of the 

spin angular momenta of the 3 xp  and 3 zp  orbitals and the orbital angular momentum of the 3 yp  orbital, minus the contribution 

from the 3s orbital is: 
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The outward centrifugal force on electron 17 is balanced by the electric force and the magnetic forces (on electron 17).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.356)), 
diamagnetic (Eq. (10.357)), and paramagnetic (Eq. (10.358))  forces as follows: 
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Substitution of 17
17e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.359) gives: 
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Substitution of 12

0

0.86545
r

a
  (Eq. (10.255) with 17Z  ) into Eq. (10.362) gives: 

 17 01.05158r a  (10.363) 

The ionization energy of the chlorine atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 17r , 
given by Eq. (10.363)): 
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     (10.364) 

where 17 01.05158r a  (Eq. (10.363)) and 17Z  .  The experimental ionization energy of the chlorine atom is 12.96764 eV  [3]. 
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THE IONIZATION ENERGIES OF SEVENTEEN-ELECTRON ATOMS WITH A 
NUCLEAR CHARGE Z>17 
Seventeen-electron atoms having 17Z   possess an external electric field given by Eq. (10.92).  In this case, an energy 
minimum is achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized 

while  2magF  is maximized.  With a filled 3p shell, the diamagnetic force due to the orbital angular momenta of the 3p electrons 

cancels that of the 2p electrons.  Thus, diamagneticF  is minimized by the formation of a charge-density wave in the 3s orbital 

corresponding to two electrons with m  = -1 in Eq. (10.258) to form the equivalent of a filled 3p level such that the contribution 
due to the 2p level is canceled.  From Eq. (10.82), the diamagnetic force, diamagneticF , is given by the contribution due to the 

charge-density wave with m  = -1 induced in the 3s orbital according to Eq. (10.258). 
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 (10.365) 

From Eqs. (10.205) and (10.261),  2magF  corresponding to the spin and orbital angular momenta of the paired 2 xp , yp , 

and zp  electrons is 
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and the contribution from the paired 3 xp , yp , and zp  electrons given by Eq. (10.264) is 
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wherein the contribution due to the charge-density wave with m  = -1 induced in the 3s orbital (Eq. (10.262)) provides the 
equivalent of a filled 3 yp  orbital and adds a negative contribution of: 
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Thus, the total of  2magF  is: 
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The diamagnetic force,  2diamagneticF , due to the binding of the 3p-orbital electron having an electric field outside of its 

radius is given by Eq. (10.268): 
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In the case that 17Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.356)), diamagnetic (Eqs. (10.365) and (10.370)), and paramagnetic (Eq. (10.369)) forces as follows: 
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Substitution of 17
17e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.371) gives: 
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The quadratic equation corresponding to Eq. (10.372) is 
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The solution of Eq. (10.374) using the quadratic formula is: 
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2

12

0
0

12 12

12

17 12 0

1

1 16 3
( 16)

12

1 16 3
( 16) 17 2 112 20 3 1

16 2 2

1 16 3
( 16)

12
,      

2

Z
Z r

a
a

Z ZZ r r
Z

Z
Z r

r r in units of a

 
            


                         

      
    (10.376) 

where 12r  is given by Eq. (10.255).  The positive root of Eq. (10.376) must be taken in order that 17 0r  .  The final radius of 

electron 17, 17r , is given by Eq. (10.376); this is also the final radius of electrons 13, 14, 15, and 16.  The radii of several 
seventeen-electron atoms are given in Table 10.16. 

The ionization energies for the seventeen-electron atoms with 17Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii 17r , given by Eq. (10.376)). 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured seventeen-
electron atoms are given in Table 10.16. 
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Table 10.16.   Ionization energies for some seventeen-electron atoms. 
 

17 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

17r  

( oa ) 
e
 

Theoretical 
Ionization 
Energies 

f
 

(eV)

Experimental 
Ionization 
Energies 

g
 

(eV) 

Relative 
Error 

h
 

Cl  17 0.05932 0.25344 0.31190 0.86545 1.05158 12.93841 12.96764 0.0023 
Ar  18 0.05599 0.23839 0.28878 0.78276 0.98541 27.6146 27.62967 0.0005 

2K   19 0.05302 0.22503 0.26884 0.71450 0.93190 43.8001 45.806 0.0438 
3Ca   20 0.05035 0.21308 0.25149 0.65725 0.84781 64.1927 67.27 0.0457 
4Sc   21 0.04794 0.20235 0.23625 0.60857 0.77036 88.3080 91.65 0.0365 
5Ti   22 0.04574 0.19264 0.22276 0.56666 0.70374 116.0008 119.53 0.0295 
6V   23 0.04374 0.18383 0.21074 0.53022 0.64701 147.2011 150.6 0.0226 
7Cr   24 0.04191 0.17579 0.19995 0.49822 0.59849 181.8674 184.7 0.0153 
8Mn   25 0.04022 0.16842 0.19022 0.46990 0.55667 219.9718 221.8 0.0082 
9Fe   26 0.03867 0.16165 0.18140 0.44466 0.52031 261.4942 262.1 0.0023 

10Co   27 0.03723 0.15540 0.17336 0.42201 0.48843 306.4195 305 -0.0047 
11Ni   28 0.03589 0.14961 0.16601 0.40158 0.46026 354.7360 352 -0.0078 
12Cu   29 0.03465 0.14424 0.15926 0.38305 0.43519 406.4345 401 -0.0136 
13Zn   30 0.03349 0.13925 0.15304 0.36617 0.41274 461.5074 454 -0.0165 

a Radius of the paired 1s inner electrons of seventeen-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of seventeen-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of seventeen-electron atoms from Eq. (10.212). 
d Radius of the paired 3s inner electrons of seventeen-electron atoms from Eq. (10.255). 
e Radius of the two sets of paired and an unpaired 3p outer electron of seventeen-electron atoms from Eq. (10.376) for 17Z   and Eq. (10.363) for Cl. 
f Calculated ionization energies of seventeen-electron atoms given by the electric energy (Eq. (10.377)). 
g From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
h (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.16 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is about two to four significant figures which is consistent with the last column.  Ionization energies are 
difficult to determine since the cut-off of the Rydberg series of lines at the ionization energy is often not observed.  Thus, the 
chlorine atom isoelectronic series given in Table 10.16 [2-3] relies on theoretical calculations and interpolation of the Cl 
isoelectronic and Rydberg series as well as direct experimental data to extend the precision beyond the capability of X-ray 
spectroscopy.  But, no assurances can be given that these techniques are correct, and they may not improve the results.  The error 
given in the last column is very reasonable given the quality of the data. 
 

EIGHTEEN-ELECTRON ATOMS 
Eighteen-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, and seventeen-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE ARGON 
ATOM 
For each seventeen-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-
paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given by 

Eq. (10.255), and two sets of paired and an unpaired electron in an atomic orbital with radius 17r  given by Eq. (10.376).  For 

18Z  , the next electron which binds to form the corresponding eighteen-electron atom is attracted by the central Coulomb field 
and is repelled by diamagnetic forces due to the 3 sets of spin-paired inner 2p electrons and two spin-paired inner 3s electrons.  
A paramagnetic spin-pairing force to form a filled s orbital is also possible, but the force due to the spin-pairing of the electrons 
(Eq. (7.24) with the radius 18r ) reduces the energy of the atom less than that due to the alternative forces on three sets of paired 

3p electrons in an atomic orbital at the same radius 18r .  The resulting electron configuration is 2 2 6 2 61 2 2 3 3s s p s p , and the orbital 
arrangement is: 
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       3p state

          

   1         0       -1

       (10.378) 

corresponding to the ground state 1
0S . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner seventeen electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 17r r . 
As in the case on the neon atom, the energy of the argon atom is minimized and the angular momentum is conserved with 

the pairing of electron eighteen to fill the 3 yp  orbital when the orbital angular momenta of each set of the 3 xp , yp , and zp  spin-

paired electrons adds negatively to cancel.  Then, the diamagnetic force (Eq. (10.258)), diamagneticF , is given by the induced orbital 

angular momentum of the 3s orbital alone which conserves angular momentum. 
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 (10.380) 

From Eq. (10.260),  2magF  is: 
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 (10.381) 

corresponding to the spin-angular-momentum contribution alone from each of the 3 xp , yp , and zp  orbitals and the spin angular 

momentum of the 3s orbital. 
The outward centrifugal force on electron 18 is balanced by the electric force and the magnetic forces (on electron 18).  

The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.379)), 
diamagnetic (Eq. (10.380)), and paramagnetic (Eq. (10.381)) forces as follows: 
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Substitution of 18
18e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.382) gives: 
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Substitution of 12

0

0.78276
r

a
  (Eq. (10.255) with 18Z  ) into Eq. (10.385) gives: 

 18 00.86680r a  (10.386) 

The ionization energy of the argon atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 18r , 
given by Eq. (10.386)). 
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     (10.387) 

where 18 00.86680r a  (Eq. (10.386)) and 18Z  .  The experimental ionization energy of the argon atom is 15.75962 eV  [3]. 
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THE IONIZATION ENERGIES OF EIGHTEEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>18 
Eighteen-electron atoms having 18Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum 
is achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 

 2magF  is maximized.  With a filled 3p shell, the diamagnetic force due to the orbital angular momenta of the 3p electrons cancels 

that of the 2p electrons.  Thus, the diamagnetic force (Eq. (10.258)), diamagneticF , is zero: 

 0diamagnetic F  (10.388) 

From Eqs. (10.205) and (10.261),  2magF  corresponding to the spin and orbital angular momenta of the paired 2 xp , yp , 

and zp  electrons is: 
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the contribution from the 3p level (Eq. (10.264)) is: 
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and the contribution due to the spin and induced orbital angular momentum of the 3s orbital that achieves conservation of 
angular momentum given by Eq. (10.262) is: 
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Thus, the total of  2magF  is 
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The diamagnetic force,  2diamagneticF , due to the binding of the 3p-orbital electron having an electric field outside of its 

radius is given by Eq. (10.268). 
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In the case that 18Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.379)), diamagnetic (Eqs. (10.388) and (10.393)), and paramagnetic (Eq. (10.392)) forces as follows: 
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Substitution of 18
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v
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 (Eq. (1.35)) and 
1

2
s   into Eq. (10.394) gives: 
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The quadratic equation corresponding to Eq. (10.395) is: 
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The solution of Eq. (10.397) using the quadratic formula is: 
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   (10.399) 

where 12r  is given by Eq. (10.255).  The positive root of Eq. (10.399) must be taken in order that 18 0r  .  The final radius of 

electron 18, 18r , is given by Eq. (10.399); this is also the final radius of electrons 13, 14, 15, 16, and 17.  The radii of several 
eighteen-electron atoms are given in Table 10.17. 

The ionization energies for the eighteen-electron atoms with 18Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii 18r , given by Eq. (10.399)). 
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    (10.400) 

Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured eighteen-
electron atoms are given in Table 10.17. 
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Table 10.17.   Ionization energies for some eighteen-electron atoms. 
18 e 

Atom 
Z 

1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

18r  

( oa ) 
e
 

Theoretical 
Ionization 
Energies 

f
 

(eV)

Experimental 
Ionization 
Energies 

g
 

(eV) 

Relative 
Error 

h
 

Ar  18 0.05599 0.23839 0.28878 0.78276 0.86680 15.69651 15.75962 0.0040
K   19 0.05302 0.22503 0.26884 0.71450 0.85215 31.9330 31.63 -0.0096 

2Ca   20 0.05035 0.21308 0.25149 0.65725 0.82478 49.4886 50.9131 0.0280 
3Sc   21 0.04794 0.20235 0.23625 0.60857 0.76196 71.4251 73.4894 0.0281 
4Ti   22 0.04574 0.19264 0.22276 0.56666 0.70013 97.1660 99.30 0.0215 
5V   23 0.04374 0.18383 0.21074 0.53022 0.64511 126.5449 128.13 0.0124 
6Cr   24 0.04191 0.17579 0.19995 0.49822 0.59718 159.4836 160.18 0.0043 
7Mn   25 0.04022 0.16842 0.19022 0.46990 0.55552 195.9359 194.5 -0.0074 

8Fe   26 0.03867 0.16165 0.18140 0.44466 0.51915 235.8711 233.6 -0.0097 
9Co   27 0.03723 0.15540 0.17336 0.42201 0.48720 279.2670 275.4 -0.0140 

10Ni   28 0.03589 0.14961 0.16601 0.40158 0.45894 326.1070 321.0 -0.0159 
11Cu   29 0.03465 0.14424 0.15926 0.38305 0.43379 376.3783 369 -0.0200 
12Zn   30 0.03349 0.13925 0.15304 0.36617 0.41127 430.0704 419.7 -0.0247 

a Radius of the paired 1s inner electrons of eighteen-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of eighteen-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of eighteen-electron atoms from Eq. (10.212). 
d Radius of the paired 3s inner electrons of eighteen-electron atoms from Eq. (10.255). 
e Radius of the three sets of paired 3p outer electrons of eighteen-electron atoms from Eq. (10.399) for 18Z   and Eq. (10.386) for Ar . 
f Calculated ionization energies of eighteen-electron atoms given by the electric energy (Eq. (10.400)). 
g From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
h (Experimental-theoretical)/experimental. 

 
The agreement between the experimental and calculated values of Table 10.17 is well within the experimental capability 

of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is about two to four significant figures which is consistent with the last column.  Ionization energies are 
difficult to determine since the cut-off of the Rydberg series of lines at the ionization energy is often not observed.  Thus, the 
argon atom isoelectronic series given in Table 10.17 [2-3] relies on theoretical calculations and interpolation of the Ar 
isoelectronic and Rydberg series as well as direct experimental data to extend the precision beyond the capability of X-ray 
spectroscopy.  But, no assurances can be given that these techniques are correct, and they may not improve the results.  The error 
given in the last column is very reasonable given the quality of the data. 

 
GENERAL EQUATION FOR THE IONIZATION ENERGIES OF THIRTEEN 
THROUGH EIGHTEEN-ELECTRON ATOMS 
Using the forces given by Eqs. (10.257-10.264), (10.268), and the radii 12r  given by Eq. (10.255), the radii of the 3p electrons of 
all thirteen through eighteen-electron atoms may be solved exactly.  The electric energy given by Eq. (10.102) gives the 
corresponding exact ionization energies.  A summary of the parameters of the equations that determine the exact radii and 
ionization energies of all thirteen through eighteen-electron atoms is given in Table 10.18. 

eleF  and  2diamagneticF  given by Eqs. (10.257) and (10.268), respectively, are of the same form for all atoms with the 

appropriate nuclear charges and atomic radii.  diamagneticF  given by Eq. (10.258) and 2magF  given by Eqs. (10.259-10.264) are of 

the same form with the appropriate factors that depend on the electron configuration wherein the electron configuration must be 
a minimum of energy. 

For each n-electron atom having a central charge of Z  times that of the proton and an electron configuration 
2 2 6 2 121 2 2 3 3 ns s p s p  , there are two indistinguishable spin-paired electrons in an atomic orbital with radii 1r  and 2r  both given by 

Eq. (7.35) and (10.51). 

 
 1 2 0

3
1 4

1 1
r r a

Z Z Z

 
 
   

   
 (10.401) 

two indistinguishable spin-paired electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62): 
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  1 0   r in units of a  

where 1r  is given by Eqs. (10.51) and (10.401), three sets of paired indistinguishable electrons in an atomic orbital with radius 

10r  given by Eq. (10.212). 
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    (10.403) 

where 3r  is given by Eqs. (10.62) and (10.402), two indistinguishable spin-paired electrons in an atomic orbital with radius 12r  
given by Eq. (10.255). 
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where 10r  is given by Eq. (10.212), and 12n   electrons in a 3p atomic orbital with radius nr  given by: 
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    (10.405) 

where 12r  is given by Eqs. (10.255) and (10.404), the parameter A  given in Table 10.18 corresponds to the diamagnetic force, 

diamagneticF , (Eq. (10.258)), and the parameter B  given in Table 10.18 corresponds to the paramagnetic force, 2magF  (Eqs. 

(10.260-10.264)).  The positive root of Eq. (10.405) must be taken in order that 0nr  .  The radii of several n-electron 3p atoms 
are given in Tables 10.10-10.17. 

The ionization energy for the aluminum atom is given by Eq. (10.227).  The ionization energies for the n-electron 3p 
atoms are given by the negative of the electric energy, ( )E electric , (Eq. (10.102) with the radii, nr , given by Eq. (10.405)): 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured n-electron 3p 
atoms are given by Eqs. (10.405) and (10.406) in Tables 10.10-10.17. 
 
Table 10.18.   Summary of the parameters of thirteen through eighteen-electron atoms. 
 

Atom Type Electron 
Configuration 

Ground
State 

Term 
a
 

Orbital 
Arrangement 

of 3p Electrons 
(3p state) 

Diamagnetic 
Force 
Factor 

A
b
 

Paramagnetic 
Force 
Factor 

B  c 

Neutral 
13 e Atom Al  

2 2 6 2 11 2 2 3 3s s p s p 2 0
1/2P                     

 1        0       -1


 

11

3
 

 
0  

Neutral 
14 e Atom Si  

2 2 6 2 21 2 2 3 3s s p s p 3
0P                 

 1        0       -1

 
 

7

3
 

 
0  

Neutral 
15 e Atom P  

2 2 6 2 31 2 2 3 3s s p s p 4 0
3/2S             

 1        0       -1

  
 

5

3
 

 
2  

Neutral 
16 e Atom S  

2 2 6 2 41 2 2 3 3s s p s p 3
2P            

  1        0       -1

   
 

4

3
 

 
1 

Neutral 
17 e Atom Cl  

2 2 6 2 51 2 2 3 3s s p s p 2 0
3/2P            

  1         0        -1

    
 

2

3
 

 
2  

Neutral 
18 e Atom Ar  

2 2 6 2 61 2 2 3 3s s p s p 1
0S           

  1         0         -1

     
 

1

3
 

 
4  

13 e Ion 2 2 6 2 11 2 2 3 3s s p s p 2 0
1/2P                     

 1        0       -1


 

5

3
 

 
12  

14 e Ion 2 2 6 2 21 2 2 3 3s s p s p 3
0P                 

 1        0       -1

 
 

1

3
 

 
16  

15 e Ion 2 2 6 2 31 2 2 3 3s s p s p 4 0
3/2S             

 1        0       -1

  
 

 
0  

 
24  

16 e Ion 2 2 6 2 41 2 2 3 3s s p s p 3
2P            

  1        0       -1

   
 

1

3
 

 
24  

17 e Ion 2 2 6 2 51 2 2 3 3s s p s p 2 0
3/2P            

  1         0        -1

    
 

2

3
 

 
32  

18 e Ion 2 2 6 2 61 2 2 3 3s s p s p 1
0S           

  1         0         -1

     
 

 
0  

 
40  

a The theoretical ground state terms match those given by NIST [8]. 
b Eq. (10.258). 
c Eqs. (10.260-10.264). 
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NINETEEN-ELECTRON ATOMS 
Nineteen-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, and eighteen-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
POTASSIUM ATOM 
For each eighteen-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-
paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given by 

Eq. (10.255), and three sets of paired electrons in an atomic orbital with radius 18r  given by Eq. (10.399).  For 19Z  , the next 

electron which binds to form the corresponding nineteen-electron atom is attracted by the central Coulomb field and is repelled 
by diamagnetic forces due to the 3 sets of spin-paired inner 3p electrons such that it forms an unpaired atomic orbital at radius 

19r . 
The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 

electron due to the nucleus and the inner eighteen electrons is given by Eq. (10.70) with the appropriate charge and radius: 

 
2

2
0 19

( 18)

4ele

Z e

r


 rF i  (10.407) 

for 18r r . 

The spherically symmetrical closed 3p shell of nineteen-electron atoms produces a diamagnetic force, diamagneticF , that is 

equivalent to that of a closed s shell given by Eq. (10.11) with the appropriate radii except that the force is doubled due to the 
interaction of the 4s and 3p electrons as given by Eq. (10.96).  The inner electrons remain at their initial radii, but cause a 
diamagnetic force according to Lenz’s law that is: 
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 (10.408) 

In addition to the spin-spin interaction between electron pairs, the three sets of 3p electrons are orbitally paired.  As in the 
case of the sodium atom with the corresponding radii, the single 4s orbital of the potassium atom produces a magnetic field at the 
position of the three sets of spin-paired 3p electrons.  In order for the electrons to remain spin and orbitally paired, a 
corresponding diamagnetic force,  3diamagneticF , on electron nineteen from the three sets of spin-paired electrons that follows from 

the deviation given in the Eleven-Electron Atom section (Eq. (10.221)) is:  

  
2

 3 3
19

1 12
1diamagnetic

e

s s
Z m r

   rF i


 (10.409) 

corresponding to the 3 xp , yp , and zp  electrons. 

The outward centrifugal force on electron 19 is balanced by the electric force and the magnetic forces (on electron 19).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.407)) 
and diamagnetic (Eqs. (10.408) and (10.409)) forces as follows: 
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Substitution of 19
19e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.410) gives: 
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Substitution of 18

0

0.85215
r

a
  (Eq. (10.399) with 19Z  ) into Eq. (10.413) gives: 

 19 03.14515r a  (10.414) 

The ionization energy of the potassium atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 

19r , given by Eq. (10.414)). 

 
2
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( 18)
( ;  )  4.32596 
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Z e
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     (10.415) 

where 19 03.14515r a  (Eq. (10.414)) and 19Z  .  The experimental ionization energy of the potassium atom is 4.34066 eV  [3]. 

 
THE IONIZATION ENERGIES OF NINETEEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>19 
Nineteen-electron atoms having 19Z   possess an external electric field given by Eq. (10.92).  Since there is a source of 
dissipative power, J E  of Eq. (10.27), the magnetic moments of the inner electrons may change due to the outer electron such 
that the energy of the nineteen-electron atom is lowered.  The spherically symmetrical closed 3p shell of nineteen-electron atoms 
produces a diamagnetic force, diamagneticF , that is equivalent to that of a closed s shell given by Eq. (10.11) with the appropriate 

radii except that the force is tripled due to the interaction of the 2p, 3s, and 3p electrons as discussed in the 3P-Orbital Electrons 
Based on an Energy Minimum section.  The inner electrons remain at their initial radii, but cause a diamagnetic force according 
to Lenz’s law that is: 
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In addition to the spin-spin interaction between electron pairs, the six sets of 2p and 3p electrons are orbitally paired.  As 
in given in the Eleven-Electron Atom section, the single 4s orbital of each nineteen-electron atoms having 19Z   produces a 
magnetic field at the position of the six sets of spin-paired 2p and 3p electrons.  In order for the electrons to remain spin and 
orbitally paired, a corresponding diamagnetic force, 3diamagneticF , on electron nineteen from the six sets of spin-paired electrons 

that follows from the deviation given in the Eleven-Electron Atom section (Eq. (10.221)) is: 
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corresponding to the 2 and 3 xp , yp , and zp  electrons. 

As shown in the P-Orbital Electrons Based on an Energy Minimum section for  2diamagneticF  given by Eq. (10.93), the 

corresponding diamagnetic force for 2p electrons due to a relativistic effect with an electric field for nr r  (Eq. (10.35)) is 

dependent on the amplitude of the orbital energy.  Using the orbital energy with 1  (Eq. (10.90)), the energy 2
em v  of Eq. 

(10.29) is reduced by the factor of 
2

1
2

 
 

 
 due to the contribution of the charge-density wave of the inner electrons at 3r .  In 

addition, it was shown in the 3P-Orbital Electrons Based on an Energy Minimum section that the two 3s electrons contribute an 
energy factor based on Eq. (1.55) since the filled 2p orbitals with the maintenance of symmetry according to Eq. (10.72) requires 
that the diamagnetic force is due to the electrons at 10r  acting on the electrons at 12r  which complies with the reactive force, 

 2diamagneticF , given by Eq. (10.229).  Thus, 2diamagneticF  for the factor from 3p electrons with Z n  is reduced by the factor of 

2 1
1

2 2

 
  

 
.  Similarly, the factor for 4s electrons due to the inner 2p, 3s, and 3p electrons is cumulative.  Thus, 2diamagneticF  for 

4s electrons with Z n  is: 
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For 19n  ,  2diamagneticF  is 
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In the case that 19Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.407)) and diamagnetic (Eqs. (10.416), (10.417), and (10.419)) forces as follows: 
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Substitution of 19
19e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.420) gives: 
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The quadratic equation corresponding to Eq. (10.421) is 
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The solution of Eq. (10.423) using the quadratic formula is: 
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where 18r  is given by Eq. (10.399).  The positive root of Eq. (10.425) must be taken in order that 19 0r  .  The radii of several 

nineteen-electron atoms are given in Table 10.19. 
The ionization energies for the nineteen-electron atoms with 19Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii 19r , given by Eq. (10.425)): 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured nineteen-
electron atoms are given in Table 10.19. 
 
Table 10.19.   Ionization energies for some nineteen-electron atoms. 
 

19 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

18r  

( oa ) 
e
 

19r  

( oa ) 
f
 

Theoretical 
Ionization 
Energies 

g

(eV)

Experimental 
Ionization 
Energies 

h
 

(eV) 

Relative
Error 

i
 

K  19 0.05302 0.22503 0.26884 0.71450 0.85215 3.14515 4.32596 4.34066 0.0034
Ca  20 0.05035 0.21308 0.25149 0.65725 0.82478 2.40060 11.3354 11.87172 0.0452

2Sc   21 0.04794 0.20235 0.23625 0.60857 0.76196 1.65261 24.6988 24.75666 0.0023
3Ti   22 0.04574 0.19264 0.22276 0.56666 0.70013 1.29998 41.8647 43.2672 0.0324
4V   23 0.04374 0.18383 0.21074 0.53022 0.64511 1.08245 62.8474 65.2817 0.0373
5Cr   24 0.04191 0.17579 0.19995 0.49822 0.59718 0.93156 87.6329 90.6349 0.0331
6Mn   25 0.04022 0.16842 0.19022 0.46990 0.55552 0.81957 116.2076 119.203 0.0251
7Fe   26 0.03867 0.16165 0.18140 0.44466 0.51915 0.73267 148.5612 151.06 0.0165
8Co   27 0.03723 0.15540 0.17336 0.42201 0.48720 0.66303 184.6863 186.13 0.0078
9Ni   28 0.03589 0.14961 0.16601 0.40158 0.45894 0.60584 224.5772 224.6 0.0001
10Cu   29 0.03465 0.14424 0.15926 0.38305 0.43379 0.55797 268.2300 265.3 -0.0110
11Zn   30 0.03349 0.13925 0.15304 0.36617 0.41127 0.51726 315.6418 310.8 -0.0156

a Radius of the paired 1s inner electrons of nineteen-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of nineteen-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of nineteen-electron atoms from Eq. (10.212). 
d Radius of the paired 3s inner electrons of nineteen-electron atoms from Eq. (10.255). 
e Radius of the three sets of paired 3p inner electrons of nineteen-electron atoms from Eq. (10.399). 
f Radius of the unpaired 4s outer electron of nineteen-electron atoms from Eq. (10.425) for 19Z   and Eq. (10.414) for K. 
g Calculated ionization energies of nineteen-electron atoms given by the electric energy (Eq. (10.426)). 
h From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
i (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.19 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is about three to four significant figures which is consistent with the last column.  Ionization energies are 
difficult to determine since the cut-off of the Rydberg series of lines at the ionization energy is often not observed.  Thus, the 
potassium atom isoelectronic series given in Table 10.19 [2-3] relies on theoretical calculations and interpolation of the K 
isoelectronic and Rydberg series as well as direct experimental data to extend the precision beyond the capability of X-ray 
spectroscopy.  But, no assurances can be given that these techniques are correct, and they may not improve the results.  The error 
given in the last column is very reasonable given the quality of the data. 
 

TWENTY-ELECTRON ATOMS 
Twenty-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, and nineteen-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE CALCIUM 
ATOM 
For each nineteen-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-
paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given by 

Eq. (10.255), three sets of paired electrons in an atomic orbital with radius 18r  given by Eq. (10.399), and an unpaired electron in 

an atomic orbital with radius 19r  given by Eq. (10.425).  For 20Z  , the next electron which binds to form the corresponding 

twenty-electron atom is attracted by the central Coulomb field and the spin-pairing force with the unpaired 4s inner electron and 
is repelled by diamagnetic forces due to the 3 sets of spin-paired inner 3p electrons such that it forms an unpaired atomic orbital 
at radius 20r . 
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The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner nineteen electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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 rF i  (10.427) 

for 19r r . 

The forces for the calcium atom follow from those of the magnesium atom given in the Twelve-Electron Atom section.  
The outer electron which binds to form the corresponding twenty-electron atom becomes spin-paired with the unpaired inner 
electron such that they become indistinguishable with the same radius 19 20r r  corresponding to a filled 4s shell.  The 

corresponding spin-pairing force magF  is given by Eqs. (7.24) and (10.239). 
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The spherically symmetrical closed 3p shell of twenty-electron atoms produces a diamagnetic force, diamagneticF , that is 

equivalent to that of a closed s shell given by Eq. (10.11) with the appropriate radii.  The inner electrons remain at their initial 
radii, but cause a diamagnetic force according to Lenz’s law that is 
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In addition to the paramagnetic spin-pairing force between the nineteenth electron initially at radius 19r , the pairing 

causes the diamagnetic interaction between the outer electrons and the inner electrons given by Eq. (10.11) to vanish, except for 
an electrodynamic effect for 20Z   described in the Two-Electron Atoms section, since upon pairing the magnetic field of the 
outer electrons becomes zero.  Using Eqs. (10.55) and (10.240), 2magF  due to the three 3p orbitals is given by: 
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In addition to the spin-spin interactions between electron pairs, the three sets of 2p and 3p electrons are orbitally paired.  
The 4s electrons of the calcium atom produce a magnetic field at the position of the six sets of spin-paired 2p and 3p electrons 
which interact as described in the P-Orbital Electrons Based on an Energy Minimum section.  In order for the electrons to remain 
spin and orbitally paired, the corresponding diamagnetic force, 3diamagneticF , on electron twenty from the six sets of spin-paired 

electrons that follows from the deviation given in the Eleven-Electron Atom section (Eq. (10.221)) is:  
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corresponding to the 2 and 3 xp , yp , and zp  electrons. 

The outward centrifugal force on electron 20 is balanced by the electric force and the magnetic forces (on electron 20).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.427)), 
diamagnetic (Eq. (10.428-10.429) and (10.431)), and paramagnetic (Eq. (10.430)) forces as follows: 
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Substitution of 20
20e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.432) gives: 
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Substitution of 18

0

0.82478
r

a
  (Eq. (10.399) with 20Z  ) into Eq. (10.435) gives: 

 20 02.23009r a  (10.436) 

The ionization energy of the calcium atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 20r , 

given by Eq. (10.435)). 

 
2

0 20

( 19)
( ;  )  6.10101 

8

Z e
E ionization Ca Electric Energy eV

r
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where 20 02.23009r a  (Eq. (10.435)) and 20Z  .  The experimental ionization energy of the calcium atom is 6.11316 eV  [3]. 

 
THE IONIZATION ENERGIES OF TWENTY-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>20 
Nineteen-electron atoms having 20Z   possess an external electric field given by Eq. (10.92).  Since there is a source of 
dissipative power, J E  of Eq. (10.27), the magnetic moments of the inner electrons may change due to the outer electron such 
that the energy of the nineteen-electron atom is lowered.  The spherically symmetrical closed 3p shell of twenty-electron atoms 
produces a diamagnetic force, diamagneticF , that is equivalent to that of a closed s shell given by Eq. (10.11) with the appropriate 

radii except that the force is doubled (Eq. (10.96)) due to the interaction of the 2p, 3s, and 3p electrons as discussed in the 3P-
Orbital Electrons Based on an Energy Minimum section with the cancellation of the contribution of the 3s orbital by the 4s 
orbital.  The inner electrons remain at their initial radii, but cause a diamagnetic force according to Lenz’s law that is: 

 
2

2
20 18

2
( 1)

4diamagnetic
e

s s
m r r

   rF i


 (10.438) 

In addition to the spin-spin interaction between electron pairs, the six sets of 2p and 3p electrons are orbitally paired.  As 
in given in the Eleven-Electron Atom section, the single 4s orbital of each twenty-electron atoms having 20Z   produces a 
magnetic field at the position of the six sets of spin-paired 2p and 3p electrons.  In order for the electrons to remain spin and 
orbitally paired, the corresponding diamagnetic force, 3diamagneticF , on electron twenty from the six sets of spin-paired electrons 

given by Eq. (10.221) is:  
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corresponding to the 2 and 3 xp , yp , and zp  electrons. 

From Eq. (10.418), the diamagnetic force, 2diamagneticF , due to a relativistic effect with an electric field for 20r r  (Eq. 

(10.35)) is:  
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In the case that 20Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.427)) and diamagnetic (Eqs. (10.438-10.440)) forces as follows: 
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Substitution of 20
20e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.441) gives: 
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The quadratic equation corresponding to Eq. (10.442) is: 
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The solution of Eq. (10.443) using the quadratic formula is: 
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where 18r  is given by Eq. (10.399).  The positive root of Eq. (10.445) must be taken in order that 20 0r  .  The final radius of 

electron 20, 20r , is given by Eq. (10.445); this is also the final radius of electron 19.  The radii of several twenty-electron atoms 

are given in Table 10.20.  The general equation for the ionization energies of atoms having an outer s-shell is given in the 
General Equation for the Ionization Energies of Atoms Having an Outer S-Shell section. 

The ionization energies for the twenty-electron atoms with 20Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii 20r , given by Eq. (10.445)). 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured twenty-electron 
atoms are given in Table 10.20. 
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Table 10.20.   Ionization energies for some twenty-electron atoms. 
 

20 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

18r  

( oa ) 
e
 

20r  

( oa ) 
f
 

Theoretical 
Ionization 
Energies 

g

(eV)

Experimental 
Ionization 
Energies 

h
 

(eV) 

Relative
Error 

i
 

Ca  20 0.05035 0.21308 0.25149 0.65725 0.82478 2.23009 6.10101 6.11316 0.0020
Sc  21 0.04794 0.20235 0.23625 0.60857 0.76196 2.04869 13.2824 12.79967 -0.0377

2Ti   22 0.04574 0.19264 0.22276 0.56666 0.70013 1.48579 27.4719 27.4917 0.0007
3V   23 0.04374 0.18383 0.21074 0.53022 0.64511 1.19100 45.6956 46.709 0.0217
4Cr   24 0.04191 0.17579 0.19995 0.49822 0.59718 1.00220 67.8794 69.46 0.0228
5Mn   25 0.04022 0.16842 0.19022 0.46990 0.55552 0.86867 93.9766 95.6 0.0170
6Fe   26 0.03867 0.16165 0.18140 0.44466 0.51915 0.76834 123.9571 124.98 0.0082
7Co   27 0.03723 0.15540 0.17336 0.42201 0.48720 0.68977 157.8012 157.8 0.0000
8Ni   28 0.03589 0.14961 0.16601 0.40158 0.45894 0.62637 195.4954 193 -0.0129
9Cu   29 0.03465 0.14424 0.15926 0.38305 0.43379 0.57401 237.0301 232 -0.0217

10Zn   30 0.03349 0.13925 0.15304 0.36617 0.41127 0.52997 282.3982 274 -0.0307
a Radius of the paired 1s inner electrons of twenty-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of twenty-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of twenty-electron atoms from Eq. (10.212)). 
d Radius of the paired 3s inner electrons of twenty-electron atoms from Eq. (10.255)). 
e Radius of the three sets of paired 3p inner electrons of twenty-electron atoms from Eq. (10.399). 
f Radius of the paired 4s outer electrons of twenty-electron atoms from Eq. (10.445) for 20Z   and Eq. (10.436) for Ca. 
g Calculated ionization energies of twenty-electron atoms given by the electric energy (Eq. (10.446)). 
h From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
i (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.20 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is about three to four significant figures which are consistent with the last column.  Ionization energies 
are difficult to determine since the cut-off of the Rydberg series of lines at the ionization energy is often not observed.  Thus, the 
calcium atom isoelectronic series given in Table 10.20 [2-3] relies on theoretical calculations and interpolation of the Ca 
isoelectronic and Rydberg series as well as direct experimental data to extend the precision beyond the capability of X-ray 
spectroscopy.  But, no assurances can be given that these techniques are correct, and they may not improve the results.  The error 
given in the last column is very reasonable given the quality of the data. 
 
GENERAL EQUATION FOR THE IONIZATION ENERGIES OF ATOMS 
HAVING AN OUTER S-SHELL 
The derivation of the radii and energies of the 1s, 2s, 3s, and 4s electrons is given in the One-Electron Atoms, the Two-Electron 
Atoms, the Three-Electron Atoms, the Four-Electron Atoms, the Eleven-Electron Atoms, the Twelve-Electron Atoms, the 
Nineteen-Electron Atoms, and the Twenty-Electron Atoms sections.  Similarly, to Eqs. (10.216) and (10.405), the general  
equation for the radii of s electrons is given by 
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 (10.447) 

where Z  is the nuclear charge, n  is the number of electrons, mr  is the radius of the preceding filled shell, the parameter A  given 
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in Table 10.21 corresponds to the diamagnetic force, diamagneticF , (Eq. (10.11)), the parameter B  given in Table 10.21 corresponds 

to the paramagnetic force,  2magF  (Eq. (10.55)), the parameter C  given in Table 10.21 corresponds to the diamagnetic force, 

 3diamagneticF , (Eq. (10.221)), the parameter D  given in Table 10.21 corresponds to the paramagnetic force, magF , (Eq. (7.24)), and 

the parameter E  given in Table 10.21 corresponds to the diamagnetic force, 2diamagneticF , (Eqs. (10.35), (10.229), and (10.418)).  

The positive root of Eq. (10.447) must be taken in order that 0nr  .  The radii of several n-electron atoms having an outer s shell 

are given in Tables 1.3, 1.5, 7.1, 10.1, 10.2, 10.10, 10.11, 10.19, and 10.20. 
The ionization energy for atoms having an outer s-shell are given by the negative of the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, nr , given by Eq. (10.447)). 
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except that minor corrections due to the magnetic energy must be included in cases wherein the s electron does not couple to p 
electrons as given in Eqs. (7.44), (7.63), (10.25), (10.48), (10.66), and (10.68).  Since the relativistic corrections were small 
except for one, two, and three-electron atoms, the nonrelativistic ionization energies for experimentally measured n-electron, s-
filling atoms are given in most cases by Eqs. (10.447) and (10.448).  The ionization energies of several n-electron atoms having 
an outer s shell are given in Tables 1.3, 1.5, 7.1, 10.1, 10.2, 10.10, 10.11, 10.19, and 10.20. 
 
Table 10.21.   Summary of the parameters of atoms filling the 1s, 2s, 3s, and 4s orbitals. 
 

Atom Type Electron 
Configuration 

Ground
State 

Term 
a

Orbital 
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of  
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Atom Type Electron 
Configuration 

Ground
State 

Term 
a

Orbital 
Arrangement

of  
s Electrons 

(s state) 

Diamag.
Force 
Factor 

Ab 
 

Paramag.
Force 
Factor 

B c 
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a The theoretical ground state terms match those given by NIST [8]. 

b Eq. (10.11). 
c Eq. (10.55). 
d Eq. (10.221). 
e Eq. (7.24). 
f Eqs. (10.35), (10.229), and (10.418). 
 
 The physical approach was applied to multielectron atoms that were solved exactly disproving the deep-seated view that 
such exact solutions cannot exist according to quantum mechanics.  The predictions of the ionization energies for one through 
twenty-electron atoms are in remarkable agreement with the experimental values known for 400 atoms and ions.  The trends of 
the radii also generally agree with those published [9], but the radii cannot be taken as the contact radii based on nuclear 
separation in molecules and solids.  If the outer most electron of the negative ion was at the location of that of the positive ion, 
then the potential energies would be the same.  Since the ionization energies of positive ions are much greater than the electron 
affinities of negative ions, the positive ions must have smaller radii.  Furthermore the size taken as the contact distance can not 
be correct since the electron-electron repulsion energies would be dominant. 
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THE ELECTRON CONFIGURATION OF ATOMS 
The electrons of multielectron atoms all exist as atomic orbitals of discrete radii which are given by nr  of the radial Dirac delta 

function, ( )nr r  .  These electron atomic orbitals may be paired or unpaired depending on the force balance that applies to each 

electron.  Ultimately, the electron configuration must be a minimum of energy.  Minimum energy configurations are given by 
solutions to Laplace’s Equation.  The general form of the solution is: 
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 (10.449) 

As demonstrated previously, this general solution gives the functions of the resonant photons.  As shown in the One-Electron 
Atom section, the Two-Electron Atom section, and the Three- Through Twenty-Electron Atoms section, the electron 
configuration of an atom essentially parallels that of the excited modes of the helium atom: 
1 2 2 3 3 4 3 4 5 4s s p s p s d p s d         . (See Excited States of Helium section.) 

In general, electrons of an atom with the same principal and   quantum numbers align parallel until each of the m  levels 

are occupied, and then pairing occurs until each of the m  levels contain paired electrons.  Exceptions occur due to the relative 

importance of spin and orbital interactions and paramagnetic, diamagnetic, and electric forces for a given atom or ion.   
The predictions of the ionization energies of one through twenty-electron atoms using Maxwell’s equations are given in 

the One-Electron Atom section, the Two-Electron Atom section, and the Three- Through Twenty-Electron Atoms section.  The 
agreement between the experimental ionization energies and the classical predictions based on concentric dynamical atomic 
orbitals (“bubble-like” charge-density functions) wherein the charge-density waves on the surface are time and spherically 
harmonic is remarkable.  The classical shell model of atomic electrons is also being confirmed by studying electron dynamics 
using coherent short-pulse laser excitation [10-12]. 
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Dr. Mills has replaced the field generally known as Quantum Mechanics which postulates that classical
physical laws do not apply at the atomic scale by deriving a new atomic theory of from those first
principles, which unifies Maxwell’s Equations, Newton’s Laws, and General and Special Relativity. The
central feature is that physical laws hold over all scales, from the scale of subatomic particles to that of
the cosmos.

Quantum Mechanics has remained mysterious to all who have encountered it. Schrödinger postulated a
boundary condition Ψ → 0 as r → ∞ of a wavelike positional probability for a singularity that is
everywhere at once until measurement. The result was a purely algorithmic mathematical model of the
hydrogen atom. In contrast, Mills solved the exact structure of matter and energy and related
phenomena from known classical physics, (e.g. Maxwell's Equations wherein under special conditions,
an extended distribution of charge may accelerate without radiating energy). This leads to a physical
model of subatomic particles, atoms, and molecules. The closed-form solutions containing fundamental
constants only agree with experimental observations demonstrating that the fundamental quantum
mechanical postulate, “classical physical laws do not apply to the atomic scale”, was erroneous.

“Mills’ theory explains the answers to some very old scientific questions, such as ‘what happens to a
photon upon absorption’ and some very modern ones, such as ‘what is dark matter.’ ...Lastly, Mills
has made an extremely important contribution to the philosophy of science. He has reestablished
cause and effect as the basic principle of science.” - Dr. John J. Farrell, former Chair of the Dept. of
Chemistry, Franklin & Marshall College

“Mills’ ingenious way of thinking creates in different physical areas astonishing results with fascinating
mathematical simplicity and harmony. And his theory is strongly supported by the fact that nearly all
these results are in comfortable accordance with experimental findings, sometimes with breathtaking
accuracy.” - Dr Günther Landvogt, Retired Scientist, Philips Research Lab

“Dr. Mills has apparently completed Einstein’s quest for a unified field theory… without largesse from
the US Government, and without the benediction of the US scientific priesthood.” - Shelby T. Brewer,
former Assistant Secretary of Energy, former CEO of ABB Combustion Engineering, MS/Ph.D. MIT - Nuclear Engineering.

“Mills proposes such a basic approach to quantum theory that it deserves considerably more
attention from the general scientific community than it has received so far. The new theory appears to
be a realization of Einstein's vision and a fitting closure of the "Quantum Century" that started in
1900...” - Dr. Reinhart Engelmann, Professor of Electrical Engineering, Oregon Graduate Institute of Science and
Technology

Dr. Randell Mills holds a Doctor of Medicine degree from Harvard, a BA degree in Chemistry from
Franklin and Marshall College, and studied Electrical Engineering at MIT. He is President, Chairman
and CEO of Brilliant Light Power, Inc.

From two basic equations, the key building blocks
of organic chemistry have been solved, allowing
the true physical structure and parameters of an
infinite number of organic molecules up to infinite
length and complexity to be obtained. These
equations were also applied to bulk forms of
matter, such as the allotropes of carbon, the solid
bond of silicon and the semiconductor bond; as
well as fundamental forms of matter such as the
ionic bond and the metallic bond; and major fields
of chemistry such as that of silicon, tin, aluminum,
boron, and coordinate compounds.

Further, the Schwarzschild Metric is derived by
applying Maxwell’s Equations to electromagnetic
and gravitational fields at particle production. This

modifies General Relativity to include the conservation of spacetime and gives the origin of gravity,
the families and masses of fundamental particles, the acceleration of the expansion of the universe
(predicted by Dr. Mills in 1995 and since confirmed experimentally), and overturns the Big Bang
model of the origin of the universe.
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