THE
 GRAND UNIFIED THEORY
 OF
 CLASSICAL PHYSICS

Dr. Randell L. Mills

VOLUME II:
 Part A

MOLECULAR PHYSICS

THE GRAND UNIFIED THEORY OF CLASSICAL PHYSICS

Volume 2A of 3

THE GRAND UNIFIED THEORY OF CLASSICAL PHYSICS

BY

Dr. Randell L. Mills

April 2023 Edition
 Volume 2A of 3

Copyright © 2023 by Dr. Randell L. Mills

All rights reserved. No part of this work covered by copyright hereon may be reproduced or used in any form, or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems-without written permission of Dr. Randell L. Mills. Manufactured in the United States of America.

TABLE OF CONTENTS

VOLUME 2 MOLECULAR PHYSICS Part A
11. The Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions 407
11.1 Hydrogen-Type Molecular Ions 407
11.1.1 Spheroidal Force Equations 411
11.1.1.1 Electric Force 411
11.1.1.2 Centrifugal Force 416
11.1.1.3 Force Balance of Hydrogen-Type Molecular Ions 419
11.1.2 Energies of Hydrogen-Type Molecular Ions 420
11.1.3 Vibration of Hydrogen-Type Molecular Ions 421
11.1.4 The Doppler Energy Term of Hydrogen-Type Molecular Ions 425
11.1.5 Total, Ionization, and Bond Energies of Hydrogen and Deuterium Molecular Ions 427
11.2 Hydrogen-Type Molecules 428
11.2.1 Force Balance of Hydrogen-Type Molecules 428
11.2.2 Energies of Hydrogen-Type Molecules 432
11.2.3 Vibration of Hydrogen-Type Molecules 433
11.2.4 The Doppler Energy Term of Hydrogen-Type Molecules 435
11.2.5 Total, Ionization, and Bond Energies of Hydrogen and Deuterium Molecules. 436
11.3 The Hydrogen Molecular Ion. 437
11.3.1 Force Balance of the Hydrogen Molecular Ion 437
11.3.2 Energies of the Hydrogen Molecular Ion. 437
11.3.3 Vibration of the Hydrogen Molecular Ion 438
11.4 The Hydrogen Molecule 439
11.4.1 Force Balance of the Hydrogen Molecule 439
11.4.2 Energies of the Hydrogen Molecule 439
11.4.3 Vibration of the Hydrogen Molecule 440
11.5 The Dihydrino Molecular Ion 443
11.5.1 Force Balance of the Dihydrino Molecular Ion 443
11.5.2 Energies of the Dihydrino Molecular Ion 443
11.5.3 Vibration of the Dihydrino Molecular Ion 444
11.6 The Dihydrino Molecule 444
11.6.1 Force Balance of the Dihydrino Molecule 444
11.6.2 Energies of the Dihydrino Molecule 444
11.6.3 Vibration of the Dihydrino Molecule 445
11.7 Geometry. 445
11.8 Dihydrino Ionization Energies 446
11.9 Sizes of Representative Atoms and Molecules 446
11.9.1 Atoms. 446
11.9.2 Molecules 447
11.10 Nuclear Spin-Spin Transition of Hydrogen-Type Molecules 448
11.11 Nuclear Magnetic Resonance Shift 448
11.12 Quadrupole Moment 454
References 455
12. Diatomic Molecular Energy States 457
12.1 Excited Electronic States of Ellipsoidal Molecular Orbitals 457
12.2 Excited States of the Hydrogen Molecular Ion 457
12.2.1 Force Balance of the Excited States of the Hydrogen Molecular Ion 457
12.2.2 Energies of the Excited States of the Hydrogen Molecular Ion. 458
12.2.3 Vibration of the Excited States of the Hydrogen Molecular Ion 459
12.3 Magnetic Moment of an Ellipsoidal Molecular Orbital 459
12.4 Magnetic Field of an Ellipsoidal Molecular Orbital 460
12.5 Excited States of the Hydrogen Molecule 462
12.5.1 Force Balance of the Excited States of the Hydrogen Molecule 462
12.5.1.1 Singlet Excited States 462
12.5.1.2 Triplet Excited States 463
12.5.2 Energies of the Excited States of the Hydrogen Molecule 464
12.6 Diatomic Molecular Rotation 467
12.6.1 Diatomic Molecular Rotation of Hydrogen-Type Molecules 467
12.6.2 Diatomic Molecular Rotation of Hydrogen-Type Molecular Ions 468
12.7 Centrifugal Distortion 468
References 471
13. General Diatomic and Polyatomic Molecular Ions and Molecules 473
13.1 Triatomic Molecular Hydrogen-type Ion (H_{3}^{+}) 473
13.1.1 Force Balance of H_{3}^{+}-Type Molecular Ions 473
13.1.2 Energies of H_{3}^{+}-Type Molecular Ions 475
13.1.3 Vibration of H_{3}^{+}-Type Molecular Ions 475
13.1.4 The Doppler Energy Term of H_{3}^{+}-Type Molecular Ions 476
13.1.5 Total and Bond Energies of $H_{3}^{+}(1 / p)$ - and $D_{3}^{+}(1 / p)$-Type Molecular Ions 477
13.2 The H_{3}^{+}Molecular Ion 478
13.2.1 Force Balance of the H_{3}^{+}Molecular Ion 478
13.2.2 Energies of the H_{3}^{+}Molecular Ion 478
13.3 Hydroxyl Radical (OH) 479
13.3.1 Force Balance of OH 480
13.3.2 Energies of OH 485
13.3.3 Vibration and Rotation of OH 485
13.3.4 The Doppler Energy Terms of ${ }^{16} \mathrm{OH}$ and ${ }^{16} \mathrm{OD}$ 488
13.3.5 Total and Bond Energies of ${ }^{16} \mathrm{OH}$ and ${ }^{16} \mathrm{OD}$ Radicals 489
13.4 Water Molecule $\left(\mathrm{H}_{2} \mathrm{O}\right)$ 490
13.4.1 Force Balance of $\mathrm{H}_{2} \mathrm{O}$ 490
13.4.2 Energies of $\mathrm{H}_{2} \mathrm{O}$ 495
13.4.3 Vibration of $\mathrm{H}_{2} \mathrm{O}$ 495
13.4.4 The Doppler Energy Term of $\mathrm{H}_{2} \mathrm{O}$ 496
13.4.5 Total and Bond Energies of $\mathrm{H}^{16} \mathrm{OH}$ and $D^{16} \mathrm{OD}$ 497
13.4.6 Bond Angle of $\mathrm{H}_{2} \mathrm{O}$ 498
13.5 Hydrogen Nitride (NH) 499
13.5.1 Force Balance of NH 500
13.5.2 Energies of NH 503
13.5.3 Vibration and Rotation of NH 503
13.5.4 The Doppler Energy Terms of ${ }^{14} \mathrm{NH}$ and ${ }^{14} \mathrm{ND}$ 505
13.5.5 Total and Bond Energies of ${ }^{14} \mathrm{NH}$ and ${ }^{14} \mathrm{ND}$ 505
13.6 Dihydrogen Nitride (NH_{2}) 507
13.6.1 Force Balance of NH_{2} 507
13.6.2 Energies of NH_{2} 509
13.6.3 Vibration of NH_{2} 509
13.6.4 The Doppler Energy Term of NH_{2} 510
13.6.5 Total and Bond Energies of ${ }^{14} \mathrm{NH}_{2}$ and ${ }^{14} \mathrm{ND}_{2}$ 511
13.6.6 Bond Angle of NH_{2} 512
13.7 Ammonia (NH_{3}). 513
13.7.1 Force Balance of NH_{3} 513
13.7.2 Energies of NH_{3} 516
13.7.3 Vibration of NH_{3} 516
13.7.4 The Doppler Energy Term of NH_{3} 516
13.7.4 Total and Bond Energies of ${ }^{14} \mathrm{NH}_{3}$ and ${ }^{14} \mathrm{ND}_{3}$ 517
13.7.5 Bond Angle of NH_{3} 518
13.8 Hydrogen Carbide (CH) 519
13.8.1 Force Balance of CH 519
13.8.2 Energies of CH 523
13.8.3 Vibration and Rotation of CH 523
13.8.4 The Doppler Energy Terms of ${ }^{12} \mathrm{CH}$ and ${ }^{12} \mathrm{CD}$ 525
13.8.5 Total and Bond Energies of ${ }^{12} \mathrm{CH}$ and ${ }^{12} \mathrm{CD}$ 525
13.9 Dihydrogen Carbide (CH_{2}) 527
13.9.1 Force Balance of CH_{2} 527
13.9.2 Energies of CH_{2} 530
13.9.3 Vibration of CH_{2} 530
13.9.4 The Doppler Energy Terms of ${ }^{12} \mathrm{CH}_{2}$ 530
13.9.5 Total and Bond Energies of ${ }^{12} \mathrm{CH}_{2}$ 531
13.9.6 Bond Angle of ${ }^{12} \mathrm{CH}_{2}$ 532
13.10 Methyl Radical $\left(\mathrm{CH}_{3}\right)$ 533
13.10.1 Force Balance of CH_{3} 533
13.10.2 Energies of CH_{3} 536
13.10.3 Vibration of CH_{3} 536
13.10.4 The Doppler Energy Terms of ${ }^{12} \mathrm{CH}_{3}$ 536
13.10.5 Total and Bond Energies of ${ }^{12} \mathrm{CH}_{3}$ 537
13.10.6 Bond Angle of ${ }^{12} \mathrm{CH}_{3}$ 538
13.11 Methane Molecule $\left(\mathrm{CH}_{4}\right)$ 538
13.11.1 Force Balance of CH_{4} 538
13.11.2 Energies of CH_{4} 542
13.11.3 Vibration of CH_{4} 543
13.11.4 The Doppler Energy Terms of ${ }^{12} \mathrm{CH}_{4}$ 543
13.11.5 Total and Bond Energies of ${ }^{12} \mathrm{CH}_{4}$ 544
13.12 Nitrogen Molecule 545
13.12.1 Force Balance of the $2 p$ Shell of the Nitrogen Atoms of the Nitrogen Molecule 545
13.12.2 Energies of the $2 p$ Shell of the Nitrogen Atoms of the Nitrogen Molecule 547
13.12.3 Force Balance of the σ MO of the Nitrogen Molecule 547
13.12.4 Sum of the Energies of the σ MO and the AOs of the Nitrogen Molecule 548
13.12.5 Vibration of N_{2} 549
13.12.6 The Doppler Energy Terms of the Nitrogen Molecule 549
13.12.7 Total and Bond Energies of the Nitrogen Molecule 550
13.13 Oxygen Molecule 550
13.13.1 Force Balance of the $2 p$ Shell of the Oxygen Atoms of the Oxygen Molecule. 551
13.13.2 Energies of the $2 p$ Shell of the Oxygen Atoms of the Oxygen Molecule 552
13.13.3 Force Balance of the σ MO of the Oxygen Molecule 552
13.13.4 Sum of the Energies of the σ MO and the AOs of the Oxygen Molecule 554
13.13.5 Vibration of O_{2} 554
13.13.6 The Doppler Energy Terms of the Oxygen Molecule 554
13.13.7 Total and Bond Energies of the Oxygen Molecule. 555
13.14 Fluorine Molecule 556
13.14.1 Force Balance of the $2 p$ Shell of the Fluorine Atoms of the Fluorine Molecule 556
13.14.2 Energies of the $2 p$ Shell of the Fluorine Atoms of the Fluorine Molecule 558
13.14.3 Force Balance of the σ MO of the Fluorine Molecule 558
13.14.4 Sum of the Energies of the $\sigma \mathrm{MO}$ and the AOs of the Fluorine Molecule 559
13.14.5 Vibration of F_{2} 560
13.14.6 The Doppler Energy Terms of the Fluorine Molecule 560
13.14.7 Total and Bond Energies of the Fluorine Molecule. 560
13.15 Chlorine Molecule 561
13.15.1 Force Balance of Cl_{2} 561
13.15.2 Energies of Cl_{2} 566
13.15.3 Vibration and Rotation of Cl_{2} 566
13.15.4 The Doppler Energy Terms of Cl_{2} 567
13.15.5 Total and Bond Energies of Cl_{2} 568
13.16 Carbon Nitride Radical 568
13.16.1 Force Balance of the $2 p$ Shell of the Carbon Atom of the Carbon Nitride Radical 569
13.16.2 Force Balance of the $2 p$ Shell of the Nitrogen Atom of the Carbon Nitride Radical 570
13.16.3 Energies of the $2 p$ Shells of the Carbon and Nitrogen Atoms of the Carbon Nitride Radical 571
13.16.4 Force Balance of the σ MO of the Carbon Nitride Radical 572
13.16.5 Sum of the Energies of the σ MO and the AOs of the Carbon Nitride Radical 573
13.16.6 Vibration of CN 574
13.16.7 The Doppler Energy Terms of the Carbon Nitride Radical 574
13.16.8 Total and Bond Energies of the Carbon Nitride Radical 575
13.17 Carbon Monoxide Molecule 576
13.17.1 Force Balance of the $2 p$ Shell of the Oxygen Atom of the Carbon Monoxide Molecule 576
13.17.2 Energies of the $2 s$ and $2 p$ Shells of the Carbon Atom and the $2 p$ Shell of the Oxygen Atom of the Carbon Monoxide Molecule 578
13.17.3 Force Balance of the σ MO of the Carbon Monoxide Molecule 578
13.17.4 Sum of the Energies of the σ MO and the AOs of the Carbon Monoxide Molecule. 579
13.17.5 Vibration of CO 580
13.17.6 The Doppler Energy Terms of the Carbon Monoxide Molecule 580
13.17.7 Total and Bond Energies of the Carbon Monoxide Molecule 581
13.18 Nitric Oxide Radical 582
13.18.1 Force Balance of the $2 p$ Shell of the Nitrogen Atoms of the Nitric Oxide Radical 582
13.18.2 Force Balance of the $2 p$ Shell of the Oxygen Atom of the Nitric Oxide Radical. 584
13.18.3 Energies of the $2 p$ Shells of the Nitrogen Atom and Oxygen Atom of the Nitric Oxide Radical 585
13.18.4 Force Balance of the σ MO of the Nitric Oxide Radical 586
13.18.5 Sum of the Energies of the σ MO and the AOs of the Nitric Oxide Radical 587
13.18.6 Vibration of NO 588
13.18.7 The Doppler Energy Terms of the Nitric Oxide Radical. 588
13.18.8 Total and Bond Energies of the Nitric Oxide Radical 589
References 592
14. More Polyatomic Molecules and Hydrocarbons 595
14.1 Carbon Dioxide Molecule. 595
14.1.1 Force Balance of the 2 p Shell of the Oxygen Atom of the Carbon Dioxide Molecule 596
14.1.2 Energies of the 2s and 2p Shells of the Carbon Atom and the 2p Shell of the Oxygen Atoms of the Carbon Dioxide Molecule 597
14.1.3 Force Balance of the σ MO of the Carbon Dioxide Molecule 597
14.1.4 Sum of the Energies of the σ MO and the AOs of the Carbon Dioxide Molecule 601
14.1.5 Vibration of CO_{2} 601
14.1.6 The Doppler Energy Terms of the Carbon Dioxide Molecule 602
14.1.7 Total and Bond Energies of the Carbon Dioxide Molecule 602
14.2 Nitrogen Dioxide Molecule 603
14.2.1 Force Balance of the 2 p Shell of the Nitrogen Atom of Nitrogen Dioxide 604
14.2.2 Force Balance of the 2p Shell of Each Oxygen Atom of Nitrogen Dioxide 605
14.2.3 Energies of the 2p Shells of the Nitrogen Atom and Oxygen Atoms of Nitrogen Dioxide 606
14.2.4 Force Balance of the σ MO of Nitrogen Dioxide 607
14.2.5 Sum of the Energies of the σ MOs and the AOs of Nitrogen Dioxide 609
14.2.6 Vibration of NO_{2} 610
14.2.7 The Doppler Energy Terms of Nitrogen Dioxide 610
14.2.8 Total and Bond Energies of Nitrogen Dioxide 611
14.2.9 Bond Angle of NO_{2} 612
14.3 Ethane Molecule 613
14.3.1 Force Balance of the $C-C$-Bond MO of Ethane 613
14.3.2 Force Balance of the CH_{3} MOs of Ethane. 618
14.3.3 Bond Angle of the CH_{3} Groups 620
14.3.4 Energies of the CH_{3} Groups 623
14.3.5 Vibration of the ${ }^{12} \mathrm{CH}_{3}$ Groups 623
14.3.6 The Doppler Energy Terms of the ${ }^{12} \mathrm{CH}_{3}$ Groups 623
14.3.7 Total and Difference Energies f the ${ }^{12} \mathrm{CH}_{3}$ Groups 624
14.3.8 Sum of the Energies of the $C-C \sigma$ MO and the HOs of Ethane 624
14.3.9 Vibration of Ethane 625
14.3.10 The Doppler Energy Terms of the $C-C$-Bond MO of Ethane 625
14.3.1 Total Energies of the $C-C$-Bond MO of Ethane 626
14.3.12 Bond Energy of the $C-C$ Bond of Ethane 626
14.4 Ethylene Molecule 626
14.4.1 Force Balance of the $C=C$-Bond MO of Ethylene 627
14.4.2 Force Balance of the CH_{2} MOs of Ethylene 631
14.4.3 Bond Angle of the CH_{2} Groups 633
14.4.4 Energies of the CH_{2} Groups 635
14.4.5 Vibration of the ${ }^{12} \mathrm{CH}_{2}$ Groups 636
14.4.6 The Doppler Energy Terms of the ${ }^{12} \mathrm{CH}_{2}$ Groups 636
14.4.7 Total and Difference Energies of the ${ }^{12} \mathrm{CH}_{2}$ Groups 636
14.4.8 Sum of the Energies of the $C=C \sigma$ MO and the HOs of Ethylene. 637
14.4.9 Vibration of Ethylene 638
14.4.10 The Doppler Energy Terms of the $C=C$-Bond MO of Ethylene 638
14.4.11 Total Energies of the $C=C$-Bond MO of Ethylene 639
14.4.12 Bond Energy of the $C=C$-Bond of Ethylene. 639
14.5 Acetylene Molecule 640
14.5.1 Force Balance of the $C \equiv C$-Bond MO of Acetylene 640
14.5.2 Force Balance of the CH MOs of Acetylene 644
14.5.3 Energies of the CH Groups 646
14.5.4 Vibration of the ${ }^{12} \mathrm{CH}$ Groups 646
14.5.5 The Doppler Energy Terms of the ${ }^{12} \mathrm{CH}$ Groups 646
14.5.6 Total and Difference Energies of the ${ }^{12} \mathrm{CH}$ Groups 647
14.5.7 Sum of the Energies of the $C \equiv C \sigma \mathrm{MO}$ and the HOs of Acetylene 648
14.5.8 Vibration of Acetylene. 648
14.5.9 The Doppler Energy Terms of the $C \equiv C$-Bond MO of Acetylene 649
14.5.10 Total Energies of the $C \equiv C$-Bond MO of Acetylene 649
14.5.11 Bond Energy of the $C \equiv C$ Bond of Acetylene 650
14.6 Benzene Molecule 650
14.6.1 Force Balance of the $C=C$-Bond MO of Benzene 650
14.6.2 Force Balance of the CH MOs of Benzene 654
14.6.3 Energies of the CH Groups 657
14.6.4 Vibration of the ${ }^{12} \mathrm{CH}$ Groups 658
14.6.5 The Doppler Energy Terms of the ${ }^{12} \mathrm{CH}$ Groups 658
14.6.6 Total and Bond Energies of the ${ }^{12} \mathrm{CH}$ Groups 658
14.6.7 Sum of the Energies of the $C=C \sigma$ MO Element and the HOs of Benzene 659
14.6.8 Vibration of Benzene 660
14.6.9 The Doppler Energy Terms of the $C=C$-Bond MO Element of Benzene 660
14.6.10 Total Energies of the $C=C$-Bond MO Element of Benzene 661
14.6.11 Total Bond Dissociation Energy of Benzene 661
14.7 Continuous-Chain Alkanes 662
14.7.1 Force Balance of the $C-C$-Bond MOs of Continuous-Chain Alkanes 662
14.7.2 Force Balance of the CH_{3} MOs of Continuous-Chain Alkanes. 668
14.7.3 Bond Angle of the CH_{3} and CH_{2} Groups 672
14.7.4 Energies of the CH_{3} Groups 672
14.7.5 Vibration of the ${ }^{12} \mathrm{CH}_{3}$ Groups 672
14.7.6 The Doppler Energy Terms of the ${ }^{12} \mathrm{CH}_{3}$ Groups 672
14.7.7 Total Bond Energies of the ${ }^{12} \mathrm{CH}_{3}$ Groups 673
14.7.8 Force Balance of the CH_{2} MOs of Continuous-Chain Alkanes 673
14.7.9 Energies of the CH_{2} Groups 675
14.7.10 Vibration of the ${ }^{12} \mathrm{CH}_{2}$ Groups 676
14.7.11 The Doppler Energy Terms of the ${ }^{12} \mathrm{CH}_{2}$ Groups 676
14.7.12 Total Bond Energies of the ${ }^{12} \mathrm{CH}_{2}$ Groups 676
14.7.13 Sum of the Energies of the $C-C \sigma$ MOs and the HOs of Continuous-Chain Alkanes 677
14.7.14 Vibration of Continuous-Chain Alkanes 678
14.7.15 The Doppler Energy Terms of the $C-C$-Bond MOs of Continuous-Chain Alkanes 678
14.7.16 Total Energies of the $C-C$-Bond MOs of Continuous-Chain Alkanes 678
14.7.17 Total Bond Energy of the $C-C$ Bonds of Continuous-Chain Alkanes 679
14.7.18 Total Energy of Continuous-Chain Alkanes 679
14.8 Propane 680
14.9 Butane 681
14.10 Pentane 682
14.11 Hexane 683
14.12 Heptane 684
14.13 Octane 685
14.14 Nonane 686
14.15 Decane 687
14.16 Undecane 688
14.17 Dodecane 689
14.18 Octadecane 690
References 692
15. Organic Molecular Functional Groups and Molecules 693
15.1 Derivation of the General Geometrical and Energy Equations of Organic Chemistry 693
15.2 MO Intercept Angles and Distances 708
15.2.1 Bond Angles. 708
15.2.2 Angles and Distances for an MO that Forms an Isosceles Triangle 713
15.2.3 Dihedral Angle 713
15.2.4 General Dihedral Angle 713
15.3 Solution of Geometrical and Energy Parameters of Major Functional Groups and Corresponding Organic Molecules 715
15.3.1 Continuous-Chain Alkanes 716
15.3.2 Branched Alkanes 721
15.3.3 Alkenes 726
15.3.4 Alkynes 732
15.3.5 Alkyl Fluorides 737
15.3.6 Alkyl Chlorides 742
15.3.7 Alkyl Bromides 748
15.3.8 Alkyl Iodides 753
15.3.9 Alkenyl Halides 759
15.3.10 Alcohols 765
15.3.11 Ethers 771
15.3.12 Primary Amines 777
15.3.13 Secondary Amines 782
15.3.14 Tertiary Amines 787
15.3.15 Aldehydes 792
15.3.16 Ketones 797
15.3.17 Carboxylic Acids 803
15.3.18 Carboxylic Acid Esters 810
15.3.19 Amides 818
15.3.20 Alkyl Amides 825
15.3.21 Urea 832
15.3.22 Carboxylic Acid Halides 836
15.3.23 Carboxylic Acid Anhydrides 841
15.3.24 Nitriles 846
15.3.25 Thiols 851
15.3.26 Sulfides 858
15.3.27 Disulfides 864
15.3.28 Sulfoxides 869
15.3.28.1 Dimethyl Sulfoxide Dihedral Angle 874
15.3.29 Sulfones 875
15.3.30 Sulfites 879
15.3.31 Sulfates 885
15.3.32 Nitroalkanes 891
15.3.33 Alkyl Nitrites 896
15.3.34 Alkyl Nitrates 901
15.3.35 Cyclic and Conjugated Alkenes 906
15.3.36 Aromatic and Heterocyclic Compounds 912
15.3.37 Naphthalene 918
15.3.38 Toluene 923
15.3.39 Halobenzenes 928
15.3.40 Phenol 933
15.3.41 Aniline 937
15.3.42 Aryl Nitro Compounds 942
15.3.43 Benzoic Acid Compounds 946
15.3.44 Anisole 952
15.3.45 Pyrrole 956
15.3.46 Furan 961
15.3.47 Thiophene 965
15.3.48 Imidizole 970
15.3.49 Pyridine 975
15.3.50 Pyrimidine 980
15.3.51 Pyrazine 984
15.3.52 Quinoline. 988
15.3.53 Isoquinoline 993
15.3.54 Indole 998
15.3.56 Adenine 1003
15.3.57 Thymine 1008
15.3.58 Guanine 1012
15.3.59 Cytosine 1017
15.3.60 Alkyl Phosphines 1021
15.3.61 Alkyl Phosphites 1027
15.3.62 Alkyl Phosphine Oxides 1033
15.3.63 Alkyl Phosphates 1038
15.4 Organic and Related Ions $\left(\mathrm{RCO}_{2}^{-}, \mathrm{ROSO}_{3}^{-}, \mathrm{NO}_{3}^{-},(\mathrm{RO})_{2} \mathrm{PO}_{2}^{-},(\mathrm{RO})_{3} \mathrm{SiO}^{-},(\mathrm{R})_{2} \mathrm{Si}\left(\mathrm{O}^{-}\right)_{2}\right.$,$\mathrm{RNH}_{3}^{+}, \mathrm{R}_{2} \mathrm{NH}_{2}^{+}$)1043
15.5 Monosaccharides of DNA and RNA 1048
15.6 Nucleotide Bonds of DNA and RNA 1050
15.7 Amino Acids ($\left.\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}(\mathrm{R})-\mathrm{COOH}\right)$ 1056
15.7.1 Aspartic Acid 1056
15.7.2 Glutamic Acid. 1056
15.7.3 Cysteine 1057
15.7.4 Lysine. 1057
15.7.5 Arginine 1059
15.7.6 Histidine 1059
15.7.7 Asparagine 1060
15.7.8 Glutamine 1060
15.7.9 Threonine 1062
15.7.10 Tyrosine 1062
15.7.11 Serine 1063
15.7.12 Tryptophan 1063
15.7.13 Phenylalanine 1065
15.7.14 Proline 1065
15.7.15 Methionine 1066
15.7.16 Leucine 1066
15.7.17 Isoleucine 1068
15.7.18 Valine 1068
15.7.19 Alanine 1069
15.7.20 Glycine. 1069
15.8 Polypeptides ($-[\mathrm{HN}-\mathrm{CH}(\mathrm{R})-\mathrm{C}(\mathrm{O})]_{n}-$). 1071
15.9 Summary Tables of Organic Molecules 1073
References 1085

Chapter 11

THE NATURE OF THE CHEMICAL BOND OF HYDROGENTYPE MOLECULES AND MOLECULAR IONS

With regard to the Hydrino Theory-BlackLight Process section, the possibility of states with $n=1 / p$ is also predicted in the case of hydrogen molecular species wherein $H(1 / p)$ reacts with a proton or two $H(1 / p)$ atoms react to form $H_{2}^{+}(1 / p)$ and $H_{2}(1 / p)$, respectively. The natural molecular-hydrogen coordinate system based on symmetry is ellipsoidal coordinates. The magnitude of the central field in the derivations of molecular hydrogen species is taken as the general parameter p wherein p may be an integer which may be predictive of new possibilities. Thus, p replaces the effective nuclear charge of quantum mechanics and corresponds to the physical field of a resonant photon superimposed with the field of the proton. The case with $p=1$ is evaluated and compared with the experimental results for hydrogen species in Table 11.1, and the consequences that $p=$ integer are considered in the Nuclear Magnetic Resonance Shift section.

Two hydrogen atoms react to form a diatomic molecule, the hydrogen molecule.

$$
\begin{equation*}
2 H\left[a_{H}\right] \rightarrow H_{2}\left[2 c^{\prime}=\sqrt{2} a_{0}\right] \tag{11.1}
\end{equation*}
$$

where $2 c^{\prime}$ is the internuclear distance. Also, two hydrino atoms react to form a diatomic molecule, a dihydrino molecule.

$$
\begin{equation*}
2 H\left[\frac{a_{H}}{p}\right] \rightarrow H_{2}\left[2 c^{\prime}=\frac{\sqrt{2} a_{0}}{p}\right] \tag{11.2}
\end{equation*}
$$

where p is an integer
Hydrogen molecules form hydrogen molecular ions when they are singly ionized.

$$
\begin{equation*}
H_{2}\left[2 c^{\prime}=\sqrt{2} a_{0}\right] \rightarrow H_{2}\left[2 c^{\prime}=2 a_{0}\right]^{+}+e- \tag{11.3}
\end{equation*}
$$

Also, dihydrino molecules form dihydrino molecular ions when they are singly ionized.

$$
\begin{equation*}
H_{2}\left[2 c^{\prime}=\frac{\sqrt{2} a_{0}}{p}\right] \rightarrow H_{2}\left[2 c^{\prime}=\frac{2 a_{0}}{p}\right]^{+}+e- \tag{11.4}
\end{equation*}
$$

HYDROGEN-TYPE MOLECULAR IONS

Each hydrogen-type molecular ion comprises two protons and an electron where the equation of motion of the electron is determined by the central field that is p times that of a proton at each focus (p is one for the hydrogen molecular ion, and p is an integer greater than one for each $H_{2}^{+}(1 / p)$, called a dihydrino molecular ion). The differential equations of motion in the case of a central field are [1]

$$
\begin{align*}
& m\left(\ddot{r}-r \dot{\theta}^{2}\right)=f(r) \tag{11.5}\\
& m(2 \dot{r} \dot{\theta}+r \ddot{\theta})=0 \tag{11.6}
\end{align*}
$$

The second or transverse equation, Eq. (11.6), gives the result that the angular momentum is constant.

$$
\begin{equation*}
r^{2} \dot{\theta}=\text { constant }=L / m \tag{11.7}
\end{equation*}
$$

where L is the angular momentum (\hbar in the case of the electron). The central force equations can be transformed into an orbital equation by the substitution, $u=\frac{1}{r}$. The differential equation of the orbit of a particle moving under a central force is

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial \theta^{2}}+u=\frac{-1}{\frac{m L^{2} u^{2}}{m^{2}}} f\left(u^{-1}\right) \tag{11.8}
\end{equation*}
$$

Because the angular momentum is constant, motion in only one plane need be considered; thus, the orbital equation is given in polar coordinates. The solution of Eq. (11.8) for an inverse-squared force

$$
\begin{equation*}
f(r)=-\frac{k}{r^{2}} \tag{11.9}
\end{equation*}
$$

is

$$
\begin{align*}
& r=r_{0} \frac{1+e}{1+e \cos \theta} \tag{11.10}\\
& e=A \frac{m \frac{L^{2}}{m^{2}}}{k} \tag{11.11}\\
& r_{0}=\frac{m \frac{L^{2}}{m^{2}}}{k(1+e)} \tag{11.12}
\end{align*}
$$

where e is the eccentricity of the ellipse and A is a constant. The equation of motion due to a central force can also be expressed in terms of the energies of the orbit. The square of the speed in polar coordinates is

$$
\begin{equation*}
v^{2}=\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) \tag{11.13}
\end{equation*}
$$

Since a central force is conservative, the total energy, E, is equal to the sum of the kinetic, T, and the potential, V, and is constant. The total energy is:

$$
\begin{equation*}
\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+V(r)=E=\text { constant } \tag{11.14}
\end{equation*}
$$

Substitution of the variable $u=\frac{1}{r}$ and Eq. (11.7) into Eq. (11.14) gives the orbital energy equation.

$$
\begin{equation*}
\frac{1}{2} m \frac{L^{2}}{m^{2}}\left(\left(\frac{\partial u}{\partial \theta}\right)^{2}+u^{2}\right)+V\left(u^{-1}\right)=E \tag{11.15}
\end{equation*}
$$

Because the potential energy function $V(r)$ for an inverse-squared force field is:

$$
\begin{equation*}
V(r)=-\frac{k}{r}=-k u \tag{11.16}
\end{equation*}
$$

the energy equation of the orbit, Eq. (11.15),

$$
\begin{equation*}
\frac{1}{2} m \frac{L^{2}}{m^{2}}\left(\left(\frac{\partial u}{\partial \theta}\right)^{2}+u^{2}\right)-k u=E \tag{11.17}
\end{equation*}
$$

which has the solution

$$
\begin{equation*}
r=\frac{m \frac{L^{2}}{m^{2}} k^{-1}}{1+\left(1+2 E m \frac{L^{2}}{m^{2}} k^{-2}\right)^{1 / 2} \cos \theta} \tag{11.18}
\end{equation*}
$$

where the eccentricity, e, is:

$$
\begin{equation*}
e=\left(1+2 E m \frac{L^{2}}{m^{2}} k^{-2}\right)^{1 / 2} \tag{11.19}
\end{equation*}
$$

Eq. (11.19) permits the classification of the orbits according to the total energy, E, as follows:

$$
\begin{array}{lll}
E<0, & e<1 & \text { closed orbits (ellipse or circle) } \\
E=0, & e=1 & \text { parabolic orbit } \\
E>0, & e>1 & \text { hyperbolic orbit }
\end{array}
$$

Since $E=T+V$ and is constant, the closed orbits are those for which $T<|V|$, and the open orbits are those for which $T \geq|V|$. It can be shown that the time average of the kinetic energy, $\langle T\rangle$, for elliptical motion in an inverse-squared field is $1 / 2$ that of the time average of the magnitude of the potential energy, $|\langle V\rangle| .\langle T\rangle=1 / 2|\langle V\rangle|[1]$.

As demonstrated in the One-Electron Atom section, the electric inverse-squared force is conservative; thus, the angular momentum of the electron, \hbar, and the energy of atomic atomic orbitals are constant. In addition, the atomic orbitals are nonradiative when the boundary condition is met.

The central force equation, Eq. (11.14), has orbital solutions, which are circular, elliptical, parabolic, or hyperbolic. The former two types of solutions are associated with atomic and molecular orbitals. These solutions are nonradiative. The
boundary condition for nonradiation given in the One-Electron Atom section, is the absence of components of the spacetime Fourier transform of the current-density function synchronous with waves traveling at the speed of light. The boundary condition is met when the velocity for the charge density at every coordinate position on the atomic orbital is:

$$
\begin{equation*}
v_{n}=\frac{\hbar}{m_{e} r_{n}} \tag{11.20}
\end{equation*}
$$

The allowed velocities and angular frequencies are related to r_{n} by:

$$
\begin{align*}
& v_{n}=r_{n} \omega_{n} \tag{11.21}\\
& \omega_{n}=\frac{\hbar}{m_{e} r_{n}^{2}} \tag{11.22}
\end{align*}
$$

As demonstrated in the One-Electron Atom section and by Eq. (11.22), this condition is met for the product function of a radial Dirac delta function and a time harmonic function where the angular frequency, ω, is constant and given by Eq. (11.22).

$$
\begin{equation*}
\omega_{n}=\frac{\hbar}{m_{e} r_{n}^{2}}=\frac{\frac{\pi L}{m_{e}}}{A} \tag{11.23}
\end{equation*}
$$

where L is the angular momentum and A is the area of the closed orbit. Consider the solution of the central force equation comprising the product of a two-dimensional ellipsoid and a time harmonic function. The spatial part of the product function is the convolution of a radial Dirac delta function with the equation of an ellipsoid. The Fourier transform of the convolution of two functions is the product of the individual Fourier transforms of the functions; thus, the boundary condition is met for an ellipsoidal-time harmonic function when,

$$
\begin{equation*}
\omega_{n}=\frac{\pi \hbar}{m_{e} A}=\frac{\hbar}{m_{e} a b} \tag{11.24}
\end{equation*}
$$

where the area of an ellipse is

$$
\begin{equation*}
A=\pi a b \tag{11.25}
\end{equation*}
$$

where b and $2 b$ are the lengths of the semiminor and minor axes, respectively, and a and $2 a$ are the lengths of the semimajor and major axes, respectively. The geometry of molecular hydrogen is ellipsoidal with the internuclear axis as the principal axis; thus, the electron orbital is a two-dimensional ellipsoidal-time harmonic function. The mass follows an elliptical path, time harmonically as determined by the central field of the protons at the foci. Rotational symmetry about the internuclear axis further determines that the orbital is a prolate spheroid. In general, ellipsoidal orbits of molecular bonding, hereafter referred to as ellipsoidal molecular orbitals (MOs), have the general equation:

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \tag{11.26}
\end{equation*}
$$

The semiprincipal axes of the ellipsoid are a, b, c.
In ellipsoidal coordinates the Laplacian is:

$$
\begin{equation*}
(\eta-\zeta) R_{\xi} \frac{\partial}{\partial \xi}\left(R_{\xi} \frac{\partial \phi}{\partial \xi}\right)+(\zeta-\xi) R_{\eta} \frac{\partial}{\partial \eta}\left(R_{\eta} \frac{\partial \phi}{\partial \eta}\right)+(\xi-\eta) R_{\zeta} \frac{\partial}{\partial \zeta}\left(R_{\zeta} \frac{\partial \phi}{\partial \zeta}\right)=0 \tag{11.27}
\end{equation*}
$$

An ellipsoidal MO is equivalent to a charged perfect conductor (i.e. no dissipation to current flow) whose surface is given by Eq. (11.26). It is a two-dimensional equipotential membrane where each MO is supported by the outward centrifugal force due to the corresponding angular velocity, which conserves its angular momentum of \hbar. It satisfies the boundary conditions for a discontinuity of charge in Maxwell's equations, Eq. (11.48). It carries a total charge $q=-e$, and it's potential is a solution of the Laplacian in ellipsoidal coordinates, Eq. (11.27).

Excited states of atomic orbitals are discussed in the Excited States of the One-Electron Atom (Quantization) section. In the case of ellipsoidal MOs, excited electronic states are created when photons of discrete frequencies are trapped in the ellipsoidal resonator cavity of the MO. The photon changes the effective charge at the MO surface where the central field is ellipsoidal and arises from the protons and the effective charge of the "trapped photon" at the foci of the MO. Force balance is achieved at a series of ellipsoidal equipotential two-dimensional surfaces confocal with the ground state ellipsoid. The "trapped photons" are solutions of the Laplacian in ellipsoidal coordinates, Eq. (11.27).

As is the case with the atomic orbital, higher and lower energy states are equally valid. The photon standing wave in both cases is a solution of the Laplacian in ellipsoidal coordinates. For an ellipsoidal resonator cavity, the relationship between an allowed circumference, $4 a E$, and the photon standing wavelength, λ, is:

$$
\begin{equation*}
4 a E=n \lambda \tag{11.28}
\end{equation*}
$$

where n is an integer and where the elliptic integral E of Eq. (11.28) is given by:

$$
\begin{align*}
& E(k)=\int_{0}^{\frac{\pi}{2}} \sqrt{1-k^{2} \sin ^{2} \phi} d \phi \tag{11.29}\\
& k=e=\frac{\sqrt{a^{2}-b^{2}}}{a} \tag{11.30}
\end{align*}
$$

Applying Eqs. (11.28) and (11.29-11.30), the relationship between an allowed angular frequency given by Eq. (11.24) and the
photon standing wave angular frequency, ω, is:

$$
\begin{equation*}
\frac{\pi \hbar}{m_{e} A}=\frac{\hbar}{m_{e} n a_{1} n b_{1}}=\frac{\hbar}{m_{e} a_{n} b_{n}}=\frac{1}{n^{2}} \omega_{1}=\omega_{n} \tag{11.31}
\end{equation*}
$$

where $n=1,2,3,4, \ldots\left(n=\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right.$ for molecular hydrino states); ω_{1} is the allowed angular frequency for $n=1$
a_{1} and b_{1} are the allowed semimajor and semiminor axes for $n=1$. Using the boundary conditions, the excited states are solved in the Excited States of the Hydrogen Molecular Ion and Excited States of the Hydrogen Molecule sections.

The potential, ϕ, and distribution of charge, σ, over the conducting surface of an ellipsoidal MO are sought given the conditions: 1.) the potential is equivalent to that of a charged ellipsoidal conductor whose surface is given by Eq. (11.26), 2.) it carries a total charge $q=-e$, and 3.) initially there is no external applied field. To solve this problem, a potential function must be found which satisfies Eq. (11.27), which is regular at infinity, and which is constant over the given ellipsoid. The solution is well known and is given after Stratton [2]. Consider that the Laplacian is solved in ellipsoidal coordinates wherein ξ is the parameter of a family of ellipsoids all confocal with the standard surface $\xi=0$ whose axes have the specified values a, b, c. The variables ζ and η are the parameters of confocal hyperboloids and as such serve to measure position on any ellipsoid $\xi=$ constant. On the surface $\xi=0$; therefore, ϕ must be independent of ζ and η. Due to the uniqueness property of solutions of the Laplacian, a function which satisfies Eq. (11.27), behaves properly at infinity, and depends only on ξ, can be adjusted to represent the potential correctly at any point outside the ellipsoid $\xi=0$.

Thus, it is assumed that $\phi=\phi(\xi)$. Then, the Laplacian reduces to:

$$
\begin{equation*}
\frac{\partial}{\partial \xi}\left(R_{\xi} \frac{\partial \phi}{\partial \xi}\right)=0 \quad R_{\xi}=\sqrt{\left(\xi+a^{2}\right)\left(\xi+b^{2}\right)\left(\xi+c^{2}\right)} \tag{11.32}
\end{equation*}
$$

which on integration leads to:

$$
\begin{equation*}
\phi(\xi)=C_{1} \int_{\xi}^{\infty} \frac{\partial \xi}{R_{\xi}} \tag{11.33}
\end{equation*}
$$

where C_{1} is an arbitrary constant. The upper limit is selected to ensure the proper behavior at infinity. When ξ becomes very large, R_{ξ} approaches $\xi^{3 / 2}$ and,

$$
\begin{equation*}
\phi \sim \frac{2 C_{1}}{\sqrt{\xi}} \quad(\xi \rightarrow \infty) \tag{11.34}
\end{equation*}
$$

Furthermore, the equation of an ellipsoid can be written in the form:

$$
\begin{equation*}
\frac{x^{2}}{1+\frac{a^{2}}{\xi}}+\frac{y^{2}}{1+\frac{b^{2}}{\xi}}+\frac{z^{2}}{1+\frac{c^{2}}{\xi}}=\xi \tag{11.35}
\end{equation*}
$$

If $r^{2}=x^{2}+y^{2}+z^{2}$ is the distance from the origin to any point on the ellipsoid ξ, it is apparent that as ξ becomes very large $\xi \rightarrow r^{2}$. Thus, at great distances from the origin, the potential becomes that of a point charge at the origin:

$$
\begin{equation*}
\phi \sim \frac{2 C_{1}}{r} \tag{11.36}
\end{equation*}
$$

The solution Eq. (11.33) is, therefore, regular at infinity, and the constant C_{1} is then determined. It has been shown by Stratton [2] that whatever the distribution, the dominant term of the expansion at remote points is the potential of a point charge at the origin equal to the total charge of the distribution-in this case q. Hence $C_{1}=\frac{q}{8 \pi \varepsilon_{0}}$, and the potential at any point is:

$$
\begin{equation*}
\phi(\xi)=\frac{q}{8 \pi \varepsilon_{0}} \int_{\xi}^{\infty} \frac{\partial \xi}{R_{\xi}} \tag{11.37}
\end{equation*}
$$

The equipotential surfaces are the ellipsoids $\xi=$ constant. Eq. (11.37) is an elliptic integral and its values have been tabulated [3].

Since the distance along a curvilinear coordinate u^{1} is measured not by $d u^{1}$ but by $h_{1} d u^{1}$, the normal derivative in ellipsoidal coordinates is given by:

$$
\begin{equation*}
\frac{\partial \phi}{\partial n}=\frac{1}{h_{1}} \frac{\partial \phi}{\partial \xi}=\frac{-q}{4 \pi \varepsilon_{0}} \frac{1}{\sqrt{(\xi-\eta)(\xi-\zeta)}} \tag{11.38}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{1}=\frac{1}{2} \frac{\sqrt{(\xi-\eta)(\xi-\zeta)}}{R_{\xi}} \tag{11.39}
\end{equation*}
$$

The density of charge, σ, over the surface $\xi=0$ is:

$$
\begin{equation*}
\sigma=\varepsilon_{0}\left(\frac{\partial \phi}{\partial n}\right)_{\xi=0}=\frac{q}{4 \pi \sqrt{\eta \zeta}} \tag{11.40}
\end{equation*}
$$

Defining x, y, z in terms of ξ, η, ζ we put $\xi=0$, it may be easily verified that,

$$
\begin{equation*}
\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}=\frac{\zeta \eta}{a^{2} b^{2} c^{2}} \quad(\xi=0) \tag{11.41}
\end{equation*}
$$

Consequently, the charge density in rectangular coordinates is:

$$
\begin{equation*}
\sigma=\frac{q}{4 \pi a b c} \frac{1}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \tag{11.42}
\end{equation*}
$$

(The mass-density function of an MO is equivalent to its charge-density function where m replaces q of Eq. (11.42)). The equation of the plane tangent to the ellipsoid at the point x_{0}, y_{0}, z_{0} is:

$$
\begin{equation*}
X \frac{x_{0}}{a^{2}}+Y \frac{y_{0}}{b^{2}}+Z \frac{z_{0}}{c^{2}}=1 \tag{11.43}
\end{equation*}
$$

where X, Y, Z are running coordinates in the plane. After dividing through by the square root of the sum of the squares of the coefficients of X, Y, and Z, the right member is the distance D from the origin to the tangent plane. That is,

$$
\begin{equation*}
D=\frac{1}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \tag{11.44}
\end{equation*}
$$

so that for an electron MO:

$$
\begin{equation*}
\sigma=\frac{-e}{4 \pi a b c} D \tag{11.45}
\end{equation*}
$$

In other words, the surface density at any point on a charged ellipsoidal conductor is proportional to the perpendicular distance from the center of the ellipsoid to the plane tangent to the ellipsoid at the point. The charge is thus greater on the more sharply rounded ends farther away from the origin.

In the case of hydrogen-type molecules and molecular ions, rotational symmetry about the internuclear axis requires that two of the axes be equal. Thus, the MO is a spheroid, and Eq. (11.37) can be integrated in terms of elementary functions. If $a>b=c$, the spheroid is prolate, and the potential is given by:

$$
\begin{equation*}
\phi=\frac{1}{8 \pi \varepsilon_{0}} \frac{-e}{\sqrt{a^{2}-b^{2}}} \ln \frac{\sqrt{\xi+a^{2}}+\sqrt{a^{2}-b^{2}}}{\sqrt{\xi+a^{2}}-\sqrt{a^{2}-b^{2}}} \tag{11.46}
\end{equation*}
$$

SPHEROIDAL FORCE EQUATIONS

ELECTRIC FORCE

The spheroidal MO is a two-dimensional surface of constant potential given by Eq. (11.46) for $\xi=0$. For an isolated electron MO the electric field inside is zero as given by Gauss' Law:

$$
\begin{equation*}
\int_{S} \mathbf{E} d A=\int_{V} \frac{\rho}{\varepsilon_{0}} d V \tag{11.47}
\end{equation*}
$$

where the charge density, ρ, inside the MO is zero. Gauss' Law at a two-dimensional surface with continuity of the potential across the surface according to Faraday's law in the electrostatic limit [4-6] is:

$$
\begin{equation*}
\mathbf{n} \bullet\left(\mathbf{E}_{1}-\mathbf{E}_{2}\right)=\frac{\sigma}{\varepsilon_{0}} \tag{11.48}
\end{equation*}
$$

\mathbf{E}_{2} is the electric field inside which is zero. The electric field of an ellipsoidal MO with semimajor and semiminor axes a and $b=c$, respectively, is given by substituting σ given by Eq. (11.38-11.42) into Eq. (11.48).

$$
\begin{equation*}
\mathbf{E}=\frac{\sigma}{\varepsilon_{0}} \mathbf{i}_{\xi}=\frac{-e}{4 \pi \varepsilon_{0}} \frac{1}{\sqrt{(\xi-\eta)(\xi-\zeta)}} \mathbf{i}_{\xi}=\frac{-e}{4 \pi \varepsilon_{0} a b c} D \mathbf{i}_{\xi}=\frac{-e}{4 \pi \varepsilon_{0} a b c} \frac{1}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \mathbf{i}_{\xi} \tag{11.49}
\end{equation*}
$$

wherein the ellipsoidal-coordinate parameter $\xi=0$ at the surface of the MO and D is the distance from the origin to the tangent plane given by Eq. (11.44). The electric field and thus the force and potential energy between the protons and the electron MO can be solved based on three principles: (1) Maxwell's equations require that the electron MO is an equipotential energy surface that is a function of ξ alone; thus, it is a prolate spheroid, (2) stability to radiation, and conservation first principles require that the angular velocity is constant and given in polar coordinates with respect to the origin by Eq. (11.24), and (3) the equations of motion due to the central force of each proton (Eqs. (11.5-11.19) and Eqs. (11.68-11.70)) also determine that the current is ellipsoidal, and based on symmetry, the current is a prolate spheroid. Thus, based on Maxwell's equations, conservation principles, and Newton's Laws for the equations of motion, the electron MO constraints and the motion under the force of the
protons both give rise to a prolate spheroid. Since the energy of motion is determined from the Coulombic central field (Eqs. (11.5-11.19), the protons give rise to a prolate spheroidal energy surface (a surface of constant energy) that is matched to the equipotential, prolate spheroidal electron MO.

The electron cannot emit radiation; thus, it maintains the prolate spheroidal shape based on the overall conservation of angular momentum and energy (Appendix II: Stability and Absence of Self Interaction and Self Energy). Chapter 36 (Leptons) provides the conditions for the creation of an electron from a photon that forbid the electron from being severable. These properties that maintain the stability of an electron molecular orbital are invoked and provide that the integral of the physical properties such as the angular momentum of \hbar (Eq. (11.101)) and energies in the inverse r-squared electric field originating at each focus over the entire electron match the boundary conditions. Consequently, the electron MO behaves as if it has rigidity based on the integrated conserved angular momentum of \hbar (Eq. (11.101) as well as kinetic energy T (Eq. (11.119)) wherein T is one-half the magnitude of V_{e} (Eq. (11.117)) as required for an inverse-squared force [1] wherein V_{e} is the source of T. As in the case of an atomic orbital, a MO comprises a current density surface with flow along paths. An algorithm given in the Force Balance of Hydrogen-Type Molecules section solves the distribution wherein the velocity distribution on each path of the current distribution is variable to match the boundary conditions.

The force balance equation between the average ellipsoidal central field of the protons at the foci and the ellipsoidal electron MO is solved to give the position of the foci. Then, the total energy is determined including the repulsive energy between the two protons at the foci to determine whether the original assumption of an elliptic orbit was valid. If the condition $E<0$ is met, then the problem of the stable elliptic orbit is solved. In any case that this condition is not found to be met, then a stable orbit cannot be formed. The force and energy equations of a point charge (mass) (Eqs. (11.5-11.24)) are reformulated in term of densities for charge, current, mass, momentum, and potential, kinetic, and total energies. Consider an elliptical orbit shown in Figure 11.1 that applies to a point charge (mass) as well as a point on a continuous elliptical current loop that comprises a basis element of the continuous current density of the ellipsoidal MO. The tangent plane at any point on the ellipsoid makes equal angles with the foci radii at that point and the sum of the distance to the foci is a constant, $2 a$. Thus, the normal is the bisector of the angle between the foci radii at that point as shown in Figure 11.1.

Figure 11.1. An elliptical current element of the prolate spheroidal MO showing the semimajor axis a, the semiminor axis b, the foci F_{1} and F_{2}, and the vector $r(t)$ from the origin to a point (x, y, z). The radial vectors from the foci to a point on the ellipse have a total length of $2 a$ and make equal angles α with the tangent such that the normal vector is the bisector of the interior angle 2β.

The unit vector normal to the ellipsoidal MO at a point (x, y, z) is:

$$
\begin{equation*}
\hat{\mathbf{d}}=\frac{\left(\frac{x}{a^{2}}, \frac{y}{b^{2}}, \frac{z}{b^{2}}\right)}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \tag{11.50}
\end{equation*}
$$

$F_{1}(r(t))$ and $F_{2}(r(t))$ are defined as the components of the central forces centered on F_{1} and F_{2}. The components of the central forces that are normal to the ellipsoidal MO in the direction of $\hat{\mathbf{d}}$, the unit vector in the \mathbf{i}_{ξ}-direction are defined as
$F_{1 \perp}(r(t))$ and $F_{2 \perp}(r(t))$. The normalized projections or projection factor of the sum of these central forces in the $\hat{\mathbf{d}}$-direction at the point (x, y, z) is:

$$
\begin{align*}
\frac{F_{1 \perp}(r(t))+F_{2 \perp}(r(t))}{\left|F_{1}(r(t))+F_{2}(r(t))\right|} & =\frac{\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right) \cdot \hat{\mathbf{d}}}{2 a} \\
& =\frac{((x-c, y, z)+(x+c, y, z)) \cdot\left(\frac{x}{a^{2}}, \frac{y}{b^{2}}, \frac{z}{b^{2}}\right)}{2 a \sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \\
& =\frac{\left(\frac{x^{2}-c x}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{b^{2}}\right)+\left(\frac{x^{2}+c x}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{b^{2}}\right)}{2 a \sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \tag{11.51}\\
& =\frac{1}{a \sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}}
\end{align*}
$$

where \mathbf{r}_{1} and \mathbf{r}_{2} are the radial vectors of the central forces from the corresponding focus to the point (x, y, z) on the ellipsoidal MO.

The polar-coordinate elliptical orbit of a point charge due to its motion in a central inverse-squared-radius field is given by Eqs. (11.10-11.12) as the solution of the polar-coordinate-force equations, Eqs. (11.5-11.19) and (11.68-11.70). The orbit is also completely specified in Cartesian coordinates by the solution of Eqs. (11.5-11.19) and (11.68-11.70) for the semimajor and semiminor axes. Then, the corresponding polar-coordinate elliptical orbit is given as a plane cross section through the foci of the Cartesian-coordinate-system ellipsoid having the same axes given by Eq. (11.26) where $c=b$. Thus, the Coulumbic central force can be determined in terms of the general Cartesian coordinates from the polar-coordinate central force equations (Eqs. (11.5-11.19)). Consider separately the elliptical solution at each focus given in polar coordinates by Eq. (11.10).

$$
\begin{align*}
& r_{1}=a(1-e) \frac{1+e}{1+e \cos \theta}=\frac{a\left(1-e^{2}\right)}{1+e \cos \theta} \tag{11.52}\\
& r_{2}=\frac{a\left(1-e^{2}\right)}{1+e \cos (\theta+\pi)}=\frac{a\left(1-e^{2}\right)}{1-e \cos \theta} \tag{11.53}
\end{align*}
$$

where

$$
\begin{equation*}
r_{0}=a-c^{\prime}=a\left(1-\frac{c^{\prime}}{a}\right)=a(1-e) \tag{11.54}
\end{equation*}
$$

The magnitude of the sum of the central forces centered on F_{1} and F_{2} that are normal to the ellipsoidal MO are:

$$
\begin{align*}
\left|F_{1}\left(r_{1}\right)\right|+\left|F_{2}\left(r_{2}\right)\right| & =\frac{k}{r_{1}^{2}}+\frac{k}{r_{2}^{2}} \\
& =k \frac{(1+e \cos \theta)^{2}+(1-e \cos \theta)^{2}}{a^{2}\left(1-e^{2}\right)^{2}} \\
& =k \frac{1+2 e \cos \theta+e^{2} \cos ^{2} \theta+1-2 e \cos \theta+e^{2} \cos ^{2} \theta}{a^{2}\left(1-e^{2}\right)^{2}} \tag{11.55}\\
& =k \frac{1+e^{2} \cos ^{2} \theta+1+e^{2} \cos ^{2} \theta}{a^{2}\left(1-e^{2}\right)^{2}} \\
& =k \frac{2+2 e^{2} \cos ^{2} \theta}{a^{2}\left(1-e^{2}\right)^{2}}
\end{align*}
$$

The vector central forces centered on F_{1} and F_{2} that are normal to the ellipsoidal MO are then given by the product of the corresponding magnitude and vector projection given by Eqs. (11.55) and (11.51), respectively,

$$
\begin{equation*}
\mathbf{F}_{1 \perp}\left(r_{1}\right)+\mathbf{F}_{2 \perp}\left(r_{2}\right)=k \frac{2+2 e^{2} \cos ^{2} \theta}{a^{2}\left(1-e^{2}\right)^{2}} \frac{1}{a \sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \mathbf{i}_{\xi} \tag{11.56}
\end{equation*}
$$

Eq. (11.56) is based on a single point charge e. For a charge-density distribution that is given as an ellipsoidal equipotential, the θ-dependence must vanish. In addition to the elliptical orbit being completely specified in Cartesian coordinates by the solution of Eqs. (11.5-11.19) and Eqs. (11.68-11.70) for the semimajor and semiminor axes in Eq. (11.26), the polar-coordinate elliptical orbit is also completely specified by the total constant total energy E and the angular momentum which for the electron is the constant \hbar. Considering Eq. (11.56), the corresponding total energy of the electron is conserved and is determined by the integration over the MO to give the average:

$$
\begin{equation*}
\mathbf{F}_{1 \perp}\left(r_{1}\right)+\mathbf{F}_{2 \perp}\left(r_{2}\right)=k \frac{2+e^{2}}{a^{2}\left(1-e^{2}\right)^{2}} \frac{1}{a \sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \mathbf{i}_{\xi} \tag{11.57}
\end{equation*}
$$

Eq. (11.57) is transformed from a two-centered-central force to a one-centered-central force to match the form of the potential of the ellipsoidal MO. In this case,

$$
\begin{equation*}
\mathbf{r}_{1}, \mathbf{r}_{2} \rightarrow r(t) \mathbf{i}_{\xi} \tag{11.58}
\end{equation*}
$$

In the case that

$$
\begin{equation*}
r_{1}=r_{2}=a \tag{11.59}
\end{equation*}
$$

then,

$$
\begin{equation*}
r(t)=b \tag{11.60}
\end{equation*}
$$

and the one-centered-central force is in the \mathbf{i}_{ξ}-direction. Consider the current motion on the great circle in the yz-plane containing the semiminor axes, each of length b, as shown in Figure 11.2. In order to match the average elliptic force for the condition of Eq. (11.60), Eq. (11.57) transforms as

$$
\begin{align*}
\mathbf{F}_{1 \perp}(r(t))+\mathbf{F}_{2 \perp}(r(t)) & =k \frac{\left(2+e^{2}\right)}{b^{2}\left(1-e^{2}\right)^{2}} \frac{1}{a \sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \tag{11.61}\\
& =\frac{2+e^{2}}{\left(1-e^{2}\right)^{2}} k \frac{1}{a b^{2} \sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \mathbf{i}_{\xi}
\end{align*}
$$

Eq. (11.61) has the same form as that of the electric field of the ellipsoidal MO given by Eq. (11.49), except for the scaling factor of two-centered coordinates $h_{2 c c}$:

$$
\begin{equation*}
h_{2 c c}=\frac{2+e^{2}}{\left(1-e^{2}\right)^{2}} \tag{11.62}
\end{equation*}
$$

As shown in the case of the derivation of the Laplacian charge-density and electric field, if $r^{2}=x^{2}+y^{2}+z^{2}$ is the distance from the origin to any point on the ellipsoid ξ, it is apparent that as ξ becomes very large $\xi \rightarrow r^{2}$. Thus, at great distances from the origin, the potential becomes that of a point charge at the origin as given by Eq. (11.36). The same boundary condition applies to the potential and field of the protons. The limiting case is also given as $e \rightarrow 0$. Then, to transform the scale factor to that of one-centered coordinates for an ellipsoidal MO, the reciprocal of the scaling factor multiplies the Laplacian-MO-electric-field term. The reciprocal of Eq. (11.62) is:

$$
\begin{equation*}
h_{2 c c}^{-1}=\frac{\left(1-e^{2}\right)^{2}}{2+e^{2}} \tag{11.63}
\end{equation*}
$$

such that as $e \rightarrow 0, h_{2 c c}^{-1} \rightarrow \frac{1}{2}$. This transform scale factor corresponds to the interchange of the points of highest and lowest velocity on the surface and the distribution of the charge-density in the opposite manner as shown infra. The charge-density distribution corrects the angular variation in central force over the surface such that a solution of the central force equation of motion and the Laplacian MO are solved simultaneously. It can also be considered as a multipole normalization factor such as those of the spherical harmonics and the spherical geometric factor of atomic electrons that gives the central force as a function of ξ only.

The reciprocal of the $h_{2 c c}$ form-factor with the dependence of the charge density on the distance parameter $r(t)$ gives:

$$
\begin{equation*}
\mathbf{F}_{1 \perp}(r(t))+\mathbf{F}_{2 \perp}(r(t))=k \frac{\left(1-e^{2}\right)^{2}}{b^{2}\left(2+e^{2}\right)} \frac{1}{a \sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \mathbf{i}_{\xi} \tag{11.64}
\end{equation*}
$$

From Eq. (11.31), the magnitude of the ellipsoidal field corresponding to a below "ground state" hydrogen-type molecular ion is an integer p. The integer is one in the case of the hydrogen molecular ion and an integer greater than one in the case of each dihydrino molecular ion. The central-electric-force constant, k, from the two protons that includes the centralfield contribution due to photons of lower-energy states is:

$$
\begin{equation*}
k=\frac{Z e^{2}}{4 \pi \varepsilon_{0}}=\frac{p 2 e^{2}}{4 \pi \varepsilon_{0}} \tag{11.65}
\end{equation*}
$$

Substitution of Eq. (11.65) for k in Eq. (11.64) gives the one-center-coordinate electric force $\mathbf{F}_{\text {ele }}$ between the protons and the ellipsoidal MO:

$$
\begin{equation*}
\mathbf{F}_{e l e}=\mathbf{F}_{1 \perp}(r(t))+\mathbf{F}_{2 \perp}(r(t))=\frac{2 p e^{2}}{4 \pi \varepsilon_{0}} \frac{\left(1-\left(\frac{c^{\prime}}{a}\right)^{2}\right)^{2}}{a b^{2}\left(2+\left(\frac{c^{\prime}}{a}\right)^{2}\right)} \frac{1}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \mathbf{i}_{\xi} \tag{11.66}
\end{equation*}
$$

where e is the charge and with the distance from the origin to a nucleus at a focus defined as c^{\prime}, the eccentricity, e, is:

$$
\begin{equation*}
e=\frac{c^{\prime}}{a} \tag{11.67}
\end{equation*}
$$

From the orbital equations in polar coordinates, Eqs. (11.10-11.12), the following relationship can be derived [1]:

$$
\begin{equation*}
a=\frac{m \frac{L^{2}}{m^{2}}}{k\left(1-e^{2}\right)} \tag{11.68}
\end{equation*}
$$

For any ellipse,

$$
\begin{equation*}
b=a \sqrt{1-e^{2}} \tag{11.69}
\end{equation*}
$$

thus,

$$
\begin{equation*}
b=a \sqrt{\frac{\frac{L^{2}}{m^{2}} m}{k a}} \text { (point charge (mass) in polar coordinates) } \tag{11.70}
\end{equation*}
$$

From, the equal energy condition, it can be shown that b for the motion of a point charge (mass) in polar coordinates due to a proton at one focus corresponds to:

$$
\begin{equation*}
c^{\prime}=\sqrt{a^{2}-b^{2}} \tag{11.71}
\end{equation*}
$$

of the MO in ellipsoidal coordinates, and k_{1} of one attracting focus is replaced by $k=2 k_{1}$ of ellipsoidal coordinates with two attracting foci. In ellipsoidal coordinates, k is given by Eq. (11.65) and L for the electron equals \hbar.

Consider the force balance equation for the point on the ellipse at the intersection of the semiminor axis b with the ellipse. At this point called $(0, b)$, the distances from each focus, r_{1} and r_{2}, to the ellipse are equal. The relationship for the sum of the distances from the foci to any point on the ellipse is:

$$
\begin{equation*}
r_{1}+r_{2}=2 a \tag{11.72}
\end{equation*}
$$

Thus, at point $(0, b)$,

$$
\begin{equation*}
r_{1}=r_{2}=a \tag{11.73}
\end{equation*}
$$

Using Eq. (11.5), the magnitude of the force balance in the radial $(r(t))$ direction, from the origin, is given by:

$$
\begin{equation*}
m r \dot{\theta}^{2}=\frac{2 p e^{2}}{4 \pi \varepsilon_{0} a^{2}} \sin \theta=\frac{2 p e^{2}}{4 \pi \varepsilon_{0} a^{2}} \frac{b}{a} \tag{11.74}
\end{equation*}
$$

wherein the $m \ddot{r}$ term of Eq. (11.5) is zero and θ is the angle from the focus to point $(0, b)$. Using Eqs. (11.24), (11.94), and (11.95), Eq. (11.74) becomes:

$$
\begin{equation*}
m r \omega^{2}=m b \frac{\hbar^{2}}{m^{2} a^{2} b^{2}}=\frac{2 p e^{2}}{4 \pi \varepsilon_{0} a^{2}} \frac{b}{a} \tag{11.75}
\end{equation*}
$$

In order for the prolate spheroidal MO to be an equipotential surface, the mass and charge density must be according to Eq. (11.45). In this case, the mass and charge density along the ellipse is such that the magnitudes of the radial and transverse forces components at point $(0, b)$ are equivalent. Furthermore, according to Eq. (11.5), the central force of each proton at a focus is separable and symmetrical to that at the other focus. Based on symmetry, the transverse forces of the two protons are in opposite directions and the radial components are in the same direction. But, the relationship between the magnitudes must still hold wherein at point $(0, b)$ the transverse force is equivalent to that due to the sum of the charges at one focus. The sum of the magnitudes of the transverse forces which is equivalent to a force of $2 e$ at each focus in turn is:

$$
\begin{equation*}
\left|f(r) e_{\theta}\right|=\frac{2 p e^{2}}{4 \pi \varepsilon_{0} a^{2}} \cos \theta=\frac{2 p e^{2}}{4 \pi \varepsilon_{0} a^{2}} \frac{c^{\prime}}{a} \tag{11.76}
\end{equation*}
$$

Thus, using the mass and charge-density scaling factor, $\frac{\frac{c^{\prime}}{\frac{a}{a}}}{\frac{c^{\prime}}{a}} \frac{\text {, to match the equipotential condition in Eq. (11.75) gives: }}{}$

$$
\begin{align*}
& b \frac{\hbar^{2}}{m_{e} \frac{c^{\prime}}{b} a^{2} b^{2}}=\frac{2 \frac{c^{\prime}}{b} p e^{2}}{4 \pi \varepsilon_{0} a^{2}} \frac{b}{a} \tag{11.77}\\
& c^{\prime 2}=\frac{\hbar^{2} 4 \pi \varepsilon_{0} a}{m_{e} 2 p e^{2}} \tag{11.78}
\end{align*}
$$

Using Eq. (1.256)

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m e^{2} 2 p a}}=\sqrt{\frac{a a_{0}}{2 p}} \tag{11.79}
\end{equation*}
$$

Then, the length of the semiminor axis of the prolate spheroidal MO, $b=c$, is:

$$
\begin{equation*}
b=\sqrt{a^{2}-c^{\prime 2}} \tag{11.80}
\end{equation*}
$$

Correspondingly, c^{\prime} is given by Eq. (11.71).
Substitution of Eq. (11.79) into Eq. (11.66) gives the electric force:

$$
\begin{align*}
\mathbf{F}_{e l e} & =\frac{2 p e^{2}}{4 \pi \varepsilon_{0}} \frac{\left(1-\left(\frac{\sqrt{\frac{a a_{0}}{2 p}}}{a}\right)^{2}\right)^{2}}{\left.\left(\sqrt{\frac{a a_{0}}{2 p}}\right)^{2}\right)} \frac{1}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \mathbf{i}_{\xi} \\
& a b^{2}\left(2+\left(\frac{\sqrt{a}}{}\right)^{2}\right. \tag{11.81}\\
& =\frac{2 p e^{2}}{4 \pi \varepsilon_{0}} \frac{\left(1-\frac{a_{0}}{2 a p}\right)^{2}}{a b^{2}\left(2+\frac{a_{0}}{2 a p}\right)} \frac{1}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \mathbf{i}_{\xi} \\
& =\frac{2 p e^{2}}{4 \pi \varepsilon_{0}} \frac{\left(1-\frac{a_{0}}{2 a p}\right)^{2}}{a b^{2}\left(2+\frac{a_{0}}{2 a p}\right)} D \mathbf{i}_{\xi}
\end{align*}
$$

CENTRIFUGAL FORCE

The centrifugal force along the radial vector from each proton at each focus of the ellipsoid is given by the $m r \dot{\theta}^{2}$ term of Eq. (11.5). The tangent plane at any point on the ellipsoid makes equal angles with the foci radii at that point and the sum of the distance to the foci is a constant, $2 a$. Thus, the normal is the bisector of the angle between the foci radii at that point as shown in Figure 11.1. In order to satisfy the equation of motion for an equal energy surface for both foci, the transverse component of the central force of one foci at any point on the elliptic orbit due to the central force of the other (Eq. (11.5)) must cancel on average and vice versa. Thus, the centrifugal force due to the superposition of the central forces in the direction of each foci must be normal to an ellipsoidal surface in the direction perpendicular to the direction of motion. Thus, it is in the ξ-direction. This can only be achieved by a time rate of change of the momentum density that compensates for the variation of the distances from each focus to each point on an elliptical cross section. Since the angular momentum must be conserved, there can be no net force in the direction transverse to the elliptical path over each orbital path. The total energy must also be conserved; thus, as shown infra. the distribution of the mass must also be a solution of Laplace's equation in the parameter ξ only. Thus, the massdensity constraint is the same as the charge-density constraint. As further shown infra., the distribution and concomitantly the centrifugal force is a function of D, the time-dependent distance from the center of the ellipsoid to a tangent plane given by Eq. (11.44) where D and the Cartesian coordinates are the time-dependent parameters.

Each point or coordinate position on the continuous two-dimensional electron MO defines an infinitesimal mass-density element which moves along an orbit comprising an elliptical plane cross section of the spheroidal MO through the foci. The kinetic energy of the electron is conserved. Then, the corresponding radial conservative force balance equation is

$$
\begin{equation*}
m\left(\ddot{r}+C_{1} r\right)=0 \tag{11.82}
\end{equation*}
$$

The motion is such that the eccentric angle, θ, changes at a constant rate at each point. That is $\theta=\omega t$ at time t where the angular velocity ω is a constant. The solution of the homogeneous equation with $C_{1}=\omega^{2}$ is:

$$
\begin{equation*}
r(t)=\mathbf{i} a \cos \omega t+\mathbf{j} b \sin \omega t \tag{11.83}
\end{equation*}
$$

where a is the semimajor axis, b is semiminor axis, and the boundary conditions of $r(t)=a$ for $\omega t=0$ and $r(t)=b$ for $\omega t=\frac{\pi}{2}$ were applied. Eq. (11.83) is the parametric equation of the ellipse of the orbit. The velocity is given by the time derivative of the parametric position vector:

$$
\begin{equation*}
v(t)=\dot{r}(t)=-\mathbf{i} a \omega \sin \omega t+\mathbf{j} b \omega \cos \omega t \tag{11.84}
\end{equation*}
$$

The velocity is $\frac{\pi}{2}$ out of phase with the charge density at $r(t)=a(\omega t=0)$ and $r(t)=b\left(\omega t=\frac{\pi}{2}\right)$ such that the lowest charge density has the highest velocity and the highest charge density has the lowest velocity. In this case, it can be shown that the current is constant along each elliptical path of the MO. Recall that nonradiation results when $\omega=$ constant given by Eq. (11.24) that corresponds to a constant current, which further maintains the current continuity condition.

Consider Eq. (11.32) for the prolate spheroidal MO. From this equation, the mass and current-densities, the angular momentum, and the potential and kinetic energies are a function of ξ alone, and any dependence on the orthogonal coordinate parameters averages to unity. From Eq. (11.32).

$$
\begin{equation*}
R_{\xi} \frac{\partial \phi}{\partial \xi}=C_{1} \tag{11.85}
\end{equation*}
$$

Substitution of Eq. (11.40) into Eq. (11.85) gives:

$$
\begin{equation*}
\int_{\xi}^{\infty} R_{\xi} h_{1} \frac{e}{4 \pi \sqrt{\eta \zeta}} \delta(\xi) d \xi=\varepsilon_{0} C_{1}=\frac{e}{8 \pi} \tag{11.86}
\end{equation*}
$$

where C_{1} is from Eq. (11.36). Substitution of Eq. (11.39) into Eq. (11.86) gives:

$$
\begin{equation*}
\int_{\xi}^{\infty} R_{\xi} \frac{e}{4 \pi \sqrt{\eta \zeta}} \frac{1}{2} \frac{\sqrt{(\xi-\eta)(\xi-\zeta)}}{R_{\xi}} \delta(\xi) d \xi=\frac{e}{8 \pi} \tag{11.87}
\end{equation*}
$$

Comparison of Eq. (11.86) with Eq. (11.87) demonstrates that:

$$
\begin{equation*}
8 \pi \int_{\xi}^{\infty} R_{\xi} \frac{e}{4 \pi \sqrt{\eta \zeta}} \frac{1}{2} \frac{\sqrt{(\xi-\eta)(\xi-\zeta)}}{R_{\xi}} \delta(\xi) d \xi=e \tag{11.88}
\end{equation*}
$$

The current density J is given by the product of the constant frequency (Eq. (11.24)) and the charge density (Eq. (11.40)).

$$
\begin{equation*}
J=\frac{\hbar}{2 \pi m_{e} a b} \frac{e}{4 \pi \sqrt{\eta \zeta}} \tag{11.89}
\end{equation*}
$$

The total constant current is dependent on ξ alone according to Eq. (11.32). Then, applying the result of Eq. (11.88) to Eq. (11.89) gives:

$$
\begin{equation*}
\mathbf{i}=8 \pi \int_{\xi}^{\infty} R_{\xi} \frac{\hbar}{2 \pi m_{e} a b} \frac{e}{4 \pi \sqrt{\eta \zeta}} \frac{1}{2} \frac{\sqrt{(\xi-\eta)(\xi-\zeta)}}{R_{\xi}} \delta(\xi) d \xi \mathbf{e}_{\zeta} \times \mathbf{e}_{\xi}=\frac{e \hbar}{2 \pi m_{e} a b} \mathbf{e}_{\eta} \tag{11.90}
\end{equation*}
$$

the constant current that is nonradiative.
If $\mathbf{a}(t)$ denotes the acceleration vector, then

$$
\begin{equation*}
\mathbf{a}(t)=-\omega^{2} r(t) \mathbf{i}_{r} \tag{11.91}
\end{equation*}
$$

In other words, the acceleration is centrifugal as in the case of circular motion with constant angular speed ω. The dot product of $\mathbf{r}(t)$ with $\hat{\mathbf{d}}$, the unit vector normal to the ellipsoidal MO at a point (x, y, z) given by Eq. (11.50), is:

$$
\begin{equation*}
\mathbf{r}(t) \cdot \hat{\mathbf{d}}=\frac{(x, y, z) \cdot\left(\frac{x}{a^{2}}, \frac{y}{b^{2}}, \frac{z}{b^{2}}\right)}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}}=\frac{\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{b^{2}}\right)}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \tag{11.92}
\end{equation*}
$$

Using Eq. (11.26), the normal component projection is:

$$
\begin{equation*}
\mathbf{r}(t) \cdot \hat{\mathbf{d}}=\frac{1}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}}=D \tag{11.93}
\end{equation*}
$$

where D, the distance from the origin to the tangent plane, is given by Eq. (11.44).
The centrifugal force, $\mathbf{F}_{c i}$, on mass element m_{i} [7] given by the second term of Eq. (11.82) is:

$$
\begin{equation*}
\mathbf{F}_{c i}=m_{i} a=-m_{i} \omega^{2} r(t) \tag{11.94}
\end{equation*}
$$

Substitution of the angular velocity given by Eq. (11.24) and m_{e} for m into Eq. (11.94) gives the centrifugal force \mathbf{F}_{c} on the electron that is normal to the MO surface according to Eq. (11.93).

$$
\begin{equation*}
\mathbf{F}_{c}=\frac{-\hbar^{2}}{m_{e} a^{2} b^{2}} \mathbf{r}(t) \cdot \hat{\mathbf{d}} \mathbf{i}_{\xi}=\frac{-\hbar^{2}}{m_{e} a^{2} b^{2}} D \mathbf{i}_{\xi} \tag{11.95}
\end{equation*}
$$

\mathbf{F}_{c} has an equivalent dependence on D as the electric force based on the charge distribution (Eq. (11.45)). This is expected based on the invariance of $\frac{e}{m_{e}}$ which results in the same distribution of the mass and charge.

The equipotential charge-density distribution gives rise to the constant current condition. It also gives rise to a constant total kinetic energy condition wherein the angular velocity given by Eq. (11.24) is a constant. Recall from Eq. (11.32), that on the surface $\xi=0 ; \phi$ must be independent of ζ and η and depend only on ξ at any point outside the ellipsoid $\xi=0$. Since the current and total kinetic energy are also constant on the surface $\xi=0$, the total kinetic energy depends only on ξ. Thus, the centrifugal force on the mass of the electron, m_{e}, must be in the same direction as the electric field corresponding to ϕ, normal to the electron surface wherein any tangential component in Eq. (11.94) averages to zero over the electron MO by the mass distribution given by Eqs. (11.40) and (11.45) with m_{e} replacing e.

The cancellation of tangential acceleration over each elliptical path maintains the charge density distribution given by Eq. (11.40) with constant current at each point on each elliptical path of the MO. Since the centrifugal force is given by Eq. (11.94), the multiplication of the mass density by the scaling factor h_{1} and integration with respect to ξ gives a constant net centrifugal force. Thus, the result matches those of the determination of the constant current (Eq. (11.90)) and angular momentum shown infra. (Eq. (11.101)) wherein the charge and mass densities given in Eqs. (11.90-11.91) and (11.100), respectively, were integrated over.

Specifically, consider the normal-directed centrifugal force, $\mathbf{F}_{c i}$, on mass element m_{i} :

$$
\begin{equation*}
\mathbf{F}_{c i}=-m_{i} \omega^{2} D \mathbf{i}_{\xi} \tag{11.96}
\end{equation*}
$$

The mass density is given by Eq. (11.40) with m_{e} replacing e. Then, the substitution of the mass density for m_{i} in Eq. (11.96) and using Eq. (11.24) for ω gives the centrifugal force density $\mathbf{F}_{c a}$:

$$
\begin{equation*}
\mathbf{F}_{c a}=\frac{m_{e}}{4 \pi \sqrt{\eta \zeta}} \frac{\hbar^{2}}{m_{e}^{2} a^{2} b^{2}} D \mathbf{i}_{\xi} \tag{11.97}
\end{equation*}
$$

Eq. (11.32) determines that the centrifugal force is a function of ξ alone, and any dependence on the transverse coordinate parameters averages to zero. Using the result of Eq. (11.88) gives the net centrifugal force \mathbf{F}_{c} :

$$
\begin{equation*}
\mathbf{F}_{c}=8 \pi \int_{\xi}^{\infty} \frac{1}{4 \pi \sqrt{\eta \zeta}} \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} R_{\xi} \frac{1}{2} \frac{\sqrt{(\xi-\eta)(\xi-\zeta)}}{R_{\xi}} D \delta(\xi) d \xi \mathbf{i}_{\xi}=\frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D \mathbf{i}_{\xi} \tag{11.98}
\end{equation*}
$$

In the limit as the ellipsoidal coordinates go over into spherical coordinates, Eq. (11.95) reduces to the centrifugal force of the spherical atomic orbital given by Eq. (1.253) with Eq. (1.35). This condition must be and is met as a further boundary condition that parallels that of Eqs. (11.32-11.37). Using the same dependence of the total mass (charge) on the scale factor h_{1} according to Eqs. (11.32-11.40), the further boundary conditions on the angular momentum and kinetic energy are met.

Specifically, the constant potential and current conditions and the use of Eq. (11.32) in the derivation of Eq. (11.95) also satisfy another condition, the conservation of \hbar of angular momentum of the electron. The angular momentum \mathbf{p}_{i} at each point i of mass m_{i} is

$$
\begin{align*}
\mathbf{p}_{i}(t) & =m_{i} \mathbf{r}(t) \times \mathbf{v}(t) \\
& =m_{i}(\mathbf{i} a \cos \omega t+\mathbf{j} b \sin \omega t) \times(-\mathbf{i} a \omega \sin \omega t+\mathbf{j} b \omega \cos \omega t) \tag{11.99}\\
& =m_{i} a b \omega\left(\cos ^{2} \omega t+\sin ^{2} \omega t\right) \mathbf{i} \times \mathbf{j} \\
& =m_{i} a b \omega \mathbf{k}
\end{align*}
$$

The mass density is given by Eq. (11.40) with m_{e} replacing e. Then, substitution of m_{i} in Eq. (11.99) by the mass density and using Eq. (11.24) for ω gives the angular momentum density $\mathbf{p}(t)$:

$$
\begin{equation*}
\mathbf{p}(t)=a b \omega \frac{m_{e}}{4 \pi \sqrt{\eta \zeta}} \mathbf{k}=a b \frac{\hbar}{m_{e} a b} \frac{m_{e}}{4 \pi \sqrt{\eta \zeta}} \mathbf{k} \tag{11.100}
\end{equation*}
$$

Using the result of Eq. (11.88) gives the total constant angular momentum \mathbf{L} :

$$
\begin{equation*}
\mathbf{L}=8 \pi \int_{\xi}^{\infty} \hbar \frac{1}{4 \pi \sqrt{\eta \zeta}} R_{\xi} \frac{1}{2} \frac{\sqrt{(\xi-\eta)(\xi-\zeta)}}{R_{\xi}} \delta(\xi) d \xi \mathbf{k}=\hbar \mathbf{k} \tag{11.101}
\end{equation*}
$$

Eq. (11.101) demonstrates conservation of angular momentum that is a function of ξ alone that parallels the case of atomic electrons where \mathbf{L} conservation is a function of the radius r alone as given by Eq. (1.37).

Similarly, the kinetic energy $T(t)$ at each point i of mass m_{i} is:

$$
\begin{align*}
T(t) & =\frac{1}{2} m_{i} v(t)^{2} \\
& =\frac{1}{2} m_{i}(-\mathbf{i} a \omega \sin \omega t+\mathbf{j} b \omega \cos \omega t)^{2} \tag{11.102}\\
& =\frac{1}{2} m_{i} \omega^{2}\left(a^{2} \sin ^{2} \omega t+b^{2} \cos ^{2} \omega t\right)
\end{align*}
$$

In Eqs. (11.96-11.98), m_{i} was replaced by the mass density and the ξ integral was determined to give the centrifugal force in terms of the mass of the electron. The kinetic energy can also be determined from the ξ integral of the centrifugal force:

$$
\begin{equation*}
T=h_{2 c c} F_{c} \frac{a b^{2}}{2 D} \int_{\xi}^{\infty} \frac{d \xi}{R_{\xi}} \tag{11.103}
\end{equation*}
$$

The result is given in Eq. (11.119). From Eq. (11.102), the kinetic energy is time (position) dependent, but the total kinetic energy corresponding to the centrifugal force given by Eq. (11.95) satisfies the condition that the time-averaged kinetic energy is $1 / 2$ the time-averaged potential energy for elliptic motion in an inverse-squared central force [1]. (Here, the potential and total kinetic energies are constant and correspond to the time-averaged energies of the general case.) Thus, as shown by Eqs. (11.122) (11.124), (11.262), and (11.264) energy is conserved.

FORCE BALANCE OF HYDROGEN-TYPE MOLECULAR IONS

Consider the case of spheroidal coordinates based on the rotational symmetry about the semimajor axis [2]. In the limit, as the focal distance $2 c$ and the eccentricity of the series of confocal ellipses approaches zero, spheroidal coordinates go over into spherical coordinates with $\xi \rightarrow r$ and $\eta \rightarrow \cos \theta$. The field of an equipotential two-dimensional charge surface of constant radius $r=R$ is equivalent to that of a point charge of the total charge of the spherical shell at the origin. The force balance between the centrifugal force and the central Coulomb force for spherical symmetry is given by Eq. (1.253).

Similarly, the centrifugal force is in the direction of ξ and balances the central Coulombic force between the protons at the foci and the electron MO. In the case of the prolate spheroidal MO, the inhomogeneous equation given by Eq. (11.5) must hold for each fixed position of $r(t)$ since the MO is static in time due to the constant current condition. With $r(t)$ fixed, the $m \ddot{r}$ term of Eq. (11.5) is zero, and the force balanced equation is the balance between the centrifugal force and the Coulombic force which are both normal to the surface of the elliptic orbit:

$$
\begin{equation*}
m r \dot{\theta}^{2}=f(r) \tag{11.104}
\end{equation*}
$$

Substitution of Eq. (11.81) and Eq. (11.95) into Eq. (11.104) gives the force balance between the centrifugal and electric central forces:

$$
\begin{align*}
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{2 p e^{2}}{4 \pi \varepsilon_{0}} \frac{\left(1-\frac{a_{0}}{2 a p}\right)^{2}}{a b^{2}\left(2+\frac{a_{0}}{2 a p}\right)^{2}} D \tag{11.105}\\
& \frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} 2 a p}\left(2+\frac{a_{0}}{2 a p}\right)=\left(1-\frac{a_{0}}{2 a p}\right)^{2} \tag{11.106}\\
& \frac{a_{0}}{a p}+\left(\frac{a_{0}}{2 a p}\right)^{2}=\left(1-\frac{a_{0}}{2 a p}\right)^{2} \tag{11.107}\\
& \frac{a_{0}}{a p}+\left(\frac{a_{0}}{2 a p}\right)^{2}=1-\frac{a_{0}}{a p}+\left(\frac{a_{0}}{2 a p}\right)^{2} \tag{11.108}\\
& a=2 \frac{a_{0}}{p} \tag{11.109}
\end{align*}
$$

Substitution of a given by Eq. (11.109) into Eq. (11.79) gives:

$$
\begin{equation*}
c^{\prime}=\frac{a_{0}}{p} \tag{11.110}
\end{equation*}
$$

The internuclear distance from Eq. (11.110) is:

$$
\begin{equation*}
2 c^{\prime}=\frac{2 a_{0}}{p} \tag{11.111}
\end{equation*}
$$

Substitution of $a=\frac{2 a_{0}}{p}$ and $c^{\prime}=\frac{a_{0}}{p}$ into Eq. (11.80) gives the length of the semiminor axis of the prolate spheroidal MO, $b=c:$

$$
\begin{equation*}
b=\frac{\sqrt{3}}{p} a_{0} \tag{11.112}
\end{equation*}
$$

Substitution of $a=\frac{2 a_{0}}{p}$ and $c^{\prime}=\frac{a_{0}}{p}$ into Eq. (11.67) gives the eccentricity, e :

$$
\begin{equation*}
e=\frac{1}{2} \tag{11.113}
\end{equation*}
$$

From Eqs. (11.63-11.65), the result of Eq. (11.113) can be used to the obtain the electric force $\mathbf{F}_{\text {ele }}$ between the protons and the ellipsoidal MO as:

$$
\begin{equation*}
\mathbf{F}_{e l e}=Z e \mathbf{E} \mathbf{i}_{\xi}=h_{2 c c}^{-1} \frac{p 2 e^{2}}{4 \pi \varepsilon_{0} a b^{2}} D \mathbf{i}_{\xi}=\frac{p e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D \mathbf{i}_{\xi} \tag{11.114}
\end{equation*}
$$

where the electric field \mathbf{E} of the MO is given by Eq. (11.49). Then, the force balance of the hydrogen-type molecular ion is given by:

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{p e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D \tag{11.115}
\end{equation*}
$$

which has the parametric solution given by Eq. (11.83) when:

$$
\begin{equation*}
a=\frac{2 a_{0}}{p} \tag{11.116}
\end{equation*}
$$

The solutions for the prolate spheroidal axes and eccentricity are given by Eqs. (11.109-11.113).

ENERGIES OF HYDROGEN-TYPE MOLECULAR IONS

From Eq. (11.31), the magnitude of the ellipsoidal field corresponding to a below "ground state" hydrogen-type molecule is an integer, p. The force balance equation (Eq. (11.115)) applies for each point of the electron MO having non-constant charge (mass)-density and velocity over the equipotential and equal energy surface. The electron potential and kinetic energies are thus determined from an ellipsoidal integral.

The potential energy is doubled due to the transverse electric force. The force normal to the MO is given by the dot product of the sum of the force vectors from each focus with $\hat{\mathbf{d}}$ where the angle β is $\beta=\frac{\pi}{2}-\alpha$, and the transverse forces are given by the cross product with $\hat{\mathbf{d}}$. As shown in Figure 11.1, equivalently, the transverse projection is given with the angle α replacing β where the range of α is the same as β. The two contributions to the potential energy doubles it. The potential energy, V_{e}, of the electron MO in the field of magnitude p times that of the two protons at the foci is:

$$
\begin{align*}
V_{e} & =2 \frac{-2 p e^{2}}{4 \pi \varepsilon_{0}} D \frac{a b^{2}}{2 D} \int_{\xi}^{\infty} \frac{d \xi}{R_{\xi}} \\
& =\frac{-4 p e^{2}}{8 \pi \varepsilon_{0}} \int_{\xi}^{\infty} \frac{d \xi}{(\xi+b) \sqrt{\xi+a}} \tag{11.117}\\
& =\frac{-4 p e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \\
& =\frac{-4 p e^{2}}{8 \pi \varepsilon_{0} c^{\prime}} \ln \frac{a+c^{\prime}}{a-c^{\prime}}
\end{align*}
$$

where

$$
\begin{equation*}
\sqrt{a^{2}-b^{2}}=c^{\prime} \tag{11.118}
\end{equation*}
$$

$2 c^{\prime}$ is the distance between the foci which is the internuclear distance. The kinetic energy, T, of the electron MO follows from the same type of integral as V_{e} using Eqs. (7-14) of Stratton [8], Eqs. (11.37-11.46), and integral \#147 of Lide [9]. T is given by the corresponding integral of the centrifugal force (LHS of Eq. (11.115)) with the constraint that the current motion allows the equipotential and equal energy condition with a central field due to the protons; thus, it is corrected by the scale factor $h_{2 c c}$ given by Eq. (11.62). The $h_{2 c c}$ correction can be considered the scaling factor of the moment of inertia such that the kinetic energy is equivalent to the rotational energy for constant angular frequency ω. The kinetic energy, T, of the electron MO is given by

$$
\begin{equation*}
T=h_{2 c c} \frac{-\hbar^{2}}{m_{e} a^{2} b^{2}} D \frac{a b^{2}}{2 D} \int_{\xi}^{\infty} \frac{d \xi}{R_{\xi}}=\frac{-4 \hbar^{2}}{2 m_{e} a} \int_{\xi}^{\infty} \frac{d \xi}{(\xi+b) \sqrt{\xi+a}}=\frac{2 \hbar^{2}}{m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{11.119}
\end{equation*}
$$

The potential energy, V_{p}, due to proton-proton repulsion in the field of magnitude p times that of the protons at the foci ($\xi=0$) is:

$$
\begin{equation*}
V_{p}=\frac{p e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \tag{11.120}
\end{equation*}
$$

The total energy, E_{T}, is given by the sum of the energy terms

$$
\begin{equation*}
E_{T}=V_{e}+V_{p}+T \tag{11.121}
\end{equation*}
$$

Substitution of a and b given by Eqs. (11.109) and (11.112), respectively, into Eqs. (11.117), (11.119), (11.120), and (11.121) gives:

$$
\begin{align*}
& V_{e}=\frac{-4 p^{2} e^{2}}{8 \pi \varepsilon_{0} a_{0}} \ln 3 \tag{11.122}\\
& V_{p}=\frac{p^{2} e^{2}}{8 \pi \varepsilon_{0} a_{0}} \tag{11.123}\\
& T=\frac{2 p^{2} e^{2}}{8 \pi \varepsilon_{0} a_{0}} \ln 3 \tag{11.124}\\
& E_{T}=-13.6 e V\left(4 p^{2} \ln 3-p^{2}-2 p^{2} \ln 3\right)=-p^{2} 16.28 \mathrm{eV} \tag{11.125}
\end{align*}
$$

The total energy, which includes the proton-proton-repulsion term is negative which justifies the original treatment of the force balance using the analytical-mechanics equations of an ellipse that considered only the binding force between the protons and the electron and the electron centrifugal force. T is one-half the magnitude of V_{e} as required for an inverse-squared force [1] wherein V_{e} is the source of T.

VIBRATION OF HYDROGEN-TYPE MOLECULAR IONS

A charge, q, oscillating according to $\mathbf{r}_{0}(t)=\mathbf{d} \sin \omega_{0} t$ has a Fourier spectrum

$$
\begin{equation*}
\mathbf{J}(\mathbf{k}, \omega)=\frac{q \omega_{0} d}{2} J_{m}(k \cos \theta d)\left\{\delta\left[\omega-(m+1) \omega_{0}\right]+\delta\left[\omega-(m-1) \omega_{0}\right]\right\} \tag{11.126}
\end{equation*}
$$

where J_{m} ' s are Bessel functions of order m. These Fourier components can, and do, acquire phase velocities that are equal to the velocity of light [10]. The protons of hydrogen-type molecular ions and molecules oscillate as simple harmonic oscillators; thus, vibrating protons will radiate. Moreover, non-oscillating protons may be excited by one or more photons that are resonant with the oscillatory resonance frequency of the molecule or molecular ion, and oscillating protons may be further excited to higher energy vibrational states by resonant photons. The energy of a photon is quantized according to Planck's equation

$$
\begin{equation*}
E=\hbar \omega \tag{11.127}
\end{equation*}
$$

The energy of a vibrational transition corresponds to the energy difference between the initial and final vibrational states. Each state has an electromechanical resonance frequency, and the emitted or absorbed photon is resonant with the difference in frequencies. Thus, as a general principle, quantization of the vibrational spectrum is due to the quantized energies of photons and the electromechanical resonance of the vibrationally excited ion or molecule.

It is shown by Fowles [11] that a perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory motion of the orbit. In a circular orbit in spherical coordinates, the transverse equation of motion gives

$$
\begin{equation*}
\dot{\theta}=\frac{L / m}{r^{2}} \tag{11.128}
\end{equation*}
$$

where L is the angular momentum. The radial equation of motion is:

$$
\begin{equation*}
m\left(\ddot{r}-r \dot{\theta}^{2}\right)=f(r) \tag{11.129}
\end{equation*}
$$

Substitution of Eq. (11.128) into Eq. (11.129) gives:

$$
\begin{equation*}
m \ddot{r}-\frac{m(L / m)^{2}}{r^{3}}=f(r) \tag{11.130}
\end{equation*}
$$

For a circular orbit, r is a constant and $\ddot{r}=0$. Thus, the radial equation of motion is given by:

$$
\begin{equation*}
-\frac{m(L / m)^{2}}{a^{3}}=f(a) \tag{11.131}
\end{equation*}
$$

where a is the radius of the circular orbit for central force $f(a)$ at $r=a$. A perturbation of the radial motion may be expressed in terms of a variable x defined by:

$$
\begin{equation*}
x=r-a \tag{11.132}
\end{equation*}
$$

The differential equation can then be written as

$$
\begin{equation*}
m \ddot{x}-m(L / m)^{2}(x+a)^{-3}=f(x+a) \tag{11.133}
\end{equation*}
$$

Expanding the two terms involving $x+a$ as a power series in x, gives:

$$
\begin{equation*}
m \ddot{x}-m(L / m)^{2} a^{-3}\left(1-3 \frac{x}{a}+\ldots\right)=f(a)+f^{\prime}(a) x+\ldots \tag{11.134}
\end{equation*}
$$

Substitution of Eq. (11.131) into Eq. (11.134) and neglecting terms involving x^{2} and higher powers of x gives:

$$
\begin{equation*}
m \ddot{x}+\left[\frac{-3}{a} f(a)-f^{\prime}(a)\right] x=0 \tag{11.135}
\end{equation*}
$$

For an inverse-squared central field, the coefficient of x in Eq. (11.135) is positive, and the equation is the same as that of the simple harmonic oscillator. In this case, the particle, if perturbed, oscillates harmonically about the circle $r=a$, and an approximation of the angular frequency of this oscillation is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\left[\frac{-3}{a} f(a)-f^{\prime}(a)\right]}{m}}=\sqrt{\frac{k}{m}} \tag{11.136}
\end{equation*}
$$

An apsis is a point in an orbit at which the radius vector assumes an extreme value (maximum or minimum). The angle swept out by the radius vector between two consecutive apsides is called the apsidal angle. Thus, the apsidal angle is π for elliptical orbits under the inverse-squared law of force. In the case of a nearly circular orbit, Eq. (11.135) shows that r oscillates about the circle $r=a$, and the period of oscillation is given by:

$$
\begin{equation*}
\tau_{r}=2 \pi \sqrt{\frac{m}{-\left[\frac{3}{a} f(a)+f^{\prime}(a)\right]}} \tag{11.137}
\end{equation*}
$$

The apsidal angle in this case is just the amount by which the polar angle θ increases during the time that r oscillates from a minimum value to the succeeding maximum value which is τ_{r}. From Eq. (11.128), $\dot{\theta}=\frac{L / m}{r^{2}}$; therefore, θ remains constant, and Eq. (11.131) gives:

$$
\begin{equation*}
\dot{\theta} \approx \frac{L / m}{a^{2}}=\left[-\frac{f(a)}{m a}\right]^{1 / 2} \tag{11.138}
\end{equation*}
$$

Thus, the apsidal angle is given by

$$
\begin{equation*}
\psi=\frac{1}{2} \tau_{r} \dot{\theta}=\pi\left[3+a \frac{f^{\prime}(a)}{f(a)}\right]^{-1 / 2} \tag{11.139}
\end{equation*}
$$

Thus, the power force of $f(r)=-c r^{n}$ gives:

$$
\begin{equation*}
\psi=\pi(3+n)^{-1 / 2} \tag{11.140}
\end{equation*}
$$

The apsidal angle is independent of the size of the orbit in this case. The orbit is re-entrant, or repetitive, in the case of the inverse-squared law ($n=-2$) for which $\psi=\pi$.

A prolate spheroid MO and the definition of axes are shown in Figures 11.5A and 11.5B, respectively. Consider the two nuclei A and B, each at a focus of the prolate spheroid MO. From Eqs. (11.115), (11.117), and (11.119), the attractive force between the electron and each nucleus at a focus is:

$$
\begin{equation*}
f(a)=-\frac{p e^{2}}{4 \pi \varepsilon_{0} a^{2}} \tag{11.141}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(a)=\frac{2 p e^{2}}{4 \pi \varepsilon_{0} a^{3}} \tag{11.142}
\end{equation*}
$$

In addition to the attractive force between the electron and the nuclei, there is a repulsive force between the two nuclei that is the source of a corresponding reactive force on the reentrant electron orbit. Consider an elliptical orbital plane cross section of the MO in the xy-plane with a nucleus A at $\left(-c^{\prime}, 0\right)$ and a nucleus B at $\left(c^{\prime}, 0\right)$. For B acting as the attractive focus, the reactive repulsive force at the point $(a, 0)$, the positive semimajor axis, depends on the distance from $(a, 0)$ to nucleus A at $\left(-c^{\prime}, 0\right)$ (i.e. the distance from the position of the electron MO at the semimajor axis to the opposite nuclear repelling center at the opposite focus). The distance is given by the sum of the semimajor axis, a, and $c^{\prime}, 1 / 2$ the internuclear distance. The contribution from the repulsive force between the two protons is:

$$
\begin{equation*}
f\left(a+c^{\prime}\right)=\frac{p e^{2}}{8 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{2}} \tag{11.143}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}\left(a+c^{\prime}\right)=-\frac{p e^{2}}{4 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{3}} \tag{11.144}
\end{equation*}
$$

Thus, from Eqs. (11.136) and (11.141-11.144), the angular frequency of this oscillation is:

$$
\begin{align*}
\omega & =\sqrt{\frac{\frac{p e^{2}}{4 \pi \varepsilon_{0} a^{3}}-\frac{p e^{2}}{8 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{3}}}{\mu}} \\
& =\sqrt{\frac{p e^{2}}{\frac{4 \pi \varepsilon_{0}\left(\frac{2 a_{H}}{p}\right)^{3}}{}-\frac{p e^{2}}{8 \pi \varepsilon_{0}\left(\frac{3 a_{H}}{p}\right)^{3}}}} \tag{11.145}\\
& =p^{2} 4.44865 \times 10^{14} \mathrm{rad} / \mathrm{s}
\end{align*}
$$

where the semimajor axis, a, is $a=\frac{2 a_{H}}{p}$ according to Eq. (11.116) and c^{\prime} is $c^{\prime}=\frac{a_{H}}{p}$ according to Eq. (11.110).
In the case of a hydrogen molecule or molecular ion, the electrons which have a mass of $1 / 1836$ that of the protons move essentially instantaneously, and the charge density is that of a continuous membrane. Thus, a stable electron orbit is maintained with oscillatory motion of the protons. Hydrogen molecules and molecular ions are symmetrical along the semimajor axis; thus, the oscillatory motion of protons is along this axis. Let x be the increase in the semimajor axis due to the reentrant orbit with a corresponding displacement of the protons along the semimajor axis from the position of the initial foci of the stationary state. The equation of proton motion due to the perturbation of an orbit having a central inverse-squared central force [1] and neglecting terms involving x^{2} and higher is given by

$$
\begin{equation*}
\mu \ddot{x}+k x=0 \tag{11.146}
\end{equation*}
$$

which has the solution in terms of the maximum amplitude of oscillation, A, the reduced nuclear mass, μ, the restoring constant or spring constant, k, the resonance angular frequency, ω_{0}, and the vibrational energy, $E_{\text {vib }}$, [12]

$$
\begin{equation*}
A \cos \omega_{0} t \tag{11.147}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{0}=\sqrt{\frac{k}{\mu}} \tag{11.148}
\end{equation*}
$$

For a symmetrical displacement x, the potential energy corresponding to the oscillation $E_{\text {Pvib }}$ is given by:

$$
\begin{equation*}
E_{P v i b}=2\left(\frac{1}{2} k x^{2}\right)=k x^{2} \tag{11.149}
\end{equation*}
$$

The total energy of the oscillating molecular ion, $E_{\text {Totalvib }}$, is given as the sum of the kinetic and potential energies

$$
\begin{equation*}
E_{\text {Totalvib }}=\frac{1}{2} \mu \dot{x}^{2}+k x^{2} \tag{11.150}
\end{equation*}
$$

The velocity is zero when x is the maximum amplitude, A. The total energy of the oscillating molecular ion, $E_{\text {Totalvib }}$, is then given as the potential energy with $x=A$

$$
\begin{equation*}
E_{\text {Totalvib }}=k A^{2} \tag{11.151}
\end{equation*}
$$

thus,

$$
\begin{equation*}
A=\sqrt{\frac{E_{\text {Totalvib }}}{k}} \tag{11.152}
\end{equation*}
$$

It is shown in the Excited States of the One-Electron Atom (Quantization) section that the change in angular frequency of the electron atomic orbital (Eq. (2.21)) is identical to the angular frequency of the photon necessary for the excitation, $\omega_{\text {photon }}$ (Eq. (2.19)). The energy of the photon necessary to excite the equivalent transition in an electron atomic orbital is one-half of the excitation energy of the stationary cavity because the change in kinetic energy of the electron atomic orbital supplies one-half of the necessary energy. The change in the angular frequency of the atomic orbital during a transition and the angular frequency of the photon corresponding to the superposition of the free space photon and the photon corresponding to the kinetic energy change of the atomic orbital during a transition are equivalent. The correspondence principle holds. It can be demonstrated that the resonance condition between these frequencies is to be satisfied in order to have a net change of the energy field [13]. The bound electrons are excited with the oscillating protons. Thus, the mechanical resonance frequency, ω_{0}, is only one-half that of the electromechanical frequency which is equal to the frequency of the free space photon, ω, which excites the vibrational mode of the hydrogen molecule or hydrogen molecular ion. The vibrational energy, $E_{\text {vib }}$, corresponding to the photon is given by:

$$
\begin{equation*}
E_{v i b}=\hbar \omega=\hbar \omega_{0}=\hbar \sqrt{\frac{k}{\mu}}=2 k A^{2} \tag{11.153}
\end{equation*}
$$

where Planck's equation (Eq. (11.127)) was used. The reduced mass is given by:

$$
\begin{equation*}
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \tag{11.154}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
A=\sqrt{\frac{\hbar \omega_{0}}{2 k}} \tag{11.155}
\end{equation*}
$$

Since the protons and electron are not fixed, but vibrate about the center of mass, the maximum amplitude is given by the reduced amplitude, $A_{\text {reduced }}$, given by

$$
\begin{equation*}
A_{\text {reduced }}=\frac{A_{1} A_{2}}{A_{1}+A_{2}} \tag{11.156}
\end{equation*}
$$

where A_{n} is the amplitude n if the origin is fixed. Thus, Eq. (11.155) becomes:

$$
\begin{equation*}
A_{\text {reduced }}=\frac{1}{2} \sqrt{\frac{\hbar \omega_{0}}{2 k}} \tag{11.157}
\end{equation*}
$$

and from Eq. (11.148), $A_{\text {reduced }}$ is:

$$
\begin{equation*}
A_{\text {reduced }}=\frac{1}{2} \sqrt{\frac{\hbar \omega_{0}}{2 k}}=\frac{1}{2} \sqrt{\frac{\hbar}{2 k}}\left(\frac{k}{\mu}\right)^{1 / 4}=\frac{\sqrt{\hbar}}{2^{3 / 2}(k \mu)^{1 / 4}} \tag{11.158}
\end{equation*}
$$

Then, from Eq. (11.67), $A_{c^{\prime}}$, the displacement of c^{\prime} is the eccentricity e given by Eq. (11.113) times $A_{\text {reduced }}$ (Eq. (11.158)):

$$
\begin{equation*}
A_{c^{\prime}}=e A_{\text {reduced }}=\frac{A_{\text {reduced }}}{2}=\frac{\sqrt{\hbar}}{2^{5 / 2}(k \mu)^{1 / 4}} \tag{11.159}
\end{equation*}
$$

Thus, during bond formation, the perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory motion of the orbit, and the corresponding frequency, $\omega(0)$, for a hydrogen-type molecular ion $H_{2}^{+}(1 / p)$ given by Eqs. (11.136) and (11.145) is

$$
\begin{equation*}
\omega(0)=p^{2} \sqrt{\frac{k(0)}{\mu}}=p^{2} \sqrt{\frac{165.51 \mathrm{Nm}^{-1}}{\mu}}=p^{2} 4.449 \times 10^{14} \text { radians } / \mathrm{s} \tag{11.160}
\end{equation*}
$$

where the reduced nuclear mass of hydrogen given by Eq. (11.154) is:

$$
\begin{equation*}
\mu=0.5 m_{p} \tag{11.161}
\end{equation*}
$$

and the spring constant, $k(0)$, given by Eqs. (11.136) and (11.145) is:

$$
\begin{equation*}
k(0)=p^{4} 165.51 \mathrm{Nm}^{-1} \tag{11.162}
\end{equation*}
$$

The transition-state vibrational energy, $E_{\text {vib }}(0)$, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
E_{v i b}(0)=\hbar \omega=\hbar p^{2} 4.44865 \times 10^{14} \mathrm{rad} / \mathrm{s}=p^{2} 0.2928 \mathrm{eV} \tag{11.163}
\end{equation*}
$$

The amplitude of the oscillation, $A_{\text {reduced }}(0)$, given by Eq. (11.158) and Eqs. (11.161-11.162) is:

$$
\begin{equation*}
A_{\text {reduced }}(0)=\frac{\sqrt{\hbar}}{2^{3 / 2}\left(p^{4} 165.51 \mathrm{Nm}^{-1} \mu\right)^{1 / 4}}=\frac{5.952 \times 10^{-12} \mathrm{~m}}{p}=0.1125 \frac{a_{0}}{p} \tag{11.164}
\end{equation*}
$$

Then, from Eq. (11.67), $A_{c^{\prime}}(0)$, the displacement of c^{\prime} is the eccentricity e given by Eq. (11.113) times $A_{\text {reduced }}(0)$ (Eq. (11.164)).

$$
\begin{equation*}
A_{c^{\prime}}(0)=e A_{\text {reduced }}(0)=\frac{A_{\text {reduced }}(0)}{2}=\frac{\sqrt{\hbar}}{2^{5 / 2}(k \mu)^{1 / 4}}=\frac{0.05624 a_{0}}{p} \tag{11.165}
\end{equation*}
$$

The spring constant and vibrational frequency for the formed molecular ion are then obtained from Eqs. (11.136) and (11.14111.145) using the increases in the semimajor axis and internuclear distances due to vibration in the transition state. The vibrational energy, $E_{\text {vib }}(1)$, for the $H_{2}^{+}(1 / p) \quad v=1 \rightarrow v=0$ transition given by adding $A_{c^{\prime}}(0)$ (Eq. (11.159)) to the distances a and $a+c^{\prime}$ in Eqs. (11.145) and (11.163) is:

$$
\begin{equation*}
E_{\text {vib }}(1)=p^{2} 0.270 \mathrm{eV} \tag{11.166}
\end{equation*}
$$

where v is the vibrational quantum number.
A harmonic oscillator is a linear system as given by Eq. (11.146). In this case, the predicted resonant vibrational frequencies and energies, spring constants, and amplitudes for $H_{2}^{+}(1 / p)$ for vibrational transitions to higher energy $v_{i} \rightarrow v_{f}$ are given by $\left(v_{f}-v_{i}\right)$ times the corresponding parameters given by Eq. (11.160) and Eqs. (11.162-11.164). However, excitation of vibration of the molecular ion by external radiation causes the semimajor axis and, consequently, the internuclear distance to increase as a function of the vibrational quantum number v. Consequently, the vibrational energies of hydrogen-type molecular ions are nonlinear as a function of the vibrational quantum number v. The lines become more closely spaced and the change in
amplitude, $\Delta A_{\text {reduced }}$, between successive states becomes larger as higher states are excited due to the distortion of the molecular ion in these states. The energy difference of each successive transition of the vibrational spectrum can be obtained by considering nonlinear terms corresponding to anharmonicity.

The harmonic oscillator potential energy function can be expanded about the internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K\&P) [14] and after Eq. (11.134). Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy corrections can be found by perturbation methods. The energy \tilde{v}_{v} of state v is:

$$
\begin{equation*}
\tilde{v}_{v}=v \omega_{0}-v(v-1) \omega_{0} x_{0}, \quad v=0,1,2,3 \ldots \tag{11.167}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{0} x_{0}=\frac{h c \omega_{0}^{2}}{4 D_{0}} \tag{11.168}
\end{equation*}
$$

ω_{0} is the frequency of the $v=1 \rightarrow v=0$ transition corresponding to Eq. (11.166), and D_{0} is the bond dissociation energy given by Eq. (11.198). From Eqs. (11.166), (11.168), and (11.198),

$$
\begin{equation*}
\omega_{0} x_{0}=\frac{100 \mathrm{hc}\left(8.06573 \times 10^{3} \frac{\mathrm{~cm}^{-1}}{e V} p^{2} 0.270 \mathrm{eV}\right)^{2}}{4 e\left(p^{2} 2.535 \mathrm{eV}+p^{3} 0.118755 \mathrm{eV}\right)} \mathrm{cm}^{-1} \tag{11.169}
\end{equation*}
$$

The vibrational energies of successive states are given by Eqs. (11.166-11.167) and (11.169).
Using Eqs. (11.145), (11.158-11.160), (11.162-11.169), and (11.199) the corresponding parameters for deuterium-type molecular ions with:

$$
\begin{equation*}
\mu=m_{p} \tag{11.170}
\end{equation*}
$$

are

$$
\begin{align*}
& \omega(0)=p^{2} \sqrt{\frac{k(0)}{\mu}}=p^{2} \sqrt{\frac{165.65 \mathrm{Nm}^{-1}}{\mu}}=p^{2} 3.147 \times 10^{14} \text { radians } / \mathrm{s} \tag{11.171}\\
& k(0)=p^{4} 165.65 \mathrm{Nm}^{-1} \tag{11.172}\\
& E_{\text {vib }}(0)=p^{2} 0.20714 \mathrm{eV} \tag{11.173}\\
& A_{\text {reduced }}(0)=\frac{\sqrt{\hbar}}{2^{3 / 2}\left(p^{4} 165.65 \mathrm{Nm}^{-1} \mu\right)^{1 / 4}}=\frac{5.004 \times 10^{-12} \mathrm{~m}}{p}=0.09457 \frac{a_{0}}{p} \tag{11.174}\\
& E_{\text {vib }}(1)=p^{2} 0.193 \mathrm{eV} \tag{11.175}\\
& \omega_{0} x_{0}=\frac{100 \mathrm{hc}\left(8.06573 \times 10^{3} \frac{\mathrm{~cm}^{-1}}{e V} p^{2} 0.193 \mathrm{eV}\right)^{2}}{4 e\left(p^{2} 2.5770 \mathrm{eV}+p^{3} 0.118811 \mathrm{eV}\right)} \mathrm{cm}^{-1} \tag{11.176}
\end{align*}
$$

The vibrational energies of successive states are given by Eqs. (11.167) and (11.175-11.176).

THE DOPPLER ENERGY TERM OF HYDROGEN-TYPE MOLECULAR IONS

As shown in the Vibration of Hydrogen-type Molecular Ions section, the electron orbiting the nuclei at the foci of an ellipse may be perturbed such that a stable reentrant orbit is established that gives rise to a vibrational state corresponding to time harmonic oscillation of the nuclei and electron. The perturbation is caused by a photon that is resonant with the frequency of oscillation of the nuclei wherein the radiation is electric dipole with the corresponding selection rules.

Oscillation may also occur in the transition state. The perturbation arises from the decrease in internuclear distance as the molecular bond forms. Relative to the unperturbed case given in the Force Balance of Hydrogen-type Molecular Ions section, the reentrant orbit may give rise to a decrease in the total energy while providing a transient kinetic energy to the vibrating nuclei. However, as an additional condition for stability, radiation must be considered. Regarding the potential for radiation, the nuclei may be considered point charges. A point charge undergoing periodic motion accelerates and as a consequence radiates according to the Larmor formula (cgs units) [15]:

$$
\begin{equation*}
P=\frac{2 e^{2}}{3 c^{3}}|\dot{\mathbf{v}}|^{2} \tag{11.177}
\end{equation*}
$$

where e is the charge, $\dot{\mathbf{v}}$ is its acceleration, and c is the speed of light. The radiation has a corresponding force that can be determined based on conservation of energy with radiation. The radiation reaction force, $\mathbf{F}_{\text {rad }}$, given by Jackson [16] is:

$$
\begin{equation*}
\mathbf{F}_{\mathrm{rad}}=\frac{2}{3} \frac{e^{2}}{c^{3}} \ddot{\mathbf{v}} \tag{11.178}
\end{equation*}
$$

Then, the Abraham-Lorentz equation of motion is given by [16]:

$$
\begin{equation*}
m\left(\dot{\mathbf{v}}-\frac{2}{3} \frac{e^{2}}{m c^{3}} \ddot{\mathbf{v}}\right)=\mathbf{F}_{\mathrm{ext}} \tag{11.179}
\end{equation*}
$$

where $\mathbf{F}_{\text {ext }}$ is the external force and m is the mass. The external force for the vibrating system is given by Eq. (11.146).

$$
\begin{equation*}
\mathbf{F}_{\mathrm{ext}}=k x \tag{11.180}
\end{equation*}
$$

where x is the displacement of the protons along the semimajor axis from the position of the initial foci of the stationary state in the absence of vibration with a reentrant orbit of the electron. A nonradiative state must be achieved after the emission due to transient vibration wherein the nonradiative condition given by Eq. (11.24) must be satisfied.

As shown in the Resonant Line Shape and Lamb Shift section, the spectroscopic linewidth arises from the classical risetime band-width relationship, and the Lamb Shift is due to conservation of energy and linear momentum and arises from the radiation reaction force between the electron and the photon. The radiation reaction force in the case of the vibration of the molecular ion in the transition state corresponds to a Doppler energy, E_{D}, that is dependent on the motion of the electron and the nuclei. The Doppler energy of the electron is given by Eq. (2.155) after Gibb [17]:

$$
\begin{equation*}
\bar{E}_{D} \cong 2 \sqrt{E_{K} E_{R}}=E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}} \tag{11.181}
\end{equation*}
$$

where E_{R} is the recoil energy which arises from the photon's linear momentum given by Eq. (2.153), E_{K} is the vibrational kinetic energy of the reentrant orbit in the transition state, and M is the mass of the electron m_{e}.

As given in the Vibration of Hydrogen-Type Molecular Ions section, for an inverse-squared central field, the coefficient of x in Eq. (11.135) is positive, and the equation is the same as that of the simple harmonic oscillator. Since the electron of the hydrogen molecular ion is perturbed as the internuclear separation decreases with bond formation, it oscillates harmonically about the semimajor axis given by Eq. (11.116), and an approximation of the angular frequency of this oscillation is

$$
\begin{equation*}
\omega=\sqrt{\frac{\left[\frac{-3}{a} f(a)-f^{\prime}(a)\right]}{m_{e}}}=\sqrt{\frac{k}{m_{e}}} \tag{11.182}
\end{equation*}
$$

From Eqs. (11.115), (11.117), and (11.119), the central force terms between the electron MO and the two protons are:

$$
\begin{equation*}
f(a)=-\frac{2 p e^{2}}{4 \pi \varepsilon_{0} a^{2}} \tag{11.183}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(a)=\frac{4 p e^{2}}{4 \pi \varepsilon_{0} a^{3}} \tag{11.184}
\end{equation*}
$$

Thus, the angular frequency of this oscillation is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{2 p e^{2}}{\frac{4 \pi \varepsilon_{0}\left(\frac{2 a_{H}}{p}\right)^{3}}{m_{e}}}}{e^{2}}}=p^{2} 2.06538 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{11.185}
\end{equation*}
$$

where the semimajor axis, a, is $a=\frac{2 a_{H}}{p}$ according to Eq. (11.116) including the reduced electron mass. The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar p^{2} 2.06538 \times 10^{16} \mathrm{rad} / \mathrm{s}=p^{2} 13.594697 \mathrm{eV} \tag{11.186}
\end{equation*}
$$

In Eq. (11.181), substitution of the total energy of the hydrogen molecular ion, E_{T}, (Eq. (11.125)) for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (11.186) for \bar{E}_{K} divided by p^{2}, the number of multipoles of a molecular hydrino state p (Eq. (5.45)) gives the Doppler energy of the electron for the reentrant orbit.

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-p^{2} 16.28034 \mathrm{eV} \sqrt{\frac{2 e\left(p^{2} 13.594697 \mathrm{eV}\right)}{p^{2} m_{e} c^{2}}}=-p^{2} 0.118755 \mathrm{eV} \tag{11.187}
\end{equation*}
$$

The total energy of the molecular ion is decreased by \bar{E}_{D}.
In addition to the electron, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency given in the Vibration of Hydrogen-Type Molecular Ions section. On average, the total energy of vibration is equally distributed between kinetic energy and potential energy [18]. Thus, the average kinetic energy of vibration corresponding to the Doppler energy of the electrons, $\bar{E}_{\text {Kvib }}$, is $1 / 2$ of the vibrational energy of the molecular ion given by Eq. (11.166). The decrease in the energy of the hydrogen molecular ion due to the reentrant orbit in the transition state
corresponding to simple harmonic oscillation of the electron and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} and $\bar{E}_{\text {Kvib }}$. Using Eq. (11.187) and $E_{\text {vib }}$ from Eq. (11.163) gives:

$$
\begin{align*}
& \bar{E}_{\text {osc }}=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar p^{2} \sqrt{\frac{k}{\mu}} \tag{11.188}\\
& \bar{E}_{\text {osc }}=-p^{2} 0.118755 \mathrm{eV}+\frac{1}{2} p^{2}(0.29282 \mathrm{eV}) \tag{11.189}
\end{align*}
$$

To the extent that the MO dimensions are the same, the electron reentrant orbital energies \bar{E}_{K} are the same independent of the isotope of hydrogen, but the vibrational energies are related by Eq. (11.148). Thus, the differences in bond energies are essentially given by $1 / 2$ the differences in vibrational energies. Using Eq. (11.187) with the deuterium reduced electron mass for E_{T} and \bar{E}_{D}, and $E_{\text {vib }}$ for $D_{2}^{+}(1 / p)$ given by Eq. (11.173), that corresponds to the deuterium reduced nuclear mass (Eq. (11.170)), the corresponding $\bar{E}_{\text {osc }}$ is:

$$
\begin{equation*}
\bar{E}_{\text {osc }}=-p^{2} 0.118811 e V+\frac{1}{2} p^{2}(0.20714 \mathrm{eV}) \tag{11.190}
\end{equation*}
$$

TOTAL, IONIZATION, AND BOND ENERGIES OF HYDROGEN AND DEUTERIUM MOLECULAR IONS

The total energy of the hydrogen molecular ion which is equivalent to the negative of the ionization energy is given by the sum of E_{T} (Eqs. (11.121) and (11.125)) and $\bar{E}_{\text {osc }}$ given by Eqs. (11.185-11.188). Thus, the total energy of the hydrogen molecular ion having a central field of $+p e$ at each focus of the prolate spheroid molecular orbital including the Doppler term is:

$$
\begin{align*}
E_{T} & =V_{e}+V_{p}+T+\bar{E}_{\text {osc }} \tag{11.191}\\
E_{T} & =-p^{2}\left\{\left[\begin{array}{l}
\frac{e^{2}}{8 \pi \varepsilon_{0} a_{H}}(4 \ln 3-1-2 \ln 3)\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left(2 a_{H}\right)^{3}}} m_{e}}{m_{e} c^{2}}}\right.
\end{array}\right]-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right\} \tag{11.192}\\
& =-p^{2} 16.2803 e V-p^{2} 0.118755 e V+\frac{1}{2} p^{2} \hbar \sqrt{\frac{k}{\mu}}
\end{align*}
$$

From Eqs. (11.189) and (11.191-11.192), the total energy for hydrogen-type molecular ions is:

$$
\begin{align*}
E_{T} & =-p^{2} 16.28033 \mathrm{eV}+\bar{E}_{\text {osc }} \\
& =-p^{2} 16.28033 \mathrm{eV}-p^{2} 0.118755 \mathrm{eV}+\frac{1}{2} p^{2}(0.29282 \mathrm{eV}) \tag{11.193}\\
& =-p^{2} 16.252675 \mathrm{eV}
\end{align*}
$$

The total energy of the deuterium molecular ion is given by the sum of E_{T} (Eq. (11.125)) corrected for the reduced electron mass of D and $\bar{E}_{\text {osc }}$ given by Eq. (11.190).

$$
\begin{align*}
E_{T} & =-p^{2} 16.284 \mathrm{eV}+\bar{E}_{\text {osc }} \\
& =-p^{2} 16.284 \mathrm{eV}-p^{2} 0.118811 \mathrm{eV}+\frac{1}{2} p^{2}(0.20714 \mathrm{eV}) \tag{11.194}\\
& =-p^{2} 16.2988 \mathrm{eV}
\end{align*}
$$

The bond dissociation energy, E_{D}, is the difference between the total energy of the corresponding hydrogen atom or $H(1 / p)$ atom [19-20], called hydrino atom having a principal quantum number $1 / p$ where p is an integer, and E_{T}.

$$
\begin{equation*}
E_{D}=E(H(1 / p))-E_{T} \tag{11.195}
\end{equation*}
$$

where [19]

$$
\begin{equation*}
E(H(1 / p))=-p^{2} 13.59844 \mathrm{eV} \tag{11.196}
\end{equation*}
$$

and [20]

$$
\begin{equation*}
E(D(1 / p))=-p^{2} 13.603 \mathrm{eV} \tag{11.197}
\end{equation*}
$$

The hydrogen molecular ion bond energy, E_{D}, is given by Eq. (11.193) with the reduced electron mass and Eqs. (11.19511.196):

$$
\begin{align*}
E_{D} & =-p^{2} 13.59844-E_{T} \\
& =-p^{2} 13.59844-\left(-p^{2} 16.252675 \mathrm{eV}\right) \tag{11.198}\\
& =p^{2} 2.65424 \mathrm{eV}
\end{align*}
$$

The deuterium molecular ion bond energy, E_{D}, is given by Eq. (11.194) with the reduced electron mass of D and Eqs. (11.195) and (11.197).

$$
\begin{align*}
E_{D} & =-p^{2} 13.603-E_{T} \\
& =-p^{2} 13.603-\left(-p^{2} 16.2988 \mathrm{eV}\right) \tag{11.199}\\
& =p^{2} 2.6958 \mathrm{eV}
\end{align*}
$$

HYDROGEN-TYPE MOLECULES

FORCE BALANCE OF HYDROGEN-TYPE MOLECULES

Hydrogen-type molecules comprise two indistinguishable electrons bound by an elliptic field. Each electron experiences a centrifugal force. The balancing centripetal force (on each electron) is produced by the electric force between the electron and the elliptic electric field and the magnetic force between the two electrons causing the electrons to pair wherein the interaction between the pairing electrons involves a magnetic moment of a Bohr magneton, μ_{B}, as given in the Magnetic Moment of an Ellipsoidal MO section. The internal field is uniform along the major axis, and the far field is that of a dipole as shown in the Magnetic Field of an Ellipsoidal MO section. The magnetic force is derived by first determining the interaction of the two electrons due to the field of the outer electron 2 acting on the magnetic moments of electron 1 and vice versa. Insight into the behavior is given by considering the physics of a single bound electron in an externally applied uniform magnetic field as discussed in the Two-Electron Atoms section. The uniform current- (charge-) density function $Y_{0}^{0}(\theta, \phi)$ was given in the Atomic Orbital Equation of Motion for $\ell=0$ Based on the Current Vector Field (CVF) section. The resultant angular momentum projections of the spherically-symmetric atomic orbital current density, $Y_{0}^{0}(\theta, \phi)$, corresponding to the interaction are $\mathbf{L}_{x y}=\frac{\hbar}{4}$ and $\mathbf{L}_{z}=\frac{\hbar}{2}$. As shown in the Resonant Precession of the Spin-1/2-Current-Density Function Gives Rise to the Bohr Magneton section, the electron spin angular momentum gives rise to a trapped photon with \hbar of angular momentum along an \mathbf{S}-axis. Then, the spin state of an atomic orbital comprises a photon standing wave that is phase-matched to a spherical harmonic source current, a spherical harmonic dipole $Y_{\ell}^{m}(\theta, \phi)=\sin \theta$ with respect to the \mathbf{S}-axis. The dipole spins about the \mathbf{S} axis at the angular velocity given by Eq. (1.36) with \hbar of angular momentum. \mathbf{S} rotates about the z-axis at the Larmor frequency at $\theta=\frac{\pi}{3}$ such that it has a static projection of the angular momentum of $\mathbf{S}_{\|}= \pm \hbar \cos \frac{\pi}{3}= \pm \frac{\hbar}{2} \mathbf{i}_{Z_{R}}$ as given by Eq. (1.97), and from Eq. (1.96), the projection of \mathbf{S} onto the transverse plane (xy-plane) is $\mathbf{S}_{\perp}=\hbar \sin \frac{\pi}{3}= \pm \sqrt{\frac{3}{4}} \hbar \mathbf{i}_{Y_{R}}$. Then, the vector projection of the radiation-reaction-type magnetic force of the Two Electron Atom section given by Eqs. (7.24) and (7.31) contain the factor $\sqrt{\frac{3}{4}} \hbar$. This represents the maximum projection of the time-dependent magnetic moment onto an axis of the spherical-central-force system.

The atomic orbital can serve as a basis element to form a molecular orbital (MO). The total magnitude of the angular momentum of \hbar is conserved for each member of the linear combinations of $Y_{0}^{0}(\theta, \phi)$'s in the transition from the $Y_{0}^{0}(\theta, \phi)$'s to the MO. Since the charge and current densities have the same distribution, the equipotential energy surface solution of Laplace's equation for the charge distribution also determines the current distribution. Newton's laws determine the angular frequency and the velocity of the charge motion corresponding to the current. Specifically, the further constraint from Newton's laws that the orbital surface is a constant total energy surface and the condition of nonradiation provide that the motion is periodic with a constant period and that the current is continuous and constant over a period. These boundary conditions determine the corresponding velocity function. In non-spherical coordinates, the nonuniform charge distribution given by Laplace's equation is compensated by a nonuniform velocity distribution such that the constant current condition is met. Then, the conservation of the angular momentum is provided when symmetrically stretching the current density of an atomic $Y_{0}^{0}(\theta, \phi)$ current density along the semimajor axis of the MO so formed.

The angular momentum projection may be determined by first considering the case of the hydrogen molecular ion. Specifically, the angular momentum must give the results of the Stern-Gerlach experiment as shown for atomic electrons and free electrons in the Resonant Precession of the Spin-1/2-Current-Density Function Gives Rise to the Bohr Magneton section and Stern-Gerlach Experiment section, respectively. The hydrogen-molecular-ion MO, and all MOs in general, have cylindrical symmetry along the bond axis. Then, in general, $Y_{0}^{0}(\theta, \phi)$ can serve as a basis element for an MO having cylindrical symmetry along the semimajor axis. This defines the axis for stretching the $Y_{0}^{0}(\theta, \phi)$ basis element to form the MO (Figure 11.2) while conserving the angular momentum. The charge and current distribution is normalized by applying the method given in the

Uniformity of $Y_{0}{ }^{0}(\theta, \phi)$ section according to the distribution given by Eq. (11.42). This gives rise to an ellipsoidal surface comprised of the equivalent of elliptical-orbit, plane cross sections in the direction parallel to the semimajor axis with the conserved angular momentum projections along the orthogonal semiminor axes.

Figure 11.2. The bound electron MO, a prolate spheroidal two-dimensional supercurrent comprising an extended continuous distribution of charge and current completely surrounding the nuclei at the foci, obtained by stretching $Y_{0}^{0}(\theta, \phi)$ along the semimajor axis. Unlike a spinning top, there is a complex pattern of motion on its surface that generates two orthogonal components of angular momentum (Figure 11.4) that give rise to the phenomenon of electron spin. A. The z-axis view of the MO current paths having $\mathbf{L}_{z}=\frac{\hbar}{2}$ matching the angular momentum projection on the $\left(-\frac{1}{\sqrt{2}} \mathbf{i}_{x}, \frac{1}{\sqrt{2}} \mathbf{i}_{y}, \mathbf{i}_{z}\right)$-axis of the basis element $Y_{0}^{0}(\theta, \phi)$. B. A representation of the z-axis view of the continuous charge-density and supercurrent-density distributions of the MO with 144 vectors overlaid giving the direction of the currents (nuclei not to scale).

As shown in the Atomic Orbital Equation of Motion for $\ell=0$ Based on the Current Vector Field (CVF) section, the atomic orbital is comprised of the uniform function $Y_{0}^{0}(\theta, \phi)$ with the intrinsic angular momentum directed along two orthogonal axes having three angular momentum components of $\mathbf{L}_{x y}=+/-\frac{\hbar}{4}$ and $\mathbf{L}_{z}=\frac{\hbar}{2}$. Then, $Y_{0}^{0}(\theta, \phi)$ serves as the basis element for the formation of a MO with conservation of the total magnitude of the angular momentum of \hbar (Eq. (1.37)) and the orthogonal projections $\mathbf{L}_{x y}$ and \mathbf{L}_{z} of $Y_{0}^{0}(\theta, \phi)$ directed along the semiminor axes of the MO. Since the direction of the stretching of the great-circle elements of $Y_{0}^{0}(\theta, \phi)$ having a radius of the semiminor axes is perpendicular to the angular momentum axes, the conserved angular momentum projections of the MO are $\mathbf{L}_{y}=+/-\frac{\hbar}{4}$ and $\mathbf{L}_{z}=\frac{\hbar}{2}$ as shown in Figure 11.4. The transform is that of a minimum energy, equipotential spherical to prolate spheroidal surface. A convenient method to perform the stretching is numerically using a computer instead of using basis elements, convolutions, and rotational matrices in ellipsoidal coordinates following the method for construction of $Y_{0}^{0}(\theta, \phi)$ given in the Generation of the Atomic Orbital CVFs section. As shown for the $Y_{0}^{0}(\theta, \phi)$ normalization algorithm in the Uniformity of $Y_{0}{ }^{0}(\theta, \phi)$ section, the equipotential charge density of the MO can be obtained by stretching and weighting the total constant current on each current loop without changing the angular momentum distribution since the changes are orthogonal to the angular momentum axes. In addition, the current distribution along each loop is adjusted to achieve the equipotential charge density (Eq. (11.42)) wherein the current is constant due to a corresponding variable velocity with position on the loop (Eqs. (11.84) and (11.23-11.24) using the area A of the elliptic plane section of the prolate spheroid).

The algorithm for generating the charge and current density numerically may be an adaptation of computed tomography algorithms such as the original: Apply an Affine transform to the atomic electron current pattern to form an initial current distribution. Calculate the density at each point area from the initial distribution, substrate it from the prolate spheroid distribution, add the normalized error to the current of each contributing loop, distribute the current correction along each loop in a manner to match Eq. (11.45), and repeat over all point areas repetitively until the error goes to zero. Alternatively, a numerical spheroid to ellipsoidal transform may be applied to the numerically normalized atomic current motion wherein the angular momentum of each current loop is conserved and the constant current is based on the corresponding velocity variation on the ellipsoidal surface. Specifically, normalization was achieved using a transformation that transforms an ellipsoidal MO into the

AO atomic orbital $Y_{0}{ }^{0}(\theta, \phi)$. Then, sample points of the normalized sphere were used to numerically perform the transform in reverse using the inverse of the ellipsoidal MO to $Y_{0}{ }^{0}(\theta, \phi)$ transformation to give the current densities shown in Figure 11.3 [21]. The change in velocity is inherently compensated by the mass/charge density such that the overall flow of increments of mass/charge on each ellipse is constant, and the transform of each ellipse to a circle is such that the angular momentum remains the same. The radius of the sphere is the same as the semiminor axis, but could be arbitrary in the normalization algorithm since densities are computed (corresponding to the number of samples in a certain solid angle).

Figure 11.3. The y-axis view of the numerically normalized current density of the ellipsoidal MO using the inverse of the ellipsoidal MO to $Y_{0}{ }^{0}(\theta, \phi)$ transformation.

Now consider the behavior of the hydrogen molecular ion in a magnetic field. As shown in the Resonant Precession of the Spin-1/2-Current-Density Function Gives Rise to the Bohr Magneton section, in general, the photon angular momentum corresponding to the resonant excitation of the Larmor excited state is \hbar, and the angular momentum change corresponding to the spin-flip transition is also \hbar. In the case of the hydrogen molecular ion, the Larmor-excitation photon carries \hbar of angular momentum that gives rise to a prolate spheroidal dipole current about an \mathbf{S}-axis in the same manner as in the case of the spherical dipole of the Larmor excited atomic orbital shown in Figures 1.15 and 1.16. The former are given by the prolate angular function, which comprises an associated Legendre function $P_{\ell}^{m}(\eta)$ [22], and the latter comprises the spherical harmonic dipole $Y_{\ell}^{m}(\theta, \phi)=\sin \theta$. Both are with respect to the \mathbf{S}-axis. For hydrogen molecular ion, $\mathbf{L}_{y}=+/-\frac{\hbar}{4}$ and $\mathbf{L}_{z}=\frac{\hbar}{2}$ of intrinsic spin are along the semiminor axes of the prolate spheroidal MO and \mathbf{S} is along the semimajor axis as shown in Figure 11.4. Thus, the Larmor excitation is constrained by Maxwell's equations to be along the semimajor axis. In general, all bonds are cylindrically symmetrical about the internuclear or semimajor axis; thus, the Larmor precession occurs about the bond axis of an MO wherein the intrinsic angular momentum components rotate about \mathbf{S} at the Larmor frequency and are not stationary relative to the magnetic field. In the coordinate system rotating at the Larmor frequency (denoted by the axes labeled X_{R}, Y_{R}, and Z_{R} in Figure 11.2), the angular momentum of \mathbf{S} of magnitude \hbar is stationary. The Y_{R}-components of magnitude $+/-\frac{\hbar}{4}$ and the Z_{R} component of magnitude $\frac{\hbar}{2}$ rotate about \mathbf{S} at the Larmor frequency. The opposing intrinsic magnetic moments of $\pm \frac{\mu_{B}}{4}$ along the Y_{R}-axis corresponding to the angular momentum of $\mathbf{L}_{y}=+/-\frac{\hbar}{4}$ (Eq. (28) of Box 1.1 and Eq. (2.65)) balances the torque on the $\frac{\hbar}{2}$ angular momentum component along the Z_{R}-axis, and all of the components have the necessary orthogonality.

Then, the \mathbf{S}-axis is the direction of the magnetic moment of each unpaired electron of a molecule or molecular ion. The magnetic moment of \mathbf{S} of μ_{B} corresponding to its \hbar of angular momentum is consistent with the Stern-Gerlach experiment. The Larmor excitation can only be parallel or antiparallel to the magnetic field in order to conserve the angular momentum of the electron as well as the \hbar of angular momentum of each of the photon corresponding to the Larmor excitation and the photon that causes a 180° flip of the direction of \mathbf{S}. The result is the same as that for the atomic electron and the free electron given in the Resonant Precession of the Spin-1/2-Current-Density Function Gives Rise to the Bohr Magneton section and Stern-Gerlach Experiment section, respectively. The magnetic field is given in the Magnetic Field of an Ellipsoidal Molecular Orbital section.

Figure 11.4. The angular momentum components of the MO and S in the rotating coordinate system X_{R}, Y_{R}, and Z_{R} that precesses at the Larmor frequency about \mathbf{S} such that the \mathbf{S} vector is stationary.

Next, consider the magnetic-pairing force of the hydrogen molecule due to the spin-angular-momentum components. The magnetic moments of electrons 1 and 2 of the hydrogen molecule cancel, as they are spin paired to form an energy minimum at the distance ξ (i.e. $\xi_{1}=\xi_{2}$). The molecular magnetic force follows from the derivation for that between the electrons of two-electron atoms as given in the Two-Electron Atoms section. The latter force was derived by first determining the interaction of the two electrons due to the field of the outer electron 2 acting on the magnetic moment of electron 1 and vice versa. It was also given by the relationship between the angular momentum, energy, and frequency for the transition of electron 2 from the continuum to the ground state of the two-electron atom. The molecular magnetic force follows from Eqs. (7.25-7.31) with the conversion to ellipsoidal coordinates. The conversion is apparent from comparing the centrifugal forces for each coordinate system given by Eq. (11.98) and Eqs. (7.1-7.2). In the present case of hydrogen-type molecules, the radiation-reaction-type magnetic force arises between the electrons, each having the components shown in Figure 11.4. With the photon angular momentum projection of \hbar and the total nuclear charge (non-photon-field) of 2 , the magnitude of the magnetic force between the two electrons is $1 / 2$ that of the centrifugal force given by Eq. (11.95). This force is a term in the overall force balance.

In addition to the spin pairing force between the two electrons, the electric and centrifugal forces must be considered in the force balance. In the hydrogen-type molecule, the two electrons are bound by the central electric field as in the case of the molecular ion. The hydrogen-type molecule is formed by the binding of an electron 2 to the hydrogen-type molecular ion comprising two protons at the foci of the prolate spheroidal MO of electron 1. The ellipsoids of electron 1 and electron 2 are confocal; thus, the electric fields and the corresponding forces are normal to each MO of electron 1 and electron 2. The field of the protons is ellipsoidal on average, and the binding of electron 2 requires a quantized energy release in units of \hbar. The magnetic force is also quantized in terms of \hbar. The final bound electrons must have the same angular momentum and be paired in the same orbit; thus, they must have the same eccentricity. This is only possible according to Eq. (11.11) if they have the same central force. Consequently, to conserve angular momentum, the electric force on electron 2 must be the same as that as on electron 1. Due to the magnetic pairing force between electron 2 and electron 1 as well as the central electric force, the balance between the centrifugal force and the central field of electron 2 of the hydrogen-type molecule formed by electron 2 binding to a hydrogen-type molecular ion is the same as that given by Eq. (11.115). Then, the force balance between the centrifugal force and the sum of the Coulombic and additionally the magnetic spin-pairing forces to solve for the semimajor axis is:

$$
\begin{align*}
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{p e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{11.200}\\
& \frac{2 a_{0}}{p a}-\frac{a_{0}}{p a}=1 \tag{11.201}
\end{align*}
$$

$$
\begin{equation*}
a=\frac{a_{0}}{p} \tag{11.202}
\end{equation*}
$$

Substitution of Eq. (11.202) into Eq. (11.79) is:

$$
\begin{equation*}
c^{\prime}=\frac{1}{p \sqrt{2}} a_{0} \tag{11.203}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (11.203) by two is:

$$
\begin{equation*}
2 c^{\prime}=\frac{a_{0} \sqrt{2}}{p} \tag{11.204}
\end{equation*}
$$

Substitution of Eqs. (11.202-11.203) into Eq. (11.80) is:

$$
\begin{equation*}
b=c=\frac{1}{p \sqrt{2}} a_{0} \tag{11.205}
\end{equation*}
$$

Substitution of Eqs. (11.202-11.203) into Eq. (11.67) is:

$$
\begin{equation*}
e=\frac{1}{\sqrt{2}} \tag{11.206}
\end{equation*}
$$

For hydrogen, $r(t)=D$ for $\theta=n \frac{\pi}{2}, n=0,1,2,3,4$. Thus, there is no dipole moment, and the molecule is not predicted to be infrared active. However, it is predicted to be Raman active due to the quadrupole moment. The liquefaction temperature of H_{2} is also predicted to be significantly higher than isoelectronic helium.

ENERGIES OF HYDROGEN-TYPE MOLECULES

The energy components defined previously for the molecular ion, Eqs. (11.117), (11.119), (11.120), and (11.121), apply in the case of the corresponding molecule except that all of the field lines of the protons must end on the MO comprising two-paired electrons. With spin pairing of the mirror-image-current electrons, the scaling factors due to the non-ellipsoidal variation of the electric field of the protons is unity as in the case of the sum of squares of spherical harmonics. Thus, the hydrogen-type molecular energies are given by the integral of the forces without correction. Then, each molecular-energy component is given by the integral of corresponding force in Eq. (11.200) where each energy component is the total for the two equivalent electrons with the central-force action at the position of the electron MO where the parameters a and b are given by Eqs. (11.202) and (11.205), respectively.

The potential energy, V_{e}, of the two-electron MO comprising equivalent electrons in the field of magnitude p times that of the two protons at the foci is:

$$
\begin{align*}
V_{e} & =2 \frac{-p e^{2}}{4 \pi \varepsilon_{0}} D \frac{a b^{2}}{2 D} \int_{\xi}^{\infty} \frac{d \xi}{R_{\xi}} \\
& =\frac{-2 p e^{2}}{8 \pi \varepsilon_{0}} \int_{\xi}^{\infty} \frac{d \xi}{(\xi+b) \sqrt{\xi+a}} \tag{11.207}\\
& =\frac{-2 p e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}
\end{align*}
$$

which is equivalent to $Z e=2 p e$ times the potential of the MO given by Eq. (11.46) after Eq. (11.114). The potential energy, V_{p}, due to proton-proton repulsion in the field of magnitude p times that of the protons at the foci $(\xi=0)$ is

$$
\begin{equation*}
V_{p}=\frac{p}{8 \pi \varepsilon_{0}} \frac{e^{2}}{\sqrt{a^{2}-b^{2}}} \tag{11.208}
\end{equation*}
$$

The kinetic energy, T, of the two-electron MO of total mass $2 m_{e}$ is:

$$
\begin{align*}
T & =2 \frac{-\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \frac{a b^{2}}{2 D} \int_{\xi}^{\infty} \frac{d \xi}{R_{\xi}} \\
& =\frac{-\hbar^{2}}{2 m_{e} a} \int_{\xi}^{\infty} \frac{d \xi}{(\xi+b) \sqrt{\xi+a}} \tag{11.209}\\
& =\frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}
\end{align*}
$$

The magnetic energy, V_{m}, of the two-electron MO of total mass $2 m_{e}$ corresponding to the magnetic force of Eq. (11.200) is:

$$
\begin{align*}
V_{m} & =2 \frac{-\hbar^{2}}{2\left(2 m_{e}\right) a^{2} b^{2}} D \frac{a b^{2}}{2 D} \int_{\xi}^{\infty} \frac{d \xi}{R_{\xi}} \\
& =\frac{-\hbar^{2}}{4 m_{e} a} \int_{\xi}^{\infty} \frac{d \xi}{(\xi+b) \sqrt{\xi+a}} \tag{11.210}\\
& =\frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}
\end{align*}
$$

The total energy, E_{T}, is given by the sum of the energy terms (Eqs. (11.207-11.210)).

$$
\begin{align*}
& E_{T}=V_{e}+T+V_{m}+V_{p} \tag{11.211}\\
& E_{T}=-13.60 e V\left[\left(2 p^{2} \sqrt{2}-p^{2} \sqrt{2}+\frac{p^{2} \sqrt{2}}{2}\right) \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}-p^{2} \sqrt{2}\right]=-p^{2} 31.63 \tag{11.212}
\end{align*}
$$

where a and b are given by Eqs. (11.202) and (11.205), respectively. The total energy, which includes the proton-protonrepulsion term is negative which justifies the original treatment of the force balance using the analytical mechanics equation of an ellipse that considered only the binding force between the protons and the electrons and the electron centrifugal force. As shown by Eqs. (11.290) and (11.292), T is one-half the magnitude of V_{e} as required for an inverse-squared force [1] wherein V_{e} is the source of T.

VIBRATION OF HYDROGEN-TYPE MOLECULES

The vibrational energy levels of hydrogen-type molecules may be solved in the same manner as hydrogen-type molecular ions given in the Vibration of Hydrogen-type Molecular Ions section. The corresponding central force terms of Eq. (11.136) are:

$$
\begin{equation*}
f(a)=-\frac{p e^{2}}{8 \pi \varepsilon_{0} a^{2}} \tag{11.213}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(a)=\frac{p e^{2}}{4 \pi \varepsilon_{0} a^{3}} \tag{11.214}
\end{equation*}
$$

The distance for the reactive nuclear-repulsive terms is given by the sum of the semimajor axis, a, and $c^{\prime}, 1 / 2$ the internuclear distance. The contribution from the repulsive force between the two protons is:

$$
\begin{equation*}
f\left(a+c^{\prime}\right)=\frac{p e^{2}}{8 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{2}} \tag{11.215}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}\left(a+c^{\prime}\right)=-\frac{p e^{2}}{4 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{3}} \tag{11.216}
\end{equation*}
$$

Thus, from Eqs. (11.136) and (11.213-11.216), the angular frequency of the oscillation is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{p e^{2}}{8 \pi \varepsilon_{0} a^{3}}-\frac{p e^{2}}{8 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{3}}}{\mu}}=\sqrt{\frac{p e^{2}}{\frac{8 \pi \varepsilon_{0}\left(\frac{a_{0}}{p}\right)^{3}}{}-\frac{p e^{2}}{8 \pi \varepsilon_{0}\left(\frac{\left(1+\frac{1}{\sqrt{2}}\right) a_{0}}{p}\right)^{3}}}}=p^{2} 8.62385 \times 10^{14} \mathrm{rad} / \mathrm{s} \tag{11.217}
\end{equation*}
$$

where the semimajor axis, a, is $a=\frac{a_{0}}{p}$ according to Eq. (11.202) and c^{\prime} is $c^{\prime}=\frac{a_{0}}{p \sqrt{2}}$ according to Eq. (11.203). Thus, during bond formation, the perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory motion of the orbit, and the corresponding frequency, $\omega(0)$, for a hydrogen-type molecule $H_{2}(1 / p)$ given by Eqs. (11.136) and (11.145) is:

$$
\begin{equation*}
\omega(0)=p^{2} \sqrt{\frac{k(0)}{\mu}}=p^{2} \sqrt{\frac{621.98 \mathrm{Nm}^{-1}}{\mu}}=p^{2} 8.62385 \times 10^{14} \text { radians } / \mathrm{s} \tag{11.218}
\end{equation*}
$$

where the reduced nuclear mass of hydrogen is given by Eq. (11.161) and the spring constant, $k(0)$, given by Eqs. (11.136) and (11.217) is:

$$
\begin{equation*}
k(0)=p^{4} 621.98 \mathrm{Nm}^{-1} \tag{11.219}
\end{equation*}
$$

The transition-state vibrational energy, $E_{\text {vib }}(0)$, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
E_{v i b}(0)=\hbar \omega=\hbar p^{2} 8.62385 \times 10^{14} \mathrm{rad} / \mathrm{s}=p^{2} 0.56764 \mathrm{eV} \tag{11.220}
\end{equation*}
$$

The amplitude of oscillation, $A_{\text {reduced }}(0)$, given by Eqs. (11.158), (11.161), and (11.219) is:

$$
\begin{equation*}
A_{\text {reduced }}(0)=\frac{\sqrt{\hbar}}{2^{3 / 2}\left(p^{4} 621.98 \mathrm{Nm}^{-1} \mu\right)^{1 / 4}}=\frac{4.275 \times 10^{-12} \mathrm{~m}}{p}=0.08079 \frac{a_{0}}{p} \tag{11.221}
\end{equation*}
$$

Then, from Eq. (11.67), $A_{c^{\prime}}(0)$, the displacement of c^{\prime} is the eccentricity e given by Eq. (11.206) times $A_{\text {reduced }}(0)$ (Eq. (11.221)):

$$
\begin{equation*}
A_{\tau^{\prime}}(0)=e A_{\text {reduced }}(0)=\frac{A_{\text {reduced }}(0)}{\sqrt{2}}=\frac{\sqrt{\hbar}}{4(k \mu)^{1 / 4}}=\frac{0.05713 a_{0}}{p} \tag{11.222}
\end{equation*}
$$

The spring constant and vibrational frequency for the formed molecule are then obtained from Eqs. (11.136) and (11.21311.222) using the increases in the semimajor axis and internuclear distances due to vibration in the transition state. The vibrational energy, $E_{\text {vib }}(1)$, for the $H_{2}(1 / p) v=1 \rightarrow v=0$ transition given by adding $A_{c^{\prime}}(0)$ (Eq. (11.222)) to the distances a and $a+c^{\prime}$ in Eqs. (11.213-11.220) is:

$$
\begin{equation*}
E_{v i b}(1)=p^{2} 0.517 \mathrm{eV} \tag{11.223}
\end{equation*}
$$

where v is the vibrational quantum number. Using Eq. (11.176) with Eqs. (11.223) and (11.252), the anharmonic perturbation term, $\omega_{0} x_{0}$, of $H_{2}(1 / p)$ is

$$
\begin{equation*}
\omega_{0} x_{0}=\frac{100 h c\left(8.06573 \times 10^{3} \frac{\mathrm{~cm}^{-1}}{e V} p^{2} 0.517 \mathrm{eV}\right)^{2}}{4 e\left(p^{2} 4.151 \mathrm{eV}+p^{3} 0.326469 \mathrm{eV}\right)} \mathrm{cm}^{-1} \tag{11.224}
\end{equation*}
$$

where ω_{0} is the frequency of the $v=1 \rightarrow v=0$ transition corresponding to Eq. (11.223) and D_{0} is the bond dissociation energy given by Eq. (11.252). The vibrational energies of successive states are given by Eqs. (11.167) and (11.223-11.224).

Using the reduced nuclear mass given by Eq. (11.170), the corresponding parameters for deuterium-type molecules $D_{2}(1 / p)$ (Eqs. (11.213-11.224) and (11.253)) are:

$$
\begin{align*}
& \omega(0)=p^{2} \sqrt{\frac{k(0)}{\mu}}=p^{2} \sqrt{\frac{621.98 \mathrm{Nm}^{-1}}{\mu}}=p^{2} 6.09798 \times 10^{14} \text { radians } / \mathrm{s} \tag{11.225}\\
& k(0)=p^{4} 621.98 \mathrm{Nm}^{-1} \tag{11.226}\\
& E_{\text {vib }}(0)=p^{2} 0.4014 \mathrm{eV} \tag{11.227}\\
& A_{\text {reduced }}(0)=\frac{\sqrt{\hbar}}{2^{3 / 2}\left(p^{4} 621.98 \mathrm{Nm}^{-1} \mu\right)^{1 / 4}}=\frac{3.595 \times 10^{-12} \mathrm{~m}}{p}=0.06794 \frac{a_{0}}{p} \tag{11.228}\\
& E_{\text {vib }}(1)=p^{2} 0.371 \mathrm{eV} \tag{11.229}\\
& \omega_{0} x_{0}=\frac{100 h c\left(8.06573 \times 10^{3} \frac{\mathrm{~cm}^{-1}}{e V} p^{2} 0.371 \mathrm{eV}\right)^{2}}{4 e\left(p^{2} 4.229 \mathrm{eV}+p^{3} 0.326469 \mathrm{eV}\right)} \mathrm{cm}^{-1} \tag{11.230}
\end{align*}
$$

The vibrational energies of successive states are given by Eqs. (11.167) and (11.229-11.230).

THE DOPPLER ENERGY TERM OF HYDROGEN-TYPE MOLECULES

The radiation reaction force in the case of the vibration of the molecule in the transition state also corresponds to the Doppler energy, E_{D}, given by Eq. (11.181) that is dependent on the motion of the electrons and the nuclei. Here, a nonradiative state must also be achieved after the emission due to transient vibration wherein the nonradiative condition given by Eq. (11.24) must be satisfied. Typically, a third body is required to form hydrogen-type molecules. For example, the exothermic chemical reaction of $\mathrm{H}+\mathrm{H}$ to form H_{2} does not occur with the emission of a photon. Rather, the reaction requires a collision with a third body, M, to remove the bond energy- $H+H+M \rightarrow H_{2}+M^{*}$ [23]. The third body distributes the energy from the exothermic reaction, and the end result is the H_{2} molecule and an increase in the temperature of the system. Thus, a third body removes the energy corresponding to the additional force term given by Eq. (11.180). From Eqs. (11.200), (11.207) and (11.209), the central force terms between the electron MO and the two protons are:

$$
\begin{equation*}
f(a)=-\frac{p e^{2}}{4 \pi \varepsilon_{0} a^{2}} \tag{11.231}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(a)=\frac{2 p e^{2}}{4 \pi \varepsilon_{0} a^{3}} \tag{11.232}
\end{equation*}
$$

Thus, the angular frequency of this oscillation is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{p e^{2}}{\frac{4 \pi \varepsilon_{0}\left(\frac{a_{0}}{p}\right)^{3}}{m_{e}}}}{)^{2}}}=p^{2} 4.13414 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{11.233}
\end{equation*}
$$

where the semimajor axis, a, is $a=\frac{a_{0}}{p}$ according to Eq. (11.202). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar p^{2} 4.13414 \times 10^{16} \mathrm{rad} / \mathrm{s}=p^{2} 27.2116 \mathrm{eV} \tag{11.234}
\end{equation*}
$$

In Eq. (11.181), substitution of the total energy of the hydrogen molecule, E_{T}, (Eq. (11.212)) for $E_{h \nu}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (11.234) for \bar{E}_{K} divided by p^{2}, the number of multipoles of a molecular hydrino state p (Eq. (5.45)), gives the Doppler energy of the electrons for the reentrant orbit.

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-31.635 p^{2} e V \sqrt{\frac{2 e\left(p^{2} 27.2116 \mathrm{eV}\right)}{p^{2} m_{e} c^{2}}}=-p^{2} 0.326469 \mathrm{eV} \tag{11.235}
\end{equation*}
$$

The total energy of the molecule is decreased by \bar{E}_{D}.
In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency given in the Vibration of Hydrogen-Type Molecules section. On average, the total energy of vibration is equally distributed between kinetic energy and potential energy [18]. Thus, the average kinetic energy of vibration corresponding to the Doppler energy of the electrons, $\bar{E}_{\text {Kvib }}$, is $1 / 2$ of the vibrational energy of the molecule given by Eq. (11.148). The decrease in the energy of the hydrogen molecule due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} and $\bar{E}_{\text {Kvib }}$. Using Eq. (11.235) and $E_{\text {vib }}$ from Eq. (11.220) gives:

$$
\begin{align*}
& \bar{E}_{\text {osc }}=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar p^{2} \sqrt{\frac{k}{\mu}} \tag{11.236}\\
& \bar{E}_{\text {osc }}=-p^{2} 0.326469 \mathrm{eV}+\frac{1}{2} p^{2}(0.56764 \mathrm{eV}) \tag{11.237}
\end{align*}
$$

To the extent that the MO dimensions are the same, the electron reentrant orbital energies, \bar{E}_{K}, are the same independent of the isotope of hydrogen, but the vibrational energies are related by Eq. (11.148). Thus, the differences in bond energies are essentially given by $1 / 2$ the differences in vibrational energies. Using Eq. (11.235) and $E_{\text {vib }}$ for $D_{2}(1 / p)$ given by Eq. (11.227), that corresponds to the deuterium reduced nuclear mass (Eq. (11.170)), the corresponding $\bar{E}_{\text {osc }}$ is:

$$
\begin{equation*}
\bar{E}_{\text {osc }}=-p^{2} 0.326469 \mathrm{eV}+\frac{1}{2} p^{2}(0.401380 \mathrm{eV}) \tag{11.238}
\end{equation*}
$$

TOTAL, IONIZATION, AND BOND ENERGIES OF HYDROGEN AND DEUTERIUM MOLECULES

The total energy of the hydrogen molecule is given by the sum of E_{T} (Eqs. (11.211-11.212)) and $\bar{E}_{\text {osc }}$ given in Eqs. (11.23311.236). Thus, the total energy of the hydrogen molecule having a central field of $+p e$ at each focus of the prolate spheroid molecular orbital including the Doppler term is:

$$
\begin{align*}
& E_{T}=V_{e}+T+V_{m}+V_{p}+\bar{E}_{\text {osc }} \tag{11.239}\\
& E_{T}=-p^{2}\left\{\begin{array}{l}
\left.\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}\left[\left(2 \sqrt{2}-\sqrt{2}+\frac{\sqrt{2}}{2}\right) \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}-\sqrt{2}\right]\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{e^{e}}{m_{0} a_{0}^{3}}}}{m_{e} c^{2}}}\right]-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right\} \\
\end{array}\right. \tag{11.240}\\
&=-p^{2} 31.635 e V-p^{2} 0.326469 e V+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}
\end{align*}
$$

From Eqs. (11.237) and (11.239-11.240), the total energy for hydrogen-type molecules is:

$$
\begin{align*}
E_{T} & =-p^{2} 31.635 \mathrm{eV}+\bar{E}_{\text {osc }} \\
& =-p^{2} 31.635 \mathrm{eV}-p^{2} 0.326469 \mathrm{eV}+\frac{1}{2} p^{2}(0.56764 \mathrm{eV}) \tag{11.241}\\
& =-p^{2} 31.6775 \mathrm{eV}
\end{align*}
$$

The total energy of the deuterium molecule is given by the sum of E_{T} (Eq. (11.212)) and $\bar{E}_{\text {osc }}$ given by Eq. (11.238).

$$
\begin{align*}
E_{T} & =-p^{2} 31.6354 \mathrm{eV}+\bar{E}_{\text {osc }} \\
& =-p^{2} 31.6354 \mathrm{eV}-p^{2} 0.326469 \mathrm{eV}+\frac{1}{2} p^{2}(0.401380 \mathrm{eV}) \tag{11.242}\\
& =-p^{2} 31.760 \mathrm{eV}
\end{align*}
$$

The total energy, which includes the proton-proton-repulsion term is negative which justifies the original treatment of the force balance using the analytical mechanics equation of an ellipse that considered only the binding force between the protons and the electrons, the spin-pairing force, and the electron centrifugal force.

The first ionization energy of the hydrogen molecule, $I P_{1}$,

$$
\begin{equation*}
H_{2}(1 / p) \rightarrow H_{2}^{+}(1 / p)+e^{-} \tag{11.243}
\end{equation*}
$$

is given by the difference of Eqs. (11.193) and (11.241).

$$
\begin{align*}
I P_{1} & =E_{T}\left(H_{2}^{+}(1 / p)\right)-E_{T}\left(H_{2}(1 / p)\right) \\
& =-p^{2} 16.2527 \mathrm{eV}-\left(-p^{2} 31.6775 \mathrm{eV}\right) \tag{11.244}\\
& =p^{2} 15.4248 \mathrm{eV}
\end{align*}
$$

The second ionization energy, $I P_{2}$, is given by the negative of Eq. (11.193).

$$
\begin{equation*}
I P_{2}=p^{2} 16.2527 \mathrm{eV} \tag{11.245}
\end{equation*}
$$

The first ionization energy of the deuterium molecule, $I P_{1}$,

$$
\begin{equation*}
D_{2}(1 / p) \rightarrow D_{2}^{+}(1 / p)+e^{-} \tag{11.246}
\end{equation*}
$$

is given by the difference of Eqs. (11.194) and (11.242).

$$
\begin{align*}
I P_{1} & =E_{T}\left(D_{2}^{+}(1 / p)\right)-E_{T}\left(D_{2}(1 / p)\right) \\
& =-p^{2} 16.2988 \mathrm{eV}-\left(-p^{2} 31.761 \mathrm{eV}\right) \tag{11.247}\\
& =p^{2} 15.4627 \mathrm{eV}
\end{align*}
$$

The second ionization energy, $I P_{2}$, is given by the negative of Eq. (11.194).

$$
\begin{equation*}
I P_{2}=p^{2} 16.2988 \mathrm{eV} \tag{11.248}
\end{equation*}
$$

The bond dissociation energy, E_{D}, is the difference between the total energy of the corresponding hydrogen atoms and E_{T}

$$
\begin{equation*}
E_{D}=E(2 H(1 / p))-E_{T} \tag{11.249}
\end{equation*}
$$

where [19]:

$$
\begin{equation*}
E(2 H(1 / p))=-p^{2} 27.20 \mathrm{eV} \tag{11.250}
\end{equation*}
$$

and [20]:

$$
\begin{equation*}
E(2 D(1 / p))=-p^{2} 27.206 \mathrm{eV} \tag{11.251}
\end{equation*}
$$

The hydrogen bond energy, E_{D}, is given by Eqs. (11.249-11.250) and (11.241):

$$
\begin{align*}
E_{D} & =-p^{2} 27.20 \mathrm{eV}-E_{T} \\
& =-p^{2} 27.20 \mathrm{eV}-\left(-p^{2} 31.677 \mathrm{eV}\right) \tag{11.252}\\
& =p^{2} 4.478 \mathrm{eV}
\end{align*}
$$

The deuterium bond energy, E_{D}, is given by Eqs. (11.249), (11.251), and (11.242):

$$
\begin{align*}
E_{D} & =-p^{2} 27.206 \mathrm{eV}-E_{T} \\
& =-p^{2} 27.206 \mathrm{eV}-\left(-p^{2} 31.760 \mathrm{eV}\right) \tag{11.253}\\
& =p^{2} 4.556 \mathrm{eV}
\end{align*}
$$

THE HYDROGEN MOLECULAR ION $\mathbf{H}_{2}\left[\mathbf{2 c} \mathbf{c}^{\prime}=\mathbf{2 a _ { 0 }}\right]^{+}$

FORCE BALANCE OF HYDROGEN MOLECULAR ION

Force balance between the electric and centrifugal forces is given by Eq. (11.115) where $p=1$

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D \tag{11.254}
\end{equation*}
$$

which has the parametric solution given by Eq. (11.83) when:

$$
\begin{equation*}
a=2 a_{0} \tag{11.255}
\end{equation*}
$$

The semimajor axis, a, is also given by Eq. (11.116) where $p=1$. The internuclear distance, $2 c^{\prime}$, which is the distance between the foci is given by Eq. (11.111) where $p=1$.

$$
\begin{equation*}
2 c^{\prime}=2 a_{0} \tag{11.256}
\end{equation*}
$$

The experimental internuclear distance is $2 a_{o}$. The semiminor axis is given by Eq. (11.112) where $p=1$.

$$
\begin{equation*}
b=\sqrt{3} a_{0} \tag{11.257}
\end{equation*}
$$

The eccentricity, e, is given by Eq. (11.113).

$$
\begin{equation*}
e=\frac{1}{2} \tag{11.258}
\end{equation*}
$$

ENERGIES OF THE HYDROGEN MOLECULAR ION

The potential energy, V_{e}, of the electron MO in the field of the protons at the foci $(\xi=0)$ is given by Eq. (11.117) where $p=1$

$$
\begin{equation*}
V_{e}=\frac{-4 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{11.259}
\end{equation*}
$$

The potential energy, V_{p}, due to proton-proton repulsion is given by Eq. (11.120) where $p=1$

$$
\begin{equation*}
V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \tag{11.260}
\end{equation*}
$$

The kinetic energy, T, of the electron MO is given by Eq. (11.119) where $p=1$

$$
\begin{equation*}
T=\frac{2 \hbar^{2}}{m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{11.261}
\end{equation*}
$$

Substitution of a and b given by Eqs. (11.255) and (11.257), respectively, into Eqs. (11.259-11.261) is:

$$
\begin{align*}
& V_{e}=\frac{-4 e^{2}}{8 \pi \varepsilon_{0} a_{H}} \ln 3=-59.7575 \mathrm{eV} \tag{11.262}\\
& V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} a_{H}}=13.5984 \mathrm{eV} \tag{11.263}\\
& T=\frac{2 e^{2}}{8 \pi \varepsilon_{0} a_{H}} \ln 3=29.8787 \mathrm{eV} \tag{11.264}
\end{align*}
$$

The Doppler term, $\bar{E}_{\text {osc }}$, for hydrogen and deuterium are given by Eqs. (11.189) and (11.190), respectively, where $p=1$

$$
\begin{equation*}
\bar{E}_{\text {osc }}\left(H_{2}^{+}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=-0.118755 \mathrm{eV}+\frac{1}{2}(0.29282 \mathrm{eV})=0.027655 \mathrm{eV} \tag{11.265}
\end{equation*}
$$

$$
\begin{equation*}
\bar{E}_{\text {osc }}\left(D_{2}^{+}\right)=-0.118811 \mathrm{eV}+\frac{1}{2}(0.20714 \mathrm{eV})=-0.01524 \mathrm{eV} \tag{11.266}
\end{equation*}
$$

The total energy, E_{T}, for the hydrogen molecular ion given by Eqs. (11.191-11.193) is:

$$
\begin{align*}
E_{T} & =-\left\{\frac{e^{2}}{8 \pi e_{0} a_{H}}(4 \ln 3-1-2 \ln 3)\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{4 \pi \varepsilon_{0}\left(2 a_{H}\right)^{3}}{m_{e}}}}{m_{e} c^{2}}}\right]-\frac{1}{2} \hbar \sqrt{\frac{k}{m}}\right\} \\
& =-16.2803 \mathrm{eV}-0.118755 \mathrm{eV}+\frac{1}{2}(0.29282 \mathrm{eV}) \tag{11.267}\\
& =-16.2527 \mathrm{eV}
\end{align*}
$$

where in Eqs. (11.262-11.267), the radius of the hydrogen atom a_{H} (Eq. (1.259)) was used in place of a_{0} to account for the corresponding electrodynamic force between the electron and the nuclei as given in the case of the hydrogen atom by Eq. (1.252). The negative of Eq. (11.267) is the ionization energy of H_{2}^{+}and the second ionization energy, $I P_{2}$, of H_{2}. From Eqs. (11.191-11.192) and (11.194), the total energy, E_{T}, for the deuterium molecular ion (the ionization energy of D_{2}^{+}and the second ionization energy, $I P_{2}$, of D_{2}) is:

$$
\begin{equation*}
E_{T}=-16.284 \mathrm{eV}-0.118811 \mathrm{eV}+\frac{1}{2}(0.20714 \mathrm{eV})=-16.299 \mathrm{eV} \tag{11.268}
\end{equation*}
$$

The bond dissociation energy, E_{D}, is the difference between the total energy of the corresponding hydrogen atom and E_{T}. The hydrogen molecular ion bond energy, E_{D}, including the reduced electron mass given by Eq. (11.198) where $p=1$ is

$$
\begin{equation*}
E_{D}=2.535 \mathrm{eV}+0.118755 \mathrm{eV}=2.654 \mathrm{eV} \tag{11.269}
\end{equation*}
$$

The experimental bond energy of the hydrogen molecular ion [24] is:

$$
\begin{equation*}
E_{D}=2.651 \mathrm{eV} \tag{11.270}
\end{equation*}
$$

From Eq. (11.199) where $p=1$, the deuterium molecular ion bond energy, E_{D}, including the reduced electron mass of D is

$$
\begin{equation*}
E_{D}=2.5770 \mathrm{eV}+0.118811 \mathrm{eV}=2.6958 \mathrm{eV} \tag{11.271}
\end{equation*}
$$

The experimental bond energy of the deuterium molecular ion [25] is:

$$
\begin{equation*}
E_{D}=2.691 \mathrm{eV} \tag{11.272}
\end{equation*}
$$

VIBRATION OF THE HYDROGEN MOLECULAR ION

It can be shown that a perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory motion of the orbit [11]. The resonant vibrational frequency for H_{2}^{+}given by Eq. (11.160) is:

$$
\begin{equation*}
\omega(0)=\sqrt{\frac{k(0)}{\mu}}=\sqrt{\frac{165.51 \mathrm{Nm}^{-1}}{\mu}}=4.449 \times 10^{14} \text { radians } / \mathrm{s} \tag{11.273}
\end{equation*}
$$

wherein $p=1$. The spring constant, $k(0)$, for H_{2}^{+}given by Eq. (11.162) is:

$$
\begin{equation*}
k(0)=165.51 \mathrm{Nm}^{-1} \tag{11.274}
\end{equation*}
$$

The vibrational energy, $E_{\text {vib }}(0)$, of H_{2}^{+}during bond formation given by Eq. (11.163) is:

$$
\begin{equation*}
E_{\text {vib }}(0)=0.29282 \mathrm{eV} \tag{11.275}
\end{equation*}
$$

The amplitude of oscillation given by Eq. (11.164) is:

$$
\begin{equation*}
A(0)=\frac{\sqrt{\hbar}}{2^{3 / 2}\left(165.51 \mathrm{Nm}^{-1} \mu\right)^{1 / 4}}=5.952 \times 10^{-12} \mathrm{~m}=0.1125 a_{o} \tag{11.276}
\end{equation*}
$$

The vibrational energy for the $H_{2}^{+} \quad v=1 \rightarrow v=0$ transition given by Eq. (11.166) is:

$$
\begin{equation*}
E_{\text {vib }}(1)=0.270 \mathrm{eV} \tag{11.277}
\end{equation*}
$$

The experimental vibrational energy of $H_{2}^{+}[14,20]$ is:

$$
\begin{equation*}
E_{\text {vib }}=0.271 \mathrm{eV} \tag{11.278}
\end{equation*}
$$

The anharmonicity term of H_{2}^{+}given by Eq. (11.169) is:

$$
\begin{equation*}
\omega_{0} x_{0}=55.39 \mathrm{~cm}^{-1} \tag{11.279}
\end{equation*}
$$

The experimental anharmonicity term of H_{2}^{+}from NIST [20] is:

$$
\begin{equation*}
\omega_{e} x_{e}=66.2 \mathrm{~cm}^{-1} \tag{11.280}
\end{equation*}
$$

The vibrational energy for the $D_{2}^{+} v=1 \rightarrow v=0$ transition given by Eq. (11.175) is:

$$
\begin{equation*}
E_{v i b}=0.193 \mathrm{eV} \tag{11.281}
\end{equation*}
$$

The vibrational energy of the D_{2}^{+}[20] based on calculations from experimental data is:

$$
\begin{equation*}
E_{v i b}=0.196 \mathrm{eV} \tag{11.282}
\end{equation*}
$$

The anharmonicity term of D_{2}^{+}given by Eq. (11.176) is:

$$
\begin{equation*}
\omega_{0} x_{0}=27.86 \mathrm{~cm}^{-1} \tag{11.283}
\end{equation*}
$$

The experimental anharmonicity term of D_{2}^{+}for the state $X{ }^{2} \sum_{g}{ }^{+1} s \sigma$ is not given, but the term for state $B{ }^{2} \sum_{g}{ }^{+3} d \sigma$ from NIST [20] is:

$$
\begin{equation*}
\omega_{e} x_{e}=2.62 \mathrm{~cm}^{-1} \tag{11.284}
\end{equation*}
$$

THE HYDROGEN MOLECULE $\mathbf{H}_{\mathbf{2}}\left[\mathbf{2} \mathbf{c}^{\prime}=\sqrt{\mathbf{2}} \mathbf{a}_{0}\right]$

FORCE BALANCE OF THE HYDROGEN MOLECULE

The force balance equation for the hydrogen molecule is given by Eq. (11.200) where $p=1$

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{11.285}
\end{equation*}
$$

which has the parametric solution given by Eq. (11.83) when,

$$
\begin{equation*}
a=a_{0} \tag{11.286}
\end{equation*}
$$

The semimajor axis, a, is also given by Eq. (11.202) where $p=1$. The internuclear distance, $2 c^{\prime}$, which is the distance between the foci is given by Eq. (11.204) where $p=1$.

$$
\begin{equation*}
2 c^{\prime}=\sqrt{2} a_{0} \tag{11.287}
\end{equation*}
$$

The experimental internuclear distance is $\sqrt{2} a_{0}$. The semiminor axis is given by Eq. (11.205) where $p=1$.

$$
\begin{equation*}
b=\frac{1}{\sqrt{2}} a_{0} \tag{11.288}
\end{equation*}
$$

The eccentricity, e, is given by Eq. (11.206).

$$
\begin{equation*}
e=\frac{1}{\sqrt{2}} \tag{11.289}
\end{equation*}
$$

The finite dimensions of the hydrogen molecule are evident in the plateau of the resistivity versus pressure curve of metallic hydrogen [26].

ENERGIES OF THE HYDROGEN MOLECULE

The energies of the hydrogen molecule are given by Eqs. (11.207-11.210) where $p=1$

$$
\begin{align*}
& V_{e}=\frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-67.8358 \mathrm{eV} \tag{11.290}\\
& V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=19.2415 \mathrm{eV} \tag{11.291}\\
& T=\frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=33.9179 \mathrm{eV} \tag{11.292}
\end{align*}
$$

The energy, V_{m}, of the magnetic force is

$$
\begin{equation*}
V_{m}=\frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-16.9589 \mathrm{eV} \tag{11.293}
\end{equation*}
$$

The Doppler terms, $\bar{E}_{o s c}$, for hydrogen and deuterium molecules are given by Eqs. (11.237) and (11.238), respectively, where $p=1$

$$
\begin{equation*}
\bar{E}_{o s c}\left(H_{2}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=-0.326469 \mathrm{eV}+\frac{1}{2}(0.56764 \mathrm{eV})=-0.042649 \mathrm{eV} \tag{11.294}
\end{equation*}
$$

$$
\begin{equation*}
\bar{E}_{\text {osc }}\left(D_{2}\right)=-0.326469 \mathrm{eV}+\frac{1}{2}(0.401380 \mathrm{eV})=-0.125779 \mathrm{eV} \tag{11.295}
\end{equation*}
$$

The total energy, E_{T}, for the hydrogen molecule given by Eqs. (11.239-11.241) is

$$
\begin{align*}
E_{T} & =-\left\{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}\left[\left(2 \sqrt{2}-\sqrt{2}+\frac{\sqrt{2}}{2}\right) \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}-\sqrt{2}\right]\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{e^{2}}{{4 \pi \varepsilon_{0} a_{0}^{3}}_{m_{e}}^{m_{e} c^{2}}}}}{}}\right]-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right\} \\
& =-31.635 \mathrm{eV}-0.326469 \mathrm{eV}+\frac{1}{2}(0.56764 \mathrm{eV}) \tag{11.296}\\
& =-31.6776 \mathrm{eV}
\end{align*}
$$

From Eqs. (11.239-11.240) and (11.242), the total energy, E_{T}, for the deuterium molecule is:

$$
\begin{equation*}
E_{T}=-31.635 \mathrm{eV}-0.326469 \mathrm{eV}+\frac{1}{2}(0.401380 \mathrm{eV})=-31.7608 \mathrm{eV} \tag{11.297}
\end{equation*}
$$

The first ionization energies of the hydrogen and deuterium molecules, $I P_{1}$, (Eqs. (11.243) and (11.246)) are given by the differences in the total energy of corresponding molecular ions and molecules which are given by Eqs. (11.244) and (11.247), respectively, where $p=1$:

$$
\begin{align*}
& I P_{1}\left(H_{2}\right)=15.4248 \mathrm{eV} \tag{11.298}\\
& I P_{1}\left(D_{2}\right)=15.4627 \mathrm{eV} \tag{11.299}
\end{align*}
$$

The bond dissociation energy, E_{D}, is the difference between the total energy of two of the corresponding hydrogen atoms and E_{T}. The hydrogen molecular bond energy, E_{D}, given by Eq. (11.252) where $p=1$ is:

$$
\begin{equation*}
E_{D}=4.478 \mathrm{eV} \tag{11.300}
\end{equation*}
$$

The experimental bond energy of the hydrogen molecule [23] is:

$$
\begin{equation*}
E_{D}=4.478 \mathrm{eV} \tag{11.301}
\end{equation*}
$$

The deuterium molecular bond energy, E_{D}, given by Eq. (11.253) where $p=1$ is:

$$
\begin{equation*}
E_{D}=4.556 \mathrm{eV} \tag{11.302}
\end{equation*}
$$

The experimental bond energy of the deuterium molecule [23] is:

$$
\begin{equation*}
E_{D}=4.556 \mathrm{eV} \tag{11.303}
\end{equation*}
$$

VIBRATION OF THE HYDROGEN MOLECULE

It can be shown that a perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory motion of the orbit [11]. The resonant vibrational frequency for H_{2} given by Eq. (11.218) is:

$$
\begin{equation*}
\omega(0)=\sqrt{\frac{k(0)}{\mu}}=\sqrt{\frac{621.98 \mathrm{Nm}^{-1}}{\mu}}=8.62385 \times 10^{14} \text { radians } / \mathrm{s} \tag{11.304}
\end{equation*}
$$

The spring constant, $k(0)$, for H_{2} given by Eq. (11.219) is:

$$
\begin{equation*}
k(0)=621.98 \mathrm{Nm}^{-1} \tag{11.305}
\end{equation*}
$$

wherein $p=1$. The vibrational energy, $E_{\text {vib }}(0)$, of H_{2} during bond formation given by Eq. (11.220) is:

$$
\begin{equation*}
E_{v i b}(0)=0.56764 \mathrm{eV} \tag{11.306}
\end{equation*}
$$

The amplitude of oscillation given by Eq. (11.221) is:

$$
\begin{equation*}
A(0)=\frac{\sqrt{\hbar}}{2^{3 / 2}\left(621.98 \mathrm{Nm}^{-1} \mu\right)^{1 / 4}}=4.275 \times 10^{-12} \mathrm{~m}=0.08079 a_{o} \tag{11.307}
\end{equation*}
$$

The vibrational energy for the $H_{2} v=1 \rightarrow v=0$ transition given by Eq. (11.223) is:

$$
\begin{equation*}
E_{\text {vib }}(1)=0.517 \mathrm{eV} \tag{11.308}
\end{equation*}
$$

The experimental vibrational energy of H_{2} [27-28] is:

$$
\begin{equation*}
E_{v i b}(1)=0.5159 \mathrm{eV} \tag{11.309}
\end{equation*}
$$

The anharmonicity term of H_{2} given by Eq. (11.224) is:

$$
\begin{equation*}
\omega_{0} x_{0}=120.4 \mathrm{~cm}^{-1} \tag{11.310}
\end{equation*}
$$

The experimental anharmonicity term of H_{2} from Huber and Herzberg [25] is:

$$
\begin{equation*}
\omega_{e} x_{e}=121.33 \mathrm{~cm}^{-1} \tag{11.311}
\end{equation*}
$$

The vibrational energy for the $D_{2} v=1 \rightarrow v=0$ transition given by Eq. (11.229) is:

$$
\begin{equation*}
E_{\text {vib }}=0.371 \mathrm{eV} \tag{11.312}
\end{equation*}
$$

The experimental vibrational energy of $D_{2}[14,20]$ is:

$$
\begin{equation*}
E_{v i b}=0.371 \mathrm{eV} \tag{11.313}
\end{equation*}
$$

The anharmonicity term of D_{2} given by Eq. (11.230) is:

$$
\begin{equation*}
\omega_{0} x_{0}=60.93 \mathrm{~cm}^{-1} \tag{11.314}
\end{equation*}
$$

The experimental anharmonicity term of D_{2} from NIST [20] is:

$$
\begin{equation*}
\omega_{e} X_{e}=61.82 \mathrm{~cm}^{-1} \tag{11.315}
\end{equation*}
$$

The results of the determination of the bond, vibrational, total, and ionization energies, and internuclear distances for hydrogen and deuterium molecules and molecular ions are given in Table 11.1. The calculated results are based on first principles and given in closed form equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

Despite the predictions of standard quantum mechanics that preclude the imaging of a molecule orbital, the full threedimensional structure of the outer molecular orbital of N_{2} has been recently tomographically reconstructed [29]. The chargedensity surface observed is similar to that shown in Figure 11.6 for H_{2} which is direct evidence that electrons are not pointparticle probability waves that have no form until they are "collapsed to a point" by measurement. Rather they are physical, two-dimensional equipotential charge density surfaces.

Table 11.1. The calculated and experimental parameters of H_{2}, D_{2}, H_{2}^{+}and D_{2}^{+}.

Parameter	Calculated	Experimental	Eqs.	Ref. for Exp.
H_{2} Bond Energy	4.478 eV	4.478 eV	11.300	24
D_{2} Bond Energy	4.556 eV	4.556 eV	11.302	24
H_{2}^{+}Bond Energy	2.654 eV	2.651 eV	11.269	24
D_{2}^{+}Bond Energy	2.696 eV	2.691 eV	11.271	25
H_{2} Total Energy	31.677 eV	31.675 eV	11.296	24, 30, $19^{\text {a }}$
D_{2} Total Energy	31.760 eV	31.760 eV	11.297	20, $25^{\text {b }}$
H_{2} Ionization Energy	15.425 eV	15.426 eV	11.298	30
D_{2} Ionization Energy	15.463 eV	15.466 eV	11.299	25
H_{2}^{+}Ionization Energy	16.253 eV	16.250 eV	11.267	24, 19 ${ }^{\text {c }}$
D_{2}^{+}Ionization Energy	16.299 eV	16.294 eV	11.268	20, $25^{\text {d }}$
H_{2}^{+}Spin Magnetic Moment	$0.5 \mu_{B}$	$0.5 \mu_{B}$	12.24	31
Absolute H_{2} Gas-Phase NMR Shift	-28.0 ppm	-28.0 ppm	11.416	32-33
H_{2} Quadrupole Moment	$0.4764 \times 10^{-16} \mathrm{~cm}^{2}$	$0.380 .15 \times 10^{-16} \mathrm{~cm}^{2}$	11.430-11.431	46
H_{2} Internuclear Distance	0.7411 Å	$0.741 \AA$	12.75	34
D_{2} Internuclear Distance	0.7411 A	$0.741 \AA$	12.75	34
H_{2}^{+}Internuclear Distance	1.0577 Å	$1.06 \AA$	12.81	24
D_{2}^{+}Internuclear Distance	1.0577 A	1.0559 Å	12.81	25
H_{2} Vibrational Energy	0.517 eV	0.516 eV	11.308	27, 28
D_{2} Vibrational Energy	0.371 eV	0.371 eV	11.313	14, 20
$H_{2} \omega_{e} X_{e}$	$120.4 \mathrm{~cm}^{-1}$	$121.33 \mathrm{~cm}^{-1}$	11.310	25
$D_{2} \omega_{e} X_{e}$	$60.93 \mathrm{~cm}^{-1}$	$61.82 \mathrm{~cm}^{-1}$	11.314	20
H_{2}^{+}Vibrational Energy	0.270 eV	0.271 eV	11.277	14, 20
D_{2}^{+}Vibrational Energy	0.193 eV	0.196 eV	11.281	20
$H_{2} \mathrm{~J}=1$ to $\mathrm{J}=0$ Rotational Energy	0.01511 eV	0.01509 eV	12.77	24
$D_{2} \mathrm{~J}=1$ to $\mathrm{J}=0$ Rotational Energy	0.007557 eV	0.00755 eV	12.78	24
$H_{2}^{+} \mathrm{J}=1$ to $\mathrm{J}=0$ Rotational Energy	0.00742 eV	0.00739 eV	12.83	24
$D_{2}^{+} \mathrm{J}=1$ to $\mathrm{J}=0$ Rotational Energy	0.0037095 eV	0.003723 eV	12.84	25

${ }^{\mathrm{a}}$ The experimental total energy of the hydrogen molecule is given by adding the first (15.42593 eV) [30] and second (16.2494 eV) ionization energies where the second ionization energy is given by the addition of the ionization energy of the hydrogen atom (13.59844 eV) [19] and the bond energy of $H_{2}^{+}(2.651 \mathrm{eV})$ [24].
${ }^{\mathrm{b}}$ The experimental total energy of the deuterium molecule is given by adding the first (15.466 eV) [25] and second (16.294 eV) ionization energies where the second ionization energy is given by the addition of the ionization energy of the deuterium atom (13.603 eV) [20] and the bond energy of $D_{2}^{+}(2.692$ $\mathrm{eV})$ [25].
${ }^{c}$ The experimental second ionization energy of the hydrogen molecule, $I P_{2}$, is given by the sum of the ionization energy of the hydrogen atom (13.59844 $\mathrm{eV})$ [19] and the bond energy of $\mathrm{H}_{2}^{+}(2.651 \mathrm{eV})$ [24].
${ }^{\mathrm{d}}$ The experimental second ionization energy of the deuterium molecule, $I P_{2}$, is given by the sum of the ionization energy of the deuterium atom (13.603 $\mathrm{eV})$ [20] and the bond energy of $D_{2}^{+}(2.692 \mathrm{eV})$ [25].

THE DIHYDRINO MOLECULAR ION H2 $\left[\mathbf{2} \mathbf{c}^{\prime}=\mathbf{a}_{0}\right]^{+}$

FORCE BALANCE OF THE DIHYDRINO MOLECULAR ION

Force balance between the electric and centrifugal forces of $H_{2}^{+}(1 / 2)$ is given by Eq. (11.115) where $p=2$

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{2 e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D \tag{11.316}
\end{equation*}
$$

which has the parametric solution given by Eq. (11.83) when:

$$
\begin{equation*}
a=a_{0} \tag{11.317}
\end{equation*}
$$

The semimajor axis, a, is also given by Eq. (11.116) where $p=2$. The internuclear distance, $2 c^{\prime}$, which is the distance between the foci is given by Eq. (11.111) where $p=2$.

$$
\begin{equation*}
2 c^{\prime}=a_{0} \tag{11.318}
\end{equation*}
$$

The semiminor axis is given by Eq. (11.112) where $p=2$.

$$
\begin{equation*}
b=\frac{\sqrt{3}}{2} a_{0} \tag{11.319}
\end{equation*}
$$

The eccentricity, e, is given by Eq. (11.113).

$$
\begin{equation*}
e=\frac{1}{2} \tag{11.320}
\end{equation*}
$$

ENERGIES OF THE DIHYDRINO MOLECULAR ION

The potential energy, V_{e}, of the electron MO in the field of magnitude twice that of the protons at the foci $(\xi=0)$ is given by Eq. (11.117) where $p=2$

$$
\begin{equation*}
V_{e}=\frac{-8 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{11.321}
\end{equation*}
$$

The potential energy, V_{p}, due to proton-proton repulsion in the field of magnitude twice that of the protons at the foci $(\xi=0)$ is given by Eq. (11.120) where $p=2$

$$
\begin{equation*}
V_{p}=\frac{2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \tag{11.322}
\end{equation*}
$$

The kinetic energy, T, of the electron MO is given by Eq. (11.119) where $p=2$

$$
\begin{equation*}
T=\frac{2 \hbar^{2}}{m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{11.323}
\end{equation*}
$$

Substitution of a and b given by Eqs. (11.317) and (11.319), respectively, into Eqs. (11.321-11.323) and using Eqs. (11.19111.193) with $p=2$ gives:

$$
\begin{align*}
V_{e} & =\frac{-16 e^{2}}{8 \pi \varepsilon_{0} a_{0}} \ln 3=-239.16 \mathrm{eV} \tag{11.324}\\
V_{p} & =\frac{4 e^{2}}{8 \pi \varepsilon_{0} a_{0}}=54.42 \mathrm{eV} \tag{11.325}\\
T & =\frac{8 e^{2}}{8 \pi \varepsilon_{0} a_{0}} \ln 3=119.58 \mathrm{eV} \tag{11.326}\\
E_{T} & =V_{e}+V_{p}+T+\bar{E}_{\text {osc }} \tag{11.327}\\
E_{T} & =-2^{2}\left\{\left[\begin{array}{l}
\left.\frac{e^{2}}{8 \pi \varepsilon_{0} a_{H}}(4 \ln 3-1-2 \ln 3)\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left(2 a_{H}\right)^{3}}} \frac{m_{e}}{p^{2} m_{e} c^{2}}}{2}}\right]-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right\} \\
\\
\end{array}\right\}-2^{2}(16.2527 \mathrm{eV})=-65.01 \mathrm{eV}\right. \tag{11.328}
\end{align*}
$$

where Eqs. (11.324-11.326) are equivalent to Eqs. (11.122-11.124) with $p=2$. The bond dissociation energy, E_{D}, given by Eq. (11.198) with $p=2$ is the difference between the total energy of the corresponding hydrino atom and E_{T} given by Eq. (11.328):

$$
\begin{equation*}
E_{D}=E_{T}(H(1 / p))-E_{T}\left(H_{2}^{+}(1 / p)\right)=2^{2}(2.654 \mathrm{eV})=10.62 \mathrm{eV} \tag{11.329}
\end{equation*}
$$

VIBRATION OF THE DIHYDRINO MOLECULAR ION

It can be shown that a perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory motion of the orbit [11]. The resonant vibrational frequency for $H_{2}^{+}(1 / 2)$ from Eq. (11.160) is:

$$
\begin{equation*}
\omega(0)=2^{2} \sqrt{\frac{165.51 \mathrm{Nm}^{-1}}{\mu}}=1.78 \times 10^{15} \text { radians } / \mathrm{s} \tag{11.330}
\end{equation*}
$$

wherein $p=2$. The spring constant, $k(0)$, for $H_{2}^{+}(1 / 2)$ from Eq. (11.162) is:

$$
\begin{equation*}
k(0)=2^{4} 165.51 \mathrm{Nm}^{-1}=2648 \mathrm{Nm}^{-1} \tag{11.331}
\end{equation*}
$$

The amplitude of oscillation from Eq. (11.164) is:

$$
\begin{equation*}
A(0)=\frac{\sqrt{\hbar}}{2^{3 / 2}\left(2^{4}(165.51) \mathrm{Nm}^{-1} \mu\right)^{1 / 4}}=\frac{5.952 \times 10^{-12} \mathrm{~m}}{2}=\frac{0.1125 a_{o}}{2} \tag{11.332}
\end{equation*}
$$

The vibrational energy, $E_{\text {vib }}(1)$, for the $v=1 \rightarrow v=0$ transition given by Eq. (11.166) is:

$$
\begin{equation*}
E_{v i b}(1)=2^{2}(0.270 \mathrm{eV})=1.08 \mathrm{eV} \tag{11.333}
\end{equation*}
$$

THE DIHYDRINO MOLECULE $H_{2}\left[2 \mathrm{c}^{\prime}=\frac{\mathbf{a}_{0}}{\sqrt{2}}\right]$

FORCE BALANCE OF THE DIHYDRINO MOLECULE

The force balance equation for the dihydrino molecule $H_{2}(1 / 2)$ is given by Eq. (11.200) where $p=2$

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{2 e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{11.334}
\end{equation*}
$$

which has the parametric solution given by Eq. (11.83) when

$$
\begin{equation*}
a=\frac{a_{0}}{2} \tag{11.335}
\end{equation*}
$$

The semimajor axis, a, is also given by Eq. (11.202) where $p=2$. The internuclear distance, $2 c^{\prime}$, which is the distance between the foci is given by Eq. (11.204) where $p=2$.

$$
\begin{equation*}
2 c^{\prime}=\frac{1}{\sqrt{2}} a_{0} \tag{11.336}
\end{equation*}
$$

The semiminor axis is given by Eq. (11.205) where $p=2$.

$$
\begin{equation*}
b=c=\frac{1}{2 \sqrt{2}} a_{0} \tag{11.337}
\end{equation*}
$$

The eccentricity, e, is given by Eq. (11.206).

$$
\begin{equation*}
e=\frac{1}{\sqrt{2}} \tag{11.338}
\end{equation*}
$$

ENERGIES OF THE DIHYDRINO MOLECULE

The energies of the dihydrino molecule $H_{2}(1 / 2)$ are given by Eqs. (11.207-11.210) and Eqs. (11.239-11.241) with $p=2$

$$
\begin{align*}
& V_{e}=\frac{-4 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-271.34 \mathrm{eV} \tag{11.339}\\
& V_{p}=\frac{2}{8 \pi \varepsilon_{0}} \frac{e^{2}}{\sqrt{a^{2}-b^{2}}}=76.97 \mathrm{eV} \tag{11.340}\\
& T=\frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=135.67 \mathrm{eV} \tag{11.341}
\end{align*}
$$

The energy, V_{m}, of the magnetic force is

$$
\begin{align*}
& V_{m}=\frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-67.84 \mathrm{eV} \tag{11.342}\\
& E_{T}=V_{e}+T+V_{m}+V_{p}+\bar{E}_{\text {osc }} \tag{11.343}
\end{align*}
$$

$$
\begin{align*}
E_{T} & =-2^{2}\left\{\frac { e ^ { 2 } } { 8 \pi \varepsilon _ { 0 } a _ { 0 } } [(2 \sqrt { 2 } - \sqrt { 2 } + \frac { \sqrt { 2 } } { 2 }) \operatorname { l n } \frac { \sqrt { 2 } + 1 } { \sqrt { 2 } - 1 } - \sqrt { 2 }] \left[1+\sqrt{\frac{\left.\left.2 \hbar \sqrt{\frac{e^{2}}{{4 \pi \varepsilon_{0} a_{0}^{3}}_{m_{e}}^{p^{2} m_{e} c^{2}}}}\right]-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right\}}{}} \begin{array}{rl}
& =-2^{2}(31.677 \mathrm{eV}) \\
& =-126.71 \mathrm{eV}
\end{array}\right.\right.
\end{align*}
$$

where Eqs. (11.339-11.342) are equivalent to Eqs. (11.207-11.210) with $p=2$. The bond dissociation energy, E_{D}, given by Eq. (11.252) with $p=2$ is the difference between the total energy of the corresponding hydrino atoms and E_{T} given by Eq. (11.344).

$$
\begin{equation*}
E_{D}=E_{T}(2 H(1 / p))-E_{T}\left(H_{2}(1 / p)\right)=2^{2}(4.478 \mathrm{eV})=17.91 \mathrm{eV} \tag{11.345}
\end{equation*}
$$

VIBRATION OF THE DIHYDRINO MOLECULE

It can be shown that a perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory motion of the orbit [11]. The resonant vibrational frequency for the $H_{2}(1 / 2)$ from Eq. (11.218) is

$$
\begin{equation*}
\omega(0)=2^{2} \sqrt{\frac{k}{\mu}}=2^{2} \sqrt{\frac{621.98 \mathrm{Nm}^{-1}}{\mu}}=3.45 \times 10^{15} \text { radians } / \mathrm{s} \tag{11.346}
\end{equation*}
$$

wherein $p=2$. The spring constant, $k(0)$, for $H_{2}(1 / 2)$ from Eq. (11.219) is:

$$
\begin{equation*}
k(0)=2^{4} 621.98 \mathrm{Nm}^{-1}=9952 \mathrm{Nm}^{-1} \tag{11.347}
\end{equation*}
$$

The amplitude of oscillation from Eq. (11.221) is:

$$
\begin{equation*}
A(0)=\frac{\sqrt{\hbar}}{2^{3 / 2}\left(2^{4}(621.98) \mathrm{Nm}^{-1} \mu\right)^{1 / 4}}=\frac{4.275 \times 10^{-12} \mathrm{~m}}{2}=\frac{0.08079 a_{o}}{2} \tag{11.348}
\end{equation*}
$$

The vibrational energy, $E_{\text {vib }}(1)$, of $H_{2}(1 / 2)$ from Eq. (11.223) is:

$$
\begin{equation*}
E_{\text {vib }}(1)=2^{2}(0.517) \mathrm{eV}=2.07 \mathrm{eV} \tag{11.349}
\end{equation*}
$$

GEOMETRY

The internuclear distance can also be determined geometrically. The spheroidal MO of the hydrogen molecule is an equipotential energy surface, which is an energy minimum surface. For the hydrogen molecule, the electric field is zero for $\xi>0$. Consider two hydrogen atoms A and B approaching each other. Consider that the two electrons form a spheroidal MO as the two atoms overlap, and the charge is distributed such that an equipotential two-dimensional surface is formed. The electric fields of atoms A and B add vectorially as the atoms overlap. The energy at the point of intersection of the overlapping atomic orbitals decreases to a minimum as they superimpose and then rises with further overlap. When this energy is a minimum the internuclear distance is determined. It can be demonstrated [35] that when two hydrogen atomic orbitals superimpose such that the radial electric field vector from nucleus A and B makes a 45° angle with the point of intersection of the two original atomic orbitals, the electric energy of interaction between atomic orbitals given by

$$
\begin{equation*}
E_{\text {interaction }}=2 X \frac{1}{2} \varepsilon_{0} \int \Delta \mathbf{E}^{2} d v \tag{11.350}
\end{equation*}
$$

is a minimum (Figure 7.1 of [35]). The MO is a minimum potential energy surface; therefore, a minimum of energy of one point on the surface is a minimum for the entire surface of the MO. Thus,

$$
\begin{equation*}
R_{H_{2}}=\sqrt{2} a_{0}=0.748 \AA \tag{11.351}
\end{equation*}
$$

The experimental internuclear bond distance is $0.746 \AA$.

DIHYDRINO IONIZATION ENERGIES

The first ionization energy, $I P_{1}$, of the dihydrino molecule

$$
\begin{equation*}
H_{2}(1 / p) \rightarrow H_{2}^{+}(1 / p)+e^{-} \tag{11.352}
\end{equation*}
$$

is given by Eq. (11.244) with $p=2$.

$$
\begin{align*}
& I P_{1}=E_{T}\left(H_{2}^{+}(1 / p)\right)-E_{T}\left(H_{2}(1 / p)\right) \tag{11.353}\\
& I P_{1}=2^{2}(15.4248 \mathrm{eV})=61.70 \mathrm{eV} \tag{11.354}
\end{align*}
$$

The second ionization energy, $I P_{2}$, is given by Eq. (11.245) with $p=2$.

$$
\begin{equation*}
I P_{2}=2^{2}(16.2527 \mathrm{eV})=65.01 \mathrm{eV} \tag{11.355}
\end{equation*}
$$

A hydrino atom can react with a hydrogen, deuterium, or tritium nucleus to form a dihydrino molecular ion that further reacts with an electron to form a dihydrino molecule.

$$
\begin{equation*}
H(1 / p)+H^{+}+e-\rightarrow H_{2}(1 / p) \tag{11.356}
\end{equation*}
$$

The energy released is

$$
\begin{equation*}
E=E(H(1 / p))-E_{T} \tag{11.357}
\end{equation*}
$$

where E_{T} is given by Eq. (11.241).
A hydrino atom can react with a hydrogen, deuterium, or tritium atom to form a dihydrino molecule.

$$
\begin{equation*}
H(1 / p)+H \rightarrow H_{2}(1 / p) \tag{11.358}
\end{equation*}
$$

The energy released is

$$
\begin{equation*}
E=E(H(1 / p))+E(H)-E_{T} \tag{11.359}
\end{equation*}
$$

where E_{T} is given by Eq. (11.241).

SIZES OF REPRESENTATIVE ATOMS AND MOLECULES ATOMS

Figure 11.5. Cross-section of an atomic orbital.

Helium Atom (He)

Helium comprises the nucleus at the origin and two electrons as a spherical shell at $r=0.567 a_{0}$.

Hydrogen Atom ($\mathbf{H}\left[\mathbf{a}_{\mathrm{H}}\right]$)

Hydrogen comprises the nucleus at the origin and the electron as a spherical shell at $r=a_{H}$.

Hydrino Atom ($\mathbf{H}\left[\frac{\mathbf{a}_{\mathrm{H}}}{2}\right]$)

Hydrino atom (1/2) comprises the nucleus at the origin and the electron as a spherical shell at $r=\frac{a_{H}}{2}$.

MOLECULES

Figure 11.6. A. Prolate spheroid MO. B. Prolate spheroid parameters of molecules and molecular ions where a is the semimajor axis, $2 a$ is the total length of the molecule or molecular ion along the principal axis, $b=c$ is the semiminor axis, $2 b=2 c$ is the total width of the molecule or molecular ion along the minor axis, c^{\prime} is the distance from the origin to a focus (nucleus), $2 c^{\prime}$ is the internuclear distance, and the protons are at the foci.

Hydrogen Molecular Ion ($\left.\mathbf{H}_{2}\left[\mathbf{2 c} \mathbf{c}^{\prime}=\mathbf{2 a} \mathbf{a}_{0}\right]^{+}\right)$

$$
\begin{aligned}
& a=2 a_{0} \\
& b=c=\sqrt{3} a_{0} \\
& c^{\prime}=a_{0} \\
& 2 c^{\prime}=2 a_{0}
\end{aligned}
$$

Hydrogen Molecule ($\mathbf{H}_{2}\left[\mathbf{2 c}=\sqrt{\mathbf{2}} \mathbf{a}_{0}\right]$)

$a=a_{0}$
$b=c=\frac{1}{\sqrt{2}} a_{0}$
$c^{\prime}=\frac{1}{\sqrt{2}} a_{0}$
$2 c^{\prime}=\sqrt{2} a_{0}$

Dihydrino Molecular Ion ($\mathbf{H}_{2}\left[2 \mathbf{c}^{\prime}=\mathbf{a}_{0}\right]^{+}$)

$$
\begin{aligned}
& a=a_{0} \\
& b=c=\frac{\sqrt{3}}{2} a_{0} \\
& c^{\prime}=\frac{1}{2} a_{0} \\
& 2 c^{\prime}=a_{0}
\end{aligned}
$$

Dihydrino Molecule ($\mathbf{H}_{2}\left[2 \mathbf{c}^{\prime}=\frac{1}{\sqrt{2}} \mathbf{a}_{0}\right]$)

$$
\begin{aligned}
& a=\frac{1}{2} a_{0} \\
& b=c=\frac{1}{2 \sqrt{2}} a_{0} \\
& c^{\prime}=\frac{1}{2 \sqrt{2}} a_{0} \\
& 2 c^{\prime}=\frac{1}{\sqrt{2}} a_{0}
\end{aligned}
$$

NUCLEAR SPIN-SPIN TRANSITION OF HYDROGEN-TYPE MOLECULES

Each proton of hydrogen-type molecules possesses a magnetic moment, which is derived in the Proton and Neutron section and is given by

$$
\begin{equation*}
\mu_{P}=\frac{\left(\frac{2}{3}\right)^{2} e \hbar}{2 \frac{m_{p}}{2 \pi}} \tag{11.360}
\end{equation*}
$$

The magnetic moment, \mathbf{m}, of the proton is given by Eq. (11.360), and the magnetic field of the proton follows from the relationship between the magnetic dipole field and the magnetic moment, \mathbf{m}, as given by Jackson [36] where $\mathbf{m}=\mu_{P} \mathbf{i}_{\mathbf{z}}$.

$$
\begin{equation*}
\mathbf{H}=\frac{\mu_{P}}{r^{3}}\left(\mathbf{i}_{r} 2 \cos \theta-\mathbf{i}_{\theta} \sin \theta\right) \tag{11.361}
\end{equation*}
$$

Multiplication of Eq. (11.361) by the permeability of free space, μ_{0}, gives the magnetic flux, \mathbf{B}, due to proton one at proton two.

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0} \mu_{P}}{r^{3}}\left(\mathbf{i}_{r} 2 \cos \theta-\mathbf{i}_{\theta} \sin \theta\right) \tag{11.362}
\end{equation*}
$$

$\Delta E_{\text {mag }}^{\text {orthopara }}$, the magnetic energy to flip the orientation of proton two's magnetic moments, μ_{P}, from parallel magnetic moments to antiparallel magnetic moments with respect to the direction of the magnetic moment of proton one with corresponding magnetic flux \mathbf{B} is:

$$
\begin{equation*}
\Delta E_{\text {mag }}^{\text {ortho/para }}=-2 \mu_{P} \mathbf{B}=\frac{-2 \mu_{0} \mu_{P}^{2}}{r^{3}} \tag{11.363}
\end{equation*}
$$

where r is the internuclear distance $2 \mathrm{c}^{\prime}$ where c^{\prime} is given by Eq. (11.204). Substitution of the internuclear distance into Eq. (11.363) for r gives:

$$
\begin{equation*}
\Delta E_{\text {mag }}^{\text {ortho/para }}=-2 \mu_{P} \mathbf{B}=\frac{-2 \mu_{0} \mu_{P}^{2} p^{3}}{\left(\sqrt{2} a_{0}\right)^{3}} \tag{11.364}
\end{equation*}
$$

$\Delta E_{\text {mag }}^{\text {orthopara }}$ corresponds to a force that causes the internuclear distance and concomitantly the other dimensions of the $H_{2} \mathrm{MO}$ to change thereby having a relatively substantial effect on the energy difference of the ortho and para states. A useful parameter, the ro-vibrational ortho-para splitting, can easily be calculated from the result of Lavrov and Weber [37] for $H_{2}(1 / 4)$ using the Morse-potential expansion with an inter nuclear distance of $1 / 4$ that of H_{2} for $H_{2}(1 / 4)$:

$$
\begin{equation*}
\frac{\Delta_{H_{2}(1 / 4)}}{\Delta_{H_{2}}}=\frac{\frac{12(256) B_{e}^{2}}{\hbar 16 \omega_{e}}\left(\frac{4 a \hbar}{\mu 256 \omega_{e}^{2}} \sqrt{\frac{2}{\mu 16 B_{e}}}-1\right)}{\frac{12 B_{e}^{2}}{\hbar \omega_{e}}\left(\frac{a \hbar}{\mu \omega_{e}^{2}} \sqrt{\frac{2}{\mu B_{e}}}-1\right)} \tag{11.365}
\end{equation*}
$$

In the case that $1 \ll \frac{a \hbar}{\mu \omega_{e}^{2}} \sqrt{\frac{2}{\mu B_{e}}}, \Delta_{H_{2}(1 / 4)}=16 \Delta_{H_{2}}=4^{2} \Delta_{H_{2}}=1418 \mathrm{~cm}^{-1}$ where the calculated H_{2} result of $88.61 \mathrm{~cm}^{-1}$ (Ref. [38]) allowed for the cancellation of the curve-fit parameter a and where ω_{e} and B_{e} are the vibartional and rotational parameters given by Eqs. (11.217) and (12.89), respectively.

NUCLEAR MAGNETIC RESONANCE SHIFT

The proton gyromagnetic ratio, $\gamma_{p} / 2 \pi$, is

$$
\begin{equation*}
\gamma_{P} / 2 \pi=42.57602 \mathrm{MHz} \mathrm{~T} \tag{11.366}
\end{equation*}
$$

The NMR frequency, f, is the product of the proton gyromagnetic ratio given by Eq. (11.366) and the magnetic flux, \mathbf{B}.

$$
\begin{equation*}
f=\gamma_{P} / 2 \pi \mathbf{B}=42.57602 \mathrm{MHz} T^{-1} \mathbf{B} \tag{11.367}
\end{equation*}
$$

A typical radio frequency (RF) is 400 MHz . According to Eq. (11.367) this corresponds to a flux of $9.39496 T$ provided by a superconducting NMR magnet. With a constant magnetic field, the frequency is scanned to yield the spectrum where the frequency scan is typically achieved using a Fourier transform on the free induction decay signal following a radio frequency pulse. Historically, the radiofrequency was held constant, the applied magnetic field, $H_{0}\left(H_{0}=\frac{B}{\mu_{0}}\right)$, was varied over a small range, and the frequency of energy absorption was recorded at the various values for H_{0}. By convention based on this historic
mode of operation, the radiofrequency spectrum is converted into the corresponding applied magnetic field, $H_{0}\left(H_{0}=\frac{B}{\mu_{0}}\right)$, of energy absorption and displayed as a function of increasing H_{0}. The protons that would absorb energy at a lower H_{0} give rise to a downfield absorption peak; whereas, the protons that would absorb energy at a higher H_{0} give rise to an upfield absorption peak. The electrons of the compound of a sample influence the field at the nucleus such that it deviates slightly from the applied value. For the case that the chemical environment has no NMR effect, the value of H_{0} at resonance with the radiofrequency held constant at 400 MHz is:

$$
\begin{equation*}
\frac{2 \pi f}{\mu_{0} \gamma_{P}}=\frac{(2 \pi)(400 \mathrm{MHz})}{\mu_{0} 42.57602 \mathrm{MHz} \mathrm{~T}}{ }^{-1}=H_{0} \tag{11.368}
\end{equation*}
$$

In the case that the chemical environment has a NMR effect, a different value of H_{0} is required for resonance. This chemical shift is proportional to the electronic magnetic flux charge at the nucleus due to the applied field, which in the case of each dihydrino molecule is a function of its semimajor and semiminor axes as shown infra.

Consider the application of a z-axis-directed uniform external magnetic flux, \mathbf{B}_{z}, to a dihydrino molecule comprising prolate spheroidal electron MOs with two spin-paired electrons. The diamagnetic reaction current increases or decreases the MO current to counteract any applied flux according to Lenz's law as shown in the Hydrino Hydride Ion Nuclear Magnetic Resonance Shift section. The current of hydrogen-type molecules is along elliptical orbits parallel to the semimajor axis. Thus, each nuclear magnetic moment must be in the direction of the semiminor axis for the electronic interaction with the nuclei. Thus, the nuclei are NMR active towards \mathbf{B}_{z} when the orientation of the semimajor axis, a, is along the x-axis, and the semiminor axes, $b=c$, are along the y-axis and z-axis, respectively. The flux is applied over the time interval $\Delta t=t_{i}-t_{f}$ such that the field increases at a rate $d B / d t$. The electric field, \mathbf{E}, along a perpendicular elliptic path of the dihydrino MO at the plane $z=0$ is given by

$$
\begin{equation*}
\oint E \cdot d s=\int \frac{d B}{d t} \cdot d A \tag{11.369}
\end{equation*}
$$

The induced electric field must be constant along the path; otherwise, compensating currents would flow until the electric field is constant. Thus, Eq. (11.369) becomes

$$
\begin{equation*}
E=\frac{\int \frac{d B}{d t} \cdot d A}{\oint d s}=\frac{\int \frac{d B}{d t} \cdot d A}{4 a E(k)}=\frac{\pi a b \frac{d B}{d t}}{4 a E(k)} \tag{11.370}
\end{equation*}
$$

where $E(k)$ is the elliptic integral given by:

$$
\begin{align*}
& E(k)=\int_{0}^{\frac{\pi}{2}} \sqrt{1-k \sin ^{2} \phi} d \phi=1.2375 \tag{11.371}\\
& k=e=\frac{\sqrt{a^{2}-b^{2}}}{a}=\frac{\sqrt{2}}{2} \tag{11.372}
\end{align*}
$$

the area of an ellipse, A, is

$$
\begin{equation*}
A=\pi a b \tag{11.373}
\end{equation*}
$$

the perimeter of an ellipse, s, is:

$$
\begin{equation*}
s=4 a E(k) \tag{11.374}
\end{equation*}
$$

a is the semimajor axis given by Eq. (11.202), b is the semiminor axis given by Eq. (11.205), and e is the eccentricity given by Eq. (11.206). The acceleration along the path, $d v / d t$, during the application of the flux is determined by the electric force on the charge density of the electrons:

$$
\begin{equation*}
m_{e} \frac{d v}{d t}=e E=\frac{e \pi a b}{4 a E(k)} \frac{d B}{d t} \tag{11.375}
\end{equation*}
$$

Thus, the relationship between the change in velocity, v, and the change in B is:

$$
\begin{equation*}
d v=\frac{e \pi a b}{4 a E(k) m_{e}} d B \tag{11.376}
\end{equation*}
$$

Let Δv represent the net change in v over the time interval $\Delta t=t_{i}-t_{f}$ of the application of the flux. Then,

$$
\begin{equation*}
\Delta v=\int_{v_{0}}^{v_{0}+\Delta v} d v=\frac{e \pi a b}{4 a E(k) m_{e}} \int_{0}^{B} d B=\frac{e \pi a b B}{4 a E(k) m_{e}} \tag{11.377}
\end{equation*}
$$

The average current, I, of a charge moving in time harmonically along an ellipse is:

$$
\begin{equation*}
I=e f=\frac{e v}{4 a E(k)} \tag{11.378}
\end{equation*}
$$

where f is the frequency. The corresponding magnetic moment is given by:

$$
\begin{equation*}
m=A I=\pi a b I=\frac{\pi a b e v}{4 a E(k)} \tag{11.379}
\end{equation*}
$$

Thus, from Eqs. (11.377) and (11.379), the change in the magnetic moment, $\Delta \mathbf{m}$, due to an applied magnetic flux, \mathbf{B}, is [39]

$$
\begin{equation*}
\Delta \mathbf{m}=-\frac{(e \pi a b)^{2} \mathbf{B}}{(4 a E(k))^{2} m_{e}} \tag{11.380}
\end{equation*}
$$

Next, the contribution from all plane cross-sections of the prolate spheroid MO must be integrated along the z-axis. The spheroidal surface is given by

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{b^{2}}=1 \tag{11.381}
\end{equation*}
$$

The intersection of the plane $z=z^{\prime}\left(-b \leq z^{\prime} \leq b\right)$ with the spheroid determines the curve

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1-\frac{z^{12}}{b^{2}} \tag{11.382}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{x^{2}}{a^{2}\left(1-\frac{z^{\prime 2}}{b^{2}}\right)}+\frac{y^{2}}{b^{2}\left(1-\frac{z^{\prime 2}}{b^{2}}\right)}=1 \tag{11.383}
\end{equation*}
$$

Eq. (11.383) is an ellipse with semimajor axis, a^{\prime}, and semiminor axis, b^{\prime}, given by:

$$
\begin{align*}
& a^{\prime}=a \sqrt{1-\frac{z^{\prime 2}}{b^{2}}} \tag{11.384}\\
& b^{\prime}=b \sqrt{1-\frac{z^{\prime 2}}{b^{2}}} \tag{11.385}
\end{align*}
$$

The eccentricity, e^{\prime}, is given by

$$
\begin{equation*}
e^{\prime}=\frac{\sqrt{a^{2}\left(1-\frac{z^{\prime 2}}{b^{2}}\right)-b^{2}\left(1-\frac{z^{\prime 2}}{b^{2}}\right)}}{a \sqrt{1-\frac{z^{\prime 2}}{b^{2}}}}=\frac{\sqrt{a^{2}-b^{2}}}{a}=e \tag{11.386}
\end{equation*}
$$

where e is given by Eq. (11.372). The area, A^{\prime}, is given by:

$$
\begin{equation*}
A^{\prime}=\pi a^{\prime} b^{\prime} \tag{11.387}
\end{equation*}
$$

and the perimeter, s^{\prime}, is given by

$$
\begin{equation*}
s^{\prime}=4 a^{\prime} E(k)=4 a E(k) \sqrt{1-\frac{z^{\prime 2}}{b^{2}}}=s \sqrt{1-\frac{z^{\prime 2}}{b^{2}}} \tag{11.388}
\end{equation*}
$$

where s is given by Eq. (11.374). The differential magnetic moment change along the z -axis is:

$$
\begin{equation*}
d \Delta \mathbf{m}=-\frac{1}{2 b} \frac{\left(e \pi a^{\prime} b^{\prime}\right)^{2} \mathbf{B}}{\left(4 a^{\prime} E(k)\right)^{2} m_{e}} d z^{\prime} \tag{11.389}
\end{equation*}
$$

Using Eq. (11.385) for the parameter b^{\prime}, the change in magnetic moment for the dihydrino molecule is given by the integral over $-b \leq b^{\prime} \leq b$:

$$
\begin{equation*}
\Delta \mathbf{m}=-\frac{1}{2 b} \int_{-b}^{b} \frac{\left(e \pi a^{\prime} b \sqrt{1-\frac{z^{\prime 2}}{b^{2}}}\right)^{2} \mathbf{B}}{\left(4 a^{\prime} E(k)\right)^{2} m_{e}} d z^{\prime}=-C_{1} \frac{1}{m_{e}}\left(\frac{\pi e}{4 E(k)}\right)^{2} \mathbf{B} \tag{11.390}
\end{equation*}
$$

Then, the integral to correct for the z-dependence of b^{\prime} is:

$$
\begin{equation*}
C_{1}=\frac{\int_{-b}^{b}\left(b^{2}-z^{2}\right) d z}{2 b}=\frac{2}{3} b^{2}=\frac{a_{0}^{2}}{3 p^{2}} \tag{11.391}
\end{equation*}
$$

where the semiminor axis, $b=\frac{a_{0}}{p \sqrt{2}}$, given by Eq. (11.205) was used.
The change in magnetic moment would be given by the substitution of Eq. (11.391) into Eq. (11.390), if the charge density were constant along the path of Eqs. (11.370) and (11.378), but it is not. The charge density of the MO in rectangular coordinates (Eq. (11.42)) is

$$
\begin{equation*}
\sigma=\frac{e}{4 \pi a b c} \frac{1}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \tag{11.392}
\end{equation*}
$$

(The mass-density function of an MO is equivalent to its charge-density function where m replaces q of Eq. (11.42)). The equation of the plane tangent to the ellipsoid at the point x_{0}, y_{0}, z_{0} is:

$$
\begin{equation*}
X \frac{x_{0}}{a^{2}}+Y \frac{y_{0}}{b^{2}}+Z \frac{z_{0}}{c^{2}}=1 \tag{11.393}
\end{equation*}
$$

where X, Y, Z are running coordinates in the plane. After dividing through by the square root of the sum of the squares of the coefficients of X, Y, and Z, the right member is the distance D from the origin to the tangent plane. That is,

$$
\begin{equation*}
D=\frac{1}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \tag{11.394}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sigma=\frac{e}{4 \pi a b c} D \tag{11.395}
\end{equation*}
$$

In other words, the surface density at any point on the ellipsoidal MO is proportional to the perpendicular distance from the center of the ellipsoid to the plane tangent to the ellipsoid at the point. The charge is thus greater on the more sharply rounded ends farther away from the origin. In order to maintain current continuity, the diamagnetic velocity of Eq. (11.377) must be a constant along any given path integral corresponding to a constant electric field. Consequently, the charge density must be the minimum value of that given by Eq. (11.392). The minimum corresponds to $y=b$ and $x=z=0$ such that the charge density is:

$$
\begin{equation*}
\sigma=\frac{e}{4 \pi a b^{2}} \frac{1}{\sqrt{\frac{0^{2}}{a^{4}}+\frac{b^{2}}{b^{4}}+\frac{0^{2}}{b^{4}}}}=\frac{e}{4 \pi a b} \tag{11.396}
\end{equation*}
$$

The MO is an equipotential surface, and the current must be continuous over the two-dimensional surface. Continuity of the surface current density, K, due to the diamagnetic effect of the applied magnetic field on the MO and the equipotential boundary condition require that the current of each elliptical curve determined by the intersection of the plane $z=z^{\prime}$ $\left(-b \leq z^{\prime} \leq b\right)$ with the spheroid be the same. The charge density is spheroidally symmetrical about the semimajor axis. Thus, λ, the charge density per unit length along each elliptical path cross section of Eq. (11.383) is given by distributing the surface charge density of Eq. (11.396) uniformly along the z-axis for $-b \leq z^{\prime} \leq b$. So, $\lambda\left(z^{\prime}=0\right)$, the linear charge density λ in the plane $z^{\prime}=0$, is:

$$
\begin{equation*}
\lambda\left(z^{\prime}=0\right)=\frac{\sigma}{\frac{1}{2 b}}=\frac{e}{4 \pi a b} 2 b=\frac{e}{2 \pi a} \tag{11.397}
\end{equation*}
$$

And, the linear charge density must be equally distributed over each elliptical path cross-section corresponding to each plane $z=z^{\prime}$. The current is independent of z^{\prime} when the linear charge density, $\lambda\left(z^{\prime}\right)$, is normalized for the path length:

$$
\begin{equation*}
\lambda\left(z^{\prime}\right)=\frac{e}{2 \pi a} \frac{4 a E(k)}{4 a^{\prime} E\left(k^{\prime}\right)}=\frac{e}{2 \pi a^{\prime}} \tag{11.398}
\end{equation*}
$$

where the equality of the eccentricities of each elliptical plane cross section given by Eq. (11.386) was used. Substitution of Eq. (11.398) for the corresponding charge density, $\frac{e}{4 a^{\prime} E(k)}$, of Eq. (11.390) and using Eq. (11.391) gives:

$$
\begin{equation*}
\Delta \mathbf{m}=\frac{2}{3} \frac{e^{2} b^{2} \mathbf{B}}{4 m_{e}}=\frac{e^{2} a_{0}^{2} \mathbf{B}}{12 p^{2} m_{e}} \tag{11.399}
\end{equation*}
$$

The two electrons are spin-paired and the velocities are mirror opposites. Thus, the change in velocity of each electron treated individually (Eq. (10.3)) due to the applied field would be equal and opposite. However, as shown in the Three Electron Atom section, the two paired electrons may be treated as one with twice the mass where m_{e} is replaced by $2 m_{e}$ in Eq. (11.399). In this case, the paired electrons spin together about the applied field axis, the z-axis, to cause a reduction in the applied field according to Lenz's law. Thus, from Eq. (11.399), the change in magnetic moment is given by:

$$
\begin{equation*}
\Delta \mathbf{m}=\frac{e^{2} a_{0}^{2} \mathbf{B}}{24 p^{2} m_{e}} \tag{11.400}
\end{equation*}
$$

The opposing diamagnetic flux is uniform, parallel, and opposite the applied field as given by Stratton [40]. Specifically, the change in magnetic flux, $\Delta \mathbf{B}$, at the nucleus due to the change in magnetic moment, $\Delta \mathbf{m}$, is:

$$
\begin{equation*}
\Delta \mathbf{B}=\mu_{0} A_{2} \Delta \mathbf{m} \tag{11.401}
\end{equation*}
$$

where μ_{0} is the permeability of vacuum,

$$
\begin{equation*}
A_{2}=\int_{0}^{\infty} \frac{d s}{\left(s+b^{2}\right) R_{s}} \tag{11.402}
\end{equation*}
$$

is an elliptic integral of the second kind given by Whittaker and Watson [41], and

$$
\begin{equation*}
R_{s}=\left(s+b^{2}\right) \sqrt{\left(s+a^{2}\right)} \tag{11.403}
\end{equation*}
$$

Substitution of Eq. (11.403) into Eq. (11.402) gives:

$$
\begin{equation*}
A_{2}=\int_{0}^{\infty} \frac{d s}{\left(s+b^{2}\right)^{2}\left(s+a^{2}\right)^{1 / 2}} \tag{11.404}
\end{equation*}
$$

From integral 154 of Lide [42]:

$$
\begin{equation*}
A_{2}=-\left\{\frac{1}{a^{2}-b^{2}} \frac{\sqrt{s+a^{2}}}{s+b^{2}}\right\}_{0}^{\infty}-\frac{1}{2} \frac{1}{a^{2}-b^{2}} \int_{0}^{\infty} \frac{d s}{\left(s+b^{2}\right) \sqrt{s+a^{2}}} \tag{11.405}
\end{equation*}
$$

The evaluation at the limits of the first integral is

$$
\begin{equation*}
-\left\{\frac{1}{a^{2}-b^{2}} \frac{\sqrt{s+a^{2}}}{s+b^{2}}\right\}_{0}^{\infty}=\frac{a}{b^{2}\left(a^{2}-b^{2}\right)} \tag{11.406}
\end{equation*}
$$

From integral \#147 of Lide [9], the second integral is:

$$
\begin{equation*}
-\frac{1}{2} \frac{1}{a^{2}-b^{2}} \int_{0}^{\infty} \frac{d s}{\left(s+b^{2}\right) \sqrt{s+a^{2}}}=\left\{\frac{1}{2} \frac{1}{\left(a^{2}-b^{2}\right)^{3 / 2}} \ln \frac{\sqrt{s+a^{2}}+\sqrt{a^{2}-b^{2}}}{\sqrt{s+a^{2}}-\sqrt{a^{2}-b^{2}}}\right\}_{0}^{\infty} \tag{11.407}
\end{equation*}
$$

Evaluation at the limits of the second integral gives:

$$
\begin{equation*}
-\frac{1}{2} \frac{1}{\left(a^{2}-b^{2}\right)^{3 / 2}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{11.408}
\end{equation*}
$$

Combining Eq. (11.406) and Eq. (11.408) gives:

$$
\begin{equation*}
A_{2}=\frac{a}{b^{2}\left(a^{2}-b^{2}\right)}-\frac{1}{2} \frac{1}{\left(a^{2}-b^{2}\right)^{3 / 2}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=\frac{p^{3} 4}{a_{0}^{3}}-\frac{p^{3} \sqrt{2}}{a_{0}^{3}} \ln \frac{\sqrt{2}+1}{\sqrt{2}-1} \tag{11.409}
\end{equation*}
$$

where the semimajor axis, $a=\frac{a_{0}}{p}$, given by Eq. (11.202) and the semiminor axis, $b=\frac{a_{0}}{p \sqrt{2}}$, given by Eq. (11.205) were used.
Substitution of Eq. (11.400) and Eq. (11.409) into Eq. (11.401) gives:

$$
\begin{equation*}
\Delta \mathbf{B}=-\mu_{0}\left(\frac{p^{3} 4}{a_{0}^{3}}-\frac{p^{3} \sqrt{2}}{a_{0}^{3}} \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}\right) \frac{a_{0}^{2} e^{2} \mathbf{B}}{24 p^{2} m_{e}} \tag{11.410}
\end{equation*}
$$

Additionally, it is found both theoretically and experimentally that the dimensions, r^{2}, of the molecule corresponding to the area in Eqs. (11.369) and (11.379) used to derive Eq. (11.410) must be replaced by an average, $\left\langle r^{2}\right\rangle$, that takes into account averaging over the orbits isotropically oriented. The correction of $2 / 3$ is given by Purcell [39] (also Eq (11.391)). In the case of hydrogen-type molecules, the electronic interaction with the nuclei require that each nuclear magnetic moment is in the direction of the semiminor axis. But free rotation about each of three axes results in an isotropic averaging of $2 / 3$ where the rotational frequencies of hydrogen-type molecules are much greater than the corresponding NMR frequency (e.g. $10^{12} \mathrm{~Hz}$ versus $10^{8} \mathrm{~Hz}$). Thus, Eq. (11.410) gives the absolute upfield chemical shift, $\frac{\Delta B}{B}$, of $H_{2}(1 / p)$ relative to a bare proton:

$$
\begin{align*}
\frac{\Delta \mathbf{B}}{\mathbf{B}} & =\frac{\Delta B}{B}=-\mu_{0}\left(\frac{p^{3} 4}{a_{0}^{3}}-\frac{p^{3} \sqrt{2}}{a_{0}^{3}} \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}\right) \frac{a_{0}^{2} e^{2}}{36 p^{2} m_{e}} \\
& =-\mu_{0}\left(4-\sqrt{2} \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}\right) \frac{p e^{2}}{36 a_{0} m_{e}} \tag{11.411}\\
& =-p 28.01 \mathrm{ppm}
\end{align*}
$$

where p is an integer.
For resonance to occur, ΔH_{0}, the change in applied field from that given by Eq. (11.368), must compensate by an equal and opposite amount as the field due to the electrons of molecular hydrino. Compared to protons with no chemical shift, the ratio of ΔH_{0} for resonance of the protons of the dihydrino molecule $H_{2}(1 / p)$ to that of H_{2} is a positive integer. According to Eq. (11.202), the ratio of the semimajor axis of the dihydrino molecule $H_{2}(1 / p)$ to that of the hydrogen molecule H_{2} is the reciprocal of an integer p. It follows from Eqs. (11.202) and (11.411) that the diamagnetic flux (flux opposite to the applied
field) at each nucleus is inversely proportional to the semimajor radius, $a=\frac{a_{0}}{p}$. That is, if only the size is considered, the absolute absorption peak of the dihydrino molecule (i.e. relative to a proton with no shift) occurs at a value of ΔH_{0} that is a multiple of p times the value that is resonant for H_{2}. However, the source current of the state must be considered in addition to the reduced geometrical dimensions.

As shown in the Stability of "Ground" and Hydrino States section, for the below "ground" (fractional quantum number) energy states of the hydrogen atom, $\sigma_{\text {photon }}$, the two-dimensional surface charge due to the "trapped photon" at the electron atomic orbital and phase-locked with the electron atomic orbital current, is given by Eqs. (5.27) and (2.11). The excited states of the hydrogen molecule are solved using the same approach as those of the excited states of atoms wherein the corresponding geometry is prolate spheroid rather than spherical and the photon fields are modeled by associated Legendre functions or ellipsoidal spherical harmonics with regard to the semimajor axis as given in the Excited States of the Hydrogen Molecule section. The total central ellipsoidal field of the molecule at the position of the molecular orbital (MO) due to the superposition of the field of the nuclei and the photon field is equivalent to an integer p times that of the nuclei at the foci of the prolate spheroidal MO. The photon source current gives rise to an additional contribution to the diamagnetism of the two electrons that is a function of p.

As given in the Excited States of the Hydrogen Molecule section, the current of the paired electrons of the MO are phase locked to the photon field of magnitude p of the dihydrino state. For the spherical harmonics, the quantum number of the electron are p, ℓ, m_{ℓ}, and m_{s} as described in the Excited States of the One-Electron Atom (Quantization) section wherein the principal quantum number of excited states is replaced by $n=\frac{1}{p}$. From Eq. (5.27),

$$
\begin{equation*}
n=\frac{1}{p} ; \ell=0,1,2, \ldots, p-1 ; m_{\ell}=-\ell,-\ell+1, \ldots, 0, \ldots+\ell ; m_{s}= \pm \frac{1}{2} \tag{11.412}
\end{equation*}
$$

In the case that the photons and corresponding source current spin in opposite directions for the two electrons, the orbital magnetic moments cancel. However, as given in the Pair Production section, a photon having an energy equivalent to that of the mass energy of the electron may undergo particle production to form an electron. To maintain continuity, the photon surface current of a dihydrino state must behave as the charge equivalent to its energy during the interaction of the electrons and the phased locked photon-field surface current with the external magnetic field such that the photon component gives rise to a proportional diamagnetic effect as well. The photon diamagnetic component is given by Eqs. (29.10-29.11) as the charge equivalent to its energy that superimposes with the diamagnetism of the two electrons. The relativistic term after Eq. (29.10) and the central field magnitude term for the dihydrino state having principle quantum number p are α^{2} and p, respectively. The photon contribution to the change in flux $\Delta \mathbf{B}_{S R}$ for molecular hydrino $H_{2}(1 / p)$ given by applying the corresponding relativistic factor of $\gamma_{S R}=\alpha^{2}$ to Eq. (11.401) is

$$
\begin{equation*}
\Delta \mathbf{B}_{S R}=-p \alpha^{2} \mu_{0} A_{2} \Delta \mathbf{m} \tag{11.413}
\end{equation*}
$$

Thus, using Eq. (11.411) and Eq. (11.413), the upfield chemical shift, $\frac{\Delta B_{S R}}{B}$, due to the photon contribution of the molecule $H_{2}(1 / p)$ corresponding to the lower-energy state with principal quantum energy state p is given by:

$$
\begin{equation*}
\frac{\Delta B_{S R}}{B}=-p \alpha^{2} \mu_{0}\left(4-\sqrt{2} \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}\right) \frac{p e^{2}}{36 a_{0} m_{e}} \tag{11.414}
\end{equation*}
$$

The total shift, $\frac{\Delta B_{T}}{B}$, for $H_{2}(1 / p)$ is given by the sum of that of the electrons given by Eq. (11.411) and that of the photon given by Eq. (11.414):

$$
\begin{align*}
\frac{\Delta B_{T}}{B} & =-\mu_{0}\left(4-\sqrt{2} \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}\right) \frac{p e^{2}}{36 a_{0} m_{e}}\left(1+p \alpha^{2}\right) \tag{11.415}\\
\frac{\Delta B_{T}}{B} & =-\left(p 28.01+p^{2} 1.49 X 10^{-3}\right) p p m \tag{11.416}
\end{align*}
$$

where the first term applies to H_{2} with $p=1$ and $p=$ integer >1 for $H_{2}(1 / p)$.
H_{2} has been characterized by gas phase ${ }^{1} H$ NMR. The experimental absolute resonance shift of gas-phase TMS relative to the proton's gyromagnetic frequency is -28.5 ppm [32]. The experimental absolute resonance shift of TMS is -31.5 ppm relative to the proton's gyromagnetic frequency [43-44]. H_{2} was observed at 0.48 ppm compared to gas phase TMS set at 0.00 ppm [33]. Thus, the corresponding absolute H_{2} gas-phase resonance shift of $-28.0 \mathrm{ppm}(-28.5+0.48) \mathrm{ppm}$ was in excellent agreement with the predicted absolute gas-phase shift of -28.01 ppm given by Eq. (11.411). The solution NMR of H_{2} has a
chemical shift of about +4.65 ppm relative to TMS in many solvents [45] corresponding to a solvent or matrix shift of about +1 ppm. The chemical shift of $H_{2}(1 / p)$ is given by the difference of Eq. (11.416) and -31.5 ppm plus any solvent shift.

As given in the Parameters and Magnetic Energies Due to the Spin Magnetic Moment of $H_{2}(1 / 4)$ section $H_{2}(1 / p)$ has an unpaired electron such that it is paramagnetic. The paramagnetism contributes to the difficulty of observing molecular hydrino NMR peaks directly. However molecular hydrino states can give rise to a matrix shift in the MAS NMR spectrum when the matrix comprises NMR active H species such as a matrix having waters of hydration or an alkaline hydroxide solid matrix wherein a local interaction with $H_{2}(1 / p)$ causes an upfield matrix shift. This effect may be enhanced for H species capable of rapid H exchange wherein the local $\mathrm{H}_{2}(1 / p)$ interaction influences a larger population due to the rapid H exchange.

QUADRUPOLE MOMENT

The quadrupole moment Q_{33} of a charge distribution $\rho(\vec{r})$ along the z-axis is given by

$$
\begin{equation*}
Q_{z z}=\iiint d \vec{r} \rho(\vec{r})\left[3 z^{2}-r^{2}\right] \tag{11.417}
\end{equation*}
$$

In cylindrical coordinates, the quadrupole moment is given by

$$
\begin{equation*}
Q_{z z}=\int d z \int d \phi \int d r r\left[2 z^{2}-r^{2}\right] \sigma \tag{11.418}
\end{equation*}
$$

wherein from Eqs. (11.26), (11.45), and (11.46) the electron charge distribution σ is

$$
\begin{equation*}
\sigma=\frac{-2 e}{4 \pi a b c} \frac{1}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{b^{4}}}} ; \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{b^{2}}=1 \tag{11.419}
\end{equation*}
$$

Consider that the prolate spheroid is aligned with the major axis along the z -axis such that the magnitude of the charge density of the hydrogen-type molecular orbital is

$$
\begin{equation*}
\sigma=\frac{-2 e}{4 \pi a b^{2}} \frac{1}{\sqrt{\frac{r^{2}}{b^{4}}+\frac{z^{2}}{a^{4}}}} ; \quad \frac{r^{2}}{b^{2}}+\frac{z^{2}}{a^{2}}=1 \tag{11.420}
\end{equation*}
$$

Substitution of Eq. (11.419) into Eq. (11.418) gives the electron contribution to the quadrupole moment $Q_{z z e}$:

$$
\begin{equation*}
Q_{z z e}=\frac{-2 e}{4 \pi a b^{2}} \int_{-a}^{a} \int_{0}^{2 \pi} \frac{\int_{0}^{\infty} r\left(2 z^{2}-r^{2}\right)}{\sqrt{\frac{z^{2}}{a^{4}}+\frac{r^{2}}{b^{4}}}} \delta\left(r-b \sqrt{1-\frac{z^{2}}{a^{2}}}\right) d r d \phi d z \tag{11.421}
\end{equation*}
$$

Integration with respect to r and ϕ gives

$$
\begin{equation*}
Q_{z z e}=\frac{-e}{a b^{2}} \int_{-a}^{a} \frac{2 z^{2} b \sqrt{1-\frac{z^{2}}{a^{2}}}-b^{3}\left(1-\frac{z^{2}}{a^{2}}\right)^{3 / 2}}{\sqrt{\frac{z^{2}}{a^{4}}+\frac{\left(1-\frac{z^{2}}{a^{2}}\right)}{b^{2}}}} d z \tag{11.422}
\end{equation*}
$$

With the substitution of the semimajor axis (Eq. (11.202)), semiminor axis (Eq. (11.205)), and $z^{\prime}=z / a$ into Eq. (11.422), $Q_{z z e}$ becomes

$$
\begin{equation*}
Q_{z z e}=-e \frac{a_{0}^{2}}{p^{2}} \int_{-1}^{1} \frac{2^{3 / 2} z^{\prime 2} \sqrt{1-z^{\prime 2}}-\frac{1}{\sqrt{2}}\left(1-z^{\prime 2}\right)^{3 / 2}}{\sqrt{2-z^{\prime 2}}} d z^{\prime} \tag{11.423}
\end{equation*}
$$

Integral (11.423) given by Mathematica is

$$
\begin{equation*}
\frac{Q_{z z e}}{e}=-0.298728 \frac{a_{0}^{2}}{p^{2}}=\frac{-8.36523 \times 10^{-22} \mathrm{~m}^{2}}{p^{2}}=\frac{-8.36523 \times 10^{-18} \mathrm{~cm}^{2}}{p^{2}} \tag{11.424}
\end{equation*}
$$

Next, consider the quadrupole moment contribution of the two protons of hydrogen-type molecules wherein the protons are aligned along the z-axis with a separation of the internuclear distance $2 c^{\prime}$ given by Eq. (11.204). The quadrupole moment tensor is given by [46]:

$$
\begin{equation*}
Q_{i j}=\int d^{3} x \rho(\mathbf{x})\left(3 x_{i} x_{j}-r^{2} \delta_{i j}\right) \tag{11.425}
\end{equation*}
$$

The charge densities of the protons are given by

$$
\begin{equation*}
\rho(\mathbf{x})=e\left(\delta^{3}\left(\mathbf{x}-c^{\prime} \mathbf{k}\right)+\delta^{3}\left(\mathbf{x}+c^{\prime} \mathbf{k}\right)\right) \tag{11.426}
\end{equation*}
$$

The quadrupole moment may be easily evaluated in Cartesian coordinates wherein the Dirac delta functions become

$$
\begin{equation*}
\delta^{3}\left(\mathbf{x}-c^{\prime} \mathbf{k}\right)+\delta^{3}\left(\mathbf{x}+c^{\prime} \mathbf{k}\right)=\delta\left(z-c^{\prime}\right) \delta(x) \delta(y)+\delta\left(z+c^{\prime}\right) \delta(x) \delta(y) \tag{11.427}
\end{equation*}
$$

Substitution of Eqs. (11.426-11.427) into Eq. (11.425) gives the proton quadrupole contribution $Q_{z z p}$:

$$
\begin{align*}
Q_{z z p} & =\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y \int_{-\infty}^{\infty} d z \rho(\mathbf{x})\left(3 z^{2}-\left(x^{2}+y^{2}+z^{2}\right)\right) \\
& =e \int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y \int_{-\infty}^{\infty} d z\left(\delta\left(z-c^{\prime}\right) \delta(x) \delta(y)+\delta\left(z+c^{\prime}\right) \delta(x) \delta(y)\right)\left(2 z^{2}-x^{2}-y^{2}\right) \tag{11.428}\\
& =4 e c^{2}
\end{align*}
$$

The charge-normalized quadrupole moment of hydrogen-type molecule $\frac{Q_{z z H_{2}(1 / p)}}{e}$ is given by the sum of the charge-normalized quadrupole moment contributions of the protons, $\frac{Q_{z z p}}{e}$ given by Eq. (11.428), and the electrons, $\frac{Q_{z z e}}{e}$ given by Eq. (11.424):

$$
\begin{equation*}
\frac{Q_{z z H_{2}(1 / p)}}{e}=\frac{Q_{z z p}}{e}+\frac{Q_{z z e}}{e}=4 c^{12}-0.29873 \frac{a_{0}^{2}}{p^{2}}=(2-0.29873) \frac{a_{0}^{2}}{p^{2}}=1.70127 \frac{a_{0}^{2}}{p^{2}} \tag{11.429}
\end{equation*}
$$

wherein the distance of each proton from the origin c^{\prime} is given by Eq. (11.203). In the case of H_{2} wherein $p=1$, the chargenormalized quadrupole moment given by Eq. (11.429) is

$$
\begin{equation*}
\frac{Q_{z z H_{2}}}{e}=1.70127 a_{0}^{2}=0.476404 \times 10^{-16} \mathrm{~cm}^{2} \tag{11.430}
\end{equation*}
$$

which agrees with the experimental results of Ramsey [47]:

$$
\begin{equation*}
\frac{Q_{z z H_{2}}}{e}=0.38 \pm 0.15 \times 10^{-16} \mathrm{~cm}^{2} \tag{11.431}
\end{equation*}
$$

In the case of $H_{2}(1 / 4)$ wherein $p=4$, the charge-normalized quadrupole moment given by Eq. (11.429) is

$$
\begin{equation*}
\frac{Q_{z z H_{2}(1 / 4)}}{e}=1.70127 \frac{a_{0}^{2}}{4^{2}}=2.97752 \times 10^{-18} \mathrm{~cm}^{2} \tag{11.432}
\end{equation*}
$$

REFERENCES

1. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 145-158.
2. J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, (1941), pp. 38-59; 195-267.
3. Jahnke-Emde, Tables of Functions, $2^{\text {nd }}$ ed., Teubner, (1933).
4. J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley \& Sons, New York, (1975), pp. 17-22.
5. H. A. Haus, J. R. Melcher, "Electromagnetic Fields and Energy," Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, (1985), Sec. 5.3.
6. J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, (1941), p. 195.
7. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 119-124.
8. J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, (1941), pp. 38-54; 207-209.
9. D. R. Lide, CRC Handbook of Chemistry and Physics, 79 ${ }^{\text {th }}$ Edition, CRC Press, Boca Raton, Florida, (1998-9), p. A-29.
10. H. A. Haus, "On the radiation from point charges," American Journal of Physics, 54, (1986), pp. 1126-1129.
11. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 161-164.
12. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 57-66.
13. M. Mizushima, Quantum Mechanics of Atomic Spectra and Atomic Structure, W.A. Benjamin, Inc., New York, (1970), p.17.
14. M. Karplus, R. N. Porter, Atoms and Molecules an Introduction for Students of Physical Chemistry, The Benjamin/Cummings Publishing Company, Menlo Park, California, (1970), pp. 447-484.
15. J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley \& Sons, New York, (1975), p. 659.
16. J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley \& Sons, New York, (1975), pp. 780-786.
17. T. C. Gibb, Principles of Mössbauer Spectroscopy, Wiley, (1976), pp. 1-5.
18. D. A. McQuarrie, Quantum Chemistry, University Science Books, Mill Valley, CA, (1983), p. 172.
19. D. R. Lide, CRC Handbook of Chemistry and Physics, 79 ${ }^{\text {th }}$ Edition, CRC Press, Boca Raton, Florida, (1998-9), p. 10-175.
20. NIST Atomic Spectra Database, www.physics.nist.gov/cgi-bin/AtData/display.ksh.
21. T. Bujnak, personal communication July 2010.
22. M. Abramowitz, I. A. Stegun (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc, New York, (1970), pp. 753-759
23. N. V. Sidgwick, The Chemical Elements and Their Compounds, Volume I, Oxford, Clarendon Press, (1950), p.17.
24. P. W. Atkins, Physical Chemistry, Second Edition, W. H. Freeman, San Francisco, (1982), p. 589.
25. K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York, (1979).
26. W. J. Nellis, "Making Metallic Hydrogen," Scientific American, May, (2000), pp. 84-90.
27. H. Beutler, Z. Physical Chem., "Die dissoziationswarme des wasserstoffmolekuls H_{2}, aus einem neuen ultravioletten resonanzbandenzug bestimmt," Vol. 27B, (1934), pp. 287-302.
28. G. Herzberg, L. L. Howe, "The Lyman bands of molecular hydrogen," Can. J. Phys., Vol. 37, (1959), pp. 636-659.
29. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, "Tomographic imaging of molecular orbitals," Nature, Vol. 432, (2004), pp. 867-871.
30. D. R. Lide, CRC Handbook of Chemistry and Physics, $79^{\text {th }}$ Edition, CRC Press, Boca Raton, Florida, (1998-9), p. 10-181.
31. R. Loch, R. Stengler, G. Werth, "Measurement of the electronic g factor of H_{2}^{+}," Phys. Rev. A, Vol. 38, No. 11, (1988), pp. 5484-5488.
32. C. Suarez, E. J. Nicholas, M. R. Bowman, "Gas-phase dynamic NMR study of the internal rotation in Ntrifluoroacetlypyrrolidine," J. Phys. Chem. A, Vol. 107, (2003), pp. 3024-3029.
33. C. Suarez, "Gas-phase NMR spectroscopy," The Chemical Educator, Vol. 3, No. 2, (1998).
34. D. R. Lide, CRC Handbook of Chemistry and Physics, $79^{\text {th }}$ Edition, CRC Press, Boca Raton, Florida, (1998-9), p. 9-82.
35. R. L. Mills, J. J. Farrell, The Grand Unified Theory, Science Press, (1989), pp. 46-47; 117-119.
36. J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley \& Sons, New York, (1975), p. 178.
37. E. V. Lavrov, J. Weber, "Ortho and Para Interstitial H2 in Silicon," Phys. Rev. Letts., 89(21), (2002), pp. 215501 to 1-215501-4.
38. Liquefaction of "Permanent" Gases" (PDF of lecture notes). 2011. Retrieved 2017-10-16 (Reference 5 of "Spin isomers of hydrogen", Wikipedia, https://en.wikipedia.org/wiki/Spin_isomers_of_hydrogen, Retrieved 2018-11-28.
39. E. Purcell, Electricity and Magnetism, McGraw-Hill, New York, (1965), pp. 370-389.
40. J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, (1941), pp. 211-215, 257-258.
41. Whittaker and Watson, Modern Analysis, $4^{\text {th }}$ Edition, Cambridge University Press, (1927), pp. 512ff.
42. D. R. Lide, CRC Handbook of Chemistry and Physics, 79 ${ }^{\text {th }}$ Edition, CRC Press, Boca Raton, Florida, (1998-9), p. A-30.
43. K. K. Baldridge, J. S. Siegel, "Correlation of empirical δ (TMS) and absolute NMR chemical shifts predicted by ab initio computations," J. Phys. Chem. A, Vol. 103, (1999), pp. 4038-4042.
44. J. Mason, Editor, Multinuclear NMR, Plenum Press, New York, (1987), Chp. 3.
45. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, "NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist," Organometallics, Vol. 29 (9), (2010), pp. 2176-2179, DOI: 10.1021/om100106e.
46. "Multipole moments," November 9, 2015, http://www.physics.usu.edu/Wheeler/EM3600/Notes12MultipoleMoments.pdf.
47. N. F. Ramsey, "Quadrupole moment of the electron distribution in hydrogen molecules", Physical Review, Vol. 78, No. 3, (1950), pp. 221-222.

DIATOMIC MOLECULAR ENERGY STATES

EXCITED ELECTRONIC STATES OF ELLIPSOIDAL MOLECULAR ORBITALS

Excited states of atomic orbitals are discussed in the Excited States of the One-Electron Atom (Quantization) section and the Excited States of Helium section. In the case of ellipsoidal MOs, excited electronic states are created when photons of discrete frequencies are trapped in the ellipsoidal resonator cavity of the MO of the outer excited-state electron. The photon changes the effective charge at the MO surface where the central field is ellipsoidal and arises from both the net field of the nuclei at the foci of the inner MO and the trapped photon of the outer. The "trapped photons" are solutions of the two-dimensional Laplacian in ellipsoidal coordinates given by Eq. (11.27). The excited-state photon's electric field at the outer electron (Eq. (2.15) except ellipsoidal coordinates) superimposes that of the net field of the nuclei at the foci of the inner MO and inner MO charge such that the net electric field has a magnitude proportional to Z / n in the direction of \mathbf{i}_{ξ} at the outer electron where $n=2,3,4, \ldots$ for excited states. Force balance is achieved at a series of ellipsoidal equipotential two-dimensional surfaces with an increased distance ξ. The state geometrical parameters are solved from the force balance equation and the relationships among the ellipsoidal parameters given in the Derivation of the General Geometrical and Energy Equations of Organic Chemistry section. The force balance of the outer excited-state electron is given by balance between the centrifugal force, the central Coulombic force corresponding to the effective central field due to the superposition of photon field at the outer electron and the net field of the nuclei at the foci of the inner MO, and the magnetic forces in the case of paired electrons in the unexcited state. The energies corresponding to the excited electron are given by the prolate spheroidal energy equations given in the Derivation of the General Geometrical and Energy Equations of Organic Chemistry section except for a correction corresponding to a single electron, and the electric terms are scaled according to the effective central field.

EXCITED STATES OF THE HYDROGEN MOLECULAR ION

FORCE BALANCE OF THE EXCITED STATES OF THE HYDROGEN MOLECULAR ION

The excited states of the hydrogen molecular ion are determined by the same physics as those of one and two electron atoms. The excited-state photon's electric field superposes that of the protons at the foci of the MO such that the excited-state electric field has a magnitude proportional to e / n in the direction of \mathbf{i}_{ξ} at the electron MO where $n=2,3,4, \ldots$ for excited states. Balance between the centrifugal and the Coulomb forces is achieved at a series of MOs, ellipsoidal equipotential twodimensional surfaces, confocal with the $n=1$-state ellipsoid MO wherein the corresponding Coulombic force that balances the centrifugal force meets the requirement that the excited-state electric field has a magnitude proportional to e / n at the electron. Thus, force balance between the electric and centrifugal forces given by Eq. (11.115) where $p=1 / n$ is

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{1}{n} \frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D \tag{12.1}
\end{equation*}
$$

which has the parametric solution given by Eq. (11.83) when semimajor axis, a, is:

$$
\begin{equation*}
a=2 n a_{0} \tag{12.2}
\end{equation*}
$$

The internuclear distance, $2 c^{\prime}$, which is the distance between the foci is given by Eq. (11.111) where $p=1 / n$.

$$
\begin{equation*}
2 c^{\prime}=2 n a_{0} \tag{12.3}
\end{equation*}
$$

The semiminor axis is given by Eq. (11.112) where $p=1 / n$.

$$
\begin{equation*}
b=\sqrt{3} n a_{0} \tag{12.4}
\end{equation*}
$$

The eccentricity, e, is given by Eq. (11.113).

$$
\begin{equation*}
e=\frac{1}{2} \tag{12.5}
\end{equation*}
$$

ENERGIES OF THE EXCITED STATES OF THE HYDROGEN MOLECULAR ION

The potential energy, V_{e}, of the electron MO in the field of the protons at the foci $(\xi=0)$ is given by Eq. (11.117) where $p=1 / n$

$$
\begin{equation*}
V_{e}=\frac{-\left(\frac{1}{n}\right) 4 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{12.6}
\end{equation*}
$$

To match the condition that electric field has a magnitude proportional to Z / n in the direction of \mathbf{i}_{ξ} at the electrons, the corresponding potential energy, V_{p}, due to proton-proton repulsion is given by Eq. (11.120) where $p=1 / n$

$$
\begin{equation*}
V_{p}=\frac{\frac{1}{n} e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \tag{12.7}
\end{equation*}
$$

The kinetic energy, T, of the electron MO is given by Eq. (11.119)

$$
\begin{equation*}
T=\frac{2 \hbar^{2}}{m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{12.8}
\end{equation*}
$$

Substitution of a and b given by Eqs. (12.2) and (12.4), respectively, into Eqs. (12.6-12.8) is:

$$
\begin{align*}
& V_{e}=\frac{-4 e^{2}}{n^{2} 8 \pi \varepsilon_{0} a_{H}} \ln 3=\frac{-59.7575 \mathrm{eV}}{n^{2}} \tag{12.9}\\
& V_{p}=\frac{e^{2}}{n^{2} 8 \pi \varepsilon_{0} a_{H}}=\frac{13.5984 \mathrm{eV}}{n^{2}} \tag{12.10}\\
& T=\frac{2 e^{2}}{n^{2} 8 \pi \varepsilon_{0} a_{H}} \ln 3=\frac{29.8787 \mathrm{eV}}{n^{2}} \tag{12.11}
\end{align*}
$$

The Doppler term, $\bar{E}_{\text {osc }}$, for hydrogen is given by Eq. (11.189) where $p=1 / n$

$$
\begin{equation*}
\bar{E}_{\text {osc }}\left(H_{2}^{+}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=-\left(\frac{1}{n}\right)^{3} 0.118755 \mathrm{eV}+\frac{1}{2}\left(\frac{1}{n}\right)^{2}(0.29282 \mathrm{eV}) \tag{12.12}
\end{equation*}
$$

The total energy, E_{T}, for the hydrogen molecular ion given by Eqs. (11.191-11.193) is:

$$
\begin{align*}
E_{T} & =-\left(\frac{1}{n}\right)^{2}\left\{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{H}}(4 \ln 3-1-2 \ln 3)\left[1+\left(\frac{1}{n}\right) \sqrt{\frac{2 \hbar \sqrt{\frac{4 \pi \varepsilon_{0}\left(2 a_{H}\right)^{3}}{m_{e}}}}{m_{e} c^{2}}}\right]-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right\} \\
& =-\left(\frac{1}{n}\right)^{2} 16.2803 \mathrm{eV}-\left(\frac{1}{n}\right)^{3} 0.118755 \mathrm{eV}+\frac{1}{2}\left(\frac{1}{n}\right)^{2} \hbar \sqrt{\frac{k}{\mu}} \tag{12.13}\\
& =-\left(\frac{1}{n}\right)^{2} 16.13392 \mathrm{eV}-\left(\frac{1}{n}\right)^{3} 0.118755 \mathrm{eV}
\end{align*}
$$

The negative of Eq. (12.13) is the ionization energy of the excited state of H_{2}^{+}. The energy T_{e} from the $n=1$ state (also referred to as the state X) to the energy of the $n^{\text {th }}$ excited state is given by the difference of E_{T} given by Eq. (12.13) and the energy of unexcited H_{2}^{+}given by Eq. (12.13) with $n=1$:

$$
\begin{equation*}
T_{e}=-16.13392 \mathrm{eV}\left(\frac{1}{n^{2}}-1\right)-0.118755 \mathrm{eV}\left(\frac{1}{n^{3}}-1\right) \tag{12.14}
\end{equation*}
$$

These states are much higher in energy than the bond dissociation energy and cannot be observed. This result is consistent with observations wherein the excited state spectrum of H_{2}^{+}comprises only excited vibrational levels and levels within a van der Waals state [1-3].

VIBRATION OF THE EXCITED STATES OF THE HYDROGEN MOLECULAR ION

It can be shown that a perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory motion of the orbit [4]. The resonant vibrational frequency for H_{2}^{+}given by Eq. (11.160) is

$$
\begin{equation*}
\omega(0)=\left(\frac{1}{n}\right)^{2} \sqrt{\frac{k(0)}{\mu}}=\left(\frac{1}{n}\right)^{2} \sqrt{\frac{165.51 \mathrm{Nm}^{-1}}{\mu}}=\left(\frac{1}{n}\right)^{2} 4.449 \times 10^{14} \mathrm{radians} / \mathrm{s} \tag{12.15}
\end{equation*}
$$

wherein $p=1 / n$. The spring constant, $k(0)$, for H_{2}^{+}excited states given by Eq. (11.162) is:

$$
\begin{equation*}
k(0)=\left(\frac{1}{n}\right)^{4} 165.51 \mathrm{Nm}^{-1} \tag{12.16}
\end{equation*}
$$

The vibrational energy, $E_{\text {vib }}(0)$, of the H_{2}^{+}excited state for the determination of $\bar{E}_{\text {osc }}$ given by Eq. (11.163) is:

$$
\begin{equation*}
E_{\text {vib }}(0)=\left(\frac{1}{n}\right)^{2} 0.2928 \mathrm{eV} \tag{12.17}
\end{equation*}
$$

The amplitude of oscillation given by Eq. (11.164) is:

$$
\begin{equation*}
A_{\text {reduced }}(0)=n 0.1125 a_{0} \tag{12.18}
\end{equation*}
$$

The vibrational energy for the H_{2}^{+}excited-state $v=1 \rightarrow v=0$ transition given by Eq. (11.166) is:

$$
\begin{equation*}
E_{v i b}(1)=\left(\frac{1}{n}\right)^{2} 0.270 \mathrm{eV} \tag{12.19}
\end{equation*}
$$

The anharmonicity term of the H_{2}^{+}excited state given by Eq. (11.169) is:

$$
\begin{equation*}
\omega_{0} x_{0}=\frac{100 h c\left(8.06573 \times 10^{3} \frac{\mathrm{~cm}^{-1}}{e V}\left(\frac{1}{n}\right)^{2} 0.270 \mathrm{eV}\right)^{2}}{4 e\left(\left(\frac{1}{n}\right)^{2} 2.535 \mathrm{eV}+\left(\frac{1}{n}\right)^{3} 0.118755 \mathrm{eV}\right)} \mathrm{cm}^{-1} \tag{12.20}
\end{equation*}
$$

MAGNETIC MOMENT OF AN ELLIPSOIDAL MOLECULAR ORBITAL

The magnetic dipole moment, μ, of a current loop is:

$$
\begin{equation*}
\mu=i A \tag{12.21}
\end{equation*}
$$

where i is the current and A is the area of the loop. For any elliptic orbital due to a central field, the frequency, f, is:

$$
\begin{equation*}
f=\frac{\frac{L}{m}}{2 A}=\frac{\frac{L}{m}}{2 \pi a b} \tag{12.22}
\end{equation*}
$$

where L is the angular momentum, m is the mass, and the area A of an ellipse is given by Eq. (11.25). The current, i, is:

$$
\begin{equation*}
i=e f=\frac{\frac{e L}{m_{e}}}{2 \pi a b} \tag{12.23}
\end{equation*}
$$

where e is the charge. The magnetic moment is given by substitution of Eqs. (12.23) and (11.25) into Eq. (12.21) where $L=\frac{\hbar}{2}$ is the intrinsic electron angular momentum of the ellipsoidal MO given in the Force Balance of Hydrogen-type Molecules section:

$$
\begin{equation*}
\mu=\frac{1}{2} \frac{e \hbar}{2 m_{e}}=\frac{\mu_{B}}{2} \tag{12.24}
\end{equation*}
$$

where μ_{B} is the Bohr magneton. In a Larmor excited state, the electron gains $L=\hbar$ along the semimajor axis as the intrinsic angular momentum precesses about this axis at the Larmor frequency. The magnetic moment of the Larmor excited state of cylindrical symmetry is given by Eq. (2.65):

$$
\begin{equation*}
\mu=\frac{e \hbar}{2 m_{e}}=\mu_{B} \tag{12.25}
\end{equation*}
$$

which is the Bohr magneton.

MAGNETIC FIELD OF AN ELLIPSOIDAL MOLECULAR ORBITAL

The magnetic field can be solved as a magnetostatic boundary value problem, which is equivalent to that of a uniformly magnetized ellipsoid. The magnetic scalar potential inside the ellipsoidal MO, $\phi^{-},[5]$ and outside of the MO, $\phi^{+},[6]$ are

$$
\begin{equation*}
\phi^{-}=\frac{e \hbar}{2 m_{e}} \int_{0}^{\infty} \frac{d s}{\left(s+a^{2}\right) R_{\xi}} \tag{12.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi^{+}=\frac{3 e \hbar}{8 \pi m_{e}} \frac{\xi}{a^{2}-b^{2}}\left(\frac{\eta}{2} \ln \frac{\eta+1}{\eta-1}-1\right) \tag{12.27}
\end{equation*}
$$

respectively, where R_{ξ} for a prolate spheroid given by Stratton [7] (Eq. (11.32)) is:

$$
\begin{equation*}
R_{\xi}=\left(\xi+b^{2}\right) \sqrt{\left(\xi+a^{2}\right)} \tag{12.28}
\end{equation*}
$$

and the spheroidal [7] parameters for Eq. (12.27) after Chang [6] are:

$$
\begin{align*}
& \eta=\sqrt{\frac{1}{2}\left[\left(1+x^{2}+y^{2}+z^{2}\right)+\sqrt{\left(1+x^{2}+y^{2}+z^{2}\right)^{2}-4 x^{2}}\right]} \tag{12.29}\\
& \xi=\frac{x}{\eta} \tag{12.30}
\end{align*}
$$

The magnetic field inside the ellipsoidal MO, \mathbf{H}_{x}^{-}, is [5]:

$$
\begin{align*}
\mathbf{H}_{x}^{-} & =-\frac{\delta \phi^{-}}{\delta x} \\
& =\frac{-e \hbar}{2 m_{e}} \int_{0}^{\infty} \frac{d s}{\left(s+a^{2}\right) R_{\xi}} \\
& =\frac{-e \hbar}{2 m_{e}} \int_{0}^{\infty} \frac{d s}{\left(s+b^{2}\right)\left(s+a^{2}\right)^{3 / 2}} \tag{12.31}\\
& =\frac{e \hbar}{2 m_{e}} \frac{1}{a^{3}\left(1-\frac{b^{2}}{a^{2}}\right)^{3 / 2}}\left(2 \sqrt{1-\frac{b^{2}}{a^{2}}}+\ln \frac{1+\sqrt{1-\frac{b^{2}}{a^{2}}}}{1-\sqrt{1-\frac{b^{2}}{a^{2}}}}\right)
\end{align*}
$$

The magnetic field inside the ellipsoidal MO is uniform and parallel to the semimajor axis. The Cartesian-coordinate magnetic field components outside the ellipsoidal MO, $\mathbf{H}_{x, y, z}^{+}$, are obtained by taking the gradient of ϕ^{+}given by Eq. (12.27):

$$
\begin{equation*}
\mathbf{H}_{x, y, z}^{+}=-\nabla \phi^{+}=-\sum_{j=1}^{3} \frac{\delta \phi^{+}}{\delta u^{j}} \mathbf{i}_{j} \tag{12.32}
\end{equation*}
$$

where

$$
\begin{equation*}
u^{1}=x \quad u^{2}=y \quad u^{3}=z \tag{12.33}
\end{equation*}
$$

Substitution of Eq. (12.27) into Eq. (12.32) gives [6]

$$
\begin{align*}
& \mathbf{H}_{x}^{+}=-\frac{3 e \hbar}{8 \pi m_{e}\left(a^{2}-b^{2}\right)^{3 / 2}}\left(\frac{1}{2} \ln \frac{\eta+1}{\eta-1}-\frac{\eta}{\eta^{2}-\xi^{2}}\right) \tag{12.34}\\
& \mathbf{H}_{y}^{+}=\frac{3 e \hbar}{8 \pi m_{e}\left(a^{2}-b^{2}\right)^{3 / 2}} \frac{\xi \sqrt{1-\xi^{2}}}{\sqrt{\eta^{2}-1}\left(\eta^{2}-\xi^{2}\right)} \cos \theta \tag{12.35}\\
& \mathbf{H}_{z}^{+}=\frac{3 e \hbar}{8 \pi m_{e}\left(a^{2}-b^{2}\right)^{3 / 2}} \frac{\xi \sqrt{1-\xi^{2}}}{\sqrt{\eta^{2}-1}\left(\eta^{2}-\xi^{2}\right)} \sin \theta \tag{12.36}
\end{align*}
$$

where

$$
\begin{equation*}
\theta=\arctan \frac{z}{y} \tag{12.37}
\end{equation*}
$$

A plot of the field lines of the magnetic dipole due to a resonant Larmor excitation of the prolate-spheroidal $\mathrm{H}_{2}^{+} \mathrm{MO}$ is shown in Figures $12.1 \mathrm{~A}-\mathrm{C}$.

Figure 12.1A. The two-dimensional cross-section of the field lines of the magnetic dipole due to a resonant Larmor excitation of the prolate-spheroidal H_{2}^{+}MO. The internal field is uniform, and the field external to the prolate spheroidal MO is a dipole field.

Figure 12.1B. The field lines of the magnetic dipole due to a resonant Larmor excitation of the prolate-spheroidal H_{2}^{+} MO. The field external to the prolate spheroidal MO is a dipole field.

Figure 12.1C. The field lines of the magnetic dipole due to a resonant Larmor excitation of the prolate-spheroidal H_{2}^{+} MO with the MO partially cut-away to show the uniform internal field lines.

EXCITED STATES OF THE HYDROGEN MOLECULE

FORCE BALANCE OF THE EXCITED STATES OF THE HYDROGEN MOLECULE

In the mathematical limit, as the eccentricity goes to zero the hydrogen molecule becomes the helium atom. The excited states of the hydrogen molecule are determined by the same physics as those of the helium atom. It was shown in the Excited States of Helium section that the inner atomic orbital is essentially that of He^{+}for all excited states with the exact result upon ionization. The infinite H_{2} excited state corresponds to a free electron with the inner MO and protons comprising H_{2}^{+}. Implicit in the calculation of the energy of the outer electron of each H_{2} excited state is that the inner electron has the geometrical parameters, component energies, and the total energy of H_{2}^{+}as shown to very good approximation for the inner atomic electron of helium excited states. For H_{2}, the excited-state photon's two-dimensional ellipsoidal electric field at the outer electron superimposes that of the field of the nuclei at the foci of the inner MO and inner MO charge such that the resultant electric field has a magnitude e / n in the direction of \mathbf{i}_{ξ} at the outer electron where $n=2,3,4, \ldots$ for excited states. Then, the force balance of the outer excited-state electron is given by the balance between the centrifugal force, the central Coulombic force corresponding to the effective central field due to the superposition of the photon field at the outer electron and the net field of the protons at the foci of the inner MO, and the magnetic forces for the particular spin and orbital state. The geometrical parameters for H_{2} are determined from the semimajor axis given by the force balance and the relationships among the ellipsoidal parameters. The energies corresponding to the excited electron are given by the prolate spheroidal energy equations given in the Derivation of the General Geometrical and Energy Equations of Organic Chemistry section except for a $1 / 2$ correction corresponding to a single electron, and the electric terms are scaled according to the effective central field of $1 / n$.

SINGLET EXCITED STATES

$\ell=0$
The force balance between the electric, magnetic, and centrifugal forces of the outer electron given by Eqs. (9.10) and (11.285) is:

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{1}{n} \frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{1}{n} \frac{2 m}{3} \frac{1}{2} \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{12.38}
\end{equation*}
$$

where the geometrical factor due to the electron rotation about the semimajor axis is given by Eq. (11.391) and m is a positive or negative integer wherein the inner and outer electron may rotate relative to each other to quantized the magnetic force such that net relative motion obeys the condition $\ell=0$. The parametric solution given by Eq. (11.83) occurs when semimajor axis, a, is:

$$
\begin{equation*}
a=a_{0}\left(2 n-\frac{m}{3}\right) \tag{12.39}
\end{equation*}
$$

The internuclear distance, $2 c^{\prime}$, which is the distance between the foci is given by Eq. (11.79) where $p=1 / n$.

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{2 p}}=2 a_{0} \sqrt{\frac{n\left(2 n-\frac{m}{3}\right)}{2}} \tag{12.40}
\end{equation*}
$$

The semiminor axis is given by Eq. (11.80).

$$
\begin{equation*}
b=\sqrt{a^{2}-c^{\prime 2}}=a_{0}\left(2 n-\frac{m}{3}\right) \sqrt{1-\frac{n}{2\left(2 n-\frac{m}{3}\right)}} \tag{12.41}
\end{equation*}
$$

The eccentricity, e, is given by Eq. (11.67).

$$
\begin{equation*}
e=\frac{c^{\prime}}{a}=\sqrt{\frac{n}{2\left(2 n-\frac{m}{3}\right)}} \tag{12.42}
\end{equation*}
$$

$\ell \neq 0$
The excited singlet states of the hydrogen molecule for $\ell \neq 0$ are solved using the same approach as those of the excited states of the helium atom given in the corresponding section, wherein the force balance due to the $a_{\text {Mag }}(\ell, m)$ terms corresponding to prolate spheroid geometry rather than spherical are also associated Legendre functions or spherical harmonics with regard to the semimajor axis as given by Li, Kang, and Leong [8].

The magnetic forces comprise the component of Eq. (12.38) corresponding to the nondynamic current and the $a_{\text {Mag }}(\ell, m)$ component due to the time dynamic modulation current and its interaction with electron spin. The force balance between the electric, magnetic, and centrifugal forces of the outer electron given by Eqs. (12.38) and (9.52) is

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{1}{n} \frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{1}{n} \frac{m}{3} \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D-\frac{1}{n} \frac{\frac{3}{2}}{(2 \ell+1)!!}\left(\frac{\ell+1}{\ell}\right)^{1 / 2} \frac{1}{\ell+2} \frac{1}{2} \frac{\hbar^{2}}{m_{e} a^{2} b^{2}}\left(1-\sqrt{\frac{\ell}{\ell+1}}\right) D \tag{12.43}
\end{equation*}
$$

where the $\sqrt{3 / 4}$ and r^{-3} terms are replaced by one and $D a^{-2} b^{-2}$ as given in the Force Balance of Hydrogen-Types Molecules section. The parametric solution given by Eq. (11.83) occurs when semimajor axis, a, is:

$$
\begin{equation*}
a=a_{0}\left(2 n-\frac{m}{3}+\frac{\frac{3}{2}}{(2 \ell+1)!!}\left(\frac{\ell+1}{\ell}\right)^{1 / 2} \frac{1}{\ell+2}\left(1-\sqrt{\frac{\ell}{\ell+1}}\right)\right) \tag{12.44}
\end{equation*}
$$

The internuclear distance, $2 c^{\prime}$, which is the distance between the foci is given by Eq. (11.79) where $p=1 / n$.

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{2 p}}=2 a_{0} \sqrt{\frac{n\left(2 n-\frac{m}{3}+\frac{\frac{3}{2}}{(2 \ell+1)!!}\left(\frac{\ell+1}{\ell}\right)^{1 / 2} \frac{1}{\ell+2}\left(1-\sqrt{\frac{\ell}{\ell+1}}\right)\right)}{2}} \tag{12.45}
\end{equation*}
$$

The semiminor axis is given by Eq. (11.80).

$$
\begin{equation*}
b=\sqrt{a^{2}-c^{\prime 2}}=a_{0}\left(\sqrt{\left.1-\frac{\frac{3}{2}}{2\left(2 n-\frac{m}{3}+\frac{\frac{3}{2}}{(2 \ell+1)!!}\left(\frac{\ell+1}{\ell}\right)^{1 / 2} \frac{1}{\ell+2}\left(1-\sqrt{\frac{\ell}{\ell+1}}\right)\right.}\right)}\right) \tag{12.46}
\end{equation*}
$$

The eccentricity, e, is given by Eq. (11.67).

$$
\begin{equation*}
e=\frac{c^{\prime}}{a}=\sqrt{\frac{n}{\left(2 n-\frac{m}{3}+\frac{\frac{3}{2}}{(2 \ell+1)!!}\left(\frac{\ell+1}{\ell}\right)^{1 / 2} \frac{1}{\ell+2}\left(1-\sqrt{\frac{\ell}{\ell+1}}\right)\right.}} \tag{12.47}
\end{equation*}
$$

TRIPLET EXCITED STATES

$\ell=0$
The force-balance equation and semimajor-axis solution of triplet excited states for $\ell=0$ are equivalent to those of the corresponding singlet excited states given by Eqs. (12.38-12.39). However, due to the triplet spin state, the magnetic force in Eq. (12.38) is increased by a factor of two as in the case of the corresponding helium excited states given in Eq. (9.31). Thus, m is replaced by 2 m . Then, the force balance between the electric, magnetic, and centrifugal forces of the outer electron is

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{1}{n} \frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{1}{n} \frac{4 m}{3} \frac{1}{2} \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{12.48}
\end{equation*}
$$

The parametric solution given by Eq. (11.83) occurs when semimajor axis, a, is:

$$
\begin{equation*}
a=a_{0}\left(2 n-\frac{2 m}{3}\right) \tag{12.49}
\end{equation*}
$$

The internuclear distance, $2 c^{\prime}$, which is the distance between the foci is given by Eq. (11.79) where $p=1 / n$.

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{2 p}}=2 a_{0} \sqrt{\frac{n\left(2 n-\frac{2 m}{3}\right)}{2}} \tag{12.50}
\end{equation*}
$$

The semiminor axis is given by Eq. (11.80).

$$
\begin{equation*}
b=\sqrt{a^{2}-c^{\prime 2}}=a_{0}\left(2 n-\frac{2 m}{3}\right) \sqrt{1-\frac{n}{2\left(2 n-\frac{2 m}{3}\right)}} \tag{12.51}
\end{equation*}
$$

The eccentricity, e, is given by Eq. (11.67).

$$
\begin{equation*}
e=\frac{c^{\prime}}{a}=\sqrt{\frac{n}{2\left(2 n-\frac{2 m}{3}\right)}} \tag{12.52}
\end{equation*}
$$

$\ell \neq 0$
The magnetic forces of triplet excited molecular states having $\ell \neq 0$ comprise the nondynamic-current component of Eq. (12.43) with the parameter m of the magnetic force of Eq. (12.38) increased by a factor of two and the $a_{\text {Mag }}(\ell, m)$ component due to the time dynamic modulation current and its interaction with electron spin. The latter is solved using the same approach as that of the triplet excited states of the helium atom given in the corresponding section. The force balance between the electric, magnetic, and centrifugal forces of the outer electron given by Eqs. (12.48) and (9.63) is

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{1}{n} \frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{1}{n} \frac{2 m}{3} \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D+\frac{1}{n} \frac{\frac{3}{2}}{(2 \ell+1)!!}\left(\frac{\ell+1}{\ell}\right)^{1 / 2} \frac{1}{\ell+2} \frac{1}{2} \frac{\hbar^{2}}{m_{e} a^{2} b^{2}}\left(2-\sqrt{\frac{\ell}{\ell+1}}\right) D \tag{12.53}
\end{equation*}
$$

where the $\sqrt{3 / 4}$ and r^{-3} terms are replaced by one and $D a^{-2} b^{-2}$ as given in the Force Balance of Hydrogen-Types Molecules section. The parametric solution given by Eq. (11.83) occurs when semimajor axis, a, is:

$$
\begin{equation*}
a=a_{0}\left(2 n-\frac{2 m}{3}-\frac{\frac{3}{2}}{(2 \ell+1)!!}\left(\frac{\ell+1}{\ell}\right)^{1 / 2} \frac{1}{\ell+2}\left(2-\sqrt{\frac{\ell}{\ell+1}}\right)\right) \tag{12.54}
\end{equation*}
$$

The internuclear distance, $2 c^{\prime}$, which is the distance between the foci is given by Eq. (11.79) with the 2 factor and $p=1 / n$.

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{2 p}}=2 a_{0} \sqrt{\frac{n\left(2 n-\frac{2 m}{3}-\frac{\frac{3}{2}}{(2 \ell+1)!!}\left(\frac{\ell+1}{\ell}\right)^{1 / 2} \frac{1}{\ell+2}\left(2-\sqrt{\frac{\ell}{\ell+1}}\right)\right.}{2}} \tag{12.55}
\end{equation*}
$$

The semiminor axis is given by Eq. (11.80).

$$
\begin{equation*}
\left.b=\sqrt{a^{2}-c^{\prime 2}}=a_{0}\left(\sqrt{1-\frac{\frac{3}{2}}{2\left(2 n-\frac{2 m}{3}-\frac{2 m}{(2 \ell+1)!!}\left(\frac{\ell+1}{\ell}\right)^{1 / 2} \frac{1}{\ell+2}\left(2-\sqrt{\frac{\ell}{\ell+1}}\right)\right.}\left(\sqrt{(2 \ell+1)!!}\left(\frac{n}{\ell}\right)^{1 / 2} \frac{1}{\ell+2}\left(2-\sqrt{\frac{\ell}{\ell+1}}\right)\right.}\right) ~\right) ~ \tag{12.56}
\end{equation*}
$$

The eccentricity, e, is given by Eq. (11.67).

$$
\begin{equation*}
e=\frac{c^{\prime}}{a}=\sqrt{\frac{n}{2\left(2 n-\frac{2 m}{3}-\frac{\frac{3}{2}}{(2 \ell+1)!!}\left(\frac{\ell+1}{\ell}\right)^{1 / 2} \frac{1}{\ell+2}\left(2-\sqrt{\frac{\ell}{\ell+1}}\right)\right)}} \tag{12.57}
\end{equation*}
$$

ENERGIES OF THE EXCITED STATES OF THE HYDROGEN MOLECULE

The component energies of the outer electron of the hydrogen molecule of the excited state corresponding to quantum number n are given by Eqs. (11.290-11.293) and (11.233-11.236) where the energies are each multiplied by a factor of $1 / 2$ since the outer MO comprises only one electron, and those corresponding to charge are multiplied by effective-charge factor of $1 / n$:

$$
\begin{align*}
& V_{e}=\frac{1}{n} \frac{1}{2} \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{12.58}\\
& V_{p}=0 \tag{12.59}\\
& T=\frac{1}{2} \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{12.60}\\
& V_{m}=\frac{1}{n} \frac{1}{2} \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{12.61}
\end{align*}
$$

$$
\begin{equation*}
\bar{E}_{\text {osc }}\left(H_{2}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=-\left(V_{e}+T+V_{m}+V\right) \sqrt{\frac{2 \hbar \sqrt{\frac{\frac{1}{n^{4}} \frac{1}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} a_{0}^{3}}}{m_{e}}}}{m_{e} c^{2}}}+\bar{E}_{\text {Kvib }} \tag{12.62}
\end{equation*}
$$

where with regard to Eq. (12.62), the angular frequency of reentrant oscillation ω and corresponding energies E_{K}, \bar{E}_{D}, and $\bar{E}_{\text {osc }}$ are given by Eqs. (11.233-11.236) with $p=1 / n$ and the factor of $1 / 2$ was applied since the outer MO comprises only one electron. The potential energy, V_{p}, due to proton-proton repulsion (Eq. 12.59)) is zero. The repulsive term applies only to the total energy of H_{2}^{+}which is implicit in the calculation of the energy of the outer electron of the H_{2} excited state as in the case with the energy of the helium excited states given in the Excited States of Helium section. The total energy, E_{T}, for the hydrogen molecular excited state given by Eqs. (11.239-11.240) is:

$$
\left.\begin{array}{l}
E_{T}=V_{e}+T+V_{m}+V_{p}+\bar{E}_{\text {osc }} \\
E_{T}=-\left\{\begin{array}{l}
\left(\frac{-e^{2}}{8 \pi \varepsilon_{0}}-\frac{n \hbar^{2}}{4 m_{e} a}+\frac{\hbar^{2}}{8 m_{e} a}\right) \frac{1}{n \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}
\end{array} 1+\sqrt{\frac{2 \hbar \sqrt{\frac{e^{2}}{n^{4} 8 \pi \varepsilon_{0} a_{0}^{3}}}}{m_{e}}}\right]-\bar{E}_{\text {Kvib }} \tag{12.64}
\end{array}\right\}, ~ \$
$$

The negative of Eq. (12.64) is the ionization energy of the excited state of H_{2}. The energy T_{e} from the $n=1$ state (also referred to as the state X) to the energy of the $n^{\text {th }}$ excited state is given by the sum of E_{T} given by Eq. (12.64) and $I P_{1}$ of H_{2} given by Eq. (11.298):

$$
\begin{equation*}
T_{e}\left(H_{2}\right)=E_{T}+15.4248 \mathrm{eV} \tag{12.65}
\end{equation*}
$$

The geometrical (Eqs. (12.38-12.55) and energy (Eqs. (12.56-12.62)) parameters of singlet and triplet excited states of molecular hydrogen are given in Tables 12.1 and 12.2, respectively, where $\bar{E}_{\text {Kvib }}$ was given to very good approximation by ω_{e} of H_{2}^{+}(the $n=\infty$ state) since there is a close match with ω_{e} of each excited state [9]. The color scale, translucent views of the charge densities of exemplary ellipsoidal spherical harmonics that modulate the time independent spin function are shown in Figure 12.2. The modulation functions propagate about the major axis as spatially and temporally harmonic charge-density waves.

Figure 12.2. Overhead-view of exemplary color scale, translucent views of the charge-densities of the inner and outer electrons of molecular-hydrogen excited states. The outer-electron orbital function modulates the time-constant (spin) function, (shown for $\mathrm{t}=0$; three-dimensional view). The inner electron is essentially that of H_{2}^{+}(nuclei red, not to scale).

n	m	1	$a\left(a_{0}\right)$	$a(m)$	$b, c(m)$	$c^{\prime}(m)$	$2 c^{\prime}(m)$	e	$V_{e}(\mathrm{eV})$	$V_{p}(\mathrm{eV})$	$T(\mathrm{eV})$	$V_{m}(\mathrm{eV})$	$E_{T}\left(H_{2} \mu \mathrm{O}\right)(\mathrm{eV})$	$\bar{E}_{\text {Kıt }}(\mathrm{eV})$	$\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	$E_{K}(\mathrm{eV})$	$\bar{E}_{D}(\mathrm{eV})$	$\bar{E}_{\text {oce }}(\mathrm{eV})$	$I P_{1}\left(H_{2}\right)(\mathrm{eV})$	V)	Exp. $T_{e}(\mathrm{eV})$		Exp. $T_{c}\left(\mathrm{~cm}^{-1}\right)$	Relative Error
2	4	1	2.73570	$1.44767 \mathrm{E}-10$	$1.15312 \mathrm{E}-10$	8.75257E-11	$1.75051 \mathrm{E}-10$	0.60460	-5.76118	0	2.10592	-0.52648	-4.18174	0.28479	7.30819	4.81038	-1.81447E-02	0.12425	15.424814	11.3673	11.36819	B	91689.9	0.00008
2	1	1	3.73570	$1.97685 \mathrm{E}-10$	1.69169E-10	$1.02279 \mathrm{E}-10$	$2.04558 \mathrm{E}-10$	0.51739	-4.03193	0	1.07930	-0.26982	-3.22245	0.28479	7.30819	4.81038	-1.39823E-02	0.12841	15.424814	12.3308	12.40385	C	100043.0	0.00589
2	0	0	4.00000	2.11671 E-10	$1.83312 \mathrm{E}-10$	$1.05835 \mathrm{E}-10$	$2.11671 \mathrm{E}-10$	0.50000	-3.73688	0	0.93422	-0.23355	-3.03621	0.28479	7.30819	4.81038	-1.31742E-02	0.12922	15.424814	12.5178	12.4063	E	100062.8	-0.00899
2	-2	0	4.66667	$2.46949 \mathrm{E}-10$	$2.18897 \mathrm{E}-10$	$1.14315 \mathrm{E}-10$	$2.28631 \mathrm{E}-10$	0.46291	-3.15548	0	0.67618	-0.16904	-2.64835	0.28479	7.30819	4.81038	-1.14913E-02	0.13091	15.424814	12.9074	12.82999	F	103480	-0.00603
3	4	0	4.66667	$2.46949 \mathrm{E}-10$	$2.03426 \mathrm{E}-10$	1.40007E-10	$2.80014 \mathrm{E}-10$	0.56695	-2.20446	0	0.70858	-0.11810	-1.61398	0.28479	3.24809	2.13795	-4.66874E-03	0.13773	15.424814	13.9486	13.96780	K	112657	0.00138
3	4	1	4.73570	$2.50603 \mathrm{E}-10$	$2.07146 \mathrm{E}-10$	$1.41039 \mathrm{E}-10$	$2.82078 \mathrm{E}-10$	0.56280	-2.16761	0	0.68657	-0.11443	-1.59546	0.28479	3.24809	2.13795	-4.61517E-03	0.13778	15.424814	13.9671	13.98466	G	112793	0.00125
3	3	0	5.00000	$2.64589 \mathrm{E}-10$	$2.21371 \mathrm{E}-10$	$1.44921 \mathrm{E}-10$	$2.89842 \mathrm{E}-10$	0.54772	-2.03734	0	0.61120	-0.10187	-1.52801	0.28479	3.24809	2.13795	-4.42004E-03	0.13798	15.424814	14.0348	14.01839	I	113065	-0.00117
3	3	2	5.00562	$2.64886 \mathrm{E}-10$	$2.21673 \mathrm{E}-10$	$1.45003 \mathrm{E}-10$	$2.90005 \mathrm{E}-10$	0.54742	-2.03474	0	0.60974	-0.10162	-1.52663	0.28479	3.24809	2.13795	-4.41606E-03	0.13798	15.424814	14.0362	14.0281	Q	113144	-0.00057
3	3	1	5.06904	$2.68242 \mathrm{E}-10$	$2.25081 \mathrm{E}-10$	$1.45918 \mathrm{E}-10$	$2.91836 \mathrm{E}-10$	0.54398	-2.00588	0	0.59357	-0.09893	-1.51124	0.28479	3.24809	2.13795	-4.37155E-03	0.13803	15.424814	14.051	14.0604	J	11340	0.00063
3	2	0	5.33333	$2.82228 \mathrm{E}-10$	2.39270E-10	$1.49674 \mathrm{E}-10$	$2.99348 \mathrm{E}-10$	0.53033	-1.89402	0	0.53269	-0.08878	-1.45011	0.28479	3.24809	2.13795	-4.19471E-03	0.13820	15.424814	14.1129	14.12043	D	113888	0.00053
3	2	1	5.40237	$2.85881 \mathrm{E}-10$	$2.42973 \mathrm{E}-10$	1.50639E-10	$3.01279 \mathrm{E}-10$	0.52693	-1.86685	0	0.51834	-0.08639	-1.43490	0.28479	3.24809	2.13795	-4.15070E-03	0.13825	15.424814	14.1282	14.12055	H	113889	-0.00054
3	1	0	5.66667	$2.99867 \mathrm{E}-10$	$2.57134 \mathrm{E}-10$	$1.54280 \mathrm{E}-10$	$3.08561 \mathrm{E}-10$	0.51450	-1.76971	0	0.46845	-0.07808	-1.37933	0.28479	3.24809	2.13795	-3.98998E-03	0.13841	15.424814	14.1839	14.19631	L	114500	0.00087
3	1	1	5.73570	$3.03520 \mathrm{E}-10$	$2.60830 \mathrm{E}-10$	$1.55217 \mathrm{E}-10$	$3.10434 \mathrm{E}-10$	0.51139	-1.74599	0	0.45661	-0.07610	-1.36548	0.28479	3.24809	2.13795	-3.94992E-03	0.13845	15.424814	14.1978	14.21540	M	114654	0.00124
3	-3	1	7.06904	$3.74077 \mathrm{E}-10$	$3.32025 \mathrm{E}-10$	1.72316E-10	$3.44633 \mathrm{E}-10$	0.46064	-1.38755	0	0.29443	-0.04907	-1.14219	0.28479	3.24809	2.13795	-3.30401E-03	0.13909	15.424814	14.4217	14.41551	N	116268	-0.00043
4	4	1	6.73570	$3.56438 \mathrm{E}-10$	$2.98872 \mathrm{E}-10$	$1.94226 \mathrm{E}-10$	$3.88452 \mathrm{E}-10$	0.54491	-1.13268	0	0.33632	-0.04204	-0.83840	0.28479	1.82705	1.20259	-1.81892E-03	0.14058	15.424814	14.7270	14.71581	R	118690	-0.00076
4	1	2	7.67229	4.06000E-10	$3.49094 \mathrm{E}-10$	$2.07290 \mathrm{E}-10$	4.14580E-10	0.51057	-0.97861	0	0.25510	-0.03189	-0.75539	0.28479	1.82705	1.20259	-1.63883E-03	0.14076	15.424814	14.8102	14.81549	T	119494	0.00036
4	1	1	7.73570	$4.09356 \mathrm{E}-10$	$3.52488 \mathrm{E}-10$	$2.08145 \mathrm{E}-10$	$4.16290 \mathrm{E}-10$	0.50847	-0.96969	0	0.25070	-0.03134	-0.75032	0.28479	1.82705	1.20259	-1.62783E-03	0.14077	15.424814	14.8153	14.81772	P	119512	0.00017
4	-1		8.33333	4.40981E-10	$3.84438 \mathrm{E}-10$	$2.16036 \mathrm{E}-10$	4.32071E-10	0.48990	-0.89305	0	0.21433	-0.02679	-0.70551	0.28479	1.82705	1.20259	-1.53061E-03	0.14087	15.424814	14.8602	14.85591	S	119820	-0.00029
4	-1	1	8.402	4.4463	3.88126 E	2.16929 E	4.338	0.4	-0.8	0	0.2	-0.	-0	0.2	1.8	1.20259	-1.52008	0.	48	14.86	14.85975	0	119851	-0.00036

Chapter 12

Mume

0000000000000000000

DIATOMIC MOLECULAR ROTATION

A molecule with a permanent dipole moment can resonantly absorb a photon, which excites a rotational mode about the center of mass of the molecule. Momentum must be conserved with excitation of a rotational mode. The photon carries \hbar of angular momentum; thus, the rotational angular momentum of the molecule changes by \hbar. And, the rotational charge-density function is equivalent to the rigid rotor problem considered in the Rotational Parameters of the Electron (Angular Momentum, Rotational Energy, Moment of Inertia) section with the exception that for a diatomic molecule having atoms of masses m_{1} and m_{2}, the moment of inertia is:

$$
\begin{equation*}
I=\mu r^{2} \tag{12.66}
\end{equation*}
$$

where μ is the reduced mass

$$
\begin{equation*}
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \tag{12.67}
\end{equation*}
$$

and where r is the distance between the centers of the atoms, the internuclear distance. The rotational energy levels follow from Eq. (1.71)

$$
\begin{equation*}
E_{\text {rotational orbital }}=\frac{\hbar^{2}}{2 I} J(J+1) \tag{12.68}
\end{equation*}
$$

where J is an integer. For Eq. (12.68), $J=0$ corresponds to rotation about the z-axis where the internuclear axis is along the xaxis, and $J \neq 0$ corresponds to a linear combination of rotations about the z and y -axis (Figure 11.4).

As given in the Selection Rules section, the radiation of a multipole of order (ℓ, m_{ℓ}) carries $m \hbar$ units of the z component of angular momentum per photon of energy $\hbar \omega$. Thus, the z component of the angular momentum of the corresponding excited rotational state is

$$
\begin{equation*}
L_{z}=m \hbar \tag{12.69}
\end{equation*}
$$

Thus, the selection rule for rotational transitions is:

$$
\begin{equation*}
\Delta J= \pm 1 \tag{12.70}
\end{equation*}
$$

In addition, the molecule must possess a permanent dipole moment. In the case of absorption of electromagnetic radiation, the molecule goes from a state with a quantum number J to one with a quantum number of $J+1$. Using Eq. (12.68), the energy difference is:

$$
\begin{equation*}
\Delta E=E_{J+1}-E_{J}=\frac{\hbar^{2}}{I}[J+1] \tag{12.71}
\end{equation*}
$$

DIATOMIC MOLECULAR ROTATION OF HYDROGEN-TYPE MOLECULES

The reduced mass of hydrogen-type molecular ions and molecules, $\mu_{H_{2}}$, having two protons is given by Eq. (12.67) where $m_{1}=m_{2}=m_{p}$, and m_{p} is the mass of the proton.

$$
\begin{equation*}
\mu_{\mathrm{H}_{2}}=\frac{m_{p} m_{p}}{m_{p}+m_{p}}=\frac{1}{2} m_{p} \tag{12.72}
\end{equation*}
$$

The moment of inertia of hydrogen-type molecules is given by substitution of the reduced mass (Eq. (12.72)) for μ of Eq. (12.66) and substitution of the internuclear distance (Eq. (11.204)) for r of Eq. (12.66).

$$
\begin{equation*}
I=m_{p} \frac{a_{0}^{2}}{p^{2}} \tag{12.73}
\end{equation*}
$$

where p is an integer which corresponds to $H_{2}(1 / p)$. The Doppler energy term, \bar{E}_{D}, of the bond energy (Eqs. (11.235), and (11.240-11.241)) decreases the internuclear distance, r, of Eq. (12.66), which increases the rotational energy. To determine the internuclear distance considering the correction for \bar{E}_{D}, consider that the contribution of \bar{E}_{D} to the binding energy is one-half the magnitude of the potential energy contribution as required for an inverse-squared force [10] wherein \bar{E}_{D} is the source of the additional binding energy term. Then, the sum of $1 / 2 \bar{E}_{D}$ and the unperturbed total energy comprising the sum of the inversesquared field terms given by Eqs. (11.207-11.211) is subtracted from the total energy given by Eqs. (11.207-11.211) with the semimajor axis a comprising a variable. The difference is equated to zero, and the resulting Eq. (12.74) is solved reiteratively for the semimajor axis a with the prolate other spheroidal dimensions dependent on the semimajor axis given by Eqs. (11.7911.80) and (11.67).

$$
\left\{\begin{array}{l}
\left.\left[\left(\frac{-2 p e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}+\frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}}\right) \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}+\frac{p}{8 \pi \varepsilon_{0}} \frac{e^{2}}{\sqrt{a^{2}-b^{2}}}\right]\right\}=0 \tag{12.74}\\
+e p^{2}(31.63536831+(0.5) p 0.326469)
\end{array}\right.
$$

internuclear distance for $p=1$ is

$$
\begin{equation*}
2 c^{\prime}=0.7411 \AA \tag{12.75}
\end{equation*}
$$

Eq. (12.75) is also the internuclear distance for molecular hydrogen isotopes such as D_{2}. To a high degree of accuracy, the general result for hydrogen-type molecules is

$$
\begin{equation*}
2 c^{\prime}=\frac{0.7411}{p} \AA \tag{12.76}
\end{equation*}
$$

Using Eqs. (12.66), (12.71-12.72), and (12.76), the rotational energy absorbed by a hydrogen-type molecule with the transition from the state with the rotational quantum number J to one with the rotational quantum number $J+1$ is:

$$
\begin{equation*}
\Delta E_{J \rightarrow J+1}=E_{J+1}-E_{J}=\frac{p^{2} \hbar^{2}}{0.5 m_{p}\left(7.411 \times 10^{-11} m\right)^{2}}[J+1]=p^{2}[J+1] 0.01511 \mathrm{eV}=[J+1] p^{2} 121.89 \mathrm{~cm}^{-1} \tag{12.77}
\end{equation*}
$$

The result of Eq. (12.77) without the correction for centrifugal distortion compares well to the experimental value of $\Delta E=0.01509 \mathrm{eV}\left(121.7 \mathrm{~cm}^{-1}\right)$ for $p=1$ [11].

Using the reduced mass for molecular deuterium which to a high level of accuracy is twice that of molecular hydrogen given by Eq. (12.72) and the internuclear distance given by Eq. (12.76) in Eq. (12.71) gives the rotational energy of deuteriumtype molecules as:

$$
\begin{equation*}
\Delta E_{J \rightarrow J+1}=E_{J+1}-E_{J}=\frac{p^{2} \hbar^{2}}{m_{p}\left(7.411 X 10^{-11} m\right)^{2}}[J+1]=p^{2}[J+1] 0.007557 \mathrm{eV}=[J+1] p^{2} 60.95 \mathrm{~cm}^{-1} \tag{12.78}
\end{equation*}
$$

The result of Eq. (12.78) without the correction for centrifugal distortion compares well to the experimental value of $\Delta E=0.00755 \mathrm{eV}\left(60.90 \mathrm{~cm}^{-1}\right)$ for $p=1$ [11].

DIATOMIC MOLECULAR ROTATION OF HYDROGEN-TYPE MOLECULAR IONS

The moment of inertia of hydrogen-type molecular ions is given by substitution of the reduced mass (Eq. (12.72)) for μ of Eq. (12.66) and substitution of the internuclear distance (Eq. (11.111)) for r of Eq. (12.66).

$$
\begin{equation*}
I=m_{p} \frac{2 a_{0}^{2}}{p^{2}} \tag{12.79}
\end{equation*}
$$

where p is an integer which corresponds to $H_{2}^{+}(1 / p)$. The Doppler energy term, \bar{E}_{D}, of the bond energy (Eqs. (11.187), and (11.192-11.193)) decreases the internuclear distance, r, of Eq. (12.66), which increases the rotational energy. To determine the internuclear distance considering the correction for \bar{E}_{D}, consider that the contribution of \bar{E}_{D} to the binding energy is one-half the magnitude of the potential energy contribution as required for an inverse-squared force [10] wherein \bar{E}_{D} is the source of the additional binding energy term. Then, the sum of $1 / 2 \bar{E}_{D}$ and the unperturbed total energy comprising the sum of the inversesquared field terms given by Eqs. (11.117-11.121) with the semimajor axis given by Eq. (11.116) is subtracted from the total energy given by Eqs. (11.117-11.121) with the semimajor axis a comprising a variable. The difference is equated to zero, and the resulting Eq. (12.80) is solved reiteratively for the semimajor axis a with the prolate other spheroidal dimensions dependent on the semimajor axis given by Eqs. (11.79-11.80) and (11.67).

$$
\left\{\begin{array}{l}
\frac{-4 p e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}+\frac{p e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \tag{12.80}\\
+\frac{2 \hbar^{2}}{m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}+e p^{2}[16.28 e V+e(0.5) p 0.11875]
\end{array}\right\}=0
$$

internuclear distance for $p=1$ is

$$
\begin{equation*}
2 c^{\prime}=1.0577 \AA \tag{12.81}
\end{equation*}
$$

Eq. (12.81) is also the internuclear distance for molecular hydrogen isotopes such as D_{2}^{+}. To a high degree of accuracy, the general result for hydrogen-type molecular ions is

$$
\begin{equation*}
2 c^{\prime}=\frac{1.0577}{p} \AA \tag{12.82}
\end{equation*}
$$

Using Eqs. (12.66), (12.71-12.72), and (12.82), the rotational energy absorbed by a hydrogen-type molecular ion with the transition from the state with the rotational quantum number J to one with the rotational quantum number $J+1$ is:

$$
\begin{align*}
\Delta E_{J \rightarrow J+1} & =E_{J+1}-E_{J}=\frac{p^{2} \hbar^{2}}{0.5 m_{p}\left(1.0577 X 10^{-10} m\right)^{2}}[J+1] \tag{12.83}\\
& =p^{2}[J+1] 0.00742 \mathrm{eV}=[J+1] p^{2} 59.84 \mathrm{~cm}^{-1}=[J+1] p^{2} 167.12 \mu \mathrm{~m}
\end{align*}
$$

Diatomic Molecular Energy States

The result of Eq. (12.83) without the correction for centrifugal distortion is a good match to the experimentally observed wavelength of $169 \mu \mathrm{~m}$ [11]. The rotational wavelength for $p=6$ is $4.7 \mu \mathrm{~m}$. A broad $4.7 \mu \mathrm{~m}$ solar chromospheric absorption line is observed which was previously assigned to cool carbon monoxide clouds; however, the temperature of the chromosphere, $>6000 \mathrm{~K}$, is higher than that at which carbon monoxide completely decomposes into carbon and oxygen, <4000 K [12]. The assignment of the $4.7 \mu \mathrm{~m}$ absorption line to the Doppler-broadened $J=0$ to $J=1$ rotational transition of $H_{2}\left[2 c^{\prime}=\frac{a_{0}}{3}\right]^{+}$ provides a resolution of the problem of cool carbon monoxide clouds.

Using the reduced mass for molecular deuterium which to a high level of accuracy is twice that of molecular hydrogen given by Eq. (12.72) and the internuclear distance given by Eq. (12.82) in Eq. (12.71) gives the rotational energy of deuteriumtype molecular ions as:

$$
\begin{equation*}
\Delta E_{J \rightarrow J+1}=E_{J+1}-E_{J}=\frac{p^{2} \hbar^{2}}{m_{p}\left(1.0577 X 10^{-10} \mathrm{~m}\right)^{2}}[J+1]=p^{2}[J+1] 0.0037095 \mathrm{eV}=[J+1] p^{2} 29.92 \mathrm{~cm}^{-1} \tag{12.84}
\end{equation*}
$$

The result of Eq. (12.84) without the correction for centrifugal distortion compares well to the experimental value of $\Delta E=0.003723 \mathrm{eV}\left(30.03 \mathrm{~cm}^{-1}\right)$ for $p=1$ [13].

CENTRIFUGAL DISTORTION

The equilibrium internuclear distance of the hydrogen molecular ion and hydrogen molecule can increase as a result of a centrifugal force due to rotation. Since the centrifugal distortion increases as a function of J, the rotational term given by Eq. (12.68) can be added as a centrifugal potential to the harmonic oscillator potential energy relationship (Eq. (11.146)) to give $E_{J}(r)$, a combined potential dependent on the internuclear separation [14]. From Eq. (11.146) and Eq. (12.68),

$$
\begin{equation*}
E_{J}(r)=\frac{1}{2} k_{0}\left(r-r_{e}\right)^{2}+\frac{\hbar^{2}}{2 I} J(J+1) \tag{12.85}
\end{equation*}
$$

where r_{e} is the equilibrium internuclear distance with $J=0$ and k_{0} is the spring constant with $v=0$. Let $r_{e}{ }^{\prime}$ be the equilibrium internuclear distance for which $E_{J}(r)$ is a minimum. A relationship between the distorted equilibrium internuclear distance $r_{e}{ }^{\prime}$ and J is derived from $E_{J}(r)$ by taking the derivative with respect to r, setting the derivative equal to zero corresponding to the minimum, and evaluating the equation at $r_{e}{ }^{\prime}$. The result using Eq. (12.66) is:

$$
\begin{equation*}
\left.\frac{d E_{J}(r)}{d r}\right|_{r=r_{e}^{\prime}}=k_{0}\left(r_{e}^{\prime}-r_{e}\right)-\frac{\hbar^{2}}{\mu\left(r_{e}^{\prime}\right)^{3}} J(J+1)=0 \tag{12.86}
\end{equation*}
$$

Since the deviation due to centrifugal distortion is small such that $\frac{r_{e}{ }^{\prime}-r_{e}}{r_{e}} \ll 1, r_{e}{ }^{\prime}$ may be determined as a function of J, and $r_{e}{ }^{\prime}$ may be solved from Eq. (12.86) by successive approximation. Little accuracy is lost by the first-order correction resulting from the substitution of $r_{e}{ }^{\prime}=r_{e}$ in the rotational term of Eq. (12.86) to give:

$$
\begin{equation*}
r_{e}^{\prime}=r_{e}+\frac{h B_{e}}{2 \pi^{2} v_{0}^{2} \mu r_{e}} J(J+1) \tag{12.87}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{e}=\frac{\hbar^{2}}{2 I_{e} h} \tag{12.88}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{0}=\frac{1}{2 \pi}\left(\frac{k_{0}}{\mu}\right)^{1 / 2} \tag{12.89}
\end{equation*}
$$

Then, r_{e} can be replaced by $r_{e}{ }^{\prime}$ in the relationship for $E_{J}(r)$ (Eq. (12.85)) to determine the correction to the rotational energy due to centrifugal distortion.

$$
\begin{equation*}
E_{J}(r)=\frac{\hbar^{2}}{2 \mu\left(r_{e}^{\prime}\right)^{2}} J(J+1)+\frac{1}{2} k_{0}\left(r_{e}^{\prime}-r_{e}\right)^{2} \tag{12.90}
\end{equation*}
$$

By substitution of $r_{e}{ }^{\prime}$ given by Eq. (12.87) into Eq. (12.90), expanding the result in powers of $J(J+1)$, and retaining only the first two terms which are predominant, $E_{J}(r)$ is given by:

$$
\begin{equation*}
E_{J}=J(J+1) h c \tilde{B}_{e}-[J(J+1)]^{2} h c \tilde{D}_{e} \tag{12.91}
\end{equation*}
$$

where the centrifugal distortion term \tilde{D}_{e} is given by:

$$
\begin{equation*}
\tilde{D}_{e}=\frac{4 \tilde{B}_{e}^{3}}{\omega_{0}^{2}} \tag{12.92}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{B}_{e}=\frac{B_{e}}{c}=\frac{\hbar^{2}}{2 I_{e} h c} \tag{12.93}
\end{equation*}
$$

For most molecules, the corrections due to centrifugal distortion represented by \tilde{D}_{e} are relatively small except for high J values. From Eqs. (11.223), (12.72),(12.75), and (12.92-12.93), \tilde{D}_{e} for H_{2} is:

$$
\begin{align*}
\tilde{D}_{e} & =\frac{4 \tilde{B}_{e}^{3}}{\omega_{0}^{2}}=\frac{4\left(\frac{\hbar^{2}}{2 I_{e} h c}\right)^{3}}{\omega_{0}^{2}}=\frac{\hbar^{3}}{10^{6}(2)\left(\pi \mu r_{e}^{2} c\right)^{3} \omega_{0}^{2}} \tag{12.94}\\
& =\frac{\hbar^{3}}{10^{6}(2)\left(\pi m_{p}\left(\sqrt{2} a_{0}\right)^{2} c\right)^{3}\left(8.06573 \times 10^{3} \frac{\mathrm{~cm}^{-1}}{e V} 0.517 \mathrm{eV}\right)^{2}}=0.0491 \mathrm{~cm}^{-1}
\end{align*}
$$

The experimental \tilde{D}_{e} of $H_{2}[15,16]$ is:

$$
\begin{equation*}
\tilde{D}_{e}=0.0465 \mathrm{~cm}^{-1} \tag{12.95}
\end{equation*}
$$

From Eq. (11.170), (11.287), (11.312), (12.66), and (12.92-12.93), \tilde{D}_{e} for D_{2} is:

$$
\begin{align*}
\tilde{D}_{e} & =\frac{4 \tilde{B}_{e}^{3}}{\omega_{0}^{2}}=\frac{4\left(\frac{\hbar^{2}}{2 I_{e} h c}\right)^{3}}{\omega_{0}^{2}}=\frac{\hbar^{3}}{10^{6}(2)\left(2 \pi \mu r_{e}^{2} c\right)^{3} \omega_{0}^{2}} \tag{12.96}\\
& =\frac{\hbar^{3}}{10^{6}(2)\left(2 \pi m_{p}\left(\sqrt{2} a_{0}\right)^{2} c\right)^{3}\left(8.06573 \times 10^{3} \frac{\mathrm{~cm}^{-1}}{e V} 0.371 \mathrm{eV}\right)^{2}}=0.0119 \mathrm{~cm}^{-1}
\end{align*}
$$

The experimental \tilde{D}_{e} of $D_{2}[15,16]$ is:

$$
\begin{equation*}
\tilde{D}_{e}=0.01159 \mathrm{~cm}^{-1} \tag{12.97}
\end{equation*}
$$

There is good agreement between the calculated and experimental values of \tilde{D}_{e}.

REFERENCES

1. A. Carrington, I. R. McNab, C. A. Montgomerie, Spectroscopy of the hydrogen molecular ion, J. Phys. B, 22, (1989), 35513586.
2. A. Carrington, I. R. McNab, C. A. Montgomerie, R. Kennedy, Electronic spectrum ($2 p \sigma_{u}-1 s \sigma_{g}$) of the D_{2}^{+}ion, Mol. Phys., 67, (1989), 711-738.
3. C. A. Leach, R. E. Moss, Spectroscopy and quantum mechanics of the hydrogen molecular cation: A test of molecular quantum mechanics, Annu. Rev. Phys. Chem., 46, (1995), 55-82.
4. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 161-164.
5. J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, (1941), pp. 211-215; 257-258.
6. H. Chang, "Fields external to open-structure magnetic devices represented by ellipsoid or spheroid," British Journal of Applied Physics, Vol. 12, (1961). pp. 160-163.
7. J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, (1941), pp. 56-59.
8. L-W. Li, X-K. Kang, M-S Leong, Spheroidal Wave Functions in Electromagnetic Theory, Wiley Series in Microwave and Optical Engineering, K. Chang, Editor, John Wiley \& Sons, Inc., New York, (2002).
9. G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, Krieger Publishing Company, Malabar, FL, $2^{\text {nd }}$ Ed., (1989), pp. 530-534.
10. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 145-158.
11. P. W. Atkins, Physical Chemistry, $2^{\text {nd }}$ Ed., W. H. Freeman, San Francisco, (1982), p. 589.
12. J. H. Phillips, Guide to the Sun, Cambridge University Press, Cambridge (1992), pp. 126-127; 360.
13. K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York, (1979).
14. M. Karplus, R. N. Porter, Atoms and Molecules. An Introduction for Students of Physical Chemistry, The Benjamin/Cummings Publishing Company, Menlo Park, California, (1970), pp. 480-481.
15. M. Karplus, R. N. Porter, Atoms and Molecules. An Introduction for Students of Physical Chemistry, The Benjamin/Cummings Publishing Company, Menlo Park, California, (1970), pp. 469.
16. G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand, Princeton, NJ, (1950).

Chapter 13

GENERAL DIATOMIC AND POLYATOMIC MOLECULAR IONS AND MOLECULES

Non-hydrogen diatomic and polyatomic molecular ions and molecules can be solved using the similar principles as those used to solve hydrogen molecular ions and molecules wherein the hydrogen molecular orbitals (MOs) and hydrogen atomic orbitals serve as basis functions for the MOs of the general diatomic and polyatomic molecular ions or molecules. The MO must (1) be a solution of Laplace's equation to give a equipotential energy surface, (2) correspond to an orbital solution of the Newtonian equation of motion in an inverse-radius-squared central field having a constant total energy, (3) be stable to radiation, and (4) conserve the electron angular momentum of \hbar. Energy of the MO must be matched to that of the outermost atomic orbital of a bonding heteroatom in the case where a minimum energy is achieved with a direct bond to the atomic orbital (AO). In the case that an independent MO is formed, the AO force balance causes the remaining electrons to be at lower energy and a smaller radius. The atomic orbital may hybridize in order to achieve a bond at an energy minimum. At least one molecule or molecular ion representative of each of these cases was solved. Specifically, the results of the determination of bond parameters of H_{3}^{+},
$D_{3}^{+}, \mathrm{OH}, \mathrm{OD}, \mathrm{H}_{2} \mathrm{O}, \mathrm{D}_{2} \mathrm{O}, \mathrm{NH}, \mathrm{ND}, \mathrm{NH}_{2}, \mathrm{ND}_{2}, \mathrm{NH}_{3}, \mathrm{ND}_{3}, \mathrm{CH}, \mathrm{CD}, \mathrm{CH}_{2}, \mathrm{CH}_{3}, C H_{4}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}, \mathrm{CN}, \mathrm{CO}$, and $N O$ are given in Table 13.1. The calculated results for homo- and hetero-diatomic radicals and molecules, and polyatomic molecular ions and molecules are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

TRIATOMIC MOLECULAR HYDROGEN-TYPE ION (H_{3}^{+})

The polyatomic molecular ion $H_{3}^{+}(1 / p)$ is formed by the reaction of a proton with a hydrogen-type molecule

$$
\begin{equation*}
H_{2}(1 / p)+H^{+} \rightarrow H_{3}^{+}(1 / p) \tag{13.1}
\end{equation*}
$$

and by the exothermic reaction

$$
\begin{equation*}
H_{2}^{+}(1 / p)+H_{2}(1 / p) \rightarrow H_{3}^{+}(1 / p)+H(1 / p) \tag{13.2}
\end{equation*}
$$

FORCE BALANCE OF H_{3}^{+}-TYPE MOLECULAR IONS

$H_{3}^{+}(1 / p)$-type molecular ions comprise two indistinguishable spin-paired electrons bound by three protons. The ellipsoidal molecular orbital (MO) satisfies the boundary constraints as shown in the Nature of the Chemical Bond of Hydrogen-Type Molecules section. Since the protons are indistinguishable, ellipsoidal MOs about each pair of protons taken one at a time are indistinguishable. $H_{3}^{+}(1 / p)$ is then given by a superposition or linear combinations of three equivalent ellipsoidal MOs that form a equilateral triangle where the points of contact between the prolate spheroids are equivalent in energy and charge density. The outer perimeter of the superposition of three prolate spheroids is the $H_{3}^{+}(1 / p) \mathrm{MO}$ with the protons at the foci that bind and maintain the electron MO.

As in the case for $H_{2}^{+}(1 / p)$ and $H_{2}(1 / p)$ shown in the Nature of the Chemical Bond of Hydrogen-Type Molecules section, the stability of $H_{3}^{+}(1 / p)$ is due to the dependence of the charge density of the distance D from the origin to the tangent plane. That is,

$$
\begin{equation*}
D=\frac{1}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}} \tag{13.3}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sigma=\frac{e}{4 \pi a b^{2}} D \tag{13.4}
\end{equation*}
$$

In other words, the surface density at any point on a charged ellipsoidal conductor is proportional to the perpendicular distance from the center of the ellipsoid to the plane tangent to the ellipsoid at the point. The charge is thus greater on the more sharply rounded ends farther away from the origin. This distribution places the charge closest to the protons to give a minimum energy.

The balanced forces also depend on D as shown in the Nature of the Chemical Bond of Hydrogen-Type Molecules section. The D-dependence of the charge density as well as the centrifugal and Coulombic central field of two nuclei at the foci of the ellipsoid applies to each ellipsoid which is given from any other by a rotation of $|\phi|=\frac{\pi}{3}$ about an axis at a focus that is perpendicular to the plane of the equilateral triangle defined by the three foci. Since the centrifugal, Coulombic, and magnetic forces relate mass and charge densities which are interchangeable by the ratio e / m_{e}, the conditions at any point on any given ellipsoid is applicable to any other point on the ellipsoid. Furthermore, this condition can be generalized to any point of the other members of the set of three ellipsoids due to equivalence. As a further constraint to maintain the force balance between the three protons and the $H_{3}^{+}(1 / p)$ MO comprising the superposition of the three $H_{2}(1 / p)$-type ellipsoidal MOs, the total charge of the two electrons must be normalized over the three basis set $\mathrm{H}_{2}(1 / p)$-type ellipsoidal MOs. In this case, the parameters of each basis element $H_{2}(1 / p)$-type ellipsoidal MO is solved, and the energies are given by the electron charge where it appears multiplied by a factor of $3 / 2$ (three MOs normalized by the total charge of two electrons).

Consider each $H_{2}(1 / p)$-type ellipsoidal MO. At each point on the $H_{3}^{+}(1 / p) \mathrm{MO}$, the electron experiences a centrifugal force, and the balancing centripetal force (on each electron) is produced by the electric force between the electron and the ellipsoidal electric field and the radiation-reaction-type magnetic force between the two electrons causing the electrons to pair. The force balance equation derived in Force Balance of Hydrogen-Type Molecules section is given by Eq. (11.200):

$$
\begin{align*}
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{p e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{13.5}\\
& \frac{2 a_{0}}{p a}-\frac{a_{0}}{p a}=1 \tag{13.6}\\
& a=\frac{a_{0}}{p} \tag{13.7}
\end{align*}
$$

Substitution of Eq. (13.7) into Eq. (11.79) is:

$$
\begin{equation*}
c^{\prime}=\frac{1}{p \sqrt{2}} a_{0} \tag{13.8}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.8) by two is:

$$
\begin{equation*}
2 c^{\prime}=\frac{a_{0} \sqrt{2}}{p} \tag{13.9}
\end{equation*}
$$

Substitution of Eqs. (13.7-13.8) into Eq. (11.80) is:

$$
\begin{equation*}
b=c=\frac{1}{p \sqrt{2}} a_{0} \tag{13.10}
\end{equation*}
$$

Substitution of Eqs. (13.7-13.8) into Eq. (11.67) is:

$$
\begin{equation*}
e=\frac{1}{\sqrt{2}} \tag{13.11}
\end{equation*}
$$

Using the parameters given by Eqs. (13.7-13.11), the resulting $H_{3}^{+}(1 / p)$ MO comprising the superposition of three $H_{2}(1 / p)$ type ellipsoidal MOs is shown in Figure 13.1. The outer surface of the superposition comprises charge density of the MO. The equilateral triangular structure was confirmed experimentally [1]. The $H_{3}^{+}(1 / p) \mathrm{MO}$ having no distinguishable electrons is consistent with the absence of strong excited states observed for H_{3}^{+}[1]. It is also consistent with the absence of a permanent dipole moment [1].

Figure 13.1. The equilateral triangular $H_{3}^{+}(1 / p)$ MO formed by the superposition of three $H_{2}(1 / p)$-type ellipsoidal MOs with the protons at the foci. (A)-(B) Oblique and top views of the charge-density shown in color scale showing the ellipsoid surfaces and the nuclei (red, not to scale). (C) Cross sectional view with one proton cut away.

ENERGIES OF H_{3}^{+}-TYPE MOLECULARIONS

Due to the equivalence of the $H_{2}(1 / p)$-type ellipsoidal MOs and the linear superposition of their energies, the energy components defined previously for the molecule, Eqs. (11.207-11.212) apply in the case of the corresponding $H_{3}^{+}(1 / p)$ molecular ion. And, each molecular energy component is given by the integral of corresponding force in Eq. (13.5). Each energy component is the total for the two equivalent electrons with the exception that the total charge of the two electrons is normalized over the three basis set $H_{2}(1 / p)$-type ellipsoidal MOs. Thus, the energies are those given for $H_{2}(1 / p)$ in the Energies of Hydrogen-Type Molecules section with the electron charge, where it appears, multiplied by a factor of $3 / 2$. In addition, the three sets of equivalent proton-proton pairs give rise to a factor of three times the proton-proton repulsion energy given by Eq. (11.208). The parameters a and b are given by Eqs. (13.7) and (13.10), respectively.

$$
\begin{align*}
& V_{e}=\frac{3}{2} \frac{-2 p e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{13.12}\\
& V_{p}=3 \frac{p}{8 \pi \varepsilon_{0}} \frac{e^{2}}{\sqrt{a^{2}-b^{2}}} \tag{13.13}\\
& T=\frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{13.14}
\end{align*}
$$

The energy, V_{m}, corresponding to the magnetic force of Eq. (13.5) is:

$$
\begin{align*}
& V_{m}=\frac{3}{2} \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{13.15}\\
& E_{T}=V_{e}+T+V_{m}+V_{p} \tag{13.16}\\
& E_{T}=-\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}\left[\left(3 p^{2} \sqrt{2}-p^{2} \sqrt{2}+3 \frac{p^{2} \sqrt{2}}{4}\right) \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}-3 p^{2} \sqrt{2}\right]=-p^{2} 35.54975 \mathrm{eV} \tag{13.17}
\end{align*}
$$

where the charge e appears in the magnetic energy V_{m} according to Eqs. (7.14-7.24) as discussed in the Force Balance of Hydrogen-Type Molecules section.

VIBRATION OF H_{3}^{+}-TYPE MOLECULAR IONS

The vibrational energy levels of H_{3}^{+}-type molecular ions may be solved as three equivalent coupled harmonic oscillators by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [2] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERM OF H_{3}^{+}-TYPE MOLECULAR IONS

As shown in the Vibration of Hydrogen-type Molecular Ions section, the electron orbiting the nuclei at the foci of an ellipse may be perturbed such that a stable reentrant orbit is established that gives rise to a vibrational state corresponding to time harmonic oscillation of the nuclei and electron. The perturbation is caused by a photon that is resonant with the frequency of oscillation of the nuclei wherein the radiation is electric dipole with the corresponding selection rules.

Oscillation may also occur in the transition state. The perturbation arises from the decrease in internuclear distance as the molecular bond forms. Relative to the unperturbed case given in the Force Balance of Hydrogen-type Molecular Ions section, the reentrant orbit may give rise to a decrease in the total energy while providing a transient kinetic energy to the vibrating nuclei. However, as an additional condition for stability, radiation must be considered. A nonradiative state must be achieved after the emission due to transient vibration wherein the nonradiative condition given by Eq. (11.24) must be satisfied. The radiation reaction force due to the vibration of $H_{2}^{+}(1 / p)$ and $H_{2}(1 / p)$ in the transition state was derived in the Doppler Energy Term of Hydrogen-type Molecular Ions section and the Doppler Energy Term of Hydrogen-type Molecules section, respectively, and corresponds to a Doppler energy, E_{D}, that is dependent on the motion of the electron and the nuclei. The radiation reaction force in the case of the vibration of $H_{3}^{+}(1 / p)$ in the transition state also corresponds to the Doppler energy, E_{D}, given by Eq. (11.181) that is dependent on the motion of the electrons and the nuclei. Here, a nonradiative state must also be achieved after the emission due to transient vibration wherein the nonradiative condition given by Eq. (11.24) must be satisfied. Typically, a third body is required to form H_{3}^{+}-type molecular ions. For example, the exothermic chemical reaction of $H+H$ to form H_{2} does not occur with the emission of a photon. Rather, the reaction requires a collision with a third body, M, to remove the bond energy- $\mathrm{H}+\mathrm{H}+\mathrm{M} \rightarrow \mathrm{H}_{2}+\mathrm{M}^{*}$ [3]. The third body distributes the energy from the exothermic reaction, and the end result is the H_{2} molecule and an increase in the temperature of the system. Thus, a third body removes the energy corresponding to the additional force term given by Eq. (11.180).

The kinetic energy of the transient vibration is derived from the corresponding central forces. From Eqs. (13.5) and (13.12), the central force terms between the electron MO and the protons of each of the three $H_{2}(1 / p)$-type ellipsoidal MOs are

$$
\begin{equation*}
f(a)=-\frac{3}{2} \frac{p e^{2}}{4 \pi \varepsilon_{0} a^{2}} \tag{13.18}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(a)=\frac{3}{2} \frac{2 p e^{2}}{4 \pi \varepsilon_{0} a^{3}} \tag{13.19}
\end{equation*}
$$

Thus, using Eqs. (11.136) and (13.18-13.19), the angular frequency of this oscillation is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{3}{2} \frac{p e^{2}}{4 \pi \varepsilon_{0}\left(\frac{a_{0}}{p}\right)^{3}}}{m_{e}}}=p^{2} 5.06326 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.20}
\end{equation*}
$$

where the semimajor axis, a, is $a=\frac{a_{0}}{p}$ according to Eq. (13.7). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar p^{2} 5.06326 \times 10^{16} \mathrm{rad} / \mathrm{s}=p^{2} 33.3273 \mathrm{eV} \tag{13.21}
\end{equation*}
$$

In Eq. (11.181), substitution of the total energy of the H_{3}^{+}-type molecular ion, E_{T}, (Eq. (13.17)) for $E_{h \nu}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.21) for \bar{E}_{K} gives the Doppler energy of the electrons for the reentrant orbit.

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-35.54975 p^{2} e V \sqrt{\frac{2 e\left(p^{2} 33.3273 \mathrm{eV}\right)}{m_{e} c^{2}}}=-p^{3} 0.406013 \mathrm{eV} \tag{13.22}
\end{equation*}
$$

The total energy of the H_{3}^{+}-type molecular ion is decreased by \bar{E}_{D}.
In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. On average, the total energy of vibration is equally distributed between kinetic energy and potential energy [4]. Thus, the average kinetic energy of vibration corresponding to the Doppler energy of the electrons, $\bar{E}_{\text {Kvib }}$, is $1 / 2$ of the vibrational energy of the H_{3}^{+}-type molecular ion given by Eq. (11.148). The decrease in the energy of the molecular ion due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} and $\bar{E}_{\text {Kvib }}$. Using Eq. (13.22) and the experimental vibrational energy H_{3}^{+} of $E_{\text {vib }}=2521.31 \mathrm{~cm}^{-1}=0.312605 \mathrm{eV}$ [1] gives:

$$
\begin{align*}
& \bar{E}_{\text {osc }}=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar p^{2} \sqrt{\frac{k}{\mu}} \tag{13.23}\\
& \bar{E}_{\text {osc }}=-p^{3} 0.406013 \mathrm{eV}+\frac{1}{2} p^{2}(0.312605 \mathrm{eV}) \tag{13.24}
\end{align*}
$$

The reentrant orbit for the binding of a proton to $H_{2}(1 / p)$ causes two bonds to oscillate by increasing and decreasing in length along opposite sides of the equilateral triangle at a relative phase angle of 180°. Since the vibration and reentrant oscillation is along two lengths of the equilateral triangular MO with E symmetry, $\bar{E}_{\text {osc }}$ for $H_{3}^{+}(1 / p), \bar{E}_{\text {osc }}\left(H_{3}^{+}(1 / p)\right)$, is:

$$
\begin{equation*}
\bar{E}_{\text {osc }}\left(H_{3}^{+}(1 / p)\right)=2\left(\bar{E}_{D}+\frac{1}{2} \hbar p^{2} \sqrt{\frac{k}{\mu}}\right)=2\left(-p^{3} 0.406013 \mathrm{eV}+\frac{1}{2} p^{2}(0.312605 \mathrm{eV})\right) \tag{13.25}
\end{equation*}
$$

To the extent that the MO dimensions are the same, the electron reentrant orbital energies, \bar{E}_{K}, are the same independent of the isotope of hydrogen, but the vibrational energies are related by Eq. (11.148). Thus, the differences in bond energies are essentially given by $1 / 2$ the differences in vibrational energies per bond. Using Eq. (13.22), Eq. (13.25), and the experimental vibrational energy D_{3}^{+}of $E_{\text {vib }}=1834.67 \mathrm{~cm}^{-1}=0.227472 \mathrm{eV}$ [1], the corresponding $\bar{E}_{\text {osc }}\left(D_{3}^{+}(1 / p)\right)$ is:

$$
\begin{equation*}
\bar{E}_{\text {osc }}\left(D_{3}^{+}(1 / p)\right)=2\left(-p^{3} 0.406013 e V+\frac{1}{2} p^{2}(0.227472 e V)\right) \tag{13.26}
\end{equation*}
$$

TOTAL AND BOND ENERGIES OF $H_{3}^{+}(1 / p)$ - AND $D_{3}^{+}(1 / p)$-TYPE MOLECULAR IONS

The total energy of the $H_{3}^{+}(1 / p)$-type molecular ion is given by the sum of E_{T} (Eqs. (13.16-13.17)) and $\bar{E}_{\text {osc }}\left(H_{3}^{+}(1 / p)\right)$ given Eqs. (13.20-13.25). Thus, the total energy of $H_{3}^{+}(1 / p)$ having a central field of $+p e$ at each focus of the prolate spheroid molecular orbital including the Doppler term is

$$
\begin{align*}
E_{T} & =V_{e}+T+V_{m}+V_{p}+\bar{E}_{\text {osc }}\left(H_{3}^{+}(1 / p)\right) \tag{13.27}\\
E_{T} & =-p^{2}\left\{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}\left[\left(3 \sqrt{2}-\sqrt{2}+\frac{3 \sqrt{2}}{4}\right) \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}-3 \sqrt{2}\right]\left[1+2 p \sqrt{\frac{2 \hbar \sqrt{\frac{\frac{3}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} a_{0}^{3}}}{m_{e}}}}{m_{e} c^{2}}}\right]-2\left(\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)\right\} \tag{13.28}\\
& =-p^{2} 35.54975-2 p^{3} 0.406013 e V+2 p^{2}\left(\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (13.24-13.25) and (13.27-13.28), the total energy of the H_{3}^{+}-type molecular ion is:

$$
\begin{align*}
E_{T} & =-p^{2} 35.54975 \mathrm{eV}+\bar{E}_{\text {osc }}\left(H_{3}^{+}(1 / p)\right) \\
& =-p^{2} 35.54975-2 p^{3} 0.406013 \mathrm{eV}+2\left(\frac{1}{2} p^{2}(0.312605 \mathrm{eV})\right) \tag{13.29}\\
& =-p^{2} 35.23714 \mathrm{eV}-p^{3} 0.812025 \mathrm{eV}
\end{align*}
$$

The total energy of the D_{3}^{+}-type molecular ion is given by the sum of E_{T} (Eq. (13.17)) and $\bar{E}_{\text {osc }}\left(D_{3}^{+}(1 / p)\right)$ given by Eq. (13.26).

$$
\begin{align*}
E_{T} & =-p^{2} 35.54975 \mathrm{eV}+\bar{E}_{\text {osc }}\left(D_{3}^{+}(1 / p)\right) \\
& =-p^{2} 35.54975-2 p^{3} 0.406013 \mathrm{eV}+2\left(\frac{1}{2} p^{2}(0.227472 \mathrm{eV})\right) \tag{13.30}\\
& =-p^{2} 35.32227 \mathrm{eV}-p^{3} 0.812025 \mathrm{eV}
\end{align*}
$$

The bond dissociation energy, E_{D}, is the difference between the total energy of the corresponding hydrogen molecule and E_{T}

$$
\begin{equation*}
E_{D}=E\left(H_{2}(1 / p)\right)-E_{T} \tag{13.31}
\end{equation*}
$$

where $E\left(H_{2}(1 / p)\right)$ is given by Eq. (11.241):

$$
\begin{equation*}
E\left(H_{2}(1 / p)\right)=-p^{2} 31.351 \mathrm{eV}-p^{3} 0.326469 \mathrm{eV} \tag{13.32}
\end{equation*}
$$

and $E\left(D_{2}(1 / p)\right)$ is given by Eq. (11.242):

$$
\begin{equation*}
E\left(D_{2}(1 / p)\right)=-p^{2} 31.4345 e V-p^{3} 0.326469 \mathrm{eV} \tag{13.33}
\end{equation*}
$$

The H_{3}^{+}bond dissociation energy, E_{D}, is given by Eqs. (13.31-13.32) and (13.29):

$$
\begin{align*}
E_{D} & =-p^{2} 31.351 \mathrm{eV}-p^{3} 0.326469 \mathrm{eV}-E_{T} \\
& =-p^{2} 31.351 \mathrm{eV}-p^{3} 0.326469 \mathrm{eV}-\left(-p^{2} 35.23714 \mathrm{eV}-p^{3} 0.812025 \mathrm{eV}\right) \tag{13.34}\\
& =p^{2} 3.88614 \mathrm{eV}+p^{3} 0.485556 \mathrm{eV}
\end{align*}
$$

The D_{3}^{+}bond dissociation energy, E_{D}, is given by Eqs. (13.31), (13.33), and (13.30):

$$
\begin{align*}
E_{D} & =-p^{2} 31.4345 \mathrm{eV}-p^{3} 0.326469 \mathrm{eV}-E_{T} \\
& =-p^{2} 31.4345 \mathrm{eV}-p^{3} 0.326469 \mathrm{eV}-\left(-p^{2} 35.32227 \mathrm{eV}-p^{3} 0.812025 \mathrm{eV}\right) \tag{13.35}\\
& =p^{2} 3.88777 \mathrm{eV}+p^{3} 0.485556 \mathrm{eV}
\end{align*}
$$

THE H_{3}^{+}MOLECULAR ION

FORCE BALANCE OF THE H_{3}^{+}MOLECULAR ION

The force balance equation for H_{3}^{+}is given by Eq. (13.5) where $p=1$

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{13.36}
\end{equation*}
$$

which has the parametric solution given by Eq. (11.83) when:

$$
\begin{equation*}
a=a_{0} \tag{13.37}
\end{equation*}
$$

The semimajor axis, a, is also given by Eq. (13.7) where $p=1$. The internuclear distance, $2 c^{\prime}$, which is the distance between the foci is given by Eq. (13.9) where $p=1$.

$$
\begin{equation*}
2 c^{\prime}=\sqrt{2} a_{0} \tag{13.38}
\end{equation*}
$$

The semiminor axis is given by Eq. (13.10) where $p=1$.

$$
\begin{equation*}
b=\frac{1}{\sqrt{2}} a_{0} \tag{13.39}
\end{equation*}
$$

The eccentricity, e, is given by Eq. (13.11).

$$
\begin{equation*}
e=\frac{1}{\sqrt{2}} \tag{13.40}
\end{equation*}
$$

ENERGIES OF THE H_{3}^{+}MOLECULAR ION

The energies of H_{3}^{+}are given by Eqs. (13.12-13.15) where $p=1$

$$
\begin{align*}
& V_{e}=\frac{3}{2} \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-101.7538 \mathrm{eV} \tag{13.41}\\
& V_{p}=3 \frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=57.7245 \mathrm{eV} \tag{13.42}\\
& T=\frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=33.9179 \mathrm{eV} \tag{13.43}
\end{align*}
$$

The energy, V_{m}, of the magnetic force is

$$
\begin{equation*}
V_{m}=\frac{3}{2} \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-25.4384 \mathrm{eV} \tag{13.44}
\end{equation*}
$$

The Doppler terms, $\bar{E}_{\text {osc }}\left(H_{3}^{+}(1 / p)\right)$ and $\bar{E}_{\text {osc }}\left(D_{3}^{+}(1 / p)\right)$ are given by Eqs. (13.25) and (13.26), respectively, where $p=1$

$$
\begin{align*}
& \bar{E}_{\text {osc }}\left(H_{2}^{+}\right)=2\left(\bar{E}_{D}+\bar{E}_{\text {Kvib }}\right)=2\left(-0.406013 \mathrm{eV}+\frac{1}{2}(0.312605 \mathrm{eV})\right)=-0.499420 \mathrm{eV} \tag{13.45}\\
& \bar{E}_{\text {osc }}\left(D_{2}\right)=2\left(-0.406013 \mathrm{eV}+\frac{1}{2}(0.227472 \mathrm{eV})\right)=-0.584553 \mathrm{eV} \tag{13.46}
\end{align*}
$$

The total energy, E_{T}, for H_{3}^{+}given by Eqs. (13.27-13.29) is:

$$
\begin{aligned}
E_{T} & =-\left\{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}\left[\left(3 \sqrt{2}-\sqrt{2}+\frac{3 \sqrt{2}}{4}\right) \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}-3 \sqrt{2}\right]\left[\sqrt{2 \hbar \sqrt{\frac{\frac{3}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} a_{0}^{3}}}{m_{e}}}}\right]-2\left(\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)\right\} \\
& =-35.54975-2(0.406013 \mathrm{eV})+2\left(\frac{1}{2}(0.31260516 \mathrm{eV})\right) \\
& =-36.049167 \mathrm{eV}
\end{aligned}
$$

From Eqs. (13.27-13.28) and (13.30), the total energy, E_{T}, for D_{3}^{+}is:

$$
\begin{equation*}
E_{T}=-35.54975-2(0.406013 \mathrm{eV})+2\left(\frac{1}{2}(0.227472 \mathrm{eV})\right)=-36.134300 \mathrm{eV} \tag{13.48}
\end{equation*}
$$

The bond dissociation energy, E_{D}, is the difference between the total energy of H_{2} or D_{2} and E_{T}. The H_{3}^{+}molecular bond dissociation energy, E_{D}, given by the difference between the experimental total energy of $H_{2}[5-7]^{1}$ and the total energy of H_{3}^{+} (Eqs. (13.29) where $p=1$ and (13.47)) is

$$
\begin{equation*}
E_{D}=-31.675 \mathrm{eV}-(-36.049167 \mathrm{eV})=4.374167 \mathrm{eV} \tag{13.49}
\end{equation*}
$$

The H_{3}^{+}bond dissociation energy, E_{D}, given by Eq. (13.34) where $p=1$ is:

$$
\begin{equation*}
E_{D}=3.88614 \mathrm{eV}+0.485556 \mathrm{eV}=4.37170 \mathrm{eV} \tag{13.50}
\end{equation*}
$$

The experimental bond dissociation energy of H_{3}^{+}[8] is:

$$
\begin{equation*}
E_{D}=4.373 \mathrm{eV} \tag{13.51}
\end{equation*}
$$

The difference between the results of Eqs. (13.49) and (13.50) is within the experimental and propagated errors in the different calculations. The calculated results are based on first principles and given in closed-form equations containing fundamental constants only. The agreement between the experimental and calculated results for the H_{3}^{+}bond dissociation energy is excellent.

The predicted D_{3}^{+}molecular bond dissociation energy, E_{D}, given by the difference between the total energy of D_{3}^{+}(Eqs. (13.30) where $p=1$ and (13.48)) and the experimental total energy of $D_{2}[9-10]^{2}$ is:

$$
\begin{equation*}
E_{D}=-31.76 \mathrm{eV}-(-36.134300 \mathrm{eV})=4.374300 \mathrm{eV} \tag{13.52}
\end{equation*}
$$

The D_{3}^{+}bond dissociation energy, E_{D}, given by Eq. (13.35) where $p=1$ is:
$E_{D}=3.88777 \mathrm{eV}+0.485556 \mathrm{eV}=4.373331 \mathrm{eV}$
The results of the determination of bond parameters of H_{3}^{+}are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

HYDROXYL RADICAL ($O H$)

The water molecule can be solved by first considering the solution of the hydroxyl radical which is formed by the reaction of a hydrogen atom and an oxygen atom:

$$
\begin{equation*}
\mathrm{H}+\mathrm{O} \rightarrow \mathrm{OH} \tag{13.54}
\end{equation*}
$$

The hydroxyl radical $O H$ can be solved using the same principles as those used to solve the hydrogen molecule wherein the diatomic molecular orbital (MO) developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section serves as basis function in linear combination with an oxygen atomic orbital (AO) to form the MO of OH . The MO must (1) be a solution of Laplace's equation to give a equipotential energy surface, (2) correspond to an orbital solution of the Newtonian equation of motion in an inverse-radius-squared central field having a constant total energy, (3) be stable to radiation, and (4) conserve the electron angular momentum of \hbar. A further constraint with the substitution of a heteroatom (O) for one of the hydrogen atoms is that the constant energy of the MO must match the energy of the heteroatom.

[^0]
FORCE BALANCE OF $O H$

OH comprises two spin-paired electrons in a chemical bond between the oxygen atom and the hydrogen atom such that one electron on O remains unpaired. The $O H$ radical MO is determined by considering properties of the binding atoms and the boundary constraints. The prolate spheroidal $\mathrm{H}_{2} \mathrm{MO}$ developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules section satisfies the boundary constraints; thus, the H-atom electron forms a H_{2}-type ellipsoidal MO with one of the O-atom electrons. The O electron configuration given in the Eight-Electron Atoms section is $1 s^{2} 2 s^{2} 2 p^{4}$, and the orbital arrangement is:

corresponding to the ground state ${ }^{3} P_{2}$.
In determining the central forces for O in the Radius and Ionization Energy of the Outer Electron of the Oxygen Atom section, it was shown that the energy is minimized with conservation of angular momentum by the cancellation of the orbital angular momentum of a p_{x} electron by that of the p_{y} electron with the pairing of electron eight to fill the p_{x} orbital. Then, the diamagnetic force is given by Eq. (10.156) is that of atomic nitrogen (Eq. (10.136) corresponding to the p_{z}-orbital electron (Eq. (10.82) with $m=0$) as the source of diamagnetism with an additional contribution from the uncanceled p_{x} electron (Eq. (10.82) with $m=1$). From Eqs. (10.83) and (10.89), the paramagnetic force, $\mathbf{F}_{\text {mag } 2}$, is given by Eq. (10.157) corresponding to the spin-angular-momentum contribution alone of the p_{x} electron and the orbital angular momentum of the p_{z} electron, respectively. The diamagnetic and paramagnetic forces cancel such that the central force is purely the Coulombic force. This central force is maintained with bond formation such that the energy of the $O 2 p$ shell is unchanged. Thus, the angular momentum of each electron of the $O 2 p$ shell is conserved with bond formation. The central paramagnetic force due to spin is provided by the spinpairing force of the $O H$ MO that has the symmetry of an s orbital that superimposes with the $2 p$ orbitals such that the corresponding angular momenta of the $O 2 p$ orbitals are unchanged.

The $O 2 p_{y}$ electron combines with the $H 1 s$ electron to form a molecular orbital. The proton of the H atom is along the internuclear axis. Due to symmetry, the other O electrons are equivalent to point charges at the origin. (See Eqs. (19-38) of Appendix II.) Thus, the energies in the $O H$ MO involve only the $O 2 p_{y}$ and $H 1 s$ electrons and the change in the magnetic energy of the $O 2 p_{y}$ electron with the other O electrons (Eq. (13.152)) with the formation of the OH MO . The forces are determined by these energies.

As in the case of H_{2}, the MO is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into O atom for distances shorter than the radius of the $2 p$ shell. Otherwise, the electric field of the other $O 2 p$ electrons would be perturbed, and the $2 p$ shell would not be stable. The corresponding increase in energy of O would not be offset by any energy decrease in the $O H \mathrm{MO}$ based on the distance from the O nucleus to the $H 1 s$ electron compared to those of the $O 2 p$ electrons. Thus, the MO surface comprises a prolate spheroid at the H proton that is continuous with the $2 p$ shell at the O atom. The energy of the prolate spheroid is matched to that of the $O 2 p$ shell.

The orbital energy E for each elliptical cross section of the prolate spheroidal MO is given by the sum of the kinetic T and potential V energies. $E=T+V$ is constant, and the closed orbits are those for which $T<|V|$, and the open orbits are those for which $T \geq|V|$. It can be shown that the time average of the kinetic energy, $\langle T\rangle$, for elliptic motion in an inverse-squared field is $1 / 2$ that of the time average of the magnitude of the potential energy, $|<V\rangle|.\langle T\rangle=1 / 2|<V\rangle \mid$ [11]. In the case of an atomic orbital (AO), $E=T+V$, and for all points on the $\mathrm{AO},|E|=T=1 / 2|V|$. As shown in the Hydrogen-type Molecular Ions section, each point or coordinate position on the continuous two-dimensional electron MO defines an infinitesimal mass-density element which moves along an orbit comprising an elliptic plane cross section of the spheroidal MO through the foci. The motion is such that eccentric angle, θ, changes at a constant rate at each point. That is $\theta=\omega t$ at time t where ω is a constant, and

$$
\begin{equation*}
r(t)=\mathbf{i} a \cos \omega t+\mathbf{j} b \sin \omega t \tag{13.56}
\end{equation*}
$$

Consider the boundary condition that the MO of OH comprises a linear combination of an oxygen AO and a H_{2}-type ellipsoidal MO. The charge density of an H_{2}-type ellipsoidal MO given by Eq. (13.4) maintains that the surface is an equipotential; however, the potential and kinetic energy of a point on the surface changes as it orbits the central field. The potential energy is a maximum and the kinetic energy is a minimum at the semimajor axis, and the reverse occurs at the semiminor axis. Since the time average of the kinetic energy, $\langle T\rangle$, for elliptic motion in an inverse-squared field is $1 / 2$ that of the time average of the magnitude of the potential energy, by symmetry, the $<T>=1 / 2<|V|>$ condition holds for $1 / 2$ of the
H_{2}-type ellipsoidal MO having the H focus and ending at the plane defined by the semiminor axes. The O nucleus comprises the other focus of the OH MO . The $\mathrm{O} 2 p \mathrm{AO}$ obeys the energy relationship for all points. Since the H atomic orbital is at the Coulombic energy between the electron and proton given by Eq. (1.264), the energy matching condition is achieved while maintaining an energy match to the $O 2 p$ AO orbital with the charge density of $1 / 2 \mathrm{e}$ on the $O 2 p \mathrm{AO}$, corresponding to a donation of 0.25 e from each MO electron. Then, the charge in the MO force balance corresponds to that of $-2(0.75) e=-1.5 e$.
Thus, the linear combination of the H_{2}-type ellipsoidal MO with the O 2 p AO must involve a 25% contribution from the H_{2} type ellipsoidal MO to the $O 2 p \mathrm{AO}$ in order to match the energy relationships. Thus, the $O H$ MO must comprise 75% of a H_{2}-type ellipsoidal MO ($1 / 2+25 \%$) and an oxygen AO:

$$
\begin{equation*}
1 \mathrm{O} 2 p_{y} \mathrm{AO}+0.75 \mathrm{H}_{2} \mathrm{MO} \rightarrow \mathrm{OH} \mathrm{MO} \tag{13.57}
\end{equation*}
$$

The force balance of the $O H \mathrm{MO}$ is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (13.57). The force constant k of a H_{2}-type ellipsoidal MO due to the equivalent of two point charges of at the foci is given by Eq. (11.65).

$$
\begin{equation*}
k=\frac{2 e^{2}}{4 \pi \varepsilon_{0}} \tag{13.58}
\end{equation*}
$$

Since the H_{2}-type ellipsoidal MO comprises 75% of the OH MO, the electron charge density in Eq. (13.58) is given by $-0.75 e$. Thus, k^{\prime} of the H_{2}-type-ellipsoidal-MO component of the OH MO is

$$
\begin{equation*}
k^{\prime}=\frac{(0.75) 2 e^{2}}{4 \pi \varepsilon_{0}} \tag{13.59}
\end{equation*}
$$

L for the electron equals \hbar; thus, the distance from the origin of the $O H$ MO to each focus c^{\prime} is given by Eqs. (11.79) and (13.59):

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} 1.5 a}}=\sqrt{\frac{2 a a_{0}}{3}} \tag{13.60}
\end{equation*}
$$

The internuclear distance from Eq. (13.60) is:

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{2 a a_{0}}{3}} \tag{13.61}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal OH MO $b=c$ given by Eq. (11.80) is:

$$
\begin{equation*}
b=\sqrt{a^{2}-c^{\prime 2}} \tag{13.62}
\end{equation*}
$$

The eccentricity, e, is:

$$
\begin{equation*}
e=\frac{c^{\prime}}{a} \tag{13.63}
\end{equation*}
$$

Then, the solution of the semimajor axis a allows for the solution of the other axes of the prolate spheroidal and eccentricity of the $O H$ MO.

The general equation of the ellipsoidal MO having semiprincipal axes a, b, c given by:

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \tag{13.64}
\end{equation*}
$$

is also completely determined by the total energy E given by Eq. (11.18):

$$
\begin{equation*}
r=\frac{m \frac{L^{2}}{m^{2}} k^{-1}}{1+\left(1+2 E m \frac{L^{2}}{m^{2}} k^{-2}\right)^{1 / 2} \cos \theta} \tag{13.65}
\end{equation*}
$$

The energy of the oxygen $2 p$ shell is the negative of the ionization energy of the oxygen atom given by Eq. (10.163). Experimentally, the energy is [12]:

$$
\begin{equation*}
E(2 p \text { shell })=-E(\text { ionization; } O)=-13.6181 \mathrm{eV} \tag{13.66}
\end{equation*}
$$

Since the prolate spheroidal MO transitions to the O AO, the energy E in Eq. (13.66) adds to that of the H_{2}-type ellipsoidal MO to give the total energy of the $O H \mathrm{MO}$. From the energy equation and the relationship between the axes given by Eqs. (13.60-13.63), the dimensions of the $O H \mathrm{MO}$ are solved.

The energy components derived previously for the hydrogen molecule, Eqs. (11.207-11.212), apply in the case of the H_{2}-type ellipsoidal MO. As in the case of the energies of $H_{3}^{+}(1 / p)$ given by Eqs. (13.12-13.16), each energy component of the H_{2}-type ellipsoidal MO is the total for the two equivalent electrons with the exception that the total charge and energies of the two electrons is normalized by the percentage composition given by Eq. (13.57):

$$
\begin{align*}
& V_{e}=\left(\frac{3}{4}\right) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{13.67}\\
& V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \tag{13.68}\\
& T=\left(\frac{3}{4}\right) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{13.69}\\
& V_{m}=\left(\frac{3}{4}\right) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{13.70}\\
& E_{T}=V_{e}+T+V_{m}+V_{p} \tag{13.71}\\
& E_{T}=-\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}\left[\left(\frac{3}{2}-\frac{3}{4} \frac{a_{0}}{a}+\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}-1\right] \tag{13.72}\\
& E_{T}=-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right] \tag{13.73}
\end{align*}
$$

Since the prolate spheroidal MO transitions to the O AO and the energy of the $O 2 p$ shell must remain constant and equal to the negative of the ionization energy given by Eq. (13.66), the total energy $E_{T}(O H)$ of the OH MO is given by the sum of the energies of the orbitals corresponding to the composition of the linear combination of the OAO and the H_{2}-type ellipsoidal MO that forms the OH MO as given by Eq. (13.57):

$$
\begin{equation*}
E_{T}(O H)=E_{T}+E(2 p \text { shell })=E_{T}-E(\text { ionization } O)=-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-13.6181 \mathrm{eV} \tag{13.74}
\end{equation*}
$$

To match the boundary condition that the total energy of the entire H_{2}-type ellipsoidal MO is given by Eq. (11.212):

$$
\begin{equation*}
E_{T}\left(H_{2}\right)=-\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}\left[\left(2 \sqrt{2}-\sqrt{2}+\frac{\sqrt{2}}{2}\right) \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}-\sqrt{2}\right]=-31.63536831 \mathrm{eV} \tag{13.75}
\end{equation*}
$$

$E_{T}(\mathrm{OH})$ given by Eq. (13.74) is set equal to Eq. (13.75):

$$
\begin{equation*}
E_{T}(O H)=-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-13.6181 \mathrm{eV}=-31.63536831 \mathrm{eV} \tag{13.76}
\end{equation*}
$$

From the energy relationship given by Eq. (13.76) and the relationship between the axes given by Eqs. (13.60-13.63), the dimensions of the OH MO can be solved.

Substitution of Eq. (13.60) into Eq. (13.76) gives:

$$
\begin{equation*}
\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right]=e 18.01726831 \tag{13.77}
\end{equation*}
$$

The most convenient way to solve Eq. (13.77) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is:

$$
\begin{equation*}
a=1.26430 a_{0}=6.69039 \times 10^{-11} \mathrm{~m} \tag{13.78}
\end{equation*}
$$

Substitution of Eq. (13.78) into Eq. (13.60) gives:

$$
\begin{equation*}
c^{\prime}=0.91808 a_{0}=4.85826 \times 10^{-11} \mathrm{~m} \tag{13.79}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.79) by two is:

$$
\begin{equation*}
2 c^{\prime}=1.83616 a_{0}=9.71651 \times 10^{-11} \mathrm{~m} \tag{13.80}
\end{equation*}
$$

The experimental bond distance is [13]:

$$
\begin{equation*}
2 c^{\prime}=9.71 \times 10^{-11} \mathrm{~m} \tag{13.81}
\end{equation*}
$$

Substitution of Eqs. (13.78-13.79) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=0.86925 a_{0}=4.59985 \times 10^{-11} \mathrm{~m} \tag{13.82}
\end{equation*}
$$

Substitution of Eqs. (13.78-13.79) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.72615 \tag{13.83}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the O atom comprise the foci of the H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $O 2 p_{y} \mathrm{AO}$ can be determined from the polar equation of the ellipse (Eq. (11.10)).

$$
\begin{equation*}
r=r_{0} \frac{1+e}{1+e \cos \theta^{\prime}} \tag{13.84}
\end{equation*}
$$

The radius of the $O 2 p_{y}$ AO given by Eq. (10.162) is $r_{8}=a_{0}$, and the polar radial coordinate of the ellipse and the radius of the $O 2 p_{y} \mathrm{AO}$ are equal at the point of intersection. Thus, Eq. (13.84) becomes:

$$
\begin{equation*}
r=\left(a-c^{\prime}\right) \frac{1+\frac{c^{\prime}}{a}}{1+\frac{c^{\prime}}{a} \cos \theta^{\prime}} \tag{13.85}
\end{equation*}
$$

where $r=a_{0}$ for O such that the polar angle θ^{\prime} is given by:

$$
\begin{equation*}
\theta^{\prime}=\cos ^{-1}\left(\frac{a}{c^{\prime}}\left(\left(a-c^{\prime}\right) \frac{1+\frac{c^{\prime}}{a}}{a_{0}}-1\right)\right) \tag{13.86}
\end{equation*}
$$

Substitution of Eqs. (13.78-13.79) into Eq. (13.86) gives:

$$
\begin{equation*}
\theta^{\prime}=123.65^{\circ} \tag{13.87}
\end{equation*}
$$

Then, the angle $\theta_{O 2 p_{y} A O}$ the radial vector of the $O 2 p_{y} \mathrm{AO}$ makes with the internuclear axis is

$$
\begin{equation*}
\theta_{O 2 p_{y} A O}=180^{\circ}-123.65^{\circ}=56.35^{\circ} \tag{13.88}
\end{equation*}
$$

as shown in Figure 13.2.
Figure 13.2. The cross section of the $O H$ MO showing the axes, angles, and point of intersection of the H_{2}-type ellipsoidal MO with the $\mathrm{O}_{2} p_{y} \mathrm{AO}$. The continuation of the H_{2}-type-ellipsoidal-MO basis element beyond the intersection point with the $O 2 p$ shell is shown as dashed since it only serves to solve the energy match with the $O 2 p$ shell and does not represent charge density. Similarly, the vertical dashed line only designates the parameters of the intersection point. The actual charge density is shown by the solid lines. Legend: a : semimajor axis, b : semiminor axis, $c^{\prime}:$ internuclear distance, $d_{1}: d_{H_{2} M O}, \theta_{1}: \theta_{O 2 p_{y} A O}$, and $d_{2}: d_{O 2 p A O}$.

The Cartesian \mathbf{i}-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j}-coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{\mathrm{H}_{2} М О}$ satisfies the following relationship:

$$
\begin{equation*}
a_{0} \sin \theta_{O 2 p_{y} A O}=b \sin \theta_{H_{2} M O} \tag{13.89}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} \mathrm{MO}}=\sin ^{-1} \frac{a_{0} \sin 56.35^{\circ}}{b} \tag{13.90}
\end{equation*}
$$

with the use of Eq. (13.88). Substitution of Eq. (13.82) into Eq. (13.90) gives:

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} M O}=73.27^{\circ} \tag{13.91}
\end{equation*}
$$

Then, the distance $d_{\mathrm{H}_{2} \mathrm{MO}}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{\mathrm{H}_{2} \mathrm{MO}}=a \cos \theta_{\mathrm{H}_{2} \mathrm{MO}} \tag{13.92}
\end{equation*}
$$

Substitution of Eqs. (13.78) and (13.91) into Eq. (13.92) gives:

$$
\begin{equation*}
d_{\mathrm{H}_{2} \mathrm{MO}}=0.36397 a_{0}=1.92606 \times 10^{-11} \mathrm{~m} \tag{13.93}
\end{equation*}
$$

The distance $d_{O 2 \text { pAO }}$ along the internuclear axis from the origin of the O atom to the point of intersection of the orbitals is given by

$$
\begin{equation*}
d_{O 2 p A O}=c^{\prime}-d_{H_{2} M O} \tag{13.94}
\end{equation*}
$$

Substitution of Eqs. (13.79) and (13.93) into Eq. (13.94) gives:

$$
\begin{equation*}
d_{O 2 p A O}=0.55411 a_{0}=2.93220 \times 10^{-11} \mathrm{~m} \tag{13.95}
\end{equation*}
$$

As shown in Eq. (13.57), in addition to the p-orbital charge-density modulation, the uniform charge-density in the p_{y} orbital is increased by a factor of 0.25 and the H-atom density is decreased by a factor of 0.25 . The internuclear axis of the $O-H$ bond is perpendicular to the bonding p_{y} orbital. Using the orbital composition of $O H$ (Eq. (13.57)), the radii of O1s $=0.12739 a_{0}$ (Eq. (10.51)), O2s $=0.59020 a_{0}$ (Eq. (10.62)), and $O 2 p=a_{0}$ (Eq. (10.162)) shells, and the parameters of the OH MO given by Eqs. (13.3-13.4), (13.78-13.80), (13.82-13.83), and (13.87-13.95), the dimensional diagram and chargedensity of the OH MO comprising the linear combination of the H_{2}-type ellipsoidal MO and the O AO according to Eq. (13.57) are shown in Figures 13.2 and 13.3, respectively.

In this case as well as in general, the current of the ellipsoidal MO and spherical AOs maintain spin pairing and current continuity. The current may comprise a linear combination of the MO current onto the $A O$ and the $A O$ currents that may comprise standing-wave components with current reflection at the interceptions of the surfaces. Thus, the current may flow equally in opposite directions between interception lines comprising mirror currents such that there is no net spin current. The linear combination gives a minimum equipotential energy surface of spin-paired electrons. Any asymmetrical charge distribution in the molecule corresponding to energy matching of the orbitals gives rise to a bond moment that is calculated in the Bond and Dipole Moment section.

Figure 13.3. OH MO comprising the superposition of the H_{2}-type ellipsoidal MO and the $\mathrm{O} 2 p_{y} \mathrm{AO}$ with a relative charge-density of 0.75 to 1.25 ; otherwise, the $O 2 p_{y}$ is the same as that of the oxygen atom. (A) Side-on, color scale, translucent view of the charge-density of the OH MO and the nuclei (shown red, not to scale). The ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $O 2 p_{y} \mathrm{AO}$, the $O 2 p$ shell, the $O 2 s$ shell, the $O 1 s$ shell, and the nuclei are shown. (B) Cut-away view showing the inner most $O 1 s$ shell, and moving radially, the $O 2 s$ shell, the $O 2 p$ shell, and the H_{2}-type ellipsoidal MO that transitions to the $O 2 p_{y} \mathrm{AO}$.

ENERGIES OF OH

The energies of $O H$ given by the substitution of the semiprincipal axes (Eqs. (13.78-13.80) and (13.82)) into the energy equations (Eqs. (13.67-13.73)) are:

$$
\begin{align*}
& V_{e}=\left(\frac{3}{4}\right) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-40.92709 \mathrm{eV} \tag{13.96}\\
& V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=14.81988 \mathrm{eV} \tag{13.97}\\
& T=\left(\frac{3}{4}\right) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=16.18567 \mathrm{eV} \tag{13.98}\\
& V_{m}=\left(\frac{3}{4}\right) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-8.09284 \mathrm{eV} \tag{13.99}\\
& E_{T}(O H)=-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-13.6181 \mathrm{eV}=-31.63247 \mathrm{eV} \tag{13.100}
\end{align*}
$$

where $E_{T}(\mathrm{OH})$ is given by Eq. (13.74) which is reiteratively matched to Eq. (13.75) within five-significant-figure round-off error.

VIBRATION AND ROTATION OF OH

The vibrational energy of $O H$ may be solved in the same manner as that of hydrogen-type molecular ions and hydrogen molecules given in the Vibration of Hydrogen-type Molecular Ions section, and the Vibration of Hydrogen-type Molecules section, respectively, except that the orbital composition and the requirement that the $O 2 p$ shell remain at the same energy and radius in the $O H \mathrm{MO}$ as it is in the O atom must be considered. Each p-orbital comprises the sum of a constant function and a spherical harmonic function as given by Eq. (1.29). In addition to the p-orbital charge-density modulation, the uniform chargedensity in p_{y} orbital is increased by a factor of 0.25 , and the H-atom electron density is decreased by a factor of 0.25 . The force between the electron density of the H_{2}-type ellipsoidal MO and the nuclei determines the vibrational energy. With the radius of the orbit at the oxygen atom fixed at

$$
\begin{equation*}
r_{8}=a_{0} \tag{13.101}
\end{equation*}
$$

according to Eq. (10.162), the central-force terms for the reentrant orbit between the electron density and the nuclei of the H_{2} type ellipsoidal MO are given by Eqs. (11.213-11.214), except that the corresponding charge of $-0.75 e$ replaces the charge of $-e$ of Eqs. (11.213-11.214). Furthermore, due to condition that the $O 2 p$ shell remain at the same energy and radius in the OH MO as it is in the O atom, the oscillation of H_{2}-type ellipsoidal is along the semiminor axis with the apsidal angle of Eq. (11.140) given by $\psi=\pi$. Thus, the semimajor axis a of Eqs. (11.213-11.214) is replaced by the semiminor axis b :

$$
\begin{equation*}
f(b)=-\frac{0.75 e^{2}}{8 \pi \varepsilon_{0} b^{2}} \tag{13.102}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(b)=\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{3}} \tag{13.103}
\end{equation*}
$$

Here, the force factor of 0.75 is equal to the equivalent term of Eq. (13.59). As the H_{2}-type ellipsoidal oscillates along b, the internuclear distance changes 180° out of phase. Thus, the distance for the reactive nuclear-repulsive terms is given by internuclear distance $2 c^{\prime}$ (Eq. (13.80)). Similar to that of Eqs. (11.215-11.216), the contribution from the repulsive force between the two nuclei is

$$
\begin{equation*}
f\left(2 c^{\prime}\right)=\frac{e^{2}}{8 \pi \varepsilon_{0}\left(2 c^{\prime}\right)^{2}} \tag{13.104}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}\left(2 c^{\prime}\right)=-\frac{e^{2}}{4 \pi \varepsilon_{0}\left(2 c^{\prime}\right)^{3}} \tag{13.105}
\end{equation*}
$$

Thus, from Eqs. (11.136), (11.213-11.217), and (13.102-13.105), the angular frequency of the oscillation is

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{8 \pi \varepsilon_{0} b^{3}}-\frac{e^{2}}{8 \pi \varepsilon_{0}\left(2 c^{\prime}\right)^{3}}}{\mu}}=\sqrt{\frac{\frac{0.75 e^{2}}{\frac{8 \pi \varepsilon_{0}\left(0.86925 \mathrm{a}_{0}\right)^{3}}{\frac{16}{17} m_{p}} \frac{e^{2}}{8 \pi \varepsilon_{0}\left(1.83616 a_{0}\right)^{3}}}}{}}=6.96269 \times 10^{14} \mathrm{rad} / \mathrm{s} \tag{13.106}
\end{equation*}
$$

where b is given by Eq. (13.82), $2 c^{\prime}$ is given by Eq. (13.80), and the reduced mass of ${ }^{16} \mathrm{OH}$ is given by:

$$
\begin{equation*}
\mu_{\text {IO }^{\text {OH }}}=\frac{m_{1} m_{2}}{m_{1}+m_{2}}=\frac{(1)(16)}{1+16} m_{p} \tag{13.107}
\end{equation*}
$$

where m_{p} is the proton mass. Thus, during bond formation, the perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory motion of the orbit, and the corresponding frequency, $\omega(0)$, for ${ }^{16} \mathrm{OH}$ given by Eqs. (11.136), (11.148), and (13.106) is:

$$
\begin{equation*}
\omega(0)=\sqrt{\frac{k(0)}{\mu}}=\sqrt{\frac{763.18 \mathrm{Nm}^{-1}}{\mu}}=6.96269 \times 10^{14} \mathrm{radians} / \mathrm{s} \tag{13.108}
\end{equation*}
$$

where the reduced nuclear mass of ${ }^{16} \mathrm{OH}$ is given by Eq. (13.107) and the spring constant, $k(0)$, given by Eqs. (11.136) and (13.106) is:

$$
\begin{equation*}
k(0)=763.18 \mathrm{Nm}^{-1} \tag{13.109}
\end{equation*}
$$

The ${ }^{16} \mathrm{OH}$ transition-state vibrational energy, $E_{\text {vib }}(0)$, given by Planck's equation (Eq. (11.127)) is:

$$
\begin{equation*}
E_{v i b}(0)=\hbar \omega=\hbar 6.96269 \times 10^{14} \mathrm{rad} / \mathrm{s}=0.4583 \mathrm{eV}=3696.38 \mathrm{~cm}^{-1} \tag{13.110}
\end{equation*}
$$

Zero-order or zero-point vibration is not physical and is not observed experimentally as discussed in the Diatomic Molecular Vibration section; yet, there is a term ω_{e} of the old point-particle-probability-wave-mechanics that can be compared to $E_{v i b}(0)$. From Herzberg [14], ω_{e}, from the experimental curve fit of the vibrational energies of ${ }^{16} \mathrm{OH}$ is:

$$
\begin{equation*}
\omega_{e}=3735.21 \mathrm{~cm}^{-1} \tag{13.111}
\end{equation*}
$$

As shown in the Vibration of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about the internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K\&P) [15] and after Eq. (11.134). Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy corrections can be found by perturbation methods. The energy \tilde{v}_{v} of state v is:

$$
\begin{equation*}
\tilde{v}_{v}=v \omega_{0}-v(v-1) \omega_{0} x_{0}, \quad v=0,1,2,3 \ldots \tag{13.112}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{0} x_{0}=\frac{h c \omega_{0}^{2}}{4 D_{0}} \tag{13.113}
\end{equation*}
$$

ω_{0} is the frequency of the $v=1 \rightarrow v=0$ transition, and D_{0} is the bond dissociation energy given by Eq. (13.162). From Eq. (13.112), ω_{0} is given by:

$$
\begin{equation*}
\omega_{0}=E_{\text {vib }}(0)-2 \omega_{0} X_{0} \tag{13.114}
\end{equation*}
$$

Substitution of Eq. (13.113) into Eq. (13.114) gives:

$$
\begin{equation*}
\omega_{0}=E_{v i b}(0)-2 \frac{h c \omega_{0}^{2}}{4 D_{0}} \tag{13.115}
\end{equation*}
$$

Eq. (13.115) can be expressed as:

$$
\begin{equation*}
\omega_{0}^{2}+\frac{2 D_{0}}{h c} \omega_{0}-\frac{2 D_{0}}{h c} E_{v i b}(0)=0 \tag{13.116}
\end{equation*}
$$

which can be solved by the quadratic formula:

$$
\begin{equation*}
\omega_{0}=\frac{-\frac{2 D_{0}}{h c} \pm \sqrt{\left(\frac{2 D_{0}}{h c}\right)^{2}+4 \frac{2 D_{0}}{h c} E_{v i b}(0)}}{2} \tag{13.117}
\end{equation*}
$$

Only the positive root is real, physical; thus,

$$
\begin{align*}
\omega_{0}\left(\mathrm{~cm}^{-1}\right)= & \frac{-\frac{2 D_{0}}{100 \mathrm{hc}}+\sqrt{\left(\frac{2 D_{0}}{100 h c}\right)^{2}+4 \frac{2 D_{0}}{100 \mathrm{hc}} E_{\text {vib }}(0)}}{2} \\
& =\frac{-\frac{2 e(4.4104 \mathrm{eV})}{100 \mathrm{hc}}+\sqrt{\left(\frac{2 e(4.4104 \mathrm{eV})}{100 \mathrm{hc}}\right)^{2}+4 \frac{2 e(4.4104 \mathrm{eV})}{100 \mathrm{hc}}\left(3696.37 \mathrm{~cm}^{-1}\right)}}{2} \tag{13.118}\\
= & 3522.02 \mathrm{~cm}^{-1}
\end{align*}
$$

where $E_{v i b}(0)$ is given by Eq. (13.110) and D_{0} is given by Eq. (13.156). The corresponding ${ }^{16} O H \quad v=1 \rightarrow v=0$ vibrational energy, $E_{\text {vib }}(1)$, in electron volts is:

$$
\begin{equation*}
E_{\text {vib }}(1)=0.43666 \mathrm{eV} \tag{13.119}
\end{equation*}
$$

The experimental vibrational energy of ${ }^{16} \mathrm{OH}$ is [16-17]:

$$
\begin{equation*}
E_{\text {vib }}(1)=0.4424 \mathrm{eV} \quad\left(3568 \mathrm{~cm}^{-1}\right) \tag{13.120}
\end{equation*}
$$

Using Eqs. (13.118-13.119) with Eq. (13.113), the anharmonic perturbation term, $\omega_{0} x_{0}$, of ${ }^{16} \mathrm{OH}$ is:

$$
\begin{equation*}
\omega_{0} x_{0}=\frac{100 h c\left(8.06573 \times 10^{3} \frac{\mathrm{~cm}^{-1}}{\mathrm{eV}} 0.43666 \mathrm{eV}\right)^{2}}{4 e(4.4104 \mathrm{eV})} \mathrm{cm}^{-1}=87.18 \mathrm{~cm}^{-1} \tag{13.121}
\end{equation*}
$$

The experimental anharmonic perturbation term, $\omega_{0} x_{0}$, of ${ }^{16} \mathrm{OH}$ [14] is:

$$
\begin{equation*}
\omega_{0} x_{0}=82.81 \mathrm{~cm}^{-1} \tag{13.122}
\end{equation*}
$$

The vibrational energies of successive states are given by Eqs. (13.110), (13.112), and (13.121).
Using the reduced nuclear mass of ${ }^{16} O D$ given by

$$
\begin{equation*}
\mu_{\mathrm{I}^{6} O D}=\frac{m_{1} m_{2}}{m_{1}+m_{2}}=\frac{(2)(16)}{2+16} m_{p} \tag{13.123}
\end{equation*}
$$

where m_{p} is the proton mass, the corresponding parameters for deuterated hydroxyl radical ${ }^{16} O D$ (Eqs. (13.102-13.121) and (13.162)) are:

$$
\begin{align*}
& \omega(0)=\sqrt{\frac{k(0)}{\mu}}=\sqrt{\frac{763.18 \mathrm{Nm}^{-1}}{\mu}}=5.06610 \times 10^{14} \text { radians } / \mathrm{s} \tag{13.124}\\
& k(0)=763.18 \mathrm{Nm}^{-1} \tag{13.125}\\
& \begin{aligned}
E_{\text {vib }}(0) & =\hbar \omega=\hbar 5.06610 \times 10^{14} \mathrm{rad} / \mathrm{s}=0.33346 \mathrm{eV}
\end{aligned}=2689.51 \mathrm{~cm}^{-1} \tag{13.126}\\
& \begin{aligned}
\omega_{0}\left(\mathrm{~cm}^{-1}\right) & =\frac{-\frac{2 D_{0}}{100 \mathrm{hc}}+\sqrt{\left(\frac{2 D_{0}}{100 \mathrm{hc}}\right)^{2}+4 \frac{2 D_{0}}{100 \mathrm{hc} E_{\text {vib }}(0)}}}{2} \\
& =\frac{-\frac{2 e(4.4687 \mathrm{eV})}{100 \mathrm{hc}}+\sqrt{\left(\frac{2 e(4.4687 \mathrm{eV})}{100 \mathrm{hc}}\right)^{2}}+4 \frac{2 e(4.4687 \mathrm{eV})}{100 \mathrm{hc}}\left(2689.51 \mathrm{~cm}^{-1}\right)}{2} \\
& =2596.02 \mathrm{~cm}^{-1} \\
E_{\text {vib }}(1) & =0.3219 \mathrm{eV} \\
\omega_{0} x_{0} & =\frac{100 \mathrm{hc}\left(8.06573 \times 10^{3} \frac{\mathrm{~cm}^{-1}}{\mathrm{eV}} 0.3219 \mathrm{eV}\right)^{2}}{4 e(4.4687 \mathrm{eV})} \mathrm{cm}^{-1}=46.75 \mathrm{~cm}^{-1}
\end{aligned}
\end{align*}
$$

From Herzberg [14], ω_{e}, from the experimental curve fit of the vibrational energies of ${ }^{16} O D$ is:

$$
\begin{equation*}
\omega_{e}=2720.9 \mathrm{~cm}^{-1} \tag{13.130}
\end{equation*}
$$

The experimental vibrational energy of ${ }^{16} O D$ is [16-17]:

$$
\begin{equation*}
E_{\text {vib }}(1)=0.3263 \mathrm{eV} \quad\left(2632.1 \mathrm{~cm}^{-1}\right) \tag{13.131}
\end{equation*}
$$

and the experimental anharmonic perturbation term, $\omega_{0} x_{0}$, of ${ }^{16} O D$ [14] is:

$$
\begin{equation*}
\omega_{0} x_{0}=44.2 \mathrm{~cm}^{-1} \tag{13.132}
\end{equation*}
$$

which match the predictions given by Eqs. (13.126), (13.127-13.128), and (13.129), respectively.
The B_{e} rotational parameters for ${ }^{16} \mathrm{OH}$ and ${ }^{16} \mathrm{OD}$ are given by:

$$
\begin{equation*}
B_{e}=\frac{\hbar^{2}}{2 I_{e} h c} \tag{13.133}
\end{equation*}
$$

where

$$
\begin{equation*}
I=\mu r^{2} \tag{13.134}
\end{equation*}
$$

and B_{e} is \tilde{B}_{e} (Eq. (12.89) rather than Eq. (12.84)) to give units of cm^{-1}.
Using the internuclear distance, $r=2 c^{\prime}$, and reduced mass of ${ }^{16} \mathrm{OH}$ given by Eqs. (13.80) and (13.107), respectively, the corresponding B_{e} is:

$$
\begin{equation*}
B_{e}=18.835 \mathrm{~cm}^{-1} \tag{13.135}
\end{equation*}
$$

The experimental B_{e} rotational parameter of ${ }^{16} \mathrm{OH}$ is [14]:

$$
\begin{equation*}
B_{e}=18.871 \mathrm{~cm}^{-1} \tag{13.136}
\end{equation*}
$$

Using the internuclear distance, $r=2 c^{\prime}$, and reduced mass of ${ }^{16} O D$ given by Eqs. (13.80) and (13.123), respectively, the corresponding B_{e} is

$$
\begin{equation*}
B_{e}=9.971 \mathrm{~cm}^{-1} \tag{13.137}
\end{equation*}
$$

The experimental B_{e} rotational parameter of ${ }^{16} O D$ is [14]:

$$
\begin{equation*}
B_{e}=10.01 \mathrm{~cm}^{-1} \tag{13.138}
\end{equation*}
$$

THE DOPPLER ENERGY TERMS OF ${ }^{16} \mathrm{OH}$ AND ${ }^{16} \mathrm{OD}$

The radiation reaction force in the case of the vibration of ${ }^{16} \mathrm{OH}$ in the transition state corresponds to the Doppler energy, E_{D}, given by Eq. (11.181) and Eq. (13.22) that is dependent on the motion of the electrons and the nuclei. The kinetic energy of the transient vibration is derived from the corresponding central forces. Following the same consideration as those used to derive Eqs. (13.102-13.103) and Eqs. (11.231-11.232), the central force terms between the electron density and the nuclei of ${ }^{16} \mathrm{OH} \mathrm{MO}$ with the radius of the orbit at the oxygen atom fixed at:

$$
\begin{equation*}
r_{8}=a_{0} \tag{13.139}
\end{equation*}
$$

according to Eq. (10.162) are:

$$
\begin{equation*}
f(b)=-\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{2}} \tag{13.140}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(b)=\frac{(0.75) 2 e^{2}}{4 \pi \varepsilon_{0} b^{3}} \tag{13.141}
\end{equation*}
$$

wherein the oscillation of H_{2}-type ellipsoidal MO is along the semiminor axis b with the apsidal angle of Eq. (11.140) given by $\psi=\pi$ due to condition that the $O 2 p$ shell remain at the same energy and radius in the $O H \mathrm{MO}$ as it is in the O atom. Thus, using Eqs. (11.136) and (13.140-13.141), the angular frequency of this oscillation is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=4.41776 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.142}
\end{equation*}
$$

The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 4.41776 \times 10^{16} \mathrm{rad} / \mathrm{s}=29.07844 \mathrm{eV} \tag{13.143}
\end{equation*}
$$

In Eq. (11.181), substitution of the total energy of $O H, E_{T}(O H)$, (Eq. (13.76)) for $E_{h \nu}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.143) for \bar{E}_{K} gives the Doppler energy of the electrons for the reentrant orbit.

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-31.63537 \mathrm{eV} \sqrt{\frac{2 e(29.07844 \mathrm{eV})}{m_{e} c^{2}}}=-0.33749 \mathrm{eV} \tag{13.144}
\end{equation*}
$$

The total energy of $O H$ is decreased by \bar{E}_{D}.
In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. On average, the total energy of vibration is equally distributed between kinetic energy and potential energy [4]. Thus, the average kinetic energy of vibration corresponding to the Doppler energy of the electrons, $\bar{E}_{\text {Kvib }}$, is $1 / 2$ of the vibrational energy of $O H$ given by Eq. (13.120). The decrease in the energy of the $O H$ due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the
corresponding energies, \bar{E}_{D} and $\bar{E}_{\text {Kvib }}$. Using Eq. (13.144) and the experimental ${ }^{16} \mathrm{OH} \omega_{e}$ of $3735.21 \mathrm{~cm}^{-1}(0.463111 \mathrm{eV})$ [16-17] gives:

$$
\begin{align*}
& \bar{E}_{\text {osc }}\left({ }^{16} \mathrm{OH}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.145}\\
& \bar{E}_{\text {osc }}\left({ }^{16} \mathrm{OH}\right)=-0.33749 \mathrm{eV}+\frac{1}{2}(0.463111 \mathrm{eV})=-0.10594 \mathrm{eV} \tag{13.146}
\end{align*}
$$

To the extent that the MO dimensions are the same, the electron reentrant orbital energies, \bar{E}_{K}, are the same independent of the isotope of hydrogen, but the vibrational energies are related by Eq. (11.148). Thus, the differences in bond energies are essentially given by $1 / 2$ the differences in vibrational energies per bond. Using Eq. (13.144), Eqs. (13.145-13.146), and the experimental ${ }^{16} O D \omega_{e}$ of $2720.9 \mathrm{~cm}^{-1}(0.33735 \mathrm{eV})$ [16-17], the corresponding $\bar{E}_{\text {osc }}\left({ }^{16} \mathrm{OD}\right)$ is:

$$
\begin{equation*}
\bar{E}_{\text {osc }}\left({ }^{16} \mathrm{OD}\right)=-0.33749 \mathrm{eV}+\frac{1}{2}(0.33735 \mathrm{eV})=-0.16881 \mathrm{eV} \tag{13.147}
\end{equation*}
$$

TOTAL AND BOND ENERGIES OF ${ }^{16} \mathrm{OH}$ AND ${ }^{16} \mathrm{OD}$ RADICALS

$E_{T+o s c}\left({ }^{16} \mathrm{OH}\right)$, the total energy of the ${ }^{16} \mathrm{OH}$ radical including the Doppler term, is given by the sum of $E_{T}(\mathrm{OH})$ (Eq. (13.76)) and $\bar{E}_{\text {osc }}\left({ }^{16} \mathrm{OH}\right)$ given by Eqs. (13.142-13.146):

$$
\begin{align*}
E_{T+o s c}\left({ }^{16} \mathrm{OH}\right) & =V_{e}+T+V_{m}+V_{p}+E(2 p \text { shell })+\bar{E}_{\text {osc }}\left({ }^{16} \mathrm{OH}\right)=E_{T}(\mathrm{OH})+\bar{E}_{\text {osc }}\left({ }^{16} \mathrm{OH}\right) \tag{13.148}\\
E_{T+o s c}\left({ }^{16} \mathrm{OH}\right) & =\left\{\frac{-e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-13.6181 \mathrm{eV}\right\}\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{\frac{3}{4} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}}{m_{e} c^{2}}}\right]+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.149}\\
& =-31.63537 \mathrm{eV}-0.33749 \mathrm{eV}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}
\end{align*}
$$

From Eqs. (13.145-13.146) and (13.148-13.149), the total energy of ${ }^{16} \mathrm{OH}$ is:

$$
\begin{align*}
E_{T+\text { osc }}\left({ }^{16} \mathrm{OH}\right) & =-31.63537 \mathrm{eV}+\bar{E}_{\text {osc }}\left({ }^{16} \mathrm{OH}\right) \\
& =-31.63537 \mathrm{eV}-0.33749 \mathrm{eV}+\frac{1}{2}(0.463111 \mathrm{eV}) \tag{13.150}\\
& =-31.74130 \mathrm{eV}
\end{align*}
$$

where the experimental ω_{e} was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term. $E_{T+\text { osc }}\left({ }^{16} O D\right)$, the total energy of ${ }^{16} O D$ including the Doppler term, isgiven by the sum of $E_{T}(O D)=E_{T}(O H)$ (Eq. (13.76)) and $\bar{E}_{\text {osc }}\left({ }^{16} O D\right)$ given by Eq. (13.147):

$$
\begin{align*}
E_{T+o s c}\left({ }^{16} O D\right) & =-31.63537 \mathrm{eV}+\bar{E}_{\text {osc }}\left({ }^{16} \mathrm{OD}\right) \\
& =-31.63537 \mathrm{eV}-0.33749 \mathrm{eV}+\frac{1}{2}(0.33735 \mathrm{eV}) \tag{13.151}\\
& =-31.80418 \mathrm{eV}
\end{align*}
$$

where the experimental ω_{e} was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term. The dissociation of the bond of the hydroxyl radical forms a free hydrogen atom with one unpaired electron and an oxygen atom with two unpaired electrons as shown in Eq. (13.55) which interact to stabilize the atom as shown by Eq. (10.161-10.162). The lowering of the energy of the reactants decreases the bond energy. Thus, the total energy of oxygen is reduced by the energy in the field of the two magnetic dipoles given by Eq. (7.46) and Eq. (13.101):

$$
\begin{equation*}
E(\text { magnetic })=\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2} a_{0}^{3}}=\frac{8 \pi \mu_{0} \mu_{B}^{2}}{a_{0}^{3}}=0.114411 \mathrm{eV} \tag{13.152}
\end{equation*}
$$

The corresponding bond dissociation energy, E_{D}, is given by the sum of the total energies of the oxygen atom and the corresponding hydrogen atom minus the sum of $E_{\text {T+osc }}\left({ }^{16} \mathrm{OH}\right)$ and E (magnetic):

$$
\begin{equation*}
E_{D}=E\left({ }^{16} O\right)+E(H)-E_{T+o s c}\left({ }^{16} O H\right)-E(\text { magnetic }) \tag{13.153}
\end{equation*}
$$

$E\left({ }^{16} O\right)$ is given by Eq. (13.66), $E_{D}(H)$ [18]is:

$$
\begin{equation*}
E(H)=-13.59844 \mathrm{eV} \tag{13.154}
\end{equation*}
$$

and $E_{D}(D)[19]$ is:

$$
\begin{equation*}
E(D)=-13.603 \mathrm{eV} \tag{13.155}
\end{equation*}
$$

The ${ }^{16} \mathrm{OH}$ bond dissociation energy, $E_{D}\left({ }^{16} \mathrm{OH}\right)$, is given by Eqs. (13.150) and (13.152-13.155):

$$
\begin{align*}
E_{D}\left({ }^{16} \mathrm{OH}\right) & =-(13.6181 \mathrm{eV}+13.59844 \mathrm{eV})-\left(E(\text { magnetic })+E_{\text {T+osc }}\left({ }^{16} \mathrm{OH}\right)\right) \\
& =-27.21654 \mathrm{eV}-(0.114411 \mathrm{eV}-31.74130 \mathrm{eV}) \tag{13.156}\\
& =4.4104 \mathrm{eV}
\end{align*}
$$

The experimental ${ }^{16} \mathrm{OH}$ bond dissociation energy is [20]:

$$
\begin{equation*}
E_{D}\left({ }^{16} \mathrm{OH}\right)=4.41174 \mathrm{eV} \tag{13.157}
\end{equation*}
$$

The ${ }^{16} O D$ bond dissociation energy, $E_{D}\left({ }^{16} O D\right)$, is given by Eqs. (13.151-13.153):

$$
\begin{align*}
E_{D}\left({ }^{16} O D\right) & =-(13.6181 \mathrm{eV}+13.603 \mathrm{eV})-\left(E(\text { magnetic })+E_{\text {T+osc }}\left({ }^{16} \mathrm{OD}\right)\right) \\
& =-27.2211 \mathrm{eV}-(0.114411 \mathrm{eV}-31.804183 \mathrm{eV}) \tag{13.158}\\
& =4.4687 \mathrm{eV}
\end{align*}
$$

The experimental ${ }^{16} O D$ bond dissociation energy is [21-22]:

$$
\begin{equation*}
E_{D}\left({ }^{16} O D\right)=4.454 \mathrm{eV} \tag{13.159}
\end{equation*}
$$

The results of the determination of bond parameters of $O H$ and $O D$ are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

WATER MOLECULE ($\mathrm{H}_{2} \mathrm{O}$)

The water molecule $\mathrm{H}_{2} \mathrm{O}$ is formed by the reaction of a hydrogen atom with a hydroxyl radical:

$$
\begin{equation*}
\mathrm{OH}+\mathrm{H} \rightarrow \mathrm{H}_{2} \mathrm{O} \tag{13.160}
\end{equation*}
$$

The water molecule can be solved using the same principles as those used to solve the hydrogen molecule, H_{3}^{+}, and OH wherein the diatomic molecular orbital (MO) developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section serves as basis function in a linear combination with an oxygen atomic orbital (AO) to form the MO of $\mathrm{H}_{2} \mathrm{O}$. The solution is very similar to that of OH except that there are two OH bonds in water.

FORCE BALANCE OF $\mathrm{H}_{2} \mathrm{O}$

$\mathrm{H}_{2} \mathrm{O}$ comprises two chemical bonds between oxygen and hydrogen. Each $\mathrm{O}-\mathrm{H}$ bond comprises two spin-paired electrons with one from an initially unpaired electron of the oxygen atom and the other from the hydrogen atom. The $\mathrm{H}_{2} \mathrm{O}$ MO is determined by considering properties of the binding atoms and the boundary constraints. The H_{2} prolate spheroidal MO satisfies the boundary constraints as shown in the Nature of the Chemical Bond of Hydrogen-Type Molecules section; thus, each H-atom electron forms a H_{2}-type ellipsoidal MO with one of the initially unpaired O-atom electrons. The initial O electron configuration given in the Eight-Electron Atoms section is $1 s^{2} 2 s^{2} 2 p^{4}$, and the orbital arrangement is given by Eqs. (10.154) and Eq. (13.55).

As shown in the case of OH in the Force Balance of OH section, the forces that determine the radius and the energy of the $O 2 p$ shell are unchanged with bond formation. Thus, the angular momentum of each electron of the $O 2 p$ is conserved with bond formation. The central paramagnetic force due to spin of each $O-H$ bond is provided by the spin-pairing force of the $\mathrm{H}_{2} \mathrm{O}$ MO that has the symmetry of an s orbital that superimposes with the O 2 p orbitals such that the corresponding angular momenta are unchanged.

Each of the $O 2 p_{z}$ and $O 2 p_{x}$ electron combines with a $H 1 s$ electron to form a molecular orbital. The proton of the H atom is along the internuclear axis. Due to symmetry, the other O electrons are equivalent to point charges at the origin. (See Eqs. (19-38) of Appendix II.) Thus, the energies in the $\mathrm{H}_{2} \mathrm{O}$ MO involve only each O 2 p and each H 1 s electron with the formation of each $\mathrm{O}-\mathrm{H}$ bond. The forces are determined by these energies.

As in the case of H_{2}, each of two $\mathrm{O}-\mathrm{H}$-bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into the O atom for distances shorter than the radius of the $2 p$ shell. Otherwise, the electric field of the other $O 2 p$ electrons would be perturbed, and the $2 p$ shell would not be stable. The corresponding increase in energy of O would not be offset by any energy decrease in the $O-H$-bond MO based on the distance from the O nucleus to the H1s
electron compared to those of the $O 2 p$ electrons. Thus, the MO surface comprises a prolate spheroid at each H proton that is continuous with the $2 p$ shell at the O atom. The sum of the energies of the prolate spheroids is matched to that of the $2 p$ shell.

The orbital energy E for each elliptical cross section of the prolate spheroidal MO is given by the sum of the kinetic T and potential V energies. $E=T+V$ is constant, and the closed orbits are those for which $T<|V|$, and the open orbits are those for which $T \geq|V|$. It can be shown that the time average of the kinetic energy, $\langle T\rangle$, for elliptic motion in an inverse-squared field is $1 / 2$ that of the time average of the magnitude of the potential energy, $|\langle V\rangle| .\langle T\rangle=1 / 2|\langle V\rangle|$ [11]. In the case of an atomic orbital (AO), $E=T+V$, and for all points on the $\mathrm{AO},|E|=T=1 / 2|V|$. As shown in the Hydrogen-type Molecular Ions section, each point or coordinate position on the continuous two-dimensional electron MO defines an infinitesimal mass-density element which moves along an orbit comprising an elliptic plane cross section of the spheroidal MO through the foci. The motion is such that the eccentric angle, θ, changes at a constant rate at each point. That is $\theta=\omega t$ at time t where ω is a constant, and

$$
\begin{equation*}
r(t)=\mathbf{i} a \cos \omega t+\mathbf{j} b \sin \omega t \tag{13.161}
\end{equation*}
$$

Consider the boundary condition that the MO of $\mathrm{H}_{2} \mathrm{O}$ comprises a linear combination of an oxygen AO and two H_{2}-type ellipsoidal MOs, one for each $\mathrm{O}-\mathrm{H}$-bond. The charge density of each H_{2}-type ellipsoidal MO given by Eqs. (11.44-11.45) and (13.3-13.4) maintains that the surface is an equipotential; however, the potential and kinetic energy of a point on the surface changes as it orbits the central field. The potential energy is a maximum and the kinetic energy is a minimum at the semimajor axis, and the reverse occurs at the semiminor axis. Since the time average of the kinetic energy, $\langle T\rangle$, for elliptic motion in an inverse-squared field is $1 / 2$ that of the time average of the magnitude of the potential energy, by symmetry, the $<T>=1 / 2<|V|>$ condition holds for $1 / 2$ of each H_{2}-type ellipsoidal MO having the H focus and ending at the plane defined by the semiminor axes. The O nucleus comprises the other focus of each $\mathrm{OH}-\mathrm{MO}$ component of the $\mathrm{H}_{2} \mathrm{O}$ MO. The O 2 p AO obeys the energy relationship for all points. Thus, the linear combination of the H_{2}-type ellipsoidal MO with the O 2 p AO must involve a 25% contribution from the H_{2}-type ellipsoidal MO to the $\mathrm{O} 2 p \mathrm{AO}$ in order to match the energy relationships. Thus, the $\mathrm{H}_{2} \mathrm{O}$ MO must comprise two $\mathrm{O}-\mathrm{H}$-bonds with each comprising 75% of a H_{2}-type ellipsoidal MO ($1 / 2+25 \%$) and an oxygen AO:

$$
\begin{equation*}
\left[1 \mathrm{O} 2 p_{z} \mathrm{AO}+0.75 \mathrm{H}_{2} \mathrm{MO}\right]+\left[1 \mathrm{O} 2 p_{y} \mathrm{AO}+0.75 \mathrm{H}_{2} \mathrm{MO}\right] \rightarrow \mathrm{H}_{2} \mathrm{O} \mathrm{MO} \tag{13.162}
\end{equation*}
$$

The force balance of the $\mathrm{H}_{2} \mathrm{O} \mathrm{MO}$ is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (13.162). The force constant k of a H_{2}-type ellipsoidal MO due to the equivalent of two point charges at the foci is given by Eq. (11.65).

$$
\begin{equation*}
k=\frac{2 e^{2}}{4 \pi \varepsilon_{0}} \tag{13.163}
\end{equation*}
$$

Since each H_{2}-type ellipsoidal MO comprises 75% of the $\mathrm{O}-H$-bond MO, the electron charge density in Eq. (13.163) is given by $-0.75 e$. Thus, k^{\prime} of each H_{2}-type-ellipsoidal-MO component of the $\mathrm{H}_{2} \mathrm{O}$ MO is:

$$
\begin{equation*}
k^{\prime}=\frac{(0.75) 2 e^{2}}{4 \pi \varepsilon_{0}} \tag{13.164}
\end{equation*}
$$

L for the electron equals \hbar; thus, the distance from the origin of each $O-H$-bond MO to each focus c^{\prime} is given by Eqs. (11.79) and (13.164):

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} 1.5 a}}=\sqrt{\frac{2 a a_{0}}{3}} \tag{13.165}
\end{equation*}
$$

The internuclear distance from Eq. (13.165) is:

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{2 a a_{0}}{3}} \tag{13.166}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal $O-H$-bond MO $b=c$ given by Eq. (11.80) is:

$$
\begin{equation*}
b=\sqrt{a^{2}-c^{\prime 2}} \tag{13.167}
\end{equation*}
$$

The eccentricity, e, is:

$$
\begin{equation*}
e=\frac{c^{\prime}}{a} \tag{13.168}
\end{equation*}
$$

The solution of the semimajor axis a then allows for the solution of the other axes of the prolate spheroid and eccentricity of the $\mathrm{O}-\mathrm{H}$-bond MO.

The general equation of the ellipsoidal MO having semiprincipal axes a, b, c given by:

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \tag{13.169}
\end{equation*}
$$

is also completely determined by the total energy E given by Eq. (11.18).

$$
\begin{equation*}
r=\frac{m \frac{L^{2}}{m^{2}} k^{-1}}{1+\left(1+2 E m \frac{L^{2}}{m^{2}} k^{-2}\right)^{1 / 2} \cos \theta} \tag{13.170}
\end{equation*}
$$

The energy of the oxygen $2 p$ shell is the negative of the ionization energy of the oxygen atom given by Eqs. (10.163) and (13.66). Experimentally, the energy is [12]

$$
\begin{equation*}
E(2 p \text { shell })=-E(\text { ionization; } O)=-13.6181 \mathrm{eV} \tag{13.171}
\end{equation*}
$$

Since each of the two prolate spheroidal $O-H$-bond MOs comprises a H_{2}-type-ellipsoidal MO that transitions to the O AO, the energy E in Eq. (13.171) adds to that of the two corresponding H_{2}-type ellipsoidal MOs to give the total energy of the $\mathrm{H}_{2} \mathrm{O}$ MO. From the energy equation and the relationship between the axes given by Eqs. (13.165-13.168), the dimensions of the $\mathrm{H}_{2} \mathrm{O}$ MO are solved.

The energy components defined previously for Hydrogen-Type Molecules, Eqs. (11.207-11.212), apply in the case of $\mathrm{H}_{2} \mathrm{O}$. Since the $\mathrm{H}_{2} \mathrm{O}$ MO comprises two equivalent $\mathrm{O}-\mathrm{H}$-bond MOs, each a linear combination of a H_{2}-type-ellipsoidal MO and an $\mathrm{O} 2 p \mathrm{AO}$, the corresponding energy component of the $\mathrm{H}_{2} \mathrm{O} \mathrm{MO}$ is given by the linear superposition of the component energies. Thus, the energy scale factor is given as two times the force factor, the term in parentheses in Eq. (13.164). In addition to the equivalence and linearity principles, this factor also arises from the consideration of the nature of each bond and the linear combination that forms the $\mathrm{H}_{2} \mathrm{O}$ MO. Each $\mathrm{O}-\mathrm{H}$-bond-energy component is the total for the two equivalent electrons with the exception that the total charge of the two electrons is normalized over the three basis set functions, two $\mathrm{O}-\mathrm{H}$-bond MOs (OH -type ellipsoidal MOs given in the Energies of OH section) and one O 2 p AO . Thus, the contribution of the $\mathrm{O}-\mathrm{H}$-bond MOs to the $\mathrm{H}_{2} \mathrm{O}$ MO energies are those given for $\mathrm{H}_{2}(1 / p)$ in the Energies of Hydrogen-Type Molecules multiplied by a factor of $3 / 2$ as in the case with H_{3}^{+}(Eqs. (13.12), (13.15), (13.18-13.20)). In addition, the two sets of equivalent nuclear-pointcharge pairs give rise to a factor of two times the proton-proton repulsion energy given by Eq. (11.208). Thus, the component energies of the $\mathrm{H}_{2} \mathrm{O} \mathrm{MO}$ are twice the corresponding energies of the OH MO given by Eqs. (13.67-13.73). The parameters a, b, and c^{\prime} are given by Eqs. (13.165-13.167), respectively.

$$
\begin{align*}
& V_{e}=2\left(\frac{3}{4}\right) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=\left(\frac{3}{2}\right) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{13.172}\\
& V_{p}=2 \frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \tag{13.173}\\
& T=2\left(\frac{3}{4}\right) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=\left(\frac{3}{2}\right) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{13.174}\\
& V_{m}=2\left(\frac{3}{4}\right) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=\left(\frac{3}{2}\right) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{13.175}\\
& E_{T}=V_{e}+T+V_{m}+V_{p} \tag{13.176}\\
& E_{T}=-\frac{e^{2}}{4 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}\left[\left(\frac{3}{2}-\frac{3}{4} \frac{a_{0}}{a}+\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}-1\right] \tag{13.177}\\
& E_{T}=-\frac{e^{2}}{4 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right] \tag{13.178}
\end{align*}
$$

Since the prolate spheroidal H_{2}-type MO transitions to the O AO and the energy of the $O 2 p$ shell must remain constant and equal to the negative of the ionization energy given by Eq. (13.171), the total energy $E_{T}\left(\mathrm{H}_{2} \mathrm{O}\right)$ of the $\mathrm{H}_{2} \mathrm{O}$ MO is given by the sum of the energies of the orbitals corresponding to the composition of the linear combination of the O AO and the two H_{2}-type ellipsoidal MOs that forms the $\mathrm{H}_{2} \mathrm{O}$ MO as given by Eq. (13.162):

$$
\begin{equation*}
E_{T}\left(H_{2} O\right)=E_{T}+E(2 p \text { shell })=E_{T}-E(\text { ionization; } O)=-\frac{e^{2}}{4 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-13.6181 \mathrm{eV} \tag{13.179}
\end{equation*}
$$

The two hydrogen atoms and the oxygen atom can achieve an energy minimum as a linear combination of two H_{2}-type ellipsoidal MOs each having the proton and the oxygen nucleus as the foci. Each $O-H$-bond MO comprises the same $O 2 p$ shell of constant energy given by Eq. (13.171). Thus, the energy of the $\mathrm{H}_{2} \mathrm{O} \mathrm{MO}$ is also given by the sum of that of the two
H_{2}-type ellipsoidal MOs given by Eq. (11.212) minus the energy of the redundant oxygen atom of the linear combination given by Eq. (13.171):

$$
\begin{align*}
E_{T}\left(2 H_{2}-O\right) & =-2 \frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}\left[\left(2 \sqrt{2}-\sqrt{2}+\frac{\sqrt{2}}{2}\right) \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}-\sqrt{2}\right]-E(2 p \text { shell }) \\
& =2(-31.63536831 \mathrm{eV})-(-13.6181 \mathrm{eV}) \tag{13.180}\\
& =-49.652637 \mathrm{eV}
\end{align*}
$$

$E_{T}\left(\mathrm{H}_{2} \mathrm{O}\right)$ given by Eq. (13.179) is set equal to two times the energy of the H_{2}-type ellipsoidal MO minus the energy of the $O 2 p$ shell given by Eq. (13.180):

$$
\begin{equation*}
E_{T}\left(H_{2} \mathrm{O}\right)=-\frac{e^{2}}{4 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-13.6181 \mathrm{eV}=-49.652637 \mathrm{eV} \tag{13.181}
\end{equation*}
$$

From the energy relationship given by Eq. (13.181) and the relationship between the axes given by Eqs. (13.165-13.167), the dimensions of the $\mathrm{H}_{2} \mathrm{O}$ MO can be solved.

Substitution of Eq. (13.165) into Eq. (13.181) gives:

$$
\begin{equation*}
\frac{e^{2}}{4 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right]=e 36.034537 \tag{13.182}
\end{equation*}
$$

The most convenient way to solve Eq. (13.182) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is:

$$
\begin{equation*}
a=1.2641 a_{0}=6.68933 \times 10^{-11} \mathrm{~m} \tag{13.183}
\end{equation*}
$$

Substitution of Eq. (13.183) into Eq. (13.165) gives:

$$
\begin{equation*}
c^{\prime}=0.918005 a_{0}=4.85787 \times 10^{-11} \mathrm{~m} \tag{13.184}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.184) by two is:

$$
\begin{equation*}
2 c^{\prime}=1.83601 a_{0}=9.71574 \times 10^{-11} \mathrm{~m} \tag{13.185}
\end{equation*}
$$

The experimental bond distance is [23]:

$$
\begin{equation*}
2 c^{\prime}=9.70 \pm .005 \times 10^{-11} \mathrm{~m} \tag{13.186}
\end{equation*}
$$

Substitution of Eqs. (13.183-13.184) into Eq. (13.167) gives:

$$
\begin{equation*}
b=c=0.869031 a_{0}=4.59871 \times 10^{-11} \mathrm{~m} \tag{13.187}
\end{equation*}
$$

Substitution of Eqs. (13.183-13.184) into Eq. (13.168) gives:

$$
\begin{equation*}
e=0.726212 \tag{13.188}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the O atom comprise the foci of each H_{2}-type ellipsoidal MO. The parameters of the point of intersection of each H_{2}-type ellipsoidal MO and the $O 2 p_{y} \mathrm{AO}$ or $\mathrm{O} 2 p_{z} \mathrm{AO}$ can be determined from the polar equation of the ellipse (Eq. (11.10)):

$$
\begin{equation*}
r=r_{0} \frac{1+e}{1+e \cos \theta^{\prime}} \tag{13.189}
\end{equation*}
$$

The radius of the $O 2 p$ shell given by Eq. (10.162) is $r_{8}=a_{0}$, and the polar radial coordinate of the ellipse and the radius of the $O 2 p$ shell are equal at the point of intersection. Thus, Eq. (13.189) becomes:

$$
\begin{equation*}
a_{0}=\left(a-c^{\prime}\right) \frac{1+\frac{c^{\prime}}{a}}{1+\frac{c^{\prime}}{a} \cos \theta^{\prime}} \tag{13.190}
\end{equation*}
$$

such that the polar angle θ^{\prime} is given by

$$
\begin{equation*}
\theta^{\prime}=\cos ^{-1}\left(\frac{a}{c^{\prime}}\left(\left(a-c^{\prime}\right) \frac{1+\frac{c^{\prime}}{a}}{a_{0}}-1\right)\right) \tag{13.191}
\end{equation*}
$$

Substitution of Eqs. (13.183-13.184) into Eq. (13.191) gives:

$$
\begin{equation*}
\theta^{\prime}=123.66^{\circ} \tag{13.192}
\end{equation*}
$$

Then, the angle $\theta_{O 2 p A O}$ the radial vector of the $O 2 p$ AO makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{O 2 P A O}=180^{\circ}-123.66^{\circ}=56.33^{\circ} \tag{13.193}
\end{equation*}
$$

as shown in Figure 13.2. The Cartesian \mathbf{i}-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j}-coordinate
components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{\mathrm{H}_{2} \mathrm{MO}}$ satisfies the following relationship:

$$
\begin{equation*}
a_{0} \sin \theta_{O 2 \text { PAO }}=b \sin \theta_{\mathrm{H}_{2} M O} \tag{13.194}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} M O}=\sin ^{-1} \frac{a_{0} \sin \theta_{O 2 \text { PAO }}}{b}=\sin ^{-1} \frac{a_{0} \sin 56.33^{\circ}}{b} \tag{13.195}
\end{equation*}
$$

with the use of Eq. (13.193). Substitution of Eq. (13.187) into Eq. (13.195) gives:

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} \mathrm{MO}}=73.28^{\circ} \tag{13.196}
\end{equation*}
$$

Then, the distance $d_{\mathrm{H}_{2} \mathrm{MO}}$ along the internuclear axis from the origin of the H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by

$$
\begin{equation*}
d_{\mathrm{H}_{2} \mathrm{MO}}=a \cos \theta_{\mathrm{H}_{2} \mathrm{MO}} \tag{13.197}
\end{equation*}
$$

Substitution of Eqs. (13.183) and (13.196) into Eq. (13.197) gives:

$$
\begin{equation*}
d_{\mathrm{H}_{2} M O}=0.3637 a_{0}=1.9244 \times 10^{-11} \mathrm{~m} \tag{13.198}
\end{equation*}
$$

The distance $d_{\text {O2 рAO }}$ along the internuclear axis from the origin of the O atom to the point of intersection of the orbitals is given by

$$
\begin{equation*}
d_{O 2 \text { PAO }}=c^{\prime}-d_{H_{2} M O} \tag{13.199}
\end{equation*}
$$

Substitution of Eqs. (13.184) and (13.198) into Eq. (13.199) gives:

$$
\begin{equation*}
d_{O 2 \text { PAO }}=0.5543 a_{0}=2.93343 \times 10^{-11} \mathrm{~m} \tag{13.200}
\end{equation*}
$$

In addition to the intersection of the H_{2}-type MO with the $O 2 p$ shell, two adjoining ellipsoidal H_{2}-type MOs intersect at points of equipotential. The angle and distance parameters are given by Eqs. (13.595-13.600) for the limiting methane case wherein four adjoining intersecting H_{2}-type MOs have the possibility of forming a self-contained two-dimensional equipotential surface of charge and current. Charge continuity can be obeyed for the $\mathrm{H}_{2} \mathrm{O}$ MO if the current is continuous between the adjoining H_{2}-type MOs. However, in the limiting case of methane, the existence of a separate linear combination of the H_{2} type MOs comprising four spin-paired electrons, not connected to the bonding carbon heteroatom requires that the electron be divisible. It is possible for an electron to form time-dependent singular points or nodes having no charge as shown by Eqs. (1.28-1.29), and two-dimensional charge distributions having Laplacian potentials and one-dimensional regions of zero charge are possible for macroscopic charge densities and currents as given in Haus and Melcher [24]. However, it is not possible for single electrons to have two-dimensional discontinuities in charge based on internal forces and first principles discussed in Appendix II. Thus, at the points of intersection of the H_{2}-type MOs of methane, symmetry, electron indivisibility, current continuity, and conservation of energy and angular momentum require that the current between the points of mutual contact and the carbon atom be projected onto and flow along the radial vector to the surface of the $C 2 s p^{3}$ shell. This current designated the bisector current (BC) meets the $C 2 s p^{3}$ surface and does not travel to distances shorter than its radius. The methane result must also apply in the case of other bonds including that of the water molecule. Here, the H_{2}-type MOs intersect and the ellipsoidal current is projected onto the radial vector to the $O 2 p$ shell and does not travel to distances shorter than its radius as in the case of a single $O-H$ bond.

As shown in Eq. (13.162), in addition to the p-orbital charge-density modulation, the uniform charge-density in the p_{z} and p_{y} orbitals is increased by a factor of 0.25 and the H atoms are each decreased by a factor of 0.25 . Using the orbital composition of $\mathrm{H}_{2} \mathrm{O}$ (Eq. (13.162)), the radii of $\mathrm{Ols}=0.12739 a_{0}$ (Eq. (10.51)), $\mathrm{O} 2 \mathrm{~s}=0.59020 a_{0}$ (Eq. (10.62)), and $\mathrm{O} 2 p=a_{0}$ (Eq. (10.162)) shells, and the parameters of the $\mathrm{H}_{2} \mathrm{O}$ MO given by Eqs. (13.3-13.4), (13.183-13.185), (13.187-13.188), and (13.192-13.200), the charge-density of the $\mathrm{H}_{2} \mathrm{O}$ MO comprising the linear combination of two $\mathrm{O}-\mathrm{H}$-bond MOs (OH -type ellipsoidal MOs given in the Energies of $O H$ section) according to Eq. (13.162) is shown in Figure 13.4. Each $O-H$-bond MO comprises a H_{2}-type ellipsoidal MO and an O 2 p AO having the dimensional diagram shown in Figure 13.4.

Figure 13.4. $\mathrm{H}_{2} \mathrm{O}$ MO comprising the linear combination of two $\mathrm{O}-\mathrm{H}$-bond MOs. Each $\mathrm{O}-\mathrm{H}$-bond MO comprises the superposition of a H_{2}-type ellipsoidal MO and the $\mathrm{O} 2 p_{z} \mathrm{AO}$ or the $\mathrm{O} 2 p_{y} \mathrm{AO}$ with a relative charge-density of 0.75 to 1.25 ; otherwise, the $O 2 p$ orbitals are the same as those of the oxygen atom. The internuclear axis of one $O-H$ bond is perpendicular to the bonding p_{y} orbital, and the internuclear axis of the other $O-H$ bond is perpendicular to the bonding p_{z} orbital. (A) Color scale, translucent view of the charge-density of the $\mathrm{H}_{2} \mathrm{O}$ MO from the top. For each $\mathrm{O}-\mathrm{H}$ bond, the ellipsoidal surface of each H_{2}-type ellipsoidal MO transitions to the $O 2 p$ AO. The $O 2 p$ shell, the $O 2 s$ shell, the $O 1 s$ shell, and the nuclei (red, not to scale) are shown. (B) Cut-away view showing the innermost O1s shell, and moving radially, the O2s shell, the $O 2 p$ shell, and the H_{2}-type ellipsoidal MO that transitions to the $O 2 p$ AO for each $O-H$ bond. Bisector current not shown.

ENERGIES OF $\mathrm{H}_{2} \mathrm{O}$

The energies of $\mathrm{H}_{2} \mathrm{O}$ given by the substitution of the semiprincipal axes (Eqs. (13.183-13.185) and (13.187)) into the energy equations (Eqs. (13.172-13.180)) are:

$$
\begin{align*}
& V_{e}=\left(\frac{3}{2}\right) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-81.8715 \mathrm{eV} \tag{13.201}\\
& V_{p}=2 \frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=29.6421 \mathrm{eV} \tag{13.202}\\
& T=\left(\frac{3}{2}\right) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=32.3833 \mathrm{eV} \tag{13.203}\\
& V_{m}=\left(\frac{3}{2}\right) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-16.1917 \mathrm{eV} \tag{13.204}\\
& E_{T}\left(H_{2} O\right)=-\frac{e^{2}}{4 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-13.6181 \mathrm{eV}=-49.6558 \mathrm{eV} \tag{13.205}
\end{align*}
$$

where $E_{T}\left(\mathrm{H}_{2} \mathrm{O}\right)$ is given by Eq. (13.179) which is reiteratively matched to Eq. (13.180) within five-significant-figure round-off error.

VIBRATION OF $\mathrm{H}_{2} \mathrm{O}$

The vibrational energy levels of $\mathrm{H}_{2} \mathrm{O}$ may be solved as two equivalent coupled harmonic oscillators by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [2] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERM OF $\mathrm{H}_{2} \mathrm{O}$

The radiation reaction force in the case of the vibration of $\mathrm{H}_{2} \mathrm{O}$ in the transition state corresponds to the Doppler energy, E_{D}, given by Eq. (11.181) and Eqs. (13.22) and (13.144) that is dependent on the motion of the electrons and the nuclei. The kinetic energy of the transient vibration is derived from the corresponding central forces. As in the case of H_{3}^{+}, the water molecule is a linear combination of three orbitals. The water MO comprises two H_{2}-type ellipsoidal MOs and the O AO. Thus, the force factor of water in the determination of the Doppler frequency is equivalent to that of the H_{3}^{+}ion given in Eqs. (13.18-13.20) and given by Eq. (13.164). From Eqs. (11.231-11.232) and (13.18-13.20), the central force terms between the electron density and the nuclei of each $O-H$-bond MO with the radius of the orbit at the oxygen atom fixed at

$$
\begin{equation*}
r_{8}=a_{0} \tag{13.206}
\end{equation*}
$$

according to Eq. (10.162) with the oscillation along the semiminor axis are:

$$
\begin{equation*}
f(b)=-\left(\frac{3}{2}\right) \frac{e^{2}}{4 \pi \varepsilon_{0} b^{2}} \tag{13.207}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(b)=\left(\frac{3}{2}\right) \frac{2 e^{2}}{4 \pi \varepsilon_{0} b^{3}} \tag{13.208}
\end{equation*}
$$

Thus, using Eqs. (11.136) and (13.207-13.208), the angular frequency of this oscillation is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\left(\frac{3}{2}\right) \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=6.24996 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.209}
\end{equation*}
$$

The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 6.24996 \times 10^{16} \mathrm{rad} / \mathrm{s}=41.138334 \mathrm{eV} \tag{13.210}
\end{equation*}
$$

The three basis elements of water, H, H, and O, all have the same Coulombic energy as given by Eqs. (1.264) and (10.163), respectively, such that the Doppler energy involves the total energy of the $\mathrm{H}_{2} \mathrm{O}$ MO. Thus, in Eq. (11.181), substitution of the total energy of $\mathrm{H}_{2} \mathrm{O}, E_{T}\left(\mathrm{H}_{2} \mathrm{O}\right)$, (Eqs. (13.179-13.180) and Eq. (13.181)) for $E_{h \nu}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.210) for \bar{E}_{K} gives the Doppler energy of the electrons for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-49.652637 \mathrm{eV} \sqrt{\frac{2 e(41.138334 \mathrm{eV})}{m_{e} c^{2}}}=-0.630041 \mathrm{eV} \tag{13.211}
\end{equation*}
$$

The total energy of $\mathrm{H}_{2} \mathrm{O}$ is decreased by \bar{E}_{D}.
In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. On average, the total energy of vibration is equally distributed between kinetic energy and potential energy [4]. Thus, the average kinetic energy of vibration corresponding to the Doppler energy of the electrons, $\bar{E}_{\text {Kvib }}$, is $1 / 2$ of the vibrational energy of $\mathrm{H}_{2} \mathrm{O}$. The decrease in the energy of $\mathrm{H}_{2} \mathrm{O}$ due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} and $\bar{E}_{\text {Kvib }}$. Using Eq. (13.211) and the experimental $H^{16} O H$ vibrational energy of $E_{\text {vib }}=3755.93 \mathrm{~cm}^{-1}=0.465680 \mathrm{eV}$ [25] gives:

$$
\begin{align*}
& \bar{E}_{o s c}^{\prime}=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.212}\\
& \bar{E}_{\text {osc }}^{\prime}=-0.630041 \mathrm{eV}+\frac{1}{2}(0.465680 \mathrm{eV})=-0.397201 \mathrm{eV} \tag{13.213}
\end{align*}
$$

per bond. As in the case for $H_{3}^{+}(1 / p)$ shown in the Doppler Energy Term of H_{3}^{+}-type Molecular Ions section, the reentrant orbit for the binding of a hydrogen atom to a hydroxyl radical causes the bonds to oscillate by increasing and decreasing in length along the two $O-H$ bonds at a relative phase angle of 180°. Since the vibration and reentrant oscillation is along two bonds for the asymmetrical stretch $\left(v_{3}\right), \bar{E}_{\text {osc }}$ for $H^{16} \mathrm{OH}, \bar{E}_{\text {osc }}\left(H^{16} \mathrm{OH}\right)$, is:

$$
\begin{equation*}
\bar{E}_{\text {osc }}\left(H^{16} \mathrm{OH}\right)=2\left(\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)=2\left(-0.630041 \mathrm{eV}+\frac{1}{2}(0.465680 \mathrm{eV})\right)=-0.794402 \mathrm{eV} \tag{13.214}
\end{equation*}
$$

To the extent that the MO dimensions are the same, the electron reentrant orbital energies, \bar{E}_{K}, are the same independent of the isotope of hydrogen, but the vibrational energies are related by Eq. (11.148). Thus, the differences in bond energies are
essentially given by $1 / 2$ the differences in vibrational energies per bond. Using Eq. (13.211), Eqs. (13.212-13.214), and the experimental $D^{16} O D$ vibrational energy of $E_{\text {vib }}=2787.92 \mathrm{~cm}^{-1}=0.345661 \mathrm{eV}$ [25], the corresponding $\bar{E}_{\text {osc }}\left(D^{16} O D\right)$ is:

$$
\begin{equation*}
\bar{E}_{\text {osc }}\left(D^{16} O D\right)=2\left(-0.630041 \mathrm{eV}+\frac{1}{2}(0.345661 \mathrm{eV})\right)=-0.914421 \mathrm{eV} \tag{13.215}
\end{equation*}
$$

TOTAL AND BOND ENERGIES OF $H^{16} O H$ AND $D^{16} O D$

$E_{\text {T+osc }}\left(\mathrm{H}_{2}{ }^{16} \mathrm{O}\right)$, the total energy of the $\mathrm{H}^{16} \mathrm{OH}$ including the Doppler term, is given by the sum of $E_{T}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (Eq. (13.181)) and $\bar{E}_{\text {osc }}\left(H^{16} \mathrm{OH}\right)$ given Eqs. (13.207-13.214).

$$
\begin{align*}
E_{T+o s c}\left(H_{2}{ }^{16} O\right) & =V_{e}+T+V_{m}+V_{p}+E(\mathrm{O} 2 p)+\bar{E}_{\text {osc }}\left(H^{16} \mathrm{OH}\right)=E_{T}\left(\mathrm{H}_{2} \mathrm{O}\right)+\bar{E}_{\text {osc }}\left(H^{16} \mathrm{OH}\right) \tag{13.216}\\
E_{T+\text { osc }}\left(H_{2}{ }^{16} O\right) & =\left\{\begin{array}{l}
\left(\frac{-e^{2}}{4 \pi \varepsilon_{0} c^{\prime}}\left(\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right)-13.6181 \mathrm{eV}\right)\left(1+2 \sqrt{\frac{\sqrt{\frac{3}{2} \frac{e^{2}}{2 \pi \varepsilon_{0} b^{3}}}}{\frac{m_{e}}{m_{e} c^{2}}}}\right) \\
+2\left(\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{array}\right\} \tag{13.217}\\
& =-49.652637 \mathrm{eV}-2\left(0.630041 \mathrm{eV}-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (13.214) and (13.216-13.217), the total energy of $\mathrm{H}^{16} \mathrm{OH}$ is:

$$
\begin{align*}
E_{T+o s c}\left(\mathrm{H}_{2}{ }^{16} \mathrm{O}\right) & =-49.652637 \mathrm{eV}+\bar{E}_{\text {osc }}\left(\mathrm{H}^{16} \mathrm{OH}\right) \\
& =-49.652637 \mathrm{eV}-2\left(0.630041 \mathrm{eV}-\frac{1}{2}(0.465680 \mathrm{eV})\right)=-50.447039 \mathrm{eV} \tag{13.218}
\end{align*}
$$

where the experimental vibrational energy was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term. $E_{T+o s c}\left(D_{2}{ }^{16} O\right)$, the total energy of $D^{16} O D$ including the Doppler term is given by the sum of $E_{T}\left(D_{2} O\right)=E_{T}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (Eq. (13.181)) and $\bar{E}_{\text {osc }}\left(D^{16} \mathrm{OD}\right)$ given by Eq. (13.215):

$$
\begin{align*}
E_{T+o s c}\left(D_{2}{ }^{16} \mathrm{O}\right) & =-49.652637 \mathrm{eV}+\bar{E}_{\text {osc }}\left(D^{16} \mathrm{OD}\right) \\
& =-49.652637 \mathrm{eV}-2\left(0.630041 \mathrm{eV}-\frac{1}{2}(0.345661 \mathrm{eV})\right)=-50.567058 \mathrm{eV} \tag{13.219}
\end{align*}
$$

where the experimental vibrational energy was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term. As in the case of the hydroxyl radical, the dissociation of the bond of the water molecule forms a free hydrogen atom and a hydroxyl radical, with one unpaired electron each. The lowering of the energy of the reactants due to the magnetic dipoles decreases the bond energy. Thus, the total energy of oxygen is reduced by the energy in the field of the two magnetic dipoles given by Eq. (13.152). The corresponding bond dissociation energy, E_{D}, is given by the sum of the total energies of the corresponding hydroxyl radical and hydrogen atom minus the total energy of water, $E_{\text {T+osc }}\left(H^{16} \mathrm{OH}\right)$, and E (magnetic).

Thus, E_{D} of $H^{16} \mathrm{OH}$ is given by:

$$
\begin{equation*}
E_{D}\left(H^{16} \mathrm{OH}\right)=E(H)+E\left({ }^{16} \mathrm{OH}\right)-E_{T+\text { osc }}\left(H^{16} \mathrm{OH}\right)-E(\text { magnetic }) \tag{13.220}
\end{equation*}
$$

where $E_{T}\left({ }^{16} \mathrm{OH}\right)$ is given by the sum of the experimental energies of ${ }^{16} \mathrm{O}$ (Eq. (13.171)), H (Eq. (13.154)), and the negative of the bond energy of ${ }^{16} \mathrm{OH}$ (Eq. (13.157)):

$$
\begin{equation*}
E\left({ }^{16} \mathrm{OH}\right)=-13.59844 \mathrm{eV}-13.6181 \mathrm{eV}-4.41174 \mathrm{eV}=-31.62828 \mathrm{eV} \tag{13.221}
\end{equation*}
$$

From Eqs. (13.154), (13.218), and (13.220-13.221), $E_{D}\left(H^{16} O H\right)$ is

$$
\begin{align*}
E_{D}\left(H^{16} \mathrm{OH}\right) & =E(H)+E\left({ }^{16} \mathrm{OH}\right)-\left(E(\text { magnetic })+E_{T+o s c}\left(H^{16} \mathrm{OH}\right)\right) \tag{13.222}\\
& =-13.59844 \mathrm{eV}-31.62828 \mathrm{eV}-(0.114411 \mathrm{eV}-50.447039 \mathrm{eV})=5.1059 \mathrm{eV}
\end{align*}
$$

The experimental $\mathrm{H}^{16} \mathrm{OH}$ bond dissociation energy is [26]:

$$
\begin{equation*}
E_{D}\left(H^{16} \mathrm{OH}\right)=5.0991 \mathrm{eV} \tag{13.223}
\end{equation*}
$$

Similarly, E_{D} of $D^{16} O D$ is given by:

$$
\begin{equation*}
E_{D}\left(D^{16} O H\right)=E(D)+E\left({ }^{16} O D\right)-\left(E(\text { magnetic })+E_{T+\text { osc }}\left(D^{16} O D\right)\right) \tag{13.224}
\end{equation*}
$$

where $E_{T}\left({ }^{16} O D\right)$ is given by the sum of the experimental energies of ${ }^{16} O$ (Eq. (13.171)), D (Eq. (13.155)), and the negative of the bond energy of ${ }^{16} O D$ (Eq. (13.159)):

$$
\begin{equation*}
E\left({ }^{16} \mathrm{OD}\right)=-13.603 \mathrm{eV}-13.6181 \mathrm{eV}-4.454 \mathrm{eV}=-31.6751 \mathrm{eV} \tag{13.225}
\end{equation*}
$$

From Eqs. (13.155), (13.220), and (13.224-13.225), $E_{D}\left(D^{16} O D\right)$ is

$$
\begin{equation*}
E_{D}\left(D^{16} O D\right)=-13.603 \mathrm{eV}-31.6751 \mathrm{eV}-(0.114411 \mathrm{eV}-50.567058 \mathrm{eV})=5.178 \mathrm{eV} \tag{13.226}
\end{equation*}
$$

The experimental $D^{16} O D$ bond dissociation energy is [27]:

$$
\begin{equation*}
E_{D}\left(D^{16} O D\right)=5.191 \mathrm{eV} \tag{13.227}
\end{equation*}
$$

BOND ANGLE OF $\mathrm{H}_{2} \mathrm{O}$

The $\mathrm{H}_{2} \mathrm{O}$ MO comprises a linear combination of two $\mathrm{O}-\mathrm{H}$-bond MOs. Each $\mathrm{O}-\mathrm{H}$-bond MO comprises the superposition of a H_{2}-type ellipsoidal MO and the $\mathrm{O} 2 p_{z} \mathrm{AO}$ or the $\mathrm{O} 2 p_{y} \mathrm{AO}$ with a relative charge-density of 0.75 to 1.25 ; otherwise, the $O 2 p$ orbitals are the same as those of the oxygen atom. A bond is also possible between the two H atoms of the $O-H$ bonds. Such $H-H$ bonding would decrease the $O-H$-bond strength since electron density would be shifted from the $O-H$ bonds to the $H-H$ bond. Thus, the bond angle between the two $O-H$ bonds is determined by the condition that the total energy of the H_{2}-type ellipsoidal MO between the terminal H atoms of the $\mathrm{O}-\mathrm{H}$ bonds is zero. Since the two H_{2}-type ellipsoidal MOs comprise 75% of the H electron density of H_{2}, the energies and the total energy E_{T} of the $H-H$ bond is given by Eqs. (13.67-13.73). From Eq. (11.79), the distance from the origin to each focus of the $H-H$ ellipsoidal MO is

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} 2 a}}=\sqrt{\frac{a a_{0}}{2}} \tag{13.228}
\end{equation*}
$$

The internuclear distance from Eq. (13.228) is:

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{2}} \tag{13.229}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal $H-H$ MO $b=c$ is given by Eq. (13.167). Substitution of Eq. (13.228) into Eq. (13.73) gives:

$$
\begin{equation*}
E_{T}=-\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right] \tag{13.230}
\end{equation*}
$$

The radiation reaction force in the case of the vibration of $H-H$ in the transition state corresponds to the Doppler energy, E_{D}, given by Eq. (11.181) that is dependent on the motion of the electrons and the nuclei. The total energy E_{T} that includes the radiation reaction of the $H-H$ MO is given by the sum of E_{T} (Eq. (13.73)) and $\bar{E}_{\text {osc }}\left(H_{2}\right)$ given by Eqs. (11.21311.220), (11.231-11.236), and (11.239-11.240). Thus, the total energy $E_{T}(H-H)$ of the $H-H$ MO including the Doppler term is

$$
\begin{align*}
E_{T} & =V_{e}+T+V_{m}+V_{p}+\bar{E}_{o s c}(H-H) \tag{13.231}\\
E_{T} & =\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right]\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{m^{2} \varepsilon_{0} a^{3}}{m_{e}}}}{m_{e} c^{2}}}\right]+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.232}\\
& =\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right]\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} a^{3}}}}{m_{e}}}\right]+\frac{1}{m_{e} c^{2}} \hbar \sqrt{\frac{0.75 e^{2}}{\frac{8 \pi \varepsilon_{0} a^{3}}{}}-\frac{e^{2}}{8 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{3}}} 0.5 m_{p}
\end{align*}
$$

To match the boundary condition that the total energy of the $H-H$ ellipsoidal MO is zero, $E_{T}(H-H)$ given by Eq. (13.232) is set equal to zero:

$$
\left.0=\left[\begin{array}{l}
\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right. \tag{13.233}
\end{array}\right]\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{m^{2}}{m_{e}}}}{m_{e} c^{2}}}\right]\right]
$$

From the energy relationship given by Eq. (13.233) and the relationship between the axes given by Eqs. (13.165-13.167), the dimensions of the $H-H$ MO can be solved.

The most convenient way to solve Eq. (13.233) is by the reiterative technique using a computer. The result to within the round-off error with five-significant figures is

$$
\begin{equation*}
a=4.300 a_{0}=2.275 \times 10^{-10} \mathrm{~m} \tag{13.234}
\end{equation*}
$$

Substitution of Eq. (13.234) into Eq. (13.228) gives:

$$
\begin{equation*}
c^{\prime}=1.466 a_{0}=7.759 \times 10^{-11} \mathrm{~m} \tag{13.235}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.235) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.933 a_{0}=1.552 \times 10^{-10} \mathrm{~m} \tag{13.236}
\end{equation*}
$$

Substitution of Eqs. (13.234-13.235) into Eq. (13.167) gives:

$$
\begin{equation*}
b=c=4.042 a_{0}=2.139 \times 10^{-10} \mathrm{~m} \tag{13.237}
\end{equation*}
$$

Substitution of Eqs. (13.234-13.235) into Eq. (13.168) gives:

$$
\begin{equation*}
e=0.341 \tag{13.238}
\end{equation*}
$$

Using the distance between the two H atoms when the total energy of the corresponding MO is zero, the corresponding bond angle can be determined from the law of cosines:

$$
\begin{equation*}
A^{2}+B^{2}-2 A B \operatorname{cosine} \theta=C^{2} \tag{13.239}
\end{equation*}
$$

With $A=B=2 c_{O-H}^{\prime}$, the internuclear distance of each $O-H$ bond given by Eq. (13.185), and $C=2 C^{\prime}{ }_{H-H}$, the internuclear distance of the two H atoms, the bond angle between the $O-H$ bonds is given by

$$
\begin{align*}
& \left(2 c^{\prime}{ }_{O-H}\right)^{2}+\left(2 c^{\prime}{ }_{O-H}\right)^{2}-2\left(2 c_{O-H}^{\prime}\right)^{2} \operatorname{cosine} \theta=\left(2 c_{H-H}^{\prime}\right)^{2} \tag{13.240}\\
& \theta=\cos ^{-1}\left(\frac{2\left(2 c_{O-H}^{\prime}\right)^{2}-\left(2 c_{H-H}^{\prime}\right)^{2}}{2\left(2 c_{O-H}^{\prime}\right)^{2}}\right) \tag{13.241}
\end{align*}
$$

Substitution of Eqs. (13.185) and (13.236) into Eq. (13.241) gives:

$$
\begin{align*}
\theta & =\cos ^{-1}\left(\frac{2(1.836)^{2}-(2.933)^{2}}{2(1.836)^{2}}\right) \tag{13.242}\\
& =\cos ^{-1}(-0.2756)=105.998^{\circ}
\end{align*}
$$

The experimental internuclear distance of the two H atoms, $2 C^{\prime}{ }_{H-H}$, is [23]:

$$
\begin{equation*}
2 c_{H-H}^{\prime}=1.55 \pm 0.01 \times 10^{-10} \mathrm{~m} \tag{13.243}
\end{equation*}
$$

which matches Eq. (13.236) very well. The experimental angle between the $O-H$ bonds is [23]:

$$
\begin{equation*}
\theta=106^{\circ} \tag{13.244}
\end{equation*}
$$

which matches the predicted angle given by Eq. (13.242).
The results of the determination of bond parameters of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

HYDROGEN NITRIDE (NH)

The ammonia molecule can be solved by first considering the solution of the hydrogen and dihydrogen nitride radicals. The former is formed by the reaction of a hydrogen atom and a nitrogen atom:

$$
\begin{equation*}
H+N \rightarrow N H \tag{13.245}
\end{equation*}
$$

The hydrogen nitride radicals, NH and NH_{2}, and ammonia, NH_{3}, can be solved using the same principles as those used to solve OH and $\mathrm{H}_{2} \mathrm{O}$.

FORCE BALANCE OF NH

$N H$ comprises two spin-paired electrons in a chemical bond between the nitrogen atom and the hydrogen atom such that two electrons on N remain unpaired. The $N H$ radical molecular orbital (MO) is determined by considering properties of the binding atoms and the boundary constraints. The prolate spheroidal $\mathrm{H}_{2} \mathrm{MO}$ developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules section satisfies the boundary constraints; thus, the H-atom electron forms a H_{2}-type ellipsoidal MO with one of the N-atom electrons. The N electron configuration given in the Seven-Electron Atoms section is $1 s^{2} 2 s^{2} 2 p^{3}$, and the orbital arrangement is

2p state

$$
\begin{equation*}
\frac{\uparrow}{1} \frac{\uparrow}{0} \frac{\uparrow}{-1} \tag{13.246}
\end{equation*}
$$

corresponding to the ground state ${ }^{4} S_{3 / 2}^{0}$. The $N 2 p_{x}$ electron combines with the $H 1 s$ electron to form a molecular orbital. The proton of the H atom is along the internuclear axis. Due to symmetry, the other N electrons are equivalent to point charges at the origin. (See Eqs. (19-38) of Appendix II.) Thus, the energies in the $N H$ MO involve only the $N 2 p_{x}$ and $H 1 s$ electrons and the change in the magnetic energy of the $N 2 p_{x}$ electron with the other N electrons (Eq. (13.305)) with the formation of the $N H$ MO. The forces are determined by these energies.

As in the case of H_{2}, the MO is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into N atom for distances shorter than the radius of the $2 p$ shell. Thus, the MO surface comprises a prolate spheroid at the H proton that is continuous with the $2 p$ shell at the N atom whose nucleus serves as the other focus. The energy of the prolate spheroid is matched to that of the $N 2 p$ shell. As in the case with $O H$, the linear combination of the H_{2}-type ellipsoidal MO with the $N 2 p$ AO must involve a 25% contribution from the H_{2}-type ellipsoidal MO to the $N 2 p$ atomic orbital (AO) in order to match potential, kinetic, and orbital energy relationships. Thus, the NH MO must comprise 75% of a H_{2}-type ellipsoidal MO and a nitrogen AO:

$$
\begin{equation*}
1 \mathrm{~N} 2 p_{x} \mathrm{AO}+0.75 \mathrm{H}_{2} \mathrm{MO} \rightarrow \mathrm{NH} \mathrm{MO} \tag{13.247}
\end{equation*}
$$

The force balance of the NH MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (13.247) and the energy matching condition between the hydrogen and nitrogen components of the MO.

Similar to the OH case given by Eq. (13.59), the H_{2}-type ellipsoidal MO comprises 75% of the NH MO ; so, the electron charge density in Eq. (11.65) is given by $-0.75 e$. Based on the condition that the electron MO is an equipotential energy surface, Eq. (11.79) gives the ellipsoidal parameter c^{\prime} in terms of the central force of the foci, the electron angular momentum, and the ellipsoidal parameter a. To meet the equipotential condition of the union of the H_{2}-type-ellipsoidal-MO and the $N \mathrm{AO}$, the force constant used to determine the ellipsoidal parameter c^{\prime} is normalized by the ratio of the ionization energy of $N 14.53414 \mathrm{eV}$ [6] and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264). This normalizes the force to match that of the Coulombic force alone to meet the force matching condition of the $N H \mathrm{MO}$ under the influence of the proton and the N nucleus. Thus, k^{\prime} of Eq. (11.79) to determine c^{\prime} is

$$
\begin{equation*}
k^{\prime}=\frac{(0.75) 2 e^{2}}{4 \pi \varepsilon_{0} \frac{14.53414}{13.605804}}=(0.936127) \frac{(0.75) 2 e^{2}}{4 \pi \varepsilon_{0}} \tag{13.248}
\end{equation*}
$$

L for the electron equals \hbar; thus, the distance from the origin of the $N H \mathrm{MO}$ to each focus c^{\prime} is given by Eqs. (11.79) and (13.248):

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} 1.5 a(0.936127)}}=\sqrt{\frac{2 a a_{0}}{3(0.936127)}}=\sqrt{0.712154 a a_{0}} \tag{13.249}
\end{equation*}
$$

The internuclear distance from Eq. (13.249) is

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{0.712154 a a_{0}} \tag{13.250}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal NH MO $b=c$ is given by Eqs. (11.80) and (13.62). The eccentricity, e, is given by Eq. (13.63). Then, the solution of the semimajor axis a allows for the solution of the other axes of the prolate spheroidal and eccentricity of the $N H \mathrm{MO}$.

The energy of the nitrogen $2 p$ shell is the negative of the ionization energy of the nitrogen atom given by Eq. (10.143). Experimentally, the energy is [6]:

$$
\begin{equation*}
E(2 p \text { shell })=-E(\text { ionization } ; N)=-14.53414 \mathrm{eV} \tag{13.251}
\end{equation*}
$$

Since the prolate spheroidal MO transitions to the N AO, the energy E in Eq. (13.251) adds to that of the H_{2}-type ellipsoidal MO to give the total energy of the $N H$ MO. From the energy equation and the relationship between the axes given by Eqs. (13.249-13.250) and (13.62-13.63), the dimensions of the NH MO are solved.

The energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} are the same as those of OH given by Eqs. (13.67-13.73). Similarly to $O H$, the total energy $E_{T}(N H)$ of the $N H$ MO is given by the sum of the energies of the orbitals corresponding to the composition of the linear combination of the $N \mathrm{AO}$ and the H_{2}-type ellipsoidal MO that forms the $N H$ MO as given by Eq. (13.247):

$$
\begin{equation*}
E_{T}(N H)=E_{T}+E(2 p \text { shell })=E_{T}-E(\text { ionization; } N)=-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.53414 e V \tag{13.252}
\end{equation*}
$$

To match the boundary condition that the total energy of the entire H_{2}-type ellipsoidal MO is given by Eqs. (11.212) and (13.75), $E_{T}(N H)$ given by Eq. (13.252) is set equal to Eq. (13.75):

$$
\begin{equation*}
E_{T}(N H)=-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.53414 \mathrm{eV}=-31.63536831 \mathrm{eV} \tag{13.253}
\end{equation*}
$$

From the energy relationship given by Eq. (13.252) and the relationship between the axes given by Eqs. (13.249-13.250) and (13.62-13.63), the dimensions of the NH MO can be solved.

Substitution of Eq. (13.249) into Eq. (13.253) gives:

$$
\begin{equation*}
\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{0.712154 a a_{0}}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{0.712154 a a_{0}}}{a-\sqrt{0.712154 a a_{0}}}-1\right]=e 17.10123 \tag{13.254}
\end{equation*}
$$

The most convenient way to solve Eq. (13.254) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is

$$
\begin{equation*}
a=1.36275 a_{0}=7.21136 \times 10^{-11} \mathrm{~m} \tag{13.255}
\end{equation*}
$$

Substitution of Eq. (13.255) into Eq. (13.249) gives:

$$
\begin{equation*}
c^{\prime}=0.98513 a_{0}=5.21310 \times 10^{-11} \mathrm{~m} \tag{13.256}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.256) by two is:

$$
\begin{equation*}
2 c^{\prime}=1.97027 a_{0}=1.04262 \times 10^{-10} \mathrm{~m} \tag{13.257}
\end{equation*}
$$

The experimental bond distance is [28]:

$$
\begin{equation*}
2 c^{\prime}=1.0362 \times 10^{-10} \mathrm{~m} \tag{13.258}
\end{equation*}
$$

Substitution of Eqs. (13.255-13.256) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=0.94159 a_{0}=4.98270 \times 10^{-11} \mathrm{~m} \tag{13.259}
\end{equation*}
$$

Substitution of Eqs. (13.255-13.256) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.72290 \tag{13.260}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the N atom comprise the foci of the H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $N 2 p_{x} \mathrm{AO}$ are given by Eqs. (13.84-13.95). The polar intersection angle θ^{\prime} is given by:

$$
\begin{equation*}
\theta^{\prime}=\cos ^{-1}\left(\frac{a}{c^{\prime}}\left(\left(a-c^{\prime}\right) \frac{1+\frac{c^{\prime}}{a}}{r_{n}}-1\right)\right) \tag{13.261}
\end{equation*}
$$

where $r_{n}=r_{7}=0.93084 a_{0}$ is the radius of the N atom. Substitution of Eqs. (13.255-13.256) into Eq. (13.86) gives:

$$
\begin{equation*}
\theta^{\prime}=114.61^{\circ} \tag{13.262}
\end{equation*}
$$

Then, the angle $\theta_{N 2 p_{x} A O}$ the radial vector of the $N 2 p_{x}$ AO makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{N 2 p_{x} A O}=180^{\circ}-114.61^{\circ}=65.39^{\circ} \tag{13.263}
\end{equation*}
$$

as shown in Figure 13.5.

Figure 13.5. The cross section of the $N H$ MO showing the axes, angles, and point of intersection of the H_{2}-type ellipsoidal MO with the $N 2 p_{x}$ AO. The continuation of the H_{2}-type-ellipsoidal-MO basis element beyond the intersection point with the $N 2 p$ shell is shown as dashed since it only serves to solve the energy match with the $N 2 p$ shell and does not represent charge density. Similarly, the vertical dashed line only designates the parameters of the intersection point. The actual charge density is shown by the solid lines. Legend: a : semimajor axis, b : semiminor axis, c^{\prime} : internuclear distance, $d_{1}: d_{H_{2} M O}, \theta_{1}: \theta_{N 2 p_{x} A O}$, $d_{2}: d_{N 2 \text { pAO }}$, and $R: r_{7}$.

The Cartesian \mathbf{i}-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j}-coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{\mathrm{H}_{2} \mathrm{MO}}$ satisfies the following relationship:

$$
\begin{equation*}
r_{7} \sin \theta_{N 2 p_{x} A O}=0.93084 a_{0} \sin \theta_{N 2 p_{x} A O}=b \sin \theta_{H_{2} M O} \tag{13.264}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{H_{2} M O}=\sin ^{-1} \frac{0.93084 a_{0} \sin \theta_{N 2 p_{x} A O}}{b}=\sin ^{-1} \frac{0.93084 a_{0} \sin 65.39^{\circ}}{b} \tag{13.265}
\end{equation*}
$$

with the use of Eq. (13.263). Substitution of Eq. (13.259) into Eq. (13.265) gives:

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} M O}=64.00^{\circ} \tag{13.266}
\end{equation*}
$$

Then, the distance $d_{\mathrm{H}_{2} \mathrm{MO}}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{\mathrm{H}_{2} \mathrm{MO}}=a \cos \theta_{\mathrm{H}_{2} \mathrm{MO}} \tag{13.267}
\end{equation*}
$$

Substitution of Eqs. (13.255) and (13.266) into Eq. (13.267) gives:

$$
\begin{equation*}
d_{\mathrm{H}_{2} \mathrm{MO}}=0.59747 a_{0}=3.16166 \times 10^{-11} \mathrm{~m} \tag{13.268}
\end{equation*}
$$

The distance $d_{N 2 \text { pAO }}$ along the internuclear axis from the origin of the N atom to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{N 2 \text { PAO }}=c^{\prime}-d_{H_{2} M O} \tag{13.269}
\end{equation*}
$$

Substitution of Eqs. (13.79) and (13.93) into Eq. (13.94) gives:

$$
\begin{equation*}
d_{N 2 \text { pAO }}=0.38767 a_{0}=2.05144 \times 10^{-11} \mathrm{~m} \tag{13.270}
\end{equation*}
$$

As shown in Eq. (13.247), in addition to the p-orbital charge-density modulation, the uniform charge-density in the p_{x} orbital is increased by a factor of 0.25 and the H-atom density is decreased by a factor of 0.25 . The internuclear axis of the $N-H$ bond is perpendicular to the bonding p_{x} orbital. Using the orbital composition of $N H$ (Eq. (13.27)), the radii of $N 1 s=0.14605 a_{0}$ (Eq. (10.51)), $N 2 s=0.69385 a_{0}$ (Eq. (10.62)), and $N 2 p=0.93084 a_{0}$ (Eq. (10.142)) shells, and the parameters of the $N H$ MO given by Eqs. (13.3-13.4) and (13.255-13.270), the dimensional diagram and charge-density of the NH MO comprising the linear combination of the H_{2}-type ellipsoidal MO and the $N \mathrm{AO}$ according to Eq. (13.247) are shown in Figures 13.5 and 13.6 , respectively.

Figure 13.6. $N H \mathrm{MO}$ comprising the superposition of the H_{2}-type ellipsoidal MO and the $N 2 p_{x} \mathrm{AO}$ with a relative charge-density of 0.75 to 1.25 ; otherwise, the $N 2 p_{x}$ is the same as that of the nitrogen atom. (A) Side-on, color scale, translucent view of the charge-density of the NH MO . The ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $N 2 p_{x} \mathrm{AO}$, the $N 2 p$ shell, the $N 2 s$ shell, the $N 1 s$ shell, and the nuclei (red not to scale) are shown. (B) Cut-away view showing the inner most $N 1 s$ shell, and moving radially, the $N 2 s$ shell, the $N 2 p$ shell, and the H_{2}-type ellipsoidal MO that transitions to the $N 2 p_{x} \mathrm{AO}$.

ENERGIES OF $N H$

The energies of $N H$ given by the substitution of the semiprincipal axes (Eqs. (13.255-13.256) and (13.259)) into the energy equations (Eqs. (13.67-13.73)) are:

$$
\begin{align*}
& V_{e}=\left(\frac{3}{4}\right) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-37.85748 \mathrm{eV} \tag{13.271}\\
& V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=13.81113 \mathrm{eV} \tag{13.272}\\
& T=\left(\frac{3}{4}\right) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=13.89011 \mathrm{eV} \tag{13.273}\\
& V_{m}=\left(\frac{3}{4}\right) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-6.94505 \mathrm{eV} \tag{13.274}\\
& E_{T}(N H)=-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.53414 \mathrm{eV}=-31.63544 \mathrm{eV} \tag{13.275}
\end{align*}
$$

where $E_{T}(N H)$ is given by Eq. (13.253) which is reiteratively matched to Eq. (13.75) within five-significant-figure round-off error.

VIBRATION AND ROTATION OF NH

The vibrational energy of $N H$ may be solved in the same manner as that of $O H$. From Eqs. (13.102-13.106) with the substitution of the $N H$ parameters, the angular frequency of the oscillation is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{8 \pi \varepsilon_{0} b^{3}}-\frac{e^{2}}{8 \pi \varepsilon_{0}\left(2 c^{\prime}\right)^{3}}}{\mu}}=\sqrt{\frac{0.75 e^{2}}{\frac{8 \pi \varepsilon_{0}\left(0.94159 \mathrm{a}_{0}\right)^{3}}{}-\frac{e^{2}}{8 \pi \varepsilon_{0}\left(1.97027 a_{0}\right)^{3}}} \frac{\frac{14}{15} m_{p}}{}}=6.18700 \times 10^{14} \mathrm{rad} / \mathrm{s} \tag{13.276}
\end{equation*}
$$

where b is given by Eq. (13.259), $2 c^{\prime}$ is given by Eq. (13.257), and the reduced mass of ${ }^{14} \mathrm{NH}$ is given by:

$$
\begin{equation*}
\mu_{1^{4} \mathrm{NH}}=\frac{m_{1} m_{2}}{m_{1}+m_{2}}=\frac{(1)(14)}{1+14} m_{p} \tag{13.277}
\end{equation*}
$$

where m_{p} is the proton mass. Thus, during bond formation, the perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory motion of the orbit, and the corresponding frequency, $\omega(0)$, for ${ }^{14} \mathrm{NH}$ given by Eqs. (11.136), (11.148), and (13.276) is

$$
\begin{equation*}
\omega(0)=\sqrt{\frac{k(0)}{\mu}}=\sqrt{\frac{597.59 \mathrm{Nm}^{-1}}{\mu}}=6.18700 \times 10^{14} \mathrm{radians} / \mathrm{s} \tag{13.278}
\end{equation*}
$$

where the reduced nuclear mass of ${ }^{14} \mathrm{NH}$ is given by Eq. (13.277) and the spring constant, $k(0)$, given by Eqs. (11.136) and (13.276) is:

$$
\begin{equation*}
k(0)=597.59 \mathrm{Nm}^{-1} \tag{13.279}
\end{equation*}
$$

The ${ }^{14} \mathrm{NH}$ transition-state vibrational energy, $E_{\text {vib }}(0)$, given by Planck's equation (Eq. (11.127)) is:

$$
\begin{equation*}
E_{\text {vib }}(0)=\hbar \omega=\hbar 6.18700 \times 10^{14} \mathrm{rad} / \mathrm{s}=0.407239 \mathrm{eV}=3284.58 \mathrm{~cm}^{-1} \tag{13.280}
\end{equation*}
$$

ω_{e}, from the experimental curve fit of the vibrational energies of ${ }^{14} \mathrm{NH}$ is [28]:

$$
\begin{equation*}
\omega_{e}=3282.3 \mathrm{~cm}^{-1} \tag{13.281}
\end{equation*}
$$

Using Eqs. (13.112-13.118) with $E_{\text {vib }}(0)$ given by Eq. (13.280) and D_{0} given by Eq. (13.311), the ${ }^{14} \mathrm{NH} \quad v=1 \rightarrow v=0$ vibrational energy, $E_{\text {vib }}(1)$ is:

$$
\begin{equation*}
E_{\text {vib }}(1)=0.38581 \mathrm{eV} \quad\left(3111.84 \mathrm{~cm}^{-1}\right) \tag{13.282}
\end{equation*}
$$

The experimental vibrational energy of ${ }^{14} \mathrm{NH}$ using ω_{e} and $\omega_{e} X_{e}$ [28] according to K\&P [15] is:

$$
\begin{equation*}
E_{\text {vib }}(1)=0.38752 \mathrm{eV} \quad\left(3125.5 \mathrm{~cm}^{-1}\right) \tag{13.283}
\end{equation*}
$$

Using Eq. (13.113) with $E_{\text {vib }}(1)$ given by Eq. (13.282) and D_{0} given by Eq. (13.311), the anharmonic perturbation term, $\omega_{0} x_{0}$, of ${ }^{14} \mathrm{NH}$ is:

$$
\begin{equation*}
\omega_{0} x_{0}=86.37 \mathrm{~cm}^{-1} \tag{13.284}
\end{equation*}
$$

The experimental anharmonic perturbation term, $\omega_{0} x_{0}$, of ${ }^{14} \mathrm{NH}$ [28] is:

$$
\begin{equation*}
\omega_{0} x_{0}=78.4 \mathrm{~cm}^{-1} \tag{13.285}
\end{equation*}
$$

The vibrational energies of successive states are given by Eqs. (13.280), (13.112), and (13.284).
Using b given by Eq. (13.259), $2 c^{\prime}$ given by Eq. (13.257), D_{0} given by Eq. (13.314), and the reduced nuclear mass of ${ }^{14} N D$ given by

$$
\begin{equation*}
\mu_{1^{4} N D}=\frac{m_{1} m_{2}}{m_{1}+m_{2}}=\frac{(2)(14)}{2+14} m_{p} \tag{13.286}
\end{equation*}
$$

where m_{p} is the proton mass, the corresponding parameters for deuterium nitride ${ }^{14} \mathrm{ND}$ (Eqs. (13.102-13.121)) are:

$$
\begin{align*}
& \omega(0)=\sqrt{\frac{k(0)}{\mu}}=\sqrt{\frac{597.59 \mathrm{Nm}^{-1}}{\mu}}=4.51835 \times 10^{14} \text { radians } / \mathrm{s} \tag{13.287}\\
& k(0)=579.59 \mathrm{Nm}^{-1} \tag{13.288}\\
& E_{\text {vib }}(0)=\hbar \omega=\hbar 4.51835 \times \quad 10^{14} \mathrm{rad} / \mathrm{s}=0.29741 \mathrm{eV}=2398.72 \mathrm{~cm}^{-1} \tag{13.289}\\
& E_{\text {vib }}(1)=0.28710 \mathrm{eV} \quad\left(2305.35 \mathrm{~cm}^{-1}\right) \tag{13.290}\\
& \omega_{0} x_{0}=47.40 \mathrm{~cm}^{-1} \tag{13.291}
\end{align*}
$$

ω_{e}, from the experimental curve fit of the vibrational energies of ${ }^{14} \mathrm{ND}$ is [28]:

$$
\begin{equation*}
\omega_{e}=2398 \mathrm{~cm}^{-1} \tag{13.292}
\end{equation*}
$$

The experimental vibrational energy of ${ }^{14} N D$ using ω_{e} and $\omega_{e} x_{e}$ [28] according to K\&P [15] is:

$$
\begin{equation*}
E_{\text {vib }}(1)=0.2869 \mathrm{eV} \quad\left(2314 \mathrm{~cm}^{-1}\right) \tag{13.293}
\end{equation*}
$$

and the experimental anharmonic perturbation term, $\omega_{0} x_{0}$, of ${ }^{14} N D$ [28] is:

$$
\begin{equation*}
\omega_{0} x_{0}=42 \mathrm{~cm}^{-1} \tag{13.294}
\end{equation*}
$$

which match the predictions given by Eqs. (13.289), (13.290) and (13.291), respectively.
Using Eqs. (13.133-13.134) and the internuclear distance, $r=2 c^{\prime}$, and reduced mass of ${ }^{14} \mathrm{NH}$ given by Eqs. (13.257) and (13.277), respectively, the corresponding B_{e} is:

$$
\begin{equation*}
B_{e}=16.495 \mathrm{~cm}^{-1} \tag{13.295}
\end{equation*}
$$

The experimental B_{e} rotational parameter of ${ }^{14} \mathrm{NH}$ is [28]:

$$
\begin{equation*}
B_{e}=16.6993 \mathrm{~cm}^{-1} \tag{13.296}
\end{equation*}
$$

Using the internuclear distance, $r=2 c^{\prime}$, and reduced mass of ${ }^{14} N D$ given by Eqs. (13.257) and (13.286), respectively, the corresponding B_{e} is:

$$
\begin{equation*}
B_{e}=8.797 \mathrm{~cm}^{-1} \tag{13.297}
\end{equation*}
$$

The experimental B_{e} rotational parameter of ${ }^{14} N D$ is [28]:

$$
\begin{equation*}
B_{e}=8.7913 \mathrm{~cm}^{-1} \tag{13.298}
\end{equation*}
$$

THE DOPPLER ENERGY TERMS OF ${ }^{14} \mathrm{NH}$ AND ${ }^{14} \mathrm{ND}$

The equations of the radiation reaction force of hydrogen and deuterium nitride are the same as those of the corresponding hydroxyl radicals with the substitution of the hydrogen and deuterium nitride parameters. Using Eqs. (11.136) and (13.14013.141), the angular frequency of the reentrant oscillation in the transition state is

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=3.91850 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.299}
\end{equation*}
$$

where b is given by Eq. (13.259). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 3.91850 \times 10^{16} \mathrm{rad} / \mathrm{s}=25.79224 \mathrm{eV} \tag{13.300}
\end{equation*}
$$

In Eq. (11.181), substitution of the total energy of $N H, E_{T}(N H)$, (Eq. (13.253)) for $E_{h \nu}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.300) for \bar{E}_{K} gives the Doppler energy of the electrons for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-31.63537 \mathrm{eV} \sqrt{\frac{2 e(25.79224 \mathrm{eV})}{m_{e} c^{2}}}=-0.31785 \mathrm{eV} \tag{13.301}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of $N H$ due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (13.301) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of NH . Using the experimental ${ }^{14} \mathrm{NH} \omega_{e}$ of $3282.3 \mathrm{~cm}^{-1}(0.40696 \mathrm{eV})$ [28] $\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{NH}\right)$ is:

$$
\begin{align*}
& \bar{E}_{\text {osc }}\left({ }^{14} \mathrm{NH}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.302}\\
& \bar{E}_{\text {osc }}\left({ }^{14} \mathrm{NH}\right)=-0.31785 \mathrm{eV}+\frac{1}{2}(0.40696 \mathrm{eV})=-0.11437 \mathrm{eV} \tag{13.303}
\end{align*}
$$

Using Eqs. (13.301) and the experimental ${ }^{14} \mathrm{ND} \omega_{e}$ of $2398 \mathrm{~cm}^{-1}(0.29732 \mathrm{eV})$ [28] $\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{ND}\right)$ is:

$$
\begin{equation*}
\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{ND}\right)=-0.31785 \mathrm{eV}+\frac{1}{2}(0.29732 \mathrm{eV})=-0.16919 \mathrm{eV} \tag{13.304}
\end{equation*}
$$

TOTAL AND BOND ENERGIES OF ${ }^{14} \mathrm{NH}$ AND ${ }^{14} \mathrm{ND}$

$E_{T+\text { osc }}(N H)$, the total energy of the ${ }^{14} \mathrm{NH}$ radical including the Doppler term, is given by the sum of $E_{T}(N H)$ (Eq. (13.253)) and $\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{NH}\right)$ given by Eq. (13.303):

$$
\begin{align*}
E_{T+o s c}(N H) & =V_{e}+T+V_{m}+V_{p}+E(2 p \text { shell })+\bar{E}_{\text {osc }}\left({ }^{14} N H\right) \tag{13.305}\\
& =E_{T}(N H)+\bar{E}_{o s c}\left({ }^{14} N H\right) \\
E_{T+o s c}(N H) & =\left\{\frac{-e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.53414 e V\right\}\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{\frac{3}{4} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}}{m_{e} c^{2}}}\right]+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.306}\\
& =-31.63537 \mathrm{eV}-0.31785 \mathrm{eV}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}
\end{align*}
$$

From Eqs. (13.302-13.303) and (13.305-13.306), the total energy of ${ }^{14} \mathrm{NH}$ is:

$$
\begin{align*}
E_{T+\text { osc }}(N H) & =-31.63537 \mathrm{eV}+\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{NH}\right) \\
& =-31.63537 \mathrm{eV}-0.31785 \mathrm{eV}+\frac{1}{2}(0.40696 \mathrm{eV}) \tag{13.307}\\
& =-31.74974 \mathrm{eV}
\end{align*}
$$

where the experimental ω_{e} was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term. $E_{T+o s c}(N D)$, the total energy of ${ }^{14} N D$ including the Doppler term, is given by the sum of $E_{T}(N D)=E_{T}(N H)$ (Eq. (13.253)) and $\bar{E}_{\text {osc }}\left({ }^{14} N D\right)$ given by Eq. (13.304):

$$
\begin{align*}
E_{T+\text { osc }}(N D) & =-31.63537 \mathrm{eV}+\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{ND}\right) \\
& =-31.63537 \mathrm{eV}-0.31785 \mathrm{eV}+\frac{1}{2}(0.29732 \mathrm{eV}) \tag{13.308}\\
& =-31.80456 \mathrm{eV}
\end{align*}
$$

where the experimental ω_{e} was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term. The dissociation of the bond of the hydrogen nitride forms a free hydrogen atom with one unpaired electron and a nitrogen atom with three unpaired electrons as shown in Eq. (13.246). The p_{x} and p_{y} fields cancel and the magnetic energy (Eq. (7.46)) with $r_{7}=0.93084 a_{0}$ is subtracted due to the one component of $E_{\text {mag }}$ given by Eq. (10.137):

$$
\begin{equation*}
E(\text { magnetic })=\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(0.93084 a_{0}\right)^{3}}=\frac{8 \pi \mu_{0} \mu_{B}^{2}}{\left(0.93084 a_{0}\right)^{3}}=0.14185 \mathrm{eV} \tag{13.309}
\end{equation*}
$$

The corresponding bond dissociation energy, E_{D}, is given by the sum of the total energies of the nitrogen atom and the corresponding hydrogen atom minus the sum of $E_{T+o s c}(N H)$ and E (magnetic) :

$$
\begin{equation*}
E_{D}=E\left({ }^{14} N\right)+E(H)-E_{T+o s c}(N H)-E(\text { magnetic }) \tag{13.310}
\end{equation*}
$$

$E\left({ }^{14} N\right)$ is given by Eq. (13.251), $E_{D}(H)$ is given by Eq. (13.154), and $E_{D}(D)$ is given by Eq. (13.155). The ${ }^{14} N H$ bond dissociation energy, $E_{D}\left({ }^{14} \mathrm{NH}\right)$, is given by Eqs. (13.154), (13.251), (13.307), and (13.309-13.310):

$$
\begin{align*}
E_{D}\left({ }^{14} \mathrm{NH}\right) & =-(14.53414 \mathrm{eV}+13.59844 \mathrm{eV})-\left(E(\text { magnetic })+E_{T+o s c}(N H)\right) \\
& =-28.13258 \mathrm{eV}-(0.14185-31.74974 \mathrm{eV}) \tag{13.311}\\
& =3.47530 \mathrm{eV}
\end{align*}
$$

The experimental ${ }^{14} \mathrm{NH}$ bond dissociation energy from Ref. [29] and Ref. [30] is:

$$
\begin{align*}
& E_{D}\left({ }^{14} \mathrm{NH}\right)=3.42 \mathrm{eV} \tag{13.312}\\
& E_{D}\left({ }^{14} \mathrm{NH}\right) \leq 3.47 \mathrm{eV} \tag{13.313}
\end{align*}
$$

The ${ }^{14} N D$ bond dissociation energy, $E_{D}\left({ }^{14} N D\right)$, is given by Eqs. (13.155), (13.251), (13.308), and (13.309-13.310):

$$
\begin{align*}
E_{D}\left({ }^{14} N D\right) & =-(14.53414 \mathrm{eV}+13.603 \mathrm{eV})-\left(E(\text { magnetic })+E_{T+\text { osc }}(N D)\right) \\
& =-28.13714 \mathrm{eV}-(0.14185-31.80456 \mathrm{eV}) \tag{13.314}\\
& =3.5256 \mathrm{eV}
\end{align*}
$$

The experimental ${ }^{14} N D$ bond dissociation energy from Ref. [31] and Ref. [30] is:

$$
\begin{align*}
& E_{D_{298}}\left({ }^{14} \mathrm{ND}\right) \leq 339 \mathrm{~kJ} / \mathrm{mol}=3.513 \mathrm{eV} \tag{13.315}\\
& E_{D}\left({ }^{14} \mathrm{ND}\right) \leq 3.54 \mathrm{eV} \tag{13.316}
\end{align*}
$$

The results of the determination of bond parameters of $N H$ and $N D$ are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

DIHYDROGEN NITRIDE (NH_{2})

The dihydrogen nitride radical NH_{2} is formed by the reaction of a hydrogen atom with a hydrogen nitride radical:

$$
\begin{equation*}
\mathrm{NH}+\mathrm{H} \rightarrow \mathrm{NH}_{2} \tag{13.317}
\end{equation*}
$$

NH_{2} can be solved using the same principles as those used to solve $\mathrm{H}_{2} \mathrm{O}$. Two diatomic molecular orbitals (MOs) developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section serve as basis functions in a linear combination with two nitrogen atomic orbitals (AOs) to form the MO of NH_{2}. The solution is very similar to that of NH except that there are two NH bonds in NH_{2}.

FORCE BALANCE OF NH_{2}

NH_{2} comprises two chemical bonds between nitrogen and hydrogen. Each $\mathrm{N}-\mathrm{H}$ bond comprises two spin-paired electrons with one from an initially unpaired electron of the nitrogen atom and the other from the hydrogen atom. Each H-atom electron forms a H_{2}-type ellipsoidal MO with one of the initially unpaired N-atom electrons, $2 p_{x}$ or $2 p_{y}$, such that the proton and the N nucleus serve as the foci. The initial N electron configuration given in the Seven-Electron Atoms section is $1 s^{2} 2 s^{2} 2 p^{3}$, and the orbital arrangement is given by Eqs. (10.134) and (13.246). The radius and the energy of the $N 2 p$ shell are unchanged with bond formation. The central paramagnetic force due to spin of each $N-H$ bond is provided by the spin-pairing force of the NH_{2} MO that has the symmetry of an s orbital that superimposes with the $N 2 p$ orbitals such that the corresponding angular momenta are unchanged.

As in the case of H_{2}, each of two $\mathrm{N}-\mathrm{H}$-bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into N atom for distances shorter than the radius of the $2 p$ shell since it is energetically unfavorable. Thus, the MO surface comprises a prolate spheroid at each H proton that is continuous with the $2 p$ shell at the N atom. The energies in the NH_{2} MO involve only each N 2 p and each H 1 s electron with the formation of each $\mathrm{N}-\mathrm{H}$ bond. The sum of the energies of the prolate spheroids is matched to that of the $2 p$ shell. The forces are determined by these energies. As in the case of NH , the linear combination of each H_{2}-type ellipsoidal MO with each N 2 p AO must involve a 25% contribution from the H_{2}-type ellipsoidal MO to the $N 2 p$ AO in order to match potential, kinetic, and orbital energy relationships. Thus, the NH_{2} MO must comprise two $\mathrm{N}-\mathrm{H}$ bonds with each comprising 75% of a H_{2}-type ellipsoidal MO ($1 / 2+25 \%$) and a nitrogen AO:

$$
\begin{equation*}
\left[1 \mathrm{~N} 2 p_{x} A O+0.75 \mathrm{H}_{2} \mathrm{MO}\right]+\left[1 \mathrm{~N} 2 p_{y} \mathrm{AO}+0.75 \mathrm{H}_{2} \mathrm{MO}\right] \rightarrow \mathrm{NH}_{2} \mathrm{MO} \tag{13.318}
\end{equation*}
$$

The force constant k^{\prime} of each H_{2}-type-ellipsoidal-MO component of the NH_{2} MO is given by Eq. (13.248). The distance from the origin of each $N-H$-bond MO to each focus c^{\prime} is given by Eq. (13.249). The internuclear distance is given by Eq. (13.250). The length of the semiminor axis of the prolate spheroidal $N-H$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of each $N-H$-bond MO. Since each of the two prolate spheroidal $N-H$-bond MOs comprises a H_{2}-type-ellipsoidal MO that transitions to the N AO, the energy E in Eq. (13.251) adds to that of the two corresponding H_{2}-type ellipsoidal MOs to give the total energy of the NH_{2} MO. From the energy equation and the relationship between the axes, the dimensions of the $\mathrm{NH}_{2} \mathrm{MO}$ are solved.

The energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} are twice those of $O H$ and $N H$ given by Eqs. (13.67-13.73) and equal to those of $\mathrm{H}_{2} \mathrm{O}$ given by Eqs. (13.172-13.178). Similarly to $\mathrm{H}_{2} \mathrm{O}$, since each prolate spheroidal H_{2}-type MO transitions to the $N \mathrm{AO}$ and the energy of the $N 2 p$ shell must remain constant and equal to the negative of the ionization energy given by Eq. (13.251), the total energy $E_{T}\left(\mathrm{NH}_{2}\right)$ of the $\mathrm{NH}_{2} \mathrm{MO}$ is given by the sum of the energies of the orbitals corresponding to the composition of the linear combination of the N AO and the two H_{2}-type ellipsoidal MOs that forms the NH_{2} MO as given by Eq. (13.318):

$$
\begin{align*}
E_{T}\left(N H_{2}\right) & =E_{T}+E(2 p \text { shell })=E_{T}-E(\text { ionization; } N) \\
& =-\frac{e^{2}}{4 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.53414 \mathrm{eV} \tag{13.319}
\end{align*}
$$

The two hydrogen atoms and the nitrogen atom can achieve an energy minimum as a linear combination of two H_{2}-type ellipsoidal MOs each having the proton and the nitrogen nucleus as the foci. Each $N-H$-bond MO comprises the same $N 2 p$ shell of constant energy given by Eq. (13.251). Thus, the energy of the $\mathrm{NH}_{2} \mathrm{MO}$ is also given by the sum of that of the two H_{2}-type ellipsoidal MOs given by Eq. (11.212) minus the energy of the redundant nitrogen atom of the linear combination given by Eq. (13.251):

$$
\begin{align*}
E_{T}\left(2 H_{2}-N\right) & =-2 \frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}\left[\left(2 \sqrt{2}-\sqrt{2}+\frac{\sqrt{2}}{2}\right) \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}-\sqrt{2}\right]-E(2 p \text { shell }) \tag{13.320}\\
& =2(-31.63536831 \mathrm{eV})-(-14.53414 \mathrm{eV})=-48.73660 \mathrm{eV}
\end{align*}
$$

$E_{T}\left(N H_{2}\right)$ given by Eq. (13.319) is set equal to two times the energy of the H_{2}-type ellipsoidal MO minus the energy of the $N 2 p$ shell given by Eq. (13.320):

$$
\begin{equation*}
E_{T}\left(N H_{2}\right)=-\frac{e^{2}}{4 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.53414 \mathrm{eV}=-48.73660 \mathrm{eV} \tag{13.321}
\end{equation*}
$$

From the energy relationship given by Eq. (13.321) and the relationship between the axes given by Eqs. (13.248-13.250) and (13.62-13.63), the dimensions of the $\mathrm{NH}_{2} \mathrm{MO}$ can be solved.

Substitution of Eq. (13.249) into Eq. (13.321) gives:

$$
\begin{equation*}
\frac{e^{2}}{4 \pi \varepsilon_{0} \sqrt{0.712154 a a_{0}}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{0.712154 a a_{0}}}{a-\sqrt{0.712154 a a_{0}}}-1\right]=e 34.20246 \tag{13.322}
\end{equation*}
$$

The most convenient way to solve Eq. (13.322) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is

$$
\begin{equation*}
a=1.36276 a_{0}=7.21141 \times 10^{-11} \mathrm{~m} \tag{13.323}
\end{equation*}
$$

Substitution of Eq. (13.323) into Eq. (13.249) gives:

$$
\begin{equation*}
c^{\prime}=0.98514 a_{0}=5.21312 \times 10^{-11} \mathrm{~m} \tag{13.324}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.324) by two is:

$$
\begin{equation*}
2 c^{\prime}=1.97027 a_{0}=1.04262 \times 10^{-10} \mathrm{~m} \tag{13.325}
\end{equation*}
$$

The experimental bond distance is [32]:

$$
\begin{equation*}
2 c^{\prime}=1.024 \times 10^{-10} \mathrm{~m} \tag{13.326}
\end{equation*}
$$

Substitution of Eqs. (13.323-13.324) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=0.94160 a_{0}=4.98276 \times 10^{-11} \mathrm{~m} \tag{13.327}
\end{equation*}
$$

Substitution of Eqs. (13.323-13.324) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.72290 \tag{13.328}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the N atom comprise the foci of the H_{2}-type ellipsoidal MO. The parameters of the point of intersection of each H_{2}-type ellipsoidal MO and the $N 2 p_{x} \mathrm{AO}$ or $N 2 p_{y}$ AO are given by Eqs. (13.84-13.95) and (13.261-13.270). Using Eqs. (13.323-13.325) and (13.327-13.328), the polar intersection angle θ^{\prime} given by Eq. (13.261) with $r_{n}=r_{7}=0.93084 a_{0}$ is

$$
\begin{equation*}
\theta^{\prime}=114.61^{\circ} \tag{13.329}
\end{equation*}
$$

Then, the angle $\theta_{N 2 p A O}$ the radial vector of the $N 2 p_{x} \mathrm{AO}$ or $N 2 p_{y} \mathrm{AO}$ makes with the internuclear axis is

$$
\begin{equation*}
\theta_{N 2 \text { PAO }}=180^{\circ}-114.61^{\circ}=65.39^{\circ} \tag{13.330}
\end{equation*}
$$

as shown in Figure 13.5. The parametric angle $\theta_{\mathrm{H}_{2} \mathrm{MO}}$ given by Eqs. (13.264-13.265), (13.327), and (13.330) is:

$$
\begin{equation*}
\theta_{H_{2} M O}=64.00^{\circ} \tag{13.331}
\end{equation*}
$$

Then, the distance $d_{\mathrm{H}_{2} \mathrm{MO}}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals given by Eqs. (13.267), (13.323), and (13.331) is:

$$
\begin{equation*}
d_{H_{2} M O}=0.59748 a_{0}=3.16175 \times 10^{-11} \mathrm{~m} \tag{13.332}
\end{equation*}
$$

The distance $d_{N 2 \text { рAO }}$ along the internuclear axis from the origin of the N atom to the point of intersection of the orbitals given by Eqs. (13.269), (13.324), and (13.332) is:

$$
\begin{equation*}
d_{N 2 \text { pAO }}=0.38765 a_{0}=2.05137 \times 10^{-11} \mathrm{~m} \tag{13.333}
\end{equation*}
$$

As shown in Eq. (13.318), in addition to the p-orbital charge-density modulation, the uniform charge-density in the p_{x} and p_{y} orbitals is increased by a factor of 0.25 and the H atoms are each decreased by a factor of 0.25 . Using the orbital composition of NH_{2} (Eq. (13.318)), the radii of $N 1 s=0.14605 a_{0}$ (Eq. (10.51)), $N 2 s=0.69385 a_{0}$ (Eq. (10.62)), and $N 2 p=0.93084 a_{0}$ (Eq. (10.142)) shells, and the parameters of the $N H_{2}$ MO given by Eqs. (13.3-13.4) and (13.323-13.333), the charge-density of the $\mathrm{NH}_{2} \mathrm{MO}$ comprising the linear combination of two $\mathrm{N}-\mathrm{H}$-bond MOs (NH -type ellipsoidal MOs given in the Energies of $N H$ section) according to Eq. (13.318) is shown in Figure 13.7. Each $N-H$-bond MO comprises a H_{2}-type ellipsoidal MO and an $N 2 p$ AO having the dimensional diagram shown in Figure 13.5.

Figure 13.7. $\mathrm{NH}_{2} \mathrm{MO}$ comprising the linear combination of two $N-H$-bond MOs. Each $N-H$-bond MO comprises the superposition of a H_{2}-type ellipsoidal MO and the $N 2 p_{x} \mathrm{AO}$ or the $N 2 p_{y} \mathrm{AO}$ with a relative charge-density of 0.75 to 1.25 ; otherwise, the $N 2 p$ orbitals are the same as those of the nitrogen atom. The internuclear axis of one $N-H$ bond is perpendicular to the bonding p_{x} orbital, and the internuclear axis of the other $N-H$ bond is perpendicular to the bonding p_{y} orbital. (A) Color scale, translucent view of the charge-density of the $\mathrm{NH}_{2} \mathrm{MO}$ from the top. For each $\mathrm{N}-\mathrm{H}$ bond, the ellipsoidal surface of each H_{2}-type ellipsoidal MO transitions to a $N 2 p$ AO. The $N 2 p$ shell, the $N 2 s$ shell, the $N 1 s$ shell, and the nuclei (red, not to scale) are shown. (B) Cut-away view showing the inner most $N 1 s$ shell, and moving radially, the $N 2 s$ shell, the $N 2 p$ shell, and the H_{2}-type ellipsoidal MO that transitions to a $N 2 p$ AO for each $N-H$ bond. Bisector current not shown.

ENERGIES OF NH_{2}

The energies of NH_{2} given by the substitution of the semiprincipal axes ((Eqs. (13.323-13.325) and (13.327)) into the energy equations (Eqs. (13.172-13.176)) are:

$$
\begin{align*}
& V_{e}=\left(\frac{3}{2}\right) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-75.71422 \mathrm{eV} \tag{13.334}\\
& V_{p}=2 \frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=27.62216 \mathrm{eV} \tag{13.335}\\
& T=\left(\frac{3}{2}\right) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=27.77974 \mathrm{eV} \tag{13.336}\\
& V_{m}=\left(\frac{3}{2}\right) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-13.88987 \mathrm{eV} \tag{13.337}\\
& E_{T}\left(N H_{2}\right)=-\frac{e^{2}}{4 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.53414 \mathrm{eV}=-48.73633 \mathrm{eV} \tag{13.338}
\end{align*}
$$

where $E_{T}\left(\mathrm{NH}_{2}\right)$ is given by Eq. (13.319) which is reiteratively matched to Eq. (13.320) within five-significant-figure round-off error.

VIBRATION OF NH_{2}

The vibrational energy levels of NH_{2} may be solved as two equivalent coupled harmonic oscillators by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [2] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERM OF NH_{2}

The radiation reaction force in the case of the vibration of NH_{2} in the transition state corresponds to the Doppler energy, E_{D}, given by Eq. (11.181) and Eqs. (13.22) and (13.144) that is dependent on the motion of the electrons and the nuclei. The kinetic energy of the transient vibration is derived from the corresponding central forces. The equations of the radiation reaction force of dihydrogen and dideuterium nitride are the same as those of the corresponding water molecules with the substitution of the dihydrogen and dideuterium nitride parameters. Using Eqs. (11.136) and (13.207-13.209), the angular frequency of the reentrant oscillation in the transition state is

$$
\begin{equation*}
\omega=\sqrt{\frac{\left(\frac{3}{2}\right) \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=5.54150 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.339}
\end{equation*}
$$

where b is given by Eq. (13.327). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 5.54150 \times 10^{16} \mathrm{rad} / \mathrm{s}=36.47512 \mathrm{eV} \tag{13.340}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(H_{2}\right)$ (Eqs. (11.212) and (13.75)), the maximum total energy of each H_{2}-type MO, for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.340) for \bar{E}_{K} gives the Doppler energy of the electrons for the reentrant orbit:

$$
\begin{aligned}
\bar{E}_{D} & \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}} \\
& =-31.63537 \mathrm{eV} \sqrt{\frac{2 e(36.47512 \mathrm{eV})}{m_{e} c^{2}}} \\
& =-0.37798 \mathrm{eV}
\end{aligned}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of NH_{2} due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (13.341) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of NH_{2}. Using the experimental ${ }^{14} \mathrm{NH}_{2}$ vibrational energy of $E_{\text {vib }}=3301.110 \mathrm{~cm}^{-1}=0.40929 \mathrm{eV}$ [33] gives:

$$
\begin{align*}
\bar{E}_{\text {osc }}^{\prime} & =\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.342}\\
\bar{E}_{\text {osc }}^{\prime} & =-0.37798 \mathrm{eV}+\frac{1}{2}(0.40929 \mathrm{eV}) \tag{13.343}\\
& =-0.17334 \mathrm{eV}
\end{align*}
$$

per bond. As in the case for $\mathrm{H}_{2} \mathrm{O}$, the reentrant orbit for the binding of a hydrogen atom to a NH radical causes the bonds to oscillate by increasing and decreasing in length along the two $N-H$ bonds at a relative phase angle of 180°. Since the vibration and reentrant oscillation is along two bonds for the asymmetrical stretch $\left(v_{3}\right), \bar{E}_{\text {osc }}$ for ${ }^{14} \mathrm{NH}_{2}, \bar{E}_{\text {osc }}\left({ }^{14} \mathrm{NH}_{2}\right)$, is:

$$
\begin{align*}
\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{NH}_{2}\right) & =2\left(\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right) \\
& =2\left(-0.37798 \mathrm{eV}+\frac{1}{2}(0.40929 \mathrm{eV})\right) \tag{13.344}\\
& =-0.34668 \mathrm{eV}
\end{align*}
$$

Using Eq. (13.341), Eqs. (13.342-13.344), and the ${ }^{14} \mathrm{ND}_{2}$ vibrational energy of $E_{\text {vib }}=2410.79 \mathrm{~cm}^{-1}=0.29890 \mathrm{eV}$, calculated from the experimental ${ }^{14} \mathrm{NH}_{2}$ vibrational energy using Eq. (11.148), the corresponding $\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{ND}_{2}\right)$ is:

$$
\begin{align*}
\bar{E}_{\text {osc }}\left({ }^{14} N D_{2}\right) & =2\left(-0.37798 \mathrm{eV}+\frac{1}{2}(0.29890 \mathrm{eV})\right) \tag{13.345}\\
& =-0.45707 \mathrm{eV}
\end{align*}
$$

TOTAL AND BOND ENERGIES OF ${ }^{14} \mathrm{NH}_{2}$ AND ${ }^{14} \mathrm{ND}_{2}$

$E_{\text {Tosc }}\left({ }^{14} \mathrm{NH}_{2}\right)$, the total energy of the ${ }^{14} \mathrm{NH}_{2}$ including the Doppler term, is given by the sum of $E_{T}\left(\mathrm{NH}_{2}\right)$ (Eq. (13.321)) and $\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{NH}_{2}\right)$ given Eqs. (13.339-13.344):

$$
\begin{align*}
E_{T+\text { osc }}\left({ }^{14} N H_{2}\right) & =V_{e}+T+V_{m}+V_{p}+E(N 2 p)+\bar{E}_{\text {osc }}\left({ }^{14} N H_{2}\right)=E_{T}\left(N H_{2}\right)+\bar{E}_{\text {osc }}\left({ }^{14} N H_{2}\right) \tag{13.346}\\
E_{T+o s c}\left({ }^{14} N H_{2}\right) & =\left\{\begin{array}{l}
\left(\frac{-e^{2}}{4 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.53414 \mathrm{eV}\right) \\
\left.-2(31.63536831 \mathrm{eV}) \sqrt{\frac{2 \hbar \sqrt{\frac{3}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}}{m_{e}}}-\frac{1}{m_{e} c^{2}} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{array}\right\} \tag{13.347}\\
& =-48.73660 \mathrm{eV}-2\left(0.37798 \mathrm{eV}-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (13.344) and (13.346-13.347), the total energy of ${ }^{14} \mathrm{NH}_{2}$ is:

$$
\begin{align*}
E_{T+o s c}\left({ }^{14} \mathrm{NH}_{2}\right) & =-48.73660 \mathrm{eV}+\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{NH}_{2}\right) \\
& =-48.73660 \mathrm{eV}-2\left(0.37798 \mathrm{eV}-\frac{1}{2}(0.40929 \mathrm{eV})\right) \tag{13.348}\\
& =-49.08328 \mathrm{eV}
\end{align*}
$$

where the experimental ${ }^{14} \mathrm{NH}_{2}$ vibrational energy was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term. $E_{T+\text { osc }}\left({ }^{14} N D_{2}\right)$, the total energy of ${ }^{14} N D_{2}$ including the Doppler term is given by the sum of $E_{T}\left(N D_{2}\right)=E_{T}\left(N H_{2}\right)$ (Eq. (13.321)) and $\bar{E}_{\text {osc }}\left({ }^{14} N D_{2}\right)$ given by Eq. (13.345).

$$
\begin{align*}
E_{T+o s c}\left({ }^{14} N D_{2}\right) & =-48.73660 \mathrm{eV}+\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{ND}_{2}\right) \\
& =-48.73660 \mathrm{eV}-2\left(0.37798 \mathrm{eV}-\frac{1}{2}(0.29890 \mathrm{eV})\right) \tag{13.349}\\
& =-49.19366 \mathrm{eV}
\end{align*}
$$

where the experimental ${ }^{14} \mathrm{NH}_{2}$ vibrational energy corrected for the reduced mass difference of hydrogen and deuterium was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term. The corresponding bond dissociation energy, E_{D}, is given by the sum of the total energies of the corresponding hydrogen nitride radical and hydrogen atom minus the total energy of dihydrogen nitride, $E_{\text {T+osc }}\left({ }^{14} \mathrm{NH}_{2}\right)$.

Thus, E_{D} of ${ }^{14} \mathrm{NH}_{2}$ is given by:

$$
\begin{equation*}
E_{D}\left({ }^{14} \mathrm{NH}_{2}\right)=E(H)+E\left({ }^{14} \mathrm{NH}\right)-E_{T+\text { osc }}\left({ }^{14} \mathrm{NH}_{2}\right) \tag{13.350}
\end{equation*}
$$

where $E_{T}\left({ }^{14} \mathrm{NH}\right)$ is given by the of the sum of the experimental energies of ${ }^{14} N$ (Eq. (13.251)), H (Eq. (13.154)), and the negative of the bond energy of ${ }^{14} \mathrm{NH}$ (Eq. (13.312)):

$$
\begin{equation*}
E\left({ }^{14} \mathrm{NH}\right)=-13.59844 \mathrm{eV}-14.53414 \mathrm{eV}-3.42 \mathrm{eV}=-31.55258 \mathrm{eV} \tag{13.351}
\end{equation*}
$$

From Eqs. (13.154), (13.348), and (13.350-13.351), $E_{D}\left({ }^{14} \mathrm{NH}_{2}\right)$ is:

$$
\begin{align*}
E_{D}\left({ }^{14} N H_{2}\right) & =E(H)+E\left({ }^{14} \mathrm{NH}\right)-E_{T+\text { osc }}\left({ }^{14} \mathrm{NH}_{2}\right) \\
& =-13.59844 \mathrm{eV}-31.55258 \mathrm{eV}-(-49.08328 \mathrm{eV}) \tag{13.352}\\
& =3.9323 \mathrm{eV}
\end{align*}
$$

The experimental ${ }^{14} \mathrm{NH}_{2}$ bond dissociation energy from Ref. [34] and Ref. [35] is:

$$
\begin{align*}
& E_{D}\left({ }^{14} \mathrm{NH}_{2}\right)=88 \pm 4 \mathrm{kcal} / \text { mole }=3.8160 \mathrm{eV} \tag{13.353}\\
& E_{D}\left({ }^{14} \mathrm{NH}_{2}\right)=91.0 \pm 0.5 \mathrm{kcal} / \text { mole }=3.9461 \mathrm{eV} \tag{13.354}
\end{align*}
$$

Similarly, E_{D} of ${ }^{14} \mathrm{ND}_{2}$ is given by:

$$
\begin{equation*}
E_{D}\left({ }^{14} N D_{2}\right)=E(D)+E\left({ }^{14} N D\right)-\left(E_{T+\text { osc }}\left({ }^{14} N D_{2}\right)\right) \tag{13.355}
\end{equation*}
$$

where $E_{T}\left({ }^{14} N D\right)$ is given by the of the sum of the experimental energies of ${ }^{14} N$ (Eq. (13.251)), D (Eq. (13.155)), and the negative of the bond energy of ${ }^{14} \mathrm{ND}$ (Eq. (13.315)):

$$
\begin{equation*}
E\left({ }^{14} \mathrm{ND}\right)=-13.603 \mathrm{eV}-14.53414 \mathrm{eV}-3.513 \mathrm{eV}=-31.6506 \mathrm{eV} \tag{13.356}
\end{equation*}
$$

From Eqs. (13.155), (13.349), and (13.355-13.356), $E_{D}\left({ }^{14} N D_{2}\right)$ is

$$
\begin{equation*}
E_{D}\left({ }^{14} N D_{2}\right)=-13.603 \mathrm{eV}-31.6506 \mathrm{eV}-(-49.19366 \mathrm{eV})=3.9401 \mathrm{eV} \tag{13.357}
\end{equation*}
$$

The ${ }^{14} \mathrm{ND}_{2}$ bond dissociation energy calculated from the average of the experimental bond energies [34-35] and vibrational energy of ${ }^{14} \mathrm{NH}_{2}$ [33] is:

$$
\begin{align*}
E_{D}\left({ }^{14} N D_{2}\right) & =E_{D}\left({ }^{14} \mathrm{NH}_{2}\right)+\frac{1}{2}\left(E_{\text {vib }}\left({ }^{\left({ }^{4} \mathrm{NH}_{2}\right)}\right)-E_{\text {vib }}\left({ }^{14} \mathrm{ND}_{2}\right)\right) \tag{13.358}\\
& =\frac{1}{2}(3.8160 \mathrm{eV}+3.9461 \mathrm{eV})+\frac{1}{2}(0.40929 \mathrm{eV}-0.29890 \mathrm{eV})=3.9362 \mathrm{eV}
\end{align*}
$$

BOND ANGLE OF NH_{2}

The $\mathrm{NH}_{2} \mathrm{MO}$ comprises a linear combination of two $\mathrm{N}-\mathrm{H}$-bond MOs. Each $N-H$-bond MO comprises the superposition of a H_{2}-type ellipsoidal MO and the $N 2 p_{x} \mathrm{AO}$ or the $N 2 p_{y} \mathrm{AO}$ with a relative charge density of 0.75 to 1.25 ; otherwise, the $N 2 p$ AOs are the same as those of the nitrogen atom. A bond is also possible between the two H atoms of the $N-H$ bonds. Such $H-H$ bonding would decrease the $N-H$ bond strength since electron density would be shifted from the $N-H$ bonds to the $H-H$ bond. Thus, the bond angle between the two $N-H$ bonds is determined by the condition that the total energy of the H_{2}-type ellipsoidal MO between the terminal H atoms of the $N-H$ bonds is zero. From Eqs. (11.79) and (13.228), the distance from the origin to each focus of the $H-H$ ellipsoidal MO is

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} 2 a}}=\sqrt{\frac{a a_{0}}{2}} \tag{13.359}
\end{equation*}
$$

The internuclear distance from Eq. (13.229) is:

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{2}} \tag{13.360}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal $H-H$ MO $b=c$ is given by Eq. (13.167).
Since the two H_{2}-type ellipsoidal MOs comprise 75% of the H electron density of H_{2} and the energy of each H_{2}-type ellipsoidal MO is matched to that of the $N 2 p \mathrm{AO}$; the component energies and the total energy E_{T} of the $H-H$ bond are given by Eqs. (13.67-13.73) except that V_{e}, T, and V_{m} are corrected for the energy matching factor of 0.93613 given in Eq. (13.248). Substitution of Eq. (13.359) into Eq. (13.233) with the energy-matching factor gives:

$$
0=\left[\begin{array}{l}
\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left[(0.93613)^{-1}\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right]\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}}{m_{e} c^{2}}}\right] \tag{13.361}\\
+\frac{1}{2} \hbar \sqrt{\frac{\frac{0.75 e^{2}}{8 \pi \varepsilon_{0} a^{3}}-\frac{e^{2}}{8 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{3}}}{0.5 m_{p}}}
\end{array}\right]
$$

From the energy relationship given by Eq. (13.361) and the relationship between the axes given by Eqs. (13.359-13.360) and (13.167-13.168), the dimensions of the $H-H$ MO can be solved.

The most convenient way to solve Eq. (13.361) is by the reiterative technique using a computer. The result to within the round-off error with five-significant figures is:

$$
\begin{equation*}
a=4.9500 a_{0}=2.6194 \times 10^{-10} \mathrm{~m} \tag{13.362}
\end{equation*}
$$

Substitution of Eq. (13.362) into Eq. (13.359) gives:

$$
\begin{equation*}
c^{\prime}=1.5732 a_{0}=8.3251 \times 10^{-11} \mathrm{~m} \tag{13.363}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.363) by two is:

$$
\begin{equation*}
2 c^{\prime}=3.1464 a_{0}=1.6650 \times 10^{-10} \mathrm{~m} \tag{13.364}
\end{equation*}
$$

Substitution of Eqs. (13.362-13.363) into Eq. (13.167) gives:

$$
\begin{equation*}
b=c=4.6933 a_{0}=2.4836 \times 10^{-10} \mathrm{~m} \tag{13.365}
\end{equation*}
$$

Substitution of Eqs. (13.362-13.363) into Eq. (13.168) gives:

$$
\begin{equation*}
e=0.3178 \tag{13.366}
\end{equation*}
$$

Using, $2 C_{H-H}^{\prime}$ (Eq. (13.364)), the distance between the two H atoms when the total energy of the corresponding MO is zero (Eq. (13.361)), and $2 c^{\prime}{ }_{N-H}$ (Eq. (13.325)), the internuclear distance of each $N-H$ bond, the corresponding bond angle can be determined from the law of cosines. Using, Eq. (13.242), the bond angle θ between the $N-H$ bonds is:

$$
\begin{equation*}
\theta=\cos ^{-1}\left(\frac{2(1.9703)^{2}-(3.1464)^{2}}{2(1.9703)^{2}}\right)=\cos ^{-1}(-0.2751)=105.969^{\circ} \tag{13.367}
\end{equation*}
$$

The experimental angle between the $N-H$ bonds is [32]:
$\theta=103.3^{\circ}$
The results of the determination of bond parameters of NH_{2} and ND_{2} are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

AMMONIA (NH_{3})

Ammonia $\left(\mathrm{NH}_{3}\right)$ is formed by the reaction of a hydrogen atom with a dihydrogen nitride radical:

$$
\begin{equation*}
\mathrm{NH}_{2}+\mathrm{H} \rightarrow \mathrm{NH}_{3} \tag{13.369}
\end{equation*}
$$

NH_{3} can be solved using the same principles as those used to solve NH_{2} except that three rather than two H_{2}-type prolate spheroidal molecular orbitals (MOs) serve as basis functions in a linear combination with nitrogen atomic orbitals (AOs) to form the MO of NH_{3}.

FORCE BALANCE OF NH_{3}

NH_{3} comprises three chemical bonds between nitrogen and hydrogen. Each $N-H$ bond comprises two spin-paired electrons with one from an initially unpaired electron of the nitrogen atom and the other from the hydrogen atom. Each H-atom electron forms a H_{2}-type ellipsoidal MO with one of the initially unpaired N-atom electrons, $2 p_{x}, 2 p_{y}$, or $2 p_{z}$, such that the proton and the N nucleus serve as the foci. The initial N electron configuration given in the Seven-Electron Atoms section is $1 s^{2} 2 s^{2} 2 p^{3}$, and the orbital arrangement is given by Eqs. (10.134) and (13.246). The radius and the energy of the $N 2 p$ shell are unchanged with bond formation. The central paramagnetic force due to spin of each $N-H$ bond is provided by the spin-paring force of the NH_{3} MO that has the symmetry of an s orbital that superimposes with the $N 2 p$ orbitals such that the corresponding angular momenta are unchanged.

As in the case of H_{2}, each of three $\mathrm{N}-\mathrm{H}$-bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into the N atom for distances shorter than the radius of the $2 p$ shell since it is energetically unfavorable. Thus, the MO surface comprises a prolate spheroid at each H proton that is continuous with the $2 p$ shell at the N atom. The energies in the NH_{3} MO involve only each $N 2 p$ and each $H 1$ s electron with the formation of each $N-H$ bond. The sum of the energies of the prolate spheroids is matched to that of the $2 p$ shell. The forces are determined by these energies. As in the cases of NH and NH_{2}, the linear combination of each H_{2}-type ellipsoidal MO with each $\mathrm{N} 2 p$ AO must involve a 25% contribution from the H_{2}-type ellipsoidal MO to the $N 2 p$ AO in order to match potential, kinetic, and orbital energy relationships. Thus, the NH_{3} MO must comprise three $\mathrm{N}-\mathrm{H}$ bonds with each comprising 75% of a H_{2}-type ellipsoidal MO $(1 / 2+25 \%)$ and a nitrogen AO :

$$
\begin{equation*}
\left[1 \mathrm{~N} 2 p_{x} A O+0.75 \mathrm{H}_{2} \mathrm{MO}\right]+\left[1 \mathrm{~N} 2 p_{y} \mathrm{AO}+0.75 \mathrm{H}_{2} \mathrm{MO}\right]+\left[1 \mathrm{~N} 2 p_{z} \mathrm{AO}+0.75 \mathrm{H}_{2} \mathrm{MO}\right] \rightarrow \mathrm{NH}_{3} \mathrm{MO} \tag{13.370}
\end{equation*}
$$

The force constant k^{\prime} of each H_{2}-type-ellipsoidal-MO component of the $\mathrm{NH}_{3} \mathrm{MO}$ is given by Eq. (13.248). The distance from the origin of each $N-H$-bond MO to each focus c^{\prime} is given by Eq. (13.249). The internuclear distance is given by Eq. (13.250). The length of the semiminor axis of the prolate spheroidal $N-H$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of each $N-H$-bond MO. Since each of the three prolate spheroidal $N-H$-bond MOs comprises a H_{2}-type-ellipsoidal MO that transitions to the N AO, the energy E in Eq. (13.251) adds to that of the three corresponding H_{2}-type ellipsoidal MOs to give the total energy of the NH_{3} MO. From the energy equation and the relationship between the axes, the dimensions of the $\mathrm{NH}_{3} \mathrm{MO}$ are solved.

The energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} are three times those of $O H$ and $N H$ given by Eqs. (13.67-13.73) and 1.5 times those of $\mathrm{H}_{2} \mathrm{O}$ given by Eqs. (13.172-13.178). Similarly to $\mathrm{H}_{2} \mathrm{O}$, since each prolate spheroidal H_{2}-type MO transitions to the N AO and the energy of the $N 2 p$ shell must remain constant and equal to the negative of the ionization energy given by Eq. (13.251), the total energy $E_{T}\left(N H_{3}\right)$ of the $N H_{3} \mathrm{MO}$ is given by the sum of the energies of the orbitals
corresponding to the composition of the linear combination of the $N \mathrm{AO}$ and the three H_{2}-type ellipsoidal MOs that forms the $\mathrm{NH}_{3} \mathrm{MO}$ as given by Eq. (13.370):

$$
\begin{align*}
E_{T}\left(N H_{3}\right) & =E_{T}+E(2 p \text { shell }) \\
& =E_{T}-E(\text { ionization; } N) \tag{13.371}\\
& =-3 \frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.53414 \mathrm{eV}
\end{align*}
$$

The three hydrogen atoms and the nitrogen atom can achieve an energy minimum as a linear combination of three H_{2}-type ellipsoidal MOs each having the proton and the nitrogen nucleus as the foci. Each $N-H$-bond MO comprises the same $N 2 p$ shell of constant energy given by Eq. (13.251). Thus, an energy term of the $\mathrm{NH}_{3} \mathrm{MO}$ is given by the sum of the three H_{2}-type ellipsoidal MOs given by Eq. (11.212) minus the energy of the redundant nitrogen atom of the linear combination given by Eq. (13.251). The total sum is determined by the energy matching condition of the binding atoms.

In Eq. (13.248), the equipotential condition of the union of each H_{2}-type-ellipsoidal-MO and the N AO was met when the force constant used to determine the ellipsoidal parameter c^{\prime} was normalized by the ratio of the ionization energy of N 14.53414 eV [6] and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264). This normalized the force to match that of the Coulombic force alone to meet the force matching condition of the $N H$ MO under the influence of the proton and the N nucleus. The minimum total energy of the $N H_{3} \mathrm{MO}$ from the sum of energies of a linear combination from four atoms is determined using the energy matching condition of Eq. (13.248). Since each of the three prolate spheroidal $\mathrm{N}-\mathrm{H}$-bond MOs of NH_{3} comprises a H_{2}-type-ellipsoidal MO that transitions to the N AO and the energy matching condition is met, the nitrogen energy E (Eq. (13.251)) and the energy (Eq. (1.264)) of a hydrogen atomic orbital ($H \mathrm{AO}$), $E_{\text {Coulomb }}(H)$, corresponding to the Coulombic force of $+e$ from the nitrogen nucleus is subtracted from the sum of the energies of the three corresponding H_{2}-type ellipsoidal MOs to given an energy minimum. From another perspective, the electron configuration of NH_{2} is equivalent to that of OH and is given by Eq. (10.174). NH_{2} serves as a one-electron atom that is energy matched by the HAO as a basis element to minimize the energy of NH_{3} in the formation of the third $\mathrm{N}-\mathrm{H}-$ bond.

$$
\begin{align*}
E_{T}\left(3 H_{2}-N-H\right) & =\left\{\begin{array}{l}
-3 \frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}\left[\left(2 \sqrt{2}-\sqrt{2}+\frac{\sqrt{2}}{2}\right) \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}-\sqrt{2}\right] \\
-E(N 2 p \text { shell })-E_{\text {Coulomb }}(H)
\end{array}\right\} \tag{13.372}\\
& =3(-31.63536831 \mathrm{eV})-(-14.53414 \mathrm{eV}-13.605804 \mathrm{eV})=-66.76616 \mathrm{eV}
\end{align*}
$$

$E_{T}\left(\mathrm{NH}_{3}\right)$ given by Eq. (13.371) is set equal to Eq. (13.372), three times the energy of the H_{2}-type ellipsoidal MO minus the energy of the $N 2 p$ shell and the $H \mathrm{AO}$:

$$
\begin{equation*}
E_{T}\left(N H_{3}\right)=-3 \frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.53414 \mathrm{eV}=-66.76616 \mathrm{eV} \tag{13.373}
\end{equation*}
$$

From the energy relationship given by Eq. (13.373) and the relationship between the axes given by Eqs. (13.248-13.250) and (13.62-13.63), the dimensions of the $\mathrm{NH}_{3} \mathrm{MO}$ can be solved.

Substitution of Eq. (13.249) into Eq. (13.373) gives:

$$
\begin{equation*}
\frac{3 e^{2}}{8 \pi \varepsilon_{0} \sqrt{0.712154 a a_{0}}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{0.712154 a a_{0}}}{a-\sqrt{0.712154 a a_{0}}}-1\right]=e 52.23202 \tag{13.374}
\end{equation*}
$$

The most convenient way to solve Eq. (13.374) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is:

$$
\begin{equation*}
a=1.34750 a_{0}=7.13066 \times 10^{-11} \mathrm{~m} \tag{13.375}
\end{equation*}
$$

Substitution of Eq. (13.375) into Eq. (13.249) gives:

$$
\begin{equation*}
c^{\prime}=0.97961 a_{0}=5.18385 \times 10^{-11} \mathrm{~m} \tag{13.376}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.376) by two is:

$$
\begin{equation*}
2 c^{\prime}=1.95921 a_{0}=1.03677 \times 10^{-10} \mathrm{~m} \tag{13.377}
\end{equation*}
$$

The experimental bond distance is [32]:

$$
\begin{equation*}
2 c^{\prime}=1.012 \times 10^{-10} \mathrm{~m} \tag{13.378}
\end{equation*}
$$

Substitution of Eqs. (13.375-13.376) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=0.92527 a_{0}=4.89633 \times 10^{-11} \mathrm{~m} \tag{13.379}
\end{equation*}
$$

Substitution of Eqs. (13.375-13.376) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.72698 \tag{13.380}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the N atom comprise the foci of the H_{2}-type ellipsoidal MO. The parameters of the point of intersection of each H_{2}-type ellipsoidal MO and the $N 2 p_{x}, N 2 p_{y}$, or $N 2 p_{z}$ AO are given by Eqs. (13.84-13.95), (13.261-13.270), and (13.261-13.270). Using Eqs. (13.375-13.377) and (13.379-13.380), the polar intersection angle θ^{\prime} given by Eq. (13.261) with $r_{n}=r_{7}=0.93084 a_{0}$ is:

$$
\begin{equation*}
\theta^{\prime}=115.89^{\circ} \tag{13.381}
\end{equation*}
$$

Then, the angle $\theta_{N 2 \text { pAO }}$ the radial vector of the $N 2 p_{x}, N 2 p_{y}$, or $N 2 p_{z}$ AO makes with the internuclear axis is

$$
\begin{equation*}
\theta_{N 2 \text { PAO }}=180^{\circ}-115.89^{\circ}=64.11^{\circ} \tag{13.382}
\end{equation*}
$$

as shown in Figure 13.5. The parametric angle $\theta_{\mathrm{H}_{2} M \mathrm{O}}$ given by Eqs. (13.264-13.265), (13.379), and (13.382) is:

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} M O}=64.83^{\circ} \tag{13.383}
\end{equation*}
$$

Then, the distance $d_{\mathrm{H}_{2} \mathrm{MO}}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals given by Eqs. (13.267), (13.375), and (13.383) is:

$$
\begin{equation*}
d_{H_{2} M O}=0.57314 a_{0}=3.03292 \times 10^{-11} \mathrm{~m} \tag{13.384}
\end{equation*}
$$

The distance $d_{N 2 p A O}$ along the internuclear axis from the origin of the N atom to the point of intersection of the orbitals given by Eqs. (13.269), (13.376), and (13.384) is:

$$
\begin{equation*}
d_{N 2 \text { pAO }}=0.40647 a_{0}=2.15093 \times 10^{-11} \mathrm{~m} \tag{13.385}
\end{equation*}
$$

As shown in Eq. (13.370), in addition to the p-orbital charge-density modulation, the uniform charge-density in the p_{x}, p_{y}, and p_{z} orbitals is increased by a factor of 0.25 and the H atoms are each decreased by a factor of 0.25 . Using the orbital composition of NH_{3} (Eq. (13.370)), the radii of $N 1 s=0.14605 a_{0}$ (Eq. (10.51)), $N 2 s=0.69385 a_{0}$ (Eq. (10.62)), and $N 2 p=0.93084 a_{0}$ (Eq. (10.142)) shells, and the parameters of the $N H_{3}$ MO given by Eqs. (13.3-13.4) and (13.375-13.385), the charge-density of the $\mathrm{NH}_{3} \mathrm{MO}$ comprising the linear combination of three $\mathrm{N}-\mathrm{H}$-bond MOs (NH -type ellipsoidal MOs given in the Energies of $N H$ section) according to Eq. (13.370) is shown in Figure 13.8. Each $N-H$-bond MO comprises a H_{2}-type ellipsoidal MO and an $N 2 p$ AO having the dimensional diagram shown in Figure 13.5.

Figure 13.8. $\mathrm{NH}_{3} \mathrm{MO}$ comprising the linear combination of three $N-H$-bonds. Each $N-H$-bond MO comprises the superposition of a H_{2}-type ellipsoidal MO and the $N 2 p_{x}, N 2 p_{y}$, or $N 2 p_{z}$ AO with a relative charge-density of 0.75 to 1.25 ; otherwise, the $N 2 p$ orbitals are the same as those of the nitrogen atom. The each internuclear axis of one $N-H$ bond is perpendicular to the bonding p orbital. (A) Color scale, translucent view of the charge-density of the NH_{3} MO shown obliquely from the top. For each $N-H$ bond, the ellipsoidal surface of each H_{2}-type ellipsoidal MO transitions to a $N 2 p$ AO. The $N 2 p$ shell, the $N 2 s$ shell, the $N 1 s$ shell, and the nuclei (red, not to scale) are shown. (B) Off-center cut-away view showing the complete inner most $N 1 s$ shell, and moving radially, the cross section of the $N 2 s$ shell, the $N 2 p$ shell, and the H_{2}-type ellipsoidal MO that transitions to a $N 2 p$ AO for each $N-H$ bond. Bisector current not shown. (C)-(E) Color scale, side-on, top, and bottom translucent views of the charge-density of the $\mathrm{NH}_{3} \mathrm{MO}$, respectively.

ENERGIES OF NH_{3}

The energies of NH_{3} given by the substitution of the semiprincipal axes ((Eqs. (13.375-13.377) and (13.379)) into the energy equations (Eqs. (13.67-13.73)) multiplied by three are:

$$
\begin{align*}
& V_{e}=3\left(\frac{3}{4}\right) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-115.28799 \mathrm{eV} \tag{13.386}\\
& V_{p}=3 \frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=41.66718 \mathrm{eV} \tag{13.387}\\
& T=3\left(\frac{3}{4}\right) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=42.77848 \mathrm{eV} \tag{13.388}\\
& V_{m}=3\left(\frac{3}{4}\right) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-21.38924 \mathrm{eV} \tag{13.389}\\
& E_{T}\left(N H_{3}\right)=-3 \frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.53414 \mathrm{eV}=-66.76571 \mathrm{eV} \tag{13.390}
\end{align*}
$$

where $E_{T}\left(\mathrm{NH}_{3}\right)$ is given by Eq. (13.371) which is reiteratively matched to Eq. (13.372) within five-significant-figure round-off error.

VIBRATION OF NH_{3}

The vibrational energy levels of NH_{3} may be solved as three equivalent coupled harmonic oscillators by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [2] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERM OF NH_{3}

The radiation reaction force in the case of the vibration of NH_{3} in the transition state corresponds to the Doppler energy, E_{D}, given by Eq. (11.181) and Eqs. (13.22) and (13.144) that is dependent on the motion of the electrons and the nuclei. The kinetic energy of the transient vibration is derived from the corresponding central forces. The equations of the radiation reaction force of ammonia are the same as those of the corresponding water and dihydrogen and dideuterium nitride radicals with the substitution of the ammonia parameters. Using Eqs. (11.136) and (13.207-13.209), the angular frequency of the reentrant oscillation in the transition state is

$$
\begin{equation*}
\omega=\sqrt{\frac{\left(\frac{3}{2}\right) \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=5.68887 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.391}
\end{equation*}
$$

where b is given by Eq. (13.379). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 5.68887 \times 10^{16} \mathrm{rad} / \mathrm{s}=37.44514 \mathrm{eV} \tag{13.392}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(H_{2}\right)$ (Eqs. (11.212) and (13.75)), the maximum total energy of each H_{2}-type MO acting independently due to the $D_{3 h}$ symmetry point group, for $E_{h \nu}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.392) for \bar{E}_{K} gives the Doppler energy of the electrons of each of the three bonds for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-31.6353683 \mathrm{eV} \sqrt{\frac{2 e(37.44514 \mathrm{eV})}{m_{e} c^{2}}}=-0.38298 \mathrm{eV} \tag{13.393}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of NH_{3} due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (13.393) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of NH_{3}. Using the experimental ${ }^{14} \mathrm{NH}_{3}$ vibrational energy of $E_{\text {vib }}=3443.59 \mathrm{~cm}^{-1}=0.426954 \mathrm{eV}$ [36] gives:

$$
\begin{equation*}
\bar{E}_{o s c}^{\prime}=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.394}
\end{equation*}
$$

$$
\begin{equation*}
\bar{E}_{\text {osc }}^{\prime}=-0.38298 \mathrm{eV}+\frac{1}{2}(0.426954 \mathrm{eV})=-0.16950 \mathrm{eV} \tag{13.395}
\end{equation*}
$$

per bond. The reentrant orbit for the binding of a hydrogen atom to a NH_{2} radical involves three $\mathrm{N}-\mathrm{H}$ bonds. Since the vibration and reentrant oscillation is along three bonds, $\bar{E}_{\text {osc }}$ for ${ }^{14} \mathrm{NH}_{3}, \bar{E}_{\text {osc }}\left({ }^{14} \mathrm{NH}_{3}\right)$, is:

$$
\begin{equation*}
\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{NH}_{3}\right)=3\left(\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)=3\left(-0.38298 \mathrm{eV}+\frac{1}{2}(0.426954 \mathrm{eV})\right)=-0.50850 \mathrm{eV} \tag{13.396}
\end{equation*}
$$

Using Eq. (13.393), Eqs. (13.394-13.396), and the ${ }^{14} N D_{3}$ experimental vibrational energy of $E_{\text {vib }}=2563.96 \mathrm{~cm}^{-1}=0.317893 \mathrm{eV}$ [36], the corresponding $\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{ND}_{2}\right)$ is:

$$
\begin{equation*}
\bar{E}_{\text {osc }}\left({ }^{14} N D_{3}\right)=3\left(-0.38298 \mathrm{eV}+\frac{1}{2}(0.317893 \mathrm{eV})\right)=-0.67209 \mathrm{eV} \tag{13.397}
\end{equation*}
$$

TOTAL AND BOND ENERGIES OF ${ }^{14} \mathrm{NH}_{3}$ AND ${ }^{14} \mathrm{ND}_{3}$

$E_{T+o s c}\left({ }^{14} \mathrm{NH}_{3}\right)$, the total energy of the ${ }^{14} \mathrm{NH}_{3}$ including the Doppler term, is given by the sum of $E_{T}\left(\mathrm{NH}_{3}\right)$ (Eq. (13.373)) and $\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{NH}_{3}\right)$ given Eqs. (13.391-13.396):

$$
\left.\begin{array}{rl}
E_{T+\text { osc }}\left({ }^{14} N H_{3}\right) & =V_{e}+T+V_{m}+V_{p}+E(N 2 p)+\bar{E}_{\text {osc }}\left({ }^{14} N H_{3}\right)=E_{T}\left(N H_{3}\right)+\bar{E}_{\text {osc }}\left({ }^{14} N H_{3}\right) \\
E_{T+\text { osc }}\left({ }^{14} N H_{3}\right) & =\left\{\begin{array}{l}
\left(3 \frac{-e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.53414 \mathrm{eV}\right) \\
-3(31.63536831 \mathrm{eV}) \sqrt{\frac{\sqrt{\frac{3}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}}{m_{e}}} \\
m_{e} c^{2}
\end{array} \frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right) \tag{13.399}
\end{array}\right\},
$$

From Eqs. (13.396) and (13.398-13.399), the total energy of ${ }^{14} \mathrm{NH}_{2}$ is:

$$
\begin{align*}
E_{T+\text { osc }}\left({ }^{14} \mathrm{NH}_{3}\right) & =-66.76616 \mathrm{eV}+\bar{E}_{\text {osc }}\left({ }^{14} \mathrm{NH}_{3}\right) \\
& =-66.76616 \mathrm{eV}-3\left(0.38298 \mathrm{eV}-\frac{1}{2}(0.426954 \mathrm{eV})\right) \tag{13.400}\\
& =-67.27466 \mathrm{eV}
\end{align*}
$$

where the experimental ${ }^{14} \mathrm{NH}_{3}$ vibrational energy was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term. $E_{T+o s c}\left({ }^{14} N D_{3}\right)$, the total energy of ${ }^{14} N D_{3}$ including the Doppler term is given by the sum of $E_{T}\left(N D_{3}\right)=E_{T}\left(N H_{3}\right)$ (Eq. (13.373)) and $\bar{E}_{\text {osc }}\left({ }^{14} N D_{3}\right)$ given by Eq. (13.397):

$$
\begin{align*}
E_{T+o s c}\left({ }^{14} N D_{3}\right) & =-66.76616 \mathrm{eV}+\bar{E}_{\text {osc }}\left({ }^{14} N D_{3}\right) \\
& =-66.76616 \mathrm{eV}-3\left(0.38298 \mathrm{eV}-\frac{1}{2}(0.317893 \mathrm{eV})\right) \tag{13.401}\\
& =-67.43780 \mathrm{eV}
\end{align*}
$$

where the experimental ${ }^{14} N D_{3}$ vibrational energy was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term. The corresponding bond dissociation energy, E_{D}, is given by the sum of the total energies of the corresponding dihydrogen nitride radical and hydrogen atom minus the total energy of ammonia, $E_{\text {T+osc }}\left({ }^{14} \mathrm{NH}_{3}\right)$.

Thus, E_{D} of ${ }^{14} \mathrm{NH}_{3}$ is given by:

$$
\begin{equation*}
E_{D}\left({ }^{14} N H_{3}\right)=E(H)+E\left({ }^{14} N H_{2}\right)-E_{T+\text { osc }}\left({ }^{14} N H_{3}\right) \tag{13.402}
\end{equation*}
$$

where $E_{T}\left({ }^{14} \mathrm{NH}_{2}\right)$ is given by the of the sum of the experimental energies of ${ }^{14} \mathrm{~N}$ (Eq. (13.251)), two H (Eq. (13.154)), and the negative of the bond energies of ${ }^{14} \mathrm{NH}$ (Eq. (13.312)) and ${ }^{14} \mathrm{NH}_{2}$ (Eq. (13.354)):

$$
\begin{equation*}
E\left({ }^{14} \mathrm{NH}_{2}\right)=2(-13.59844 \mathrm{eV})-14.53414 \mathrm{eV}-3.42 \mathrm{eV}-3.946 \mathrm{eV}=-49.09709 \mathrm{eV} \tag{13.403}
\end{equation*}
$$

From Eqs. (13.154), (13.400), and (13.402-13.403), $E_{D}\left({ }^{14} \mathrm{NH}_{2}\right)$ is:

$$
\begin{align*}
E_{D}\left({ }^{14} \mathrm{NH}_{3}\right) & =E(H)+E\left({ }^{14} \mathrm{NH}_{2}\right)-E_{T+\text { osc }}\left({ }^{14} \mathrm{NH}_{3}\right) \tag{13.404}\\
& =-13.59844 \mathrm{eV}-49.09709 \mathrm{eV}-(-67.27466 \mathrm{eV})=4.57913 \mathrm{eV}
\end{align*}
$$

The experimental ${ }^{14} \mathrm{NH}_{3}$ bond dissociation energy [37] is:

$$
\begin{equation*}
E_{D}\left({ }^{14} \mathrm{NH}_{3}\right)=4.60155 \mathrm{eV} \tag{13.405}
\end{equation*}
$$

Similarly, E_{D} of ${ }^{14} \mathrm{ND}_{3}$ is given by:

$$
\begin{equation*}
E_{D}\left({ }^{14} N D_{3}\right)=E(D)+E\left({ }^{14} N D_{2}\right)-\left(E_{T+\text { osc }}\left({ }^{14} N D_{3}\right)\right) \tag{13.406}
\end{equation*}
$$

where $E_{T}\left({ }^{14} N D_{2}\right)$ is given by the of the sum of the experimental energies of ${ }^{14} N$ (Eq. (13.251)), two times the energy of D (Eq. (13.155)), and the negative of the bond energies of ${ }^{14} N D$ (Eq. (13.315)) and ${ }^{14} N D_{2}$ (Eq. (13.358)):

$$
\begin{equation*}
E\left({ }^{14} N D_{2}\right)=2(-13.603 \mathrm{eV})-14.53414 \mathrm{eV}-3.5134 \mathrm{eV}-3.9362 \mathrm{eV}=-49.18981 \mathrm{eV} \tag{13.407}
\end{equation*}
$$

From Eqs. (13.155), (13.401), and (13.406-13.407), $E_{D}\left({ }^{14} N D_{3}\right)$ is:

$$
\begin{equation*}
E_{D}\left({ }^{14} N D_{3}\right)=-13.603 \mathrm{eV}-49.18981 \mathrm{eV}-(-67.43780 \mathrm{eV})=4.64499 \mathrm{eV} \tag{13.408}
\end{equation*}
$$

The experimental ${ }^{14} \mathrm{ND}_{3}$ bond dissociation energy [37] is:

$$
\begin{equation*}
E_{D}\left({ }^{14} N D_{3}\right)=4.71252 \mathrm{eV} \tag{13.409}
\end{equation*}
$$

BOND ANGLE OF NH_{3}

Using, $2 c_{H-H}^{\prime}$ (Eq. (13.364)), the distance between the two H atoms when the total energy of the corresponding MO is zero (Eq. (13.361)), and $2{C^{\prime}}_{N-H}$, the internuclear distance of each $N-H$ bond (Eq. (13.377)), the corresponding bond angle can be determined from the law of cosines. Using Eq. (13.367), the bond angle θ between the $N-H$ bonds is:

$$
\begin{equation*}
\theta=\cos ^{-1}\left(\frac{2(1.95921)^{2}-(3.14643)^{2}}{2(1.95921)^{2}}\right)=\cos ^{-1}(-0.28956)=106.67^{\circ} \tag{13.410}
\end{equation*}
$$

The experimental angle between the $N-H$ bonds is [36]:

$$
\begin{equation*}
\theta=106.67^{\circ} \tag{13.411}
\end{equation*}
$$

The NH_{3} molecule has a pyramidal structure with the nitrogen atom along the z -axis at the apex and the hydrogen atoms at the base in the xy-plane. Since any two $N-H$ bonds form an isosceles triangle, the distance $d_{\text {origin-H }}$ from the origin to the nucleus of a hydrogen atom is given by:

$$
\begin{equation*}
d_{\text {origin }-H}=\frac{2 c_{H-H}^{\prime}}{2 \sin 60^{\circ}} \tag{13.412}
\end{equation*}
$$

Substitution of Eq. (13.364) into Eq. (13.412) gives:

$$
\begin{equation*}
d_{\text {origin }-H}=1.81659 a_{0} \tag{13.413}
\end{equation*}
$$

The height along the z-axis of the pyramid from the origin to N nucleus $d_{\text {height }}$ is given by:

$$
\begin{equation*}
d_{\text {height }}=\sqrt{\left(2 c_{N-H}^{\prime}\right)^{2}-\left(d_{\text {origin }-H}\right)^{2}} \tag{13.414}
\end{equation*}
$$

Substitution of Eqs. (13.377) and (13.413) into Eq. (13.414) gives:

$$
\begin{equation*}
d_{\text {height }}=0.73383 a_{0} \tag{13.415}
\end{equation*}
$$

The angle θ_{v} of each $N-H$ bond from the z-axis is given by:

$$
\begin{equation*}
\theta_{v}=\tan ^{-1}\left(\frac{d_{\text {origin }-H}}{d_{\text {height }}}\right) \tag{13.416}
\end{equation*}
$$

Substitution of Eqs. (13.413) and (13.415) into Eq. (13.416) gives:

$$
\begin{equation*}
\theta_{v}=68.00^{\circ} \tag{13.417}
\end{equation*}
$$

The NH_{3} MO shown in Figure 13.8 was rendered using these parameters.
The results of the determination of bond parameters of NH_{3} and ND_{3} are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

HYDROGEN CARBIDE (CH)

The methane molecule can be solved by first considering the solution of the hydrogen carbide, dihydrogen carbide, and methyl radicals. The former is formed by the reaction of a hydrogen atom and a carbon atom:

$$
\begin{equation*}
\mathrm{H}+\mathrm{C} \rightarrow \mathrm{CH} \tag{13.418}
\end{equation*}
$$

The hydrogen carbide radicals, CH and CH_{2}, methyl radical, CH_{3}, and methane, CH_{4}, can be solved using the same principles as those used to solve $\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}, \mathrm{NH}_{2}$, and NH_{3} with the exception that the carbon 2 s and $2 p$ shells hybridize to form a single $2 s p^{3}$ shell as an energy minimum.

FORCE BALANCE OF CH

CH comprises two spin-paired electrons in a chemical bond between the carbon atom and the hydrogen atom. The CH radical molecular orbital (MO) is determined by considering properties of the binding atoms and the boundary constraints. The prolate spheroidal $\mathrm{H}_{2} \mathrm{MO}$ developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules section satisfies the boundary constraints; thus, the H-atom electron forms a H_{2}-type ellipsoidal MO with one of the C-atom electrons. However, such a bond is not possible with the outer C electrons in their ground state since the resulting H_{2}-type ellipsoidal MO would have a shorter internuclear distance than the radius of the carbon $2 p$ shell, which is not energetically stable. Thus, when bonding the carbon $2 s$ and $2 p$ shells hybridize to form a single $2 s p^{3}$ shell as an energy minimum.
The C electron configuration given in the Six-Electron Atoms section is $1 s^{2} 2 s^{2} 2 p^{2}$, and the orbital arrangement is:

$$
\begin{align*}
& 2 \mathrm{p} \text { state } \\
& \frac{\uparrow}{1} \frac{\uparrow}{0}-1 \tag{13.419}
\end{align*}
$$

corresponding to the ground state ${ }^{3} P_{0}$. The radius r_{6} of the $2 p$ shell given by Eq. (10.122) is:

$$
\begin{equation*}
r_{6}=1.20654 a_{0} \tag{13.420}
\end{equation*}
$$

The energy of the carbon $2 p$ shell is the negative of the ionization energy of the carbon atom given by Eq. (10.123). Experimentally, the energy is [12]

$$
\begin{equation*}
E(C, 2 p \text { shell })=-E(\text { ionization; } C)=-11.2603 \mathrm{eV} \tag{13.421}
\end{equation*}
$$

The $C 2 s$ atomic orbital (AO) combines with the $C 2 p$ AOs to form a single $2 s p^{3}$ hybridized orbital (HO) with the orbital arrangement:

$$
\begin{equation*}
 \tag{13.422}
\end{equation*}
$$

where the quantum numbers $\left(\ell, m_{\ell}\right)$ are below each electron. The total energy of the state is given by the sum over the four electrons. The sum $E_{T}\left(C, 2 s p^{3}\right)$ of calculated energies of C, C^{+}, C^{2+}, and C^{3+} from Eqs. (10.123), (10.113-10.114), (10.68), and (10.48), respectively, is:

$$
\begin{equation*}
E_{T}\left(C, 2 s p^{3}\right)=64.3921 \mathrm{eV}+48.3125 \mathrm{eV}+24.2762 \mathrm{eV}+11.27671 \mathrm{eV}=148.25751 \mathrm{eV} \tag{13.423}
\end{equation*}
$$

which agrees well with the sum of 148.02532 eV from the experimental [6] values. The orbital-angular-momentum interactions cancel such that the energy of the $E_{T}\left(C, 2 s p^{3}\right)$ is purely Coulombic. By considering that the central field decreases by an integer for each successive electron of the shell, the radius $r_{2 s p^{3}}$ of the $C 2 s p^{3}$ shell may be calculated from the Coulombic energy using Eq. (10.102).

$$
\begin{align*}
r_{2 s p^{3}} & =\sum_{n=2}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}(e 148.25751 \mathrm{eV})} \\
& =\frac{10 e^{2}}{8 \pi \varepsilon_{0}(e 148.25751 \mathrm{eV})} \tag{13.424}\\
& =0.91771 a_{0}
\end{align*}
$$

Using Eqs. (10.102) and (13.424), the Coulombic energy $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is:

$$
\begin{align*}
E_{\text {Coulomb }}\left(C, 2 s p^{3}\right) & =\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{2 s p^{3}}} \tag{13.425}\\
& =\frac{-e^{2}}{8 \pi \varepsilon_{0} 0.91771 a_{0}}=-14.82575 \mathrm{eV}
\end{align*}
$$

During hybridization, the spin-paired $2 s$ electrons are promoted to the $C 2 s p^{3}$ shell as unpaired electrons. The energy for the promotion is the magnetic energy given by Eq. (13.152) at the initial radius of the $2 s$ electrons. From Eq. (10.62) with $Z=6$, the radius r_{3} of the $C 2 s$ shell is

$$
\begin{equation*}
r_{3}=0.84317 a_{0} \tag{13.426}
\end{equation*}
$$

Using Eqs. (13.152) and (13.426), the unpairing energy is:

$$
\begin{equation*}
E(\text { magnetic })=\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(r_{3}\right)^{3}}=\frac{8 \pi \mu_{0} \mu_{B}^{2}}{\left(0.84317 a_{0}\right)^{3}}=0.19086 \mathrm{eV} \tag{13.427}
\end{equation*}
$$

Using Eqs. (13.425) and (13.427), the energy $E\left(C, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is:

$$
\begin{align*}
E\left(C, 2 s p^{3}\right) & =\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{2 s p^{3}}}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(r_{3}\right)^{3}} \tag{13.428}\\
& =-14.82575 \mathrm{eV}+0.19086 \mathrm{eV}=-14.63489 \mathrm{eV}
\end{align*}
$$

The nitrogen atom's $2 p$-shell electron configuration given by Eq. (10.134) is the same as that of the $C 2 s p^{3}$ shell, and nitrogen's calculated energy of 14.61664 eV given by Eq. (10.143) is a close match with $E\left(C, 2 s p^{3}\right)$. Thus, the binding should be very similar except that four bonds to hydrogen can occur with carbon.

The carbon $C 2 s p^{3}$ electron combines with the $H 1 s$ electron to form a molecular orbital. The proton of the H atom and the nucleus of the C atom are along the internuclear axis and serve as the foci. Due to symmetry, the other C electrons are equivalent to point charges at the origin. (See Eqs. (19-38) of Appendix II.) Thus, the energies in the CH MO involve only the $C 2 s p^{3}$ and $H 1 s$ electrons. The forces are determined by these energies.

As in the case of H_{2}, the MO is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into the $C 2 s p^{3} \mathrm{HO}$ for distances shorter than the radius of the $C 2 s p^{3}$ shell. Thus, the MO surface comprises a prolate spheroid at the H proton that is continuous with the $C 2 s p^{3}$ shell at the C atom whose nucleus serves as the other focus. The energy of the H_{2}-type ellipsoidal MO is matched to that of the $C 2 s p^{3}$ shell. As in the case with OH and $N H$, the linear combination of the H_{2}-type ellipsoidal MO with the $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$ must involve a 25% contribution from the H_{2}-type ellipsoidal MO to the $\mathrm{C} 2 \mathrm{sp}{ }^{3}$ HO in order to match potential, kinetic, and orbital energy relationships. Thus, the CH MO must comprise 75% of a H_{2}-type ellipsoidal MO and a $C 2 s p^{3} \mathrm{HO}$:

$$
\begin{equation*}
1 \mathrm{C} 2 s p^{3}+0.75 \mathrm{H}_{2} \mathrm{MO} \rightarrow \mathrm{CH} \mathrm{MO} \tag{13.429}
\end{equation*}
$$

The force balance of the CH MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (13.429) and the energy matching condition between the hydrogen and $C 2 s p^{3} \mathrm{HO}$ components of the MO.

As in the case with OH (Eq. (13.57)), the H_{2}-type ellipsoidal MO comprises 75% of the CH MO ; so, the electron charge density in Eq. (11.65) is given by $-0.75 e$. The force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} in terms of the central force of the foci is given by Eq. (13.59). The distance from the origin to each focus c^{\prime} is given by Eq. (13.60). The internuclear distance is given by Eq. (13.61). The length of the semiminor axis of the prolate spheroidal $C-H$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of the CH MO . Since the CH MO comprises a H_{2}-typeellipsoidal MO that transitions to the $C 2 s p^{3} \mathrm{HO}$, the energy $E\left(C, 2 s p^{3}\right)$ in Eq. (13.428) adds to that of the H_{2}-type ellipsoidal MO to give the total energy of the $C H$ MO. From the energy equation and the relationship between the axes, the dimensions of the CH MO are solved.

The energy components of V_{e}, V_{p}, T, and V_{m} are those of H_{2} (Eqs. (11.207-11.212)) except that they are corrected for electron hybridization. Hybridization gives rise to the $C 2 s p^{3}$ HO-shell Coulombic energy $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ given by Eq. (13.425). To meet the equipotential condition of the union of the H_{2}-type-ellipsoidal-MO and the $C 2 s p^{3} \mathrm{HO}$, the electron energies are normalized by the ratio of 14.82575 eV , the magnitude of $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ given by Eq. (13.425), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264). This
normalizes the energies to match that of the Coulombic energy alone to meet the energy matching condition of the CH MO under the influence of the proton and the C nucleus. The hybridization energy factor $C_{C 2 s p^{3} \mathrm{HO}}$ is

$$
\begin{equation*}
C_{C 2 s p^{3} \text { HO }}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} r_{2 s p^{3}}}}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} 0.91771 a_{0}}}=\frac{13.605804 \mathrm{eV}}{14.82575 \mathrm{eV}}=0.91771 \tag{13.430}
\end{equation*}
$$

The total energy $E_{T}(C H)$ of the $C H$ MO is given by the sum of the energies of the orbitals, the H_{2}-type ellipsoidal MO and the $C 2 s p^{3} \mathrm{HO}$, that form the hybridized $C H$ MO. $E_{T}(C H)$ follows from Eq. (13.74) for $O H$, but the energy of the $C 2 s p^{3}$ HO given by Eq. (13.428) is substituted for the energy of O and the H_{2}-type-ellipsoidal-MO energies are those of H_{2} (Eqs. (11.207-11.212)) multiplied by the electron hybridization factor rather than by the factor of 0.75 :

$$
\begin{align*}
E_{T}(C H) & =E_{T}+E\left(C, 2 s p^{3}\right) \\
& =-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV} \tag{13.431}
\end{align*}
$$

To match the boundary condition that the total energy of the entire the H_{2}-type ellipsoidal MO is given by Eqs. (11.212) and (13.75), $E_{T}(C H)$ given by Eq. (13.431) is set equal to Eq. (13.75).

$$
\begin{equation*}
E_{T}(C H)=-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV}=-31.63536831 \mathrm{eV} \tag{13.432}
\end{equation*}
$$

From the energy relationship given by Eq. (13.432) and the relationship between the axes given by Eqs. (13.60-13.63), the dimensions of the $C H \mathrm{MO}$ can be solved.

Substitution of Eq. (13.60) into Eq. (13.432) gives:

$$
\begin{equation*}
\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right]=e 17.00048 \tag{13.433}
\end{equation*}
$$

The most convenient way to solve Eq. (13.433) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is:

$$
\begin{equation*}
a=1.67465 a_{0}=8.86186 \times 10^{-11} \mathrm{~m} \tag{13.434}
\end{equation*}
$$

Substitution of Eq. (13.434) into Eq. (13.60) gives:

$$
\begin{equation*}
c^{\prime}=1.05661 a_{0}=5.59136 \times 10^{-11} \mathrm{~m} \tag{13.435}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.435) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.11323 a_{0}=1.11827 \times 10^{-10} \mathrm{~m} \tag{13.436}
\end{equation*}
$$

The experimental bond distance is [14]:

$$
\begin{equation*}
2 c^{\prime}=1.1198 \times 10^{-10} \mathrm{~m} \tag{13.437}
\end{equation*}
$$

Substitution of Eqs. (13.434-13.435) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=1.29924 a_{0}=6.87527 \times 10^{-11} \mathrm{~m} \tag{13.438}
\end{equation*}
$$

Substitution of Eqs. (13.434-13.435) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.63095 \tag{13.439}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the C atom comprise the foci of the H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $C 2 s p^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95) and (13.261-13.270). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{2 s p^{3}}=0.91771 a_{0}$ is the radius of the $C 2 s p^{3}$ shell. Substitution of Eqs. (13.434-13.435) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=81.03^{\circ} \tag{13.440}
\end{equation*}
$$

Then, the angle $\theta_{C 2 s p^{3} H O}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C 2 s p^{3} \mathrm{HO}}=180^{\circ}-81.03^{\circ}=98.97^{\circ} \tag{13.441}
\end{equation*}
$$

as shown in Figure 13.9.

Figure 13.9. The cross section of the $C H$ MO showing the axes, angles, and point of intersection of the H_{2}-type ellipsoidal MO with the $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$. The continuation of the H_{2}-type-ellipsoidal-MO basis element beyond the intersection point with the $C 2 s p^{3}$ shell is shown as dashed since it only serves to solve the energy match with the $C 2 s p^{3}$ shell and does not represent charge density. Similarly, the vertical dashed line only designates the parameters of the intersection point. The actual charge density is shown by the solid lines. Legend: a : semimajor axis, b : semiminor axis, $c^{\prime}:$ internuclear distance, $d_{1}: d_{\mathrm{H}_{2} \mathrm{MO}}$, $\theta_{1}: \theta_{C 2 s p^{3} H O}, d_{2}: d_{C 2 s p^{3} H O}$, and $R: r_{2 s p^{3}}$.

The Cartesian i-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j}-coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{\mathrm{H}_{2} \mathrm{MO}}$ satisfies the following relationship:

$$
\begin{equation*}
r_{2 s p^{3}} \sin \theta_{C 2 s p^{3} \mathrm{HO}}=0.91771 a_{0} \sin \theta_{C 2 s p^{3} \mathrm{HO}}=b \sin \theta_{\mathrm{H}_{2} \mathrm{MO}} \tag{13.442}
\end{equation*}
$$

such that

$$
\begin{align*}
\theta_{\mathrm{H}_{2} \mathrm{MO}} & =\sin ^{-1} \frac{0.91771 a_{0} \sin \theta_{C 2 s p^{3} \mathrm{HO}}}{b} \tag{13.443}\\
& =\sin ^{-1} \frac{0.91771 a_{0} \sin 98.97^{\circ}}{b}
\end{align*}
$$

with the use of Eq. (13.441). Substitution of Eq. (13.438) into Eq. (13.443) gives:

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} \mathrm{MO}}=44.24^{\circ} \tag{13.444}
\end{equation*}
$$

Then, the distance $d_{\mathrm{H}_{2} \mathrm{MO}}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by

$$
\begin{equation*}
d_{\mathrm{H}_{2} \mathrm{MO}}=a \cos \theta_{\mathrm{H}_{2} \mathrm{MO}} \tag{13.445}
\end{equation*}
$$

Substitution of Eqs. (13.434) and (13.444) into Eq. (13.445) gives:

$$
\begin{equation*}
d_{\mathrm{H}_{2} M \mathrm{O}}=1.19968 a_{0}=6.34845 \times 10^{-11} \mathrm{~m} \tag{13.446}
\end{equation*}
$$

The distance $d_{C 2 s p^{3} H O}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C 2 s p^{3} \mathrm{HO}}=d_{\mathrm{H}_{2} \mathrm{MO}}-c^{\prime} \tag{13.447}
\end{equation*}
$$

Substitution of Eqs. (13.435) and (13.446) into Eq. (13.447) gives:

$$
\begin{equation*}
d_{C 2 s p^{3} H O}=0.14307 a_{0}=7.57090 \times 10^{-12} \mathrm{~m} \tag{13.448}
\end{equation*}
$$

As shown in Eq. (13.429), the uniform charge-density in the $C 2 s p^{3} \mathrm{HO}$ is increased by a factor of 0.25 and the H-atom density is decreased by a factor of 0.25 . Using the orbital composition of $C H$ (Eq. (13.429)), the radii of $C 1 s=0.17113 a_{0}$ (Eq. (10.51)) and $C 2 s p^{3}=0.91771 a_{0}$ (Eq. (13.424)) shells, and the parameters of the $C H$ MO given by Eqs. (13.3-13.4), (13.43413.436), and (13.438-13.448), the dimensional diagram and charge-density of the CH MO comprising the linear combination of the H_{2}-type ellipsoidal MO and the $C 2 s p^{3} \mathrm{HO}$ according to Eq. (13.429) are shown in Figures 13.9 and 13.10, respectively.

Figure 13.10. CH MO comprising the superposition of the H_{2}-type ellipsoidal MO and the $C 2 s p^{3} \mathrm{HO}$ with a relative charge-density of 0.75 to 1.25 ; otherwise, the $C 2 s p^{3} \mathrm{HO}$ is unchanged. (A) Side-on, color scale, translucent view of the chargedensity of the CH MO . The ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C 2 s p^{3} \mathrm{HO}$, the $C 2 s p^{3} \mathrm{HO}$ shell, C1s shell, and the nuclei (red, not to scale) are shown. (B) Cut-away view showing the inner most C1s shell, and moving radially, the $C 2 s p^{3}$ shell, and the H_{2}-type ellipsoidal MO that transitions to the $C 2 s p^{3} \mathrm{HO}$.

ENERGIES OF CH

The energies of CH are given by the substitution of the semiprincipal axes (Eqs. (13.434-13.435) and (13.438)) into the energy equations (Eq. (13.431) and Eqs. (11.207-11.211)) that are corrected for electron hybridization using Eq. (13.430).

$$
\begin{align*}
& V_{e}=(0.91771) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-35.12015 \mathrm{eV} \tag{13.449}\\
& V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=12.87680 \mathrm{eV} \tag{13.450}\\
& T=(0.91771) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=10.48582 \mathrm{eV} \tag{13.451}\\
& V_{m}=(0.91771) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-5.24291 \mathrm{eV} \tag{13.452}\\
& E_{T}(C H)=-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV}=-31.63533 \mathrm{eV} \tag{13.453}
\end{align*}
$$

where $E_{T}(\mathrm{CH})$ is given by Eq. (13.431) which is reiteratively matched to Eq. (13.75) within five-significant-figure round-off error.

VIBRATION AND ROTATION OF CH

The vibrational energy of $C H$ may be solved in the same manner as that of $O H$ and $N H$ except that the force between the electrons and the foci given by Eq. (13.102) is doubled due to electron hybridization of the two shells of carbon after Eq. (11.141). From Eqs. (13.102-13.106) with the substitution of the $C H$ parameters, the angular frequency of the oscillation is

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{3}}-\frac{e^{2}}{8 \pi \varepsilon_{0}\left(2 c^{\prime}\right)^{3}}}{\mu}}=\sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0}\left(1.29924 a_{0}\right)^{3}}-\frac{e^{2}}{\frac{12}{13} m_{p}}}{\frac{1 \pi \varepsilon_{0}\left(2.11323 a_{0}\right)^{3}}{}}}=5.39828 \times 10^{14} \mathrm{rad} / \mathrm{s} \tag{13.454}
\end{equation*}
$$

where b is given by Eq. (13.438), $2 c^{\prime}$ is given by Eq. (13.436), and the reduced mass of ${ }^{12} \mathrm{CH}$ is given by:

$$
\begin{equation*}
\mu_{1^{2} C H}=\frac{m_{1} m_{2}}{m_{1}+m_{2}}=\frac{(1)(12)}{1+12} m_{p} \tag{13.455}
\end{equation*}
$$

where m_{p} is the proton mass. Thus, during bond formation, the perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory motion of the orbit, and the corresponding frequency, $\omega(0)$, for ${ }^{12} \mathrm{CH}$ given by Eqs. (11.136), (11.148), and (13.454) is:

$$
\begin{equation*}
\omega(0)=\sqrt{\frac{k(0)}{\mu}}=\sqrt{\frac{449.94 \mathrm{Nm}^{-1}}{\mu}}=5.39828 \times 10^{14} \mathrm{radians} / \mathrm{s} \tag{13.456}
\end{equation*}
$$

where the reduced nuclear mass of ${ }^{12} \mathrm{CH}$ is given by Eq. (13.455) and the spring constant, $k(0)$, given by Eqs. (11.136) and (13.454) is:

$$
\begin{equation*}
k(0)=449.94 \mathrm{Nm}^{-1} \tag{13.457}
\end{equation*}
$$

The ${ }^{12} \mathrm{CH}$ transition-state vibrational energy, $E_{\text {vib }}(0)$, given by Planck's equation (Eq. (11.127)) is:

$$
\begin{equation*}
E_{\text {vib }}(0)=\hbar \omega=\hbar 5.39828 \times 10^{14} \mathrm{rad} / \mathrm{s}=0.35532 \mathrm{eV}=2865.86 \mathrm{~cm}^{-1} \tag{13.458}
\end{equation*}
$$

ω_{e}, from the experimental curve fit of the vibrational energies of ${ }^{12} \mathrm{CH}$ is [14] :

$$
\begin{equation*}
\omega_{e}=2861.6 \mathrm{~cm}^{-1} \tag{13.459}
\end{equation*}
$$

Using Eqs. (13.112-13.118) with $E_{v i b}(0)$ given by Eq. (13.458) and D_{0} given by Eq. (13.488), the ${ }^{12} \mathrm{CH} \quad v=1 \rightarrow v=0$ vibrational energy, $E_{\text {vib }}(1)$ is:

$$
\begin{equation*}
E_{v i b}(1)=0.33879 \mathrm{eV} \quad\left(2732.61 \mathrm{~cm}^{-1}\right) \tag{13.460}
\end{equation*}
$$

The experimental vibrational energy of ${ }^{12} \mathrm{CH}$ using ω_{e} and $\omega_{e} x_{e}$ [14] according to K\&P [15] is:

$$
\begin{equation*}
E_{\text {vib }}(1)=0.33885 \mathrm{eV} \quad\left(2733 \mathrm{~cm}^{-1}\right) \tag{13.461}
\end{equation*}
$$

Using Eq. (13.113) with $E_{\text {vib }}(1)$ given by Eq. (13.460) and D_{0} given by Eq. (13.488), the anharmonic perturbation term, $\omega_{0} x_{0}$, of ${ }^{12} \mathrm{CH}$ is:

$$
\begin{equation*}
\omega_{0} x_{0}=66.624 \mathrm{~cm}^{-1} \tag{13.462}
\end{equation*}
$$

The experimental anharmonic perturbation term, $\omega_{0} x_{0}$, of ${ }^{12} \mathrm{CH}$ [14] is:

$$
\begin{equation*}
\omega_{0} x_{0}=64.3 \mathrm{~cm}^{-1} \tag{13.463}
\end{equation*}
$$

The vibrational energies of successive states are given by Eqs. (13.458), (13.112), and (13.462).
Using b given by Eq. (13.438), $2 c^{\prime}$ given by Eq. (13.436), D_{0} given by Eq. (13.490), and the reduced nuclear mass of ${ }^{12} C D$ given by:

$$
\begin{equation*}
\mu_{\mathrm{1}^{2} C D}=\frac{m_{1} m_{2}}{m_{1}+m_{2}}=\frac{(2)(12)}{2+12} m_{p} \tag{13.464}
\end{equation*}
$$

where m_{p} is the proton mass, the corresponding parameters for deuterium carbide ${ }^{12} C D$ (Eqs. (13.102-13.121)) are:

$$
\begin{align*}
& \omega(0)=\sqrt{\frac{k(0)}{\mu}}=\sqrt{\frac{449.94 \mathrm{Nm}^{-1}}{\mu}}=3.96126 \times 10^{14} \text { radians } / \mathrm{s} \tag{13.465}\\
& k(0)=449.94 \mathrm{Nm}^{-1} \tag{13.466}\\
& E_{\text {vib }}(0)=\hbar \omega=\hbar 3.96126 \times \quad 10^{14} \mathrm{rad} / \mathrm{s}=0.26074 \mathrm{eV}=2102.97 \mathrm{~cm}^{-1} \tag{13.467}\\
& E_{\text {vib }}(1)=0.25173 \mathrm{eV} \quad\left(2030.30 \mathrm{~cm}^{-1}\right) \tag{13.468}\\
& \omega_{0} x_{0}=36.335 \mathrm{~cm}^{-1} \tag{13.469}
\end{align*}
$$

ω_{e}, from the experimental curve fit of the vibrational energies of ${ }^{12} C D$ is [14] :

$$
\begin{equation*}
\omega_{e}=2101.0 \mathrm{~cm}^{-1} \tag{13.470}
\end{equation*}
$$

The experimental vibrational energy of ${ }^{12} C D$ using ω_{e} and $\omega_{e} X_{e}$ [14] according to K\&P [15] is:

$$
\begin{equation*}
E_{\text {vib }}(1)=0.25189 \mathrm{eV} \quad\left(2031.6 \mathrm{~cm}^{-1}\right) \tag{13.471}
\end{equation*}
$$

and the experimental anharmonic perturbation term, $\omega_{0} x_{0}$, of ${ }^{12} C D$ is [14] :

$$
\begin{equation*}
\omega_{0} x_{0}=34.7 \mathrm{~cm}^{-1} \tag{13.472}
\end{equation*}
$$

which match the predictions given by Eqs. (13.467), (13.468) and (13.469), respectively.
Using Eqs. (13.133-13.134) and the internuclear distance, $r=2 c^{\prime}$, and reduced mass of ${ }^{12} \mathrm{CH}$ given by Eqs. (13.436) and (13.455), respectively, the corresponding B_{e} is:

$$
\begin{equation*}
B_{e}=14.498 \mathrm{~cm}^{-1} \tag{13.473}
\end{equation*}
$$

The experimental B_{e} rotational parameter of ${ }^{12} \mathrm{CH}$ is [14]:

$$
\begin{equation*}
B_{e}=14.457 \mathrm{~cm}^{-1} \tag{13.474}
\end{equation*}
$$

Using the internuclear distance, $r=2 c^{\prime}$, and reduced mass of ${ }^{12} C D$ given by Eqs. (13.436) and (13.464), respectively, the corresponding B_{e} is:

$$
\begin{equation*}
B_{e}=7.807 \mathrm{~cm}^{-1} \tag{13.475}
\end{equation*}
$$

The experimental B_{e} rotational parameter of ${ }^{12} C D$ is [14]:

$$
\begin{equation*}
B_{e}=7.808 \mathrm{~cm}^{-1} \tag{13.476}
\end{equation*}
$$

THE DOPPLER ENERGY TERMS OF ${ }^{12} \mathrm{CH}$ AND ${ }^{12} \mathrm{CD}$

The equations of the radiation reaction force of hydrogen and deuterium carbide are the same as those of the corresponding hydroxyl and hydrogen nitride radicals with the substitution of the hydrogen and deuterium carbide parameters. Using Eqs. (11.136) and (13.140-13.142), the angular frequency of the reentrant oscillation in the transition state is

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=2.41759 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.477}
\end{equation*}
$$

where b is given by Eq. (13.438). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 2.41759 \times 10^{16} \mathrm{rad} / \mathrm{s}=15.91299 \mathrm{eV} \tag{13.478}
\end{equation*}
$$

In Eq. (11.181), substitution of the total energy of $C H, E_{T}(C H)$, (Eq. (13.432)) for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.478) for \bar{E}_{K} gives the Doppler energy of the electrons for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-31.63537 \mathrm{eV} \sqrt{\frac{2 e(15.91299 \mathrm{eV})}{m_{e} c^{2}}}=-0.24966 \mathrm{eV} \tag{13.479}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of $C H$ due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (13.479) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of CH . The experimental ${ }^{12} \mathrm{CH} \omega_{e}$ is $2861.6 \mathrm{~cm}^{-1}(0.35480 \mathrm{eV})$ [14] which matches the predicted ω_{e} of $2865.86 \mathrm{~cm}^{-1}(0.35532 \mathrm{eV})$ given by Eq. (13.458). Using the predicted ω_{e} for $\bar{E}_{\text {Kvib }}$ of the transition state, $\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}\right)$ is:

$$
\begin{align*}
& \bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.480}\\
& \bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}\right)=-0.24966 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})=-0.07200 \mathrm{eV} \tag{13.481}
\end{align*}
$$

The experimental ${ }^{12} C D \omega_{e}$ is $2101.0 \mathrm{~cm}^{-1}(0.26049 \mathrm{eV})$ [14] which matches the predicted ω_{e} of $2102.97 \mathrm{~cm}^{-1}(0.26074 \mathrm{eV})$ given by Eq. (13.467). Using Eq. (13.479) and the predicted ω_{e} for $\bar{E}_{\text {Kvib }}$ of the transition state, $\bar{E}_{\text {osc }}\left({ }^{12} C D\right)$ is:

$$
\begin{equation*}
\bar{E}_{\text {osc }}\left({ }^{12} C D\right)=-0.24966 \mathrm{eV}+\frac{1}{2}(0.26074 \mathrm{eV})=-0.11929 \mathrm{eV} \tag{13.482}
\end{equation*}
$$

TOTAL AND BOND ENERGIES OF ${ }^{12} C H$ AND ${ }^{12} C D$

$E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}\right)$, the total energy of the ${ }^{12} \mathrm{CH}$ radical including the Doppler term, is given by the sum of $E_{T}(\mathrm{CH})$ (Eq. (13.432)) and $\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}\right)$ given by Eq. (13.481):

$$
\left.\left.\begin{array}{rl}
E_{T+o s c}\left({ }^{12} \mathrm{CH}\right) & =V_{e}+T+V_{m}+V_{p}+E\left(C, 2 s p^{3}\right)+\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}\right)=E_{T}(C H)+\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}\right) \\
E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}\right) & =\left\{\binom{\left(\frac{-e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV}\right)}{1+\sqrt{\frac{\frac{3}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right.
\end{array}\right\}\right)
$$

From Eqs. (13.480-13.481) and (13.483-13.484), the total energy of ${ }^{12} \mathrm{CH}$ is:

$$
\begin{align*}
E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}\right) & =-31.63537 \mathrm{eV}+\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}\right) \\
= & -31.63537 \mathrm{eV}-0.24966 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV}) \tag{13.485}\\
= & -31.70737 \mathrm{eV}
\end{align*}
$$

where the predicted ω_{e} (Eq. (13.458)) was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term. $E_{T+o s c}\left({ }^{12} C D\right)$, the total energy of ${ }^{12} C D$ including the Doppler term, is given by the sum of $E_{T}(C D)=E_{T}(C H)$ (Eq. (13.432)) and $\bar{E}_{\text {osc }}\left({ }^{12} C D\right)$ given by Eq. (13.482).

$$
\begin{align*}
E_{T+o s c}\left({ }^{12} C D\right) & =-31.63537 \mathrm{eV}+\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CD}\right) \\
& =-31.63537 \mathrm{eV}-0.24966 \mathrm{eV}+\frac{1}{2}(0.26074 \mathrm{eV}) \tag{13.486}\\
& =-31.75462 \mathrm{eV}
\end{align*}
$$

where the predicted ω_{e} (Eq. (13.467)) was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The $C H$ bond dissociation energy, $E_{D}\left({ }^{12} C H\right)$, is given by the sum of the total energies of the $C 2 s p^{3} \mathrm{HO}$ and the hydrogen atom minus $E_{T+o s c}\left({ }^{12} \mathrm{CH}\right)$)

$$
\begin{equation*}
E_{D}\left({ }^{12} \mathrm{CH}\right)=E\left(\mathrm{C}, 2 s p^{3}\right)+E(H)-E_{T+o s c}\left({ }^{12} \mathrm{CH}\right) \tag{13.487}
\end{equation*}
$$

$E\left(C, 2 s p^{3}\right)$ is given by Eq. (13.428), and $E_{D}(H)$ is given by Eq. (13.154). Thus, the ${ }^{12} C H$ bond dissociation energy, $E_{D}\left({ }^{12} \mathrm{CH}\right)$, given by Eqs. (13.154), (13.428), (13.485), and (13.487) is:

$$
\begin{align*}
E_{D}\left({ }^{12} \mathrm{CH}\right) & =-(14.63489 \mathrm{eV}+13.59844 \mathrm{eV})-E_{\text {Toosc }}(\mathrm{CH}) \\
& =-28.23333 \mathrm{eV}-(-31.70737 \mathrm{eV}) \tag{13.488}\\
& =3.47404 \mathrm{eV}
\end{align*}
$$

The experimental ${ }^{12} \mathrm{CH}$ bond dissociation energy is [14]:

$$
\begin{equation*}
E_{D}\left({ }^{12} \mathrm{CH}\right)=3.47 \mathrm{eV} \tag{13.489}
\end{equation*}
$$

which is a close match to that of $N H$ as predicted based on the match between the N and $C 2 s p^{3} \mathrm{HO}$ energies and electron configurations.

The ${ }^{12} C D$ bond dissociation energy, $E_{D}\left({ }^{12} C D\right)$, is given by the sum of the total energies of the $C 2 s p^{3} \mathrm{HO}$ and the deuterium atom minus $E_{\text {T+osc }}(C D)$:

$$
\begin{equation*}
E_{D}\left({ }^{12} C D\right)=E\left(C, 2 s p^{3}\right)+E(D)-E_{T+o s c}\left({ }^{12} C D\right) \tag{13.490}
\end{equation*}
$$

$E\left(C, 2 s p^{3}\right)$ is given by Eq. (13.428), and $E_{D}(D)$ is given by Eq. (13.155). Thus, the ${ }^{12} C D$ bond dissociation energy, $E_{D}\left({ }^{12} C D\right)$, given by Eqs. (13.155), (13.428), (13.486), and (13.490) is:

$$
\begin{align*}
E_{D}\left({ }^{12} C D\right) & =-(14.63489 \mathrm{eV}+13.603 \mathrm{eV})-E_{T+\text { osc }}\left({ }^{12} \mathrm{CD}\right) \\
& =-28.23789 \mathrm{eV}-(-31.75462 \mathrm{eV}) \tag{13.491}\\
& =3.51673 \mathrm{eV}
\end{align*}
$$

The experimental ${ }^{12} C D$ bond dissociation energy is [14]:

$$
\begin{equation*}
E_{D}\left({ }^{12} C D\right)=3.52 \mathrm{eV} \tag{13.492}
\end{equation*}
$$

The results of the determination of bond parameters of $C H$ and $C D$ are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

[^1]
DIHYDROGEN CARBIDE (CH_{2})

The dihydrogen carbide radical CH_{2} is formed by the reaction of a hydrogen atom with a hydrogen carbide radical:

$$
\begin{equation*}
\mathrm{CH}+\mathrm{H} \rightarrow \mathrm{CH}_{2} \tag{13.493}
\end{equation*}
$$

CH_{2} can be solved using the same principles as those used to solve $\mathrm{H}_{2} \mathrm{O}$ and NH_{2} with the exception that the carbon 2 s and $2 p$ shells hybridize to form a single $2 s p^{3}$ shell as an energy minimum. Two diatomic molecular orbitals (MOs) developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section serve as basis functions in a linear combination with two carbon $2 s p^{3}$ hybridized orbitals (HOs) to form the MO of CH_{2}. The solution is very similar to that of CH except that there are two CH bonds in CH_{2}.

FORCE BALANCE OF CH_{2}

CH_{2} comprises two chemical bonds between carbon and hydrogen atoms. Each $\mathrm{C}-\mathrm{H}$ bond comprises two spin-paired electrons with one from an initially unpaired electron of the carbon atom and the other from the hydrogen atom. Each H-atom electron forms a H_{2}-type ellipsoidal MO with an unpaired C -atom electrons. However, such a bond is not possible with the outer two C electrons in their ground state since the resulting H_{2}-type ellipsoidal MO would have a shorter internuclear distance than the radius of the carbon $2 p$ shell, which is not energetically stable. Thus, when bonding the carbon $2 s$ and $2 p$ shells hybridize to form a single $2 s p^{3}$ shell as an energy minimum. The electron configuration and the energy, $E\left(C, 2 s p^{3}\right)$, of the $C 2 s p^{3}$ shell is given by Eqs. (13.422), and (13.428), respectively.

For each $C-H$ bond, a $C 2 s p^{3}$ electron combines with the $H 1 s$ electron to form a molecular orbital. The proton of the H atom and the nucleus of the C atom are along each internuclear axis and serve as the foci. As in the case of H_{2}, each of the two $C-H$-bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into the $C 2 s p^{3} \mathrm{HO}$ for distances shorter than the radius of the $C 2 s p^{3}$ shell since it is energetically unfavorable. Thus, each MO surface comprises a prolate spheroid at the H proton that is continuous with the $C 2 s p^{3}$ shell at the C atom whose nucleus serves as the other focus. The radius and the energy of the $C 2 s p^{3}$ shell are unchanged with bond formation. The central paramagnetic force due to spin of each $\mathrm{C}-\mathrm{H}$ bond is provided by the spin-pairing force of the $\mathrm{CH}_{2} \mathrm{MO}$ that has the symmetry of an s orbital that superimposes with the $C 2 s p^{3}$ orbitals such that the corresponding angular momenta are unchanged.

The energies in the CH_{2} MO involve only each $C 2 s p^{3}$ and each $H 1 s$ electron with the formation of each $C-H$ bond. The sum of the energies of the H_{2}-type ellipsoidal MOs is matched to that of the $\mathrm{C} 2 \mathrm{sp}^{3}$ shell. As in the cases of $\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$, $\mathrm{NH}, \mathrm{NH}_{2}, \mathrm{NH}_{3}$, and CH the linear combination of each H_{2}-type ellipsoidal MO with the $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$ must involve a 25% contribution from the H_{2}-type ellipsoidal MO to the $C 2 s p^{3} \mathrm{HO}$ in order to match potential, kinetic, and orbital energy relationships. Thus, the CH_{2} MO must comprise two $\mathrm{C}-\mathrm{H}$ bonds with each comprising 75% of a H_{2}-type ellipsoidal MO and a $C 2 s p^{3} \mathrm{HO}$:

$$
\begin{equation*}
\left[1 \mathrm{C} 2 s p^{3}+0.75 \mathrm{H}_{2} \mathrm{MO}\right]+\left[1 \mathrm{C} 2 s p^{3}+0.75 \mathrm{H}_{2} \mathrm{MO}\right] \rightarrow \mathrm{CH}_{2} \mathrm{MO} \tag{13.494}
\end{equation*}
$$

The force balance of the CH_{2} MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (13.494) and the energy matching condition between the hydrogen and $C 2 s p^{3} \mathrm{HO}$ components of the MO.

The force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} of the each H_{2}-type-ellipsoidal-MO component of the $\mathrm{CH}_{2} \mathrm{MO}$ in terms of the central force of the foci is given by Eq. (13.59). The distance from the origin of each $\mathrm{C}-\mathrm{H}$-bond MO to each focus c^{\prime} is given by Eq. (13.60). The internuclear distance is given by Eq. (13.61). The length of the semiminor axis of the prolate spheroidal $C-H$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of each $C-H-$ bond MO. Since each of the two prolate spheroidal $\mathrm{C}-\mathrm{H}$-bond MOs comprises a H_{2}-type-ellipsoidal MO that transitions to the $C 2 s p^{3} \mathrm{HO}$, the energy $E\left(C, 2 s p^{3}\right)$ in Eq. (13.428) adds to that of the two corresponding H_{2}-type ellipsoidal MOs to give the total energy of the $\mathrm{CH}_{2} \mathrm{MO}$. From the energy equation and the relationship between the axes, the dimensions of the CH_{2} MO are solved.

The energy components of V_{e}, V_{p}, T, and V_{m} are twice those of $C H$ corresponding to the two $C-H$ bonds. Since each prolate spheroidal H_{2}-type MO transitions to the $C 2 s p^{3} \mathrm{HO}$ and the energy of the $C 2 s p^{3}$ shell must remain constant and equal to the $E\left(C, 2 s p^{3}\right)$ given by Eq. (13.428), the total energy $E_{T}\left(\mathrm{CH}_{2}\right)$ of the $\mathrm{CH}_{2} \mathrm{MO}$ is given by the sum of the energies
of the orbitals corresponding to the composition of the linear combination of the $C 2 s p^{3} \mathrm{HO}$ and the two H_{2}-type ellipsoidal MOs that forms the $\mathrm{CH}_{2} \mathrm{MO}$ as given by Eq. (13.494). Using Eq. (13.431), $E_{T}\left(\mathrm{CH}_{2}\right)$ is given by:

$$
\begin{equation*}
E_{T}\left(C H_{2}\right)=E_{T}+E\left(C, 2 s p^{3}\right)=-\frac{e^{2}}{4 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV} \tag{13.495}
\end{equation*}
$$

The two hydrogen atoms and the hybridized carbon atom can achieve an energy minimum as a linear combination of two H_{2} type ellipsoidal MOs each having the proton and the carbon nucleus as the foci. Hybridization gives rise to the C2sp ${ }^{3}$ HO-shell Coulombic energy $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ given by Eq. (13.425). To meet the equipotential condition of the union of the H_{2}-type-ellipsoidal-MO and the $C 2 s p^{3} \mathrm{HO}$, the electron energies in Eq. (13.495) were normalized by the ratio of 14.82575 eV , the magnitude of $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ given by Eq. (13.425), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264). The factor given by Eq. (13.430) normalized the energies to match that of the Coulombic energy alone to meet the energy matching condition of each $C-H$-bond MO under the influence of the proton and the C nucleus. Each $C-H$-bond MO comprises the same $C 2 s p^{3}$ shell having its energy normalized to that of the Coulombic energy between the electron and a charge of $+e$ at the carbon focus of the $\mathrm{CH}_{2} \mathrm{MO}$. Thus, the energy of the $\mathrm{CH}_{2} \mathrm{MO}$ is also given by the sum of that of the two H_{2}-type ellipsoidal MOs given by Eq. (11.212) minus the Coulombic energy, $E_{\text {Coulomb }}(H)=-13.605804 \mathrm{eV}$, of the redundant $+e$ of the linear combination:

$$
\begin{align*}
E_{T}\left(2 H_{2}-H\right) & =-\frac{e^{2}}{4 \pi \varepsilon_{0} a_{0}}\left[\left(2 \sqrt{2}-\sqrt{2}+\frac{\sqrt{2}}{2}\right) \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}-\sqrt{2}\right]-E_{\text {Coulomb }}(H) \\
& =2(-31.63536831 \mathrm{eV})-(-13.605804 \mathrm{eV}) \tag{13.496}\\
& =-49.66493 \mathrm{eV}
\end{align*}
$$

$E_{T}\left(\mathrm{CH}_{2}\right)$ given by Eq. (13.495) is set equal to two times the energy of the H_{2}-type ellipsoidal MO minus the Coulombic energy of H given by Eq. (13.496):

$$
\begin{align*}
E_{T}\left(C H_{2}\right) & =-\frac{e^{2}}{4 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV} \tag{13.497}\\
& =-49.66493 \mathrm{eV}
\end{align*}
$$

From the energy relationship given by Eq. (13.497) and the relationship between the axes given by Eqs. (13.60-13.63), the dimensions of the $\mathrm{CH}_{2} \mathrm{MO}$ can be solved.

> Substitution of Eq. (13.60) into Eq. (13.497) gives:

$$
\begin{equation*}
\frac{e^{2}}{4 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right]=e 35.03004 \tag{13.498}
\end{equation*}
$$

The most convenient way to solve Eq. (13.498) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is

$$
\begin{equation*}
a=1.64010 a_{0}=8.67903 \times 10^{-11} \mathrm{~m} \tag{13.499}
\end{equation*}
$$

Substitution of Eq. (13.499) into Eq. (13.60) gives:

$$
\begin{equation*}
c^{\prime}=1.04566 a_{0}=5.53338 \times 10^{-11} \mathrm{~m} \tag{13.500}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.500) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.09132 a_{0}=1.10668 \times 10^{-10} \mathrm{~m} \tag{13.501}
\end{equation*}
$$

The experimental bond distance is [38]:

$$
\begin{equation*}
2 c^{\prime}=1.111 \times 10^{-10} \mathrm{~m} \tag{13.502}
\end{equation*}
$$

Substitution of Eqs. (13.499-13.500) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=1.26354 a_{0}=6.68635 \times 10^{-11} \mathrm{~m} \tag{13.503}
\end{equation*}
$$

Substitution of Eqs. (13.499-13.500) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.63756 \tag{13.504}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the C atom comprise the foci of each H_{2}-type ellipsoidal MO. The parameters of the point of intersection of each H_{2}-type ellipsoidal MO and the $C 2 s p^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95), (13.261-
13.270), and (13.440-13.448). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{2 s p^{3}}=0.91771 a_{0}$ is the radius of the $C 2 s p^{3}$ shell. Substitution of Eqs. (13.499-13.500) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=84.54^{\circ} \tag{13.505}
\end{equation*}
$$

Then, the angle $\theta_{C 2 s p^{3} H O}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C 2 \text { Sp }{ }^{3} \mathrm{HO}}=180^{\circ}-84.54^{\circ}=95.46^{\circ} \tag{13.506}
\end{equation*}
$$

as shown in Figure 13.9. The parametric angle $\theta_{\mathrm{H}_{2} \mathrm{MO}}$ given by Eqs. (13.442-13.443), (13.503), and (13.506) is:

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} M O}=46.30^{\circ} \tag{13.507}
\end{equation*}
$$

Then, the distance $d_{\mathrm{H}_{2} \mathrm{MO}}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals given by Eqs. (13.445), (13.499), and (13.507) is:

$$
\begin{align*}
d_{H_{2} M O} & =1.13305 a_{0} \tag{13.508}\\
& =5.99585 \times 10^{-11} \mathrm{~m}
\end{align*}
$$

The distance $d_{C 2 s p^{3}{ }^{H}}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals given by Eqs. (13.447), (13.500), and (13.508) is:

$$
\begin{align*}
d_{C 2 s p^{3} H O} & =0.08739 a_{0} \tag{13.509}\\
& =4.62472 \times 10^{-12} \mathrm{~m}
\end{align*}
$$

As shown in Eq. (13.494), the uniform charge-density in the $C 2 s p^{3} \mathrm{HO}$ is increased by a factor of 0.25 and the H-atom density is decreased by a factor of 0.25 for by each $\mathrm{C}-\mathrm{H}$ bond. Using the orbital composition of CH_{2} (Eq. (13.494)), the radii of $C 1 s=0.17113 a_{0}$ (Eq. (10.51)) and $C 2 s p^{3}=0.91771 a_{0}$ (Eq. (13.424)) shells, and the parameters of the CH_{2} MO given by Eqs. (13.3-13.4), (13.499-13.501), and (13.503-13.509), the charge-density of the $\mathrm{CH}_{2} \mathrm{MO}$ comprising the linear combination of two $C-H$-bond MOs is shown in Figure 13.11. Each $C-H$-bond MO comprises a H_{2}-type ellipsoidal MO and a $C 2 s p^{3}$ HO having the dimensional diagram shown in Figure 13.9.

Figure 13.11. $\mathrm{CH}_{2} \mathrm{MO}$ comprising the linear combination of two $\mathrm{C}-\mathrm{H}$-bond MOs. Each $\mathrm{C}-\mathrm{H}$-bond MO comprises the superposition of a H_{2}-type ellipsoidal MO and a $\mathrm{C} 2 \mathrm{sp} p^{3} \mathrm{HO}$ with a relative charge-density of 0.75 to 1.25 ; otherwise, the $C 2 s p^{3}$ HO shell is unchanged. (A) Color scale, translucent view of the charge-density of the $\mathrm{CH}_{2} \mathrm{MO}$ from the top. For each $\mathrm{C}-\mathrm{H}$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C 2 s p^{3} \mathrm{HO}$, the $C 2 s p^{3} \mathrm{HO}$ shell, C 1 s shell, and the nuclei (red, not to scale) are shown. (B) Cut-away view showing the inner most Cls shell, and moving radially, the $C 2 s p^{3}$ shell, and the H_{2}-type ellipsoidal MO that transitions to the $C 2 s p^{3} \mathrm{HO}$ for each $C-H$ bond. Bisector current not shown.

ENERGIES OF CH_{2}

The energies of CH_{2} are two times those of CH and are given by the substitution of the semiprincipal axes (Eqs. (13.49913.500) and (13.503)) into the energy equations Eq. (13.495) and (Eqs. (13.449-13.452)) that are multiplied by two:

$$
\begin{align*}
& V_{e}=(0.91771) \frac{-2 e^{2}}{4 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-72.03287 \mathrm{eV} \tag{13.510}\\
& V_{p}=\frac{e^{2}}{4 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=26.02344 \mathrm{eV} \tag{13.511}\\
& T=(0.91771) \frac{\hbar^{2}}{m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=21.95990 \mathrm{eV} \tag{13.512}\\
& V_{m}=(0.91771) \frac{-\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-10.97995 \mathrm{eV} \tag{13.513}\\
& E_{T}\left(C H_{2}\right)=-\frac{e^{2}}{4 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV}=-49.66437 \mathrm{eV} \tag{13.514}
\end{align*}
$$

where $E_{T}\left(\mathrm{CH}_{2}\right)$ is given by Eq. (13.495) which is reiteratively matched to Eq. (13.496) within five-significant-figure round-off error.

VIBRATION OF CH_{2}

The vibrational energy levels of CH_{2} may be solved as two equivalent coupled harmonic oscillators by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [2] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERMS OF ${ }^{12} \mathrm{CH}_{2}$

The reentrant oscillation of hybridized orbitals in the transition state is not coupled. Therefore, the equations of the radiation reaction force of dihydrogen and dideuterium carbide are the same as those of the corresponding hydrogen carbide radicals with the substitution of the dihydrogen and dideuterium carbide parameters. Using Eqs. (11.136) and (13.140-13.142), the angular frequency of the reentrant oscillation in the transition state is

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=2.52077 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.515}
\end{equation*}
$$

where b is given by Eq. (13.503). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 2.52077 \times 10^{16} \mathrm{rad} / \mathrm{s}=16.59214 \mathrm{eV} \tag{13.516}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(H_{2}\right)$ (Eqs. (11.212) and (13.75)), the maximum total energy of each H_{2}-type MO, for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.516) for \bar{E}_{K} gives the Doppler energy of the electrons of each of the two bonds for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-31.63537 \mathrm{eV} \sqrt{\frac{2 e(16.59214 \mathrm{eV})}{m_{e} c^{2}}}=-0.25493 \mathrm{eV} \tag{13.517}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of CH_{2} due to the reentrant orbit of each bond in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (13.517) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of each $C-H$ bond. Using ω_{e} given by Eq. (13.458) for $\bar{E}_{\text {Kvib }}$ of the transition state having two independent bonds, $\bar{E}^{\prime}{ }_{\text {osc }}\left({ }^{12} \mathrm{CH}_{2}\right)$ per bond is:

$$
\begin{align*}
& \bar{E}_{o s c}^{\prime}\left({ }^{12} \mathrm{CH}_{2}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.518}\\
& \bar{E}_{o s c}^{\prime}\left({ }^{12} \mathrm{CH}_{2}\right)=-0.25493 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})=-0.07727 \mathrm{eV} \tag{13.519}
\end{align*}
$$

Given that the vibration and reentrant oscillation is for two $\mathrm{C}-\mathrm{H}$ bonds, $\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{2}\right)$, is:

$$
\begin{align*}
\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{2}\right) & =2\left(\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right) \tag{13.520}\\
& =2\left(-0.25493 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})\right)=-0.15454 \mathrm{eV}
\end{align*}
$$

TOTAL AND BOND ENERGIES OF ${ }^{12} \mathrm{CH}_{2}$

$E_{T+o s c}\left({ }^{12} \mathrm{CH}_{2}\right)$, the total energy of the ${ }^{12} \mathrm{CH}_{2}$ radical including the Doppler term, is given by the sum of $E_{T}\left(\mathrm{CH}_{2}\right)$ (Eq. (13.497)) and $\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{2}\right)$ given by Eq. (13.520).

$$
\begin{align*}
E_{T+o s c}\left(C H_{2}\right)= & V_{e}+T+V_{m}+V_{p}+E\left(C, 2 s p^{3}\right)+\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{2}\right) \tag{13.521}\\
= & E_{T}\left(\mathrm{CH}_{2}\right)+\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& \left(\left(\frac{-e^{2}}{4 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV}\right)\right. \tag{13.522}\\
E_{T+o s c}\left({ }^{12} \mathrm{CH}_{2}\right)= & \left\{\begin{array}{l}
\left.-2(31.63536831 \mathrm{eV}) \sqrt{\frac{\frac{3}{\frac{e^{2}}{4} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}}{m_{e}}}-\frac{1}{m_{e} c^{2}} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{array}\right\} \\
= & -49.66493 \mathrm{eV}-2\left(0.25493 \mathrm{eV}-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (13.518-13.522), the total energy of ${ }^{12} \mathrm{CH}_{2}$ is:

$$
\begin{align*}
E_{T+o s c}\left({ }^{12} \mathrm{CH}_{2}\right) & =-49.66493 \mathrm{eV}+\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =-49.66493 \mathrm{eV}-2\left(0.25493 \mathrm{eV}-\frac{1}{2}(0.35532 \mathrm{eV})\right)=-49.81948 \mathrm{eV} \tag{13.523}
\end{align*}
$$

where ω_{e} given by Eq. (13.458) was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
${ }^{12} \mathrm{CH}_{2}$ has the same electronic configuration as ${ }^{14} \mathrm{NH}$. The dissociation of the bond of the dihydrogen carbide radical forms a free hydrogen atom with one unpaired electron and a $C 2 s p^{3} \mathrm{HO}$ with three unpaired electrons as shown in Eq. (13.422) wherein the magnetic moments cannot all cancel. Thus, the bond dissociation of ${ }^{12} \mathrm{CH}_{2}$ gives rise to ${ }^{12} \mathrm{CH}$ with the same electronic configuration as N as given by Eq. (10.134). The N configuration is more stable than H as shown in Eqs. (10.14110.143). The lowering of the energy of the reactants decreases the bond energy. The total energy of carbon is reduced by the energy in the field of the two magnetic dipoles given by Eq. (7.46) and Eq. (13.424).

$$
\begin{equation*}
E(\text { magnetic })=\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(r_{2 s p^{3}}\right)^{3}}=\frac{8 \pi \mu_{0} \mu_{B}^{2}}{\left(0.91771 a_{0}\right)^{3}}=0.14803 \mathrm{eV} \tag{13.524}
\end{equation*}
$$

The CH_{2} bond dissociation energy, $E_{D}\left({ }^{12} \mathrm{CH}_{2}\right)$, is given by the sum of the total energies of the CH radical and the hydrogen atom minus the sum of $E_{T+o s c}\left({ }^{12} \mathrm{CH}_{2}\right)$ and E (magnetic) :

$$
\begin{equation*}
E_{D}\left({ }^{12} \mathrm{CH}_{2}\right)=E\left({ }^{12} \mathrm{CH}\right)+E(H)-E_{T+o s c}\left({ }^{12} \mathrm{CH}_{2}\right)-E(\text { magnetic }) \tag{13.525}
\end{equation*}
$$

where $E_{T}\left({ }^{12} C H\right)$ is given by the sum of the energies of the $C 2 s p^{3} \mathrm{HO}, E\left(C, 2 s p^{3}\right)$ given by Eq. (13.428), $E_{D}(H)$ given by Eq. (13.154), and the negative of the bond energy of ${ }^{12} \mathrm{CH}$ given by Eq. (13.489):

$$
\begin{equation*}
E\left({ }^{12} \mathrm{CH}\right)=-13.59844 \mathrm{eV}-14.63489 \mathrm{eV}-3.47 \mathrm{eV}=-31.70333 \mathrm{eV} \tag{13.526}
\end{equation*}
$$

Thus, the ${ }^{12} \mathrm{CH}_{2}$ bond dissociation energy, $E_{D}\left({ }^{12} \mathrm{CH}_{2}\right)$, given by Eqs. (13.154), and (13.523-13.526) is:

$$
\begin{align*}
E_{D}\left({ }^{12} \mathrm{CH}_{2}\right) & =-(31.70333 \mathrm{eV}+13.59844 \mathrm{eV})-\left(E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}_{2}\right)+E(\text { magnetic })\right) \tag{13.527}\\
& =-45.30177 \mathrm{eV}-(-49.81948 \mathrm{eV}+0.14803 \mathrm{eV})=4.36968 \mathrm{eV}
\end{align*}
$$

The experimental ${ }^{12} \mathrm{CH}_{2}$ bond dissociation energy is [39]:

$$
\begin{equation*}
E_{D}\left({ }^{12} \mathrm{CH}_{2}\right)=4.33064 \mathrm{eV} \tag{13.528}
\end{equation*}
$$

BOND ANGLE OF ${ }^{12} \mathrm{CH}_{2}$

The CH_{2} MO comprises a linear combination of two $\mathrm{C}-\mathrm{H}$-bond MOs. Each $\mathrm{C}-\mathrm{H}$-bond MO comprises the superposition of a H_{2}-type ellipsoidal MO and the $C 2 s p^{3} \mathrm{HO}$ with a relative charge density of 0.75 to 1.25 ; otherwise, the $C 2 s p^{3}$ shell is unchanged. A bond is also possible between the two H atoms of the $C-H$ bonds. Such $H-H$ bonding would decrease the $C-H$ bond strength since electron density would be shifted from the $C-H$ bonds to the $H-H$ bond. Thus, the bond angle between the two $\mathrm{C}-\mathrm{H}$ bonds is determined by the condition that the total energy of the H_{2}-type ellipsoidal MO between the terminal H atoms of the $C-H$ bonds is zero. From Eqs. (11.79) and (13.228), the distance from the origin to each focus of the $H-H$ ellipsoidal MO is

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} 2 a}}=\sqrt{\frac{a a_{0}}{2}} \tag{13.529}
\end{equation*}
$$

The internuclear distance from Eq. (13.229) is:

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{2}} \tag{13.530}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal $H-H$ MO $b=c$ is given by Eq. (13.62).
The bond angle of CH_{2} is derived by using the orbital composition and an energy matching factor as in the case with NH_{2} and NH_{3}. Since the two H_{2}-type ellipsoidal MOs comprise 75% of the H electron density of H_{2} and the energy of each H_{2}-type ellipsoidal MO is matched to that of the $C 2 s p^{3} \mathrm{HO}$; the component energies and the total energy E_{T} of the $H-H$ bond are given by Eqs. (13.67-13.73) except that V_{e}, T, and V_{m} are corrected for the hybridization-energy-matching factor of 0.91771 given by Eq. (13.430). Substitution of Eq. (13.529) into Eq. (13.233) with the hybridization factor gives:

$$
0=\left[\begin{array}{l}
\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left[(0.91771)^{-1}\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right]\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{\left(2.75 e^{2}\right.}{4 \pi \varepsilon_{0} a^{3}}} \frac{m_{e}}{m_{e} c^{2}}}{}}\right] \tag{13.531}\\
+\frac{1}{2} \hbar \sqrt{\frac{\frac{0.75 e^{2}}{8 \pi \varepsilon_{0} a^{3}}-\frac{e^{2}}{8 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{3}}}{0.5 m_{p}}}
\end{array}\right]
$$

From the energy relationship given by Eq. (13.531) and the relationship between the axes given by Eqs. (13.529-13.530) and (13.62-13.63), the dimensions of the $H-H$ MO can be solved.

The most convenient way to solve Eq. (13.531) is by the reiterative technique using a computer. The result to within the round-off error with five-significant figures is:

$$
\begin{equation*}
a=5.1500 a_{0}=2.7253 \times 10^{-10} \mathrm{~m} \tag{13.532}
\end{equation*}
$$

Substitution of Eq. (13.532) into Eq. (13.529) gives:

$$
\begin{equation*}
c^{\prime}=1.6047 a_{0}=8.4916 \times 10^{-11} \mathrm{~m} \tag{13.533}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.533) by two is:

$$
\begin{equation*}
2 c^{\prime}=3.2094 a_{0}=1.6983 \times 10^{-10} \mathrm{~m} \tag{13.534}
\end{equation*}
$$

Substitution of Eqs. (13.532-13.533) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=4.8936 a_{0}=2.5896 \times 10^{-10} \mathrm{~m} \tag{13.535}
\end{equation*}
$$

Substitution of Eqs. (13.532-13.533) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.3116 \tag{13.536}
\end{equation*}
$$

Using, $2 c^{\prime}{ }_{H-H}$ (Eq. (13.534)), the distance between the two H atoms when the total energy of the corresponding MO is zero (Eq. (13.531)), and $2{C^{\prime}}_{C-H}$ (Eq. (13.501)), the internuclear distance of each $C-H$ bond, the corresponding bond angle can be determined from the law of cosines. Using, Eq. (13.242), the bond angle θ between the $C-H$ bonds is:

$$
\begin{equation*}
\theta=\cos ^{-1}\left(\frac{2(2.09132)^{2}-(3.2094)^{2}}{2(2.09132)^{2}}\right)=\cos ^{-1}(-0.1775)=100.22^{\circ} \tag{13.537}
\end{equation*}
$$

The experimental angle between the $C-H$ bonds is [38]:

$$
\begin{equation*}
\theta=102.4^{\circ} \tag{13.538}
\end{equation*}
$$

The results of the determination of bond parameters of CH_{2} are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

METHYL RADICAL $\left(\mathrm{CH}_{3}\right)$

The methyl radical CH_{3} is formed by the reaction of a hydrogen atom with a dihydrogen carbide radical:

$$
\begin{equation*}
\mathrm{CH}_{2}+\mathrm{H} \rightarrow \mathrm{CH}_{3} \tag{13.539}
\end{equation*}
$$

CH_{3} can be solved using the same principles as those used to solve NH_{3} with the exception that the carbon 2 s and $2 p$ shells hybridize to form a single $2 s p^{3}$ shell as an energy minimum. Three diatomic molecular orbitals (MOs) developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section serve as basis functions in a linear combination with three carbon $2 s p^{3}$ hybridized orbitals (HOs) to form the MO of CH_{3}. The solution is very similar to that of CH_{2} except that there are three CH bonds in CH_{3}.

FORCE BALANCE OF CH_{3}

CH_{3} comprises three chemical bonds between carbon and hydrogen atoms. Each $\mathrm{C}-\mathrm{H}$ bond comprises two spin-paired electrons with one from an initially unpaired electron of the carbon atom and the other from the hydrogen atom. Each H-atom electron forms an H_{2}-type ellipsoidal MO with an unpaired C -atom electron. However, such a bond is not possible with the outer two C electrons in their ground state since the resulting H_{2}-type ellipsoidal MO would have a shorter internuclear distance than the radius of the carbon $2 p$ shell which is not energetically stable, and only two electrons are unpaired. Thus, when bonding the carbon $2 s$ and $2 p$ shells hybridize to form a single $2 s p^{3}$ shell as an energy minimum. The electron configuration and the energy, $E\left(C, 2 s p^{3}\right)$, of the $C 2 s p^{3}$ shell is given by Eqs. (13.422), and (13.428), respectively.

For each $C-H$ bond, a $C 2 s p^{3}$ electron combines with the $H 1 s$ electron to form a molecular orbital. The proton of the H atom and the nucleus of the C atom are along each internuclear axis and serve as the foci. As in the case of H_{2}, each of the three $C-H$-bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into C2sp ${ }^{3} \mathrm{HO}$ for distances shorter than the radius of the $C 2 s p^{3}$ shell since it is energetically unfavorable. Thus, each MO surface comprises a prolate spheroid at the H proton that is continuous with the $C 2 s p^{3}$ shell at the C atom whose nucleus serves as the other focus. The radius and the energy of the $C 2 s p^{3}$ shell are unchanged with bond formation. The central paramagnetic force due to spin of each $\mathrm{C}-\mathrm{H}$ bond is provided by the spin-pairing force of the $\mathrm{CH}_{3} \mathrm{MO}$ that has the symmetry of an s orbital that superimposes with the $C 2 s p^{3}$ orbitals such that the corresponding angular momenta are unchanged.

The energies in the $\mathrm{CH}_{3} \mathrm{MO}$ involve only each $\mathrm{C} 2 s p^{3}$ and each H 1 s electron with the formation of each $\mathrm{C}-\mathrm{H}$ bond. The sum of the energies of the H_{2}-type ellipsoidal MOs is matched to that of the $\mathrm{C} 2 \mathrm{sp}^{3}$ shell. As in the cases of $\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$, $\mathrm{NH}, \mathrm{NH}_{2}, \mathrm{NH}_{3}, \mathrm{CH}$, and CH_{2} the linear combination of each H_{2}-type ellipsoidal MO with the $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$ must involve a 25% contribution from the H_{2}-type ellipsoidal MO to the $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$ in order to match potential, kinetic, and orbital energy relationships. Thus, the CH_{3} MO must comprise three $\mathrm{C}-\mathrm{H}$ bonds with each comprising 75% of a H_{2}-type ellipsoidal MO and a $C 2 s p^{3} \mathrm{HO}$:

$$
\begin{equation*}
3\left[1 \mathrm{C} 2 s p^{3}+0.75 \mathrm{H}_{2} \mathrm{MO}\right] \rightarrow \mathrm{CH}_{3} \mathrm{MO} \tag{13.540}
\end{equation*}
$$

The force balance of the $\mathrm{CH}_{3} \mathrm{MO}$ is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (13.540) and the energy matching condition between the hydrogen and $C 2 s p^{3} \mathrm{HO}$ components of the MO.

The force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} of each H_{2}-type-ellipsoidal-MO component of the CH_{3} MO in terms of the central force of the foci is given by Eq. (13.59). The distance from the origin of each $C-H$-bond MO to each focus c^{\prime} is given by Eq. (13.60). The internuclear distance is given by Eq. (13.61). The length of the semiminor axis of the prolate spheroidal $C-H$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of each $C-H$-bond MO. Since each of the three prolate spheroidal $\mathrm{C}-\mathrm{H}$-bond MOs comprises a H_{2}-type-ellipsoidal MO that transitions to the $C 2 s p^{3} \mathrm{HO}$, the energy $E\left(C, 2 s p^{3}\right)$ in Eq. (13.428) adds to that of the three corresponding H_{2}-type ellipsoidal MOs to give the total energy of the $\mathrm{CH}_{3} \mathrm{MO}$. From the energy equation and the relationship between the axes, the dimensions of the $\mathrm{CH}_{3} \mathrm{MO}$ are solved.

The energy components of V_{e}, V_{p}, T, and V_{m} are three times those of $C H$ corresponding to the three $C-H$ bonds. Since each prolate spheroidal H_{2}-type MO transitions to the $C 2 s p^{3} \mathrm{HO}$ and the energy of the $C 2 s p^{3}$ shell must remain constant and equal to the $E\left(C, 2 s p^{3}\right)$ given by Eq. (13.428), the total energy $E_{T}\left(C H_{3}\right)$ of the $C H_{3} \mathrm{MO}$ is given by the sum of the
energies of the orbitals corresponding to the composition of the linear combination of the $C 2 s p^{3} \mathrm{HO}$ and the three H_{2}-type ellipsoidal MOs that forms the $\mathrm{CH}_{3} \mathrm{MO}$ as given by Eq. (13.540). Using Eq. (13.431), $E_{T}\left(\mathrm{CH}_{3}\right)$ is given by:

$$
\begin{align*}
E_{T}\left(C H_{3}\right) & =E_{T}+E\left(C, 2 s p^{3}\right) \\
& =-\frac{3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV} \tag{13.541}
\end{align*}
$$

The three hydrogen atoms and the hybridized carbon atom can achieve an energy minimum as a linear combination of three H_{2} type ellipsoidal MOs each having the proton and the carbon nucleus as the foci. Hybridization gives rise to the C2sp ${ }^{3}$ HO-shell Coulombic energy $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ given by Eq. (13.425). To meet the equipotential condition of the union of the H_{2}-type-ellipsoidal-MO and the $C 2 s p^{3}$ HO, the electron energies in Eqs. (13.431), (13.495), and (13.541) were normalized by the ratio of 14.82575 eV , the magnitude of $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ given by Eq. (13.425), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.224). The factor given by Eq. (13.430) normalized the energies to match that of the Coulombic energy alone to meet the energy matching condition of each $C-H$-bond MO under the influence of the proton and the C nucleus. Each $C-H$-bond MO comprises the same $C 2 s p^{3}$ shell having its energy normalized to that of the Coulombic energy between the electron and a charge of $+e$ at the carbon focus of the $\mathrm{CH}_{3} \mathrm{MO}$. Thus, the energy of the $\mathrm{CH}_{3} \mathrm{MO}$ is also given by the sum of that of the three H_{2}-type ellipsoidal MOs given by Eq. (11.212) minus two times the Coulombic energy, $E_{\text {Coulomb }}(H)=-13.605804 \mathrm{eV}$, of the two redundant $+e$'s of the linear combination:

$$
\begin{align*}
E_{T}\left(3 H_{2}-2 H\right) & =-\frac{3 e^{2}}{8 \pi \varepsilon_{0} a_{0}}\left[\left(2 \sqrt{2}-\sqrt{2}+\frac{\sqrt{2}}{2}\right) \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}-\sqrt{2}\right]-2 E_{\text {Coulomb }}(H) \tag{13.542}\\
& =3(-31.63536831 \mathrm{eV})-2(-13.605804 \mathrm{eV})=-67.69450 \mathrm{eV}
\end{align*}
$$

$E_{T}\left(\mathrm{CH}_{3}\right)$ given by Eq. (13.541) is set equal to three times the energy of the H_{2}-type ellipsoidal MO minus two times the Coulombic energy of H given by Eq. (13.542).

$$
\begin{align*}
E_{T}\left(C H_{3}\right) & =-\frac{3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV} \tag{13.543}\\
& =-67.69450 \mathrm{eV}
\end{align*}
$$

From the energy relationship given by Eq. (13.543) and the relationship between the axes given by Eqs. (13.60-13.63), the dimensions of the $\mathrm{CH}_{3} \mathrm{MO}$ can be solved.

Substitution of Eq. (13.60) into Eq. (13.543) gives:

$$
\begin{equation*}
\frac{3 e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right]=e 53.05961 \tag{13.544}
\end{equation*}
$$

The most convenient way to solve Eq. (13.544) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is

$$
\begin{equation*}
a=1.62893 a_{0}=8.61990 \times 10^{-11} \mathrm{~m} \tag{13.545}
\end{equation*}
$$

Substitution of Eq. (13.545) into Eq. (13.60) gives:

$$
\begin{equation*}
c^{\prime}=1.04209 a_{0}=5.51450 \times 10^{-11} \mathrm{~m} \tag{13.546}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.546) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.08418 a_{0}=1.10290 \times 10^{-10} \mathrm{~m} \tag{13.547}
\end{equation*}
$$

The experimental bond distance is [38]:

$$
\begin{equation*}
2 c^{\prime}=1.079 \times 10^{-10} \mathrm{~m} \tag{13.548}
\end{equation*}
$$

Substitution of Eqs. (13.545-13.546) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=1.25198 a_{0}=6.62518 \times 10^{-11} \mathrm{~m} \tag{13.549}
\end{equation*}
$$

Substitution of Eqs. (13.545-13.546) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.63974 \tag{13.550}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the C atom comprise the foci of each H_{2}-type ellipsoidal MO. The parameters of the point of intersection of each H_{2}-type ellipsoidal MO and the $C 2 s p^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95), (13.26113.270), and (13.434-13.442). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{2 s p^{3}}=0.91771 a_{0}$ is the radius of the $C 2 s p^{3}$ shell. Substitution of Eqs. (13.545-13.546) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=85.65^{\circ} \tag{13.551}
\end{equation*}
$$

Then, the angle $\theta_{C 2 s p^{3} H O}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C 2 s p^{3} \mathrm{HO}}=180^{\circ}-85.65^{\circ}=94.35^{\circ} \tag{13.552}
\end{equation*}
$$

as shown in Figure 13.9. The parametric angle $\theta_{\mathrm{H}_{2} \mathrm{MO}}$ given by Eqs. (13.442-13.443), (13.549), and (13.552) is:

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} \mathrm{MO}}=46.96^{\circ} \tag{13.553}
\end{equation*}
$$

Then, the distance $d_{\mathrm{H}_{2} \mathrm{MO}}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals given by Eqs. (13.445), (13.545), and (13.553) is:

$$
\begin{align*}
d_{H_{2} M O} & =1.11172 a_{0} \tag{13.554}\\
& =5.88295 \times 10^{-11} \mathrm{~m}
\end{align*}
$$

The distance $d_{C 2 s p^{3} Н О}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals given by Eqs. (13.447), (13.546), and (13.554) is:

$$
\begin{equation*}
d_{C 2 s p^{3} \mathrm{HO}}=0.06963 a_{0}=3.68457 \times 10^{-12} \mathrm{~m} \tag{13.555}
\end{equation*}
$$

As shown in Eq. (13.540), the uniform charge-density in the $C 2 s p^{3} \mathrm{HO}$ is increased by a factor of 0.25 and the H-atom density is decreased by a factor of 0.25 for each $\mathrm{C}-\mathrm{H}$ bond. Using the orbital composition of CH_{3} (Eq. (13.540)), the radii of $C 1 s=0.17113 a_{0}$ (Eq. (10.51)) and $C 2 s p^{3}=0.91771 a_{0}$ (Eq. (13.424)) shells, and the parameters of the $\mathrm{CH}_{3} \mathrm{MO}$ given by Eqs. (13.3-13.4), (13.545-13.547), and (13.549-13.555), the charge-density of the $\mathrm{CH}_{3} \mathrm{MO}$ comprising the linear combination of three $C-H$-bond MOs is shown in Figure 13.12. Each $C-H$-bond MO comprises a H_{2}-type ellipsoidal MO and a $C 2 s p^{3} \mathrm{HO}$ having the dimensional diagram shown in Figure 13.9.

Figure 13.12. $\mathrm{CH}_{3} \mathrm{MO}$ comprising the linear combination of three $\mathrm{C}-\mathrm{H}$-bond MOs. Each $\mathrm{C}-\mathrm{H}$-bond MO comprises the superposition of a H_{2}-type ellipsoidal MO and a $C 2 s p^{3} \mathrm{HO}$ with a relative charge-density of 0.75 to 1.25 ; otherwise, the $\mathrm{C} 2 s p^{3} \mathrm{HO}$ shell is unchanged. (A) Color scale, translucent view of the charge-density of the $\mathrm{CH}_{3} \mathrm{MO}$ from the top. For each $C-H$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C 2 s p^{3} \mathrm{HO}$, the $C 2 s p^{3} \mathrm{HO}$ shell, C 1 s shell, and the nuclei (red, not to scale) are shown. (B) Cut-away view showing the inner most $C 1 s$ shell, and moving radially, the $C 2 s p^{3}$ shell, and the H_{2}-type ellipsoidal MO that transitions to the $C 2 s p^{3} \mathrm{HO}$ for each $C-H$ bond. Bisector current not shown. (C)-(D) Color scale, bottom, top, and side-on translucent views of the charge-density of the $\mathrm{CH}_{3} \mathrm{MO}$, respectively.

ENERGIES OF CH_{3}

The energies of CH_{3} are three times those of CH and are given by the substitution of the semiprincipal axes (Eqs. (13.54513.546) and (13.549)) into the energy equations Eq. (13.541) and (Eqs. (13.449-13.452)) that are multiplied by three:

$$
\begin{align*}
& V_{e}=3(0.91771) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-108.94944 \mathrm{eV} \tag{13.556}\\
& V_{p}=\frac{3 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=39.16883 \mathrm{eV} \tag{13.557}\\
& T=3(0.91771) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=33.44213 \mathrm{eV} \tag{13.558}\\
& V_{m}=3(0.91771) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-16.72107 \mathrm{eV} \tag{13.559}\\
& E_{T}\left(C H_{3}\right)=-\frac{3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV}=-67.69444 \mathrm{eV} \tag{13.560}
\end{align*}
$$

where $E_{T}\left(\mathrm{CH}_{3}\right)$ is given by Eq. (13.541) which is reiteratively matched to Eq. (13.542) within five-significant-figure-round-offerror.

VIBRATION OF CH_{3}

The vibrational energy levels of CH_{3} may be solved as three equivalent coupled harmonic oscillators by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [2] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERMS OF ${ }^{12} \mathrm{CH}_{3}$

The reentrant oscillation of hybridized orbitals in the transition state is not coupled. Therefore, the equations of the radiation reaction force of methyl radical are the same as those of the corresponding hydrogen carbide radicals with the substitution of the methyl radical parameters. Using Eqs. (11.136) and (13.140-13.142), the angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=2.55577 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.561}
\end{equation*}
$$

where b is given by Eq. (13.549). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 2.55577 \times 10^{16} \mathrm{rad} / \mathrm{s}=16.82249 \mathrm{eV} \tag{13.562}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(H_{2}\right)$ (Eqs. (11.212) and (13.75)), the maximum total energy of each H_{2}-type MO, for $E_{h \nu}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.562) for \bar{E}_{K} gives the Doppler energy of the electrons of each of the three bonds for the reentrant orbit:

$$
\begin{align*}
\bar{E}_{D} & \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}} \\
& =-31.63537 \mathrm{eV} \sqrt{\frac{2 e(16.82249 \mathrm{eV})}{m_{e} c^{2}}}=-0.25670 \mathrm{eV} \tag{13.563}
\end{align*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of CH_{3} due to the reentrant orbit of each bond in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (13.563) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of each $C-H$ bond. Using ω_{e} given by Eq. (13.458) for $\bar{E}_{\text {Kvib }}$ of the transition state having three independent bonds, $\bar{E}_{\text {osc }}^{\prime}\left({ }^{12} \mathrm{CH}_{3}\right)$ per bond is

$$
\begin{equation*}
\bar{E}_{\text {osc }}^{\prime}\left({ }^{12} \mathrm{CH}_{3}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.564}
\end{equation*}
$$

$$
\begin{equation*}
\bar{E}_{o s c}^{\prime}\left({ }^{12} \mathrm{CH}_{3}\right)=-0.25670 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})=-0.07904 \mathrm{eV} \tag{13.565}
\end{equation*}
$$

Given that the vibration and reentrant oscillation is for three $\mathrm{C}-\mathrm{H}$ bonds, $\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{3}\right)$, is:

$$
\begin{align*}
\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{3}\right) & =3\left(\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right) \tag{13.566}\\
& =3\left(-0.25670 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})\right)=-0.23711 \mathrm{eV}
\end{align*}
$$

TOTAL AND BOND ENERGIES OF ${ }^{12} \mathrm{CH}_{3}$

$E_{T+o s c}\left({ }^{12} \mathrm{CH}_{3}\right)$, the total energy of the ${ }^{12} \mathrm{CH}_{3}$ radical including the Doppler term, is given by the sum of $E_{T}\left(\mathrm{CH}_{3}\right)$ (Eq. (13.543)) and $\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{3}\right)$ given by Eq. (13.566).

$$
\begin{align*}
E_{T+o s c}\left(\mathrm{CH}_{3}\right) & =V_{e}+T+V_{m}+V_{p}+E\left(C, 2 s p^{3}\right)+\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{3}\right)=E_{T}\left(\mathrm{CH}_{3}\right)+\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{3}\right) \tag{13.567}\\
E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}_{3}\right) & =\left\{\begin{array}{l}
\left(\frac{-3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV}\right) \\
\left.-3(31.63536831 \mathrm{eV}) \sqrt{\frac{\frac{3}{\frac{3}{4} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}}{m_{e}}}-\frac{1}{m_{e} c^{2}} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{array}\right\} \tag{13.568}\\
& =-67.69450 \mathrm{eV}-3\left(0.25670 \mathrm{eV}-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (13.564-13.568), the total energy of ${ }^{12} \mathrm{CH}_{3}$ is:

$$
\begin{align*}
E_{\text {Toosc }}\left({ }^{12} \mathrm{CH}_{3}\right) & =-67.69450 \mathrm{eV}+\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{3}\right) \\
& =-67.69450 \mathrm{eV}-3\left(0.25670 \mathrm{eV}-\frac{1}{2}(0.35532 \mathrm{eV})\right) \tag{13.569}\\
& =-67.93160 \mathrm{eV}
\end{align*}
$$

where ω_{e} given by Eq. (13.458) was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The CH_{3} bond dissociation energy, $\mathrm{E}_{\mathrm{D}}\left({ }^{12} \mathrm{CH}_{3}\right)$, is given by the sum of the total energies of the CH_{2} radical and the hydrogen atom minus $E_{T+o s c}\left({ }^{12} \mathrm{CH}_{3}\right)$:

$$
\begin{equation*}
E_{D}\left({ }^{12} \mathrm{CH}_{3}\right)=E\left({ }^{12} \mathrm{CH}_{2}\right)+E(H)-E_{T+o s c}\left({ }^{12} \mathrm{CH}_{3}\right) \tag{13.570}
\end{equation*}
$$

where $E_{T}\left({ }^{12} \mathrm{CH}_{2}\right)$ is given by the sum of the energies of the $C 2 s p^{3} \mathrm{HO}, E\left(C, 2 s p^{3}\right)$ given by Eq. (13.428), 2E $E_{D}(H)$ given by Eq. (13.154), and the negative of the bond energies of ${ }^{12} \mathrm{CH}$ given by Eq. (13.489) and ${ }^{12} \mathrm{CH}_{2}$ given by Eq. (13.528):

$$
\begin{align*}
E\left({ }^{12} \mathrm{CH}_{2}\right) & =2(-13.59844 \mathrm{eV})-14.63489 \mathrm{eV}-3.47 \mathrm{eV}-4.33064 \mathrm{eV} \tag{13.571}\\
& =-49.63241 \mathrm{eV}
\end{align*}
$$

Thus, the ${ }^{12} \mathrm{CH}_{3}$ bond dissociation energy, $E_{D}\left({ }^{12} \mathrm{CH}_{3}\right)$, given by Eqs. (13.154), and (13.569-13.571) is:

$$
\begin{align*}
E_{D}\left({ }^{12} \mathrm{CH}_{3}\right) & =+(-49.63241 \mathrm{eV}-13.59844 \mathrm{eV})-E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}_{3}\right) \\
& =-63.23085 \mathrm{eV}-(-67.93160 \mathrm{eV}) \tag{13.572}\\
& =4.70075 \mathrm{eV}
\end{align*}
$$

The experimental ${ }^{12} \mathrm{CH}_{3}$ bond dissociation energy is [40]

$$
\begin{equation*}
E_{D}\left({ }^{12} \mathrm{CH}_{3}\right)=4.72444 \mathrm{eV} \tag{13.573}
\end{equation*}
$$

BOND ANGLE OF ${ }^{12} \mathrm{CH}_{3}$

Consider the case that all of the MOs can participate in a superposition involving bonding of the terminal atoms. Then, solving for $2 c^{\prime}{ }_{H-H}=3.61109 a_{0}$, the distance between any adjacent two H atoms when the total energy of the corresponding MO is zero given by Eq. (13.531) with the replacement of the hybridization factor and energy terms with $(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right)$ of Eq. (13.568), and $2{c^{\prime}}_{C-H}$, the internuclear distance of each $C-H$ bond (Eq. (13.547)), the corresponding bond angle can be determined from the law of cosines. Using Eq. (13.537), the bond angle θ between the $C-H$ bonds is:

$$
\begin{equation*}
\theta=\cos ^{-1}\left(\frac{2(2.08418)^{2}-(3.61109)^{2}}{2(2.08418)^{2}}\right)=\cos ^{-1}(-0.50099)=120^{\circ} \tag{13.574}
\end{equation*}
$$

which is in agreement with $D_{3 h}$ symmetry [38].
The CH_{3} radical has a pyramidal structure with the carbon atom along the z -axis at the apex and the hydrogen atoms at the base in the xy-plane. The distance $d_{\text {origin-H }}$ from the origin to the nucleus of a hydrogen atom given by Eqs. (13.534) and (13.412) is:

$$
\begin{equation*}
d_{\text {origin }-H}=2.0848 a_{0} \tag{13.575}
\end{equation*}
$$

The height along the z-axis of the pyramid from the origin to the C nucleus is $d_{\text {height }}$ given by Eqs. (13.414), (13.547), and (13.575) is:

$$
\begin{equation*}
d_{\text {height }}=0 a_{0} \tag{13.576}
\end{equation*}
$$

The angle θ_{v} of each $C-H$ bond from the z-axis given by Eqs. (13.416), (13.575), and (13.576) is:
$\theta_{v}=90^{\circ}$
The $\mathrm{CH}_{3} \mathrm{MO}$ shown in Figure 13.12 was rendered using these parameters.
The results of the determination of bond parameters of CH_{3} are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

METHANE MOLECULE (CH_{4})

The methane molecule CH_{4} is formed by the reaction of a hydrogen atom with a methyl radical:

$$
\begin{equation*}
\mathrm{CH}_{3}+\mathrm{H} \rightarrow \mathrm{CH}_{4} \tag{13.578}
\end{equation*}
$$

CH_{4} can be solved using the same principles as those used to solve and CH_{3} wherein the carbon $2 s$ and $2 p$ shells hybridize to form a single $2 s p^{3}$ shell as an energy minimum. Four diatomic molecular orbitals (MOs) developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section serve as basis functions in a linear combination with four carbon $2 s p^{3}$ hybridized orbitals (HOs) to form the MO of CH_{4}. The solution is very similar to that of CH_{3} except that there are four CH bonds in CH_{4}. Methane is the simplest hydrocarbon that can be solved using the results for CH_{3}. From the solution of CH_{2} as well as CH_{3}, more complex hydrocarbons can be solved using these radicals as basis elements with bonding between the $C 2 s p^{3}$ hybridized carbons.

FORCE BALANCE OF CH_{4}

CH_{4} comprises four chemical bonds between carbon and hydrogen atoms. Each $\mathrm{C}-\mathrm{H}$ bond comprises two spin-paired electrons with one from an initially unpaired electron of the carbon atom and the other from the hydrogen atom. Each H-atom electron forms a H_{2}-type ellipsoidal MO with an unpaired C-atom electrons. However, such a bond is not possible with the outer two C electrons in their ground state since the resulting H_{2}-type ellipsoidal MO would have a shorter internuclear distance than the radius of the carbon $2 p$ shell which is not energetically stable, and only two electrons are unpaired. Thus, when bonding the carbon $2 s$ and $2 p$ shells hybridize to form a single $2 s p^{3}$ shell as an energy minimum. The electron configuration and the energy, $E\left(C, 2 s p^{3}\right)$, of the $C 2 s p^{3}$ shell is given by Eqs. (13.422), and (13.428), respectively.

For each $C-H$ bond, a $C 2 s p^{3}$ electron combines with the $H 1 s$ electron to form a molecular orbital. The proton of the H atom and the nucleus of the C atom are along each internuclear axis and serve as the foci. As in the case of H_{2}, each of the four $C-H$-bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into the $C 2 s p^{3} \mathrm{HO}$ for distances shorter than the radius of the $C 2 s p^{3}$ shell since it is energetically unfavorable. Thus, each MO surface comprises a prolate spheroid at the H proton that can be solved as being continuous with the $C 2 s p^{3}$ shell at the C atom whose nucleus
serves as the other focus. The radius and the energy of the $C 2 s p^{3}$ shell are unchanged with bond formation. The central paramagnetic force due to spin of each $\mathrm{C}-\mathrm{H}$ bond is provided by the spin-pairing force of the $\mathrm{CH}_{4} \mathrm{MO}$ that has the symmetry of an s orbital that superimposes with the $C 2 s p^{3}$ orbitals such that the corresponding angular momenta are unchanged.

The energies in the CH_{4} MO involve only each $\mathrm{C} 2 s p^{3}$ and each H 1 s electron with the formation of each $\mathrm{C}-\mathrm{H}$ bond. The sum of the energies of the H_{2}-type ellipsoidal MOs is matched to that of the $\mathrm{C} 2 \mathrm{sp}{ }^{3}$ shell. As in the cases of $\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$, $\mathrm{NH}, \mathrm{NH}_{2}, \mathrm{NH}_{3}, \mathrm{CH}, \mathrm{CH}_{2}$, and CH_{3} the CH_{4} MO must comprise four $\mathrm{C}-\mathrm{H}$ bonds with each having 75% of a H_{2}-type ellipsoidal MO and a $C 2 s p^{3} \mathrm{HO}$ in a linear combination in order to match potential, kinetic, and orbital energy relationships:

$$
\begin{equation*}
4\left[1 \mathrm{C} 2 s p^{3}+0.75 \mathrm{H}_{2} \mathrm{MO}\right] \rightarrow \mathrm{CH}_{4} \mathrm{MO} \tag{13.579}
\end{equation*}
$$

The force balance of the $\mathrm{CH}_{4} \mathrm{MO}$ is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (13.579) and the energy matching condition between the hydrogen and $C 2 s p^{3} \mathrm{HO}$ components of the MO.

The force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} of the each H_{2}-type-ellipsoidal-MO component of the $\mathrm{CH}_{4} \mathrm{MO}$ in terms of the central force of the foci is given by Eq. (13.59). The distance from the origin of each $C-H$-bond MO to each focus c^{\prime} is given by Eq. (13.60). The internuclear distance is given by Eq. (13.61). The length of the semiminor axis of the prolate spheroidal $C-H$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of each $\mathrm{C}-\mathrm{H}-$ bond MO. Since each of the four prolate spheroidal $\mathrm{C}-\mathrm{H}$-bond MOs comprises a H_{2}-type-ellipsoidal MO that transitions to the $C 2 s p^{3} \mathrm{HO}$, the energy $E\left(C, 2 s p^{3}\right)$ in Eq. (13.428) adds to that of the four corresponding H_{2}-type ellipsoidal MOs to give the total energy of the $\mathrm{CH}_{4} \mathrm{MO}$. From the energy equation and the relationship between the axes, the dimensions of the CH_{4} MO are solved.

The energy components of V_{e}, V_{p}, T, and V_{m} are four times those of $C H$ corresponding to the four $C-H$ bonds. Since each prolate spheroidal H_{2}-type MO transitions to the $C 2 s p^{3} \mathrm{HO}$ and the energy of the $C 2 s p^{3}$ shell must remain constant and equal to the $E\left(C, 2 s p^{3}\right)$ given by Eq. (13.428), the total energy $E_{T}\left(C H_{4}\right)$ of the $C H_{4} \mathrm{MO}$ is given by the sum of the energies of the orbitals corresponding to the composition of the linear combination of the $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$ and the four H_{2}-type ellipsoidal MOs that forms the $\mathrm{CH}_{4} \mathrm{MO}$ as given by Eq. (13.579). Using Eq. (13.431), $E_{T}\left(\mathrm{CH}_{4}\right)$ is given by:

$$
\begin{equation*}
E_{T}\left(C H_{4}\right)=E_{T}+E\left(C, 2 s p^{3}\right)=-\frac{4 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV} \tag{13.580}
\end{equation*}
$$

The four hydrogen atoms and the hybridized carbon atom can achieve an energy minimum as a linear combination of four H_{2} type ellipsoidal MOs each having the proton and the carbon nucleus as the foci. Hybridization gives rise to the C2sp ${ }^{3}$ HO-shell Coulombic energy $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ given by Eq. (13.435). To meet the equipotential condition of the union of the H_{2}-type-ellipsoidal-MO and the $C 2 s p^{3} \mathrm{HO}$, the electron energies in Eqs. (13.431), (13.495), (13.541), and (13.580) were normalized by the ratio of 14.82575 eV , the magnitude of $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ given by Eq. (13.425), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264). The factor given by Eq. (13.430) normalized the energies to match that of the Coulombic energy alone to meet the energy matching condition of each $C-H$-bond MO under the influence of the proton and the C nucleus. Each $C-H$-bond MO comprises the same $C 2 s p^{3}$ shell having its energy normalized to that of the Coulombic energy between the electron and a charge of $+e$ at the carbon focus of the $\mathrm{CH}_{4} \mathrm{MO}$. Thus, the energy of the $\mathrm{CH}_{4} \mathrm{MO}$ is also given by the sum of that of the four H_{2}-type ellipsoidal MOs given by Eq. (11.212) minus three times the Coulombic energy, $E_{\text {Coulomb }}(H)=-13.605804 \mathrm{eV}$, of the three redundant $+e$'s of the linear combination:

$$
\begin{align*}
E_{T}\left(4 H_{2}-3 H\right) & =-\frac{4 e^{2}}{8 \pi \varepsilon_{0} a_{0}}\left[\left(2 \sqrt{2}-\sqrt{2}+\frac{\sqrt{2}}{2}\right) \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}-\sqrt{2}\right]-3 E_{\text {Coulomb }}(H) \\
& =4(-31.63536831 \mathrm{eV})-3(-13.605804 \mathrm{eV}) \tag{13.581}\\
& =-85.72406 \mathrm{eV}
\end{align*}
$$

$E_{T}\left(C H_{4}\right)$ given by Eq. (13.580) is set equal to four times the energy of the H_{2}-type ellipsoidal MO minus three times the Coulombic energy of H given by Eq. (13.581):

$$
\begin{equation*}
E_{T}\left(C H_{4}\right)=-\frac{4 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV}=-85.72406 \mathrm{eV} \tag{13.582}
\end{equation*}
$$

From the energy relationship given by Eq. (13.582) and the relationship between the axes given by Eqs. (13.60-13.63), the dimensions of the $\mathrm{CH}_{4} \mathrm{MO}$ can be solved.

Substitution of Eq. (13.60) into Eq. (13.543) gives:

$$
\begin{equation*}
\frac{4 e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right]=e 71.08917 \tag{13.583}
\end{equation*}
$$

The most convenient way to solve Eq. (13.583) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is

$$
\begin{equation*}
a=1.62340 a_{0}=8.59066 \times 10^{-11} \mathrm{~m} \tag{13.584}
\end{equation*}
$$

Substitution of Eq. (13.584) into Eq. (13.60) gives:

$$
\begin{equation*}
c^{\prime}=1.04032 a_{0}=5.50514 \times 10^{-11} \mathrm{~m} \tag{13.585}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.585) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.08064 a_{0}=1.10103 \times 10^{-10} \mathrm{~m} \tag{13.586}
\end{equation*}
$$

The experimental bond distance is [41]:

$$
\begin{equation*}
2 c^{\prime}=1.087 \times 10^{-10} \mathrm{~m} \tag{13.587}
\end{equation*}
$$

Substitution of Eqs. (13.584-13.585) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=1.24626 a_{0}=6.59492 \times 10^{-11} \mathrm{~m} \tag{13.588}
\end{equation*}
$$

Substitution of Eqs. (13.584-13.585) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.64083 \tag{13.589}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the C atom comprise the foci of each H_{2}-type ellipsoidal MO. The parameters of the point of intersection of each H_{2}-type ellipsoidal MO and the $C 2 s p^{3} \mathrm{HO}$ in the absence of the other three are given by Eqs. (13.84-13.95), (13.261-13.270), (13.434-13.442), and (13.551-13.555). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{2 s p^{3}}=0.91771 a_{0}$ is the radius of the $C 2 s p^{3}$ shell. Substitution of Eqs. (13.584-13.585) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=86.20^{\circ} \tag{13.590}
\end{equation*}
$$

Then, the angle $\theta_{C 2 s p^{3} H O}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C 2 \text { sp }{ }^{3} \text { HO }}=180^{\circ}-86.20^{\circ}=93.80^{\circ} \tag{13.591}
\end{equation*}
$$

as shown in Figure 13.9. The parametric angle $\theta_{\mathrm{H}_{2} \mathrm{MO}}$ given by Eqs. (13.442-13.443), (13.588), and (13.591) is:

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} M O}=47.29^{\circ} \tag{13.592}
\end{equation*}
$$

Then, the distance $d_{\mathrm{H}_{2} \mathrm{MO}}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals given by Eqs. (13.445), (13.584), and (13.592) is:

$$
\begin{equation*}
d_{H_{2} M O}=1.10121 a_{0}=5.82734 \times 10^{-11} \mathrm{~m} \tag{13.593}
\end{equation*}
$$

The distance $d_{C 2 s p^{3} H O}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals given by Eqs. (13.447), (13.585), and (13.593) is:
$d_{C 2 s p^{3} \mathrm{HO}}=0.06089 a_{0}=3.22208 \times 10^{-12} \mathrm{~m}$
The H_{2}-type ellipsoidal MOs do not actually directly contact the $\mathrm{C} 2 s p^{3} \mathrm{HO}$. As discussed in the Force Balance of $\mathrm{H}_{2} \mathrm{O}$ section, with the addition of the fourth $\mathrm{C}-\mathrm{H}$ bond, the H_{2}-type ellipsoidal MOs may linearly combine to form a continuous two-dimensional surface of equipotential equivalent to that of the MOs if they did contact the C2sp ${ }^{3} \mathrm{HO}$. However, Eqs. (13.579-13.580) must hold based on conservation of momentum and the potential, kinetic, and total energy relationships. In order that there is current continuity given the constraints of Eqs. (13.579-13.580), the existence of a self-contained, continuouscurrent, linear-combination of the H_{2}-type ellipsoidal MOs requires that electrons are divisible between the combination H_{2} type MO and the $C 2 s p^{3} \mathrm{HO}$. This is not possible.

Thus, at the points of intersection of the H_{2}-type MOs of methane symmetry, and in similar geometries such as that of CH_{3}, representative of the general case, electron indivisibility, current continuity, and conservation of energy and angular momentum require that the current between the $C 2 s p^{3}$ shell and points of mutual contact is projected onto and flows along the radial vector to the surface of $C 2 s p^{3}$ shell. This current designated the bisector current (BC) meets the C2sp ${ }^{3}$ surface and does not travel to distances shorter than its radius.

Moreover, an energy minimum is obtained when the H-atom charge-density of each $C-H$-bond MO is decreased by a factor of 0.25 with a corresponding 0.25 increase in that of the three other $C-H$-bond MOs. In this case, the angular momentum components of the transferred current mutually cancel. The geometry of the equivalent bonds is tetrahedral. The symmetry point group is T_{d}. This geometry is equivalent to the indistinguishable bonds positioned uniformly on a spherical surface or also at the apexes of a cube. The predicted angle θ between the $C-H$ bonds is:

$$
\begin{equation*}
\theta=109.5^{\circ} \tag{13.595}
\end{equation*}
$$

The experimental bond angle is [41]:

$$
\begin{equation*}
\theta=109.5^{\circ} \tag{13.596}
\end{equation*}
$$

The polar angle ϕ at which the H_{2}-type ellipsoidal MOs intersect is given by the bisector of the angle θ between the $C-H$ bonds:

$$
\begin{equation*}
\phi=\frac{109.5}{2}=54.75^{\circ} \tag{13.597}
\end{equation*}
$$

With the carbon nucleus defined as the origin and one of the $C-H$ bonds defined as the positive x -axis, the polar-coordinate angle of the intersection occurs at:

$$
\begin{equation*}
\phi^{\prime}=54.75^{\circ}+180^{\circ}=234.75^{\circ} \tag{13.598}
\end{equation*}
$$

The polar radius r_{i} at this angle is given by Eqs. (13.84-13.85):

$$
\begin{equation*}
r_{i}=\left(a-c^{\prime}\right) \frac{1+\frac{c^{\prime}}{a}}{1+\frac{c^{\prime}}{a} \cos \phi^{\prime}} \tag{13.599}
\end{equation*}
$$

Substitution of Eqs. (13.584-13.585) and (13.589) into Eq. (13.599) gives:

$$
\begin{equation*}
r_{i}=1.52223 a_{0}=8.05530 \times 10^{-11} \mathrm{~m} \tag{13.600}
\end{equation*}
$$

Using the orbital composition of CH_{4} (Eq. (13.579)), the radii of $C 1 s=0.17113 a_{0}$ (Eq. (10.51)) and $C 2 s p^{3}=0.91771 a_{0}$ (Eq. (13.424)) shells, and the parameters of the $\mathrm{CH}_{4} \mathrm{MO}$ given by Eqs. (13.3-13.4), (13.584-13.586), and (13.588-13.600), the charge-density of the $\mathrm{CH}_{4} \mathrm{MO}$ comprising the linear combination of four $\mathrm{C}-\mathrm{H}$-bond MOs is shown in Figure 13.13. Each $\mathrm{C}-\mathrm{H}$-bond MO having the dimensional diagram shown in Figure 13.9 comprises a H_{2}-type ellipsoidal MO and a $C 2 s p^{3} \mathrm{HO}$ according to Eq. (13.579). But, based on the T_{d} symmetry of the H_{2}-type MOs, the charge is distributed 1:1 between the H_{2} type MOs and the $C 2 s p^{3}$ shell.

Figure 13.13. $\mathrm{CH}_{4} \mathrm{MO}$ comprising the linear combination of four $\mathrm{C}-\mathrm{H}$-bond MOs formed by the superposition of a H_{2} type ellipsoidal MO and a $C 2 s p^{3} \mathrm{HO}$. (A) Color scale, translucent view of the charge-density of the $\mathrm{CH}_{4} \mathrm{MO}$. The combined surface of the four H_{2}-type ellipsoidal MOs from each $C-H$ bond that surrounds the $C 2 s p^{3} \mathrm{HO}$, the $C 2 s p^{3} \mathrm{HO}$ shell, C1s shell, and the nuclei (red, not to scale) are shown. (B) Off-center cut-away view showing the complete inner most Cls shell, and moving radially, the $C 2 s p^{3}$ shell, and the H_{2}-type ellipsoidal MOs that surround the $C 2 s p^{3} \mathrm{HO}$. Bisector current not shown. (C) Opaque view. (D)-(E) Additional translucent views.

ENERGIES OF CH_{4}

The energies of CH_{4} are four times those of CH and are given by the substitution of the semiprincipal axes (Eqs. (13.584$13.585)$ and (13.588)) into the energy equations Eq. (13.580) and (Eqs. (13.449-13.452)) that are multiplied by four:

$$
\begin{align*}
& V_{e}=4(0.91771) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-145.86691 \mathrm{eV} \tag{13.601}\\
& V_{p}=\frac{4 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=52.31390 \mathrm{eV} \tag{13.602}\\
& T=4(0.91771) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=44.92637 \mathrm{eV} \tag{13.603}\\
& \begin{array}{c}
V_{m}=4(0.91771) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-22.46318 \mathrm{eV} \\
E_{T}\left(C H_{4}\right)=-\frac{4 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV} \\
\quad=-85.72472 \mathrm{eV}
\end{array} \tag{13.604}
\end{align*}
$$

where $E_{T}\left(\mathrm{CH}_{4}\right)$ is given by Eq. (13.580) which is reiteratively matched to Eq. (13.581) within five-significant-figure round-off error.

VIBRATION OF CH_{4}

The vibrational energy levels of CH_{4} may be solved as four equivalent coupled harmonic oscillators by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [2] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERMS OF ${ }^{12} \mathrm{CH}_{4}$

The reentrant oscillation of hybridized orbitals in the transition state is not coupled. Therefore, the equations of the radiation reaction force of methane are the same as those of $\mathrm{OH}, \mathrm{CH}, \mathrm{CH}_{2}$, and CH_{3} with the substitution of the methane parameters. Using Eqs. (11.136) and (13.140-13.142), the angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=2.57338 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.606}
\end{equation*}
$$

where b is given by Eq. (13.588). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 2.57338 \times 10^{16} \mathrm{rad} / \mathrm{s}=16.93841 \mathrm{eV} \tag{13.607}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(H_{2}\right)$ (Eqs. (11.212) and (13.75)), the maximum total energy of each H_{2}-type MO, for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.607) for \bar{E}_{K} gives the Doppler energy of the electrons of each of the four bonds for the reentrant orbit:

$$
\begin{align*}
\bar{E}_{D} & \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}} \\
& =-31.63537 \mathrm{eV} \sqrt{\frac{2 e(16.93841 \mathrm{eV})}{m_{e} c^{2}}}=-0.25758 \mathrm{eV} \tag{13.608}
\end{align*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of CH_{4} due to the reentrant orbit of each bond in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (13.608) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of each $C-H$ bond. Using ω_{e} given by Eq. (13.458) for $\bar{E}_{\text {Kvib }}$ of the transition state having four independent bonds, $\bar{E}^{\prime}{ }_{\text {osc }}\left({ }^{12} \mathrm{CH}_{4}\right)$ per bond is:

$$
\begin{align*}
& \bar{E}_{o s c}^{\prime}\left({ }^{12} \mathrm{CH}_{4}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.609}\\
& \bar{E}_{o s c}^{\prime}\left({ }^{12} \mathrm{CH}_{4}\right)=-0.25758 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})=-0.07992 \mathrm{eV} \tag{13.610}
\end{align*}
$$

The reentrant orbit for the binding of a hydrogen atom to a CH_{3} radical involves four $\mathrm{C}-\mathrm{H}$ bonds. Since the vibration and reentrant oscillation is along four bonds, $\bar{E}_{\text {osc }}$ for ${ }^{12} \mathrm{CH}_{4}, \bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{4}\right)$, is:

$$
\begin{align*}
\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{4}\right) & =4\left(\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right) \tag{13.611}\\
& =4\left(-0.25758 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})\right)=-0.31967 \mathrm{eV}
\end{align*}
$$

TOTAL AND BOND ENERGIES OF ${ }^{12} \mathrm{CH}_{4}$

$E_{T+o s c}\left({ }^{12} \mathrm{CH}_{4}\right)$, the total energy of the ${ }^{12} \mathrm{CH}_{4}$ radical including the Doppler term, is given by the sum of $E_{T}\left(\mathrm{CH}_{4}\right)$ (Eq. (13.582)) and $\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{4}\right)$ given by Eq. (13.611).

$$
\begin{align*}
E_{T+o s c}\left(\mathrm{CH}_{4}\right)= & V_{e}+T+V_{m}+V_{p}+E\left(C, 2 s p^{3}\right)+\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{4}\right)=E_{T}\left(\mathrm{CH}_{4}\right)+\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{4}\right) \tag{13.612}\\
E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}_{4}\right) & =\left\{\begin{array}{l}
\left(\frac{-4 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.63489 \mathrm{eV}\right) \\
\left.-4(31.63536831 \mathrm{eV}) \sqrt{\frac{\sqrt{\frac{3}{4} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}}{m_{e}}}-\frac{1}{m_{e} c^{2}} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{array}\right\} \tag{13.613}\\
& =-85.72406 \mathrm{eV}-4\left(0.25758 \mathrm{eV}-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (13.609-13.613), the total energy of ${ }^{12} \mathrm{CH}_{4}$ is:

$$
\begin{align*}
E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}_{4}\right) & =-85.72406 \mathrm{eV}+\bar{E}_{\text {osc }}\left({ }^{12} \mathrm{CH}_{4}\right) \\
& =-85.72406 \mathrm{eV}-4\left(0.25758 \mathrm{eV}-\frac{1}{2}(0.35532 \mathrm{eV})\right)=-86.04373 \mathrm{eV} \tag{13.614}
\end{align*}
$$

where ω_{e} given by Eq. (13.458) was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The CH_{4} bond dissociation energy, $E_{D}\left({ }^{12} \mathrm{CH}_{4}\right)$, is given by the sum of the total energies of the CH_{3} radical and the hydrogen atom minus $E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}_{4}\right)$:

$$
\begin{equation*}
E_{D}\left({ }^{12} \mathrm{CH}_{4}\right)=E\left({ }^{12} \mathrm{CH}_{3}\right)+E(H)-E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}_{4}\right) \tag{13.615}
\end{equation*}
$$

where $E_{T}\left({ }^{12} \mathrm{CH}_{3}\right)$ is given by the sum of the energies of the $C 2 s p^{3} \mathrm{HO}, E\left(C, 2 s p^{3}\right)$ given by Eq. (13.428), $3 E_{D}(H)$ given by Eq. (13.154), and the negative of the bond energies of ${ }^{12} \mathrm{CH}$ given by Eq. (13.489), ${ }^{12} \mathrm{CH}_{2}$ given by Eq. (13.528), and ${ }^{12} \mathrm{CH}_{3}$ given by Eq. (13.573):

$$
\begin{equation*}
E\left({ }^{12} \mathrm{CH}_{3}\right)=\binom{3(-13.59844 \mathrm{eV})-14.63489 \mathrm{eV}}{-3.47 \mathrm{eV}-4.33064 \mathrm{eV}-4.72444 \mathrm{eV}}=-67.95529 \mathrm{eV} \tag{13.616}
\end{equation*}
$$

Thus, the ${ }^{12} \mathrm{CH}_{4}$ bond dissociation energy, $E_{D}\left({ }^{12} \mathrm{CH}_{4}\right)$, given by Eqs. (13.154), and (13.614-13.616) is:

$$
\begin{align*}
E_{D}\left({ }^{12} \mathrm{CH}_{4}\right) & =-(67.95529 \mathrm{eV}+13.59844 \mathrm{eV})-E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}_{4}\right) \tag{13.617}\\
& =-81.55373 \mathrm{eV}-(-86.04373 \mathrm{eV})=4.4900 \mathrm{eV}
\end{align*}
$$

The experimental ${ }^{12} \mathrm{CH}_{4}$ bond dissociation energy is [40] :

$$
\begin{equation*}
E_{D}\left({ }^{12} \mathrm{CH}_{4}\right)=4.48464 \mathrm{eV} \tag{13.618}
\end{equation*}
$$

The results of the determination of bond parameters of CH_{4} are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

NITROGEN MOLECULE

The nitrogen molecule can be formed by the reaction of two nitrogen atoms:

$$
\begin{equation*}
N+N \rightarrow N_{2} \tag{13.619}
\end{equation*}
$$

The bond in the nitrogen molecule comprises a H_{2}-type molecular orbital (MO) with two paired electrons. The force balance equation and radius r_{7} of the $2 p$ shell of N is derived in the Seven-Electron Atoms section. With the formation of the H_{2}-type MO by the contribution of a $2 p$ electron from each N atom, a diamagnetic force arises between the remaining $2 p$ electrons and the H_{2}-type MO. This force from each N causes the H_{2}-type MO to move to greater principal axes than would result with the Coulombic force alone. But, the integer increase of the central field and the resulting increased Coulombic as well as magnetic central forces on the remaining $2 p$ electrons of each N decrease the radius of the corresponding shell such that the energy minimum is achieved that is lower than that of the reactant atoms. The resulting electron configuration of N_{2} is $1 s_{1}^{2} 1 s_{2}^{2} 2 s_{1}^{2} 2 s_{2}^{2} 2 p_{1}^{2} 2 p_{2}^{2} \sigma_{1,2}^{2}$ where the subscript designates the N atom, 1 or $2, \sigma$ designates the H_{2}-type MO, and the orbital arrangement is:

Nitrogen is predicted to be diamagnetic in agreement with observations.

FORCE BALANCE OF THE $2 p$ SHELL OF THE NITROGEN ATOMS OF THE NITROGEN MOLECULE

For each N atom, force balance for the outermost $2 p$ electron of N_{2} (electron 6) is achieved between the centrifugal force and the Coulombic and magnetic forces that arise due to interactions between electron 6 and the other $2 p$-shell as well as the $2 s$ shell electrons due to spin and orbital angular momentum. The forces used are derived in the Seven-Electron Atoms section. The central Coulomb force on the outer-most $2 p$ shell electron of N_{2} (electron 6) due to the nucleus and the inner five electrons is given by Eq. (10.70) with the appropriate charge and radius:

$$
\begin{equation*}
\mathbf{F}_{\text {ele }}=\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}} \mathbf{i}_{\mathbf{r}} \tag{13.621}
\end{equation*}
$$

for $r>r_{5}$. The $2 p$ shell possess an external electric field given by Eq. (10.92) for $r>r_{6}$. The energy is minimized with conservation of angular momentum. This condition is met when the diamagnetic force, $\mathbf{F}_{\text {diamagnetic }}$, of Eq. (10.82) due to the p orbital contribution is the same as that of the reactant nitrogen atoms given by Eq. (10.136) with r_{6} replacing r_{7} :

$$
\begin{align*}
\mathbf{F}_{\text {diamagnetic }} & =-\left(\frac{1}{3}\right) \frac{\hbar^{2}}{4 m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.622}\\
& =-\frac{\hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}} \mathbf{i}_{\mathbf{r}}
\end{align*}
$$

And, $\mathbf{F}_{\text {mag } 2}$ corresponding to the conserved orbital angular momentum of the three orbitals is given by Eq. (10.89).

$$
\begin{equation*}
\mathbf{F}_{\text {mag } 2}=\frac{1}{Z} \frac{3 \hbar^{2}}{m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.623}
\end{equation*}
$$

The electric field external to the $2 p$ shell given by Eq. (10.92) for $r>r_{6}$ gives rise to a second diamagnetic force,
$\mathbf{F}_{\text {diamagnetic 2 }}$, given by Eq. (10.93). $\mathbf{F}_{\text {diamagnetic } 2}$ due to the binding of the p-orbital electron having an electric field of +1 outside of its radius is:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic } 2}=-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{m_{e} r_{6}^{4}} 10 \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.624}
\end{equation*}
$$

In addition, the contribution of a $2 p$ electron from each N atom in the formation of the σ MO gives rise to a paramagnetic force on the remaining two $2 p$ electrons that pair. The force, $\mathbf{F}_{\text {mag } 3}$, follows from Eq. (10.11) wherein the two radii are equal to r_{6} and the direction is positive, central:

$$
\begin{equation*}
\mathbf{F}_{\operatorname{mag} 3}=\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathrm{r}} \tag{13.625}
\end{equation*}
$$

$\mathbf{F}_{\text {mag } 3}$ is present in additional diatomic molecules where its contribution minimizes the energy. This AO spin-pairing force reduces the radius directly to reduce the energy, and it can also cancel the contribution of the corresponding electron to $\mathbf{F}_{\text {diamagnetic }}$ to further reduce the energy.

The radius of the $2 p$ shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (13.621)) and diamagnetic (Eqs. (13.622) and (13.624)), and paramagnetic (Eqs. (13.623) and (13.625)) forces as follows:

$$
\begin{equation*}
\frac{m_{e} v_{6}^{2}}{r_{6}}=\binom{\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}}-\frac{\hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)}+\frac{3 \hbar^{2}}{Z m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)}}{-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{6}^{4} m_{e}} 10 \sqrt{s(s+1)}+\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{s(s+1)}} \tag{13.626}
\end{equation*}
$$

Substitution of $v_{6}=\frac{\hbar}{m_{e} r_{6}}$ (Eq. (1.35)) and $s=\frac{1}{2}$ into Eq. (13.626) gives:

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} r_{6}^{3}}-\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{\frac{3}{4}}=\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}}-\frac{\hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}}+\frac{3 \hbar^{2}}{Z m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}}-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{6}^{4} m_{e}} 10 \sqrt{\frac{3}{4}} \tag{13.627}
\end{equation*}
$$

The quadratic equation corresponding to Eq. (13.627) is:

$$
\begin{equation*}
r_{6}^{2}-\frac{\frac{\hbar^{2}}{m_{e}}\left(1-\frac{\sqrt{3}}{8}\right)}{\left(\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)^{2}} r_{6}-\frac{\frac{\hbar^{2}}{m_{e}}\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3} 10 \sqrt{\frac{3}{4}}}{\left(\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)}=0 \tag{13.628}
\end{equation*}
$$

The solution of Eq. (13.628) using the quadratic formula is:

$$
\begin{equation*}
r_{6}=\frac{a_{0}\left(1-\frac{\sqrt{3}}{8}\right)}{\left((Z-5)-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)} \pm a_{0} \sqrt{\left(\frac{1-\frac{\sqrt{3}}{8}}{\left(\frac{\left.(Z-5)-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}{\left(\frac{20 \sqrt{3}\left(\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3}\right)}{\left((Z-5)-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}\right.}\right.}\right)^{2}} \text { (in units of } a_{0} \tag{13.629}
\end{equation*}
$$

The positive root of Eq. (13.629) must be taken in order that $r_{6}>0$. Substitution of $\frac{r_{3}}{a_{0}}=0.69385$ (Eq. (10.62) with $Z=7$) into Eq. (13.629) gives:

$$
\begin{equation*}
r_{6}=0.78402 a_{0} \tag{13.630}
\end{equation*}
$$

ENERGIES OF THE $2 p$ SHELL OF THE NITROGEN ATOMS OF THE NITROGEN MOLECULE

The central forces on the $2 p$ shell of each N are increased with the formation of the $\sigma \mathrm{MO}$, which reduces the shell's radius and increases its total energy. The Coulombic energy terms of the total energy of the two N atoms at the new radius are calculated and added to the energy of the σ MO to give the total energy of N_{2}. Then, the bond energy is determined from the total N_{2} energy.

The radius r_{7} of each nitrogen atom before bonding is given by Eq. (10.142).

$$
\begin{equation*}
r_{7}=0.93084 a_{0} \tag{13.631}
\end{equation*}
$$

Using the initial radius r_{7} of each N atom and the final radius r_{6} of the $N 2 p$ shell of N_{2} (Eq. (13.630)) and by considering that the central Coulombic field decreases by an integer for each successive electron of the shell, the sum $E_{T}\left(N_{2}, 2 p\right)$ of the Coulombic energy change of the $N 2 p$ electrons of both atoms is determined using Eq. (10.102).

$$
\begin{equation*}
E_{T}\left(N_{2}, 2 p\right)=-2 \sum_{n=4}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{6}}-\frac{1}{r_{7}}\right)=-2(13.60580 \mathrm{eV})(0.20118)(2+3)=-27.37174 \mathrm{eV} \tag{13.632}
\end{equation*}
$$

FORCE BALANCE OF THE σ MO OF THE NITROGEN MOLECULE

The $2 p$ shell gives rise to two diamagnetic forces on the σ MO. As given for the hydrogen molecule in the Hydrogen-Type Molecules section, the σ MO comprises two electrons, σ electron 1 and σ electron 2, that are bound at $\xi=0$ as a equipotential prolate spheroidal MO by the central Coulombic field due to the nitrogen atoms at the foci and the spin pairing force on σ electron 2 due to σ electron 1 that initially has smaller semiprincipal axes. The spin-pairing force given in Eq. (11.200) is equal to one half the centrifugal force of the two electrons. The spin-pairing electron of the σ MO is also repelled by the remaining $2 p$ electrons of each N according to Lenz law, and the force is based on the total number of these electrons n_{e} that interact with the binding $\sigma-\mathrm{MO}$ electron. This diamagnetic force $\mathbf{F}_{\text {diamagneticMO1 }}$ is of the same form as the molecular spinpairing force but in the opposite direction. The force follows from the derivations of Eqs. (10.219) and (11.200) which gives:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagneticMO1 }}=\frac{n_{e} \hbar^{2}}{4 m_{e} a^{2} b^{2}} D \mathbf{i}_{\xi} \tag{13.633}
\end{equation*}
$$

In addition, there is a relativistically corrected Lorentz force $\mathbf{F}_{\text {diamagneticMO2 }}$ on the pairing electron of the σ MO that follows from Eqs. (7.15) and (11.200):

$$
\begin{equation*}
\mathbf{F}_{\text {diamagneticMO2 }}=\frac{1}{Z} \frac{|L| \hbar}{2 m_{e} a^{2} b^{2}} D \mathbf{i}_{\xi} \tag{13.634}
\end{equation*}
$$

where $|L|$ is the magnitude of the angular momentum of each N atom at a focus that is the source of the diamagnetism at the σ MO.

The force balance equation for the $\sigma-\mathrm{MO}$ of the nitrogen molecule given by Eq. (11.200) and Eqs. (13.633-13.634) with $n_{e}=2$ and $|L|=\hbar$ is:

$$
\begin{align*}
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D-\left(1+\frac{1}{Z}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{13.635}\\
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D-\frac{1}{Z} \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{13.636}\\
& \left(2+\frac{1}{Z}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D \tag{13.637}\\
& a=\left(2+\frac{1}{Z}\right) a_{0} \tag{13.638}
\end{align*}
$$

Substitution of $Z=7$ into Eq. (13.638) gives:

$$
\begin{equation*}
a=2.14286 a_{0}=1.13395 \times 10^{-10} \mathrm{~m} \tag{13.639}
\end{equation*}
$$

Substitution of Eq. (13.639) into Eq. (11.79) is:

$$
\begin{equation*}
c^{\prime}=1.03510 a_{0}=5.47750 \times 10^{-11} \mathrm{~m} \tag{13.640}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.640) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.07020 a_{0}=1.09550 \times 10^{-10} \mathrm{~m} \tag{13.641}
\end{equation*}
$$

The experimental bond distance from Ref. [28] and Ref. [43] is:

$$
\begin{align*}
& 2 c^{\prime}=1.09769 \times 10^{-10} \mathrm{~m} \tag{13.642}\\
& 2 c^{\prime}=1.094 \times 10^{-10} \mathrm{~m} \tag{13.643}
\end{align*}
$$

Substitution of Eqs. (13.639-13.640) into Eq. (11.80) is:

$$
\begin{equation*}
b=c=1.87628 a_{0}=9.92882 \times 10^{-11} \mathrm{~m} \tag{13.644}
\end{equation*}
$$

Substitution of Eqs. (13.639-13.640) into Eq. (11.67) is:

$$
\begin{equation*}
e=0.48305 \tag{13.645}
\end{equation*}
$$

Using the electron configuration of N_{2} (Eq. (13.620)), the radii of the $N 1 s=0.14605 a_{0}$ (Eq. (10.51)), $N 2 s=0.69385 a_{0}$ (Eq. (10.62)), and $N 2 p=0.78402 a_{0}$ (Eq. (13.630)) shells and the parameters of the $\sigma \mathrm{MO}$ of N_{2} given by Eqs. (13.3-13.4), (13.639-13.641), and (13.644-13.645), the dimensional diagram and charge-density of the $N_{2} \mathrm{MO}$ are shown in Figures 13.14 and 13.15 , respectively.

Despite the predictions of standard quantum mechanics that preclude the imaging of a molecular orbital, the full threedimensional structure of the outer molecular orbital of N_{2} has been recently tomographically reconstructed [44]. The chargedensity surface observed is consistent with that shown in Figure 13.15. This result constitutes direct evidence that electrons are not point-particle probability waves that have no form until they are "collapsed to a point" by measurement. Rather they are physical, two-dimensional equipotential charge density surfaces.

Figure 13.14. The cross section of the N_{2} MO showing the axes, σ MO (H_{2}-type ellipsoidal MO), with the $N 1 s, 2 s$, and $2 p$ atomic orbitals (AOs). Legend: a : semimajor axis, b : semiminor axis, c^{\prime} : internuclear distance, r_{6} : radius of the $N 2 p$ shell having two paired electrons.

Figure 13.15. $N_{2} \mathrm{MO}$ comprising the $\sigma \mathrm{MO}\left(\mathrm{H}_{2}\right.$-type MO) with N atoms at the foci that have each donated an electron to the σ MO and have smaller radii and higher binding energies as a consequence. (A) Color scale, translucent view of the charge-density of the $N_{2} \mathrm{MO}$. (B) Off-center cutaway view showing the complete inner most $N 1 s$ shell, and moving radially, the $N 2 s$ shell, the $N 2 p$ shell, and the σ prolate spheroidal MO that have the N atoms as the foci.

Sum of the Energies of the σ MO and the AOS of the Nitrogen Molecule
The energies of the $N_{2} \sigma \mathrm{MO}$ are given by the substitution of the semiprincipal axes (Eqs. (13.639-13.640) and (13.644)) into the energy equations (Eqs. (11.207-11.212)) of H_{2} :

$$
\begin{align*}
& V_{e}=\frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-27.70586 \mathrm{eV} \tag{13.646}\\
& V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=13.14446 \mathrm{eV} \tag{13.647}\\
& T=\frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=6.46470 \mathrm{eV} \tag{13.648}\\
& V_{m}=\frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-3.23235 \mathrm{eV} \tag{13.649}\\
& E_{T}=V_{e}+T+V_{m}+V_{p} \tag{13.650}
\end{align*}
$$

Substitution of Eqs. (11.79) and (13.646-13.649) into Eq. (13.650) gives:

$$
\begin{aligned}
E_{T}\left(N_{2}, \sigma\right) & =\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left(\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right) \\
& =-11.32906 \mathrm{eV}
\end{aligned}
$$

where $E_{T}\left(N_{2}, \sigma\right)$ is the total energy of the σ MO of N_{2}. The sum, $E_{T}\left(N_{2}\right)$, of $E_{T}\left(N_{2}, 2 p\right)$, the $2 p(\mathrm{AO})$ contribution given by Eq. (13.632), and $E_{T}\left(N_{2}, \sigma\right)$, the σ MO contribution given by Eq. (13.651) is:

$$
\begin{align*}
E_{T}\left(N_{2}\right) & =E_{T}\left(N_{2}, 2 p\right)+E_{T}\left(N_{2}, \sigma\right) \tag{13.652}\\
& =-27.37174 \mathrm{eV}-11.32906 \mathrm{eV}=-38.70080 \mathrm{eV}
\end{align*}
$$

VIBRATION OF N_{2}

The vibrational energy levels of N_{2} may be solved by determining the Morse potential curve from the energy relationships for the transition from two N atoms whose parameters are given by Eqs. (10.134-10.143) to the two N atoms whose parameter r_{6} is given by Eq. (13.630) and the σ MO whose parameters are given by Eqs. (13.639-13.641) and (13.644-13.645). As shown in the Vibration of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about the internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K\&P) [15] and after Eq. (11.134). Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy corrections can be found by perturbation methods.

THE DOPPLER ENERGY TERMS OF THE NITROGEN MOLECULE

The equations of the radiation reaction force of nitrogen are the same as those of H_{2} with the substitution of the nitrogen parameters. Using Eqs. (11.231-11.233), the angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{align*}
\omega & =\sqrt{\frac{\frac{e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}} \tag{13.653}\\
& =1.31794 \times 10^{16} \mathrm{rad} / \mathrm{s}
\end{align*}
$$

where a is given by Eq. (13.639). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{align*}
\bar{E}_{K} & =\hbar \omega \tag{13.654}\\
& =\hbar 1.31794 \times 10^{16} \mathrm{rad} / \mathrm{s}=8.67490 \mathrm{eV}
\end{align*}
$$

In Eq. (11.181), substitution of $E_{T}\left(N_{2}\right)$ for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.654) for \bar{E}_{K} gives the Doppler energy of the electrons of the reentrant orbit:

$$
\begin{align*}
\bar{E}_{D} & \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}} \tag{13.655}\\
& =-38.70080 \mathrm{eV} \sqrt{\frac{2 e(8.67490 \mathrm{eV})}{m_{e} c^{2}}}=-0.22550 \mathrm{eV}
\end{align*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of the $N_{2} \mathrm{MO}$ due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (13.655) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy. Using the experimental N_{2} ω_{e} of $2358.57 \mathrm{~cm}^{-1}(0.29243 \mathrm{eV})$ [28] for $\bar{E}_{\text {Kvib }}$ of the transition state, $\bar{E}_{\text {osc }}\left(N_{2}\right)$ is:

$$
\begin{align*}
\bar{E}_{\text {osc }}\left(N_{2}\right) & =\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.656}\\
\bar{E}_{\text {osc }}\left(N_{2}\right) & =-0.22550 \mathrm{eV}+\frac{1}{2}(0.29243 \mathrm{eV}) \tag{13.657}\\
& =-0.07929 \mathrm{eV}
\end{align*}
$$

TOTAL AND BOND ENERGIES OF THE NITROGEN MOLECULE

$E_{T+\text { osc }}\left(N_{2}\right)$, the total energy of N_{2} including the Doppler term, is given by the sum of $E_{T}\left(N_{2}\right)$ (Eq. (13.652)) and $\bar{E}_{\text {osc }}\left(N_{2}\right)$ given by Eq. (13.657):

$$
\begin{align*}
E_{T+\text { osc }}\left(N_{2}\right) & =V_{e}+T+V_{m}+V_{p}+E_{T}\left(N_{2}, 2 p\right)+\bar{E}_{\text {osc }}\left(N_{2}\right) \tag{13.658}\\
& =E_{T}\left(N_{2}, \sigma\right)+E_{T}\left(N_{2}, 2 p\right)+\bar{E}_{\text {osc }}\left(N_{2}\right)=E_{T}\left(N_{2}\right)+\bar{E}_{\text {osc }}\left(N_{2}\right) \\
E_{T+\text { osc }}\left(N_{2}\right) & =\left\{\begin{array}{l}
\left(\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left(\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right)-2 \sum_{n=4}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{6}}-\frac{1}{r_{7}}\right)\right) \\
\left(1+\sqrt{\frac{2 \hbar \sqrt{\frac{e^{2}}{4 \pi \varepsilon_{0} a^{3}}} \frac{m_{e}}{m_{e} c^{2}}}{}}\right)+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \\
\end{array}\right\} \tag{13.659}\\
& =-38.70080 e V-0.22550 e V+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}
\end{align*}
$$

From Eqs. (13.656-13.659), the total energy of the $N_{2} \mathrm{MO}$ is:

$$
\begin{align*}
E_{T+o s c}\left(N_{2}\right) & =-38.70080 \mathrm{eV}+\bar{E}_{\text {osc }}\left(N_{2}\right) \\
& =-38.70080 \mathrm{eV}-0.22550 \mathrm{eV}+\frac{1}{2}(0.29243 \mathrm{eV})=-38.78009 \mathrm{eV} \tag{13.660}
\end{align*}
$$

where the experimental ω_{e} was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The N_{2} bond dissociation energy, $E_{D}\left(N_{2}\right)$, is given by the difference in the total energies of the two N atoms and $E_{T+\text { osc }}\left(N_{2}\right)$:

$$
\begin{equation*}
E_{D}\left(N_{2}\right)=2 E(N)-E_{T+o s c}\left(N_{2}\right) \tag{13.661}
\end{equation*}
$$

where the energy of a nitrogen atom is [6] :

$$
\begin{equation*}
E(N)=-14.53414 \mathrm{eV} \tag{13.662}
\end{equation*}
$$

Thus, the N_{2} bond dissociation energy, $E_{D}\left(N_{2}\right)$, given by Eqs. (13.660-13.662) is:

$$
\begin{equation*}
E_{D}\left(N_{2}\right)=-2(14.53414 \mathrm{eV})-E_{T+\text { osc }}\left(N_{2}\right)=-29.06828 \mathrm{eV}-(-38.78009 \mathrm{eV})=9.71181 \mathrm{eV} \tag{13.663}
\end{equation*}
$$

The experimental N_{2} bond dissociation energy from Ref. [43] and Ref. [45] is:

$$
\begin{align*}
& E_{D}\left(N_{2}\right)=9.756 \mathrm{eV} \tag{13.664}\\
& E_{D}\left(N_{2}\right)=9.764 \mathrm{eV} \tag{13.665}
\end{align*}
$$

The results of the determination of bond parameters of N_{2} are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

OXYGEN MOLECULE

The oxygen molecule can be formed by the reaction of two oxygen atoms:

$$
\begin{equation*}
\mathrm{O}+\mathrm{O} \rightarrow \mathrm{O}_{2} \tag{13.666}
\end{equation*}
$$

The bond in the oxygen molecule comprises a H_{2}-type molecular orbital (MO) with two paired electrons. The force balance equation and radius r_{8} of the $2 p$ shell of O is derived in the Eight-Electron Atoms section. With the formation of the H_{2}-type MO by the contribution of a $2 p$ electron from each O atom, a diamagnetic force arises between the remaining $2 p$ electrons and the H_{2}-type MO. This force from each O causes the H_{2}-type MO to move to greater principal axes than would result with the Coulombic force alone. But, the integer increase of the central field and the resulting increased Coulombic as well as magnetic central forces on the remaining $2 p$ electrons of each O decrease the radius of the corresponding shell such that the energy minimum is achieved that is lower than that of the reactant atoms. The resulting electron configuration of O_{2} is $1 s_{1}^{2} 1 s_{2}^{2} 2 s_{1}^{2} 2 s_{2}^{2} 2 p_{1}^{3} 2 p_{2}^{3} \sigma_{1,2}^{2}$ where the subscript designates the O atom, 1 or $2, \sigma$ designates the H_{2}-type MO, and the orbital arrangement is:

Oxygen is predicted to be paramagnetic in agreement with observations [42].

FORCE BALANCE OF THE $2 p$ SHELL OF THE OXYGEN ATOMS OF THE OXYGEN MOLECULE

For each O atom, force balance for the outermost $2 p$ electron of O_{2} (electron 7) is achieved between the centrifugal force and the Coulombic and magnetic forces that arise due to interactions between electron 7 and the other $2 p$-shell as well as the $2 s$ shell electrons due to spin and orbital angular momentum. The forces used are derived in the Eight-Electron Atoms section. The central Coulomb force on the outer-most $2 p$ shell electron of O_{2} (electron 7) due to the nucleus and the inner six electrons is given by Eq. (10.70) with the appropriate charge and radius:

$$
\begin{equation*}
\mathbf{F}_{e l e}=\frac{(Z-6) e^{2}}{4 \pi \varepsilon_{0} r_{7}^{2}} \mathbf{i}_{\mathbf{r}} \tag{13.668}
\end{equation*}
$$

for $r>r_{6}$. The $2 p$ shell possess an external electric field given by Eq. (10.92) for $r>r_{7}$. The energy is minimized with conservation of angular momentum. This condition is met when the magnetic forces are the same as those of the reactant oxygen atoms with r_{7} replacing r_{8}. The diamagnetic force, $\mathbf{F}_{\text {diamagnetic }}$, of Eq. (10.82) due to the p-orbital contributions is given by Eq. (10.156):

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic }}=-\left(\frac{1}{3}+\frac{2}{3}\right) \frac{\hbar^{2}}{4 m_{e} r_{7}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}}=-\frac{3 \hbar^{2}}{12 m_{e} r_{7}^{2} r_{3}} \sqrt{\frac{3}{4}} \mathbf{i}_{\mathbf{r}} \tag{13.669}
\end{equation*}
$$

And, $\mathbf{F}_{\text {mag } 2}$ corresponding to the conserved spin and orbital angular momentum given by Eq. (10.157) is:

$$
\begin{equation*}
\mathbf{F}_{\operatorname{mag} 2}=\frac{1}{Z} \frac{2 \hbar^{2}}{m_{e} r_{7}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathrm{r}} \tag{13.670}
\end{equation*}
$$

The electric field external to the $2 p$ shell given by Eq. (10.92) for $r>r_{7}$ gives rise to a second diamagnetic force, $\mathbf{F}_{\text {diamagnetic } 2}$, given by Eq. (10.93). $\mathbf{F}_{\text {diamagnetic } 2}$ due to the binding of the p-orbital electron having an electric field of +1 outside of its radius is :

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic } 2}=-\left[\frac{Z-7}{Z-6}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{m_{e} r_{7}^{4}} 10 \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.671}
\end{equation*}
$$

The radius of the $2 p$ shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (13.688)) and diamagnetic (Eqs. (13.669) and (13.671)), and paramagnetic (Eq. (13.670)) forces as follows:

$$
\begin{equation*}
\frac{m_{e} v_{7}^{2}}{r_{7}}=\binom{\frac{(Z-6) e^{2}}{4 \pi \varepsilon_{0} r_{7}^{2}}-\frac{3 \hbar^{2}}{12 m_{e} r_{7}^{2} r_{3}} \sqrt{s(s+1)}+\frac{2 \hbar^{2}}{Z m_{e} r_{7}^{2} r_{3}} \sqrt{s(s+1)}}{-\left[\frac{Z-7}{Z-6}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{7}^{4} m_{e}} 10 \sqrt{s(s+1)}} \tag{13.672}
\end{equation*}
$$

Substitution of $v_{7}=\frac{\hbar}{m_{e} r_{7}}$ (Eq. (1.35)) and $s=\frac{1}{2}$ into Eq. (13.672) gives:

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} r_{7}^{3}}=\frac{(Z-6) e^{2}}{4 \pi \varepsilon_{0} r_{7}^{2}}-\frac{3 \hbar^{2}}{12 m_{e} r_{7}^{2} r_{3}} \sqrt{\frac{3}{4}}+\frac{2 \hbar^{2}}{Z m_{e} r_{7}^{2} r_{3}} \sqrt{\frac{3}{4}}-\left[\frac{Z-7}{Z-6}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{7}^{4} m_{e}} 10 \sqrt{\frac{3}{4}} \tag{13.673}
\end{equation*}
$$

The quadratic equation corresponding to Eq. (13.673) is:

$$
\begin{equation*}
r_{7}^{2}-\frac{\frac{\hbar^{2}}{m_{e}}}{\left(\frac{(Z-6) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{3}{12}-\frac{2}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)} r_{7}-\frac{\frac{\hbar^{2}}{m_{e}}\left[\frac{Z-7}{Z-6}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3} 10 \sqrt{\frac{3}{4}}}{\left(\frac{(Z-6) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{3}{12}-\frac{2}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)}=0 \tag{13.674}
\end{equation*}
$$

The solution of Eq. (13.674) using the quadratic formula is:

$$
\begin{equation*}
r_{7}=\frac{a_{0}}{\left(\frac{\left((Z-6)-\left(\frac{3}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}{\left(\frac{\left.(Z-6)-\left(\frac{3}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}{}\right)^{2}} \sqrt{\left(\frac{20 \sqrt{3}\left(\left[\frac{Z-7}{Z-6}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3}\right)}{\left((Z-6)-\left(\frac{3}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}\right.}\right.}, r_{3} \text { in units of } a_{0} \tag{13.675}
\end{equation*}
$$

The positive root of Eq. (13.675) must be taken in order that $r_{7}>0$. Substitution of $\frac{r_{3}}{a_{0}}=0.59020$ (Eq. (10.62) with $Z=8$) into Eq. (13.675) gives:

$$
\begin{equation*}
r_{7}=0.91088 a_{0} \tag{13.676}
\end{equation*}
$$

ENERGIES OF THE $2 p$ SHELL OF THE OXYGEN ATOMS OF THE OXYGEN MOLECULE

The central forces on the $2 p$ shell of each O are increased with the formation of the $\sigma \mathrm{MO}$, which reduces the shell's radius and increases its total energy. The Coulombic energy terms of the total energy of the two O atoms at the new radius are calculated and added to the energy of the σ MO to give the total energy of O_{2}. Then, the bond energy is determined from the total O_{2} energy.

The radius r_{8} of each oxygen atom before bonding is given by Eq. (10.162).

$$
\begin{equation*}
r_{8}=a_{0} \tag{13.677}
\end{equation*}
$$

Using the initial radius r_{8} of each O atom and the final radius r_{7} of the $O 2 p$ shell of O_{2} (Eq. (13.676)) and by considering that the central Coulombic field decreases by an integer for each successive electron of the shell, the sum $E_{T}\left(O_{2}, 2 p\right)$ of the Coulombic energy change of the $O 2 p$ electrons of both atoms is determined using Eq. (10.102):

$$
\begin{align*}
E_{T}\left(O_{2}, 2 p\right) & =-2 \sum_{n=4}^{6} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{7}}-\frac{1}{r_{8}}\right) \tag{13.678}\\
& =-2(13.60580 \mathrm{eV})(0.09784)(2+3+4)=-23.96074 \mathrm{eV}
\end{align*}
$$

FORCE BALANCE OF THE σ MO OF THE OXYGEN MOLECULE

The force balance equation for the σ-MO of the oxygen molecule given by Eq. (11.200) and Eqs. (13.633-13.634) with $n_{e}=3$ and $|L|=\sqrt{\frac{3}{4}} \hbar$ is:

$$
\begin{align*}
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D-\left(\frac{3}{2}+\frac{\sqrt{\frac{3}{4}}}{Z}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{13.679}\\
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D-\left(\frac{1}{2}+\frac{\sqrt{\frac{3}{4}}}{Z}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{13.680}
\end{align*}
$$

$$
\begin{align*}
& \left(\frac{5}{2}+\frac{\sqrt{\frac{3}{4}}}{Z}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D \tag{13.681}\\
& a=\left(\frac{5}{2}+\frac{\sqrt{\frac{3}{4}}}{Z}\right) a_{0} \tag{13.682}
\end{align*}
$$

Substitution of $Z=8$ into Eq. (13.682) gives:

$$
\begin{equation*}
a=2.60825 a_{0}=1.38023 \times 10^{-10} \mathrm{~m} \tag{13.683}
\end{equation*}
$$

Substitution of Eq. (13.683) into Eq. (11.79) is:

$$
\begin{equation*}
c^{\prime}=1.14198 a_{0}=6.04312 \times 10^{-11} \mathrm{~m} \tag{13.684}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.684) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.28397 a_{0}=1.20862 \times 10^{-10} \mathrm{~m} \tag{13.685}
\end{equation*}
$$

The experimental bond distance is [28]:

$$
\begin{equation*}
2 c^{\prime}=1.20752 \times 10^{-10} \mathrm{~m} \tag{13.686}
\end{equation*}
$$

Substitution of Eqs. (13.683-13.684) into Eq. (11.80) is:

$$
\begin{align*}
b & =c=2.34496 a_{0} \tag{13.687}\\
& =1.24090 \times 10^{-10} \mathrm{~m}
\end{align*}
$$

Substitution of Eqs. (13.683-13.684) into Eq. (11.67) is:

$$
\begin{equation*}
e=0.43783 \tag{13.688}
\end{equation*}
$$

Using the electron configuration of O_{2} (Eq. (13.667)), the radii of the $O 1 s=0.12739 a_{0}$ (Eq. (10.51)), $O 2 s=0.59020 a_{0}$ (Eq. (10.62)), and $O 2 p=0.91088 a_{0}$ (Eq. (13.676)) shells and the parameters of the $\sigma \mathrm{MO}$ of O_{2} given by Eqs. (13.3-13.4), (13.68313.685), and (13.687-13.688), the dimensional diagram and charge-density of the $O_{2} \mathrm{MO}$ are shown in Figures 13.16 and 13.17, respectively.

Figure 13.16. The cross section of the O_{2} MO showing the axes, σ MO (H_{2}-type ellipsoidal MO), with the $O 1 \mathrm{~s}, 2 \mathrm{~s}$, and $2 p$ atomic orbitals (AOs). Legend: a : semimajor axis, b : semiminor axis, c^{\prime} : internuclear distance, r_{7} : radius of the $O 2 p$ shell having two paired electrons.

Figure 13.17. $\mathrm{O}_{2} \mathrm{MO}$ comprising the $\sigma \mathrm{MO}\left(\mathrm{H}_{2}\right.$-type MO) with O atoms at the foci that have each donated an electron to the σ MO and have smaller radii and higher binding energies as a consequence. (A) Color scale, translucent view of the charge-density of the O_{2} MO. (B) Off-center cutaway view showing the complete inner most $O 1 s$ shell, and moving radially, the $O 2 s$ shell, the $O 2 p$ shell, and the σ prolate spheroidal MO that have the O atoms as the foci.

SUM OF THE ENERGIES OF THE σ MO AND THE AOs OF THE OXYGEN MOLECULE

The energies of the $\mathrm{O}_{2} \sigma \mathrm{MO}$ are given by the substitution of the semiprincipal axes (Eqs. (13.683-13.684) and (13.687)) into the energy equations (Eqs. (11.207-11.212)) of H_{2} :

$$
\begin{align*}
& V_{e}=\frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-22.37716 \mathrm{eV} \tag{13.689}\\
& V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=11.91418 \mathrm{eV} \tag{13.690}\\
& T=\frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=4.28968 \mathrm{eV} \tag{13.691}\\
& V_{m}=\frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-2.14484 \mathrm{eV} \tag{13.692}\\
& E_{T}=V_{e}+T+V_{m}+V_{p} \tag{13.693}
\end{align*}
$$

Substitution of Eqs. (11.79) and (13.689-13.692) into Eq. (13.693) gives:

$$
\begin{align*}
E_{T}\left(O_{2}, \sigma\right) & =\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left(\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right) \tag{13.694}\\
& =-8.31814 \mathrm{eV}
\end{align*}
$$

where $E_{T}\left(O_{2}, \sigma\right)$ is the total energy of the σ MO of O_{2}. The sum, $E_{T}\left(O_{2}\right)$, of $E_{T}\left(O_{2}, 2 p\right)$, the $2 p$ AO contribution given by: Eq. (13.678), and $E_{T}\left(O_{2}, \sigma\right)$, the σ MO contribution given by Eq. (13.694) is:

$$
\begin{equation*}
E_{T}\left(O_{2}\right)=E_{T}\left(O_{2}, 2 p\right)+E_{T}\left(O_{2}, \sigma\right)=-23.96074 \mathrm{eV}-8.31814 \mathrm{eV}=-32.27888 \mathrm{eV} \tag{13.695}
\end{equation*}
$$

VIBRATION OF O_{2}

The vibrational energy levels of O_{2} may be solved by determining the Morse potential curve from the energy relationships for the transition from two O atoms whose parameters are given by Eqs. (10.154-10.163) to the two O atoms whose parameter r_{7} is given by Eq. (13.676) and the σ MO whose parameters are given by Eqs. (13.683-13.685) and (13.687-13.688). As shown in the Vibration of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about the internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K\&P) [15] and after Eq. (11.134). Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy corrections can be found by perturbation methods.

THE DOPPLER ENERGY TERMS OF THE OXYGEN MOLECULE

The equations of the radiation reaction force of oxygen are the same as those of H_{2} with the substitution of the oxygen parameters. Using Eqs. (11.231-11.233), the angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}=9.81432 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.696}
\end{equation*}
$$

where a is given by Eq. (13.683). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 9.81432 \times 10^{16} \mathrm{rad} / \mathrm{s}=6.45996 \mathrm{eV} \tag{13.697}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(O_{2}\right)$ for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.697) for \bar{E}_{K} gives the Doppler energy of the electrons of the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-32.27888 \mathrm{eV} \sqrt{\frac{2 e(6.45996 \mathrm{eV})}{m_{e} c^{2}}}=-0.16231 \mathrm{eV} \tag{13.698}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of the $\mathrm{O}_{2} \mathrm{MO}$ due to the reentrant orbit in the transition state corresponding to simple
harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (13.698) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy. Using the experimental $O_{2} \omega_{e}$ of $1580.19 \mathrm{~cm}^{-1}(0.19592 \mathrm{eV})$ [28] for $\bar{E}_{\text {Kvib }}$ of the transition state, $\bar{E}_{\text {osc }}\left(O_{2}\right)$ is:

$$
\begin{align*}
& \bar{E}_{\text {osc }}\left(O_{2}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.699}\\
& \bar{E}_{\text {osc }}\left(O_{2}\right)=-0.16231 \mathrm{eV}+\frac{1}{2}(0.19592 \mathrm{eV})=-0.06435 \mathrm{eV} \tag{13.700}
\end{align*}
$$

TOTAL AND BOND ENERGIES OF THE OXYGEN MOLECULE

$E_{T+\text { osc }}\left(O_{2}\right)$, the total energy of O_{2} including the Doppler term, is given by the sum of $E_{T}\left(O_{2}\right)$ (Eq. (13.695)) and $\bar{E}_{\text {osc }}\left(O_{2}\right)$ given by Eq. (13.700):

$$
\begin{align*}
E_{T+o s c}\left(O_{2}\right) & =V_{e}+T+V_{m}+V_{p}+E_{T}\left(O_{2}, 2 p\right)+\bar{E}_{\text {osc }}\left(O_{2}\right) \\
& =E_{T}\left(O_{2}, \sigma\right)+E_{T}\left(O_{2}, 2 p\right)+\bar{E}_{\text {osc }}\left(O_{2}\right) \tag{13.701}\\
& =E_{T}\left(O_{2}\right)+\bar{E}_{\text {osc }}\left(O_{2}\right) \\
E_{T+\text { osc }}\left(O_{2}\right) & =\left\{\begin{array}{l}
\left(\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left(\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right)-2 \sum_{n=4}^{6} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{7}}-\frac{1}{r_{8}}\right)\right) \\
\left.\left(1+\sqrt{\frac{2 \hbar \sqrt{\frac{e^{2}}{4 \pi \varepsilon_{0} a^{3}}}}{m_{e}}}\right)+\frac{1}{m_{e} c^{2}} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{array}\right\} \tag{13.702}\\
& =-32.27888 e V-0.16231 e V+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}
\end{align*}
$$

From Eqs. (13.699-13.702), the total energy of the $O_{2} \mathrm{MO}$ is:

$$
\begin{align*}
E_{T+o s c}\left(O_{2}\right) & =-32.27888 \mathrm{eV}+\bar{E}_{\text {osc }}\left(O_{2}\right) \\
& =-32.27888 \mathrm{eV}-0.16231 \mathrm{eV}+\frac{1}{2}(0.19592 \mathrm{eV}) \tag{13.703}\\
& =-32.34323 \mathrm{eV}
\end{align*}
$$

where the experimental ω_{e} was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The O_{2} bond dissociation energy, $E_{D}\left(O_{2}\right)$, is given by the difference in the total energies of the two O atoms and $E_{T+\text { osc }}\left(O_{2}\right)$:

$$
\begin{equation*}
E_{D}\left(O_{2}\right)=2 E(O)-E_{T+\text { osc }}\left(O_{2}\right) \tag{13.704}
\end{equation*}
$$

where the energy of an oxygen atom is [6]:

$$
\begin{equation*}
E(O)=-13.61806 \mathrm{eV} \tag{13.705}
\end{equation*}
$$

Thus, the O_{2} bond dissociation energy, $E_{D}\left(O_{2}\right)$, given by Eqs. (13.703-13.705) is:

$$
\begin{equation*}
E_{D}\left(O_{2}\right)=-2(13.61806 \mathrm{eV})-E_{T+\text { osc }}\left(O_{2}\right)=-27.23612 \mathrm{eV}-(-32.34323 \mathrm{eV})=5.10711 \mathrm{eV} \tag{13.706}
\end{equation*}
$$

The experimental O_{2} bond dissociation energy from Ref. [46] and Ref. [47] is:

$$
\begin{align*}
& E_{D}\left(O_{2}\right)=5.11665 \mathrm{eV} \tag{13.707}\\
& E_{D}\left(O_{2}\right)=5.116696 \mathrm{eV} \tag{13.708}
\end{align*}
$$

The results of the determination of bond parameters of O_{2} are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

FLUORINE MOLECULE

The fluorine molecule can be formed by the reaction of two fluorine atoms:

$$
\begin{equation*}
F+F \rightarrow F_{2} \tag{13.709}
\end{equation*}
$$

The bond in the fluorine molecule comprises a H_{2}-type molecular orbital (MO) with two paired electrons. The force balance equation and radius r_{9} of the $2 p$ shell of F is derived in the Nine-Electron Atoms section. With the formation of the H_{2}-type MO by the contribution of a $2 p$ electron from each F atom, a diamagnetic force arises between the remaining $2 p$ electrons and the H_{2}-type MO. This force from each F causes the H_{2}-type MO to move to greater principal axes than would result with the Coulombic force alone. But, the integer increase of the central field and the resulting increased Coulombic as well as magnetic central forces on the remaining $2 p$ electrons of each F decrease the radius of the corresponding shell such that the energy minimum is achieved that is lower than that of the reactant atoms. The resulting electron configuration of F_{2} is $1 s_{1}^{2} 1 s_{2}^{2} 2 s_{1}^{2} 2 s_{2}^{2} 2 p_{1}^{4} 2 p_{2}^{4} \sigma_{1,2}^{2}$ where the subscript designates the F atom, 1 or $2, \sigma$ designates the H_{2}-type MO, and the orbital arrangement is:

Fluorine is predicted to be diamagnetic in agreement with observations [42].

FORCE BALANCE OF THE $2 p$ SHELL OF THE FLUORINE ATOMS OF THE FLUORINE MOLECULE

For each F atom, force balance for the outermost $2 p$ electron of F_{2} (electron 8) is achieved between the centrifugal force and the Coulombic and magnetic forces that arise due to interactions between electron 8 and the other $2 p$-shell as well as the $2 s$ shell electrons due to spin and orbital angular momentum. The forces used are derived in the Nine-Electron Atoms section. The central Coulomb force on the outer-most $2 p$ shell electron of F_{2} (electron 8) due to the nucleus and the inner seven electrons is given by Eq. (10.70) with the appropriate charge and radius:

$$
\begin{equation*}
\mathbf{F}_{\text {ele }}=\frac{(Z-7) e^{2}}{4 \pi \varepsilon_{0} r_{8}^{2}} \mathbf{i}_{\mathrm{r}} \tag{13.711}
\end{equation*}
$$

for $r>r_{7}$. The $2 p$ shell possess an external electric field given by Eq. (10.92) for $r>r_{8}$. The energy is minimized with conservation of angular momentum. This condition is met when the diamagnetic force, $\mathbf{F}_{\text {diamagnetic }}$, of Eq. (10.82) due to the p orbital contributions is the same as that of the reactant fluorine atoms given by Eq. (10.176) with r_{8} replacing r_{9} :

$$
\begin{align*}
\mathbf{F}_{\text {diamagnetic }} & =-\left(\frac{2}{3}\right) \frac{\hbar^{2}}{4 m_{e} r_{8}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \\
& =-\frac{2 \hbar^{2}}{12 m_{e} r_{8}^{2} r_{3}} \sqrt{\frac{3}{4}} \mathbf{i}_{\mathbf{r}} \tag{13.712}
\end{align*}
$$

Thus, $\mathbf{F}_{\text {diamagnetic }}$ due to the two filled $2 p$ orbitals per F atom is twice that of N_{2} given by Eq. (13.622) having one filled $2 p$ orbital per N atom. $\mathbf{F}_{\operatorname{mag} 2}$ corresponding to the conserved spin and orbital angular momentum is also the same as that of the reactant fluorine atoms given by Eq. (10.177) and that of N_{2} given by Eq. (13.623) where the outer radius of the $2 p$ shell of the
F atoms of F_{2} is r_{8}.

$$
\begin{equation*}
\mathbf{F}_{\operatorname{mag} 2}=\frac{1}{Z} \frac{3 \hbar^{2}}{m_{e} r_{8}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.713}
\end{equation*}
$$

The electric field external to the $2 p$ shell given by Eq. (10.92) for $r>r_{8}$ gives rise to a second diamagnetic force, $\mathbf{F}_{\text {diamagnetic 2 }}$, given by Eq. (10.93). $\mathbf{F}_{\text {diamagnetic } 2}$ due to the binding of the p-orbital electron having an electric field of +1 outside of its radius is :

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic } 2}=-\left[\frac{Z-8}{Z-7}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{m_{e} r_{8}^{4}} 10 \sqrt{s(s+1)} \mathbf{i}_{\mathrm{r}} \tag{13.714}
\end{equation*}
$$

In addition, the contribution of a $2 p$ electron from each F atom in the formation of the σ MO gives rise to a paramagnetic force on the remaining paired $2 p$ electrons. The force $\mathbf{F}_{\text {mag } 3}$ is given by Eq. (13.625) wherein the radius is r_{8} :

$$
\begin{equation*}
\mathbf{F}_{\operatorname{mag} 3}=\frac{\hbar^{2}}{4 m_{e} r_{8}^{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.715}
\end{equation*}
$$

The radius of the $2 p$ shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (13.711)) and diamagnetic (Eqs. (13.712) and (13.714)), and paramagnetic (Eqs. (13.713) and (13.715)) forces as follows:

$$
\begin{equation*}
\frac{m_{e} v_{8}^{2}}{r_{8}}=\binom{\frac{(Z-7) e^{2}}{4 \pi \varepsilon_{0} r_{8}^{2}}-\frac{2 \hbar^{2}}{12 m_{e} r_{8}^{2} r_{3}} \sqrt{s(s+1)}+\frac{3 \hbar^{2}}{Z m_{e} r_{8}^{2} r_{3}} \sqrt{s(s+1)}}{-\left[\frac{Z-8}{Z-7}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{8}^{4} m_{e}} 10 \sqrt{s(s+1)}+\frac{\hbar^{2}}{4 m_{e} r_{8}^{3}} \sqrt{s(s+1)}} \tag{13.716}
\end{equation*}
$$

Substitution of $v_{8}=\frac{\hbar}{m_{e} r_{8}}$ (Eq. (1.35)) and $s=\frac{1}{2}$ into Eq. (13.716) gives:

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} r_{8}^{3}}-\frac{\hbar^{2}}{4 m_{e} r_{8}^{3}} \sqrt{\frac{3}{4}}=\frac{(Z-7) e^{2}}{4 \pi \varepsilon_{0} r_{8}^{2}}-\frac{2 \hbar^{2}}{12 m_{e} r_{8}^{2} r_{3}} \sqrt{\frac{3}{4}}+\frac{3 \hbar^{2}}{Z m_{e} r_{8}^{2} r_{3}} \sqrt{\frac{3}{4}}-\left[\frac{Z-8}{Z-7}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{8}^{4} m_{e}} 10 \sqrt{\frac{3}{4}} \tag{13.717}
\end{equation*}
$$

The quadratic equation corresponding to Eq. (13.717) is:

$$
\begin{equation*}
r_{8}^{2}-\frac{\frac{\hbar^{2}}{m_{e}}\left(1-\frac{\sqrt{3}}{8}\right)}{\left(\frac{(Z-7) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{2}{12}-\frac{3}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)^{2}} r_{8}-\frac{\frac{\hbar^{2}}{m_{e}}\left[\frac{Z-8}{Z-7}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3} 10 \sqrt{\frac{3}{4}}}{\left(\frac{(Z-7) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{2}{12}-\frac{3}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)}=0 \tag{13.718}
\end{equation*}
$$

The solution of Eq. (13.718) using the quadratic formula is:

$$
\begin{equation*}
r_{8}=\frac{a_{0}\left(1-\frac{\sqrt{3}}{8}\right)}{\left((Z-7)-\left(\frac{2}{12}-\frac{3}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)} \pm a_{0} \sqrt{\left(\frac{1-\frac{\sqrt{3}}{8}}{\left(\frac{\left.(Z-7)-\left(\frac{2}{12}-\frac{3}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}{\left(\frac{20 \sqrt{3}\left(\left[\frac{Z-8}{Z-7}\right)\left(1-\frac{\sqrt{2}}{2}\right) r_{3}\right)}{\left((Z-7)-\left(\frac{2}{12}-\frac{3}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}\right.}\right)^{2}}\right.},_{3} \text { in units of } a_{0} \tag{13.719}
\end{equation*}
$$

The positive root of Eq. (13.719) must be taken in order that $r_{8}>0$. Substitution of $\frac{r_{3}}{a_{0}}=0.51382$ (Eq. (10.62) with $Z=9$) into Eq. (13.719) gives:

$$
\begin{equation*}
r_{8}=0.73318 a_{0} \tag{13.720}
\end{equation*}
$$

ENERGIES OF THE $2 p$ SHELL OF THE FLUORINE ATOMS OF THE FLUORINE MOLECULE

The central forces on the $2 p$ shell of each F are increased with the formation of the $\sigma \mathrm{MO}$, which reduces the shell's radius and increases its total energy. The Coulombic energy terms of the total energy of the two F atoms at the new radius are calculated and added to the energy of the σ MO to give the total energy of F_{2}. Then, the bond energy is determined from the total F_{2} energy.

The radius r_{9} of each fluorine atom before bonding is given by Eq. (10.182):

$$
\begin{equation*}
r_{9}=0.78069 a_{0} \tag{13.721}
\end{equation*}
$$

Using the initial radius r_{9} of each F atom and the final radius r_{8} of the $F 2 p$ shell of F_{2} (Eq. (13.720)) and by considering that the central Coulombic field decreases by an integer for each successive electron of the shell, the sum $E_{T}\left(F_{2}, 2 p\right)$ of the Coulombic energy change of the $F 2 p$ electrons of both atoms is determined using Eq. (10.102).

$$
\begin{align*}
E_{T}\left(F_{2}, 2 p\right) & =-2 \sum_{n=4}^{7} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{8}}-\frac{1}{r_{9}}\right) \tag{13.722}\\
& =-2(13.60580 \mathrm{eV})(0.08301)(2+3+4+5)=-31.62353 \mathrm{eV}
\end{align*}
$$

FORCE BALANCE OF THE σ MO OF THE FLUORINE MOLECULE

The relativistic diamagnetic force $\mathbf{F}_{\text {diamagneticмо2 }}$ of F_{2} is one half that of N_{2} due to the two versus one filled $2 p$ orbitals per atom at the focus. The force balance equation for the $\sigma-\mathrm{MO}$ of the fluorine molecule is given by Eq. (11.200) and Eqs. (13.63313.634) with the correction of $1 / 2$ due the two $2 p$ orbitals per F after Eqs. (10.2-10.11), $n_{e}=5$, and $|L|=\hbar$:

$$
\begin{align*}
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D-\left(\frac{5}{2}+\frac{1}{2 Z}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{13.723}\\
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D-\left(\frac{3}{2}+\frac{1}{2 Z}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{13.724}\\
& \left(\frac{7}{2}+\frac{1}{2 Z}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D \tag{13.725}\\
& a=\left(\frac{7}{2}+\frac{1}{2 Z}\right) a_{0} \tag{13.726}
\end{align*}
$$

Substitution of $Z=9$ into Eq. (13.726) gives:

$$
\begin{equation*}
a=3.55556 a_{0}=1.88152 \times 10^{-10} \mathrm{~m} \tag{13.727}
\end{equation*}
$$

Substitution of Eq. (13.727) into Eq. (11.79) is:

$$
\begin{equation*}
c^{\prime}=1.33333 a_{0}=7.05569 \times 10^{-11} \mathrm{~m} \tag{13.728}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.728) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.66667 a_{0}=1.41114 \times 10^{-10} \mathrm{~m} \tag{13.729}
\end{equation*}
$$

The experimental bond distance is [28] :

$$
\begin{equation*}
2 c^{\prime}=1.41193 \times 10^{-10} \mathrm{~m} \tag{13.730}
\end{equation*}
$$

Substitution of Eqs. (13.727-13.728) into Eq. (11.80) is:

$$
\begin{equation*}
b=c=3.29609 a_{0}=1.74421 \times 10^{-10} \mathrm{~m} \tag{13.731}
\end{equation*}
$$

Substitution of Eqs. (13.727-13.728) into Eq. (11.67) is:

$$
\begin{equation*}
e=0.37500 \tag{13.732}
\end{equation*}
$$

Using the electron configuration of F_{2} (Eq. (13.710)), the radii of the $F 1 s=0.11297 a_{0}$ (Eq. (10.51)), $F 2 s=0.51382 a_{0}$ (Eq. (10.62)), and $F 2 p=0.73318 a_{0}$ (Eq. (13.720)) shells and the parameters of the σ MO of F_{2} given by Eqs. (13.3-13.4), (13.72713.728), and (13.731-13.732), the dimensional diagram and charge-density of the $F_{2} \mathrm{MO}$ are shown in Figures 13.18 and 13.19, respectively.

Figure 13.18. The cross section of the F_{2} MO showing the axes, σ MO (H_{2}-type ellipsoidal MO), with the $F 1 s, 2 s$, and $2 p$ atomic orbitals (AOs). Legend: a : semimajor axis, b : semiminor axis, c^{\prime} : internuclear distance, r_{8} : radius of the $F 2 p$ shell having two paired electrons.

Figure 13.19. F_{2} MO comprising the σ MO (H_{2}-type MO) with F atoms at the foci that have each donated an electron to the $\sigma \mathrm{MO}$ and have smaller radii and higher binding energies as a consequence. (A) Color scale, translucent view of the charge-density of the F_{2} MO. (B) Off-center cutaway view showing the complete inner most $F 1 s$ shell, and moving radially, the $F 2 s$ shell, the $F 2 p$ shell, and the σ prolate spheroidal MO that have the F atoms as the foci.

SUM OF THE ENERGIES OF THE σ MO AND THE AOS OF THE FLUORINE MOLECULE

The energies of the $F_{2} \sigma$ MO are given by the substitution of the semiprincipal axes (Eqs. (13.683-13.684) and (13.687)) into the energy equations (Eqs. (11.207-11.212)) of H_{2} :

$$
\begin{align*}
& V_{e}=\frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-16.09139 \mathrm{eV} \tag{13.733}\\
& V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=10.20435 \mathrm{eV} \tag{13.734}\\
& T=\frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=2.26285 \mathrm{eV} \tag{13.735}\\
& V_{m}=\frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-1.13143 \mathrm{eV} \tag{13.736}\\
& E_{T}=V_{e}+T+V_{m}+V_{p} \tag{13.737}
\end{align*}
$$

Substitution of Eqs. (11.79) and (13.733-13.736) into Eq. (13.737) gives:

$$
\begin{align*}
E_{T}\left(F_{2}, \sigma\right) & =\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left(\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right) \tag{13.738}\\
& =-4.75562 \mathrm{eV}
\end{align*}
$$

where $E_{T}\left(F_{2}, \sigma\right)$ is the total energy of the $\sigma \mathrm{MO}$ of F_{2}. The sum, $E_{T}\left(F_{2}\right)$, of $E_{T}\left(F_{2}, 2 p\right)$, the $2 p \mathrm{AO}$ contribution given by Eq. (13.722), and $E_{T}\left(F_{2}, \sigma\right)$, the σ MO contribution given by Eq. (13.738) is:

$$
\begin{align*}
E_{T}\left(F_{2}\right) & =E_{T}\left(F_{2}, 2 p\right)+E_{T}\left(F_{2}, \sigma\right) \tag{13.739}\\
& =-31.62353 \mathrm{eV}-4.75562 \mathrm{eV}=-36.37915 \mathrm{eV}
\end{align*}
$$

VIBRATION OF F_{2}

The vibrational energy levels of F_{2} may be solved by determining the Morse potential curve from the energy relationships for the transition from two F atoms whose parameters are given by Eqs. (10.174-10.183) to the two F atoms whose parameter r_{8} is given by Eq. (13.720) and the σ MO whose parameters are given by Eqs. (13.727-13.729) and (13.731-13.732). As shown in the Vibration of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about the internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K\&P) [15] and after Eq. (11.134). Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy corrections can be found by perturbation methods.

THE DOPPLER ENERGY TERMS OF THE FLUORINE MOLECULE

The equations of the radiation reaction force of fluorine are the same as those of H_{2} with the substitution of the fluorine parameters. Using Eqs. (11.231-11.233), the angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}=6.16629 \times 10^{15} \mathrm{rad} / \mathrm{s} \tag{13.740}
\end{equation*}
$$

where a is given by Eq. (13.727). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 6.16629 \times 10^{15} \mathrm{rad} / \mathrm{s}=4.05876 \mathrm{eV} \tag{13.741}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(F_{2}\right)$ for $E_{h \nu}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.741) for \bar{E}_{K} gives the Doppler energy of the electrons of the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-36.37915 \mathrm{eV} \sqrt{\frac{2 e(4.05876 \mathrm{eV})}{m_{e} c^{2}}}=-0.14499 \mathrm{eV} \tag{13.742}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of the $F_{2} \mathrm{MO}$ due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (13.742) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy. Using the experimental $F_{2} \omega_{e}$ of $916.64 \mathrm{~cm}^{-1}(0.11365 \mathrm{eV})$ [28] for $\bar{E}_{\text {Kvib }}$ of the transition state, $\bar{E}_{\text {osc }}\left(F_{2}\right)$ is:

$$
\begin{align*}
& \bar{E}_{\text {osc }}\left(F_{2}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.743}\\
& \bar{E}_{\text {osc }}\left(F_{2}\right)=-0.14499 \mathrm{eV}+\frac{1}{2}(0.11365 \mathrm{eV})=-0.08817 \mathrm{eV} \tag{13.744}
\end{align*}
$$

TOTAL AND BOND ENERGIES OF THE FLUORINE MOLECULE

$E_{\text {T+osc }}\left(F_{2}\right)$, the total energy of F_{2} including the Doppler term, is given by the sum of $E_{T}\left(F_{2}\right)$ (Eq. (13.739)) and $\bar{E}_{\text {osc }}\left(F_{2}\right)$ given by Eq. (13.744):

$$
\left.\begin{array}{rl}
E_{T+\text { osc }}\left(F_{2}\right) & =V_{e}+T+V_{m}+V_{p}+E_{T}\left(F_{2}, 2 p\right)+\bar{E}_{\text {osc }}\left(F_{2}\right) \\
& =E_{T}\left(F_{2}, \sigma\right)+E_{T}\left(F_{2}, 2 p\right)+\bar{E}_{\text {osc }}\left(F_{2}\right) \\
& =E_{T}\left(F_{2}\right)+\bar{E}_{\text {osc }}\left(F_{2}\right) \\
E_{T+\text { osc }}\left(F_{2}\right) & =\left\{\begin{array}{l}
\left(\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left(\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right)-2 \sum_{n=4}^{\frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{8}}-\frac{1}{r_{9}}\right)}\right) \\
\left.1+\sqrt{\frac{e^{2}}{\frac{4 \pi \varepsilon_{0} a^{3}}{m_{e}}}}\right)+\frac{1}{m_{e} c^{2}} \hbar \sqrt{\frac{k}{\mu}}
\end{array}\right) \tag{13.746}\\
& =-36.37915 \mathrm{eV}-0.14499 \mathrm{eV}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}
\end{array}\right\}
$$

From Eqs. (13.743-13.746), the total energy of the F_{2} MO is:

$$
\begin{equation*}
E_{T+\text { osc }}\left(F_{2}\right)=-36.37915 \mathrm{eV}+\bar{E}_{\text {osc }}\left(F_{2}\right)=-36.37915 \mathrm{eV}-0.14499 \mathrm{eV}+\frac{1}{2}(0.11365 \mathrm{eV})=-36.46732 \mathrm{eV} \tag{13.747}
\end{equation*}
$$

where the experimental ω_{e} was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The F_{2} bond dissociation energy, $E_{D}\left(F_{2}\right)$, is given by the difference in the total energies of the two F atoms and $E_{T+\text { osc }}\left(F_{2}\right)$:

$$
\begin{equation*}
E_{D}\left(F_{2}\right)=2 E(F)-E_{T+\text { osc }}\left(F_{2}\right) \tag{13.748}
\end{equation*}
$$

where the energy of a fluorine atom is [6]:

$$
\begin{equation*}
E(F)=-17.42282 \mathrm{eV} \tag{13.749}
\end{equation*}
$$

Thus, the F_{2} bond dissociation energy, $E_{D}\left(F_{2}\right)$, given by Eqs. (13.747-13.749) is:

$$
\begin{equation*}
E_{D}\left(F_{2}\right)=-2(17.42282 \mathrm{eV})-E_{T+\text { osc }}\left(F_{2}\right)=-34.84564 \mathrm{eV}-(-36.46732 \mathrm{eV})=1.62168 \mathrm{eV} \tag{13.750}
\end{equation*}
$$

The experimental F_{2} bond dissociation energy is [48]:

$$
\begin{equation*}
E_{D}\left(F_{2}\right)=1.606 \mathrm{eV} \tag{13.751}
\end{equation*}
$$

The results of the determination of bond parameters of F_{2} are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

CHLORINE MOLECULE

The chlorine molecule can be formed by the reaction of two chlorine atoms:

$$
\begin{equation*}
\mathrm{Cl}+\mathrm{Cl} \rightarrow \mathrm{Cl}_{2} \tag{13.752}
\end{equation*}
$$

The chlorine molecule can be solved by using the hybridization approach used to solve the methane series $\mathrm{CH}_{n=1,2,3,4}$. In the methane series, the $2 s$ and $2 p$ shells of carbon hybridize to form a single $2 s p^{3}$ shell to achieve an energy minimum, and in a likewise manner, the $3 s$ and $3 p$ shells of chlorine hybridize to form a single $3 s p^{3}$ shell which forms the bonding orbital of $C l_{2}$.

FORCE BALANCE OF Cl_{2}

Cl_{2} has two spin-paired electrons in a chemical bond between the chlorine atoms. The Cl_{2} molecular orbital (MO) is determined by considering properties of the binding atoms and the boundary constraints. The prolate spheroidal $\mathrm{H}_{2} \mathrm{MO}$ developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules section satisfies the boundary constraints; thus, each Cl atom could contribute a $3 p$ electron to form a $\sigma \mathrm{MO}\left(H_{2}\right.$-type ellipsoidal MO) as in the case of N_{2}, O_{2}, and F_{2}. However, such a bond is not possible with the outer Cl electrons in their ground state since the resulting $3 p$ shells of chlorine atoms would overlap which is not energetically stable. Thus, when bonding, the chlorine $3 s$ and $3 p$ shells hybridize to form a single $3 s p^{3}$ shell to achieve an energy minimum.

The Cl electron configuration given in the Seventeen-Electron Atoms section is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$, and the orbital arrangement is:

3p state
$\frac{\uparrow \downarrow}{1} \frac{\uparrow \downarrow}{0} \frac{\uparrow}{-1}$
corresponding to the ground state ${ }^{2} P_{3 / 2}^{0}$. The radius r_{17} of the $3 p$ shell given by Eq. (10.363) is:

$$
\begin{equation*}
r_{17}=1.05158 a_{0} \tag{13.754}
\end{equation*}
$$

The energy of the chlorine $3 p$ shell is the negative of the ionization energy of the chlorine atom given by Eq. (10.364). Experimentally, the energy is [6]:

$$
\begin{equation*}
E(3 p \text { shell })=-E(\text { ionization; } C l)=-12.96764 \mathrm{eV} \tag{13.755}
\end{equation*}
$$

The Cl3s atomic orbital (AO) combines with the Cl3p AOs to form a single $3 s p^{3}$ hybridized orbital (HO) with the orbital arrangement.

\[

\]

where the quantum numbers $\left(\ell, m_{\ell}\right)$ are below each electron. The total energy of the state is given by the sum over the seven electrons. Using only the largest-force terms of the outer most and next inner shell, the calculated energies for the chlorine atom and the ions: $\mathrm{Cl}, \mathrm{Cl}^{+}, \mathrm{Cl}^{2+}, \mathrm{Cl}^{3+}, \mathrm{Cl}^{4+}, \mathrm{Cl}^{5+}$ and Cl^{6+} are given in Eqs. (10.363-10.364), (10.353-10.354), (10.331-10.332), (10.309-10.310), (10.288-10.289), (10.255-10.256), and (10.235-10.236), respectively. The sum $E_{T}\left(C l, 3 s p^{3}\right)$ of the experimental energies of Cl and these ions is [6]:

$$
\begin{equation*}
E_{T}\left(C l, 3 s p^{3}\right)=\binom{12.96764 \mathrm{eV}+23.814 \mathrm{eV}+39.61 \mathrm{eV}+53.4652 \mathrm{eV}}{+67.8 \mathrm{eV}+97.03 \mathrm{eV}+114.1958 \mathrm{eV}}=408.88264 \mathrm{eV} \tag{13.757}
\end{equation*}
$$

The spin and orbital-angular-momentum interactions cancel such that the energy of the $E_{T}\left(C l, 3 s p^{3}\right)$ is purely Coulombic. By considering that the central field decreases by an integer for each successive electron of the shell, the radius $r_{3 s p^{3}}$ of the Cl3sp ${ }^{3}$ shell may be calculated from the Coulombic energy using Eq. (10.102):

$$
\begin{equation*}
r_{3 s p^{3}}=\sum_{n=10}^{16} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}(e 408.8826 \mathrm{eV})}=\frac{28 e^{2}}{8 \pi \varepsilon_{0}(e 408.8826 \mathrm{eV})}=0.93172 a_{0} \tag{13.758}
\end{equation*}
$$

where $Z=17$. Using Eqs. (10.102) and (13.758), the Coulombic energy $E_{\text {Coulomb }}\left(C l, 3 s p^{3}\right)$ of the outer electron of the $C l 3 s p^{3}$ shell is:

$$
\begin{equation*}
E_{\text {Coulomb }}\left(C l, 3 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{3 s p^{3}}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} 0.93172 a_{0}}=-14.60295 \mathrm{eV} \tag{13.759}
\end{equation*}
$$

The calculated energy of the $C 2 s p^{3}$ shell of 14.63489 eV given by Eq. (13.428), and nitrogen's calculated energy of 14.61664 eV given by Eq. (10.143) is a close match with $E_{\text {Coulomb }}\left(C l, 3 s p^{3}\right)$.

The unpaired Cl3sp ${ }^{3}$ electrons from each of two chlorine atoms combine to form a molecular orbital. The nuclei of the Cl atoms are along the internuclear axis and serve as the foci. Due to symmetry, the other Cl electrons are equivalent to point charges at the origin. (See Eqs. (19-38) of Appendix II.) Thus, the energies in the Cl MO involve only the two $\mathrm{Cl} 3 \mathrm{sp}{ }^{3}$ electrons. The forces are determined by these energies.

As in the case of H_{2}, the MO is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into $C l 3 s p^{3} \mathrm{HO}$ for distances shorter than the radius of the $C l 3 s p^{3}$ shell of each atom. Thus, the MO surface comprises a partial prolate spheroid in between the nuclei and is continuous with the $\mathrm{Cl} 3 s p^{3}$ shell at each Cl atom. The energy of the H_{2}-type ellipsoidal MO is matched to that of the $\mathrm{Cl} 3 \mathrm{sp}{ }^{3}$ shell. As in the case with OH, NH, and CH (where the latter also demonstrates $s p^{3}$ hybridization) the linear combination of the H_{2}-type ellipsoidal MO with each Cl3sp ${ }^{3}$ HO must involve a 25% contribution from the H_{2}-type ellipsoidal MO to the $\mathrm{Cl} 3 \mathrm{sp}^{3} \mathrm{HO}$ in order to match potential, kinetic, and orbital energy relationships. Thus, the Cl_{2} MO must comprise two $\mathrm{Cl} 3 s p^{3} \mathrm{HOs}$ and 75% of a H_{2}-type ellipsoidal MO divided between the two Cl3sp ${ }^{3}$ HOs:

$$
\begin{equation*}
2 \mathrm{Cl}_{2} \mathrm{sp}^{3}+0.75 \mathrm{H}_{2} \mathrm{MO} \rightarrow \mathrm{Cl}_{2} \mathrm{MO} \tag{13.760}
\end{equation*}
$$

The force balance of the $\mathrm{Cl}_{2} \mathrm{MO}$ is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (13.760) and the energy matching condition between the H_{2}-type-ellipsoidal-MO and Cl3sp ${ }^{3}$ - HO components of the MO.

As in the case with OH (Eq. (13.57)), NH (Eq. (13.247)), and CH (Eq. (13.429)), the H_{2}-type ellipsoidal MO comprises 75% of the $\mathrm{Cl}_{2} \mathrm{MO}$; so, the electron charge density in Eq. (11.65) is given by $-0.75 e$. Since the chlorine atoms of Cl_{2} are hybridized and the k parameter is different from unity in order to meet the boundary constraints, both k and k^{\prime} must comprise the corresponding hybridization factors. (In contrast, the chlorine atom of a $\mathrm{C}-\mathrm{Cl}$ bond of an alkyl chloride is not hybridized, and only k^{\prime} must comprise the corresponding hybridization factor.) The force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} in terms of the central force of the foci is given by Eq. (13.59), except that k^{\prime} is divided by two since the H_{2}-type-ellipsoidal-MO is physically divided between two $\mathrm{Cl} 3 s p^{3} \mathrm{HOs}$. In addition, the energy matching at both $\mathrm{Cl} 3 \mathrm{sp}{ }^{3}$ HOs further requires that k^{\prime} be corrected with the hybridization factor given by Eq. (13.762). Thus, k^{\prime} of the H_{2}-type-ellipsoidal-MO component of the $\mathrm{Cl}_{2} \mathrm{MO}$ is:

$$
\begin{equation*}
k^{\prime}=C_{C l 3 s p^{3} \mathrm{HO}} \frac{(0.75)}{2} \frac{2 e^{2}}{4 \pi \varepsilon_{0}}=0.93172 \frac{(0.75)}{2} \frac{2 e^{2}}{4 \pi \varepsilon_{0}} \tag{13.761}
\end{equation*}
$$

The distance from the origin to each focus c^{\prime} is given by Eq. (13.60). The internuclear distance is given by Eq. (13.61). The length of the semiminor axis of the prolate spheroidal $C l-C l$-bond $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of the $\mathrm{Cl}_{2} \mathrm{MO}$. Since the $\mathrm{Cl}_{2} \mathrm{MO}$ comprises a H_{2}-type-ellipsoidal MO that transitions to the $\mathrm{Cl} 3 \mathrm{sp}^{3}$ HOs at each end of the molecule, the energy $E\left(C l, 3 s p^{3}\right)$ in Eq. (13.759) adds to that of the H_{2}-type ellipsoidal MO to give the total energy of the $\mathrm{Cl}_{2} \mathrm{MO}$. From the energy equation and the relationship between the axes, the dimensions of the $\mathrm{Cl}_{2} \mathrm{MO}$ are solved.

The energy components of V_{e}, V_{p}, T, and V_{m} are those of H_{2} (Eqs. (11.207-11.211)) except that they are corrected for electron hybridization. Hybridization gives rise to the $C l 3 s p^{3}$ HO-shell Coulombic energy $E_{\text {Coulomb }}\left(C l, 3 s p^{3}\right)$ given by Eq. (13.759). To meet the equipotential condition of the union of the H_{2}-type-ellipsoidal-MO with each $\mathrm{Cl} 3 \mathrm{sp} p^{3} \mathrm{HO}$, the electron energies are normalized by the ratio of 14.60295 eV , the magnitude of $E_{\text {Coulomb }}\left(C l, 3 s p^{3}\right)$ given by Eq. (13.759), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264). This normalizes the energies to match that of the Coulombic energy alone to meet the energy matching condition of the $\mathrm{Cl}_{2} \mathrm{MO}$ under the influence of the two $\mathrm{Cl} 3 \mathrm{sp}^{3} \mathrm{HOs}$ bridged by the H_{2}-type-ellipsoidal MO. The hybridization energy factor $C_{C 13 s p^{3} H O}$ is:

$$
\begin{align*}
C_{C l 3 s p^{3} H O} & =\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} r_{3 s p^{3}}}}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} 0.93172 a_{0}}} \tag{13.762}\\
& =\frac{13.605804 \mathrm{eV}}{14.60295 \mathrm{eV}}=0.93172
\end{align*}
$$

The total energy $E_{T}\left(\mathrm{Cl}_{2}\right)$ of the $\mathrm{Cl}_{2} \mathrm{MO}$ is given by the sum of the energies of the orbitals, the H_{2}-type ellipsoidal MO and the two $\mathrm{Cl} 3 \mathrm{sp}{ }^{3} \mathrm{HOs}$, that form the hybridized $\mathrm{Cl}_{2} \mathrm{MO} . \mathrm{E}_{T}\left(\mathrm{Cl}_{2}\right)$ follows from Eq. (13.74) for OH , but the energy of the $\mathrm{Cl} 3 \mathrm{sp}{ }^{3}$ HO given by Eq. (13.759) is substituted for the energy of O and the H_{2}-type-ellipsoidal-MO energies are those of H_{2} (Eqs. (11.207-11.212)) multiplied by the electron hybridization factor rather than by the factor of 0.75 :

$$
\begin{align*}
E_{T}\left(C l_{2}\right) & =E_{T}+E_{\text {Coulomb }}\left(C l, 3 s p^{3}\right) \\
& =-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.93172)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.60295 \mathrm{eV} \tag{13.763}
\end{align*}
$$

To match the boundary condition that the total energy of the entire the H_{2}-type ellipsoidal MO is given by Eqs. (11.212) and (13.75), $E_{T}\left(C l_{2}\right)$ given by Eq. (13.763) is set equal to Eq. (13.75):

$$
\begin{align*}
E_{T}\left(C l_{2}\right) & =-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.93172)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.60295 \mathrm{eV} \tag{13.764}\\
& =-31.63537 \mathrm{eV}
\end{align*}
$$

From the energy relationship given by Eq. (13.764) and the relationship between the axes given by Eqs. (13.60-13.63), the dimensions of the $\mathrm{Cl}_{2} \mathrm{MO}$ can be solved.

Substitution of Eqs. (13.60) and (13.761) into Eq. (13.764) gives:

$$
\begin{equation*}
\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{4 a a_{0}}{3(0.93172)}}}\left[(0.93172)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{4 a a_{0}}{3(0.93172)}}}{a-\sqrt{\frac{4 a a_{0}}{3(0.93172)}}}-1\right]=e 17.03242 \tag{13.765}
\end{equation*}
$$

The most convenient way to solve Eq. (13.765) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is:

$$
\begin{equation*}
a=2.46500 a_{0}=1.30442 \times 10^{-10} \mathrm{~m} \tag{13.766}
\end{equation*}
$$

Substitution of Eq. (13.766) into Eq. (13.60) gives:

$$
\begin{equation*}
c^{\prime}=1.87817 a_{0}=9.93887 \times 10^{-11} \mathrm{~m} \tag{13.767}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.767) by two is:

$$
\begin{equation*}
2 c^{\prime}=3.75635 a_{0}=1.98777 \times 10^{-10} \mathrm{~m} \tag{13.768}
\end{equation*}
$$

The experimental bond distance is [28]:

$$
\begin{equation*}
2 c^{\prime}=1.988 \times 10^{-10} \mathrm{~m} \tag{13.769}
\end{equation*}
$$

Substitution of Eqs. (13.766-13.767) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=1.59646 a_{0}=8.44810 \times 10^{-11} \mathrm{~m} \tag{13.770}
\end{equation*}
$$

Substitution of Eqs. (13.766-13.767) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.76194 \tag{13.771}
\end{equation*}
$$

The Cl nuclei comprise the foci of the H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the Cl3sp ${ }^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95) and (13.261-13.270). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{3 s p^{3}}=0.93172 a_{0}$ is the radius of the $C l 3 s p^{3}$ shell. Substitution of Eqs. (13.766-13.767) into Eq. (13.261) gives

$$
\begin{equation*}
\theta^{\prime}=81.72^{\circ} \tag{13.772}
\end{equation*}
$$

Then, the angle $\theta_{C 13 s p^{3} H O}$ the radial vector of the $C l 3 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C 13 s p^{3} \mathrm{HO}}=180^{\circ}-81.72^{\circ}=98.28^{\circ} \tag{13.773}
\end{equation*}
$$

as shown in Figure 13.20. The Cartesian \mathbf{i}-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j}-coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{\mathrm{H}_{2} \mathrm{MO}}$ satisfies the following relationship:

$$
\begin{equation*}
r_{3 s 3^{3}} \sin \theta_{C 13 s p^{3} \mathrm{HO}}=0.93172 a_{0} \sin \theta_{C 13 s p^{3} \mathrm{HO}}=b \sin \theta_{\mathrm{H}_{2} \mathrm{MO}} \tag{13.774}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} M O}=\sin ^{-1} \frac{0.93172 a_{0} \sin \theta_{C l 3 s p^{3} \mathrm{HO}}}{b}=\sin ^{-1} \frac{0.93172 a_{0} \sin 98.28^{\circ}}{b} \tag{13.775}
\end{equation*}
$$

with the use of Eq. (13.773). Substitution of Eq. (13.770) into Eq. (13.775) gives:

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} \mathrm{MO}}=35.28^{\circ} \tag{13.776}
\end{equation*}
$$

Then, the distance $d_{\mathrm{H}_{2} M O}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{H_{2} M \mathrm{MO}}=a \cos \theta_{\mathrm{H}_{2} \mathrm{MO}} \tag{13.777}
\end{equation*}
$$

Substitution of Eqs. (13.766) and (13.776) into Eq. (13.777) gives:

$$
\begin{equation*}
d_{\mathrm{H}_{2} M \mathrm{O}}=2.01235 a_{0}=1.06489 \times 10^{-10} \mathrm{~m} \tag{13.778}
\end{equation*}
$$

The distance $d_{C 13 \text { sp }}{ }^{3}$ но 0 along the internuclear axis from the origin of each Cl atom to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C 13 s p^{3} \mathrm{HO}}=d_{\mathrm{H}_{2} \mathrm{MO}}-c^{\prime} \tag{13.779}
\end{equation*}
$$

Substitution of Eqs. (13.768) and (13.778) into Eq. (13.779) gives:

$$
\begin{equation*}
d_{C 13 s p^{3} H O}=0.13417 a_{0}=7.10022 \times 10^{-12} \mathrm{~m} \tag{13.780}
\end{equation*}
$$

As shown in Eq. (13.760), a factor of 0.25 of the charge-density of the H_{2}-type ellipsoidal MO is distributed on each $C l 3 s p^{3}$ HO. Using the orbital composition of Cl_{2} (Eq. (13.760)), the radii of the $\mathrm{Clls}=0.05932 a_{0}$ (Eq. (10.51)), $C l 2 s=0.25344 a_{0}$ (Eq. (10.62)), Cl2p=0.31190a (Eq. (10.212)), and Cl3sp ${ }^{3}=0.93172 a_{0}$ (Eq. (13.758)) shells, and the parameters of the $\mathrm{Cl}_{2} \mathrm{MO}$ given by Eqs. (13.3-13.4), (13.766-13.768), and (13.770-13.771), the dimensional diagram and charge-density of the $\mathrm{Cl}_{2} \mathrm{MO}$ comprising the linear combination of the H_{2}-type ellipsoidal MO and two $\mathrm{Cl} 3 \mathrm{sp}{ }^{3} \mathrm{HOs}$ according to Eq. (13.760) are shown in Figures 13.20 and 13.21, respectively.

Figure 13.20. The cross section of the $\mathrm{Cl}_{2} \mathrm{MO}$ showing the axes, angles, and point of intersection of the H_{2}-type ellipsoidal MO with the two $\mathrm{Cl} 3 \mathrm{sp}^{3} \mathrm{HOs}$. The continuation of the H_{2}-type-ellipsoidal-MO basis element beyond the intersection point with each $C l 3 s p^{3}$ shell is shown as dashed since it only serves to solve the energy match with each Cl3sp ${ }^{3}$ shell and does not represent charge density. Similarly, the vertical dashed line only designates the parameters of the intersection points. The actual charge density is shown by the solid lines. Legend: a : semimajor axis, b : semiminor axis, $c^{\prime}:$ internuclear distance, $d_{1}: d_{\mathrm{H}_{2} \mathrm{MO}}$, $\theta_{1}: \theta_{C 13 s p^{3} H O}, d_{2}: d_{C 13 s p^{3} H O}$, and $R: r_{3 s p^{3}}$.

Figure 13.21. $\mathrm{Cl}_{2} \mathrm{MO}$ comprising the superposition of the H_{2}-type ellipsoidal MO and the two $\mathrm{Cl} 3 \mathrm{sp}{ }^{3} \mathrm{HOs}$, each with a relative charge-density of 0.75 to 1.25 divided between the former and the latter; otherwise, the $\mathrm{Cl} 3 \mathrm{sp}{ }^{3} \mathrm{HO}$ is unchanged. (A) Side-on, color scale, translucent view of the charge-density of the $\mathrm{Cl}_{2} \mathrm{MO}$. The ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $\mathrm{Cl} 3 \mathrm{sp}{ }^{3} \mathrm{HO}$, the $\mathrm{Cl} 3 \mathrm{sp}{ }^{3} \mathrm{HO}$, and the $\mathrm{Clls}, \mathrm{Cl} 2 \mathrm{~s}$, and Cl 2 p shells of each Cl atom are shown. (B) Cut-away view showing the inner most Clls shell, and moving radially, the $\mathrm{Cl} 2 \mathrm{~s}, \mathrm{Cl} 2 \mathrm{p}$, and $\mathrm{Cl} 3 \mathrm{sp}{ }^{3}$ shells, and the H_{2}-type ellipsoidal MO that transitions to the $\mathrm{Cl} 3 \mathrm{sp}^{3} \mathrm{HOs}$.

ENERGIES OF Cl_{2}

The energies of Cl_{2} are given by the substitution of the semiprincipal axes (Eqs. (13.766-13.767) and (13.770)) into the energy equations, (Eq. (13.763) and Eqs. (11.207-11.211) of H_{2}) that are corrected for electron hybridization using Eq. (13.762).

$$
\begin{align*}
& V_{e}=(0.93172) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-27.02007 \mathrm{eV} \tag{13.781}\\
& V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=7.24416 \mathrm{eV} \tag{13.782}\\
& T=(0.93172) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=5.48074 \mathrm{eV} \tag{13.783}\\
& V_{m}=(0.93172) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-2.74037 \mathrm{eV} \tag{13.784}\\
& E_{T}\left({ }^{35} \mathrm{Cl}_{2}\right)=-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.93172)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.60295 \mathrm{eV}=-31.63537 \mathrm{eV} \tag{13.785}
\end{align*}
$$

where $E_{T}\left(C l_{2}\right)$ is given by Eq. (13.763) which is reiteratively matched to Eq. (13.75) within five-significant-figure round-off error.

VIBRATION AND ROTATION OF Cl_{2}

In Cl_{2}, the division of the H_{2}-type ellipsoidal MO between the two $\mathrm{Cl} 3 \mathrm{sp}{ }^{3} \mathrm{HOs}$ and the hybridization must be considered in determining the vibrational parameters. One approach is to use Eq. (13.761) for the force constant and $r_{3 s p^{3}}$ given by Eq. (13.758) for the distance parameter of the central force in Eq. (11.213) since the H_{2}-type ellipsoidal MO is energy matched to the $C l 3 s p^{3} \mathrm{HOs}$. With the substitution of the Cl_{2} parameters in Eqs. (11.213-11.217), the angular frequency of the oscillation is:

$$
\begin{align*}
\omega & =\sqrt{\frac{0.93172 \frac{(0.75)}{2} \frac{e^{2}}{8 \pi \varepsilon_{0}\left(r_{3 s p^{3}}\right)^{3}}-\frac{e^{2}}{8 \pi \varepsilon_{0}\left(r_{3 s p^{3}}+c^{\prime}\right)^{3}}}{\mu}} \\
& =\sqrt{\frac{0.93172 \frac{(0.75)}{2} \frac{e^{2}}{\frac{8 \pi \varepsilon_{0}(0.93172)^{3}}{35}-\frac{e^{2}}{\frac{35}{2} m_{p}}}}{}=1.01438 \mathrm{X} 10^{14} \mathrm{rad} / \mathrm{s}} \tag{13.786}
\end{align*}
$$

where c^{\prime} is given by Eq. (13.767), and the reduced mass of ${ }^{35} \mathrm{Cl}_{2}$ is given by:

$$
\begin{equation*}
\mu_{35 C_{2}}=\frac{m_{1} m_{2}}{m_{1}+m_{2}}=\frac{(35)(35)}{35+35} m_{p} \tag{13.787}
\end{equation*}
$$

where m_{p} is the proton mass. Thus, during bond formation, the perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory motion of the orbit, and the corresponding frequency, $\omega(0)$, for ${ }^{35} \mathrm{Cl}_{2}$ given by Eqs. (11.136), (11.148), and (13.786) is:

$$
\begin{equation*}
\omega(0)=\sqrt{\frac{k(0)}{\mu}}=\sqrt{\frac{301.19 \mathrm{Nm}^{-1}}{\mu}}=1.01438 \times 10^{14} \text { radians } / \mathrm{s} \tag{13.788}
\end{equation*}
$$

where the reduced nuclear mass of ${ }^{35} \mathrm{Cl}_{2}$ is given by Eq. (13.787) and the spring constant, $k(0)$, given by Eqs. (11.136) and (13.786) is:

$$
\begin{equation*}
k(0)=301.19 \mathrm{Nm}^{-1} \tag{13.789}
\end{equation*}
$$

The ${ }^{35} \mathrm{Cl}_{2}$ transition-state vibrational energy, $E_{\text {vib }}(0)$ or ω_{e}, given by Planck's equation (Eq. (11.127)) is:

$$
\begin{equation*}
E_{v i b}(0)=\omega_{e}=\hbar \omega=\hbar 1.01438 \times 10^{14} \mathrm{rad} / \mathrm{s}=0.06677 \mathrm{eV}=538.52 \mathrm{~cm}^{-1} \tag{13.790}
\end{equation*}
$$

ω_{e}, from the experimental curve fit of the vibrational energies of ${ }^{35} \mathrm{Cl}_{2}$ is [28] :

$$
\begin{equation*}
\omega_{e}=559.7 \mathrm{~cm}^{-1} \tag{13.791}
\end{equation*}
$$

Using Eqs. (13.112-13.118) with $E_{v i b}(0)$ given by Eq. (13.790) and D_{0} given by Eq. (13.807), the ${ }^{35} \mathrm{Cl}_{2} \quad v=1 \rightarrow v=0$ vibrational energy, $E_{\text {vib }}(1)$ is:

$$
\begin{equation*}
E_{\text {vib }}(1)=0.0659 \mathrm{eV} \quad\left(531.70 \mathrm{~cm}^{-1}\right) \tag{13.792}
\end{equation*}
$$

The experimental vibrational energy of ${ }^{35} \mathrm{Cl}_{2}$ using ω_{e} and $\omega_{e} X_{e}$ [28] according to K\&P [15] is:

$$
\begin{equation*}
E_{\text {vib }}(1)=0.0664 \mathrm{eV} \quad\left(535.55 \mathrm{~cm}^{-1}\right) \tag{13.793}
\end{equation*}
$$

Using Eq. (13.113) with $E_{\text {vib }}(1)$ given by Eq. (13.792) and D_{0} given by Eq. (13.807), the anharmonic perturbation term, $\omega_{0} x_{0}$, of ${ }^{35} \mathrm{Cl}_{2}$ is:

$$
\begin{equation*}
\omega_{0} x_{0}=3.41 \mathrm{~cm}^{-1} \tag{13.794}
\end{equation*}
$$

The experimental anharmonic perturbation term, $\omega_{0} x_{0}$, of ${ }^{35} \mathrm{Cl}_{2}$ [28] is:

$$
\begin{equation*}
\omega_{0} x_{0}=2.68 \mathrm{~cm}^{-1} \tag{13.795}
\end{equation*}
$$

The vibrational energies of successive states are given by Eqs. (13.790), (13.112), and (13.794).
Using Eqs. (13.133-13.134) and the internuclear distance, $r=2 c^{\prime}$, and reduced mass of ${ }^{35} \mathrm{Cl}_{2}$ given by Eqs. (13.768) and (13.787), respectively, the corresponding B_{e} is:

$$
\begin{equation*}
B_{e}=0.2420 \mathrm{~cm}^{-1} \tag{13.796}
\end{equation*}
$$

The experimental B_{e} rotational parameter of ${ }^{35} \mathrm{Cl}_{2}$ is [28]:

$$
\begin{equation*}
B_{e}=0.2440 \mathrm{~cm}^{-1} \tag{13.797}
\end{equation*}
$$

THE DOPPLER ENERGY TERMS OF Cl_{2}

The equations of the radiation reaction force of the symmetrical $\mathrm{Cl}_{2} \mathrm{MO}$ are the given by Eqs. (11.231-11.233) with the substitution of the Cl_{2} parameters and the substitution of the force factor of Eq. (13.761). The angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{0.93172 \frac{(0.75)}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}=6.31418 \times 10^{15} \mathrm{rad} / \mathrm{s} \tag{13.798}
\end{equation*}
$$

where a is given by Eq. (13.766). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 1.6 .31418 \times 10^{15} \mathrm{rad} / \mathrm{s}=4.15610 \mathrm{eV} \tag{13.799}
\end{equation*}
$$

In Eq. (11.181), substitution of the total energy of $C l_{2}, E_{T}\left(C l_{2}\right)$, (Eq. (13.764)) for $E_{h \nu}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.799) for \bar{E}_{K} gives the Doppler energy of the electrons for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-31.63537 \mathrm{eV} \sqrt{\frac{2 e(4.15610 \mathrm{eV})}{m_{e} c^{2}}}=-0.12759 \mathrm{eV} \tag{13.800}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of Cl_{2} due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (13.800) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of Cl_{2}. Using the experimental ${ }^{35} \mathrm{Cl}_{2} \omega_{e}$ of $559.7 \mathrm{~cm}^{-1}(0.06939 \mathrm{eV})$ [28] for $\bar{E}_{\text {Kvib }}$ of the transition state, $\bar{E}_{\text {osc }}\left({ }^{35} \mathrm{Cl}_{2}\right)$ is:

$$
\begin{align*}
& \bar{E}_{\text {osc }}\left({ }^{35} \mathrm{Cl}_{2}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.801}\\
& \bar{E}_{\text {osc }}\left({ }^{35} \mathrm{Cl}_{2}\right)=-0.12759 \mathrm{eV}+\frac{1}{2}(0.06939 \mathrm{eV})=-0.09289 \mathrm{eV} \tag{13.802}
\end{align*}
$$

TOTAL AND BOND ENERGIES OF Cl_{2}

$E_{T+\text { osc }}\left({ }^{35} \mathrm{Cl}_{2}\right)$, the total energy of the ${ }^{35} \mathrm{Cl}_{2}$ radical including the Doppler term, is given by the sum of $E_{T}\left(\mathrm{Cl}_{2}\right)$ (Eq. (13.764)) and $\bar{E}_{\text {osc }}\left({ }^{35} \mathrm{Cl}_{2}\right)$ given by Eq. (13.802).

$$
\begin{align*}
E_{T+\text { osc }}\left({ }^{35} \mathrm{Cl}_{2}\right) & =V_{e}+T+V_{m}+V_{p}+E_{\text {Coulomb }}\left(C l, 3 s p^{3}\right)+\bar{E}_{\text {osc }}\left({ }^{35} \mathrm{Cl}_{2}\right)=E_{T}\left(\mathrm{Cl}_{2}\right)+\bar{E}_{\text {osc }}\left({ }^{35} \mathrm{Cl}_{2}\right) \tag{13.803}\\
E_{T+\text { osc }}\left({ }^{35} \mathrm{Cl}_{2}\right) & =\left\{\left(\begin{array}{l}
\left(\frac{-e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.93172)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-14.60295 \mathrm{eV}\right) \\
\left(1+\sqrt{\frac{0 \hbar \sqrt{\frac{0.93172 \frac{(0.75)}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}}{m_{e} c^{2}}}\right)+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}
\end{array}\right\}\right. \tag{13.804}\\
& =-31.63537 \mathrm{eV}-0.12759 e V+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}
\end{align*}
$$

From Eqs. (13.801-13.804), the total energy of ${ }^{35} \mathrm{Cl}_{2}$ is:

$$
\begin{align*}
E_{T+\text { osc }}\left({ }^{35} \mathrm{Cl}_{2}\right) & =-31.63537 \mathrm{eV}+\bar{E}_{\text {osc }}\left({ }^{35} \mathrm{Cl}_{2}\right) \\
& =-31.63537 \mathrm{eV}-0.12759 \mathrm{eV}+\frac{1}{2}(0.06939 \mathrm{eV})=-31.72826 \mathrm{eV} \tag{13.805}
\end{align*}
$$

where the experimental ω_{e} (Eq. (13.791)) was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The Cl_{2} bond dissociation energy, $E_{D}\left({ }^{35} \mathrm{Cl}_{2}\right)$, is given by the difference between the total energies of the two Cl3sp ${ }^{3}$ HOs and $E_{T+\text { osc }}\left({ }^{35} \mathrm{Cl}_{2}\right)$:

$$
\begin{equation*}
E_{D}\left({ }^{35} \mathrm{Cl}_{2}\right)=2 E_{\text {Coulomb }}\left(\mathrm{Cl}, 3 \mathrm{sp}{ }^{3}\right)-E_{T+\text { osc }}\left({ }^{35} \mathrm{Cl}_{2}\right) \tag{13.806}
\end{equation*}
$$

$E_{\text {Coulomb }}\left(\mathrm{Cl}, 3 \mathrm{sp}{ }^{3}\right)$ is given by Eq. (13.759); thus, the ${ }^{35} \mathrm{Cl}_{2}$ bond dissociation energy, $E_{D}\left({ }^{35} \mathrm{Cl}_{2}\right)$, given by Eqs. (13.759) and (13.805-13.806) is

$$
\begin{equation*}
E_{D}\left({ }^{35} \mathrm{Cl}_{2}\right)=-2(14.60295 \mathrm{eV})-E_{T+o s c}\left({ }^{35} \mathrm{Cl}_{2}\right)=-29.20590 \mathrm{eV}-(-31.72826 \mathrm{eV})=2.52236 \mathrm{eV} \tag{13.807}
\end{equation*}
$$

The experimental ${ }^{35} \mathrm{Cl}_{2}$ bond dissociation energy is [49]:

$$
\begin{equation*}
E_{D}\left({ }^{35} \mathrm{Cl}_{2}\right)=2.51412 \mathrm{eV} \tag{13.808}
\end{equation*}
$$

The results of the determination of bond parameters of Cl_{2} are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

CARBON NITRIDE RADICAL

The carbon nitride radical can be formed by the reaction of carbon and nitrogen atoms:
$C+N \rightarrow C N$
(13.809)

The bond in carbon nitride radical comprises a H_{2}-type molecular orbital (MO) with two paired electrons. The force balance equations and radii, r_{6} and r_{7}, of the $2 p$ shell of C and N are derived in the Six-Electron Atoms section and Seven-Electron Atoms section, respectively. With the formation of the H_{2}-type MO by the contribution of a $2 p$ electron from each of the C and N atoms, a diamagnetic force arises between the remaining $2 p$ electrons of each atom and the H_{2}-type MO. This force from each atom causes the H_{2}-type MO to move to greater principal axes than would result with the Coulombic force alone. But, the integer increase of the central field and the resulting increased Coulombic as well as magnetic central forces on the remaining $2 p$ electrons of each atom decrease the radii of the corresponding shells such that the energy minimum is achieved that is lower than that of the reactant atoms. The resulting electron configuration of $C N$ is $C 1 s^{2} N 1 s^{2} C 2 s^{2} N 2 s^{2} C 2 p^{1} N 2 p^{2} \sigma_{C, N}^{2}$ where σ designates the H_{2}-type MO , and the orbital arrangement is:

The carbon nitride radical is predicted to be weakly paramagnetic.

FORCE BALANCE OF THE $2 p$ SHELL OF THE CARBON ATOM OF THE CARBON NITRIDE RADICAL

For the C atom, force balance for the outermost $2 p$ electron of $C N$ (electron 5) is achieved between the centrifugal force and the Coulombic and magnetic forces that arise due to interactions between electron 5 and the $2 s$-shell electrons due to spin and orbital angular momentum. The forces used are derived in the Six-Electron Atoms section. The central Coulomb force on the outer-most $2 p$ shell electron of $C N$ (electron 5) due to the nucleus and the inner four electrons is given by Eq. (10.70) with the appropriate charge and radius:

$$
\begin{equation*}
\mathbf{F}_{\text {ele }}=\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0} r_{5}^{2}} \mathbf{i}_{\mathrm{r}} \tag{13.811}
\end{equation*}
$$

for $r>r_{4}$. The $2 p$ shell possess an external electric field given by Eq. (10.92) for $r>r_{5}$.
The single unpaired carbon $2 p$ electron gives rise to a diamagnetic force on the $\sigma-\mathrm{MO}$ as given by Eqs. (13.83513.839). The corresponding Newtonian reaction force cancels $\mathbf{F}_{\text {diamagnetic }}$, of Eq. (10.82). The energy is minimized with conservation of angular momentum. This condition is met when:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic }}=0 \tag{13.812}
\end{equation*}
$$

And, $\mathbf{F}_{\text {mag } 2}$ corresponding to the maximum orbital angular momentum of the three $2 p$ orbitals given by Eq. (10.89) is:

$$
\begin{equation*}
\mathbf{F}_{\text {mag } 2}=\frac{1}{Z} \frac{3 \hbar^{2}}{m_{e} r_{5}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.813}
\end{equation*}
$$

The electric field external to the $2 p$ shell given by Eq. (10.92) for $r>r_{5}$ gives rise to a second diamagnetic force, $\mathbf{F}_{\text {diamagnetic } 2}$, given by Eq. (10.93). $\mathbf{F}_{\text {diamagnetic } 2}$ due to the binding of the p-orbital electron having an electric field of +1 outside of its radius is:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic } 2}=-\left[\frac{Z-5}{Z-4}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{m_{e} r_{5}^{4}} 10 \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.814}
\end{equation*}
$$

The radius of the $2 p$ shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (13.811)) and diamagnetic (Eqs. (13.812) and (13.814)), and paramagnetic (Eq. (13.813)) forces as follows:

$$
\begin{equation*}
\frac{m_{e} v_{5}^{2}}{r_{5}}=\binom{\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0} r_{5}^{2}}+\frac{3 \hbar^{2}}{Z m_{e} r_{5}^{2} r_{3}} \sqrt{s(s+1)}}{-\left[\frac{Z-5}{Z-4}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{5}^{4} m_{e}} 10 \sqrt{s(s+1)}} \tag{13.815}
\end{equation*}
$$

Substitution of $v_{5}=\frac{\hbar}{m_{e} r_{5}}$ (Eq. (1.35)) and $s=\frac{1}{2}$ into Eq. (13.815) gives:

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} r_{5}^{3}}=\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0} r_{5}^{2}}+\frac{3 \hbar^{2}}{Z m_{e} r_{5}^{2} r_{3}} \sqrt{\frac{3}{4}}-\left[\frac{Z-5}{Z-4}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{5}^{4} m_{e}} 10 \sqrt{\frac{3}{4}} \tag{13.816}
\end{equation*}
$$

The quadratic equation corresponding to Eq. (13.816) is:

$$
\begin{equation*}
r_{5}^{2}-\frac{\frac{\hbar^{2}}{m_{e}}}{\left(\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0}}+\frac{3 \hbar^{2}}{Z m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)} r_{5}-\frac{\frac{\hbar^{2}}{m_{e}}\left[\frac{Z-5}{Z-4}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3} 10 \sqrt{\frac{3}{4}}}{\left(\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0}}+\frac{3 \hbar^{2}}{Z m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)}=0 \tag{13.817}
\end{equation*}
$$

The solution of Eq. (13.817) using the quadratic formula is:

$$
r_{5}=\frac{a_{0}}{\left(\frac{1}{\left((Z-4)+\frac{3 \sqrt{3}}{Z 2 r_{3}}\right)} \pm a_{0} \sqrt{\left.\left(\frac{20 \sqrt{3}\left(\left[\frac{Z-5}{Z-4}\right)\left(1-\frac{3 \sqrt{3}}{Z 2 r_{3}}\right)\right.}{2}\right)\right)^{2}} \begin{array}{l}
\left((Z-4)+\frac{3 \sqrt{3}}{Z 2 r_{3}}\right) \tag{13.818}\\
2
\end{array}, r_{3} \text { in units of } a_{0}\right.}
$$

The positive root of Eq. (13.818) must be taken in order that $r_{5}>0$. Substitution of $\frac{r_{3}}{a_{0}}=0.84317$ (Eq. (10.62) with $Z=6$) into Eq. (13.818) gives:

$$
\begin{equation*}
r_{5}=0.88084 a_{0} \tag{13.819}
\end{equation*}
$$

FORCE BALANCE OF THE $2 p$ SHELL OF THE NITROGEN ATOM OF THE CARBON NITRIDE RADICAL

For the N atom, force balance for the outermost $2 p$ electron of $C N$ (electron 6) is achieved between the centrifugal force and the Coulombic and magnetic forces that arise due to interactions between electron 6 and the other $2 p$-shell as well as the $2 s$ shell electrons due to spin and orbital angular momentum. The forces used are derived in the Seven-Electron Atoms section. The central Coulomb force on the outer-most $2 p$ shell electron of $C N$ (electron 6) due to the nucleus and the inner five electrons is given by Eq. (10.70) with the appropriate charge and radius:

$$
\begin{equation*}
\mathbf{F}_{\text {ele }}=\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}} \mathbf{i}_{\mathbf{r}} \tag{13.820}
\end{equation*}
$$

for $r>r_{5}$. The $2 p$ shell possess an external electric field given by Eq. (10.92) for $r>r_{6}$.
The forces to determine the radius of the $N 2 p$ shell of N in $C N$ are the same as those of N in N_{2} except that in $C N$ there is a contribution from the Newtonian reaction force that arises from the single unpaired carbon $2 p$ electron. The energy is minimized with conservation of angular momentum. This condition is met when $\mathbf{F}_{\text {diamagnetic }}$ of N in $C N$ is canceled by the σ MO -reaction force. Eq. (13.622) becomes:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic }}=0 \tag{13.821}
\end{equation*}
$$

And, $\mathbf{F}_{\text {mag } 2}$ corresponding to the conserved orbital angular momentum of the three orbitals given by Eq. (10.89) is:

$$
\begin{equation*}
\mathbf{F}_{\operatorname{mag} 2}=\frac{1}{Z} \frac{3 \hbar^{2}}{m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathrm{r}} \tag{13.822}
\end{equation*}
$$

The electric field external to the $2 p$ shell given by Eq. (10.92) for $r>r_{6}$ gives rise to a second diamagnetic force, $\mathbf{F}_{\text {diamagnetic 2 }}$, given by Eq. (10.93). $\mathbf{F}_{\text {diamagnetic } 2}$ due to the binding of the p-orbital electron having an electric field of +1 outside of its radius is:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic } 2}=-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{m_{e} r_{6}^{4}} 10 \sqrt{s(s+1)} \mathbf{i}_{\mathrm{r}} \tag{13.823}
\end{equation*}
$$

The N forces $\mathbf{F}_{\text {ele }}, \mathbf{F}_{\text {mag 2 }}, \mathbf{F}_{\text {diamagnetic 2 }}$, and $\mathbf{F}_{\text {mag } 3}$ of $C N$ are the same as those of N_{2} given by Eqs. (13.621) and (13.623-13.624), respectively. In both cases, the contribution of a $2 p$ electron from the N atom in the formation of the σ MO gives rise to a paramagnetic force on the remaining two $2 p$ electrons that pair. Thus, the force, $\mathbf{F}_{\text {mag }}$ of $C N$, given by Eq. (13.625) is:

$$
\begin{equation*}
\mathbf{F}_{\operatorname{mag} 3}=\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.824}
\end{equation*}
$$

The radius of the $2 p$ shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (13.820)) and diamagnetic (Eqs. (13.821) and (13.823)), and paramagnetic (Eqs. (13.822) and (13.824)) forces as follows:

$$
\begin{equation*}
\frac{m_{e} v_{6}^{2}}{r_{6}}=\binom{\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}}+\frac{3 \hbar^{2}}{Z m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)}}{-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{6}^{4} m_{e}} 10 \sqrt{s(s+1)}+\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{s(s+1)}} \tag{13.825}
\end{equation*}
$$

Substitution of $v_{6}=\frac{\hbar}{m_{e} r_{6}}$ (Eq. (1.35)) and $s=\frac{1}{2}$ into Eq. (13.626) gives:

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} r_{6}^{3}}-\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{\frac{3}{4}}=\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}}+\frac{3 \hbar^{2}}{Z m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}}-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{6}^{4} m_{e}} 10 \sqrt{\frac{3}{4}} \tag{13.826}
\end{equation*}
$$

The quadratic equation corresponding to Eq. (13.826) is

$$
\begin{equation*}
r_{6}^{2}-\frac{\frac{\hbar^{2}}{m_{e}}\left(1-\frac{\sqrt{3}}{8}\right)}{\left(\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0}}+\frac{3 \hbar^{2}}{Z m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)^{2}} r_{6}-\frac{\frac{\hbar^{2}}{m_{e}}\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3} 10 \sqrt{\frac{3}{4}}}{\left(\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0}}+\frac{3 \hbar^{2}}{Z m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)}=0 \tag{13.827}
\end{equation*}
$$

The solution of Eq. (13.827) using the quadratic formula is:

$$
r_{6}=\frac{a_{0}\left(1-\frac{\sqrt{3}}{8}\right)}{\left((Z-5)+\frac{3 \sqrt{3}}{Z 2 r_{3}}\right)} \pm a_{0} \sqrt{\left(\frac{1-\frac{\sqrt{3}}{8}}{\left(\frac{\left.(Z-5)+\frac{3 \sqrt{3}}{Z 2 r_{3}}\right)}{\left(\frac{20 \sqrt{3}\left(\left[\frac{Z-6}{Z-5}\right)\left(1-\frac{\sqrt{2}}{2}\right) r_{3}\right)}{\left((Z-5)+\frac{3 \sqrt{3}}{Z 2 r_{3}}\right)}\right.}\right.} \begin{array}{l}
2 \tag{13.828}\\
2
\end{array}, r_{3} \text { in units of } a_{0}\right.}
$$

The positive root of Eq. (13.828) must be taken in order that $r_{6}>0$. Substitution of $\frac{r_{3}}{a_{0}}=0.69385$ (Eq. (10.62) with $Z=7$) into Eq. (13.828) gives:

$$
\begin{equation*}
r_{6}=0.76366 a_{0} \tag{13.829}
\end{equation*}
$$

ENERGIES OF THE $2 p$ SHELLS OF THE CARBON AND NITROGEN ATOMS OF THE CARBON NITRIDE RADICAL

The central forces on the $2 p$ shell of the C and N atoms are increased with the formation of the σ MO which reduces each shell's radius and increases its total energy. The Coulombic energy terms of the total energy of the C and N atoms at the new radii are calculated and added to the energy of the σ MO to give the total energy of $C N$. Then, the bond energy is determined from the total $C N$ energy.

The radius r_{6} of the carbon atom before bonding is given by Eq. (10.122):

$$
\begin{equation*}
r_{6}=1.20654 a_{0} \tag{13.830}
\end{equation*}
$$

Using the initial radius r_{6} of the C atom and the final radius r_{5} of the $C 2 p$ shell of $C N$ (Eq. (13.819)) and by considering that the central Coulombic field decreases by an integer for each successive electron of the shell, the sum $E_{T}(C N, C 2 p)$ of the Coulombic energy change of the $C 2 p$ electron is determined using Eq. (10.102):

$$
\begin{equation*}
E_{T}(C N, C 2 p)=-\sum_{n=4}^{4} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{5}}-\frac{1}{r_{6}}\right)=-(13.60580 \mathrm{eV})(0.30647)(2)=-8.33948 \mathrm{eV} \tag{13.831}
\end{equation*}
$$

The radius r_{7} of the nitrogen atom before bonding is given by Eq. (10.142).

$$
\begin{equation*}
r_{7}=0.93084 a_{0} \tag{13.832}
\end{equation*}
$$

Using the initial radius r_{7} of the N atom and the final radius r_{6} of the $N 2 p$ shell of $C N$ (Eq. (13.829)) and by considering that the central Coulombic field decreases by an integer for each successive electron of the shell, the sum $E_{T}(C N, N 2 p)$ of the Coulombic energy change of the $N 2 p$ electron is determined using Eq. (10.102):

$$
\begin{equation*}
E_{T}(C N, N 2 p)=-\sum_{n=4}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{6}}-\frac{1}{r_{7}}\right)=-(13.60580 \mathrm{eV})(0.23518)(2+3)=-15.99929 \mathrm{eV} \tag{13.833}
\end{equation*}
$$

FORCE BALANCE OF THE σ MO OF THE CARBON NITRIDE RADICAL

The diamagnetic force $\mathbf{F}_{\text {diamagneticMOI }}$
for the σ-MO of the $C N$ molecule due to the two paired electrons in the $N 2 p$ shell given by Eq. (13.633) with $n_{e}=2$ is:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagneticMO1 }}=\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \mathbf{i}_{\xi} \tag{13.834}
\end{equation*}
$$

The force $\mathbf{F}_{\text {diamagneticмо2 }}$ is given by Eq. (13.634) except that the force is summed over the individual diamagnetic-force terms due to each component of angular momentum $\left|L_{i}\right|$ acting on the electrons of the σ-MO from each atom having a nucleus of charge Z_{j} at one of the foci of the $\sigma-\mathrm{MO}$:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagneticMO2 }}=\sum_{i, j} \frac{\left|L_{i}\right| \hbar}{Z_{j} 2 m_{e} a^{2} b^{2}} D \mathbf{i}_{\xi} \tag{13.835}
\end{equation*}
$$

Using Eqs. (11.200), (13.633-13.634), and (13.834-13.835), the force balance for the $\sigma-\mathrm{MO}$ of the carbon nitride radical comprising carbon with charge $Z_{1}=6$ and $\left|L_{1}\right|=\hbar$ and $\left|L_{2}\right|=\sqrt{\frac{3}{4}} \hbar$ and nitrogen with $Z_{2}=7$ and $\left|L_{3}\right|=\hbar$ is:

$$
\begin{align*}
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D-\left(1+\frac{1}{Z_{1}}+\frac{\sqrt{\frac{3}{4}}}{Z_{1}}+\frac{1}{Z_{2}}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{13.836}\\
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D-\left(\frac{1}{Z_{1}}+\frac{\sqrt{\frac{3}{4}}}{Z_{1}}+\frac{1}{Z_{2}}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{13.837}\\
& \left(2+\frac{1}{Z_{1}}+\frac{\sqrt{\frac{3}{4}}}{Z_{1}}+\frac{1}{Z_{2}}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D \tag{13.838}\\
& a=\left(2+\frac{1}{Z_{1}}+\frac{\sqrt{\frac{3}{4}}}{Z_{1}}+\frac{1}{Z_{2}}\right) a_{0} \tag{13.839}
\end{align*}
$$

Substitution of $Z_{1}=6$ and $Z_{2}=7$ into Eq. (13.839) gives:

$$
\begin{equation*}
a=2.45386 a_{0}=1.29853 \times 10^{-10} \mathrm{~m} \tag{13.840}
\end{equation*}
$$

Substitution of Eq. (13.840) into Eq. (11.79) is:

$$
\begin{equation*}
c^{\prime}=1.10767 a_{0}=5.86153 \times 10^{-11} \mathrm{~m} \tag{13.841}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.841) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.21534 a_{0}=1.17231 \times 10^{-10} \mathrm{~m} \tag{13.842}
\end{equation*}
$$

The experimental bond distance from Ref. [28] is:

$$
\begin{equation*}
2 c^{\prime}=1.17181 \times 10^{-10} \mathrm{~m} \tag{13.843}
\end{equation*}
$$

Substitution of Eqs. (13.840-13.841) into Eq. (11.80) is:

$$
\begin{equation*}
b=c=2.18964 a_{0}=1.15871 \times 10^{-10} \mathrm{~m} \tag{13.844}
\end{equation*}
$$

Substitution of Eqs. (13.840-13.841) into Eq. (11.67) is:

$$
\begin{equation*}
e=0.45140 \tag{13.845}
\end{equation*}
$$

Using the electron configuration of $C N$ (Eq. (13.810)), the radii of the $C 1 s=0.17113 a_{0}$ (Eq. (10.51)), $C 2 s=0.84317 a_{0}$ (Eq. (10.62)), $\quad C 2 p=0.88084 a_{0} \quad$ (Eq. (13.819)), $\quad N 1 s=0.14605 a_{0} \quad$ (Eq. (10.51)), $\quad N 2 s=0.69385 a_{0} \quad$ (Eq. (10.62)), and $N 2 p=0.76366 a_{0}$ (Eq. (13.829)) shells and the parameters of the σ MO of $C N$ given by Eqs. (13.3-13.4), (13.840-13.842), and (13.844-13.845), the dimensional diagram and charge-density of the $C N \mathrm{MO}$ are shown in Figures 13.22 and 13.23, respectively.

Figure 13.22. The cross section of the $C N$ MO showing the axes, σ MO (H_{2}-type ellipsoidal MO), with the $C 1 s, 2 s$, and $2 p$ atomic orbitals (AOs) and the $N 1 s, 2 s$, and $2 p$ AOs. Legend: a : semimajor axis, b : semiminor axis, c^{\prime} : internuclear distance, r_{5} : radius of the $C 2 p$ shell having one unpaired electron, r_{6} : radius of the $N 2 p$ shell having two paired electrons.

Figure 13.23. CN MO comprising the $\sigma \mathrm{MO}\left(\mathrm{H}_{2}\right.$-type MO) with C and N atoms at the foci that have each donated an electron to the σ MO and have smaller radii and higher binding energies as a consequence. (A) Color scale, translucent view of the charge-density of the CN MO. (B) Off-center cut-away view showing the complete inner most C1s shell, and moving radially, the $C 2 s$ shell, the $C 2 p$ shell, and the σ prolate spheroidal MO that has the C atom as a focus. Moving radially from the nitrogen-atom focus, the complete inner most $N 1 s$ shell, the $N 2 s$ shell, the $N 2 p$ shell, and the σ prolate spheroidal MO are shown.

SUM OF THE ENERGIES OF THE σ MO AND THE AOs OF THE CARBON NITRIDE RADICAL

The energies of the CN σ MO are given by the substitution of the semiprincipal axes (Eqs. (13.840-13.841) and (13.844)) into the energy equations (Eqs. (11.207-11.212)) of H_{2} :

$$
\begin{align*}
& V_{e}=\frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-23.90105 \mathrm{eV} \tag{13.846}\\
& V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=12.28328 \mathrm{eV} \tag{13.847}\\
& T=\frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=4.87009 \mathrm{eV} \tag{13.848}\\
& V_{m}=\frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-2.43504 \mathrm{eV} \tag{13.849}\\
& E_{T}=V_{e}+T+V_{m}+V_{p} \tag{13.850}
\end{align*}
$$

Substitution of Eqs. (11.79) and (13.846-13.849) into Eq. (13.850) gives:

$$
\begin{equation*}
E_{T}(C N, \sigma)=\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left(\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right)=-9.18273 \mathrm{eV} \tag{13.851}
\end{equation*}
$$

where $E_{T}(C N, \sigma)$ is the total energy of the σ MO of $C N$. The sum, $E_{T}(C N)$, of $E_{T}(C N, C 2 p)$, the $C 2 p$ AO contribution given by Eq. (13.831), $E_{T}(C N, N 2 p)$, the $N 2 p \mathrm{AO}$ contribution given by Eq. (13.833), and $E_{T}(C N, \sigma)$, the σ MO contribution given by Eq. (13.851) is:

$$
\begin{align*}
E_{T}(C N) & =E_{T}(C N, C 2 p)+E_{T}(C N, N 2 p)+E_{T}\left(N_{2}, \sigma\right) \\
& =-8.33948 \mathrm{eV}-15.99929 \mathrm{eV}-9.18273 \mathrm{eV} \tag{13.852}\\
& =-33.52149 \mathrm{eV}
\end{align*}
$$

VIBRATION OF CN

The vibrational energy levels of $C N$ may be solved by determining the Morse potential curve from the energy relationships for the transition from a C atom and N atom whose parameters are given by Eqs. (10.115-10.123) and (10.134-10.143), respectively, to a C atom whose parameter r_{5} is given by Eq. (10.819), a N atom whose parameter r_{6} is given by Eq. (13.829), and the σ MO whose parameters are given by Eqs. (13.840-13.842) and (13.844-13.845). As shown in the Vibration of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about the internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K\&P) [15] and after Eq. (11.134). Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy corrections can be found by perturbation methods.

THE DOPPLER ENERGY TERMS OF THE CARBON NITRIDE RADICAL

The equations of the radiation reaction force of $C N$ are the same as those of H_{2} with the substitution of the $C N$ parameters. Using Eqs. (11.231-11.233), the angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}=1.07550 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.853}
\end{equation*}
$$

where a is given by Eq. (13.840). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 1.07550 \times 10^{16} \mathrm{rad} / \mathrm{s}=7.07912 \mathrm{eV} \tag{13.854}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}(C N)$ for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.854) for \bar{E}_{K} gives the Doppler energy of the electrons of the reentrant orbit:

$$
\begin{align*}
\bar{E}_{D} & \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-33.59603 \mathrm{eV} \sqrt{\frac{2 e(7.07912 \mathrm{eV})}{m_{e} c^{2}}} \tag{13.855}\\
& =-0.17684 \mathrm{eV}
\end{align*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of the $C N$ MO due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (13.855) and $\bar{E}_{\text {Kib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy. Using the experimental $C N$ ω_{e} of $2068.59 \mathrm{~cm}^{-1}(0.25647 \mathrm{eV})$ [28] for $\bar{E}_{\text {Kvib }}$ of the transition state, $\bar{E}_{\text {osc }}(C N)$ is:

$$
\begin{align*}
\bar{E}_{\text {osc }}(C N) & =\bar{E}_{D}+\bar{E}_{\text {Kvib }} \\
& =\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.856}\\
\bar{E}_{\text {osc }}(C N) & =-0.17684 \mathrm{eV}+\frac{1}{2}(0.25647 \mathrm{eV}) \tag{13.857}\\
& =-0.04860 \mathrm{eV}
\end{align*}
$$

TOTAL AND BOND ENERGIES OF THE CARBON NITRIDE RADICAL

$E_{T+o s c}(C N)$, the total energy of $C N$ including the Doppler term, is given by the sum of $E_{T}(C N)$ (Eq. (13.852)) and $\bar{E}_{\text {osc }}(C N)$ given by Eq. (13.857):

$$
\begin{align*}
& E_{T+\text { osc }}(C N)=V_{e}+T+V_{m}+V_{p}+E_{T}(C N, C 2 p)+E_{T}(C N, N 2 p)+\bar{E}_{\text {osc }}(C N) \\
& =E_{T}(C N, \sigma)+E_{T}(C N, C 2 p)+E_{T}(C N, N 2 p)+\bar{E}_{\text {osc }}(C N) \tag{13.858}\\
& =E_{T}(C N)+\bar{E}_{\text {osc }}(C N) \\
& \left.E_{T+\text { osc }}(C N)=\left\{\begin{array}{l}
\left(\begin{array}{l}
\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left(\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right.
\end{array}\right) \\
-\sum_{C, n=4}^{4} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{5}}-\frac{1}{r_{6}}\right)-\sum_{N, n=4}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{6}}-\frac{1}{r_{7}}\right)
\end{array}\right)\right\} \tag{13.859}\\
& =-33.52149 \mathrm{eV}-0.17684 \mathrm{eV}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}
\end{align*}
$$

From Eqs. (13.856-13.859), the total energy of the CN MO is:

$$
\begin{align*}
E_{T+o s c}(C N) & =-33.52149 \mathrm{eV}+\bar{E}_{\text {osc }}(C N) \\
& =-33.52149 \mathrm{eV}-0.17684 \mathrm{eV}+\frac{1}{2}(0.25647 \mathrm{eV}) \tag{13.860}\\
& =-33.56970 \mathrm{eV}
\end{align*}
$$

where the experimental ω_{e} was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The $C N$ bond dissociation energy, $E_{D}(C N)$, is given by the difference between the sum of the energies of the C and N atoms and $E_{T+o s c}(C N)$:

$$
\begin{equation*}
E_{D}(C N)=E(C)+E(N)-E_{T+\text { osc }}(C N) \tag{13.861}
\end{equation*}
$$

where the energy of a carbon atom is [6]:

$$
\begin{equation*}
E(C)=-11.26030 \mathrm{eV} \tag{13.862}
\end{equation*}
$$

and the energy of a nitrogen atom is [6]:

$$
\begin{equation*}
E(N)=-14.53414 \mathrm{eV} \tag{13.863}
\end{equation*}
$$

Thus, the $C N$ bond dissociation energy, $E_{D}(C N)$, given by Eqs. (13.860-13.863) is:

$$
\begin{align*}
E_{D}(C N) & =-(11.26030 \mathrm{eV}+14.53414 \mathrm{eV})-E_{T+o s c}(C N) \\
& =-25.79444 \mathrm{eV}-(-33.56970 \mathrm{eV}) \tag{13.864}\\
& =7.77526 \mathrm{eV}
\end{align*}
$$

The experimental $C N$ bond dissociation energy is [50]:

$$
\begin{equation*}
E_{D 298}(C N)=7.7731 \mathrm{eV} \tag{13.865}
\end{equation*}
$$

The results of the determination of bond parameters of $C N$ are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

CARBON MONOXIDE MOLECULE

The carbon monoxide molecule can be formed by the reaction of carbon and oxygen atoms:

$$
\begin{equation*}
C+O \rightarrow C O \tag{13.866}
\end{equation*}
$$

The bond in the carbon monoxide molecule comprises a double bond, a H_{2}-type molecular orbital (MO) with four paired electrons. The force balance equation and radius r_{6} of the $2 p$ shell of C is derived in the Six-Electron Atoms section. The force balance equation and radius r_{8} of the $2 p$ shell of O is derived in the Eight-Electron Atoms section. With the formation of the H_{2}-type MO by the contribution of two $2 p$ electrons from each of the C and O atoms, a diamagnetic force arises between the remaining outer shell atomic electrons, the 2 s electrons of C and the $2 p$ electrons of O, and the H_{2}-type MO. This force from C and O causes the H_{2}-type MO to move to greater principal axes than would result with the Coulombic force alone. But, the factor of two increase of the central field and the resulting increased Coulombic as well as magnetic central forces on the remaining $O 2 p$ electrons decrease the radius of the corresponding shell such that the energy minimum is achieved that is lower than that of the reactant atoms. The resulting electron configuration of CO is $\mathrm{Cls}^{2} \mathrm{O} 1 s^{2} \mathrm{C} 2 s^{2} \mathrm{O} 2 s^{2} \mathrm{O} 2 p^{2} \sigma_{C, O}^{4}$ where σ designates the H_{2}-type MO , and the orbital arrangement is:

Carbon monoxide is predicted to be diamagnetic in agreement with observations [42].

FORCE BALANCE OF THE $2 p$ SHELL OF THE OXYGEN ATOM OF THE CARBON MONOXIDE MOLECULE

For the O atom, force balance for the outermost $2 p$ electron of $C O$ (electron 6) is achieved between the centrifugal force and the Coulombic and magnetic forces that arise due to interactions between electron 6 and the other $2 p$ electron as well as the $2 s$ shell electrons due to spin and orbital angular momentum. The forces used are derived in the Eight-Electron Atoms section. The central Coulomb force on the outer-most $2 p$ shell electron of $C O$ (electron 6) due to the nucleus and the inner five electrons is given by Eq. (10.70) with the appropriate charge and radius:

$$
\begin{equation*}
\mathbf{F}_{\text {ele }}=\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}} \mathbf{i}_{\mathbf{r}} \tag{13.868}
\end{equation*}
$$

for $r>r_{5}$. The $2 p$ shell possesses a +2 external electric field given by Eq. (10.92) for $r>r_{6}$. The energy is minimized with conservation of angular momentum. This condition is met when the diamagnetic force, $\mathbf{F}_{\text {diamagnetic }}$, of Eq. (10.82) due to the p orbital contribution is given by:

$$
\begin{align*}
\mathbf{F}_{\text {diamagnetic }} & =-\left(\frac{1}{3}\right) \frac{\hbar^{2}}{4 m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \\
& =-\frac{\hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}} \mathbf{i}_{\mathbf{r}} \tag{13.869}
\end{align*}
$$

And, $\mathbf{F}_{\operatorname{mag} 2}$ corresponding to the conserved spin and orbital angular momentum given by Eq. (10.157) is:

$$
\begin{equation*}
\mathbf{F}_{\operatorname{mag} 2}=\frac{1}{Z} \frac{2 \hbar^{2}}{m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.870}
\end{equation*}
$$

The electric field external to the $2 p$ shell given by Eq. (10.92) for $r>r_{6}$ gives rise to a second diamagnetic force, $\mathbf{F}_{\text {diamagnetic 2 }}$, given by Eq. (10.93). $\mathbf{F}_{\text {diamagnetic } 2}$ due to the binding of the p-orbital electron having an electric field of +2 outside of its radius is:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic } 2}=-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{m_{e} r_{6}^{4}} 10 \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.871}
\end{equation*}
$$

In addition, the contribution of two $2 p$ electrons in the formation of the σ molecular orbital (MO) gives rise to a paramagnetic force on the remaining paired $2 p$ electrons. The force $\mathbf{F}_{\text {mag } 3}$ is given by Eq. (13.625) wherein the radius is r_{6} :

$$
\begin{equation*}
\mathbf{F}_{\operatorname{mag} 3}=\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.872}
\end{equation*}
$$

The radius of the $2 p$ shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (13.868)) and diamagnetic (Eqs. (13.869) and (13.871)), and paramagnetic (Eqs. (13.870) and (13.872)) forces as follows:

$$
\begin{equation*}
\frac{m_{e} v_{6}^{2}}{r_{6}}=\binom{\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}}-\frac{\hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)}+\frac{2 \hbar^{2}}{Z m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)}}{-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{6}^{4} m_{e}} 10 \sqrt{s(s+1)}+\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{s(s+1)}} \tag{13.873}
\end{equation*}
$$

Substitution of $v_{6}=\frac{\hbar}{m_{e} r_{6}}$ (Eq. (1.35)) and $s=\frac{1}{2}$ into Eq. (13.873) gives:

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} r_{6}^{3}}-\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{\frac{3}{4}}=\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}}-\frac{\hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}}+\frac{2 \hbar^{2}}{Z m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}}-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{6}^{4} m_{e}} 10 \sqrt{\frac{3}{4}} \tag{13.874}
\end{equation*}
$$

The quadratic equation corresponding to Eq. (13.874) is

$$
\begin{equation*}
r_{6}^{2}-\frac{\frac{\hbar^{2}}{m_{e}}\left(1-\frac{\sqrt{3}}{8}\right)}{\left(\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{1}{12}-\frac{2}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)^{2}} r_{6}-\frac{\frac{\hbar^{2}}{m_{e}}\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3} 10 \sqrt{\frac{3}{4}}}{\left(\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{1}{12}-\frac{2}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)}=0 \tag{13.875}
\end{equation*}
$$

The solution of Eq. (13.875) using the quadratic formula is:

$$
\begin{equation*}
r_{6}=\frac{a_{0}\left(1-\frac{\sqrt{3}}{8}\right)}{\left((Z-5)-\left(\frac{1}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right) \pm a_{0} \sqrt{\left(\frac{1-\frac{\sqrt{3}}{8}}{\left(\frac{\left.(Z-5)-\left(\frac{1}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}{\left(\sqrt{20 \sqrt{3}\left(\left[\frac{Z-6}{Z-5}\right)\left(1-\frac{\sqrt{2}}{2}\right) r_{3}\right)}\right.}\right)^{\left((Z-5)-\left(\frac{1}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}}\right.}, r_{3} \text { in units of } a_{0}} \tag{13.876}
\end{equation*}
$$

The positive root of Eq. (13.876) must be taken in order that $r_{6}>0$. Substitution of $\frac{r_{3}}{a_{0}}=0.59020$ (Eq. (10.62) with $Z=8$) into Eq. (13.876) gives:

$$
\begin{equation*}
r_{6}=0.68835 a_{0} \tag{13.877}
\end{equation*}
$$

ENERGIES OF THE $2 s$ AND $2 p$ SHELLS OF THE CARBON ATOM AND THE $2 p$ SHELL OF THE OXYGEN ATOM OF THE CARBON MONOXIDE MOLECULE

With the formation of the H_{2}-type MO by the contribution of two $2 p$ electrons from the C atom, the remaining outer-shell atomic electrons comprise the $2 s$ electrons, which are unchanged by bonding with oxygen. However, the total energy of the CO molecule, which is subtracted from the sum of the energies of the carbon and oxygen atoms to determine the bond energy, is increased by the ionization energies of C^{+}and O^{+}given by Eqs. (10.113-10.114) and (10.152-10.153), respectively. Experimentally, the energies are [6] :

$$
\begin{equation*}
\text { E(ionization; } \left.\mathrm{C}^{+}\right)=24.38332 \mathrm{eV} \tag{13.878}
\end{equation*}
$$

E(ionization; $\left.\mathrm{O}^{+}\right)=35.11730 \mathrm{eV}$
In addition, the central forces on the $2 p$ shell of the O atom are increased with the formation of the $\sigma \mathrm{MO}$, which reduces the shell's radius and increases its total energy. The Coulombic energy terms of the total energy of the O atom at the new radius are calculated and added to the ionization energies of C^{+}and O^{+}, and the energy of the σ MO to give the total energy of $C O$. Then, the bond energy is determined from the total $C O$ energy.

The radius r_{8} of the oxygen atom before bonding is given by Eq. (10.162):

$$
\begin{equation*}
r_{8}=a_{0} \tag{13.880}
\end{equation*}
$$

Using the initial radius r_{8} of the O atom and the final radius r_{6} of the $O 2 p$ shell (Eq. (13.877)) and by considering that the central Coulombic field decreases by an integer for each successive electron of the shell, the sum $E_{T}(O, 2 p)$ of the Coulombic energy change of the $O 2 p$ electrons of the O atom is determined using Eq. (10.102):

$$
\begin{equation*}
E_{T}(O, 2 p)=-\sum_{n=4}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{6}}-\frac{1}{r_{8}}\right)=-(13.60580 \mathrm{eV})(0.45275)(3+4)=-43.11996 \mathrm{eV} \tag{13.881}
\end{equation*}
$$

FORCE BALANCE OF THE σ MO OF THE CARBON MONOXIDE MOLECULE

The force balance can be considered due to a second pair of two electrons binding to a molecular ion having $+2 e$ at each focus and a first bound pair. Then, the forces are the same as those of a molecule ion having $+e$ at each focus. The diamagnetic force $\mathbf{F}_{\text {diamagneticMO1 }}$ for the $\sigma-\mathrm{MO}$ of the $C O$ molecule due to the two paired electrons in each of the $C 2 s$ and $O 2 p$ shells is given by Eq. (13.633) with $n_{e}=2$:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagneticMOI }}=\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \mathbf{i}_{\xi} \tag{13.882}
\end{equation*}
$$

The force $\mathbf{F}_{\text {diamagneticMO2 }}$ is given by Eqs. (13.634) and (13.835) as the sum of the contributions due to carbon with $Z=Z_{1}$ and oxygen with $Z=Z_{2} . \mathbf{F}_{\text {diamagneticmol }}$ for $C O$ with $\left|L_{i}\right|=\hbar$ is:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagneticMO2 }}=\left(\frac{1}{Z_{1}}+\frac{1}{Z_{2}}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \mathbf{i}_{\xi} \tag{13.883}
\end{equation*}
$$

The force balance equation for the $\sigma-\mathrm{MO}$ of the carbon monoxide molecule given by Eqs. (11.200), (13.633-13.634), and (13.882-13.883) is:

$$
\begin{align*}
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D-\left(1+\left(\frac{1}{Z_{1}}+\frac{1}{Z_{2}}\right)\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{13.884}\\
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D-\left(\frac{1}{Z_{1}}+\frac{1}{Z_{2}}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{13.885}\\
& \left(2+\frac{1}{Z_{1}}+\frac{1}{Z_{2}}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D \tag{13.886}\\
& a=\left(2+\frac{1}{Z_{1}}+\frac{1}{Z_{2}}\right) a_{0} \tag{13.887}
\end{align*}
$$

Substitution of $Z_{1}=6$ and $Z_{2}=8$ into Eq. (13.887) gives:

$$
\begin{equation*}
a=2.29167 a_{0}=1.21270 \times 10^{-10} \mathrm{~m} \tag{13.888}
\end{equation*}
$$

Substitution of Eq. (13.888) into Eq. (11.79) is:

$$
\begin{equation*}
c^{\prime}=1.07044 a_{0}=5.66450 \times 10^{-11} \mathrm{~m} \tag{13.889}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.889) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.14087 a_{0}=1.13290 \times 10^{-10} \mathrm{~m} \tag{13.890}
\end{equation*}
$$

The experimental bond distance is [28]:

$$
\begin{equation*}
2 c^{\prime}=1.12823 \times 10^{-10} \mathrm{~m} \tag{13.891}
\end{equation*}
$$

Substitution of Eqs. (13.888-13.889) into Eq. (11.80) is:

$$
\begin{equation*}
b=c=2.02630 a_{0}=1.07227 \times 10^{-10} \mathrm{~m} \tag{13.892}
\end{equation*}
$$

Substitution of Eqs. (13.888-13.889) into Eq. (11.67) is:

$$
\begin{equation*}
e=0.46710 \tag{13.893}
\end{equation*}
$$

Using the electron configuration of $C O$ (Eq. (13.867)), the radii of the $C 1 s=0.17113 a_{0}$ (Eq. (10.51)), $C 2 s=0.84317 a_{0}$ (Eq. (10.62)), $O 1 s=0.12739 a_{0}$ (Eq. (10.51)), O2s $=0.59020 a_{0}$ (Eq. (10.62)), and O2p=0.68835a (Eq. (13.877)) shells and the parameters of the $\sigma \mathrm{MO}$ of $C O$ given by Eqs. (13.3-13.4), (13.888-13.890), and (13.892-13.893), the dimensional diagram and charge-density of the $C O$ MO are shown in Figures 13.24 and 13.25, respectively.

Figure 13.24. The cross section of the CO MO showing the axes, σ MO (H_{2}-type ellipsoidal MO) with four paired electrons, with the $C 1 s$ and $2 s$ atomic orbitals (AOs) and the $O 1 s, 2 s$, and $2 p$ AOs. Legend: a : semimajor axis, b : semiminor axis, c^{\prime} : internuclear distance, r_{4} : radius of the $C 2 s$ shell having two paired electrons, r_{6} : radius of the $O 2 p$ shell having two paired electrons.

Figure 13.25. CO MO comprising the σ MO (H_{2}-type MO) with C and O atoms at the foci that have each donated two electrons to the σ MO. Consequently, the outer electrons of the carbon atom comprise the C2s shell, and the $O 2 p$ shell has a smaller radius and a higher binding energy. (A) Color scale, translucent view of the charge-density of the CO MO. (B) Off-center cut-away view showing the complete inner most Ols shell, and moving radially, the $O 2 s$ shell, the $O 2 p$ shell, and the σ prolate spheroidal MO that has the O atom as a focus. Moving radially from the carbon-atom focus, the complete inner most $C 1 s$ shell, the $C 2 s$ shell, and the σ prolate spheroidal MO are shown.

SUM OF THE ENERGIES OF THE σ MO AND THE AOS OF THE CARBON MONOXIDE MOLECULE

The energies of the CO σ MO are given by the substitution of the semiprincipal axes (Eqs. (13.888-13.889) and (13.892)) into the energy equations (Eqs. (11.207-11.212)) of H_{2} except that the terms based on charge are multiplied by four and the kinetic energy term is multiplied by two due to the σ-MO double bond with two pairs of paired electrons:

$$
\begin{align*}
& V_{e}=2^{2} \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-102.97635 \mathrm{eV} \tag{13.894}\\
& V_{p}=2^{2} \frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=50.84210 \mathrm{eV} \tag{13.895}\\
& T=2 \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=11.23379 \mathrm{eV} \tag{13.896}
\end{align*}
$$

$$
\begin{align*}
& V_{m}=2^{2} \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-11.23379 \mathrm{eV} \tag{13.897}\\
& E_{T}=V_{e}+T+V_{m}+V_{p} \tag{13.898}
\end{align*}
$$

Substitution of Eqs. (11.79) and (13.894-13.897) into Eq. (13.898) gives:

$$
\begin{equation*}
E_{T}(C O, \sigma)=\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left(8 \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-4\right)=-52.13425 \mathrm{eV} \tag{13.899}
\end{equation*}
$$

where $E_{T}(C O, \sigma)$ is the total energy of the $\sigma \mathrm{MO}$ of $C O$. The total energy of $C O, E_{T}(C O)$, is given by the sum of E(ionization; C^{+}), the energy of the second electron of carbon (Eq. (13.878)) donated to the double bond, E(ionization; O^{+}), the energy of the second electron of oxygen (Eq. (13.879)) donated to the double bond, $E_{T}(O, 2 p)$, the $O 2 p$ AO contribution due to the decrease in radius with bond formation (Eq. (13.881)), and $E_{T}(C O, \sigma)$, the σ MO contribution given by Eq. (13.899):

$$
\begin{align*}
E_{T}(C O) & =E\left(\text { ionization; } C^{+}\right)+E\left(\text { ionization; } O^{+}\right)+E_{T}(O, 2 p)+E_{T}(C O, \sigma) \\
& =24.38332 \mathrm{eV}+35.11730 \mathrm{eV}-43.11996 \mathrm{eV}-52.13425 \mathrm{eV} \tag{13.900}\\
& =-35.75359 \mathrm{eV}
\end{align*}
$$

VIBRATION OF CO

The vibrational energy levels of CO may be solved by determining the Morse potential curve from the energy relationships for the transition from a C atom and O atom whose parameters are given by Eqs. (10.115-10.123) and (10.154-10.163), respectively, to a C atom whose parameter r_{4} is given by Eq. (10.61), an O atom whose parameter r_{6} is given by Eq. (13.877), and the σ MO whose parameters are given by Eqs. (13.888-13.890) and (13.892-13.893). As shown in the Vibration of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about the internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K\&P) [15] and after Eq. (11.134). Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy corrections can be found by perturbation methods.

THE DOPPLER ENERGY TERMS OF THE CARBON MONOXIDE MOLECULE

The equations of the radiation reaction force of carbon monoxide are the same as those of H_{2} with the substitution of the CO parameters except that there is a factor of four increase in the central force in Eq. (11.231) due to the double bond. Using Eqs. (11.231-11.233), the angular frequency of the reentrant oscillation in the transition state is

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{4 e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}=2.38335 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.901}
\end{equation*}
$$

where a is given by Eq. (13.888). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{align*}
\bar{E}_{K} & =\hbar \omega=\hbar 2.38335 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.902}\\
& =15.68762 \mathrm{eV}
\end{align*}
$$

In Eq. (11.181), substitution of $E_{T}(C O)$ for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.902) for \bar{E}_{K} gives the Doppler energy of the electrons of the reentrant orbit:

$$
\begin{align*}
\bar{E}_{D} & \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}} \tag{13.903}\\
& =-35.75359 \mathrm{eV} \sqrt{\frac{2 e(15.68762 \mathrm{eV})}{m_{e} c^{2}}}=-0.28016 \mathrm{eV}
\end{align*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of the $C O \mathrm{MO}$ due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (13.903) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy. Using the experimental CO ω_{e} of $2169.81 \mathrm{~cm}^{-1}(0.26902 \mathrm{eV})$ [28] for $\bar{E}_{\text {Kvib }}$ of the transition state, $\bar{E}_{\text {osc }}^{\prime}(\mathrm{CO})$ per bond is:

$$
\begin{align*}
& \bar{E}_{o s c}^{\prime}(C O)=\bar{E}_{D}+\bar{E}_{K v i b}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.904}\\
& \bar{E}_{o s c}^{\prime}(C O)=-0.28016 \mathrm{eV}+\frac{1}{2}(0.26902 \mathrm{eV})=-0.14564 \mathrm{eV} \tag{13.905}
\end{align*}
$$

Since the σ MO bond is a double bond with twice a many electrons as a single bond, $\bar{E}^{\prime}{ }_{\text {osc }}(C O)$ is multiplied by two to give:

$$
\begin{equation*}
\bar{E}_{\text {osc }}(C O)=-0.29129 \mathrm{eV} \tag{13.906}
\end{equation*}
$$

TOTAL AND BOND ENERGIES OF THE CARBON MONOXIDE MOLECULE

$E_{T+o s c}(C O)$, the total energy of $C O$ including the Doppler term, is given by the sum of $E_{T}(C O)$ (Eq. (13.900)) and $\bar{E}_{\text {osc }}(C O)$ given by Eq. (13.906):

$$
\begin{align*}
& E_{T+\text { osc }}(C O)=\binom{V_{e}+T+V_{m}+V_{p}+E\left(\text { ionization } ; C^{+}\right)}{+E\left(\text { ionization; } O^{+}\right)+E_{T}(O, 2 p)+\bar{E}_{\text {osc }}(C O)} \\
& =\binom{E_{T}(C O, \sigma)+E\left(\text { ionization; } C^{+}\right)+E\left(\text { ionization; } O^{+}\right)}{+E_{T}(O, 2 p)+\bar{E}_{\text {osc }}(C O)} \tag{13.907}\\
& =E_{T}(C O)+\bar{E}_{\text {osc }}(C O) \\
& E_{T+\text { osc }}(C O)=\left\{\begin{array}{l}
\binom{\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left(\frac{a+\sqrt{\frac{a a_{0}}{2}}}{8 \ln \frac{a a_{0}}{\frac{a a_{0}}{2}}}-4\right.}{+E\left(\text { ionization; } O^{+}\right)-\sum_{0, n=4}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{6}}-\frac{1}{r_{8}}\right)}+E\left(\text { ionization; } C^{+}\right) \\
\left(\begin{array}{l}
\frac{2 \hbar \sqrt{\frac{4 e^{2}}{4 \pi \varepsilon_{0} a^{3}}}}{m_{e}}
\end{array}\right)+2\left(\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{array}\right\} \tag{13.908}\\
& =-35.75359 \mathrm{eV}-2(0.28016 \mathrm{eV})+2\left(\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (13.906-13.908), the total energy of the CO MO is:

$$
\begin{align*}
E_{T+\text { osc }}(C O) & =-35.75359 \mathrm{eV}+\bar{E}_{\text {osc }}(C O) \tag{13.909}\\
& =-35.75359 \mathrm{eV}+(-0.29129 \mathrm{eV})=-36.04488 \mathrm{eV}
\end{align*}
$$

where the experimental ω_{e} was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The $C O$ bond dissociation energy, $E_{D}(C O)$, is given by the difference between the sum of the energies of the C and O atoms and $E_{T+\text { osc }}(C O)$:

$$
\begin{equation*}
E_{D}(C O)=E(C)+E(O)-E_{T+o s c}(C O) \tag{13.910}
\end{equation*}
$$

where the energy of a carbon atom is [6]:

$$
\begin{equation*}
E(C)=-11.26030 \mathrm{eV} \tag{13.911}
\end{equation*}
$$

and the energy of an oxygen atom is [6]:

$$
\begin{equation*}
E(O)=-13.61806 \mathrm{eV} \tag{13.912}
\end{equation*}
$$

Thus, the $C O$ bond dissociation energy, $E_{D}(C O)$, given by Eqs. (13.909-13.912) is:

$$
\begin{align*}
E_{D}(C O) & =-(11.26030 \mathrm{eV}+13.61806 \mathrm{eV})-E_{T+\text { osc }}(C O) \tag{13.913}\\
& =-24.87836 \mathrm{eV}-(-36.04488 \mathrm{eV})=11.16652 \mathrm{eV}
\end{align*}
$$

The experimental CO bond dissociation energy is [49]:

$$
\begin{equation*}
E_{D 298}(C O)=11.15696 \mathrm{eV} \tag{13.914}
\end{equation*}
$$

The results of the determination of bond parameters of $C O$ are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

NITRIC OXIDE RADICAL

The nitric oxide radical can be formed by the reaction of nitrogen and oxygen atoms:

$$
\begin{equation*}
N+O \rightarrow N O \tag{13.915}
\end{equation*}
$$

The bond in the nitric oxide radical comprises a double bond, a H_{2}-type molecular orbital (MO) with four paired electrons. The force balance equation and radius r_{7} of the $2 p$ shell of N is derived in the Seven-Electron Atoms section. The force balance equation and radius r_{8} of the $2 p$ shell of O is derived in the Eight-Electron Atoms section. With the formation of the H_{2}-type MO by the contribution of two $2 p$ electrons from each of the N and O atoms, a diamagnetic force arises between the remaining outer shell atomic electrons, the $2 s$ and $2 p$ electrons of N and O, and the H_{2}-type MO. This force from N and O causes the H_{2}-type MO to move to greater principal axes than would result with the Coulombic force alone. But, the factor of two increase of the central field and the resulting increased Coulombic as well as magnetic central forces on the remaining N and O electrons decrease the radii of the corresponding shells such that the energy minimum is achieved that is lower than that of the reactant atoms. The resulting electron configuration of $N O$ is $N 1 s^{2} O 1 s^{2} N 2 s^{2} O 2 s^{2} N 2 p^{1} O 2 p^{2} \sigma_{N, O}^{4}$ where σ designates the H_{2}-type MO , and the orbital arrangement is:

Nitric oxide is predicted to be weakly paramagnetic in agreement with observations [42].

FORCE BALANCE OF THE $2 p$ SHELL OF THE NITROGEN ATOM OF THE NITRIC OXIDE RADICAL

For the N atom, force balance for the outermost $2 p$ electron of $N O$ (electron 5) is achieved between the centrifugal force and the Coulombic and magnetic forces that arise due to interactions between electron 5 and the $2 s$-shell electrons due to spin and orbital angular momentum. The forces used are derived in the Seven-Electron Atoms section. The central Coulomb force on the outer-most $2 p$ shell electron of $N O$ (electron 5) due to the nucleus and the inner four electrons is given by Eq. (10.70) with the appropriate charge and radius:

$$
\begin{equation*}
\mathbf{F}_{\text {ele }}=\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0} r_{5}^{2}} \mathbf{i}_{\mathbf{r}} \tag{13.917}
\end{equation*}
$$

for $r>r_{4}$. The $2 p$ shell possess a +2 external electric field given by Eq. (10.92) for $r>r_{5}$. The energy is minimized with conservation of angular momentum. This condition is met when the magnetic forces of N in NO are the same as those of N in the nitrogen molecule with r_{5} replacing r_{6} and with an increase of the central field by an integer. The diamagnetic force, $\mathbf{F}_{\text {diamagnetic }}$, of Eq. (10.82) due to the p-orbital contribution is given by Eq. (13.622) with r_{5} replacing r_{6} :

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic }}=-\left(\frac{1}{3}\right) \frac{\hbar^{2}}{4 m_{e} r_{5}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}}=-\frac{\hbar^{2}}{12 m_{e} r_{5}^{2} r_{3}} \sqrt{\frac{3}{4}} \mathbf{i}_{\mathbf{r}} \tag{13.918}
\end{equation*}
$$

And, $\mathbf{F}_{\operatorname{mag} 2}$ corresponding to the conserved orbital angular momentum of the three orbitals is also the same as that of N_{2} given by Eq. (13.623) with r_{5} replacing r_{6} :

$$
\begin{equation*}
\mathbf{F}_{\operatorname{mag} 2}=\frac{1}{Z} \frac{3 \hbar^{2}}{m_{e} r_{5}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathrm{r}} \tag{13.919}
\end{equation*}
$$

The electric field external to the $2 p$ shell given by Eq. (10.92) for $r>r_{5}$ gives rise to a second diamagnetic force, $\mathbf{F}_{\text {diamagnetic 2 }}$, given by Eq. (10.93). $\mathbf{F}_{\text {diamagnetic } 2}$ due to the binding of the p-orbital electron having an electric field of +2 outside of its radius follows from Eq. (13.624).

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic } 2}=-\left[\frac{Z-5}{Z-4}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{m_{e} r_{5}^{4}} 10 \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.920}
\end{equation*}
$$

In addition to the N forces $\mathbf{F}_{\text {ele }}, \mathbf{F}_{\text {diamagnetic }}, \mathbf{F}_{\text {mag } 2}$, and $\mathbf{F}_{\text {diamagnetic } 2}$ of $N O$ being the same as N_{2} given by Eqs. (13.621-13.624), respectively, $\mathbf{F}_{\text {ele }}, \mathbf{F}_{\text {mag 2 }}$, and $\mathbf{F}_{\text {diamagnetic } 2}$ are also the same as those of $C N$ (Eqs. (13.820) and (13.822-13.823)). In the N_{2} and $C N$ cases, the contribution of a $2 p$ electron from the N atom in the formation of the σ MO gives rise to an additional paramagnetic force on the remaining two $2 p$ electrons that pair. However, the force, $\mathbf{F}_{\text {mag }}$, is absent in $N O$ since the single outer electron is unpaired.

The radius of the $2 p$ shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (13.917)) and diamagnetic (Eqs. (13.918) and (13.920)), and paramagnetic (Eq. (13.919)) forces as follows:

$$
\begin{equation*}
\frac{m_{e} v_{5}^{2}}{r_{5}}=\binom{\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0} r_{5}^{2}}-\frac{\hbar^{2}}{12 m_{e} r_{5}^{2} r_{3}} \sqrt{s(s+1)}+\frac{3 \hbar^{2}}{Z m_{e} r_{5}^{2} r_{3}} \sqrt{s(s+1)}}{-\left[\frac{Z-5}{Z-4}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{5}^{4} m_{e}} 10 \sqrt{s(s+1)}} \tag{13.921}
\end{equation*}
$$

Substitution of $v_{5}=\frac{\hbar}{m_{e} r_{5}}$ (Eq. (1.35)) and $s=\frac{1}{2}$ into Eq. (13.921) gives:

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} r_{5}^{3}}=\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0} r_{5}^{2}}-\frac{\hbar^{2}}{12 m_{e} r_{5}^{2} r_{3}} \sqrt{\frac{3}{4}}+\frac{3 \hbar^{2}}{Z m_{e} r_{5}^{2} r_{3}} \sqrt{\frac{3}{4}}-\left[\frac{Z-5}{Z-4}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{5}^{4} m_{e}} 10 \sqrt{\frac{3}{4}} \tag{13.922}
\end{equation*}
$$

The quadratic equation corresponding to Eq. (13.922) is

$$
\begin{equation*}
r_{5}^{2}-\frac{\frac{\hbar^{2}}{m_{e}}}{\left(\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)^{2}} r_{5}-\frac{\frac{\hbar^{2}}{m_{e}}\left[\frac{Z-5}{Z-4}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3} 10 \sqrt{\frac{3}{4}}}{\left(\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)}=0 \tag{13.923}
\end{equation*}
$$

The solution of Eq. (13.923) using the quadratic formula is:

$$
\begin{equation*}
\left.r_{5}=\frac{a_{0}}{\left((Z-4)-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)} \pm a_{0} \sqrt{\left(\frac{1}{\left((Z-4)-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}\right)^{2}} \sqrt{\left((Z-4)-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}\right), r_{3} \text { in units of } a_{0} \tag{13.924}
\end{equation*}
$$

The positive root of Eq. (13.924) must be taken in order that $r_{5}>0$. Substitution of $\frac{r_{3}}{a_{0}}=0.69385$ (Eq. (10.62) with $Z=7$) into Eq. (13.924) gives:

$$
\begin{equation*}
r_{5}=0.74841 a_{0} \tag{13.925}
\end{equation*}
$$

FORCE BALANCE OF THE $2 p$ SHELL OF THE OXYGEN ATOM OF THE NITRIC OXIDE RADICAL

For the O atom, force balance for the outermost $2 p$ electron of $N O$ (electron 6) is achieved between the centrifugal force and the Coulombic and magnetic forces that arise due to interactions between electron 6 and the other $2 p$ electron as well as the $2 s$ shell electrons due to spin and orbital angular momentum. The forces used are derived in the Eight-Electron Atoms section. The central Coulomb force on the outer-most $2 p$ shell electron of $N O$ (electron 6) due to the nucleus and the inner five electrons is given by Eq. (10.70) with the appropriate charge and radius:

$$
\begin{equation*}
\mathbf{F}_{\text {ele }}=\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}} \mathbf{i}_{\mathbf{r}} \tag{13.926}
\end{equation*}
$$

for $r>r_{5}$. The $2 p$ shell possess an external electric field of +2 given by Eq. (10.92) for $r>r_{6}$. The energy is minimized with conservation of angular momentum. This condition is met when the diamagnetic force, $\mathbf{F}_{\text {diamagnetic }}$, of Eq. (10.82) due to the p orbital contribution is given by:

$$
\begin{align*}
\mathbf{F}_{\text {diamagnetic }} & =-\left(\frac{2}{3}\right) \frac{\hbar^{2}}{4 m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \\
& =-\frac{2 \hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}} \mathbf{i}_{\mathbf{r}} \tag{13.927}
\end{align*}
$$

And, $\mathbf{F}_{\operatorname{mag} 2}$ corresponding to the conserved spin and orbital angular momentum given by Eqs. (10.157) and (13.670) is:

$$
\begin{equation*}
\mathbf{F}_{\operatorname{mag} 2}=\frac{1}{Z} \frac{2 \hbar^{2}}{m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.928}
\end{equation*}
$$

The electric field external to the $2 p$ shell given by Eq. (10.92) for $r>r_{6}$ gives rise to a second diamagnetic force, $\mathbf{F}_{\text {diamagnetic } 2}$, given by Eq. (10.93). $\mathbf{F}_{\text {diamagnetic } 2}$ due to the binding of the p-orbital electron having an electric field of +2 outside of its radius is:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic } 2}=-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{m_{e} r_{6}^{4}} 10 \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.929}
\end{equation*}
$$

In addition, the contribution of two $2 p$ electrons in the formation of the σ MO gives rise to a paramagnetic force on the remaining paired $2 p$ electrons. The force $\mathbf{F}_{\operatorname{mag} 3}$ is given by Eq. (13.625) wherein the radius is r_{6} :

$$
\begin{equation*}
\mathbf{F}_{\operatorname{mag} 3}=\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{13.930}
\end{equation*}
$$

The radius of the $2 p$ shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (13.926)) and diamagnetic (Eqs. (13.927) and (13.929)), and paramagnetic (Eqs. (13.928) and (13.930)) forces as follows:

$$
\begin{equation*}
\frac{m_{e} v_{6}^{2}}{r_{6}}=\binom{\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}}-\frac{2 \hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)}+\frac{2 \hbar^{2}}{Z m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)}}{-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{6}^{4} m_{e}} 10 \sqrt{s(s+1)}+\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{s(s+1)}} \tag{13.931}
\end{equation*}
$$

Substitution of $v_{6}=\frac{\hbar}{m_{e} r_{6}}$ (Eq. (1.35)) and $s=\frac{1}{2}$ into Eq. (13.931) gives:

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} r_{6}^{3}}-\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{\frac{3}{4}}=\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}}-\frac{2 \hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}}+\frac{2 \hbar^{2}}{Z m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}}-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{6}^{4} m_{e}} 10 \sqrt{\frac{3}{4}} \tag{13.932}
\end{equation*}
$$

The quadratic equation corresponding to Eq. (13.932) is:

$$
\begin{equation*}
r_{6}^{2}-\frac{\frac{\hbar^{2}}{m_{e}}\left(1-\frac{\sqrt{3}}{8}\right)}{\left(\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)^{r}} r_{6}-\frac{\frac{\hbar^{2}}{m_{e}}\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3} 10 \sqrt{\frac{3}{4}}}{\left(\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)}=0 \tag{13.933}
\end{equation*}
$$

The solution of Eq. (13.933) using the quadratic formula is:

$$
\begin{equation*}
r_{6}=\frac{a_{0}\left(1-\frac{\sqrt{3}}{8}\right)}{\left((Z-5)-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)} \pm a_{0} \sqrt{\left(\frac{1-\frac{\sqrt{3}}{8}}{\left(\frac{\left.(Z-5)-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}{\left(\frac{20 \sqrt{3}\left(\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3}\right)}{\left((Z-5)-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}\right.}\right)^{2}}, r_{3} \text { in units of } a_{0}\right.} \tag{13.934}
\end{equation*}
$$

The positive root of Eq. (13.934) must be taken in order that $r_{6}>0$. Substitution of $\frac{r_{3}}{a_{0}}=0.59020$ (Eq. (10.62) with $Z=8$) into Eq. (13.934) gives:

$$
\begin{equation*}
r_{6}=0.70460 a_{0} \tag{13.935}
\end{equation*}
$$

ENERGIES OF THE $2 p$ SHELLS OF THE NITROGEN ATOM AND OXYGEN ATOM OF THE NITRIC OXIDE RADICAL

With the formation of the H_{2}-type MO by the contribution of two $2 p$ electrons from each of the N and O atoms, the total energy of the $N O$ molecule, which is subtracted from the sum of the energies of the nitrogen and oxygen atoms to determine the bond energy, is increased by the ionization energies of N^{+}and O^{+}given by Eqs. (10.132-10.133) and (10.152-10.153), respectively. Experimentally, the energies are [6] :

$$
\begin{equation*}
E\left(\text { ionization } ; N^{+}\right)=29.6013 \mathrm{eV} \tag{13.936}
\end{equation*}
$$

E(ionization; $\left.\mathrm{O}^{+}\right)=35.11730 \mathrm{eV}$
In addition, the central forces on the $2 p$ shells of the N and O atoms are increased with the formation of the σ MO which reduces each shell's radius and increases its total energy. The Coulombic energy terms of the total energy of the N and O atoms at the new radii are calculated and added to the ionization energies of N^{+}and O^{+}, and the energy of the σ MO to give the total energy of NO. Then, the bond energy is determined from the total NO energy.

The radius r_{7} of the nitrogen atom before bonding is given by Eq. (10.142):

$$
\begin{equation*}
r_{7}=0.93084 a_{0} \tag{13.938}
\end{equation*}
$$

Using the initial radius r_{7} of the N atom and the final radius r_{5} of the $N 2 p$ shell (Eq. (13.925)) and by considering that the central Coulombic field decreases by an integer for each successive electron of the shell, the sum $E_{T}(N, 2 p)$ of the Coulombic energy change of the $N 2 p$ electrons of the N atom is determined using Eq. (10.102):

$$
\begin{equation*}
E_{T}(N, 2 p)=-\sum_{n=4}^{4} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{5}}-\frac{1}{r_{7}}\right)=-(13.60580 \mathrm{eV})(0.26186)(3)=-10.68853 \mathrm{eV} \tag{13.939}
\end{equation*}
$$

The radius r_{8} of the oxygen atom before bonding is given by Eq. (10.162):

$$
\begin{equation*}
r_{8}=a_{0} \tag{13.940}
\end{equation*}
$$

Using the initial radius r_{8} of the O atom and the final radius r_{6} of the $O 2 p$ shell (Eq. (13.935)) and by considering that the central Coulombic field decreases by an integer for each successive electron of the shell, the sum $E_{T}(O, 2 p)$ of the Coulombic energy change of the $O 2 p$ electrons of the O atom is determined using Eq. (10.102):

$$
\begin{equation*}
E_{T}(O, 2 p)=-\sum_{n=4}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{6}}-\frac{1}{r_{8}}\right)=-(13.60580 \mathrm{eV})(0.41925)(3+4)=-39.92918 \mathrm{eV} \tag{13.941}
\end{equation*}
$$

FORCE BALANCE OF THE σ MO OF THE NITRIC OXIDE RADICAL

The force balance can be considered due to a second pair of two electrons binding to a molecular ion having $+2 e$ at each focus and a first bound pair. Then, the forces are the same as those of a molecule ion having $+e$ at each focus. The diamagnetic force $\mathbf{F}_{\text {diamagneticMO1 }}$ for the $\sigma-\mathrm{MO}$ of the $N O$ molecule due to the two paired electrons in the $O 2 p$ shell is given by Eq. (13.633) with: $n_{e}=2:$

$$
\begin{equation*}
\mathbf{F}_{\text {diamagneticMO1 }}=\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \mathbf{i}_{\xi} \tag{13.942}
\end{equation*}
$$

$\mathbf{F}_{\text {diamagneticMO2 }}$ of the nitric oxide radical comprising nitrogen with charge $Z_{1}=7$ and $\left|L_{1}\right|=\hbar$ and $\left|L_{2}\right|=\sqrt{\frac{3}{4}} \hbar$ and oxygen with $Z_{2}=8$ and $\left|L_{3}\right|=\hbar$ is given by the corresponding sum of the contributions. Using Eq. (13.835), $\mathbf{F}_{\text {diamagneticmO2 }}$ for NO is:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagneticMO2 }}=\left(\frac{1}{Z_{1}}+\frac{\sqrt{\frac{3}{4}}}{Z_{1}}+\frac{1}{Z_{2}}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \mathbf{i}_{\xi} \tag{13.943}
\end{equation*}
$$

The general force balance equation for the σ-MO of the nitric oxide radical given by Eqs. (11.200), (13.633-13.634), and (13.942-13.943) is the same as that of $C N$ (Eq. (13.836)):

$$
\begin{align*}
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D-\left(1+\frac{1}{Z_{1}}+\frac{\sqrt{\frac{3}{4}}}{Z_{1}}+\frac{1}{Z_{2}}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{13.944}\\
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D-\left(\frac{1}{Z_{1}}+\frac{\sqrt{\frac{3}{4}}}{Z_{1}}+\frac{1}{Z_{2}}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{13.945}\\
& \left(\begin{array}{l}
\left.2+\frac{1}{Z_{1}}+\frac{\sqrt{\frac{3}{4}}}{Z_{1}}+\frac{1}{Z_{2}}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D \\
a=\left(2+\frac{1}{Z_{1}}+\frac{\sqrt{\frac{3}{4}}}{Z_{1}}+\frac{1}{Z_{2}}\right) a_{0}
\end{array}\right. \tag{13.946}
\end{align*}
$$

Substitution of $Z_{1}=7$ and $Z_{2}=8$ into Eq. (13.947) gives:

$$
\begin{equation*}
a=2.39158 a_{0}=1.26557 \times 10^{-10} \mathrm{~m} \tag{13.948}
\end{equation*}
$$

Substitution of Eq. (13.948) into Eq. (11.79) is:

$$
\begin{equation*}
c^{\prime}=1.09352 a_{0}=5.78666 \times 10^{-11} \mathrm{~m} \tag{13.949}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (13.949) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.18704 a_{0}=1.15733 \times 10^{-10} \mathrm{~m} \tag{13.950}
\end{equation*}
$$

The experimental bond distance is [28]:

$$
\begin{equation*}
2 c^{\prime}=1.15077 \times 10^{-10} \mathrm{~m} \tag{13.951}
\end{equation*}
$$

Substitution of Eqs. (13.948-13.949) into Eq. (11.80) is:

$$
\begin{equation*}
b=c=2.12693 a_{0}=1.12552 \times 10^{-10} \mathrm{~m} \tag{13.952}
\end{equation*}
$$

Substitution of Eqs. (13.948-13.949) into Eq. (11.67) is:

$$
\begin{equation*}
e=0.45724 \tag{13.953}
\end{equation*}
$$

Using the electron configuration of $N O$ (Eq. (13.916)), the radii of the $N 1 s=0.14605 a_{0}$ (Eq. (10.51)), $N 2 s=0.69385 a_{0}$ (Eq. (10.62)), $\quad N 2 p=0.74841 a_{0} \quad$ (Eq. (13.925)), $\quad O 1 s=0.12739 a_{0} \quad$ (Eq. $\quad(10.51)$), $\quad O 2 s=0.59020 a_{0} \quad$ (Eq. (10.62)), and $O 2 p=0.70460 a_{0}$ (Eq. (13.935)) shells and the parameters of the $\sigma \mathrm{MO}$ of $N O$ given by Eqs. (13.3-13.4), (13.948-13.950), and (13.952-13.953), the dimensional diagram and charge-density of the $N O M O$ are shown in Figures 13.26 and 13.27, respectively.

Figure 13.26. The cross section of the $N O$ MO showing the axes, σ MO (H_{2}-type ellipsoidal MO) with four paired electrons, with the $N 1 s, 2 s$, and $2 p$ atomic orbitals (AOs) and the $O 1 s, 2 s$, and $2 p$ AOs. Legend: a : semimajor axis, b : semiminor axis, c^{\prime} : internuclear distance, r_{5} : radius of the $N 2 p$ shell having two paired electrons, r_{6} : radius of the $O 2 p$ shell having two paired electrons.

Figure 13.27. NO MO comprising the σ MO (H_{2}-type MO) with N and O atoms at the foci that have each donated two electrons to the σ MO and have smaller radii and higher binding energies as a consequence. (A) Color scale, translucent view of the charge-density of the NO MO. (B) Off-center cut-away view showing the complete inner most $N 1 s$ shell, and moving radially, the $N 2 s$ shell, the $N 2 p$ shell, and the σ prolate spheroidal MO that has the N atom as a focus. Moving radially from the oxygen-atom focus, the complete inner most $O 1 s$ shell, the O 2 s shell, the $O 2 p$ shell, and the σ prolate spheroidal MO are shown.

SUM OF THE ENERGIES OF THE σ MO AND THE AOs OF THE NITRIC OXIDE RADICAL

The energies of the $N O \sigma$ MO are given by the substitution of the semiprincipal axes (Eqs. (13.948-13.949) and (13.952)) into the energy equations (Eqs. (11.207-11.212)) of H_{2} except that the terms based on charge are multiplied by four and the kinetic energy term is multiplied by two due to the $\sigma-\mathrm{MO}$ double bond with two pairs of paired electrons:

$$
\begin{align*}
& V_{e}=2^{2} \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-98.30623 \mathrm{eV} \tag{13.954}\\
& V_{p}=2^{2} \frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=49.76880 \mathrm{eV} \tag{13.955}\\
& T=2 \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=10.27631 \mathrm{eV} \tag{13.956}\\
& V_{m}=2^{2} \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-10.27631 \mathrm{eV} \tag{13.957}\\
& E_{T}=V_{e}+T+V_{m}+V_{p} \tag{13.958}
\end{align*}
$$

Substitution of Eqs. (11.79) and (13.954-13.957) into Eq. (13.958) gives:

$$
=-48.53743 \mathrm{eV}
$$

where $E_{T}(N O, \sigma)$ is the total energy of the $\sigma \mathrm{MO}$ of $N O$. The total energy of $N O, E_{T}(N O)$, is given by the sum of E(ionization; N^{+}), the energy of the second electron of nitrogen (Eq. (13.936)) donated to the double bond, E(ionization; O^{+}), the energy of the second electron of oxygen (Eq. (13.937)) donated to the double bond, $E_{T}(N, 2 p)$, the $N 2 p$ AO contribution
due to the decrease in radius with bond formation (Eq. (13.939)), $E_{T}(O, 2 p)$, the $O 2 p$ AO contribution due to the decrease in radius with bond formation (Eq. (13.941)), and $E_{T}(N O, \sigma)$, the σ MO contribution given by Eq. (13.959).

$$
\begin{align*}
E_{T}(N O) & =\binom{E\left(\text { ionization; } N^{+}\right)+E\left(\text { ionization; } O^{+}\right)}{+E_{T}(N, 2 p)+E_{T}(O, 2 p)+E_{T}(N O, \sigma)}=\binom{29.6013 \mathrm{eV}+35.11730 \mathrm{eV}}{-10.68853 \mathrm{eV}-39.92918 \mathrm{eV}-48.53743 \mathrm{eV}} \tag{13.960}\\
& =-34.43653 \mathrm{eV}
\end{align*}
$$

VIBRATION OF NO

The vibrational energy levels of NO may be solved by determining the Morse potential curve from the energy relationships for the transition from a N atom and O atom whose parameters are given by Eqs. (10.134-10.143) and (10.154-10.163), respectively, to a N atom whose parameter r_{5} is given by Eq. (13.925), an O atom whose parameter r_{6} is given by Eq. (13.935), and the σ MO whose parameters are given by Eqs. (13.948-13.950) and (13.952-13.953). As shown in the Vibration of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about the internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K\&P) [15] and after Eq. (11.134). Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy corrections can be found by perturbation methods.

THE DOPPLER ENERGY TERMS OF THE NITRIC OXIDE RADICAL

The equations of the radiation reaction force of nitric oxide are the same as those of H_{2} with the substitution of the NO parameters except that there is a factor of four increase in the central force in Eq. (11.231) due to the double bond. Using Eqs. (11.231-11.233) and (13.901), the angular frequency of the reentrant oscillation in the transition state is

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{4 e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}=2.23557 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{13.961}
\end{equation*}
$$

where a is given by Eq. (13.948). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 2.23557 \times 10^{16} \mathrm{rad} / \mathrm{s}=14.71493 \mathrm{eV} \tag{13.962}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}(N O)$ for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (13.962) for \bar{E}_{K} gives the Doppler energy of the electrons of the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-34.43653 \mathrm{eV} \sqrt{\frac{2 e(14.71493 \mathrm{eV})}{m_{e} c^{2}}}=-0.26134 \mathrm{eV} \tag{13.963}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of the $N O M O$ due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (13.963) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy. Using the experimental $N O$ ω_{e} of $1904.20 \mathrm{~cm}^{-1}(0.23609 \mathrm{eV})$ [28] for $\bar{E}_{\text {Kvib }}$ of the transition state, $\bar{E}^{\prime}{ }_{\text {osc }}(N O)$ per bond is:

$$
\begin{align*}
& \bar{E}_{o s c}^{\prime}(N O)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{13.964}\\
& \bar{E}_{o s c}^{\prime}(N O)=-0.26134 \mathrm{eV}+\frac{1}{2}(0.23609 \mathrm{eV})=-0.14329 \mathrm{eV} \tag{13.965}
\end{align*}
$$

Since the σ MO bond is a double bond with twice a many electrons as a single bond, $\bar{E}^{\prime}{ }_{\text {osc }}(N O)$ is multiplied by two to give:

$$
\begin{equation*}
\bar{E}_{\text {osc }}(N O)=-0.28658 \mathrm{eV} \tag{13.966}
\end{equation*}
$$

TOTAL AND BOND ENERGIES OF THE NITRIC OXIDE RADICAL

$E_{T+o s c}(N O)$, the total energy of $N O$ including the Doppler term, is given by the sum of $E_{T}(N O)$ (Eq. (13.960)) and $\bar{E}_{\text {osc }}(N O)$ given by Eq. (13.966).

$$
\begin{align*}
& E_{T+\text { osc }}(N O)=\binom{V_{e}+T+V_{m}+V_{p}+E\left(\text { ionization; } N^{+}\right)+E\left(\text { ionization; } O^{+}\right)}{+E_{T}(N, 2 p)+E_{T}(O, 2 p)+\bar{E}_{\text {osc }}(N O)} \\
& =\binom{E_{T}(N O, \sigma)+E\left(\text { ionization; } N^{+}\right)+E\left(\text { ionization; } O^{+}\right)}{+E_{T}(N, 2 p)+E_{T}(O, 2 p)+\bar{E}_{\text {osc }}(N O)} \tag{13.967}\\
& =E_{T}(N O)+\bar{E}_{\text {osc }}(N O) \\
& \left(\left(\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left(8 \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-4\right)\right.\right. \\
& E_{T+o s c}(N O)=\left\{\begin{array}{l}
\binom{\left.+ \text { (ionization; } N^{+}\right)+E\left(\text { ionization; } O^{+}\right)}{-\sum_{N, n=4}^{4} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{5}}-\frac{1}{r_{7}}\right)-\sum_{0, n=4}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{6}}-\frac{1}{r_{8}}\right)} \\
\binom{\left(+2 \sqrt{\frac{\frac{4 e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}\right.}{m_{e} c^{2}}+2\left(\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{array}\right\} \tag{13.968}\\
& =-34.43653 \mathrm{eV}-2(0.26134 \mathrm{eV})+2\left(\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (13.966-13.968), the total energy of the $N O$ MO is:

$$
\begin{equation*}
E_{T+\text { osc }}(N O)=-34.43653 \mathrm{eV}+\bar{E}_{\text {osc }}(N O)=-34.43653 \mathrm{eV}+(-0.28658)=-34.72312 \mathrm{eV} \tag{13.969}
\end{equation*}
$$

where the experimental ω_{e} was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The $N O$ bond dissociation energy, $E_{D}(N O)$, is given by the difference between the sum of the energies of the N and O atoms and $E_{T+o s c}(N O)$:

$$
\begin{equation*}
E_{D}(N O)=E(N)+E(O)-E_{T+o s c}(N O) \tag{13.970}
\end{equation*}
$$

where the energy of a nitrogen atom is [6]:

$$
\begin{equation*}
E(N)=-14.53414 \mathrm{eV} \tag{13.971}
\end{equation*}
$$

and the energy of an oxygen atom is [6]:

$$
\begin{equation*}
E(O)=-13.61806 \mathrm{eV} \tag{13.972}
\end{equation*}
$$

Thus, the $N O$ bond dissociation energy, $E_{D}(N O)$, given by Eqs. (13.969-13.972) is:

$$
\begin{align*}
E_{D}(N O) & =-(14.53414 \mathrm{eV}+13.61806 \mathrm{eV})-E_{T+o s c}(N O) \\
& =-28.15220 \mathrm{eV}-(-34.72312 \mathrm{eV}) \tag{13.973}\\
& =6.57092 \mathrm{eV}
\end{align*}
$$

The experimental NO bond dissociation energy is [49]:

$$
\begin{equation*}
E_{D 298}(N O)=6.5353 \mathrm{eV} \tag{13.974}
\end{equation*}
$$

The results of the determination of bond parameters of $N O$ are given in Table 13.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

Table 13.1. The calculated and experimental bond parameters of $\mathrm{H}_{3}^{+}, \mathrm{D}_{3}^{+}, \mathrm{OH}, \mathrm{OD}, \mathrm{H}_{2} \mathrm{O}, \mathrm{D}_{2} \mathrm{O}, \mathrm{NH}, \mathrm{ND}, \mathrm{NH}_{2}, \mathrm{ND}_{2}$, $\mathrm{NH}_{3}, \mathrm{ND}_{3}, \mathrm{CH}, \mathrm{CD}, \mathrm{CH}_{2}, \mathrm{CH}_{3}, \mathrm{CH}_{4}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}, \mathrm{CN}, \mathrm{CO}$, and NO .

Parameter	Calculated	Experimental	Ref. for Exp.
H_{3}^{+}Bond Energy	4.373 eV	4.373 eV	8
D_{3}^{+}Bond Energy	4.374 eV		
OH Bond Energy	4.4104 eV	4.4117 eV	22
OD Bond Energy	4.4687 eV	4.454 eV	23
OH Bond Length	0.971651 Å	0.971 A	13
OD Bond Length	$0.971651 \AA$	0.971 £	13
OH Vibrational Energy	0.4367 eV	0.4424 eV	16-17
OD Vibrational Energy	0.3219 eV	0.3263 eV	16-17
OH ω_{e}	$3696.38 \mathrm{~cm}^{-1}$	$3735.21 \mathrm{~cm}^{-1}$	14
$O D \omega_{e}$	$2689.51 \mathrm{~cm}^{-1}$	$2720.9 \mathrm{~cm}^{-1}$	14
OH $\omega_{e} \chi_{e}$	$87.18 \mathrm{~cm}^{-1}$	$82.81 \mathrm{~cm}^{-1}$	14
OD $\omega_{e} x_{e}$	$46.75 \mathrm{~cm}^{-1}$	$44.2 \mathrm{~cm}^{-1}$	14
OH B_{e}	$18.835 \mathrm{~cm}^{-1}$	$18.871 \mathrm{~cm}^{-1}$	14
$O D B_{e}$	$9.971 \mathrm{~cm}^{-1}$	$10.01 \mathrm{~cm}^{-1}$	14
$\mathrm{H}_{2} \mathrm{O}$ Bond Energy	5.1059 eV	5.0991 eV	26
$\mathrm{D}_{2} \mathrm{O}$ Bond Energy	5.178 eV	5.191 eV	31-32
$\mathrm{H}_{2} \mathrm{O} \mathrm{O}-\mathrm{H}$ Bond Length	0.971574 A	$0.970 \pm 0.005 \AA$	23
$\mathrm{D}_{2} \mathrm{O} \mathrm{O}-\mathrm{D}$ Bond Length	0.971574 Å	$0.970 \pm 0.005 \AA$	23
$\mathrm{H}_{2} \mathrm{O} \mathrm{H}-\mathrm{H}$ Distance	$1.552 \AA$	$1.55 \pm 0.01 \AA$	13
$\mathrm{D}_{2} \mathrm{O} \quad \mathrm{D}-\mathrm{D}$ Distance	$1.552 \AA$	$1.55 \pm 0.01 \AA$	13
$\mathrm{H}_{2} \mathrm{O}$ Bond Angle	106°	106°	23
$\mathrm{D}_{2} \mathrm{O}$ Bond Angle	106°	106°	23
NH Bond Energy	3.47530 eV	3.47 eV	30
ND Bond Energy	3.52556 eV	3.5134 eV	31
NH Bond Length	1.04262 Å	1.0362 A	28
ND Bond Length	1.04262 A	1.0361 Å	28
NH Vibrational Energy	0.38581 eV	0.38752 eV	28
ND Vibrational Energy	0.28583 eV	0.28690 eV	28
NH ω_{e}	$3284.58 \mathrm{~cm}^{-1}$	$3282.3 \mathrm{~cm}^{-1}$	28
$N D \omega_{e}$	$2398.72 \mathrm{~cm}^{-1}$	$2398 \mathrm{~cm}^{-1}$	28
NH $\omega_{e} \chi_{e}$	$86.37 \mathrm{~cm}^{-1}$	$78.4 \mathrm{~cm}^{-1}$	28
$N D \omega_{e} x_{e}$	$47.40 \mathrm{~cm}^{-1}$	$42 \mathrm{~cm}^{-1}$	28
NH B_{e}	$16.495 \mathrm{~cm}^{-1}$	$16.993 \mathrm{~cm}^{-1}$	28
$N D B_{e}$	$8.797 \mathrm{~cm}^{-1}$	$8.7913 \mathrm{~cm}^{-1}$	28
NH_{2} Bond Energy	3.9323 eV	3.9461 eV	35
$N D_{2}$ Bond Energy	3.9401 eV	3.9362 eV	33-35
NH_{2} Bond Length	1.04262 A	1.0240 Å	32
$N D_{2}$ Bond Length	1.04262 A		
NH_{2} Bond Angle	105.97°	103.3°	32
$N D_{2}$ Bond Angle	105.97°		
NH_{3} Bond Energy	4.57913 eV	4.60155 eV	37
$N D_{3}$ Bond Energy	4.64499 eV	4.71252 eV	37
NH_{3} Bond Length	1.0368 Å	$1.012 \AA$	32
$N D_{3}$ Bond Length	1.0368 Å		
NH_{3} Bond Angle	106.67°	106.67°	36
$N D_{3}$ Bond Angle	106.67°	106.70°	36
CH Bond Energy	3.47404 eV	3.47 eV	14

Parameter	Calculated	Experimental	Ref. for Exp.
$C D$ Bond Energy	3.51673 eV	3.52 eV	14
CH Bond Length	1.1183 £	1.1198 £	14
$C D$ Bond Length	1.1183 A	1.118 A	14
CH Vibrational Energy	0.33879 eV	0.33885 eV	14
$C D$ Vibrational Energy	0.25173 eV	0.25189 eV	14
CH ω_{e}	$2865.86 \mathrm{~cm}^{-1}$	$2861.6 \mathrm{~cm}^{-1}$	14
$C D \omega_{e}$	$2102.97 \mathrm{~cm}^{-1}$	$2101.0 \mathrm{~cm}^{-1}$	14
CH $\omega_{e} x_{e}$	$66.624 \mathrm{~cm}^{-1}$	$64.3 \mathrm{~cm}^{-1}$	14
$C D \omega_{e} \chi_{e}$	$36.335 \mathrm{~cm}^{-1}$	$34.7 \mathrm{~cm}^{-1}$	14
CH Be_{e}	$14.498 \mathrm{~cm}^{-1}$	$14.457 \mathrm{~cm}^{-1}$	14
$C D B_{e}$	$7.807 \mathrm{~cm}^{-1}$	$7.808 \mathrm{~cm}^{-1}$	14
CH_{2} Bond Energy	4.36968 eV	4.33064 eV	39
CH_{2} Bond Length	1.1067 A	1.111 A	38
CH_{2} Bond Angle	100.22°	$102.4{ }^{\circ}$	38
CH_{3} Bond Energy	4.70075 eV	4.72444 eV	40
CH_{3} Bond Length	1.1029 A	1.079 £	38
CH_{3} Bond Angle	120°	120°	38
CH_{4} Bond Energy	4.4900 eV	4.48464 eV	40
CH_{4} Bond Length	1.1010 §	1.087 A	41
CH_{4} Bond Angle	$109.5{ }^{\circ}$	$109.5{ }^{\circ}$	41
N_{2} Bond Energy	9.71181 eV	9.756 eV	43
N_{2} Bond Length	1.0955 A	1.094 A	43
O_{2} Bond Energy	5.10711 eV	5.11665 eV	46
O_{2} Bond Length	1.20862 A	1.20752 §	28
F_{2} Bond Energy	1.62168 eV	1.606 eV	48
F_{2} Bond Length	1.41114 A	1.41193 A	28
Cl_{2} Bond Energy	2.52236 eV	2.51412 eV	49
Cl_{2} Bond Length	1.988 A	1.988 A	28
$\mathrm{Cl}_{2} \omega_{e}$	$538.52 \mathrm{~cm}^{-1}$	$559.7 \mathrm{~cm}^{-1}$	28
$C l_{2} \omega_{e} \chi_{e}$	$3.41 \mathrm{~cm}^{-1}$	$2.68 \mathrm{~cm}^{-1}$	28
$\mathrm{Cl}_{2} \mathrm{~B}_{\text {e }}$	$0.2420 \mathrm{~cm}^{-1}$	$0.2440 \mathrm{~cm}^{-1}$	28
CN Bond Energy	7.77526 eV	7.7731 eV	50
CN Bond Length	1.17231 Å	1.17181 A	28
CO Bond Energy	11.16652 eV	11.15696 eV	49
CO Bond Length	1.13290 Å	1.12823 A	28
NO Bond Energy	6.57092 eV	6.5353 eV	49
NO Bond Length	1.15733 Å	1.15077 Å	28

REFERENCES

1. G. C. Lie, D. Frye, "Vibrational analysis of a Hylleraas-configuration interaction potential for H_{3}^{+}," J. Chem. Phys., Vol. 96, No. 9, (1992), pp. 6784-6790.
2. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 251-305.
3. N. V. Sidgwick, The Chemical Elements and Their Compounds, Volume I, Oxford, Clarendon Press, (1950), p.17.
4. D. A. McQuarrie, Quantum Chemistry, University Science Books, Mill Valley, CA, (1983), p. 172.
5. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), p. 10-181.
6. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), p. 10-175.
7. P. W. Atkins, Physical Chemistry, 2nd Edition, W. H. Freeman, San Francisco, (1982), p. 589.
8. P. C. Cosby, H. Helm, "Experimental determination of the H_{3}^{+}bond dissociation energy," Vol. 152, No. 1, (1988), pp. 7174.
9. K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York, (1979).
10. NIST Atomic Spectra Database, www.physics.nist.gov/cgi-bin/AtData/display.ksh.
11. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 154-156
12. R. C. Weast, CRC Handbook of Chemistry and Physics, $58^{\text {th }}$ Edition, CRC Press, West Palm Beach, Florida, (1977), p. E-68.
13. P. C. Hariharan, J. A. Pople, Accuracy of AH_{n} equilibrium geometries by single determinant molecular orbital theory, Mol. Phys., Vol. 27(1), (1974), pp. 209-214.
14. G. Herzberg, J. W. T. Spinks, Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules, 2nd Edition, Krieger Publishing Company, Malabar, FL, (1989), p. 560.
15. M. Karplus, R. N. Porter, Atoms and Molecules an Introduction for Students of Physical Chemistry, The Benjamin/Cummings Publishing, Menlo Park, CA, (1970), pp. 447-484.
16. K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York, (1979).
17. J. Crovisier, Molecular Database-Constants for molecules of astrophysical interest in the gas phase: photodissociation, microwave and infrared spectra, Ver. 4.2, Observatoire de Paris, Section de Meudon, Meudon, France, May 2002, pp. 34-37, available at http://wwwusr.obspm.fr/~crovisie/.
18. D. R. Lide, CRC Handbook of Chemistry and Physics, $79^{\text {th }}$ Edition, CRC Press, Boca Raton, Florida, (1998-9), p. 10-175.
19. NIST Atomic Spectra Database, www.physics.nist.gov/cgi-bin/AtData/display.ksh.
20. J. A. Joens, The dissociation energy of $\mathrm{OH}\left(\mathrm{X}^{2}{ }_{\Pi_{3 / 2}}\right)$ and the enthalpy of formation of $\mathrm{OH}\left(\mathrm{X}^{2} \Pi_{3 / 2}\right), \mathrm{ClOH}$, and BrOH from thermochemical cycles, J. Phys. Chem., Vol. 105, (2001), pp. 11041-11044.
21. Y.-M. Chen, D.E. Clemmer, P. B. Armentrout, Kinetic and electronic energy dependence of the reactions of Sc^{+}and Ti^{+}with D2O, J. Phys. Chem., Vol. 98, (1994), pp. 11490-11498.
22. L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic Properties of Individual Substances, $4^{\text {th }}$ ed., Hemisphere: New York, 1989, Vol. 1, Part 2.
23. K. Ichikawa, Y. Kameda, T. Yamaguchi, H. Wakita and M. Misawa, Neutron diffraction investigation of the intramolecular structure of a water molecule in the liquid phase at high temperatures, Mol. Phys. Vol. 73, (1991), pp. 79-86.
24. H. A. Haus, J. R. Melcher, Electromagnetic Fields and Energy, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, (1985), Sec. 5.4.
25. R. Lemus, "Vibrational excitations in $\mathrm{H}_{2} \mathrm{O}$ in the framework of a local model," J. Mol. Spectrosc., Vol. 225, (2004), pp. 7392.
26. B. Ruscic, A. F. Wagner, L. B. Harding, R. L. Asher, D. Feller, D. A. Dixon, K. A. Peterson, Y. Song, X. Qian, C.-Y. Ng, J. Liu, W. Chen, D. W. Schwenke, On the enthalpy of formation of hydroxyl radical and gas-phase bond dissociation energies of water and hydroxyl, J. Phys. Chem. A, Vol. 106, (2002), pp. 2727-2747.
27. X.-M. Qian, Y. Song, K.-C. Lau, C. Y. Ng, J. Liu, W. Chen, G. Z. He, A pulsed field ionization photoelectron-photoion coincidence study of the dissociative photoionization process $D_{2} O+h \nu \rightarrow O D^{+}+D+e^{-}$, Chem. Phys. Letts., Vol. 353(1-2), (2002), pp. 19-26.
28. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), pp. 9-80 to 9-85.
29. J. B. Marquette, C. Rebrion, B. R. Rowe, "The reactions of $N^{+}\left({ }^{3} P\right)$ ions with normal, para, and deuterated hydrogens at low temperatures," J. Chem. Phys., Vol. 89, (4), (1988), pp. 2041-2047.
30. W. R. Graham, H. Lew, "Spectra of the $d^{1} \Sigma^{+}-c^{1} \Pi$ and $d^{1} \Sigma^{+}-b^{1} \Pi^{+}$systems and dissociation energy of NH and ND," Can. J. Phys., Vol. 56, (1978), pp. 85-99.
31. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), p. 9-54.
32. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), p. 9-20.
33. T. Amano, P. F. Bernath, R. W. McKellar, "Direct observation of the v_{1} and v_{3} fundamental bands of NH_{2} by difference frequency laser spectroscopy," J. Mol. Spectrosc., Vol. 94, (1982), pp. 100-113.
34. A. P. Altshuller, "Heat of formation of $N H(g)$ and the bond dissociation energy of $D(N H-H)$," J. Chem. Phys., Vol. 22, No. 11, (1954), pp. 1947-1948.
35. J. Berkowitz, G. B. Ellison, D. Gutman, "Three methods to measure RH bond energies," J. Phys. Chem., Vol. 98, (1994), pp. 2744-2765.
36. W. S. Benedict, E. K. Plyler, "Vibration-rotation bands of ammonia," Can. J. Phys., Vol. 35, (1957), pp. 1235-1241.
37. D. H. Mordaunt, R. N. Dixon, M. N. R. Ashfold, "Photodissociation dynamics of the \widetilde{A} state ammonia molecules. II. The isotopic dependence for partially and fully deuterated isotopomers," J. Chem. Phys., Vol. 104, (17), (1996), pp. 6472-6481.
38. D. J. DeFrees, B. A. Levi, S. K. Pollack, W. J. Hehre, J. S. Binkley, J. A. Pople, "Effect of correlation on theoretical equilibrium geometries," J. Am. Chem. Soc., 101:15, (1979), pp. 4085-4089.
39. A. G. Csaszar, M. L. Leininger, V. Szalay, "The standard enthalpy of formation of CH_{2}," J. Chem. Phys., Vol. 118, No. 23, (2003), pp. 10631-10642.
40. B. Ruscic, M. Litorja, R. L. Asher, "Ionization energy of methylene revisited: Improved values for the enthalpy of formation of CH_{2} and the bond dissociation energy of CH_{3} via simultaneous solution of the local thermodynamic network," J. Phys. Chem. A, Vol. 103, (1999), pp. 8625-8633.
41. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), p. 9-34.
42. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), pp. 4-130 to 4-135.
43. G. Herzberg, J. W. T. Spinks, Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules, 2nd Edition, Krieger Publishing Company, Malabar, FL, (1989), pp. 551-553.
44. 24. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, Tomographic imaging of molecular orbitals, Nature, Vol. 432, (2004), pp. 867-871.
1. R. H. Christian, R. E. Duff, F. L. Yarger, "Equation of state of gases by shock wave measurements. II. The dissociation energy of nitrogen," J. Chem. Phys., Vol. 23, No. 11, (1955), pp. 2045-2049.
2. K. M. Ervin, I. Anusiewicz, P. Skurski, J. Simons, W. C. Lineberger, The only stable state of O_{2}^{-}is the $\mathrm{X}^{2} \Pi_{g}$ ground state and it (still!) has an adiabatic electron detachment energy of 0.45 eV , J. Phys. Chem. A, Vol. 107, (2003), pp. 8521-8529.
3. P. C. Cosby, D. L. Huestis, On the dissociation energy of O_{2} and the energy of the $\mathrm{O}_{2}^{+} b{ }^{4} \sum_{g}^{-}$state, J. Chem. Phys., Vol. 97, No. 9, (1992), pp. 6108-6112.
4. J. Yang, Y. Hao, J. Li, C. Zhou, Y. Mo, A combined zero electronic kinetic energy spectroscopy and ion-pair dissociation imaging study of the $\mathrm{F}_{2}^{+}\left(X^{2} \Pi_{g}\right)$ structure, J. Chem. Phys., Vol. 122, No. 13, (2005), 134308-1-134308-7.
5. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), pp. 9-51 to 9-57.
6. D. R. Lide, CRC Handbook of Chemistry and Physics, 86th Edition, Taylor \& Francis, Boca Raton, Florida, (2005-6), pp. 954 to 9-62.

Chapter 14

MORE POLYATOMIC MOLECULES AND HYDROCARBONS

Abstract

Additional polyatomic molecules can be solved using similar principles as those used to solve hydrogen molecular ions and molecules wherein the hydrogen molecular orbitals (MOs) and hydrogen atomic orbitals serve as basis functions for the MOs. The MO must (1) be a solution of Laplace's equation to give a equipotential energy surface, (2) correspond to an orbital solution of the Newtonian equation of motion in an inverse-radius-squared central field having a constant total energy, (3) be stable to radiation, and (4) conserve the electron angular momentum of \hbar. Energy of the MO must be matched to that of the outermost atomic orbital of a bonding heteroatom in the case where a minimum energy is achieved with a direct bond to the AO. Alternatively, the MO is continuous with the AO containing paired electrons that do not particpate in the bond. Rather, they only provide a means for the energy matched MO to form a continuous equipotential energy surface. In the case that an independent MO is formed, the AO force balance causes the remaining electrons to be at lower energy and a smaller radius. In another case, the atomic orbital may hybridize in order to achieve a bond at an energy minimum, and the sharing of electrons between two or more such orbitals to form a MO permits the participating hybridized orbitals to decrease in energy through a decrease in the radius of one or more of the participating orbitals. Representative cases were solved. Specifically, the results of the determination of bond parameters of carbon dioxide $\left(\mathrm{CO}_{2}\right)$, nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, ethane $\left(\mathrm{CH}_{3} \mathrm{CH}_{3}\right)$, ethylene $\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, acetylene (CHCH), benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$, propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$, butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$, pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$, hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$, heptane $\left(\mathrm{C}_{7} \mathrm{H}_{16}\right)$, octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$, nonane $\left(\mathrm{C}_{9} \mathrm{H}_{20}\right)$, decane $\left(\mathrm{C}_{10} \mathrm{H}_{22}\right)$, undecane $\left(\mathrm{C}_{11} \mathrm{H}_{24}\right)$, dodecane $\left(\mathrm{C}_{12} \mathrm{H}_{26}\right)$, and octadecane $\left(\mathrm{C}_{18} H_{38}\right)$ are given in Table 14.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

CARBON DIOXIDE MOLECULE

The carbon dioxide molecule can be formed by the reaction of carbon monoxide and an oxygen atom:

$$
\begin{equation*}
\mathrm{CO}+\mathrm{O} \rightarrow \mathrm{CO}_{2} \tag{14.1}
\end{equation*}
$$

Each equivalent bond in the carbon dioxide molecule comprises a double bond that is energy-matched to the filled $C 2 s$ orbital. Each such bond comprises 75% of a H_{2}-type MO with four paired electrons as a basis set such that three electrons can be assigned to each $C=O$ bond. Thus, the two $C 2 p$ electrons combine with the four $O 2 p$ electrons, two from each O, as a linear combination to form the two $\mathrm{C}=\mathrm{O}$ bonds of CO_{2}. The force balance equation and radius r_{8} of the $2 p$ shell of O is derived in the Eight-Electron Atoms section. With the formation of the H_{2}-type MOs by the contribution of two $2 p$ electrons from each of the two O atoms, a factor of two increase of the central field on the remaining $O 2 p$ electrons arises. The resulting increased Coulombic as well as magnetic central forces decrease the radii of the $O 2 p$ shells such that the energy minimum is achieved that is lower than that of the reactant atoms. The resulting electron configuration of CO_{2} is $C 1 s^{2} O_{1} 1 s^{2} O_{2} 1 s^{2} C 2 s^{2} O_{1} 2 s^{2} O_{2} 2 s^{2} O_{1} 2 p^{2} O_{2} 2 p^{2} \sigma_{O_{2}, C, O_{1}}^{6}$ where the subscripts designate the O atom, 1 or $2, \sigma$ designates the H_{2} type MO , and the orbital arrangement is:

Carbon dioxide is predicted to be diamagnetic in agreement with observations [1].

FORCE BALANCE OF THE $2 p$ SHELL OF THE OXYGEN ATOM OF THE CARBON DIOXIDE MOLECULE

For each O atom, force balance for the outermost $2 p$ electron of CO_{2} (electron 6) is achieved between the centrifugal force and the Coulombic and magnetic forces that arise due to interactions between electron 6 and the other $2 p$ electrons as well as the $2 s$-shell electrons due to spin and orbital angular momentum. The forces used are derived in the Eight-Electron Atoms section. The central Coulomb force on the outer-most $2 p$ shell electron of $C O$ (electron 6) due to the nucleus and the inner five electrons is given by Eq. (10.70) with the appropriate charge and radius:

$$
\begin{equation*}
\mathbf{F}_{\text {ele }}=\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}} \mathbf{i}_{\mathbf{r}} \tag{14.3}
\end{equation*}
$$

for $r>r_{5}$. The $2 p$ shell possess a +2 external electric field given by Eq. (10.92) for $r>r_{6}$. The energy is minimized with conservation of angular momentum. This condition is met when the diamagnetic force, $\mathbf{F}_{\text {diamagnetic }}$, of Eq. (10.82) due to the p orbital contribution is given by:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic }}=-\left(\frac{2}{3}\right) \frac{\hbar^{2}}{4 m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}}=-\frac{2 \hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}} \mathbf{i}_{\mathbf{r}} \tag{14.4}
\end{equation*}
$$

where $s=1 / 2$. And, $\mathbf{F}_{\text {mag } 2}$ corresponding to the conserved spin and orbital angular momentum given by Eq. (10.157) is:

$$
\begin{equation*}
\mathbf{F}_{\text {mag } 2}=\frac{1}{Z} \frac{2 \hbar^{2}}{m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{14.5}
\end{equation*}
$$

The electric field external to the $2 p$ shell given by Eq. (10.92) for $r>r_{6}$ gives rise to a second diamagnetic force, $\mathbf{F}_{\text {diamagnetic } 2}$, given by Eq. (10.93). $\mathbf{F}_{\text {diamagnetic } 2}$ due to the binding of the p-orbital electron having an electric field of +2 outside of its radius is:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic } 2}=-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{m_{e} r_{6}^{4}} 10 \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{14.6}
\end{equation*}
$$

The radius of the $2 p$ shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (14.3)) and diamagnetic (Eqs. (14.4) and (14.6)), and paramagnetic (Eq. (14.5)) forces as follows:

$$
\begin{equation*}
\frac{m_{e} v_{6}^{2}}{r_{6}}=\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}}-\frac{2 \hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)}+\frac{2 \hbar^{2}}{Z m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)}-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{6}^{4} m_{e}} 10 \sqrt{s(s+1)} \tag{14.7}
\end{equation*}
$$

Substitution of $v_{6}=\frac{\hbar}{m_{e} r_{6}}$ (Eq. (1.35)) and $s=\frac{1}{2}$ into Eq. (14.7) gives:

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} r_{6}^{3}}=\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}}-\frac{2 \hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}}+\frac{2 \hbar^{2}}{Z m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}}-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{6}^{4} m_{e}} 10 \sqrt{\frac{3}{4}} \tag{14.8}
\end{equation*}
$$

The quadratic equation corresponding to Eq. (14.8) is:

$$
\begin{equation*}
r_{6}^{2}-\frac{\frac{\hbar^{2}}{m_{e}}}{\left(\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)^{2}} r_{6}-\frac{\frac{\hbar^{2}}{m_{e}}\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3} 10 \sqrt{\frac{3}{4}}}{\left(\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)}=0 \tag{14.9}
\end{equation*}
$$

The solution of Eq. (14.9) using the quadratic formula is:

$$
\begin{equation*}
r_{6}=\frac{a_{0}}{\left((Z-5)-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)} \pm a_{0} \sqrt{\left(\frac{\left((Z-5)-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}{}\right)^{2}} \sqrt{\frac{20 \sqrt{3}\left(\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3}\right)}{\left((Z-5)-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}}, r_{3} \text { in units of } a_{0} \tag{14.10}
\end{equation*}
$$

The positive root of Eq. (14.10) must be taken in order that $r_{6}>0$. Substitution of $\frac{r_{3}}{a_{0}}=0.59020$ (Eq. (10.62) with $Z=8$) into Eq. (14.10) gives:

$$
\begin{equation*}
r_{6}=0.74776 a_{0} \tag{14.11}
\end{equation*}
$$

ENERGIES OF THE $2 s$ AND $2 p$ SHELLS OF THE CARBON ATOM AND THE $2 p$ SHELL OF THE OXYGEN ATOMS OF THE CARBON DIOXIDE MOLECULE

Consider the determination of the total energy of CO_{2} from the reaction of a carbon atom with two oxygen atoms. With the formation of the H_{2}-type MO by the contribution of two $2 p$ electrons from the C atom, the remaining outer-shell atomic electrons comprise the $2 s$ electrons which are unchanged by bonding with two oxygen atoms. However, the total energy of the CO_{2} molecule, which is subtracted from the sum of the energies of the oxygen atom and carbon monoxide molecule to determine the $O-C O$ bond energy, is increased by the ionization energies of C, C^{+}, O, and $2 O^{+}$given by Eqs. (14.12-14.15), respectively. Experimentally, the energies are [2]:

$$
\begin{equation*}
E(\text { ionization } ; C)=11.26030 \mathrm{eV} \tag{14.12}
\end{equation*}
$$

E(ionization; $\left.\mathrm{C}^{+}\right)=24.38332 \mathrm{eV}$
E(ionization; O) $=13.61806 \mathrm{eV}$
E(ionization; O^{+}) $=35.11730 \mathrm{eV}$
In addition, the central forces on the $2 p$ shell of the O atom are increased with the formation of the σ MO which reduces the shell's radius and increases its total energy. The Coulombic energy terms of the total energy of each O atom at the new radius are calculated and added to the ionization energies of C, C^{+}, O, and $2 O^{+}$, and the energy of the σ MO to give the total energy of CO_{2}. Then, the bond energy is determined from the total CO_{2} energy.

The radius r_{8} of each oxygen atom before bonding is given by Eq. (10.162):

$$
\begin{equation*}
r_{8}=a_{0} \tag{14.16}
\end{equation*}
$$

Using the initial radius r_{8} of each O atom and the final radius r_{6} of the $O 2 p$ shell (Eq. (14.11)) and by considering that the central Coulombic field decreases by an integer for each successive electron of the shell, the sum $E_{T}(O, 2 p)$ of the Coulombic energy change of the $O 2 p$ electrons of each O atom is determined using Eq. (10.102):

$$
\begin{equation*}
E_{T}(O, 2 p)=-\sum_{n=4}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{6}}-\frac{1}{r_{8}}\right)=-(13.60580 \mathrm{eV})(0.33733)(3+4)=-32.12759 \mathrm{eV} \tag{14.17}
\end{equation*}
$$

FORCE BALANCE OF THE σ MO OF THE CARBON DIOXIDE MOLECULE

As in the case of H_{2}, the $\sigma \mathrm{MO}$ is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into the C atom for distances shorter than the radius of the $C 2 s$ shell; nor, can it extend into the O atom for distances shorter than the radius of the $O 2 p$ shell. Thus, the MO surface of each $C=O$ bond comprises a prolate spheroid that bridges and is continuous with the $2 s$ and $2 p$ shells of the O and C atoms whose nuclei serve as the foci. The energy of each prolate spheroid is matched to that of the $C 2 s$ and $O 2 p$ shells. As in the case of previous examples of energy-matched MOs such as $O H$ and NH , the $\mathrm{C}=\mathrm{O}$-bond MO must comprise 75% of a H_{2}-type ellipsoidal MO in order to match potential, kinetic, and orbital
energy relationships. However, the paired electrons of the $C 2 s$ and $O 2 p$ shells are not involved in bonding. Rather, the AOs permit a continuous surface comprising the two $C=O$-bond MOs having six paired electrons, two from each of the C and the two O atoms:

$$
\begin{equation*}
2\left(0.75 \mathrm{H}_{2} \mathrm{MO}\right) \rightarrow \mathrm{CO}_{2} \mathrm{MO} \tag{14.18}
\end{equation*}
$$

The force balance of the $\mathrm{CO}_{2} \mathrm{MO}$ is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.18) and the energy matching condition between the carbon and oxygen components of the MO.

Similar to the OH and $\mathrm{H}_{2} \mathrm{O}$ cases given by Eqs. (13.57) and (13.162), the H_{2}-type ellipsoidal MO comprises 75% of the $\mathrm{CO}_{2} \mathrm{MO}$; so, the electron charge density in Eq. (11.65) is given by $-0.75 e$. Thus, k^{\prime} of each H_{2}-type-ellipsoidal-MO component of the $\mathrm{CO}_{2} \mathrm{MO}$ is given by Eq. (13.59). The distance from the origin of each $C=O$-bond MO to each focus c^{\prime} is given by Eq. (13.60). The internuclear distance is given by Eq. (13.61). The length of the semiminor axis of the prolate spheroidal $C=O$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). Then, the solution of the semimajor axis a allows for the solution of the other axes of the prolate spheroidal and eccentricity of the $\mathrm{CO}_{2} \mathrm{MO}$.

The energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} of the $\mathrm{CO}_{2} \sigma \mathrm{MO}$ are the same as those of $O H$ given by Eqs. (13.67-13.73), except that the terms based on charge are multiplied by four and the kinetic energy term is multiplied by two due to each σ-MO double bond:

$$
\begin{equation*}
E_{T}(C=O, \sigma)=-\frac{4 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[\left(\frac{3}{2}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right] \tag{14.19}
\end{equation*}
$$

where $E_{T}(C=O, \sigma)$ is the total energy of each $C=O \sigma \mathrm{MO}$ of CO_{2}. The total energy of a H_{2}-type ellipsoidal MO is given by Eqs. (11.212) and (13.75). A minimum energy is obtained when each double bond of the $\sigma \mathrm{MO}$ of CO_{2} comprises the energy equivalent of four H_{2}-type ellipsoidal MOs. For each $C=O$ bond to match the energy of the $C 2 s$ orbital, the ionization energy of C and C^{+}(Eqs. (14.12-14.13)) must be added for each bond of the double bond. Thus, the total energy of each $C=O$-bond MOs is:

$$
\begin{align*}
E_{T}(C=O, \sigma) & =2\binom{2\left(-\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}\left[\left(2 \sqrt{2}-\sqrt{2}+\frac{\sqrt{2}}{2}\right) \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}-\sqrt{2}\right]\right)}{+E\left(\text { ionization; C) }+ \text { E(ionization; } C^{+}\right)} \\
& =2(2(-31.63536831 \mathrm{eV})+11.26030 \mathrm{eV}+24.38332 \mathrm{eV}) \tag{14.20}\\
& =-55.25423 \mathrm{eV}
\end{align*}
$$

From the energy relationship given by Eq. (14.21) and the relationship between the axes given by Eqs. (13.60-13.63), the dimensions of the $\mathrm{CO}_{2} \mathrm{MO}$ can be solved.

> Substitution of Eq. (13.60) into Eq. (14.21) gives:

$$
\begin{equation*}
E_{T}(C=O, \sigma)=\frac{4 e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left[\left(\frac{3}{2}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right]=e 55.25423 \mathrm{eV} \tag{14.22}
\end{equation*}
$$

The most convenient way to solve Eq. (14.22) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is

$$
\begin{equation*}
a=1.80703 a_{0}=9.56239 \times 10^{-11} \mathrm{~m} \tag{14.23}
\end{equation*}
$$

Substitution of Eq. (14.23) into Eq. (13.60) is:

$$
\begin{equation*}
c^{\prime}=1.09758 a_{0}=5.80815 \times 10^{-11} \mathrm{~m} \tag{14.24}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.24) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.19516 a_{0}=1.16163 \times 10^{-10} \mathrm{~m} \tag{14.25}
\end{equation*}
$$

The experimental bond distance is [3]

$$
\begin{equation*}
2 c^{\prime}=1.1600 \times 10^{-10} \mathrm{~m} \tag{14.26}
\end{equation*}
$$

Substitution of Eqs. (14.23-14.24) into Eq. (13.62) is:

$$
\begin{equation*}
b=c=1.43550 a_{0}=7.59636 \times 10^{-11} \mathrm{~m} \tag{14.27}
\end{equation*}
$$

Substitution of Eqs. (14.23-14.24) into Eq. (13.63) is:

$$
\begin{equation*}
e=0.60740 \tag{14.28}
\end{equation*}
$$

The C and O nuclei comprise the foci of each H_{2}-type ellipsoidal MO defined as $O=C=O$. Consider the left-hand $C=O$ bond of the two equivalent bonds in the absence of the right-hand bond. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the C 2 s AO are given by Eqs. (13.84-13.95) and (13.261-13.270). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{4}=0.84317 a_{0}$ is the radius of the $C 2 s$ shell. Substitution of Eqs. (14.23-14.24) into Eq. (13.261) gives

$$
\begin{equation*}
\theta^{\prime}=54.53^{\circ} \tag{14.29}
\end{equation*}
$$

Then, the angle $\theta_{C 2 s A O}$ the radial vector of the $C 2 \mathrm{~s} \mathrm{AO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C 25 A O}=180^{\circ}-54.53^{\circ}=125.47^{\circ} \tag{14.30}
\end{equation*}
$$

as shown in Figure 14.1. The Cartesian \mathbf{i}-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j}-coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{\mathrm{H}_{2} M \mathrm{O}}$ satisfies the following relationship:

$$
\begin{equation*}
r_{4} \sin \theta_{C 2 \mathrm{SAO}}=0.84317 a_{0} \sin \theta_{C 2 \mathrm{SAO}}=b \sin \theta_{\mathrm{H}_{2} \mathrm{MO}} \tag{14.31}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} \mathrm{MO}}=\sin ^{-1} \frac{0.84317 a_{0} \sin \theta_{C 2 \mathrm{sAO}}}{b}=\sin ^{-1} \frac{0.84317 a_{0} \sin 125.47^{\circ}}{b} \tag{14.32}
\end{equation*}
$$

with the use of Eq. (14.30). Substitution of Eq. (14.27) into Eq. (14.32) gives:

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} \mathrm{MO}}=28.58^{\circ} \tag{14.33}
\end{equation*}
$$

Then, the distance $d_{\mathrm{H}_{2} \mathrm{MO}}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by

$$
\begin{equation*}
d_{\mathrm{H}_{2} \mathrm{MO}}=a \cos \theta_{\mathrm{H}_{2} \mathrm{MO}} \tag{14.34}
\end{equation*}
$$

Substitution of Eqs. (14.23) and (14.33) into Eq. (14.34) gives:

$$
\begin{equation*}
d_{H_{2} M O}=1.58687 a_{0}=8.39737 \times 10^{-11} \mathrm{~m} \tag{14.35}
\end{equation*}
$$

The distance $d_{C 2 s A O}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals is given by

$$
\begin{equation*}
d_{C 2 \mathrm{SAO}}=d_{\mathrm{H}_{2} \mathrm{MO}}-c^{\prime} \tag{14.36}
\end{equation*}
$$

Substitution of Eqs. (14.24) and (14.35) into Eq. (14.36) gives:

$$
\begin{equation*}
d_{C 2 \mathrm{sAO}}=0.48929 a_{0}=2.58922 \times 10^{-11} \mathrm{~m} \tag{14.37}
\end{equation*}
$$

The C and O nuclei comprise the foci of each H_{2}-type ellipsoidal MO defined as $O=C=O$. Consider the right-hand $C=O$ bond of the two equivalent bonds. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $O 2 p \mathrm{AO}$ are given by Eqs. (13.84-13.95) and (13.261-13.270). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{6}=0.74776 a_{0}$ is the radius of the $O 2 p$ shell. Substitution of Eqs. (14.23-14.24) into Eq. (13.261) gives

$$
\begin{equation*}
\theta^{\prime}=30.18^{\circ} \tag{14.38}
\end{equation*}
$$

Then, the angle $\theta_{O 2 p A O}$ the radial vector of the $O 2 p$ AO makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{O 2 p A O}=180^{\circ}-30.18^{\circ}=149.82^{\circ} \tag{14.39}
\end{equation*}
$$

as shown in Figure 14.1. The Cartesian \mathbf{i}-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j}-coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{\mathrm{H}_{2} M O}$ satisfies the following relationship:

$$
\begin{equation*}
r_{6} \sin \theta_{O 2 p A O}=0.74776 a_{0} \sin \theta_{O 2 p A O}=b \sin \theta_{H_{2} M O} \tag{14.40}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{H_{2} M O}=\sin ^{-1} \frac{0.74776 a_{0} \sin \theta_{O 2 p A O}}{b}=\sin ^{-1} \frac{0.74776 a_{0} \sin 149.82^{\circ}}{b} \tag{14.41}
\end{equation*}
$$

with the use of Eq. (14.39). Substitution of Eq. (14.27) into Eq. (14.41) gives:

$$
\begin{equation*}
\theta_{\mathrm{H}_{2} \mathrm{MO}}=15.18^{\circ} \tag{14.42}
\end{equation*}
$$

Then, the distance $d_{\mathrm{H}_{2} \mathrm{MO}}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{\mathrm{H}_{2} \mathrm{MO}}=a \cos \theta_{\mathrm{H}_{2} \mathrm{MO}} \tag{14.43}
\end{equation*}
$$

Substitution of Eqs. (14.23) and (14.42) into Eq. (14.43) gives:

$$
\begin{equation*}
d_{H_{2} M O}=1.74396 a_{0}=9.22862 \times 10^{-11} \mathrm{~m} \tag{14.44}
\end{equation*}
$$

The distance $d_{O 2 p A O}$ along the internuclear axis from the origin of each O atom to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{2 p A O}=d_{H_{2} M O}-c^{\prime} \tag{14.45}
\end{equation*}
$$

Substitution of Eqs. (14.24) and (14.44) into Eq. (14.45) gives:

$$
\begin{equation*}
d_{O 2 p A O}=0.64637 a_{0}=3.42047 \times 10^{-11} \mathrm{~m} \tag{14.46}
\end{equation*}
$$

As shown in Eq. (14.18), each $C=O$ bond comprises a factor of 0.75 of the charge-density of double that of the $H_{2}-$ type ellipsoidal MO. Using the electron configuration of CO_{2} (Eq. (14.2)), the radii of the $C 1 s=0.17113 a_{0}$ (Eq. (10.51)), $C 2 s=0.84317 a_{0}$ (Eq. (10.62)), O1s $=0.12739 a_{0}$ (Eq. (10.51)), O2s $=0.59020 a_{0}$ (Eq. (10.62)), and $O 2 p=0.74776 a_{0}$ (Eq. (14.11)) shells and the parameters of the $\sigma \mathrm{MO}$ of CO_{2} given by Eqs. (13.3-13.4), (14.23-14.25), and (14.27-14.28), the dimensional diagram and charge-density of the $\mathrm{CO}_{2} \mathrm{MO}$ are shown in Figures 14.1 and 14.2, respectively.

Figure 14.1. The cross section of the $\mathrm{CO}_{2} \mathrm{MO}$ showing the axes, σ MO (two H_{2}-type ellipsoidal MOs) with six paired electrons, with the $C 1 s$ and $2 s$ AOs and the $O 1 s, 2 s$, and $2 p$ AOs. Legend: a : semimajor axis, b : semiminor axis, c^{\prime} : internuclear distance, r_{4} : radius of the $C 2 s$ shell having two paired electrons, r_{6} : radius of the $O 2 p$ shell having two paired electrons.

Figure 14.2. $\mathrm{CO}_{2} \mathrm{MO}$ comprising the σ MO (two H_{2}-type MOs) with C and two O atoms at the foci that have each donated two electrons to the $\sigma \mathrm{MO}$. Consequently, the outer electrons of the carbon atom comprise the $C 2 \mathrm{~s}$ shell, and each $\mathrm{O} 2 p$ shell has a smaller radius and a higher binding energy. (A) Color scale, translucent view of the charge-density of the CO_{2} MO. (B) Off-center cut-away view showing each complete inner most $O 1 s$ shell, and moving radially, the $O 2 s$ shell, the $O 2 p$ shell, and the σ prolate spheroidal MO that has the corresponding O atom as a focus. Moving radially from the carbon-atom focus, the complete inner most $C 1 s$ shell, the $C 2 s$ shell, and the σ prolate spheroidal MOs are shown.

SUM OF THE ENERGIES OF THE σ MO AND THE AOS OF THE CARBON DIOXIDE MOLECULE

The energies of the $\mathrm{CO}_{2} \sigma$ MO are given by the substitution of the semiprincipal axes (Eqs. (14.23-14.24) and (14.27)) into the energy equations of $O H$ (Eqs. (13.67-13.73)), except that the terms based on charge are multiplied by four and the kinetic energy term is multiplied by two due to each σ-MO double bond:

$$
\begin{align*}
& V_{e}=2^{2}\left(\frac{3}{4}\right) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-104.83940 \mathrm{eV} \tag{14.47}\\
& V_{p}=2^{2} \frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=49.58464 \mathrm{eV} \tag{14.48}\\
& T=2\left(\frac{3}{4}\right) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=14.50438 \mathrm{eV} \tag{14.49}\\
& V_{m}=2^{2}\left(\frac{3}{4}\right) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-14.50438 \mathrm{eV} \tag{14.50}\\
& E_{T}=V_{e}+T+V_{m}+V_{p} \tag{14.51}
\end{align*}
$$

Substitution of Eqs. (13.60) and (14.47-14.50) into Eq. (14.51) gives:

$$
\begin{equation*}
E_{T}(C=O, \sigma)=V_{e}+T+V_{m}+V_{p}=\frac{-4 e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left[\left(\frac{3}{2}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right]=-55.25476 \mathrm{eV} \tag{14.52}
\end{equation*}
$$

where $E_{T}(C=O, \sigma)$ is the total energy of each $C=O \sigma \mathrm{MO}$ of CO_{2} given by Eq. (14.19) which is reiteratively matched to Eq. (14.20) within five-significant-figure round off error.

The total energy of $\mathrm{CO}_{2}, E_{T}\left(\mathrm{CO}_{2}\right)$, is given by the sum of E (ionization; C) and E (ionization; C^{+}), the sum of the energies of the first and second electrons of carbon (Eqs. (14.12-14.13)) donated to each double bond, the sum of E (ionization; O) and two times E (ionization; O^{+}), the energies of the first and second electrons of oxygen (Eqs. (14.14-14.15)) donated to the double bonds, two times $E_{T}(O, 2 p)$, the $O 2 p$ AO contribution due to the decrease in radius with the formation of each bond (Eq. (14.17)), and two times $E_{T}(C=O, \sigma)$, the σ MO contribution given by Eq. (14.22):

$$
\begin{align*}
E_{T}\left(\mathrm{CO}_{2}\right) & =\binom{\text { E(ionization; C) } \left.+ \text { E(ionization; } C^{+}\right)+ \text {E(ionization; } O \text {) }}{+2 E\left(\text { ionization; } O^{+}\right)+2 E_{T}(O, 2 p)+2 E_{T}(C=O, \sigma)} \\
& =\left(\begin{array}{l}
11.26030 \mathrm{eV}+24.38332 \mathrm{eV}+13.61806 \mathrm{eV} \\
+2(35.11730 \mathrm{eV})+2(-32.12759 \mathrm{eV}) \\
-2\left(\frac{4 e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left(\begin{array}{l}
\left(\frac{3}{2}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1
\end{array}\right)\right.
\end{array}\right) \tag{14.53}\\
& =\binom{11.26030 \mathrm{eV}+24.38332 \mathrm{eV}+13.61806 \mathrm{eV}}{+2(35.11730 \mathrm{eV})+2(-32.12759 \mathrm{eV})-2(55.25423 \mathrm{eV})}=-55.26841 \mathrm{eV}
\end{align*}
$$

VIBRATION OF CO_{2}

The vibrational energy levels of CO_{2} may be solved by determining the Morse potential curve from the energy relationships for the transition from a C atom and two O atoms whose parameters are given by Eqs. (10.115-10.123) and (10.154-10.163), respectively, to a C atom whose parameter r_{4} is given by Eq. (10.61), two O atoms whose parameter r_{6} is given by Eq. (14.11), and the $\sigma \mathrm{CO}_{2} \mathrm{MO}$ whose parameters are given by Eqs. (14.23-14.25) and (14.27-14.28). As shown in the Vibration of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about the internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K\&P) [4] and after Eq. (11.134). Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy corrections can be found by perturbation methods.

THE DOPPLER ENERGY TERMS OF THE CARBON DIOXIDE MOLECULE

The equations of the radiation reaction force of carbon dioxide are the same as those of OH with the substitution of the CO_{2} parameters except that there is a factor of four increase in the central force in Eq. (13.140) due to the double bond. Using Eqs. (13.140-13.142), the angular frequency of the reentrant oscillation in the transition state is

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{4(0.75) e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=4.16331 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{14.54}
\end{equation*}
$$

where b is given by Eq. (14.27). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 4.16331 \times 10^{16} \mathrm{rad} / \mathrm{s}=27.40365 \mathrm{eV} \tag{14.55}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(C O_{2}\right) / 2$ for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (14.55) for \bar{E}_{K} gives the Doppler energy of the electrons of the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-27.63421 \mathrm{eV} \sqrt{\frac{2 e(27.40365 \mathrm{eV})}{m_{e} c^{2}}}=-0.28619 \mathrm{eV} \tag{14.56}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The transition state comprises $O--C O$, oxygen binding to $C O$. Vibration of the linear XYZ-molecular transition state corresponds to v_{3} [5] with the maximum kinetic energy localized to the nascent $C-O$ bond. In this case, the kinetic energy of the nuclei is the maximum for this bond. Thus, $\bar{E}_{\text {Kvib }}$ is the vibrational energy. The decrease in the energy of the CO_{2} MO due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (14.56) and $\bar{E}_{\text {Kvib }}$, the vibrational energy. Using the experimental $\mathrm{CO}_{2} E_{\text {vib }}\left(v_{3}\right)$ of $2349 \mathrm{~cm}^{-1}(0.29124 \mathrm{eV})$ [6] for $\bar{E}_{\text {Kvib }}$ of the transition state, $\bar{E}_{\text {osc }}\left(\mathrm{CO}_{2}\right)$ is:

$$
\begin{align*}
& \bar{E}_{\text {osc }}\left(C O_{2}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+E_{\text {vib }} \tag{14.57}\\
& \bar{E}_{\text {osc }}\left(C O_{2}\right)=-0.28619 \mathrm{eV}+0.29124 \mathrm{eV}=0.00505 \mathrm{eV} \tag{14.58}
\end{align*}
$$

TOTAL AND BOND ENERGIES OF THE CARBON DIOXIDE MOLECULE

$E_{T+o s c}\left(\mathrm{CO}_{2}\right)$, the total energy of CO_{2} including the Doppler term, is given by the sum of $E_{T}\left(\mathrm{CO}_{2}\right)$ (Eq. (14.53)) and $\bar{E}_{\text {osc }}\left(\mathrm{CO}_{2}\right)$ given by Eq. (14.58).

$$
\begin{align*}
& E_{T+o s c}\left(\mathrm{CO}_{2}\right)=\left(\begin{array}{l}
2\left(V_{e}+T+V_{m}+V_{p}\right)+E(\text { ionization; } C) \\
+E\left(\text { ionization; } C^{+}\right)+E(\text { ionization; } O)+2 E\left(\text { ionization; } O^{+}\right) \\
+2 E_{T}(O, 2 p)+\bar{E}_{\text {osc }}\left(\mathrm{CO}_{2}\right)
\end{array}\right) \\
& =\left(\begin{array}{l}
2 E_{T}(C=O, \sigma)+E(\text { ionization; } C)+E\left(\text { ionization; } C^{+}\right) \\
+E(\text { ionization; } O)+2 E\left(\text { ionization; } O^{+}\right) \\
+2 E_{T}(\mathrm{O}, 2 p)+\bar{E}_{\text {osc }}\left(\mathrm{CO}_{2}\right)
\end{array}\right) \tag{14.59}\\
& =E_{T}\left(\mathrm{CO}_{2}\right)+\bar{E}_{\text {osc }}\left(\mathrm{CO}_{2}\right) \\
& E_{T+\text { osc }}\left(C O_{2}\right)=\left\{\begin{array}{l}
\left.\left(\begin{array}{l}
2\left(\begin{array}{l}
-4 e^{2} \\
8 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}
\end{array}\left(\frac{3}{2}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right.
\end{array}\right)\right)+ \text { E(ionization; C) } \\
\left.+ \text { E(ionization; } C^{+}\right)+ \text {E(ionization; O) } \\
+2 E\left(\text { ionization; } O^{+}\right)-2 \sum_{0, n=4}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{6}}-\frac{1}{r_{8}}\right)
\end{array}\right) \tag{14.60}\\
& =-55.26841 \mathrm{eV}-0.28619 \mathrm{eV}+E_{\text {vib }}
\end{align*}
$$

From Eqs. (14.57-14.60), the total energy of the $\mathrm{CO}_{2} \mathrm{MO}$ is:

$$
\begin{equation*}
E_{T+o s c}\left(C O_{2}\right)=-55.25476 \mathrm{eV}+\bar{E}_{\text {osc }}\left(C O_{2}\right)=-55.25476 \mathrm{eV}+0.00505 \mathrm{eV}=-55.26336 \mathrm{eV} \tag{14.61}
\end{equation*}
$$

where the experimental $E_{\text {vib }}$ was used.
As in the case of the dissociation of the bond of the hydroxyl radical, an oxygen atom is formed with dissociation of CO_{2}. O has two unpaired electrons as shown in Eq. (13.55) which interact to stabilize the atom as shown by Eq. (10.16110.162). The lowering of the energy of the reactants decreases the bond energy. Thus, the total energy of oxygen is reduced by the energy in the field of the two magnetic dipoles given by Eq. (7.46) and Eq. (13.101).

$$
\begin{equation*}
E(\text { magnetic })=\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2} a_{0}^{3}}=\frac{8 \pi \mu_{0} \mu_{B}^{2}}{a_{0}^{3}}=0.11441 \mathrm{eV} \tag{14.62}
\end{equation*}
$$

The CO_{2} bond dissociation energy, $E_{D}\left(\mathrm{CO}_{2}\right)$, is given by the sum of the energies of the $C O$ and the O atom minus the sum of $E_{T+o s c}\left(\mathrm{CO}_{2}\right)$ and E (magnetic) :

$$
\begin{equation*}
E_{D}\left(\mathrm{CO}_{2}\right)=E(\mathrm{CO})+E(O)-\left(E(\text { magnetic })+E_{T+\mathrm{osc}}\left(\mathrm{CO}_{2}\right)\right) \tag{14.63}
\end{equation*}
$$

The energy of an oxygen atom is given by Eq. (14.14) and $E_{T}(C O)$ is given by the sum of the experimental energies of C (Eq. (14.12)), O (Eq. (14.14)), and the negative of the bond energy of $C O$ (Eq. (13.914)):

$$
\begin{equation*}
E(C O)=-11.26030 \mathrm{eV}-13.618060 \mathrm{eV}-11.15696 \mathrm{eV}=-36.03532 \mathrm{eV} \tag{14.64}
\end{equation*}
$$

The energy of O is given by the negative of the corresponding ionization energy given in Eq. (4.14). Thus, the CO_{2} bond dissociation energy, $E_{D}\left(\mathrm{CO}_{2}\right)$, given by the Eqs. (4.14) and (14.61-14.64) is:

$$
\begin{align*}
E_{D}\left(C O_{2}\right) & =-(36.03532 \mathrm{eV}+13.618060 \mathrm{eV})-\left(E(\text { magnetic })+E_{T+o s c}\left(C O_{2}\right)\right) \\
& =-49.65338 \mathrm{eV}-(0.11441 \mathrm{eV}-55.26336 \mathrm{eV}) \tag{14.65}\\
& =5.49557 \mathrm{eV}
\end{align*}
$$

The experimental CO_{2} bond dissociation energy is [7]:

$$
\begin{equation*}
E_{D 298}\left(\mathrm{CO}_{2}\right)=5.516 \mathrm{eV} \tag{14.66}
\end{equation*}
$$

The results of the determination of bond parameters of CO_{2} are given in Table 14.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

NITROGEN DIOXIDE MOLECULE

The nitrogen dioxide molecule can be formed by the reaction of nitric oxide and an oxygen atom:

$$
\begin{equation*}
\mathrm{NO}+\mathrm{O} \rightarrow \mathrm{NO}_{2} \tag{14.67}
\end{equation*}
$$

The bonding in the nitrogen dioxide molecule comprises two double bonds, each a H_{2}-type MO with four paired electrons wherein the central N atom is shared by both bonds such that six electrons can be assigned to the two $N=O$ bonds. Thus, two $N 2 p$ electrons combine with the four $O 2 p$ electrons, two from each O, as a linear combination to form the two overlapping $N=O$ bonds of NO_{2}. The force balance equation and radius r_{7} of the $2 p$ shell of N is derived in the Seven-Electron Atoms section. The force balance equation and radius r_{8} of the $2 p$ shell of O is derived in the Eight-Electron Atoms section. With the formation of each of the two H_{2}-type MOs by the contribution of two $2 p$ electrons each from the N and O atoms, a diamagnetic force arises between the remaining outer shell atomic electrons, the $2 s$ and $2 p$ electrons of N and O, and the $H_{2}-$ type MO. This force from N and O causes the H_{2}-type MO to move to greater principal axes than would result with the Coulombic force alone. But, the factor of two increase of the central field and the resulting increased Coulombic as well as magnetic central forces on the remaining N and O electrons decrease the radii of the corresponding shells such that the energy minimum is achieved that is lower than that of the reactant atoms. The resulting electron configuration of NO_{2} is $N 1 s^{2} O_{1} 1 s^{2} O_{2} 1 s^{2} N 2 s^{2} O_{1} 2 s^{2} O_{2} 2 s^{2} N 2 p^{1} O_{1} 2 p^{2} O_{2} 2 p^{2} \sigma_{O_{2}, N, O_{1}}^{6}$ where the subscripts designate the O atom, 1 or 2 , σ designates the H_{2}-type MO, and the orbital arrangement is:

Nitrogen dioxide is predicted to be weakly paramagnetic in agreement with observations [1].

FORCE BALANCE OF THE $2 p$ SHELL OF THE NITROGEN ATOM OF NITROGEN DIOXIDE

For the N atom, force balance for the outermost $2 p$ electron of NO_{2} (electron 5) is achieved between the centrifugal force and the Coulombic and magnetic forces that arise due to interactions between electron 5 and the $2 s$-shell electrons due to spin and orbital angular momentum. The forces used are derived in the Seven-Electron Atoms section. The central Coulomb force on the outer-most $2 p$ shell electron of $N O$ (electron 5) due to the nucleus and the inner four electrons is given by Eq. (10.70) with the appropriate charge and radius:

$$
\begin{equation*}
\mathbf{F}_{\text {ele }}=\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0} r_{5}^{2}} \mathbf{i}_{\mathrm{r}} \tag{14.69}
\end{equation*}
$$

for $r>r_{4}$. The $2 p$ shell possess a +2 external electric field given by Eq. (10.92) for $r>r_{5}$. The energy is minimized with conservation of angular momentum. This condition is met when the magnetic forces of N in NO_{2} are the same as those of N in $N O$. They are also the same as those of N in the nitrogen molecule with r_{5} replacing r_{6} and with an increase of the central field by an integer. The diamagnetic force, $\mathbf{F}_{\text {diamagnetic }}$, of Eq. (10.82) due to the p-orbital contribution is given by Eq. (13.918).

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic }}=-\left(\frac{1}{3}\right) \frac{\hbar^{2}}{4 m_{e} r_{5}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}}=-\frac{\hbar^{2}}{12 m_{e} r_{5}^{2} r_{3}} \sqrt{\frac{3}{4}} \mathbf{i}_{\mathbf{r}} \tag{14.70}
\end{equation*}
$$

And, $\mathbf{F}_{\text {mag } 2}$ corresponding to the conserved orbital angular momentum of the three orbitals is also the same as that of NO_{2} given by Eq. (13.919):

$$
\begin{equation*}
\mathbf{F}_{\text {mag } 2}=\frac{1}{Z} \frac{3 \hbar^{2}}{m_{e} r_{5}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{14.71}
\end{equation*}
$$

The electric field external to the $2 p$ shell given by Eq. (10.92) for $r>r_{5}$ gives rise to a second diamagnetic force, $\mathbf{F}_{\text {diamagnetic } 2}$, given by Eq. (10.93). $\mathbf{F}_{\text {diamagnetic } 2}$ due to the binding of the p-orbital electron having an electric field of +2 outside of its radius is given by Eq. (13.920):

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic } 2}=-\left[\frac{Z-5}{Z-4}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{m_{e} r_{5}^{4}} 10 \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{14.72}
\end{equation*}
$$

The radius of the $2 p$ shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (14.69)) and diamagnetic (Eqs. (14.70) and (14.72)), and paramagnetic (Eq. (14.71)) forces as follows:

$$
\begin{equation*}
\frac{m_{e} v_{5}^{2}}{r_{5}}=\binom{\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0} r_{5}^{2}}-\frac{\hbar^{2}}{12 m_{e} r_{5}^{2} r_{3}} \sqrt{s(s+1)}+\frac{3 \hbar^{2}}{Z m_{e} r_{5}^{2} r_{3}} \sqrt{s(s+1)}}{-\left[\frac{Z-5}{Z-4}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{5}^{4} m_{e}} 10 \sqrt{s(s+1)}} \tag{14.73}
\end{equation*}
$$

Substitution of $v_{5}=\frac{\hbar}{m_{e} r_{5}}$ (Eq. (1.35)) and $s=\frac{1}{2}$ into Eq. (14.73) gives:

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} r_{5}^{3}}=\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0} r_{5}^{2}}-\frac{\hbar^{2}}{12 m_{e} r_{5}^{2} r_{3}} \sqrt{\frac{3}{4}}+\frac{3 \hbar^{2}}{Z m_{e} r_{5}^{2} r_{3}} \sqrt{\frac{3}{4}}-\left[\frac{Z-5}{Z-4}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{5}^{4} m_{e}} 10 \sqrt{\frac{3}{4}} \tag{14.74}
\end{equation*}
$$

The quadratic equation corresponding to Eq. (14.74) is:

$$
\begin{equation*}
r_{5}^{2}-\frac{\frac{\hbar^{2}}{m_{e}}}{\left(\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)} r_{5}-\frac{\frac{\hbar^{2}}{m_{e}}\left[\frac{Z-5}{Z-4}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3} 10 \sqrt{\frac{3}{4}}}{\left(\frac{(Z-4) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)}=0 \tag{14.75}
\end{equation*}
$$

The solution of Eq. (14.75) using the quadratic formula is:

$$
=\frac{a_{0}}{\left((Z-4)-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)} \pm a_{0} \sqrt{\left(\frac{1}{\left.\left((Z-4)-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)\right)^{2}}\right.} \sqrt{\frac{20 \sqrt{3}\left(\left[\frac{Z-5}{Z-4}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3}\right)}{\left((Z-4)-\left(\frac{1}{12}-\frac{3}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}}, r_{3} \text { in units of } a_{0}
$$

The positive root of Eq. (14.76) must be taken in order that $r_{5}>0$. Substitution of $\frac{r_{3}}{a_{0}}=0.69385$ (Eq. (10.62) with $Z=7$) into Eq. (14.76) gives:

$$
\begin{equation*}
r_{5}=0.74841 a_{0} \tag{14.77}
\end{equation*}
$$

FORCE BALANCE OF THE $2 p$ SHELL OF EACH OXYGEN ATOM OF NITROGEN DIOXIDE

For each O atom, force balance for the outermost $2 p$ electron of NO_{2} (electron 6) is achieved between the centrifugal force and the Coulombic and magnetic forces that arise due to interactions between electron 6 and the other $2 p$ electron as well as the $2 s$ shell electrons due to spin and orbital angular momentum. The forces used are derived in the Eight-Electron Atoms section. The central Coulomb force on the outer-most $2 p$ shell electron of NO_{2} (electron 6) due to the nucleus and the inner five electrons is given by Eq. (10.70) with the appropriate charge and radius:

$$
\begin{equation*}
\mathbf{F}_{e l e}=\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}} \mathbf{i}_{\mathbf{r}} \tag{14.78}
\end{equation*}
$$

for $r>r_{5}$. The $2 p$ shell possess an external electric field of +2 given by Eq. (10.92) for $r>r_{6}$. The energy is minimized with conservation of angular momentum. This condition is met when the magnetic forces of O in NO_{2} are the same as those of O in $N O$. The diamagnetic force, $\mathbf{F}_{\text {diamagnetic }}$, of Eq. (10.82) due to the p-orbital contribution given by Eq. (13.927) is:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic }}=-\left(\frac{2}{3}\right) \frac{\hbar^{2}}{4 m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}}=-\frac{2 \hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}} \mathbf{i}_{\mathbf{r}} \tag{14.79}
\end{equation*}
$$

And, $\mathbf{F}_{\operatorname{mag} 2}$ corresponding to the conserved spin and orbital angular momentum given by Eq. (13.928) is:

$$
\begin{equation*}
\mathbf{F}_{\operatorname{mag} 2}=\frac{1}{Z} \frac{2 \hbar^{2}}{m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{14.80}
\end{equation*}
$$

The electric field external to the $2 p$ shell given by Eq. (10.92) for $r>r_{6}$ gives rise to a second diamagnetic force, $\mathbf{F}_{\text {diamagnetic } 2}$, given by Eq. (10.93). $\mathbf{F}_{\text {diamagnetic } 2}$ due to the binding of the p-orbital electron having an electric field of +2 outside of its radius given by Eq. (13.929) is:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagnetic } 2}=-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{m_{e} r_{6}^{4}} 10 \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{14.81}
\end{equation*}
$$

In addition, the contribution of two $2 p$ electrons in the formation of the σ MO gives rise to a paramagnetic force on the remaining paired $2 p$ electrons. The force $\mathbf{F}_{\text {mag } 3}$ is given by Eq. (13.930) is:

$$
\begin{equation*}
\mathbf{F}_{\text {mag } 3}=\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{s(s+1)} \mathbf{i}_{\mathbf{r}} \tag{14.82}
\end{equation*}
$$

The radius of the $2 p$ shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (14.78)) and diamagnetic (Eqs. (14.79) and (14.81)), and paramagnetic (Eqs. (14.80) and (14.82)) forces as follows:

$$
\begin{equation*}
\frac{m_{e} v_{6}^{2}}{r_{6}}=\binom{\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}}-\frac{2 \hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)}+\frac{2 \hbar^{2}}{Z m_{e} r_{6}^{2} r_{3}} \sqrt{s(s+1)}}{-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{6}^{4} m_{e}} 10 \sqrt{s(s+1)}+\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{s(s+1)}} \tag{14.83}
\end{equation*}
$$

Substitution of $v_{6}=\frac{\hbar}{m_{e} r_{6}}$ (Eq. (1.35)) and $s=\frac{1}{2}$ into Eq. (14.83) gives:

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{e} r_{6}^{3}}-\frac{\hbar^{2}}{4 m_{e} r_{6}^{3}} \sqrt{\frac{3}{4}}=\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0} r_{6}^{2}}-\frac{2 \hbar^{2}}{12 m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}}+\frac{2 \hbar^{2}}{Z m_{e} r_{6}^{2} r_{3}} \sqrt{\frac{3}{4}}-\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) \frac{r_{3} \hbar^{2}}{r_{6}^{4} m_{e}} 10 \sqrt{\frac{3}{4}} \tag{14.84}
\end{equation*}
$$

The quadratic equation corresponding to Eq. (14.84) is:

$$
\begin{equation*}
r_{6}^{2}-\frac{\frac{\hbar^{2}}{m_{e}}\left(1-\frac{\sqrt{3}}{8}\right)}{\left(\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)^{-}} r_{6}-\frac{\frac{\hbar^{2}}{m_{e}}\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3} 10 \sqrt{\frac{3}{4}}}{\left(\frac{(Z-5) e^{2}}{4 \pi \varepsilon_{0}}-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\hbar^{2}}{m_{e} r_{3}} \sqrt{\frac{3}{4}}\right)}=0 \tag{14.85}
\end{equation*}
$$

The solution of Eq. (14.85) using the quadratic formula is:

$$
\left.r_{6}=\frac{a_{0}\left(1-\frac{\sqrt{3}}{8}\right)}{\left((Z-5)-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)} \pm a_{0} \sqrt{\left(\frac{1-\frac{\sqrt{3}}{8}}{\left(\frac{\left.(Z-5)-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}{\left(\frac{20 \sqrt{3}\left(\left[\frac{Z-6}{Z-5}\right]\left(1-\frac{\sqrt{2}}{2}\right) r_{3}\right)}{\left((Z-5)-\left(\frac{2}{12}-\frac{2}{Z}\right) \frac{\sqrt{3}}{2 r_{3}}\right)}\right.}\right.}, r_{3}\right.} \text { in units of } a_{0}\right)
$$

The positive root of Eq. (14.86) must be taken in order that $r_{6}>0$. Substitution of $\frac{r_{3}}{a_{0}}=0.59020$ (Eq. (10.62) with $Z=8$) into Eq. (14.86) gives:

$$
\begin{equation*}
r_{6}=0.70460 a_{0} \tag{14.87}
\end{equation*}
$$

ENERGIES OF THE $2 p$ SHELLS OF THE NITROGEN ATOM AND OXYGEN ATOMS OF NITROGEN DIOXIDE

Consider the determination of the total energy of NO_{2} from the reaction of a nitrogen atom with two oxygen atoms. With the formation of each H_{2}-type MO by the contribution of two $2 p$ electrons from each of the N and the two O atoms, the total energy of the NO_{2} molecule, which is subtracted from the sum of the energies of the nitrogen and oxygen atoms to determine the bond energy, is increased by the ionization energies of N, N^{+}, O, and $2 O^{+}$given by Eqs. (14.88-14.91), respectively. Experimentally, the energies are [2]:

$$
\begin{align*}
& E(\text { ionization } ; N)=14.53414 \mathrm{eV} \tag{14.88}\\
& E\left(\text { ionization } ; N^{+}\right)=29.6013 \mathrm{eV} \tag{14.89}\\
& E(\text { ionization } ; O)=13.61806 \mathrm{eV} \tag{14.90}
\end{align*}
$$

E(ionization; $\left.\mathrm{O}^{+}\right)=35.11730 \mathrm{eV}$
In addition, the central forces on the $2 p$ shells of the N and O atoms are increased with the formation of the σ MOs which reduces each shell's radius and increases its total energy. The change per bond is the same as that of NO since the final radii given by Eq. (14.77) and (14.87) are the same for $N O$ and NO_{2}. The Coulombic energy terms of the total energy of the N and O atoms at the new radii are calculated and added to the ionization energies of N, N^{+}, O, and $2 O^{+}$, and the energy of the
σ MOs to give the total energy of NO_{2}. Then, the bond energy is determined from the total NO_{2} energy.
The radius r_{7} of the nitrogen atom before bonding is given by Eq. (10.142).

$$
\begin{equation*}
r_{7}=0.93084 a_{0} \tag{14.92}
\end{equation*}
$$

Using the initial radius r_{7} of the N atom and the final radius r_{5} of the $N 2 p$ shell (Eq. (14.77)) and by considering that the central Coulombic field decreases by an integer for each successive electron of the shell, the sum $E_{T}(N, 2 p)$ of the Coulombic energy change of the $N 2 p$ electrons of the N atom is determined using Eq. (10.102):

$$
\begin{equation*}
E_{T}(N, 2 p)=-\sum_{n=4}^{4} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{5}}-\frac{1}{r_{7}}\right)=-(13.60580 \mathrm{eV})(0.26186)(3)=-10.68853 \mathrm{eV} \tag{14.93}
\end{equation*}
$$

The radius r_{8} of the oxygen atom before bonding is given by Eq. (10.162).

$$
\begin{equation*}
r_{8}=a_{0} \tag{14.94}
\end{equation*}
$$

Using the initial radius r_{8} of the O atom and the final radius r_{6} of the $O 2 p$ shell (Eq. (14.87)) and by considering that the central Coulombic field decreases by an integer for each successive electron of the shell, the sum $E_{T}(O, 2 p)$ of the Coulombic energy change of the $O 2 p$ electrons of the O atom is determined using Eq. (10.102).

$$
\begin{equation*}
E_{T}(O, 2 p)=\sum_{n=4}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{6}}-\frac{1}{r_{8}}\right)=(13.60580 \mathrm{eV})\left(0.41925 a_{0}^{-1}\right)(3+4)=-39.92918 \mathrm{eV} \tag{14.95}
\end{equation*}
$$

FORCE BALANCE OF THE σ MO OF NITROGEN DIOXIDE

The force balance can be considered due to a second pair of two electrons binding to a molecular ion having $+2 e$ at each focus and a first bound pair. Then, the forces are the same as those of a molecule ion having $+e$ at each focus. The diamagnetic force $\mathbf{F}_{\text {diamagneticMO1 }}$ for each $\sigma-\mathrm{MO}$ of the NO_{2} molecule due to the two, paired electrons in the $\mathrm{O} 2 p$ shell is given by Eq. (13.633) with $n_{e}=2$:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagneticMO1 }}=\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \mathbf{i}_{\xi} \tag{14.96}
\end{equation*}
$$

This is also the corresponding force of NO given by Eq. (13.942). $\mathbf{F}_{\text {diamagneticMO2 }}$ of the nitrogen dioxide molecule comprising nitrogen with charge $Z_{1}=7$ and $\left|L_{1}\right|=\hbar$ and $\left|L_{2}\right|=\sqrt{\frac{3}{4}} \hbar$ and the two oxygen atoms, each with $Z_{2}=8$ and $\left|L_{3}\right|=\hbar$ is given by the corresponding sum of the contributions. Using Eq. (13.835), $\mathbf{F}_{\text {diamagneticMO2 }}$ for NO_{2} is:

$$
\begin{equation*}
\mathbf{F}_{\text {diamagneticMO2 }}=\left(\frac{1}{Z_{1}}+\frac{\sqrt{\frac{3}{4}}}{Z_{1}}+\frac{2}{Z_{2}}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \mathbf{i}_{\xi} \tag{14.97}
\end{equation*}
$$

This is also the corresponding force of $N O$ given by Eq. (13.943) except the term due to oxygen is twice that of NO due to the two oxygen atoms of NO_{2}. The general force balance equation for the $\sigma-\mathrm{MO}$ of the nitrogen dioxide molecule given by Eqs. (11.200), and (14.97-14.98) is also the same as that of $C N$ (Eq. (14.836)) except for the doubling of the $\frac{2}{Z_{2}}$ term due to the two oxygen atoms:

$$
\begin{align*}
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D+\frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D-\left(1+\frac{1}{Z_{1}}+\frac{\sqrt{\frac{3}{4}}}{Z_{1}}+\frac{2}{Z_{2}}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{14.98}\\
& \frac{\hbar^{2}}{m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D-\left(\frac{1}{Z_{1}}+\frac{\sqrt{\frac{3}{4}}}{Z_{1}}+\frac{2}{Z_{2}}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D \tag{14.99}\\
& \left(2+\frac{1}{Z_{1}}+\frac{\sqrt{\frac{3}{4}}}{Z_{1}}+\frac{2}{Z_{2}}\right) \frac{\hbar^{2}}{2 m_{e} a^{2} b^{2}} D=\frac{e^{2}}{8 \pi \varepsilon_{0} a b^{2}} D \tag{14.100}
\end{align*}
$$

$$
\begin{equation*}
a=\left(2+\frac{1}{Z_{1}}+\frac{\sqrt{\frac{3}{4}}}{Z_{1}}+\frac{2}{Z_{2}}\right) a_{0} \tag{14.101}
\end{equation*}
$$

Substitution of $Z_{1}=7$ and $Z_{2}=8$ into Eq. (14.101) gives:

$$
\begin{equation*}
a=2.51658 a_{0}=1.33171 \times 10^{-10} \mathrm{~m} \tag{14.102}
\end{equation*}
$$

Substitution of Eq. (14.102) into Eq. (11.79) is:

$$
\begin{equation*}
c^{\prime}=1.12173 a_{0}=5.93596 \times 10^{-11} \mathrm{~m} \tag{14.103}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.103) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.24347 a_{0}=1.18719 \times 10^{-10} \mathrm{~m} \tag{14.104}
\end{equation*}
$$

The experimental bond distance is [3]:

$$
\begin{equation*}
2 c^{\prime}=1.193 \times 10^{-10} \mathrm{~m} \tag{14.105}
\end{equation*}
$$

Substitution of Eqs. (14.102-14.103) into Eq. (11.80) is:

$$
\begin{equation*}
b=c=2.25275 a_{0}=1.19210 \times 10^{-10} \mathrm{~m} \tag{14.106}
\end{equation*}
$$

Substitution of Eqs. (14.102-14.103) into Eq. (11.67) is:

$$
\begin{equation*}
e=0.44574 \tag{14.107}
\end{equation*}
$$

The bonding in the nitrogen dioxide molecule comprises two double bonds, each a H_{2}-type MO with four paired electrons wherein the central N atom is shared by both bonds such that six electrons can be assigned to the two $N=O$ bonds. Thus, two $N 2 p$ electrons combine with the four $O 2 p$ electrons, two from each O, as a linear combination to form the two overlapping $\mathrm{N}=\mathrm{O}$ bonds of NO_{2}. Using the electron configuration of NO_{2} (Eq. (14.68)), the radii of the $N 1 s=0.14605 a_{0}$ (Eq. (10.51)), $\quad N 2 s=0.69385 a_{0} \quad$ (Eq. (10.62)), $\quad N 2 p=0.74841 a_{0} \quad$ (Eq. (14.77)), $\quad O 1 s=0.12739 a_{0} \quad$ (Eq. (10.51)), $O 2 s=0.59020 a_{0}$ (Eq. (10.62)), and $\mathrm{O} 2 p=0.70460 a_{0}$ (Eq. (14.87)) shells and the parameters of the $\sigma \mathrm{MOs}$ of NO_{2} given by Eqs. (13.3-13.4), (14.102-14.104), and (14.106-14.107), the dimensional diagram and charge-density of the $\mathrm{NO}_{2} \mathrm{MO}$ are shown in Figures 14.3 and 14.4, respectively.

Figure 14.3. The cross section of the $\mathrm{NO}_{2} \mathrm{MO}$ showing the axes, σ MOs (two H_{2}-type ellipsoidal MOs) with six paired electrons, with the $N 1 s, 2 s$, and $2 p$ AOs and the $O 1 s, 2 s$, and $2 p$ AOs. Legend: a : semimajor axis, b : semiminor axis, c^{\prime} : internuclear distance, r_{5} : radius of the $N 2 p$ shell having one unpaired electron, r_{6} : radius of each $O 2 p$ shell having two paired electrons.

Figure 14.4. $\mathrm{NO}_{2} \mathrm{MO}$ comprising two $\sigma \mathrm{MOs}\left(\mathrm{H}_{2}\right.$-type MOs) with N and O atoms at the foci that have each donated two electrons to the σ MOs and have smaller radii and higher binding energies as a consequence. (A)-(B) Top and side color scale, translucent views of the charge-density of the $\mathrm{NO}_{2} \mathrm{MO}$. (C) Off-center cut-away view showing the complete inner most N 1 s shell, and moving radially, the $N 2 s$ shell, the $N 2 p$ shell, and the σ prolate spheroidal MOs that each have the N atom as a focus. Moving radially from each oxygen-atom focus, the complete innermost $O 1 s$ shell, the $O 2 s$ shell, the $O 2 p$ shell, and the σ prolate spheroidal MOs are shown.

SUM OF THE ENERGIES OF THE σ MOS AND THE AOS OF NITROGEN DIOXIDE

The energies of each $\mathrm{NO}_{2} \sigma$ MO are the same as those of NO (Eqs. (13.954-13.958)). They are given by the substitution of the semiprincipal axes (Eqs. (14.102-14.103) and (14.106)) into the energy equations (Eqs. (11.207-11.212)) of H_{2} except that the terms based on charge are multiplied by four and the kinetic energy term is multiplied by two due to the σ-MO double bond with two pairs of paired electrons:

$$
\begin{align*}
& V_{e}=2^{2} \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-93.03032 \mathrm{eV} \tag{14.108}\\
& V_{p}=2^{2} \frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=48.51704 \mathrm{eV} \tag{14.109}\\
& T=2 \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=9.24176 \mathrm{eV} \tag{14.110}\\
& V_{m}=2^{2} \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-9.24176 \mathrm{eV} \tag{14.111}\\
& E_{T}=V_{e}+T+V_{m}+V_{p} \tag{14.112}
\end{align*}
$$

Substitution of Eqs. (11.79) and (14.108-14.111) into Eq. (14.112) gives:

$$
\begin{equation*}
E_{T}(N=O, \sigma)=\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left(8 \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-4\right)=-44.51329 \mathrm{eV} \tag{14.113}
\end{equation*}
$$

where $E_{T}(N=O, \sigma)$ is the total energy of each $\sigma \mathrm{MO}$ of NO_{2}. The total energy of $N O_{2}, E_{T}\left(N O_{2}\right)$, is given by the sum of E(ionization; N) and E(ionization; N^{+}), the sum of the energies of the first and second electrons of nitrogen (Eqs. (14.8814.89)) donated to each double bond, the sum of E (ionization; O) and two times E (ionization; O^{+}), the energies of the first and second electrons of oxygen (Eqs. (14.90-14.91)) donated to the double bonds, $E_{T}(N, 2 p)$, the $N 2 p$ AO contribution due to the decrease in radius with the formation of each bond (Eq. (14.93)), two times $E_{T}(O, 2 p)$, the $O 2 p$ AO contribution due to the decrease in radius with the formation of each bond (Eq. (14.95)), and two times $E_{T}(N=O, \sigma)$, the σ MO contribution given by Eq. (14.113):

$$
\begin{align*}
E_{T}\left(N O_{2}\right) & =\left(\begin{array}{l}
\text { E(ionization; } N)+E\left(\text { ionization; } N^{+}\right) \\
+E(\text { ionization; } O)+2 E\left(\text { ionization; } O^{+}\right)+E_{T}(N, 2 p) \\
+2 E_{T}(O, 2 p)+2 E_{T}(N=O, \sigma)
\end{array}\right) \\
& =\left(\begin{array}{l}
14.53414 \mathrm{eV}+29.6013 \mathrm{eV}+13.61806 \mathrm{eV} \\
+2(35.11730 \mathrm{eV})+(-10.68853 \mathrm{eV})+2(-39.92918 \mathrm{eV}) \\
+2\left(\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\binom{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}\right.
\end{array}\right) \\
& =\left(\begin{array}{l}
14.53414 \mathrm{eV}+29.6013 \mathrm{eV}+13.61806 \mathrm{eV} \\
+2(35.11730 \mathrm{eV})+(-10.68853 \mathrm{eV}) \\
+2(-39.92918 \mathrm{eV})+2(-44.51329 \mathrm{eV})
\end{array}\right)=-51.58536 \mathrm{eV} \tag{14.114}
\end{align*}
$$

VIBRATION OF NO_{2}

The vibrational energy levels of NO_{2} may be solved by determining the Morse potential curve from the energy relationships for the transition from a N atom and two O atoms whose parameters are given by Eqs. (10.134-10.143) and (10.154-10.163), respectively, to a N atom whose parameter r_{5} is given by Eq. (14.77), two O atoms whose parameter r_{6} is given by Eq. (14.87), and the σ MOs whose parameters are given by Eqs. (14.102-14.104) and (14.106-14.107). As shown in the Vibration of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about the internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K\&P) [4] and after Eq. (11.134). Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy corrections can be found by perturbation methods.

THE DOPPLER ENERGY TERMS OF NITROGEN DIOXIDE

The equations of the radiation reaction force of nitrogen dioxide are the same as those of NO with the substitution of the NO_{2} parameters. Using Eq. (13.961), the angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{4 e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}=2.07110 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{14.115}
\end{equation*}
$$

where a is given by Eq. (14.102). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 2.07110 \times 10^{16} \mathrm{rad} / \mathrm{s}=13.63231 \mathrm{eV} \tag{14.116}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(N O_{2}\right) / 2$ for $E_{h \nu}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (14.116) for \bar{E}_{K} gives the Doppler energy of the electrons of the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-25.79268 \mathrm{eV} \sqrt{\frac{2 e(13.63231 \mathrm{eV})}{m_{e} c^{2}}}=-0.18840 \mathrm{eV} \tag{14.117}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The transition state comprises $\mathrm{O}--\mathrm{NO}$, oxygen binding to NO . As in the case of CO_{2} bond formation, vibration in the transition state corresponds to v_{3} [5] with the maximum kinetic energy localized to the nascent $N-O$ bond. In this case, the kinetic energy of the nuclei is the maximum for this bond. Thus, $\bar{E}_{\text {Kvib }}$ is the vibrational energy. The decrease in the energy of the $\mathrm{NO}_{2} \mathrm{MO}$ due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (14.117) and $\bar{E}_{\text {Kvib }}$, the vibrational energy. Using the experimental $\mathrm{NO}_{2} E_{\text {vib }}\left(v_{3}\right)$ of $1618 \mathrm{~cm}^{-1}(0.20061 \mathrm{eV})$ [6] for $\bar{E}_{\text {Kvib }}$ of the transition state, $\bar{E}_{\text {osc }}\left(N O_{2}\right)$ is:

$$
\begin{align*}
& \bar{E}_{\text {osc }}\left(N O_{2}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+E_{\text {vib }} \tag{14.118}\\
& \bar{E}_{\text {osc }}\left(N O_{2}\right)=-0.18840 \mathrm{eV}+0.20061 \mathrm{eV}=0.01221 \mathrm{eV} \tag{14.119}
\end{align*}
$$

TOTAL AND BOND ENERGIES OF NITROGEN DIOXIDE

$E_{T+o s c}\left(\mathrm{NO}_{2}\right)$, the total energy of NO_{2} including the Doppler term, is given by the sum of $E_{T}\left(\mathrm{NO}_{2}\right)$ (Eq. (14.114)) and $\bar{E}_{\text {osc }}\left(\mathrm{NO}_{2}\right)$ given by Eq. (14.119).

$$
\begin{align*}
& E_{T+\text { osc }}\left(\mathrm{NO}_{2}\right)=\left(\begin{array}{l}
2\left(V_{e}+T+V_{m}+V_{p}\right)+E(\text { ionization; } N)+E\left(\text { ionization; } N^{+}\right) \\
+E(\text { ionization; } O)+2 E\left(\text { ionization; } O^{+}\right) \\
+E_{T}(N, 2 p)+2 E_{T}(O, 2 p)+\bar{E}_{\text {osc }}\left(\mathrm{NO}_{2}\right)
\end{array}\right) \\
& =\left(\begin{array}{l}
2 E_{T}(N=O, \sigma)+E(\text { ionization; } N)+E\left(\text { ionization; } N^{+}\right) \\
+E(\text { ionization; } O)+2 E\left(\text { ionization; } O^{+}\right) \\
+E_{T}(N, 2 p)+2 E_{T}(O, 2 p)+\bar{E}_{\text {osc }}\left(N O_{2}\right)
\end{array}\right) \tag{14.120}\\
& =E_{T}\left(\mathrm{NO}_{2}\right)+\bar{E}_{\text {osc }}\left(\mathrm{NO}_{2}\right) \\
& \left(\left(2\left(\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left(8 \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-4\right)\right)\right.\right. \\
& E_{T+\text { osc }}\left(N O_{2}\right)=\left\{\begin{array}{l}
\text { E(ionization; } \left.N)+E \text { (ionization; } N^{+}\right) \\
+E(\text { ionization; } O)+2 E\left(\text { ionization; } O^{+}\right) \\
-\sum_{N, n=4}^{4} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{5}}-\frac{1}{r_{7}}\right)-2 \sum_{0, n=4}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{r_{6}}-\frac{1}{r_{8}}\right)
\end{array}\right)\left\{\begin{array}{l}
\left(\begin{array}{l}
2 \hbar \sqrt{\frac{4 e^{2}}{4 \pi \varepsilon_{0} a^{3}}} \\
1+\frac{1}{2} \\
m_{e} c_{e}^{2}
\end{array}\right)+E_{\text {vib }}
\end{array}\right\} \tag{14.121}\\
& =-51.58536 \mathrm{eV}-0.18840 \mathrm{eV}+E_{\text {vib }}
\end{align*}
$$

From Eqs. (14.119-14.121), the total energy of the $\mathrm{NO}_{2} \mathrm{MO}$ is:

$$
\begin{align*}
E_{T+\text { osc }}\left(\mathrm{NO}_{2}\right) & =-51.58536 \mathrm{eV}+\bar{E}_{\text {osc }}\left(\mathrm{NO}_{2}\right) \\
& =-51.58536 \mathrm{eV}+0.01221 \mathrm{eV} \tag{14.122}\\
& =-51.57315 \mathrm{eV}
\end{align*}
$$

where the experimental $E_{v i b}$ was used.
As in the case of the dissociation of the bond of the hydroxyl radical, an oxygen atom is formed with dissociation of NO_{2}. O has two unpaired electrons as shown in Eq. (13.55) which interact to stabilize the atom as shown by Eq. (10.16110.162). The lowering of the energy of the reactants decreases the bond energy. Thus, the total energy of oxygen is reduced by the energy in the field of the two magnetic dipoles given by Eq. (7.46) and Eq. (13.101).

$$
\begin{equation*}
E(\text { magnetic })=\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2} a_{0}^{3}}=\frac{8 \pi \mu_{0} \mu_{B}^{2}}{a_{0}^{3}}=0.11441 \mathrm{eV} \tag{14.123}
\end{equation*}
$$

The NO_{2} bond dissociation energy, $E_{\mathrm{D}}\left(\mathrm{NO}_{2}\right)$, is given by the sum of the energies of the NO and the O atom minus the sum of $E_{T+\text { osc }}\left(\mathrm{NO}_{2}\right)$ and E (magnetic):

$$
\begin{equation*}
E_{D}\left(\mathrm{NO}_{2}\right)=E(N O)+E(O)-\left(E(\text { magnetic })+E_{T+\text { osc }}\left(N O_{2}\right)\right) \tag{14.124}
\end{equation*}
$$

The energy of an oxygen atom is given by the negative of Eq. (14.90), and $E_{T}(N O)$ is given by the sum of the experimental energies of N (negative of Eq. (14.88)), O, and the negative of the bond energy of NO (Eq. (13.974)).

$$
\begin{equation*}
E(N O)=-14.53414 \mathrm{eV}-13.618060 \mathrm{eV}-6.53529 \mathrm{eV}=-34.68749 \mathrm{eV} \tag{14.125}
\end{equation*}
$$

Thus, the NO_{2} bond dissociation energy, $E_{D}\left(\mathrm{NO}_{2}\right)$, given by Eqs. (4.90) and (14.112-14.125) is:

$$
\begin{align*}
E_{D}\left(N O_{2}\right) & =-(34.68749 \mathrm{eV}+13.618060 \mathrm{eV})-\left(E(\text { magnetic })+E_{T+\mathrm{osc}}\left(N O_{2}\right)\right) \tag{14.126}\\
& =-48.30555 \mathrm{eV}-(0.11441 \mathrm{eV}-51.57315 \mathrm{eV})=3.15319 \mathrm{eV}
\end{align*}
$$

The experimental NO_{2} bond dissociation energy is [7]:

$$
\begin{equation*}
E_{D 298}\left(N O_{2}\right)=3.161 \mathrm{eV} \tag{14.127}
\end{equation*}
$$

BOND ANGLE OF NO_{2}

The $\mathrm{NO}_{2} \mathrm{MO}$ comprises a linear combination of two $N=O$-bond MOs. A bond is also possible between the two O atoms of the $N=O$ bonds. Such $O=O$ bonding would decrease the $N=O$ bond strength since electron density would be shifted from the $N=O$ bonds to the $O=O$ bond. Thus, the bond angle between the two $N=O$ bonds is determined by the condition that the total energy of the H_{2}-type ellipsoidal MO between the terminal O atoms of the $N=O$ bonds is zero. From Eqs. (11.79) and (13.228), the distance from the origin to each focus of the $O=O$ ellipsoidal MO is:

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} 2 a}}=\sqrt{\frac{a a_{0}}{2}} \tag{14.128}
\end{equation*}
$$

The internuclear distance from Eq. (13.229) is:

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{2}} \tag{14.129}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal $O=O$ MO $b=c$ is given by Eq. (13.167).
The component energies and the total energy E_{T} of the $O=O$ bond are given by the energy equations (Eqs. (11.20711.212), (11.213-11.217), and (11.239)) of H_{2} except that the terms based on charge are multiplied by four and the kinetic energy term is multiplied by two due to the $O=O$ double bond with two pairs of paired electrons. Substitution of Eq. (14.128) into Eqs. (11.207-11.212) gives:

$$
0=\left[\begin{array}{l}
\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left(\frac{a+\sqrt{\frac{a a_{0}}{2}}}{8 \ln \frac{a-\sqrt{\frac{a a_{0}}{2}}}{2}}\right) 4 \tag{14.130}
\end{array}\right)\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{\frac{4 \pi \varepsilon_{0} a^{3}}{m_{e}}}{m_{e} c^{2}}}}{}}\right][
$$

From the energy relationship given by Eq. (14.130) and the relationship between the axes given by Eqs. (14.128-14.129) and (13.167-14.168), the dimensions of the $O=O \mathrm{MO}$ can be solved.

The most convenient way to solve Eq. (14.130) is by the reiterative technique using a computer. The result to within the round-off error with five-significant figures is:

$$
\begin{equation*}
a=8.3360 a_{0}=4.4112 \times 10^{-10} \mathrm{~m} \tag{14.131}
\end{equation*}
$$

Substitution of Eq. (14.131) into Eq. (14.128) gives:

$$
\begin{equation*}
c^{\prime}=2.0416 a_{0}=1.0804 \times 10^{-10} \mathrm{~m} \tag{14.132}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.132) by two is:

$$
\begin{equation*}
2 c^{\prime}=4.0831 a_{0}=2.1607 \times 10^{-10} \mathrm{~m} \tag{14.133}
\end{equation*}
$$

Substitution of Eqs. (14.131-14.132) into Eq. (14.167) gives:

$$
\begin{equation*}
b=c=8.0821 a_{0}=4.2769 \times 10^{-10} \mathrm{~m} \tag{14.134}
\end{equation*}
$$

Substitution of Eqs. (14.131-14.132) into Eq. (14.168) gives:

$$
\begin{equation*}
e=0.2449 \tag{14.135}
\end{equation*}
$$

From, $2 c_{C=C}^{\prime}$ (Eq. (14.133)), the distance between the two O atoms when the total energy of the corresponding MO is zero (Eq. (14.130)), and $2{C^{\prime}}_{N=O}$ (Eq. (14.104)), the internuclear distance of each $N=O$ bond, the corresponding bond angle can be determined from the law of cosines. Using, Eqs. (13.240-13.242), the bond angle θ between the $N=O$ bonds is:

$$
\begin{equation*}
\theta=\cos ^{-1}\left(\frac{2(2.24347)^{2}-(4.0831)^{2}}{2(2.24347)^{2}}\right)=\cos ^{-1}(-0.6562)=131.012^{\circ} \tag{14.136}
\end{equation*}
$$

The experimental angle between the $N=O$ bonds is [3]:

$$
\begin{equation*}
\theta=134.1^{\circ} \tag{14.137}
\end{equation*}
$$

The results of the determination of bond parameters of NO_{2} are given in Table 14.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

ETHANE MOLECULE ($\mathrm{CH}_{3} \mathrm{CH}_{3}$)

The ethane molecule $\mathrm{CH}_{3} \mathrm{CH}_{3}$ is formed by the reaction of two methyl radicals:

$$
\begin{equation*}
\mathrm{CH}_{3}+\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3} \tag{14.138}
\end{equation*}
$$

$\mathrm{CH}_{3} \mathrm{CH}_{3}$ can be solved using the same principles as those used to solve CH_{3}, wherein the $2 s$ and $2 p$ shells of each C hybridize to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $C 2 s p^{3}$ hybridized orbitals (HOs) to form a molecular orbital (MO) permits each participating hybridized orbital to decrease in radius and energy. First, two sets of three H atomic orbitals (AOs) combine with two sets of three carbon $2 s p^{3}$ HOs to form two methyl groups comprising a linear combination of six diatomic H_{2}-type MOs developed in the Nature of the Chemical Bond of HydrogenType Molecules and Molecular Ions section. Then, the two CH_{3} groups bond by forming a H_{2}-type MO between the remaining $C 2 s p^{3} \mathrm{HO}$ on each carbon.

FORCE BALANCE OF THE $C-C$-BOND MO OF ETHANE

$\mathrm{CH}_{3} \mathrm{CH}_{3}$ comprises a chemical bond between two CH_{3} radicals wherein each methyl radical comprises three chemical bonds between carbon and hydrogen atoms. The solution of the parameters of CH_{3} is given in the Methyl Radical $\left(\mathrm{CH}_{3}\right)$ section. Each $\mathrm{C}-\mathrm{H}$ bond of CH_{3} having two spin-paired electrons, one from an initially unpaired electron of the carbon atom and the other from the hydrogen atom, comprises the linear combination of $75 \% \mathrm{H}_{2}$-type ellipsoidal MO and $25 \% \mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$. The proton of the H atom and the nucleus of the C atom are along each internuclear axis and serve as the foci. As in the case of H_{2}, each of the three $\mathrm{C}-\mathrm{H}$-bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into $C 2 s p^{3} \mathrm{HO}$ for distances shorter than the radius of the $C 2 s p^{3}$ shell since it is energetically unfavorable. Thus, each MO surface comprises a prolate spheroid at the H proton that is continuous with the $C 2 s p^{3}$ shell at the C atom whose nucleus serves as the other focus. The electron configuration and the energy, $E\left(C, 2 s p^{3}\right)$, of the $C 2 s p^{3}$ shell is given by Eqs. (13.422) and (13.428), respectively. The central paramagnetic force due to spin of each $C-H$ bond is provided by the spin-pairing force of the $\mathrm{CH}_{3} \mathrm{MO}$ that has the symmetry of an s orbital that superimposes with the $C 2 s p^{3}$ orbitals such that the corresponding angular momenta are unchanged.

Two CH_{3} radicals bond to form $\mathrm{CH}_{3} \mathrm{CH}_{3}$ by forming a MO between the two remaining $\mathrm{C} 2 s p^{3}-\mathrm{HO}$ electrons of the two carbon atoms. However, in this case, the sharing of electrons between two C2sp ${ }^{3}$ HOs to form a molecular orbital (MO) comprising two spin-paired electrons permits each $C 2 s p^{3} \mathrm{HO}$ to decrease in radius and energy.

As in the case of the $C-H$ bonds, the $C-C$-bond MO is a prolate-spheroidal-MO surface that cannot extend into $C 2 s p^{3} \mathrm{HO}$ for distances shorter than the radius of the $C 2 s p^{3}$ shell of each atom. Thus, the MO surface comprises a partial prolate spheroid in between the carbon nuclei and is continuous with the $C 2 s p^{3}$ shell at each C atom. The energy of the H_{2} type ellipsoidal MO is matched to that of the $C 2 s p^{3}$ shell. As in the case of previous examples of energy-matched MOs such as those of $\mathrm{OH}, \mathrm{NH}, \mathrm{CH}$, and the $\mathrm{C}=\mathrm{O}$-bond MO of CO_{2}, the $\mathrm{C}-\mathrm{C}$-bond MO of ethane must comprise 75% of a H_{2}-type ellipsoidal MO in order to match potential, kinetic, and orbital energy relationships. Thus, the $C-C$-bond MO must comprise two $\mathrm{C} 2 s p^{3} \mathrm{HOs}$ and 75% of a H_{2}-type ellipsoidal MO divided between the two $\mathrm{C} 2 \mathrm{sp} p^{3} \mathrm{HOs}$:

$$
\begin{equation*}
2 \mathrm{C} 2 \mathrm{sp} p^{3}+0.75 \mathrm{H}_{2} \mathrm{MO} \rightarrow \mathrm{C}-\mathrm{C} \text { - bond } \mathrm{MO} \tag{14.139}
\end{equation*}
$$

The linear combination of the H_{2}-type ellipsoidal MO with each $C 2 s p^{3} \mathrm{HO}$ further comprises an excess 25% charge-density contribution from each $C 2 s p^{3} \mathrm{HO}$ to the $C-C$-bond MO to achieve an energy minimum. The force balance of the $C-C$-bond

MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.139) and the energy matching condition between the $\mathrm{C} 2 \mathrm{sp} p^{3}-\mathrm{HO}$ components of the MO.

Similarly, the energies of each CH_{3} MO involve each $\mathrm{C} 2 s p^{3}$ and each H 1s electron with the formation of each $\mathrm{C}-\mathrm{H}$ bond. The sum of the energies of the H_{2}-type ellipsoidal MOs is matched to that of the $C 2 s p^{3}$ shell. This energy is determined by the considering the effect of the donation of 25% electron density from the two $C 2 s p^{3}$ HOs to the $C-C$-bond MO. The $2 s p^{3}$ hybridized orbital arrangement given by Eq. (13.422) is:

\[

\]

where the quantum numbers $\left(\ell, m_{\ell}\right)$ are below each electron. The total energy of the state is given by the sum over the four electrons. The sum $E_{T}\left(C, 2 s p^{3}\right)$ of calculated energies of C, C^{+}, C^{2+}, and C^{3+} from Eqs. (10.123), (10.113-10.114), (10.68), and (10.48), respectively, is:

$$
\begin{equation*}
E_{T}\left(C, 2 s p^{3}\right)=64.3921 \mathrm{eV}+48.3125 \mathrm{eV}+24.2762 \mathrm{eV}+11.27671 \mathrm{eV}=148.25751 \mathrm{eV} \tag{14.141}
\end{equation*}
$$

which agrees well with the sum of 148.02532 eV from the experimental [2] values. Consider the case of the $C 2 s p^{3} \mathrm{HO}$ of each methyl radical. The orbital-angular-momentum interactions cancel such that the energy of the $E_{T}\left(C, 2 s p^{3}\right)$ is purely Coulombic. By considering that the central field decreases by an integer for each successive electron of the shell, the radius $r_{2 s p^{3}}$ of the $C 2 s p^{3}$ shell may be calculated from the Coulombic energy using Eq. (10.102):

$$
\begin{equation*}
r_{2 s p^{3}}=\sum_{n=2}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}(e 148.25751 \mathrm{eV})}=\frac{10 e^{2}}{8 \pi \varepsilon_{0}(e 148.25751 \mathrm{eV})}=0.91771 a_{0} \tag{14.142}
\end{equation*}
$$

where $Z=6$ for carbon. Using Eqs. (10.102) and (14.142), the Coulombic energy $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is:

$$
\begin{equation*}
E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{2 s p^{3}}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} 0.91771 a_{0}}=-14.82575 \mathrm{eV} \tag{14.143}
\end{equation*}
$$

During hybridization, the spin-paired $2 s$ electrons are promoted to the $C 2 s p^{3}$ shell as unpaired electrons. The energy for the promotion is the magnetic energy given by Eq. (13.152) at the initial radius of the $2 s$ electrons. From Eq. (10.62) with $Z=6$, the radius r_{3} of the $C 2 s$ shell is:

$$
\begin{equation*}
r_{3}=0.84317 a_{0} \tag{14.144}
\end{equation*}
$$

Using Eqs. (13.152) and (14.144), the unpairing energy is:

$$
\begin{equation*}
E(\text { magnetic })=\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(r_{3}\right)^{3}}=\frac{8 \pi \mu_{0} \mu_{B}^{2}}{\left(0.84317 a_{0}\right)^{3}}=0.19086 \mathrm{eV} \tag{14.145}
\end{equation*}
$$

Using Eqs. (14.143) and (14.145), the energy $E\left(C, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is:

$$
\begin{equation*}
E\left(C, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{2 s p^{3}}}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(r_{3}\right)^{3}}=-14.82575 \mathrm{eV}+0.19086 \mathrm{eV}=-14.63489 \mathrm{eV} \tag{14.146}
\end{equation*}
$$

Next, consider the formation of the $C-C$-bond MO of ethane from two methyl radicals, each having a $C 2 s p^{3}$ electron with an energy given by Eq. (14.146). The total energy of the state is given by the sum over the four electrons. The sum $E_{T}\left(C_{\text {ethane }}, 2 s p^{3}\right)$ of calculated energies of $C 2 s p^{3}, C^{+}, C^{2+}$, and C^{3+} from Eqs. (10.123), (10.113-10.114), (10.68), and (10.48), respectively, is:

$$
\begin{align*}
E_{T}\left(C_{\text {ethane }}, 2 s p^{3}\right) & =-\left(64.3921 \mathrm{eV}+48.3125 \mathrm{eV}+24.2762 \mathrm{eV}+E\left(C, 2 s p^{3}\right)\right) \\
& =-(64.3921 \mathrm{eV}+48.3125 \mathrm{eV}+24.2762 \mathrm{eV}+14.63489 \mathrm{eV}) \tag{14.147}\\
& =-151.61569 \mathrm{eV}
\end{align*}
$$

where $E\left(C, 2 s p^{3}\right)$ is the sum of the energy of $C,-11.27671 \mathrm{eV}$, and the hybridization energy. The orbital-angular-momentum
interactions also cancel such that the energy of the $E_{T}\left(C_{\text {ethane }}, 2 s p^{3}\right)$ is purely Coulombic.
The sharing of electrons between two $C 2 s p^{3}$ HOs to form a $C-C$-bond MO permits each participating hybridized orbital to decrease in radius and energy. In order to further satisfy the potential, kinetic, and orbital energy relationships, each $C 2 s p^{3} \mathrm{HO}$ donates an excess of 25% of its electron density to the $C-C$-bond MO to form an energy minimum. By considering this electron redistribution in the ethane molecule as well as the fact that the central field decreases by an integer for each successive electron of the shell, the radius $r_{\text {ethane2sp }}$ of the $C 2 s p^{3}$ shell of ethane may be calculated from the Coulombic energy using Eq. (10.102).

$$
\begin{equation*}
r_{\text {ethane } 2 s p^{3}}=\left(\sum_{n=2}^{5}(Z-n)-0.25\right) \frac{e^{2}}{8 \pi \varepsilon_{0}(e 151.61569 \mathrm{eV})}=\frac{9.75 e^{2}}{8 \pi \varepsilon_{0}(e 151.61569 \mathrm{eV})}=0.87495 a_{0} \tag{14.148}
\end{equation*}
$$

Using Eqs. (10.102) and (14.148), the Coulombic energy $E_{\text {Coulomb }}\left(C_{\text {ethane }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is:

$$
\begin{equation*}
E_{\text {Coulomb }}\left(C_{\text {ethane }}, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{\text {ethane } 2 s p^{3}}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} 0.87495 a_{0}}=-15.55033 \mathrm{eV} \tag{14.149}
\end{equation*}
$$

During hybridization, the spin-paired $2 s$ electrons are promoted to the $C 2 s p^{3}$ shell as unpaired electrons. The energy for the promotion is the magnetic energy given by Eq. (13.152). Using Eqs. (14.145) and (14.149), the energy $E\left(C_{\text {ethane }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is:

$$
\begin{equation*}
E\left(C_{\text {ethane }}, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{\text {ethane2 } 2 p^{3}}}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(r_{3}\right)^{3}}=-15.55033 \mathrm{eV}+0.19086 \mathrm{eV}=-15.35946 \mathrm{eV} \tag{14.150}
\end{equation*}
$$

Thus, $E_{T}\left(C-C, 2 s p^{3}\right)$, the energy change of each $C 2 s p^{3}$ shell with the formation of the $C-C$-bond MO is given by the difference between Eq. (14.146) and Eq. (14.150).

$$
\begin{equation*}
E_{T}\left(C-C, 2 s p^{3}\right)=E\left(C_{\text {ethane }}, 2 s p^{3}\right)-E\left(C, 2 s p^{3}\right)=-15.35946 \mathrm{eV}-(-14.63489 \mathrm{eV})=-0.72457 \mathrm{eV} \tag{14.151}
\end{equation*}
$$

The H_{2}-type ellipsoidal MO comprises 75% of the $C-C$-bond MO shared between two $C 2 s p^{3}$ HOs corresponding to the electron charge density in Eq. (11.65) of $\frac{-0.75 e}{2}$. But, the additional 25% charge-density contribution to the $C-C$-bond MO causes the electron charge density in Eq. (11.65) to be $\frac{-e}{2}=-0.5 e$. Thus, the force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} in terms of the central force of the foci given by Eq. (11.65) is:

$$
\begin{equation*}
k^{\prime}=\frac{(0.5) 2 e^{2}}{4 \pi \varepsilon_{0}} \tag{14.152}
\end{equation*}
$$

The distance from the origin to each focus c^{\prime} is given by substitution of Eq. (14.152) into Eq. (13.60). Thus, the distance from the origin of the $C-C$-bond MO to each focus c^{\prime} is given by:

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} a}}=\sqrt{a a_{0}} \tag{14.153}
\end{equation*}
$$

The internuclear distance from Eq. (14.153) is:

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{a a_{0}} \tag{14.154}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal $C-C$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of the $C-C$-bond MO. Since the $C-C$-bond MO comprises a H_{2}-type-ellipsoidal MO that transitions to the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$ of each carbon, the energy $E\left(C_{\text {ethane }}, 2 s p^{3}\right)$ in Eq. (14.150) adds to that of the H_{2}-type ellipsoidal MO to give the total energy of the $C-C$-bond MO. From the energy equation and the relationship between the axes, the dimensions of the $C-C$-bond MO are solved. Similarly, $E\left(C_{e t h a n e}, 2 s p^{3}\right)$ is added to the energy of the H_{2}-type ellipsoidal MO of each $C-H$ bond of the methyl groups to give its total energy. From the energy equation and the relationship between the axes, the dimensions of the equivalent $C-H$-bond MOs of the methyl groups in ethane are solved.

The general equations for the energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} of the $C-C$-bond MO are the same as those of the $C H$ MO as well as each $C-H$-bond MO of the methyl groups except that energy of the $C_{\text {ethane }} 2 s p^{3}$ HO is used. Since the prolate spheroidal H_{2}-type MO transitions to the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$ of each carbon and the energy of the $C_{\text {ethane }} 2 s p^{3}$ shell must remain constant and equal to the $E\left(C_{\text {ethane }}, 2 s p^{3}\right)$ given by Eq. (14.150), the total energy $E_{T}(C-C, \sigma)$ of the σ component of the $C-C$-bond MO is given by the sum of the energies of the orbitals corresponding to the composition of the linear combination of the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$ and the H_{2}-type ellipsoidal MO that forms the σ component of the $C-C$-bond MO as given by Eq. (14.139) with the electron charge redistribution. Using Eqs. (13.431) and (14.150), $E_{T}(C-C, \sigma)$ is given by:

$$
\begin{equation*}
E_{T}(C-C, \sigma)=E_{T}+E\left(C_{\text {ethane }}, 2 s p^{3}\right)=-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.35946 \mathrm{eV} \tag{14.155}
\end{equation*}
$$

To match the boundary condition that the total energy of the entire the H_{2}-type ellipsoidal MO is given by Eqs. (11.212) and (13.75), $E_{T}(C-C, \sigma)$ given by Eq. (14.155) is set equal to Eq. (13.75):

$$
\begin{equation*}
E_{T}(C-C, \sigma)=-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.35946 \mathrm{eV}=-31.63536831 \mathrm{eV} \tag{14.156}
\end{equation*}
$$

From the energy relationship given by Eq. (14.156) and the relationship between the axes given by Eqs. (14.153-14.154) and (13.62-13.63), the dimensions of the $C-C$-bond MO can be solved.

Substitution of Eq. (14.153) into Eq. (14.156) gives:

$$
\begin{equation*}
\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a a_{0}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{a a_{0}}}{a-\sqrt{a a_{0}}}-1\right]=e 16.27589 \tag{14.157}
\end{equation*}
$$

The most convenient way to solve Eq. (14.157) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is

$$
\begin{equation*}
a=2.10725 a_{0}=1.11511 \times 10^{-10} \mathrm{~m} \tag{14.158}
\end{equation*}
$$

Substitution of Eq. (14.158) into Eq. (14.153) gives:

$$
\begin{equation*}
c^{\prime}=1.45164 a_{0}=7.68173 \times 10^{-11} \mathrm{~m} \tag{14.159}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.159) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.90327 a_{0}=1.53635 \times 10^{-10} \mathrm{~m} \tag{14.160}
\end{equation*}
$$

The experimental bond distance is [3]:

$$
\begin{equation*}
2 c^{\prime}=1.5351 \times 10^{-10} \mathrm{~m} \tag{14.161}
\end{equation*}
$$

Substitution of Eqs. (14.158-14.159) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=1.52750 a_{0}=8.08317 \times 10^{-11} \mathrm{~m} \tag{14.162}
\end{equation*}
$$

Substitution of Eqs. (14.158-14.159) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.68888 \tag{14.163}
\end{equation*}
$$

The nucleus of the C atoms comprise the foci of the H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95) and (13.261-13.270). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{\text {ethane2sp }}=0.87495 a_{0}$ is the radius of the $C_{\text {ethane }} 2 s p^{3}$ shell. Substitution of Eqs. (14.158-14.159) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=67.33^{\circ} \tag{14.164}
\end{equation*}
$$

Then, the angle $\theta_{C-C_{e t h a n e} 2 s p^{3} \mathrm{HO}}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C-C_{\text {ethane }} 2 s p^{3} \mathrm{HO}}=180^{\circ}-67.33^{\circ}=112.67^{\circ} \tag{14.165}
\end{equation*}
$$

as shown in Figure 14.5.

Figure 14.5. The cross section of the $C-C$-bond $\mathrm{MO}(\sigma \mathrm{MO})$ and one $C-H$-bond MO of ethane showing the axes, angles, and point of intersection of each H_{2}-type ellipsoidal MO with the corresponding $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$. The continuation of each H_{2}-type-ellipsoidal-MO basis element of the $C-C$ bond and the $C-H$-bond beyond the intersection point with each $C_{\text {ethane }} 2 s p^{3}$ shell and $\sigma \mathrm{MO}$ is shown as dashed since each only serves to solve the energy match with the $C_{\text {ethane }} 2 s p^{3}$ shell and does not represent charge density. Similarly, the vertical dashed line only designates the parameters of each intersection point. The actual charge density is shown by the solid lines. Legend: a : semimajor axis, $b:$ semiminor axis, c^{\prime} : internuclear distance, $d_{1}: d_{C-C_{\text {ethane }}, H_{2} M O}, \quad \theta_{1}: \theta_{C-C_{\text {ethane }} 2 s p^{3} \mathrm{HO}}, \quad d_{2}: d_{C-C_{\text {ethane }} 2 s p^{3} \mathrm{HO}}, \quad R: r_{\text {ethane } 22 s p^{3}}, \quad d_{3}: d_{C-H_{\text {ethane }}, H_{2} M O}, \quad \theta_{2}: \theta_{C-H_{\text {ethane }} 2 s p^{3} \mathrm{HO}}, \quad$ and $d_{4}: d_{C-H_{\text {ethane }} 2 s p^{3} \mathrm{HO}}$.

Consider the right-hand intersection point. The Cartesian \mathbf{i}-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j} coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{C-C_{\text {ethane }}, H_{2} M O}$ satisfies the following relationship:

$$
\begin{equation*}
r_{\text {ethane } 2 s p^{3}} \sin \theta_{C-C_{\text {ethane }} 2 s p^{3} \mathrm{HO}}=0.87495 a_{0} \sin \theta_{C-C_{\text {ethane }} 2 s p^{3} \mathrm{HO}}=b \sin \theta_{C-C_{\text {ethane }}, \mathrm{H}_{2} \mathrm{MO}} \tag{14.166}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{C-C_{\text {ethane }}, \mathrm{H}_{2} \mathrm{MO}}=\sin ^{-1} \frac{0.87495 a_{0} \sin \theta_{C-C_{\text {ethane }} 2 S p^{3} \mathrm{HO}}}{b}=\sin ^{-1} \frac{0.87495 a_{0} \sin 112.67^{\circ}}{b} \tag{14.167}
\end{equation*}
$$

with the use of Eq. (14.166). Substitution of Eq. (14.162) into Eq. (14.167) gives:

$$
\begin{equation*}
\theta_{C-C_{\text {ethane } e}, H_{2} M O}=31.91^{\circ} \tag{14.168}
\end{equation*}
$$

Then, the distance $d_{C-C_{\text {ethane }}, H_{2} M O}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C-C_{\text {ethane },}, H_{2} M O}=a \cos \theta_{C-C_{\text {ethane }}, H_{2} M O} \tag{14.169}
\end{equation*}
$$

Substitution of Eqs. (14.158) and (14.168) into Eq. (14.169) gives:

$$
\begin{equation*}
d_{C-C_{\text {ethane }, H_{2} M O}}=1.78885 a_{0}=9.46617 \times 10^{-11} \mathrm{~m} \tag{14.170}
\end{equation*}
$$

The distance $d_{C-C_{\text {ethane }} 2 S p^{3} H O}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C-C_{\text {ethane }} 2 s p^{3} \mathrm{HO}}=d_{C-C_{\text {ethane }}, \mathrm{H}_{2} \mathrm{MO}}-C^{\prime} \tag{14.171}
\end{equation*}
$$

Substitution of Eqs. (14.159) and (14.170) into Eq. (14.171) gives:

$$
\begin{equation*}
d_{C-C_{\text {ethane }} 2 s p^{3} \mathrm{HO}}=0.33721 a_{0}=1.78444 \times 10^{-11} \mathrm{~m} \tag{14.172}
\end{equation*}
$$

FORCE BALANCE OF THE CH_{3} MOS OF ETHANE

Each of the two equivalent CH_{3} MOs must comprise three $\mathrm{C}-\mathrm{H}$ bonds with each comprising 75% of a H_{2}-type ellipsoidal MO and a $C 2 s p^{3} \mathrm{HO}$ as given by Eq. (13.540):

$$
\begin{equation*}
3\left[1 \mathrm{C} 2 \mathrm{sp}^{3}+0.75 \mathrm{H}_{2} \mathrm{MO}\right] \rightarrow \mathrm{CH}_{3} \mathrm{MO} \tag{14.173}
\end{equation*}
$$

The force balance of the CH_{3} MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (13.540) and the energy matching condition between the hydrogen and $C 2 s p^{3} \mathrm{HO}$ components of the MO.

The force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} of the each H_{2}-type-ellipsoidal-MO component of the $\mathrm{CH}_{3} \mathrm{MO}$ in terms of the central force of the foci is given by Eq. (13.59). The distance from the origin of each $C-H$-bond MO to each focus c^{\prime} is given by Eq. (13.60). The internuclear distance is given by Eq. (13.61). The length of the semiminor axis of the prolate spheroidal $C-H$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of each $\mathrm{C}-\mathrm{H}-$ bond MO. Since each of the three prolate spheroidal $\mathrm{C}-\mathrm{H}$-bond MOs comprises an H_{2}-type-ellipsoidal MO that transitions to the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$ of ethane, the energy $E\left(C_{\text {ethane }}, 2 s p^{3}\right)$ of Eq. (14.150) adds to that of the three corresponding H_{2}-type ellipsoidal MOs to give the total energy of the $\mathrm{CH}_{3} \mathrm{MO}$. From the energy equation and the relationship between the axes, the dimensions of the $\mathrm{CH}_{3} \mathrm{MO}$ are solved.

The energy components of V_{e}, V_{p}, T, and V_{m} are the same as those of methyl radical, three times those of CH corresponding to the three $C-H$ bonds except that energy of the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$ is used. Since each prolate spheroidal H_{2}-type MO transitions to the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$ and the energy of the $C_{\text {ethane }} 2 s p^{3}$ shell must remain constant and equal to the $E\left(C_{\text {ethane }}, 2 s p^{3}\right)$ given by Eq. (14.150), the total energy $E_{T_{\text {ethane }}}\left(\mathrm{CH}_{3}\right)$ of the $\mathrm{CH}_{3} \mathrm{MO}$ is given by the sum of the energies of the orbitals corresponding to the composition of the linear combination of the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$ and the three H_{2}-type ellipsoidal MOs that forms the $\mathrm{CH}_{3} \mathrm{MO}$ as given by Eq. (13.540). Using Eq. (13.431), $E_{T_{\text {elhone }}}\left(\mathrm{CH}_{3}\right)$ is given by:

$$
\begin{equation*}
E_{T_{\text {ehane }}}\left(C H_{3}\right)=E_{T}+E\left(C_{\text {ethane }}, 2 s p^{3}\right)=-\frac{3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.35946 \mathrm{eV} \tag{14.174}
\end{equation*}
$$

$E_{T_{\text {ehane }}}\left(\mathrm{CH}_{3}\right)$ given by Eq. (14.174) is set equal to three times the energy of the H_{2}-type ellipsoidal MO minus two times the Coulombic energy of H given by Eq. (13.542):

$$
\begin{equation*}
E_{T}\left(C H_{3}\right)=-\frac{3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.35946 \mathrm{eV}=-67.69450 \mathrm{eV} \tag{14.175}
\end{equation*}
$$

From the energy relationship given by Eq. (14.175) and the relationship between the axes given by Eqs. (13.60-13.63), the dimensions of the $\mathrm{CH}_{3} \mathrm{MO}$ can be solved.

Substitution of Eq. (13.60) into Eq. (14.175) gives:

$$
\begin{equation*}
\frac{3 e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right]=e 52.33505 \tag{14.176}
\end{equation*}
$$

The most convenient way to solve Eq. (14.176) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is:

$$
\begin{equation*}
a=1.64469 a_{0}=8.70331 \times 10^{-11} \mathrm{~m} \tag{14.177}
\end{equation*}
$$

Substitution of Eq. (14.177) into Eq. (14.60) gives:

$$
\begin{equation*}
c^{\prime}=1.04712 a_{0}=5.54111 \times 10^{-11} \mathrm{~m} \tag{14.178}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.178) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.09424 a_{0}=1.10822 \times 10^{-10} \mathrm{~m} \tag{14.179}
\end{equation*}
$$

The experimental bond distance is [3]:

$$
\begin{equation*}
2 c^{\prime}=1.0940 \times 10^{-10} \mathrm{~m} \tag{14.180}
\end{equation*}
$$

Substitution of Eqs. (14.177-14.178) into Eq. (14.62) gives:

$$
\begin{equation*}
b=c=1.26828 a_{0}=6.71145 \times 10^{-11} \mathrm{~m} \tag{14.181}
\end{equation*}
$$

Substitution of Eqs. (14.177-14.178) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.63667 \tag{14.182}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the C atom comprise the foci of each H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95) and (13.261-13.270). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{\text {ethane2sp }}=0.87495 a_{0}$ is the radius of the $C_{\text {ethane }} 2 s p^{3}$ shell. Substitution of Eqs. (14.177-14.178) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=79.34^{\circ} \tag{14.183}
\end{equation*}
$$

Then, the angle $\theta_{C-H_{\text {ethane }} 2 s p^{3} H O}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C-H_{\text {ethane }} 2 s p^{3} \mathrm{HO}}=180^{\circ}-79.34^{\circ}=100.66^{\circ} \tag{14.184}
\end{equation*}
$$

as shown in Figure 14.6.

Figure 14.6. The cross section of one $C-H$-bond MO of ethane showing the axes, angles, and point of intersection of the H_{2}-type ellipsoidal MO with the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$. The continuation of the H_{2}-type-ellipsoidal-MO basis element beyond the intersection point with the $C_{\text {ethane }} 2 s p^{3}$ shell is shown as dashed since it only serves to solve the energy match with the $C_{\text {ethane }} 2 s p^{3}$ shell and does not represent charge density. Similarly, the vertical dashed line only designates the parameters of the intersection point. The actual charge density is shown by the solid lines. Legend: a : semimajor axis, $b:$ semiminor axis, c^{\prime} : internuclear distance, $d_{1}: d_{C-H_{\text {ethane }}, H_{2} M O}, \theta_{1}: \theta_{C-H_{\text {ethane }} 2 s p^{3} H O}, d_{2}: d_{C-H_{\text {ethane }} 2 s p^{3} \mathrm{HO}}$, and $R: r_{\text {ethane } 2 s p^{3}}$.

The Cartesian i-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j}-coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{C-H_{\text {ethane }}, H_{2} M O}$ satisfies the following relationship:

$$
\begin{equation*}
r_{\text {ethane } 2 s p^{3}} \sin \theta_{C-H_{\text {ethane }} 2 s p^{3} \mathrm{HO}}=0.87495 a_{0} \sin \theta_{C-H_{\text {ethane }} 2 s p^{3} \mathrm{HO}}=b \sin \theta_{C-\mathrm{H}_{\text {ethane }}, \mathrm{H}_{2} \mathrm{MO}} \tag{14.185}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{C-H_{\text {ethane }}, H_{2} M O}=\sin ^{-1} \frac{0.87495 a_{0} \sin \theta_{C-H_{\text {ethane }} 2 s p^{3} H O}}{b}=\sin ^{-1} \frac{0.87495 a_{0} \sin 100.66^{\circ}}{b} \tag{14.186}
\end{equation*}
$$

with the use of Eq. (14.184). Substitution of Eq. (14.181) into Eq. (14.186) gives:

$$
\begin{equation*}
\theta_{C-H_{\text {ethane }}, H_{2} M O}=42.68^{\circ} \tag{14.187}
\end{equation*}
$$

Then, the distance $d_{C-H_{\text {ethane }}, H_{2} M O}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C-H_{\text {ethane }}, \mathrm{H}_{2} \mathrm{MO}}=a \cos \theta_{C-\mathrm{H}_{\text {ethane }}, \mathrm{H}_{2} \mathrm{MO}} \tag{14.188}
\end{equation*}
$$

Substitution of Eqs. (14.177) and (14.187) into Eq. (14.188) gives:

$$
\begin{equation*}
d_{C-H_{\text {ethane }}, H_{2} M O}=1.20901 a_{0}=6.39780 \times 10^{-11} \mathrm{~m} \tag{14.189}
\end{equation*}
$$

The distance $d_{C-H_{\text {ethane }} 2 s p^{3} \mathrm{HO}}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals is given by

$$
\begin{equation*}
d_{C-\mathrm{H}_{\text {ethane }} 2 s p^{3} \mathrm{HO}}=d_{C-\mathrm{H}_{\text {ethane }}, \mathrm{H}_{2} \mathrm{MO}}-\mathrm{C}^{\prime} \tag{14.190}
\end{equation*}
$$

Substitution of Eqs. (14.178) and (14.189) into Eq. (14.190) gives:

$$
\begin{equation*}
d_{C-H_{\text {ethane }} 2 S p^{3} H O}=0.16189 a_{0}=8.56687 X 10^{-12} \mathrm{~m} \tag{14.191}
\end{equation*}
$$

BOND ANGLE OF THE CH_{3} GROUPS

Each CH_{3} MO comprises a linear combination of three $\mathrm{C}-\mathrm{H}$-bond MOs. Each $\mathrm{C}-\mathrm{H}$-bond MO comprises the superposition of a H_{2}-type ellipsoidal MO and the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$. A bond is also possible between the two H atoms of the $\mathrm{C}-\mathrm{H}$ bonds. Such $H-H$ bonding would decrease the $C-H$ bond strength since electron density would be shifted from the $C-H$ bonds to the $H-H$ bond. Thus, the bond angle between the two $C-H$ bonds is determined by the condition that the total energy of the H_{2}-type ellipsoidal MO between the terminal H atoms of the $C-H$ bonds is zero. From Eqs. (11.79) and (13.228), the distance from the origin to each focus of the $H-H$ ellipsoidal MO is:

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} 2 a}}=\sqrt{\frac{a a_{0}}{2}} \tag{14.192}
\end{equation*}
$$

The internuclear distance from Eq. (13.229) is:

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{2}} \tag{14.193}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal $H-H$ MO $b=c$ is given by Eq. (14.62).
The bond angle of the CH_{3} groups of ethane is derived by using the orbital composition and an energy matching factor as in the case with the CH_{3} radical. Since the two H_{2}-type ellipsoidal MOs initially comprise 75% of the H electron density of H_{2} and the energy of each H_{2}-type ellipsoidal MO is matched to that of the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$, the component energies and the total energy E_{T} of the $H-H$ bond are given by Eqs. (13.67-13.73) except that V_{e}, T, and V_{m} are corrected for the hybridization-energy-matching factor of 0.87495 . Hybridization with 25% electron donation to the $C-C$-bond gives rise to the $C_{\text {ethane }} 2 s p^{3}$ HO-shell Coulombic energy $E_{\text {Coulomb }}\left(C_{\text {ethane }}, 2 s p^{3}\right)$ given by Eq. (14.149). The corresponding normalization factor for determining the zero of the total $H-H$ bond energy is given by the ratio of 15.55033 eV , the magnitude of $E_{\text {Coulomb }}\left(C_{\text {ethane }}, 2 s p^{3}\right)$ given by Eq. (14.149), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264). The hybridization energy factor $C_{\text {ethane } C 2 s p^{3} H O}$ is:

$$
\begin{equation*}
C_{\text {ethaneC } 2 \text { sp }{ }^{3} \text { НO }}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} r_{\text {ethane2 } 2 p^{3}}}}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} 0.87495 a_{0}}}=\frac{13.605804 \mathrm{eV}}{15.55033 \mathrm{eV}}=0.87495 \tag{14.194}
\end{equation*}
$$

Substitution of Eq. (14.152) into Eq. (13.233) with the hybridization factor of 0.87495 gives:

$$
0=\left[\begin{array}{l}
\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left[(0.87495)^{-1}\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right]\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{\left(4 \varepsilon_{0} a^{3}\right.}{m_{e}}}}{m_{e} c^{2}}}\right] \tag{14.195}\\
+\hbar \sqrt{\frac{\frac{0.75 e^{2}}{8 \pi \varepsilon_{0} a^{3}}-\frac{e^{2}}{8 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{3}}}{0.5 m_{p}}}
\end{array}\right]
$$

From the energy relationship given by Eq. (14.195) and the relationship between the axes given by Eqs. (14.192-14.193) and (14.62-14.63), the dimensions of the $H-H$ MO can be solved.

The most convenient way to solve Eq. (14.195) is by the reiterative technique using a computer. The result to within the round-off error with five-significant figures is

$$
\begin{equation*}
a=5.7000 a_{0}=3.0163 \times 10^{-10} \mathrm{~m} \tag{14.196}
\end{equation*}
$$

Substitution of Eq. (14.196) into Eq. (14.192) gives:

$$
\begin{equation*}
c^{\prime}=1.6882 a_{0}=8.9335 \times 10^{-11} \mathrm{~m} \tag{14.197}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.197) by two is:

$$
\begin{equation*}
2 c^{\prime}=3.3764 a_{0}=1.7867 \times 10^{-10} \mathrm{~m} \tag{14.198}
\end{equation*}
$$

Substitution of Eqs. (14.196-14.197) into Eq. (14.62) gives:

$$
\begin{equation*}
b=c=5.4443 a_{0}=2.8810 \times 10^{-10} \mathrm{~m} \tag{14.199}
\end{equation*}
$$

Substitution of Eqs. (14.196-14.197) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.2962 \tag{14.200}
\end{equation*}
$$

From, $2 c^{\prime}{ }_{H-H}$ (Eq. (14.198)), the distance between the two H atoms when the total energy of the corresponding MO is zero (Eq. (14.195)), and $2{C^{\prime}}_{C-H}$ (Eq. (14.179)), the internuclear distance of each $C-H$ bond, the corresponding bond angle can be determined from the law of cosines. Using, Eq. (13.242), the bond angle θ between the $C-H$ bonds is

$$
\begin{equation*}
\theta=\cos ^{-1}\left(\frac{2(2.09424)^{2}-(3.3764)^{2}}{2(2.09424)^{2}}\right)=\cos ^{-1}(-0.29964)=107.44^{\circ} \tag{14.201}
\end{equation*}
$$

The experimental angle between the $C-H$ bonds is [8]:

$$
\begin{equation*}
\theta=107.4^{\circ} \tag{14.202}
\end{equation*}
$$

The CH_{3} radical has a pyramidal structure with the carbon atom along the z -axis at the apex and the hydrogen atoms at the base in the xy-plane. The distance $d_{\text {origin-H }}$ from the origin to the nucleus of a hydrogen atom given by Eqs. (14.198) and (13.412) is:

$$
\begin{equation*}
d_{\text {origin-H }}=1.94936 a_{0} \tag{14.203}
\end{equation*}
$$

The height along the z-axis of the pyramid from the origin to C nucleus $d_{\text {height }}$ given by Eqs. (13.414), (14.179), and (14.203) is

$$
\begin{equation*}
d_{\text {height }}=0.76540 a_{0} \tag{14.204}
\end{equation*}
$$

The angle θ_{v} of each $C-H$ bond from the z-axis given by Eqs. (13.416), (14.203), and (14.204) is:

$$
\begin{equation*}
\theta_{v}=68.563^{\circ} \tag{14.205}
\end{equation*}
$$

The $C-C$ bond is along the z-axis. Thus, the bond angle θ_{C-C-H} between the internuclear axis of the $C-C$ bond and a H atom of the methyl groups is given by:

$$
\begin{equation*}
\theta_{C-C-H}=180-\theta_{v} \tag{14.206}
\end{equation*}
$$

Substitution of Eq. (14.205) into Eq. (14.206) gives:

$$
\begin{equation*}
\theta_{C-C-H}=111.44^{\circ} \tag{14.207}
\end{equation*}
$$

The experimental angle between the $C-C-H$ bonds is [3]:

$$
\begin{equation*}
\theta_{C-C-H}=111.17^{\circ} \tag{14.208}
\end{equation*}
$$

The $\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{MO}$ shown in Figure 14.7 was rendered using these parameters. A minimum energy is obtained with a staggered configuration consistent with observations [3].

The charge-density in the $C-C$-bond MO is increased by a factor of 0.25 with the formation of the $C_{\text {ethane }} 2 s p^{3} \mathrm{HOs}$ each having a smaller radius. Using the orbital composition of the CH_{3} groups (Eq. (14.173)) and the $\mathrm{C}-\mathrm{C}$-bond MO (Eq. (14.139)), the radii of $C 1 s=0.17113 a_{0}$ (Eq. (10.51)) and $C_{\text {ethane }} 2 s p^{3}=0.87495 a_{0}$ (Eq. (14.148)) shells, and the parameters of the $C-C$-bond (Eqs. (13.3-13.4), (14.158-14.160), and (14.162-14.172)), the parameters of the $C-H$-bond MOs (Eqs. (13.313.4), (14.177-14.179), and (14.181-14.191)), and the bond-angle parameters (Eqs. (14.195-14.208)), the charge-density of the $\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{MO}$ comprising the linear combination of two sets of three $\mathrm{C}-\mathrm{H}$-bond MOs and a $\mathrm{C}-\mathrm{C}$-bond MO bridging the two methyl groups is shown in Figure 14.7. Each $\mathrm{C}-\mathrm{H}$-bond MO comprises a H_{2}-type ellipsoidal MO and a $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$
having the dimensional diagram shown in Figure 14.6. The $\mathrm{C}-\mathrm{C}$-bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {ethane }} 2 s p^{3}$ HOs having the dimensional diagram shown in Figure 14.5.

Figure 14.7. $\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{MO}$ comprising the linear combination of two sets of three $\mathrm{C}-\mathrm{H}$-bond MOs and a $\mathrm{C}-\mathrm{C}$-bond MO. (A) Color scale, translucent view of the charge-density of the $C-C$-bond MO with the $C_{\text {ethane }} 2 s p^{3}$ HOs shown transparently. The $C-C$-bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {ethane }} 2 s p^{3}$ HOs. For each $C-H$ and the $C-C$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$ shell, inner most $C 1 s$ shell, and the nuclei (red, not to scale), are shown. (B)-(C) End-on view, translucent view high-lighting the $C-C$-bond MO, and opaque view of the charge-density of the $\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{MO}$, respectively.

ENERGIES OF THE CH_{3} GROUPS

The energies of each CH_{3} group of ethane are given by the substitution of the semiprincipal axes (Eqs. (14.177-14.178) and (14.181)) into the energy equations of the methyl radical (Eqs. (13.556-13.560)), with the exception that $E\left(C_{\text {ethane }}, 2 s p^{3}\right)$ replaces $E\left(C, 2 s p^{3}\right)$ in Eq. (13.560):

$$
\begin{align*}
& V_{e}=3(0.91771) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-107.68424 \mathrm{eV} \tag{14.209}\\
& V_{p}=\frac{3 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=38.98068 \mathrm{eV} \tag{14.210}\\
& T=3(0.91771) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=32.73700 \mathrm{eV} \tag{14.211}\\
& V_{m}=3(0.91771) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-16.36850 \mathrm{eV} \tag{14.212}\\
& E_{T_{\text {ethane }}}\left(C H_{3}\right)=-\frac{3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.35946 \mathrm{eV}=-67.69451 \mathrm{eV} \tag{14.213}
\end{align*}
$$

where $E_{T_{\text {ethane }}}\left(\mathrm{CH}_{3}\right)$ is given by Eq. (14.174) which is reiteratively matched to Eq. (13.542) within five-significant-figure round off error.

VIBRATION OF THE ${ }^{12} \mathrm{CH}_{3}$ GROUPS

The vibrational energy levels of CH_{3} in ethane may be solved as three equivalent coupled harmonic oscillators by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERMS OF THE ${ }^{12} \mathrm{CH}_{3}$ GROUPS

The equations of the radiation reaction force of the methyl groups in ethane are the same as those of the methyl radical with the substitution of the methyl-group parameters. Using Eq. (13.561), the angular frequency of the reentrant oscillation in the transition state is

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=2.50664 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{14.214}
\end{equation*}
$$

where b is given by Eq. (14.181). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 2.50664 \times 10^{16} \mathrm{rad} / \mathrm{s}=16.49915 \mathrm{eV} \tag{14.215}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(H_{2}\right)$ (Eqs. (11.212) and (13.75)), the maximum total energy of each H_{2}-type MO, for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (14.215) for \bar{E}_{K} gives the Doppler energy of the electrons of each of the three bonds for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-31.63537 \mathrm{eV} \sqrt{\frac{2 e(16.49915 \mathrm{eV})}{m_{e} c^{2}}}=-0.25422 \mathrm{eV} \tag{14.216}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of CH_{3} due to the reentrant orbit of each bond in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (14.216) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of each $C-H$ bond. Using ω_{e} given by Eq. (13.458) for $\bar{E}_{\text {Kvib }}$ of the transition state having three independent bonds, $\bar{E}^{\prime}{ }_{\text {ethane osc }}\left({ }^{12} \mathrm{CH}_{3}\right)$ per bond is:

$$
\begin{align*}
& \bar{E}_{\text {ethane osc }}^{\prime}\left({ }^{12} \mathrm{CH}_{3}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{14.217}\\
& \bar{E}_{\text {ethane osc }}^{\prime}\left({ }^{12} \mathrm{CH}_{3}\right)=-0.25422 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})=-0.07656 \mathrm{eV} \tag{14.218}
\end{align*}
$$

Given that the vibration and reentrant oscillation is for three $\mathrm{C}-\mathrm{H}$ bonds, $\bar{E}_{\text {ethane osc }}\left({ }^{12} \mathrm{CH}_{3}\right)$, is:

$$
\begin{equation*}
\bar{E}_{\text {ethane osc }}\left({ }^{12} \mathrm{CH}_{3}\right)=3\left(\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)=3\left(-0.25422 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})\right)=-0.22967 \mathrm{eV} \tag{14.219}
\end{equation*}
$$

TOTAL AND DIFFERENCE ENERGIES OF THE ${ }^{12} \mathrm{CH}_{3}$ GROUPS

$E_{\text {ethaneT+osc }}\left({ }^{12} \mathrm{CH}_{3}\right)$, the total energy of each ${ }^{12} \mathrm{CH}_{3}$ group including the Doppler term, is given by the sum of $E_{T_{\text {ethane }}}\left(\mathrm{CH}_{3}\right)$ (Eq. (14.213)) and $\bar{E}_{\text {ethane osc }}\left({ }^{12} \mathrm{CH}_{3}\right)$ given by Eq. (14.219).

$$
\begin{align*}
E_{\text {ethaneT +osc }}\left({ }^{12} \mathrm{CH}_{3}\right)= & V_{e}+T+V_{m}+V_{p}+E\left(C_{\text {ethane }}, 2 s p^{3}\right)+\bar{E}_{\text {ethane osc }}\left({ }^{12} \mathrm{CH}_{3}\right) \tag{14.220}\\
& =E_{T_{\text {ethane }}}\left(\mathrm{CH}_{3}\right)+\bar{E}_{\text {ethane osc }}\left({ }^{12} \mathrm{CH}_{3}\right) \\
E_{\text {ethaneT +osc }}\left({ }^{12} \mathrm{CH}_{3}\right)= & \left\{\begin{array}{l}
\left(\frac{-3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.359469 \mathrm{eV}\right) \\
-3\left((31.63536831 \mathrm{eV}) \sqrt{\frac{2 \hbar \sqrt{\frac{3}{4} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}}{m_{e}}}-\frac{1}{m_{e} c^{2}} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{array}\right\} \tag{14.221}\\
= & -67.69450 \mathrm{eV}-3\left(0.25422 \mathrm{eV}-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (14.217-14.221), the total energy of each ${ }^{12} \mathrm{CH}_{3}$ is:

$$
\begin{align*}
E_{\text {ethaneT +osc }}\left({ }^{12} \mathrm{CH}_{3}\right) & =-67.69450 \mathrm{eV}+\bar{E}_{\text {ethane osc }}\left({ }^{12} \mathrm{CH}_{3}\right) \\
& =-67.69450 \mathrm{eV}-3\left(0.25422 \mathrm{eV}-\frac{1}{2}(0.35532 \mathrm{eV})\right)=-67.92417 \mathrm{eV} \tag{14.222}
\end{align*}
$$

where ω_{e} given by Eq. (13.458) was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The total energy for each methyl radical given by Eq. (13.569) is:

$$
\begin{align*}
E_{\text {radicalT +osc }}\left({ }^{12} \mathrm{CH}_{3}\right) & =-67.69450 \mathrm{eV}+\bar{E}_{\text {radical osc }}\left({ }^{12} \mathrm{CH}_{3}\right) \\
& =-67.69450 \mathrm{eV}-3\left(0.25670 \mathrm{eV}-\frac{1}{2}(0.35532 \mathrm{eV})\right)=-67.93160 \mathrm{eV} \tag{14.223}
\end{align*}
$$

The difference in energy between the methyl groups and the methyl radical $\Delta E_{T+o s c}\left({ }^{12} \mathrm{CH}_{3}\right)$ is given by two times the difference between Eqs. (14.222) and (14.223):

$$
\begin{align*}
\Delta E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}_{3}\right) & =2\left(E_{\text {ethaneT+osc }}\left({ }^{12} \mathrm{CH}_{3}\right)-E_{\text {radicalT }+ \text { osc }}\left({ }^{12} \mathrm{CH}_{3}\right)\right) \tag{14.224}\\
& =2(-67.92417 \mathrm{eV}-(-67.93160 \mathrm{eV}))=0.01487 \mathrm{eV}
\end{align*}
$$

SUM OF THE ENERGIES OF THE $C-C \sigma$ MO AND THE HOS OF ETHANE

The energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} of the $C-C$-bond MO are the same as those of the $C H$ MO as well as each $C-H$-bond MO of the methyl groups except that energy of the $C_{\text {ethane }} 2 s p^{3} \mathrm{HO}$ is used. The energies of each $C-C$-bond MO are given by the substitution of the semiprincipal axes (Eqs. (14.158-14.159) and (14.162)) into the energy equations of the CH MO (Eqs. (13.449-13.453)), with the exception that $E\left(C_{\text {ethane }}, 2 s p^{3}\right)$ replaces $E\left(C, 2 s p^{3}\right)$ in Eq. (13.453).

$$
\begin{align*}
& V_{e}=(0.91771) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-29.101124 \mathrm{eV} \tag{14.225}\\
& V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=9.37273 \mathrm{eV} \tag{14.226}\\
& T=(0.91771) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=6.90500 \mathrm{eV} \tag{14.227}
\end{align*}
$$

$$
\begin{align*}
& V_{m}=(0.91771) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-3.45250 \mathrm{eV} \tag{14.228}\\
& E_{T}(C-C, \sigma)=-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.35946 \mathrm{eV}=-31.63535 \mathrm{eV} \tag{14.229}
\end{align*}
$$

where $E_{T}(C-C, \sigma)$ is the total energy of the $C-C \sigma$ MO given by Eq. (14.155) which is reiteratively matched to Eq. (13.75) within five-significant-figure round off error.

The total energy of the $C-C$-bond MO, $E_{T}(C-C)$, is given by the sum of two times $E_{T}\left(C-C, 2 s p^{3}\right)$, the energy change of each $C 2 s p^{3}$ shell due to the decrease in radius with the formation of the $C-C$-bond MO (Eq. (14.151)), and $E_{T}(C-C, \sigma)$, the $\sigma \mathrm{MO}$ contribution given by Eq. (14.156).

$$
\begin{align*}
E_{T}(C-C) & =2 E_{T}\left(C-C, 2 s p^{3}\right)+E_{T}(C-C, \sigma) \\
& =\left(\begin{array}{l}
2(-0.72457 \mathrm{eV})+ \\
\left.\left(-\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a a_{0}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{a a_{0}}}{a-\sqrt{a a_{0}}}-1\right]-15.35946 \mathrm{eV}\right)\right) \\
\end{array}=2(-0.72457 \mathrm{eV})+(-31.63537 \mathrm{eV})=-33.08452 \mathrm{eV}\right. \tag{14.230}
\end{align*}
$$

VIBRATION OF ETHANE

The vibrational energy levels of $\mathrm{CH}_{3} \mathrm{CH}_{3}$ may be solved as two sets of three equivalent coupled harmonic oscillators with a bridging harmonic oscillator by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERMS OF THE $C-C$-BOND MO OF ETHANE

The equations of the radiation reaction force of the symmetrical $C-C$-bond MO are given by Eqs. (11.231-11.233), except the force-constant factor is 0.5 based on the force constant k^{\prime} of Eq. (14.152), and the $C-C$-bond MO parameters are used. The angular frequency of the reentrant oscillation in the transition state is

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.5 e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}=9.55643 \times 10^{15} \mathrm{rad} / \mathrm{s} \tag{14.231}
\end{equation*}
$$

where a is given by Eq. (14.158). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 9.55643 \times 10^{15} \mathrm{rad} / \mathrm{s}=6.29021 \mathrm{eV} \tag{14.232}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}(C-C)$ (Eq. (14.230)) for $E_{h \nu}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (14.232) for \bar{E}_{K} gives the Doppler energy of the electrons of each of the three bonds for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-33.08450 \mathrm{eV} \sqrt{\frac{2 e(6.29021 \mathrm{eV})}{m_{e} c^{2}}}=-0.16416 \mathrm{eV} \tag{14.233}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of the $C-C$-bond MO due to the reentrant orbit of the bond in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{o s c}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (14.233) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of the $C-C$ bond. Using the experimental $C-C \quad E_{v i b}\left(v_{3}\right)$ of $993 \mathrm{~cm}^{-1}(0.12312 \mathrm{eV})$ [10] for $\bar{E}_{\text {Kvib }}$ of the transition state, $\bar{E}_{\text {osc }}(C-C, \sigma)$ is:

$$
\begin{align*}
& \bar{E}_{\text {osc }}(C-C, \sigma)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{14.234}\\
& \bar{E}_{\text {osc }}(C-C, \sigma)=-0.16416 \mathrm{eV}+\frac{1}{2}(0.12312 \mathrm{eV})=-0.10260 \mathrm{eV} \tag{14.235}
\end{align*}
$$

TOTAL ENERGIES OF THE $C-C$-BOND MO OF ETHANE

$E_{T+o s c}(C-C)$, the total energy of the $C-C$-bond MO including the Doppler term, is given by the sum of $E_{T}(C-C)$ (Eq. (14.230)) and $\bar{E}_{\text {osc }}(C-C, \sigma)$ given by Eq. (14.235).

$$
\left.\left.\begin{array}{rl}
E_{T+\text { osc }}(C-C)= & V_{e}+T+V_{m}+V_{p}+E\left(C_{\text {ethane }}, 2 s p^{3}\right)+2 E_{T}\left(C-C, 2 s p^{3}\right)+\bar{E}_{\text {osc }}(C-C, \sigma) \\
= & E_{T}(C-C, \sigma)+2 E_{T}\left(C-C, 2 s p^{3}\right)+\bar{E}_{\text {osc }}(C-C, \sigma)=E_{T}(C-C)+\bar{E}_{\text {osc }}(C-C, \sigma) \\
E_{T+\text { osc }}(C-C)= & \left\{\binom{\left(\frac{-e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.35946 e V+2 E_{T}\left(C-C, 2 s p^{3}\right)\right)}{1+\sqrt{\frac{\frac{1}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}}+\frac{1}{m_{e} c^{2}} \hbar \sqrt{\frac{k}{\mu}}\right. \tag{14.237}
\end{array}\right)\right\}
$$

From Eqs. (14.234-14.237), the total energy of the $C-C$-bond MO is:

$$
\begin{align*}
E_{T+\text { osc }}(C-C) & =-31.63537 \mathrm{eV}+2 E_{T}\left(C-C, 2 s p^{3}\right)+\bar{E}_{\text {osc }}(C-C, \sigma) \\
& =-31.63537 \mathrm{eV}+2(-0.72457 \mathrm{eV})-0.16416 \mathrm{eV}+\frac{1}{2}(0.12312 \mathrm{eV})=-33.18712 \mathrm{eV} \tag{14.238}
\end{align*}
$$

where the experimental $E_{\text {vib }}$ was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.

BOND ENERGY OF THE $C-C$ BOND OF ETHANE

The dissociation energy of the $\mathrm{C}-\mathrm{C}$ bond of $\mathrm{CH}_{3} \mathrm{CH}_{3}, \mathrm{E}_{\mathrm{D}}\left(\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}\right)$, is given by two times $\mathrm{E}\left(\mathrm{C}, 2 \mathrm{sp}{ }^{3}\right)$ (Eq. (14.146)), the initial energy of the $C 2 s p^{3} \mathrm{HO}$ of each CH_{3} radical that bond with a single $\mathrm{C}-\mathrm{C}$ bond, minus the sum of $\Delta E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}_{3}\right)$ (Eq. (14.224)), the energy change going from the methyl radicals to the methyl groups of ethane, and $E_{T+\text { osc }}(C-C)$ (Eq. (14.238)). Thus, the dissociation energy of the $\mathrm{C}-\mathrm{C}$ bond of $\mathrm{CH}_{3} \mathrm{CH}_{3}$, is:

$$
\begin{align*}
E_{D}\left(H_{3} C-C H_{3}\right) & =2\left(E\left(C, 2 s p^{3}\right)\right)-\left(\Delta E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}_{3}\right)+E_{T+\text { osc }}(C-C)\right) \\
& =2(-14.63489 \mathrm{eV})-(0.01487 \mathrm{eV}-33.18712 \mathrm{eV}) \tag{14.239}\\
& =2(-14.63489 \mathrm{eV})-(33.17225 \mathrm{eV})=3.90247 \mathrm{eV}
\end{align*}
$$

The experimental dissociation energy of the $\mathrm{C}-\mathrm{C}$ bond of $\mathrm{CH}_{3} \mathrm{CH}_{3}$ is [6]:

$$
\begin{equation*}
E_{D}\left(\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}\right)=3.89690 \mathrm{eV} \tag{14.240}
\end{equation*}
$$

The results of the determination of bond parameters of $\mathrm{CH}_{3} \mathrm{CH}_{3}$ are given in Table 14.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

ETHYLENE MOLECULE ($\mathrm{CH}_{2} \mathrm{CH}_{2}$)

The ethylene molecule $\mathrm{CH}_{2} \mathrm{CH}_{2}$ is formed by the reaction of two dihydrogen carbide radicals:

$$
\begin{equation*}
\mathrm{CH}_{2}+\mathrm{CH}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{CH}_{2} \tag{14.241}
\end{equation*}
$$

$\mathrm{CH}_{2} \mathrm{CH}_{2}$ can be solved using the same principles as those used to solve the methane series $\mathrm{CH}_{n=1,2,3,4}$, wherein the 2 s and $2 p$ shells of each C hybridize to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $C 2 s p^{3}$ hybridized orbitals (HOs) to form a molecular orbital (MO) permits each participating hybridized orbital to decrease in radius and energy. First, two sets of two H atomic orbitals (AOs) combine with two sets of two carbon $2 s p^{3}$ HOs to form two dihydrogen carbide groups comprising a linear combination of four diatomic H_{2}-type MOs developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section. Then, the two CH_{2} groups bond by forming a H_{2} type MO between the remaining two $C 2 s p^{3} \mathrm{HOs}$ on each carbon atom.

FORCE BALANCE OF THE $C=C$-BOND MO OF ETHYLENE

$\mathrm{CH}_{2} \mathrm{CH}_{2}$ comprises a chemical bond between two CH_{2} radicals wherein each radical comprises two chemical bonds between carbon and hydrogen atoms. The solution of the parameters of CH_{2} is given in the Dihydrogen Carbide $\left(\mathrm{CH}_{2}\right)$ section. Each $\mathrm{C}-\mathrm{H}$ bond of CH_{2} having two spin-paired electrons, one from an initially unpaired electron of the carbon atom and the other from the hydrogen atom, comprises the linear combination of $75 \% H_{2}$-type ellipsoidal MO and $25 \% \mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$. The proton of the H atom and the nucleus of the C atom are along each internuclear axis and serve as the foci. As in the case of H_{2}, each of the two $C-H$-bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into $C 2 s p^{3} \mathrm{HO}$ for distances shorter than the radius of the $C 2 s p^{3}$ shell since it is energetically unfavorable. Thus, each MO surface comprises a prolate spheroid at the H proton that is continuous with the $C 2 s p^{3}$ shell at the C atom whose nucleus serves as the other focus. The electron configuration and the energy, $E\left(C, 2 s p^{3}\right)$, of the $C 2 s p^{3}$ shell is given by Eqs. (13.422) and (13.428), respectively. The central paramagnetic force due to spin of each $\mathrm{C}-\mathrm{H}$ bond is provided by the spin-pairing force of the CH_{2} MO that has the symmetry of an s orbital that superimposes with the $C 2 s p^{3}$ orbitals such that the corresponding angular momenta are unchanged.

Two CH_{2} radicals bond to form $\mathrm{CH}_{2} \mathrm{CH}_{2}$ by forming a MO between the two pairs of remaining $\mathrm{C} 2 \mathrm{sp}^{3}-\mathrm{HO}$ electrons of the two carbon atoms. However, in this case, the sharing of electrons between four $C 2 s p^{3}$ HOs to form a molecular orbital (MO) comprising four spin-paired electrons permits each $C 2 s p^{3} \mathrm{HO}$ to decrease in radius and energy.

As in the case of the $C-H$ bonds, the $C=C$-bond MO is a prolate-spheroidal-MO surface that cannot extend into $C 2 s p^{3} \mathrm{HO}$ for distances shorter than the radius of the $C 2 s p^{3}$ shell of each atom. Thus, the MO surface comprises a partial prolate spheroid in between the carbon nuclei and is continuous with the $C 2 s p^{3}$ shell at each C atom. The energy of the H_{2} type ellipsoidal MO is matched to that of the $C 2 s p^{3}$ shell. As in the case of previous examples of energy-matched MOs such as those of $\mathrm{OH}, \mathrm{NH}, \mathrm{CH}$, the $\mathrm{C}=\mathrm{O}$-bond MO of CO_{2}, and the $\mathrm{C}-\mathrm{C}$-bond MO of $\mathrm{CH}_{3} \mathrm{CH}_{3}$, the $\mathrm{C}=\mathrm{C}$-bond MO of ethylene must comprise 75% of a H_{2}-type ellipsoidal MO in order to match potential, kinetic, and orbital energy relationships. Thus, the $C=C$-bond MO must comprise a linear combination of two MOs wherein each comprises two $C 2 s p^{3} \mathrm{HOs}$ and 75% of a H_{2} type ellipsoidal MO divided between the $C 2 s p^{3} \mathrm{HOs}$:

$$
\begin{equation*}
2\left(2 \mathrm{C} 2 s p^{3}+0.75 \mathrm{H}_{2} \mathrm{MO}\right) \rightarrow \mathrm{C}=\mathrm{C} \text { - bond } \mathrm{MO} \tag{14.242}
\end{equation*}
$$

The linear combination of each H_{2}-type ellipsoidal MO with each $C 2 s p^{3} \mathrm{HO}$ further comprises an excess 25% charge-density contribution from each $C 2 s p^{3} \mathrm{HO}$ to the $C=C$-bond MO to achieve an energy minimum. The force balance of the $C=C$ bond MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.242) and the energy matching condition between the $\mathrm{C} 2 \mathrm{~s} p^{3}-\mathrm{HO}$ components of the MO.

Similarly, the energies of each $\mathrm{CH}_{2} \mathrm{MO}$ involve each $\mathrm{C} 2 s p^{3}$ and each H 1 s electron with the formation of each $\mathrm{C}-\mathrm{H}$ bond. The sum of the energies of the H_{2}-type ellipsoidal MOs is matched to that of the $C 2 s p^{3}$ shell. This energy is determined by the considering the effect of the donation of 25% electron density from the two pairs of $C 2 s p^{3} \mathrm{HOs}$ to the $C=C$-bond MO with the formation of the $C_{\text {ethylene }} 2 s p^{3}$ HOs each having a smaller radius. The $2 s p^{3}$ hybridized orbital arrangement is given by Eq. (14.140). The sum $E_{T}\left(C, 2 s p^{3}\right)$ of calculated energies of C, C^{+}, C^{2+}, and C^{3+} is given by Eq. (14.141). The radius $r_{2 s p^{3}}$ of the $C 2 s p^{3}$ shell is given by Eq. (14.142). The Coulombic energy $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ and the energy $E\left(C, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell are given by Eqs. (14.143) and (14.146), respectively.

Next, consider the formation of the $C=C$-bond MO of ethylene from two CH_{2} radicals, each having a $\mathrm{C} 2 s p^{3}$ electron with an energy given by Eq. (14.146). The total energy of the state is given by the sum over the four electrons. The sum $E_{T}\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ of calculated energies of $C 2 s p^{3}, C^{+}, C^{2+}$, and C^{3+} from Eqs. (10.123), (10.113-10.114), (10.68), and (10.48), respectively, is:

$$
\begin{align*}
E_{T}\left(C_{\text {ethylene }}, 2 s p^{3}\right) & =-\left(64.3921 \mathrm{eV}+48.3125 \mathrm{eV}+24.2762 \mathrm{eV}+E\left(C, 2 s p^{3}\right)\right) \\
& =-(64.3921 \mathrm{eV}+48.3125 \mathrm{eV}+24.2762 \mathrm{eV}+14.63489 \mathrm{eV}) \tag{14.243}\\
& =-151.61569 \mathrm{eV}
\end{align*}
$$

where $E\left(C, 2 s p^{3}\right)$ (Eq. (14.146)) is the sum of the energy of $C,-11.27671 \mathrm{eV}$, and the hybridization energy. The orbital-angular-momentum interactions also cancel such that the energy of the $E_{T}\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ is purely Coulombic.

The sharing of electrons between two pairs of $C 2 s p^{3}$ HOs to form a $C=C$-bond MO permits each participating hybridized orbital to decrease in radius and energy. In order to further satisfy the potential, kinetic, and orbital energy relationships, each participating $C 2 s p^{3} \mathrm{HO}$ donates an excess of 25% per bond of its electron density to the $C=C$-bond MO to form an energy minimum. By considering this electron redistribution in the ethylene molecule as well as the fact that the central field decreases by an integer for each successive electron of the shell, the radius $r_{\text {ethylenessp }}$ of the $C 2 s p^{3}$ shell of ethylene may be calculated from the Coulombic energy using Eq. (10.102).

$$
\begin{equation*}
r_{\text {ethylene } 2 s p^{3}}=\left(\sum_{n=2}^{5}(Z-n)-0.5\right) \frac{e^{2}}{8 \pi \varepsilon_{0}(e 151.61569 \mathrm{eV})}=\frac{9.5 e^{2}}{8 \pi \varepsilon_{0}(e 151.61569 \mathrm{eV})}=0.85252 a_{0} \tag{14.244}
\end{equation*}
$$

where $Z=6$ for carbon. Using Eqs. (10.102) and (14.244), the Coulombic energy $E_{\text {Coulomb }}\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is:

$$
\begin{equation*}
E_{\text {Coulomb }}\left(C_{\text {ethylene }}, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{\text {ethylene2sp }}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} 0.85252 a_{0}}=-15.95955 \mathrm{eV} \tag{14.245}
\end{equation*}
$$

During hybridization, the spin-paired $2 s$ electrons are promoted to the $C 2 s p^{3}$ shell as unpaired electrons. The energy for the promotion is the magnetic energy given by Eq. (13.152). Using Eqs. (14.145) and (14.245), the energy $E\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is

$$
\begin{equation*}
E\left(C_{\text {ethylene }}, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{\text {ethylene } 2 s p^{3}}}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(r_{3}\right)^{3}}=-15.95955 \mathrm{eV}+0.19086 \mathrm{eV}=-15.76868 \mathrm{eV} \tag{14.246}
\end{equation*}
$$

Thus, $E_{T}\left(C=C, 2 s p^{3}\right)$, the energy change of each $C 2 s p^{3}$ shell with the formation of the $C=C$-bond MO is given by the difference between Eq. (14.146) and Eq. (14.246):

$$
\begin{equation*}
E_{T}\left(C=C, 2 s p^{3}\right)=E\left(C_{\text {ethylene }}, 2 s p^{3}\right)-E\left(C, 2 s p^{3}\right)=-15.76868 \mathrm{eV}-(-14.63489 \mathrm{eV})=-1.13380 \mathrm{eV} \tag{14.247}
\end{equation*}
$$

As in the case of Cl_{2}, each H_{2}-type ellipsoidal MO comprises 75% of the $C=C$-bond MO shared between two $C 2 s p^{3}$ HOs corresponding to the electron charge density in Eq. (11.65) of $\frac{-0.75 e}{2}$. But, the additional 25% charge-density contribution to each bond of the $C=C$-bond MO causes the electron charge density in Eq. (11.65) to be $\frac{-e}{2}=-0.5 e$. The corresponding force constant k^{\prime} is given by Eq. (14.152). In addition, the energy matching at both $C 2 s p^{3}$ HOs further requires that k^{\prime} be corrected by the hybridization factor given by Eq. (13.430). Thus, the force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} in terms of the central force of the foci (Eq. (11.65)) is given by:

$$
\begin{equation*}
k^{\prime}=C_{\text {C2sp}}{ }^{3} \frac{(0.5) 2 e^{2}}{4 \pi \varepsilon_{0}}=0.91771 \frac{(0.5) 2 e^{2}}{4 \pi \varepsilon_{0}} \tag{14.248}
\end{equation*}
$$

The distance from the origin to each focus c^{\prime} is given by substitution of Eq. (14.248) into Eq. (13.60). Thus, the distance from the origin of the component of the double $C=C$-bond MO to each focus c^{\prime} is given by:

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{(0.91771) m_{e} e^{2} a}}=\sqrt{\frac{a a_{0}}{0.91771}} \tag{14.249}
\end{equation*}
$$

The internuclear distance from Eq. (14.249) is:

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{0.91771}} \tag{14.250}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal $C=C$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of the $C=C$-bond MO. From the energy equation and the relationship between the axes, the dimensions of the $C=C$-bond MO are solved.

The general equations for the energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} of the $C=C$-bond MO are the same as those of the $C H$ MO except that energy of the $C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}$ is used and the double-bond nature is considered. In the case of a single bond, the prolate spheroidal H_{2}-type MO transitions to the $C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}$ of each carbon, and the energy of the $C_{\text {ethylene }} 2 s p^{3}$ shell must remain constant and equal to the $E\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ given by Eq. (14.246). Thus, the energy $E\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ in Eq. (14.246) adds to that of the energies of the corresponding H_{2}-type ellipsoidal MO. The second bond of the double $C=C$-bond MO also transitions to the $C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}$ of each C. The energy of a second H_{2}-type ellipsoidal MO
adds to the first energy component, and the two bonds achieve an energy minimum as a linear combination of the two H_{2}-type ellipsoidal MOs each having the carbon nuclei as the foci. Each $C-C$-bond MO comprises the same $C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}$ shells of constant energy given by Eq. (14.246). As in the case of the water, NH_{2}, and ammonia molecules given by Eqs. (13.180), (13.320), and (13.372), respectively, the energy of the redundant shell is subtracted from the total energy of the linear combination of the σ MO. Thus, the total energy $E_{T}(C=C, \sigma)$ of the σ component of the $C=C$-bond MO is given by the sum of the energies of the two bonds each comprising the linear combination of the $C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}$ and the H_{2}-type ellipsoidal MO as given by Eq. (14.242) wherein the E_{T} terms add positively, the $E\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ terms cancel, and the energy matching condition between the components is provided by Eq. (14.248). Using Eqs. (13.431) and (14.246), $E_{T}(C=C, \sigma)$ is given by:

$$
\begin{align*}
E_{T}(C=C, \sigma) & =E_{T}+E\left(C_{\text {ethylene }}, 2 s p^{3}\right)-E\left(C_{\text {ethylene }}, 2 s p^{3}\right) \\
& =-\frac{2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right] \tag{14.251}
\end{align*}
$$

The total energy term of the double $C=C$-bond MO is given by the sum of the two H_{2}-type ellipsoidal MOs given by Eq. (11.212). To match this boundary condition, $E_{T}(C=C, \sigma)$ given by Eq. (14.251) is set equal to two times Eq. (13.75).

$$
\begin{equation*}
E_{T}(C=C, \sigma)=-\frac{2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]=-63.27074 \mathrm{eV} \tag{14.252}
\end{equation*}
$$

From the energy relationship given by Eq. (14.252) and the relationship between the axes given by Eqs. (14.249-14.250) and (13.62-13.63), the dimensions of the $C=C$-bond MO can be solved.

> Substitution of Eq. (14.249) into Eq. (14.252) gives:

$$
\begin{equation*}
\frac{2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{0.91771}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{0.91771}}}{a-\sqrt{\frac{a a_{0}}{0.91771}}}-1\right]=e 63.27074 \tag{14.253}
\end{equation*}
$$

The most convenient way to solve Eq. (14.253) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is:

$$
\begin{equation*}
a=1.47228 a_{0}=7.79098 \times 10^{-11} \mathrm{~m} \tag{14.254}
\end{equation*}
$$

Substitution of Eq. (14.254) into Eq. (14.249) gives

$$
\begin{equation*}
c^{\prime}=1.26661 a_{0}=6.70259 \times 10^{-11} \mathrm{~m} \tag{14.255}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.255) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.53321 a_{0}=1.34052 \times 10^{-10} \mathrm{~m} \tag{14.256}
\end{equation*}
$$

The experimental bond distance is [3]:

$$
\begin{equation*}
2 c^{\prime}=1.339 \times 10^{-10} \mathrm{~m} \tag{14.257}
\end{equation*}
$$

Substitution of Eqs. (14.254-14.255) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=0.75055 a_{0}=3.97173 \times 10^{-11} \mathrm{~m} \tag{14.258}
\end{equation*}
$$

Substitution of Eqs. (14.252-14.255) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.86030 \tag{14.259}
\end{equation*}
$$

The nucleus of the C atoms comprise the foci of the H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95) and (13.261-13.270). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{\text {ethylene2sp }}=0.85252 a_{0}$ is the radius of the $C_{\text {ethylene }} 2 s p^{3}$ shell. Substitution of Eqs. (14.254-14.255) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=129.84^{\circ} \tag{14.260}
\end{equation*}
$$

Then, the angle $\theta_{C=C_{\text {ethylene }} 2 s p^{3} H O}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C=C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}}=180^{\circ}-129.84^{\circ}=50.16^{\circ} \tag{14.261}
\end{equation*}
$$

as shown in Figure 14.8.

Figure 14.8. The cross section of the $C=C$-bond $\mathrm{MO}(\sigma \mathrm{MO})$ and one $C-H$-bond MO of ethylene showing the axes, angles, and point of intersection of each H_{2}-type ellipsoidal MO with the corresponding $C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}$. The continuation of each H_{2}-type-ellipsoidal-MO basis element of the $C=C$ bond and the $C-H$-bond beyond the intersection point with each $C_{\text {ethylene }} 2 s p^{3}$ shell and σ MO is shown as dashed since each only serves to solve the energy match with the $C_{\text {ethylene }} 2 s p^{3}$ shell and does not represent charge density. Similarly, the vertical dashed line only designates the parameters of each intersection point. The actual charge density is shown by the solid lines. Legend: a : semimajor axis, b : semiminor axis, c^{\prime} : internuclear distance, $d_{1}: d_{C=C_{\text {ethylene }}, H_{2} M O}, \quad \theta_{1}: \theta_{C=C_{\text {ethylene }} 2 s p^{3} H O}, \quad d_{2}: d_{C=C_{\text {ethylene }} 2 s p^{3} H O}, \quad R: r_{\text {ethylene } C 2 s p^{3}}, d_{3}: d_{C-H_{\text {ethylene }}, H_{2} M O}, \quad \theta_{2}: \theta_{C-H_{\text {ethylene }} 2 s p^{3} H O}$, and $d_{4}: d_{C-H_{\text {ethylene }} 2 s p^{3} \mathrm{HO}}$.

Consider the right-hand intersection point. The Cartesian \mathbf{i}-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j} coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{C=C_{\text {ethylene }}, H_{2} M O}$ satisfies the following relationship:

$$
\begin{equation*}
r_{\text {ethylene 2sp }}{ }^{\sin } \theta_{C=C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}}=0.85252 a_{0} \sin \theta_{C=C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}}=b \sin \theta_{C=C_{\text {ethylene }}, H_{2} M O} \tag{14.262}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{C=C_{\text {ethylene },}, H_{2} M O}=\sin ^{-1} \frac{0.85252 a_{0} \sin \theta_{C=C_{\text {ethylene } 2 s p^{3} \mathrm{HO}}}=\sin ^{-1} \frac{0.85252 a_{0} \sin 50.16^{\circ}}{b}}{b} \tag{14.263}
\end{equation*}
$$

with the use of Eq. (14.261). Substitution of Eq. (14.258) into Eq. (14.263) gives:

$$
\begin{equation*}
\theta_{C=C_{\text {ethylene }}, H_{2} M O}=60.70^{\circ} \tag{14.264}
\end{equation*}
$$

Then, the distance $d_{C=C_{\text {ethylene }}, H_{2} M O}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C=C_{\text {ethylene }}, H_{2} M O}=a \cos \theta_{C=C_{\text {ethylene }}, H_{2} M O} \tag{14.265}
\end{equation*}
$$

Substitution of Eqs. (14.254) and (14.264) into Eq. (14.265) gives:

$$
\begin{equation*}
d_{C=C_{\text {ethylene }}, H_{2} M O}=0.72040 a_{0}=3.81221 \times 10^{-11} \mathrm{~m} \tag{14.266}
\end{equation*}
$$

The distance $d_{C=C_{\text {ethylene }} 2 s P^{3} H O}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C=C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}}=c^{\prime}-d_{C=C_{\text {ehylene }}, \mathrm{H}_{2} \mathrm{MO}} \tag{14.267}
\end{equation*}
$$

Substitution of Eqs. (14.255) and (14.266) into Eq. (14.267) gives:

$$
\begin{equation*}
d_{C=C_{\text {ethylene }} 2 s p^{3} H O}=0.54620 a_{0}=2.89038 \times 10^{-11} \mathrm{~m} \tag{14.268}
\end{equation*}
$$

FORCE BALANCE OF THE CH_{2} MOS OF ETHYLENE

Each of the two equivalent CH_{2} MOs must comprise two $\mathrm{C}-\mathrm{H}$ bonds with each comprising 75% of a H_{2}-type ellipsoidal MO and a $C 2 s p^{3} \mathrm{HO}$ as given by Eq. (13.494):

$$
\begin{equation*}
2\left[1 \mathrm{C} 2 s p^{3}+0.75 \mathrm{H}_{2} \mathrm{MO}\right] \rightarrow \mathrm{CH}_{2} \mathrm{MO} \tag{14.269}
\end{equation*}
$$

The force balance of the $\mathrm{CH}_{2} \mathrm{MO}$ is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (13.494) and the energy matching condition between the hydrogen and $C 2 s p^{3} \mathrm{HO}$ components of the MO.

The force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} of each H_{2}-type-ellipsoidal-MO component of the CH_{2} MO in terms of the central force of the foci is given by Eq. (13.59). The distance from the origin of each $C-H$-bond MO to each focus c^{\prime} is given by Eq. (13.60). The internuclear distance is given by Eq. (13.61). The length of the semiminor axis of the prolate spheroidal $C-H$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of each $C-H$-bond MO. From the energy equation and the relationship between the axes, the dimensions of the $\mathrm{CH}_{2} \mathrm{MO}$ are solved.

Consider the formation of the double $C=C$-bond MO of ethylene from two CH_{2} radicals, each having a $\mathrm{C} 2 \mathrm{sp}{ }^{3}$ shell with an energy given by Eq. (14.146). The energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} are the same as those of the dihydrogen carbide radical, two times those of $C H$ corresponding to the two $C-H$ bonds, except that two times $E_{T}\left(C=C, 2 s p^{3}\right)$ is subtracted from $E_{T}\left(\mathrm{CH}_{2}\right)$ of Eq. (13.495). The subtraction of the energy change of the $C 2 s p^{3}$ shells with the formation of the $C=C$-bond MO matches the energy of the $C-H$-bond MOs to the decrease in the energy of the $C 2 s p^{3}$ HOs. Using Eqs. (13.495) and (14.247), $E_{T_{\text {enthlene }}}\left(\mathrm{CH}_{2}\right)$ is given by:

$$
\begin{equation*}
E_{T_{\text {ethylene }}}\left(C H_{2}\right)=E_{T}+E\left(C, 2 s p^{3}\right)-2 E_{T}\left(C=C, 2 s p^{3}\right)=\binom{-\frac{2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]}{-14.63489 \mathrm{eV}-(-2.26758 \mathrm{eV})} \tag{14.270}
\end{equation*}
$$

$E_{T_{\text {ethylene }}}\left(\mathrm{CH}_{2}\right)$ given by Eq. (14.270) is set equal to two times the energy of the H_{2}-type ellipsoidal MO minus the Coulombic energy of H given by Eq. (13.496):

$$
\begin{equation*}
E_{T_{\text {ethylene }}}\left(C H_{2}\right)=\binom{-\frac{2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]}{-14.63489 \mathrm{eV}-(-2.26758 \mathrm{eV})}=-49.66493 \mathrm{eV} \tag{14.271}
\end{equation*}
$$

From the energy relationship given by Eq. (14.271) and the relationship between the axes given by Eqs. (13.60-13.63), the dimensions of the $\mathrm{CH}_{2} \mathrm{MO}$ can be solved.

> Substitution of Eq. (13.60) into Eq. (14.271) gives:

$$
\begin{equation*}
\frac{2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right]=e 37.29762 \tag{14.272}
\end{equation*}
$$

The most convenient way to solve Eq. (14.272) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is:

$$
\begin{equation*}
a=1.56946 a_{0}=8.30521 \times 10^{-11} \mathrm{~m} \tag{14.273}
\end{equation*}
$$

Substitution of Eq. (14.273) into Eq. (13.60) gives:

$$
\begin{equation*}
c^{\prime}=1.02289 a_{0}=5.41290 \times 10^{-11} \mathrm{~m} \tag{14.274}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.274) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.04578 a_{0}=1.08258 \times 10^{-10} \mathrm{~m} \tag{14.275}
\end{equation*}
$$

The experimental bond distance is [3]:

$$
\begin{equation*}
2 c^{\prime}=1.087 \times 10^{-10} \mathrm{~m} \tag{14.276}
\end{equation*}
$$

Substitution of Eqs. (14.273-14.274) into Eq. (14.62) gives:

$$
\begin{equation*}
b=c=1.19033 a_{0}=6.29897 \times 10^{-11} \mathrm{~m} \tag{14.277}
\end{equation*}
$$

Substitution of Eqs. (14.273-14.274) into Eq. (14.63) gives:

$$
\begin{equation*}
e=0.65175 \tag{14.278}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the C atom comprise the foci of each H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95)
and (13.261-13.270). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{\text {ethylene2sp }}=0.85252 a_{0}$ is the radius of the $C_{\text {etthylene }} 2 s p^{3}$ shell. Substitution of Eqs. (14.273-14.274) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=84.81^{\circ} \tag{14.279}
\end{equation*}
$$

Then, the angle $\theta_{C-H_{\text {ethylene }} 2 s p^{3} H O}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C-H_{\text {ethylene }} 2 s p^{3} \mathrm{HO}}=180^{\circ}-84.81^{\circ}=95.19^{\circ} \tag{14.280}
\end{equation*}
$$

as shown in Figure 14.9.
Figure 14.9. The cross section of one $C-H$-bond MO of ethylene showing the axes, angles, and point of intersection of the H_{2}-type ellipsoidal MO with the $C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}$. The continuation of the H_{2}-type-ellipsoidal-MO basis element beyond the intersection point with the $C_{\text {ethylene }} 2 s p^{3}$ shell is shown as dashed since it only serves to solve the energy match with the $C_{\text {ethylene }} 2 s p^{3}$ shell and does not represent charge density. Similarly, the vertical dashed line only designates the parameters of the intersection point. The actual charge density is shown by the solid lines. Legend: a : semimajor axis, b : semiminor axis, c^{\prime} : internuclear distance, $d_{1}: d_{C-H_{\text {ethylene }}, H_{2} M O}, \theta_{1}: \theta_{C-H_{\text {ethylene }} 2 s P^{3} H O}, d_{2}: d_{C-H_{\text {ethylene }} 2 s p^{3} H O}$, and $R: r_{\text {ethylene } 2 s p^{3}}$.

The Cartesian i-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j}-coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{C-H_{\text {ethylene }}, H_{2} M O}$ satisfies the following relationship:

$$
\begin{equation*}
r_{\text {ethylene } 2 s p^{3}} \sin \theta_{C-H_{\text {ethylene }} 2 s p^{3} \mathrm{HO}}=0.85252 a_{0} \sin \theta_{C-H_{\text {ethylene }} 2 s p^{3} \mathrm{HO}}=b \sin \theta_{C-H, H_{2} \mathrm{MO}} \tag{14.281}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{C-H_{\text {ethylene } e}, H_{2} M O}=\sin ^{-1} \frac{0.85252 a_{0} \sin \theta_{C-H_{\text {ethylene }} 2 s p^{3} H O}}{b}=\sin ^{-1} \frac{0.85252 a_{0} \sin 95.19^{\circ}}{b} \tag{14.282}
\end{equation*}
$$

with the use of Eq. (14.280). Substitution of Eq. (14.277) into Eq. (14.282) gives:

$$
\begin{equation*}
\theta_{C-H_{\text {ethylene }}, H_{2} M O}=45.50^{\circ} \tag{14.283}
\end{equation*}
$$

Then, the distance $d_{C-H_{\text {ethylene }}, H_{2} M O}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C-\mathrm{H}_{\text {ethylene }}, \mathrm{H}_{2} M \mathrm{MO}}=a \cos \theta_{C-\mathrm{H}_{\text {ethylene }}, \mathrm{H}_{2} \mathrm{MO}} \tag{14.284}
\end{equation*}
$$

Substitution of Eqs. (14.273) and (14.283) into Eq. (14.284) gives:

$$
\begin{equation*}
d_{C-H_{\text {ethylene }}, H_{2} M O}=1.10002 a_{0}=5.82107 \times 10^{-11} \mathrm{~m} \tag{14.285}
\end{equation*}
$$

The distance $d_{C-H_{\text {ethylene }} 2 S p^{3} H O}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C-H_{\text {ethylene }} 2 s p^{3} \mathrm{HO}}=d_{C-\mathrm{H}_{\text {ethylene } e}, \mathrm{H}_{2} \mathrm{MO}}-\mathrm{C}^{\prime} \tag{14.286}
\end{equation*}
$$

Substitution of Eqs. (14.274) and (14.285) into Eq. (14.286) gives:

$$
\begin{equation*}
d_{C-H_{\text {ethylene }} 2 s p^{3} H O}=0.07713 a_{0}=4.08171 \times 10^{-12} \mathrm{~m} \tag{14.287}
\end{equation*}
$$

BOND ANGLE OF THE CH_{2} GROUPS

Each CH_{2} MO comprises a linear combination of two $\mathrm{C}-\mathrm{H}$-bond MOs. Each $\mathrm{C}-\mathrm{H}$-bond MO comprises the superposition of a H_{2}-type ellipsoidal MO and the $C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}$. A bond is also possible between the two H atoms of the $\mathrm{C}-\mathrm{H}$ bonds. Such $H-H$ bonding would decrease the $C-H$ bond strength since electron density would be shifted from the $C-H$ bonds to the $H-H$ bond. Thus, the bond angle between the two $C-H$ bonds is determined by the condition that the total energy of the H_{2}-type ellipsoidal MO between the terminal H atoms of the $C-H$ bonds is zero. From Eqs. (11.79) and (13.228), the distance from the origin to each focus of the $H-H$ ellipsoidal MO is:

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} 2 a}}=\sqrt{\frac{a a_{0}}{2}} \tag{14.288}
\end{equation*}
$$

The internuclear distance from Eq. (13.229) is:

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{2}} \tag{14.289}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal $H-H$ MO $b=c$ is given by Eq. (14.62).
The bond angle of the CH_{2} groups of ethane is derived by using the orbital composition and an energy matching factor as in the case with the dihydrogen carbide radical and the CH_{3} groups of ethane. Since the two H_{2}-type ellipsoidal MOs initially comprise 75% of the H electron density of H_{2} and the energy of each H_{2}-type ellipsoidal MO is matched to that of the $C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}$, the component energies and the total energy E_{T} of the $H-H$ bond are given by Eqs. (13.67-13.73) except that V_{e}, T, and V_{m} are corrected for the hybridization-energy-matching factor of 0.85252 . Hybridization with 25% electron donation to the $C=C$-bond gives rise to the $C_{\text {ethylene }} 2 s p^{3}$ HO-shell Coulombic energy $E_{\text {Coulomb }}\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ given by Eq. (14.245). The corresponding normalization factor for determining the zero of the total $H-H$ bond energy is given by the ratio of 15.95955 eV , the magnitude of $E_{\text {Coulomb }}\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ given by Eq. (14.245), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264). The hybridization energy factor $C_{\text {ethylenec2sp }{ }^{3} \mathrm{HO}}$ is:

$$
\begin{equation*}
C_{\text {ethylene } 2 \text { 2sp }}{ }^{\text {HO }}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} r_{\text {ethylene } 2 \text { sp }}{ }^{3}}}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} 0.85252 a_{0}}}=\frac{13.605804 \mathrm{eV}}{15.95955 \mathrm{eV}}=0.85252 \tag{14.290}
\end{equation*}
$$

Substitution of Eq. (14.290) into Eq. (13.233) or Eq. (14.195) with the hybridization factor of 0.85252 gives:

$$
0=\left[\begin{array}{l}
\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left[(0.85252)^{-1}\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}-1\right]\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}}{m_{e} c^{2}}}\right] \tag{14.291}\\
+\hbar \sqrt{\frac{\frac{0.75 e^{2}}{\frac{8 \pi \varepsilon_{0} a^{3}}{}}-\frac{e^{2}}{8 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{3}}}{0.5 m_{p}}}
\end{array}\right]
$$

From the energy relationship given by Eq. (14.291) and the relationship between the axes given by Eqs. (14.192-14.193) and (14.62-14.63), the dimensions of the $H-H$ MO can be solved.

The most convenient way to solve Eq. (14.291) is by the reiterative technique using a computer. The result to within the round-off error with five-significant figures is:

$$
\begin{equation*}
a=6.0400 a_{0}=3.1962 \times 10^{-10} \mathrm{~m} \tag{14.292}
\end{equation*}
$$

Substitution of Eq. (14.292) into Eq. (14.288) gives:

$$
\begin{equation*}
c^{\prime}=1.7378 a_{0}=9.1961 \times 10^{-11} \mathrm{~m} \tag{14.293}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.293) by two is:

$$
\begin{equation*}
2 c^{\prime}=3.4756 a_{0}=1.8392 \times 10^{-10} \mathrm{~m} \tag{14.294}
\end{equation*}
$$

Substitution of Eqs. (14.292-14.293) into Eq. (14.62) gives:

$$
\begin{equation*}
b=c=5.7846 a_{0}=3.0611 \times 10^{-10} \mathrm{~m} \tag{14.295}
\end{equation*}
$$

Substitution of Eqs. (14.292-14.293) into Eq. (14.63) gives:

$$
\begin{equation*}
e=0.2877 \tag{14.296}
\end{equation*}
$$

From, $2 c^{\prime}{ }_{H-H}$ (Eq. (14.294)), the distance between the two H atoms when the total energy of the corresponding MO is zero (Eq. (14.291)), and $2{C^{\prime}}_{C-H}$ (Eq. (14.275)), the internuclear distance of each $C-H$ bond, the corresponding bond angle can be determined from the law of cosines. Using, Eq. (13.242), the bond angle $\theta_{H C H}$ between the $C-H$ bonds is:

$$
\begin{equation*}
\theta_{\text {HCH }}=\cos ^{-1}\left(\frac{2(2.04578)^{2}-(3.4756)^{2}}{2(2.04578)^{2}}\right)=\cos ^{-1}(-0.44318)=116.31^{\circ} \tag{14.297}
\end{equation*}
$$

The experimental angle between the $C-H$ bonds is [11]:

$$
\begin{equation*}
\theta_{H C H}=116.6^{\circ} \tag{14.298}
\end{equation*}
$$

The $C=C$ bond is along the z-axis. Thus, based on the symmetry of the equivalent bonds, the bond angle $\theta_{C=C-H}$ between the internuclear axis of the $\mathrm{C}=\mathrm{C}$ bond and a H atom of the CH_{2} groups is given by:

$$
\begin{equation*}
\theta_{C=C-H}=\frac{\left(360^{\circ}-\theta_{H C H}\right)}{2} \tag{14.299}
\end{equation*}
$$

Substitution of Eq. (14.298) into Eq. (14.299) gives:

$$
\begin{equation*}
\theta_{C=C-H}=121.85^{\circ} \tag{14.300}
\end{equation*}
$$

The experimental angle between the $C=C-H$ bonds is [11]:

$$
\begin{equation*}
\theta_{C=C-H}=121.7^{\circ} \tag{14.301}
\end{equation*}
$$

and [3]

$$
\begin{equation*}
\theta_{C=C-H}=121.3^{\circ} \tag{14.302}
\end{equation*}
$$

The $C=C$ bond and H atoms of ethylene line in a plane, and rotation about the $C=C$ is not possible due to conservation of angular momentum in the two sets of spin-paired electrons of the double bond. The $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MO}$ shown in Figure 14.10 was rendered using these parameters.

The charge-density in the $C=C$-bond MO is increased by a factor of 0.25 per bond with the formation of the $C_{\text {ethylene }} 2 s p^{3}$ HOs each having a smaller radius. Using the orbital composition of the CH_{2} groups (Eq. (14.269)) and the $C=C$ bond MO (Eq. (14.242)), the radii of $C 1 s=0.17113 a_{0}$ (Eq. (10.51)) and $C_{\text {ethylene }} 2 s p^{3}=0.85252 a_{0}$ (Eq. (14.244)) shells, and the parameters of the $C=C$-bond (Eqs. (13.3-13.4), (14.254-14.256), and (14.258-14.268)), the parameters of the $C-H$-bond MOs (Eqs. (13.3-13.4), (14.273-14.275), and (14.277-14.287)), and the bond-angle parameters (Eqs. (14.297-14.302)), the charge-density of the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MO}$ comprising the linear combination of two sets of two $\mathrm{C}-\mathrm{H}$-bond MOs and a $\mathrm{C}=\mathrm{C}$-bond MO bridging the two CH_{2} groups is shown in Figure 14.10. Each $\mathrm{C}-\mathrm{H}$-bond MO comprises a H_{2}-type ellipsoidal MO and a $C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}$ having the dimensional diagram shown in Figure 14.9. The $\mathrm{C}=\mathrm{C}$-bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {ethylene }} 2 s p^{3} \mathrm{HOs}$ having the dimensional diagram shown in Figure 14.8.

Figure 14.10. $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MO}$ comprising the linear combination of two sets of two $\mathrm{C}-\mathrm{H}$-bond MOs and a $\mathrm{C}=\mathrm{C}$-bond MO. (A) Color scale, translucent view of the charge-density of the $C=C$-bond MO with the $C_{\text {ethylene }} 2 s p^{3}$ HOs shown transparently. The $C=C$-bond MO comprises a H_{2}-type ellipsoidal MO bridging two sets of two $C_{\text {ethylene }} 2 s p^{3}$ HOs. For each $C-H$ and the $C=C$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {ethylene }} 2 s p^{3} \mathrm{HO}$ shell, inner most Cls shell, and the nuclei (red, not to scale), are shown. (B)-(D) End-on view, translucent view high-lighting the $\mathrm{C}=\mathrm{C}$-bond MO , and opaque view of the charge-density of the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MO}$, respectively.

ENERGIES OF THE CH_{2} GROUPS

The energies of each CH_{2} group of ethylene are given by the substitution of the semiprincipal axes (Eqs. (14.273-14.274) and (14.277)) into the energy equations of dihydrogen carbide (Eqs. (13.510-13.514)), with the exception that two times $E_{T}\left(C=C, 2 s p^{3}\right)$ (Eq. (14.247)) is subtracted from $E_{T}\left(\mathrm{CH}_{2}\right)$ in Eq. (13.514).

$$
\begin{align*}
& V_{e}=2(0.91771) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-76.00757 \mathrm{eV} \tag{14.303}\\
& V_{p}=\frac{2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=26.60266 \mathrm{eV} \tag{14.304}\\
& T=2(0.91771) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=24.21459 \mathrm{eV} \tag{14.305}
\end{align*}
$$

$$
\begin{equation*}
V_{m}=2(0.91771) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-12.10730 \mathrm{eV} \tag{14.306}
\end{equation*}
$$

$$
E_{T_{\text {ethylene }}}\left(C H_{2}\right)=\binom{-\frac{2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]}{-14.63489 \mathrm{eV}-(-2.26758 \mathrm{eV})}=-49.66493 \mathrm{eV}
$$

where $E_{T_{\text {eltylene }}}\left(\mathrm{CH}_{2}\right)$ is given by Eq. (14.270) which is reiteratively matched to Eq. (13.496) within five-significant-figure round off error.

VIBRATION OF THE ${ }^{12} \mathrm{CH}_{2}$ GROUPS

The vibrational energy levels of CH_{2} in ethylene may be solved as two equivalent coupled harmonic oscillators by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERMS OF THE ${ }^{12} \mathrm{CH}_{2}$ GROUPS

The equations of the radiation reaction force of the CH_{2} groups in ethylene are the same as those of the dihydrogen carbide radical with the substitution of the CH_{2}-group parameters. Using Eq. (13.515), the angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=2.75685 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{14.308}
\end{equation*}
$$

where b is given by Eq. (14.277). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 2.75685 \times 10^{16} \mathrm{rad} / \mathrm{s}=18.14605 \mathrm{eV} \tag{14.309}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(H_{2}\right)$ (Eqs. (11.212) and (13.75)), the maximum total energy of each H_{2}-type MO, for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (14.309) for \bar{E}_{K} gives the Doppler energy of the electrons of each of the two bonds for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-31.63537 \mathrm{eV} \sqrt{\frac{2 e(18.14605 \mathrm{eV})}{m_{e} c^{2}}}=-0.26660 \mathrm{eV} \tag{14.310}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of CH_{2} due to the reentrant orbit of each bond in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (14.310) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of each $C-H$ bond. Using ω_{e} given by Eq. (13.458) for $\bar{E}_{\text {Kvib }}$ of the transition state having two independent bonds, $\bar{E}^{\prime}{ }_{\text {ethylene osc }}\left({ }^{12} \mathrm{CH}_{2}\right)$ per bond is:

$$
\begin{align*}
& \bar{E}_{\text {ethylene osc }}^{\prime}\left({ }^{12} \mathrm{CH}_{2}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{14.311}\\
& \bar{E}_{\text {ethylene osc }}^{\prime}\left({ }^{12} \mathrm{CH}_{2}\right)=-0.26660 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})=-0.08894 \mathrm{eV} \tag{14.312}
\end{align*}
$$

Given that the vibration and reentrant oscillation is for two $\mathrm{C}-\mathrm{H}$ bonds, $\overline{\mathrm{E}}_{\text {ethylene osc }}\left({ }^{12} \mathrm{CH}_{2}\right)$, is:

$$
\begin{equation*}
\bar{E}_{\text {ethylene osc }}\left({ }^{12} \mathrm{CH}_{2}\right)=2\left(\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)=2\left(-0.26660 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})\right)=-0.17788 \mathrm{eV} \tag{14.313}
\end{equation*}
$$

TOTAL AND DIFFERENCE ENERGIES OF THE ${ }^{12} \mathrm{CH}_{2}$ GROUPS

$E_{\text {ethyleneT }+ \text { osc }}\left({ }^{12} \mathrm{CH}_{2}\right)$, the total energy of each ${ }^{12} \mathrm{CH}_{2}$ group including the Doppler term, is given by the sum of $E_{T_{\text {ethlyene }}}\left(\mathrm{CH}_{2}\right)$ (Eq. (14.307)) and $\bar{E}_{\text {ethylene osc }}\left({ }^{12} \mathrm{CH}_{2}\right)$ given by Eq. (14.313):

$$
\begin{align*}
E_{\text {ethyleneT } T \text { osc }}\left({ }^{12} \mathrm{CH}_{2}\right) & =\binom{V_{e}+T+V_{m}+V_{p}+E\left(\mathrm{C}, 2 s p^{3}\right)}{-2 E_{T}\left(\mathrm{C}=\mathrm{C}, 2 s p^{3}\right)+\bar{E}_{\text {ethylene osc }}\left({ }^{12} \mathrm{CH}_{2}\right)} \tag{14.314}\\
& =E_{T_{\text {ethylene }}}\left(\mathrm{CH}_{2}\right)+\bar{E}_{\text {ethylene osc }}\left({ }^{12} \mathrm{CH}_{2}\right)
\end{align*}
$$

$$
\begin{align*}
E_{\text {ethyleneT +osc }}\left({ }^{12} \mathrm{CH}_{2}\right) & =\left\{\begin{array}{l}
\binom{\frac{-2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]}{-14.63489 \mathrm{eV}-(-2.26759 \mathrm{eV})} \\
\left.-2(31.63536831 \mathrm{eV}) \sqrt{\frac{\sqrt{\frac{3}{4} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}}{m_{e}}}-\frac{1}{m_{e} c^{2}} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{array}\right) \tag{14.315}\\
& =-49.66493 \mathrm{eV}-2\left(0.26660 \mathrm{eV}-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (14.313-14.315), the total energy of each ${ }^{12} \mathrm{CH}_{2}$ is:

$$
\begin{align*}
E_{\text {ethylene } T+\text { osc }}\left({ }^{12} \mathrm{CH}_{2}\right) & =-49.66493 \mathrm{eV}+\bar{E}_{\text {ethylene osc }}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =-49.66493 \mathrm{eV}-2\left(0.26660 \mathrm{eV}-\frac{1}{2}(0.35532 \mathrm{eV})\right) \tag{14.316}\\
& =-49.84282 \mathrm{eV}
\end{align*}
$$

where ω_{e} given by Eq. (13.458) was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The total energy for each dihydrogen carbide radical given by Eq. (13.523) is:

$$
\begin{aligned}
E_{\text {radicalT }+ \text { osc }}\left({ }^{12} \mathrm{CH}_{2}\right) & =-49.66493 \mathrm{eV}+\bar{E}_{\text {radicalosc }}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =-49.66493 \mathrm{eV}-2\left(0.25493 \mathrm{eV}-\frac{1}{2}(0.35532 \mathrm{eV})\right) \\
& =-49.81948 \mathrm{eV}
\end{aligned}
$$

The difference in energy between the CH_{2} groups and the dihydrogen carbide radical $\Delta E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}_{2}\right)$ is given by two times the difference between Eqs. (14.316) and (14.317):

$$
\begin{align*}
\Delta E_{T+o s c}\left({ }^{12} \mathrm{CH}_{2}\right) & =2\left(E_{\text {ethyleneT }+ \text { osc }}\left({ }^{12} \mathrm{CH}_{2}\right)-E_{\text {radicalT +osc }}\left({ }^{12} \mathrm{CH}_{2}\right)\right) \\
& =2(-49.84282 \mathrm{eV}-(-49.81948 \mathrm{eV})) \tag{14.318}\\
& =-0.04667 \mathrm{eV}
\end{align*}
$$

SUM OF THE ENERGIES OF THE $C=C \quad \sigma$ MO AND THE HOS OF ETHYLENE

The energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} of the $C=C$-bond MO are the same as those of the $C H$ MO except that each term is multiplied by two corresponding to the double bond and the energy term corresponding to the $C_{\text {ethylene }} 2 s p^{3}$ HOs in the equation for E_{T} is zero. The energies of each $C=C$-bond MO are given by the substitution of the semiprincipal axes (Eqs. (14.254-14.255) and (14.258)) into two times the energy equations of the CH MO (Eqs. (13.449-13.453)), with the exception that zero replaces $E\left(C, 2 s p^{3}\right)$ in Eq. (13.453).

$$
\begin{align*}
& V_{e}=2(0.91771) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-102.08992 \mathrm{eV} \tag{14.319}\\
& V_{p}=2 \frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=21.48386 \mathrm{eV} \tag{14.320}\\
& T=2(0.91771) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=34.67062 \mathrm{eV} \tag{14.321}\\
& V_{m}=2(0.91771) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-17.33531 \mathrm{eV} \tag{14.322}\\
& E_{T}(C=C, \sigma)=-\frac{2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]=-63.27075 \mathrm{eV} \tag{14.323}
\end{align*}
$$

where $E_{T}(C=C, \sigma)$ is the total energy of the $C=C \quad \sigma$ MO given by Eq. (14.251) which is reiteratively matched to two times Eq. (13.75) within five-significant-figure round off error.

The total energy of the $C=C$-bond MO, $E_{T}(C=C)$, is given by the sum of two times $E_{T}\left(C=C, 2 s p^{3}\right)$, the energy change of each $C 2 s p^{3}$ shell due to the decrease in radius with the formation of the $C=C$-bond MO (Eq. (14.247)), and $E_{T}(C=C, \sigma)$, the σ MO contribution given by Eq. (14.252).

$$
\begin{align*}
E_{T}(C=C) & =2 E_{T}\left(C=C, 2 s p^{3}\right)+E_{T}(C=C, \sigma) \\
& =\left(\left(-\frac{2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]\right)\right) \tag{14.324}\\
& =2(-1.13380 \mathrm{eV})+(-63.27074 \mathrm{eV}) \\
& =-65.53833 \mathrm{eV}
\end{align*}
$$

VIBRATION OF ETHYLENE

The vibrational energy levels of $\mathrm{CH}_{2} \mathrm{CH}_{2}$ may be solved as two sets of two equivalent coupled harmonic oscillators with a bridging harmonic oscillator by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERMS OF THE $C=C$-BOND MO OF ETHYLENE

The equations of the radiation reaction force of the $C=C$-bond MO are given by Eq. (13.142), except the force-constant factor is $(0.93172) 0.5$ based on the force constant k^{\prime} of Eq. (14.248), and the $C=C$-bond MO parameters are used. The angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{0.91771 \frac{(0.5) e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=4.30680 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{14.325}
\end{equation*}
$$

where b is given by Eq. (14.258). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 4.30680 \times 10^{16} \mathrm{rad} / \mathrm{s}=28.34813 \mathrm{eV} \tag{14.326}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}(C=C) / 2$ (Eq. (14.324)) for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (14.326) for \bar{E}_{K} gives the Doppler energy of the electrons of each of the two bonds for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-32.76916 \mathrm{eV} \sqrt{\frac{2 e(28.34813 \mathrm{eV})}{m_{e} c^{2}}}=-0.34517 \mathrm{eV} \tag{14.327}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of the $C=C$-bond MO due to the reentrant orbit of the bond in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (14.327) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of the $C=C$ bond. Using the experimental $C=C E_{\text {vib }}\left(v_{3}\right)$ of $1443.5 \mathrm{~cm}^{-1}(0.17897 \mathrm{eV})$ [12] for $\bar{E}_{\text {Kvib }}$ of the transition state having two bonds, $\bar{E}_{\text {osc }}^{\prime}(C=C, \sigma)$ per bond is:

$$
\begin{align*}
& \bar{E}_{o s c}^{\prime}(C=C, \sigma)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{14.328}\\
& \bar{E}_{o s c}^{\prime}(C=C, \sigma)=-0.34517 \mathrm{eV}+\frac{1}{2}(0.17897 \mathrm{eV})=-0.25568 \mathrm{eV} \tag{14.329}
\end{align*}
$$

Given that the vibration and reentrant oscillation is for two $C-C$ bonds of the $C=C$ double bond, $\bar{E}_{\text {ehylene osc }}(C=C, \sigma)$, is:

$$
\begin{equation*}
\bar{E}_{\text {ethylene osc }}(C=C, \sigma)=2\left(\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)=2\left(-0.34517 \mathrm{eV}+\frac{1}{2}(0.17897 \mathrm{eV})\right)=-0.51136 \mathrm{eV} \tag{14.330}
\end{equation*}
$$

TOTAL ENERGIES OF THE $C=C$-BOND MO OF ETHYLENE

$E_{T+\text { osc }}(C=C)$, the total energy of the $C=C$-bond MO including the Doppler term, is given by the sum of $E_{T}(C=C)$ (Eq. (14.324)) and $\bar{E}_{\text {ethylene osc }}(C=C, \sigma)$ given by Eq. (14.330).

$$
\begin{align*}
& E_{T+\text { osc }}(C=C)=V_{e}+T+V_{m}+V_{p}+2 E_{T}\left(C=C, 2 s p^{3}\right)+\bar{E}_{\text {ethylene osc }}(C=C, \sigma) \\
&=E_{T}(C=C, \sigma)+2 E_{T}\left(C=C, 2 s p^{3}\right)+\bar{E}_{\text {ethylene osc }}(C=C, \sigma) \tag{14.331}\\
&=E_{T}(C=C)+\bar{E}_{\text {ethylene osc }}(C=C, \sigma) \\
& E_{T+\text { osc }}(C=C)=\left(\frac{-2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]+2 E_{T}\left(C=C, 2 s p^{3}\right)\right) \tag{14.332}\\
&\left(1+(2)\left(\frac{1}{2}\right) \sqrt{\left.\frac{2 \hbar \sqrt{\frac{(0.91771) \frac{1}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}}{m_{e}}\right)+2\left(\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)}\right\} \\
&=-65.53833 \mathrm{eV}-2\left(0.34517 e V-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (14.330-14.332), the total energy of the $C=C$-bond MO is:

$$
\begin{align*}
E_{T+\text { osc }}(C=C) & =-63.27074 \mathrm{eV}+2 E_{T}\left(C=C, 2 s p^{3}\right)+\bar{E}_{\text {ethylene osc }}(C=C, \sigma) \\
& =-63.27074 \mathrm{eV}+2(-1.13380 \mathrm{eV})-2\left(0.34517 \mathrm{eV}-\frac{1}{2}(0.17897 \mathrm{eV})\right) \tag{14.333}\\
& =-66.04969 \mathrm{eV}
\end{align*}
$$

where the experimental $E_{\text {vib }}$ was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.

BOND ENERGY OF THE $C=C$ BOND OF ETHYLENE

The dissociation energy of the $C=C$ bond of $\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{E}_{\mathrm{D}}\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)$, is given by four times $\mathrm{E}\left(\mathrm{C}, 2 \mathrm{sp}{ }^{3}\right)$ (Eq. (14.146)), the initial energy of each $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$ of each CH_{2} radical that forms the double $\mathrm{C}=\mathrm{C}$ bond, minus the sum of $\Delta E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}_{2}\right)$ (Eq. (14.318)), the energy change going from the dihydrogen carbide radicals to the CH_{2} groups of ethylene, and $E_{T+\text { osc }}(C=C)$ (Eq. (14.333)). Thus, the dissociation energy of the $\mathrm{C}=\mathrm{C}$ bond of $\mathrm{CH}_{2} \mathrm{CH}_{2}$, is:

$$
\begin{align*}
E_{D}\left(H_{2} C=C H_{2}\right) & =4\left(E\left(C, 2 s p^{3}\right)\right)-\left(\Delta E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}_{2}\right)+E_{T+\text { osc }}(C=C)\right) \\
& =4(-14.63489 \mathrm{eV})-(-0.04667 \mathrm{eV}-66.04969 \mathrm{eV}) \tag{14.334}\\
& =4(-14.63489 \mathrm{eV})-(-66.09636 \mathrm{eV}) \\
& =7.55681 \mathrm{eV}
\end{align*}
$$

The experimental dissociation energy of the $\mathrm{C}=\mathrm{C}$ bond of $\mathrm{CH}_{2} \mathrm{CH}_{2}$ is [7]:

$$
\begin{equation*}
E_{D}\left(\mathrm{H}_{2} \mathrm{C}-\mathrm{CH}_{2}\right)=7.5969 \mathrm{eV} \tag{14.335}
\end{equation*}
$$

The results of the determination of bond parameters of $\mathrm{CH}_{2} \mathrm{CH}_{2}$ are given in Table 14.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

ACETYLENE MOLECULE (CHCH)

The acetylene molecule CHCH is formed by the reaction of two hydrogen carbide radicals:
$\mathrm{CH}+\mathrm{CH} \rightarrow \mathrm{CHCH}$
$C H C H$ can be solved using the same principles as those used to solve the methane series $\mathrm{CH}_{n=1,2,3,4}$ as well as ethane, wherein the $2 s$ and $2 p$ shells of each C hybridize to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $\mathrm{C} 2 s p^{3}$ hybridized orbitals (HOs) to form a molecular orbital (MO) permits each participating hybridized orbital to decrease in radius and energy. First, two sets of one H atomic orbital (AO) combine with two sets of one carbon $2 s p^{3} \mathrm{HO}$ to form two hydrogen carbide groups comprising a linear combination of two diatomic H_{2}-type MOs developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section. Then, the two CH groups bond by forming a H_{2}-type MO between the remaining three $\mathrm{C} 2 \mathrm{sp}^{3} \mathrm{HOs}$ on each carbon atom.

FORCE BALANCE OF THE $C \equiv C$-BOND MO OF ACETYLENE

CHCH comprises a chemical bond between two CH radicals wherein each radical comprises a chemical bond between a carbon and a hydrogen atom. The solution of the parameters of CH is given in the Hydrogen Carbide (CH) section. The $C-H$ bond of $C H$ having two spin-paired electrons, one from an initially unpaired electron of the carbon atom and the other from the hydrogen atom, comprises the linear combination of $75 \% H_{2}$-type ellipsoidal MO and $25 \% \mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$. The proton of the H atom and the nucleus of the C atom are along each internuclear axis and serve as the foci. As in the case of H_{2}, the $C-H$-bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into $C 2 s p^{3} \mathrm{HO}$ for distances shorter than the radius of the $C 2 s p^{3}$ shell since it is energetically unfavorable. Thus, the MO surface comprises a prolate spheroid at the H proton that is continuous with the $C 2 s p^{3}$ shell at the C atom whose nucleus serves as the other focus. The electron configuration and the energy, $E\left(C, 2 s p^{3}\right)$, of the $C 2 s p^{3}$ shell is given by Eqs. (13.422) and (13.428), respectively. The central paramagnetic force due to spin of the $C-H$ bond is provided by the spin-pairing force of the $C H$ MO that has the symmetry of an s orbital that superimposes with the $C 2 s p^{3}$ orbitals such that the corresponding angular momenta are unchanged.

Two $C H$ radicals bond to form $C H C H$ by forming a MO between the two pairs of three remaining $C 2 s p^{3}-\mathrm{HO}$ electrons of the two carbon atoms. However, in this case, the sharing of electrons between two $C 2 s p^{3}$ HOs to form a MO comprising six spin-paired electrons permits each $C 2 s p^{3} \mathrm{HO}$ to decrease in radius and energy.

As in the case of the $C-H$ bonds, the $C \equiv C$-bond MO is a prolate-spheroidal-MO surface that cannot extend into $C 2 s p^{3} \mathrm{HO}$ for distances shorter than the radius of the $C 2 s p^{3}$ shell of each atom. Thus, the MO surface comprises a partial prolate spheroid in between the carbon nuclei and is continuous with the $C 2 s p^{3}$ shell at each C atom. The energy of the H_{2} type ellipsoidal MO is matched to that of the $C 2 s p^{3}$ shell. As in the case of previous examples of energy-matched MOs such as those of $\mathrm{OH}, \mathrm{NH}, \mathrm{CH}$, the $\mathrm{C}=\mathrm{O}$-bond MO of CO_{2}, the $\mathrm{C}-\mathrm{C}$-bond MO of $\mathrm{CH}_{3} \mathrm{CH}_{3}$, and the $\mathrm{C}=\mathrm{C}$-bond MO of $\mathrm{CH}_{2} \mathrm{CH}_{2}$, the $\mathrm{C} \equiv \mathrm{C}$-bond MO of acetylene must comprise 75% of a H_{2}-type ellipsoidal MO in order to match potential, kinetic, and orbital energy relationships. Thus, the $C \equiv C$-bond MO must comprise a linear combination of three MOs wherein each comprises two $\mathrm{C} 2 s p^{3} \mathrm{HOs}$ and 75% of a H_{2}-type ellipsoidal MO divided between the $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HOs}$:

$$
\begin{equation*}
3\left(2 \mathrm{C} 2 s p^{3}+0.75 \mathrm{H}_{2} \mathrm{MO}\right) \rightarrow C \equiv C \text { - bond } \mathrm{MO} \tag{14.337}
\end{equation*}
$$

The linear combination of each H_{2}-type ellipsoidal MO with each $C 2 s p^{3} \mathrm{HO}$ further comprises an excess 25% charge-density contribution from each $C 2 s p^{3} \mathrm{HO}$ to the $C \equiv C$-bond MO to achieve an energy minimum. The force balance of the $C \equiv C$ bond MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.337) and the energy matching condition between the $C 2 s p^{3}-\mathrm{HO}$ components of the MO.

Similarly, the energies of each $C H$ MO involve each $C 2 s p^{3}$ and each $H 1$ s electron with the formation of each $C-H$ bond. The sum of the energies of the H_{2}-type ellipsoidal MOs is matched to that of the $C 2 s p^{3}$ shell. This energy is determined by the considering the effect of the donation of 25% electron density from the three pairs of $C 2 s p^{3}$ HOs to the $C \equiv C$-bond MO with the formation of the $C_{\text {acetylene }} 2 s p^{3}$ HOs each having a smaller radius. The $2 s p^{3}$ hybridized orbital arrangement is given by Eq. (14.140). The sum $E_{T}\left(C, 2 s p^{3}\right)$ of calculated energies of C, C^{+}, C^{2+}, and C^{3+} is given by Eq. (14.141). The radius $r_{2 s p^{3}}$ of the $C 2 s p^{3}$ shell is given by Eq. (14.142). The Coulombic energy $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ and the energy $E\left(C, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell are given by Eqs. (14.143) and (14.146), respectively.

Next, consider the formation of the $C \equiv C$-bond MO of acetylene from two $C H$ radicals, each having a $C 2 s p^{3}$ electron with an energy given by Eq. (14.146). The total energy of the state is given by the sum over the four electrons. The sum $E_{T}\left(C_{\text {acetylene }}, 2 s p^{3}\right)$ of calculated energies of $C 2 s p^{3}, C^{+}, C^{2+}$, and C^{3+} from Eqs. (10.123), (10.113-10.114), (10.68), and (10.48), respectively, is

$$
\begin{align*}
E_{T}\left(C_{\text {aceitlene }}, 2 s p^{3}\right) & =-\left(64.3921 \mathrm{eV}+48.3125 \mathrm{eV}+24.2762 \mathrm{eV}+E\left(C, 2 s p^{3}\right)\right) \\
& =-(64.3921 \mathrm{eV}+48.3125 \mathrm{eV}+24.2762 \mathrm{eV}+14.63489 \mathrm{eV}) \tag{14.338}\\
& =-151.61569 \mathrm{eV}
\end{align*}
$$

where $E\left(C, 2 s p^{3}\right)$ (Eq. (14.146)) is the sum of the energy of $C,-11.27671 \mathrm{eV}$, and the hybridization energy. The orbital-angular-momentum interactions also cancel such that the energy of the $E_{T}\left(C_{\text {acetylene }}, 2 s p^{3}\right)$ is purely Coulombic.

The sharing of electrons between three pairs of $C 2 s p^{3}$ HOs to form a $C \equiv C$-bond MO permits each participating hybridized orbital to decrease in radius and energy. In order to further satisfy the potential, kinetic, and orbital energy relationships, each participating $C 2 s p^{3} \mathrm{HO}$ donates an excess of 25% of its electron density to the $C \equiv C$-bond MO to form an energy minimum. By considering this electron redistribution in the acetylene molecule as well as the fact that the central field decreases by an integer for each successive electron of the shell, the radius $r_{\text {acetylene2sp }}$ of the $C 2 s p^{3}$ shell of acetylene may be calculated from the Coulombic energy using Eq. (10.102).

$$
\begin{equation*}
r_{\text {acetylene2sp }^{3}}=\left(\sum_{n=2}^{5}(Z-n)-0.75\right) \frac{e^{2}}{8 \pi \varepsilon_{0}(e 151.61569 \mathrm{eV})}=\frac{9.25 e^{2}}{8 \pi \varepsilon_{0}(e 151.61569 \mathrm{eV})}=0.83008 a_{0} \tag{14.339}
\end{equation*}
$$

where $Z=6$ for carbon. Using Eqs. (10.102) and (14.339), the Coulombic energy $E_{\text {Coulomb }}\left(C_{\text {acetylene }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is:

$$
\begin{equation*}
E_{\text {Coulomb }}\left(C_{\text {acetylene }}, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{\text {acetylene2sp }}{ }^{3}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} 0.83008 a_{0}}=-16.39089 \mathrm{eV} \tag{14.340}
\end{equation*}
$$

During hybridization, the spin-paired $2 s$ electrons are promoted to the $C 2 s p^{3}$ shell as unpaired electrons. The energy for the promotion is the magnetic energy given by Eq. (13.152). Using Eqs. (14.145) and (14.340), the energy $E\left(C_{\text {acetylene }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is

$$
\begin{equation*}
E\left(C_{\text {acetylene }}, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{\text {acetylene } 2 p^{3}}}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(r_{3}\right)^{3}}=-16.39089 \mathrm{eV}+0.19086 \mathrm{eV}=-16.20002 \mathrm{eV} \tag{14.341}
\end{equation*}
$$

Thus, $E_{T}\left(C \equiv C, 2 s p^{3}\right)$, the energy change of each $C 2 s p^{3}$ shell with the formation of the $C \equiv C$-bond MO is given by the difference between Eq. (14.146) and Eq. (14.341):

$$
\begin{equation*}
E_{T}\left(C \equiv C, 2 s p^{3}\right)=E\left(C_{\text {acetylene }}, 2 s p^{3}\right)-E\left(C, 2 s p^{3}\right)=-16.20002 \mathrm{eV}-(-14.63489 \mathrm{eV})=-1.56513 \mathrm{eV} \tag{14.342}
\end{equation*}
$$

As in the case of Cl_{2}, each H_{2}-type ellipsoidal MO comprises 75% of the $C \equiv C$-bond MO shared between two $C 2 s p^{3}$ HOs corresponding to the electron charge density in Eq. (11.65) of $\frac{-0.75 e}{2}$. But, the additional 25% charge-density contribution to each bond of the $C \equiv C$-bond MO causes the electron charge density in Eq. (11.65) to be $\frac{-e}{2}=-0.5 e$. The corresponding force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} in terms of the central force of the foci (Eq. (11.65)) is given by Eq. (14.152). The distance from the origin to each focus c^{\prime} is given by Eq. (14.153). The internuclear distance is given by Eq. (14.154). The length of the semiminor axis of the prolate spheroidal $C \equiv C$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of the $C \equiv C$-bond MO. From the energy equation and the relationship between the axes, the dimensions of the $C \equiv C$-bond MO are solved.

The general equations for the energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} of the $C \equiv C$-bond MO are the same as those of the $C H$ MO except that energy of the $C_{\text {acetylene }} 2 s p^{3} \mathrm{HO}$ is used and the triple-bond nature is considered. In the case of a single bond, the prolate spheroidal H_{2}-type MO transitions to the $C_{\text {acetylene }} 2 s p^{3} \mathrm{HO}$ of each carbon, and the energy of the $C_{\text {acetylene }} 2 s p^{3}$ shell must remain constant and equal to the $E\left(C_{\text {acetylene }}, 2 s p^{3}\right)$ given by Eq. (14.391). Thus, the energy $E\left(C_{\text {acetylene }}, 2 s p^{3}\right)$ in Eq. (14.391) adds to that of the energies of the corresponding H_{2}-type ellipsoidal MO. The second and third bonds of the triple $C \equiv C$-bond MO also transition to each $C_{\text {acetylene }} 2 s p^{3} \mathrm{HO}$ of each C. The energy of a second and a third
H_{2}-type ellipsoidal MO adds to the first energy component, and the three bonds achieve an energy minimum as a linear combination of the three H_{2}-type ellipsoidal MOs each having the carbon nuclei as the foci. Each $C-C$-bond MO comprises the same $C_{\text {acetylene }} 2 s p^{3} \mathrm{HO}$ shells of constant energy given by Eq. (14.391). As in the case of the water, NH_{2}, ammonia, and ethylene molecules given by Eqs. (13.180), (13.320), (13.372), and (14.251), respectively, the energy of the redundant shell is subtracted from the total energy of the linear combination of the σ MO. Thus, the total energy $E_{T}(C \equiv C, \sigma)$ of the σ component of the $C \equiv C$-bond MO is given by the sum of the energies of the three bonds each comprising the linear combination of the $C_{\text {acetylene }} 2 s p^{3} \mathrm{HO}$ and the H_{2}-type ellipsoidal MO as given by Eq. (14.337) wherein the E_{T} terms add positively and the $E\left(C_{\text {aceetylene }}, 2 s p^{3}\right)$ term is positive due to the sum over a negative and two positive terms. Using Eqs. (13.431) and (14.341), $E_{T}(C \equiv C, \sigma)$ is given by:

$$
\begin{align*}
E_{T}(C \equiv C, \sigma) & =E_{T}+E\left(C_{\text {aceetylene }}, 2 s p^{3}\right)-E\left(C_{\text {acetylene }}, 2 s p^{3}\right)-E\left(C_{\text {acetylene }}, 2 s p^{3}\right) \\
& =-\frac{3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-E\left(C_{\text {acetylene }}, 2 s p^{3}\right) \tag{14.343}\\
& =-\frac{3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]+16.20002 \mathrm{eV}
\end{align*}
$$

The total energy term of the triple $C \equiv C$-bond MO is given by the sum of the three H_{2}-type ellipsoidal MOs given by Eq. (11.212). To match this boundary condition, $E_{T}(C \equiv C, \sigma)$ given by Eq. (14.343) is set equal to three times Eq. (13.75):

$$
\begin{equation*}
E_{T}(C \equiv C, \sigma)=-\frac{3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]+16.20002 \mathrm{eV}=-94.90610 \mathrm{eV} \tag{14.344}
\end{equation*}
$$

From the energy relationship given by Eq. (14.344) and the relationship between the axes given by Eqs. (14.153-14.154) and (13.62-13.63), the dimensions of the $C \equiv C$-bond MO can be solved.

Substitution of Eq. (14.153) into Eq. (14.344) gives:

$$
\begin{equation*}
\frac{3 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a a_{0}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{a a_{0}}}{a-\sqrt{a a_{0}}}-1\right]=e 111.10613 \tag{14.345}
\end{equation*}
$$

The most convenient way to solve Eq. (14.345) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is

$$
\begin{equation*}
a=1.28714 a_{0}=6.81122 \times 10^{-11} \mathrm{~m} \tag{14.346}
\end{equation*}
$$

Substitution of Eq. (14.346) into Eq. (14.153) gives:

$$
\begin{equation*}
c^{\prime}=1.13452 a_{0}=6.00362 \times 10^{-11} \mathrm{~m} \tag{14.347}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.347) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.26904 a_{0}=1.20072 \times 10^{-10} \mathrm{~m} \tag{14.348}
\end{equation*}
$$

The experimental bond distance is [3]:

$$
\begin{equation*}
2 c^{\prime}=1.203 \times 10^{-10} \mathrm{~m} \tag{14.349}
\end{equation*}
$$

Substitution of Eqs. (14.346-14.347) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=0.60793 a_{0}=3.21704 \times 10^{-11} \mathrm{~m} \tag{14.350}
\end{equation*}
$$

Substitution of Eqs. (14.346-14.347) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.88143 \tag{14.351}
\end{equation*}
$$

The nucleus of the C atoms comprise the foci of the H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $C_{\text {acetylene }} 2 s p^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95) and (13.261-13.270). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{\text {acetylene2sp }}=0.83008 a_{0}$ is the radius of the $C_{\text {acetylene }} 2 s p^{3}$ shell. Substitution of Eqs. (14.346-14.347) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=137.91^{\circ} \tag{14.352}
\end{equation*}
$$

Then, the angle $\theta_{C=C_{\text {acetylene }} 2 s p^{3} \mathrm{HO}}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C \equiv C_{\text {acetylene }} 2 s p^{3} H O}=180^{\circ}-137.91^{\circ}=42.09^{\circ} \tag{14.353}
\end{equation*}
$$

as shown in Figure 14.11.

Figure 14.11. The cross section of the $C \equiv C$-bond $\mathrm{MO}(\sigma \mathrm{MO})$ and one $C-H$-bond MO of acetylene showing the axes, angles, and point of intersection of each H_{2}-type ellipsoidal MO with the corresponding $C_{\text {acetylene }} 2 s p^{3}$ HO. The continuation of each H_{2}-type-ellipsoidal-MO basis element of the $C \equiv C$ bond and the $C-H$-bond beyond the intersection point with each $C_{\text {acetylene }} 2 s p^{3}$ shell and σ MO is shown as dashed since each only serves to solve the energy match with the $C_{\text {acetylene }} 2 s p^{3}$ shell and does not represent charge density. Similarly, the vertical dashed line only designates the parameters of each intersection point. The actual charge density is shown by the solid lines. Legend: a : semimajor axis, $b:$ semiminor axis, c^{\prime} : internuclear distance, $\quad d_{1}: d_{C=C_{\text {acetylene }, ~}^{2} 2}, \quad \theta_{1}: \theta_{C=C_{\text {acetylene }} 2 s p^{3} H O}, \quad d_{2}: d_{C=C_{\text {acetylene }} 2 s p^{3} H O}, \quad R: r_{\text {acetylene } 2 s p^{3}}, \quad \theta_{2}: \theta_{C-H_{\text {acetylene }} 2 s p^{3} H O}$, $d_{3}: d_{C-H_{\text {acetylene }}, H_{2} \mathrm{MO}}$, and $d_{4}: d_{C-H_{\text {acetylene }} 2 s p^{3} \mathrm{HO}}$.

Consider the right-hand intersection point. The Cartesian \mathbf{i}-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j} coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{C \equiv C_{\text {acetylene }, H_{2} M O}}$ satisfies the following relationship:
such that

$$
\begin{equation*}
\theta_{C \equiv C_{\text {acetylene }}, H_{2} \mathrm{MO}}=\sin ^{-1} \frac{0.83008 a_{0} \sin \theta_{C \equiv C_{\text {acetylene }} 2 s p^{3} H O}}{b}=\sin ^{-1} \frac{0.83008 a_{0} \sin 42.09^{\circ}}{b} \tag{14.355}
\end{equation*}
$$

with the use of Eq. (14.353). Substitution of Eq. (14.350) into Eq. (14.355) gives:

$$
\begin{equation*}
\theta_{C \equiv C_{\text {acetylene },}, H_{2} M O}=66.24^{\circ} \tag{14.356}
\end{equation*}
$$

Then, the distance $d_{C \equiv C_{\text {acetylene }, H_{2} M O}}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C \equiv C_{\text {acetylene } e}, H_{2} M O}=a \cos \theta_{C \equiv C_{\text {acetylene }}, H_{2} M O} \tag{14.357}
\end{equation*}
$$

Substitution of Eqs. (14.346) and (14.356) into Eq. (14.357) gives:

$$
\begin{equation*}
d_{C \equiv C_{\text {acetylene }}, H_{2} M O}=0.51853 a_{0}=2.74396 \times 10^{-11} \mathrm{~m} \tag{14.358}
\end{equation*}
$$

The distance $d_{C=C_{\text {acetylene }} 2 S p^{3} H O}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C \equiv C_{\text {acetylene }} 2 s p^{3} \mathrm{HO}}=c^{\prime}-d_{C \equiv C_{\text {acetylene }}, \mathrm{H}_{2} \mathrm{MO}} \tag{14.359}
\end{equation*}
$$

Substitution of Eqs. (14.347) and (14.358) into Eq. (14.359) gives:

$$
\begin{equation*}
d_{C \equiv C_{\text {acetylene }} 2 s p^{3} \mathrm{HO}}=0.61599 a_{0}=3.25966 \times 10^{-11} \mathrm{~m} \tag{14.360}
\end{equation*}
$$

FORCE BALANCE OF THE CH MOS OF ACETYLENE

The $C-H$ bond of each of the two equivalent CH MOs must comprise 75% of a H_{2}-type ellipsoidal MO and a $C 2 s p^{3} \mathrm{HO}$ as given by Eq. (13.429):
$1 \mathrm{C} 2 \mathrm{sp}^{3}+0.75 \mathrm{H}_{2} \mathrm{MO} \rightarrow \mathrm{CH} \mathrm{MO}$
(14.361)

The force balance of the CH MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (13.429) and the energy matching condition between the hydrogen and $C 2 s p^{3} \mathrm{HO}$ components of the MO.

The force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} of the each H_{2}-type-ellipsoidal-MO component of the CH MO in terms of the central force of the foci is given by Eq. (13.59). The distance from the origin of each $C-H$-bond MO to each focus c^{\prime} is given by Eq. (13.60). The internuclear distance is given by Eq. (13.61). The length of the semiminor axis of the prolate spheroidal $C-H$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of each $C-H-$ bond MO. From the energy equation and the relationship between the axes, the dimensions of the $C H \mathrm{MO}$ are solved.

Consider the formation of the triple $C \equiv C$-bond MO of acetylene from two $C H$ radicals, each having a $C 2 s p^{3}$ shell with an energy given by Eq. (14.146). The energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} are the same as those of the hydrogen carbide radical, except that two times $E_{T}\left(C \equiv C, 2 s p^{3}\right)$ is subtracted from $E_{T}(C H)$ of Eq. (13.495). The subtraction of the energy change of the $C 2 s p^{3}$ shells with the formation of the $C \equiv C$-bond MO matches the energy of the $C-H$-bond MOs to the decrease in the energy of the $C 2 s p^{3}$ HOs. Using Eqs. (13.495) and (14.342), $E_{T_{\text {oceevlene }}}(C H)$ is given by:

$$
\begin{equation*}
E_{T_{\text {ceevelene }}}(C H)=E_{T}+E\left(C, 2 s p^{3}\right)-2 E_{T}\left(C \equiv C, 2 s p^{3}\right)=\binom{-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]}{-14.63489 \mathrm{eV}-(-3.13026 \mathrm{eV})} \tag{14.362}
\end{equation*}
$$

$E_{T_{\text {oceylene }}}(C H)$ given by Eq. (14.362) is set equal to the energy of the H_{2}-type ellipsoidal MO given by Eq. (13.75).

$$
\begin{equation*}
E_{T_{\text {oceevenene }}}(C H)=\binom{-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]}{-14.63489 \mathrm{eV}-(-3.13026 \mathrm{eV})}=-31.63537 \mathrm{eV} \tag{14.363}
\end{equation*}
$$

From the energy relationship given by Eq. (14.363) and the relationship between the axes given by Eqs. (13.60-13.63), the dimensions of the $C H$ MO can be solved.

Substitution of Eq. (13.60) into Eq. (14.363) gives:

$$
\begin{equation*}
\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right]=e 20.13074 \tag{14.364}
\end{equation*}
$$

The most convenient way to solve Eq. (14.364) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is

$$
\begin{equation*}
a=1.48719 a_{0}=7.86987 \times 10^{-11} \mathrm{~m} \tag{14.365}
\end{equation*}
$$

Substitution of Eq. (14.365) into Eq. (14.60) gives:

$$
\begin{equation*}
c^{\prime}=0.99572 a_{0}=5.26913 \times 10^{-11} \mathrm{~m} \tag{14.366}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.366) by two is:

$$
\begin{equation*}
2 c^{\prime}=1.99144 a_{0}=1.05383 \times 10^{-10} \mathrm{~m} \tag{14.367}
\end{equation*}
$$

The experimental bond distance is [3]:

$$
\begin{equation*}
2 c^{\prime}=1.060 \times 10^{-10} \mathrm{~m} \tag{14.368}
\end{equation*}
$$

Substitution of Eqs. (14.365-14.366) into Eq. (14.62) gives:

$$
\begin{equation*}
b=c=1.10466 a_{0}=5.84561 \times 10^{-11} \mathrm{~m} \tag{14.369}
\end{equation*}
$$

Substitution of Eqs. (14.365-14.366) into Eq. (14.63) gives:

$$
\begin{equation*}
e=0.66953 \tag{14.370}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the C atom comprise the foci of each H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $C_{\text {acetylene }} 2 s p^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95) and (13.261-13.270). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{\text {acetylene2sp }}=0.83008 a_{0}$ is the radius of the $C_{\text {acetylene }} 2 s p^{3}$ shell. Substitution of Eqs. (14.365-14.366) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=90.99^{\circ} \tag{14.371}
\end{equation*}
$$

Then, the angle $\theta_{C-H_{\text {acetylene }} 2 s p^{3} \mathrm{HO}}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is

$$
\begin{equation*}
\theta_{C-H_{\text {acetylene }} 2 s p^{3} \mathrm{HO}}=180^{\circ}-90.99^{\circ}=89.01^{\circ} \tag{14.372}
\end{equation*}
$$

as shown in Figure 14.11. The Cartesian \mathbf{i}-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j}-coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{C-H_{\text {acetylene }}, \mathrm{H}_{2} \mathrm{MO}}$ satisfies the following relationship:

$$
\begin{equation*}
r_{\text {acetylene2sp }^{3}} \sin \theta_{C-H_{\text {acetylene }} 2 s p^{3} H O}=0.83008 a_{0} \sin \theta_{C-H_{\text {acetylene }} 2 s p^{3} H O}=b \sin \theta_{C-H_{\text {acetylene }}, H_{2} M O} \tag{14.373}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{C-H_{\text {acetylene } e}, H_{2} M O}=\sin ^{-1} \frac{0.83008 a_{0} \sin \theta_{C-H_{\text {acetylene }} 2 s p^{3} H O}}{b}=\sin ^{-1} \frac{0.83008 a_{0} \sin 89.01^{\circ}}{b} \tag{14.374}
\end{equation*}
$$

with the use of Eq. (14.372). Substitution of Eq. (14.369) into Eq. (14.374) gives:

$$
\begin{equation*}
\theta_{C-H_{\text {acetylene }}, \mathrm{H}_{2} M O}=48.71^{\circ} \tag{14.375}
\end{equation*}
$$

Then, the distance $d_{C-H_{\text {acetylene }}, H_{2} M O}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by

$$
\begin{equation*}
d_{C-H_{\text {acetylene }}, \mathrm{H}_{2} \mathrm{MO}}=a \cos \theta_{C-\mathrm{H}_{\text {acetylene } e}, \mathrm{H}_{2} \mathrm{MO}} \tag{14.376}
\end{equation*}
$$

Substitution of Eqs. (14.365) and (14.375) into Eq. (14.376) gives:

$$
\begin{equation*}
d_{3}: d_{C-H_{\text {acetylene }}, H_{2} M O}=0.98145 a_{0}=5.19359 \times 10^{-11} \mathrm{~m} \tag{14.377}
\end{equation*}
$$

The distance $d_{C-H_{\text {acetylene }} 2 S p^{3} H O}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals is given by

$$
\begin{equation*}
d_{C-H_{\text {acetylene }} 2 s p^{3} \mathrm{HO}}=c^{\prime}-d_{C-\mathrm{H}_{\text {acetylene }}, \mathrm{H}_{2} \mathrm{MO}} \tag{14.378}
\end{equation*}
$$

Substitution of Eqs. (14.366) and (14.377) into Eq. (14.378) gives:

$$
\begin{equation*}
d_{4}: d_{C-H_{\text {acetylene }} 2 s p^{3} \mathrm{HO}}=0.01427 a_{0}=7.55329 \times 10^{-13} \mathrm{~m} \tag{14.379}
\end{equation*}
$$

with the $C \equiv C$ triple bond along one axis, the minimum energy is obtained with the $C-H$-bond MO at a maximum separation. Thus, the bond angle $\theta_{C \equiv C-H}$ between the internuclear axis of the $C \equiv C$ bond and the H atom of the $C H$ groups is

$$
\begin{equation*}
\theta_{C \equiv C-H}=180^{\circ} \tag{14.380}
\end{equation*}
$$

The experimental angle between the $C \equiv C-H$ bonds is [6]:

$$
\begin{equation*}
\theta_{C \equiv C-H}=180^{\circ} \tag{14.381}
\end{equation*}
$$

The CHCH MO shown in Figure 14.12 was rendered using these parameters.
The charge-density in the $C \equiv C$-bond MO is increased by a factor of 0.25 per bond with the formation of the $C_{\text {acetylene }} 2 s p^{3}$ HOs each having a smaller radius. Using the orbital composition of the $C H$ groups (Eq. (14.361)) and the $C \equiv C$ bond MO (Eq. (14.337)), the radii of $C 1 s=0.17113 a_{0}$ (Eq. (10.51)) and $C_{\text {acetylene }} 2 s p^{3}=0.83008 a_{0}$ (Eq. (14.339)) shells, and the parameters of the $C \equiv C$-bond (Eqs. (13.3-13.4), (14.346-14.348), and (14.350-14.360)), the parameters of the $C-H$-bond MOs (Eqs. (13.3-13.4), (14.365-14.367), and (14.369-14.379)), and the bond-angle parameter (Eqs. (14.380-14.381)), the charge-density of the $C H C H$ MO comprising the linear combination of two $C-H$-bond MOs and a $C \equiv C$-bond MO bridging the two CH groups is shown in Figure 14.12. Each $\mathrm{C}-\mathrm{H}$-bond MO comprises a H_{2}-type ellipsoidal MO and a $C_{\text {aceetylene }} 2 s p^{3}$ HO having the dimensional diagram shown in Figure 14.11. The $C \equiv C$-bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {acetylene }} 2 s p^{3}$ HOs having the dimensional diagram also shown in Figure 14.11.

Figure 14.12. $C H C H$ MO comprising the linear combination of two $C-H$-bond MOs and a $C \equiv C$-bond MO. (A) Color scale, translucent view of the charge-density of the $C \equiv C$-bond MO with the $C_{\text {acetylene }} 2 s p^{3}$ HOs shown transparently. The $C \equiv C$-bond MO comprises a H_{2}-type ellipsoidal MO bridging two sets of three $C_{\text {acetylene }} 2 s p^{3}$ HOs. For each $C-H$ and the $C \equiv C$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {acetylene }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {aceetylene }} 2 s p^{3} \mathrm{HO}$ shell, inner most $C 1 s$ shell, and the nuclei (red, not to scale), are shown. (B)-(D) Translucent view high-lighting the $C \equiv C$ bond MO and end-on view of the charge-density of the CHCH MO , respectively.

ENERGIES OF THE CH GROUPS

The energies of each $C H$ group of acetylene are given by the substitution of the semiprincipal axes (Eqs. (14.365-14.366) and (14.369)) into the energy equations of hydrogen carbide (Eqs. (13.510-13.514)), with the exception that two times $E_{T}\left(C \equiv C, 2 s p^{3}\right)$ (Eq. (14.342)) is subtracted from $E_{T}(C H)$ in Eq. (13.514).

$$
\begin{align*}
& V_{e}=(0.91771) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-40.62396 \mathrm{eV} \tag{14.382}\\
& V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=13.66428 \mathrm{eV} \tag{14.383}\\
& T=(0.91771) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=13.65796 \mathrm{eV} \tag{14.384}\\
& V_{m}=(0.91771) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-6.82898 \mathrm{eV} \tag{14.385}\\
& E_{T_{\text {aceevelen }}}(C H)=\left(\begin{array}{l}
\left.-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]\right)=-31.63532 \mathrm{eV} \\
-14.63489 \mathrm{eV}-(-3.13026 \mathrm{eV})
\end{array}\right. \tag{14.386}
\end{align*}
$$

where $E_{T_{\text {acevelene }}}(\mathrm{CH})$ is given by Eq. (14.362) which is reiteratively matched to Eq. (13.75) within five-significant-figure round off error.

VIBRATION OF THE ${ }^{12} \mathrm{CH}$ GROUPS

The vibrational energy levels of CH in acetylene may be solved using the methods given in the Vibration and Rotation of CH section.

THE DOPPLER ENERGY TERMS OF THE ${ }^{12} \mathrm{CH}$ GROUPS

The equations of the radiation reaction force of the $C H$ groups in acetylene are the same as those of the hydrogen carbide radical with the substitution of the CH -group parameters. Using Eq. (13.477), the angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=3.08370 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{14.387}
\end{equation*}
$$

where b is given by Eq. (14.369). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)):

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 3.08370 \times 10^{16} \mathrm{rad} / \mathrm{s}=20.29747 \mathrm{eV} \tag{14.388}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(H_{2}\right)$ (Eqs. (11.212) and (13.75)), the maximum total energy of each H_{2}-type MO, for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (14.388) for \bar{E}_{K} gives the Doppler energy of the electrons for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-31.63537 \mathrm{eV} \sqrt{\frac{2 e(20.29747 \mathrm{eV})}{m_{e} c^{2}}}=-0.28197 \mathrm{eV} \tag{14.389}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of $C H$ due to the reentrant orbit of each bond in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{o s c}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (14.389) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of each $C-H$ bond. Using ω_{e} given by Eq. (13.458) for $\bar{E}_{\text {Kvib }}$ of the transition state, $\bar{E}_{\text {acetylene osc }}\left({ }^{12} \mathrm{CH}\right)$ is:

$$
\begin{align*}
& \bar{E}_{\text {acetylene osc }}\left({ }^{12} \mathrm{CH}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{14.390}\\
& \bar{E}_{\text {acetylene osc }}\left({ }^{12} \mathrm{CH}\right)=-0.28197 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})=-0.10430 \mathrm{eV} \tag{14.391}
\end{align*}
$$

TOTAL AND DIFFERENCE ENERGIES OF THE ${ }^{12} \mathrm{CH}$ GROUPS

$E_{\text {acetyleneT+osc }}\left({ }^{12} \mathrm{CH}\right)$, the total energy of each ${ }^{12} \mathrm{CH}$ group including the Doppler term, is given by the sum of $E_{T_{\text {aceellere }}}(\mathrm{CH})$ (Eq. (14.386)) and $\bar{E}_{\text {acetylene osc }}\left({ }^{12} \mathrm{CH}\right)$ given by Eq. (14.391).

$$
\begin{align*}
& E_{\text {acetyleneT+osc }}\left({ }^{12} \mathrm{CH}\right)=\binom{V_{e}+T+V_{m}+V_{p}+E\left(C, 2 s p^{3}\right)}{-2 E_{T}\left(C \equiv C, 2 s p^{3}\right)+\bar{E}_{\text {acetylene osc }}\left({ }^{12} \mathrm{CH}\right)} \tag{14.392}\\
& =E_{T_{\text {cecylyene }}}(\mathrm{CH})+\bar{E}_{\text {acetylene osc }}\left({ }^{12} \mathrm{CH}\right) \\
& E_{\text {acetyleneT +osc }}\left({ }^{12} \mathrm{CH}\right)=\left\{\begin{array}{l}
\binom{\left(\frac{-e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]\right.}{-14.63489 \mathrm{eV}-(-3.13026 \mathrm{eV})} \\
-\left((31.63536831 \mathrm{eV}) \sqrt{\frac{2 \hbar \sqrt{\frac{3}{\frac{3}{4} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}} m_{e}}{m_{e} c^{2}}}-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{array}\right\} \tag{14.393}\\
& =-31.63537 \mathrm{eV}-\left(0.28197 \mathrm{eV}-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (14.391-14.393), the total energy of each ${ }^{12} \mathrm{CH}$ is:

$$
\begin{align*}
E_{\text {acetyleneT+osc }}\left({ }^{12} \mathrm{CH}\right) & =-31.63537 \mathrm{eV}+\bar{E}_{\text {acetylene osc }}\left({ }^{12} \mathrm{CH}\right) \\
& =-31.63537 \mathrm{eV}-\left(0.28197 \mathrm{eV}-\frac{1}{2}(0.35532 \mathrm{eV})\right)=-31.73967 \mathrm{eV} \tag{14.394}
\end{align*}
$$

where ω_{e} given by Eq. (13.458) was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The total energy for each hydrogen carbide radical given by Eq. (13.485) is:

$$
\begin{align*}
E_{\text {radicalT +osc }}\left({ }^{12} \mathrm{CH}\right) & =-31.63537 \mathrm{eV}+\bar{E}_{\text {radicalosc }}\left({ }^{12} \mathrm{CH}\right) \\
& =-31.63537 \mathrm{eV}-0.24966 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV}) \tag{14.395}\\
& =-31.70737 \mathrm{eV}
\end{align*}
$$

The difference in energy between the $C H$ groups and the hydrogen carbide radical $\Delta E_{T+o s c}\left({ }^{12} \mathrm{CH}\right)$ is given by two times the difference between Eqs. (14.394) and (14.395).

$$
\begin{align*}
\Delta E_{T+\text { osc }}\left({ }^{12} \mathrm{CH}\right) & =2\left(E_{\text {acetyleneT +osc }}\left({ }^{12} \mathrm{CH}\right)-E_{\text {radicalT +osc }}\left({ }^{12} \mathrm{CH}\right)\right) \\
& =2(-31.73967 \mathrm{eV}-(-31.70737 \mathrm{eV})) \tag{14.396}\\
& =-0.06460 \mathrm{eV}
\end{align*}
$$

SUM OF THE ENERGIES OF THE $C \equiv C \sigma$ MO AND THE HOS OF ACETYLENE

The energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} of the $C \equiv C$-bond MO are the same as those of the $C H$ MO except that each term is multiplied by three corresponding to the triple bond and the energy term corresponding to the $C_{\text {acetylene }} 2 s p^{3}$ HOs in the equation for E_{T} is positive. The energies of each $C \equiv C$-bond MO are given by the substitution of the semiprincipal axes (Eqs. (14.346-14.347) and (14.350)) into three times the energy equations of the $C H$ MO (Eqs. (13.449-13.453)), with the exception that $E\left(C, 2 s p^{3}\right)$ in Eq. (13.453) is positive and given by Eq. (14.341).

$$
\begin{align*}
& V_{e}=3(0.91771) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-182.53826 \mathrm{eV} \tag{14.397}\\
& V_{p}=3 \frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=35.97770 \mathrm{eV} \tag{14.398}\\
& T=3(0.91771) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=70.90876 \mathrm{eV} \tag{14.399}\\
& V_{m}=3(0.91771) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-35.45438 \mathrm{eV} \tag{14.400}\\
& E_{T}(C \equiv C, \sigma)=-\frac{3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]+16.20002 \mathrm{eV}=-94.90616 \mathrm{eV} \tag{14.401}
\end{align*}
$$

where $E_{T}(C \equiv C, \sigma)$ is the total energy of the $C \equiv C \quad \sigma \mathrm{MO}$ given by Eq. (14.343) which is reiteratively matched to three times Eq. (13.75) within five-significant-figure round off error.

The total energy of the $C \equiv C$-bond MO, $E_{T}(C \equiv C)$, is given by the sum of two times $E_{T}\left(C \equiv C, 2 s p^{3}\right)$, the energy change of each $C 2 s p^{3}$ shell due to the decrease in radius with the formation of the $C \equiv C$-bond MO (Eq. (14.342)), and $E_{T}(C \equiv C, \sigma)$, the σ MO contribution given by Eq. (14.344).

$$
\begin{align*}
E_{T}(C \equiv C) & =2 E_{T}\left(C \equiv C, 2 s p^{3}\right)+E_{T}(C \equiv C, \sigma) \\
& =\left(\left(-\frac{2 e^{2}}{8 \pi \varepsilon_{0} C^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]+16.20002 \mathrm{eV}\right)\right) \tag{14.402}\\
& =2(-1.56513 \mathrm{eV})+(-94.90610 \mathrm{eV}) \\
& =-98.03637 \mathrm{eV}
\end{align*}
$$

VIBRATION OF ACETYLENE

The vibrational energy levels of $C H C H$ may be solved as two equivalent coupled harmonic oscillators with a bridging harmonic oscillator by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERMS OF THE $C \equiv C$-BOND MO OF ACETYLENE

The equations of the radiation reaction force of the $C \equiv C$-bond MO are given by Eq. (14.231), except that the $C \equiv C$-bond MO parameters are used. The angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.5 e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}=2.00186 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{14.403}
\end{equation*}
$$

where a is given by Eq. (14.346). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 2.00186 \times 10^{16} \mathrm{rad} / \mathrm{s}=13.17659 \mathrm{eV} \tag{14.404}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}(C \equiv C) / 3$ (Eq. (14.402)) for $E_{h \nu}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (14.404) for \bar{E}_{K} gives the Doppler energy of the electrons of each of the three bonds for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h v} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-32.67879 \mathrm{eV} \sqrt{\frac{2 e(13.17659 \mathrm{eV})}{m_{e} c^{2}}}=-0.23468 \mathrm{eV} \tag{14.405}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of the $C \equiv C$-bond MO due to the reentrant orbit of the bond in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (14.405) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of the $C \equiv C$ bond. Using the experimental $C \equiv C E_{\text {vib }}\left(v_{3}\right)$ of $3374 \mathrm{~cm}^{-1}(0.41833 \mathrm{eV})$ [6] for $\bar{E}_{\text {Kvib }}$ of the transition state having three bonds, $\bar{E}^{\prime}{ }_{\text {osc }}(C \equiv C, \sigma)$ per bond is:

$$
\begin{align*}
& \bar{E}_{\text {osc }}^{\prime}(C \equiv C, \sigma)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{14.406}\\
& \bar{E}_{\text {osc }}^{\prime}(C \equiv C, \sigma)=-0.23468 \mathrm{eV}+\frac{1}{2}(0.41833 \mathrm{eV})=-0.02551 \mathrm{eV} \tag{14.407}
\end{align*}
$$

Given that the vibration and reentrant oscillation is for three $C-C$ bonds of the $C \equiv C$ triple bond, $\bar{E}_{\text {acetylene osc }}(C \equiv C, \sigma)$, is:

$$
\begin{align*}
\bar{E}_{\text {acetylene osc }}(C \equiv C, \sigma) & =3\left(\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right) \\
& =3\left(-0.23468 \mathrm{eV}+\frac{1}{2}(0.41833 \mathrm{eV})\right) \tag{14.408}\\
& =-0.07654 \mathrm{eV}
\end{align*}
$$

TOTAL ENERGIES OF THE $C \equiv C$-BOND MO OF ACETYLENE

$E_{T+o s c}(C \equiv C)$, the total energy of the $C \equiv C$-bond MO including the Doppler term, is given by the sum of $E_{T}(C \equiv C)$ (Eq. (14.402)) and $\bar{E}_{\text {aceetylene osc }}(C \equiv C, \sigma)$ given by Eq. (14.408).

$$
\begin{align*}
& E_{T+\text { osc }}(C \equiv C)=\binom{V_{e}+T+V_{m}+V_{p}-E\left(C_{\text {acetylene }}, 2 s p^{3}\right)}{+2 E_{T}\left(C \equiv C, 2 s p^{3}\right)+\bar{E}_{\text {acetylene osc }}(C \equiv C, \sigma)} \\
& =E_{T}(C \equiv C, \sigma)+2 E_{T}\left(C \equiv C, 2 s p^{3}\right)+\bar{E}_{\text {acetylene osc }}(C \equiv C, \sigma) \tag{14.409}\\
& =E_{T}(C \equiv C)+\bar{E}_{\text {acetylene osc }}(C \equiv C, \sigma) \\
& E_{T+\text { osc }}(C \equiv C)=\left\{\begin{array}{l}
\binom{\frac{-3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]}{-E\left(C_{\text {acetylene }}, 2 s p^{3}\right)+2 E_{T}\left(C \equiv C, 2 s p^{3}\right)} \\
\binom{1+(3)\left(\frac{1}{3}\right) \sqrt{\frac{\frac{1}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}}{m_{e} c^{2}}+3\left(\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{array}\right\} \tag{14.410}\\
& =-98.03637 \mathrm{eV}-3\left(0.23468 \mathrm{eV}-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (14.408-14.410), the total energy of the $C \equiv C$-bond MO is:

$$
\begin{aligned}
E_{T+\text { osc }}(C \equiv C) & =-94.90610 \mathrm{eV}+2 E_{T}\left(C \equiv C, 2 s p^{3}\right)+\bar{E}_{\text {acetylene osc }}(C \equiv C, \sigma) \\
& =-94.90610 \mathrm{eV}+2(-1.56513 \mathrm{eV})-3\left(0.23468 \mathrm{eV}-\frac{1}{2}(0.41833 \mathrm{eV})\right) \\
& =-98.11291 \mathrm{eV}
\end{aligned}
$$

where the experimental $E_{\text {vib }}$ was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.

BOND ENERGY OF THE $C \equiv C$ BOND OF ACETYLENE

As in the case of ${ }^{12} \mathrm{CH}_{2}$ and ${ }^{14} \mathrm{NH}$, the dissociation of the $C \equiv C$ bond forms three unpaired electrons per central atom wherein the magnetic moments cannot all cancel. The energy per atom E (magnetic) is given by Eq. (13.524). Thus, the dissociation energy of the $C \equiv C$ bond of $C H C H, E_{D}(H C \equiv C H)$, is given by six times $E\left(C, 2 s p^{3}\right)$ (Eq. (14.146)), the initial energy of each $C 2 s p^{3} \mathrm{HO}$ of each $C H$ radical that forms the triple $C \equiv C$ bond, minus the sum of $\Delta E_{T+\text { osc }}\left({ }^{12} C H\right)$ (Eq. (14.396)), the energy change going from the hydrogen carbide radicals to the $C H$ groups of acetylene, $E_{T+o s c}(C \equiv C)$ (Eq. (14.411)), and two times E (magnetic) given by Eq. (13.524). Thus, the dissociation energy of the $C \equiv C$ bond of $C H C H$, is:

$$
\begin{align*}
E_{D}(H C \equiv C H) & =6\left(E\left(C, 2 s p^{3}\right)\right)-\left(\Delta E_{T+\text { osc }}\left({ }^{12} C H\right)+E_{T+\text { osc }}(C \equiv C)+2 E(\text { magnetic })\right) \\
& =6(-14.63489 \mathrm{eV})-(-0.06460 \mathrm{eV}-98.11291 \mathrm{eV}+0.29606 \mathrm{eV}) \tag{14.412}\\
& =6(-14.63489 \mathrm{eV})-(-97.88145 \mathrm{eV})=10.07212 \mathrm{eV}
\end{align*}
$$

The experimental dissociation energy of the $C \equiv C$ bond of CHCH is [7]:

$$
\begin{equation*}
E_{D}(H C \equiv C H)=10.0014 \mathrm{eV} \tag{14.413}
\end{equation*}
$$

The results of the determination of bond parameters of CHCH are given in Table 14.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

BENZENE MOLECULE ($\mathrm{C}_{6} \mathrm{H}_{6}$)

The benzene molecule $\mathrm{C}_{6} \mathrm{H}_{6}$ is formed by the reaction of three ethylene molecules:

$$
\begin{equation*}
3 \mathrm{CH}_{2} \mathrm{CH}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}+3 \mathrm{H}_{2} \tag{14.414}
\end{equation*}
$$

$\mathrm{C}_{6} \mathrm{H}_{6}$ can be solved using the same principles as those used to solve ethylene wherein the $2 s$ and $2 p$ shells of each C hybridize to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $C 2 s p^{3}$ hybridized orbitals (HOs) to form a molecular orbital (MO) permits each participating hybridized orbital to decrease in radius and energy. Each $2 s p^{3}$ HO of each carbon atom initially has four unpaired electrons. Thus, the $6 H$ atomic orbitals (AOs) of benzene contribute six electrons and the six $s p^{3}$-hybridized carbon atoms contribute twenty-four electrons to form six $C-H$ bonds and six $C=C$ bonds. Each $C-H$ bond has two paired electrons with one donated from the $H \mathrm{AO}$ and the other from the $C 2 s p^{3}$ HO. Each $C=C$ bond comprises a linear combination of a factor of 0.75 of four paired electrons (three electrons) from two sets of two $C 2 s p^{3}$ HOs of the participating carbon atoms. Each $C-H$ and each $C=C$ bond comprises a linear combination of one and two diatomic H_{2}-type MOs developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section, respectively.

FORCE BALANCE OF THE $C=C$-BOND MO OF BENZENE

$\mathrm{C}_{6} \mathrm{H}_{6}$ can be considered a linear combination of three ethylene molecules wherein a $\mathrm{C}-\mathrm{H}$ bond of each CH_{2} group of $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ is replaced by a $\mathrm{C}=\mathrm{C}$ bond to form a six-member ring of carbon atoms. The solution of the ethylene molecule is given in the Ethylene Molecule $\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ section. Before forming ethylene groups, the $2 s p^{3}$ hybridized orbital arrangement of each carbon atom is given by Eq. (14.140). The sum $E_{T}\left(C, 2 s p^{3}\right)$ of calculated energies of C, C^{+}, C^{2+}, and C^{3+} is given by Eq. (14.141). The radius $r_{2 s p^{3}}$ of the $C 2 s p^{3}$ shell is given by Eq. (14.142). The Coulombic energy $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ and the energy $E\left(C, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell are given by Eqs. (14.143) and (14.146), respectively. Two CH_{2} radicals bond to form $\mathrm{CH}_{2} \mathrm{CH}_{2}$ by forming a MO between the two pairs of remaining $\mathrm{C} 2 \mathrm{sp} p^{3}$ - HO electrons of the two carbon
atoms. However, in this case, the sharing of electrons between four $C 2 s p^{3} \mathrm{HOs}$ to form a MO comprising four spin-paired electrons permits each $C 2 s p^{3} \mathrm{HO}$ to decrease in radius and energy. The $C=C$-bond MO is a prolate-spheroidal-MO surface that cannot extend into $C 2 s p^{3} \mathrm{HO}$ for distances shorter than the radius of the $C 2 s p^{3}$ shell of each atom. Thus, the MO surface comprises a partial prolate spheroid in between the carbon nuclei and is continuous with the $C 2 s p^{3}$ shell at each C atom. The energy of the H_{2}-type ellipsoidal MO is matched to that of each $\mathrm{C} 2 s p^{3}$ shell. As in the case of previous examples of energymatched MOs such as those of $\mathrm{OH}, \mathrm{NH}, \mathrm{CH}$, the $\mathrm{C}=\mathrm{O}$-bond MO of CO_{2}, and the $\mathrm{C}-\mathrm{C}$-bond MO of $\mathrm{CH}_{3} \mathrm{CH}_{3}$, the $C=C$-bond MO of ethylene must comprise 75% of a H_{2}-type ellipsoidal MO in order to match potential, kinetic, and orbital energy relationships. Thus, the $C=C$-bond MO must comprise a linear combination of two MOs wherein each comprises two C2sp ${ }^{3} \mathrm{HOs}$ and 75% of a H_{2}-type ellipsoidal MO divided between the $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HOs}$:

$$
\begin{equation*}
2\left(2 \mathrm{C} 2 s p^{3}+0.75 \mathrm{H}_{2} \mathrm{MO}\right) \rightarrow \mathrm{C}=\mathrm{C} \text { - bond } \mathrm{MO} \tag{14.415}
\end{equation*}
$$

The linear combination of each H_{2}-type ellipsoidal MO with each $C 2 s p^{3} \mathrm{HO}$ further comprises an excess 25% charge-density contribution from each $C 2 s p^{3} \mathrm{HO}$ to the $C=C$-bond MO to achieve an energy minimum. The force balance of the $C=C$ bond MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.415) and the energy matching condition between the $C 2 s p^{3}-\mathrm{HO}$ components of the MO.

The sharing of electrons between two pairs of $C 2 s p^{3}$ HOs to form a $C=C$-bond MO permits each participating hybridized orbital to decrease in radius and energy. The sum $E_{T}\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ of calculated energies of $C 2 s p^{3}, C^{+}, C^{2+}$, and C^{3+} is given by Eq. (14.243). In order to further satisfy the potential, kinetic, and orbital energy relationships, each participating $C 2 s p^{3} \mathrm{HO}$ donates an excess of 25% of its electron density to the $C=C$-bond MO to form an energy minimum. By considering this electron redistribution in the ethylene molecule as well as the fact that the central field decreases by an integer for each successive electron of the shell, the radius $r_{\text {ethylenessp }}$ of the $C 2 s p^{3}$ shell of ethylene calculated from the Coulombic energy is given by Eq. (14.244). The Coulombic energy $E_{\text {Coulomb }}\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is given by Eq. (14.245). The energy $E\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is given by Eq. (14.246). $E_{T}\left(C=C, 2 s p^{3}\right)$ (Eq. (14.247)), the energy change of each $C 2 s p^{3}$ shell with the formation of the $C=C$-bond MO is given by the difference between $E\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ and $E\left(C, 2 s p^{3}\right)$.

Consider the case where three sets of $C=C$-bond MOs form bonds between the two carbon atoms of each molecule to form a six-member ring such that the six resulting bonds comprise eighteen paired electrons. Each bond comprises a linear combination of two MOs wherein each comprises two $C 2 s p^{3} \mathrm{HOs}$ and 75% of a H_{2}-type ellipsoidal MO divided between the C2sp ${ }^{3} \mathrm{HOs}$:

$$
\begin{equation*}
\binom{3\left(2 C 2 s p^{3}+0.75 \mathrm{H}_{2} \mathrm{MO}\right) \rightarrow 3\left(C_{=}^{4 e}\right) \text {-ethylene - type - bond MO }}{\rightarrow 6\left(C^{3 e}=C\right) \text {-bond MO of benzene }} \tag{14.416}
\end{equation*}
$$

The linear combination of each H_{2}-type ellipsoidal MO with each $C 2 s p^{3} \mathrm{HO}$ further comprises an excess 25% charge-density contribution per bond from each $C 2 s p^{3} \mathrm{HO}$ to the $C=C$-bond MO to achieve an energy minimum. Thus, the dimensional parameters of each bond $C=C$-bond are determined using the same equations as those used to determine the same parameters of the $C=C$-bond MO of ethylene (Eqs. (14.242-14.268)) while matching the boundary conditions of the structure of benzene. The energies of each $C=C$ bond of benzene are also determined using the same equations as those of ethylene with the parameters of benzene. The result is that the energies are essentially given as 0.75 times the energies of the $C=C$-bond MO of ethylene (Eqs. (14.251-14.253) and (14.319-14.333)).

The derivation of the dimensional parameters of benzene follows the same procedure as the determination of those of ethylene. As in the case of ethylene, each H_{2}-type ellipsoidal MO comprises 75% of the $C=C$-bond MO shared between two $C 2 s p^{3}$ HOs corresponding to the electron charge density in Eq. (11.65) of $\frac{-0.75 e}{2}$. But, the additional 25% charge-density contribution to each bond of the $C=C$-bond MO causes the electron charge density in Eq. (11.65) to be $\frac{-e}{2}=-0.5 e$. The corresponding force constant k^{\prime} is given by Eq. (14.152). In addition, the energy matching at all six C2sp HOs further requires that k^{\prime} be corrected by a hybridization factor (Eq. (13.430)) as in the case of ethylene, expect that the constraint that the bonds connect a six-member ring of $C=C$ bonds of benzene rather two $C 2 s p^{3}$ HOs of ethylene decreases the hybridization factor of benzene compared to that of ethylene (Eq. (14.248)).

Since the energy of each H_{2}-type ellipsoidal MO is matched to that of all the continuously connected $C_{\text {benzene }} 2 s p^{3} \mathrm{HOs}$, the hybridization-energy-matching factor is 0.85252 . Hybridization with 25% electron donation to each $C=C$-bond gives rise to the $C_{\text {benzene }} 2 s p^{3}$ HO-shell Coulombic energy $E_{\text {Coulomb }}\left(C_{\text {benzene }}, 2 s p^{3}\right)$ given by Eq. (14.245). The corresponding hybridization factor is given by the ratio of 15.95955 eV , the magnitude of $E_{\text {Coulomb }}\left(C_{\text {benzene }}, 2 s p^{3}\right)$ given by Eq. (14.245), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264). The hybridization energy factor $C_{\text {benzene } C 2 s p^{3} \mathrm{HO}}$ is:

$$
\begin{equation*}
C_{\text {benzeneC2sp }{ }^{3} \mathrm{HO}}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} r_{\text {benzene2 } \mathrm{sp}^{3}}}}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} 0.85252 a_{0}}}=\frac{13.605804 \mathrm{eV}}{15.95955 \mathrm{eV}}=0.85252 \tag{14.417}
\end{equation*}
$$

Thus, the force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} in terms of the central force of the foci (Eq. (11.65)) is given by:

$$
\begin{equation*}
k^{\prime}=C_{\text {benzeneC } 2 \text { sp }{ }^{3} \mathrm{HO}} \frac{(0.5) 2 e^{2}}{4 \pi \varepsilon_{0}}=0.85252 \frac{(0.5) 2 e^{2}}{4 \pi \varepsilon_{0}} \tag{14.418}
\end{equation*}
$$

The distance from the origin to each focus c^{\prime} is given by substitution of Eq. (14.418) into Eq. (13.60). Thus, the distance from the origin of the component of the double $C=C$-bond MO to each focus c^{\prime} is given by

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{(0.85252) m_{e} e^{2} a}}=\sqrt{\frac{a a_{0}}{0.85252}} \tag{14.419}
\end{equation*}
$$

The internuclear distance from Eq. (14.419) is:

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{0.85252}} \tag{14.420}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal $C=C$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of the $C=C$-bond MO. From the energy equation and the relationship between the axes, the dimensions of the $C=C$-bond MO are solved.

The general equations for the energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} of the $C=C$-bond MO of benzene are the same as those of the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MO}$ except that energy of the $C_{\text {benzene }} 2 s p^{3} \mathrm{HO}$ is used and the hybridization factor is given by Eq. (14.417). Using Eqs. (14.251) and (14.417), $E_{T}(C=C, \sigma)$ is given by:

$$
\begin{equation*}
E_{T}(C=C, \sigma)=E_{T}+E\left(C_{\text {benzene }}, 2 s p^{3}\right)-E\left(C_{\text {benzene }}, 2 s p^{3}\right)=-\frac{2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.85252)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right] \tag{14.421}
\end{equation*}
$$

The total energy term of the double $C=C$-bond MO is given by the sum of the two H_{2}-type ellipsoidal MOs given by Eq. (11.212). To match this boundary condition, $E_{T}(C=C, \sigma)$ given by Eq. (14.421) is set equal to two times Eq. (13.75):

$$
\begin{equation*}
E_{T}(C=C, \sigma)=-\frac{2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.85252)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]=-63.27074 \mathrm{eV} \tag{14.422}
\end{equation*}
$$

From the energy relationship given by Eq. (14.422) and the relationship between the axes given by Eqs. (14.419-14.420) and (13.62-13.63), the dimensions of the $C=C$-bond MO can be solved.

Substitution of Eq. (14.419) into Eq. (14.422) gives:

$$
\begin{equation*}
\frac{2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{0.85252}}}\left[(0.85252)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{0.85252}}}{a-\sqrt{\frac{a a_{0}}{0.85252}}}-1\right]=e 63.27074 \tag{14.423}
\end{equation*}
$$

The most convenient way to solve Eq. (14.423) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is:

$$
\begin{equation*}
a=1.47348 a_{0}=7.79733 \times 10^{-11} \mathrm{~m} \tag{14.424}
\end{equation*}
$$

Substitution of Eq. (14.424) into Eq. (14.4129) gives:

$$
\begin{equation*}
c^{\prime}=1.31468 a_{0}=6.95699 \times 10^{-11} \mathrm{~m} \tag{14.425}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.425) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.62936 a_{0}=1.39140 \times 10^{-10} \mathrm{~m} \tag{14.426}
\end{equation*}
$$

The experimental bond distance is [3] :

$$
\begin{equation*}
2 c^{\prime}=1.339 \times 10^{-10} \mathrm{~m} \tag{14.427}
\end{equation*}
$$

Substitution of Eqs. (14.424-14.425) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=0.66540 a_{0}=3.52116 \times 10^{-11} \mathrm{~m} \tag{14.428}
\end{equation*}
$$

Substitution of Eqs. (14.424-14.425) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.89223 \tag{14.429}
\end{equation*}
$$

The nucleus of the C atoms comprise the foci of the H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $C_{\text {benzene }} 2 s p^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95) and (13.261-13.270). Each benzene carbon atom contributes $(0.75)(-1.13380 \mathrm{eV})=-0.85035 \mathrm{eV}$ (Eqs. (14.483) and (14.493)) to each of the two $C \stackrel{3 e}{=} C$-bond MOs and $(0.5)(-1.13380 \mathrm{eV})=-0.56690 \mathrm{eV}$ (Eq. (14.467)) to the corresponding $C-H$-bond MO. The energy contribution due to the charge donation at each carbon superimposes linearly. The radius of $r_{\text {benzene2sp }}=0.79597 a_{0}$ is calculated using Eq. (14.518) using the total energy donation to each bond with which it is participates in bonding. The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{\text {benzene2sp }}=0.79597 a_{0}$ is the radius of the $C_{\text {benzene }} 2 s p^{3}$ shell. Substitution of Eqs. (14.424-14.425) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=134.24^{\circ} \tag{14.430}
\end{equation*}
$$

Then, the angle $\theta_{C=C_{\text {benzene }} 2 s p^{3} H O}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C=C_{\text {benzene }} 2 s p^{3} \mathrm{HO}}=180^{\circ}-134.24^{\circ}=45.76^{\circ} \tag{14.431}
\end{equation*}
$$

as shown in Figure 14.13.
Figure 14.13. The cross section of one $C=C$-bond $\mathrm{MO}(\sigma \mathrm{MO})$ and one $C-H$-bond MO of benzene showing the axes, angles, and point of intersection of each H_{2}-type ellipsoidal MO with the corresponding $C_{\text {benzene }} 2 s p^{3}$ HO. The continuation of each H_{2}-type-ellipsoidal-MO basis element of the $C=C$ bond and the $C-H$-bond beyond the intersection point with each $C_{\text {benzene }} 2 s p^{3}$ shell and $\sigma \mathrm{MO}$ is shown as dashed since each only serves to solve the energy match with the $C_{\text {benzene }} 2 s p^{3}$ shell and does not represent charge density. Similarly, the vertical dashed line only designates the parameters of each intersection point. The actual charge density is shown by the solid lines. Legend: a : semimajor axis, b : semiminor axis, c^{\prime} : internuclear distance, $d_{1}: d_{C=C_{\text {benzene }}, H_{2} M O}, \quad \theta_{1}: \theta_{C=C_{\text {benzene }} 2 s p^{3} H O}, \quad d_{2}: d_{C=C_{\text {benzene }} 2 s p^{3} H O}, \quad R: r_{\text {benzene } C 2 s p^{3}}, d_{3}: d_{C-H_{\text {benzene }}, H_{2} M O}, \quad \theta_{2}: \theta_{C-H_{\text {benzene }} 2 s p^{3} H O}$, and $d_{4}: d_{C-H_{\text {benzene }} 2 S P^{3} H O}$.

Consider the right-hand intersection point. The Cartesian \mathbf{i}-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j} coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{C=C_{\text {berenere }}, \mathrm{H}_{2} M O}$ satisfies the following relationship:

$$
\begin{equation*}
r_{\text {benzene } 2 s p^{3}} \sin \theta_{C=C_{\text {benzzene }} 2 s p^{3} \mathrm{HO}}=0.79597 a_{0} \sin \theta_{C=C_{\text {benzene }} 2 s p^{3} \mathrm{HO}}=b \sin \theta_{C=C_{\text {benzene }}, H_{2} M O} \tag{14.432}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{C=C_{\text {benzene }}, H_{2} M O}=\sin ^{-1} \frac{0.79597 a_{0} \sin \theta_{C=C_{\text {benzene }} 2 s p^{3} \mathrm{HO}}}{b}=\sin ^{-1} \frac{0.79597 a_{0} \sin 45.76^{\circ}}{b} \tag{14.433}
\end{equation*}
$$

with the use of Eq. (14.431). Substitution of Eq. (14.428) into Eq. (14.433) gives:

$$
\begin{equation*}
\theta_{C=C_{\text {benzene }}, H_{2} M O}=58.98^{\circ} \tag{14.434}
\end{equation*}
$$

Then, the distance $d_{C=C_{\text {benzene }}, H_{2} M O}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C=C_{\text {benzene }}, H_{2} M O}=a \cos \theta_{C=C_{\text {benzene }}, H_{2} M O} \tag{14.435}
\end{equation*}
$$

Substitution of Eqs. (14.424) and (14.434) into Eq. (14.435) gives:

$$
\begin{equation*}
d_{C=C_{\text {benzene }}, H_{2} M O}=0.75935 a_{0}=4.01829 \times 10^{-11} \mathrm{~m} \tag{14.436}
\end{equation*}
$$

The distance $d_{C=C_{\text {benzene }} 2 s p^{3} H O}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals is given by

$$
\begin{equation*}
d_{C=C_{\text {benzene }} 2 S p^{3} \mathrm{HO}}=c^{\prime}-d_{C=C_{\text {benzene }}, H_{2} M O} \tag{14.437}
\end{equation*}
$$

Substitution of Eqs. (14.425) and (14.436) into Eq. (14.437) gives:

$$
\begin{equation*}
d_{C=C_{\text {benzene }} 2 S p^{3} \mathrm{HO}}=0.55533 a_{0}=2.93870 \times 10^{-11} \mathrm{~m} \tag{14.438}
\end{equation*}
$$

FORCE BALANCE OF THE CH MOS OF BENZENE

Benzene can also be considered as comprising chemical bonds between six $C H$ radicals wherein each radical comprises a chemical bond between carbon and hydrogen atoms. The solution of the parameters of CH is given in the Hydrogen Carbide (CH) section. Each $\mathrm{C}-\mathrm{H}$ bond of CH having two spin-paired electrons, one from an initially unpaired electron of the carbon atom and the other from the hydrogen atom, comprises the linear combination of $75 \% H_{2}$-type ellipsoidal MO and $25 \% \mathrm{C} 2 \mathrm{sp}{ }^{3}$ HO as given by Eq. (13.439):

$$
\begin{equation*}
1 \mathrm{C} 2 s p^{3}+0.75 \mathrm{H}_{2} \mathrm{MO} \rightarrow \mathrm{CH} \mathrm{MO} \tag{14.439}
\end{equation*}
$$

The proton of the H atom and the nucleus of the C atom are along each internuclear axis and serve as the foci. As in the case of H_{2}, the $\mathrm{C}-\mathrm{H}$-bond MO is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into $\mathrm{C} 2 \mathrm{sp}{ }^{3}$ HO for distances shorter than the radius of the $C 2 s p^{3}$ shell since it is energetically unfavorable. Thus, each MO surface comprises a prolate spheroid at the H proton that is continuous with the $C 2 s p^{3}$ shell at the C atom whose nucleus serves as the other focus.

The force balance of the CH MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.439) and the energy matching condition between the hydrogen and $C 2 s p^{3} \mathrm{HO}$ components of the MO. The force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} of each H_{2}-type-ellipsoidal-MO component of the CH MO in terms of the central force of the foci is given by Eq. (13.59). The distance from the origin of each $C-H$-bond MO to each focus c^{\prime} is given by Eq. (13.60). The internuclear distance is given by Eq. (13.61). The length of the semiminor axis of the prolate spheroidal $C-H$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of each $C-H$-bond MO. From the energy equation and the relationship between the axes, the dimensions of the CH MO are solved.

Consider the formation of the double $C=C$-bond MOs of benzene wherein ethylene formed from two CH_{2} radicals, each having a $C 2 s p^{3}$ shell with an energy given by Eq. (14.146), serves as a basis element. The energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} are the same as those of the hydrogen carbide radical, except that $E_{T}\left(C=C, 2 s p^{3}\right)$ is subtracted from $E_{T}(C H)$ of Eq. (13.495). As in the case of the CH_{2} groups of ethylene (Eq. (14.270)), the subtraction of the energy change of the $\mathrm{C} 2 \mathrm{sp}{ }^{3}$ shell per H with the formation of the $C=C$-bond MO matches the energy of each $C-H$-bond MO to the decrease in the energy of the corresponding $C 2 s p^{3} \mathrm{HO}$. Using Eqs. (13.431) and (14.247), $E_{T_{\text {benzene }}}(C H)$ is given by:

$$
\begin{equation*}
E_{T_{\text {benzene }}}(C H)=E_{T}+E\left(C, 2 s p^{3}\right)-E_{T}\left(C=C, 2 s p^{3}\right)=\binom{-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]}{-14.63489 \mathrm{eV}-(-1.13379 \mathrm{eV})} \tag{14.440}
\end{equation*}
$$

$E_{T_{\text {benzene }}}(C H)$ given by Eq. (14.440) is set equal to the energy of the H_{2}-type ellipsoidal MO given by Eq. (13.75).

$$
\begin{equation*}
E_{T_{\text {benzene }}}(C H)=\binom{-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]}{-14.63489 \mathrm{eV}-(-1.13379 \mathrm{eV})}=-31.63537 \mathrm{eV} \tag{14.441}
\end{equation*}
$$

From the energy relationship given by Eq. (14.441) and the relationship between the axes given by Eqs. (13.60-13.63), the dimensions of the CH MO can be solved.

Substitution of Eq. (13.60) into Eq. (14.441) gives:

$$
\begin{equation*}
\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right]=e 18.13427 \tag{14.442}
\end{equation*}
$$

The most convenient way to solve Eq. (14.442) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is

$$
\begin{equation*}
a=1.60061 a_{0}=8.47006 \times 10^{-11} \mathrm{~m} \tag{14.443}
\end{equation*}
$$

Substitution of Eq. (14.443) into Eq. (14.60) gives:

$$
\begin{equation*}
c^{\prime}=1.03299 a_{0}=5.46636 \times 10^{-11} \mathrm{~m} \tag{14.444}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.444) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.06598 a_{0}=1.09327 \times 10^{-10} \mathrm{~m} \tag{14.445}
\end{equation*}
$$

The experimental bond distance is [3]:

$$
\begin{equation*}
2 c^{\prime}=1.101 \times 10^{-10} \mathrm{~m} \tag{14.446}
\end{equation*}
$$

Substitution of Eqs. (14.443-14.444) into Eq. (14.62) gives:

$$
\begin{equation*}
b=c=1.22265 a_{0}=6.47000 \times 10^{-11} \mathrm{~m} \tag{14.447}
\end{equation*}
$$

Substitution of Eqs. (14.443-14.444) into Eq. (14.63) gives:

$$
\begin{equation*}
e=0.64537 \tag{14.448}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the C atom comprise the foci of each H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $C_{\text {benzene }} 2 s p^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95) and (13.261-13.270). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{\text {benzene2sp }}=0.79597 a_{0}$ is the radius of the $C_{\text {benzene }} 2 s p^{3}$ shell. Substitution of Eqs. (14.443-14.444) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=74.42^{\circ} \tag{14.449}
\end{equation*}
$$

Then, the angle $\theta_{C-H_{b e n z e n e ~} 2 s p^{3} H O}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C-H_{\text {benzene }} 2 s p^{3} \mathrm{HO}}=180^{\circ}-74.42^{\circ}=105.58^{\circ} \tag{14.450}
\end{equation*}
$$

as shown in Figure 14.14.
Figure 14.14. The cross section of one $C-H$-bond MO of benzene showing the axes, angles, and point of intersection of the H_{2}-type ellipsoidal MO with the $C_{\text {benzene }} 2 s p^{3} \mathrm{HO}$. The continuation of the H_{2}-type-ellipsoidal-MO basis element beyond the intersection point with the $C_{\text {benzene }} 2 s p^{3}$ shell is shown as dashed since it only serves to solve the energy match with the $C_{\text {benzene }} 2 s p^{3}$ shell and does not represent charge density. Similarly, the vertical dashed line only designates the parameters of the intersection point. The actual charge density is shown by the solid lines. Legend: a : semimajor axis, b : semiminor axis, c^{\prime} : internuclear distance, $d_{1}: d_{C-H_{\text {benzene }}, H_{2} M O}, \theta_{1}: \theta_{C-H_{\text {benzene }} 2 s p^{3} H O}, d_{2}: d_{C-H_{\text {benzene }} 2 s p^{3} H O}$, and $R: r_{\text {benzene } 2 s p^{3}}$

The Cartesian i-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j}-coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{C-H_{b e n z e n e}, H_{2} M O}$ satisfies the following relationship:

$$
\begin{equation*}
r_{{\text {benzene } 2 s p^{3}}^{3}} \sin \theta_{C-H_{\text {benzene }} 2 s p^{3} H O}=0.79597 a_{0} \sin \theta_{C-H_{\text {benzzene }} 2 s p^{3} H O}=b \sin \theta_{C-H_{\text {benene }}, H_{2} M O} \tag{14.451}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{C-H_{\text {benzene }}, H_{2} M O}=\sin ^{-1} \frac{0.79597 a_{0} \sin \theta_{C-H_{\text {benzene }} 2 s p^{3} H O}}{b}=\sin ^{-1} \frac{0.79597 a_{0} \sin 105.58^{\circ}}{b} \tag{14.452}
\end{equation*}
$$

with the use of Eq. (14.450). Substitution of Eq. (14.447) into Eq. (14.452) gives:

$$
\begin{equation*}
\theta_{C-H_{\text {benzene }}, H_{2} M O}=38.84^{\circ} \tag{14.453}
\end{equation*}
$$

Then, the distance $d_{C-H_{\text {benzene }}, H_{2} M O}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C-\mathrm{H}_{\text {benzene }}, \mathrm{H}_{2} \mathrm{MO}}=a \cos \theta_{C-\mathrm{H}_{\text {benzene }}, \mathrm{H}_{2} \mathrm{MO}} \tag{14.454}
\end{equation*}
$$

Substitution of Eqs. (14.443) and (14.453) into Eq. (14.454) gives:

$$
\begin{equation*}
d_{C-H_{\text {benzene } e}, H_{2} M O}=1.24678 a_{0}=6.59767 \times 10^{-11} \mathrm{~m} \tag{14.455}
\end{equation*}
$$

The distance $d_{C-H_{b e n z e n e} 2 s p^{3} H O}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C-H_{\text {benzene }} 2 s p^{3} \mathrm{HO}}=d_{C-\mathrm{H}_{\text {benzene }}, \mathrm{H}_{2} \mathrm{MO}}-C^{\prime} \tag{14.456}
\end{equation*}
$$

Substitution of Eqs. (14.444) and (14.455) into Eq. (14.456) gives:

$$
\begin{equation*}
d_{C-H_{\text {benzene }} 2 s p^{3} H O}=0.21379 a_{0}=1.13131 \times 10^{-11} \mathrm{~m} \tag{14.457}
\end{equation*}
$$

The basis set of benzene, the ethylene molecule, is planar with bond angles of approximately 120° (Eqs. (14.298-14.302)). To form a closed ring of equivalent planar bonds, the $C=C$ bonds of benzene form a planar hexagon. The bond angle $\theta_{C=C=C}$ between the internuclear axis of any two adjacent $C=C$ bonds is:

$$
\begin{equation*}
\theta_{C=C=C}=120^{\circ} \tag{14.458}
\end{equation*}
$$

The bond angle $\theta_{C=C-H}$ between the internuclear axis of each $C=C$ bond and the corresponding H atom of each $C H$ group is

$$
\begin{equation*}
\theta_{C=C-H}=120^{\circ} \tag{14.459}
\end{equation*}
$$

The experimental angle between the $C=C=C$ bonds is [13-15]:

$$
\begin{equation*}
\theta_{C=C=C}=120^{\circ} \tag{14.460}
\end{equation*}
$$

The experimental angle between the $C=C-H$ bonds is [13-15]:

$$
\begin{equation*}
\theta_{C=C-H}=120^{\circ} \tag{14.461}
\end{equation*}
$$

The $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{MO}$ shown in Figure 14.15 was rendered using these parameters.
The charge-density in the $C=C$-bond MO is increased by a factor of 0.25 per bond with the formation of the $C_{\text {benzene }} 2 s p^{3}$ HOs each having a smaller radius. Using the orbital composition of the $C H$ groups (Eq. (14.439)) and the $C=C$ bond MO (Eq. (14.416)), the radii of $C 1 s=0.17113 a_{0}$ (Eq. (10.51)) and $C_{\text {benzene }} 2 s p^{3}=0.79597 a_{0}$ (Eq. (14.520)) shells, and the parameters of the $C=C$-bond (Eqs. (13.3-13.4), (14.424-14.426), and (14.428-14.438)), the parameters of the $C-H$-bond MOs (Eqs. (13.3-13.4), (14.443-14.445), and (14.447-14.457)), and the bond-angle parameters (Eqs. (14.458-14.459)), the charge-density of the $C_{6} H_{6}$ MO comprising the linear combination of six sets of $C-H$-bond MOs with bridging $C \stackrel{3 e}{=} C$-bond MOs is shown in Figure 14.15. Each $\mathrm{C}-\mathrm{H}$-bond MO comprises a H_{2}-type ellipsoidal MO and a $C_{\text {benzene }} 2 s p^{3} \mathrm{HO}$ having the dimensional diagram shown in Figure 14.14. The $C=C$-bond MO comprises a H_{2}-type ellipsoidal MO bridging two sets of two $C_{\text {benzene }} 2 s p^{3}$ HOs having the dimensional diagram shown in Figure 14.13.

Figure 14.15. $C_{6} H_{6}$ MO comprising the linear combination of six sets of $C-H$-bond MOs bridged by $C=C$-bond MOs. (A) Color scale, translucent view of the charge-density of the $C_{6} H_{6}$-bond MO with each $C_{b e n z e n e} 2 s p^{3}$ HOs shown transparently. Each $C=C$-bond MO comprises a H_{2}-type ellipsoidal MO bridging two pairs of $C_{b e n z e n e} 2 s p^{3}$ HOs. For each $C-H$ and $C=C$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {benzene }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {benzene }} 2 s p^{3} \mathrm{HO}$ shell, inner most $C 1 s$ shell, and the nuclei (red, not to scale), are shown. (B)-(D) End-on view, translucent view high-lighting each $C=C$-bond MO, and opaque view of the charge-density of the $C_{6} H_{6}$ MO, respectively.

ENERGIES OF THE CH GROUPS

The energies of each $C H$ group of benzene are given by the substitution of the semiprincipal axes (Eqs. (14.443-14.444) and (14.447)) into the energy equations of hydrogen carbide (Eqs. (13.449-13.453)), with the exception that $E_{T}\left(C=C, 2 s p^{3}\right)$ (Eq. (14.247)) is subtracted from $E_{T}(C H)$ in Eq. (13.453).

$$
\begin{align*}
& V_{e}=(0.91771) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-37.10024 \mathrm{eV} \tag{14.462}\\
& V_{p}=\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=13.17125 \mathrm{eV} \tag{14.463}\\
& T=(0.91771) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=11.58941 \mathrm{eV} \tag{14.464}\\
& V_{m}=(0.91771) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-5.79470 \mathrm{eV} \tag{14.465}\\
& E_{T_{\text {benzene }}}(C H)=\left(\begin{array}{l}
\left.-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]\right)=-31.63539 \mathrm{eV} \\
-14.63489 \mathrm{eV}-(-1.13379 \mathrm{eV})
\end{array}\right. \tag{14.466}
\end{align*}
$$

where $E_{T_{\text {benzene }}}(C H)$ is given by Eq. (14.440) which is reiteratively matched to Eq. (13.75) within five-significant-figure round off error.

The total energy of the $C-H$-bond $\mathrm{MO}, E_{T_{\text {benzene }}}(C-H)$, is given by the sum of $0.5 E_{T}\left(C=C, 2 s p^{3}\right)$, the energy change of each $C 2 s p^{3}$ shell per single bond due to the decrease in radius with the formation of the corresponding $C=C$-bond MO (Eq. (14.247)), and $E_{T_{\text {benzene }}}(C H)$, the $\sigma \mathrm{MO}$ contribution given by Eq. (14.441).

$$
\begin{align*}
E_{T_{\text {benzene }}}(C-H) & =(0.5) E_{T}\left(C=C, 2 s p^{3}\right)+E_{T_{\text {benzene }}}(C H) \\
& =\left(\begin{array}{l}
(0.5)(-1.13379 \mathrm{eV})+ \\
\left(-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]\right) \\
-14.63489 \mathrm{eV}-(-1.13379 \mathrm{eV})
\end{array}\right) \tag{14.467}\\
& =(0.5)(-1.13379 \mathrm{eV})+(-31.63537 \mathrm{eV}) \\
& =-32.20226 \mathrm{eV}
\end{align*}
$$

VIBRATION OF THE ${ }^{12} \mathrm{CH}$ GROUPS

The vibrational energy levels of $C H$ in benzene may be solved using the methods given in the Vibration and Rotation of CH section.

THE DOPPLER ENERGY TERMS OF THE ${ }^{12} \mathrm{CH}$ GROUPS

The equations of the radiation reaction force of the $C H$ groups in benzene are the same as those of the hydrogen carbide radical with the substitution of the $C H$-group parameters. Using Eq. (13.477), the angular frequency of the reentrant oscillation in the transition state is

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=2.64826 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{14.468}
\end{equation*}
$$

where b is given by Eq. (14.447). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 2.64826 \times 10^{16} \mathrm{rad} / \mathrm{s}=17.43132 \mathrm{eV} \tag{14.469}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(H_{2}\right)$ (Eqs. (11.212) and (13.75)), the maximum total energy of each H_{2}-type MO, for $E_{h \nu}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (14.469) for \bar{E}_{K} gives the Doppler energy of the electrons for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-31.63537 \mathrm{eV} \sqrt{\frac{2 e(17.43132 \mathrm{eV})}{m_{e} c^{2}}}=-0.26130 \mathrm{eV} \tag{14.470}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of $C H$ due to the reentrant orbit of each bond in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (14.470) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of the $C-H$ bond. Using ω_{e} given by Eq. (13.458) for $\bar{E}_{\text {Kvib }}$ of the transition, $\bar{E}_{\text {benzene osc }}\left({ }^{12} \mathrm{CH}\right)$ per bond is:

$$
\begin{align*}
& \bar{E}_{\text {benzene osc }}\left({ }^{12} \mathrm{CH}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{14.471}\\
& \bar{E}_{\text {benzene osc }}\left({ }^{12} \mathrm{CH}\right)=-0.26130 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})=-0.08364 \mathrm{eV} \tag{14.472}
\end{align*}
$$

TOTAL AND BOND ENERGIES OF THE ${ }^{12} \mathrm{CH}$ GROUPS

$E_{\text {benzeneT+osc }}\left({ }^{12} \mathrm{CH}\right)$, the total energy of each ${ }^{12} \mathrm{CH}$ group including the Doppler term, is given by the sum of $E_{T_{\text {benzene }}}(C-H)$ (Eq. (14.467)) and $\bar{E}_{\text {benzene osc }}\left({ }^{12} \mathrm{CH}\right)$ given by Eq. (14.472).

$$
\begin{align*}
E_{\text {benzeneT }+ \text { osc }}\left({ }^{12} \mathrm{CH}\right) & =\binom{\left(V_{e}+T+V_{m}+V_{p}+E\left(C, 2 s p^{3}\right)-E_{T}\left(C=C, 2 s p^{3}\right)\right)}{+0.5 E_{T}\left(C=C, 2 s p^{3}\right)+\bar{E}_{\text {benzene osc }}\left({ }^{12} \mathrm{CH}\right)} \tag{14.473}\\
& =E_{T_{\text {benzene }}}(C-H)+\bar{E}_{\text {benzene osc }}\left({ }^{12} \mathrm{CH}\right)
\end{align*}
$$

$$
\left.\begin{array}{rl}
E_{\text {benzeneT Tosc }}\left({ }^{12} \mathrm{CH}\right) & \left.=\left\{\begin{array}{l}
\binom{\frac{-e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]}{-14.63489 \mathrm{eV}-(-1.13379 \mathrm{eV})}-0.5(1.13379 \mathrm{eV}) \\
-(31.63536831 \mathrm{eV}) \sqrt{\frac{\sqrt{\frac{3}{4} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}}{m_{e}}} \\
m_{e} c^{2} \\
2
\end{array}\right] \sqrt{\frac{1}{2}}\right) \tag{14.474}
\end{array}\right\}
$$

From Eqs. (14.472-14.474), the total energy of each ${ }^{12} \mathrm{CH}$ is:

$$
\begin{align*}
E_{\text {benzeneT +osc }}\left({ }^{12} \mathrm{CH}\right) & =-32.20226 \mathrm{eV}+\bar{E}_{\text {benzene osc }}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =-32.20226 \mathrm{eV}-\left(0.26130 \mathrm{eV}-\frac{1}{2}(0.35532 \mathrm{eV})\right) \tag{14.475}\\
& =-32.28590 \mathrm{eV}
\end{align*}
$$

where ω_{e} given by Eq. (13.458) was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
As in the case of ${ }^{12} \mathrm{CH}_{2},{ }^{14} \mathrm{NH}$, and acetylene, the dissociation of the $\mathrm{C}=\mathrm{C}$ bonds forms three unpaired electrons per central atom wherein the magnetic moments cannot all cancel. The energy per atom E (magnetic) is given by Eq. (13.524). Thus, the bond dissociation energy of each CH group of the linear combination to form benzene, $E_{D_{\text {benzene }}}\left({ }^{12} \mathrm{CH}\right)$, is given by the sum of the total energies of the $C 2 s p^{3} \mathrm{HO}$ and the hydrogen atom minus the sum of $E_{\text {benzeneT+osc }}\left({ }^{12} \mathrm{CH}\right)$ and E (magnetic) given by Eq. (13.524):

$$
\begin{equation*}
E_{D_{\text {benzene }}}\left({ }^{12} \mathrm{CH}\right)=E\left(\mathrm{C}, 2 s p^{3}\right)+E(H)-\left(E_{\text {benzeneT }+ \text { osc }}\left({ }^{12} \mathrm{CH}\right)+E(\text { magnetic })\right) \tag{14.476}
\end{equation*}
$$

$E\left(C, 2 s p^{3}\right)$ is given by Eq. (13.428), $E_{D}(H)$ is given by Eq. (13.154), and E (magnetic) is given by Eq. (13.524). Thus, $E_{D_{\text {benzene }}}\left({ }^{12} \mathrm{CH}\right)$ given by Eqs. (13.154), (13.428), (13.524), (14.475), and (14.476) is:

$$
\begin{align*}
E_{D_{\text {benzene }}}\left({ }^{12} \mathrm{CH}\right) & =-(14.63489 \mathrm{eV}+13.59844 \mathrm{eV})-\left(E_{\text {benzeneT +osc }}(C H)+E(\text { magnetic })\right) \\
& =-28.23333 \mathrm{eV}-(-32.28590 \mathrm{eV}+0.14803 \mathrm{eV}) \tag{14.477}\\
& =3.90454 \mathrm{eV}
\end{align*}
$$

SUM OF THE ENERGIES OF THE $C=C \quad \sigma$ MO ELEMENT AND THE HOs OF BENZENE

The energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} of the $\mathrm{C}=\mathrm{C}$-bond MO of benzene are the same as those of the $\mathrm{CH}_{2} \mathrm{CH}_{2}$ MO except that the hybridization factor is given by Eq. (14.417). The energies of each $C=C$-bond MO are given by the substitution of the semiprincipal axes (Eqs. (14.424-14.425) and (14.428)) into energy equations of the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MO}$ (Eqs. (14.319-14.323)), with the exception that the hybridization factor is 0.85252 (Eq. (14.417)).

$$
\begin{align*}
& V_{e}=2(0.85252) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-101.12679 \mathrm{eV} \tag{14.478}\\
& V_{p}=2 \frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=20.69825 \mathrm{eV} \tag{14.479}\\
& T=2(0.85252) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=34.31559 \mathrm{eV} \tag{14.480}\\
& V_{m}=2(0.85252) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-17.15779 \mathrm{eV} \tag{14.481}\\
& E_{T}(C=C, \sigma)=-\frac{2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.85252)\left(2-\frac{1}{2} \frac{a}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]=-63.27075 \mathrm{eV} \tag{14.482}
\end{align*}
$$

where $E_{T}(C=C, \sigma)$ is the total energy of the $C=C \quad \sigma$ MO given by Eq. (14.421) which is reiteratively matched to two times Eq. (13.75) within five-significant-figure round off error.

The total energy of the $C=C$-bond MO, $E_{T}(C=C)$, is given by the sum of two times $E_{T}\left(C=C, 2 s p^{3}\right)$, the energy change of each $C 2 s p^{3}$ shell due to the decrease in radius with the formation of the $C=C$-bond MO (Eq. (14.247)), and $E_{T}(C=C, \sigma)$, the σ MO contribution given by Eq. (14.422).

$$
\begin{align*}
& E_{T}(C=C)=2 E_{T}\left(C=C, 2 s p^{3}\right)+E_{T}(C=C, \sigma) \\
&=\left(\begin{array}{l}
2(-1.13380 \mathrm{eV})+ \\
\\
\\
= \\
\left.\left.-\frac{2 e^{2}}{8 \pi \varepsilon_{0} C^{\prime}}\left[(0.85252)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]\right)\right)
\end{array}\right. \tag{14.483}\\
&\hline 13380 \mathrm{eV})+(-63.27074 \mathrm{eV})=-65.53833 \mathrm{eV}
\end{align*}
$$

which is the same $E_{T}(C=C, \sigma)$ of ethylene given by Eq. (14.324).

VIBRATION OF BENZENE

The $C=C$ vibrational energy levels of $C_{6} H_{6}$ may be solved as six sets of equivalent coupled harmonic oscillators where each C is further coupled to the corresponding $C-H$ oscillator by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERMS OF THE $C=C$-BOND MO ELEMENT OF BENZENE

The equations of the radiation reaction force of the $C=C$-bond MO of benzene are given by Eq. (13.142), except the forceconstant factor is (0.85252) 0.5 based on the force constant k^{\prime} of Eq. (14.418), and the $C=C$-bond MO parameters are used. The angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{0.85252 \frac{(0.5) e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=4.97272 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{14.484}
\end{equation*}
$$

where b is given by Eq. (14.428). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 4.97272 \times 10^{16} \mathrm{rad} / \mathrm{s}=32.73133 \mathrm{eV} \tag{14.485}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(H_{2}\right)$ (Eqs. (11.212) and (13.75)), the maximum total energy of each H_{2}-type MO, for $E_{h \nu}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (14.485) for \bar{E}_{K} gives the Doppler energy of the electrons for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-31.63536831 \mathrm{eV} \sqrt{\frac{2 e(32.73133 \mathrm{eV})}{m_{e} c^{2}}}=-0.35806 \mathrm{eV} \tag{14.486}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of the $C=C$-bond MO due to the reentrant orbit of the bond in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (14.486) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of the $C=C$ bond. Using the experimental $C=C E_{\text {vib }}\left(v_{16}\right)$ of $1584.8 \mathrm{~cm}^{-1}(0.19649 \mathrm{eV})$ [16] for $\bar{E}_{\text {Kvib }}$ of the transition state having two bonds, $\bar{E}_{\text {osc }}^{\prime}(C=C, \sigma)$ per bond is:

$$
\begin{align*}
& \bar{E}_{\text {osc }}^{\prime}(C=C, \sigma)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{14.487}\\
& \bar{E}_{\text {osc }}^{\prime}(C=C, \sigma)=-0.35806 \mathrm{eV}+\frac{1}{2}(0.19649 \mathrm{eV})=-0.25982 \mathrm{eV} \tag{14.488}
\end{align*}
$$

Given that the vibration and reentrant oscillation is for two $C-C$ bonds of each $C=C$ double bond, $\bar{E}_{\text {benzene osc }}(C=C, \sigma)$, is:

$$
\begin{equation*}
\bar{E}_{\text {benzene osc }}(C=C, \sigma)=2\left(\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)=2\left(-0.35806 \mathrm{eV}+\frac{1}{2}(0.19649 \mathrm{eV})\right)=-0.51963 \mathrm{eV} \tag{14.489}
\end{equation*}
$$

TOTAL ENERGIES OF THE $C=C$-BOND MO ELEMENT OF BENZENE

$E_{T+o s c}(C=C)$, the total energy of the $C=C$-bond MO of benzene including the Doppler term, is given by the sum of $E_{T}(C=C)(E q .(14.483))$ and $\bar{E}_{\text {benzene osc }}(C=C, \sigma)$ given by Eq. (14.489).

$$
\left.\begin{array}{rl}
E_{T+\text { osc }}(C=C) & =V_{e}+T+V_{m}+V_{p}+2 E_{T}\left(C=C, 2 s p^{3}\right)+\bar{E}_{\text {benzene osc }}(C=C, \sigma) \\
& =E_{T}(C=C, \sigma)+2 E_{T}\left(C=C, 2 s p^{3}\right)+\bar{E}_{\text {benzene osc }}(C=C, \sigma) \\
& =E_{T}(C=C)+\bar{E}_{\text {benzene osc }}(C=C, \sigma) \\
& \left(\frac{-2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.85252)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]+2 E_{T}\left(C=C, 2 s p^{3}\right)\right) \tag{14.491}\\
E_{T+\text { osc }}(C=C) & =\left\{\begin{array}{l}
(31.63536831 \mathrm{eV}) \sqrt{\frac{(0.85252) \frac{1}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}
\end{array}\right) \\
& =-65.53833 \mathrm{eV}-2\left(0.35806 \mathrm{eV}-\frac{1}{2} \hbar \sqrt{\left.\frac{k}{2} \sqrt{\frac{k}{\mu}}\right)}\right.
\end{array}\right)
$$

From Eqs. (14.489-14.491), the total energy of the $C=C$-bond MO is:

$$
\begin{align*}
E_{T+\text { osc }}(C=C) & =-63.27074 \mathrm{eV}+2 E_{T}\left(C=C, 2 s p^{3}\right)+\bar{E}_{\text {benzene osc }}(C=C, \sigma) \\
& =-63.27074 \mathrm{eV}+2(-1.13380 \mathrm{eV})-2\left(0.35806 \mathrm{eV}-\frac{1}{2}(0.19649 \mathrm{eV})\right) \tag{14.492}\\
& =-66.05796 \mathrm{eV}
\end{align*}
$$

where the experimental $E_{\text {vib }}$ was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.

TOTAL BOND DISSOCIATION ENERGY OF BENZENE

Ethylene serves as a basis element for the $C=C$ bonding of benzene wherein each of the six $C^{3 e}=C$ bonds of benzene comprises $(0.75)(4)=3$ electrons according to Eq. (14.416). The total energy of the bonds of the eighteen electrons of the $C=C$ bonds of benzene, $E_{T}\left(C_{6} H_{6}, C=C\right)$, is given by (6)(0.75) times $E_{T+\text { osc }}(C=C)$ (Eq. (14.492)), the total energy of the $C=C$-bond MO of benzene including the Doppler term, minus eighteen times $E\left(C, 2 s p^{3}\right)$ (Eq. (14.146)), the initial energy of each $C 2 s p^{3} \mathrm{HO}$ of each C that forms the double $C=C$ bonds. Thus, the total energy of the six $C \stackrel{3 e}{=} C$ bonds of benzene is:

$$
\left.\left.\left.\left.\begin{array}{rl}
E_{T}\left(C_{6} H_{6}, C=\right. & \left.\frac{3 e}{=} C\right)
\end{array}\right)(6)(0.75) E_{T+o s c}(C=C)-18 E\left(C, 2 s p^{3}\right)\right] \text { (6) } 0.75\right)(-66.05796 \mathrm{eV})-18(-14.63489 \mathrm{eV})\right)
$$

Each of the $C-H$ bonds of benzene comprises two electrons according to Eq. (14.439). From the energy of each $C-H$ bond, $-E_{D_{\text {benerene }}}\left({ }^{12} \mathrm{CH}\right)$ (Eq. (14.477)), the total energy of the twelve electrons of the six $C-H$ bonds of benzene, $E_{T}\left(C_{6} H_{6}, C-H\right)$, is given by:

$$
\begin{equation*}
E_{T}\left(C_{6} H_{6}, C-H\right)=(6)\left(-E_{D_{\text {beneene }}}\left({ }^{12} \mathrm{CH}\right)\right)=6(-3.90454 \mathrm{eV})=-23.42724 \mathrm{eV} \tag{14.494}
\end{equation*}
$$

The total bond dissociation energy of benzene, $E_{D}\left(C_{6} H_{6}\right)$, is given by the negative sum of $E_{T}\left(C_{6} H_{6}, C \stackrel{3 e}{=} C\right)$ (Eq. (14.493)) and $E_{T}\left(C_{6} H_{6}, C-H\right)($ Eq. (14.494)):

$$
\begin{align*}
E_{D}\left(C_{6} H_{6}\right) & =-\left(E_{T}\left(C_{6} H_{6}, C=C\right)+E_{T}\left(C_{6} H_{6}, C-H\right)\right) \tag{14.495}\\
& =-((-33.83284 \mathrm{eV})+(-23.42724 \mathrm{eV}))=57.2601 \mathrm{eV}
\end{align*}
$$

The experimental total bond dissociation energy of benzene, $E_{T}\left(C_{6} H_{6}\right)$, is given by the negative difference between the enthalpy of its formation $\left(\Delta H_{f}\right.$ (benzene (gas))) and the sum of the enthalpy of the formation of the gaseous carbons $\left(\Delta H_{f}(C(g a s))\right)$ and hydrogen $\left(\Delta H_{f}(H(g a s))\right)$ atoms. The heats of formation are [17-18]:

$$
\begin{align*}
& \Delta H_{f}(\text { benzene }(\text { gas }))=82.9 \mathrm{~kJ} / \text { mole }(0.8592 \mathrm{eV} / \text { molecule }) \tag{14.496}\\
& \Delta H_{f}(C(\text { gas }))=716.68 \mathrm{~kJ} / \text { mole }(7.42774 \mathrm{eV} / \text { atom }) \tag{14.497}\\
& \Delta H_{f}(H(\text { gas }))=217.998 \mathrm{~kJ} / \text { mole }(2.259353 \mathrm{eV} / \text { atom }) \tag{14.498}
\end{align*}
$$

thus, the total bond dissociation energy of benzene, $E_{D}\left(C_{6} H_{6}\right)$, is:

$$
\begin{align*}
E_{D}\left(C_{6} H_{6}\right)-E_{T}\left(C_{6} H_{6}\right) & =-\left(\Delta H_{f}(\text { benzene }(\text { gas }))-\left(6 \Delta H_{f}(C(\text { gas }))+6 \Delta H_{f}(H(\text { gas }))\right)\right) \\
& =-(0.8592 \mathrm{eV}-6(7.42774 \mathrm{eV}+2.259353 \mathrm{eV})) \tag{14.499}\\
& =57.26 \mathrm{eV}
\end{align*}
$$

where $E_{T}\left(C_{6} H_{6}\right)$ is the total energy of the bonds. The results of the determination of bond parameters of $C_{6} H_{6}$ are given in Table 14.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

CONTINUOUS-CHAIN ALKANES ($\left.C_{n} H_{2 n+2}, n=3,4,5 \ldots \infty\right)$

The continuous chain alkanes, $C_{n} H_{2 n+2}$, are the homologous series comprising terminal methyl groups at each end of the chain with $n-2$ methylene $\left(\mathrm{CH}_{2}\right)$ groups in between:

$$
\begin{equation*}
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{n-2} \mathrm{CH}_{3} \tag{14.500}
\end{equation*}
$$

$C_{n} H_{2 n+2}$ can be solved using the same principles as those used to solve ethane and ethylene wherein the $2 s$ and $2 p$ shells of each C hybridize to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $C 2 s p^{3}$ hybridized orbitals (HOs) to form a molecular orbital (MO) permits each participating hybridized orbital to decrease in radius and energy. Three H AOs combine with three carbon $2 s p^{3}$ HOs and two H AOs combine with two carbon $2 s p^{3}$ HOs to form each methyl and methylene group, respectively, where each bond comprises a H_{2}-type MO developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section. The CH_{3} and CH_{2} groups bond by forming H_{2}-type MOs between the remaining $C 2 s p^{3} \mathrm{HOs}$ on the carbons such that each carbon forms four bonds involving its four $C 2 s p^{3}$ HOs.

FORCE BALANCE OF THE $C-C$-BOND MOs OF CONTINUOUS-CHAIN ALKANES

$C_{n} H_{2 n+2}$ comprises a chemical bond between two terminal CH_{3} radicals and $n-2 \mathrm{CH}_{2}$ radicals wherein each methyl and methylene radical comprises three and two chemical bonds, respectively, between carbon and hydrogen atoms. The solution of the parameters of CH_{3} is given in the Methyl Radical $\left(\mathrm{CH}_{3}\right)$ section. The solution of the parameters of CH_{2} is given in the Dihydrogen Carbide Radical $\left(\mathrm{CH}_{2}\right)$ section and follows the same procedure. Each $\mathrm{C}-\mathrm{H}$ bond having two spin-paired electrons, one from an initially unpaired electron of the carbon atom and the other from the hydrogen atom, comprises the linear combination of $75 \% \mathrm{H}_{2}$-type ellipsoidal MO and $25 \% \mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$ as given by Eq. (13.429):

$$
\begin{equation*}
1 \mathrm{C} 2 \mathrm{sp}{ }^{3}+0.75 \mathrm{H}_{2} \mathrm{MO} \rightarrow \mathrm{C}-\mathrm{H} \mathrm{MO} \tag{14.501}
\end{equation*}
$$

The proton of the H atom and the nucleus of the C atom are along each internuclear axis and serve as the foci. As in the case of H_{2}, each of the $\mathrm{C}-\mathrm{H}$-bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into $C 2 s p^{3} \mathrm{HO}$ for distances shorter than the radius of the $C 2 s p^{3}$ shell since it is energetically unfavorable. Thus, each MO surface comprises a prolate spheroid at the H proton that is continuous with the $C 2 s p^{3}$ shell at the C atom whose nucleus serves as the other focus. The electron configuration and the energy, $E\left(C, 2 s p^{3}\right)$, of the $C 2 s p^{3}$ shell is given by Eqs. (13.422) and (13.428), respectively. The central paramagnetic force due to spin of each $\mathrm{C}-\mathrm{H}$ bond is provided by the spin-pairing force of the CH_{3} or $\mathrm{CH}_{2} \mathrm{MO}$ that has the symmetry of an s orbital that superimposes with the $C 2 s p^{3}$ orbitals such that the corresponding angular momenta are unchanged. The energies of each CH_{3} and $\mathrm{CH}_{2} \mathrm{MO}$ involve each $\mathrm{C} 2 \mathrm{sp}{ }^{3}$ and each H 1 s electron with the formation of each $\mathrm{C}-\mathrm{H}$ bond. The sum of the energies of the H_{2}-type ellipsoidal MOs is matched to that of the $C 2 \mathrm{sp}^{3}$ shell.

The force balance of the $C-H$-bond MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.139) and the energy matching condition between the $C 2 s p^{3}-\mathrm{HO}$ components of the MO.

The CH_{3} and CH_{2} groups form $\mathrm{C}-\mathrm{C}$ bonds comprising H_{2}-type MOs between the remaining $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HOs}$ on the carbons such that each carbon forms four bonds involving its four $C 2 s p^{3} \mathrm{HOs}$. The sharing of electrons between any two $C 2 s p^{3} \mathrm{HOs}$ to form a molecular orbital (MO) comprising two spin-paired electrons permits each $C 2 s p^{3} \mathrm{HO}$ to decrease in radius and energy. As in the case of the $C-H$ bonds, each $C-C$-bond MO is a prolate-spheroidal-MO surface that cannot extend into $C 2 s p^{3}$ HO for distances shorter than the radius of the $C 2 s p^{3}$ shell of each atom. Thus, the MO surface comprises a partial prolate spheroid in between the carbon nuclei and is continuous with the $C 2 s p^{3}$ shell at each C atom. The energy of the H_{2}-type ellipsoidal MO is matched to that of the $C 2 s p^{3}$ shell. As in the case of previous examples of energy-matched MOs such as the $C-C$-bond MO of ethane, each $C-C$-bond MO of $C_{n} H_{2 n+2}$ must comprise 75% of a H_{2}-type ellipsoidal MO in order to match potential, kinetic, and orbital energy relationships. Thus, the $C-C$-bond MO must comprise two $C 2 s p^{3} \mathrm{HOs}$ and 75% of a H_{2}-type ellipsoidal MO divided between the two $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HOs}$:
$2 \mathrm{C} 2 \mathrm{sp}{ }^{3}+0.75 \mathrm{H}_{2} \mathrm{MO} \rightarrow \mathrm{C}-\mathrm{C}$ - bond MO
The linear combination of the H_{2}-type ellipsoidal MO with each $C 2 \mathrm{sp}^{3} \mathrm{HO}$ further comprises an excess 25% charge-density contribution from each $C 2 s p^{3} \mathrm{HO}$ to the $C-C$-bond MO to achieve an energy minimum. The force balance of the $C-C$-bond MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.502) and the energy matching condition between the $C 2 s p^{3}-\mathrm{HO}$ components of the MO.

Before bonding, the $2 s p^{3}$ hybridized orbital arrangement of each carbon atom is given by Eq. (14.140). The sum $E_{T}\left(C, 2 s p^{3}\right)$ of calculated energies of C, C^{+}, C^{2+}, and C^{3+} is given by Eq. (14.141). The radius $r_{2 s p^{3}}$ of the $C 2 s p^{3}$ shell is given by Eq. (14.142). The Coulombic energy $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ and the energy $E\left(C, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell are given by Eqs. (14.143) and (14.146), respectively.

The formation of each $\mathrm{C}-\mathrm{C}$ bond of $C_{n} H_{2 n+2}$ further requires that the energy of all H_{2}-type prolate spheroidal MOs (σ MOs) be matched at all $\mathrm{C} 2 s \mathrm{sp}^{3} \mathrm{HOs}$ since they are continuous throughout the molecule. Thus, the energy of each $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$ must be a linear combination of that of the CH_{3} and CH_{2} groups that serve as basis elements. Each CH_{3} forms one $\mathrm{C}-\mathrm{C}$ bond, and each CH_{2} group forms two. Thus, the energy of each $\mathrm{C} 2 \mathrm{sp}^{3} \mathrm{HO}$ of each CH_{3} and CH_{2} group alone is given by that in ethane and ethylene, respectively. The parameters of ethane and ethylene are given by Eqs. (14.147-14.151) and (14.24414.247), respectively. The alkane parameters can be determined by first reviewing those of ethane and ethylene.

With the formation of the $C-C$-bond MO of ethane from two methyl radicals, each having a $C 2 s p^{3}$ electron with an energy given by Eq. (14.146), the total energy of the state is given by the sum over the four electrons. The sum $E_{T}\left(C_{\text {ethane }}, 2 s p^{3}\right)$ of calculated energies of $C 2 s p^{3}, C^{+}, C^{2+}$, and C^{3+} given by Eq. (14.147), is:

$$
\begin{align*}
E_{T}\left(C_{\text {ethane }}, 2 s p^{3}\right) & =-\left(64.3921 \mathrm{eV}+48.3125 \mathrm{eV}+24.2762 \mathrm{eV}+E\left(C, 2 s p^{3}\right)\right) \\
& =-(64.3921 \mathrm{eV}+48.3125 \mathrm{eV}+24.2762 \mathrm{eV}+14.63489 \mathrm{eV}) \tag{14.503}\\
& =-151.61569 \mathrm{eV}
\end{align*}
$$

where $E\left(C, 2 s p^{3}\right)$ is the sum of the energy of $C,-11.27671 \mathrm{eV}$, and the hybridization energy. The orbital-angular-momentum interactions also cancel such that the energy of the $E_{T}\left(C_{\text {ethane }}, 2 s p^{3}\right)$ is purely Coulombic.

The sharing of electrons between two $C 2 s p^{3}$ HOs to form a $C-C$-bond MO permits each participating hybridized orbital to decrease in radius and energy. In order to further satisfy the potential, kinetic, and orbital energy relationships, each $C 2 s p^{3} \mathrm{HO}$ donates an excess of 25% of its electron density to the $C-C$-bond MO to form an energy minimum. By considering this electron redistribution in the ethane molecule as well as the fact that the central field decreases by an integer for each successive electron of the shell, the radius $r_{\text {ethane2sp3 }}$ of the $C 2 s p^{3}$ shell of ethane may be calculated from the Coulombic energy using Eq. (10.102).

$$
\begin{equation*}
r_{\text {ethane2sp3}}=\left(\sum_{n=2}^{5}(Z-n)-0.25\right) \frac{e^{2}}{8 \pi \varepsilon_{0}(e 151.61569 \mathrm{eV})}=\frac{9.75 e^{2}}{8 \pi \varepsilon_{0}(e 151.61569 \mathrm{eV})}=0.87495 a_{0} \tag{14.504}
\end{equation*}
$$

using Eqs. (10.102) and (14.504), the Coulombic energy $E_{\text {Coulomb }}\left(C_{\text {ethane }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is:

$$
\begin{equation*}
E_{\text {Coulomb }}\left(C_{\text {ethane }}, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{\text {ethane } 2 s p^{3}}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} 0.87495 a_{0}}=-15.55033 \mathrm{eV} \tag{14.505}
\end{equation*}
$$

During hybridization, one of the spin-paired $2 s$ electrons is promoted to the $C 2 s p^{3}$ shell as an unpaired electron. The energy for the promotion is the magnetic energy given by Eq. (14.145). Using Eqs. (14.145) and (14.505), the energy $E\left(C_{\text {ethane }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is:

$$
\begin{equation*}
E\left(C_{\text {ethane }}, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{\text {ethane } 2 s p^{3}}}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(r_{3}\right)^{3}}=-15.55033 \mathrm{eV}+0.19086 \mathrm{eV}=-15.35946 \mathrm{eV} \tag{14.506}
\end{equation*}
$$

thus, $E_{T}\left(C-C, 2 s p^{3}\right)$, the energy change of each $C 2 s p^{3}$ shell with the formation of the $C-C$-bond MO is given by the difference between Eq. (14.146) and Eq. (14.506).

$$
\begin{equation*}
E_{T}\left(C-C, 2 s p^{3}\right)=E\left(C_{\text {ethane }}, 2 s p^{3}\right)-E\left(C, 2 s p^{3}\right)=-15.35946 \mathrm{eV}-(-14.63489 \mathrm{eV})=-0.72457 \mathrm{eV} \tag{14.507}
\end{equation*}
$$

Next, consider the formation of the $C=C$-bond MO of ethylene from two CH_{2} radicals, each having a $\mathrm{C} 2 \mathrm{sp}{ }^{3}$ electron with an energy given by Eq. (14.146). The sum $E_{T}\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ of calculated energies of $C 2 s p^{3}, C^{+}, C^{2+}$, and C^{3+} is given by Eq. (14.147). The sharing of electrons between two pairs of $C 2 s p^{3}$ HOs to form a $C=C$-bond MO permits each participating HO to decrease in radius and energy. In order to further satisfy the potential, kinetic, and orbital energy relationships, each participating $C 2 s p^{3} \mathrm{HO}$ donates an excess of 25% of its electron density to the $C=C$-bond MO to form an energy minimum. By considering this electron redistribution in the ethylene molecule as well as the fact that the central field decreases by an integer for each successive electron of the shell, the radius $r_{\text {ethylene } 2 s p^{3}}$ of the $C 2 s p^{3}$ shell of ethylene may be calculated from the Coulombic energy using Eqs. (10.102) and (14.147):

$$
\begin{align*}
r_{\text {ethylene2sp }^{3}} & =\left(\sum_{n=2}^{5}(Z-n)-0.5\right) \frac{e^{2}}{8 \pi \varepsilon_{0}(e 151.61569 \mathrm{eV})} \\
& =\frac{9.5 e^{2}}{8 \pi \varepsilon_{0}(e 151.61569 \mathrm{eV})} \tag{14.508}\\
& =0.85252 a_{0}
\end{align*}
$$

where $Z=6$ for carbon. Using Eqs. (10.102) and (14.508), the Coulombic energy $E_{\text {Coulomb }}\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is:

$$
\begin{equation*}
E_{\text {Coulomb }}\left(C_{\text {ethylene }}, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{\text {ethylene } 2 s p^{3}}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} 0.85252 a_{0}}=-15.95955 \mathrm{eV} \tag{14.509}
\end{equation*}
$$

During hybridization, one of the spin-paired $2 s$ electrons is promoted to the $C 2 s p^{3}$ shell as an unpaired electron. The energy for the promotion is the magnetic energy given by Eq. (14.145). Using Eqs. (14.145) and (14.509), the energy $E\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is:

$$
\begin{equation*}
E\left(C_{\text {ethylene }}, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{\text {ethylene2 } 2 p^{3}}}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(r_{3}\right)^{3}}=-15.95955 \mathrm{eV}+0.19086 \mathrm{eV}=-15.76868 \mathrm{eV} \tag{14.510}
\end{equation*}
$$

thus, $E_{T}\left(C=C, 2 s p^{3}\right)$, the energy change of each $C 2 s p^{3}$ shell with the formation of the $C=C$-bond MO is given by the difference between Eq. (14.146) and Eq. (14.510):

$$
\begin{align*}
E_{T}\left(C=C, 2 s p^{3}\right) & =E\left(C_{\text {ethylene }}, 2 s p^{3}\right)-E\left(C, 2 s p^{3}\right) \\
& =-15.76868 \mathrm{eV}-(-14.63489 \mathrm{eV}) \tag{14.511}\\
& =-1.13380 \mathrm{eV}
\end{align*}
$$

To meet the energy matching condition for all σ MOs at all $C 2 s p^{3} \mathrm{HOs}$, the energy $E\left(C_{\text {alkane }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell of each alkane carbon atom must be the average of $E\left(C_{\text {ethane }}, 2 s p^{3}\right)$ (Eq. (14.506)) and $E\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ (Eq. (14.510)).

$$
\begin{align*}
E\left(C_{\text {alkane }}, 2 s p^{3}\right) & =\frac{E\left(C_{\text {ethane }}, 2 s p^{3}\right)+E\left(C_{\text {ethylene }}, 2 s p^{3}\right)}{2} \\
& =\frac{(-15.35946 \mathrm{eV})+(-15.76868 \mathrm{eV})}{2} \tag{14.512}\\
& =-15.56407 \mathrm{eV}
\end{align*}
$$

And, $E_{T_{\text {alkene }}}\left(C-C, 2 s p^{3}\right)$, the energy change of each $C 2 s p^{3}$ shell with the formation of each $C-C$-bond MO, must be the average of $E_{T}\left(C-C, 2 s p^{3}\right)$ (Eq. (14.507)) and $E_{T}\left(C=C, 2 s p^{3}\right)$ (Eq. (14.511)).

$$
\begin{align*}
E_{T_{\text {alkane }}}\left(C-C, 2 s p^{3}\right) & =\frac{E_{T}\left(C-C, 2 s p^{3}\right)+E_{T}\left(C=C, 2 s p^{3}\right)}{2} \\
& =\frac{(-0.72457 \mathrm{eV})+(-1.13379 \mathrm{eV})}{2} \tag{14.513}\\
& =-0.92918 \mathrm{eV}
\end{align*}
$$

using Eq. (10.102), the radius $r_{\text {alkane2sp }}$ of the $C 2 s p^{3}$ shell of each carbon atom of $C_{n} H_{2 n+2}$ may be calculated from the Coulombic energy using the initial energy $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)=-14.82575 \mathrm{eV}$ (Eq. (14.143)) and $E_{T_{\text {alkene }}}\left(C-C, 2 s p^{3}\right)$ Eq. (14.513)), the energy change of each $C 2 s p^{3}$ shell with the formation of each $C-C$-bond MO. Consider the case of a methyl carbon which donates $E_{T_{\text {alkene }}}\left(C-C, 2 s p^{3}\right)$ Eq. (14.513)) to a single $C-C$ bond:

$$
\begin{align*}
r_{\text {alkane } 2 \text { sp }}{ }^{3} & =\frac{-e^{2}}{8 \pi \varepsilon_{0}\left(E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)+E_{T_{\text {alkene }}}\left(C-C, 2 s p^{3}\right)\right)} \\
& =\frac{e^{2}}{8 \pi \varepsilon_{0}(e 14.825751 e V+e 0.92918 \mathrm{eV})} \tag{14.514}\\
& =0.86359 a_{0}
\end{align*}
$$

using Eqs. (10.102) and (14.514), the Coulombic energy $E_{\text {Coulomb }}\left(C_{\text {alkane }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is:

$$
\begin{equation*}
E_{\text {Coulomb }}\left(C_{\text {alkane }}, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{\text {alkane2sp }}{ }^{3}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} 0.86359 a_{0}}=-15.75493 \mathrm{eV} \tag{14.515}
\end{equation*}
$$

During hybridization, one of the spin-paired $2 s$ electrons is promoted to the $C 2 s p^{3}$ shell as an unpaired electron. The energy for the promotion is the magnetic energy given by Eq. (14.145). Using Eqs. (14.145) and (14.515), the energy $E\left(C_{\text {alkane }}, 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell is:

$$
\begin{equation*}
E\left(C_{\text {alkane }}, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{\text {alkane } 2 s p^{3}}}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(r_{3}\right)^{3}}=-15.75493 \mathrm{eV}+0.19086 \mathrm{eV}=-15.56407 \mathrm{eV} \tag{14.516}
\end{equation*}
$$

thus, $E_{T_{\text {alkene }}}\left(C-C, 2 s p^{3}\right)$, the energy change of each $C 2 s p^{3}$ shell with the formation of each $C-C$-bond MO is given by the difference between Eq. (14.146) and Eq. (14.516):

$$
\begin{equation*}
E_{T_{\text {alkane }}}\left(C-C, 2 s p^{3}\right)=E\left(C_{\text {alkane }}, 2 s p^{3}\right)-E\left(C, 2 s p^{3}\right)=-15.56407 \mathrm{eV}-(-14.63489 \mathrm{eV})=-0.92918 \mathrm{eV} \tag{14.517}
\end{equation*}
$$

which agrees with Eq. (14.513).
The energy contribution due to the charge donation at each carbon superimposes linearly. In general, the radius $r_{\text {mol2 } 2 p^{3}}$ of the $C 2 s p^{3} \mathrm{HO}$ of a carbon atom of a group of a given molecule is calculated using Eq. (14.514) by considering $\sum E_{T_{m o l}}\left(M O, 2 s p^{3}\right)$, the total energy donation to each bond with which it participates in bonding. The general equation for the radius is given by:

$$
\begin{align*}
r_{{\text {mol } 2 s p^{3}}^{3}} & =\frac{-e^{2}}{8 \pi \varepsilon_{0}\left(E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)+\sum E_{T_{\text {mol }}}\left(M O, 2 s p^{3}\right)\right)} \\
& =\frac{e^{2}}{8 \pi \varepsilon_{0}\left(e 14.825751 e V+\sum\left|E_{T_{\text {mol }}}\left(M O, 2 s p^{3}\right)\right|\right)} \tag{14.518}
\end{align*}
$$

The $C 2 s p^{3} \mathrm{HO}$ of each methyl group of an alkane contributes -0.92918 eV to the corresponding single $C-C$ bond; thus, the corresponding $C 2 s p^{3} \mathrm{HO}$ radius is given by Eq. (14.514). The $C 2 s p^{3} \mathrm{HO}$ of each methylene group of $C_{n} H_{2 n+2}$ contributes -0.92918 eV to each of the two corresponding $C-C$ bond MOs. Thus, the radius of each methylene group of an alkane is given by:

$$
\begin{align*}
r_{\text {alkane }_{\text {mentylemene }} 2 p^{3}} & =\frac{-e^{2}}{8 \pi \varepsilon_{0}\left(E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)+\sum E_{T_{\text {alkene }}}\left(\text { methylene } C-C, 2 s p^{3}\right)\right)} \\
& =\frac{e^{2}}{8 \pi \varepsilon_{0}(e 14.825751 e V+e 0.92918 e V+e 0.92918 \mathrm{eV})} \tag{14.519}\\
& =0.81549 a_{0}
\end{align*}
$$

As in the case with ethane, the H_{2}-type ellipsoidal MO comprises 75% of the $C-C$-bond MO shared between two $C 2 s p^{3}$ HOs corresponding to the electron charge density in Eq. (11.65) of $\frac{-0.75 e}{2}$. But, the additional 25% charge-density contribution to the $C-C$-bond MO causes the electron charge density in Eq. (11.65) to be $\frac{-e}{2}=-0.5 e$. Thus, the force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} in terms of the central force of the foci is given by Eq. (14.152). The distance from the origin of the $C-C$-bond MO to each focus c^{\prime} is given by Eq. (14.153). The internuclear distance from is given by Eq. (14.154). The length of the semiminor axis of the prolate spheroidal $C-C$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of the $C-C$-bond MO. Since the $C-C$-bond MO comprises a H_{2}-type-ellipsoidal MO that transitions to the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ of each carbon, the energy $E\left(C_{\text {alkane }}, 2 s p^{3}\right)$ in Eq. (14.512) adds to that of the H_{2}-type ellipsoidal MO to give the total energy of the $C-C$-bond MO. From the energy equation and the relationship between the axes, the dimensions of the $C-C$-bond MO are solved. Similarly, $E\left(C_{\text {alkane }}, 2 s p^{3}\right)$ is added to the energy of the H_{2}-type ellipsoidal MO of each $C-H$ bond of the methyl and methylene groups to give their total energy. From the energy equation and the relationship between the axes, the dimensions of the equivalent $C-H$-bond MOs of the methyl and methylene groups in the alkane are solved.

The general equations for the energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} of each $C-C$-bond MO are the same as those of the $C H \mathrm{MO}$ except that energy of the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ is used. The energy components at each carbon atom superimpose linearly and may be treated independently. Since each prolate spheroidal H_{2}-type MO transitions to the $C_{\text {alkane }} 2 s p^{3}$ HO of each corresponding carbon of the bond and the energy of the $C_{\text {alkane }} 2 s p^{3}$ shell treated independently must remain constant and equal to the $E\left(C_{\text {alkane }}, 2 s p^{3}\right)$ given by Eq. (14.512), the total energy $E_{T_{\text {alkane }}^{\prime}}^{\prime}(C-C, \sigma)$ of the σ component of each $C-C$ bond MO is given by the sum of the energies of the orbitals corresponding to the composition of the linear combination of the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ and the H_{2}-type ellipsoidal MO that forms the σ component of the $C-C$-bond MO as given by Eq. (14.502) with the electron charge redistribution. The total number of $C-C$ bonds in $C_{n} H_{2 n+2}$ is $n-1$. Using Eqs. (13.431) and (14.512), $E_{T_{\text {alkane }}}(C-C, \sigma)$ of the $n-1$ bonds is given by:

$$
\begin{align*}
E_{T_{\text {akkne }}}(C-C, \sigma) & =(n-1)\left(E_{T}+E\left(C_{\text {alkane }}, 2 s p^{3}\right)\right) \\
& =(n-1)\left(-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.56407 \mathrm{eV}\right) \tag{14.520}
\end{align*}
$$

To match the boundary condition that the total energy of each H_{2}-type ellipsoidal MO is given by Eqs. (11.212) and (13.75), $E_{T_{\text {alkene }}}(C-C, \sigma)$ given by Eq. (14.520) is set equal to $(n-1)$ times Eq. (13.75).

$$
E_{T_{\text {allane }}}(C-C, \sigma)=(n-1)\left(\begin{array}{l}
\left.-\frac{e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]\right)=(n-1)(-31.63536831 \mathrm{eV}) \tag{14.521}\\
-15.56407 \mathrm{eV}
\end{array}\right.
$$

From the energy relationship given by Eq. (14.521) and the relationship between the axes given by Eqs. (14.153-14.154) and (13.62-13.63), the dimensions of the $C-C$-bond MO can be solved.

Substitution of Eq. (14.153) into Eq. (14.521) gives:

$$
\begin{equation*}
\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a a_{0}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{a a_{0}}}{a-\sqrt{a a_{0}}}-1\right]=e 16.07130 \tag{14.522}
\end{equation*}
$$

The most convenient way to solve Eq. (14.522) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is:

$$
\begin{equation*}
a=2.12499 a_{0}=1.12450 \times 10^{-10} \mathrm{~m} \tag{14.523}
\end{equation*}
$$

Substitution of Eq. (14.523) into Eq. (14.155) gives:

$$
\begin{equation*}
c^{\prime}=1.45774 a_{0}=7.71400 \times 10^{-11} \mathrm{~m} \tag{14.524}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.524) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.91547 a_{0}=1.54280 \times 10^{-10} \mathrm{~m} \tag{14.525}
\end{equation*}
$$

The experimental $C-C$ bond distance of propane is [3]:

$$
\begin{equation*}
2 c^{\prime}=1.532 \times 10^{-10} \mathrm{~m} \tag{14.526}
\end{equation*}
$$

The experimental $C-C$ bond distance of butane is [3]:

$$
\begin{equation*}
2 c^{\prime}=1.531 \times 10^{-10} \mathrm{~m} \tag{14.527}
\end{equation*}
$$

Substitution of Eqs. (14.523-14.524) into Eq. (13.62) gives:

$$
\begin{equation*}
b=c=1.54616 a_{0}=8.18192 \times 10^{-11} \mathrm{~m} \tag{14.528}
\end{equation*}
$$

Substitution of Eqs. (14.523-14.524) into Eq. (13.63) gives:

$$
\begin{equation*}
e=0.68600 \tag{14.529}
\end{equation*}
$$

The nucleus of the C atoms comprise the foci of each H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95) and (13.261-13.270). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where for methylene bonds $r_{n}=r_{\text {alkane } 2 s p^{3}}=r_{\text {methylene } 2 s p^{3}}=0.81549 a_{0}$ is the radius of the $C_{\text {alkane }} 2 s p^{3}$ shell given by Eq. (14.519). Substitution of Eqs. (14.523-14.524) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=56.41^{\circ} \tag{14.530}
\end{equation*}
$$

Then, the angle $\theta_{C-C_{\text {alane }} 2 s p^{3} H O}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C-C_{\text {alkane }} 2 s p^{3} \mathrm{HO}}=180^{\circ}-56.41^{\circ}=123.59^{\circ} \tag{14.531}
\end{equation*}
$$

as shown in Figure 14.16.
Figure 14.16. The cross section of one $C-C$-bond $\mathrm{MO}(\sigma \mathrm{MO})$ and one $C-H$-bond MO of $C_{n} H_{2 n+2}$ showing the axes, angles, and point of intersection of each H_{2}-type ellipsoidal MO with the corresponding $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$. The continuation of each H_{2}-type-ellipsoidal-MO basis element of the $C-C$ bond and the $C-H$-bond beyond the intersection point with each $C_{\text {alkane }} 2 s p^{3}$ shell and σ MO is shown as dashed since each only serves to solve the energy match with the $C_{\text {alkane }} 2 s p^{3}$ shell and does not represent charge density. Similarly, the vertical dashed line only designates the parameters of each intersection point. The actual charge density is shown by the solid lines. Legend: a : semimajor axis, b : semiminor axis, c^{\prime} : internuclear distance, $d_{1}: d_{C-C_{\text {alkane }}, H_{2} M O}, \theta_{1}: \theta_{C-C_{\text {alanere }} 2 s p^{3} H O}, d_{2}: d_{C-C_{\text {alanere }} 2 s p^{3} \mathrm{HO}}, R: r_{\text {alkane } C 2 s p^{3}}, d_{3}: d_{C-H_{\text {alkane }}, H_{2} M O}, \theta_{2}: \theta_{C-H_{\text {alkane }} 2 s p^{3} H O}$, and $d_{4}: d_{C-H_{\text {alkane }} 2 s p^{3} H O}$.

Consider the right-hand intersection point. The Cartesian \mathbf{i}-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j} coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{C-C_{\text {alkne }}, H_{2} M O}$ satisfies the following relationship:

$$
\begin{equation*}
r_{\text {alkane } 2 s p^{3}} \sin \theta_{C-C_{\text {alkane }} 2 s p^{3} H O}=0.81549 a_{0} \sin \theta_{C-C_{\text {akkane }} 2 s p^{3} \mathrm{HO}}=b \sin \theta_{C-C_{\text {alkane }}, \mathrm{H}_{2} M O} \tag{14.532}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{C-C_{\text {alkene } e}, H_{2} M O}=\sin ^{-1} \frac{0.81549 a_{0} \sin \theta_{C-C_{\text {alknere }} 2 p^{3} H O}}{b}=\sin ^{-1} \frac{0.81549 a_{0} \sin 123.59^{\circ}}{b} \tag{14.533}
\end{equation*}
$$

with the use of Eq. (14.531). Substitution of Eq. (14.528) into Eq. (14.533) gives:

$$
\begin{equation*}
\theta_{C-C_{\text {alkane }, ~}, H_{2} \mathrm{MO}}=26.06^{\circ} \tag{14.534}
\end{equation*}
$$

Then, the distance $d_{C-C_{\text {alame }}, \mathrm{H}_{2} M O}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by

$$
\begin{equation*}
d_{C-C_{\text {alkene }, ~} \text { H } H_{2} M O}=a \cos \theta_{C-C_{\text {alkane }, ~}^{2} \text { HO } M O} \tag{14.535}
\end{equation*}
$$

Substitution of Eqs. (14.523) and (14.534) into Eq. (14.535) gives:

$$
\begin{equation*}
d_{C-C_{\text {alkere }}, H_{2} M O}=1.90890 a_{0}=1.01015 \times 10^{-10} \mathrm{~m} \tag{14.536}
\end{equation*}
$$

The distance $d_{C-C_{\text {alkene }} 2 s p^{3} H O}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C-C_{\text {akhene }} 2 \text { sp }{ }^{3} \mathrm{HO}}=d_{C-C_{\text {alkene }}, H_{2} M O}-c^{\prime} \tag{14.537}
\end{equation*}
$$

Substitution of Eqs. (14.524) and (14.536) into Eq. (14.537) gives:

$$
\begin{equation*}
d_{C-C_{\text {alkane } 2 s p^{3} \mathrm{HO}}}=0.45117 a_{0}=2.38748 \times 10^{-11} \mathrm{~m} \tag{14.538}
\end{equation*}
$$

FORCE BALANCE OF THE CH_{3} MOs OF CONTINUOUS-CHAIN ALKANES

Each of the two CH_{3} MOs must comprise three equivalent $\mathrm{C}-\mathrm{H}$ bonds with each comprising 75% of a H_{2}-type ellipsoidal MO and a $C 2 s p^{3} \mathrm{HO}$ as given by Eq. (13.540).

$$
\begin{equation*}
3\left[1 \mathrm{C} 2 s p^{3}+0.75 \mathrm{H}_{2} \mathrm{MO}\right] \rightarrow \mathrm{CH}_{3} \mathrm{MO} \tag{14.539}
\end{equation*}
$$

The force balance of the $\mathrm{CH}_{3} \mathrm{MO}$ is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.539) and the energy matching condition between the hydrogen and $C 2 s p^{3} \mathrm{HO}$ components of the MO.

The force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} of the each H_{2}-type-ellipsoidal-MO component of the $\mathrm{CH}_{3} \mathrm{MO}$ in terms of the central force of the foci is given by Eq. (13.59). The distance from the origin of each $\mathrm{C}-\mathrm{H}$-bond MO to each focus c^{\prime} is given by Eq. (13.60). The internuclear distance is given by Eq. (13.61). The length of the semiminor axis of the prolate spheroidal $C-H$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of each $\mathrm{C}-\mathrm{H}-$ bond MO. Since each of the three prolate spheroidal $\mathrm{C}-\mathrm{H}$-bond MOs comprises an H_{2}-type-ellipsoidal MO that transitions to the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ of $C_{n} H_{2 n+2}$, the energy $E\left(C_{\text {alkane }}, 2 s p^{3}\right)$ of Eq. (14.512) adds to that of the three corresponding H_{2}-type ellipsoidal MOs to give the total energy of the $\mathrm{CH}_{3} \mathrm{MO}$. From the energy equation and the relationship between the axes, the dimensions of the $\mathrm{CH}_{3} \mathrm{MO}$ are solved.

The energy components of V_{e}, V_{p}, T, and V_{m} are the same as those of methyl radical, three times those of CH corresponding to the three $C-H$ bonds except that energy of the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ is used. Since each prolate spheroidal $\mathrm{H}_{2}-$ type MO transitions to the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ and the energy of the $C_{\text {alkane }} 2 s p^{3}$ shell must remain constant and equal to the $E\left(C_{\text {alkane }}, 2 s p^{3}\right)$ given by Eq. (14.512), the total energy $E_{T_{\text {alkane }}}\left(\mathrm{CH}_{3}\right)$ of the $\mathrm{CH}_{3} \mathrm{MO}$ is given by the sum of the energies of the orbitals corresponding to the composition of the linear combination of the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ and the three H_{2}-type ellipsoidal MOs that forms the $\mathrm{CH}_{3} \mathrm{MO}$ as given by Eq. (14.539). Using Eq. (13.431) or Eq. (13.541), $E_{T_{\text {alkane }}}\left(\mathrm{CH}_{3}\right)$ is given by:

$$
\begin{equation*}
E_{T_{\text {alkane }}}\left(C H_{3}\right)=E_{T}+E\left(C_{\text {alkane }}, 2 s p^{3}\right)=-\frac{3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.56407 \mathrm{eV} \tag{14.540}
\end{equation*}
$$

$E_{T_{\text {alkane }}}\left(\mathrm{CH}_{3}\right)$ given by Eq. (14.540) is set equal to three times the energy of the H_{2}-type ellipsoidal MO minus two times the Coulombic energy of H given by Eq. (13.542):

$$
\begin{equation*}
E_{T}\left(C H_{3}\right)=-\frac{3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.56407 \mathrm{eV}=-67.69450 \mathrm{eV} \tag{14.541}
\end{equation*}
$$

From the energy relationship given by Eq. (14.541) and the relationship between the axes given by Eqs. (13.60-13.63), the dimensions of the CH_{3} MO can be solved.

Substitution of Eq. (13.60) into Eq. (14.541) gives:

$$
\begin{equation*}
\frac{3 e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right]=e 52.13044 \tag{14.542}
\end{equation*}
$$

The most convenient way to solve Eq. (14.542) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is:

$$
\begin{equation*}
a=1.64920 a_{0}=8.72720 \times 10^{-11} \mathrm{~m} \tag{14.543}
\end{equation*}
$$

Substitution of Eq. (14.543) into Eq. (14.60) gives:

$$
\begin{equation*}
c^{\prime}=1.04856 a_{0}=5.54872 \times 10^{-11} \mathrm{~m} \tag{14.544}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.544) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.09711 a_{0}=1.10974 \times 10^{-10} \mathrm{~m} \tag{14.545}
\end{equation*}
$$

The experimental $C-H$ bond distance of propane is [3]:

$$
\begin{equation*}
2 c^{\prime}=1.107 \times 10^{-10} \mathrm{~m} \tag{14.546}
\end{equation*}
$$

Substitution of Eqs. (14.543-14.544) into Eq. (14.62) gives:

$$
\begin{equation*}
b=c=1.27295 a_{0}=6.73616 \times 10^{-11} \mathrm{~m} \tag{14.547}
\end{equation*}
$$

Substitution of Eqs. (14.543-14.544) into Eq. (14.63) gives:

$$
\begin{equation*}
e=0.63580 \tag{14.548}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the C atom comprise the foci of each H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95) and (13.261-13.270). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{\text {alkane2sp }}=0.86359 a_{0}$ is the radius of the $C_{\text {alkane }} 2 s p^{3}$ shell. Substitution of Eqs. (14.543-14.544) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=77.49^{\circ} \tag{14.549}
\end{equation*}
$$

Then, the angle $\theta_{C-H_{\text {alkane }} 2 s p^{3} H O}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C-H_{\text {alkane } 2 s p^{3} H O}}=180^{\circ}-77.49^{\circ}=102.51^{\circ} \tag{14.550}
\end{equation*}
$$

as shown in Figure 14.17.
Figure 14.17. The cross section of one $C-H$-bond MO of $C_{n} H_{2 n+2}$ showing the axes, angles, and point of intersection of the H_{2}-type ellipsoidal MO with the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$. The continuation of the H_{2}-type-ellipsoidal-MO basis element beyond the intersection point with the $C_{\text {alkane }} 2 s p^{3}$ shell is shown as dashed since it only serves to solve the energy match with the $C_{\text {alkane }} 2 s p^{3}$ shell and does not represent charge density. Similarly, the vertical dashed line only designates the parameters of the intersection point. The actual charge density is shown by the solid lines. Legend: a : semimajor axis, $b:$ semiminor axis, c^{\prime} : internuclear distance, $d_{1}: d_{C-H_{\text {alkane }}, H_{2} M O}, \theta_{1}: \theta_{C-H_{\text {alkane }} 2 S p^{3} H O}, d_{2}: d_{C-H_{\text {alkane }} 2 s p^{3} H O}$, and $R: r_{\text {alkane2sp }}$.

The Cartesian i-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j}-coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{C-H_{\text {alkane }}, H_{2} M O}$ satisfies the following relationship:

$$
\begin{equation*}
r_{\text {alkane2sp3}^{3}} \sin \theta_{C-H_{\text {alkane }} 2 s p^{3} \mathrm{HO}}=0.86359 a_{0} \sin \theta_{C-\mathrm{H}_{\text {alkane }} 2 s p^{3} \mathrm{HO}}=b \sin \theta_{C-\mathrm{H}_{\text {alkane }}, \mathrm{H}_{2} \mathrm{MO}} \tag{14.551}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{C-H_{\text {alkane }}, H_{2} M O}=\sin ^{-1} \frac{0.86359 a_{0} \sin \theta_{C-H_{\text {alkane }} 2 s p^{3} H O}}{b}=\sin ^{-1} \frac{0.86359 a_{0} \sin 102.51^{\circ}}{b} \tag{14.552}
\end{equation*}
$$

with the use of Eq. (14.550). Substitution of Eq. (14.547) into Eq. (14.552) gives:

$$
\begin{equation*}
\theta_{C-H_{\text {alkane }}, H_{2} M O}=41.48^{\circ} \tag{14.553}
\end{equation*}
$$

Then, the distance $d_{C-H_{\text {alkane }}, \mathrm{H}_{2} \mathrm{MO}}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C-\mathrm{H}_{\text {alkane } e}, \mathrm{H}_{2} \mathrm{MO}}=a \cos \theta_{C-\mathrm{H}_{\text {alkane }}, \mathrm{H}_{2} \mathrm{MO}} \tag{14.554}
\end{equation*}
$$

Substitution of Eqs. (14.543) and (14.553) into Eq. (14.554) gives:

$$
\begin{equation*}
d_{C-H_{\text {alkane }, H_{2} M O}}=1.23564 a_{0}=6.53871 X 10^{-11} \mathrm{~m} \tag{14.555}
\end{equation*}
$$

The distance $d_{C-H_{\text {alkane }} 2 s p^{3} H O}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals is given by

$$
\begin{equation*}
d_{C-H_{\text {alkane }} 2 s p^{3} \mathrm{HO}}=d_{C-\mathrm{H}_{\text {alkane } e}, \mathrm{H}_{2} \mathrm{MO}}-C^{\prime} \tag{14.556}
\end{equation*}
$$

Substitution of Eqs. (14.544) and (14.555) into Eq. (14.556) gives:

$$
\begin{equation*}
d_{C-H_{\text {alkane }} 2 \mathrm{sp} \mathrm{~s}^{3} \mathrm{HO}}=0.18708 a_{0}=9.89999 \times 10^{-12} \mathrm{~m} \tag{14.557}
\end{equation*}
$$

BOND ANGLE OF THE CH_{3} AND CH_{2} GROUPS

Each $\mathrm{CH}_{3} \mathrm{MO}$ comprises a linear combination of three $\mathrm{C}-\mathrm{H}$-bond MOs. Each $\mathrm{C}-\mathrm{H}$-bond MO comprises the superposition of a H_{2}-type ellipsoidal MO and the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$. A bond is also possible between the two H atoms of the $\mathrm{C}-\mathrm{H}$ bonds. Such $H-H$ bonding would decrease the $C-H$ bond strength since electron density would be shifted from the $C-H$ bonds to the $H-H$ bond. Thus, the bond angle between the two $C-H$ bonds is determined by the condition that the total energy of the H_{2}-type ellipsoidal MO between the terminal H atoms of the $C-H$ bonds is zero. From Eqs. (11.79) and (13.228), the distance from the origin to each focus of the $H-H$ ellipsoidal MO is:

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} 2 a}}=\sqrt{\frac{a a_{0}}{2}} \tag{14.558}
\end{equation*}
$$

The internuclear distance from Eq. (14.558) is:

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{2}} \tag{14.559}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal $H-H$ MO $b=c$ is given by Eq. (14.62).
The bond angle of the CH_{3} groups of $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ is derived by using the orbital composition and an energy matching factor as in the case with the CH_{3} radical. Since each pair of H_{2}-type ellipsoidal MOs initially comprise 75% of the H electron density of H_{2} and the energy of each H_{2}-type ellipsoidal MO is matched to that of the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$, the component energies and the total energy E_{T} of the $H-H$ bond are given by Eqs. (13.67-13.73) except that V_{e}, T, and V_{m} are corrected for the hybridization-energy-matching factor of 0.86359 . Hybridization with 25% electron donation to the $C-C$-bond gives rise to the $C_{\text {alkane }} 2 s p^{3}$ HO-shell Coulombic energy $E_{\text {Coulomb }}\left(C_{\text {alkane }}, 2 s p^{3}\right)$ given by Eq. (14.515). The corresponding normalization factor for determining the zero of the total $H-H$ bond energy is given by the ratio of 15.75493 eV , the magnitude of $E_{\text {Coulomb }}\left(C_{\text {alkane }}, 2 s p^{3}\right)$ given by Eq. (14.515), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264). The hybridization energy factor $C_{a l k a n e C 2 s p^{3} H O}$ is:

$$
\begin{equation*}
C_{\text {alkane } C 2 s p^{3} H O}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} r_{\text {alkane } 2 \text { sp }}{ }^{3}}}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} 0.86359 a_{0}}}=\frac{13.605804 \mathrm{eV}}{15.75493 \mathrm{eV}}=0.86359 \tag{14.560}
\end{equation*}
$$

Substitution of Eq. (14.558) into Eq. (13.233) with the hybridization factor of 0.86359 gives:

$$
\left.0=\left[\begin{array}{l}
\frac{-e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2}}}\left[(0.86359)^{-1}\left(\frac{3}{2}-\frac{3}{8} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2}}}{a-\sqrt{\frac{a a_{0}}{2}}}\right. \tag{14.561}
\end{array}\right]\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}}{m_{e} c^{2}}}\right]\right]
$$

From the energy relationship given by Eq. (14.561) and the relationship between the axes given by Eqs. (14.558-14.559) and (14.62-14.63), the dimensions of the $H-H$ MO can be solved.

The most convenient way to solve Eq. (14.561) is by the reiterative technique using a computer. The result to within the round-off error with five-significant figures is:

$$
\begin{equation*}
a=5.8660 a_{0}=3.1042 \times 10^{-10} \mathrm{~m} \tag{14.562}
\end{equation*}
$$

Substitution of Eq. (14.562) into Eq. (14.558) gives:

$$
\begin{equation*}
c^{\prime}=1.7126 a_{0}=9.0627 \times 10^{-11} \mathrm{~m} \tag{14.563}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.563) by two is:

$$
\begin{equation*}
2 c^{\prime}=3.4252 a_{0}=1.8125 \times 10^{-10} \mathrm{~m} \tag{14.564}
\end{equation*}
$$

Substitution of Eqs. (14.562-14.563) into Eq. (14.62) gives:

$$
\begin{equation*}
b=c=5.6104 a_{0}=2.9689 \times 10^{-10} \mathrm{~m} \tag{14.565}
\end{equation*}
$$

Substitution of Eqs. (14.562-14.563) into Eq. (14.63) gives:

$$
\begin{equation*}
e=0.2920 \tag{14.566}
\end{equation*}
$$

Using $2 C_{H-H}^{\prime}$ (Eq. (14.564)), the distance between the two H atoms when the total energy of the corresponding MO is zero (Eq. (14.561)), and $2{C^{\prime}}_{C-H}$, the internuclear distance of each $C-H$ bond, the corresponding bond angle can be determined from the law of cosines. Since the internuclear distance of each $\mathrm{C}-\mathrm{H}$ bond of CH_{3} (Eq. (14.545)) and CH_{2} (Eq. (14.597)) are sufficiently equivalent, the bond angle determined with either is within experimental error of being the same. Using, Eqs. (13.242), (14.545), and (14.564), the bond angle θ between the $C-H$ bonds is:

$$
\begin{equation*}
\theta=\cos ^{-1}\left(\frac{2(2.09711)^{2}-(3.4252)^{2}}{2(2.09711)^{2}}\right)=\cos ^{-1}(-0.33383)=109.50^{\circ} \tag{14.567}
\end{equation*}
$$

The experimental angle between the $C-H$ bonds is [19]:

$$
\begin{equation*}
\theta=109.3^{\circ} \tag{14.568}
\end{equation*}
$$

The CH_{3} radical has a pyramidal structure with the carbon atom along the z -axis at the apex and the hydrogen atoms at the base in the xy-plane. The distance $d_{\text {origin-H }}$ from the origin to the nucleus of a hydrogen atom given by Eqs. (14.564) and (13.412) is:

$$
\begin{equation*}
d_{\text {origin-H }}=1.97754 a_{0} \tag{14.569}
\end{equation*}
$$

The height along the z-axis of the pyramid from the origin to C nucleus $d_{\text {height }}$ given by Eqs. (13.414), (14.545), and (14.569) is

$$
\begin{equation*}
d_{\text {height }}=0.69800 a_{0} \tag{14.570}
\end{equation*}
$$

The angle θ_{v} of each $C-H$ bond from the z-axis given by Eqs. (13.416), (14.569), and (14.570) is:

$$
\begin{equation*}
\theta_{v}=70.56^{\circ} \tag{14.571}
\end{equation*}
$$

The $C-C$ bond is along the z-axis. Thus, the bond angle θ_{C-C-H} between the internuclear axis of the $C-C$ bond and a H atom of the methyl groups is given by:

$$
\begin{equation*}
\theta_{C-C-H}=180-\theta_{v} \tag{14.572}
\end{equation*}
$$

Substitution of Eq. (14.571) into Eq. (14.572) gives:

$$
\begin{equation*}
\theta_{C-C-H}=109.44^{\circ} \tag{14.573}
\end{equation*}
$$

The experimental angle between the $C-C-H$ bonds is [19]:

$$
\begin{equation*}
\theta_{C-C-H}=109.3^{\circ} \tag{14.574}
\end{equation*}
$$

The $C_{n} H_{2 n+2}$ MOs shown in Figures 14.18-14.28 were rendered using these parameters. A minimum energy is obtained with a staggered configuration consistent with observations [3].

ENERGIES OF THE CH_{3} GROUPS

The energies of each CH_{3} group of $C_{n} H_{2 n+2}$ are given by the substitution of the semiprincipal axes (Eqs. (14.543-14.544) and (14.547)) into the energy equations of methyl radical (Eqs. (13.556-13.560)), with the exception that $E\left(C_{\text {alkne }}, 2 s p^{3}\right)$ (Eq. (14.514)) replaces $E\left(C, 2 s p^{3}\right)$ in Eq. (13.560).

$$
\begin{align*}
& V_{e}=3(0.91771) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-107.32728 \mathrm{eV} \tag{14.575}\\
& V_{p}=\frac{3 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=38.92728 \mathrm{eV} \tag{14.576}\\
& T=3(0.91771) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=32.53914 \mathrm{eV} \tag{14.577}\\
& V_{m}=3(0.91771) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-16.26957 \mathrm{eV} \tag{14.578}\\
& E_{T_{\text {alanee }}}\left(C H_{3}\right)=\left(\begin{array}{l}
\left.-\frac{3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]\right)=-67.69451 \mathrm{eV} \\
-15.56407 \mathrm{eV}
\end{array}\right. \tag{14.579}
\end{align*}
$$

where $E_{T_{\text {alkane }}}\left(\mathrm{CH}_{3}\right)$ is given by Eq. (14.540) which is reiteratively matched to Eq. (13.542) within five-significant-figure round off error.

VIBRATION OF THE ${ }^{12} \mathrm{CH}_{3}$ GROUPS

The vibrational energy levels of the $\mathrm{C}-\mathrm{H}$ bonds of CH_{3} in $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ may be solved as three equivalent coupled harmonic oscillators by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERMS OF THE ${ }^{12} \mathrm{CH}_{3}$ GROUPS

The equations of the radiation reaction force of the methyl groups in $C_{n} H_{2 n+2}$ are the same as those of the methyl radical with the substitution of the methyl-group parameters. Using Eq. (13.561), the angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=2.49286 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{14.580}
\end{equation*}
$$

where b is given by Eq. (14.547). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 2.49286 \times 10^{16} \mathrm{rad} / \mathrm{s}=16.40846 \mathrm{eV} \tag{14.581}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(H_{2}\right)$ (Eqs. (11.212) and (13.75)), the maximum total energy of each H_{2}-type MO, for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (14.581) for \bar{E}_{K} gives the Doppler energy of the electrons of each of the three bonds for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-31.63537 \mathrm{eV} \sqrt{\frac{2 e(16.40846 \mathrm{eV})}{m_{e} c^{2}}}=-0.25352 \mathrm{eV} \tag{14.582}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of CH_{3} due to the reentrant orbit of each bond in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{o s c}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (14.582) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of each $C-H$ bond. Using ω_{e} given by Eq. (13.458) for $\bar{E}_{\text {Kvib }}$ of the transition state having three independent bonds, $\bar{E}^{\prime}{ }_{\text {alkane osc }}\left({ }^{12} \mathrm{CH}_{3}\right)$ per bond is:

$$
\begin{align*}
& \bar{E}_{\text {alkane osc }}^{\prime}\left({ }^{12} \mathrm{CH}_{3}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{14.583}\\
& \bar{E}_{\text {alkane osc }}^{\prime}\left({ }^{12} \mathrm{CH}_{3}\right)=-0.25352 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})=-0.07586 \mathrm{eV} \tag{14.584}
\end{align*}
$$

Given that the vibration and reentrant oscillation is for three $\mathrm{C}-\mathrm{H}$ bonds, $\bar{E}_{\text {alkane osc }}\left({ }^{12} \mathrm{CH}_{3}\right)$, is:

$$
\begin{equation*}
\bar{E}_{\text {alkane osc }}\left({ }^{12} \mathrm{CH}_{3}\right)=3\left(\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)=3\left(-0.25352 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})\right)=-0.22757 \mathrm{eV} \tag{14.585}
\end{equation*}
$$

TOTAL BOND ENERGIES OF THE ${ }^{12} \mathrm{CH}_{3}$ GROUPS

$E_{\text {alkaneT +osc }}\left({ }^{12} \mathrm{CH}_{3}\right)$, the total energy of each ${ }^{12} \mathrm{CH}_{3}$ group including the Doppler term, is given by the sum of $E_{T_{\text {alkane }}}\left(\mathrm{CH}_{3}\right)$ (Eq. (14.579)) and $\bar{E}_{\text {alkane osc }}\left({ }^{12} \mathrm{CH}_{3}\right)$ given by Eq. (14.585).

$$
\begin{align*}
E_{\text {alkaneT oosc }}\left({ }^{12} \mathrm{CH}_{3}\right) & =V_{e}+T+V_{m}+V_{p}+E\left(C_{\text {alkane }}, 2 s p^{3}\right)+\bar{E}_{\text {alkane osc }}\left({ }^{12} \mathrm{CH}_{3}\right)=E_{T_{\text {alkane }}}\left(\mathrm{CH}_{3}\right)+\bar{E}_{\text {alkane osc }}\left({ }^{12} \mathrm{CH}_{3}\right) \tag{14.586}\\
E_{\text {alkaneT osc }}\left({ }^{12} \mathrm{CH}_{3}\right) & =\left\{\begin{array}{l}
\left(\frac{-3 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.56407 \mathrm{eV}\right) \\
\left.-3(31.63536831 \mathrm{eV}) \sqrt{\frac{\sqrt{\frac{3}{\frac{4}{4} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}}}{m_{e}}}-\frac{1}{m_{e} c^{2}} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{array}\right\} \tag{14.587}\\
& =-67.69450 \mathrm{eV}-3\left(0.25352 \mathrm{eV}-\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (14.585-14.587), the total energy of each ${ }^{12} \mathrm{CH}_{3}$ is:

$$
\begin{align*}
E_{\text {alkaneT tosc }}\left({ }^{12} \mathrm{CH}_{3}\right) & =-67.69450 \mathrm{eV}+\bar{E}_{\text {alkane osc }}\left({ }^{12} \mathrm{CH}_{3}\right) \\
& =-67.69450 \mathrm{eV}-3\left(0.25352 \mathrm{eV}-\frac{1}{2}(0.35532 \mathrm{eV})\right)=-67.92207 \mathrm{eV} \tag{14.588}
\end{align*}
$$

where ω_{e} given by Eq. (13.458) was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The total CH_{3} bond dissociation energy, $E_{D_{\text {alkene }}}\left({ }^{12} \mathrm{CH}_{3}\right)$ is given by the sum of the initial $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$ energy, $E\left(C, 2 s p^{3}\right)$ (Eq. (14.146)), and three times the energy of the hydrogen atom, $E_{D}(H)$ (Eq. (13.154)), minus $E_{\text {alkaneT+osc }}\left({ }^{12} \mathrm{CH}_{3}\right)$ (Eq. (14.588)).

$$
\begin{equation*}
E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{3}\right)=E\left(\mathrm{C}, 2 s p^{3}\right)+3 E(\mathrm{H})-E_{\text {alkneneT + osc }}\left({ }^{12} \mathrm{CH}_{3}\right) \tag{14.589}
\end{equation*}
$$

Thus, the total ${ }^{12} \mathrm{CH}_{3}$ bond dissociation energy, $E_{D_{\text {alknene }}}\left({ }^{12} \mathrm{CH}_{3}\right)$ is:

$$
\begin{align*}
E_{D_{\text {alknere }}}\left({ }^{12} \mathrm{CH}_{3}\right) & =-(14.63489 \mathrm{eV}+3(13.59844 \mathrm{eV}))-\left(E_{\text {alkaneT Tosc }}\left({ }^{12} \mathrm{CH}_{2}\right)\right) \tag{14.590}\\
& =-55.43021 \mathrm{eV}-(-67.92207 \mathrm{eV})=12.49186 \mathrm{eV}
\end{align*}
$$

FORCE BALANCE OF THE CH_{2} MOs OF CONTINUOUS-CHAIN ALKANES

Each of the CH_{2} MOs must comprise two equivalent $\mathrm{C}-\mathrm{H}$ bonds with each comprising 75% of a H_{2}-type ellipsoidal MO and a $C 2 s p^{3} \mathrm{HO}$ as given by Eq. (13.494).

$$
\begin{equation*}
2\left[1 \mathrm{C} 2 s p^{3}+0.75 \mathrm{H}_{2} \mathrm{MO}\right] \rightarrow \mathrm{CH}_{2} \mathrm{MO} \tag{14.591}
\end{equation*}
$$

The force balance of each $\mathrm{CH}_{2} \mathrm{MO}$ is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.591) and the energy matching condition between the hydrogen and $C 2 s p^{3} \mathrm{HO}$ components of the MO.
The force constant k^{\prime} to determine the ellipsoidal parameter c^{\prime} of the each H_{2}-type-ellipsoidal-MO component of the $\mathrm{CH}_{2} \mathrm{MO}$ in terms of the central force of the foci is given by Eq. (13.59). The distance from the origin of each $C-H$-bond MO to each focus c^{\prime} is given by Eq. (13.60). The internuclear distance is given by Eq. (13.61). The length of the semiminor axis of the prolate spheroidal $C-H$-bond MO $b=c$ is given by Eq. (13.62). The eccentricity, e, is given by Eq. (13.63). The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of each $C-H$-bond MO. Since each of the two prolate spheroidal $C-H$-bond MOs comprises an H_{2}-type-ellipsoidal MO that transitions to the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ of $C_{n} H_{2 n+2}$, the energy $E\left(C_{\text {alkane }}, 2 s p^{3}\right)$ of Eq. (14.512) adds to that of the two corresponding H_{2}-type ellipsoidal

MOs to give the total energy of the $\mathrm{CH}_{2} \mathrm{MO}$. From the energy equation and the relationship between the axes, the dimensions of the $\mathrm{CH}_{2} \mathrm{MO}$ are solved.

The energy components of V_{e}, V_{p}, T, and V_{m} are the same as those of dihydrogen carbide radical, two times those of $C H$ corresponding to the two $C-H$ bonds except that energy of the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ is used. Since each prolate spheroidal $H_{2}-$ type MO transitions to the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ and the energy of the $C_{\text {alkane }} 2 s p^{3}$ shell treated independently must remain constant and equal to the $E\left(C_{\text {alkane }}, 2 s p^{3}\right)$ given by Eq. (14.512), the total energy $E_{T_{\text {akane }}}\left(\mathrm{CH}_{2}\right)$ of the $\mathrm{CH}_{2} \mathrm{MO}$ is given by the sum of the energies of the orbitals corresponding to the composition of the linear combination of the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ and the two H_{2}-type ellipsoidal MOs that forms the $\mathrm{CH}_{2} \mathrm{MO}$ as given by Eq. (14.591). Using Eq. (13.431) or Eq. (13.495), $E_{T_{\text {alkene }}}\left(\mathrm{CH}_{2}\right)$ is given by:

$$
\begin{equation*}
E_{T_{\text {alkane }}}\left(C H_{2}\right)=E_{T}+E\left(C_{\text {alkane }}, 2 s p^{3}\right)=-\frac{2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.56407 \mathrm{eV} \tag{14.592}
\end{equation*}
$$

$E_{T_{\text {alkene }}}\left(\mathrm{CH}_{2}\right)$ given by Eq. (14.592) is set equal to two times the energy of the H_{2}-type ellipsoidal MO minus the Coulombic energy of H given by Eq. (13.496).

$$
\begin{equation*}
E_{T}\left(C H_{2}\right)=-\frac{2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.56407 \mathrm{eV}=-49.66493 \mathrm{eV} \tag{14.593}
\end{equation*}
$$

From the energy relationship given by Eq. (14.593) and the relationship between the axes given by Eqs. (13.60-13.63), the dimensions of the $\mathrm{CH}_{2} \mathrm{MO}$ can be solved.

> Substitution of Eq. (13.60) into Eq. (14.593) gives:

$$
\begin{equation*}
\frac{2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{2 a a_{0}}{3}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{2 a a_{0}}{3}}}{a-\sqrt{\frac{2 a a_{0}}{3}}}-1\right]=e 34.10086 \tag{14.594}
\end{equation*}
$$

The most convenient way to solve Eq. (14.594) is by the reiterative technique using a computer. The result to within the roundoff error with five-significant figures is

$$
\begin{equation*}
a=1.67122 a_{0}=8.84370 \times 10^{-11} \mathrm{~m} \tag{14.595}
\end{equation*}
$$

Substitution of Eq. (14.595) into Eq. (14.60) gives:

$$
\begin{equation*}
c^{\prime}=1.05553 a_{0}=5.58563 \times 10^{-11} \mathrm{~m} \tag{14.596}
\end{equation*}
$$

The internuclear distance given by multiplying Eq. (14.596) by two is:

$$
\begin{equation*}
2 c^{\prime}=2.11106 a_{0}=1.11713 \times 10^{-10} \mathrm{~m} \tag{14.597}
\end{equation*}
$$

The experimental $C-H$ bond distance of butane is [3]:

$$
\begin{equation*}
2 c^{\prime}=1.117 \times 10^{-10} \mathrm{~m} \tag{14.598}
\end{equation*}
$$

Substitution of Eqs. (14.595-14.596) into Eq. (14.62) gives:

$$
\begin{equation*}
b=c=1.29569 a_{0}=6.85652 \times 10^{-11} \mathrm{~m} \tag{14.599}
\end{equation*}
$$

Substitution of Eqs. (14.595-14.596) into Eq. (14.63) gives:

$$
\begin{equation*}
e=0.63159 \tag{14.600}
\end{equation*}
$$

The nucleus of the H atom and the nucleus of the C atom comprise the foci of each H_{2}-type ellipsoidal MO. The parameters of the point of intersection of the H_{2}-type ellipsoidal MO and the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ are given by Eqs. (13.84-13.95) and (13.261-13.270). The polar intersection angle θ^{\prime} is given by Eq. (13.261) where $r_{n}=r_{\text {methylene } 2 s p^{3}}=0.81549 a_{0}$ is the radius of the $C_{\text {methylene }} 2 s p^{3}$ shell (Eq. (14.521)). Substitution of Eqs. (14.595-14.596) into Eq. (13.261) gives:

$$
\begin{equation*}
\theta^{\prime}=68.47^{\circ} \tag{14.601}
\end{equation*}
$$

Then, the angle $\theta_{C-H_{\text {alknen } 2 s p^{3} H O}}$ the radial vector of the $C 2 s p^{3} \mathrm{HO}$ makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{C-H_{\text {alkane }} 2 s p^{3} H O}=180^{\circ}-68.47^{\circ}=111.53^{\circ} \tag{14.602}
\end{equation*}
$$

as shown in Figure 14.17. The Cartesian \mathbf{i}-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j}-coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{C-\mathrm{H}_{\text {alkane }}, \mathrm{H}_{2} \mathrm{MO}}$ satisfies the following relationship:
such that

$$
\begin{equation*}
\theta_{C-H_{\text {alkane }}, H_{2} \mathrm{MO}}=\sin ^{-1} \frac{0.81549 a_{0} \sin \theta_{C-H_{\text {alkane }} 2 S p^{3} \mathrm{HO}}}{b}=\sin ^{-1} \frac{0.81549 a_{0} \sin 111.53^{\circ}}{b} \tag{14.604}
\end{equation*}
$$

with the use of Eq. (14.602). Substitution of Eq. (14.599) into Eq. (14.604) gives:

$$
\begin{equation*}
\theta_{C-H_{\text {alkane } e}, H_{2} M O}=35.84^{\circ} \tag{14.605}
\end{equation*}
$$

Then, the distance $d_{C-H_{\text {alkane }}, \mathrm{H}_{2} \mathrm{MO}}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C-\mathrm{H}_{\text {alkane }}, \mathrm{H}_{2} M O}=a \cos \theta_{C-\mathrm{H}_{\text {alkane }}, \mathrm{H}_{2} M O} \tag{14.606}
\end{equation*}
$$

Substitution of Eqs. (14.595) and (14.605) into Eq. (14.606) gives:

$$
\begin{equation*}
d_{C-H_{\text {alkane },}, H_{2} M O}=1.35486 a_{0}=7.16963 \times 10^{-11} \mathrm{~m} \tag{14.607}
\end{equation*}
$$

The distance $d_{C-H_{\text {alkane }} 2 s p^{3} H O}$ along the internuclear axis from the origin of the C atom to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{C-\mathrm{H}_{\text {alkane }} 2 \mathrm{sp}{ }^{3} \mathrm{HO}}=d_{C-\mathrm{H}_{\text {alkane }}, \mathrm{H}_{2} \mathrm{MO}}-C^{\prime} \tag{14.608}
\end{equation*}
$$

Substitution of Eqs. (14.596) and (14.605) into Eq. (14.608) gives:

$$
\begin{equation*}
d_{C-H_{\text {alkane }} 2 s p^{3} \mathrm{HO}}=0.29933 a_{0}=1.58400 \times 10^{-11} \mathrm{~m} \tag{14.609}
\end{equation*}
$$

The charge-density in each $C-C$-bond MO is increased by a factor of 0.25 with the formation of the $C_{\text {alkane }} 2 s p^{3}$ HOs each having a smaller radius. Using the orbital composition of the $C-C$-bond MOs (Eq. (14.504)), CH_{3} groups (Eq. (14.539)), and the CH_{2} groups (Eq. (14.591)), the radii of $C 1 s=0.17113 a_{0}$ (Eq. (10.51)), $C_{\text {alkane }} 2 s p^{3}=0.86359 a_{0}$ (Eq. (14.514)), and $C_{\text {alkane }} 2 s p^{3}=C_{\text {methylene }} 2 s p^{3}=0.81549 a_{0}$ (Eq. (14.521)) shells, the parameters of the $C-C$-bonds (Eqs. (13.3-13.4), (14.52314.525), and (14.528-14.538)), the parameters of the $C-H$-bond MOs of the CH_{3} groups (Eqs. (13.3-13.4), (14.544-14.545), and (14.547-14.557)), the parameters of the $\mathrm{C}-\mathrm{H}$-bond MOs of the CH_{2} groups (Eqs. (13.3-13.4), (14.595-14.597), and (14.599-14.609)), and the bond-angle parameters (Eqs. (14.562-14.574)), the charge-density of the $C_{n} H_{2 n+2}$ MO comprising the linear combination $2 n+2 \quad C-H$-bond MOs and $n-1 \quad C-C$-bond MOs, each bridging one or more methyl or methylene groups is shown for representative cases where data was available [17-18]. Propane, butane, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, and octadecane are shown in Figures 14.18-14.28, respectively. Each $C-H$-bond MO comprises a H_{2}-type ellipsoidal MO and a $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ having the dimensional diagram shown in Figure 14.16. Each $C-C$ bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {alkane }} 2 s p^{3}$ HOs having the dimensional diagram shown in Figure 14.17.

ENERGIES OF THE CH_{2} GROUPS

The energies of each CH_{2} group of $C_{n} H_{2 n+2}$ are given by the substitution of the semiprincipal axes (Eqs. (14.595-14.596) and (14.599)) into the energy equations of dihydrogen carbide radical (Eqs. (13.510-13.514)), with the exception that $E\left(C_{\text {alkane }}, 2 s p^{3}\right)$ (Eq. (14.512)) replaces $E\left(C, 2 s p^{3}\right)$ in Eq. (13.514):

$$
\begin{align*}
& V_{e}=2(0.91771) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-70.41425 \mathrm{eV} \tag{14.610}\\
& V_{p}=\frac{2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=25.78002 \mathrm{eV} \tag{14.611}\\
& T=2(0.91771) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=21.06675 \mathrm{eV} \tag{14.612}\\
& V_{m}=2(0.91771) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-10.53337 \mathrm{eV} \tag{14.613}\\
& E_{T_{\text {alkene }}}\left(C H_{2}\right)=-\frac{2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.56407 \mathrm{eV}=-49.66493 \mathrm{eV} \tag{14.614}
\end{align*}
$$

where $E_{T_{\text {alkene }}}\left(\mathrm{CH}_{2}\right)$ is given by Eq. (14.592) which is reiteratively matched to Eq. (13.496) within five-significant-figure round off error.

VIBRATION OF THE ${ }^{12} \mathrm{CH}_{2}$ GROUPS

The vibrational energy levels of the $\mathrm{C}-\mathrm{H}$ bonds of CH_{2} in $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ may be solved as two equivalent coupled harmonic oscillators by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERMS OF THE ${ }^{12} \mathrm{CH}_{2}$ GROUPS

The equations of the radiation reaction force of the methylene groups in $C_{n} H_{2 n+2}$ are the same as those of the dihydrogen carbide radical with the substitution of the methylene-group parameters. Using Eq. (13.515), the angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.75 e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}}=2.42751 \times 10^{16} \mathrm{rad} / \mathrm{s} \tag{14.615}
\end{equation*}
$$

where b is given by Eq. (14.599). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 2.42751 \times 10^{16} \mathrm{rad} / \mathrm{s}=15.97831 \mathrm{eV} \tag{14.616}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T}\left(H_{2}\right)$ (Eqs. (11.212) and (13.75)), the maximum total energy of each H_{2}-type MO, for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (14.616) for \bar{E}_{K} gives the Doppler energy of the electrons of each of the three bonds for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-31.63537 \mathrm{eV} \sqrt{\frac{2 e(15.97831 \mathrm{eV})}{m_{e} c^{2}}}=-0.25017 \mathrm{eV} \tag{14.617}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of CH_{2} due to the reentrant orbit of each bond in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (14.617) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of each $C-H$ bond. Using ω_{e} given by Eq. (13.458) for $\bar{E}_{\text {Kvib }}$ of the transition state having two independent bonds, $\bar{E}_{\text {alkane osc }}^{\prime}\left({ }^{12} \mathrm{CH}_{2}\right)$ per bond is:

$$
\begin{align*}
& \bar{E}_{\text {alkane osc }}^{\prime}\left({ }^{12} \mathrm{CH}_{2}\right)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{14.618}\\
& \bar{E}_{\text {alkane osc }}^{\prime}\left({ }^{12} \mathrm{CH}_{2}\right)=-0.25017 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})=-0.07251 \mathrm{eV} \tag{14.619}
\end{align*}
$$

Given that the vibration and reentrant oscillation is for two $\mathrm{C}-\mathrm{H}$ bonds, $\bar{E}_{\text {alkane osc }}\left({ }^{12} \mathrm{CH}_{2}\right)$, is:

$$
\begin{equation*}
\bar{E}_{\text {alkane osc }}\left({ }^{12} \mathrm{CH}_{2}\right)=2\left(\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)=2\left(-0.25017 \mathrm{eV}+\frac{1}{2}(0.35532 \mathrm{eV})\right)=-0.14502 \mathrm{eV} \tag{14.620}
\end{equation*}
$$

TOTAL BOND ENERGIES OF THE ${ }^{12} \mathrm{CH}_{2}$ GROUPS

$E_{\text {alkaneT +osc }}\left({ }^{12} \mathrm{CH}_{2}\right)$, the total energy of each ${ }^{12} \mathrm{CH}_{2}$ group including the Doppler term, is given by the sum of $E_{T_{\text {alkene }}}\left(\mathrm{CH}_{2}\right)$ (Eq. (14.614)) and $\bar{E}_{\text {alkane osc }}\left({ }^{12} \mathrm{CH}_{2}\right)$ given by Eq. (14.620).

$$
\left.\begin{array}{rl}
E_{\text {alkaneT+osc }}\left({ }^{12} \mathrm{CH}_{2}\right) & =V_{e}+T+V_{m}+V_{p}+E\left(C_{\text {alkane }}, 2 s p^{3}\right)+\bar{E}_{\text {alkane osc }}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =E_{T_{\text {alkane }}\left(\mathrm{CH}_{2}\right)+\bar{E}_{\text {alkane osc }}\left({ }^{12} \mathrm{CH}_{2}\right)} \\
& \left(\frac{-2 e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.56407 \mathrm{eV}\right) \tag{14.622}\\
E_{\text {alkaneT+osc }}\left({ }^{12} \mathrm{CH}_{2}\right) & =\left\{\begin{array}{l}
-2(31.63536831 \mathrm{eV}) \sqrt{\frac{\frac{3}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} b^{3}}}{m_{e}}} \\
m_{e} c^{2}
\end{array} \frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{array}\right\}
$$

From Eqs. (14.620-14.622), the total energy of each ${ }^{12} \mathrm{CH}_{2}$ is:

$$
\begin{align*}
E_{\text {alkaneT Tosc }}\left({ }^{12} \mathrm{CH}_{2}\right) & =-49.66493 \mathrm{eV}+\bar{E}_{\text {alkane osc }}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =-49.66493 \mathrm{eV}-2\left(0.25017 \mathrm{eV}-\frac{1}{2}(0.35532 \mathrm{eV})\right)=-49.80996 \mathrm{eV} \tag{14.623}
\end{align*}
$$

where ω_{e} given by Eq. (13.458) was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
The derivation of the total CH_{2} bond dissociation energy, $E_{D_{\text {alknene }}}\left({ }^{12} \mathrm{CH}_{2}\right)$ follows from that of the bond dissociation energy of dihydrogen carbide radical, $E_{D}\left({ }^{12} \mathrm{CH}_{2}\right)$, given by Eqs. (13.524-13.527). $E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{2}\right)$ is given by the sum of the initial $C 2 s p^{3}$ HO energy, $E\left(C, 2 s p^{3}\right)$ (Eq. (14.146)), and two times the energy of the hydrogen atom, $E(H)$ (Eq. (13.154)), minus the sum of $E_{\text {alkneT }+ \text { osc }}\left({ }^{12} \mathrm{CH}_{2}\right)$ (Eq. (14.623)) and E(magnetic) (Eq. (13.524)):

$$
\begin{equation*}
E_{D_{\text {alkne }}}\left({ }^{12} \mathrm{CH}_{2}\right)=E\left(\mathrm{C}, 2 s p^{3}\right)+2 E(H)-E_{\text {alkaneT }+ \text { osc }}\left({ }^{12} \mathrm{CH}_{2}\right)-E(\text { magnetic }) \tag{14.624}
\end{equation*}
$$

Thus, the total ${ }^{12} \mathrm{CH}_{2}$ bond dissociation energy, $E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{2}\right)$ is:

$$
\begin{align*}
E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{2}\right) & =-(14.63489 \mathrm{eV}+2(13.59844 \mathrm{eV}))-\left(E_{\text {akkaneT +osc }}\left({ }^{12} \mathrm{CH}_{2}\right)+E(\text { magnetic })\right) \tag{14.625}\\
& =-41.83177 \mathrm{eV}-(-49.80996 \mathrm{eV}+0.14803 \mathrm{eV})=7.83016 \mathrm{eV}
\end{align*}
$$

SUM OF THE ENERGIES OF THE $C-C \sigma$ MOs AND THE HOS OF CONTINUOUSCHAIN ALKANES

The energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} of the $C-C$-bond MOs are the same as those of the CH MO except that energy of the $C_{\text {alkane }} 2 s p^{3} \mathrm{HO}$ is used. The energies of each $C-C$-bond MO are given by the substitution of the semiprincipal axes (Eqs. (14.523-14.524) and (14.528)) into the energy equations of the CH MO (Eqs. (13.449-13.453)), with the exception that $E\left(C_{\text {alkane }}, 2 s p^{3}\right)$ (Eq. (14.512)) replaces $E\left(C, 2 s p^{3}\right)$ in Eq. (13.453). The total number of $C-C$ bonds of $C_{n} H_{2 n+2}$ is $n-1$. Thus, the energies of the $n-1$ bonds is given by:

$$
\begin{align*}
& V_{e}=(n-1)(0.91771) \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-(n-1) 28.79214 \mathrm{eV} \tag{14.626}\\
& V_{p}=\frac{(n-1) e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}=(n-1) 9.33352 \mathrm{eV} \tag{14.627}\\
& T=(n-1)(0.91771) \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=(n-1) 6.77464 \mathrm{eV} \tag{14.628}\\
& V_{m}=(n-1)(0.91771) \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}=-(n-1) 3.38732 \mathrm{eV} \tag{14.629}\\
& E_{T_{\text {alkene }}}(C-C, \sigma)=-\frac{(n-1) e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]-15.56407 \mathrm{eV}=-(n-1) 31.63537 \mathrm{eV} \tag{14.630}
\end{align*}
$$

where $E_{T_{\text {alkane }}}(C-C, \sigma)$ is the total energy of the $C-C \sigma$ MOs given by Eq. (14.520) which is reiteratively matched to Eq. (13.75) within five-significant-figure round off error.

Since there are two carbon atoms per bond, the number of $C-C$ bonds is $n-1$, and the energy change of each $C 2 s p^{3}$ shell due to the decrease in radius with the formation of each $C-C$-bond MO is $E_{T_{\text {alkne }}}\left(C-C, 2 s p^{3}\right)$ (Eq. (14.517)), the total energy of the $C-C$-bond MOs, $E_{T_{\text {alkane }}}(C-C)$, is given by the sum of $2(n-1) E_{T_{\text {alkane }}}\left(C-C, 2 s p^{3}\right)$ and $E_{T_{\text {alkane }}}(C-C, \sigma)$, the σ MO contribution given by Eq. (14.630).

$$
\begin{align*}
E_{T_{\text {alkane }}}(C-C)= & 2(n-1) E_{T_{\text {alkane }}}\left(C-C, 2 s p^{3}\right)+E_{T_{\text {alkane }}}(C-C, \sigma) \\
& =(n-1)\left(\begin{array}{l}
2(-0.92918 \mathrm{eV}) \\
+\left(-\frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a a_{0}}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{a a_{0}}}{a-\sqrt{a a_{0}}}-1\right]\right) \\
-15.56407 \mathrm{eV}
\end{array}\right) \tag{14.631}\\
& =(n-1)(2(-0.92918 \mathrm{eV})+(-31.63537 \mathrm{eV}))=-(n-1) 33.49373 \mathrm{eV}
\end{align*}
$$

VIBRATION OF CONTINUOUS-CHAIN ALKANES

The vibrational energy levels of the $C-C$ bonds of $C_{n} H_{2 n+2}$ may be solved as $n-1$ sets of coupled carbon harmonic oscillators wherein each carbon is further coupled to two or three equivalent H harmonic oscillators by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section.

THE DOPPLER ENERGY TERMS OF THE $C-C$-BOND MOs OF CONTINUOUS-CHAIN ALKANES

The equations of the radiation reaction force of each symmetrical $C-C$-bond MO are given by Eqs. (11.231-11.233), except the force-constant factor is 0.5 based on the force constant k^{\prime} of Eq. (14.152), and the $C-C$-bond MO parameters are used. The angular frequency of the reentrant oscillation in the transition state is:

$$
\begin{equation*}
\omega=\sqrt{\frac{\frac{0.5 e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}=9.43699 \times 10^{15} \mathrm{rad} / \mathrm{s} \tag{14.632}
\end{equation*}
$$

where a is given by Eq. (14.523). The kinetic energy, E_{K}, is given by Planck's equation (Eq. (11.127)).

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar 9.43699 \times 10^{15} \mathrm{rad} / \mathrm{s}=6.21159 \mathrm{eV} \tag{14.633}
\end{equation*}
$$

In Eq. (11.181), substitution of $E_{T_{\text {alkene }}}(C-C)$ (Eq. (14.631)) with $n=2$ for $E_{h v}$, the mass of the electron, m_{e}, for M, and the kinetic energy given by Eq. (14.633) for \bar{E}_{K} gives the Doppler energy of the electrons of each of the bonds for the reentrant orbit:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}=-33.49373 \mathrm{eV} \sqrt{\frac{2 e(6.21159 \mathrm{eV})}{m_{e} c^{2}}}=-0.16515 \mathrm{eV} \tag{14.634}
\end{equation*}
$$

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding frequency. The decrease in the energy of each $C-C$-bond MO due to the reentrant orbit of the bond in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, $\bar{E}_{\text {osc }}$, is given by the sum of the corresponding energies, \bar{E}_{D} given by Eq. (14.634) and $\bar{E}_{\text {Kvib }}$, the average kinetic energy of vibration which is $1 / 2$ of the vibrational energy of each $C-C$ bond. Using the ethane experimental $C-C E_{\text {vib }}\left(v_{3}\right)$ of $993 \mathrm{~cm}^{-1}(0.12312 \mathrm{eV})$ [10] for $\bar{E}_{\text {Kvib }}$ of the transition state having $n-1$ independent bonds, $\bar{E}^{\prime}{ }_{\text {alkane osc }}(C-C, \sigma)$ per bond is:

$$
\begin{align*}
& \bar{E}_{\text {alkane osc }}^{\prime}(C-C, \sigma)=\bar{E}_{D}+\bar{E}_{\text {Kvib }}=\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}} \tag{14.635}\\
& \bar{E}_{\text {alkane osc }}^{\prime}(C-C, \sigma)=-0.16515 \mathrm{eV}+\frac{1}{2}(0.12312 \mathrm{eV})=-0.10359 \mathrm{eV} \tag{14.636}
\end{align*}
$$

Given that the vibration and reentrant oscillation is for $n-1 C-C$ bonds, $\bar{E}_{\text {alkane osc }}(C-C, \sigma)$, is:

$$
\begin{align*}
\bar{E}_{\text {alkane osc }}(C-C, \sigma) & =(n-1)\left(\bar{E}_{D}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right) \tag{14.637}\\
& =(n-1)\left(-0.16515 \mathrm{eV}+\frac{1}{2}(0.12312 \mathrm{eV})\right)=-(n-1) 0.10359 \mathrm{eV}
\end{align*}
$$

TOTAL ENERGIES OF THE $C-C$-BOND MOs OF CONTINUOUS-CHAIN ALKANES

$E_{\text {alkaneT+osc }}(C-C)$, the total energy of the $n-1$ bonds of the $C-C$-bond MOs including the Doppler term, is given by the sum of $E_{T_{\text {alkene }}}(C-C)$ (Eq. (14.631)) and $\bar{E}_{\text {alkane osc }}(C-C, \sigma)$ given by Eq. (14.637).

$$
\begin{align*}
& E_{\text {alkaneT+osc }}(C-C)=\left((n-1)\binom{V_{e}+T+V_{m}+V_{p}+E\left(C_{\text {alkane }}, 2 s p^{3}\right)}{+2 E_{\text {Talkane }}\left(C-C, 2 s p^{3}\right)}+\bar{E}_{\text {alkane osc }}(C-C, \sigma)\right) \\
& =E_{T_{\text {alkane }}}(C-C, \sigma)+2(n-1) E_{T_{\text {alkane }}}\left(C-C, 2 s p^{3}\right)+\bar{E}_{\text {alkane osc }}(C-C, \sigma) \tag{14.638}\\
& =E_{T_{\text {alkane }}}(C-C)+\bar{E}_{\text {alkane osc }}(C-C, \sigma) \\
& E_{\text {alkaneT+osc }}(C-C)=(n-1)\left\{\begin{array}{l}
\binom{\frac{-e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[(0.91771)\left(2-\frac{1}{2} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]}{-15.56407 e V+2 E_{T_{\text {alkane }}}\left(C-C, 2 s p^{3}\right)} \\
\left(1+\sqrt{\frac{2 \hbar \sqrt{\frac{\frac{1}{2} \frac{e^{2}}{2 \pi \varepsilon_{0} a^{3}}}{m_{e}}}}{m_{e} c^{2}}}\right)+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}
\end{array}\right\} \tag{14.639}\\
& =(n-1)\left(-33.49373 \mathrm{eV}-0.16515 \mathrm{eV}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right)
\end{align*}
$$

From Eqs. (14.637-14.639), the total energy of the $n-1$ bonds of the $C-C$-bond MOs is:

$$
\begin{align*}
E_{\text {alkaneT +osc }}(C-C) & =(n-1)\left(-31.63537 \mathrm{eV}+2 E_{T_{\text {alkane }}}\left(C-C, 2 s p^{3}\right)\right)+\bar{E}_{\text {alkane osc }}(C-C, \sigma) \\
& =(n-1)\binom{-31.63537 \mathrm{eV}+2(-0.92918 \mathrm{eV})}{-0.16515 \mathrm{eV}+\frac{1}{2}(0.12312 \mathrm{eV})}=-(n-1) 33.59732 \mathrm{eV} \tag{14.640}
\end{align*}
$$

where the experimental $E_{v i b}$ was used for the $\hbar \sqrt{\frac{k}{\mu}}$ term.
TOTAL BOND ENERGY OF THE $C-C$ BONDS OF CONTINUOUS-CHAIN ALKANES
Since there are two carbon atoms per bond and the number of $C-C$ bonds is $n-1$, the total bond energy of the $C-C$ bonds of $C_{n} H_{2 n+2}, E_{D}(C-C)_{n-1}$, is given by $2(n-1) E\left(C, 2 s p^{3}\right)$ minus $E_{\text {alkaneT }+ \text { osc }}(C-C)$ (Eq. (14.640)) where $E\left(C, 2 s p^{3}\right)$ (Eq. (14.146)) is the initial energy of each $C 2 s p^{3} \mathrm{HO}$ of the CH_{3} and CH_{2} groups that bond to the $\mathrm{C}-\mathrm{C}$ bonds. Thus, the total dissociation energy of the $C-C$ bonds of $C_{n} H_{2 n+2}$, is:

$$
\begin{align*}
E_{D}(C-C)_{n-1} & =2(n-1)\left(E\left(C, 2 s p^{3}\right)\right)-\left(E_{\text {alakneT tosc }}(C-C)\right) \\
& =2(n-1)(-14.63489 \mathrm{eV})-(n-1)(-33.59732 \mathrm{eV}) \tag{14.641}\\
& =(n-1)(2(-14.63489 \mathrm{eV})-(-33.59732 \mathrm{eV}))=(n-1)(4.32754 \mathrm{eV})
\end{align*}
$$

TOTAL ENERGY OF CONTINUOUS-CHAIN ALKANES

$E_{D}\left(C_{n} H_{2 n+2}\right)$, the total bond dissociation energy of $C_{n} H_{2 n+2}$, is given as the sum of the energy components due to the two methyl groups, $n-2$ methylene groups, and $n-1 \quad C-C$ bonds where each energy component is given by Eqs. (14.590), (14.625), and (14.641), respectively. Thus, the total bond dissociation energy of $C_{n} H_{2 n+2}$ is:

$$
\begin{align*}
E_{D}\left(C_{n} H_{2 n+2}\right) & =E_{D}(C-C)_{n-1}+2 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{3}\right)+(n-2) E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{2}\right) \tag{14.642}\\
& =(n-1)(4.32754 \mathrm{eV})+2(12.49186 \mathrm{eV})+(n-2)(7.83016 \mathrm{eV})
\end{align*}
$$

The experimental total bond dissociation energy of $C_{n} H_{2 n+2}, E_{D_{\text {exp }}}\left(C_{n} H_{2 n+2}\right)$, is given by the negative difference between the enthalpy of its formation $\left(\Delta H_{f}\left(C_{n} H_{2 n+2}\right.\right.$ (gas))) and the sum of the enthalpy of the formation of the reactant gaseous carbons $\left(\Delta H_{f}(C(g a s))\right)$ and hydrogen $\left(\Delta H_{f}(H(g a s))\right)$ atoms:

$$
\begin{align*}
E_{D_{\text {epp }}}\left(C_{n} H_{2 n+2}\right) & =-\left\{\Delta H_{f}\left(C_{n} H_{2 n+2}(\text { gas })\right)-\left[n \Delta H_{f}(C(\text { gas }))+(2 n+2) \Delta H_{f}(H(\text { gas }))\right]\right\} \tag{14.643}\\
& =-\left\{\Delta H_{f}\left(C_{n} H_{2 n+2}(\text { gas })\right)-[n 7.42774 \mathrm{eV}+(2 n+2) 2.259353 \mathrm{eV}]\right\}
\end{align*}
$$

where the heats of formation atomic carbon and hydrogen gas are given by [17-18]:

$$
\begin{equation*}
\Delta H_{f}(C(\text { gas }))=716.68 \mathrm{~kJ} / \mathrm{mole}(7.42774 \mathrm{eV} / \text { atom }) \tag{14.644}
\end{equation*}
$$

$$
\begin{equation*}
\Delta H_{f}(H(\text { gas }))=217.998 \mathrm{~kJ} / \text { mole }(2.259353 \mathrm{eV} / \text { atom }) \tag{14.645}
\end{equation*}
$$

Using the corresponding experimental $\Delta H_{f}\left(C_{n} H_{2 n+2}\right.$ (gas)) [18], $E_{D}\left(C_{n} H_{2 n+2}\right)$ was determined for propane, butane, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, and octadecane in the corresponding sections, and the results of the determination of the total energies are given in Table 14.1. The calculated results are based on first principles and given in closed-form, exact equations containing fundamental constants only. The agreement between the experimental and calculated results is excellent.

Using the results for $C_{n} H_{2 n+2}$ and the functional groups as basis sets that are linearly combined, the exact solution for the dimensional parameters, charge density functions, and energies of all molecules can be obtained. For example, one or more of the hydrogen atoms of the solution for $C_{n} H_{2 n+2}$ can be substituted with one or more of the previously solved functional groups or derivative functional groups to give a desired molecule. The solution is given by energy matching each group to $C_{n} H_{2 n+2}$. Substitution of one or more H 's of $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ with functional groups from the list of CH_{3}, other $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ groups, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$, $\mathrm{HC} \equiv \mathrm{CH}, \mathrm{F}, \mathrm{Cl}, \mathrm{O}, \mathrm{OH}, \mathrm{NH}, \mathrm{NH}_{2}, \mathrm{CN}, \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{CO}, \mathrm{CO}_{2}$, and $\mathrm{C}_{6} \mathrm{H}_{6}$ give the solutions of branched alkanes, alkenes, and alkynes, alkyl halides, ethers, alcohols, amides, amines, nitriles, alkyl nitrosos, alkyl nitrates, aldehydes, ketones, carbolylic acids, esters, and substituted aromatics.

PROPANE $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$

Using Eq. (14.642) with $n=3$, the total bond dissociation energy of $C_{3} H_{8}$ is:

$$
\begin{align*}
E_{D}\left(C_{3} H_{8}\right) & =E_{D}(\mathrm{C}-\mathrm{C})_{2}+2 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{3}\right)+E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{2}\right) \tag{14.646}\\
& =(2)(4.32754 \mathrm{eV})+(2)(12.49186 \mathrm{eV})+(1)(7.83016 \mathrm{eV})=41.46896 \mathrm{eV}
\end{align*}
$$

Using Eq. (14.643), the experimental total bond dissociation energy of $C_{3} H_{8}, E_{D_{\text {exp }}}\left(C_{3} H_{8}\right)$, given by the negative difference between the enthalpy of its formation $\left(\Delta H_{f}\left(C_{3} H_{8}(\mathrm{gas})=-1.0758 \mathrm{eV}\right)\right)$ [18] and the sum of the enthalpy of the formation of the gaseous carbons $\left(\Delta H_{f}(C(g a s))\right)$ and hydrogen $\left(\Delta H_{f}(H(g a s))\right)$ atoms is:

$$
\begin{align*}
E_{D_{\text {exp }}}\left(C_{3} H_{8}\right) & =-\left\{\Delta H_{f}\left(C_{3} H_{8}(\text { gas })\right)-\left[3 \Delta H_{f}(C(\text { gas }))+8 \Delta H_{f}(H(\text { gas }))\right]\right\} \tag{14.647}\\
& =-\{-1.0758 \mathrm{eV}-[(3) 7.42774 \mathrm{eV}+(8) 2.259353 \mathrm{eV}]\}=41.434 \mathrm{eV}
\end{align*}
$$

The charge-density of the $C_{3} H_{8}$ molecular orbital (MO) comprising a linear combination of two methyl groups and one methylene group is shown in Figure 14.18.

Figure 14.18. $C_{3} H_{8}$ MO comprising a linear combination of $C-H$-bond MOs and $C-C$-bond MOs of the two methyl groups and one methylene group. (A) Color scale, translucent view of the charge-density of the $C-C$-bond and $C-H$-bond MOs and the $C_{\text {propane }} 2 s p^{3}$ HOs. Each $C-C$-bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {propane }} 2 s p^{3}$ HOs. For each $C-H$ and the $C-C$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {propane }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {propane }} 2 s p^{3} \mathrm{HO}$ shell, inner most $C 1 s$ shell, and the nuclei (red, not to scale), are shown. (B) Opaque view highlighting the $\mathrm{C}-\mathrm{C}$-bond MOs of the charge-density of the $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{MO}$.

0

BUTANE $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$

Using Eq. (14.642) with $n=4$, the total bond dissociation energy of $C_{4} H_{10}$ is:

$$
\begin{align*}
E_{D}\left(C_{4} H_{10}\right) & =E_{D}(C-C)_{3}+2 E_{D_{\text {alkene }}}\left({ }^{12} \mathrm{CH}_{3}\right)+2 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =(3)(4.32754 \mathrm{eV})+(2)(12.49186 \mathrm{eV})+(2)(7.83016 \mathrm{eV}) \tag{14.648}\\
& =53.62666 \mathrm{eV}
\end{align*}
$$

Using Eq. (14.643), the experimental total bond dissociation energy of $C_{4} H_{10}, E_{D_{\text {epp }}}\left(C_{4} H_{10}\right)$, given by the negative difference between the enthalpy of its formation $\left(\Delta H_{f}\left(C_{4} H_{10}(g a s)=-1.3028 \mathrm{eV}\right)\right)$ [18] and the sum of the enthalpy of the formation of the gaseous carbons $\left(\Delta H_{f}(C(\right.$ gas $\left.))\right)$ and hydrogen $\left(\Delta H_{f}(H(g a s))\right)$ atoms is:

$$
\begin{align*}
E_{D_{\text {epp }}}\left(C_{4} H_{10}\right) & =-\left\{\Delta H_{f}\left(C_{4} H_{10}(\text { gas })\right)-\left[4 \Delta H_{f}(C(\text { gas }))+10 \Delta H_{f}(H(\text { gas }))\right]\right\} \\
& =-\{-1.3028 \mathrm{eV}-[(4) 7.42774 \mathrm{eV}+(10) 2.259353 \mathrm{eV}]\} \tag{14.649}\\
& =53.61 \mathrm{eV}
\end{align*}
$$

The charge-density of the $C_{4} H_{10}$ molecular orbital (MO) comprising a linear combination of two methyl and two methylene groups is shown in Figure 14.19.

Figure 14.19. $C_{4} H_{10}$ MO comprising a linear combination of $C-H$-bond MOs and $C-C$-bond MOs of the two methyl and two methylene groups. (A) Color scale, translucent view of the charge-density of the $C-C$-bond and $C-H$-bond MOs and the $C_{\text {butane }} 2 s p^{3}$ HOs. Each $C-C$-bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {butane }} 2 s p^{3}$ HOs. For each $C-H$ and the $C-C$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {butane }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {butane }} 2 s p^{3}$ HO shell, inner most $C 1 s$ shell, and the nuclei (red, not to scale), are shown. (B) Opaque view highlighting the C-C -bond MOs of the charge-density of the $C_{4} H_{10}$ MO.

PENTANE $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$

Using Eq. (14.642) with $n=5$, the total bond dissociation energy of $C_{5} H_{12}$ is:

$$
\begin{align*}
E_{D}\left(C_{5} H_{12}\right) & =E_{D}(\mathrm{C}-\mathrm{C})_{4}+2 E_{D_{\text {akkane }}}\left({ }^{12} \mathrm{CH}_{3}\right)+3 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =(4)(4.32754 \mathrm{eV})+(2)(12.49186 \mathrm{eV})+(3)(7.83016 \mathrm{eV}) \tag{14.650}\\
& =65.78436 \mathrm{eV}
\end{align*}
$$

Using Eq. (14.643), the experimental total bond dissociation energy of $C_{5} H_{12}, E_{D_{\text {exp }}}\left(C_{5} H_{12}\right)$, given by the negative difference between the enthalpy of its formation $\left(\Delta H_{f}\left(C_{5} H_{12}(g a s)=-1.5225 \mathrm{eV}\right)\right)$ [18] and the sum of the enthalpy of the formation of the gaseous carbons $\left(\Delta H_{f}(C(\right.$ gas $))$) and hydrogen $\left(\Delta H_{f}(H(g a s))\right)$ atoms is:

$$
\begin{align*}
E_{D_{\text {epp }}}\left(C_{5} H_{12}\right) & =-\left\{\Delta H_{f}\left(C_{5} H_{12}(\text { gas })\right)-\left[5 \Delta H_{f}(C(\text { gas }))+12 \Delta H_{f}(H(\text { gas }))\right]\right\} \\
& =-\{-1.5225 \mathrm{eV}-[(5) 7.42774 \mathrm{eV}+(12) 2.259353 \mathrm{eV}]\} \tag{14.651}\\
& =65.77 \mathrm{eV}
\end{align*}
$$

The charge-density of the $C_{5} H_{12}$ molecular orbital (MO) comprising a linear combination of two methyl and three methylene groups is shown in Figure 14.20.

Figure 14.20. $C_{5} H_{12}$ MO comprising a linear combination of $C-H$-bond MOs and $C-C$-bond MOs of the two methyl and three methylene groups. (A) Color scale, translucent view of the charge-density of the $C-C$-bond and $C-H$-bond MOs and the $C_{\text {pentane }} 2 s p^{3}$ HOs. Each $C-C$-bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {pentane }} 2 s p^{3}$ HOs. For each $C-H$ and the $C-C$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {pentane }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {pentane }} 2 s p^{3} \mathrm{HO}$ shell, inner most $C 1 s$ shell, and the nuclei (red, not to scale), are shown. (B) Opaque view highlighting the $C-C$-bond MOs of the charge-density of the $C_{5} H_{12}$ MO.

HEXANE $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$

Using Eq. (14.642) with $n=6$, the total bond dissociation energy of $C_{6} H_{14}$ is:

$$
\begin{align*}
E_{D}\left(C_{6} H_{14}\right) & =E_{D}(\mathrm{C}-\mathrm{C})_{5}+2 E_{D_{\text {alkene }}}\left({ }^{12} \mathrm{CH}_{3}\right)+4 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =(5)(4.32754 \mathrm{eV})+(2)(12.49186 \mathrm{eV})+(4)(7.83016 \mathrm{eV}) \tag{14.652}\\
& =77.94206 \mathrm{eV}
\end{align*}
$$

Using Eq. (14.643), the experimental total bond dissociation energy of $C_{6} H_{14}, E_{D_{\text {epp }}}\left(C_{6} H_{14}\right)$, given by the negative difference between the enthalpy of its formation $\left(\Delta H_{f}\left(C_{6} H_{14}(\mathrm{gas})=-1.7298 \mathrm{eV}\right)\right)$ [18] and the sum of the enthalpy of the formation of the gaseous carbons $\left(\Delta H_{f}(C(\right.$ gas $))$) and hydrogen $\left(\Delta H_{f}(H(g a s))\right)$ atoms is:

$$
\begin{align*}
E_{D_{\text {epp }}}\left(C_{6} H_{14}\right) & =-\left\{\Delta H_{f}\left(C_{6} H_{14}(\text { gas })\right)-\left[6 \Delta H_{f}(C(\text { gas }))+14 \Delta H_{f}(H(\text { gas }))\right]\right\} \\
& =-\{-1.7298 \mathrm{eV}-[(6) 7.42774 \mathrm{eV}+(14) 2.259353 \mathrm{eV}]\} \tag{14.653}\\
& =77.93 \mathrm{eV}
\end{align*}
$$

The charge-density of the $C_{6} H_{14}$ molecular orbital (MO) comprising a linear combination of two methyl and four methylene groups is shown in Figure 14.21.

Figure 14.21. $C_{6} H_{14}$ MO comprising a linear combination of $C-H$-bond MOs and $C-C$-bond MOs of the two methyl and four methylene groups. (A) Opaque view of the charge-density of the $C-C$-bond and $C-H$-bond MOs. Each $C-C$ bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {hexane }} 2 s p^{3}$ HOs. (B) Translucent view high-lighting the $C-C$ bond MOs of the charge-density of the $C_{6} H_{14} \mathrm{MO}$. For each $\mathrm{C}-\mathrm{H}$ and the $\mathrm{C}-\mathrm{C}$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {hexane }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {hexane }} 2 s p^{3} \mathrm{HO}$ shell, inner most $C 1 s$ shell, and the nuclei (red, not to scale), are shown.

HEPTANE $\left(C_{7} H_{16}\right)$

Using Eq. (14.642) with $n=7$, the total bond dissociation energy of $C_{7} H_{16}$ is:

$$
\begin{align*}
E_{D}\left(C_{7} H_{16}\right) & =E_{D}(C-C)_{6}+2 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{3}\right)+5 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =(6)(4.32754 \mathrm{eV})+(2)(12.49186 \mathrm{eV})+(5)(7.83016 \mathrm{eV}) \tag{14.654}\\
& =90.09976 \mathrm{eV}
\end{align*}
$$

Using Eq. (14.643), the experimental total bond dissociation energy of $C_{7} H_{16}, E_{D_{\text {epp }}}\left(C_{7} H_{16}\right)$, given by the negative difference between the enthalpy of its formation $\left(\Delta H_{f}\left(C_{7} H_{16}(\mathrm{gas})=-1.9443 \mathrm{eV}\right)\right)$ [18] and the sum of the enthalpy of the formation of the gaseous carbons $\left(\Delta H_{f}(C(\right.$ gas $\left.))\right)$ and hydrogen $\left(\Delta H_{f}(H(\right.$ gas $\left.))\right)$ atoms is:

$$
\begin{align*}
E_{D_{\text {exp }}}\left(C_{7} H_{16}\right) & =-\left\{\Delta H_{f}\left(C_{7} H_{16}(\text { gas })\right)-\left[7 \Delta H_{f}(C(\text { gas }))+16 \Delta H_{f}(H(\text { gas }))\right]\right\} \\
& =-\{-1.9443 \mathrm{eV}-[(7) 7.42774 \mathrm{eV}+(16) 2.259353 \mathrm{eV}]\} \tag{14.655}\\
& =90.09 \mathrm{eV}
\end{align*}
$$

The charge-density of the $C_{7} H_{16}$ MO comprising a linear combination of two methyl and five methylene groups is shown in Figure 14.22.

Figure 14.22. $C_{7} H_{16}$ MO comprising a linear combination of $C-H$-bond MOs and $C-C$-bond MOs of the two methyl and five methylene groups. (A) Opaque view of the charge-density of the $C-C$-bond and $C-H$-bond MOs. Each $C-C$ bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {heptane }} 2 s p^{3} \mathrm{HOs}$. (B) Translucent view high-lighting the $\mathrm{C}-\mathrm{C}$ bond MOs of the charge-density of the $C_{7} H_{16}$ MO. For each $C-H$ and the $C-C$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {heptane }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {heptane }} 2 s p^{3} \mathrm{HO}$ shell, inner most $C 1 s$ shell, and the nuclei (red, not to scale), are shown.

OCTANE $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$

Using Eq. (14.642) with $n=8$, the total bond dissociation energy of $C_{8} H_{18}$ is:

$$
\begin{align*}
E_{D}\left(C_{8} H_{18}\right) & =E_{D}(C-C)_{7}+2 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{3}\right)+6 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =(7)(4.32754 \mathrm{eV})+(2)(12.49186 \mathrm{eV})+(6)(7.83016 \mathrm{eV}) \tag{14.656}\\
& =102.25746 \mathrm{eV}
\end{align*}
$$

Using Eq. (14.643), the experimental total bond dissociation energy of $C_{8} H_{18}, E_{D_{\text {epp }}}\left(C_{8} H_{18}\right)$, given by the negative difference between the enthalpy of its formation $\left(\Delta H_{f}\left(C_{8} H_{18}(\mathrm{gas})=-2.1609 \mathrm{eV}\right)\right)$ [18] and the sum of the enthalpy of the formation of the gaseous carbons $\left(\Delta H_{f}(C(\right.$ gas $\left.))\right)$ and hydrogen $\left(\Delta H_{f}(H(g a s))\right)$ atoms is:

$$
\begin{align*}
E_{D_{\exp }}\left(C_{8} H_{18}\right) & =-\left\{\Delta H_{f}\left(C_{8} H_{18}(\text { gas })\right)-\left[8 \Delta H_{f}(C(\text { gas }))+18 \Delta H_{f}(H(\text { gas }))\right]\right\} \\
& =-\{-2.1609 \mathrm{eV}-[(8) 7.42774 \mathrm{eV}+(18) 2.259353 \mathrm{eV}]\} \tag{14.657}\\
& =102.25 \mathrm{eV}
\end{align*}
$$

The charge-density of the $C_{8} H_{18}$ MO comprising a linear combination of two methyl and six methylene groups is shown in Figure 14.23.

Figure 14.23. $C_{8} H_{18}$ MO comprising a linear combination of $C-H$-bond MOs and $C-C$-bond MOs of the two methyl and six methylene groups. (A) Opaque view of the charge-density of the $C-C$-bond and $C-H$-bond MOs. Each $C-C$-bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {octane }} 2 s p^{3}$ HOs. (B) Translucent view high-lighting the $\mathrm{C}-\mathrm{C}$-bond MOs of the charge-density of the $C_{8} H_{18} \mathrm{MO}$. For each $C-H$ and the $C-C$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {octane }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {octane }} 2 s p^{3} \mathrm{HO}$ shell, inner most $C 1 s$ shell, and the nuclei (red, not to scale), are shown.

NONANE $\left(C_{9} H_{20}\right)$

Using Eq. (14.642) with $n=9$, the total bond dissociation energy of $C_{9} H_{20}$ is:

$$
\begin{align*}
E_{D}\left(C_{9} H_{20}\right) & =E_{D}(C-C)_{8}+2 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{3}\right)+7 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =(8)(4.32754 \mathrm{eV})+(2)(12.49186 \mathrm{eV})+(7)(7.83016 \mathrm{eV}) \tag{14.658}\\
& =114.41516 \mathrm{eV}
\end{align*}
$$

Using Eq. (14.643), the experimental total bond dissociation energy of $C_{9} H_{20}, E_{D_{\text {exp }}}\left(C_{9} H_{20}\right)$, given by the negative difference between the enthalpy of its formation $\left(\Delta H_{f}\left(C_{9} H_{20}(g a s)=-2.3651 \mathrm{eV}\right)\right)$ [18] and the sum of the enthalpy of the formation of the gaseous carbons $\left(\Delta H_{f}(C(\right.$ gas $\left.))\right)$ and hydrogen $\left(\Delta H_{f}(H(\right.$ gas $\left.))\right)$ atoms is:

$$
\begin{align*}
E_{D_{\exp }}\left(C_{9} H_{20}\right) & =-\left\{\Delta H_{f}\left(C_{9} H_{20}(\text { gas })\right)-\left[9 \Delta H_{f}(C(\text { gas }))+20 \Delta H_{f}(H(\text { gas }))\right]\right\} \\
& =-\{-2.3651 \mathrm{eV}-[(9) 7.42774 \mathrm{eV}+(20) 2.259353 \mathrm{eV}]\} \tag{14.659}\\
& =114.40 \mathrm{eV}
\end{align*}
$$

The charge-density of the $C_{9} H_{20} \mathrm{MO}$ comprising a linear combination of two methyl and seven methylene groups is shown in Figure 14.24.

Figure 14.24. $C_{9} H_{20}$ MO comprising a linear combination of $C-H$-bond MOs and $C-C$-bond MOs of the two methyl and seven methylene groups. (A) Opaque view of the charge-density of the $C-C$-bond and $C-H$-bond MOs. Each $C-C$ bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {nonane }} 2 s p^{3} \mathrm{HOs}$. (B) Translucent view high-lighting the $C-C$ bond MOs of the charge-density of the $C_{9} H_{20}$ MO. For each $C-H$ and the $C-C$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {nonane }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {nonane }} 2 s p^{3} \mathrm{HO}$ shell, inner most $C 1 s$ shell, and the nuclei (red, not to scale), are shown.

DECANE ($\mathrm{C}_{10} \mathrm{H}_{22}$)

Using Eq. (14.642) with $n=10$, the total bond dissociation energy of $C_{10} H_{22}$ is:

$$
\begin{align*}
E_{D}\left(C_{10} H_{22}\right) & =E_{D}(\mathrm{C}-\mathrm{C})_{9}+2 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{3}\right)+8 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =(9)(4.32754 \mathrm{eV})+(2)(12.49186 \mathrm{eV})+(8)(7.83016 \mathrm{eV}) \tag{14.660}\\
& =126.57286 \mathrm{eV}
\end{align*}
$$

Using Eq. (14.643), the experimental total bond dissociation energy of $C_{10} H_{22}, E_{D_{\text {exp }}}\left(C_{10} H_{22}\right)$, given by the negative difference between the enthalpy of its formation $\left(\Delta H_{f}\left(C_{10} H_{22}(g a s)=-2.5858 \mathrm{eV}\right)\right)$ [18] and the sum of the enthalpy of the formation of the gaseous carbons $\left(\Delta H_{f}(C(g a s))\right)$ and hydrogen $\left(\Delta H_{f}(H(g a s))\right)$ atoms is:

$$
\begin{align*}
E_{D_{\text {exp }}}\left(C_{10} H_{22}\right) & =-\left\{\Delta H_{f}\left(C_{10} H_{22}(\text { gas })\right)-\left[10 \Delta H_{f}(C(\text { gas }))+22 \Delta H_{f}(H(\text { gas }))\right]\right\} \\
& =-\{-2.5858 \mathrm{eV}-[(10) 7.42774 \mathrm{eV}+(22) 2.259353 \mathrm{eV}]\} \tag{14.661}\\
& =126.57 \mathrm{eV}
\end{align*}
$$

The charge-density of the $C_{10} H_{22}$ molecular orbital (MO) comprising a linear combination of two methyl and eight methylene groups is shown in Figure 14.25.

Figure 14.25. $C_{10} H_{22}$ MO comprising a linear combination of $C-H$-bond MOs and $C-C$-bond MOs of the two methyl and eight methylene groups. (A) Opaque view of the charge-density of the $C-C$-bond and $C-H$-bond MOs. Each $C-C$ bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {decane }} 2 s p^{3}$ HOs. (B) Translucent view high-lighting the $C-C$ bond MOs of the charge-density of the $C_{10} H_{22} \mathrm{MO}$. For each $\mathrm{C}-\mathrm{H}$ and the $\mathrm{C}-\mathrm{C}$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {decane }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {decane }} 2 s p^{3} \mathrm{HO}$ shell, inner most $C l s$ shell, and the nuclei (red, not to scale), are shown.

UNDECANE ($\mathrm{C}_{11} \mathrm{H}_{24}$)

Using Eq. (14.642) with $n=11$, the total bond dissociation energy of $C_{11} H_{24}$ is:

$$
\begin{align*}
E_{D}\left(C_{11} H_{24}\right) & =E_{D}(\mathrm{C}-\mathrm{C})_{10}+2 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{3}\right)+9 E_{D_{\text {alhane }}}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =(10)(4.32754 \mathrm{eV})+(2)(12.49186 \mathrm{eV})+(9)(7.83016 \mathrm{eV}) \tag{14.662}\\
& =138.73056 \mathrm{eV}
\end{align*}
$$

Using Eq. (14.643), the experimental total bond dissociation energy of $C_{11} H_{24}, E_{D_{\text {exp }}}\left(C_{11} H_{24}\right)$, given by the negative difference between the enthalpy of its formation $\left(\Delta H_{f}\left(C_{11} H_{24}(g a s)=-2.8066 \mathrm{eV}\right)\right)$ [18] and the sum of the enthalpy of the formation of the gaseous carbons $\left(\Delta H_{f}(C(\right.$ gas $\left.))\right)$ and hydrogen $\left(\Delta H_{f}(H(\right.$ gas $\left.))\right)$ atoms is:

$$
\begin{align*}
E_{D_{\exp }}\left(C_{11} H_{24}\right) & =-\left\{\Delta H_{f}\left(C_{11} H_{24}(\text { gas })\right)-\left[11 \Delta H_{f}(C(\text { gas }))+24 \Delta H_{f}(H(\text { gas }))\right]\right\} \\
& =-\{-2.8066 \mathrm{eV}-[(11) 7.42774 \mathrm{eV}+(24) 2.259353 \mathrm{eV}]\} \tag{14.663}\\
& =138.736 \mathrm{eV}
\end{align*}
$$

The charge-density of the $C_{11} H_{24}$ MO comprising a linear combination of two methyl and nine methylene groups is shown in Figure 14.26.

Figure 14.26. $C_{11} H_{24}$ MO comprising a linear combination of $C-H$-bond MOs and $C-C$-bond MOs of the two methyl and nine methylene groups. (A) Opaque view of the charge-density of the $C-C$-bond and $C-H$-bond MOs. Each $C-C$ bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {undecane }} 2 s p^{3}$ HOs. (B) Translucent view high-lighting the $C-C$ bond MOs of the charge-density of the $C_{11} H_{24}$ MO. For each $C-H$ and the $C-C$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {undecane }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {undecane }} 2 s p^{3} \mathrm{HO}$ shell, inner most $C 1 s$ shell, and the nuclei (red, not to scale), are shown.

DODECANE $\left(\mathrm{C}_{12} \mathrm{H}_{26}\right)$

Using Eq. (14.642) with $n=12$, the total bond dissociation energy of $C_{12} H_{26}$ is:

$$
\begin{align*}
E_{D}\left(C_{12} H_{26}\right) & =E_{D}(C-C)_{11}+2 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{3}\right)+10 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =(11)(4.32754 \mathrm{eV})+(2)(12.49186 \mathrm{eV})+(10)(7.83016 \mathrm{eV}) \tag{14.664}\\
& =150.88826 \mathrm{eV}
\end{align*}
$$

Using Eq. (14.643), the experimental total bond dissociation energy of $C_{12} H_{26}, E_{D_{\exp }}\left(C_{12} H_{26}\right)$, given by the negative difference between the enthalpy of its formation $\left(\Delta H_{f}\left(C_{12} H_{26}(g a s)=-2.9994 \mathrm{eV}\right)\right)$ [18] and the sum of the enthalpy of the formation of the gaseous carbons $\left(\Delta H_{f}(C(g a s))\right)$ and hydrogen $\left(\Delta H_{f}(H(g a s))\right)$ atoms is:

$$
\begin{align*}
E_{D_{\text {exp }}}\left(C_{12} H_{26}\right) & =-\left\{\Delta H_{f}\left(C_{12} H_{26}(\text { gas })\right)-\left[12 \Delta H_{f}(C(\text { gas }))+26 \Delta H_{f}(H(\text { gas }))\right]\right\} \\
& =-\{-2.9994 \mathrm{eV}-[(12) 7.42774 \mathrm{eV}+(26) 2.259353 \mathrm{eV}]\} \tag{14.665}\\
& =150.88 \mathrm{eV}
\end{align*}
$$

The charge-density of the $C_{12} H_{26}$ MO comprising a linear combination of two methyl and ten methylene groups is shown in Figure 14.27.

Figure 14.27. $C_{12} H_{26}$ MO comprising a linear combination of $C-H$-bond MOs and $C-C$-bond MOs of the two methyl and ten methylene groups. (A) Opaque view of the charge-density of the $C-C$-bond and $C-H$-bond MOs. Each $C-C$-bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {dodecane }} 2 s p^{3}$ HOs. (B) Translucent view high-lighting the $C-C$-bond MOs of the charge-density of the $C_{12} H_{26}$ MO. For each $C-H$ and the $C-C$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {dodecane }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {dodecane }} 2 s p^{3} \mathrm{HO}$ shell, inner most $C 1 s$ shell, and the nuclei (red, not to scale), are shown.

OCTADECANE $\left(\mathrm{C}_{18} \mathrm{H}_{38}\right)$

Using Eq. (14.642) with $n=18$, the total bond dissociation energy of $C_{18} H_{38}$ is:

$$
\begin{align*}
E_{D}\left(C_{18} H_{38}\right) & =E_{D}(C-C)_{17}+2 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{3}\right)+16 E_{D_{\text {alkane }}}\left({ }^{12} \mathrm{CH}_{2}\right) \\
& =(17)(4.32754 \mathrm{eV})+(2)(12.49186 \mathrm{eV})+(16)(7.83016 \mathrm{eV}) \tag{14.666}\\
& =223.83446 \mathrm{eV}
\end{align*}
$$

Using Eq. (14.643), the experimental total bond dissociation energy of $C_{18} H_{38}, E_{D_{\text {exp }}}\left(C_{18} H_{38}\right)$, given by the negative difference between the enthalpy of its formation $\left(\Delta H_{f}\left(C_{18} H_{38}(g a s)=-4.2970 \mathrm{eV}\right)\right)$ [18] and the sum of the enthalpy of the formation of the gaseous carbons $\left(\Delta H_{f}(C(g a s))\right)$ and hydrogen $\left(\Delta H_{f}(H(g a s))\right)$ atoms is:

$$
\begin{align*}
E_{D_{\exp }}\left(C_{18} H_{38}\right) & =-\left\{\Delta H_{f}\left(C_{18} H_{38}(\text { gas })\right)-\left[18 \Delta H_{f}(C(\text { gas }))+38 \Delta H_{f}(H(\text { gas }))\right]\right\} \\
& =-\{-4.2970 \mathrm{eV}-[(18) 7.42774 \mathrm{eV}+(38) 2.259353 \mathrm{eV}]\} \tag{14.667}\\
& =223.85 \mathrm{eV}
\end{align*}
$$

The charge-density of the $C_{18} H_{38}$ molecular orbital (MO) comprising a linear combination of two methyl and sixteen methylene groups is shown in Figure 14.28.

Figure 14.28. $C_{18} H_{38}$ MO comprising a linear combination of $C-H$-bond MOs and $C-C$-bond MOs of the two methyl and sixteen methylene groups. (A) Opaque view of the charge-density of the $C-C$-bond and $C-H$-bond MOs. Each $C-C$ bond MO comprises a H_{2}-type ellipsoidal MO bridging two $C_{\text {octadecane }} 2 s p^{3}$ HOs. (B) Translucent view high-lighting the $C-C$ bond MOs of the charge-density of the $C_{18} H_{38} \mathrm{MO}$. For each $\mathrm{C}-\mathrm{H}$ and the $\mathrm{C}-\mathrm{C}$ bond, the ellipsoidal surface of the H_{2}-type ellipsoidal MO that transitions to the $C_{\text {octadecane }} 2 s p^{3} \mathrm{HO}$, the $C_{\text {octadecane }} 2 s p^{3} \mathrm{HO}$ shell, inner most $C 1 s$ shell, and the nuclei (red, not to scale), are shown.

Table 14.1. The calculated and experimental bond parameters of $\mathrm{CO}_{2}, \mathrm{NO}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2}$, CHCH , benzene, propane, butane, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, and octadecane.

Parameter	Calculated	Experimental	Ref. for Exp.
CO_{2} Bond Energy	5.49553 eV	5.51577 eV	7
CO_{2} Bond Length	1.1616 A	1.1600 A	3
NO_{2} Bond Energy	3.1532 eV	3.161 eV	7
NO_{2} Bond Length	1.1872 §	1.193 A	3
NO_{2} Bond Angle	131.012°	$134.1{ }^{\circ}$	3
$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$ Bond Energy	3.90245 eV	3.8969 eV	7
$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$ Bond Length	1.53635 A	1.5351 A	3
$\mathrm{H}-\mathrm{CH}_{2} \mathrm{CH}_{3}$ Bond Length	1.10822 A	1.0940 §	3
Ethane $\mathrm{H}-\mathrm{C}-\mathrm{H}$ Bond Angle	107.44°	107.4°	8
Ethane $\mathrm{C}-\mathrm{C}-\mathrm{H}$ Bond Angle	111.44°	111.17°	3
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ Bond Energy	7.55681 eV	7.597 eV	7
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ Bond Length	1.3405 A	1.339 §	3
$\mathrm{H}-\mathrm{CHCH}_{2}$ Bond Length	1.0826 A	1.087 A	3
Ethylene $\mathrm{H}-\mathrm{C}-\mathrm{H}$ Bond Angle	116.31°	$116.6{ }^{\circ}$	11
Ethylene $C=C-H$ Bond Angle	121.85°	$121.7{ }^{\circ}$	11
$H C \equiv C H$ Bond Energy	10.07212 eV	10.0014 eV	7
$H C \equiv C H$ Bond Length	1.2007 Å	1.203 Å	3
H-CCH Bond Length	1.0538 A	1.060 A	3
Acetylene $C \equiv C-H$ Bond Angle	180°	180°	6
$\mathrm{C}_{6} \mathrm{H}_{6}$ Total Bond Energy	57.2601 eV	57.26 eV	17-18
Benzene $C=C$ Bond Length	1.3914 A	1.399 £	3
$\mathrm{H}-\mathrm{C}_{6} \mathrm{H}_{5}$ Bond Length	1.0933 Å	1.101 Å	3
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{C}=\mathrm{C}=\mathrm{C}$ Bond Angle	120°	120°	13-15
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{C}=\mathrm{C}-\mathrm{H}$ Bond Angle	120°	120°	13-15
$\mathrm{C}_{3} \mathrm{H}_{8}$ Total Bond Energy	41.46896 eV	41.434 eV	17-18
Propane $C-C$ Bond Length	1.5428 A	1.532 A	3
Propane $C-H$ Bond Length	1.1097 Å	1.107 Å	3
Alkane $\mathrm{H}-\mathrm{C}-\mathrm{H}$ Bond Angle	109.50°	109.3°	19
Alkane $\mathrm{C}-\mathrm{C}-\mathrm{H}$ Bond Angle	109.44°	$109.3{ }^{\circ}$	19
$\mathrm{C}_{4} H_{10}$ Total Bond Energy	53.62666 eV	53.61 eV	17-18
Butane $\mathrm{C}-\mathrm{C}$ Bond Length	1.5428 £	1.531 A	3
Butane $C-H$ Bond Length	1.11713 Å	1.117 Å	3
$\mathrm{C}_{5} \mathrm{H}_{12}$ Total Bond Energy	65.78436 eV	65.77 eV	17-18
$\mathrm{C}_{6} \mathrm{H}_{14}$ Total Bond Energy	77.94206 eV	77.93 eV	17-18
$\mathrm{C}_{7} \mathrm{H}_{16}$ Total Bond Energy	90.09976 eV	90.09 eV	17-18
$\mathrm{C}_{8} \mathrm{H}_{18}$ Total Bond Energy	102.25746 eV	102.25 eV	17-18
$\mathrm{C}_{9} \mathrm{H}_{20}$ Total Bond Energy	114.41516 eV	114.40 eV	17-18
$\mathrm{C}_{10} \mathrm{H}_{22}$ Total Bond Energy	126.57286 eV	126.57 eV	17-18
$\mathrm{C}_{11} \mathrm{H}_{24}$ Total Bond Energy	138.73056 eV	138.736 eV	17-18
$\mathrm{C}_{12} \mathrm{H}_{26}$ Total Bond Energy	150.88826 eV	150.88 eV	17-18
$\mathrm{C}_{18} \mathrm{H}_{38}$ Total Bond Energy	223.83446 eV	223.85 eV	17-18

REFERENCES

1. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), pp. 4-130 to 4-135.
2. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), p. 10-175.
3. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), pp. 9-15 to 9-41.
4. M. Karplus, R. N. Porter, Atoms and Molecules an Introduction for Students of Physical Chemistry, The Benjamin/Cummings Publishing Company, Menlo Park, California, (1970), pp. 447-484.
5. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, Krieger Publishing Company, Malabar, FL, (1945), p. 174.
6. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), pp. 9-76 to 9-79.
7. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), pp. 9-63 to 9-69.
8. R. L. DeKock, H. B. Gray, Chemical Structure and Bonding, The Benjamin/Cummings Publishing Company, Menlo Park, CA, (1980), p. 162.
9. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 251-305.
10. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold Company, New York, New York, (1945), p. 344.
11. R. L. DeKock, H. B. Gray, Chemical Structure and Bonding, The Benjamin/Cummings Publishing Company, Menlo Park, CA, (1980), p. 179.
12. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold Company, New York, New York, (1945), p. 326.
13. W. I. F. David, R. M. Ibberson, G. A. Jeffrey, J. R. Ruble, "The structure analysis of deuterated benzene and deuterated nitromethane by pulsed-neutron powder diffraction: a comparison with single crystal neutron analysis," Physica B (1992), 180 \& 181, pp. 597-600.
14. G. A. Jeffrey, J. R. Ruble, R. K. McMullan, J. A. Pople, "The crystal structure of deuterated benzene," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 414, No. 1846, (Nov. 9, 1987), pp. 47-57.
15. H. B. Burgi, S. C. Capelli, "Getting more out of crystal-structure analyses," Helvetica Chimica Acta, Vol. 86, (2003), pp. 1625-1640.
16. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold Company, New York, New York, (1945), pp. 362-369.
17. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), pp. 9-63.
18. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), pp. 5-1 to 560.
19. R. J. Fessenden, J. S. Fessenden, Organic Chemistry, Willard Grant Press. Boston, Massachusetts, (1979), pp. 46-48.

Chapter 15

ORGANIC MOLECULAR FUNCTIONAL GROUPS AND MOLECULES

DERIVATION OF THE GENERAL GEOMETRICAL AND ENERGY EQUATIONS OF ORGANIC CHEMISTRY

Organic molecules comprising an arbitrary number of atoms can be solved using similar principles and procedures as those used to solve alkanes of arbitrary length. Alkanes can be considered to be comprised of the functional groups of $\mathrm{CH}_{3}, \mathrm{CH}_{2}$, and $C-C$. These groups with the corresponding geometrical parameters and energies can be added as a linear sum to give the solution of any straight chain alkane as shown in the Continuous-Chain Alkanes section. Similarly, the geometrical parameters and energies of all functional groups such as alkanes, branched alkanes, alkenes, branched alkenes, alkynes, alkyl fluorides, alkyl chlorides, alkyl bromides, alkyl iodides, alkene halides, primary alcohols, secondary alcohols, tertiary alcohols, ethers, primary amines, secondary amines, tertiary amines, aldehydes, ketones, carboxylic acids, carboxylic esters, amides, N-alkyl amides, N,N-dialkyl amides, urea, acid halides, acid anhydrides, nitriles, thiols, sulfides, disulfides, sulfoxides, sulfones, sulfites, sulfates, nitro alkanes, nitrites, nitrates, conjugated polyenes, aromatics, heterocyclic aromatics, substituted aromatics, and others can be solved. The functional-group solutions can be made into a linear superposition and sum, respectively, to give the solution of any organic molecule. The solutions of the functional groups can be conveniently obtained by using generalized forms of the geometrical and energy equations. The total bond energies of exemplary organic molecules calculated using the functional group composition and the corresponding energies derived in the following sections compared to the experimental values are given in Tables 15.410.1-15.410.43.

Consider the case wherein at least two atomic orbitals hybridize as a linear combination of electrons at the same energy in order to achieve a bond at an energy minimum, and the sharing of electrons between two or more such orbitals to form a MO permits the participating hybridized orbitals to decrease in energy through a decrease in the radius of one or more of the participating orbitals. The force-generalized constant k^{\prime} of a H_{2}-type ellipsoidal MO due to the equivalent of two point charges at the foci is given by:

$$
\begin{equation*}
k^{\prime}=\frac{C_{1} C_{2} 2 e^{2}}{4 \pi \varepsilon_{0}} \tag{15.1}
\end{equation*}
$$

where C_{1} is the fraction of the H_{2}-type ellipsoidal MO basis function of a chemical bond of the molecule or molecular ion which is 0.75 (Eq. (13.59)) in the case of H bonding to a central atom and 0.5 (Eq. (14.152)) otherwise, and C_{2} is the factor that results in an equipotential energy match of the participating at least two molecular or atomic orbitals of the chemical bond. From Eqs. (13.58-13.63), the distance from the origin of the MO to each focus c^{\prime} is given by:

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} 2 C_{1} C_{2} a}}=\sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}} \tag{15.2}
\end{equation*}
$$

The internuclear distance is

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}} \tag{15.3}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal MO $b=c$ is given by:

$$
\begin{equation*}
b=\sqrt{a^{2}-c^{\prime 2}} \tag{15.4}
\end{equation*}
$$

And, the eccentricity, e, is

$$
\begin{equation*}
e=\frac{c^{\prime}}{a} \tag{15.5}
\end{equation*}
$$

From Eqs. (11.207-11.212), the potential energy of the two electrons in the central field of the nuclei at the foci is:

$$
\begin{equation*}
V_{e}=n_{1} c_{1} c_{2} \frac{-2 e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{15.6}
\end{equation*}
$$

The potential energy of the two nuclei is:

$$
\begin{equation*}
V_{p}=n_{1} \frac{e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}} \tag{15.7}
\end{equation*}
$$

The kinetic energy of the electrons is

$$
\begin{equation*}
T=n_{1} c_{1} c_{2} \frac{\hbar^{2}}{2 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{15.8}
\end{equation*}
$$

And, the energy, V_{m}, of the magnetic force between the electrons is:

$$
\begin{equation*}
V_{m}=n_{1} c_{1} c_{2} \frac{-\hbar^{2}}{4 m_{e} a \sqrt{a^{2}-b^{2}}} \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}} \tag{15.9}
\end{equation*}
$$

The total energy of the H_{2}-type prolate spheroidal MO, $E_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)$, is given by the sum of the energy terms:

$$
\begin{align*}
& E_{T}\left(H_{2} M O\right)=V_{e}+T+V_{m}+V_{p} \tag{15.10}\\
& E_{T}\left(H_{2} M O\right)=-\frac{n_{1} e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}\left[c_{1} c_{2}\left(2-\frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}-1\right]=-\frac{n_{1} e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[c_{1} c_{2}\left(2-\frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right] \tag{15.11}
\end{align*}
$$

where n_{1} is the number of equivalent bonds of the MO and applies in the case of functional groups. In the case of independent MOs not in contact with the bonding atoms, the terms based on charge are multiplied by $c_{B O}$, the bond-order factor. It is 1 for a single bond, 4 for an independent double bond as in the case of the CO_{2} and NO_{2} molecules, and 9 for an independent triplet bond. Then, the kinetic energy term is multiplied by ${c^{\prime}}_{B O}$ which is 1 for a single bond, 2 for a double bond, and $9 / 2$ for a triple bond. c_{1} is the fraction of the H_{2}-type ellipsoidal MO basis function of an MO which is 0.75 (Eqs. (13.67-13.73)) in the case of H bonding to an unhybridized central atom and 1 otherwise, and c_{2} is the factor that results in an equipotential energy match of the participating MO and at least two atomic orbitals of the chemical bond. Specifically, to meet the equipotential condition and energy matching conditions for the union of the H_{2}-type-ellipsoidal-MO and the HOs or AOs of the bonding atoms, the factor c_{2} of a H_{2}-type ellipsoidal MO may given by (i) one, (ii) the ratio of the Coulombic or valence energy of the AO or HO of at least one atom of the bond and 13.605804 eV , the Coulombic energy between the electron and proton of H, (iii) the ratio of the valence energy of the AO or HO of one atom and the Coulombic energy of another, (iv) the ratio of the valence energies of the AOs or HOs of two atoms, (v) the ratio of two c_{2} factors corresponding to any of cases (ii)-(iv), and (vi) the product of two different c_{2} factors corresponding to any of the cases (i)-(v). Specific examples of the factor c_{2} of a H_{2}-type ellipsoidal MO given in previous sections are:
0.936127 , the ratio of the ionization energy of $N 14.53414 \mathrm{eV}$ and 13.605804 eV , the Coulombic energy between the electron and proton of H;
0.91771 , the ratio of $14.82575 \mathrm{eV},-E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$, and 13.605804 eV ;
0.87495 , the ratio of $15.55033 \mathrm{eV},-E_{\text {Coulomb }}\left(C_{\text {ethane }}, 2 \mathrm{sp}^{3}\right)$, and 13.605804 eV ;
0.85252 , the ratio of $15.95955 \mathrm{eV},-E_{\text {Coulomb }}\left(C_{\text {ethylene }}, 2 s p^{3}\right)$, and 13.605804 eV ;
0.85252 , the ratio of $15.95955 \mathrm{eV},-E_{\text {Coulomb }}\left(C_{\text {benzene }}, 2 s p^{3}\right)$, and 13.605804 eV , and
0.86359 , the ratio of $15.55033 \mathrm{eV},-E_{\text {Coulomb }}\left(C_{\text {alkane }}, 2 s p^{3}\right)$, and 13.605804 eV .

In the generalization of the hybridization of at least two atomic-orbital shells to form a shell of hybrid orbitals, the hybridized shell comprises a linear combination of the electrons of the atomic-orbital shells. The radius of the hybridized shell is calculated from the total Coulombic energy equation by considering that the central field decreases by an integer for each successive electron of the shell and that the total energy of the shell is equal to the total Coulombic energy of the initial AO electrons. The total energy $E_{T}\left(\right.$ atom, $\left.m s p^{3}\right)$ (m is the integer of the valence shell) of the AO electrons and the hybridized shell is given by the sum of energies of successive ions of the atom over the n electrons comprising total electrons of the at least one AO shell.

$$
\begin{equation*}
E_{T}\left(\text { atom }, m s p^{3}\right)=-\sum_{m=1}^{n} I P_{m} \tag{15.12}
\end{equation*}
$$

where $I P_{m}$ is the m th ionization energy (positive) of the atom. The radius $r_{m s p^{3}}$ of the hybridized shell is given by:

$$
\begin{equation*}
r_{m s p^{3}}=\sum_{q=Z-n}^{Z-1} \frac{-(Z-q) e^{2}}{8 \pi \varepsilon_{0} E_{T}\left(\text { atom }, m s p^{3}\right)} \tag{15.13}
\end{equation*}
$$

Then, the Coulombic energy $E_{\text {Coulomb }}\left(\right.$ atom, $\left.m s p^{3}\right)$ of the outer electron of the atom msp ${ }^{3}$ shell is given by:

$$
\begin{equation*}
E_{\text {Coulomb }}\left(\text { atom, } m s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{m s p^{3}}} \tag{15.14}
\end{equation*}
$$

In the case that during hybridization at least one of the spin-paired AO electrons is unpaired in the hybridized orbital (HO), the energy change for the promotion to the unpaired state is the magnetic energy E (magnetic) at the initial radius r of the AO electron:

$$
\begin{equation*}
E(\text { magnetic })=\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2} r^{3}}=\frac{8 \pi \mu_{0} \mu_{B}^{2}}{r^{3}} \tag{15.15}
\end{equation*}
$$

Then, the energy $E\left(\right.$ atom, $\left.m s p^{3}\right)$ of the outer electron of the atom $m s p^{3}$ shell is given by the sum of $E_{\text {Coulomb }}\left(\right.$ atom, $\left.m s p^{3}\right)$ and E (magnetic) :

$$
\begin{equation*}
E\left(\text { atom }, m s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{m s p^{3}}}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2} r^{3}} \tag{15.16}
\end{equation*}
$$

Consider next that the at least two atomic orbitals hybridize as a linear combination of electrons at the same energy in order to achieve a bond at an energy minimum with another atomic orbital or hybridized orbital. As a further generalization of the basis of the stability of the MO, the sharing of electrons between two or more such hybridized orbitals to form a MO permits the participating hybridized orbitals to decrease in energy through a decrease in the radius of one or more of the participating orbitals. In this case, the total energy of the hybridized orbitals is given by the sum of E (atom, msp $\left.{ }^{3}\right)$ and the next energies of successive ions of the atom over the n electrons comprising the total electrons of the at least two initial AO shells. Here, $E\left(\right.$ atom, $\left.m s p^{3}\right)$ is the sum of the first ionization energy of the atom and the hybridization energy. An example of $E\left(\right.$ atom, $\left.m s p^{3}\right)$ for $E\left(C, 2 s p^{3}\right)$ is given in Eq. (14.503) where the sum of the negative of the first ionization energy of C, -11.27671 eV , plus the hybridization energy to form the $C 2 s p^{3}$ shell given by Eq. (14.146) is $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$.

Thus, the sharing of electrons between two atom $m s p^{3}$ HOs to form an atom-atom-bond MO permits each participating hybridized orbital to decrease in radius and energy. In order to further satisfy the potential, kinetic, and orbital energy relationships, each atom $m s p^{3} \mathrm{HO}$ donates an excess of 25% per bond of its electron density to the atom-atom-bond MO to form an energy minimum wherein the atom-atom bond comprises one of a single, double, or triple bond. In each case, the radius of the hybridized shell is calculated from the Coulombic energy equation by considering that the central field decreases by an integer for each successive electron of the shell and the total energy of the shell is equal to the total Coulombic energy of the initial AO electrons plus the hybridization energy. The total energy E_{T} (mol.atom, $m s p^{3}$) (m is the integer of the valence shell) of the HO electrons is given by the sum of energies of successive ions of the atom over the n electrons comprising total electrons of the at least one initial AO shell and the hybridization energy:

$$
\begin{equation*}
E_{T}\left(\text { mol.atom }, m s p^{3}\right)=E\left(\text { atom }, m s p^{3}\right)-\sum_{m=2}^{n} I P_{m} \tag{15.17}
\end{equation*}
$$

where $I P_{m}$ is the m th ionization energy (positive) of the atom and the sum of $-I P_{1}$ plus the hybridization energy is $E\left(\right.$ atom, $\left.m s p^{3}\right)$. Thus, the radius $r_{m s p^{3}}$ of the hybridized shell due to its donation of a total charge $-Q e$ to the corresponding MO is given by:

$$
\begin{equation*}
r_{m s p^{3}}=\left(\sum_{q=Z-n}^{Z-1}(Z-q)-Q\right) \frac{-e^{2}}{8 \pi \varepsilon_{0} E_{T}\left(\text { mol.atom }, m s p^{3}\right)}=\left(\sum_{q=Z-n}^{Z-1}(Z-q)-s(0.25)\right) \frac{-e^{2}}{8 \pi \varepsilon_{0} E_{T}\left(\text { mol.atom }, m s p^{3}\right)} \tag{15.18}
\end{equation*}
$$

where $-e$ is the fundamental electron charge and $s=1,2,3$ for a single, double, and triple bond, respectively. The Coulombic energy $E_{\text {Coulomb }}\left(\right.$ mol.atom, $\left.m s p^{3}\right)$ of the outer electron of the atom $m s p^{3}$ shell is given by:

$$
\begin{equation*}
E_{\text {Coulomb }}\left(\text { mol.atom, } m s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{m s p^{3}}} \tag{15.19}
\end{equation*}
$$

In the case that during hybridization at least one of the spin-paired AO electrons is unpaired in the hybridized orbital (HO), the energy change for the promotion to the unpaired state is the magnetic energy E (magnetic) at the initial radius r of the AO electron given by Eq. (15.15). Then, the energy E (mol.atom, $m s p^{3}$) of the outer electron of the atom $m s p^{3}$ shell is given by the sum of $E_{\text {Coulomb }}\left(\right.$ mol.atom, $\left.m s p^{3}\right)$ and E (magnetic) :

$$
\begin{equation*}
E\left(\text { mol.atom }, m s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{m s p^{3}}}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2} r^{3}} \tag{15.20}
\end{equation*}
$$

$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3}\right)$, the energy change of each atom $m s p^{3}$ shell with the formation of the atom-atom-bond MO is given by: the difference between E (mol.atom, $\left.m s p^{3}\right)$ and $E\left(\right.$ atom, $\left.m s p^{3}\right)$:
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3}\right)=E\left(\right.$ mol.atom,$\left.m s p^{3}\right)-E\left(\right.$ atom,$\left.m s p^{3}\right)$
As examples from prior sections, $E_{\text {Coulomb }}$ (mol.atom, $m s p^{3}$) is one of:
$E_{\text {Coulomb }}\left(C_{\text {ethylene }}, 2 s p^{3}\right), E_{\text {Coulomb }}\left(C_{\text {ethane }}, 2 s p^{3}\right), E_{\text {Coulomb }}\left(C_{\text {acetylene }}, 2 s p^{3}\right)$, and $E_{\text {Coulomb }}\left(C_{\text {alkane }}, 2 s p^{3}\right)$;
$E_{\text {Coulomb }}\left(\right.$ atom, $\left.m s p^{3}\right)$ is one of $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ and $E_{\text {Coulomb }}\left(C l, 3 s p^{3}\right)$;
$E\left(\right.$ mol.atom, $\left.m s p^{3}\right)$ is one of $E\left(C_{\text {ethylene }}, 2 s p^{3}\right), E\left(C_{\text {ethane }}, 2 s p^{3}\right), E\left(C_{\text {acetylene }}, 2 s p^{3}\right)$ and $E\left(C_{\text {alkane }}, 2 s p^{3}\right)$;
$E\left(\right.$ atom, $\left.m s p^{3}\right)$ is one of $E\left(C, 2 s p^{3}\right)$ and $E\left(C l, 3 s p^{3}\right)$;
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3}\right)$ is one of $E\left(C-C, 2 s p^{3}\right), E\left(C=C, 2 s p^{3}\right)$, and $E\left(C \equiv C, 2 s p^{3}\right)$;
atom $m s p^{3}$ is one of $C 2 s p^{3}$, and $C l 3 s p^{3}$
$E_{T}\left(\operatorname{atom}-\operatorname{atom}\left(s_{1}\right), m s p^{3}\right)$ is $E_{T}\left(C-C, 2 s p^{3}\right)$ and $E_{T}\left(\operatorname{atom}-\operatorname{atom}\left(s_{2}\right), m s p^{3}\right)$ is $E_{T}\left(C=C, 2 s p^{3}\right)$, and $r_{m s p^{3}}$ is one of $r_{C 2 s p^{3}}, r_{\text {ethane2sp }}{ }^{3}, r_{\text {ethylene2sp }}{ }^{3}, r_{\text {acetylene } 2 s p^{3}}, r_{\text {alkane2sp }}$, and $r_{C 13 s p^{3}}$.
In the case of the $C 2 s p^{3} \mathrm{HO}$, the initial parameters (Eqs. (14.142-14.146)) are:

$$
\begin{align*}
& r_{2 s p^{3}}=\sum_{n=2}^{5} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}(e 148.25751 \mathrm{eV})}=\frac{10 e^{2}}{8 \pi \varepsilon_{0}(e 148.25751 \mathrm{eV})}=0.91771 a_{0} \tag{15.22}\\
& E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{2 s p^{3}}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} 0.91771 a_{0}}=-14.82575 \mathrm{eV} \tag{15.23}\\
& E(\text { magnetic })=\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(r_{3}\right)^{3}}=\frac{8 \pi \mu_{0} \mu_{B}^{2}}{\left(0.84317 a_{0}\right)^{3}}=0.19086 \mathrm{eV} \tag{15.24}\\
& E\left(C, 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{2 s p^{3}}}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(r_{3}\right)^{3}}=-14.82575 \mathrm{eV}+0.19086 \mathrm{eV}=-14.63489 \mathrm{eV} \tag{15.25}
\end{align*}
$$

In Eq. (15.18),

$$
\begin{equation*}
\sum_{q=Z-n}^{Z-1}(Z-q)=10 \tag{15.26}
\end{equation*}
$$

Eqs. (14.147) and (15.17) gives:

$$
\begin{equation*}
E_{T}\left(\text { mol.atom }, m s p^{3}\right)=E_{T}\left(C_{\text {ethane }}, 2 s p^{3}\right)=-151.61569 \mathrm{eV} \tag{15.27}
\end{equation*}
$$

Using Eqs. (15.18-15.28), the final values of $r_{C 2 s p^{3}}, E_{\text {Coulomb }}\left(C 2 s p^{3}\right)$, and $E\left(C 2 s p^{3}\right)$, and the resulting $E_{T}\left(C^{B O}-C, C 2 s p^{3}\right)$ of the MO due to charge donation from the HO to the MO where $C^{B O}-C$ refers to the bond order of the carbon-carbon bond for different values of the parameter s are given in Table 15.1.

Table 15.1. The final values of $r_{C 2 s p^{3}}, E_{C o u l o m b}\left(C 2 s p^{3}\right)$, and $E\left(C 2 s p^{3}\right)$ and the resulting $E_{T}\left(C^{B O} C, C 2 s p^{3}\right)$ of the MO due to charge donation from the HO to the MO where $C^{\frac{B O}{}} C$ refers to the bond order of the carbon-carbon bond.

MO Bond Order (BO)	s_{1}	s_{2}	$r_{C 2 s p^{3}}\left(a_{0}\right)$ Final	$E_{\text {Coulomb }}\left(C 2 s p^{3}\right)$ (eV) Final	$E\left(C 2 s p^{3}\right)$ (eV) Final	$E_{T}\left(C-C, C 2 s p^{3}\right)$			
(eV)							$	$	${ }^{B O}-C$
:---:									

In another generalized case of the basis of forming a minimum-energy bond with the constraint that it must meet the energy matching condition for all MOs at all HOs or AOs, the energy E (mol.atom, msp ${ }^{3}$) of the outer electron of the atom $m s p^{3}$ shell of each bonding atom must be the average of $E\left(\right.$ mol.atom, $\left.m s p^{3}\right)$ for two different values of s :

$$
\begin{equation*}
E\left(\text { mol.atom, } m s p^{3}\right)=\frac{E\left(\operatorname{mol} . \operatorname{atom}\left(s_{1}\right), m s p^{3}\right)+E\left(\operatorname{mol} . \operatorname{atom}\left(s_{2}\right), m s p^{3}\right)}{2} \tag{15.28}
\end{equation*}
$$

In this case, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3}\right)$, the energy change of each atom $m s p^{3}$ shell with the formation of each atom-atom-bond MO, is average for two different values of s :

$$
\begin{equation*}
E_{T}\left(\operatorname{atom}-\operatorname{atom}, m s p^{3}\right)=\frac{E_{T}\left(\operatorname{atom}-\operatorname{atom}\left(s_{1}\right), m s p^{3}\right)+E_{T}\left(\operatorname{atom}-\operatorname{atom}\left(s_{2}\right), m s p^{3}\right)}{2} \tag{15.29}
\end{equation*}
$$

Consider an aromatic molecule such as benzene given in the Benzene Molecule section. Each $C=C$ double bond comprises a linear combination of a factor of 0.75 of four paired electrons (three electrons) from two sets of two $C 2 s p^{3} \mathrm{HOs}$ of the participating carbon atoms. Each $C-H$ bond of $C H$ having two spin-paired electrons, one from an initially unpaired electron of the carbon atom and the other from the hydrogen atom, comprises the linear combination of $75 \% \mathrm{H}_{2}$-type ellipsoidal MO and $25 \% C 2 s p^{3} \mathrm{HO}$ as given by Eq. (13.439). However, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3}\right)$ of the $C-H$-bond MO is given by $0.5 E_{T}\left(C=C, 2 s p^{3}\right)$ (Eq. (14.247)) corresponding to one half of a double bond that matches the condition for a single-bond order for $C-H$ that is lowered in energy due to the aromatic character of the bond.

A further general possibility is that a minimum-energy bond is achieved with satisfaction of the potential, kinetic, and orbital energy relationships by the formation of an MO comprising an allowed multiple of a linear combination of H_{2}-type ellipsoidal MOs and corresponding HOs or AOs that contribute a corresponding allowed multiple (e.g. $0.5,0.75,1$) of the bond order given in Table 15.1. For example, the alkane MO given in the Continuous-Chain Alkanes section comprises a linear combination of factors of 0.5 of a single bond and 0.5 of a double bond.

Consider a first MO and its HOs comprising a linear combination of bond orders and a second MO that shares a HO with the first. In addition to the mutual HO , the second MO comprises another AO or HO having a single bond order or a mixed bond order. Then, in order for the two MOs to be energy matched, the bond order of the second MO and its HOs or its HO and AO is a linear combination of the terms corresponding to the bond order of the mutual HO and the bond order of the independent HO or AO. Then, in general, $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3}\right)$, the energy change of each atom $m s p^{3}$ shell with the formation of each atom-atom-bond MO, is a weighted linear sum for different values of s that matches the energy of the bonded MOs, HOs, and AOs:

$$
\begin{equation*}
E_{T}\left(\text { atom }- \text { atom }, m s p^{3}\right)=\sum_{n=1}^{N} c_{s_{n}} E_{T}\left(\operatorname{atom}-\operatorname{atom}\left(s_{n}\right), m s p^{3}\right) \tag{15.30}
\end{equation*}
$$

where $c_{s_{n}}$ is the multiple of the BO of s_{n}. The radius $r_{m s p^{3}}$ of the atom $m s p^{3}$ shell of each bonding atom is given by the Coulombic energy using the initial energy $E_{\text {Coulomb }}\left(\right.$ atom, $\left.m s p^{3}\right)$ and $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3}\right)$, the energy change of each atom msp^{3} shell with the formation of each atom-atom-bond MO:

$$
\begin{equation*}
r_{m s p^{3}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} a_{0}\left(E_{\text {Coulonb }}\left(\text { atom }, m s p^{3}\right)+E_{T}\left(\text { atom }- \text { atom }, m s p^{3}\right)\right)} \tag{15.31}
\end{equation*}
$$

where $E_{\text {Coulomb }}\left(C 2 s p^{3}\right)=-14.825751 \mathrm{eV}$. The Coulombic energy $E_{\text {Coulomb }}\left(\right.$ mol.atom, msp $\left.{ }^{3}\right)$ of the outer electron of the atom $m s p^{3}$ shell is given by Eq. (15.19). In the case that during hybridization, at least one of the spin-paired AO electrons is unpaired in the hybridized orbital (HO), the energy change for the promotion to the unpaired state is the magnetic energy E (magnetic) (Eq. (15.15)) at the initial radius r of the AO electron. Then, the energy E (mol.atom, msp ${ }^{3}$) of the outer electron
of the atom msp ${ }^{3}$ shell is given by the sum of $E_{\text {Coulomb }}$ (mol.atom,msp ${ }^{3}$) and E(magnetic) (Eq. (15.20)). $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3}\right)$, the energy change of each atom $m s p^{3}$ shell with the formation of the atom-atom-bond MO is given by the difference between E (mol.atom, $m s p^{3}$) and $E\left(\right.$ atom, $\left.m s p^{3}\right)$ given by Eq. (15.21). Using Eq. (15.23) for $E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)$ in Eq. (15.31), the single bond order energies given by Eqs. (15.18-15.27) and shown in Table 15.1, and the linear combination energies (Eqs. (15.28-15.30)), the parameters of linear combinations of bond orders and linear combinations of mixed bond orders are given in Table 15.2.

Table 15.2. The final values of $r_{C 2 s p}{ }^{3}, E_{\text {Coulomb }}\left(C 2 s p^{3}\right)$, and $E\left(C 2 s p^{3}\right)$ and the resulting $E_{T}\left(C^{B O}-C, C 2 s p^{3}\right)$ of the MO comprising a linear combination of H_{2}-type ellipsoidal MOs and corresponding HOs of single or mixed bond order where $c_{s_{n}}$ is the multiple of the bond order parameter $E_{T}\left(\right.$ atom $\left.-\operatorname{atom}\left(s_{n}\right), m s p^{3}\right)$ given in Table 15.1.

MO Bond Order (BO)	s_{1}	$c_{s_{1}}$	s_{2}	$c_{s_{2}}$	S_{3}	$c_{s_{3}}$	$\begin{gathered} r_{C 2 s p^{3}}\left(a_{0}\right) \\ \text { Final } \\ \hline \end{gathered}$	$\begin{gathered} E_{\text {Coulomb }}\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \\ \hline \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \\ \hline \end{gathered}$	$E_{T}\left(C \stackrel{B O}{-} C, C 2 s p^{3}\right)$ (eV)
1/2I	1	0.5	0	0	0	0	0.89582	-15.18804	-14.99717	-0.36228
1/2II	2	0.5	0	0	0	0	0.88392	-15.39265	-15.20178	-0.56689
1/2I $+1 / 4 \mathrm{II}$	1	0.5	2	0.25	0	0	0.87941	-15.47149	-15.28062	-0.64573
1/4II + 1/4(I + II)	2	0.25	1	0.25	2	0.25	0.87363	-15.57379	-15.38293	-0.74804
3/4II	2	0.75	0	0	0	0	0.86793	-15.67610	-15.48523	-0.85034
1/2I + 1/2II	1	0.5	2	0.5	0	0	0.86359	-15.75493	-15.56407	-0.92918
1/2I + 1/2III	1	0.5	3	0.5	0	0	0.85193	-15.97060	-15.77974	-1.14485
1/2I + 1/2IV	1	0.5	4	0.5	0	0	0.83995	-16.19826	-16.00739	-1.37250
1/2II +1/2III	2	0.5	3	0.5	0	0	0.84115	-16.17521	-15.98435	-1.34946
1/2II + 1/2IV	2	0.5	4	0.5	0	0	0.82948	-16.40286	-16.21200	-1.57711
I $+1 / 2(\mathrm{I}+\mathrm{II}$)	1	1	1	0.5	2	0.5	0.82562	-16.47951	-16.28865	-1.65376
1/2III + 1/2IV	3	0.5	4	0.5	0	0	0.81871	-16.61853	-16.42767	-1.79278
1/2IV + 1/2IV	4	0.5	4	0.5	0	0	0.80765	-16.84619	-16.65532	-2.02043
1/2(I + II) +II	1	0.5	2	0.5	2	1	0.80561	-16.88873	-16.69786	-2.06297

Consider next the radius of the AO or HO due to the contribution of charge to more than one bond. The energy contribution due to the charge donation at each atom such as carbon superimposes linearly. In general, the radius $r_{\text {mol } 2 s p^{3}}$ of the $C 2 s p^{3} \mathrm{HO}$ of a carbon atom of a given molecule is calculated using Eq. (14.514) by considering $\sum E_{T_{m o l}}\left(M O, 2 s p^{3}\right)$, the total energy donation to all bonds with which it participates in bonding. The general equation for the radius is given by:

$$
\begin{equation*}
r_{\text {mol } 2 s p^{3}}=\frac{-e^{2}}{8 \pi \varepsilon_{0}\left(E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)+\sum E_{T_{\text {mol }}}\left(M O, 2 s p^{3}\right)\right)}=\frac{e^{2}}{8 \pi \varepsilon_{0}\left(e 14.825751 e V+\sum\left|E_{T_{m o l}}\left(M O, 2 s p^{3}\right)\right|\right)} \tag{15.32}
\end{equation*}
$$

The Coulombic energy $E_{\text {Coulomb }}\left(\right.$ mol.atom, $\left.m s p^{3}\right)$ of the outer electron of the atom msp ${ }^{3}$ shell is given by Eq. (15.19). In the case that during hybridization, at least one of the spin-paired AO electrons is unpaired in the hybridized orbital (HO), the energy change for the promotion to the unpaired state is the magnetic energy E (magnetic) (Eq. (15.15)) at the initial radius r of the AO electron. Then, the energy E (mol.atom, $m s p^{3}$) of the outer electron of the atom $m s p^{3}$ shell is given by the sum of $E_{\text {Coulomb }}\left(\right.$ mol.atom, msp $\left.{ }^{3}\right)$ and E (magnetic) (Eq. (15.20)).

For example, the $C 2 s p^{3} \mathrm{HO}$ of each methyl group of an alkane contributes -0.92918 eV (Eq. (14.513)) to the corresponding single $C-C$ bond; thus, the corresponding $C 2 s p^{3}$ HO radius is given by Eq. (14.514). The $C 2 s p^{3}$ HO of each methylene group of $C_{n} H_{2 n+2}$ contributes -0.92918 eV to each of the two corresponding $C-C$ bond MOs. Thus, the radius (Eq. (15.32)), the Coulombic energy (Eq. (15.19)), and the energy (Eq. (15.20)) of each alkane methylene group are:

$$
\begin{align*}
& r_{\text {alkane } \text { methlylene } 2 \text { spp }^{3}}=\frac{-e^{2}}{8 \pi \varepsilon_{0}\left(E_{\text {Coulomb }}\left(C, 2 s p^{3}\right)+\sum E_{T_{\text {alkane }}}\left(\text { methylene } C-C, 2 s p^{3}\right)\right)} \tag{15.33}\\
&=\frac{e^{2}}{8 \pi \varepsilon_{0}(e 14.825751 \mathrm{eV}+e 0.92918 \mathrm{eV}+e 0.92918 \mathrm{eV})}=0.81549 a_{0} \\
& E_{\text {Coulomb }\left(C_{\text {melhylene }} 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0}\left(0.81549 a_{0}\right)}=-16.68412 \mathrm{eV}} \tag{15.34}
\end{align*}
$$

$$
\begin{equation*}
E\left(C_{\text {methylene }} 2 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0}\left(0.81549 a_{0}\right)}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(0.84317 a_{0}\right)^{3}}=-16.49325 \mathrm{eV} \tag{15.35}
\end{equation*}
$$

In the determination of the parameters of functional groups, heteroatoms bonding to $C 2 s p^{3} \mathrm{HOs}$ to form MOs are energy matched to the $C 2 s p^{3}$ HOs. Thus, the radius and the energy parameters of a bonding heteroatom are given by the same equations as those for $C 2 s p^{3}$ HOs. Using Eqs. (15.15), (15.19-15.20), (15.24), and (15.32) in a generalized fashion, the final values of the radius of the HO or $\mathrm{AO}, r_{\text {Atom.НО.АО }}, E_{\text {Coulomb }}\left(\right.$ mol.atom, $\left.m s p^{3}\right)$, and $E\left(C_{m o l} 2 s p^{3}\right)$ are calculated using $\sum E_{T_{\text {group }}}\left(M O, 2 s p^{3}\right)$, the total energy donation to each bond with which an atom participates in bonding corresponding to the values of $E_{T}\left(C^{B O}-C, C 2 s p^{3}\right)$ of the MO due to charge donation from the AO or HO to the MO given in Tables 15.1 and 15.2.

Table 15.3.A. The final values of $r_{\text {Atom.HO.AO }}, E_{\text {Coulomb }}\left(\right.$ mol.atom,msp $\left.{ }^{3}\right)$, and $E\left(C_{m o l} C 2 s p^{3}\right)$ calculated using the values of $E_{T}\left(C^{B O}-C, C 2 s p^{3}\right)$ given in Tables 15.1 and 15.2.

Atom Hybridization Designation	$E_{T}\left(C^{B O}-C, C 2 s p^{3}\right)$	$r_{\text {Atom HO AO }}$ Final (a_{o})	$\begin{gathered} E_{\text {Coulaos }}\left(\text { mol.atom }, \text { msp }^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C_{\text {mid }} 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$				
1	0	0	0	0	0	0.91771	-14.82575	-14.63489
2	-0.56690	0	0	0	0	0.88392	-15.39265	-15.20178
3	-0.72457	0	0	0	0	0.87495	-15.55033	-15.35946
4	-0.92918	0	0	0	0	0.86359	-15.75493	-15.56407
5	-0.54343	-0.54343	0	0	0	0.85503	-15.91261	-15.72175
6	-1.13379	0	0	0	0	0.85252	-15.95954	-15.76868
7	-0.60631	-0.60631	0	0	0	0.84833	-16.03838	-15.84752
8	-1.34946	0	0	0	0	0.84115	-16.17521	-15.98435
9	-0.46459	-0.92918	0	0	0	0.83885	-16.21953	-16.02866
10	-0.72457	-0.72457	0	0	0	0.83600	-16.27490	-16.08404
11	0	-0.92918	-0.56690	0	0	0.83360	-16.32183	-16.13097
12	-0.92918	-0.60631	0	0	0	0.83159	-16.36125	-16.17038
13	0	-1.13379	-0.46459	0	0	0.82840	-16.42413	-16.23327
14	-0.92918	-0.72457	0	0	0	0.82562	-16.47951	-16.28864
15	-0.85035	-0.85035	0	0	0	0.82327	-16.52644	-16.33558
16	-0.82688	0	0	0	0	0.86924	-16.58181	-16.39095
17	-0.92918	-0.92918	0	0	0	0.81549	-16.68411	-16.49325
18	-1.13379	-0.72457	0	0	0	0.81549	-16.68412	-16.49325
19	-0.92918	-0.56690	-0.46459	0	0	0.81052	-16.78642	-16.59556
20	-1.13379	-0.92918	0	0	0	0.80561	-16.88873	-16.69786
21	-0.85035	-0.85035	-0.46459	0	0	0.80076	-16.99103	-16.80017
22	0	-1.34946	-0.82688	0	0	0.80024	-17.00209	-16.81123
23	-0.85034	-0.85034	-0.56690	0	0	0.79597	-17.09334	-16.90247
24	-1.13379	-1.13380	0	0	0	0.79597	-17.09334	-16.90248
25	-1.34946	-0.92918	0	0	0	0.79546	-17.10440	-16.91353
26	-0.85035	-0.54343	0	-0.92918	0	0.79340	-17.14871	-16.95785
27	-0.85035	-0.56690	-0.92918	0	0	0.79232	-17.17218	-16.98132
28	-0.56690	-0.92918	-0.92918	0	0	0.78870	-17.25101	-17.06015
29	-0.46459	-1.13380	-0.92918	0	0	0.78405	-17.35332	-17.16246
30	-0.54343	-0.54343	-0.56690	-0.92918	0	0.78155	-17.40869	-17.21783
31	-0.85034	-0.28345	-0.54343	-0.92918	0	0.78050	-17.43216	-17.24130
32	-0.92918	-0.92918	-0.92918	0	0	0.77247	-17.61330	-17.42243
33	-0.85034	-0.54343	-0.56690	-0.92918	0	0.76801	-17.71560	-17.52474
34	-0.85034	-0.54343	-0.60631	-0.92918	0	0.76631	-17.75502	-17.56416
35	-1.13379	-0.92918	-0.92918	0	0	0.76360	-17.81791	-17.62704
36	-1.13379	-1.13380	-0.72457	0	0	0.76360	-17.81791	-17.62705
37	-0.46459	-0.85035	-0.85035	-0.92918	0	0.75924	-17.92022	-17.72935
38	-0.92918	-1.34946	-0.82688	0	0	0.75878	-17.93127	-17.74041
39	-0.85034	-0.54343	-0.60631	-1.13379	0	0.75758	-17.95963	-17.76877
40	-1.13380	-1.13379	-0.92918	0	0	0.75493	-18.02252	-17.83166
41	-1.13379	-1.13379	-1.13379	0	0	0.74646	-18.22713	-18.03627

Table 15.3.B. The final values of $r_{\text {Atom.HO.AO }}, E_{\text {Coulomb }}\left(\right.$ mol.atom,msp $\left.{ }^{3}\right)$, and $E\left(\mathrm{C}_{\text {mol }} \mathrm{C}^{2} \mathrm{sp}^{3}\right)$ calculated for heterocyclic groups using the values of $E_{T}\left(C^{B O}-C, C 2 s p^{3}\right)$ given in Tables 15.1 and 15.2.

Atom Hybridization Designation	$E_{T}\left(C^{B O}-C, C 2 s p^{3}\right)$	$E_{T}\left(C^{n o}-C, C 2 s p^{3}\right)$	$E_{Y}\left(C-C, C 2 s p^{3}\right)$	$E_{T}\left(C^{B O}-C, C 2 s p^{3}\right)$	$E_{T}\left(C^{B O}-C, C 2 s p^{3}\right)$	$r_{\text {Atoom HO АО }}$ Final (a_{o})	$\begin{gathered} E_{\text {Coatoms }}\left(\text { mol.atom, } \mathrm{msp}^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C_{m, 2} 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$
1	0	0	0	0	0	0.91771	-14.82575	-14.63489
2	-0.56690	0	0	0	0	0.88392	-15.39265	-15.20178
3	-0.72457	0	0	0	0	0.87495	-15.55033	-15.35946
4	-0.92918	0	0	0	0	0.86359	-15.75493	-15.56407
5	-0.54343	-0.54343	0	0	0	0.85503	-15.91261	-15.72175
6	-1.13379	0	0	0	0	0.85252	-15.95954	-15.76868
7	-0.60631	-0.60631	0	0	0	0.84833	-16.03838	-15.84752
8	-1.34946	0	0	0	0	0.84115	-16.17521	-15.98435
9	-0.46459	-0.92918	0	0	0	0.83885	-16.21953	-16.02866
10	-0.72457	-0.72457	0	0	0	0.83600	-16.27490	-16.08404
11	0	-0.92918	-0.56690	0	0	0.83360	-16.32183	-16.13097
12	-0.92918	-0.60631	0	0	0	0.83159	-16.36125	-16.17038
13	0	-1.13379	-0.46459	0	0	0.82840	-16.42413	-16.23327
14	-0.92918	-0.72457	0	0	0	0.82562	-16.47951	-16.28864
15	-0.85035	-0.85035	0	0	0	0.82327	-16.52644	-16.33558
16	-0.82688	0	0	0	0	0.86924	-16.58181	-16.39095
17	-0.92918	-0.92918	0	0	0	0.81549	-16.68411	-16.49325
18	-1.13379	-0.72457	0	0	0	0.81549	-16.68412	-16.49325
19	-0.92918	-0.56690	-0.46459	0	0	0.81052	-16.78642	-16.59556
20	-1.13379	-0.92918	0	0	0	0.80561	-16.88873	-16.69786
21	-0.85035	-0.85035	-0.46459	0	0	0.80076	-16.99103	-16.80017
22	0	-1.34946	-0.82688	0	0	0.80024	-17.00209	-16.81123
23	-0.85034	-0.85034	-0.56690	0	0	0.79597	-17.09334	-16.90247
24	-1.13379	-1.13380	0	0	0	0.79597	-17.09334	-16.90248
25	-1.34946	-0.92918	0	0	0	0.79546	-17.10440	-16.91353
26	-0.85035	-0.54343	0	-0.92918	0	0.79340	-17.14871	-16.95785
27	-0.85035	-0.56690	-0.92918	0	0	0.79232	-17.17218	-16.98132
28	-0.56690	-0.92918	-0.92918	0	0	0.78870	-17.25101	-17.06015
29	-0.46459	-1.13380	-0.92918	0	0	0.78405	-17.35332	-17.16246
30	-0.54343	-0.54343	-0.56690	-0.92918	0	0.78155	-17.40869	-17.21783
31	-0.85034	-0.28345	-0.54343	-0.92918	0	0.78050	-17.43216	-17.24130
32	-0.92918	-0.92918	-0.92918	0	0	0.77247	-17.61330	-17.42243
33	-0.85034	-0.54343	-0.56690	-0.92918	0	0.76801	-17.71560	-17.52474
34	-0.85034	-0.54343	-0.60631	-0.92918	0	0.76631	-17.75502	-17.56416
35	-1.13379	-0.92918	-0.92918	0	0	0.76360	-17.81791	-17.62704
36	-1.13379	-1.13380	-0.72457	0	0	0.76360	-17.81791	-17.62705
37	-0.46459	-0.85035	-0.85035	-0.92918	0	0.75924	-17.92022	-17.72935
38	-0.92918	-1.34946	-0.82688	0	0	0.75878	-17.93127	-17.74041
39	-0.85034	-0.54343	-0.60631	-1.13379	0	0.75758	-17.95963	-17.76877
40	-1.13380	-1.13379	-0.92918	0	0	0.75493	-18.02252	-17.83166
41	-1.13379	-1.13379	-1.13379	0	0	0.74646	-18.22713	-18.03627

From Eq. (15.18), the general equation for the radius due to a total charge $-Q e$ of an AO or a HO that participates in bonding to form a MO is given by:

$$
\begin{equation*}
r_{m s p^{3}}=\left(\sum_{q=Z-n}^{Z-1}(Z-q)-Q\right) \frac{-e^{2}}{8 \pi \varepsilon_{0} E_{T}\left(\text { mol.atom }, m s p^{3}\right)} \tag{15.36}
\end{equation*}
$$

By equating the radii of Eqs. (15.36) and (15.32), the total charge parameter Q of the AO or HO can be calculated wherein the excess charge is on the MO:

$$
\begin{equation*}
Q=\left(\sum_{q=Z-n}^{Z-1}(Z-q)\right)-\frac{\mid E_{T}\left(\text { mol.atom, } m^{3} p^{3}\right) \mid}{\left(e 14.825751 \mathrm{eV}+\sum\left|E_{T_{m o l}}\left(M O, 2 s p^{3}\right)\right|\right)} \tag{15.37}
\end{equation*}
$$

The modulation of the constant function by the time and spherically harmonic functions as given in Eq. (1.29) time-averages to zero such that the charge density of any HO or AO is determined by the constant function. The charge density σ is then given by the fundamental charge $-e$ times the number of electrons n divided by the area of the spherical shell of radius $r_{\text {mol } 2 s p^{3}}$ given by Eq. (15.32):

$$
\begin{equation*}
\sigma=\frac{(n-Q)(-e)}{\frac{4}{3} \pi r_{\text {mol } 2 s p^{3}}^{2}} \tag{15.38}
\end{equation*}
$$

The charge density of an ellipsoidal MO in rectangular coordinates (Eqs. (11.42-11.45)) is:

$$
\begin{equation*}
\sigma=\frac{q}{4 \pi a b c} \frac{1}{\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}}=\frac{q}{4 \pi a b c} D \tag{15.39}
\end{equation*}
$$

where D is the distance from the origin to the tangent plane. The charge q is given by the fundamental electron charge $-e$ times the sum of parameter n_{1} of Eqs. (15.51) and (15.61) and the charge donation parameter Q (Eq. (15.37)) of each AO or HO to the MO. Thus, the charge density of the MO is given by:

$$
\begin{equation*}
\sigma=\frac{-e\left(n_{1}+Q\right)}{4 \pi a b c} D \tag{15.40}
\end{equation*}
$$

The charge density of the MO that is continuous with the surface of the AO or HO and any radial bisector current resulting from the intersection of two or more MOs as given in the Methane Molecule $\left(\mathrm{CH}_{4}\right)$ section is determined by the current continuity condition. Consider the continuity of the current due to the intersection of an MO with a corresponding AO or HO . The parameters of each point of intersection of each H_{2}-type ellipsoidal MO and the corresponding atom AO or HO determined from the polar equation of the ellipse are given by Eqs. (15.80-15.87). The overlap charge Δq is given by the total charge of the prolate-spheroidal MO minus the integral of the charge density of the MO over the area between curves of intersection with the AOs or HOs that forms the MO:

$$
\begin{equation*}
\Delta q=-e\left(n_{1}+Q\right)-\int \sigma d A=-e\left(n_{1}+Q\right)\left(1-\int \frac{D}{4 \pi a b c} d A\right) \tag{15.41}
\end{equation*}
$$

The overlap charge of the prolate-spheroidal MO Δq is uniformly distributed on the external spherical surface of the AO or HO of radius $r_{\text {mol } 2 s p^{3}}^{3}$ such that the charge density σ from Eq. (15.41) is:

$$
\begin{equation*}
\sigma=\frac{\Delta q}{A} \tag{15.42}
\end{equation*}
$$

where A is the external surface area of the AO or HO between the curves of intersection with the MO surface.
At the curves of intersection of two or more MOs where they occur, the current between the AO or HO shell and curves of mutual contact is projected onto and flows in the direction of the radial vector to the surface of the AO or HO shell. This current designated the bisector current (BC) meets the AO or HO surface and does not travel to distances shorter than its radius. Due to symmetry, a radial axis through the AO or HO exists such that current travels from the MOs to the AO or HO along the radial vector in one direction and returns to the MO along the radial vector in the opposite direction from the AO or HO surface to conserve current flow. The MO current onto the bisector currents and the connecting current on the external surface of the AO or HO must be continuously maintained. Given the corresponding constant $\mathrm{MO} \omega$ (Eq. (11.24)), the continuity condition requires that the charge density on these surfaces times the area $\left(\propto r^{-2}\right)$ must be a constant corresponding to constant current, and this current must be matched at the inflow from the MO to the inflow bisector current, the HO or AO external surface, the outflow bisector current, and the return current on the opposite surface of the MO. Thus, σ on each surface s having charge Δq_{s} is given by Eq. (15.42) wherein $\Delta q=\sum \Delta q_{s}$ and Δq is given by Eq. (15.41) with the integral over the MO area between curves of intersection of the MOs. A is surface area corresponding to each Δq_{s} of the bisector currents and the external surface of the AO or HO between the curves of intersection of the bisector current with the AO or HO surface. Since the potential of an MO is that of a point charge at infinity (Eq. (11.36)), an asymmetry in the distribution of charge between nonequivalent HOs or AOs of the MO occurs to maintain an energy match of the MO with the bridged orbitals. The charge must redistribute between the spherical orbitals to achieve a corresponding current-density that maintains constant current at the equivalent-energy condition according to the energy-matching factor such as c_{2} or C_{2} of Eqs. (15.51) and (15.61). Since the orbital energy and radius are reciprocally related, the contribution scales as the square of the ratio (over unity) of the energy of the resultant net positively-charged orbital and the initial matched energy of the resultant net negatively-charged orbital of the bond multiplied by the energy-matching factor (e.g. c_{2} or C_{2}). The partial charges on the HOs or AOs corresponding to the charge contribution are equivalent to point charges centered on the nuclei. Due to symmetry, the bond moment μ of each functional group is along the internuclear axis and is calculated from the partial changes at the separation distance, the internuclear distance. The dipole moment of a given molecule is then given by the vector sum of the bond moments in the molecule. Thus, the dipole moment is given by taking into account the magnitude and direction of the bond moment of each functional group wherein the functiongroup bond moment stays constant from molecule to molecule and is in the vector direction of the internuclear axis as given in the Bonds and Dipole Moments section.

The angles at which any two prolate spheroidal $A-C$ and $B-C$-bond MOs intersect can be determined using Eq. (13.85) by equating the radii of the elliptic cross sections of the MOs:

$$
\begin{equation*}
\left(a_{1}-c_{1}^{\prime}\right) \frac{1+\frac{c_{1}^{\prime}}{a_{1}}}{1+\frac{c_{1}^{\prime}}{a_{1}} \cos \theta_{1}^{\prime}}=\left(a_{2}-c_{2}^{\prime}\right) \frac{1+\frac{c_{2}^{\prime}}{a_{2}}}{1+\frac{c_{2}^{\prime}}{a_{2}} \cos \theta_{2}^{\prime}} \tag{15.43}
\end{equation*}
$$

and by using the following relationship between the polar angles θ_{1}^{\prime} and $\theta_{2}{ }^{\prime}$:

$$
\begin{equation*}
\theta_{\angle A C B}=\theta_{1}^{\prime}+\theta_{2}^{\prime}-360^{\circ} \tag{15.44}
\end{equation*}
$$

where $\theta_{\angle A C B}$ is the bond angle of atoms A and B with central atom C. From either angle, the polar radius of intersection can be determined using Eq. (13.85). An example for methane is shown in Eqs. (13.597-13.600). Using these coordinates and the radius of the AO or HO , the limits of the integrals for the determination of the charge densities as well as the regions of each charge density are determined.

The energy of the MO is matched to each of the participating outermost atomic or hybridized orbitals of the bonding atoms wherein the energy match includes the energy contribution due to the AO or HO's donation of charge to the MO. The force constant k^{\prime} (Eq. (15.1)) is used to determine the ellipsoidal parameter c^{\prime} (Eq. (15.2)) of each H_{2}-type-ellipsoidal-MO in terms of the central force of the foci. Then, c^{\prime} is substituted into the energy equation (from Eq. (15.11)) which is set equal to n_{1} times the total energy of H_{2} where n_{1} is the number of equivalent bonds of the MO and the energy of $H_{2},-31.63536831 \mathrm{eV}$, Eq. (11.212) is the minimum energy possible for a prolate spheroidal MO. From the energy equation and the relationship between the axes, the dimensions of the MO are solved. The energy equation has the semimajor axis a as its only parameter. The solution of the semimajor axis a then allows for the solution of the other axes of each prolate spheroid and eccentricity of each MO (Eqs. (15.3-15.5)). The parameter solutions then allow for the component and total energies of the MO to be determined.

The total energy, $E_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)$, is given by the sum of the energy terms (Eqs. (15.6-15.11)) plus $E_{T}(\mathrm{AO} / \mathrm{HO})$:

$$
\begin{align*}
E_{T}\left(H_{2} M O\right) & =V_{e}+T+V_{m}+V_{p}+E_{T}(A O / H O) \tag{15.45}\\
E_{T}\left(H_{2} M O\right) & =-\frac{n_{1} e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}\left[c_{1} c_{2}\left(2-\frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}-1\right]+E_{T}(\mathrm{AO} / \mathrm{HO}) \tag{15.46}\\
& =-\frac{n_{1} e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[c_{1} c_{2}\left(2-\frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]+E_{T}(\mathrm{AO} / \mathrm{HO})
\end{align*}
$$

where n_{1} is the number of equivalent bonds of the MO, c_{1} is the fraction of the H_{2}-type ellipsoidal MO basis function of a chemical bond of the group, c_{2} is the factor that results in an equipotential energy match of the participating at least two atomic orbitals of each chemical bond, and $E_{T}(A O / H O)$ is the total energy comprising the difference of the energy $E(A O / H O)$ of at least one atomic or hybrid orbital to which the MO is energy matched and any energy component $\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(\mathrm{AO} / \mathrm{HO})$ due to the AO or HO's charge donation to the MO.

$$
\begin{equation*}
E_{T}(A O / H O)=E(A O / H O)-\Delta E_{H_{2} M O}(A O / H O) \tag{15.47}
\end{equation*}
$$

As specific examples given in previous sections, $E_{T}(\mathrm{AO} / \mathrm{HO})$ is one from the group of:

$$
\begin{aligned}
& E_{T}(A O / H O)=E(O 2 p \text { shell })=-E(\text { ionization; } O)=-13.6181 \mathrm{eV} ; \\
& E_{T}(A O / H O)=E(N 2 p \text { shell })=-E(\text { ionization; } N)=-14.53414 \mathrm{eV} ; \\
& E_{T}(A O / H O)=E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV} ; \\
& E_{T}(A O / H O)=E_{\text {Coulomb }}\left(C l, 3 s p^{3}\right)=-14.60295 \mathrm{eV} ; \\
& E_{T}(A O / H O)=E(\text { ionization; } C)+E\left(\text { ionization; } C^{+}\right) ; \\
& E_{T}(A O / H O)=E\left(C_{\text {ethane }}, 2 s p^{3}\right)=-15.35946 \mathrm{eV} ; \\
& E_{T}(A O / H O)=E\left(C_{\text {ethylene }}, 2 s p^{3}\right)-E\left(C_{\text {ethylene }}, 2 s p^{3}\right) ; \\
& E_{T}(A O / H O)=E\left(C, 2 s p^{3}\right)-2 E_{T}\left(C=C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}-(-2.26758 \mathrm{eV}) ; \\
& E_{T}(A O / H O)=E\left(C_{\text {acetylene }}, 2 s p^{3}\right)-E\left(C_{\text {acetylene }}, 2 s p^{3}\right)-E\left(C_{\text {acetylene }}, 2 s p^{3}\right)=16.20002 \mathrm{eV} ; \\
& E_{T}(A O / H O)=E\left(C, 2 s p^{3}\right)-2 E_{T}\left(C \equiv C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}-(-3.13026 \mathrm{eV}) ; \\
& E_{T}(A O / H O)=E\left(C_{\text {benzene }}, 2 s p^{3}\right)-E\left(C_{\text {benzene }}, 2 s p^{3}\right) ; \\
& E_{T}(A O / H O)=E\left(C, 2 s p^{3}\right)-E_{T}\left(C=C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}-(-1.13379 \mathrm{eV}), \text { and } \\
& E_{T}(A O / H O)=E\left(C_{\text {alkane }}, 2 s p^{3}\right)=-15.56407 \mathrm{eV} .
\end{aligned}
$$

To solve the bond parameters and energies, $c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} 2 C_{1} C_{2} a}}=\sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}}$ (Eq. (15.2)) is substituted into $E_{T}\left(H_{2} M O\right)$ to: give

$$
\begin{align*}
E_{T}\left(H_{2} M O\right) & =-\frac{n_{1} e^{2}}{8 \pi \varepsilon_{0} \sqrt{a^{2}-b^{2}}}\left[c_{1} c_{2}\left(2-\frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{a^{2}-b^{2}}}{a-\sqrt{a^{2}-b^{2}}}-1\right]+E_{T}(A O / H O) \\
& =-\frac{n_{1} e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[c_{1} c_{2}\left(2-\frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]+E_{T}(A O / H O) \tag{15.48}\\
& =-\frac{n_{1} e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}}}\left[c_{1} c_{2}\left(2-\frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}}}{a-\sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}}}-1\right]+E_{T}(A O / H O)
\end{align*}
$$

The total energy is set equal to E (basis energies) which in the most general case is given by the sum of a first integer n_{1} times the total energy of H_{2} minus a second integer n_{2} times the total energy of H, minus a third integer n_{3} times the valence energy of $E(A O)$ (e.g. $E(N)=-14.53414 \mathrm{eV}$) where the first integer can be $1,2,3 \ldots$, and each of the second and third integers can be 0,1,2,3....

$$
\begin{equation*}
E(\text { basis energies })=n_{1}(-31.63536831 \mathrm{eV})-n_{2}(-13.605804 \mathrm{eV})-n_{3} E(A O) \tag{15.49}
\end{equation*}
$$

In the case that the MO bonds two atoms other than hydrogen, E(basis energies) is n_{1} times the total energy of H_{2} where n_{1} is the number of equivalent bonds of the MO and the energy of $H_{2},-31.63536831 \mathrm{eV}$, Eq. (11.212) is the minimum energy possible for a prolate spheroidal MO:

$$
\begin{equation*}
E(\text { basis energies })=n_{1}(-31.63536831 \mathrm{eV}) \tag{15.50}
\end{equation*}
$$

$E_{T}\left(H_{2} M O\right)$, is set equal to E (basis energies), and the semimajor axis a is solved. Thus, the semimajor axis a is solved from the equation of the form:

$$
\begin{equation*}
-\frac{n_{1} e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}}}\left[c_{1} c_{2}\left(2-\frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}}}{a-\sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}}}-1\right]+E_{T}(A O / H O)=E(\text { basis energies }) \tag{15.51}
\end{equation*}
$$

The distance from the origin of the H_{2}-type-ellipsoidal-MO to each focus c^{\prime}, the internuclear distance $2 c^{\prime}$, and the length of the semiminor axis of the prolate spheroidal H_{2}-type MO $b=c$ are solved from the semimajor axis a using Eqs. (15.2-15.4). Then, the component energies are given by Eqs. (15.6-15.9) and (15.48).

The total energy of the MO of the functional group, $E_{T}(м о)$, is the sum of the total energy of the components comprising the energy contribution of the MO formed between the participating atoms and $E_{T}\left(\right.$ atom-atom, msp $\left.{ }^{3} \cdot A O\right)$, the change in the energy of the AOs or HOs upon forming the bond. From Eqs. (15.48-15.49), $E_{T}(м о)$ is:

$$
\begin{equation*}
E_{T}(м о)=E(\text { basis energies })+E_{T}\left(\text { atom }- \text { atom }, m s p^{3} . A O\right) \tag{15.52}
\end{equation*}
$$

During bond formation, the electrons undergo a reentrant oscillatory orbit with vibration of the nuclei, and the corresponding energy $\bar{E}_{\text {osc }}$ is the sum of the Doppler, \bar{E}_{D}, and average vibrational kinetic energies, $\bar{E}_{\text {Kvib }}$:

$$
\begin{equation*}
\bar{E}_{\text {osc }}=n_{1}\left(\bar{E}_{D}+\bar{E}_{K v i b}\right)=n_{1}\left(E_{h v} \sqrt{\frac{2 \bar{E}_{K}}{m_{e} c^{2}}}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right) \tag{15.53}
\end{equation*}
$$

where n_{1} is the number of equivalent bonds of the MO, k is the spring constant of the equivalent harmonic oscillator, and μ is the reduced mass. The angular frequency of the reentrant oscillation in the transition state corresponding to \bar{E}_{D} is determined by the force between the central field and the electrons in the transition state. The force and its derivative are given by:

$$
\begin{equation*}
f(R)=-c_{B O} \frac{C_{10} C_{2 o} e^{2}}{4 \pi \varepsilon_{0} R^{3}} \tag{15.54}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(a)=2 c_{B O} \frac{C_{1 o} C_{20} e^{2}}{4 \pi \varepsilon_{0} R^{3}} \tag{15.55}
\end{equation*}
$$

such that the angular frequency of the oscillation in the transition state is given by:

$$
\begin{equation*}
\omega=\sqrt{\frac{\left[\frac{-3}{a} f(a)-f^{\prime}(a)\right]}{m_{e}}}=\sqrt{\frac{k}{m_{e}}}=\sqrt{\frac{c_{B O} \frac{C_{1 o} C_{2 o} e^{2}}{4 \pi \varepsilon_{0} R^{3}}}{m_{e}}} \tag{15.56}
\end{equation*}
$$

where R is the semimajor axis a or the semiminor axis b depending on the eccentricity of the bond that is most representative of the oscillation in the transition state, $c_{B O}$ is the bond-order factor which is 1 for a single bond and when the MO comprises n_{1} equivalent single bonds as in the case of functional groups. $c_{B O}$ is 4 for an independent double bond as in the case of the CO_{2} and NO_{2} molecules and 9 for an independent triple bond. C_{10} is the fraction of the H_{2}-type ellipsoidal MO basis function of the oscillatory transition state of a chemical bond of the group, and $C_{2 o}$ is the factor that results in an equipotential energy match of the participating at least two atomic orbitals of the transition state of the chemical bond. Typically, $C_{1 o}=C_{1}$ and $C_{2 o}=C_{2}$. The kinetic energy, E_{K}, corresponding to \bar{E}_{D} is given by Planck's equation for functional groups:

$$
\begin{equation*}
\bar{E}_{K}=\hbar \omega=\hbar \sqrt{\frac{\frac{C_{10} C_{2 o} e^{2}}{4 \pi \varepsilon_{0} R^{3}}}{m_{e}}} \tag{15.57}
\end{equation*}
$$

The Doppler energy of the electrons of the reentrant orbit is:

$$
\begin{equation*}
\bar{E}_{D} \cong E_{h \nu} \sqrt{\frac{2 \bar{E}_{K}}{m_{e} c^{2}}}=E_{h v} \sqrt{\frac{2 \hbar \sqrt{\frac{\frac{C_{10} C_{2 o} e^{2}}{4 \pi \varepsilon_{0} R^{3}}}{m_{e}}}}{m_{e} c^{2}}} \tag{15.58}
\end{equation*}
$$

$\bar{E}_{\text {osc }}$ given by the sum of \bar{E}_{D} and $\bar{E}_{K v i b}$ is:

$$
\begin{equation*}
\bar{E}_{\text {osc }}(\text { group })=n_{1}\left(\bar{E}_{D}+\bar{E}_{K v i b}\right)=n_{1}\left(E_{h v} \sqrt{\frac{2 \hbar \sqrt{\frac{\frac{C_{10} C_{20} e^{2}}{4 \pi \varepsilon_{0} R^{3}}}{m_{e}}}}{m_{e} c^{2}}}+E_{v i b}\right) \tag{15.59}
\end{equation*}
$$

$E_{h \nu}$ of a group having n_{1} bonds is given by $E_{T}(м о) / n_{1}$ such that:

$$
\begin{equation*}
\bar{E}_{o s c}=n_{1}\left(\bar{E}_{D}+\bar{E}_{K v i b}\right)=n_{1}\left(E_{T}(M O) / n_{1} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right) \tag{15.60}
\end{equation*}
$$

$E_{\text {Toosc }}($ Group $)$ is given by the sum of $E_{T}($ мо $)$ (Eq. (15.51)) and $\bar{E}_{\text {osc }}$ (Eq. (15.60)).

$$
\begin{align*}
& \left.E_{T+\text { osc }}(\text { Group })=E_{T}(\text { Mo })+\bar{E}_{\text {osc }}=\binom{\left(\begin{array}{l}
-\frac{n_{1} e^{2}}{8 \pi \varepsilon_{0} \sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}}}\left[c _ { 1 } c _ { 2 } (2 - \frac { a _ { 0 } } { a }) \left(\ln \frac{a+\sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}}}{a-\sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}}}-1\right.\right.
\end{array}\right]}{+E_{T}(A O / H O)+E_{T}\left(\text { atom }- \text { atom }, m s p^{3} \cdot A O\right)}\right) \tag{15.61}\\
& \left.=(\text { E(basis energies })+E_{T}\left(\text { atom }- \text { atom, } m s p^{3} . A O\right)\right)\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{C_{10} C_{20} e^{2}}{4 \pi \varepsilon_{0} R^{3}}} \frac{m_{e}}{m_{e} c^{2}}}{}}\right]+n_{1} \frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}
\end{align*}
$$

The total energy of the functional group $E_{T}($ group $)$ is the sum of the total energy of the components comprising the energy contribution of the MO formed between the participating atoms, E(basis energies), the change in the energy of the AOs or HOs upon forming the bond $\left(E_{T}\left(\right.\right.$ atom-atom, $\left.m s p^{3} . A O\right)$), the energy of oscillation in the transition state, and the change in magnetic energy with bond formation, $E_{\text {mag }}$. From Eq. (15.61), the total energy of the group $E_{T}($ Group $)$ is:

$$
\begin{equation*}
E_{T}(\text { Group })=\binom{\left(E(\text { basis energies })+E_{T}\left(\text { atom }- \text { atom, } m s p^{3} . A O\right)\right)\left(1+\sqrt{\frac{2 \hbar \sqrt{\frac{C_{0} C_{20} e^{2}}{4 \pi \varepsilon_{0} R^{3}}} m_{e}}{m_{e} c^{2}}}\right.}{+n_{1} \bar{E}_{K v i b}+E_{m a g}} \tag{15.62}
\end{equation*}
$$

The change in magnetic energy $E_{m a g}$ which arises due to the formation of unpaired electrons in the corresponding fragments relative to the bonded group is given by:

$$
\begin{equation*}
E_{\operatorname{mag}}=c_{3} \frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2} r^{3}}=c_{3} \frac{8 \pi \mu_{0} \mu_{B}^{2}}{r^{3}} \tag{15.63}
\end{equation*}
$$

where r is the radius of the atom that reacts to form the bond and c_{3} is the number of electron pairs.

$$
\begin{equation*}
E_{T}(\text { Group })=\binom{\left(E(\text { basis energies })+E_{T}\left(\text { atom }- \text { atom, } m s p^{3} \cdot A O\right)\right)\left(1+\sqrt{\frac{2 \hbar \sqrt{\frac{\frac{C_{10} C_{2 o} e^{2}}{4 \pi \varepsilon_{0} R^{3}}}{m_{e}}}}{m_{e} c^{2}}}\right]}{+n_{1} \bar{E}_{K v i b}+c_{3} \frac{8 \pi \mu_{0} \mu_{B}^{2}}{r^{3}}} \tag{15.64}
\end{equation*}
$$

The total bond energy of the group $E_{D}($ Group $)$ is the negative difference of the total energy of the group (Eq. (15.64)) and the total energy of the two starting orbitals given by the sum of $c_{4} E_{\text {initial }}\left(c_{4} A O / H O\right)$ and $c_{5} E_{\text {initial }}\left(c_{5} A O / H O\right)$:

$$
\begin{equation*}
E_{D}(\text { Group })=-\binom{\left.(\text { E(basis energies })+E_{T}\left(\text { atom }- \text { atom }, m s p^{3} . A O\right)\right)\left[\sqrt{\frac{2 \hbar \sqrt{\frac{\frac{C_{10} C_{20} e^{2}}{4 \pi \varepsilon_{0} R^{3}}}{m_{e}}}}{m_{e} c^{2}}}\right.}{+n_{1} \bar{E}_{K v i b}+c_{3} \frac{8 \pi \mu_{0} \mu_{B}^{2}}{r^{3}}-\left(c_{4} E_{\text {initial }}\left(c_{4} A O / H O\right)+c_{5} E_{\text {initial }}\left(c_{5} A O / H O\right)\right)} \tag{15.65}
\end{equation*}
$$

In the case of organic molecules, the atoms of the functional groups are energy matched to the $C 2 s p^{3} \mathrm{HO}$ such that:

$$
\begin{equation*}
E(A O / H O)=-14.63489 \mathrm{eV} \tag{15.66}
\end{equation*}
$$

For examples of $E_{\text {mag }}$ from previous sections:

$$
\begin{align*}
& E_{\text {mag }}\left(C 2 s p^{3}\right)=c_{3} \frac{8 \pi \mu_{0} \mu_{B}^{2}}{r^{3}}=c_{3} \frac{8 \pi \mu_{0} \mu_{B}^{2}}{\left(0.91771 a_{0}\right)^{3}}=c_{3} 0.14803 \mathrm{eV} \tag{15.67}\\
& E_{\text {mag }}(O 2 p)=c_{3} \frac{8 \pi \mu_{0} \mu_{B}^{2}}{r^{3}}=c_{3} \frac{8 \pi \mu_{0} \mu_{B}^{2}}{a_{0}^{3}}=c_{3} 0.11441 \mathrm{eV} \tag{15.68}\\
& E_{\text {mag }}(N 2 p)=c_{3} \frac{8 \pi \mu_{0} \mu_{B}^{2}}{r^{3}}=c_{3} \frac{8 \pi \mu_{0} \mu_{B}^{2}}{\left(0.93084 a_{0}\right)^{3}}=c_{3} 0.14185 \mathrm{eV} \tag{15.69}
\end{align*}
$$

In the general case of the solution of an organic functional group, the geometric bond parameters are solved from the semimajor axis and the relationships between the parameters by first using Eq. (15.51) to arrive at a. Then, the remaining parameters are determined using Eqs. (15.1-15.5). Next, the energies are given by Eqs. (15.61-15.68). To meet the equipotential condition for the union of the H_{2}-type-ellipsoidal-MO and the HO or AO of the atom of a functional group, the factor c_{2} of a H_{2}-type ellipsoidal MO in principal Eqs. (15.51) and (15.61) may given by:
(i) one:
$c_{2}=1$
(ii) the ratio that is less than one of 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264), and the magnitude of the Coulombic energy of the participating AO or HO of the atom, $E_{\text {Coulomb }}\left(\right.$ MO.atom, $\left.\mathrm{msp}^{3}\right)$ given by Eqs. (15.19) and (15.31-15.32). For $\mid E_{\text {Coulomb }}\left(\right.$ MO.atom, $\left.m s p^{3}\right) \mid>13.605804 \mathrm{eV}$:

$$
\begin{align*}
& c_{2}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} r_{A-B A \text { Aorssp}}{ }^{3}}}=\frac{13.605804 \mathrm{eV}}{\left|E_{\text {Coulomb }}\left(M O . a t o m, \mathrm{msp}^{3}\right)\right|} \tag{15.71}\\
& \text { For } \mid E_{\text {Coulomb }}\left(M O . \text { atom, } \mathrm{msp}^{3}\right) \mid<13.605804 \mathrm{eV}: \\
& c_{2}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} r_{A-B ~ A o r s s p^{3}}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}=\frac{\left|E_{\text {Coulomb }}\left(M O . a t o m, \mathrm{msp}^{3}\right)\right|}{13.605804 \mathrm{eV}} \tag{15.72}
\end{align*}
$$

(iii) the ratio that is less than one of 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264), and the magnitude of the valence energy, E (valence), of the participating AO or HO of the atom where E (valence) is the ionization energy or E (MO.atom, $m s p^{3}$) given by Eqs. (15.20) and (15.31-15.32). For $\mid E($ valence $) \mid>13.605804 \mathrm{eV}$:
$c_{2}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} r_{A-B A \text { AorBsp }}}}=\frac{13.605804 \mathrm{eV}}{\mid E(\text { valence }) \mid}$
For $\mid E$ (valence) $\mid<13.605804 \mathrm{eV}$:
$c_{2}=\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} r_{A-B A \text { AorBsp }}{ }^{3}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}=\frac{\mid E(\text { valence }) \mid}{13.605804 \mathrm{eV}}$
(iv) the ratio that is less than one of the magnitude of the Coulombic energy of the participating AO or HO of a first atom, $E_{\text {Coulomb }}\left(\right.$ MO.atom, msp 3) given by Eqs. (15.19) and (15.31-15.32), and the magnitude of the valence energy, E (valence), of the participating AO or HO of a second atom to which the first is energy matched where E (valence) is the ionization energy or E (MO.atom, msp 3) given by Eqs. (15.20) and (15.31-15.32). For $\mid E_{\text {Coulomb }}\left(\right.$ MO.atom, msp $\left.{ }^{3}\right) \mid>E($ valence $)$:
$c_{2}=\frac{\mid E(\text { valence }) \mid}{\mid E_{\text {Coulomb }}\left(\text { MO.atom }, \text { msp }^{3}\right) \mid}$
For $\mid E_{\text {Coulomb }}\left(\right.$ MO.atom, msp $\left.^{3}\right) \mid<E$ (valence) :
$c_{2}=\frac{\mid E_{\text {Coulomb }}\left(\text { MO.atom }, \text { msp }^{3}\right) \mid}{\mid E(\text { valence }) \mid}$
(v) the ratio of the magnitude of the valence-level energies, E_{n} (valence), of the AO or HO of the nth participating atom of two that are energy matched where E (valence) is the ionization energy or E (MO.atom,msp ${ }^{3}$) given by Eqs. (15.20) and (15.31-15.32):
$c_{2}=\frac{E_{1}(\text { valence })}{E_{2}(\text { valence })}$
(vi) the factor that is the ratio of the hybridization factor $c_{2}(1)$ of the valence AO or HO of a first atom and the hybridization factor $c_{2}(2)$ of the valence AO or HO of a second atom to which the first is energy matched where $c_{2}(n)$ is given by Eqs. (15.71-15.77); alternatively c_{2} is the hybridization factor $c_{2}(1)$ of the valence AOs or HOs a first pair of atoms and the hybridization factor $c_{2}(2)$ of the valence AO or HO a third atom or second pair to which the first two are energy matched:

$$
\begin{equation*}
c_{2}=\frac{c_{2}(1)}{c_{2}(2)} \tag{15.78}
\end{equation*}
$$

(vii) the factor that is the product of the hybridization factor $c_{2}(1)$ of the valence AO or HO of a first atom and the hybridization factor $c_{2}(2)$ of the valence AO or HO of a second atom to which the first is energy matched where $c_{2}(n)$ is given by Eqs. (15.71-15.78); alternatively c_{2} is the hybridization factor $c_{2}(1)$ of the valence AOs or HOs a first pair of atoms and the hybridization factor $c_{2}(2)$ of the valence AO or HO a third atom or second pair to which the first two are energy matched:

$$
\begin{equation*}
c_{2}=c_{2}(1) c_{2}(2) \tag{15.79}
\end{equation*}
$$

The hybridization factor c_{2} corresponds to the force constant k (Eqs. (11.65) and (13.58)). In the case that the valence or Coulombic energy of the AO or HO is less than 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264), then C_{2} corresponding to k^{\prime} (Eq. (15.1)) is given by Eqs. (15.71-15.79).

Specific examples of the factors c_{2} and C_{2} of a H_{2}-type ellipsoidal MO of Eq. (15.60) given in following sections are:
$c_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to $\left.F\right)=\frac{E\left(C, 2 s p^{3}\right)}{E(F)} c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=\frac{-14.63489 \mathrm{eV}}{-17.42282 \mathrm{eV}}(0.91771)=0.77087$;
$\mathrm{C}_{2}\left(\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}\right.$ to Cl$)=\frac{\mathrm{E}(\mathrm{Cl})}{E\left(\mathrm{C}, 2 s p^{3}\right)} c_{2}\left(\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}\right)=\frac{-12.96764 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.91771)=0.81317$;
$C_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to Br$)=\frac{E(\mathrm{Br})}{E\left(C, 2 s p^{3}\right)} c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=\frac{-11.81381 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.91771)=0.74081$;
$C_{2}\left(C 2 s p^{3} H O\right.$ to $\left.I\right)=\frac{E(I)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(C 2 s p^{3} H O\right)=\frac{-10.45126 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.91771)=0.65537$;
$c_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to O$)=\frac{E(O)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=\frac{-13.61806 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.91771)=0.85395$;
$c_{2}\left(H\right.$ to $\left.1^{\circ} N\right)=\frac{E(N)}{E\left(C, 2 s p^{3}\right)}=\frac{-14.53414 \mathrm{eV}}{-15.35946 \mathrm{eV}}=0.94627$;
$c_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to N$)=\frac{E(N)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=\frac{-14.53414 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.91771)=0.91140$;
$c_{2}\left(H\right.$ to $\left.2^{\circ} N\right)=\frac{E(N)}{E\left(C, 2 s p^{3}\right)}=\frac{-14.53414 \mathrm{eV}}{-15.56407 \mathrm{eV}}=0.93383$;
$C_{2}(S 3 p$ to $H)=\frac{E(S, 3 p)}{E(H)}=\frac{-10.36001 \mathrm{eV}}{-13.60580 \mathrm{eV}}=0.76144$;
$C_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to S$)=\frac{E(S)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=\frac{-10.36001 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.91771)=0.64965$;
$c_{2}\left(O\right.$ to $S 3 s p^{3}$ to $\left.C 2 s p^{3} \mathrm{HO}\right)=\frac{E(O)}{E(S)} c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=\frac{-13.61806 \mathrm{eV}}{-10.36001 \mathrm{eV}}(0.91771)=1.20632$;
$c_{2}\left(S 3 s p^{3}\right)=\frac{E_{\text {Coulomb }}\left(S 3 s p^{3}\right)}{E(H)}=\frac{-11.57099 \mathrm{eV}}{-13.60580 \mathrm{eV}}=0.85045$;
$C_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to $\left.S 3 s p^{3}\right)=\frac{E\left(S 3 s p^{3}\right)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(S 3 s p^{3}\right)=\frac{-11.52126 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.85045)=0.66951$;
$C_{2}\left(S 3 s p^{3}\right.$ to O to $\left.C 2 s p^{3} H O\right)=\frac{E\left(S, 3 s p^{3}\right)}{E(O, 2 p)} c_{2}\left(C 2 s p^{3} H O\right)=\frac{-11.52126 \mathrm{eV}}{-13.61806 \mathrm{eV}}(0.91771)=0.77641$;
$c_{2}\left(O\right.$ to $N 2 p$ to $\left.C 2 s p^{3} H O\right)=\frac{E(O)}{E(N)} c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=\frac{-13.61806 \mathrm{eV}}{-14.53414 \mathrm{eV}}(0.91771)=0.85987$;

$$
\begin{aligned}
& c_{2}(N 2 p \text { to } O 2 p)=\frac{c_{2}\left(C 2 s p^{3} H O \text { to } N\right)}{c_{2}\left(C 2 s p^{3} H O \text { to } O\right)}=\frac{0.91140}{0.85395}=1.06727 ; \\
& C_{2}\left(\text { benzene } C 2 s p^{3} H O\right)=c_{2}\left(\text { benzene } C 2 s p^{3} H O\right)=\frac{13.605804 \mathrm{eV}}{15.95955 \mathrm{eV}}=0.85252 ; \\
& c_{2}\left(\text { arylC } 2 s p^{3} \mathrm{HO} \text { to } O\right)=\frac{E(O)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(\text { arylC } 2 \mathrm{sp} p^{3} \mathrm{HO}\right)=\frac{-13.61806 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.85252)=0.79329 ; \\
& c_{2}(\mathrm{H} \text { to aniline } N)=\frac{E(N)}{E\left(C, 2 s p^{3}\right)}=\frac{-14.53414 \mathrm{eV}}{-15.76868 \mathrm{eV}}=0.92171 ; \\
& c_{2}\left(\text { arylC } 2 s p^{3} \mathrm{HO} \text { to } N\right)=\frac{E(N)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(\text { arylC } 2 s p^{3} \mathrm{HO}\right)=\frac{-14.53414 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.85252)=0.84665, \text { and } \\
& C_{2}\left(S 3 p \text { to aryl-type } C 2 s p^{3} \mathrm{HO}\right)=\frac{E(S, 3 p)}{E\left(C, 2 s p^{3}\right)}=\frac{-10.36001 \mathrm{eV}}{-15.76868 \mathrm{eV}}=0.65700 .
\end{aligned}
$$

MO INTERCEPT ANGLES AND DISTANCES

Consider the general case of Eqs. (13.84-13.95), wherein the nucleus of a B atom and the nucleus of a A atom comprise the foci of each H_{2}-type ellipsoidal MO of an $A-B$ bond. The parameters of the point of intersection of each H_{2}-type ellipsoidal MO and the A-atom AO are determined from the polar equation of the ellipse:

$$
\begin{equation*}
r=r_{0} \frac{1+e}{1+e \cos \theta^{\prime}} \tag{15.80}
\end{equation*}
$$

The radius of the A shell is r_{A}, and the polar radial coordinate of the ellipse and the radius of the A shell are equal at the point of intersection such that:

$$
\begin{equation*}
r_{A}=\left(a-c^{\prime}\right) \frac{1+\frac{c^{\prime}}{a}}{1+\frac{c^{\prime}}{a} \cos \theta^{\prime}} \tag{15.81}
\end{equation*}
$$

The polar angle θ^{\prime} at the intersection point is given by:

$$
\begin{equation*}
\theta^{\prime}=\cos ^{-1}\left(\frac{a}{c^{\prime}}\left(\left(a-c^{\prime}\right) \frac{1+\frac{c^{\prime}}{a}}{r_{A}}-1\right)\right) \tag{15.82}
\end{equation*}
$$

Then, the angle $\theta_{A A O}$ the radial vector of the A AO makes with the internuclear axis is:

$$
\begin{equation*}
\theta_{A A O}=180^{\circ}-\theta^{\prime} \tag{15.83}
\end{equation*}
$$

The Cartesian \mathbf{i}-coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian \mathbf{j}-coordinate components at the point of intersection. Thus, the matching elliptic parametric angle $\omega t=\theta_{\mathrm{H}_{2} M O}$ satisfies the following relationship:

$$
\begin{equation*}
r_{A} \sin \theta_{A A O}=b \sin \theta_{H_{2} M O} \tag{15.84}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta_{H_{2} M O}=\sin ^{-1} \frac{r_{a} \sin \theta_{A A O}}{b} \tag{15.85}
\end{equation*}
$$

The distance $d_{\mathrm{H}_{2} \mathrm{MO}}$ along the internuclear axis from the origin of H_{2}-type ellipsoidal MO to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{\mathrm{H}_{2} \mathrm{MO}}=a \cos \theta_{\mathrm{H}_{2} \mathrm{MO}} \tag{15.86}
\end{equation*}
$$

The distance $d_{A A O}$ along the internuclear axis from the origin of the A atom to the point of intersection of the orbitals is given by:

$$
\begin{equation*}
d_{A A O}=c^{\prime}-d_{H_{2} \mathrm{MO}} \tag{15.87}
\end{equation*}
$$

BOND ANGLES

Further consider an $A C B$ MO comprising a linear combination of $C-A$-bond and $C-B$-bond MOs where C is the general central atom. A bond is also possible between the A and B atoms of the $C-A$ and $C-B$ bonds. Such $A-B$ bonding would decrease the $C-A$ and $C-B$ bond strengths since electron density would be shifted from the latter bonds to the former bond. Thus, the $\angle A C B$ bond angle is determined by the condition that the total energy of the H_{2}-type ellipsoidal MO between the
terminal A and B atoms is zero. The force constant k^{\prime} of a H_{2}-type ellipsoidal MO due to the equivalent of two point charges at the foci is given by:

$$
\begin{equation*}
k^{\prime}=\frac{C_{1} C_{2} 2 e^{2}}{4 \pi \varepsilon_{0}} \tag{15.88}
\end{equation*}
$$

where C_{1} is the fraction of the H_{2}-type ellipsoidal MO basis function of a chemical bond of the molecule which is 0.75 (Eq. (13.59)) for a terminal $A-H$ (A is H or other atom) and 1 otherwise and C_{2} is the factor that results in an equipotential energy match of the participating at least two atomic orbitals of the chemical bond and is equal to the corresponding factor of Eqs. (15.51) and (15.61). The distance from the origin of the MO to each focus c^{\prime} of the $A-B$ ellipsoidal MO is given by:

$$
\begin{equation*}
c^{\prime}=a \sqrt{\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} e^{2} 2 C_{1} C_{2} a}}=\sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}} \tag{15.89}
\end{equation*}
$$

The internuclear distance is:

$$
\begin{equation*}
2 c^{\prime}=2 \sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}} \tag{15.90}
\end{equation*}
$$

The length of the semiminor axis of the prolate spheroidal $A-B$ MO $b=c$ is given by Eq. (15.4).
The component energies and the total energy, $E_{T}\left(H_{2} M O\right)$, of the $A-B$ bond are given by the energy equations (Eqs. (11.207-11.212), (11.213-11.217), and (11.239)) of H_{2} except that the terms based on charge are multiplied by $c_{B O}$, the bondorder factor which is 1 for a single bond and when the MO comprises n_{1} equivalent single bonds as in the case of functional groups. $c_{B O}$ is 4 for an independent double bond as in the case of the CO_{2} and NO_{2} molecules. The kinetic energy term is multiplied by ${c^{\prime}}_{B O}^{\prime}$ which is 1 for a single bond, 2 for a double bond, and $9 / 2$ for a triple bond. The electron energy terms are multiplied by c_{1}, the fraction of the H_{2}-type ellipsoidal MO basis function of a terminal chemical bond, which is 0.75 (Eq. (13.233)) for a terminal $A-H$ (A is H or other atom) and 1 otherwise. The electron energy terms are further multiplied by c_{2}^{\prime}, the hybridization or energy-matching factor that results in an equipotential energy match of the participating at least two atomic orbitals of each terminal bond. Furthermore, when $A-B$ comprises atoms other than $H, E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$, the energy component due to the AO or HO's charge donation to the terminal MO, is added to the other energy terms to give $E_{T}\left(\mathrm{H}_{2} M O\right)$:

$$
\begin{equation*}
E_{T}\left(H_{2} M O\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[c_{1} c_{2}^{\prime}\left(2 c_{B O}-c_{B O}^{\prime} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]+E_{T}\left(\text { atom-atom, } m s p^{3} \cdot A O\right) \tag{15.91}
\end{equation*}
$$

The radiation reaction force in the case of the vibration of $A-B$ in the transition state corresponds to the Doppler energy, E_{D}, given by Eq. (11.181) that is dependent on the motion of the electrons and the nuclei. The total energy that includes the radiation reaction of the $A-B \mathrm{MO}$ is given by the sum of $E_{T}\left(H_{2} M O\right)$ (Eq. (15.91)) and $\bar{E}_{\text {osc }}$ given by Eqs. (11.213-11.220), (11.231-11.236), and (11.239-11.240). Thus, the total energy $E_{T}(A-B)$ of the $A-B$ MO including the Doppler term is:

$$
E_{T}(A-B)=\left[\begin{array}{l}
\left(\frac{-e^{2}}{8 \pi \varepsilon_{0} c^{\prime}}\left[c_{1} c_{2}^{\prime}\left(2 c_{B O}-c_{B O}^{\prime} \frac{a_{0}}{a}\right) \ln \frac{a+c^{\prime}}{a-c^{\prime}}-1\right]+E_{T}\left(\text { atom-atom, msp }{ }^{3} \cdot A O\right)\right) \tag{15.92}\\
{\left[1+\sqrt{\frac{2 \hbar \sqrt{\frac{c_{B O} \frac{C_{10} C_{20} e^{2}}{4 \pi \varepsilon_{0} a^{3}}}{m_{e}}}}{m_{e} c^{2}}}\right]+\frac{1}{2} \hbar \sqrt{\frac{c_{B O} \frac{c_{1} c_{2}^{\prime} e^{2}}{8 \pi \varepsilon_{0} a^{3}}-\frac{c_{B O} e^{2}}{8 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{3}}}{\mu}}}
\end{array}\right]
$$

where C_{10} is the fraction of the H_{2}-type ellipsoidal MO basis function of the oscillatory transition state of the $A-B$ bond which is 0.75 (Eq. (13.233)) in the case of H bonding to a central atom and 1 otherwise, C_{20} is the factor that results in an equipotential energy match of the participating at least two atomic orbitals of the transition state of the chemical bond, and $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ is the reduced mass of the nuclei given by Eq. (11.154). To match the boundary condition that the total energy of the $A-B$ ellipsoidal MO is zero, $E_{T}(A-B)$ given by Eq. (15.92) is set equal to zero. Substitution of Eq. (15.90) into Eq. (15.92) gives:

$$
\left.\left.0=\left[\begin{array}{l}
\left(\frac { - e ^ { 2 } } { 8 \pi \varepsilon _ { 0 } \sqrt { \frac { a a _ { 0 } } { 2 C _ { 1 } C _ { 2 } } } } \left[c_{1} c_{2}^{\prime}\left(2 c_{B O}-c^{\prime}{ }_{B O} \frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}}}{a-\sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}}}-1\right.\right. \tag{15.93}
\end{array}\right]+E_{T}\left(\text { atom-atom,msp}{ }^{3} \cdot A O\right)\right)\right]
$$

The vibrational energy-term of Eq. (15.93) is determined by the forces between the central field and the electrons and those between the nuclei (Eqs. (11.141-11.145)). The electron-central-field force and its derivative are given by:

$$
\begin{equation*}
f(a)=-c_{B O} \frac{c_{1} c_{2}^{\prime} e^{2}}{4 \pi \varepsilon_{0} a^{3}} \tag{15.94}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(a)=2 c_{B O} \frac{c_{1} c_{2}^{\prime} e^{2}}{4 \pi \varepsilon_{0} a^{3}} \tag{15.95}
\end{equation*}
$$

The nuclear repulsion force and its derivative are given by:

$$
\begin{equation*}
f\left(a+c^{\prime}\right)=\frac{e^{2}}{8 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{2}} \tag{15.96}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}\left(a+c^{\prime}\right)=-\frac{e^{2}}{4 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{3}} \tag{15.97}
\end{equation*}
$$

such that the angular frequency of the oscillation is given by:

$$
\begin{equation*}
\omega=\sqrt{\frac{\left[\frac{-3}{a} f(a)-f^{\prime}(a)\right]}{\mu}}=\sqrt{\frac{k}{m_{e}}}=\sqrt{\frac{c_{B O} \frac{c_{1} c_{2}^{\prime} e^{2}}{4 \pi \varepsilon_{0} a^{3}}-\frac{e^{2}}{8 \pi \varepsilon_{0}\left(a+c^{\prime}\right)^{2}}}{\mu}} \tag{15.98}
\end{equation*}
$$

Since both terms of $\bar{E}_{o s c}=\bar{E}_{D}+\bar{E}_{\text {Kvib }}$ are small due to the large values of a and c^{\prime}, to very good approximation, a convenient form of Eq. (15.93) which is evaluated to determine the bond angles of functional groups is given by:

$$
\left.\left.0=\left[\begin{array}{l}
\left(\frac { - e ^ { 2 } } { 8 \pi \varepsilon _ { 0 } \sqrt { \frac { a a _ { 0 } } { 2 C _ { 1 } C _ { 2 } } } } \left[c_{1} c_{2}^{\prime}\left(2-\frac{a_{0}}{a}\right) \ln \frac{a+\sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}}}{a-\sqrt{\frac{a a_{0}}{2 C_{1} C_{2}}}}-1\right.\right. \tag{15.99}
\end{array}\right]+E_{T}\left(\text { atom-atom, msp }{ }^{3} \cdot A O\right)\right)\right]
$$

From the energy relationship given by Eq. (15.99) and the relationship between the axes given by Eqs. (15.2-15.5), the dimensions of the $A-B$ MO can be solved. The most convenient way to solve Eq. (15.99) is by the reiterative technique using a computer.

A factor c_{2} of a given atom in the determination of c_{2}^{\prime} for calculating the zero of the total $A-B$ bond energy is typically given by Eqs. (15.71-15.74). In the case of a $H-H$ terminal bond of an alkyl or alkenyl group, c_{2}^{\prime} is typically the ratio of c_{2} of Eq. (15.71) for the $H-H$ bond which is one and c_{2} of the carbon of the corresponding $C-H$ bond:

$$
\begin{equation*}
c_{2}^{\prime}=\frac{1}{c_{2}\left(C 2 s p^{3}\right)}=\frac{E_{\text {Coulomb }}\left(C-H C 2 s p^{3}\right)}{13.605804 \mathrm{eV}} \tag{15.100}
\end{equation*}
$$

In the case of the determination of the bond angle of the $A C H$ MO comprising a linear combination of $C-A$-bond and $C-H-$ bond MOs where A and C are general, C is the central atom, and c_{2} for an atom is given by Eqs. (15.71-15.79), c_{2}^{\prime} of the
$A-H$ terminal bond is typically the ratio of c_{2} of the A atom for the $A-H$ terminal bond and c_{2} of the C atom of the corresponding $C-H$ bond:

$$
\begin{equation*}
c_{2}^{\prime}=\frac{c_{2}\left(A(A-H) m s p^{3}\right)}{c_{2}\left(C(C-H) m s p^{3}\right)} \tag{15.101}
\end{equation*}
$$

In the case of the determination of the bond angle of the COH MO of an alcohol comprising a linear combination of $\mathrm{C}-\mathrm{O}$ bond and $O-H$-bond MOs where C, O, and H are carbon, oxygen, and hydrogen, respectively, c_{2}^{\prime} of the $C-H$ terminal bond is typically 0.91771 since the oxygen and hydrogen atoms are at the Coulomb potential of a proton and an electron (Eqs. (1.257) and (10.162), respectively) that is energy matched to the $C 2 s p^{3} \mathrm{HO}$.

In the determination of the hybridization factor c_{2}^{\prime} of Eq. (15.99) from Eqs. (15.71-15.79), the Coulombic energy, $E_{\text {Coulomb }}\left(\right.$ MO.atom, $\left.m s p^{3}\right)$, or the energy, $E\left(\right.$ MO.atom, $\left.m s p^{3}\right)$, the radius $r_{A-B A o r s s p^{3}}$ of the A or $B \mathrm{AO}$ or HO of the heteroatom of the $A-B$ terminal bond MO such as the $C 2 s p^{3} \mathrm{HO}$ of a terminal $C-C$ bond is calculated using Eq. (15.32) by considering $\sum E_{T_{\text {mol }}}\left(M O, 2 s p^{3}\right)$, the total energy donation to each bond with which it participates in bonding as it forms the terminal bond. The Coulombic energy $E_{\text {Coulomb }}$ (MO.atom, $m s p^{3}$) of the outer electron of the atom msp ${ }^{3}$ shell is given by Eq. (15.19). In the case that during hybridization, at least one of the spin-paired AO electrons is unpaired in the hybridized orbital (HO), the energy change for the promotion to the unpaired state is the magnetic energy E (magnetic) (Eq. (15.15)) at the initial radius r of the AO electron. Then, the energy $E\left(\right.$ MO.atom, $\left.m s p^{3}\right)$ of the outer electron of the atom $m s p^{3}$ shell is given by the sum of $E_{\text {Coulomb }}\left(\right.$ MO.atom, msp 3) and E (magnetic) (Eq. (15.20)).

In the specific case of the terminal bonding of two carbon atoms, the c_{2} factor of each carbon given by Eq. (15.71) is determined using the Coulombic energy $E_{\text {Coulomb }}\left(C-C C 2 s p^{3}\right)$ of the outer electron of the $C 2 s p^{3}$ shell given by Eq. (15.19) with the radius $r_{C-C C 2 s p^{3}}$ of each $C 2 s p^{3} \mathrm{HO}$ of the terminal $C-C$ bond calculated using Eq. (15.32) by considering $\sum E_{T_{\text {mol }}}\left(M O, 2 s p^{3}\right)$, the total energy donation to each bond with which it participates in bonding as it forms the terminal bond including the contribution of the methylene energy, 0.92918 eV (Eq. (14.513)), corresponding to the terminal $C-C$ bond. The corresponding $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$ in Eq. (15.99) is $E_{T}\left(C-C C 2 s p^{3}\right)=-1.85836 \mathrm{eV}$.

In the case that the terminal atoms are carbon or other heteroatoms, the terminal bond comprises a linear combination of the HOs or AOs; thus, c_{2}^{\prime} is the average of the hybridization factors of the participating atoms corresponding to the normalized linear sum:

$$
\begin{equation*}
c_{2}^{\prime}=\frac{1}{2}\left(c_{2}^{\prime}(\text { atom } 1)+c_{2}^{\prime}(\text { atom } 2)\right) \tag{15.102}
\end{equation*}
$$

In the exemplary cases of $C-C, O-O$, and $N-N$ where C is carbon:

$$
\begin{align*}
c_{2}^{\prime} & =\frac{1}{2}\left(\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} r_{A-A A_{1} A O / H O}^{2}}}+\frac{\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}}{\frac{e^{2}}{8 \pi \varepsilon_{0} r_{A-A \mathrm{~A}_{2} A O / H O}}}\right) \tag{15.103}\\
& =\frac{1}{2}\left(\frac{13.605804 \mathrm{eV}}{E_{\text {Coulomb }}\left(A-A . A_{1} A O / H O\right)}+\frac{13.605804 \mathrm{eV}}{E_{\text {Coulomb }}\left(A-A . A_{2} A O / H O\right)}\right)
\end{align*}
$$

In the exemplary cases of $C-N, C-O$, and $C-S$,

$$
\begin{equation*}
c_{2}^{\prime}=\frac{1}{2}\left(\frac{13.605804 \mathrm{eV}}{E_{\text {Coulomb }}\left(C-B C 2 s p^{3}\right)}+c_{2}(C \text { to } B)\right) \tag{15.104}
\end{equation*}
$$

where C is carbon and $c_{2}(C$ to $B)$ is the hybridization factor of Eqs. (15.61) and (15.93) that matches the energy of the atom B to that of the atom C in the group. For these cases, the corresponding $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ term in Eq. (15.99) depends on the hybridization and bond order of the terminal atoms in the molecule, but typical values matching those used in the determination of the bond energies (Eq. (15.65)) are:

$$
\begin{aligned}
& E_{T}\left(C-O C 2 s p^{3} . O 2 p\right)=-1.44915 \mathrm{eV} ; \quad E_{T}\left(C-O C 2 s p^{3} . O 2 p\right)=-1.65376 \mathrm{eV} ; \quad E_{T}\left(C-N C 2 s p^{3} . N 2 p\right)=-1.44915 \mathrm{eV} ; \\
& E_{T}\left(C-S C 2 s p^{3} . S 2 p\right)=-0.72457 \mathrm{eV} ; \quad E_{T}(O-O O 2 p . O 2 p)=-1.44915 \mathrm{eV} ; \quad E_{T}(O-O O 2 p . O 2 p)=-1.65376 \mathrm{eV} \text {; } \\
& E_{T}(N-N N 2 p . N 2 p)=-1.44915 \mathrm{eV} ; \quad E_{T}(N-O N 2 p . O 2 p)=-1.44915 \mathrm{eV} ; \quad E_{T}(F-F F 2 p . F 2 p)=-1.44915 \mathrm{eV} \text {; } \\
& E_{T}(C l-C l C l 3 p . C l 3 p)=-0.92918 \mathrm{eV} ; \quad E_{T}(B r-B r \operatorname{Br} 4 p \cdot B r 4 p)=-0.92918 \mathrm{eV} ; \quad E_{T}(I-I I 5 p . I 5 p)=-0.36229 \mathrm{eV} \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& E_{T}\left(C-F C 2 s p^{3} . F 2 p\right)=-1.85836 \mathrm{eV} ; E_{T}\left(C-C l C 2 s p^{3} \cdot C l 3 p\right)=-0.92918 \mathrm{eV} ; E_{T}\left(C-B r C 2 s p^{3} \cdot \mathrm{Br} 4 p\right)=-0.72457 \mathrm{eV} \\
& E_{T}\left(C-I C 2 s p^{3} . I 5 p\right)=-0.36228 \mathrm{eV}, \text { and } E_{T}(O-C l O 2 p \cdot C l 3 p)=-0.92918 \mathrm{eV} .
\end{aligned}
$$

In the case that the terminal bond is $X-X$ where X is a halogen atom, c_{1} is one, and c_{2}^{\prime} is the average (Eq. (15.102)) of the hybridization factors of the participating halogen atoms given by Eqs. (15.71-15.72) where $E_{\text {Coulomb }}$ (MO.atom,msp ${ }^{3}$) is determined using Eq. (15.32) and $E_{\text {Coulomb }}\left(\right.$ MO.atom, $\left.m s p^{3}\right)=13.605804 \mathrm{eV}$ for $X=I$. The factor C_{1} of Eq. (15.99) is one for all halogen atoms. The factor C_{2} of fluorine is one since it is the only halogen wherein the ionization energy is greater than 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264). For each of the other halogens, Cl, Br, and I, C_{2} is the hybridization factor of Eq. (15.61) given by Eq. (15.79) with $c_{2}(1)$ being that of the halogen given by Eq. (15.77) that matches the valence energy of $X \quad\left(E_{1}(\right.$ valence $\left.)\right)$ to that of the $C 2 s p^{3} \mathrm{HO}$ $\left(E_{2}(\right.$ valence $)=-14.63489 \mathrm{eV}$, Eq. (15.25)) and to the hybridization of $C 2 s p^{3} \mathrm{HO}\left(c_{2}(2)=0.91771\right.$, Eq. (13.430)). $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of Eq. (15.99) is the maximum for the participating atoms which is $-1.44915 \mathrm{eV},-0.92918 \mathrm{eV}$, -0.92918 eV , and -0.33582 eV for $F, \mathrm{Cl}, \mathrm{Br}$, and I, respectively.

Consider the case that the terminal bond is $C-X$ where C is a carbon atom and X is a halogen atom. The factors c_{1} and C_{1} of Eq. (15.99) are one for all halogen atoms. For $X=F, c_{2}^{\prime}$ is the average (Eq. (15.104)) of the hybridization factors of the participating carbon and F atoms where c_{2} for carbon is given by Eq. (15.71) and c_{2} for fluorine matched to carbon is given by Eq. (15.79) with $c_{2}(1)$ for the fluorine atom given by Eq. (15.77) that matches the valence energy of F $\left(E_{1}(\right.$ valence $\left.)=-17.42282 \mathrm{eV}\right)$ to that of the $C 2 s p^{3} \mathrm{HO}\left(E_{2}(\right.$ valence $)=-14.63489 \mathrm{eV}$, Eq. $\left.(15.25)\right)$ and to the hybridization of $C 2 s p^{3} \mathrm{HO}\left(c_{2}(2)=0.91771\right.$, Eq. (13.430)). The factor C_{2} of fluorine is one since it is the only halogen wherein the ionization energy is greater than 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264). For each of the other halogens, $C l, B r$, and I, c_{2}^{\prime} is the hybridization factor of the participating carbon atom since the halogen atom is energy matched to the carbon atom. C_{2} of the terminal-atom bond matches that used to determine the energies of the corresponding $C-X$-bond MO. Then, C_{2} is the hybridization factor of Eq. (15.61) given by Eq. (15.79) with $c_{2}(1)$ for the halogen atom given by Eq. (15.77) that matches the valence energy of $X\left(E_{1}\right.$ (valence)) to that of the $C 2 s p^{3} \mathrm{HO}$ $\left(E_{2}(\right.$ valence $)=-14.63489 \mathrm{eV}$, Eq. (15.25)) and to the hybridization of $C 2 s p^{3} \mathrm{HO}\left(c_{2}(2)=0.91771\right.$, Eq. (13.430)). $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of Eq. (15.99) is the maximum for the participating atoms which is $-1.85836 \mathrm{eV},-0.92918 \mathrm{eV}$, -0.72457 eV , and -0.33582 eV for $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, and I , respectively.

Consider the case that the terminal bond is $H-X$ corresponding to the angle of the atoms $H C X$ where C is a carbon atom and X is a halogen atom. The factors c_{1} and C_{1} of Eq. (15.99) are 0.75 for all halogen atoms. For $X=F$, c_{2}^{\prime} is given by Eq. (15.78) with c_{2} of the participating carbon and F atoms given by Eq. (15.71) and Eq. (15.74), respectively. The factor C_{2} of fluorine is one since it is the only halogen wherein the ionization energy is greater than 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H given by Eq. (1.264). For each of the other halogens, Cl, Br, and I, c_{2}^{\prime} is also given by Eq. (15.78) with c_{2} of the participating carbon given by Eq. (15.71) and c_{2} of the participating X atom given by $c_{2}=0.91771$ (Eq. (13.430)) since the X atom is energy matched to the $C 2 s p^{3} \mathrm{HO}$. In these cases, C_{2} is given by Eq. (15.74) for the corresponding atom X where C_{2} matches the energy of the atom X to that of H.

Using the distance between the two atoms A and B of the general molecular group $A C B$ when the total energy of the corresponding $A-B$ MO is zero, the corresponding bond angle can be determined from the law of cosines:

$$
\begin{equation*}
s_{1}^{2}+s_{2}^{2}-2 s_{1} s_{2} \operatorname{cosine} \theta=s_{3}^{2} \tag{15.105}
\end{equation*}
$$

With $s_{1}=2 c_{C-A}^{\prime}$, the internuclear distance of the $C-A$ bond, $s_{2}=2 c_{C-B}^{\prime}$, the internuclear distance of each $C-B$ bond, and $s_{3}=2 c_{A-B}^{\prime}$, the internuclear distance of the two terminal atoms, the bond angle $\theta_{\angle A C B}$ between the $C-A$ and $C-B$ bonds is given by:

$$
\begin{align*}
& \left(2 c_{C-A}^{\prime}\right)^{2}+\left(2 c^{\prime}{ }_{C-B}\right)^{2}-2\left(2{c^{\prime}}_{C-A}\right)\left(2{c^{\prime}}_{C-B}\right) \operatorname{cosine} \theta=\left(2 c_{A-B}^{\prime}\right)^{2} \tag{15.106}\\
& \theta_{\angle A C B}=\cos ^{-1}\left(\frac{\left(2 c_{C-A}^{\prime}\right)^{2}+\left(2 c_{C-B}^{\prime}\right)^{2}-\left(2 c_{A-B}^{\prime}\right)^{2}}{2\left(2 c_{C-A}^{\prime}\right)\left(2 c_{C-B}^{\prime}\right)}\right) \tag{15.107}
\end{align*}
$$

Consider the exemplary structure $C_{b} C_{a}\left(O_{a}\right) O_{b}$ wherein C_{a} is bound to C_{b}, O_{a}, and O_{b}. In the general case that the three bonds are coplanar and two of the angles are known, say θ_{1} and θ_{2}, then the third θ_{3} can be determined geometrically:

$$
\begin{equation*}
\theta_{3}=360-\theta_{1}-\theta_{2} \tag{15.108}
\end{equation*}
$$

In the general case that two of the three coplanar bonds are equivalent and one of the angles is known, say θ_{1}, then the second and third can be determined geometrically:

$$
\begin{equation*}
\theta_{2}=\theta_{3}=\frac{\left(360-\theta_{1}\right)}{2} \tag{15.109}
\end{equation*}
$$

ANGLES AND DISTANCES FOR AN MO THAT FORMS AN ISOSCELES TRIANGLE

In the general case where the group comprises three $A-B$ bonds having B as the central atom at the apex of a pyramidal structure formed by the three bonds with the A atoms at the base in the xy-plane, the $C_{3 v}$ axis centered on B is defined as the vertical or z-axis, and any two $A-B$ bonds form an isosceles triangle. Then, the angle of the bonds and the distances from and along the z -axis are determined from the geometrical relationships given by Eqs. (13.412-13.416).
the distance $d_{\text {origin-B }}$ from the origin to the nucleus of a terminal B atom is given by

$$
\begin{equation*}
d_{\text {origin }-B}=\frac{2 c_{B-B}^{\prime}}{2 \sin 60^{\circ}} \tag{15.110}
\end{equation*}
$$

the height along the z-axis from the origin to the A nucleus $d_{\text {height }}$ is given by:

$$
\begin{equation*}
d_{\text {height }}=\sqrt{\left(2 c_{A-B}^{\prime}\right)^{2}-\left(d_{\text {origin-B }}\right)^{2}}, \text { and } \tag{15.111}
\end{equation*}
$$

the angle θ_{v} of each $A-B$ bond from the z -axis is given by:

$$
\begin{equation*}
\theta_{v}=\tan ^{-1}\left(\frac{d_{\text {origin }-B}}{d_{\text {height }}}\right) \tag{15.112}
\end{equation*}
$$

Consider the case where the central atom B is further bound to a fourth atom C and the $B-C$ bond is along the z-axis. Then, the bond $\theta_{\angle A B C}$ given by Eq. (14.206) is:

$$
\begin{equation*}
\theta_{\angle A B C}=180-\theta_{v} \tag{15.113}
\end{equation*}
$$

DIHEDRAL ANGLE

Consider the plane defined by a general $A C A$ MO comprising a linear combination of two $C-A$-bond MOs where C is the central atom. The dihedral angle $\theta_{\angle B C / A C A}$ between the $A C A$-plane and a line defined by a third bond with C, specifically that corresponding to a $C-B$-bond MO , is calculated from the bond angle $\theta_{\angle A C A}$ and the distances between the A, B, and C atoms. The distance d_{1} along the bisector of $\theta_{\angle A C A}$ from C to the internuclear-distance line between A and $A, 2 c_{A-A}^{\prime}$, is given by:

$$
\begin{equation*}
d_{1}=2 c_{C-A}^{\prime} \cos \frac{\theta_{\angle A C A}}{2} \tag{15.114}
\end{equation*}
$$

where $2 c^{\prime}{ }_{C-A}$ is the internuclear distance between A and C. The atoms A, A, and B define the base of a pyramid. Then, the pyramidal angle $\theta_{\angle A B A}$ can be solved from the internuclear distances between A and $A, 2 c^{\prime}{ }_{A-A}$, and between A and $B, 2 c^{\prime}{ }_{A-B}$, using the law of cosines (Eq. (15.107)):

$$
\begin{equation*}
\theta_{\angle A B A}=\cos ^{-1}\left(\frac{\left(2{c_{A-B}^{\prime}}^{\prime}\right)^{2}+\left(2{c_{A-B}^{\prime}}^{\prime}\right)^{2}-\left(2{c_{A-A}^{\prime}}^{2}\right.}{2\left(2{c_{A-B}}^{2}\right)\left(2 c_{A-B}^{\prime}\right)}\right) \tag{15.115}
\end{equation*}
$$

Then, the distance d_{2} along the bisector of $\theta_{\angle A B A}$ from B to the internuclear-distance line $2 c^{\prime}{ }_{A-A}$, is given by:

$$
\begin{equation*}
d_{2}=2 c_{A-B}^{\prime} \cos \frac{\theta_{\angle A B A}}{2} \tag{15.116}
\end{equation*}
$$

The lengths d_{1}, d_{2}, and $2 c^{\prime}{ }_{C-B}$ define a triangle wherein the angle between d_{1} and the internuclear distance between B and C, $2 c^{\prime}{ }_{C-B}$, is the dihedral angle $\theta_{\angle B C / A C A}$ that can be solved using the law of cosines (Eq. (15.107)):

$$
\begin{equation*}
\theta_{\angle B C / A C A}=\cos ^{-1}\left(\frac{d_{1}^{2}+\left(2{c^{\prime}}_{C-B}\right)^{2}-d_{2}^{2}}{2 d_{1}\left(2 c_{C-B}^{\prime}\right)}\right) \tag{15.117}
\end{equation*}
$$

GENERAL DIHEDRAL ANGLE

Consider the plane defined by a general $A C B$ MO comprising a linear combination of $C-A$ and $C-B$-bond MOs where C is the central atom. The dihedral angle $\theta_{\angle C D / A C B}$ between the $A C B$-plane and a line defined by a third bond of C with D, specifically that corresponding to a $C-D$-bond MO , is calculated from the bond angle $\theta_{\angle A C B}$ and the distances between the A, B, C, and D atoms. The distance d_{1} from C to the bisector of the internuclear-distance line between A and $B, 2 c^{\prime}{ }_{A-B}$, is
given by two equations involving the law of cosines (Eq. (15.105)). One with $s_{1}=2 c_{C-A}^{\prime}$, the internuclear distance of the $C-A$ bond, $s_{2}=d_{1}, s_{3}=\frac{2 c_{A-B}^{\prime}}{2}$, half the internuclear distance between A and B, and $\theta=\theta_{\angle A C d_{1}}$, the angle between d_{1} and the $C-A$ bond is given by:

$$
\begin{equation*}
\left(2 c_{C-A}^{\prime}\right)^{2}+\left(d_{1}\right)^{2}-2\left(2{c^{\prime}}_{C-A}\right)\left(d_{1}\right) \operatorname{cosine} \theta_{\angle A C d_{1}}=\left(\frac{2 c_{A-B}^{\prime}}{2}\right)^{2} \tag{15.118}
\end{equation*}
$$

The other with $s_{1}=2 c_{C-B}^{\prime}$, the internuclear distance of the $C-B$ bond, $s_{2}=d_{1}, s_{3}=\frac{2 c_{A-B}^{\prime}}{2}$, and $\theta=\theta_{\angle A C B}-\theta_{\angle A C d_{1}}$ where $\theta_{\angle A C B}$ is the bond angle between the $C-A$ and $C-B$ bonds is given by:

$$
\begin{equation*}
\left(2 c_{C-B}^{\prime}\right)^{2}+\left(d_{1}\right)^{2}-2\left(2 c_{C-B}^{\prime}\right)\left(d_{1}\right) \operatorname{cosine}\left(\theta_{\angle A C B}-\theta_{\angle A C d_{1}}\right)=\left(\frac{2{c^{\prime}}_{A-B}}{2}\right)^{2} \tag{15.119}
\end{equation*}
$$

Subtraction of Eq. (15.119) from Eq. (15.118) gives:

$$
\begin{equation*}
d_{1}=\frac{\left(2 c^{\prime}{ }_{C-A}\right)^{2}-\left(2{c^{\prime}}_{C-B}\right)^{2}}{2\left(\left(2 c_{C-A}^{\prime}\right) \operatorname{cosine} \theta_{\angle A C d_{1}}-\left(2{c^{\prime}}_{C-B}\right) \operatorname{cosine}\left(\theta_{\angle A C B}-\theta_{\angle A C d_{1}}\right)\right)} \tag{15.120}
\end{equation*}
$$

Substitution of Eq. (15.120) into Eq. (15.118) gives

The angle between d_{1} and the $C-A$ bond, $\theta_{\angle A C d_{1}}$, can be solved reiteratively using Eq. (15.121), and the result can be substituted into Eq. (15.120) to give d_{1}.

The atoms A, B, and D define the base of a pyramid. Then, the pyramidal angle $\theta_{\angle A D B}$ can be solved from the internuclear distances between A and $D, 2 c^{\prime} A-D$, between B and $D, 2 c^{\prime}{ }_{B-D}$, and between A and $B, 2 c^{\prime} A-B$, using the law of cosines (Eq. (15.107)):

$$
\begin{equation*}
\theta_{\angle A D B}=\cos ^{-1}\left(\frac{\left(2 c_{A-D}^{\prime}\right)^{2}+\left(2 c_{B-D}^{\prime}\right)^{2}-\left(2 c_{A-B}^{\prime}\right)^{2}}{2\left(2 c_{A-D}^{\prime}\right)\left(2 c_{B-D}^{\prime}\right)}\right) \tag{15.122}
\end{equation*}
$$

Then, the distance d_{2} from D to the bisector of the internuclear-distance line between A and $B, 2 c^{\prime}{ }_{A-B}$, is given by two equations involving the law of cosines (Eq. (15.105)). One with $s_{1}=2 c_{A-D}^{\prime}$, the internuclear distance between A and D, $s_{2}=d_{2}, s_{3}=\frac{2 c_{A-B}^{\prime}}{2}$, half the internuclear distance between A and B, and $\theta=\theta_{\angle A D d_{2}}$, the angle between d_{2} and the $A-D$ axis is given by:

$$
\begin{equation*}
\left(2 c_{A-D}^{\prime}\right)^{2}+\left(d_{2}\right)^{2}-2\left(2 c_{A-D}^{\prime}\right)\left(d_{2}\right) \operatorname{cosine} \theta_{\angle A D d_{2}}=\left(\frac{2 c_{A-B}^{\prime}}{2}\right)^{2} \tag{15.123}
\end{equation*}
$$

The other with $s_{1}=2 c_{B-D}^{\prime}$, the internuclear distance between B and $D, s_{2}=d_{2}$, and $\theta=\theta_{\angle A D B}-\theta_{\angle A D d_{2}}$ where $\theta_{\angle A D B}$ is the bond angle between the $A-D$ and $B-D$ axes is given by:

$$
\begin{equation*}
\left(2 c_{B-D}^{\prime}\right)^{2}+\left(d_{2}\right)^{2}-2\left(2 c_{B-D}^{\prime}\right)\left(d_{2}\right) \operatorname{cosine}\left(\theta_{\angle A D B}-\theta_{\angle A D d_{2}}\right)=\left(\frac{2 c_{A-B}^{\prime}}{2}\right)^{2} \tag{15.124}
\end{equation*}
$$

Subtraction of Eq. (15.124) from Eq. (15.123) gives:

$$
\begin{equation*}
d_{2}=\frac{\left(2{c_{A-D}^{\prime}}^{\prime}\right)^{2}-\left(2{c^{\prime}}_{B-D}\right)^{2}}{2\left(\left(2 c_{A-D}^{\prime}\right) \operatorname{cosine} \theta_{\angle A D d_{2}}-\left(2 c_{B-D}^{\prime}\right) \operatorname{cosine}\left(\theta_{\angle A D B}-\theta_{\angle A D d 2}\right)\right)} \tag{15.125}
\end{equation*}
$$

Substitution of Eq. (15.125) into Eq. (15.123) gives:

$$
\left(\begin{array}{l}
\left(2{c^{\prime}}_{A-D}\right)^{2}+\left(\frac{\left(2 c_{A-D}^{\prime}\right)^{2}-\left(2 c_{B-D}^{\prime}\right)^{2}}{2\left(\left(2 c_{A-D}^{\prime}\right) \operatorname{cosine} \theta_{\angle A D d_{2}}-\left(2 c_{B-D}^{\prime}\right) \operatorname{cosine}\left(\theta_{\angle A D B}-\theta_{\angle A D d_{2}}\right)\right)}\right)^{2} \tag{15.126}\\
-2\left(2{c^{\prime}}_{A-D}\right)\left(\frac{\left(2 c_{A-D}^{\prime}\right)^{2}-\left(2 c^{\prime}{ }_{B-D}\right)^{2}}{2\left(\left(2{c^{\prime}}_{A-D}\right) \operatorname{cosine} \theta_{\angle A D d_{2}}-\left(2 c_{B-D}^{\prime}\right) \operatorname{cosine}\left(\theta_{\angle A D B}-\theta_{\angle A D d_{2}}\right)\right)}\right) \operatorname{cosine} \theta_{\angle A D d_{2}} \\
-\left(\frac{2 c_{A-B}^{\prime}}{2}\right)^{2}
\end{array}\right)=0
$$

The angle between d_{2} and the $A-D$ axis, $\theta_{\angle A D d_{2}}$, can be solved reiteratively using Eq. (15.126), and the result can be substituted into Eq. (15.125) to give d_{2}.

The lengths d_{1}, d_{2}, and $2 c^{\prime}{ }_{C-B}$ define a triangle wherein the angle between d_{1} and the internuclear distance between C and $D, 2 c_{C-D}^{\prime}$, is the dihedral angle $\theta_{\angle C D / A C B}$ that can be solved using the law of cosines (Eq. (15.107)):

$$
\begin{equation*}
\theta_{\angle C D / A C B}=\cos ^{-1}\left(\frac{d_{1}^{2}+\left(2{c^{\prime}}_{C-D}\right)^{2}-d_{2}^{2}}{2 d_{1}\left(2 c_{C-D}^{\prime}\right)}\right) \tag{15.127}
\end{equation*}
$$

SOLUTION OF GEOMETRICAL AND ENERGY PARAMETERS OF MAJOR FUNCTIONAL GROUPS AND CORRESPONDING ORGANIC MOLECULES

The exemplary molecules given in the following sections were solved using the solutions of organic chemical functional groups as basis elements wherein the structures and energies where linearly added to achieve the molecular solutions. Each functional group can be treated as a building block to form any desired molecular solution from the corresponding linear combination. Each functional group element was solved using the atomic orbital and hybrid orbital spherical atomic orbital solutions bridged by molecular orbitals comprised of the H_{2}-type prolate spheroidal solution given in the Nature of the Chemical Bond of Hydrogen-Type Molecules section. The energy of each MO was matched at the HO or AO by matching the hybridization and total energy of the MO to the AOs and HOs. The energy $E_{\text {mag }}$ (e.g. given by Eq. (15.67) for a $C 2 s p^{3} \mathrm{HO}$ and Eq. (15.68) for an $O 2 p \mathrm{AO}$) was subtracted for each set of unpaired electrons created by bond breakage.

The bond energy is not equal to the component energy of each bond as it exists in the molecule, although, they are close. The total energy of each group is its contribution to the total energy of the molecule as a whole. The determination of the bond energies for the creation of the separate parts must take into account the energy of the formation of any radicals and any redistribution of charge density within the pieces and the corresponding energy change with bond cleavage. Also, the vibrational energy in the transition state is dependent on the other groups that are bound to a given functional group. This will affect the functional-group energy. But, because the variations in the energy based on the balance of the molecular composition are typically of the order of a few hundreds of electron volts at most, they were neglected.

The energy of each functional-group MO bonding to a given carbon HO is independently matched to the HO by subtracting the contribution to the change in the energy of the HO from the total MO energy given by the sum of the MO contributions and $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (13.428)). The intercept angles are determined from Eqs. (15.80-15.87) using the final radius of the HO of each atom. The final carbon-atom radius is determined using Eqs. (15.32) wherein the sum of the energy contributions of each atom to all the MOs in which it participates in bonding is determined. This final radius is used in Eqs. (15.19) and (15.20) to calculate the final valence energy of the HO of each atom at the corresponding final radius. The radius of any bonding heteroatom that contributes to a MO is calculated in the same manner, and the energy of its outermost shell is matched to that of the MO by the hybridization factor between the carbon-HO energy and the energy of the heteroatomic shell. The donation of electron density to the AOs and HOs reduces the energy. The donation of the electron density to the MO's at each AO or HO is that which causes the resulting energy to be divided equally between the participating AOs or HOs to achieve energy matching.

The molecular solutions can be used to design synthetic pathways and predict product yields based on equilibrium constants calculated from the heats of formation. New stable compositions of matter can be predicted as well as the structures of combinatorial chemistry reactions. Further important pharmaceutical applications include the ability to graphically or computationally render the structures of drugs that permit the identification of the biologically active parts of the molecules to be identified from the common spatial charge-density functions of a series of active molecules. Drugs can be designed according to geometrical parameters and bonding interactions with the data of the structure of the active site of the drug.

To calculate conformations, folding, and physical properties, the exact solutions of the charge distributions in any given molecule are used to calculate the fields, and from the fields, the interactions between groups of the same molecule or between groups on different molecules are calculated wherein the interactions are distance and relative orientation dependent. The fields and interactions can be determined using a finite-element-analysis approach of Maxwell's equations.

CONTINUOUS-CHAIN ALKANES ($\left.C_{n} H_{2 n+2}, n=3,4,5 \ldots \infty\right)$
The continuous-chain alkanes, $C_{n} H_{2 n+2}$, are the homologous series comprising terminal methyl groups at each end of the chain with $n-2$ methylene $\left(\mathrm{CH}_{2}\right)$ groups in between:

$$
\begin{equation*}
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{n-2} \mathrm{CH}_{3} \tag{15.128}
\end{equation*}
$$

$C_{n} H_{2 n+2}$ can be solved using the same principles as those used to solve ethane and ethylene wherein the $2 s$ and $2 p$ shells of each C hybridize to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $C 2 s p^{3}$ hybridized orbitals (HOs) to form a molecular orbital (MO) permits each participating hybridized orbital to decrease in radius and energy. Three H AOs combine with three carbon $2 s p^{3}$ HOs and two H AOs combine with two carbon $2 s p^{3}$ HOs to form each methyl and methylene group, respectively, where each bond comprises a H_{2}-type MO developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section. The CH_{3} and CH_{2} groups bond by forming H_{2}-type MOs between the remaining $C 2 s p^{3}$ HOs on the carbons such that each carbon forms four bonds involving its four $C 2 s p^{3}$ HOs. For the alkyl $C-C$ group, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ is -1.85836 eV where both energy contributions are given by Eq. (14.513). It is based on the energy match between the $C 2 s p^{3}$ HOs of the chain comprising methylene groups and terminal methyl groups.
The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of straight-chain alkanes are given in Tables 15.4, 15.5, and 15.6, respectively. The total energy of each straightchain alkane given in Table 15.7 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.6 corresponding to functional-group composition of the molecule. The bond angle parameters of straight-chain alkanes determined using Eqs. (15.88-15.117) are given in Table 15.8. In this angle table and those given in subsequent sections when c_{2}^{\prime} is given as the ratio of two values of c_{2} designated to Atom 1 and Atom 2 and corresponding to $E_{\text {Coulombic }}$ of Atom 1 and Atom 2, respectively, then $c_{2}^{\prime}=\frac{c_{2}(\text { Atom } 2)}{c_{2}(\text { Atom } 1)}$. The color scale, translucent view of the charge-density of exemplary alkane, butane comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.1.

Figure 15.1. (A-B) Color scale, translucent and opaque views of the charge-density of butane. Each representation shows the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.4. The geometrical bond parameters of straight-chain alkanes and experimental values [1].

Parameter	$\mathrm{C}-\mathrm{C}$ Group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$ Group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$ Group
$a\left(a_{0}\right)$	2.12499	1.64920	1.67122
$c^{\prime}\left(a_{0}\right)$	1.45744	1.04856	1.05553
Bond Length $2 c^{\prime}(\AA)$	1.54280	1.10974	1.11713
Exp. Bond Length (\AA)	1.532 (propane) 1.531 $($ butane $)$	1.107 $(C-H$ propane $)$ 1.117 $(C-H$ butane $)$	1.107 $(C-H$ propane $)$ $(C-H$ butane $)$
$b, c\left(a_{0}\right)$	1.54616	1.27295	1.29569
e	0.68600	0.63580	0.63159

Table 15.5. The MO to HO intercept geometrical bond parameters of straight-chain alkanes. E_{T} is E_{T} (atom-atom, msp ${ }^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{r} \\ \text { (ev) } \\ \text { Bond 2 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Tota Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {manal }}\left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {mat }} \\ & \left(a_{0}\right) \end{aligned}$		$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \theta_{2} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\mathrm{C-H}\left(\mathrm{CH}_{3}\right)$	c	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C-H}\left(\mathrm{CH}_{2}\right)$	c	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{Cb}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117

Table 15.6. The energy parameters (eV) of functional groups of straight-chain alkanes.

Parameters	$\begin{aligned} & C-C \\ & \text { Group } \end{aligned}$	CH_{3} Group	CH_{2} Group
n_{1}	1	3	2
n_{2}	0	2	1
n_{3}	0	0	0
C_{1}	0.5	0.75	0.75
C_{2}	1	1	1
c_{1}	1	1	1
c_{2}	0.91771	0.91771	0.91771
c_{3}	0	0	1
c_{4}	2	1	1
c_{5}	0	3	2
C_{10}	0.5	0.75	0.75
C_{2} o	1	1	1
$V_{e}(\mathrm{eV})$	-28.79214	-107.32728	-70.41425
$V_{p}(e \mathrm{~V})$	9.33352	38.92728	25.78002
$T(\mathrm{eV})$	6.77464	32.53914	21.06675
$V_{m}(e V)$	-3.38732	-16.26957	-10.53337
E (Аогно) (eV)	-15.56407	-15.56407	-15.56407
$\Delta E_{\mathrm{H}_{2} \mathrm{MO}}($ (АО/ HO$)(\mathrm{eV})$	0	0	0
$E_{T}($ Ао/ $/ \mathrm{HO})(\mathrm{eV})$	-15.56407	-15.56407	-15.56407
$E_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)(\mathrm{eV})$	-31.63537	-67.69451	-49.66493
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-1.85836	0	0
$E_{T}($ мо $)(\mathrm{eV})$	-33.49373	-67.69450	-49.66493
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	9.43699	24.9286	24.2751
$E_{K}(\mathrm{eV})$	6.21159	16.40846	15.97831
$\bar{E}_{D}(e V)$	-0.16515	-0.25352	-0.25017
$\bar{E}_{\text {Kvlb }}(e \mathrm{~V})$	0.12312 [2]	$\begin{gathered} 0.35532 \\ (\mathrm{Eq} . \\ (13.458)) \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ (\mathrm{Eq} . \\ (13.458)) \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.10359	-0.22757	-0.14502
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803
$E_{T}($ Group $)(e \mathrm{~V})$	-33.59732	-67.92207	-49.80996
$E_{\text {intiual }}\left(c_{4}\right.$ Ао/но) (eV)	-14.63489	-14.63489	-14.63489
$E_{\text {initial }}\left(c_{\text {c Aо/ }}\right.$ но) $)(\mathrm{eV})$	0	-13.59844	-13.59844
$E_{D}($ Group $)(e V)$	4.32754	12.49186	7.83016

Table 15.7. The total bond energies of n-alkanes calculated using the functional group composition and the energies of Table 15.6 compared to the experimental values [3].

Formula	Name	C-C	CH_{3}	CH_{2}			Relative Error
$\mathrm{C}_{3} \mathrm{H}_{8}$	Propane	2	2	1	41.46896	41.434	-0.00085
$\mathrm{C}_{4} \mathrm{H}_{10}$	Butane	3	2	2	53.62666	53.61	-0.00036
$\mathrm{C}_{5} \mathrm{H}_{12}$	Pentane	4	2	3	65.78436	65.77	-0.00017
$\mathrm{C}_{6} \mathrm{H}_{14}$	Hexane	5	2	4	77.94206	77.93	-0.00019
$\mathrm{C}_{7} \mathrm{H}_{16}$	Heptane	6	2	5	90.09976	90.09	-0.00013
$\mathrm{C}_{8} \mathrm{H}_{18}$	Octane	7	2	6	102.25746	102.25	-0.00006
$\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}$	Nonane	8	2	7	114.41516	114.40	-0.00012
$\mathrm{C}_{10} \mathrm{H}_{22}$	Decane	9	2	8	126.57286	126.57	-0.00003
$\mathrm{C}_{11} \mathrm{H}_{24}$	Undecane	10	2	9	138.73056	138.736	0.00004
$\mathrm{C}_{21} \mathrm{H}_{26}$	Dodecane	11	2	10	150.88826	150.88	-0.00008
$\mathrm{C}_{18} \mathrm{H}_{38}$	Octadecane	17	2	16	223.83446	223.85	0.00008

Table 15.8. The bond angle parameters of straight-chain alkanes and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} \cdot A O\right)$.

$\begin{gathered} \text { Atoms of } \\ \text { Angle } \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond 2 } \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Terminal } \\ \text { Atoms } \\ \left(a_{0}\right) \end{gathered}$	$E_{\text {Coumbubic }}$	$\begin{gathered} \text { Atom } 1 \\ \text { Hybridization } \\ \text { Designation } \\ \text { (Table 15.3.A) } \end{gathered}$	$E_{\text {Catapobic }}$ Atom 2	$\begin{gathered} \text { Atom 2 } \\ \text { Hybridization } \\ \text { Designation } \\ \text { (Table 15.3.A) } \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{\nu} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\begin{aligned} & \text { Methylene } \\ & \angle H C_{a} H \end{aligned}$	2.11106	2.11106	3.4252	$\begin{gathered} -15.75493 \\ C_{a} \\ \hline \end{gathered}$	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} 107 \\ \text { (propane) } \end{gathered}$
$\angle C_{a} C_{b} C^{\text {c }}$															69.51			110.49	$\begin{gathered} 112 \\ \text { (propane) } \\ 113.8 \\ \text { (butane) } \end{gathered}$
$\angle C_{a} C_{b} H$															69.51			110.49	$\begin{gathered} 111.0 \\ \text { (butane) } \end{gathered}$
Methyl $\angle H C_{a} H$	2.09711	2.09711	3.4252	$\begin{gathered} -15.75493 \\ C_{a} \\ \hline \end{gathered}$	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{a} C_{b} C^{\text {c }}$															70.56			109.44	
$\angle C_{a} C_{b} H$															70.56			109.44	

BRANCHED ALKANES ($\left.C_{n} H_{2 n+2}, n=3,4,5 \ldots \infty\right)$
The branched-chain alkanes, $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$, comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $C-C$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-alkane groups are solved using the same principles as those used to solve the methyl and methylene functional groups wherein the $2 s$ and $2 p$ AOs of each C hybridize to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $C 2 s p^{3}$ HOs to form a MO permits each participating hybridized orbital to decrease in radius and energy. $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of each $C-C$-bond MO in Eq. (15.61) due to the charge donation from the C atoms to the MO is -1.85836 eV or -1.44915 eV based on the energy match between the $C 2 s p^{3}$ HOs corresponding to the energy contributions equivalent to those of methylene, -0.92918 eV (Eq. (14.513)), or methyl, -0.72457 eV (Eq. (14.151)), groups, respectively.

The symbols of the functional groups of branched-chain alkanes are given in Table 15.9. The geometrical (Eqs. (15.115.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of branchedchain alkanes are given in Tables 15.10, 15.11, and 15.12, respectively. The total energy of each branched-chain alkane given in Table 15.13 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.12 corresponding to functionalgroup composition of the molecule. The bond angle parameters of branched-chain alkanes determined using Eqs. (15.8815.117) are given in Table 15.14. The color scale, translucent view of the charge-density of exemplary alkane, isobutane, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.2.

Figure 15.2. Color scale, translucent view of the charge-density of isobutane showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (A) Top view. (B) Side view.

Table 15.9. The symbols of functional groups of branched alkanes.

Functional Group	Group Symbol
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to $t-C$)	$C-C$ (e)
$\underline{C C}(t$ to iso- C)	$C-C$ (f)

Table 15.10. The geometrical bond parameters of branched alkanes and experimental values [1].

$C-C(f)$ Group
2.10725
1.45164
1.53635
1.532
(propane)
1.531
(butane)
1.52750
0.88888

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{V} \\ (\mathrm{eV}) \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\text { (eV) } \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (ev)	$\begin{aligned} & r_{\text {mpanal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {pmal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Conomomb }}\left(\mathrm{C} 2 s p^{3}\right) \\ \text { Final } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\mathrm{C-H}\left(\mathrm{CH}_{3}\right)$	c	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C-H}\left(\mathrm{CH}_{2}\right)$	c	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
C-H (CH)	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37736
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C} \text { (} \mathrm{a})) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{C} C_{b} H_{2} \mathrm{CH}_{2} \\ & (\mathrm{C}-\mathrm{C} \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-\mathrm{H}_{2} \mathrm{C}_{a} \mathrm{C}_{b}\left(\mathrm{H}_{2} \mathrm{C}_{\mathrm{c}}-R^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-H_{2} C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{e}\right) C H_{2}- \\ & (C-C(c)) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { isoC Co Co } \left.C_{b} H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C-C} \mathrm{(d))} \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\text { tert } C_{a}}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{e})) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & {\operatorname{terti} C_{a} C_{b}\left(H_{2} C_{0}-R^{\prime}\right) H C H_{2}-}_{(\mathrm{C}-\mathrm{C}(\mathrm{f}))} \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & {\text { iso } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{n}-H_{2} C_{t}\right) C H_{2}-}^{(C-C(f))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Parameters	CH_{3} Group	CH_{2} Group	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\text { a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(b) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{c}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
n_{1}	3	2	1	1	1	1	1	1	1
n_{2}	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0
C_{1}	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	1	1	1
c_{2}	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	0	1	1	0	0	0	1	1	0
c_{4}	1	1	1	2	2	2	2	2	2
c_{5}	3	2	1	0	0	0	0	0	0
C_{10}	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E (Ао/но) (eV)	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$\Delta E_{H_{2} M O}($ (АО HO$)(\mathrm{eV})$	0	0	0	0	0	0	0	0	0
E_{T} (Ао/но) (eV)	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)(\mathrm{eV})$	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{T}\left(\right.$ atom-atom, msp $\left.{ }^{3} . \mathrm{AO}\right)(\mathrm{eV})$	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}($ мо) (eV)	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(\mathrm{eV})$	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kuvb }}(\mathrm{eV})$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. (13.458)) } \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$
$\bar{E}_{\text {asc }}(\mathrm{eV})$	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
E_{T} (Group) (eV)	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
$E_{\text {mintud }}\left(\mathrm{c}_{+}\right.$AO/HO) (eV)	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
$E_{\text {mprud }}(\mathrm{c}$, , $0 /$ /HO) (eV)	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
E_{D} (Group) (eV)	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

Table 15.13. The total bond energies of branched alkanes calculated using the functional group composition and the energies of Table 15.12 compared to the

Table 15．14．The bond angle parameters of branched－chain alkanes and experimental values［1］．In the calculation of θ_{v} ，the parameters from the preceding angle
were used．E_{T} is E_{T}（atom－atom，$m s p^{3} . A O$ ）．

0										
$\begin{aligned} & \circ \\ & \text { is o } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \ddagger \\ & \stackrel{\ddagger}{\infty} \\ & \stackrel{\infty}{\circ} \end{aligned}$	$\stackrel{\stackrel{\text { O}}{\ominus}}{\square}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\ominus} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \pm \\ & \dot{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\text { b }}{\stackrel{1}{0}} \end{aligned}$	$\begin{aligned} & \stackrel{0}{-} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\overparen{C}}{=}$	$\stackrel{\widetilde{n}}{\equiv}$	－
－										
－¢										
0° 〇		＂	$\begin{aligned} & \bar{n} \\ & 0.8 \end{aligned}$		$\begin{array}{r} \circ \\ \stackrel{n}{2} \\ \stackrel{y}{2} \end{array}$					i
＊家	－			－		$\begin{gathered} \stackrel{\circ}{\circ} \\ \stackrel{\leftrightarrow y y y}{\infty} \\ \hline \end{gathered}$	－	－	$\stackrel{\otimes}{\circ}$	
－	$\begin{aligned} & \stackrel{\circ}{\stackrel{\circ}{c}} \\ & \stackrel{y}{3} \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{n}{C} \\ & \hdashline \end{aligned}$						
v	¢			\％		－	\％	๕ั่	－	
0^{\prime}	－			－		－	－	－	－	
v	－			－		－	\％	\％	－	
N㐫	－			－		$\begin{aligned} & \frac{g}{5} \\ & \stackrel{y}{w} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { E } \\ & \frac{1}{\partial} \end{aligned}$	$\frac{\mathrm{E}}{\hat{a}}$	$\begin{gathered} \text { 岂 } \\ \substack{\underset{\omega}{0} \\ 0} \end{gathered}$	
$\mathrm{S}^{\frac{\bar{U}}{6}}$						$\begin{gathered} \stackrel{g}{\stackrel{\rightharpoonup}{0}} \\ \stackrel{\infty}{\infty} \end{gathered}$	$\begin{gathered} \text { 等 } \\ \substack{\infty} \end{gathered}$			
	\pm			\pm		$\stackrel{\square}{1}$	－	－	$\stackrel{\sim}{\sim}$	
	ェ			\pm		䇾	第	－		
	\cdots			－		¢	in	in	¢	
							骨	第		
				$\begin{aligned} & \text { N} \\ & \text { 等 } \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{y}{*} \end{aligned}$	$\frac{\dddot{6}}{\underset{子}{6}}$	$\frac{ल ্ 6}{6}$	¢	
	$\stackrel{\circ}{\bar{j}}$			$\begin{aligned} & \text { F} \\ & \underset{\text { in }}{2} \end{aligned}$		$\begin{aligned} & \text { f } \\ & \stackrel{N}{2} \\ & \text { in } \end{aligned}$	答	F	त	
呺若完	$\stackrel{\circ}{\bar{i}}$					－				
		$\begin{aligned} & 0_{0}^{0} \\ & \mathrm{c}_{0}^{0} \end{aligned}$	Nos	$\begin{aligned} & 2 \\ & \frac{2}{2} 0 \\ & \frac{1}{2} \\ & 2 \end{aligned}$	$\begin{gathered} 0_{0}^{u} \\ 0 \\ 0 \\ 0 \end{gathered}$		$\begin{aligned} & x_{0}^{N} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{ccc} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{aligned} & 0_{0}^{\circ} \\ & 0_{0}^{0} \\ & v_{0}^{2} \end{aligned}$	

ALKENES ($\left.C_{n} H_{2 n}, n=3,4,5 \ldots \infty\right)$

The straight and branched-chain alkenes, $C_{n} H_{2 n}$, comprise at least one carbon-carbon double bond comprising a functional group that is solved equivalently to the double bond of ethylene. The double bond may be bound to one, two, three, or four carbon single bonds that substitute for the hydrogen atoms of ethylene. Based on the condition of energy matching of the orbital, any magnetic energy due to unpaired electrons in the constituent fragments, and differences in oscillation in the transition state, three distinct functional groups can be identified: C vinyl single bond to $-C(C)=C, C$ vinyl single bond to $-C(H)=C$, and C vinyl single bond to $-\mathrm{C}(\mathrm{C})=\mathrm{CH}_{2}$. In addition, CH_{2} of the $-\mathrm{C}=\mathrm{CH}_{2}$ moiety is an alkene functional group.

The alkyl portion of the alkene may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene (CH_{2}), and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $C-C$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in alkenes are equivalent to those in branched-chain alkanes. The solution of the functional groups comprises the hybridization of the $2 s$ and $2 p \mathrm{AOs}$ of each C to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $C 2 s p^{3}$ HOs to form a MO permits each participating hybridized orbital to decrease in radius and energy. $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} \cdot A O\right)$ of the $C=C$-bond MO in Eq. (15.61) due to the charge donation from the C atoms to the MO is equivalent to that of ethylene, -2.26759 eV , given by Eq. (14.247). $\quad E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of each $C-C$-bond MO in Eq. (15.61) is -1.85836 eV or -1.44915 eV based on the energy match between the $C 2 s p^{3}$ HOs corresponding to the energy contributions equivalent to those of methylene, -0.92918 eV (Eq. (14.513)), or methyl, -0.72457 eV (Eq. (14.151)), groups, respectively.

The symbols of the functional groups of alkenes are given in Table 15.15. The geometrical (Eqs. (15.1-15.5) and (15.41)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.56)) parameters of alkenes are given in Tables $15.16,15.17$, and 15.18 , respectively. The total energy of each alkene given in Table 15.19 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.18 corresponding to functional-group composition of the molecule. For each set of unpaired electrons created by bond breakage, the $C 2 s p^{3} \mathrm{HO}$ magnetic energy $E_{\text {mag }}$ that is subtracted from the weighted sum of the $E_{D}(\operatorname{Group})(\mathrm{eV})$ values based on composition is given by Eq. (15.67). The bond angle parameters of alkenes, determined using Eqs. (15.88-15.117), are given in Table 15.20. The color scale, translucent view of the charge-density of exemplary alkene, propene, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.3.

Figure 15.3. Color scale, translucent view of the charge-density of propene showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (A) Top view. (B) Side view.

Table 15.15. The symbols of functional groups of alkenes.

Functional Group	Group Symbol
$C C$ double bond	$C=C$
C vinyl single bond to $-C(C)=C$	$C-C$ (i)
C vinyl single bond to $-C(H)=C$	$C-C$ (ii)
C vinyl single bond to $-\mathrm{C}(\mathrm{C})=\mathrm{CH}_{2}$	$C-C$ (iii)
CH_{2} alkenyl group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$ (i)
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} alkyl group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$ (ii)
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
CC (iso to iso-C)	$C-C$ (d)
$C C$ (t to t - C)	$C-C$ (e)
$C C$ (t to iso- C)	$C-C$ (f)

Table 15．16．The geometrical bond parameters of alkenes and experimental values［1］．

Parameter	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (iii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { (i) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(b) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(c) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(\mathrm{e}) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.47228	2.04740	2.04740	2.04740	1.64010	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.26661	1.43087	1.43087	1.43087	1.04566	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \\ & \hline \end{aligned}$	1.34052	1.51437	1.51437	1.51437	1.10668	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp．Bond Length （A）	1.342 （2－methylpropene） 1.346 （2－butene） 1.349 （1，3－butadiene）		$\begin{gathered} 1.508 \\ \text { (2-butene) } \end{gathered}$	$\begin{gathered} 1.508 \\ \text { (2-methylpropene) } \end{gathered}$	$\begin{gathered} 1.10 \\ \text { (2-methylpropene) } \\ 1.108 \text { (avg.) } \\ \text { (1,3-butadiene) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \\ \text { propane }) \\ 1.117 \\ (C-H \\ \text { butane }) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \\ \text { propane }) \\ 1.117 \\ (C-H \\ \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$			$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	1.532 （propane） 1.531 （butane）	1.532 （propane） 1.531 （butane）	1.532 （propane） 1.531 （butane）
$b, c\left(a_{0}\right)$	0.75055	1.46439	1.46439	1.46439	1.26354	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.86030	0.69887	0.69887	0.69887	0.63756	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15．17．The MO to HO intercept geometrical bond parameters of alkenes．R_{1} is an alkyl group and $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups．E_{T} is E_{T}（atom - atom，

が吳	$\left\|\begin{array}{c} \infty \\ \frac{8}{9} \\ \vdots \end{array}\right\|$			$\begin{aligned} & \text { oid } \\ & \substack{0 \\ 0 \\ 0 \\ 0} \end{aligned}$		ले	$\begin{gathered} \text { 号 } \\ \substack{\text { an }} \end{gathered}$	$\begin{aligned} & \stackrel{2}{2} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \check{\circ} \\ & \stackrel{2}{0} \\ & \hline 0 \end{aligned}$	$\stackrel{\infty}{\circ}$			ob			$\begin{aligned} & \approx \\ & \stackrel{\otimes}{n} \\ & \stackrel{\rightharpoonup}{n} \\ & \hline \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\otimes}{\infty} \\ & \stackrel{\rightharpoonup}{n} \\ & 0 \end{aligned}$		$\begin{aligned} & \text { 言 } \\ & \text { Co } \end{aligned}$	－
－®	$\left\lvert\,\right.$	$\begin{gathered} \text { 움 } \\ \text { a } \\ \hline \end{gathered}$		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{y}}}{\underset{\sim}{x}}$		$\stackrel{\text { dix }}{\stackrel{1}{1}}$	$\stackrel{\text { さ }}{\stackrel{\rightharpoonup}{t}}$		$\underset{\substack{n \\ \underset{\sim}{n}}}{ }$		$\begin{aligned} & \text { of } \\ & \substack{0 \\ \\ \hline} \end{aligned}$		$\stackrel{\infty}{-}$			$\frac{\text { Ba }}{5}$	$\begin{aligned} & \text { 䓂 } \\ & \stackrel{2}{2} \end{aligned}$	$\stackrel{\text { İ }}{5}$	$\stackrel{\text { O}}{\substack{9 \\ \hline \\ \hline}}$	$\begin{aligned} & \text { 等 } \\ & \text { 相 } \\ & \hline \end{aligned}$	筞
0 ＂0	－	\％	¢	$\underset{\sim}{\underset{\sim}{c}}$		$\stackrel{\circ}{9}$	$\stackrel{\sim}{c}$	$\begin{gathered} \text { ®on } \\ \stackrel{0}{0} \end{gathered}$	$\underset{\sim}{7}$	$\stackrel{\circ}{\sim}$		$\stackrel{5}{9}$	앙		ٌợ	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{ }$	$\stackrel{\rightharpoonup}{\mathrm{a}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{ }$	－	$\stackrel{\text { a }}{\substack{\text { a } \\ \text { d }}}$	¢
－こ	$\stackrel{\text { arm }}{\text { a }}$	$:$	$\begin{array}{\|} \stackrel{\rightharpoonup}{i} \\ \stackrel{\rightharpoonup}{n} \end{array}$	$\stackrel{\cong}{\leftrightharpoons}$			$\begin{aligned} & \stackrel{9}{6} \\ & \stackrel{\leftrightarrow}{2} \end{aligned}$		$\begin{gathered} \check{\circ} \\ \underset{\theta}{\dot{d}} \end{gathered}$	$\begin{aligned} & \overline{\hat{x}_{\mathfrak{i}}} \\ & \underset{-1}{ } \end{aligned}$	$\stackrel{n}{=}$	$\stackrel{\circ}{\infty}$	$\xrightarrow[\sim]{\infty}$		たી	$\underset{\sim}{\underset{\sim}{i}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{M}}}{2}$	$\underset{\underset{i}{i}}{\underset{\sim}{2}}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \text { ã } \end{aligned}$	$\underset{\underset{\sim}{A}}{ }$	¢
－ 0	$\begin{aligned} & \underset{\mathrm{d}}{\mathrm{a}} \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{\rightharpoonup} \\ & \underset{d}{d} \end{aligned}$		$\stackrel{\infty}{\circ}$		な。	50	なి	$\stackrel{n}{i}$	$\begin{gathered} \stackrel{9}{a} \\ \stackrel{y}{*} \end{gathered}$		$\begin{aligned} & \stackrel{9}{\circ} \\ & \hline \end{aligned}$	No			$\stackrel{\circ}{\dot{\alpha}}$	$\overline{\text { g. }}$	$\stackrel{\circ}{\dot{\alpha}}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{0}}$	$\stackrel{\infty}{\text { con }}$	$\stackrel{ \pm}{\text { ¢ }}$
	$\begin{aligned} & \% \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	l_{n}^{∞}				$\underset{\sim}{\square}$		$\begin{aligned} & \text { 首 } \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$	\div		$\begin{aligned} & \text { 合 } \\ & \stackrel{6}{4} \end{aligned}$			$$	$\stackrel{\overbrace{}}{\hat{N}}$	$\begin{aligned} & \text { 柰 } \\ & \text { 木 } \\ & \end{aligned}$	$\begin{aligned} & \text { Non } \\ & \end{aligned}$	$\begin{aligned} & \stackrel{2}{2} \\ & \stackrel{y}{7} \end{aligned}$	
		$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{b}} \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{1}{7} \end{gathered}$	$\begin{aligned} & \text { Qे } \\ & \stackrel{\rightharpoonup}{7} \\ & \stackrel{+}{7} \end{aligned}$		\because				$\begin{aligned} & n \\ & 0 \end{aligned}$			$\begin{aligned} & 6 \\ & \\ & \hline \end{aligned}$			$\begin{aligned} & \circ \stackrel{0}{0} \\ & \stackrel{y}{6} \\ & \stackrel{1}{7} \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{0}{6} \\ & \underset{\substack{2}}{ } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{1}{4} \\ & \end{aligned}$		$\xrightarrow{\text { ¢ ¢ }}$
过	$\begin{aligned} & \text { 宮 } \\ & 0 \\ & 0 \end{aligned}$	\mathfrak{N}	$\begin{aligned} & n \\ & \\ & \\ & \\ & \end{aligned}$	$\begin{aligned} & \frac{n}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$		$\underset{\sim}{\infty}$	흥				bo		\%			帚	$\begin{aligned} & \text { ⿳⿵冂𠃍冖口口 } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 20} \\ & \text { ¢ } \\ & 0 \end{aligned}$	$\begin{aligned} & i n \\ & \stackrel{i n}{0} \\ & \stackrel{0}{0} \end{aligned}$	吕
－	$\stackrel{\rightharpoonup}{a}$	E		$\frac{E}{a}$			$\frac{\bar{U}}{2}$	$\frac{\bar{A}}{a}$	$\stackrel{E}{2}$	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{E} \\ \stackrel{\rightharpoonup}{S} \\ \underset{O}{2} \end{gathered}\right.$			$\overline{\mathrm{a}}$			$\stackrel{E}{\square}$	$\stackrel{E}{\hat{E}}$	$\frac{\vec{E}}{\bar{\theta}}$	$\frac{E}{E}$	$\frac{E}{E}$	$\stackrel{\rightharpoonup}{\mathrm{E}}$
				$\begin{aligned} & \stackrel{8}{\circ} \\ & \stackrel{8}{6} \\ & \stackrel{6}{6} \end{aligned}$		$\stackrel{\substack{x}}{\substack{n}}$					年	等						さ 等 $\stackrel{y}{3}$	$\begin{aligned} & \frac{o}{2} \\ & \frac{0}{7} \\ & \stackrel{6}{6} \end{aligned}$		d $\frac{0}{7}$ $\frac{1}{4}$ 7
	－	－		－		－	－	－	－	－	－	－	－		－	－		－	$$	－	－
	－	－		$\begin{aligned} & \text { 䒨 } \\ & \end{aligned}$		－	－	－	－	－	－	$\stackrel{\text { \％}}{\text { ¢ }}$	－		－		$\begin{aligned} & \text { 花 } \\ & \substack{\text { a }} \end{aligned}$	$$		$\stackrel{\infty}{\stackrel{\infty}{\hbar}}$	¢
		－	C	$$			$$	$$	－	－	\％		－				$$	$\begin{aligned} & \infty \\ & \text { 然 } \end{aligned}$			－
心完廌	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{n}{7} \\ & \hline \end{aligned}$	\mathfrak{c}	\mathfrak{B}	$\begin{aligned} & \text { ®⿵人一⿰⺝刂} \\ & \stackrel{?}{7} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{o}} \\ & \stackrel{\rightharpoonup}{\top} \end{aligned}$		$\begin{aligned} & \stackrel{\otimes}{0} \\ & \stackrel{\rightharpoonup}{7} \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} \infty \\ \stackrel{\rightharpoonup}{4} \\ \vdots \\ \vdots \end{array}\right\|$			did				$\stackrel{\infty}{\text { à }}$	$$	$\begin{aligned} & \text { 符 } \\ & \hline \end{aligned}$		－
唇	ט	S		U＂		ט	ט	ט	ט		－	－	u		ט゙	ט	ט゙	ט゙	ט	u゙	ט
䓂		$\left\{\begin{array}{l} 2 \\ y_{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$	$\left\{\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$	$\left\{\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array},\right.$	ล				ex		$=$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	辰	an	－	1 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{gathered} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	2 0 0 0 0 0 0 0 0 0 0	$\begin{aligned} & 1 \\ & 0^{n} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) C H_{2}-$

Table 15．18．The energy parameters (eV) of functional groups of alkenes．

E		－	－		－	$-\frac{\text { E }}{\text { E }}$	－	N	－	\％	$-\frac{\mathrm{C}}{\square}$				$\begin{gathered} 0 \\ 0 \\ 0 \\ n \\ n \\ n \end{gathered}$		$\begin{aligned} & \text { oit } \\ & \\ & \\ & \end{aligned}$	$\begin{gathered} n \\ \hat{n} \\ \substack{2 \\ \\ \hdashline \\ \hline} \end{gathered}$	$\begin{aligned} & \text { in } \\ & \underset{\sim}{2} \\ & \end{aligned}$	$\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \text { 合 } \\ & \text { in } \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \frac{1}{i} \\ & \hline \end{aligned}$	$\frac{1}{2}$	－					寺
	－		－		－	0	：${ }^{-}$	－	－	n	$-$		$\stackrel{N}{N}$				$\begin{aligned} & 0 \\ & \vdots \\ & \hat{n} \\ & \underset{n}{n} \end{aligned}$	$\left\lvert\, \begin{gathered} n \\ n \\ \hat{n} \\ \underset{\sim}{n} \\ \hdashline \end{gathered}\right.$	$\begin{aligned} & \text { n } \\ & \frac{2}{f} \\ & \underset{i}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \mathfrak{G} \\ & \stackrel{y}{n} \\ & \underset{\sim}{n} \end{aligned}$	$$	$\begin{aligned} & \frac{0}{6} \\ & \frac{1}{6} \end{aligned}$	$\frac{1}{2}$			$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{6}{+}$		－
	－	－	－		－	$\stackrel{\rightharpoonup}{\hat{N}} \underset{\dot{O}}{ }$	E	－	－	＇ô	－					－	$\left\lvert\, \begin{gathered} \hat{y} \\ ⿳ 亠 口 冋 口 \\ n \\ n \\ \end{gathered}\right.$	$\begin{gathered} \hat{\hat{n}} \\ \hat{\hat{0}} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \hdashline \\ & \hline \end{aligned}$	$\begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{2} \\ \underset{\sim}{\gamma} \end{gathered}$	$\begin{aligned} & \hat{2} \\ & \mathbf{o} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \text { 冗े } \\ & \underset{\text { Nु }}{ } \end{aligned}$	$\begin{aligned} & n \\ & \frac{n}{6} \\ & \hdashline \\ & i \end{aligned}$	$\begin{aligned} & 1 \\ & \frac{1}{2} \\ & \frac{1}{0} \end{aligned}$	กิ่			Ọ		$\stackrel{\overline{2}}{\stackrel{\rightharpoonup}{2}}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	－	－	－	n	－	$-\underset{Z}{E}$	E	\bigcirc		\％${ }^{\circ}$	－	ق	$\underset{\sim}{N}$			－	$\begin{gathered} 0 \\ 0 \\ 0 \\ n \\ n \\ \cdots \end{gathered}$	$\begin{gathered} \hat{n} \\ \hat{n} \\ \underset{\sim}{0} \\ \cdots \end{gathered}$	$\frac{n}{\square}$	$\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & 0 \\ & \stackrel{0}{\alpha} \\ & \vdots \\ & \vdots \\ & \end{aligned}$		$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & \\ & i \end{aligned}$		－		$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \underset{\sim}{c} \\ \underset{\sim}{2} \end{gathered}$			\cdots
				\bigcirc	－	$-\frac{\underset{N}{A}}{\hat{O}}$	E．${ }_{\text {E }}$	。	－	\cdots	－					－	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & n \\ & n \\ & \end{aligned}$			$\begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \hat{a} \\ & \stackrel{0}{7} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\stackrel{n}{7}}{\underset{\sim}{n}}$	$\begin{aligned} & n \\ & \frac{n}{6} \\ & \hdashline i \end{aligned}$	$\begin{aligned} & \infty \\ & \substack{0 \\ 0 \\ 0 \\ 0} \\ & \hline \end{aligned}$	会		$\stackrel{\grave{\kappa}}{\underset{\sim}{2}}$			－
					－	$-\frac{\text { त }}{\frac{\text { A }}{2}}$	E． 0	－	－	\％	－					－	$\begin{aligned} & \hat{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{n} \\ & \end{aligned}$	$\begin{gathered} \hat{N} \\ \hat{N} \\ \underset{\sigma}{2} \\ \underset{\sim}{2} \end{gathered}$	$\begin{gathered} \circ \\ \stackrel{\circ}{\infty} \\ \stackrel{\infty}{\infty} \\ \hdashline \end{gathered}$	$\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{\gamma} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \hat{0} \\ & \text { O} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \text { תু } \\ \text { तु } \end{gathered}$	$\begin{aligned} & n \\ & \frac{n}{6} \\ & \frac{c}{i} \end{aligned}$	$\begin{aligned} & \frac{1}{N} \\ & \frac{1}{2} \\ & 0 \\ & 0 \end{aligned}$			$\stackrel{\text { N}}{\substack{n}}$	¢		$\xrightarrow{4}$
$\left\|\begin{array}{ll} 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{array}\right\|$	－	－	－		－		$\stackrel{\text { E }}{\substack{\text { a }}}$		－	－	－		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\text { on }}{\infty} \\ & \underset{\mathrm{i}}{ } \end{aligned}$			－		$\begin{gathered} \hat{N} \\ \hat{h} \\ \underset{\sim}{\hat{r}} \end{gathered}$	－		$\underset{\underset{\sim}{j}}{\underset{\sim}{j}}$		$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{4} \\ & \underset{y}{c} \\ & \vdots \end{aligned}$		$\begin{aligned} & \text { Ǹ } \\ & \text { ה̀ } \end{aligned}$		$\begin{gathered} \hat{N} \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{?} \end{gathered}$	＋		䯧
			－		－	$\stackrel{\underset{N}{\hat{O}}}{\stackrel{\rightharpoonup}{0}}$	E	－	\sim	\sim	－			n		－			－		$\begin{aligned} & \vec{n} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{gathered} \bar{\infty} \\ \stackrel{\infty}{\circ} \\ \stackrel{n}{n} \end{gathered}$	$\begin{aligned} & \hat{0} \\ & \hat{0} \\ & \underset{1}{2} \end{aligned}$		$\begin{gathered} \underset{\sim}{\circ} \\ \stackrel{y}{c} \\ \stackrel{i}{2} \end{gathered}$		$$	¢		$\xrightarrow{\circ}$
20 응	m	\sim	－		－	$-\frac{\underset{犬}{太}}{\underset{O}{O}}$	$\frac{E}{2}$	－	m	$\stackrel{i}{2}$	－	$\begin{aligned} & \stackrel{\infty}{N} \\ & \underset{\sim}{2} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\lambda} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$			－		$\begin{aligned} & \overline{7} \\ & 20 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\bigcirc	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\text { In }}{2} \end{aligned}$		$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{N} \\ & i \end{aligned}$		$\begin{aligned} & \stackrel{N}{\hat{N}} \\ & \underset{y}{c} \end{aligned}$			＋		$\stackrel{\circ}{\square}$
$\begin{aligned} & \text { en } \\ & \text { 気 } \end{aligned}$					－	$\frac{\stackrel{\rightharpoonup}{\hat{N}}}{2}$	$\frac{\stackrel{\rightharpoonup}{E}}{\hat{O}}-$	－	\sim	\sim						－			－	$\begin{aligned} & \text { M } \\ & \frac{4}{d} \\ & \text { di } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 今 } \\ & \text { AN } \end{aligned}$		$\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{\underset{1}{2}} \\ \stackrel{i}{i} \end{gathered}$		$\begin{aligned} & \text { N} \\ & \text { N} \\ & \text { O. } \end{aligned}$		$\begin{aligned} & \stackrel{\infty}{\grave{c}} \\ & \stackrel{y}{\infty} \\ & \stackrel{+}{\dot{c}} \end{aligned}$	＋		$\xrightarrow{\infty}$
$\left\lvert\, \begin{gathered} \text { 毛 } \\ \text { y } \\ \text { 曾 } \end{gathered}\right.$		－			－	$-\frac{\underset{N}{\hat{O}}}{\dot{O}}$	$\stackrel{5}{6}-$	－	－	\cdots	－	H	$\begin{aligned} & \pm \\ & \infty \\ & 0 \\ & \underset{\sim}{6} \end{aligned}$			－			$\begin{aligned} & n \\ & \stackrel{n}{寸} \end{aligned}$	$\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \vec{\widehat{ }} \\ & \underset{\alpha}{\alpha} \\ & \stackrel{\rightharpoonup}{\alpha} \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \text { It } \\ \mathbf{0} \\ \hdashline \mathbf{o} \\ \hline \end{gathered}$	$\begin{aligned} & \overline{2} \\ & \alpha_{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \underset{i}{7} \\ & \hline 1 \end{aligned}$			＋		
	－				－	$-\frac{\stackrel{\rightharpoonup}{\hat{N}}}{\hat{O}}$	E．	－		\cdots	－	H	$\begin{gathered} t \\ 0.0 \\ 0 \\ \stackrel{0}{2} \\ \hline \end{gathered}$			－			$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{+} \end{aligned}$	$\begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{\gamma} \\ \underset{\sim}{\mu} \end{gathered}$		$\begin{aligned} & \hat{0} \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$$		$\begin{aligned} & \text { à } \\ & \stackrel{0}{6} \\ & \hline 1 \end{aligned}$			＋		¢
	－	－			－	$-\frac{\mathbb{N}}{\frac{2}{2}}$		$-\sim$		\cdots	－	帯				－			$\frac{n}{\frac{2}{q}}$	$\begin{gathered} \underset{\sim}{2} \\ \dot{\sim} \\ \underset{\sim}{2} \\ \stackrel{\sim}{2} \end{gathered}$	$\begin{aligned} & \bar{\infty} \\ & \stackrel{\infty}{\Omega} \\ & \underset{2}{2} \end{aligned}$	$\begin{gathered} \text { n} \\ 00 \\ 0 \\ 0 \\ 0 \end{gathered}$			$\begin{aligned} & \text { Ì } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{1}{\circ} \end{aligned}$		$\underset{\underset{\sim}{c}}{\stackrel{\rightharpoonup}{\lambda}}$	$\stackrel{+}{+}$		com
$\left\|\begin{array}{cc} u & 0 \\ \text { ü } \\ \text { un } \end{array}\right\|$	\sim				$\left\lvert\, \begin{aligned} & \underset{A}{A} \\ & \underset{O}{\hat{O}} \end{aligned}\right.$	$-\frac{\text { E }}{\frac{\lambda}{2}}$	$\stackrel{\rightharpoonup}{\mathbf{E}} \underset{\substack{0}}{ }$	－		\cdots	$\stackrel{\text { N }}{\text { N}}$		$\begin{aligned} & \infty \\ & \infty \\ & \dot{\infty} \\ & \stackrel{\alpha}{\sim} \\ & \dot{\sim} \end{aligned}$			－	－	$\begin{gathered} \text { n } \\ \hat{A} \\ \text { y } \\ 0 \end{gathered}$		$\begin{gathered} \infty \\ \infty \\ \underset{\sim}{n} \\ \underset{\sim}{0} \end{gathered}$		$\begin{gathered} \underset{\sim}{\infty} \\ \underset{\sim}{\infty} \\ \underset{\sim}{\infty} \\ \underset{\sim}{2} \end{gathered}$			$\begin{gathered} \stackrel{\circ}{6} \\ \stackrel{1}{i} \\ \stackrel{1}{i} \end{gathered}$		$\begin{aligned} & \text { oे } \\ & \stackrel{\rightharpoonup}{c} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	－		$\stackrel{\square}{\square}$
	\approx				U＇	s	S 0	¢ 0		心	v^{2}	\underbrace{s}_{-0}	es	se			5 0				$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{5}{e}$			$\stackrel{5}{e}$		合			－

Table 15.19. The total bond energies of alkenes calculated using the functional group composition and the energies of Table 15.18 compared to the experimental

Table 15.20. The bond angle parameters of alkenes and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used.

ALKYNES ($\left.C_{n} H_{2 n-2}, n=3,4,5 \ldots \infty\right)$
The straight and branched-chain alkynes, $C_{n} H_{2 n-2}$, have at least one carbon-carbon triple bond comprising a functional group that is solved equivalently to the triple bond of acetylene. The triple bond may be bound to one or two carbon single bonds that substitute for the hydrogen atoms of acetylene. Based on the energy matching of the mutually bound C, these $C-C$-bond MOs are defined as primary and secondary $C-C$ functional groups, respectively, that are unique to alkynes. In addition, the corresponding terminal CH of a primary alkyne comprises a functional group that is solved equivalently to the methylyne group of acetylene as given in the Acetylene Molecule section.

The alkyl portion of the alkyne may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $C-C$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in alkynes are equivalent to those in branched-chain alkanes.

The solution of the functional groups comprises the hybridization of the $2 s$ and $2 p$ AOs of each C to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $C 2 s p^{3}$ HOs to form a MO permits each participating hybridized orbital to decrease in radius and energy. $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C \equiv C$-bond MO in Eq. (15.61) due to the charge donation from the C atoms to the MO is equivalent to that of acetylene, -3.13026 eV , given by Eq. (14.342). $\quad E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of each -alkyl-bond MO in Eq. (15.61) is -1.85836 eV or -1.44915 eV based on the energy match between the $C 2 s p^{3}$ HOs corresponding to the energy contributions equivalent to those of methylene, -0.92918 eV (Eq. (14.513)), or methyl, -0.72457 eV (Eq. (14.151)), groups, respectively. For the $C-C$ groups each comprising a C single bond to $C \equiv C, E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ is -0.72457 eV based on the energy match between the $C 2 s p^{3}$ HOs for the mutually bound C of the single and triple bonds. The parameter ω of each group is matched for oscillation in the transition state based on the group being primary or secondary.

The symbols of the functional groups of alkynes are given in Table 15.21. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkynes are given in Tables $15.22,15.23$, and 15.24 , respectively. The total energy of each alkyne given in Table 15.25 is calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.24 corresponding to functional-group composition of the molecule. The bond angle parameters of alkynes determined using Eqs. (15.88-15.117) are given in Table 15.26. Each C of the $C \equiv C$ group can further bond with only one atom, and the bond is linear as a minimum of energy as in the case of acetylene. The color scale, translucent view of the charge-density of exemplary alkyne, propyne, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.4.

Figure 15.4. Color scale, translucent view of the charge-density of propyne showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.21. The symbols of functional groups of alkynes.

Functional Group	Group Symbol
$\overline{C C}$ triple bond	$C \equiv C$
C single bond to $C \equiv C\left(1^{\circ}\right)$	$C-C$ (i)
C single bond to $C \equiv C\left(2^{\circ}\right)$	$C-C$ (ii)
CH (terminal)	$C-H$ (i)
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH (alkyl)	$C-H$ (ii)
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
CC (iso to iso-C)	$C-C$ (d)
$C C$ (t to $t-C$)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.22. The geometrical bond parameters of alkynes and experimental values [1].

Parameter	$\begin{aligned} & C \equiv C \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-H \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-H \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (d) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.28714	1.99185	1.99185	1.48719	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.13452	1.41133	1.41133	0.99572	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.20072	1.49369	1.49369	1.05383	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	1.203 (acetylene) 1.208 (2,4-hexadiyne)	$\begin{gathered} 1.450 \\ (2,4 \text {-hexadiyne) } \end{gathered}$	$\begin{gathered} 1.450 \\ \text { (2,4-hexadiyne) } \end{gathered}$	$\begin{gathered} 1.060 \\ \text { (acetylene) } \end{gathered}$	1.107 $(C-H$ propane $)$ 1.117 $(C-H$ butane $)$	1.107 $(C-H$ propane $)$ 1.117 $(C-H$ butane $)$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$
$b, c\left(a_{0}\right)$	0.60793	1.40557	1.40557	1.10466	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.88143	0.70855	0.70855	0.66953	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.23. The MO to HO intercept geometrical bond parameters of alkynes. E_{T} is E_{T} (atom-atom, $\mathrm{msp}^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 1 } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 3$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {rintalal }}\left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {final }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coulumbom }}\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$R C_{c} C_{b} C_{a}-H$	C_{a}	-1.56513	0	0	0	-153.18082	0.91771	0.83008	-16.39088	-16.20002	90.99	89.01	48.71	0.98144	0.01428
$C_{c} C_{a} \equiv C_{b} H$	C_{a}	-1.56513	-0.36229	0	0	-153.54311	0.91771	0.81213	-16.75317	-16.56231	137.17	42.83	65.25	0.53890	0.59562
$C_{c} C_{a} \equiv C_{b} H$	C_{b}	-1.56513	0	0	0	-153.18082	0.91771	0.83008	-16.39088	-16.20002	137.91	42.09	66.24	0.51853	0.61599
$C_{c}-C_{a} \equiv C_{b} H$	C_{c}	-0.36229	-0.92918	0	0	-152.90716	0.91771	0.84418	-16.11722	-15.92636	75.71	104.29	35.59	1.61974	0.20841
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C}-\mathrm{H}(\mathrm{CH})$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C} \text { (a)) } \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-\mathrm{H}_{2} C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-H_{2} C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{c})) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { isoC } C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~d})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\text { tert } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{e}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & {\text { tert } C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{f}))} \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & i_{s o C_{a}}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) C H_{2}- \\ & (C-C \text { (f)) } \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.24. The energy parameters (eV) of functional groups of alkynes.

Parameters	$\begin{aligned} & C \equiv C \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-H \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
n_{1}	3	1	1	1	3	2	1	1	1	1	1	1	1
n_{2}	0	0	0	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.5	0.5	0.5	0.75	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	1	1	1	1	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1
c_{2}	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	2	1	1	0	0	1	1	0	0	0	1	1	0
c_{4}	6	2	2	1	1	1	1	2	2	2	2	2	2
c_{5}	0	0	0	1	3	2	1	0	0	0	0	0	0
C_{10}	0.5	0.5	0.5	0.75	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	1	1	1	1	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-182.53826	-31.29307	-31.29307	-40.62396	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	35.97770	9.64042	9.64042	13.66428	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(e V)$	70.90876	7.85528	7.85528	13.65796	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-35.45438	-3.92764	-3.92764	-6.82898	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E (аоьно) (eV)	-16.20002	-14.63489	-14.63489	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$\Delta E_{H_{2} \text { MOO }}($ (о/ $/ \mathrm{HO})(\mathrm{eV})$	0	-0.72457	-0.72457	-3.130269	0	0	0	0	0	0	0	0	0
E_{T} (поино) (eV)	-16.20002	-13.91032	-13.91032	-11.50462	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(\mathrm{H}_{2} M O\right)(\mathrm{eV})$	-94.90616	-31.63533	-31.63533	-31.63532	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}{ }^{3} \cdot \mathrm{AO}\right)(\mathrm{eV})$	-3.13026	-0.72457	-0.72457	0	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}($ мо) (eV)	-98.03637	-32.35994	-32.35994	-31.63537	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	20.0186	10.3988	17.5426	30.8370	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	13.17659	6.84470	11.54682	20.29747	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(\mathrm{eV})$	-0.23468	-0.16749	-0.21754	-0.28197	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Krib }}(\mathrm{eV})$	$\begin{gathered} 0.27773 \\ {[9]} \\ \hline \end{gathered}$	$\begin{gathered} 0.08989 \\ {[9]} \\ \hline \end{gathered}$	$\begin{gathered} 0.08989 \\ {[9]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$
$\bar{E}_{\text {acc }}(\mathrm{eV})$	-0.09581	-0.12255	-0.17260	-0.10430	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mog }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
E_{T} (Grup) (eV)	-98.02775	-32.48249	-32.53254	-31.73967	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
	0	0	0	-13.59844	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
$E_{D}($ Group $)(\mathrm{eV})$	10.21841	3.21271	3.26276	3.50634	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

[^2]Table 15.26. The bond angle parameters of alkynes and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond 2 } \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Terminal } \\ \text { Atoms } \\ \left(a_{0}\right) \end{gathered}$	$E_{\text {Cowlombic }}$ Atom 1	Atom 1Hybridization Designation(Table 15.3.A)	$\begin{aligned} & E_{\text {Coulcmbic }} \\ & \text { Atom } 2 \end{aligned}$	$\begin{gathered} \text { Atom 2 } \\ \begin{array}{c} \text { Hybridization } \\ \text { Designation } \end{array} \\ \text { (Table 15.3.A) } \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom 2 } \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Cal. } \theta \\ \left({ }^{\circ}\right) \\ \hline \end{array}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\begin{gathered} \angle C_{c} C_{a} C_{b} \\ \left(C_{c} C_{a} \equiv C_{b} H\right) \\ \hline \end{gathered}$																		180	
Methylene $\angle H C_{a} H$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} 107 \\ \text { (propane) } \end{gathered}$
$\angle C_{a} C_{b} C_{c}$															69.51			110.49	112 (propane) 113.8 (butane) 110.8 (isobutane)
$\angle C_{a} C_{b} H$															69.51			110.49	$\begin{gathered} 111.0 \\ \text { (butane) } \\ 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{a} C_{b} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b} H$															70.56			109.44	
$\begin{aligned} & \angle C_{b} C_{a} C_{c} \\ & \text { iso } C_{a} \end{aligned}$	2.91547	2.91547	4.7958	$\begin{array}{\|c} -16.68412 \\ C_{b} \end{array}$	26	$\begin{gathered} -16.68412 \\ C_{6} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				110.67	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\begin{gathered} \angle C_{b} C_{a} H \\ \text { iso } C_{a} \end{gathered}$	2.91547	2.11323	4.1633	$\begin{array}{\|c\|} \hline-15.55033 \\ C_{a} \\ \hline \end{array}$	5	$\begin{gathered} -14.82575 \\ C_{b} \end{gathered}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{aligned} & \angle C_{a} C_{b} H \\ & \text { iso } C_{a} \\ & \hline \end{aligned}$	2.91547	2.09711	4.1633	$\begin{array}{\|l\|} \hline-15.55033 \\ C_{b} \end{array}$	5	$\begin{gathered} -14.82575 \\ C_{o} \end{gathered}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	$\begin{gathered} 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \angle C_{b} C_{a} C_{b} \\ & \text { tert } C_{a} \end{aligned}$	2.90327	2.90327	4.7958	$\begin{array}{\|c} -16.68412 \\ C_{b} \end{array}$	26	$\begin{gathered} -16.68412 \\ C_{k} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				111.37	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\angle C_{b} C_{a} C_{d}$															72.50			107.50	

ALKYL FLUORIDES $\left(C_{n} H_{2 n+2-m} F_{m}, n=1,2,3,4,5 \ldots \infty \quad m=1,2,3 \ldots \infty\right)$
The branched-chain alkyl fluorides, $\mathrm{C}_{n} \mathrm{H}_{2 n+2-m} F_{m}$, may comprise at least two terminal methyl groups (CH_{3}) at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds wherein at least one H is replaced by a fluorine. The $C-F$ bond comprises a functional group for each case of F replacing a H of methane in the series $H_{4-m} C-F_{m}, m=1,2,3,4$, and F replacing a H of an alkane. The methyl, methylene, methylyne functional groups are equivalent to those of branched-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $C-C$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t -butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t -butyl, and t -butyl to t -butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups that are equivalent to those of branched-chain alkanes.

The solution of the $C-F$ functional groups comprises the hybridization of the $2 s$ and $2 p$ AOs of each C to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the F AO to form a molecular orbital (MO) permits each participating orbital to decrease in radius and energy. In alkyl fluorides, the $C 2 s p^{3}$ HO has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)), and the F AO has an energy of $E(F)=-17.42282 \mathrm{eV}$. To meet the equipotential condition of the union of the $C-F H_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor c_{2} of Eq. (15.61) for the $C-F$-bond MO given by Eqs. (15.77) and (15.79) is:

$$
\begin{equation*}
c_{2}\left(C 2 s p^{3} H O \text { to } F\right)=\frac{E\left(C, 2 s p^{3}\right)}{E(F)} c_{2}\left(C 2 s p^{3} H O\right)=\frac{-14.63489 \mathrm{eV}}{-17.42282 \mathrm{eV}}(0.91771)=0.77087 \tag{15.129}
\end{equation*}
$$

$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-F$-bond MO in Eq. (15.61) based on the charge donation from F to the MO is determined by the linear combination that results in a energy that is a minimum which does not exceed the energy of the AO of the F atom to which it is energy matched.

The symbols of the functional groups of branched-chain alkyl fluorides are given in Table 15.27. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of branched-chain alkyl fluorides are given in Tables $15.28,15.29$, and 15.30 , respectively. The total energy of each branchedchain alkyl fluoride given in Table 15.31 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.30 corresponding to functional-group composition of the molecule. For each set of unpaired electrons created by bond breakage, the $C 2 s p^{3}$ HO magnetic energy $E_{\text {mag }}$ that is subtracted from the weighted sum of the $E_{D}($ Group $)(\mathrm{eV})$ values based on composition is given by Eq. (15.67). In the case of trifluoromethane, $E_{\text {mag }}$ is positive since the term due to the fluorine atoms cancels that of the $C H$ group. The $C-C$ bonds to the $C H F$ group (one H bond to C) were each treated as an iso $C-C$ bond. The $C-C$ bonds to the $C F$ group (no H bonds to C) were each treated as a tert-butyl $C-C$. $E_{\text {mag }}$ was subtracted for each t-butyl group. The bond angle parameters of branched-chain alkyl fluorides determined using Eqs. (15.70-15.79), (15.8715.117) and (15.129) are given in Table 15.32. The color scale, translucent view of the charge-density of exemplary alkyl fluoride, 1-fluoropropane, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.5.

Figure 15.5. Color scale, translucent view of the charge-density of 1 -fluoropropane showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.27. The symbols of functional groups of branched-chain alkyl fluorides.

Functional Group	Group Symbol
$C F$ of $C F_{m} H_{4-m}$	$C-F$ (i)
$C F$ of $C_{n} H_{2 n+2-m} F_{m}$	$C-F$ (ii)
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to t - C)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.28. The geometrical bond parameters of branched-chain alkyl fluorides and experimental values [1].

Parameter	$\begin{aligned} & C-F \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-F \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.72139	1.72139	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.31202	1.31202	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \\ & \hline \end{aligned}$	1.38858	1.38858	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$\begin{gathered} 1.382 \\ \text { (methyl fluoride) } \end{gathered}$	$\begin{gathered} 1.382 \\ \text { (methyl fluoride) } \end{gathered}$	$\begin{gathered} 1.107 \\ (\mathrm{C}-H \text { propane }) \\ 1.117 \\ (\mathrm{C}-\mathrm{H} \text { butane }) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$		1.532 (propane) 1.531 (butane)	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$			
$b, c\left(a_{0}\right)$	1.11435	1.11435	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.76219	0.76219	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.29. The MO to HO intercept geometrical bond parameters of branched-chain alkyl fluorides. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is E_{T} (atom - atom, $m s p^{3} \cdot A O$).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 1$	E_{T} (eV) Bond 2	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 3$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 4$	$\begin{gathered} \text { Final Total } \\ \text { Energy } \\ C 2 s p^{3} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & r_{\text {minual }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {fnal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coulomb }} \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\begin{aligned} & H_{4-m} C_{a}-F_{m} \\ & \left(C_{a}-F(\mathrm{i})\right) \end{aligned}$	C_{a}	-1.34946	0	0	0	-152.96515	0.91771	0.84115	-16.17521	-15.98435	100.77	79.23	47.86	1.15488	0.15714
$\begin{aligned} & H_{4-m} C_{a}-F_{m} \\ & \left(C_{a}-F \text { (i) }\right) \end{aligned}$	F	-1.34946	0	0	0		0.78069	0.84115	-16.17521		100.77	79.23	47.86	1.15488	0.15714
$\begin{aligned} & -H_{2} C_{b} C_{a} F \\ & \left(C_{a}-F \text { (ii) }\right) \end{aligned}$	C_{a}	-1.34946	-0.92918	0	0	-153.89433	0.91771	0.79546	-17.10440	-16.91353	97.02	82.98	45.11	1.21483	0.09718
$\begin{aligned} & -H_{2} C_{b} C_{a} F \\ & \left(C_{a}-F \text { (ii) }\right) \end{aligned}$	F	-1.34946	0	0	0		0.78069	0.84115	-16.17521		100.77	79.23	47.86	1.15488	0.15714
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C}-\mathrm{H}(\mathrm{CH})$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \\ & \hline \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{-} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-\mathrm{H}_{2} C_{a} C_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-\mathrm{H}_{2} C_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) C_{b}\left(R^{n}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{c})) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { iso } C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~d})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & \text { tert } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{n \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{e})) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & \text { tert } C_{a} C_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f})) \\ & \hline \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & \text { iso } C_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) \mathrm{C}_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C} \text { (f)) } \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.30. The energy parameters (eV) of functional groups of branched-chain alkyl fluorides.

Parameters	$\begin{aligned} & C-F \\ & \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-F \\ & \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \text { (a) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(\mathrm{c}) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
n_{1}	1	1	3	2	1	1	1	1	1	1	1
n_{2}	0	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	1	1	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	1	1	1	1	1
c_{2}	0.77087	0.77087	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	0	0	0	1	1	0	0	0	1	1	0
c_{4}	2	2	1	1	1	2	2	2	2	2	2
c_{5}	0	0	3	2	1	0	0	0	0	0	0
C_{10}	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	1	1	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-32.02108	-32.02108	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	10.37015	10.37015	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	9.30097	9.30097	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-4.65048	-4.65048	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E (Ао/но) (eV)	-14.63489	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$\Delta E_{\mathrm{H}_{2} \mathrm{NO}}$ (AO/ HO) (eV)	0	0	0	0	0	0	0	0	0	0	0
	-14.63489	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(\mathrm{H}_{2} \mathrm{NO}\right)(\mathrm{eV})$	-31.63534	-31.63534	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.69892	-2.69892	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}(\mu)(e \mathrm{~V})$	-34.33429	-34.33429	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	24.8506	12.9435	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	16.35707	8.51966	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(e \mathrm{~V})$	-0.27472	-0.19826	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kub }}(\mathrm{eV})$	$\begin{gathered} 0.13849 \\ {[10]} \\ \hline \end{gathered}$	$\begin{gathered} 0.10911 \\ {[11]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ (\text { Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\underset{[2]}{0.12312}$	$\begin{gathered} 0.17978 \\ {[4]} \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \end{gathered}$	$\underset{[2]}{0.12312}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$
$\bar{E}_{\text {occ }}(\mathrm{eV})$	-0.20547	-0.14371	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
E_{T} (croup) (eV)	-34.53976	-34.47800	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
$E_{\text {irruat }}\left(\mathrm{c}_{4}\right.$ AO/Ho) (eV)	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
$E_{\text {intuat }}(\mathrm{c}$, Ао/ $/$ Ho) (eV$)$	0	0	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
E_{D} (Group) (eV)	5.26998	5.20822	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

Table 15.31. The total bond energies of branched-chain alkyl fluorides calculated using the functional group composition and the energies of Table 15.30 compared to the experimental values [3]. The magnetic energy $E_{\text {mag }}$ that is subtracted from the weighted sum of the $E_{D(G r o u p)}$ (eV) values based on composition is given by (15.58).
-0.00303
0.00405 $\stackrel{\circ}{\circ}$ -0.00012 Energy (eV)
 21.07992 21.07992
19.28398
18.37012 18.37012
41.86745
41.96834 0007
000
Table 15.32. The bond angle parameters of branched-chain alkyl fluorides and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding

ALKYL CHLORIDES ($\left.C_{n} H_{2 n+2-m} C l_{m}, n=1,2,3,4,5 \ldots \infty m=1,2,3 \ldots \infty\right)$
The branched-chain alkyl chlorides, $C_{n} H_{2 n+2-m} C l_{m}$, may comprise at least two terminal methyl groups (CH_{3}) at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds wherein at least one H is replaced by a chlorine. The $\mathrm{C}-\mathrm{Cl}$ bond comprises a functional group for each case of Cl replacing a H of methane for the series $\mathrm{H}_{4-m} \mathrm{C}-\mathrm{Cl}_{m}, m=1,2,3$, with the $\mathrm{C}-\mathrm{Cl}$ bond of CCl_{4} comprising another functional group due to the limitation of the minimum energy of Cl matched to that of the $\mathrm{C} 2 s p^{3} \mathrm{HO}$. In addition, the $\mathrm{C}-\mathrm{Cl}$ bond due to Cl replacing an H of an alkane is a functional group. The methyl, methylene, methylyne functional groups are equivalent to those of branched-chain alkanes. Six types of $C-C$ bonds can be identified. The n -alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups that are equivalent to those of branched-chain alkanes.

The solution of the $C-C l$ functional groups comprises the hybridization of the $2 s$ and $2 p$ AOs of each C to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the Cl AO to form a MO permits each participating orbital to decrease in radius and energy. In alkyl chlorides, the energy of chlorine is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264). Thus, c_{2} in Eq. (15.61) is one, and the energy matching condition is determined by the C_{2} parameter. Then, $C 2 s p^{3}$ HO has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)), and the Cl AO has an energy of $E(C l)=-12.96764 \mathrm{eV}$. To meet the equipotential condition of the union of the $\mathrm{C}-\mathrm{Cl} \mathrm{H}_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor C_{2} of Eq. (15.61) for the $\mathrm{C}-\mathrm{Cl}$-bond MO given by Eqs. (15.77) and (15.79) is:

$$
\begin{equation*}
C_{2}\left(C 2 s p^{3} \mathrm{HO} \text { to } \mathrm{Cl}\right)=\frac{E(C l)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=\frac{-12.96764 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.91771)=0.81317 \tag{15.130}
\end{equation*}
$$

The valence energy of the carbon $2 p$ is -11.2603 eV and that of the Cl AO is -12.96764 eV . The energy difference is more than that of $2 E_{T}\left(C-C, 2 s p^{3}\right)$ given by Eq. (14.151) for a single bond. Thus, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-C l$-bond MO of $\mathrm{CCl}_{m} \mathrm{H}_{4-m}$ and $C_{n} \mathrm{H}_{2 n+2-m} \mathrm{Cl}_{m}$ in Eq. (15.61) due to the charge donation from the C and Cl atoms to the MO is -1.44915 eV based on the energy match between the $C 2 s p^{3} \mathrm{HO}$ and the Cl AO corresponding to the energy contributions equivalent to those of methyl groups, -0.72457 eV (Eq. (14.151)). $E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)$ of the $\mathrm{C}-\mathrm{Cl}$-bond MO of chloroform with four $\mathrm{C}-\mathrm{Cl}$ bonds is -0.92918 eV (Eq. (14.513)) based on the maximum single-bond-energy contribution of the $C 2 s p^{3} \mathrm{HO}$.

The symbols of the functional groups of branched-chain alkyl chlorides are given in Table 15.33. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. ($15.80-15.87$)), and energy (Eqs. ($15.6-15.11$) and ($15.17-15.65$)) parameters of branched-chain alkyl chlorides are given in Tables 15.34, 15.35, and 15.36, respectively. The total energy of each branchedchain alkyl chloride given in Table 15.37 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.36 corresponding to functional-group composition of the molecule. For each set of unpaired electrons created by bond breakage, the $C 2 s p^{3}$ HO magnetic energy $E_{\text {mag }}$ that was subtracted from the weighted sum of the $E_{D}($ Group $)(\mathrm{eV})$ values based on composition is given by Eq. (15.67). The $\mathrm{C}-\mathrm{C}$ bonds to the CHCl group (one H bond to C) were each treated as an iso $C-C$ bond. The $C-C$ bonds to the $C C l$ group (no H bonds to C) were each treated as a tert-butyl $C-C$. $E_{\text {mag }}$ was subtracted for each t-butyl group. The bond angle parameters of branched-chain alkyl chlorides determined using Eqs. (15.7015.79), ($15.88-15.117$) and (15.130) are given in Table 15.38. The color scale, translucent view of the charge-density of exemplary alkyl chloride, 1 -chloropropane, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.6.

Figure 15.6. Color scale, translucent view of the charge-density of 1-chloropropane showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.33. The symbols of functional groups of branched-chain alkyl chlorides.

Functional Group	Group Symbol
CCl of $\mathrm{CCl}_{m} \mathrm{H}_{4-m}$	$\mathrm{C}-\mathrm{Cl}$ (i)
CCl of CCl_{4}	$C-C l(i i)$
CCl of $\mathrm{C}_{n} \mathrm{H}_{2 n+2-m} \mathrm{Cl}_{m}$	$\mathrm{C}-\mathrm{Cl}$ (iii)
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to $t-C$)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.34. The geometrical bond parameters of branched-chain alkyl chlorides and experimental values [1].

Parameter	$\begin{aligned} & C-C l(i) \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C l \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \mathrm{C}-\mathrm{Cl} \text { (iii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\text { a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	2.32621	2.37026	2.32621	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.69136	1.70729	1.69136	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{gathered} \text { Bond Length } \\ 2 c^{\prime}(A) \end{gathered}$	1.79005	1.80692	1.79005	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$\begin{gathered} 1.785 \\ \text { (methyl chloride) } \end{gathered}$	$\begin{gathered} 1.767 \\ \text { (carbon } \\ \text { tetrachloride) } \end{gathered}$	1.802 (ethyl chloride) 1.790 $(1,2-$ dichloroethane)	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$
$b, c\left(a_{0}\right)$	1.59705	1.64416	1.59705	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.72709	0.72030	0.72709	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.35. The MO to HO intercept geometrical bond parameters of branched-chain alkyl chlorides. $R, R, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}($ atom - atom , $\left.m s p^{3} \cdot A O\right)$.

Bond	Atom	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 2 } \end{gathered}$	$\begin{gathered} E_{T} \\ \text { (eV) } \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 4 } \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (ev)	$\begin{array}{r} r_{\text {mama }} \\ \left(a_{0}\right. \end{array}$	$\begin{aligned} & r_{\text {malal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {calomanh }} \\ \text { (ev) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\begin{aligned} & H_{4-m} C_{a}-C l_{m}, m=1,2,3, \\ & \left(C_{a}-C l(\mathrm{i})\right) \end{aligned}$	C_{a}	-0.72457	0	0	0	-152.34026	0.91771	0.87495	-15.55033	-15.35946	69.62	110.38	30.90	1.99599	0.30463
$\begin{aligned} & H_{4, m} C_{a}-C_{m}, m=1,2,3, \\ & \left(C_{a}-C l(i)\right) \end{aligned}$	Cl	-0.72457	0	0	0		1.05158	0.87495	-15.55033		69.62	110.38	30.90	1.99599	0.30463
$C_{a} C_{4}$ ($C_{a}-C l$ (ii)	C_{a}	-0.46459	0	0	0	-152.08028	0.91771	0.88983	-15.29034	-15.09948	66.98	113.02	29.87	2.05530	0.34801
$C_{a} C_{4}$ ($C_{a}-\mathrm{Cl}$ (ii))	Cl	-0.46459	0	0	0		1.05158	0.88983	-15.29034		66.98	113.02	29.87	2.05530	0.34801
$\begin{aligned} & -H_{2} C_{C} C_{a}-C l \\ & \left(C_{a}-C l\right. \\ & \text { (iii) }) \end{aligned}$	C_{a}	-0.72457	-0.92918	0	0	-153.26945	0.91771	0.82562	-16.47951	-16.28864	63.18	116.82	27.48	2.06384	0.37248
$\begin{aligned} & -H_{2} C_{b} C_{a}-C l \\ & \left(C_{a}-C l(\text { iii) })\right. \end{aligned}$	Cl	-0.72457	0	0	0		1.05158	0.87495	-15.55033		69.62	110.38	30.90	1.99599	0.30463
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C-H}\left(\mathrm{CH}_{2}\right)$	c	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C}-\mathrm{H}(\mathrm{CH})$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{\mathrm{C}} \mathrm{C}_{\mathrm{H}} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a}) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{\mathrm{C}} \mathrm{C}_{2} \mathrm{H}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-\mathrm{H}_{2} \mathrm{Ca}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{C}_{\mathrm{c}}-R^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-H_{2} C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) C_{2}- \\ & (C-C(\mathrm{c}) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { isoCoC } C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C \text { (d)) } \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & \operatorname{tertC_{a}(R^{\prime }-H_{2}C_{d})C_{b}(R^{\prime \prime }-H_{2}C_{d})\mathrm {CH}_{2}-} \\ & (\mathrm{C}-\mathrm{C}(\mathrm{e})) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & {\operatorname{tertC} C_{c} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}-}^{(C-C(\mathrm{f}))} \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & \text { iso } C_{a}\left(R^{\prime \prime}-H_{2} C_{d}\right) C_{b}\left(R^{n \prime}-H_{2} C_{c}\right) C H_{2}- \\ & (C-C(f)) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.36. The energy parameters (eV) of functional groups of branched-chain alkyl chlorides.

Parameters	$\mathrm{C}-\mathrm{Cl}$ (i) Group	$\begin{aligned} & \mathrm{C-Cl} \\ & \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C l \\ \text { (iii) } \\ \text { Group } \end{gathered}$	CH_{3} Group	CH_{2} Group	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(a) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{c}) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(\mathrm{~d}) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
n_{1}	1	1	1	3	2	1	1	1	1	1	1	1
n_{2}	0	0	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.5	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	0.81317	0.81317	0.81317	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	1	1	1	1	1	1
c_{2}	1	1	1	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	1	1	1	0	1	1	0	0	0	1	1	0
c_{4}	2	2	2	1	1	1	2	2	2	2	2	2
c_{5}	0	0	0	3	2	1	0	0	0	0	0	0
C_{10}	0.5	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	0.81317	0.81317	0.81317	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-29.68411	-28.95265	-29.68411	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	8.04432	7.96922	8.04432	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	6.38036	6.10748	6.38036	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-3.19018	-3.05374	-3.19018	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E ((оіно) (eV)	-14.63489	-14.63489	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
	-1.44915	-0.92918	-1.44915	0	0	0	0	0	0	0	0	0
E_{T} (лоно) (eV)	-13.18574	-13.70571	-13.18574	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(\mathrm{H}_{2} \mathrm{NO}\right)(\mathrm{eV})$	-31.63536	-31.63540	-31.63536	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}{ }^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-1.44915	-0.92918	-1.44915	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}\left(\mu_{0}\right)(\mathrm{eV})$	-33.08452	-32.56455	-33.08452	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	7.42995	7.22380	13.0612	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	4.89052	4.75483	8.59708	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(\mathrm{eV})$	-0.14475	-0.14048	-0.19191	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kub }}(\mathrm{eV})$	$\begin{gathered} 0.08059 \\ {[12]} \\ \hline \end{gathered}$	$\begin{aligned} & 0.08059 \\ & {[12]} \end{aligned}$	$\begin{gathered} 0.09113 \\ {[13]} \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$
$\bar{E}_{\text {acc }}(\mathrm{eV})$	-0.10445	-0.10019	-0.14635	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
E_{T} (Group) (eV)	-33.18897	-32.66473	-33.23086	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
$E_{\text {mintual }}\left(\mathrm{c}_{4}\right.$,O/HO) (eV)	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
	0	0	0	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
E_{D} (Group) (eV)	3.77116	3.39496	3.96108	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

Table 15.37. the experimental values [3]. T

Formula	Name	$\underset{\text { (i) }}{C-C l}$	$\begin{gathered} C-C l \\ \text { (ii) } \end{gathered}$	$\underset{\text { (iii) }}{C-C l}$	CH_{3}	CH_{2}	CH	$C-C$ (a)	$C-C$ (b)	$C-C$ (c)	$C-C$ (d)	$C-C$ (e)	$C-C$ (f)	$E_{\text {mag }}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
CCl_{4}	Tetrachloromethane	0	4	0	0	0	0	0	0	0	0	0	0	-1	13.43181	13.448	0.00123
CHCl_{3}	Trichloromethane	3	0	0	0	0	1	0	0	0	0	0	0	-1	14.49146	14.523	0.00217
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Dichloromethane	2	0	0	0	1	0	0	0	0	0	0	0	0	15.37248	15.450	0.00499
$\mathrm{CH}_{3} \mathrm{Cl}$	Chloromethane	1	0			0	0	0	0	0	0	0	0	0	16.26302	16.312	0.00299
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	Chloroethane	0	0	1	,	1	0	1	0	0	0	0	0	0	28.61064	28.571	-0.00138
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$	1-Chloropropane	0	0	1	1	2	0	2	0	0	0	0	0	0	40.76834	40.723	-0.00112
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$	2-Chloropropane	0	0	1	2	0	1	0	2	0	0	0	0	0	40.86923	40.858	-0.00028
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$	1-Chlorobutane	0	0	1	1	3	0	3	0	0	0	0	0	0	52.92604	52.903	-0.00044
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$	2-Chlorobutane		0	1	2	1	1		2	0	0	0	0	0	52.02693	52.972	-0.00104
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$	1-Chloro-2-methylpropane	0	0	1	2	1	1	0	3	0	0	0	0	0	52.99860	52.953	-0.00085
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$	2-Chloro-2-methylpropane	0	0	1	3	0	0	0	0	3	0	0	0	-1	53.21057	53.191	-0.00037
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}$	1-Chloropentane	0	0	1	1	4	0	4	0	0	0	0	0	0	65.08379	65.061	0.00034
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}$	1-Chloro-3-methylbutane	0	0	,	2	2	1	1	3	0	0	0	0	0	65.15630	65.111	-0.00069
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}$	2-Chloro-2-methylbutane	0	0	1	3	1	0	1	0	3	0	0	0	-1	65.36827	65.344	-0.00037
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}$	2-Chloro-3-methylbutane	0	0	1	3	0	2	0	3	0	1	0	0		65.16582	65.167	0.00002
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}$	2-Chlorohexane	0	0	1	2	3	1	3	2	0	0	0	0	0	77.34233	77.313	-0.00038
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Cl}$	1-Chlorooctane	0	0	,	1	7	0	7	0	0	0	0	0	0	101.55684	101.564	0.00007
$\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Cl}$	1-Chlorododecane	0		1	1	11	0	11	0	0	0	0	0	0	150.18764	150.202	0.00009
$\mathrm{C}_{18} \mathrm{H}_{3} \mathrm{Cl}$	1-Chlorooctadecane	0	0	1	1	17	0	17	0	0	0	0	0	0	223.13384	223.175	0.00018

Table 15.38. The bond angle parameters of branched-chain alkyl chlorides and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{τ} is E_{T} (atom-atom, $m s p^{3} \cdot A O$).

ALKYL BROMIDES ($\left.C_{n} H_{2 n+2-m} B r_{m}, \quad n=1,2,3,4,5 \ldots \infty \quad m=1,2,3 \ldots \infty\right)$
The branched-chain alkyl bromides, $\mathrm{C}_{n} \mathrm{H}_{2 n+2-m} \mathrm{Br}_{m}$, may comprise at least two terminal methyl groups (CH_{3}) at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds wherein at least one H is replaced by a bromine. The $C-B r$ bond comprises a functional group for each case of $B r$ replacing a H of methane for the series $H_{4-m} C-B r_{m}, m=1,2,3$, with the $C-B r$ bond of $C B r_{4}$ comprising another functional group due to the limitation of the minimum energy of Br matched to that of the $C 2 s p^{3} \mathrm{HO}$. In addition, the $\mathrm{C}-\mathrm{Br}$ bond due to Br replacing a H of an alkane is a functional group. The methyl, methylene, methylyne functional groups are equivalent to those of branched-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups that are equivalent to those of branched-chain alkanes.

The solution of the $C-B r$ functional groups comprises the hybridization of the $2 s$ and $2 p$ shells of each C to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3}$ hybridized orbital (HO) and the Br AO to form a molecular orbital (MO) permits each participating orbital to decrease in radius and energy. In alkyl bromides, the energy of bromine is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264). Thus, c_{2} in Eq. (15.61) is one, and the energy matching condition is determined by the C_{2} parameter. Then, the $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)), and the Br AO has an energy of $E(\mathrm{Br})=-11.81381 \mathrm{eV}$. To meet the equipotential condition of the union of the $\mathrm{C}-\mathrm{Br} \mathrm{H}_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor C_{2} of Eq. (15.61) for the $C-B r$-bond MO given by Eqs. (15.77) and (15.79) is:

$$
\begin{equation*}
C_{2}\left(C 2 s p^{3} \mathrm{HO} \text { to } \mathrm{Br}\right)=\frac{E(\mathrm{Br})}{E\left(C, 2 s p^{3}\right)} c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=\frac{-11.81381 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.91771)=0.74081 \tag{15.131}
\end{equation*}
$$

The valence energy of the carbon $2 p$ is -11.2603 eV and that of the Br AO is -11.81381 eV . The energy difference is less than that of $E_{T}\left(C-C, 2 s p^{3}\right)$ given by Eq. (14.151) for a single bond. Thus, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the alkyl $C-B r-$ bond MO in Eq. (15.61) due to the charge donation from the C and Br atoms to the MO is -0.92918 eV (Eq. (14.513)) based on the maximum single-bond-energy contribution of the $C 2 s p^{3} \mathrm{HO} . E_{T}\left(\right.$ atom-atom,msp $\left.{ }^{3} . A O\right)$ of the series $C B r_{m} H_{4-m} m=1,2,3$ is equivalent to those of methyl groups, -0.72457 eV (Eq. (14.151)). For CBr_{4}, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-B r$-bond MO in Eq. (15.61) due to the charge donation from the C and $B r$ atoms to the MO is -0.36229 eV based on the maximum charge density on the $C 2 s p^{3}$ HO. It is given by Eqs. (15.18-15.20) and Eq. (15.29) with a linear combination of $s=1$ corresponding to $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)=-0.72457 \mathrm{eV}$ and $s=0$ corresponding to: $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} \cdot A O\right)=0$.

The symbols of the functional groups of branched-chain alkyl bromides are given in Table 15.39. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of branched-chain alkyl bromides are given in Tables $15.49,15.50$, and 15.51 , respectively. The total energy of each branchedchain alkyl bromide given in Table 15.52 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.51 corresponding to functional-group composition of the molecule. For each set of unpaired electrons created by bond breakage, the $C 2 s p^{3} \mathrm{HO}$ magnetic energy $E_{\text {mag }}$ that was subtracted from the weighted sum of the $E_{D}($ Group $)(e V)$ values based on composition is given by Eq. (15.67). The $C-C$ bonds to the $C H B r$ group (one H bond to C) were each treated as an iso $C-C$ bond. The $C-C$ bonds to the $C B r$ group (no H bonds to C) were each treated as a tert-butyl $C-C$. The bond angle parameters of branched-chain alkyl bromides determined using Eqs. (15.70-15.79), (15.88-15.117) and (15.131) are given in Table 15.44. The color scale, translucent view of the charge-density of exemplary alkyl bromide, 1-bromopropane, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.7.

Figure 15.7. Color scale, translucent view of the charge-density of 1-bromopropane showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.39. The symbols of functional groups of branched-chain alkyl bromides.

Functional Group	Group Symbol
CBr of $\mathrm{CBr}_{m} \mathrm{H}_{4-m}$	$C-B r$ (i)
CBr of CBr_{4}	$C-B r$ (ii)
CBr of $\mathrm{C}_{n} \mathrm{H}_{2 n+2-m} \mathrm{Br}_{m}$	$C-B r$ (iii)
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to t-C)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15．40．The geometrical bond parameters of branched－chain alkyl bromides and experimental values［1］．

Parameter	$\begin{aligned} & C-B r \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-B r \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-B r \text { (iii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(b) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{c}) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(d) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	2.49163	2.52509	2.47329	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.83395	1.84622	1.82719	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
Bond Length $2 c^{\prime}(A)$	1.94097	1.95396	1.93381	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp．Bond Length （A）	$\begin{gathered} 1.933 \\ \text { (methyl bromide) } \end{gathered}$	$\begin{gathered} 1.935 \\ \text { (carbon } \\ \text { tetrabromide) } \end{gathered}$	1.93 $(1,1,1-$ tribromeethane $)$ 1.950 $(1,2-$ dibromoethane）	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$			$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	1.532 （propane） 1.531 （butane）	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \end{gathered}$ (butane)
$b, c\left(a_{0}\right)$	1.68667	1.72265	1.66689	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.73604	0.73115	0.73877	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15．41．The MO to HO intercept geometrical bond parameters of branched－chain alkyl bromides．$R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups．E_{T} is $E_{T}\left(\right.$ atom $\left.-a t o m, m s p^{3} \cdot A O\right)$ ．

ぶ	$\begin{gathered} \stackrel{7}{7} \\ \underset{\sim}{6} \end{gathered}$	$\underset{\substack{\mathrm{m} \\ \underset{\sim}{4} \\ \hline}}{\substack{2 \\ \hline}}$	$\begin{gathered} \text { J. } \\ \stackrel{N}{0} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \text { प} \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\infty}{\infty} \\ \cdots \\ \underset{\sim}{\infty} \end{gathered}$	$\begin{gathered} \infty \\ \stackrel{\infty}{0} \\ \stackrel{0}{0} \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{0} \end{aligned}$	$\begin{aligned} & \text { ल్ } \\ & \text { ci } \\ & \text { cis } \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \underset{N}{\hat{N}} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\ddot{0}} \\ & \substack{\infty \\ 0} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \stackrel{n}{n} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { en } \\ & \text { 侖 } \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \stackrel{n}{n} \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\lambda} \\ & \underset{O}{\overleftarrow{O}} \end{aligned}$	¢ d \vdots 0
\bigcirc－	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\circ}{e} \\ & \stackrel{i}{i} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\circ}{8} \\ & \frac{1}{i} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{n} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \sqrt{n} \\ & \stackrel{n}{N} \\ & \underset{i}{2} \end{aligned}$	$\begin{gathered} \hat{\text { I}} \\ \underset{\sim}{\mathrm{N}} \end{gathered}$	$\begin{aligned} & \widehat{\widehat{N}} \\ & \stackrel{y}{\dot{\sim}} \end{aligned}$	$\begin{aligned} & \text { t} \\ & \text { Nu} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{array}{\|l\|l} \stackrel{\circ}{\circ} \\ \substack{1 \\ \\ \hline} \end{array}$	$\begin{array}{\|c} \infty \\ \stackrel{\infty}{4} \\ \underset{\sim}{4} \end{array}$	$\begin{aligned} & \hat{\infty} \\ & \stackrel{\infty}{\infty} \\ & \end{aligned}$		$\frac{\underset{1}{6}}{\underset{-}{-}}$	$\begin{gathered} \text { N} \\ \stackrel{N}{\mathrm{~N}} \end{gathered}$	$\frac{\underset{\sim}{2}}{\underset{\sim}{2}}$	$$	$\begin{gathered} \text { 氐 } \\ \text { O} \end{gathered}$	
0 －	$\stackrel{\tilde{N}}{\stackrel{\rightharpoonup}{2}}$	$\stackrel{\tilde{N}}{\stackrel{N}{\grave{n}}}$	$\stackrel{\infty}{\infty}$	$\stackrel{\bullet}{\infty}$	ñ	$\stackrel{\grave{\Sigma}}{\grave{\lambda}}$	$\stackrel{\infty}{\stackrel{\infty}{\underset{~}{+}}}$	$\begin{gathered} \underset{\sim}{\infty} \\ \stackrel{\infty}{\infty} \end{gathered}$	$\frac{\stackrel{r}{n}}{\frac{m}{m}}$	$\stackrel{\infty}{\infty}$	-ٌ	$\stackrel{\otimes}{\mathrm{N}}$	$\stackrel{\text { t }}{\underset{\sim}{i}}$	$\stackrel{\otimes}{\mathrm{N}}$	$\begin{aligned} & \text { B } \\ & \text { ì } \end{aligned}$	$\underset{\sim}{\text { I }}$	－
－\％	$\stackrel{\varrho}{\rightrightarrows}$	$\stackrel{\varrho}{\rightrightarrows}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{j}{3} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{=} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\cong}{\leftrightharpoons}$	$\stackrel{\rightharpoonup}{\infty}$	$\begin{aligned} & \bar{n} \\ & \mathrm{i} \\ & \mathrm{o} \end{aligned}$	$\stackrel{n}{\vdots}$	$\begin{aligned} & \stackrel{\otimes}{\theta} \\ & \stackrel{\infty}{=} \end{aligned}$	$\frac{\infty}{6}$	$\begin{aligned} & \text { in } \\ & \underset{\sim}{\mathrm{g}} \end{aligned}$	$\stackrel{尺}{\sim}$	$\stackrel{\imath}{\square}$	$\stackrel{\stackrel{\overbrace{}}{2}}{\underset{\sim}{2}}$		$\begin{gathered} \text { ત̀ } \\ \text { In } \end{gathered}$	$\begin{aligned} & \text { ลั } \\ & \text { 든 } \end{aligned}$
－		$\underset{\infty}{\circ}$	$\frac{9}{6}$	$\frac{0}{6}$	$\begin{aligned} & \hat{0} \\ & \text { í } \end{aligned}$	$\frac{9}{6}$	$\stackrel{\text { g }}{\stackrel{\text { f }}{2}}$		$\begin{aligned} & 9 \\ & \vdots \\ & \hline \end{aligned}$	$\begin{gathered} \mathbb{N} \\ \underset{\delta}{\circ} \end{gathered}$	$\begin{gathered} \text { F } \\ \text { Bi } \end{gathered}$	$\underset{\substack{\infty \\ \infty \\ \hline}}{\substack{0}}$	$\underset{\underset{子}{\mathrm{o}}}{\stackrel{\rightharpoonup}{2}}$	$\begin{gathered} \text { of } \\ \underset{\sim}{\circ} \end{gathered}$	䓂	$\stackrel{\infty}{\text { in }}$	芯
	$\begin{aligned} & \text { N} \\ & \text { N } \\ & \text { 寸 } \end{aligned}$		$\begin{aligned} & \text { ô } \\ & \stackrel{0}{0} \\ & \underset{\ddagger}{1} \end{aligned}$		$\begin{aligned} & \text { ơ } \\ & 0 \\ & \text { ón } \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \hat{0} \\ & \text { St } \\ & \vdots \\ & n \\ & n \\ & \end{aligned}$			$\begin{aligned} & \hat{0} \\ & \text { 荅 } \\ & \text { n } \end{aligned}$		$\begin{aligned} & \underset{\sim}{Z} \\ & \underset{\sim}{\underset{~}{7}} \end{aligned}$		$\begin{aligned} & \underset{\sim}{Z} \\ & \underset{\sim}{\underset{~}{\prime}} \end{aligned}$			
	$\begin{aligned} & \underset{\circ}{ \pm} \\ & \stackrel{\infty}{\square} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & \mathscr{0} \\ & \text { ö } \\ & \stackrel{1}{1} \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{6} \\ & \stackrel{1}{1} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { ה̀ } \\ & \text { H} \\ & \end{aligned}$	$\begin{gathered} \underset{\sim}{\hat{c}} \\ \underset{\sim}{\underset{~}{~}} \end{gathered}$	$\begin{aligned} & \stackrel{N}{7} \\ & \stackrel{\text { an }}{6} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ \stackrel{0}{0} \\ \underset{\sim}{1} \end{gathered}$	$\begin{aligned} & \underset{\sim}{2} \\ & \stackrel{\text { N}}{\underset{~ H}{n}} \end{aligned}$	$\begin{aligned} & \underset{7}{7} \\ & \underset{\sim}{0} \\ & \underset{1}{2} \end{aligned}$		$\begin{aligned} & \text { ö } \\ & \stackrel{0}{\circ} \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{0}{\leftrightarrows} \end{aligned}$		B． $\stackrel{0}{\circ}$ $\underset{\sim}{4}$	
－\％	$\begin{gathered} \mathbb{\infty} \\ \stackrel{\sim}{\aleph} \\ \underset{\sim}{\infty} \end{gathered}$	$\begin{aligned} & \mathbb{\infty} \\ & \stackrel{\text { an }}{\infty} \\ & \infty \end{aligned}$		$\begin{aligned} & \text { to } \\ & \text { ©ू } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \curvearrowleft \\ & \stackrel{\infty}{\infty} \\ & \infty \\ & \infty \end{aligned}$	∞ ∞ ∞ ∞ ∞	$\begin{aligned} & \underset{\sim}{0} \\ & \widehat{0} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{\sim}{2} \\ & \stackrel{y}{\infty} \\ & \infty \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{a}{0} \\ & \widehat{0} \\ & \underset{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{y}{6} \\ & \stackrel{\infty}{\circ} \end{aligned}$	$\underset{\text { N }}{\text { N }}$	$\begin{aligned} & \stackrel{\otimes}{\infty} \\ & \stackrel{\infty}{\circ} \\ & \stackrel{0}{0} \end{aligned}$	$\underset{\text { 층 }}{\substack{\text { N } \\ \hline}}$	$\begin{aligned} & \text { n} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & i n \\ & \stackrel{i n}{\infty} \\ & \stackrel{\infty}{\circ} \end{aligned}$	N
－	$\frac{E}{\vdots}$	$\begin{aligned} & \stackrel{8}{7} \\ & \stackrel{n}{3} \end{aligned}$	$\frac{E}{\vdots}$	$\begin{aligned} & \stackrel{a}{n} \\ & \stackrel{n}{\square} \end{aligned}$	$\frac{E}{\vdots}$	$\begin{aligned} & \stackrel{a}{3} \\ & \stackrel{3}{3} \end{aligned}$	$\frac{E}{\hat{O}}$	$\frac{E}{\hat{Z}}$	$\frac{E}{E}$	$\frac{\Sigma}{\hat{\lambda}}$	$\frac{E}{\vdots}$	$\frac{E}{\vdots}$	$\frac{E}{2}$	$\frac{E}{\vdots}$	$\frac{E}{2}$	$\frac{E}{2}$	$\frac{E}{\text { E }}$
			$\begin{gathered} 00 \\ 0 \\ \vdots \\ \vdots \\ \vdots \end{gathered}$									$\begin{aligned} & \text { J } \\ & \text { N } \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{8} \\ & \stackrel{+}{7} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { N } \\ & \text { + } \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { o} \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{1}{4} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$	$\begin{aligned} & \text { Co } \\ & \stackrel{\circ}{\circ} \\ & \underset{\sim}{7} \end{aligned}$	$\frac{2}{2}$ $\frac{n}{n}$ $\frac{1}{2}$ \square
$\Leftrightarrow \stackrel{t}{S_{0}}$	\bigcirc	－	\bigcirc	－	\bigcirc	\bigcirc		\bigcirc	$\stackrel{\text {－}}{\substack{\text { N } \\ \text { N } \\ \text { i }}}$	$\stackrel{\circ}{\circ}$							
※S	\bigcirc	$\begin{aligned} & \infty \\ & \text { N } \\ & \text { ה } \\ & \vdots \end{aligned}$	\bigcirc	\bigcirc	$\begin{aligned} & \infty \\ & \text { ふे } \\ & \text { فे } \end{aligned}$	$\begin{gathered} \text { N } \\ \underset{\sim}{\text { N }} \end{gathered}$	$\begin{gathered} \infty \\ \text { ふ̀ } \\ \text { 人̀ } \end{gathered}$	$$	$\begin{aligned} & \infty \\ & \text { ふ̀ } \\ & \text { 人̀ } \end{aligned}$								
\& S	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\frac{\infty}{\grave{\alpha}}$	\bigcirc	\bigcirc	$\begin{aligned} & \frac{\infty}{\grave{\alpha}} \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$	$\begin{gathered} \infty \\ \substack{2 \\ \vdots \\ \vdots \\ i} \end{gathered}$	\bigcirc	$\begin{gathered} \infty \\ \underset{\text { N}}{\mathbf{L}} \end{gathered}$	$\begin{gathered} \infty \\ \underset{\sim}{\circ} \end{gathered}$		$\begin{gathered} \infty \\ \stackrel{\alpha}{\grave{\alpha}} \end{gathered}$		¢	
令要言	$\begin{aligned} & \text { त్তे } \\ & \text { 饣̀ } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { त్তे } \\ & \text { 饣ి } \end{aligned}$	$\stackrel{\underset{i}{ \pm}}{\stackrel{ \pm}{\infty}}$	$\stackrel{\underset{i}{\infty}}{\stackrel{ \pm}{6}}$		$\begin{aligned} & \text { à } \\ & \text { な̧ } \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\text { הे }}{1} \\ & \hat{i} \end{aligned}$	$\begin{aligned} & \infty \\ & \bar{\lambda} \\ & \text { הे } \end{aligned}$	$\begin{gathered} \infty \\ \frac{\infty}{2} \\ 2 \\ \vdots \\ i \end{gathered}$		$\begin{aligned} & \infty \\ & \text { ふे } \\ & \text { 人, } \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\alpha}{\overleftarrow{\alpha}} \end{gathered}$	$\begin{aligned} & \infty \\ & \text { ふे } \\ & \text { 人े } \end{aligned}$			$$	N
$\frac{\stackrel{⿸ ⿻ 一 丿 口}{2}}{2}$	0°	से	0°	＊	0°	से	\cup	\cup	\cup	0°	v^{*}	0°	v^{*}	v°	u゙	0^{0}	u°
号									$\underset{\substack{E \\ i \\ i \\ i}}{ }$	$\begin{aligned} & 1 \\ & \mathbf{s}^{\prime} \\ & \mathbf{N}^{\prime} \cong \\ & 0_{0} \\ & \mathbf{x}^{\prime} \end{aligned}$	$\begin{array}{\|c} \\ 1 \\ 1 \\ n_{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$						$\left.\begin{array}{\|l\|} 1 \\ y^{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}\right]$

Table 15.42. The energy parameters (eV) of functional groups of branched-chain alkyl bromides

Parameters		$\begin{gathered} C-B r \\ \text { (i) } \\ \text { (iroup } \end{gathered}$	$\begin{gathered} C-B r \\ \text { (ii) } \\ c^{\prime-B r} \end{gathered}$	$\begin{gathered} C-B r \\ (\text { (iii) } \\ \left(\begin{array}{c} c \end{array}\right) \end{gathered}$	$\underset{\text { Group }}{\mathrm{CH}_{3}}$	$\underset{\text { Group }}{\mathrm{CH}_{2}}$	$\begin{gathered} C-H \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\text { a) } \\ \text { Group } \end{gathered}$		$\underset{\substack{C-C(b) \\ \text { Group }}}{ }$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\underset{\text { Group }}{C-C(d)}$		$\underset{\substack{C-C(e) \\ \text { Group }}}{\text { cen }}$	$\underset{\substack{C-C(f) \\ \text { Group }}}{\text { (}}$	
n_{1}		1	1	1	3	2	1	1		1	1	1		1	1	
n_{2}		0	0	0	2	1	0	0		0	0	0		0	0	
n_{3}		0	0	0	0	0	0	0		0	0	0		0	0	
C_{1}		0.5	0.5	0.5	0.75	0.75	0.75	0.5		0.5	0.5	0.5		0.5	0.5	
C_{2}		0.74081	0.74081	0.74081	1	1	1	1		1	1	1		1	1	
c_{1}		1	1	1	1	1	1	1		1	1	1		1	1	
c_{2}		1	1	1	0.91771	0.91771	0.91771	0.91771		0.91771	0.91771	0.91771		0.91771	0.91771	
c_{3}		0	0	0	0	1	1	0		0	0	1		1	0	
c_{4}		2	2	2	1	1	1	2		2	2	2		2	2	
c_{s}		0	0	0	3	2	1	0		0	0	0		0	0	
C_{10}		0.5	0.5	0.5	0.75	0.75	0.75	0.5		0.5	0.5	0.5		0.5	0.5	
C_{20}		0.74081	0.74081	0.74081	1	1	1	1		1	1	1		1	1	
$V_{e}($ eV $)$		-27.94806	-27.44996	-28.22940	-107.32728	-70.41425	-35.12015	-28.79214		-28.79214	-29.10112	-28.79214		-29.10112	-29.10112	
$V_{p}(e l)$		7.41885	7.36953	7.44631	38.92728	25.78002	12.87880	9.33352		9.33352	9.37273	9.33352		9.37273	9.37273	
$T(e V)$		5.60839	5.43544	5.70686	32.53914	21.06675	10.48582	6.77464		6.77464	6.90500	6.77464		6.90500	6.90500	
$V_{m}(\mathrm{eV})$		-2.80419	-2.71772	-2.85343	-16.26957	-10.53337	-5.24291	-3.38732		-3.38732	-3.45250	-3.38732		-3.45250	-3.45250	
		-14.63489	-14.63489	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407		-15.56407	-15.3544	-15.56407		-15.35946	-15.35946	
		-0.72457	-0.36229	-0.92918	0	0	0	0		0	0	0		0	0	
$E_{t}($ (of $/ \mathrm{Ho})(\mathrm{eV})$		-13.91032	-14.27260	-13.70571	-15.56407	-15.56407	-14.63489	-15.56407		-15.56407	-15.3544	-15.56407		-15.35946	-15.35946	
$E_{t}\left(e_{r}, \omega_{0}(e l)\right.$		-31.63533	-31.63531	-31.63537	-67.64451	-49.66493	-31.63533	-31.63537		-31.63537	-31.63335	-31.63537		-31.63535	-31.63535	
$E_{t}\left(\right.$ atom - atom, msp $\left.{ }^{3} . A O\right)(e \mathrm{~V})$		-0.72457	-0.36229	-0.92918	0	0	0	-1.85836		-1.85836	-1.44915	-1.85836		-1.44915	-1.44915	
$E_{T}\left({ }^{(\omega)}(\mathrm{eV})\right.$		-32.35994	-31.99766	-32.56+55	-67.69450	-49.66493	-31.63537	-33.49373		-33.49373	-33.08452	-33.49373		-33.08452	-33.08452	
$\omega^{\omega}\left(10^{1 / 5} \mathrm{rad} / \mathrm{s}\right)$		6.39733	6.27059	6.46864	24.9286	24.2751	24.1759	9.43699		9.43699	15.4846	9.43699		9.55643	9.55643	
$E_{K}(\mathrm{eV})$		4.21083	4.12741	4.25777	16.40846	15.97831	15.91299	6.21159		6.21159	10.19220	6.21159		6.29021	6.29021	
$\bar{E}_{D}(\mathrm{eV})$		-0.13137	-0.12861	-0.13293	-0.25352	-0.25017	-0.24966	-0.16515		-0.16515	-0.20896	-0.16515		${ }^{-0.16416}$	-0.16416	
$\bar{E}_{\bar{E}_{\text {kish }}(e V)}$		0.07575 [14]	0.08332 [15]	0.07575 [14]	$\begin{gathered} 0.35532 \\ \text { (Eq. } 13.458 \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. (13.458)) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	0.12312		0.17978	0.09944	0.12312		0.12312	${ }_{\substack{0.12312 \\[2]}}$	
$\bar{E}_{\text {oce }}(e V)$		${ }_{-0.09349}$	-0.08695	-0.09506	${ }_{-0.22757}$	${ }_{-0.14502}$	${ }_{-0.07200}$	-0.10359		-0.07526	-0.15924	-0.10359		${ }_{-0.10260}$	-0.10260	
$E_{\text {mos }}(e \mathrm{~V})$		0.14803	0.14803	0.14883	0.14803	0.14803	0.14803	0.14803		0.14803	0.14803	0.14803		0.14803	0.14803	
$E_{T}($ mome $)(\mathrm{eV})$		-32.45343	-32.08460	-32.65961	-67.92207	-49.80996	-31.70737	-33.59732		-33.49373	-33.24376	-33.59732		-33.18712	-33.18712	
		-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489		-14.63489	-14.63489	-14.63489		-14.63489	-14.63489	
		0		0	-13.59844	-13.59844	-13.59844	-		-	0	0			0	
$E_{D}(\underline{\text { mimu }}$) $(e V)$		3.18365	2.81482	3.38983	12.49186	7.83016	3.32601	4.32754		4.29921	3.97398	4.17951		3.62128	3.91734	
Table 15.43. The total bond energies of branched-chain alkyl bromides calculated using the functional group composition and the energies of Table compared to the experimental values [3]. The magnetic energy $E_{m a g}$ that is subtracted from the weighted sum of the E_{D} (Group) (eV) values based on comp given by (15.58).																
Formula	Name		$\text { (i) } \underset{\text { (ii) }}{C-B}$	$\begin{gathered} C-B r \\ (\text { (iii) } \end{gathered}$	CH_{3}	$\mathrm{H}_{2} \quad \mathrm{CH}(\mathrm{i})$	CH (ii)	$C-C$ (a) C	$C-C$ (b)) $C-C$ (c)	$C-C$ (d)	$C-C$ (e) C	$C-C$ (f)	$\begin{gathered} \text { Calculated } \\ \text { Total Bond } \\ \text { Energy (eV) } \end{gathered}$	Experimental Total Bond Energy (eV)	$\begin{aligned} & \text { Relative } \\ & \text { Error } \end{aligned}$
			4		0	1	0		0		0	0	,	11.25929	${ }_{1} 11.196$	-0.00566
${ }_{\text {CHBr }}^{\text {CBr }}$			${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{1}^{0}$	${ }_{0}^{1}$	${ }_{0}^{0}$	${ }_{0}^{0}$	0 0	0 0	0 0	0	0 0	12.87698 15.67551	12.919 15.732	0.00323 0.00360
${ }_{C}^{\mathrm{CH}_{3} \mathrm{Br}}$ CHr ${ }^{\text {Bramomethane }}$			0	${ }_{1}^{0}$	1	${ }_{0}^{0}$	0	,	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$		15.6751 28.03939	15.732 27.953	${ }^{0} 0.00360$
			0	1	1		0			0		0	0	40.19709	40.160	-0.00093
			0	1	2	1		0	2	0	0	0		40.29798	40.288	-0.00024
			0	1	3	1	0	0	1	2	0	0	1	63.53958	${ }^{63.477}$	-0.00098
			0	1	1	0	0	5	0	0	0	0	0	76.67019	76.634	-0.00047
			0	1	1	0	0		0	0	0	0	0	88.82789	88.783	0.00051
			0	1	1		0	7		0	0	-	0	100.98559	100.952	-0.00033
			${ }_{0}^{0}$	1	1	0	${ }_{0}^{0}$	11 15	0	${ }_{0}^{0}$	0	0	0	149.61639 198.24719	149.573 198.192	${ }^{-0.00029}$
				1	1	0	0	15	0	0	0	0	0	198.24719	198.192	-0.00028

Table 15.44. The bond angle parameters of branched-chain alkyl bromides and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is $E_{T}\left(\right.$ atom - atom,$\left.m s p^{3} . A O\right)$.

ALKYL IODIDES ($\left.C_{n} H_{2 n+2-m} I_{m}, \quad n=1,2,3,4,5 \ldots \infty m=1,2,3 \ldots \infty\right)$
The branched-chain alkyl iodides, $C_{n} H_{2 n+2-m} I_{m}$, may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds wherein at least one H is replaced by an iodine atom. The $C-I$ bond comprises a functional group for I replacing a H of methane $\left(\mathrm{CH}_{3} I\right)$ or for I replacing a H of an alkane corresponding to the series $C_{n} H_{2 n+2-m} I_{m}$. The $C-I$ bond of each of $\mathrm{CH}_{2} \mathrm{I}_{2}$ and CHI_{3} comprise separate functional groups due to the limitation of the minimum energy of I matched to that of the $C 2 s p^{3} \mathrm{HO}$. The methyl, methylene, methylyne functional groups are equivalent to those of branchedchain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups that are equivalent to those of branched-chain alkanes.

The solution of the $C-I$ functional groups comprises the hybridization of the $2 s$ and $2 p$ AOs of each C to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the $I \mathrm{AO}$ to form a MO permits each participating orbital to decrease in radius and energy. In alkyl iodides, the energy of iodine is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264). Thus, c_{2} in Eq. (15.61) is one, and the energy matching condition is determined by the C_{2} parameter. Then, the $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)). The I AO has an energy of $E(I)=-10.45126 \mathrm{eV}$. To meet the equipotential condition of the union of the $\mathrm{C}-I \quad H_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor C_{2} of Eq. (15.60) for the $C-I$-bond MO given by Eqs. (15.77) and (15.79) is:

$$
\begin{equation*}
C_{2}\left(C 2 s p^{3} \mathrm{HO} \text { to } \mathrm{I}\right)=\frac{E(I)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=\frac{-10.45126 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.91771)=0.65537 \tag{15.132}
\end{equation*}
$$

The valence energy of the carbon $2 p$ is -11.2603 eV and that of the $I \mathrm{AO}$ is -10.45126 eV . The energy difference is positive. Thus, based on the maximum charge density on the $C 2 s p^{3} \mathrm{HO} E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-I$-bond MO in Eq. (15.61) due to the charge donation from the C and I atoms to the MO is -0.36229 eV (Eqs. (15.18-15.20 and Eq. (15.29) with a linear combination of $s=1, E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)=-0.72457 \mathrm{eV}$ and $E_{T}\left(\right.$ atom-atom, $\left.\left.m s p^{3} . A O\right)=0\right)$ for methyl and alkyl iodides, -0.18114 eV for diiodomethane, and 0 for CHI_{3}.

The symbols of the functional groups of branched-chain alkyl iodides are given in Table 15.45. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of branched-chain alkyl iodides are given in Tables $15.55,15.56$, and 15.57 , respectively. The total energy of each branched-chain alkyl iodide given in Table 15.49 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.48 corresponding to functional-group composition of the molecule. For each set of unpaired electrons created by bond breakage, the $C 2 s p^{3} \mathrm{HO}$ magnetic energy $E_{\text {mag }}$ that was subtracted from the weighted sum of the E_{D} (Group) (eV) values based on composition is given by Eq. (15.67). The $C-C$ bonds to the $C H I$ group (one H bond to C) were each treated as an iso $C-C$ bond. The $C-C$ bonds to the $C I$ group (no H bonds to C) were each treated as a tert-butyl $C-C . E_{\text {mag }}$ is subtracted for each t-butyl group. The bond angle parameters of branched-chain alkyl iodides determined using Eqs. (15.70-15.79), (15.8815.117) and (15.132) are given in Table 15.50. The color scale, translucent view of the charge-density of exemplary alkyl iodide, 1-iodopropane, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.8.

Figure 15.8. Color scale, translucent view of the charge-density of 1-iodopropane showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.45. The symbols of functional groups of branched-chain alkyl iodides.

Functional Group	Group Symbol
CI of $\mathrm{CH}_{3} \mathrm{I}$ and $\mathrm{C}_{n} \mathrm{H}_{2 n+2-m} \mathrm{I}_{m}$	$C-I$ (i)
CI of $\mathrm{CH}_{2} \mathrm{I}_{2}$	$C-I$ (ii)
CI of CHI_{3}	$C-I$ (iii)
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to $t-C$)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.46. The geometrical bond parameters of branched-chain alkyl iodides and experimental values [1].

Parameter	$\begin{aligned} & C-I(\mathrm{i}) \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-I \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-I \text { (iii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & \mathrm{C}-\mathrm{H} \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(d) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	2.67103	2.68865	2.70662	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	2.01881	2.02546	2.03222	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
	2.13662	2.14365	2.15081	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$\begin{gathered} 2.132 \\ \text { (methyl iodide) } \end{gathered}$	$\begin{gathered} 2.132 \\ \text { (methyl iodide) } \end{gathered}$	$\begin{aligned} & 2.15 \\ & \text { (carbon } \\ & \text { tetraiodide) } \end{aligned}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	1.532 (propane) 1.531 (butane)	1.532 (propane) 1.531 (butane)	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	1.532 (propane) 1.531 (butane)	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$
$b, c\left(a_{0}\right)$	1.74894	1.76815	1.78770	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.75582	0.75334	0.75083	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.47. The MO to HO intercept geometrical bond parameters of branched-chain alkyl iodides. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$.

Bond	Atom	$\begin{gathered} E_{T} \\ (\text { (eV) } \\ \text { Bond 1 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 3 \end{gathered}$	$\begin{gathered} E_{T} \\ \text { (eV) } \\ \text { Bond } 4 \end{gathered}$	Final Total Energy C2sp ${ }^{3}$ (eV)	$\begin{aligned} & r_{\text {manal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {mal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} \hline E_{\text {calomen }} \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (e \mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \hline \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{gathered} \theta_{1} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\begin{aligned} & \mathrm{CH}_{3} \mathrm{I} \\ & \left(\mathrm{C}_{a}-I(\mathrm{i})\right) \\ & \hline \end{aligned}$	C_{a}	-0.18114	0	0	0	-151.79683	0.91771	0.90664	-15.00689	-14.81603	69.63	110.37	29.08	2.33442	0.31560
$\begin{aligned} & \hline \mathrm{CH}_{3} I \\ & \left(\mathrm{C}_{a}-I(\mathrm{i})\right) \\ & \hline \end{aligned}$	I	-0.18114	0	0	0		1.30183	0.90664	-15.00689		69.63	110.37	29.08	2.33442	0.31560
$\begin{aligned} & -H_{2} C_{b} C_{a} I \\ & \left(C_{a}-I(i)\right) \\ & \hline \end{aligned}$	C_{a}	-0.18114	-0.92918	0	0	-152.72602	0.91771	0.85377	-15.93608	-15.74521	63.16	116.84	25.82	2.40436	0.38554
$\begin{aligned} & -H_{2} C_{b} C_{a} I \\ & \left(C_{a}-I(i)\right) \\ & \hline \end{aligned}$	I	-0.18114	0	0	0		1.30183	0.90664	-15.00689		69.63	110.37	29.08	2.33442	0.31560
$\begin{aligned} & C_{a} H_{2} I_{2} \\ & \left(C_{a}-I(\text { (ii)) }\right. \end{aligned}$	C_{a}	-0.09057	0	0	0	-151.70626	0.91771	0.91214	-14.91632	-14.72546	68.61	111.39	28.71	2.35818	0.33272
$\begin{aligned} & C_{a} H_{2} I_{2} \\ & \left(C_{a}-I(\text { (ii)) }\right. \end{aligned}$	I	-0.09057	0	0	0		1.30183	0.91214	-14.91632		68.61	111.39	28.71	2.35818	0.33272
$\begin{aligned} & C_{a} \mathrm{HI}_{3} \\ & \left(\mathrm{C}_{a}-I\right. \text { (iii)) } \end{aligned}$	C_{a}	0	0	0	0	-151.61569	0.91771	0.91771	-14.82575	-14.63489	67.56	112.44	28.32	2.38256	0.35035
$\begin{aligned} & C_{a}{H I_{3}}^{\left(C_{a}-I(\mathrm{iii})\right)} \\ & \hline \end{aligned}$	1	0	0	0	0		1.30183	0.91771	-14.82575	-14.63489	67.56	112.44	28.32	2.38256	0.35035
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C-H}\left(\mathrm{CH}_{2}\right)$	c	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}(\mathrm{CH})$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{\mathrm{H}_{3} C_{a} \mathrm{C}_{\mathrm{b}} \mathrm{CH}_{2}-} \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-H_{2} C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C(b)) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-H_{2} C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) C H_{2}- \\ & (C-C(c)) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { isoC } C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C \text { (d)) } \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\operatorname{tertC} C_{0}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{e}\right) \mathrm{CH}_{2}-}^{(C-C(\mathrm{e}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & {\operatorname{tert} C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}-}_{(C-C(\mathrm{f}))} \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0 -	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & \text { isoC }\left(R_{a}^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C-C(f)}) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.42298

Table 15.48. The energy parameters (eV) of functional groups of branched-chain alkyl iodides.

Parameters	$\begin{gathered} C-I \\ \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-I \\ \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-I \\ & \text { (iii) } \\ & \text { Group } \end{aligned}$	CH_{3} Group	CH_{2} Group	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{c}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(d) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
n_{1}	1	1	1	3	2	1	1	1	1	1	1	1
n_{2}	0	0	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.5	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	0.65537	0.65537	0.65537	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	1	1	1	1	1	1
c_{2}	1	1	1	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	1	0	1	0	1	1	0	0	0	1	1	0
c_{4}	2	2	2	1	1	1	2	2	2	2	2	2
c_{5}	0	0	0	3	2	1	0	0	0	0	0	0
C_{10}	0.5	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	0.65537	0.65537	0.65537	1	1	1	1	1	1	1	1	1
$V_{e}(e \mathrm{e})$	-26.59109	-26.34902	-26.10696	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	6.73951	6.71739	6.69505	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	4.97768	4.90005	4.82280	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-2.48884	-2.45002	-2.41140	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E (Аоно) (eV)	-14.63489	-14.63489	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$\Delta E_{\mathrm{H}_{2} \mathrm{HO}}(\mathrm{AO/HO})(\mathrm{eV})$	-0.36229	-0.18114	0	0	0	0	0	0	0	0	0	0
$E_{T}($ (о/̈ $/$ \% $)(\mathrm{eV})$	-14.29907	-14.45375	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(H_{2} \mathrm{NOO}\right)(\mathrm{eV})$	-31.63534	-31.63535	-31.63540	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-0.36229	-0.18114	0	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}(\mathrm{mo})(\mathrm{eV})$	-31.99766	-31.81651	-31.63537	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega^{\omega}\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	10.2318	5.36799	9.90080	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	6.73472	3.53331	6.51688	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(e \mathrm{~V})$	-0.16428	-0.11832	-0.15977	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kulb }}(\mathrm{eV})$	$\begin{gathered} 0.06608 \\ {[16]} \\ \hline \end{gathered}$	$\begin{gathered} 0.06608 \\ {[16]} \end{gathered}$	$\begin{gathered} 0.06608 \\ {[16]} \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.13124	-0.08527	-0.12673	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{T}($ (imup $)(\mathrm{eV})$	-32.12889	-31.90179	-31.76210	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
$E_{\text {rurtalal }}\left(\mathrm{E}_{\text {, AO/ Ho }}\right)(\mathrm{eV})$	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
	0	0	0	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
$E_{D}($ (roup $)(\mathrm{eV})$	2.71108	2.63201	2.34429	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

Table 15.49. The total bond energies of branched-chain alkyl iodides calculated using the functional group composition and the energies of Table 15.48 compared to the experimental values [3]. The magnetic energy $E_{m a g}$ that is subtracted from the weighted sum of the E_{D} (Group) (eV) values based on composition is given by (15.58).

Formula	Name	$\begin{gathered} C-I \\ \text { (i) } \end{gathered}$	$C-I$ (ii)	$\begin{gathered} C-I \\ (\text { iii }) \end{gathered}$	CH_{3}	CH_{2}	CH (i)	CH (ii)	$C-C$ (a)	$C-C$ (b)	$\begin{gathered} C-C \\ \text { (c) } \end{gathered}$	$C-C$ (d)	$\begin{gathered} C-C \\ \text { (e) } \end{gathered}$	$\begin{gathered} C-C \\ \text { (f) } \end{gathered}$	$E_{\text {mag }}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
CHI_{3}	Triiodomethane	0	0	3	,	0	1	0	0	0	0	0	0	0	0	10.35888	10.405	0.00444
$\mathrm{CH}_{2} \mathrm{I}_{2}$	Diiodomethane	0	2	0	0	1	0	0	0	0	0	0	0	0	-1	12.94614	12.921	-0.00195
$\mathrm{CH}_{3} \mathrm{I}$	Iodomethane	1	0	0	1	0	0	0	0	0	0	0	0	0	0	15.20294	15.163	-0.00263
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	Iodoethane	1	0	0	1	1	0	0	1	0	0	0	0	0	0	27.36064	27.343	-0.00066
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{I}$	1-Iodopropane	1	0	0	1	2	0	0	2	0	0	0	0	0	0	39.51834	39.516	-0.00006
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{I}$	2-Iodopropane	1	0	0	2	0	1	0	0	2	0	0	0	0	0	39.61923	39.623	0.00009
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{I}$	2-Iodo-2-methylpropane	1	0	0	3	0	0	0	0	0	3	0	0	0	-1	51.96057	51.899	-0.00119

Table 15.50. The bond angle parameters of branched-chain alkyl iodides and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is $E_{T}\left(\right.$ atom - atom,$\left.m s p^{3} \cdot A O\right)$.

Atoms of Angle	$2 c^{\prime}$ Bond 1 $\left(a_{0}\right)$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \end{gathered}$ $\left(a_{0}\right)$	$2 c^{\prime}$ Terminal Atoms $\left(a_{0}\right)$	$\begin{aligned} & E_{\text {Coutombicic }} \\ & \text { Atum } \end{aligned}$	Atom 1 Hybridization Designation (Table 15.3.A)	$\begin{aligned} & E_{\text {Coulombic }} \\ & \text { Atom 2 } \end{aligned}$	Atom 2 Hybridization Designation (Table 15.3.A)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	c_{2} Atom 2	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \theta_{1} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\begin{gathered} \angle I C_{a} I \\ \left(C_{a}-I(\mathrm{ii})\right) \end{gathered}$	4.05092	4.05092	6.7205	$\begin{array}{\|c\|} \hline-10.45126 \\ I \end{array}$	I	$\begin{gathered} -10.45126 \\ I \end{gathered}$	I	1	1	1	$\begin{gathered} 0.65537 \\ \text { (Eq. }(15.132)) \end{gathered}$	1	1	-0.36228				112.10	
$\begin{gathered} \angle H C_{G} I \\ \left(C_{a}-I(\mathrm{i})\right) \end{gathered}$	2.11106	4.03763	5.2203	$\begin{array}{\|c\|} \hline-14.82575 \\ C_{a} \end{array}$	1	$\begin{array}{\|c\|} \hline-10.45126 \\ I \\ \hline \end{array}$	I	0.91771	0.91771	0.75	0.76815 (Eq. (15.74))	0.75	1.00000	0				112.39	
$\begin{aligned} & \angle H C_{a} H \\ & \angle H C_{b} H \\ & \left(C_{a}-I\right. \text { (i)) } \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	$\begin{gathered} 111.2 \\ \text { (methyl iodide) } \end{gathered}$
$\begin{gathered} \angle C_{a} C_{b} H_{b} \\ \left(C_{a}-I\right. \text { (i)) } \end{gathered}$															70.56			109.44	
$\begin{gathered} \angle C_{b} C_{a} I \\ \left(C_{a}-I\right. \text { (i)) } \end{gathered}$	2.91547	4.03763	5.7939	$\begin{gathered} -15.55033 \\ C_{b} \\ \hline \end{gathered}$	5	$\begin{gathered} -10.45126 \\ I \end{gathered}$	I	0.87495	0.87495	1	$\begin{gathered} 0.65537 \\ \text { (Eq. }(15.132)) \end{gathered}$	1	0.87495	-0.36228				111.86	
Methylene $\angle H C_{a} H$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} 107 \\ \text { (propane) } \end{gathered}$
$\angle C_{a} C_{b} C_{c}$															69.51			110.49	112 (propane) 113.8 (butane) 110.8 (isobutane)
$\angle C_{a} C_{b} H$															69.51			110.49	
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{a} C_{b} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b} H$															70.56			109.44	
$\begin{aligned} & \angle C_{b} C_{a} C_{c} \\ & \text { iso } C_{a} \end{aligned}$	2.91547	2.91547	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	$\begin{array}{\|c\|} \hline-16.68412 \\ C_{c} \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				110.67	110.8 (isobutane)
$\begin{gathered} \angle C_{b} C_{a} H \\ \text { iso } C_{a} \end{gathered}$	2.91547	2.11323	4.1633	$\begin{gathered} -15.55033 \\ C_{a} \end{gathered}$	5	$\begin{array}{\|c\|} \hline-14.82575 \\ C_{k} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{aligned} & \angle C_{a} C_{b} H \\ & \text { iso } C_{a} \end{aligned}$	2.91547	2.09711	4.1633	$\begin{gathered} -15.55033 \\ C_{b} \end{gathered}$	5	$\begin{array}{\|c\|} \hline-14.82575 \\ C_{a} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	111.4 (isobutane)
$\begin{gathered} \angle C_{b} C_{a} C_{b} \\ \text { tert } C_{a} \end{gathered}$	2.90327	2.90327	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				111.37	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\angle C_{b} C_{a} C_{d}$															72.50			107.50	

ALKENYL HALIDES ($\left.C_{n} H_{2 n-m} X_{m}, n=3,4,5 \ldots \infty m=1,2,3 \ldots \infty\right)$

The branched-chain alkenyl halides, $C_{n} H_{2 n+2-m} X_{m}$ with $X=F, C l, B r, I$, may comprise alkyl and alkenyl functional groups wherein at least one H is replaced by a halogen atom. In the case that a halogen atom replaces an alkyl H, the $C-X$ bond comprises the alkyl-halogen functional groups given in their respective sections. The alkenyl halogen $C-X$ bond comprises a separate functional group for each case of X bonding to the $C=C$-bond functional group given in the Alkenes section. In addition the CH group of the moiety $X C H=C$ comprises a functional group unique to alkenyl halides. The straight and branched-chain alkenes, $C_{n} H_{2 n}$, comprise at least one carbon-carbon double bond comprising a functional group that is solved equivalently to the double bond of ethylene. The double bond may be bound to one, two, three, or four carbon single bonds that substitute for the hydrogen atoms of ethylene. The three distinct functional groups given in the Alkenes section are C vinyl single bond to $-\mathrm{C}(\mathrm{C})=\mathrm{C}, \mathrm{C}$ vinyl single bond to $-\mathrm{C}(\mathrm{H})=\mathrm{C}$, and C vinyl single bond to $-\mathrm{C}(\mathrm{C})=\mathrm{CH}_{2}$. In addition, CH_{2} of the $-\mathrm{C}=\mathrm{CH}_{2}$ moiety is also an alkene functional group solved in the Alkenes section.

Consider the case where $\mathrm{X}=\mathrm{Cl}$ substitutes for a carbon single bond or a hydrogen atom. Based on the condition of energy matching of the orbital, any magnetic energy due to unpaired electrons in the constituent fragments, and differences in oscillation in the transition state, two distinct $C-C l$ functional groups can be identified: $C l$ vinyl single bond to $-C(C)=C$ and Cl vinyl single bond to $-C(H)=C$. The alkenyl-halide $C H$ group is equivalent to that solved in the Hydrogen Carbide (CH) section except that $\Delta E_{\mathrm{H}_{2} M O}(\mathrm{AO} / \mathrm{HO})=-1.13379 \mathrm{eV}$ in order to energy match to the $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}=\mathrm{C}$ bonds.

The alkyl portion of the alkenyl halide may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $C-C$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in alkene halides are equivalent to those in branched-chain alkanes.
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C=C$-bond MO in Eq. (15.61) due to the charge donation from the C atoms to the MO is equivalent to that of ethylene, -2.26759 eV , given by Eq. (14.247). $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of each $C-C$-bond MO in Eq. (15.61) is -1.85836 eV or -1.44915 eV based on the energy match between the $C 2 \mathrm{sp}^{3} \mathrm{HOs}$ corresponding to the energy contributions equivalent to those of methylene, -0.92918 eV (Eq. (14.513), or methyl, -0.72457 eV (Eq. (14.151)), groups, respectively.

The solution of each $C-X$ functional group comprises the hybridization of the $2 s$ and $2 p$ AOs of the C atom to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the X AO to form a MO permits each participating orbital to decrease in radius and energy. The alkenyl $C-X$-bond functional groups comprise single bonds and are equivalent to those of the corresponding alkyl halides except that the halogen AO and the $C-X$-bond MO are each energy matched to the alkene $C 2 s p^{3} \mathrm{HO}$. In alkenyl halides with $X=C l, B r$, or I, the energy of the halogen atom is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264)). Thus, c_{2} in Eq. (15.61) is one, and the energy matching condition is determined by the C_{2} parameter. For example, the hybridization factor C_{2} of Eq. (15.61) for the alkenyl $\mathrm{C}-\mathrm{Cl}$-bond MO given by Eq. (15.130) is $C_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to Cl$)=0.81317$.
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the alkenyl $C-C l$-bond MO in Eq. (15.61) due to the charge donation from the C and Cl atoms to the MO is -1.44915 eV for the Cl vinyl single bond to $-\mathrm{C}(\mathrm{H})=\mathrm{C} C-\mathrm{Cl}$ group and -0.92918 eV for the Cl vinyl single bond to $-C(C)=C \quad C-C l$ group. It is based on the energy match between the $C l$ atom and the $C 2 s p^{3} \mathrm{HO}$ of an unsubstituted vinyl group and a substituted vinyl group given by Eqs. (14.151) and (14.513), respectively.

The symbols of the functional groups of branched-chain alkenyl chlorides are given in Table 15.51. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of branched-chain alkenyl chlorides are given in Tables 15.52, 15.53, and 15.54, respectively. The total energy of each branchedchain alkenyl chloride given in Table 15.55 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.54 corresponding to functional-group composition of the molecule. The bond angle parameters of branched-chain alkenyl chlorides determined using Eqs. (15.70-15.79), (15.88-15.117) and (15.130) are given in Table 15.56. The color scale, translucent view of the charge-density of exemplary alkenyl halide, 2-chloropropene, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.9.

Figure 15.9. Color scale, translucent view of the charge-density of 2-chloropropene showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

$0 \square 1 \mathrm{e} / \AA^{2}$

Table 15.51. The symbols of functional groups of branched-chain alkenyl chlorides.

Functional Group	Group Symbol
$C l$ vinyl single bond to $-C(H)=C$	$C-C l(i)$
$C l$ vinyl single bond to $-C(C)=C$	$C-C l(i i)$
$C C$ double bond	$C=C$
C vinyl single bond to $-C(C)=C$	$C-C$ (i)
C vinyl single bond to $-C(H)=C$	$C-C$ (ii)
C vinyl single bond to $-\mathrm{C}(\mathrm{C})$)= CH_{2}	$C-C$ (iii)
CH (alkenyl halide)	$C-H$ (i)
CH_{2} alkenyl group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$ (i)
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} alkyl group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$ (ii)
CH (alkyl)	C-H (ii)
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C(t$ to $t-C$)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.52. The geometrical bond parameters of branched-chain alkenyl chlorides and experimental values [1].

Parameter	$\begin{aligned} & C-C l(\mathrm{i}) \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C l \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \text { (i) } \\ & \text { Group } \end{aligned}$	$\underset{\substack{C-C \text { (ii) } \\ \text { Group }}}{ }$	$\begin{gathered} C-C \text { (iii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\left.\begin{gathered} \mathrm{C-H}\left(\mathrm{CH}_{2}\right) \\ \text { (ii) } \\ \text { Group } \end{gathered} \right\rvert\,$	$\underset{\substack{C-H \text { (ii) } \\ \text { Group }}}{ }$	$\begin{gathered} C-C(\mathrm{a}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(\mathrm{c}) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	2.15818	2.19358	1.47228	2.04740	2.04740	2.04740	1.64010	1.60061	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.62912	1.64243	1.26661	1.43087	1.43087	1430	1.04566	1.03299	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond } \\ & \text { Length } \\ & \text { Leng }(A) \end{aligned}$	1.72419	1.73827	1.34052	1.51437	1.51437	1.51437	1.10668	1.09327	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Length (A)	$\begin{gathered} 1.730 \\ \text { (vinylchloride) } \\ 1.73, \\ \text { dichloroethylene) } \end{gathered}$	$\begin{gathered} 1.730 \\ \text { (viny chloride) } \\ 1.73 \\ \text { (1,1-1-dichloroethylene) } \end{gathered}$	1.342 $(2-$ methlopene 1.346 y $(2$-butene $)$ 1.349 $(1,3$-butadiene $)$		$\begin{gathered} 1.508 \\ \text { (2-butene) } \end{gathered}$	$\begin{array}{\|c\|} 1.508 \\ \text { (2-methylpropene) } \end{array}$	$\begin{gathered} 1.10 \\ \text { (2-methylpropene) } \\ 1.108 \text { avg.) } \\ (1,3 \text {-butadiene) } \end{gathered}$	$\begin{gathered} 1.09 \\ (\text { (vinyl } \\ \text { (chloride) } \end{gathered}$	1.107 $(C-H$ propane 1.117 $(C-H$ (Cutane) but	$\begin{aligned} & 1.107 \\ & (C-H \\ & \text { propane }) \\ & 1.117 \\ & (C-H \\ & \text { butane }) \end{aligned}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$
$b, c\left(a_{0}\right)$	1.41552	1.45403	0.75055	1.46439	1.46439	1.46439	1.26354	1.22265	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.75486	0.74874	0.86030	0.69887	0.69887	0.69887	0.63756	0.64537	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.53. The MO to HO intercept geometrical bond parameters of branched-chain alkenyl chlorides. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is E_{T} (atomatom, $m s p^{3} . A O$).

Table 15.54. The energy parameters (eV) of functional groups of branched-chain alkenyl chlorides.

Parameters	$\begin{aligned} & \mathrm{C}-\mathrm{Cl} \\ & \text { (i) } \\ & \text { Group } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{Cl} \\ \text { (ii) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (iii) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & \mathrm{CH}_{2} \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-H \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-H \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (c) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (d) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (e) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
n_{1}	1	,	2	1	1	1	2	1	3	2	1	1	1	1	1	1	1
n_{2}	0	0	0	0	0	0	1	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.5	0.5	0.5	0.5	0.5	0.5	0.75	0.75	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	0.81317	0.81317	0.91771	1	1	1	1	1	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
c_{2}	1	1	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	1	0	0	1	0	1	1	1	0	1	1	0	0	0	1	1	0
c_{4}	2	2	4	2	2	2	1	1	1	1	1	2	2	2	2	2	2
c_{5}	0	0	0	0	0	0	2	1	3	2	1	0	0	0	0	0	0
C_{10}	0.5	0.5	0.5	0.5	0.5	0.5	0.75	0.75	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	0.81317	0.81317	0.91771	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-32.87721	-32.14474	-102.08992	-30.19634	-30.19634	-30.19634	-72.03287	-37.10024	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	8.35160	8.28394	21.48386	9.50874	9.50874	9.50874	26.02344	13.17125	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	7.61688	7.32700	34.67062	7.37432	7.37432	7.37432	21.95990	11.58941	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-3.80844	-3.66350	-17.33531	-3.68716	-3.68716	-3.68716	-10.97995	-5.79470	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E(Аонно) (eV)	-14.63489	-14.63489	0	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$\Delta E_{H_{2} \mathrm{NO}}$ (АО/ HO) (eV)	-3.71674	-3.19677	0	0	0	0	0	-1.13379	0	0	0	0	0	0	0	0	0
E_{T} (Аоо но) (eV)	-10.91815	-10.97139	0	-14.63489	-14.63489	-14.63489	-14.63489	-13.50110	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)(\mathrm{eV})$	-31.63531	-31.63541	-63.27075	-31.63534	-31.63534	-31.63534	-49.66437	-31.63539	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-1.44915	-0.92918	-2.26759	-1.44915	-1.85836	-1.44915	0	0	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}(\mathrm{mo})(\mathrm{eV})$	-33.08452	-32.56455	-65.53833	-33.08452	-33.49373	-33.08452	-49.66493	-31.63537	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	8.31434	8.11389	43.0680	9.97851	16.4962	9.97851	25.2077	26.4826	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	5.47264	5.34070	28.34813	6.56803	10.85807	6.56803	16.59214	17.43132	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(\mathrm{eV})$	-0.15312	-0.14888	-0.34517	-0.16774	-0.21834	-0.16774	-0.25493	-0.26130	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kwb }}(\mathrm{eV})$	$\begin{gathered} 0.08059 \\ {[12]} \end{gathered}$	$\begin{gathered} 0.08059 \\ {[12]} \end{gathered}$	$\begin{gathered} 0.17897 \\ {[6]} \end{gathered}$	$\begin{gathered} 0.15895 \\ {[7]} \end{gathered}$	${ }_{[8]}^{0.09931}$	$\begin{gathered} 0.09931 \\ {[8]} \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. } \\ (13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. } \\ (13.458) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. } \\ (13.458) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. } \\ (13.458) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. } \\ (13.458) \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.11282	-0.10859	-0.25568	-0.08827	-0.16869	-0.11809	-0.07727	-0.08364	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{T}($ Grinp $)(\mathrm{eV})$	-33.19734	-32.67314	-66.04969	-33.17279	-33.66242	-33.20260	-49.81948	-31.71901	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
	0	0	0	0	0	0	-13.59844	-13.59844	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
$E_{D}($ Griup $)(\mathrm{eV})$	3.77953	3.40336	7.51014	3.75498	4.39264	3.78480	7.83968	3.33765	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

Table 15.55. The total bond energies of branched-chain alkenyl chlorides calculated using the functional group composition and the energies of Table 15.54 compared to the experimental values [3].
 ©
©
© $\begin{array}{lllll}0 & 0 & 0 & 22.46700 & 22.505 \\ 0 & 0 & 0 & 35.02984 & 35.05482\end{array}$ 0
0
Table 15．56．The bond angle parameters of branched－chain alkenyl chlorides and experimental values［1］．In the calculation of θ_{v} ，the parameters from the preceding angle were used．E_{T} is $E_{T}\left(\right.$ atom－atom，$\left.m s p^{3} . A O\right)$ ．

$\underset{\dot{x}}{\dot{x}}$																				
	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{\stackrel{\rightharpoonup}{\mathrm{N}}}{\underset{\sim}{2}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{=} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{y}{=} \end{aligned}$	$\begin{aligned} & \text { ¢ } \\ & \text { ヘ̃ } \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\infty}{=}}$	$\overline{\widehat{b}}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \stackrel{\ddagger}{+} \\ & \stackrel{\circ}{\otimes} \end{aligned}$	$\begin{aligned} & \stackrel{\text { g}}{\ominus} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \underline{0} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { I } \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bullet} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{O}} \\ & \stackrel{1}{-} \end{aligned}$		$\stackrel{\text { n}}{=}$	－
0 －								－												
0°－		$\begin{aligned} & \text { す } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { to } \\ & \stackrel{-}{6} \end{aligned}$					$\begin{aligned} & \infty \\ & \infty \\ & \underset{=}{\infty} \end{aligned}$		$\begin{aligned} & \overline{\mathrm{o}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$										
0 －0												$\begin{aligned} & \overline{3} \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{R}{2} \end{aligned}$	$\begin{gathered} \circ \\ \stackrel{\circ}{2} \\ \stackrel{2}{2} \end{gathered}$					－
N S	－			$\begin{aligned} & \infty \\ & \stackrel{\infty}{2} \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$	\bigcirc		$\begin{gathered} \stackrel{\circ}{\infty} \\ \stackrel{e}{\infty} \\ \underset{\sim}{\circ} \end{gathered}$		－		－		\bigcirc			$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \end{aligned}$	\bigcirc	\bigcirc	$\xrightarrow[\sim]{\infty}$	
－	$\underset{-}{\text { EN }}$				$\begin{aligned} & \text { Y. } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		$\frac{i n}{\circ}$		$\begin{aligned} & \text { \& } \\ & \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{i n}{3} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\square} \\ & \stackrel{i n}{3} \end{aligned}$				$\begin{aligned} & \stackrel{\otimes}{\infty} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\begin{aligned} & 0_{\infty}^{\infty} \\ & \text { ín } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{i}{\infty} \\ & \stackrel{0}{\infty} \end{aligned}$	
\checkmark	$\stackrel{\sim}{\circ}$			－	气	－	－		$\stackrel{\imath}{\circ}$		气		气			－	气	$\stackrel{\sim}{\circ}$	－	
v^{\sim}				$\underset{\substack{\text { en en }}}{\stackrel{\rightharpoonup}{\mathrm{e}}}$	$-$	－	－		－		－		－			－	－	－	－	
v	$\stackrel{n}{\circ}$			－	$\stackrel{i}{\circ}$	－	－		－		－		－			－	$\stackrel{\imath}{\circ}$	$\stackrel{n}{\circ}$	－	
$\checkmark \stackrel{N}{\frac{N}{0}}$	$\frac{\bar{i}}{\hat{a}}$			$\begin{aligned} & \text { oి } \\ & \text { No } \\ & \text { o } \end{aligned}$	$\frac{\Sigma}{\hat{A}}$				－		－		－			$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \frac{1}{\infty} \\ & \substack{\infty \\ 0} \end{aligned}$	$\frac{\bar{A}}{\hat{\alpha}}$		$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \frac{1}{\infty} \\ & \substack{\infty \\ \hline} \end{aligned}$	
\mathcal{N}					$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{2}} \\ & \stackrel{\text { den }}{\infty} \end{aligned}$	$\begin{aligned} & \overline{6} \\ & \text { No } \\ & 0.0 \end{aligned}$		$\begin{aligned} & \tilde{A} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\circ} \end{aligned}$							$\begin{gathered} \stackrel{4}{6} \\ \substack{\infty \\ \infty} \end{gathered}$			$\begin{gathered} \stackrel{9}{6} \\ \stackrel{y}{\infty} \\ \substack{0} \end{gathered}$	
	Ј			Ј	－	¿	へ		\pm		\pm		\pm			$\stackrel{\sim}{\square}$	－	－	$\stackrel{\sim}{\sim}$	
				$\begin{aligned} & \text { J } \\ & \stackrel{0}{0} \\ & \vdots \\ & \vdots \end{aligned}$					\pm		\pm		\pm			哭	$\begin{aligned} & \stackrel{n}{\overparen{O}} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{c} \end{aligned}$	N		
	$\stackrel{\square}{-}$			$\stackrel{ }{-}$	\bigcirc	そ	¢		\bigcirc		－		\sim			$\stackrel{\sim}{7}$	n	in	$\stackrel{\sim}{7}$	
	$\begin{aligned} & \hline \stackrel{0}{2} \\ & \text { à } \\ & \text { तु } \\ & \vdots \\ & \hline \end{aligned}$												m			晕	$\begin{aligned} & \tilde{r}_{0}^{n} \\ & \stackrel{n}{n} \\ & \stackrel{y}{1} \end{aligned}$			
	$\begin{aligned} & \text { ò } \\ & \stackrel{0}{7} \\ & \underset{\sim}{2} \end{aligned}$			$\begin{aligned} & \stackrel{8}{\circ} \\ & \stackrel{1}{i} \end{aligned}$	$\begin{aligned} & \text { ®a } \\ & \underset{子}{\circ} \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\infty}{+} \\ \underset{子}{2} \end{gathered}$	$\underset{\substack{\stackrel{\sim}{n} \\ \underset{\sim}{2}}}{ }$		$\begin{aligned} & \stackrel{\circ}{8} \\ & \underset{\sim}{c} \end{aligned}$		$\begin{aligned} & \text { İ } \\ & \underset{\sim}{c} \end{aligned}$		$\begin{gathered} \tilde{\text { İ}} \\ \underset{\sim}{n} \end{gathered}$			$\underset{\sim}{\stackrel{\infty}{\gtrless}}$	$\frac{\cong}{\substack{6}}$	$\stackrel{\text { ¢ }}{\substack{\text { \％}}}$		
$\dot{\sim} \dot{\sim}$	$\begin{aligned} & \text { N్ } \\ & \text { N } \\ & \text { N̈ } \end{aligned}$				$\begin{aligned} & \text { n } \\ & \stackrel{n}{0} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{0}{\circ} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{n}{\circ} \\ & \underset{\sim}{n} \end{aligned}$				$\stackrel{\circ}{\text { ® }}$		$\begin{aligned} & \text { F } \\ & \underset{\text { O}}{\text { in }} \end{aligned}$			告	$\stackrel{\text { N}}{\substack{\text { ® }}}$	$\underset{\text {－}}{\stackrel{\rightharpoonup}{\widehat{O}}}$		
	$\begin{aligned} & \infty \\ & \stackrel{\infty}{6} \\ & \stackrel{y}{\circ} \\ & \text { in } \end{aligned}$			－	$\stackrel{\text { N}}{\stackrel{\sim}{1}}$	$\begin{aligned} & n \\ & \stackrel{n}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \bar{ल} \\ & \underset{\sim}{i} \\ & \underset{i}{n} \end{aligned}$		$\begin{aligned} & \text { if } \\ & \stackrel{\infty}{\text { if }} \\ & \text { ín } \end{aligned}$		$\stackrel{\ominus}{\stackrel{\circ}{\bar{i}}}$						$\begin{gathered} \text { f } \\ \frac{\text { N }}{2} \\ \text { ì } \end{gathered}$	$\stackrel{\text { ¢ }}{\substack{\text { a } \\ \text { i }}}$		
		$\begin{array}{ll} 1 & \widehat{E} \\ 0 & \widehat{E} \\ 0 & 0 \\ u & 1 \\ 0 & 1 \\ 0 & 0_{0} \end{array}$	$\begin{aligned} & \Xi_{0} \widehat{E} \\ & 0_{0} \\ & U_{0}^{0} \end{aligned}$	$\begin{aligned} & \tilde{v}_{0} \\ & U_{0} \\ & \pi \\ & U_{0}^{0} \end{aligned}$			$\begin{aligned} & U_{0}^{0} \\ & U_{0}^{0} \\ & U_{0}^{0} \\ & V \underline{U}_{0}^{0} \end{aligned}$	0				$\begin{aligned} & 0_{0}^{0} \\ & 0_{0}^{0} \\ & \text { in } \end{aligned}$		－	V	$\left\|\begin{array}{lll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & .0 \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} 1 & y_{0} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \text { ver } \end{array}\right.$	$\begin{array}{ll} 1 & y_{0} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{aligned} & 0_{0}^{0} 0^{\circ} \\ & 0 \\ & 0_{0} 0_{0} \end{aligned}$	Cos

ALCOHOLS ($\left.C_{n} H_{2 n+2} O_{m}, \quad n=1,2,3,4,5 \ldots \infty\right)$

The alkyl alcohols, $C_{n} H_{2 n+2} O_{m}$, comprise an OH functional group and two types of $\mathrm{C}-\mathrm{O}$ functional groups, one for methyl alcohol and the other for general alkyl alcohols. The alkyl portion of the alkyl alcohol may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straightchain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in alcohols are equivalent to those in branched-chain alkanes.

The $O H$ functional group was solved in the Hydroxyl Radical $(O H)$ section. Each $C-O$ group is solved by hybridizing the $2 s$ and $2 p$ AOs of the C atom to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the $O \mathrm{AO}$ to form a MO permits each participating orbital to decrease in radius and energy. In alkyl alcohols, the $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)) and the O AO has an energy of $E(O)=-13.61806 \mathrm{eV}$. To meet the equipotential condition of the union of the $\mathrm{C}-\mathrm{O} \mathrm{H}_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor c_{2} of Eq. (15.61) for the $C-O$-bond MO given by Eqs. (15.77) and (15.79) is:

$$
\begin{equation*}
c_{2}\left(C 2 s p^{3} \mathrm{HO} \text { to } \mathrm{O}\right)=\frac{E(O)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=\frac{-13.61806 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.91771)=0.85395 \tag{15.133}
\end{equation*}
$$

$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-O$-bond MO in Eq. (15.61) due to the charge donation from the C and O atoms to the MO is -1.65376 eV for the $\mathrm{CH}_{3}-\mathrm{OH} \mathrm{C}-\mathrm{O}$ group. It is based on the energy match between the OH group and the $\mathrm{C} 2 s p^{3}$ HO of a methyl group and is given by the linear combination of -0.92918 eV (Eq. (14.513)) and -0.72457 eV (Eq. (14.151)), respectively. For the alkyl $C-O$ group, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ is -1.85836 eV . It is based on the energy match between the $O \mathrm{AO}$ and the $C 2 s p^{3} \mathrm{HO}$ of a methylene group where both energy contributions are given by Eq. (14.513).

The symbols of the functional groups of branched-chain alkyl alcohols are given in Table 15.66. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl alcohols are given in Tables 15.58, 15.59, and 15.60, respectively. The total energy of each alkyl alcohol given in Table 15.61 was calculated as the sum over the integer multiple of each $E_{D}(\operatorname{Group})$ of Table 15.60 corresponding to functional-group composition of the molecule. The bond angle parameters of alkyl alcohols determined using Eqs. (15.88-15.117) are given in Table 15.62. The color scale, translucent view of the charge-density of exemplary alcohol, 1-propanol, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.10.

Figure 15.10. Color scale, translucent view of the charge-density of 1-propanol showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (A) Side view. (B) Front view.

0

Table 15.57. The symbols of functional groups of alkyl alcohols.

Functional Group	Group Symbol
OH group	OH
$\mathrm{CH}_{3} \mathrm{OH} \mathrm{C}-\mathrm{O}$	$\mathrm{C}-\mathrm{O}$ (i)
Alkyl C-O	$\mathrm{C}-\mathrm{O}$ (ii)
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to $t-C$)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.58. The geometrical bond parameters of alkyl alcohols and experimental values [1].

Parameter	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O(\mathrm{i}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(a) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(b) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.26430	1.79473	1.78255	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	0.91808	1.33968	1.33512	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{gathered} \text { Bond } \\ \text { Length } \\ 2 c^{\prime}(A) \end{gathered}$	0.971651	1.41785	1.41303	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	0.971 (ethanol) 0.9451 (methanol)	$\begin{gathered} 1.4246 \\ \text { (methanol) } \end{gathered}$	$\begin{gathered} 1.431 \\ \text { (ethanol) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	1.532 (propane) 1.531 (butane)	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	1.532 (propane) 1.531 (butane)
$b, c\left(a_{0}\right)$	0.86925	1.19429	1.18107	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.72615	0.74645	0.74900	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.59. The MO to HO intercept geometrical bond parameters of alkyl alcohols. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom,msp $\left.{ }^{3} \cdot A O\right)$.

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	E_{T} (eV) Bond 2	$\begin{gathered} E_{V^{\prime}} \\ (\mathrm{eV}) \\ \text { Bond } 3 \end{gathered}$	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {nitral }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {final }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} \hline E_{\text {Comumb }} \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \theta_{1} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \theta_{2} \\ \left(^{\circ}\right) \end{gathered}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\mathrm{H}_{3} \mathrm{CO}-\mathrm{H}$	O	-0.82688	0	0	0		1.00000	0.86923	-15.65263		115.49	64.51	64.51	0.54405	0.37403
$-\mathrm{H}_{2} \mathrm{Ca}_{\mathrm{a}} \mathrm{O}-\mathrm{H}$	O	-0.92918	0	0	0		1.00000	0.86359	-15.75493		115.09	64.91	64.12	0.55182	0.36625
$\begin{gathered} \mathrm{H}_{3} \mathrm{C}-\mathrm{OH} \\ (\mathrm{C}-\mathrm{O}(\mathrm{i})) \\ \hline \end{gathered}$	C	-0.82688	0	0	0	-152.44257	0.91771	0.86923	-15.65263	-15.46177	96.59	83.41	46.30	1.23986	0.09981
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}-\mathrm{OH} \\ & (\mathrm{C}-\mathrm{O} \text { (i)) } \end{aligned}$	O	-0.82688	0	0	0		1.00000	0.86923	-15.65263		96.59	83.41	46.30	1.23986	0.09981
$\begin{aligned} & -\mathrm{H}_{2} \mathrm{Ca}_{a}-\mathrm{OH} \\ & (\mathrm{C}-\mathrm{O}(\mathrm{ii}) \end{aligned}$	C_{a}	-0.92918	-0.92918	0	0	-153.47405	0.91771	0.81549	-16.68411	-16.49325	93.09	86.91	43.59	1.29114	0.04398
$\begin{aligned} & -\mathrm{H}_{2} \mathrm{C}_{a}-\mathrm{OH} \\ & (\mathrm{C}-\mathrm{O} \text { (ii) }) \end{aligned}$	O	-0.92918	0	0	0		1.00000	0.86359	-15.75493		97.20	82.80	46.50	1.22692	0.10820
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}(\mathrm{CH})$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{h} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \\ & \hline \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} C_{h} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & \mathrm{R}-\mathrm{H}_{2} \mathrm{C}_{a} \mathrm{C}_{\mathrm{b}}\left(\mathrm{H}_{2} \mathrm{C}_{\mathrm{c}}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-\mathrm{H}_{2} \mathrm{C}_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) \mathrm{C}_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{c})) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & {\text { iso } C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{~d}))} \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\text { tert } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}_{(\mathrm{C}-\mathrm{C}(\mathrm{e}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & {\text { tert } C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right)}^{\prime} \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f})) \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & \text { iso } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) C_{2}- \\ & (C-C \text { (f)) } \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.60. The energy parameters (eV) of functional groups of alkyl alcohols.

Parameters	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(a) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
n_{1}	1	1	1	3	2	1	1	1	1	1	1	1
n_{2}	0	0	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.75	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	1	1	1	1	1	1	1	1	1	1	1	1
c_{1}	0.75	1	1	1	1	1	1	1	1	1	1	1
c_{2}	1	0.85395	0.85395	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	1	0	0	0	1	1	0	0	0	1	1	0
c_{4}	1	2	2	1	1	1	2	2	2	2	2	2
c_{5}	1	0	0	3	2	1	0	0	0	0	0	0
C_{10}	0.75	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	1	1	1	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-40.92709	-33.47304	-33.78820	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	14.81988	10.15605	10.19068	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	16.18567	9.32537	9.47749	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-8.09284	-4.66268	-4.73874	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E(нонн) (eV)	-13.6181	-14.63489	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$\Delta E_{H_{2} \mu \mathrm{NO}}($ (1О HO$)(\mathrm{eV})$	0	-1.65376	-1.85836	0	0	0	0	0	0	0	0	0
$E_{T}($ (өо но) $)(\mathrm{eV})$	-13.6181	-12.98113	-12.77653	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(H_{2} \times \mathrm{NO}\right)(\mathrm{eV})$	-31.63247	-31.63544	-31.63529	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	0	-1.65376	-1.85836	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}(\mathrm{mo})(\mathrm{eV})$	-31.63537	-33.28912	-33.49373	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	44.1776	22.3978	12.2831	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	29.07844	14.74264	8.08494	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(\mathrm{eV})$	-0.33749	-0.25287	-0.18841	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kwb }}(\mathrm{eV})$	$\begin{aligned} & 0.46311 \\ & {[17-18]} \end{aligned}$	$\begin{gathered} 0.12808 \\ {[19]} \end{gathered}$	$\begin{gathered} 0.13328 \\ {[20]} \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$
$\bar{E}_{\text {occ }}(\mathrm{eV})$	-0.10594	-0.18883	-0.12177	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mag }}(\mathrm{eV})$	0.11441	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{T}($ Grupp $)(\mathrm{eV})$	-31.74130	-33.47795	-33.61550	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	- 33.18712
	-13.6181	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
	-13.59844	0	0	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
$E_{D}($ (roup $)(\mathrm{eV})$	4.41035	4.20817	4.34572	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

Table 15.61. The total bond energies of alkyl alcohols calculated using the functional group composition and the energies of Table 15.60 compared to the experimental values [3].

Formula	Name	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (ii) } \\ \text { Group } \end{gathered}$	CH_{3}	CH_{2}	CH	$C-C$ (a)	$C-C$ (b)	$C-C$ (c)	$C-C$ (d)	$C-C$ (e)	$C-C$ (f)	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{CH}_{4} \mathrm{O}$	Methanol	1	0	1	1	0	0	0	0	0	0	0	0	21.11038	21.131	0.00097
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	Ethanol	1	0	1	1	1	0	1	0	0	0	0	0	33.40563	33.428	0.00066
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	1-Propanol	1	0	1	1	2	0	2	0	0	0	0	0	45.56333	45.584	0.00046
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	2-Propanol	1	0	1	2	0	1	2	0	0	0	0	0	45.72088	45.766	0.00098
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	1-Butanol	1	0	1	1	3	0	3	0	0	0	0	0	57.72103	57.736	0.00026
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	2-Butanol	1	0	1	2	1	1	3	0	0	0	0	0	57.87858	57.922	0.00074
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	2-Methyl-1-propananol	1	0	1	2	1	1	0	3	0	0	0	0	57.79359	57.828	0.00060
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	2-Methyl-2-propananol	1	0	1	3	0	0	0	0	3	0	0	0	58.15359	58.126	-0.00048
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	1-Pentanol	1	0	1	1	4	0	4	0	0	0	0	0	69.87873	69.887	0.00011
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	2-Pentanol	1	0	1	2	2	1	4	0	0	0	0	0	70.03628	70.057	0.00029
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	3-Pentanol	1	0	1	2	2	1	2	2	0	0	0	0	69.97962	70.097	0.00168
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	2-Methyl-1-butananol	1	0	1	2	2	1	1	3	0	0	0	0	69.95129	69.957	0.00008
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	3-Methyl-1-butananol	1	0	1	2	2	1	1	3	0		0	0	69.95129	69.950	-0.00002
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	2-Methyl-2-butananol	1	0	1	3	1	0	1	0	3		0	0	70.31129	70.246	-0.00092
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	3-Methyl-2-butananol	1	0	1	3	0	2	0	3	0	1	0	0	69.96081	70.083	0.00174
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	1-Hexanol	1	0	1	1	5	0	5	0	0	0	0	0	82.03643	82.054	0.00021
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	2 -Hexanol	1	0	1	2	3	1	5	0	0	0	0	0	82.19398	82.236	0.00052
$\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}$	1-Heptanol	1	0	1	1	6	0	6	0	0	0	0	0	94.19413	94.214	0.00021
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	1-Octanol	,	0	1	1	7	0	7	0	0	0	0	0	106.35183	106.358	0.00006
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	2-Ethyl-1-hexananol	,	0	1	2	5	1	4	3	0	0	0	0	106.42439	106.459	0.00032
$\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{O}$	1-Nonanol	,	0	1	1	8	0	8	0	0	0	0	0	118.50953	118.521	0.00010
$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}$	1-Decanol	1	0	1	1	9	0	9	0	0	0	0	0	130.66723	130.676	0.00007
$\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}$	1-Dodecanol	1	0	1	1	11	0	11	0	0	0	0	0	154.98263	154.984	0.00001
$\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}$	1-Hexadecanol	1	0	1	I	15	0	15	0	0	0	0	0	203.61343	203.603	-0.00005

Table 15．62．The bond angle parameters of alkyl alcohols and experimental values［1］．In the calculation of θ_{v} ，the parameters from the preceding angle were used．E_{T} is $E_{7}\left(\right.$ atom－atom，$\left.m s p^{3} \cdot A O\right)$ ．

				全害:									（	
$\underset{\tilde{U}}{\stackrel{\rightharpoonup}{⿺}}$		$\begin{aligned} & \text { od } \\ & \stackrel{\oplus}{6} \end{aligned}$	$\stackrel{\underset{O}{-}}{\stackrel{y}{0}}$		$\begin{aligned} & \stackrel{9}{\dot{\theta}} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \stackrel{9}{\theta} \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{8}{6} \\ & \stackrel{8}{2} \end{aligned}$			$\begin{aligned} & \stackrel{6}{0} \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{y}{\circ} \end{aligned}$	$\stackrel{\text { ¢ }}{=}$	$\stackrel{⿸ 厂}{=}$	$\stackrel{\square}{\square}$
0 －														
σ^{-0}														
－©					$\begin{aligned} & \bar{n} \\ & 0 \end{aligned}$	$\overline{\bar{n}}$		\circ	另					$\stackrel{\stackrel{i}{c}}{\substack{\text { i }}}$
號	－	－		－			－				－	－	$\stackrel{\text { \％}}{\substack{0 \\ \text { \％} \\ \rightarrow \\ \rightarrow}}$	
\because	$\frac{\bar{A}}{\partial}$	$\frac{\mathrm{E}}{\mathrm{~A}}$	$\begin{aligned} & \text { N} \\ & \text { N } \\ & \underset{\alpha}{\infty} \end{aligned}$	$\stackrel{\circ}{\square}$			$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{1}{2} \end{aligned}$						$\begin{gathered} \frac{8}{2} \\ \substack{\text { an } \\ 0} \end{gathered}$	
\checkmark	成	¢	－	\％			－			－	\％	同	－	
心	－	－	－	－			－			－	－	－	－	
v	\％	㶡	－	－			－			－	戌	¿̊	－	
	$\frac{\bar{A}}{\hat{a}}$	$\frac{\bar{E}}{\hat{O}}$		－			－				$\frac{\bar{E}}{\stackrel{\rightharpoonup}{o}}$	$\frac{\bar{E}}{\hat{a}}$		
心帝	－	－									$\begin{aligned} & 20 \\ & \stackrel{2}{4} \\ & \substack{\infty \\ 0 \\ 0} \end{aligned}$	$\begin{aligned} & \text { 名 } \\ & \substack{\infty \\ 0 \\ 0} \end{aligned}$		
	－	－	\bigcirc	＝			\pm			i	－	－	$\stackrel{\square}{\square}$	
	$\begin{aligned} & \text { 峇 } \\ & \text { d } \end{aligned}$		$\stackrel{\circ}{\circ}$ $\stackrel{\circ}{6}$ $\stackrel{\circ}{1}$ 1	＝			＝			镸		＋		
	－	－	¢	－			－			¢	\cdots	n	¢	
		$\begin{aligned} & \text { n } \\ & \stackrel{n}{n} \\ & \stackrel{\alpha}{\mp} \\ & \hline \end{aligned}$								咢		遃	等	
	$\stackrel{\stackrel{\rightharpoonup}{6}}{\substack{0}}$	$\stackrel{n}{b}$	$\begin{gathered} \text { だ } \\ \substack{6} \\ \hline \end{gathered}$				$\begin{gathered} \tilde{\partial} \\ \underset{\sim}{\text { an }} \end{gathered}$			$\begin{gathered} \infty \\ \stackrel{\infty}{\alpha} \\ \underset{子}{2} \end{gathered}$	$\frac{\overparen{e}}{\underset{子}{6}}$	$\frac{ल ্ \widehat{~}}{\underset{子}{7}}$	¢	
云言	$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{0}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \end{aligned}$	$\begin{aligned} & \text { T } \\ & \stackrel{\rightharpoonup}{6} \\ & \text { in } \end{aligned}$	$\stackrel{\text { ®}}{\bar{i}}$						$\frac{\mathrm{F}}{\stackrel{\rightharpoonup}{\mathrm{a}}}$			c	
龻	$\begin{aligned} & \text { n } \\ & \text { on } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { J } \\ & \stackrel{\rightharpoonup}{6} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { f } \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\otimes}{\bar{i}}$							$\begin{aligned} & \frac{7}{\frac{2}{2}} \\ & \frac{2}{2} \end{aligned}$	$\frac{\stackrel{4}{2}}{\frac{2}{2}}$	僉	
	$\left\|\begin{array}{cc} a & a \\ 0 & 0 \\ 0_{0} & 0 \\ v_{0} & 0 \end{array}\right\|$		$\begin{array}{ll} 0 & \hat{E} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$		$\begin{aligned} & 0_{0}^{0} \\ & 心_{0} \end{aligned}$	$\begin{aligned} & z= \\ & y_{0}^{y} \\ & \text { v } \end{aligned}$			$\mathbf{c o s}_{0}^{2}$	$\begin{aligned} & 0_{0}^{\circ} \\ & 0_{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned} .$	$\begin{aligned} & \text { yo } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	感	道	cress

ETHERS ($\left.C_{n} H_{2 n+2} O_{m}, \quad n=2,3,4,5 \ldots \infty\right)$
The alkyl ethers, $C_{n} H_{2 n+2} O_{m}$, comprise two types of $C-O$ functional groups, one for methyl or t-butyl groups corresponding to the C and the other for general alkyl groups. The alkyl portion of the alkyl ether may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in ethers are equivalent to those in branched-chain alkanes.

Each $C-O$ group is solved by hybridizing the $2 s$ and $2 p$ AOs of the C atom to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the $O \mathrm{AO}$ to form a MO permits each participating orbital to decrease in radius and energy. In alkyl ethers, the $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.91771 (Eq. (13.430)) and an energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)) and the O AO has an energy of $E(O)=-13.61806 \mathrm{eV}$. To meet the equipotential condition of the union of the $\mathrm{C}-\mathrm{O} \mathrm{H}_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor c_{2} of Eq. (15.61) for the $C-O$-bond MO given by Eq. (15.133) is $c_{2}\left(C 2 s p^{3} H O\right.$ to $\left.O\right)=0.85395$. $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$ of the $C-O$-bond MO in Eq. (15.52) due to the charge donation from the C and O atoms to the MO is -1.44915 eV for the $\mathrm{CH}_{3}-\mathrm{O}$ - and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{O}$ groups. It is based on the energy match between the O AO , initially at the Coulomb potential of a proton and an electron (Eqs. (1.257) and (10.162), respectively), and the $C 2 s p^{3} \mathrm{HO}$ of a methyl group as given by Eq. (14.151). For the alkyl $C-O$ group, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ is -1.65376 eV . It is based on the energy match between the $O \mathrm{AO}$ and the $C 2 s p^{3} \mathrm{HO}$ of a methylene group and is given by the linear combination of -0.72457 eV (Eq. (14.151)) and -0.92918 eV (Eq. (14.513)), respectively.

The symbols of the functional groups of branched-chain alkyl ethers are given in Table 15.63. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl ethers are given in Tables 15.64, 15.65, and 15.66, respectively. The total energy of each alkyl ether given in Table 15.67 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.66 corresponding to functional-group composition of the molecule. The bond angle parameters of alkyl ethers determined using Eqs. (15.88-15.117) are given in Table 15.68. The color scale, translucent view of the charge-density of exemplary ether, diethyl ether, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.11.

Figure 15.11. Color scale, translucent view of the charge-density of diethyl ether showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (A) Oblique view. (B) View along the nitrogen atom.

Table 15.63. The symbols of functional groups of alkyl ethers.

Functional Group	Group Symbol
$\mathrm{C}-\mathrm{O}\left(\mathrm{CH}_{3}-\mathrm{O}-\right.$ and $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\right)$	$\mathrm{C}-\mathrm{O}$ (i)
$\mathrm{C}-\mathrm{O}$ (alkyl)	$\mathrm{C}-\mathrm{O}$ (ii)
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	$\mathrm{C}-\mathrm{H}$
CC bond (n-C)	$\mathrm{C}-\mathrm{C}$ (a)
CC bond (iso- C$)$	$\mathrm{C}-\mathrm{C}$ (b)
CC bond (tert- C$)$	$\mathrm{C}-\mathrm{C}$ (c)
CC (iso to iso-C)	$\mathrm{C}-\mathrm{C}$ (d)
$\mathrm{CC}(t$ to $t-C)$	$\mathrm{C}-\mathrm{C}$ (e)
$\mathrm{CC}(t$ to iso- is)	$\mathrm{C}-\mathrm{C}$ (f)

Table 15.64. The geometrical bond parameters of alkyl ethers and experimental values [1].

Parameter	$\begin{gathered} C-O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(d) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.80717	1.79473	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.34431	1.33968	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{gathered} \text { Bond } \\ \text { Length } \\ 2 c^{\prime}(A) \end{gathered}$	1.42276	1.41785	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$\begin{gathered} 1.416 \\ \text { (dimethyl ether) } \end{gathered}$	1.418 (ethyl methyl ether (avg.))	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	1.532 (propane) 1.531 (butane)	1.532 (propane) 1.531 (butane)	1.532 (propane) 1.531 (butane)	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$
$b, c\left(a_{0}\right)$	1.20776	1.19429	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.74388	0.74645	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15．65．The MO to HO intercept geometrical bond parameters of alkyl ethers．$R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups．E_{T} is $E_{T}\left(\right.$ atom - atom，msp $\left.{ }^{3} . A O\right)$ ．

でだ		$\frac{\cong}{\partial}$	$\begin{aligned} & \text { oٌ } \\ & \stackrel{\infty}{\infty} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \stackrel{y y}{0} \end{aligned}$	$\begin{aligned} & \text { के } \\ & \stackrel{\text { bे }}{0} \end{aligned}$			$\begin{array}{\|c} \substack{\alpha \\ \vdots \\ \text { and }} \end{array}$	률	$\stackrel{\stackrel{8}{\circ}}{\substack{\infty \\ o}}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{i n} \\ & \stackrel{i}{i} \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \text { Bu } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{i} \\ & \stackrel{y}{i} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{d} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \text { సे } \\ & \text { 年 } \end{aligned}$	－
\bigcirc	$\underset{\underset{\sim}{E}}{\underset{\sim}{E}}$	$\begin{gathered} \stackrel{\rightharpoonup}{7} \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \text { ion } \\ & \stackrel{i}{0} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \stackrel{y}{0} \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\bar{T}} \end{aligned}$		$\begin{gathered} \text { t⿳亠口冋口} \\ \stackrel{n}{7} \end{gathered}$	$\left\lvert\, \begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{y}{2} \end{aligned}\right.$	$\left\lvert\,\right.$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \text { on } \\ & \end{aligned}$		$\stackrel{\text { 등 }}{\stackrel{-}{2}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{त} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$	$\stackrel{\text { ơ }}{\underset{\sim}{6}}$	$\begin{gathered} \text { Ơ } \\ \text { O} \\ \hline \end{gathered}$	答	亭
－	$\underset{\substack{\text { O } \\ \text { ¢ }}}{ }$	$\begin{aligned} & \stackrel{O}{\dot{\sigma}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\underset{\text { 寺 }}{\text { 寺 }}$	令	$\stackrel{\otimes}{\text { c }}$	$$	$\stackrel{\stackrel{\infty}{7}}{\underset{\sim}{7}}$	$\begin{array}{\|l} \stackrel{\rightharpoonup}{\underset{\sim}{n}} \\ \stackrel{n}{2} \end{array}$	$\frac{\stackrel{n}{2}}{\underset{2}{2}}$	$\stackrel{\otimes}{0}$		$\stackrel{8}{\stackrel{\rightharpoonup}{\mathrm{~N}}}$	$\stackrel{\underset{\sim}{A}}{\stackrel{\rightharpoonup}{n}}$	$\stackrel{\otimes}{\mathrm{N}}$	$$		$\stackrel{\text { ® }}{\text {－}}$
\bigcirc	$\begin{gathered} n \\ \stackrel{n}{\square} \\ \stackrel{n}{0} \end{gathered}$	$\underset{\sim}{\underset{\sim}{8}}$	$\underset{\sim}{\substack{\text { a }}}$	$\underset{\infty}{\stackrel{\rightharpoonup}{0}}$		$\stackrel{m}{\infty}$	$\begin{aligned} & \overline{\mathrm{n}} \\ & \stackrel{\rightharpoonup}{\mathrm{o}} \end{aligned}$	$\stackrel{n}{=}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{\circ}{=} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\bullet}}$	$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	$\underset{\sim}{\underset{i}{2}}$	$\stackrel{\underset{\sim}{9}}{\substack{2}}$	$\stackrel{R}{\underset{\sim}{2}}$	$\stackrel{\circ}{\text { ®a }}$	$\begin{aligned} & \text { İ } \\ & \end{aligned}$	$\stackrel{\square}{\square}$
－－	$\mathscr{\infty}$	$\stackrel{\infty}{\check{\circ}}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{i}} \\ & \hline \end{aligned}$	テ	$\stackrel{\Omega}{\Omega}$	$\stackrel{\widehat{\alpha}}{\underset{\alpha}{\mathrm{i}}}$		甜	$\begin{aligned} & \circ \\ & \hline \\ & \hline \end{aligned}$	$\underset{\substack{\infty \\ \hline}}{\substack{0}}$	$\begin{gathered} \text { F } \\ \text { in } \end{gathered}$	$\stackrel{\stackrel{\circ}{\dot{\alpha}}}{\substack{2}}$	$\begin{aligned} & \overline{\mathrm{I}} \\ & \stackrel{y}{c} \end{aligned}$	$\stackrel{\circ}{\dot{\alpha}}$	$\begin{aligned} & \text { さ } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		＋
		$\begin{aligned} & \text { 导 } \\ & \text { 劳 } \\ & \stackrel{n}{1} \end{aligned}$					$\begin{aligned} & \text { 㝁 } \\ & \stackrel{\rightharpoonup}{n} \\ & \end{aligned}$		$\begin{aligned} & \text { 寺 } \\ & \text { g } \\ & \underset{\sim}{\leftrightharpoons} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{n}{n} \end{aligned}$		$\begin{aligned} & \text { 柰 } \\ & \text { 只 } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{N}} \\ & \stackrel{\text { N}}{1} \end{aligned}$		$\stackrel{\stackrel{\rightharpoonup}{\wedge}}{\stackrel{1}{~}}$	$\begin{aligned} & \mathscr{0} \\ & \stackrel{\text { ¢ }}{؟} \end{aligned}$	
	$\left\lvert\, \begin{gathered} \substack{\hat{e} \\ \stackrel{\rightharpoonup}{n} \\ \stackrel{n}{c} \\ \hline} \end{gathered}\right.$			$\begin{aligned} & \bar{\infty} \\ & \underset{\omega}{\omega} \\ & \underline{\omega} \\ & \end{aligned}$	출	$\begin{aligned} & \bar{a} \\ & \stackrel{\rightharpoonup}{4} \\ & \stackrel{1}{0} \end{aligned}$	$\begin{gathered} 2 \\ \stackrel{8}{d} \\ \stackrel{\rightharpoonup}{n} \\ \end{gathered}$		\circ $\stackrel{\circ}{6}$ $\stackrel{6}{6}$			$\begin{aligned} & \stackrel{0}{n} \\ & \stackrel{n}{6} \\ & \stackrel{1}{7} \end{aligned}$	$\stackrel{\circ}{\circ}$ $\stackrel{\text { a }}{\circ}$ $\stackrel{1}{7}$	$\stackrel{\circ}{0}$ $\stackrel{0}{6}$ $\stackrel{\circ}{7}$		$\begin{aligned} & \text { O} \\ & \text { 若 } \\ & \ddagger \end{aligned}$	這 ¢
O－	$\left\lvert\, \begin{aligned} & 20 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$$		$\begin{aligned} & \text { గ్ } \\ & \text { á } \\ & \text { on } \end{aligned}$	范			$\begin{array}{\|l\|l\|} \hline 8 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\left\lvert\, \begin{gathered} \text { A } \\ \text { A } \end{gathered}\right.$			$\underset{\substack{\text { A } \\ \text { A }}}{\text { n }}$	$\begin{aligned} & \stackrel{\otimes}{8} \\ & \stackrel{R}{\circ} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Ia } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$	吕
凩	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{\mathrm{A}} \\ \underset{\partial}{2} \end{gathered}\right.$	$\begin{aligned} & \text { E } \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$	苞	$\frac{\bar{E}}{\hat{O}}$	응	苞	$\frac{\mathrm{E}}{\hat{E}}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{\vec{A}}{\partial}$	$\stackrel{E}{\hat{A}}$	$\stackrel{\rightharpoonup}{\hat{A}}$	$\frac{\bar{E}}{\hat{A}}$	$\frac{\bar{E}}{\hat{O}}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{\mathrm{E}}{\mathrm{~A}}$	$\begin{aligned} & \frac{\mathrm{E}}{9} \\ & \underset{\theta}{2} \end{aligned}$	E
				$\begin{aligned} & \text { n } \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$			会等	或					$\begin{aligned} & \stackrel{8}{\circ} \\ & \underset{\sim}{7} \\ & \stackrel{0}{7} \end{aligned}$	$\begin{aligned} & \text { to } \\ & \text { 答 } \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$			
心会言	－	－	－	－	－	－	－	－	－	－	－	－		－		－	¢
心家高	－	－	－	－	－	－	－	－		－	－			$\frac{\infty}{\text { à }}$			
	－	－		$$	$\begin{gathered} \infty \\ \stackrel{\leftrightarrow}{0} \\ \substack{0 \\ i} \end{gathered}$	$$	－	$\begin{gathered} \infty \\ \bar{\alpha} \\ \vdots \\ \vdots \end{gathered}$	$\begin{gathered} \frac{\infty}{\bar{\alpha}} \\ \vdots \\ \vdots \end{gathered}$	－	$\begin{aligned} & \infty \\ & \frac{\infty}{2} \\ & \text { dit } \\ & \hline \end{aligned}$		$$	$\frac{\infty}{\boxed{a}}$	$$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{ন} \\ & \stackrel{\text { an }}{2} \end{aligned}$	䒨
心気気宮	$\left\lvert\, \begin{gathered} \stackrel{\tilde{n}}{\tilde{a}} \\ \underset{i}{c} \end{gathered}\right.$		$\begin{aligned} & \text { 茋 } \\ & \substack{\text { n }} \end{aligned}$		$\begin{gathered} \text { 荅 } \\ \hline 1 \end{gathered}$		$\begin{gathered} \infty \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{gathered}$	－	$\begin{gathered} \infty \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\bar{J}} \\ & \hline \stackrel{y}{4} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\pi} \\ & \text { dit } \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{ন} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$					¢
唇	0^{3}	0^{8}	0	0°	\bigcirc	\bigcirc	－	\bigcirc	\checkmark	0°	ט	00	ט゚	ט	ט	0 O	ט゙
比				$\begin{aligned} & \text { E } \\ & \text { E. } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbb{E}_{8} \\ & 0_{0}=0 \\ & 0 \\ & 0 \\ & 0 \\ & =0 \\ & =0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & =0 \\ & 0 \\ & 0 \\ & 100 \\ & 0 \\ & 0 \end{aligned}$	0		\％			$$					

Parameters	$\begin{aligned} & C-O \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-O \text { (ii) } \\ \text { Group } \end{gathered}$	CH_{3} Group	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$	$\begin{aligned} & \mathrm{C}-\mathrm{H} \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (c) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
n_{1}	1	1	3	2	1	1	1	1	1	1	1
n_{2}	0	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	1	1	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	1	1	1	1	1
c_{2}	0.85395	0.85395	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	0	0	0	1	1	0	0	0	1	1	0
c_{4}	2	2	1	1	1	2	2	2	2	2	2
c_{5}	0	0	3	2	1	0	0	0	0	0	0
C_{10}	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
$C_{2 o}$	1	1	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-33.15757	-33.47304	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	10.12103	10.15605	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	9.17389	9.32537	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-4.58695	-4.66268	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E(1оіно) (eV)	-14.63489	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(1 \mathrm{O} / \mathrm{HO})(\mathrm{eV})$	-1.44915	-1.65376	0	0	0	0	0	0	0	0	0
E_{T} (Ао। но) (eV)	-13.18574	-12.98113	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(H_{2} M 0\right)(\mathrm{eV})$	-31.63533	-31.63544	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{r}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-1.44915	-1.65376	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}(\mathrm{MO})(\mathrm{eV})$	-33.08452	-33.28912	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	12.0329	12.1583	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	7.92028	8.00277	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(\mathrm{eV})$	-0.18420	-0.18631	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kvw }}(\mathrm{eV})$	$\begin{gathered} 0.13663 \\ {[21]} \\ \hline \end{gathered}$	$\begin{gathered} 0.16118 \\ {[4]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \\ \hline \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.11589	-0.10572	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{T}($ (imup $)(\mathrm{eV})$	-33.20040	-33.39484	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
$E_{\text {imptal }}\left(\mathrm{C}_{\text {c }}\right.$ AO/ HO$)(\mathrm{eV})$	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
$E_{\text {minual }}\left(\mathrm{c}_{\text {, AO/ Ho }}\right)(\mathrm{eV})$	0	0	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
$E_{D}($ (roup) $)(\mathrm{eV})$	3.93062	4.12506	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

Table 15．67．The total bond energies of alkyl ethers calculated using the functional group composition and the energies of Table 15.66 compared to the experimental values［3］．

Formula	Name	$\begin{gathered} C-O(i) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (ii) } \\ \text { Group } \end{gathered}$	CH_{3}	CH_{2}	CH	$C-C$（a）	$C-C$（b）	$C-C$（c）	$C-C$（d）	$C-C$（e）	$C-C$（f）	$\begin{gathered} \text { Calculated } \\ \text { Total Bond } \\ \text { Energy (eV) } \\ \hline \end{gathered}$	Experimental Total Bond Energy（eV）	$\begin{gathered} \text { Relative } \\ \text { Error } \end{gathered}$
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	Dimethyl ether	${ }^{2}$	0	2	0	0	${ }^{0}$	0	${ }_{0}^{0}$	0	0	0	32.84496 45	${ }^{32.902}$	0.00174
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	Ethyl methyl ether	1	1	2	1	0	1	0	0	0	0	0	45.19710	45.183	－0．00030
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	Diethyl ether	0	2	2	2	0	2	0	0	0	0	0	57.54924	57.500	－0．00086
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	Methyl propyl ether	1	1	2	2	0	2	0	0	0	0	0	57.35480	57.355	0.00000
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	Isopropyl methyl ether	1	1	3	0	1	0	2	0	0	0	0	57.45569	57.499	0.00075
$\mathrm{C}_{6} \mathrm{H}_{44} \mathrm{O}$	Dipropyl ether	0	2	2	4	0	4	0	0	0	0	0	81.86464	81.817	－0．00059
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}$	Disopropyl ether	0	2	4	0	2	0	4	0	0	0	0	82.06642	82.088	0.00026
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}$	t－Butyl ethyl ether	1	1	4	1	0	1		3	0	0	0	82.10276	82.033	－0．00085
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	t－Butyl isopropyl ether	1	1	5	0	1	0		3	0	0		94.36135	94.438	0.00081
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	Dibutyl ether	0	2	2	6		6		0	0	0	0	106.18004	106.122	－0．00055
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	Di－sec－butyl ether	0	2	4	2		2	4	0	0	0	0	106.38182	106.410	0.00027
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	Di－t－butyl ether	$\stackrel{2}{2}$	${ }^{0}$	${ }_{5}^{6}$	${ }^{0}$	${ }^{0}$	0	0	6	0	0	0	106.656628	106.425	-0.00218

Table 15．68．The bond angle parameters of alkyl ethers and experimental values［1］．In the calculation of θ_{v} ，the parameters from the preceding angle were used．E_{T} is

	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{1}{\mathrm{a}} \end{aligned}$	$\stackrel{i n}{=}$	$\begin{aligned} & \stackrel{m}{\dot{\theta}} \end{aligned}$	$\begin{gathered} \underset{\stackrel{J}{\circ}}{\substack{o n}} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{\theta}} \\ & \stackrel{1}{=} \end{aligned}$	$\stackrel{\stackrel{O}{\dot{O}}}{\stackrel{2}{0}}$	$\begin{aligned} & \stackrel{O}{0} \\ & \stackrel{O}{0} \end{aligned}$	$\begin{aligned} & \text { 寺 } \\ & \dot{\theta} \end{aligned}$		$\begin{aligned} & \stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{1}{0}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{0}} \\ & \stackrel{O}{0} \end{aligned}$	$\stackrel{\widetilde{N}}{=}$	$\stackrel{\stackrel{\varrho}{=}}{\vdots}$	－
かこ														
－¢														
－0					$\begin{aligned} & \bar{n} \\ & 6 . \end{aligned}$	$\begin{aligned} & \bar{n} \\ & 8 . \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{n} \\ & \stackrel{R}{2} \end{aligned}$						－
\＆				－			－				－	－	$\stackrel{\circ}{\text { \％}}$	
\sim	$\begin{aligned} & \stackrel{i n}{i n} \\ & \stackrel{i}{\infty} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { ⿳亠丷⿵冂⿱八口丸 } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{n}{=} \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{!}{9} \end{aligned}$					$\bar{\infty}$ $\stackrel{y}{+}$ $\stackrel{1}{6}$		
\checkmark	－	－	－	R			¢			－	R	$\stackrel{\text { ® }}{\text { ¢ }}$	－	
v^{\prime}	－	－	－	－			－			－	－	－	－	
v	－	－	－	－			－			－	$\underset{O}{\mathrm{R}}$	$\stackrel{\sim}{\circ}$	－	
$\because \stackrel{N}{\bar{Z}}$	$\begin{aligned} & \text { in } \\ & \stackrel{i n}{\infty} \\ & \stackrel{\infty}{\circ} \end{aligned}$			－			－				$\frac{\bar{A}}{\partial}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\begin{aligned} & \frac{9}{2} \\ & \stackrel{y}{0} \\ & \substack{0 \\ 0} \end{aligned}$	
$\cdots \overline{\bar{E}}$	$\begin{aligned} & \stackrel{n}{n} \\ & \stackrel{\text { con }}{\infty} \end{aligned}$			$\begin{aligned} & \text { or } \\ & \text { on } \\ & 0 \end{aligned}$							$\begin{gathered} \text { Mo } \\ \substack{\infty \\ \infty \\ 0} \end{gathered}$	筞	$\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & \stackrel{1}{\infty} \\ & \underset{o c}{0} \end{aligned}$	
	ま	\％	\bigcirc	\pm			\pm			$\stackrel{\square}{1}$	－	－	$\stackrel{\sim}{\sim}$	
	\circ $\stackrel{\circ}{8}$ $\stackrel{+}{4}$ \vdots	$\begin{aligned} & \text { od } \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{1}{1} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{8} \\ & \stackrel{6}{6} \\ & \end{aligned}$	ェ			\pm					会		
	ま	\％	\because	\sim			－			$\stackrel{\circ}{\circ}$	in	n	$\stackrel{\sim}{\sim}$	
		$\begin{aligned} & \text { od } \\ & \stackrel{\rightharpoonup}{9} \\ & \stackrel{1}{7} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \stackrel{8}{c} \\ & \substack{6 \\ \\ \hline} \end{aligned}$			¢				$\begin{aligned} & \ldots \\ & \stackrel{\tilde{n}}{6} \\ & \stackrel{n}{n} \\ & \end{aligned}$			
	$\begin{aligned} & \text { ন } \\ & \underset{子}{+} \end{aligned}$		$\begin{gathered} \stackrel{\rightharpoonup}{6} \\ \substack{6 \\ 子} \end{gathered}$	$\begin{aligned} & \text { Ï } \\ & \underset{\sim}{c} \end{aligned}$			¢			$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \underset{\sim}{\circ} \end{aligned}$	$\frac{\stackrel{\leftrightarrow}{6}}{\underset{\sim}{x}}$	$\frac{ल ্ \overparen{~}}{\underset{\sim}{x}}$	$\stackrel{\otimes}{\stackrel{\circ}{2}}$	
¿号		$\begin{aligned} & \text { ñ } \\ & \text { O} \\ & \text { ch } \end{aligned}$	$\begin{aligned} & \text { §on } \\ & \stackrel{6}{6} \end{aligned}$	$\stackrel{\circ}{7}$			츷			$\begin{aligned} & \frac{f}{6} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{N} \\ & \underset{\sim}{i} \end{aligned}$		드ু	
䓣言			$\begin{aligned} & \frac{\mathrm{a}}{2} \\ & \frac{\rightharpoonup}{a} \end{aligned}$	$\stackrel{\circ}{\bar{j}}$			$\underset{\substack{\text { ¢ } \\ \text { ¢ } \\ \text { i }}}{ }$			$\frac{\stackrel{7}{2}}{\frac{6}{2}}$	$\begin{aligned} & \frac{\mathrm{t}}{\frac{1}{2}} \\ & \frac{\mathrm{a}}{2} \end{aligned}$	$\frac{\mathrm{f}}{\frac{\mathrm{D}}{2}}$	¢	
	$\left\|\begin{array}{cc} 0 & a \\ 0_{0} & 0 \\ 0_{0} & 1 \\ 0 & 0_{0} \end{array}\right\|$				$\begin{aligned} & 0_{0}^{0} \\ & \mathrm{v}_{0} \end{aligned}$	$\begin{aligned} & N_{0}^{2} \\ & 心_{0}^{0} \end{aligned}$		$\begin{aligned} & c_{0}^{c} \\ & 0_{0} \\ & 0 \end{aligned}$		$\begin{aligned} & 0_{0}^{\circ} 0_{0}^{0} \\ & 0_{0}^{0} .0 \end{aligned}$	$\begin{array}{ll} y_{0}^{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0.0 \end{array}$	$\begin{aligned} & z=0 \\ & z_{0} 0^{0} \\ & 0.0 .0 \end{aligned}$		Vicos

PRIMARY AMINES ($\left.C_{n} H_{2 n+2+m} N_{m}, n=1,2,3,4,5 \ldots \infty\right)$
The primary amines, $\mathrm{C}_{n} \mathrm{H}_{2 n+2+m} \mathrm{~N}_{m}$, comprise an NH_{2} functional group and a $\mathrm{C}-\mathrm{N}$ functional group. The alkyl portion of the primary amine may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $\mathrm{C}-\mathrm{C}$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in primary amines are equivalent to those in branched-chain alkanes.

The primary amino $\left(\mathrm{NH}_{2}\right)$ functional group was solved using the procedure given in the Dihydrogen Nitride $\left(\mathrm{NH}_{2}\right)$ section. Using the results of Eqs. (13.245-13.368), the primary amino parameters in Eq. (15.61) are $n_{1}=2, C_{1}=0.75$, $C_{2}=0.93613$ (Eqs. (13.248-13.249)), $C_{1 o}=1.5$, and $c_{1}=0.75$. In primary amines, the $C 2 s p^{3} \mathrm{HO}$ of the $C-N H_{2}$-bond MO has an energy of $E\left(C, 2 s p^{3}\right)=-15.35946 \mathrm{eV}$ (Eq. (15.18) with $s=1$ and Eqs. (15.19-15.20)) and the N AO has an energy of $E(N)=-14.53414 \mathrm{eV}$. To meet the equipotential condition of the union of the $\mathrm{N}-\mathrm{H}_{2} \mathrm{H}_{2}$-type-ellipsoidal-MO with the $C 2 s p^{3} \mathrm{HO}$, the hybridization factor c_{2} of Eq. (15.61) for the $N-H$-bond MO given by Eq. (15.77) is:

$$
\begin{equation*}
c_{2}\left(H \text { to } 1^{\circ} N\right)=\frac{E(N)}{E\left(C, 2 s p^{3}\right)}=\frac{-14.53414 \mathrm{eV}}{-15.35946 \mathrm{eV}}=0.94627 \tag{15.134}
\end{equation*}
$$

The $C-N$ group is solved by hybridizing the $2 s$ and $2 p$ AOs of the C atom to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the $N \mathrm{AO}$ to form a MO permits each participating orbital to decrease in radius and energy. In primary amines, the $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)), and the N AO has an energy of $E(N)=-14.53414 \mathrm{eV}$. To meet the equipotential condition of the union of the $\mathrm{C}-\mathrm{N} \quad \mathrm{H}_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor c_{2} of Eq. (15.61) for the $C-N$-bond MO given by Eqs. (15.77) and (15.79) is:

$$
\begin{equation*}
c_{2}\left(C 2 s p^{3} \mathrm{HO} \text { to } \mathrm{N}\right)=\frac{E(N)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=\frac{-14.53414 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.91771)=0.91140 \tag{15.135}
\end{equation*}
$$

$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-N$-bond MO in Eq. (15.61) due to the charge donation from the C and N atoms to the MO is -1.44915 eV . It is based on the energy match between the N of the NH_{2} group and the $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$ corresponding to the energy contributions to the single bond that are equivalent to those of methyl groups, -0.72457 eV (Eq. (14.151)), where the $N-H$ bonds are also energy matched to the $C-N$ bond.

The symbols of the functional groups of branched-chain primary amines are given in Table 15.69. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of primary amines are given in Tables $15.70,15.71$, and 15.72 , respectively. The total energy of each primary amine given in Table 15.73 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.72 corresponding to functional-group composition of the molecule. The bond angle parameters of primary amines determined using Eqs. (15.88-15.117) are given in Table 15.74. The color scale, translucent view of the charge-density of exemplary primary amine, propylamine, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.12.

Figure 15.12. (A)-(B) Color scale, translucent views of the charge-density of propylamine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.69. The symbols of functional groups of primary amines.

Functional Group	Group Symbol
NH_{2} group	NH_{2}
$\mathrm{C}-\mathrm{N}$	$\mathrm{C}-\mathrm{N}$
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	$\mathrm{C}-\mathrm{H}$
CC bond (n- C$)$	$\mathrm{C}-\mathrm{C}$ (a)
CC bond $($ iso- C$)$	$\mathrm{C}-\mathrm{C}$ (b)
CC bond $($ tert- C$)$	$\mathrm{C}-\mathrm{C}$ (c)
CC (iso to iso- C$)$	$\mathrm{C}-\mathrm{C}$ (d)
$\mathrm{CC}(t$ to $t-C)$	$\mathrm{C}-\mathrm{C}$ (e)
$\mathrm{CC}(t$ to iso- $C)$	$\mathrm{C}-\mathrm{C}$ (f)

Table 15.70. The geometrical bond parameters of primary amines and experimental values [1].

Parameter	$\begin{aligned} & \mathrm{NH}_{2} \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-N \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & \mathrm{C}-\mathrm{H} \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(a) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(\mathrm{c}) \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C(\mathrm{~d}) \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \text { (e) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.28083	1.92682	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	0.95506	1.38810	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{gathered} \text { Bond } \\ \text { Length } \\ 2 c^{\prime}(A) \end{gathered}$	1.0108	1.46910	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$\begin{gathered} 1.010 \\ \text { (methylamine) } \end{gathered}$	$\begin{gathered} 1.471 \\ \text { (methylamine) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	1.532 (propane) 1.531 (butane)	1.532 (propane) 1.531 (butane)	1.532 (propane) 1.531 (butane)	1.532 (propane) 1.531 (butane)	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$
$b, c\left(a_{0}\right)$	0.85345	1.33634	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.74566	0.72041	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.71. The MO to HO intercept geometrical bond parameters of primary amines. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom,msp $\left.{ }^{3} . A O\right)$.

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } \end{gathered}$	$\begin{gathered} E_{r} \\ (\text { (eV) } \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {manat }} \\ & \left(a_{\mathrm{c}}\right) \end{aligned}$	$\left.\begin{array}{l} r_{\text {malal }} \\ \left(a_{0}\right. \end{array}\right)$	$\begin{gathered} E_{\text {Calomen }} \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\mathrm{H}_{3} \mathrm{CN}(\mathrm{H}) \mathrm{-H}$	N	-0.72457	0	0	0		0.93084	0.87495	-15.55033		118.00	62.00	64.85	0.54432	0.41075
$-\mathrm{H}_{2} \mathrm{C}_{a} \mathrm{~N}(\mathrm{H})-\mathrm{H}$	N	-0.72457	0	0	0		0.93084	0.87495	-15.55033		118.00	62.00	64.85	0.54432	0.41075
$\mathrm{H}_{3} \mathrm{C}-\mathrm{NH}_{2}$	c	-0.72457	0	0	0	-152.34026	0.91771	0.87495	-15.55033	-15.35946	85.28	94.72	40.73	1.46010	0.07200
$\mathrm{H}_{3} \mathrm{C}-\mathrm{NH}_{2}$	N	-0.72457	0	0	0		0.93084	0.87495	-15.55033		85.28	94.72	40.73	1.46010	0.07200
$-\mathrm{H}_{2} \mathrm{Ca}_{\mathrm{a}}-\mathrm{NH}_{2}$	C_{α}	-0.72457	-0.92918	0	0	-153.26945	0.91771	0.82562	-16.47951	-16.28864	80.20	99.80	37.50	1.52858	0.14048
$-\mathrm{H}_{2} \mathrm{Ca}_{a}-\mathrm{NH}_{2}$	N	-0.72457	0	0	0		0.93084	0.87495	-15.55033		85.28	94.72	40.73	1.46010	0.07200
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C-H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}(\mathrm{CH})$	c	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{CH}_{\mathrm{H}} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \\ & \hline \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{\mathrm{H}} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-\mathrm{H}_{2} C_{C} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-H_{2} C_{0}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{c})) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { isoCo } C_{b}\left(H_{2} C_{0}-R^{\prime}\right) H C H_{2}- \\ & (C-C(d)) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\operatorname{terlC} C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{n}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}_{(C-C(\mathrm{e}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & {\text { terlC } C_{C} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}-}_{(C-C(f))}^{(C-C} \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & \text { isoC }_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f})) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.73. The total bond energies of primary amines calculated using the functional group composition and the energies of Table 15.72 compared to the experimental values [3]. Formula Name

$\mathrm{CH}_{5} \mathrm{~N}$	Methylamine
$\mathrm{C}_{2} \mathrm{H}_{H} \mathrm{~N}$	Ethylamine
$\mathrm{C}_{3}{ }_{4} \mathrm{~N}$	Propylamine
$\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$	Butylamine
$\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$	sec-Butylamine
$\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$	t-Butylamine
$\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$	Isobutylamine

Table 15.74. The bond angle parameters of primary amines and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used.

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Terrinal } \\ \text { Atoms } \\ \left(a_{0}\right) \end{gathered}$	$E_{\text {Conlomble }}$ or E Atom 1	$\begin{gathered} \text { Atom 1 } \\ \begin{array}{c} \text { Hybridization } \\ \text { Designation } \end{array} \\ \text { (Table 15.3.A) } \end{gathered}$	$\begin{gathered} E_{\text {catumbice }} \\ \text { Atom } 2 \end{gathered}$	$\begin{gathered} \text { Atom 2 } \\ \begin{array}{c} \text { Hybridization } \\ \text { Designation } \end{array} \\ \text { (Table 15.3.A) } \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom 1 } \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{n} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{array}{\|c} \hline \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{array}$	$\underset{\left({ }^{\circ}\right)}{\text { Exp. } \theta}$
$\angle H N H$	1.91013	1.91013	3.0984	-14.53414	N	н	H	$\begin{gathered} \begin{array}{c} 0.94627 \\ \text { Eq. } \\ (15.1344)) \end{array} \end{gathered}$	1	1	1	0.75	1.05679	0				108.40	$\begin{gathered} 107.1 \\ \text { (methylamine) } \end{gathered}$
$\angle H N C{ }_{a}$	1.91013	2.77620	3.8816	-14.53414	N	-15.35946	5	$\begin{aligned} & \begin{array}{l} 0.91140 \\ (\text { (Eq } \\ (15.135)) \end{array} \end{aligned}$	0.88583	0.75	1	0.75	0.97194	0				110.48	$\begin{gathered} 110.3 \\ \text { (methylamine) } \end{gathered}$
Methylene $\angle H C_{a} H$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} 108.0 \\ \begin{array}{c} \text { (methylamine) } \\ 107 \\ \text { (propane) } \end{array} \end{gathered}$
$\angle C_{a} C_{b} C_{c}$															69.51			110.49	112 (propane) 13.8 (butane) u10.8 (isobutane)
$\angle C_{a} C_{b} H$															69.51			110.49	$\begin{gathered} 111.0 \\ \text { (butane) } \\ 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \\ & \hline \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{a} C_{b} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b} H$															70.56			109.44	
$\begin{aligned} & \angle C_{b} C_{a} C_{c} \\ & \text { iso } C_{a} \end{aligned}$	2.91547	2.91547	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	$\begin{gathered} -16.68412 \\ C_{c} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				110.67	110.8 (isobutane)
$\begin{aligned} & \angle C_{b} C_{a} H \\ & \text { iso } C_{a} \end{aligned}$	2.91547	2.11323	4.1633	$\underset{C_{a}}{-15.55033}$	5	$\begin{array}{\|c} -14.82575 \\ C_{b} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{aligned} & \angle C_{a} C_{b} H \\ & \text { iso } C_{0} \\ & \hline \end{aligned}$	2.91547	2.09711	4.1633	$\begin{gathered} -15.55033 \\ C_{b} \end{gathered}$	5	$\begin{gathered} -14.82575 \\ C_{a} \end{gathered}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	$\begin{gathered} 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \angle C_{b} C_{C} C_{b} \\ & \text { tert } C_{a} \end{aligned}$	2.90327	2.90327	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	$\begin{array}{\|c} \hline-16.68412 \\ C_{b} \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	${ }^{-1.85836}$				111.37	110.8 (isobutane)
$\angle C_{b} C_{a} C_{d}$															72.50			107.50	

SECONDARY AMINES ($\left.C_{n} H_{2 n+2+m} N_{m}, n=2,3,4,5 \ldots \infty\right)$

The secondary amines, $C_{n} H_{2 n+2+m} N_{m}$, comprise an $N H$ functional group and two types of $C-N$ functional groups, one for the methyl group corresponding to the C of $C-N$ and the other for general alkyl secondary amines. The alkyl portion of the secondary amine may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $\mathrm{C}-\mathrm{C}$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t -butyl, and t -butyl to t -butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in secondary amines are equivalent to those in branched-chain alkanes.

The secondary amino ($N H$) functional group was solved using the procedure given in the Hydrogen Nitride (NH) section. Using the results of Eqs. (13.245-13.316), the secondary amino parameters in Eq. (15.61) are $n_{1}=1, C_{1}=0.75$, $C_{2}=0.93613$ (Eqs. (13.248-13.249)), $C_{1 o}=0.75$, and $c_{1}=0.75$. In secondary amines, the $C 2 s p^{3} \mathrm{HO}$ of the $C-N H$-bond MO has an energy of $E\left(C, 2 s p^{3}\right)=-15.56407 \mathrm{eV}$ (Eqs. (14.514-14.516)); Eq. (15.29) with $s=1$ and $s=2$, Eq. (15.31), and Eqs. (15.19-15.20)) and the N AO has an energy of $E(N)=-14.53414 \mathrm{eV}$ (Eq. (13.251)). To meet the equipotential condition of the union of the $\mathrm{N}-\mathrm{H}_{2} \quad \mathrm{H}_{2}$-type-ellipsoidal-MO with the $\mathrm{C} 2 s p^{3} \mathrm{HO}$, the hybridization factor c_{2} of Eq. (15.61) for the $N-H-$ bond MO given by Eq. (15.77) is:

$$
\begin{equation*}
c_{2}\left(\text { H to } 2^{\circ} N\right)=\frac{E(N)}{E\left(C, 2 s p^{3}\right)}=\frac{-14.53414 \mathrm{eV}}{-15.56407 \mathrm{eV}}=0.93383 \tag{15.136}
\end{equation*}
$$

The $C-N$ group is solved by hybridizing the $2 s$ and $2 p \mathrm{AOs}$ of the C atom to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the $N \mathrm{AO}$ to form a MO permits each participating orbital to decrease in radius and energy. In secondary amines, the $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)), and the N AO has an energy of $E(N)=-14.53414 \mathrm{eV}$. To meet the equipotential condition of the union of the $\mathrm{C}-\mathrm{N} \quad \mathrm{H}_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor c_{2} of Eq. (15.61) for the $C-N$-bond MO given by Eq. (15.135) is $c_{2}\left(C 2 s p^{3} H O\right.$ to $\left.N\right)=0.91140$.

As given in the Continuous-Chain Alkanes $\left(C_{n} H_{2 n+2}, n=3,4,5 \ldots \infty\right)$ section, each methylene group forms two single bonds, and the energy of each $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$ of each CH_{2} group alone is given by that in ethylene, -1.13379 eV (Eq. (14.511)). In secondary amines, the N of the $N H$ group also binds to two $C 2 s p^{3} \mathrm{HOs}$ and the corresponding $E_{T}\left(\right.$ atom-atom,msp ${ }^{3}$.AO) of each $C-N$-bond MO in Eq. (15.61) due to the charge donation from the C and N atoms to the MO is -1.13379 eV . It is based on the energy match between the N of the $N H$ group to the two $C 2 s p^{3}$ HOs corresponding to the energy contributions to each of the two single bonds that are equivalent to those of independent methylene groups, -1.13379 eV (Eq. (14.511)), where the $N-H$ bond is also energy matched to the $C-N$ bonds. $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-N$-bond MO in Eq. (15.61) due to the charge donation from the C and N atoms to the MO is -1.13379 eV . It is based on the energy match between the N of the $N H$ group to two $C 2 s p^{3}$ HOs corresponding to the energy contributions to the single bond that are equivalent to those of methyl groups, -0.72457 eV (Eq. (14.151)), where the $N-H$ bonds are also energy matched to the $C-N$ bond.

The symbols of the functional groups of branched-chain secondary amines are given in Table 15.75. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of secondary amines are given in Tables 15.76, 15.77, and 15.78, respectively. As in the case of NH_{2} (Eq. (13.339)), $C_{1 o}=2 C_{1}$ rather than $C_{1 o}=C_{1}$ in Eq. (15.61) for the $C-N$ bond. The total energy of each secondary amine given in Table 15.79 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.78 corresponding to functional-group composition of the molecule. The bond angle parameters of secondary amines determined using Eqs. (15.88-15.117) are given in Table 15.80. The color scale, translucent view of the charge-density of exemplary secondary amine, dimenthylamine, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.13.

Figure 15.13. (A)-(B) Color scale, translucent views of the charge-density of dimethylamine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.75. The symbols of functional groups of secondary amines.

Functional Group	Group Symbol
NH group	NH
$\mathrm{C}-\mathrm{N}$ (methyl)	$\mathrm{C}-\mathrm{N}$ (i)
$\mathrm{C}-\mathrm{N}$ (alkyl)	$\mathrm{C}-\mathrm{N}$ (ii)
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	$\mathrm{C}-\mathrm{H}$
CC bond (n-C)	$\mathrm{C}-\mathrm{C}$ (a)
CC bond $($ iso- C$)$	$\mathrm{C}-\mathrm{C}$ (b)
CC bond (tert- C$)$	$\mathrm{C}-\mathrm{C}$ (c)
CC (iso to iso- C$)$	$\mathrm{C}-\mathrm{C}$ (d)
$\mathrm{CC}(t$ to $t-\mathrm{C})$	$\mathrm{C}-\mathrm{C}$ (e)
$\mathrm{CC}(t$ to iso- C$)$	$\mathrm{C}-\mathrm{C}$ (f)

Table 15.76. The geometrical bond parameters of secondary amines and experimental values [1].

Parameter	$\begin{gathered} N H \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & \mathrm{C}-\mathrm{H} \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{a}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (c) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(d) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
$a\left(a_{3}\right)$	1.26224	1.94862	1.94862	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	0.94811	1.39593	1.39593	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.00343	1.47739	1.47739	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$\begin{gathered} 1.00 \\ \text { (dimethylamine) } \end{gathered}$	1.455 (dimethylamine)		$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	1.532 (propane) 1.531 1.531 (butane)	1.532 (propane) 1.531 (butane)			1.532 (propane) 1.531 (butane)	
$b, c\left(a_{0}\right)$	0.83327	1.35960	1.35960	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.75113	0.71637	0.71637	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.77. The MO to HO intercept geometrical bond parameters of secondary amines. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom,msp $\left.{ }^{3} . A O\right)$.

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV} \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 3 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 4$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {mina }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {manal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Columant }} \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\text { ev) } \\ \text { Final } \end{gathered}$	$\left({ }^{\circ}\right)$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{(}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\mathrm{H}_{3} \mathrm{C}_{a} N\left(\mathrm{C}_{b} \mathrm{H}_{3}\right)-\mathrm{H}$	N	-0.56690	-0.56690	0	0		0.93084	0.85252	-15.95954		118.18	61.82	64.40	0.54546	0.40264
$-H_{2} C_{a} N\left(R_{a k k_{4}}\right)-H$	N	-0.56690	-0.56690	0	0		0.93084	0.85252	-15.95954		118.18	61.82	64.40	0.54546	0.40264
$\mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{NH}-\mathrm{C}_{a} \mathrm{H}_{3}$	C_{α}	-0.56690	0	0	0	-152.18259	0.91771	0.88392	-15.39265	-15.20178	84.14	95.86	40.30	1.48625	0.09032
$\mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{NH}-\mathrm{Ca}_{a} \mathrm{H}_{3}$	N	-0.56690	-0.56690	0	0		0.93084	0.85252	-15.95954		80.95	99.05	38.26	1.53008	0.13415
$-\mathrm{H}_{2} \mathrm{C}_{a}-\mathrm{NH}-\mathrm{Cb}_{b} \mathrm{R}$	C_{a}	-0.56690	-0.92918	0	0	-153.11177	0.91771	0.83360	-16.32183	-16.13097	78.89	101.11	36.99	1.55650	0.16057
$-\mathrm{H}_{2} \mathrm{C}_{a}-\mathrm{NH}-\mathrm{Cb}_{b} \mathrm{H}_{2}-$	N	-0.56690	-0.56690	0	0		0.93084	0.85252	-15.95954		80.95	99.05	38.26	1.53008	0.13415
$\mathrm{C-H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{ClH}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}$ (CH)	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{\mathrm{H}} \mathrm{C}_{2}-\mathrm{H}_{2} \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-H_{2} C_{a} C_{6}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C(b)) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-H_{2} C_{(}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) C H_{2}- \\ & (C-C(c)) \\ & \hline \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { iso } C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C(d)) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\text { terlC } C_{b}}^{\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) C_{2}-} \\ & (\mathrm{C}-\mathrm{C}(\mathrm{e})) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & \operatorname{tertC}_{C_{C}} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f})) \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & {\text { iso } C_{d}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}_{(C-C(1)} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.78. The energy parameters (eV) of functional groups of secondary amines.

Parameters	$\begin{gathered} N H \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N(i) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \text { (ii) } \\ \text { Group } \end{gathered}$	CH_{3} Group	CH_{2} Group	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{c}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (f) } \\ \text { Group } \\ \hline \end{gathered}$
n_{1}	1	1	1	3	2	1	1	1	1	1	1	1
n_{2}	0	0	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.75	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	0.93613	1	1	1	1	1	1	1	1	1	1	1
c_{1}	0.75	1	1	1	1	1	1	1	1	1	1	1
c_{2}	0.93383	0.91140	0.91140	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	1	0	0	0	1	1	0	0	0	1	1	0
c_{4}	1	2	2	1	1	1	2	2	2	2	2	2
c_{5}	1	0	0	3	2	1	0	0	0	0	0	0
C_{10}	0.75	1	1	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	1	1	1	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-39.21967	-31.98456	-31.98456	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	14.35050	9.74677	9.74677	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	15.53581	8.20698	8.20698	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-7.76790	-4.10349	-4.10349	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E (Аоно) (eV)	-14.53414	-14.63489	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$\Delta E_{\mathrm{H}_{2} \mathrm{MO}}($ (АО HO$)(\mathrm{eV})$	0	-1.13379	-1.13379	0	0	0	0	0	0	0	0	0
$E_{T}($ (А/ но) (eV)	-14.53414	-13.50110	-13.50110	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(H_{2} \mathrm{NO}\right)(\mathrm{eV})$	-31.63541	-31.63540	-31.63540	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}{ }^{3} . \mathrm{AO}\right)(\mathrm{eV})$	0	-1.13379	-1.13379	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}(\mathrm{No})(\mathrm{eV})$	-31.63537	-32.76916	-32.76916	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	47.0696	15.1983	26.0778	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	30.98202	10.00377	17.16484	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(\mathrm{eV})$	-0.34836	-0.20505	-0.26859	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kulb }}(\mathrm{eV})$	$\begin{gathered} 0.40696 \\ {[24]} \end{gathered}$	$\begin{gathered} 0.12944 \\ {[23]} \end{gathered}$	$\begin{gathered} 0.11159 \\ {[25]} \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \\ \hline \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.14488	-0.14033	-0.21280	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{T}($ (mmu$)(\mathrm{eV})$	-31.78025	-32.90949	-32.98196	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
$E_{\text {irutalal }}\left(\mathrm{E}_{\text {, AO/ }}\right.$ (CO$)(\mathrm{eV})$	-14.53414	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
	-13.59844	0	0	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
$E_{D}($ (roup $)(\mathrm{eV})$	3.50582	3.63971	3.71218	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

Relative $\begin{array}{cc}\text { Calculated } & \text { Experimental } \\ \text { Total Bond } & \text { Total Bond } \\ \text { Energy } & \text { Energy (eV) }\end{array}$
 mís $\dot{\infty} \dot{\infty}$ o 0
0
0 000 10
 0
0
0
0
0

0 | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 | $000+06$ 0

2
4
0
6
0 0
0
0
2
0

2 | 0 |
| :--- |
| 0 |
| 0 |
| 2 |
| 0 |
| 2 | 0

2
4
0

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } \begin{array}{c} 1 \\ \left(a_{0}\right) \end{array} \end{gathered}$	$\underset{\substack{2 c^{\prime} \\ \text { Bond } \\\left(a_{0}\right)}}{\substack{ \\\hline}}$		$\begin{aligned} & E_{\text {comatict }}^{\text {or }} \\ & E \\ & \text { Atom 1 } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Atom 1 } \\ \text { Hybridization } \\ \text { Designation } \end{array}$ (Table 15.3.A)			$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	c_{1}	C_{2}	c_{1}	c_{2}	$\begin{gathered} E_{T} \\ (\mathrm{ev}) \end{gathered}$	$\begin{aligned} & \hline \theta_{0} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ { }^{\circ} \theta \end{gathered}$	$\underset{\left({ }^{\circ}\right)}{\substack{\operatorname{Exp} \\(}}$
$\underset{(C-N(i) \&(\text { ii) })}{\langle H C N}$	2.09711	2.79186	4.0661	-14.82575	1	-14.53414	N	0.91771	$\begin{aligned} & 0.9383 \\ & \binom{0.983}{(15.130)} \end{aligned}$	0.75	1	0.75	1.01756	0				111.76	$\begin{gathered} 112 \\ \text { (dimethylamine) } \end{gathered}$
$\begin{gathered} \angle H N C_{0} \\ (C-N(\mathrm{i}) \&(\mathrm{ii})) \end{gathered}$	1.89621	2.79186	${ }^{3.8123}$	-14.53414	N	$\begin{aligned} & -15.5647 \\ & \left.\begin{array}{l} -1547 \\ (15.130) \end{array}\right) \end{aligned}$	7	$\begin{gathered} 0.91140 \\ (15.1409) \\ (15.135) \end{gathered}$	0.87418	0.75	1	0.75	0.95917	0				107.27	$\begin{gathered} 107 \\ \text { (dimethylamine) } \end{gathered}$
$\underset{(C-N(i) \&(\text { ii) })}{\angle C N C}$	2.79186	2.79186	4.6260	-17.04641	33	-17.04641	33	0.79816	${ }^{0.79816}$	1	1	1	0.79816	${ }^{-1.88836}$				111.89	$\begin{array}{\|c\|c\|c\|} \hline 11.8 \\ \text { (dimethylamine) } \end{array}$
$\begin{aligned} & \text { Methylene ene } \\ & \angle H C_{a} H \end{aligned}$	2.11106	2.11106	3.4252	-15.74493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} \text { (dimemylylamine) } \\ \text { (propane) } \end{gathered}$
$\angle C_{a} C_{B} C_{c}$															69.51			110.49	
$\angle C_{a} C_{b} H$															69.51			110.49	
$\begin{gathered} \text { Menthy } \\ \angle H C_{a} H \end{gathered}$	2.09711	2.09711	${ }^{3.4252}$	-15.74493	7	H	H	${ }^{0.86359}$	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{a} C_{i} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b}{ }^{\text {H }}$															70.56			109.44	
$\begin{aligned} & \left\langle c_{C} C_{C} C_{C} c_{e}\right. \text { io } \end{aligned}$	2.91547	2.91547	4.7958	$\underset{C_{b}}{-16.6842}$	26	$\underset{\substack{-16.68412}}{C_{e}}$	26	0.81549	0.81549	1	1	1	0.81549	${ }^{-1.88836}$				110.67	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\begin{gathered} \left\langle c_{C} C_{C} H\right. \\ \text { iso } C_{0} \\ \hline \end{gathered}$	2.91547	2.11323	4.1633	$\begin{gathered} -15.55033 \\ C_{s} \end{gathered}$	5	$\underset{\substack{-14.82575 \\ C_{6}}}{-y_{5}^{-275}}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{gathered} \substack{\angle c_{C} C_{H} H \\ \text { is } C_{0}} \end{gathered}$	2.91547	2.09711	4.1633	$\begin{gathered} -15.55033 \\ C_{b} \end{gathered}$	5	$\begin{gathered} -14.82575 \\ C_{s} \\ \hline \end{gathered}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	$\begin{gathered} 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \angle C_{b} C_{a} C_{b} \\ & \operatorname{tert} C_{b} \\ & \hline \end{aligned}$	2.90327	2.90327	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	$\begin{gathered} -16.68412 \\ C_{6} \\ \hline \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.88836				111.37	$\begin{gathered} 110.8 \\ \text { (isobutane) } \\ \hline \end{gathered}$
$\angle c_{6} c_{0} c_{d}$															72.50			107.50	

TERTIARY AMINES $\left(C_{n} H_{2 n+3} N, n=3,4,5 \ldots \infty\right)$

The tertiary amines, $C_{n} H_{2 n+3} N$, have three $C-N$ bonds to methyl or alkyl groups wherein $C-N$ comprises a functional group. The alkyl portion of the tertiary amine may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $C-C$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in tertiary amines are equivalent to those in branched-chain alkanes.

The $C-N$ group is solved by hybridizing the $2 s$ and $2 p$ AOs of the C atom to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the $N \mathrm{AO}$ to form a MO permits each participating orbital to decrease in radius and energy. In tertiary amines, the $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)), and the N AO has an energy of $E(N)=-14.53414 \mathrm{eV}$. To meet the equipotential condition of the union of the $\mathrm{C}-\mathrm{N} \quad \mathrm{H}_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor c_{2} of Eq. (15.61) for the $C-N$-bond MO given by Eq. (15.135) is $c_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to N$)=0.91140$.

As given in the Continuous-Chain Alkanes $\left(C_{n} H_{2 n+2}, n=3,4,5 \ldots \infty\right)$ section, the energy of each $C 2 s p^{3} \mathrm{HO}$ must be a linear combination of that of the CH_{3} and CH_{2} groups that serve as basis elements. Each CH_{3} forms one $\mathrm{C}-\mathrm{C}$ bond, and each CH_{2} group forms two. Thus, the energy of each $\mathrm{C} 2 s p^{3} \mathrm{HO}$ of each CH_{3} and CH_{2} group alone is given by that in ethane, -0.72457 eV (Eq. (14.151)), and ethylene, -1.13379 eV (Eq. (14.511)), respectively. In order to match the energy of the component HOs and MOs for the entire molecule, the energy $E_{T_{\text {alkene }}}\left(C-C, 2 s p^{3}\right)$ given as a linear combination of these basis elements is -0.92918 eV (Eq. (14.513)). In tertiary amines, the N binds to three $C 2 s p^{3}$ HOs and the corresponding $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of each $C-N$-bond MO in Eq. (15.61) due to the charge donation from the C and N atoms to the MO is -0.92918 eV . It comprises a linear combination of the energy for a primary amine, -0.72457 eV and a secondary amine, -1.13379 eV .

The symbols of the functional groups of branched-chain tertiary amines are given in Table 15.81. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of tertiary amines are given in Tables $15.82,15.83$, and 15.84 , respectively. The total energy of each tertiary amine given in Table 15.85 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.84 corresponding to functional-group composition of the molecule. The bond angle parameters of tertiary amines determined using Eqs. (15.88-15.117) are given in Table 15.86. The color scale, translucent view of the charge-density of exemplary tertiary amine, trimethylamine, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.14.

Figure 15.14. Color scale, translucent view of the charge-density of trimethylamine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (A) Top view. (B) Side view.

Table 15.81. The symbols of functional groups of tertiary amines.

Functional Group	Group Symbol
C-N	C-N
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to t - C)	$C-C$ (e)
$\underline{C C}(t$ to iso-C)	$C-C$ (f)

Table 15.82. The geometrical bond parameters of tertiary amines and experimental values [1].

Parameter	$\begin{aligned} & C-N \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.96313	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.40112	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.48288	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$\begin{gathered} 1.458 \\ \text { (trimethylamine) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	1.532 (propane) 1.531 (butane)	1.532 (propane) 1.531 (butane)	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	1.532 (propane) 1.531 (butane)	1.532 (propane) 1.531 (butane)
$b, c\left(a_{0}\right)$	1.37505	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.71372	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.83. The MO to HO intercept geometrical bond parameters of tertiary amines. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom, msp ${ }^{3}$. $\left.A O\right)$.

Bond	Atom	$\begin{gathered} E_{V} \\ (\mathrm{eV}) \\ \text { (ond } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\text { (eV) } \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {manal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {rant }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & E_{\text {calomen }} \\ & \text { (eV) } \\ & \text { Final } \end{aligned}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ \text { (ev) } \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\mathrm{N}-\left(\mathrm{Ca}_{a} \mathrm{H}_{3}\right)_{3}$	C_{a}	-0.46459		0	0	-152.08028	0.91771	0.88983	-15.29034	-15.09948	83.37	96.63	40.00	1.50383	0.10271
$\mathrm{N}-\left(\mathrm{C}_{0} \mathrm{H}_{3}\right)_{3}$	N	-0.46459	-0.46459	-0.46459	0		0.93084	0.83885	-16.21953		78.02	101.98	36.64	1.57525	0.17413
$N-\left(\mathrm{Ca}_{\mathrm{C}} \mathrm{H}_{2}-\right)^{\text {a }}$,	C_{a}	-0.46459	-0.92918	0	0	-153.00946	0.91771	0.83885	-16.21953	-16.02866	78.02	101.98	36.64	1.57525	0.17413
$N-\left(C_{a} H_{2}-\right)^{\text {a }}$,	N	-0.46459	-0.46459	-0.46459	0		0.93084	0.83885	-16.21953		78.02	101.98	36.64	1.57525	0.17413
$\mathrm{C-H}\left(\mathrm{CH}_{3}\right)$	c	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C-H}\left(\mathrm{CH}_{2}\right)$	c	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}(\mathrm{CH})$	c	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & H_{3} C_{a} C_{b} H_{2} C H_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{\mathrm{C}} \mathrm{H}_{2} \mathrm{H}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-\mathrm{H}_{2} C_{a} C_{C}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-H_{2} C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) C H_{2}- \\ & (C-C(c)) \\ & \hline \end{aligned}$	c_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & {\text { iso } C_{a} C_{C}\left(H_{2} C_{0}-R^{\prime}\right) H C H_{2}-}^{(C-C(d))} \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\operatorname{terlC} C_{d}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{n}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{e}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & \text { tertC C C C } C_{r}\left(H_{2} C_{\mathrm{e}}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f})) \end{aligned}$	c_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & \text { iso } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (C-C(f)) \end{aligned}$	c_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.84. The energy parameters (eV) of functional groups of tertiary amines.

Er	-	-	\bigcirc	\cdots	-	$-\frac{\mathrm{N}}{\hat{A}}$	-	N	- ${ }^{\circ}$	-	$-\frac{\underset{\sim}{0}}{\underset{\sim}{c}}$	$\underset{\substack{\text { N } \\ \\ \hline}}{ }$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & \text { on } \end{aligned}$		$\begin{gathered} 0 \\ \stackrel{0}{0} \\ \underset{2}{n} \\ \end{gathered}$	\bigcirc	$\stackrel{\circ}{1}$	$\begin{gathered} \hat{\sim} \\ \hat{\widehat{\alpha}} \\ \stackrel{1}{2} \end{gathered}$	$\frac{n}{a}$			Co						$\begin{gathered} \frac{1}{1} \\ \underset{\infty}{\infty} \\ \underset{\sim}{2} \end{gathered}$			
O	-	-	-	\cdots	-	$-\begin{aligned} & \text { E } \\ & \text { 令 } \\ & 0\end{aligned}$	-	\sim	-	-	$-\frac{\text { ¢ }}{\frac{2}{8}}$	$\stackrel{\text { N }}{\text { N}}$	\%	+	$\begin{gathered} 0 \\ \stackrel{0}{2} \\ \underset{2}{n} \\ \end{gathered}$	\bigcirc	¢ 0 0	n	$\stackrel{\text { n}}{\underset{\sim}{\text { n }}}$	$\stackrel{N}{2}$		ç	\bigcirc	-				$\begin{gathered} \underset{\sim}{N} \\ \frac{\infty}{\sim} \\ \underset{r}{n} \end{gathered}$	+	-	$\xrightarrow{\text { a }}$

Table 15.85 . The total bond energies of tertiary amines calculated using the functional group composition and the energies of Table 15.84 compared to the experimental values [3].

Relative Error
-0.00152
0.00012
0.00070

Table 15.86. The bond angle parameters of tertiary amines and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used.

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \end{gathered}$ $\left(a_{0}\right)$	$\begin{gathered} 2 c^{\prime} \\ \text { Terminal } \\ \text { Atoms }\left(a_{0}\right) \end{gathered}$	$E_{\text {Coulomble }}$ or E Atom 1	Atom I Hybridization Designation (Table 15.3.A)	$E_{\text {Coulombic }}$ Atom 2	Atom 2Hybridization Designation(Table 15.3.A)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom 2 } \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{0} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \hline \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\angle C N C$	2.80224	2.80224	4.6043	-17.14871	36	-17.14871	36	0.79340	0.79340	1	1	1	0.79340	-1.85836				110.48	$\begin{gathered} 110.9 \\ \text { (trimethylamine) } \end{gathered}$
Methylene $\angle H C_{a} H$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	107 (dimethlamine) 107 (propane)
$\angle C_{a} C_{b} C_{c}$															69.51			110.49	112 (propane) 113.8 (butane) 110.8 (isobutane)
$\angle C_{a} C_{b} H$															69.51			110.49	$\begin{gathered} 111.0 \\ \text { (butane) } \\ 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{a} C_{b} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b} H$															70.56			109.44	
$\begin{aligned} & \angle C_{b} C_{a} C_{c} \\ & \text { iso } C_{a} \\ & \hline \end{aligned}$	2.91547	2.91547	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	$\begin{gathered} -16.68412 \\ C_{c} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				110.67	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\begin{gathered} \angle C_{b} C_{a} H \\ \text { iso } H \\ C_{a} \end{gathered}$	2.91547	2.11323	4.1633	$\begin{gathered} -15.55033 \\ C_{a} \end{gathered}$	5	$\begin{array}{\|l\|} \hline-14.82575 \\ C_{b} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{gathered} \angle C_{0} C_{a} H \\ \text { iso } H \\ C_{a} \end{gathered}$	2.91547	2.09711	4.1633	${ }_{C_{b}}^{-15.55033}$	5	$\begin{array}{\|c} -14.82575 \\ C_{a} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	$\begin{gathered} 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \angle C_{b} C_{a} C_{b} \\ & \text { tert } C_{a} \\ & \hline \end{aligned}$	2.90327	2.90327	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \\ \hline \end{gathered}$	26	$\begin{array}{\|c} \hline-16.68412 \\ C_{b} \\ \hline \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				111.37	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\angle C_{b} C_{a} C_{d}$															72.50			107.50	

ALDEHY DES ($\left.C_{n} H_{2 n} O, n=1,2,3,4,5 \ldots \infty\right)$

The alkyl aldehydes, $C_{n} H_{2 n} O$, each have a $H C=O$ moiety that comprises a $C=O$ functional group and a $C H$ functional group. The single bond of carbon to the carbonyl carbon atom, $C-C(O) H$, is a functional group. In addition to the $C=O$ functional group, formaldehyde comprises a CH_{2} functional group. The alkyl portion of the alkyl aldehyde may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in aldehydes are equivalent to those in branched-chain alkanes.

The CH functional group was solved in the Hydrogen Carbide (CH) section except that $E_{\text {mag }}$ is not subtracted since unpaired electrons are not created with fragmentation of the CH functional group of aldehydes. The CH_{2} functional group of formaldehyde is solved in the Dihydrogen Carbide $\left(\mathrm{CH}_{2}\right)$ section except that the energy of each $\mathrm{C}-\mathrm{H} \mathrm{MO}$ is matched to the initial energy of the $C 2 s p^{3}$ HO (Eq. (15.25)). The $C=O$ and $C-C(O) H$ groups are solved by hybridizing the $2 s$ and $2 p$ AOs of each C atom to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the $O \mathrm{AO}$ or between two $C 2 s p^{3} \mathrm{HOs}$, respectively, to form a MO permits each participating orbital to decrease in radius and energy. In alkyl aldehydes, the $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)) and the O AO has an energy of $E(O)=-13.61806 \mathrm{eV}$. To meet the equipotential condition of the union of the $\mathrm{C}=\mathrm{O} \mathrm{H}_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor c_{2} of Eq. (15.61) for the $C=O$-bond MO given by Eq. (15.133) is $c_{2}\left(C 2 s p^{3} H O\right.$ to $\left.O\right)=0.85395$. The unpaired electrons created by bond breakage of the double $C=O$ bond requires that two times the $O 2 p$ AO magnetic energy E_{mag} (Eq. (15.69)) be subtracted from the total energy to give $E_{D}($ Group $)(\mathrm{eV})$ for $C=O$.
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C=O$-bond MO in Eq. (15.61) due to the charge donation from the C and O atoms to the MO is -2.69893 eV which is an energy minimum for the double bond between the pair of $C 2 s p^{3} \mathrm{HO}$ electrons of the C atom and the pair of AO electrons of the O atom. It is given as a linear combination of the energy contributions corresponding to a double bond, -1.13379 eV (Eq. (14.247)), and a triple bond, -1.56513 eV (Eq. (14.342)). The triple bond contribution includes the $C 2 s p^{3} \mathrm{HO}$ electron of the $C-H$ bond in addition to the pair involved directly in the double bond with O. $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-C(O) H$ group is equivalent to that of an alkane, -1.85836 eV , where both energy contributions are given by Eq. (14.513). It is based on the energy match between the $C 2 s p^{3}$ HOs of the aldehyde. In order to match energy between the groups bonded to the $C=O$, electron-density is shared. Due to the interaction in the transition state between the groups based on the sharing, $C_{1 o}=2 C_{1}$ rather than $C_{1 o}=C_{1}$ in Eq. (15.61) for the $C-C(O) H$ bond.

The symbols of the functional groups of alkyl aldehydes are given in Table 15.87. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl aldehydes are given in Tables 15.88, 15.89, and 15.90, respectively. The total energy of each alkyl aldehyde given in Table 15.91 was calculated as the sum over the integer multiple of each $E_{D}(G r o u p)$ of Table 15.90 corresponding to functional-group composition of the molecule. The bond angle parameters of alkyl aldehydes determined using Eqs. (15.88-15.117) are given in Table 15.92. The color scale, translucent view of the charge-density of exemplary aldehyde, Propanal, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.15.

Figure 15.15. (A)-(B) Color scale, translucent views of the charge-density of propanal showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.87. The symbols of functional groups of alkyl aldehydes.

Functional Group	Group Symbol
CH_{2} (formaldehyde) group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$ (i)
CH (aldehyde) group	CH (i)
$C=O$	$C=O$ (i)
C-C(O)H	$\mathrm{C}-\mathrm{C}(\mathrm{O}) \mathrm{H}$
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} (alkyl) group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$ (ii)
CH (alkyl)	$\mathrm{C}-\mathrm{H}$ (ii)
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to $t-C$)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.88. The geometrical bond parameters of alkyl aldehydes and experimental values [1].

Parameter	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$ (i)	$\begin{aligned} & \mathrm{CH} \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{C}(\mathrm{O}) \mathrm{H} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-H \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(d) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.64010	1.67465	1.29907	2.04740	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.04566	1.05661	1.13977	1.43087	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
Bond Length $2 c^{\prime}(A)$	1.10668	1.11827	1.20628	1.51437	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$\begin{gathered} 1.116 \\ \text { (formaldehyde) } \end{gathered}$	$\begin{gathered} 1.128 \\ \text { (acetaldehyde) } \end{gathered}$	$\begin{gathered} 1.208 \\ \text { (formaldehyde) } \\ 1.210 \\ \text { (acetaldehyde) } \end{gathered}$	$\begin{gathered} 1.515 \\ \text { (acetaldehyde) } \end{gathered}$	1.107 $(C-H$ propane $)$ 1.117 $(C-H$ butane $)$	1.107 $(C-H$ propane $)$ 1.117 $(C-H$ butane $)$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	1.532 (propane) 1.531 (butane)	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	1.532 (propane) 1.531 (butane)	
$b, c\left(a_{0}\right)$	1.26354	1.29924	0.62331	1.46439	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.63756	0.63095	0.87737	0.69887	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.89. The MO to HO intercept geometrical bond parameters of alkyl aldehydes. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is E_{T} (atom - atom,msp ${ }^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{r_{r}} \\ (\text { (eV) } \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{V} \\ (\text { (eV) } \\ \text { Bond } 3 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 4 } \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {manal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {mal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {calumb }} \\ \text { (el) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ \text { (ev) } \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{1}\right) \end{gathered}$
$H C(O)-H\left(\mathrm{CH}_{2}\right)($ (i)	C	-1.34946	0	0	0	-152.96515	0.91771	0.84115	-16.17521	-15.98435	75.72	104.28	40.18	1.25314	0.20748
$-\mathrm{Cb}_{b} \mathrm{H}_{2} \mathrm{C}_{a}(\mathrm{O})-\mathrm{H}(\mathrm{CH})(\mathrm{i})$	C_{a}	-1.34946	-0.92918	0	0	-153.89434	0.91771	0.79546	-17.10440	-16.91353	64.95	115.05	33.69	1.39345	0.33684
$\mathrm{H}_{2} \mathrm{C}=\mathrm{O}$	o	-1.34946	0	0	0		1.00000	0.84115	-16.17521		137.27	42.73	66.31	0.52193	0.61784
$-C_{b} H_{2} \mathrm{C}_{a}(H)=O$	o	-1.34946	0	0	0		1.00000	0.84115	-16.17521		137.27	42.73	66.31	0.52193	0.61784
$R H_{2} C_{b}-C_{a}(H)(O)$	C_{a}	-1.34946	-0.92918	0	0	-153.89434	0.91771	0.79546	-17.10440	-16.91353	135.34	44.66	63.78	0.57401	0.56576
$H_{3} C_{b}-C_{a}(H)(O)$	C_{b}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	72.27	107.73	34.17	1.69388	0.26301
$-\mathrm{C}_{b} \mathrm{H}_{2}-\mathrm{C}_{a}(H)(O)$	C_{b}	-0.92918	-0.92918	0	0	-153.47405	0.91771	0.81549	-16.68411	-16.49325	65.99	114.01	30.58	1.76270	0.33183
$\mathrm{C-H}\left(\mathrm{CH}_{3}\right)$	c	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C-H}\left(\mathrm{CH}_{2}\right)_{(\mathrm{ii})}$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}(\mathrm{CH})(\mathrm{ii)}$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{\mathrm{C}_{a} C_{b} \mathrm{H}_{2} \mathrm{CH}_{2}-} \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{0}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{H_{C} C_{C} C_{b} H_{2} \mathrm{CH}_{2}-}^{(\mathrm{C}-\mathrm{C})} \mathrm{C} \\ & \hline \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-H_{2} C_{a} C_{C}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C(b)) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-\mathrm{H}_{2} \mathrm{C}_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) \mathrm{C}_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{c})) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { iso } C_{a} C_{b}\left(H_{2} C_{0}-R^{\prime}\right) H C H_{2}- \\ & (C-C(d)) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\operatorname{terl} C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}^{(C-C(\mathrm{e}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & \operatorname{terl}_{a} C_{b}\left(H_{2} C_{0}-R^{\prime}\right) H C H_{2}- \\ & (C-C(\mathrm{f})) \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.90. The energy parameters (eV) of functional groups of alkyl aldehydes.

$\begin{aligned} & \Theta \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	-	-	\bigcirc	$\stackrel{\sim}{3}$		$-\frac{\lambda}{\text { A }}$	$\stackrel{N}{\hat{N}} \underset{\dot{O}}{ }$	$0 \sim$		$0 \stackrel{n}{\circ}$	\%-	$-\frac{\underset{\sim}{0}}{\underset{\sim}{c}}$	N				-	$\begin{aligned} & \substack{0 \\ \stackrel{1}{n} \\ \stackrel{n}{2} \\ \hline} \end{aligned}$			$\begin{aligned} & \underset{\sim}{w} \\ & \underset{\sim}{\infty} \\ & \stackrel{\rightharpoonup}{c} \end{aligned}$		C్రి	,	-							$\underset{\sim}{\text { d }}$

$\begin{aligned} & \text { © } \\ & \text { 曾 } \\ & \text { it } \end{aligned}$	-	-	\bigcirc	\%	-	-	$\stackrel{\text { E }}{2}$	-	\sim	\bigcirc			A	-		d	+	-			$\stackrel{n}{2}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \text { ¢ } \end{aligned}$		$\left\|\begin{array}{c} \overline{\mathrm{O}} \\ \text { dic } \end{array}\right\|$	$\begin{gathered} \circ \\ \frac{7}{6} \\ \frac{1}{i} \end{gathered}$		$\frac{\check{\circ}}{\stackrel{\circ}{む}}$	$\underset{\substack{\underset{\infty}{\infty} \\ \underset{\sim}{\infty} \\ \hline}}{\substack{\text { n}}}$	O	

-33.49373
9.43699
6.21159

6.21159
-0.16515
0.17978
$[4]$

-15.56407
-31.63537
-1.85836
-33.49373
9.43699
6.21159
$\frac{n}{3} \frac{2}{9}$

$[2]$
-0.10359
0.14803
-33.59732

$--$

0.75
1
-35.12015
12.87680
10.48582
-5.24291

-14.63489
-31.63533
0
-31.63537
24.1759
15.91299
15.91299
-0.24966
0.35532

$--2$

-49.66493
0

-49.66493 | -49.66493 |
| :---: |
| 24.2751 |
| 15.97831 |
| 0.05017 | No

$\frac{1}{0.91771}$
$\frac{E}{i}=-m$

-15.56407
-67.69451
-67.69450
 수숭 (Eq.
-0.22757
0.14803 -67.92207 -13.63489
-13.59844
12.49186

-50.50874
7.37432
-3.68716

14.63489
0 -14.63489
-31.63534
-1.85836
-33.49373

-111.25473
23.87467
42.82081
-21.41040

 -63.27074
-2.69893
 39.10034
-0.40804
0.21077 $\begin{aligned} & \text { [12] } \\ & -0.30266 \\ & 0.11441\end{aligned}$

 1
-35.12015
12.87680
 -14.63489
0
-14.63489

 1
-72.03287

26.02344 | 26.02344 |
| :---: |
| 21.95990 |
| -10.97995 | -14.63489

0
-14.63489 -49.66437
0
-49.66493

 Eq. (13.458)) | -0.14803 |
| :---: |
| -49.81948 |
| -14.63489 |
| -13.59844 |
| 7.83968 |

Table 15.91. The total bond energies of alkyl aldehydes calculated using the functional group composition and the energies of Table 15.90 compared to the experimental values [3].
$\begin{array}{lcc} & \\ \text { Calculated } & \text { Experimental } & \text { Relative } \\ \text { Total Bond } & \text { Total Bond } & \text { Error }\end{array}$ Total Bond
Energy (eV)

-
Table 15.92. The bond angle parameters of alkyl aldehydes and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is $E_{T}\left(\right.$ atom - atom,$\left.m s p^{3} \cdot A O\right)$.

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \begin{array}{c} \text { Bond } 2 \\ \left(a_{0}\right) \end{array} \end{gathered}$	$2 c^{\prime}$ Terminal Atoms $\left(a_{0}\right)$ (a_{0})	$\begin{aligned} & E_{\text {Ccalumbic }} \text { Atom } \end{aligned}$	Atom 1 1 Hybridization Designation (Table 15.3.A)	$\begin{aligned} & E_{\text {Coutuntic }} \\ & \text { Atom } 2 \end{aligned}$	Atom 2 $\begin{gathered}\text { Hybridization } \\ \text { Designation }\end{gathered}$ (Table 15.3.A)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom 2 } \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{array}{lc} \theta_{2} & \text { Cal. } \theta \\ \left({ }^{\circ}\right) & \left({ }^{\circ}\right) \end{array}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \\ \hline \end{gathered}$
$\begin{gathered} \angle H C_{a} H \\ \left(C_{a} H_{2}(O)(\mathrm{i})\right) \end{gathered}$	2.09132	2.09132	3.5637	-16.39089	19	H	H	0.83008	1	1	1	0.75	1.20470	0			116.87	$\begin{gathered} 116.5 \\ \text { (formaldehyde) } \end{gathered}$
$\begin{gathered} \angle C_{b} C_{a} H \\ R C_{a}(H)=O \end{gathered}$	2.86175	2.11323	4.2269	$\begin{gathered} -15.75493 \\ C_{a} \end{gathered}$	7	${ }^{-14.82575} C_{b}$	1	0.86359	0.91771	0.75	1	0.75	1.06267	0			115.52	$\begin{gathered} 115.3 \\ \text { (acetaldehyde) } \end{gathered}$
$\angle C_{b} C_{a} O$	2.86175	2.27954	4.5826	-16.68412	26	-13.61806	o	0.81549	$\begin{array}{\|c\|} \hline 0.85395 \\ (\text { (Eq. } \\ (15.133)) \end{array}$	1	1	1	0.83472	-1.65376			125.70	$\begin{gathered} 124.1 \\ \text { (acetaldehyde) } \end{gathered}$
Methylene $\angle H C_{a} H$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0			108.44	$\begin{gathered} 107 \\ \text { (propane) } \end{gathered}$
$\angle C_{a} C_{b} C_{c}$															69.51		110.49	112 (propane) 113.8 (butane) 10.8 (isobutane)
$\angle C_{a} C_{b} H$															69.51		110.49	$\begin{gathered} 111.0 \\ \text { (butane) } \\ 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0			109.50	
$\angle C_{a} C_{b} C_{\text {c }}$															70.56		109.44	
$\angle C_{a} C_{b} H$															70.56		109.44	
$\begin{aligned} & \angle C_{b} C_{c} C_{\mathrm{c}} \\ & \text { iso } C_{a} \end{aligned}$	2.91547	2.91547	4.7958	$\begin{array}{\|c} -16.68412 \\ C_{b} \end{array}$	26	$\begin{array}{\|c} -16.68412 \\ C_{c} \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836			110.67	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\begin{gathered} \angle C_{b} C_{a} H \\ \text { iso } C_{a} \end{gathered}$	2.91547	2.11323	4.1633	$\begin{gathered} -15.55033 \\ C_{a} \end{gathered}$	5	$\begin{gathered} -14.82575 \\ C_{b} \end{gathered}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0			110.76	
$\begin{aligned} & \angle C_{c} C_{C} H \\ & \text { iso } H \\ & C_{a} \end{aligned}$	2.91547	2.09711	4.1633	$\begin{gathered} -15.55033 \\ C_{b} \end{gathered}$	5	${ }^{-14.82575}{ }_{C_{a}}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0			111.27	$\begin{gathered} 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \angle C_{b} C_{a} C_{b} b_{b} \\ & \operatorname{tert} C_{a} \end{aligned}$	2.90327	2.90327	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836			111.37	110.8 (isobutane)
$\angle C_{5} C_{a} C_{d}$															72.50		107.50	

KETONES ($\left.C_{n} H_{2 n} O, n=1,2,3,4,5 \ldots \infty\right)$
The alkyl ketones, $C_{n} H_{2 n} O$, each have a $C=O$ moiety that comprises a functional group. Each of the two single bonds of carbon to the carbonyl carbon atom, $C-C(O)$, is also a functional group. The alkyl portion of the alkyl ketone may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in ketones are equivalent to those in branched-chain alkanes.

The $C=O$ and $C-C(O)$ groups are solved by hybridizing the $2 s$ and $2 p$ AOs of each C atom to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the $O \mathrm{AO}$ or between two $C 2 s p^{3} \mathrm{HOs}$, respectively, to form a MO permits each participating orbital to decrease in radius and energy. In alkyl ketones, the $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)) and the O AO has an energy of $E(O)=-13.61806 \mathrm{eV}$. To meet the equipotential condition of the union of the $C=O \mathrm{H}_{2}-$ type-ellipsoidal-MO with these orbitals, the hybridization factor c_{2} of Eq. (15.61) for the $C=O$-bond MO given by Eq. (15.133) is $c_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to $\left.O\right)=0.85395$. The unpaired electrons created by bond breakage of the double $C=O$ bond requires that two times the $O 2 p$ AO magnetic energy $E_{\text {mag }}$ (Eq. (15.69)) be subtracted from the total energy to give $E_{D}(G r o u p)(e V)$ for $C=O$.

As in the case with aldehydes, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C=O$-bond MO in Eq. (15.61) due to the charge donation from the C and O atoms to the MO is -2.69893 eV which is an energy minimum for the double bond between the pair of $C 2 s p^{3} \mathrm{HO}$ electrons of the C atom and the pair of AO electrons of the O atom. It is given as a linear combination of the energy contributions corresponding to a double bond, -1.13379 eV (Eq. (14.247)), and a triple bond, -1.56513 eV (Eq. (14.342)). The triple bond contribution includes the $C 2 s p^{3} \mathrm{HO}$ electron of the $C-C(O)$ bond in addition to the pair involved directly in the double bond with O. Consequently, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} \cdot A O\right)$ of the $C-C(O)$-bond MO is -1.44915 eV , corresponding to the energy contributions of the two $C 2 s p^{3}$ HOs to the single bond that are equivalent to those of methyl groups, -0.72457 eV (Eq. (14.151)). Since there are two $C-C(O)$ bonds in ketones versus one in aldehydes, $C_{1 o}=C_{1}$ in Eq. (15.61) for each $C-C(O)$ ketone bond.

The symbols of the functional groups of alkyl ketones are given in Table 15.93. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.64)) parameters of alkyl ketones are given in Tables $15.94,15.95$, and 15.96 , respectively. The total energy of each alkyl ketone given in Table 15.97 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.96 corresponding to functional-group composition of the molecule. For each set of unpaired electrons created by bond breakage, the $C 2 s p^{3} \mathrm{HO}$ magnetic energy $E_{\text {mag }}$ that is subtracted from the weighted sum of the $E_{D}($ Group $)(\mathrm{eV})$ values based on composition is given by Eq. (15.67). The bond angle parameters of alkyl ketones determined using Eqs. (15.88-15.117) are given in Table 15.98. The color scale, translucent view of the charge-density of exemplary ketone, methyl ethyl ketone, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.16.

Figure 15.16. (A)-(B) Color scale, translucent views of the charge-density of methyl ethyl ketone showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.93. The symbols of functional groups of alkyl ketones.

Functional Group	Group Symbol
$C=O$	$C=O$
C-C(O)	$\mathrm{C}-\mathrm{C}(\mathrm{O})$
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to $t-C$)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.94. The geometrical bond parameters of alkyl ketones and experimental values [1].

Parameter	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(O) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(\mathrm{~d}) \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C(\mathrm{e}) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.312172	2.04740	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.14550	1.43087	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.21235	1.51437	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	1.213 (acetone) 1.219 (2-butanone)	$\begin{gathered} 1.520 \\ \text { (acetone) } \\ 1.518 \\ \text { (2-butanone) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$
$b, c\left(a_{0}\right)$	0.64002	1.46439	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.87298	0.69887	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.95. The MO to HO intercept geometrical bond parameters of alkyl ketones. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is E_{T} (atom-atom,msp ${ }^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 1$	$\begin{gathered} E_{Y} \\ (\mathrm{eV}) \\ \text { Bond 2 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 3 } \end{gathered}$	E_{T} (eV) Bond 4	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {mintal }} \\ & \left(a_{\mathrm{c}}\right) \end{aligned}$	$\begin{aligned} & r_{\text {fral }} \\ & \left(a_{0}\right) \end{aligned}$	$E_{\text {Coultomb }}$ (eV) Final	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left(^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$R^{\prime} C_{c} H_{2}\left(R C_{b} H_{2}\right) C_{a}=O$	O	-1.34946	0	0	0		1.00000	0.84115	-16.17521		136.09	43.91	65.72	0.53955	0.60595
$R^{\prime} C_{c} H_{2}\left(R C_{b} H_{2}\right) C_{a}=O$	C_{a}	-1.34946	-0.72458	-0.72458	0	-154.41430	0.91771	0.77199	-17.62437	-17.43350	133.02	46.98	61.86	0.61878	0.52672
$\mathrm{H}_{3} \mathrm{C}_{b}-\mathrm{C}_{a}(\mathrm{O})\left(\mathrm{R}^{\prime}\right)$	C_{b}	-0.72458	0	0	0	-152.34026	0.91771	0.87495	-15.55033	-15.35946	73.62	106.38	34.98	1.67762	0.246675
$R \mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{H}_{2} \mathrm{C}_{b}-\mathrm{C}_{a}(\mathrm{O})\left(\mathrm{R}^{\prime}\right)$	C_{b}	-0.72458	-0.92918	0	0	-153.26945	0.91771	0.82562	-16.47951	-16.28865	67.40	112.60	31.36	1.74821	0.31734
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C-H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C}-\mathrm{H}(\mathrm{CH})$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \\ & \hline \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{-} \mathrm{C}_{h} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \\ & \hline \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & \mathrm{R}-\mathrm{H}_{2} C_{a} C_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-\mathrm{H}_{2} C_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{c})) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & i s O_{a} C_{b}\left(H_{2} C_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~d})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & \operatorname{terlC}_{a}\left(\mathrm{R}^{\prime}-\mathrm{H}_{2} C_{d}\right) \mathrm{C}_{b}\left(\mathrm{R}^{\prime \prime}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{e})) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & \text { tert } C_{a} C_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f})) \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & {\text { iso } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}_{(C-C(\mathrm{f}))}^{(\mathrm{C}-\mathrm{C}} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.96. The energy parameters (eV) of functional groups of alkyl ketones.

Parameters	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(O) \\ \text { Group } \end{gathered}$	CH_{3} Group	CH_{2} Group	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \text { (b) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(d) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
n_{1}	2	1	3	2	1	1	1	1	1	1	1
n_{2}	0	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	1	1	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	1	1	1	1	1
c_{2}	0.85395	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	2	0	0	1	1	0	0	0	1	1	0
c_{4}	4	2	1	1	1	2	2	2	2	2	2
c_{5}	0	0	3	2	1	0	0	0	0	0	0
C_{10}	0.5	1	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	1	1	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-109.17602	-30.19634	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	23.75521	9.50874	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	41.60126	7.37432	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-20.80063	-3.68716	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E (Ао/но) (eV)	0	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$\Delta E_{\mathrm{H}_{2} \mathrm{HO}}($ (10/ HO$)(\mathrm{eV})$	-1.34946	0	0	0	0	0	0	0	0	0	0
$E_{T}($ (1// $/ \mathrm{HO})(\mathrm{eV})$	1.34946	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(H_{2} \mathrm{MO}\right)(\mathrm{eV})$	-63.27071	-31.63534	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}{ }^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.69893	-1.44915	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}(\mathrm{nc})(\mathrm{eV})$	-65.96966	-33.08452	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	57.0928	16.4962	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	37.57947	10.85807	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(\mathrm{eV})$	-0.40003	-0.21568	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kulb }}(\mathrm{eV})$	$\begin{gathered} 0.21462 \\ {[27]} \\ \hline \end{gathered}$	$\begin{gathered} 0.14655 \\ {[28]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. (13.458)) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \\ \hline \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.29272	-0.14240	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mag }}(\mathrm{eV})$	0.11441	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{T}($ (imup $)(\mathrm{eV})$	-66.55510	-33.22692	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
$E_{\text {mpratal }}\left(\mathrm{f}_{\text {s, }}\right.$ но/ но) (eV)	0	0	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
$E_{D}($ (ioup $)(\mathrm{eV})$	7.78672	3.95714	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

Table 15.97. The total bond energies of alkyl ketones calculated using the functional group composition and the energies of Table 15.96 compared to the experimental values [3]. The magnetic energy $E_{m a g}$ that is subtracted from the weighted sum of the $E_{D}($ Group $)$ (eV) values based on composition is given by (15.57)

Formula	Name	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(O) \\ \text { Group } \end{gathered}$	CH_{3}	CH_{2}	CH	$C-C$ (a)	$C-C$ (b)	$C-C$ (c)	$C-C$ (d)	$C-C$ (e)	$C-C$ (f)	$E_{\text {mag }}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	Acetone	1	2	2	0	0	0	0	0	0	0	0	0	40.68472	40.672	-0.00031
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$	2-Butanone	1	2	2	1	0	1	0	0	0	0	0	0	52.84242	52.84	-0.00005
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$	2-Pentanone	1	2	2	2	0	2	0	0	0	0	0	0	65.00012	64.997	-0.00005
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$	3-Pentanone	1	2	2	2	0	2	0	0	0	0	0	0	65.00012	64.997	-0.00005
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$	3-Methyl-2-butanone	1	2	3	0	1	0	2	0	0	0	0	0	65.10101	65.036	-0.00099
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$	2-Hexanone	1	2	2	3	0	3	0	0	0	0	0	0	77.15782	77.152	-0.00008
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$	3-Hexanone	1	2	2	3	0	3	0	0	0	0	0	0	77.15782	77.138	-0.00025
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$	2-Methyl-3-pentanone	1	2	3	1	1	1	2	0	0	0	0	0	77.25871	77.225	-0.00043
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$	3,3-Dimethyl-2-butanone	1	2	4	0	0	0	0	3	0	0	0	-2	77.29432	77.273	-0.00028
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$	3-Heptanone	1	2	2	4	0	4	0	0	0	0	0	0	89.31552	89.287	-0.00032
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$	4-Heptanone	1	2	2	4	0	4	0	0	0	0	0	0	89.31552	89.299	-0.00018
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$	2,2-Dimethyl-3-pentanone	1	2	4	1	0	1	0	3	0	0	0	-2	89.45202	89.458	0.00007
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$	2,4-Dimethyl-3-pentanone	1	2	4	0	2	0	4	0	0	0	0	0	89.51730	89.434	-0.00093
$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}$	2,2,4-Trimethyl-3-pentanone	1	2	5	0	1	0	2	3	0	0	0	-2	101.71061	101.660	-0.00049
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$	2-Nonanone	1	2	2	6	0	6	0	0	0	0	0	0	113.63092	113.632	0.00001
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$	5-Nonanone	1	2	2	6	0	6	0	0	0	0	0	0	113.63092	113.675	0.00039
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$	2,6-Dimethyl-4-heptanone	1	2	4	2	2	0	6	0	0	0	0	0	113.77604	113.807	0.00027

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Terminal } \\ \text { Atoms } \\ \left(a_{0}\right) \end{gathered}$	$\begin{aligned} & E_{\text {Conlomica }} \\ & \text { Atom } \end{aligned}$		$E_{\text {Coulomble }}$ Atom 2		$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom 2 } \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{y} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{array}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\angle C_{b} C_{a}(O) C_{c}$	2.86175	2.86175	4.8477	$\begin{array}{\|c} -16.68412 \\ C_{b} \\ \hline \end{array}$	26	$\begin{array}{\|c} -16.68412 \\ C_{c} \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				115.77	$\begin{gathered} 116.0 \\ \text { (acetone) } \end{gathered}$
$\angle C_{d} C_{b} C_{a}(O)$	2.91547	2.86175	4.8374	$\begin{array}{\|c} -16.68412 \\ C_{d} \end{array}$	26	$\begin{gathered} -16.68412 \\ C_{a} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				113.71	$\begin{gathered} 113.5 \\ (2- \\ \text { butanaone) } \\ \hline \end{gathered}$
$\angle C_{b} C_{a} O$	2.86175	2.29100	4.5166	-15.55033	5	-13.61806	o	0.87495	$\begin{gathered} 0.85395 \\ (\text { (Eq. } \\ (15.133)) \end{gathered}$	1	1	1	0.86445	-1.44915				122.07	$\begin{gathered} 12.9 \\ (2- \\ \text { butanaone) } \\ \hline \end{gathered}$
Methylene $\angle H C_{a} H$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} 107 \\ \text { (propane) } \end{gathered}$
$\angle C_{a} C_{b} C_{c}$															69.51			110.49	$\begin{gathered} 112 \\ \text { (propane) } \\ 113.8 \\ \text { (butane) } \\ \text { u110.8 } \\ \text { (isobutane) } \\ \hline \end{gathered}$
$\angle C_{a} C_{b} H$															69.51			110.49	$\begin{gathered} 111.0 \\ \text { (butane) } \\ 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{0} C_{b} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b} H$															70.56			109.44	
$\begin{aligned} & \angle C_{b} C_{a} C_{c} c_{c} \\ & \text { iso } C_{a} \end{aligned}$	2.91547	2.91547	4.7958	$\begin{array}{\|l\|l\|} \hline-16.68412 \\ C_{b} \end{array}$	26	$\begin{array}{\|c} \hline-16.68412 \\ C_{c} \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				110.67	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\begin{gathered} \angle C_{b} C_{a} H \\ \text { iso } C_{a} \\ \hline \end{gathered}$	2.91547	2.11323	4.1633	$\begin{array}{\|c} \hline-15.55033 \\ C_{a} \end{array}$	5	$\begin{array}{\|c} \hline-14.82575 \\ C_{b} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{aligned} & \angle C_{a} C_{b} H \\ & \text { iso } H \\ & C_{a} \end{aligned}$	2.91547	2.09711	4.1633	$\begin{array}{\|c} \hline-15.55033 \\ C_{b} \end{array}$	5	${ }_{-14.82575}^{C_{a}}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	$\begin{gathered} 1111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \angle C_{c} C_{a} C_{b} b_{b} \\ & \text { tett } C_{a} \end{aligned}$	2.90327	2.90327	4.7958	$\begin{array}{\|c} \hline-16.68412 \\ C_{b} \end{array}$	26	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				111.37	$\begin{gathered} \begin{array}{c} 110.8 \\ \text { (isobutane) } \end{array} \end{gathered}$
$\angle C_{b} C_{a} C_{d}$															72.50			107.50	

CARBOXYLIC ACIDS ($\left.C_{n} H_{2 n} O_{2}, n=1,2,3,4,5 \ldots \infty\right)$

The alkyl carboxylic acids, $\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}_{2}$, comprise a $\mathrm{C}=\mathrm{O}$ functional group, and the single bond of carbon to the carbonyl carbon atom, $C-C(O)$, is also a functional group. Formic acid has a $H C=O$ moiety that comprises a more stable $C=O$ functional group and a CH functional group. All carboxylic acids further comprise a $\mathrm{C}-\mathrm{OH}$ moiety that comprises $\mathrm{C}-\mathrm{O}$ and OH functional groups. The alkyl portion of the alkyl carboxylic acid may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in carboxylic acids are equivalent to those in branched-chain alkanes.

The CH functional group was solved in the Hydrogen Carbide (CH) section except that the energy of the $C-H \mathrm{MO}$ is matched to the carbon-atom contribution to $\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(\mathrm{AO/HO})$ and $E_{T}\left(\right.$ atom-atom, msp $\left.{ }^{3} \cdot A O\right)$ of the $C-O$ group. The alkyl carboxylic acid $C=O$ and $C-C(O)$ groups are equivalent to those given in the Aldehydes section except that $\bar{E}_{\text {Kvib }}$ is that of a carboxylic acid, and $C-C(O)$ is equivalent to the n-alkane $C-C$ bond group in the case of conjugated carbonyls wherein the alkene groups when present such as the $C=C$ group are equivalent to those of the corresponding alkene. The formic acid $C=O$ group is solved equivalently to that of the alkyl carboxylic acid group, except that $\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(\mathrm{AO} / \mathrm{HO})$ and $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ correspond to a 25% increase in the donation of charge density from the orbitals of the atoms to the $C=O$ MO due to the presence of a H bound to the carbonyl carbon. Also, $\bar{E}_{K v i b}$ is that corresponding to formic acid. The $C-O$ and $O H$ groups are equivalent to those of alkyl alcohols given in the corresponding section except that the energy of the $C-O$ MO is matched to that of the $C=O$ group and $\bar{E}_{K v i b}$ is that of a carboxylic acid. $\Delta E_{H_{2} M O}(A O / H O)$ of the $C-O$ group is equal to $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the alkyl $C=O$ group in order to match the energies of the corresponding MOs.

As in the case with aldehydes and ketones, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C=O$-bond MO in Eq. (15.61) of alkyl carboxylic acids due to the charge donation from the C and O atoms to the MO is -2.69893 eV which is an energy minimum for the double bond between the pair of $C 2 s p^{3} \mathrm{HO}$ electrons of the C atom and the pair of AO electrons of the carbonyl O atom. It is given as a linear combination of the energy contributions corresponding to a double bond, -1.13379 eV (Eq. (14.247)), and a triple bond, -1.56513 eV (Eq. (14.342)). The triple bond contribution includes the energy match of the carbonyl $C 2 s p^{3} \mathrm{HO}$ electron with the O of the $C-O$-bond MO in addition to the pair involved directly in the double bond with the carbonyl O.
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the formic acid $C=O$-bond MO in Eq. (15.61) due to the charge donation from the C and O atoms to the MO is -3.58557 eV . This is also an energy minimum for the double bond between the pair of $C 2 s p^{3} \mathrm{HO}$ electrons of the C atom and the pair of AO electrons of the carbonyl O atom. It is given as a linear combination of the energy contributions corresponding to a triple bond, -1.56513 eV (Eq. (14.342)), and a quadruple bond, -2.02043 eV (Eqs. (15.1815.21) with $s=4)$) where the bond order components are increased by an integer over that of alkyl carboxylic acids due to the presence of a H bound to the carbonyl carbon.
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the carboxylic acid $C-C(O)$ group is equivalent to that of alkanes and aldehydes, -1.85836 eV , where both energy contributions are given by Eq. (14.513). It is based on the energy match between the $C 2 s p^{3}$ HOs of the carboxylic acid. As in the case of aldehydes, $C_{1 o}=2 C_{1}$ in Eq. (15.52).
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the carboxylic acid $C-O$ group is equivalent to that of alkyl alcohols, -1.85836 eV . It is based on the energy match between the $O \mathrm{AO}$ and the $C 2 s p^{3} \mathrm{HO}$ of a methylene group (the maximum hybridization for a single bond) where both energy contributions are given by Eq. (14.513). E_{T} (atom-atom, msp ${ }^{3} . A O$) of the $C-O$ group matches that of the $C-C(O)$ group.

The symbols of the functional groups of alkyl carboxylic acids are given in Table 15.99. The geometrical (Eqs. (15.115.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl carboxylic acids are given in Tables $15.100,15.101$, and 15.102 , respectively. The total energy of each alkyl carboxylic acid given in Table 15.103 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.102 corresponding to functional-group composition of the molecule. For each set of unpaired electrons created by bond breakage, the $C 2 s p^{3} \mathrm{HO}$ magnetic energy $E_{\text {mag }}$ that is subtracted from the weighted sum of the $E_{D}(G r o u p)(e V)$ values based on composition is given by Eq. (15.67). The bond angle parameters of alkyl carboxylic acids determined using Eqs. (15.79-15.108) are given in Table
15.104. The color scale, translucent view of the charge-density of exemplary carboxylic acid, Propanoic acid, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.17.

Figure 15.17. (A)-(B) Color scale, translucent views of the charge-density of propanoic acid showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.99. The symbols of functional groups of alkyl carboxylic acids.

Functional Group	Group Symbol
CH (formic acid) group	$C-H$ (i)
C-C(O)	$C-C(O)$
$C=O$ (formic acid)	$C=O$ (i)
$C=O$ (alkyl carboxylic acid)	$C=O$ (ii)
(O) C - O	C-O
OH group	OH
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH (alkyl) group	$\mathrm{C}-\mathrm{H}$ (ii)
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to t - C)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)
$C C$ double bond	$C=C$

Table 15.100. The geometrical bond parameters of alkyl carboxylic acids and experimental values [1].

Parameter	$\begin{gathered} C-H(\mathrm{i}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(O) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C=O(\mathrm{i}) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C=O \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-O \\ & \text { Group } \end{aligned}$	$\begin{gathered} \text { OH } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\underset{\text { Group }}{\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)}$	$\underset{\substack{C-H \\ \text { Group }}}{\substack{\text { (ii) }}}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(c) \\ & \text { Group } \end{aligned}$	$\underset{\substack{C-C(d) \\ \text { Group }}}{ }$	$\begin{aligned} & C-C(e) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$
$a\left(a_{0}\right)$	1.61341	2.04740	1.290799	1.29907	1.73490	1.26430	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725	1.47228
$c^{\prime}\left(a_{0}\right)$	1.03711	1.43087	1.13613	1.13977	1.31716	0.91808	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164	1.26661
$\begin{aligned} & \text { Bond } \\ & \text { Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.09763	1.51437	1.20243	1.20628	1.39402	0.971651	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635	1.34052
Exp. Bond Length (A)	$\begin{gathered} 1.097 \\ \text { (formic acid) } \end{gathered}$	$\begin{gathered} 1.520 \\ \text { (acetic acid) } \end{gathered}$	$\begin{gathered} 1.202 \\ \text { (formic acid) } \end{gathered}$	$\begin{gathered} 1.214 \\ \text { (acetic acid) } \end{gathered}$	$\begin{gathered} 1.393 \\ \begin{array}{c} \text { (methyl } \\ \text { formate) } \end{array} \end{gathered}$	$\begin{gathered} 0.972 \\ \text { (formic acid) } \end{gathered}$		$\begin{gathered} 1.107 \\ (\mathrm{C-H} \\ \text { propane }) \\ \text { (.117 } \\ (C-H \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (ropane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (ropane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	1.342 (2-methylpropene) 1.346 (2-butene) 1.349 (1,3-butadiene)
$b, c\left(a_{0}\right)$	1.23591	1.46439	0.61267	0.62331	1.12915	0.86925	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750	0.75055
	0.6428	0.69887	0.88018	0.87	0.7	0.72615	0.6358	63159	0.630	. 6860	. 6860	. 688	0.68600	0.68888	0.68888	0.86030

Table 15.101. The MO to HO intercept geometrical bond parameters of alkyl carboxylic acids. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom,msp $\left.{ }^{3} . A O\right)$.

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$		$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 3 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {munalal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {ftalal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Caiomb }} \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{c}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$R C_{a}(O) O-H$	o	-0.92918	0	0	0		1.00000	0.86359	-15.75493		115.09	64.91	64.12	0.55182	0.36625
$\begin{aligned} & \mathrm{HC}_{6}(\mathrm{O})-\mathrm{OH} \\ & (\mathrm{C}=O(\mathrm{O})) \end{aligned}$	O	-0.92918	0	0	0		1.00000	0.86359	-15.75493		101.32	78.68	48.58	1.14765	0.16950
$\begin{aligned} & H C_{a}(O)-O H \\ & (C=O(\mathrm{O})) \end{aligned}$	C_{a}	-0.92918	-1.79278	0	0	-154.33765	0.91771	0.77536	-17.54772	-17.35685	93.94	86.06	43.24	1.26386	0.05329
$\mathrm{RH}_{2} \mathrm{C}_{b} \mathrm{C}_{a}(\mathrm{O})-\mathrm{OH}$	O	-0.92918	0	0	0		1.00000	0.86359	-15.75493		101.32	78.68	48.58	1.14765	0.16950
$\mathrm{RH}_{2} \mathrm{C}_{b} \mathrm{C}_{a}(\mathrm{O})-\mathrm{OH}$	C_{a}	-0.92918	-1.34946	-0.92918	0	-154.82352	0.91771	0.75447	-18.03358	-17.84271	91.96	88.04	41.90	1.29138	0.02578
$\begin{aligned} & H C_{G}(\mathrm{OH})=O \\ & (\mathrm{C}=O(\mathrm{i})) \end{aligned}$	O	-1.79278	0	0	0		1.00000	0.81871	-16.61853		137.10	42.90	65.45	0.53635	0.59978
$\begin{aligned} & H C_{G}(\mathrm{OH})=O \\ & (\mathrm{C}=O \text { (i)) } \end{aligned}$	C_{a}	-1.79278	-0.92918	0	0	-154.33766	0.91771	0.77536	-17.54772	-17.35685	135.24	44.76	63.02	0.58561	0.55053
$\begin{aligned} & R C_{b} H_{2} C_{a}(O H)=O \\ & (C=O \text { (ii) }) \end{aligned}$	O	-1.34946	0	0	0		1.00000	0.84115	-16.17521		137.27	42.73	66.31	0.52193	0.61784
$\begin{aligned} & R C_{b} H_{2} C_{a}(O H)=O \\ & (C=O \text { (ii) }) \end{aligned}$	C_{a}	-1.34946	-0.92918	-0.92918	0	-154.82352	0.91771	0.75447	-18.03358	-17.84271	133.47	46.53	61.46	0.62072	0.51905
$\begin{aligned} & \mathrm{H}-\mathrm{C}(\mathrm{O}) \mathrm{OH} \\ & (\mathrm{CH}(\mathrm{i})) \end{aligned}$	C	-1.79278	-0.92918	0	0	-154.33766	0.91771	0.77536	-17.54772	-17.35685	69.89	110.11	36.09	1.30373	0.26662
$\mathrm{RH}_{2} \mathrm{C}_{b}-\mathrm{C}_{a}(\mathrm{O}) \mathrm{OH}$	C_{a}	-0.92918	-1.34946	-0.92918	0	-154.82352	0.91771	0.75447	-18.03358	-17.84271	56.25	123.75	25.37	1.85002	0.41915
$\mathrm{H}_{3} \mathrm{C}_{b}-\mathrm{C}_{a}(\mathrm{O}) \mathrm{OH}$	C_{b}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	72.27	107.73	34.17	1.69388	0.26301
$\mathrm{RH}_{2} \mathrm{C}_{c} \mathrm{H}_{2} \mathrm{C}_{b}-\mathrm{C}_{a}(\mathrm{O}) \mathrm{OH}$	C_{b}	-0.92918	-0.92918	0	0	-153.47405	0.91771	0.81549	-16.68411	-16.49325	65.99	114.01	30.58	1.76270	0.33183
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}(\mathrm{CH})$ (ii)	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{\mathrm{a}} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & \mathrm{R}-\mathrm{H}_{2} \mathrm{C}_{a} \mathrm{C}_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-\mathrm{H}_{2} C_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) \mathrm{C}_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C} \text { (c)) } \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { iso } C_{a} C_{b}\left(H_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C} \text { (d) }) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & \operatorname{tertC}_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) \mathrm{C}_{b}\left(\mathrm{R}^{\prime \prime}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{e})) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & {\operatorname{tertC} C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{f}))} \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & \text { isoC }_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C} \text { (f) }) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15．102．The energy parameters (eV) of functional groups of alkyl carboxylic acids．

$\left\|\begin{array}{cc} u & 0 \\ i & \stackrel{0}{0} \\ u & 0 \end{array}\right\|$	\sim	0 －	0%	$\frac{\mathrm{E}}{2}$	$-$E O	－	＋	－	\bigcirc		$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \\ \vdots \\ \vdots \end{array}\right\|$		$\begin{array}{ll} n \\ \vdots \\ \vdots \end{array}$	－	－	－		$\begin{aligned} & \text { R} \\ & 0 \\ & 0 \\ & \text { ch } \\ & \text { in } \end{aligned}$	$\left\lvert\, \begin{gathered} n \\ 0 \\ \\ \vdots \\ \vdots \end{gathered}\right.$			$\begin{gathered} \sqrt{3} \\ \stackrel{y}{2} \\ \substack{2 \\ i} \end{gathered}$	$\begin{aligned} & \stackrel{\hat{\infty}}{\stackrel{\infty}{c}} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ \\ \underset{i}{0} \\ \hline \end{gathered}$	\％	$\begin{aligned} & \text { O} \\ & 0 \\ & \text { O } \\ & \hline 0 \end{aligned}$	$\stackrel{+}{\square}$		$\stackrel{ \pm}{\square}$
$\begin{aligned} & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	－－	$\bigcirc 0$	$0 \sim$	－	$-\frac{\mathrm{E}}{\hat{A}}$	－	\sim			$-\frac{\stackrel{\sim}{亏}}{\substack{\text { a }}}$	$\begin{gathered} \hat{N} \\ \underset{2}{2} \end{gathered}$			\div	－	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{n} \\ & \hat{n} \\ & \end{aligned}$		$\begin{aligned} & n \\ & \stackrel{n}{2} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{array}{\|c} \tilde{\mathcal{N}} \\ \underset{\sim}{\infty} \\ 0 \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \text { 符 } \\ & \text { in } \end{aligned}$		$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \hdashline \mathbf{0} \end{aligned}$	$\frac{\stackrel{1}{3}}{\substack{0}}$	$\begin{aligned} & \text { O} \\ & \text { O } \\ & \text { O } \\ & \hline \end{aligned}$		$\underset{\sim}{\underset{\sim}{\infty}}$			$\stackrel{\text { 坴 }}{\stackrel{\sim}{2}}$
$\begin{aligned} & 0 \\ & 0 \\ & \text { é } \\ & \text { y } \\ & 0 \\ & 0 \end{aligned}$	－	$0-$	$0{ }^{3}$		$-\frac{\text { E }}{\frac{\lambda}{2}}$	－	\sim	－			$\begin{gathered} \underset{N}{N} \\ \end{gathered}$			$\begin{gathered} 0 \\ \stackrel{y}{2} \\ \stackrel{y}{n} \\ n \\ n \end{gathered}$	－	$\begin{aligned} & \% \\ & \stackrel{y}{6} \\ & \stackrel{n}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \substack{n \\ \\ \cdots \\ \cdots} \end{aligned}$	$\begin{aligned} & \frac{n}{2} \\ & \frac{7}{7} \end{aligned}$	$\begin{gathered} \tilde{\sim} \\ \underset{y}{\tilde{y}} \\ \underset{\sim}{\infty} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \text { 符 } \\ & \text { in } \end{aligned}$	$\begin{array}{\|c} \text { त్రు } \\ \text { तુ } \end{array}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ \hline 6 \\ \hline \end{gathered}$	$\frac{\underset{1}{3}}{\substack{0}}$			$\frac{\underset{\sim}{\infty}}{\underset{\infty}{\infty}}$			$\xrightarrow{\infty}$
	－	00	0 \％${ }^{\circ}$		$-\frac{E}{\frac{E}{2}}$	－	\sim	－			$\begin{aligned} & \tilde{N} \\ & \tilde{N} \\ & \tilde{N} \end{aligned}$	$\begin{aligned} & \text { t } \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \infty \\ & \infty \\ & \underset{\sim}{2} \end{aligned}$	\div	－	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{0} \\ & \stackrel{n}{n} \end{aligned}$			$\begin{array}{\|c} \kappa \\ \kappa \\ \underset{\sim}{\alpha} \\ \underset{\sim}{2} \end{array}$		$\begin{gathered} \text { 合 } \\ \end{gathered}$	$\frac{n}{2}$	$\frac{\stackrel{1}{9}}{\substack{0 \\ 0}}$	$$	ờ			－	$\stackrel{\overline{2}}{\substack{2}}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	－	0 －	0 \％${ }^{\circ}$		$-$E 	\bigcirc	\sim	－			$\frac{\underset{N}{N}}{\substack{N}}$	$\begin{aligned} & 8 \\ & \stackrel{0}{6} \\ & \text { Q } \end{aligned}$		$\stackrel{n}{\square}$	－	$\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \tilde{n} \\ & \end{aligned}$		$\begin{aligned} & \text { n } \\ & \frac{a}{寸} \\ & \underset{1}{2} \end{aligned}$		$\begin{aligned} 1 \\ 0 \\ \vdots \\ \vdots \\ \end{aligned}$	$\begin{gathered} \text { İ } \\ \text { ה } \\ \stackrel{\rightharpoonup}{0} \end{gathered}$			$\begin{gathered} 4 \\ 2 \\ 0 \\ \vdots \\ \vdots \end{gathered}$		$\begin{gathered} \circ \\ \underset{y}{c} \\ \underset{y}{c} \end{gathered}$		－	－
$\begin{array}{ll} a & 0 \\ 0 & \vdots \\ 0 & \overline{0} \\ 0 & 0 \end{array}$	－	$0 \cdot$	－		$-\begin{gathered}\text { E } \\ \text { E } \\ \text { did }\end{gathered}$	－	N	－			$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { Non } \end{aligned}$	$\begin{aligned} & \text { dot } \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{N}{\infty} \\ \infty \\ \underset{\sim}{2} \end{gathered}\right.$	$\begin{gathered} 2 \\ 0 \\ 0 \\ n \\ \\ \hline \end{gathered}$	－	$\begin{aligned} & \hat{y} \\ & 0 \\ & 0 \\ & n \\ & \end{aligned}$	$\begin{gathered} \hat{N} \\ \stackrel{n}{n} \\ \stackrel{n}{r} \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{\sim}{\infty} \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { g} \\ & 0 \\ & \text { gi. } \end{aligned}$	$\begin{aligned} & \text { 合 } \\ & \end{aligned}$	$\begin{aligned} & i n \\ & \frac{n}{6} \\ & \hline 9 \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{心}} \pm$		$\begin{aligned} & \check{\circ} \\ & \stackrel{\circ}{\triangleleft} \\ & \hline \end{aligned}$	$\begin{gathered} \underset{\sim}{\aleph} \\ \underset{\sim}{\alpha} \\ \underset{\sim}{2} \end{gathered}$		－	－
$\begin{aligned} & \text { ® } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$0 \cdot$	$0 \sim$		$-\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{\hat{A}} \\ \underset{O}{O} \\ \hline \end{gathered}\right.$	－	\sim	－			$\begin{aligned} & \text { N} \\ & \text { N } \\ & \underset{\sim}{2} \end{aligned}$	夺		$\begin{gathered} \hat{2} \\ 6 \\ \\ \end{gathered}$	－	$\begin{aligned} & \hat{y} \\ & \stackrel{y}{n} \\ & n \\ & \end{aligned}$		$\begin{gathered} \infty \\ \underset{\infty}{\infty} \\ \underset{\sim}{\infty} \\ \hline \end{gathered}$	$\begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{\gamma} \\ \underset{\sim}{\alpha} \end{gathered}$		$\underset{\sim}{\underset{\sim}{c}}$	$\begin{aligned} & \frac{n}{0} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\frac{\stackrel{1}{3}}{\substack{0}}$			N		－	答
									n						0			\bigcirc											
気 흥		－	－		$-\left\|\begin{array}{l} \frac{E}{A} \\ \partial \end{array}\right\|$	－	－	\cdots	－	$-\begin{gathered}\substack{\sim \\ \\ \sim \\ \vdots \\ \vdots}\end{gathered}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\underset{~}{\alpha}} \\ & \infty \\ & \infty \end{aligned}$	$\underset{2}{2}$ $\stackrel{y}{n}$ in 		$\frac{n}{1}$	－	$\begin{aligned} & \stackrel{y}{0} \\ & 0 \\ & 0 \\ & \vdots \\ & \end{aligned}$		－	$\begin{aligned} & 0 \\ & \text { 号 } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & \tilde{N} \\ & \tilde{\sim} \\ & \\ & \hline \end{aligned}$		$\begin{gathered} n \\ \mathbf{y} \\ \vdots \end{gathered}$					
Ia	－ 0	00	－	－	\cdots	－	－	－	¢		$\stackrel{\infty}{\otimes}$	－		$\left\lvert\, \begin{aligned} & \stackrel{e}{\mathrm{c}} \\ & \hline \end{aligned}\right.$	－	$\begin{aligned} & \bar{\infty} \\ & \frac{1}{6} \\ & \frac{1}{1} \end{aligned}$		－	$\begin{gathered} \hat{N} \\ \hat{\omega} \\ \underset{\sim}{2} \end{gathered}$			$\begin{gathered} \underset{y}{c} \\ \text { N} \\ \hat{i} \end{gathered}$			$\stackrel{\text { 雨 }}{=}$	$\begin{array}{\|c} \frac{0}{m} \\ \frac{2}{t} \end{array}$	$\begin{gathered} \infty \\ \frac{\infty}{0} \\ \frac{1}{1} \end{gathered}$	$$	$\xrightarrow{2}$
$\left\|\begin{array}{cc} 0 & 2 \\ 1 & \vdots \\ 0 & \vdots \\ \hline \end{array}\right\|$	－	$\bigcirc 0$	0%	\％	$-\begin{array}{r} 2 \\ \\ 0 \\ 0 \\ 0 \end{array}$	\bigcirc	N	－	\％	$-2 \begin{gathered}\infty \\ \vdots \\ 0 \\ 0 \\ \text { ¢ } \\ \substack{2}\end{gathered}$	－	8	$\begin{aligned} & n \\ & n \\ & \\ & \stackrel{n}{n} \end{aligned}$	は	$\begin{aligned} & \text { O. } \\ & \text { on } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \underset{\sim}{n} \\ & = \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \kappa \\ & \kappa \\ & \underset{\sim}{\sigma} \\ & \underset{\sim}{f} \end{aligned}$	$\begin{gathered} \underset{o}{2} \\ \underset{\sim}{\sim} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$	$\frac{0}{9} \overline{0}$	$\left\lvert\, \begin{gathered} 0 \\ \stackrel{0}{2} \\ \vdots \\ \hline \end{gathered}\right.$				－	$\xrightarrow{\text { ¿ }}$
$\begin{aligned} & \text { B } \\ & 0 \\ & 0 \\ & 0 . \\ & \text { in } \\ & 0 \end{aligned}$	\cdots	－ 0	0%	\％	$-\begin{array}{r} n \\ n \\ \hat{n} \\ 0 \\ 0 \end{array}$	～	－	－	－		cion	$\begin{aligned} & \mathbf{\infty}_{0}^{\prime} \\ & \infty \\ & \dot{\infty} \\ & \underset{\sim}{2} \end{aligned}$		－	$\begin{aligned} & \text { O } \\ & 0 \\ & 0 \\ & \text { in } \end{aligned}$			$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & \text { on } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { to } \\ & \vdots \\ & \vdots \\ & i \end{aligned}$		$\begin{aligned} & \text { t } \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	$\stackrel{\text { N}}{\substack{\mathrm{N} \\ \hline}}$	$\left\lvert\, \begin{gathered} 0 \\ \hline 0.0 \\ \hline \end{gathered}\right.$	$\frac{\mathrm{F}}{7}$			－	－
$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & \frac{0}{0} \\ 0 & 0 \end{array}$	\sim			\％	$-\left\lvert\, \begin{gathered} i \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	\sim	＋	－			－			－		$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{y}{n} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { A} \\ & \text { y } \\ & \text { Sin } \end{aligned}$			$\begin{aligned} & \bar{\infty} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \bar{\circ} \\ & \stackrel{\infty}{7} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{gathered} \text { 管 } \\ \text { N̦ } \end{gathered}$	$\left\lvert\, \begin{gathered} \infty \\ \stackrel{\rightharpoonup}{\partial} \\ \underset{\substack{2}}{ } \end{gathered}\right.$	$\frac{\bar{F}}{\underset{0}{2}}$	$$		－	－
$\left\|\begin{array}{cc} 0 & 9 \\ 0 & 0 \\ 1 & g \\ 0 \end{array}\right\|$	－	00		\％		－	N				－	$\stackrel{\substack{\text { ¢ } \\ \text { ¢ } \\ \sim}}{ }$	$\stackrel{0}{2}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{y}{6} \\ & \stackrel{6}{1} \\ & \underset{1}{2} \end{aligned}$	－					$\begin{aligned} & \bar{c} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \hat{6} \\ & \underset{\sim}{n} \\ & \tilde{n} \\ & \underset{n}{2} \end{aligned}$	Co		$\begin{aligned} & \text { ch } \\ & \stackrel{y}{c} \\ & \text { ch } \end{aligned}$	$\stackrel{\stackrel{\circ}{\tau}}{\stackrel{\circ}{\circ}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \hline \end{aligned}$		－	$\stackrel{\bigcirc}{7}$
$\left\|\begin{array}{ll} 0 & 0 \\ i & \tilde{Z} \\ 1 & 0 \\ 0 & 0 \end{array}\right\|$	－ 0	－ 0	－	－	$-\begin{gathered}\text { E } \\ \text { ה } \\ \text { O }\end{gathered}$		－		$\stackrel{n}{0}$		$\stackrel{\stackrel{8}{-}}{\stackrel{\circ}{\text { ¢ }}}$	－	守	＋		$\left\|\begin{array}{c} \underset{n}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{array}\right\|$		－	$\begin{gathered} \hat{N} \\ \hat{n} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & n \\ & \hat{n} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{8}{n} \\ & \frac{n}{n} \\ & \end{aligned}$	$\begin{gathered} 2 \\ \\ \\ \hline \end{gathered}$		$\begin{aligned} & n \\ & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\frac{\underset{2}{\mathrm{O}}}{\stackrel{\rightharpoonup}{9}}$		志	n
	$=$	＝$=$	$\approx \sim$	U U	\checkmark v	0	0	ט゙	0	5	${ }_{5}$	－	\underbrace{s}_{Δ}		$\begin{aligned} & \text { en } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				放	$\begin{aligned} & \text { z } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	s	E					虎	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	E

Formula	Name	$\begin{gathered} C-H \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(O) \\ \text { Group } \end{gathered}$	$\begin{gathered} C=O(\mathrm{i}) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C=O \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-O \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$	CH_{3}	CH_{2}	$\begin{aligned} & \mathrm{CH} \\ & \hline \text { (ii) } \end{aligned}$	$\begin{gathered} C-C \\ \text { (a) } \end{gathered}$	$\begin{gathered} C-C \\ \text { (b) } \end{gathered}$	$\begin{gathered} C-C \\ \text { (c) } \end{gathered}$	$\underset{\text { (d) }}{C-C}$	$\begin{gathered} C-C \\ (\mathrm{e}) \end{gathered}$	$\begin{gathered} C-C \\ \text { (f) } \end{gathered}$	$C=C$	$E_{\text {mag }}$	$\begin{aligned} & \text { Calculated } \\ & \text { Total Bond } \end{aligned}$ Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{CH}_{2} \mathrm{O}_{2}$	Formic acid	1	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	21.01945	21.036	0.00079
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	Acetic acid	0	1	0	1	1	1	I	0	0	0	0	0	0	0	0	0	0	33.55916	33.537	-0.00066
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	Propanoic acid	0	1	0	1	1	1	1	1	0	1	0	0		0	0	0	0	45.71686	45.727	0.00022
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	Butanoic acid	0	1	0	1	1	1	1	2	0	2	0	0	0	0	0	0	0	57.87456	57.883	0.00015
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$	Maleic acid	0	0	0	2	2	2	0	0	2	2	0	0	0	0	0	1	0	56.08964	56.120	0.00054
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$	Fumaric acid	0	0	0	2	2	2	0	0	2	2	0	0		0	0	1	0	56.08964	56.083	-0.00013
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	Pentanoic acid	0	1		1	1	1	1	3	0	3	0	0	0	0	0	0	0	70.03226	69.995	-0.00053
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	3-Methylbutanoic acid	0	1	0	1	1	1	2	1	1	0	3	0	0	0	0	0	0	70.10482	70.183	0.00111
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	2,2-Dimethylpropanoic acid	0	1	0	1	1	1	3	0	0	0	0	3	0	0	0	0	-1	70.31679	69.989	-0.00468
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	Hexanoic acid	0	1	0	1	1	1	1	4	0	4	0	0	0	0	0	0	0	82.18996	82.149	-0.00050
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	Heptanoic acid	0	1	0	1	1	1	1	5	0	5	0	0	0	0	0	0	0	94.34766	94.347	0.00000
$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	Octanoic acid	0	1	0	1	1	1	1	6	0	6		0	0	0	0	0	0	106.50536	106.481	-0.00022
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}$	Nonanoic acid	0	1	0	1	1	1	1	7	0	7	0	0	0	0	0	0	0	118.66306	118.666	0.00003
$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$	Decanoic acid	0	1	0	1	1	1	1	8	0	8	0	0	0	0		0	0	130.82076	130.795	-0.00020
$\mathrm{C}_{2} \mathrm{H}_{24} \mathrm{O}_{2}$	Dodecanoic acid	0	1	0	1	1	1	1	10	0	10	0	0	0	0	,	0	0	155.13616	155.176	0.00026
$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{2}$	Tetradecanoic acid	0	1	0	1	1	1	1	12	0	12	0	0	0	0	0	0	0	179.45156	179.605	0.00085
$\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2}$	Pentadecanoic acid	0	1	0	1	1	1	1	13	0	13	0	0	0	0		0	0	191.60926	191.606	-0.00002
$\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2}$	Hexadecanoic acid	0	1		1	1	1	1	14	0	14	0	0	0	0	0		0	203.76696	203.948	0.00089
$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$	Stearic acid	0	1	0	1	1	1	1	16	0	16	0	0	0	0	0		0	228.08236	228.298	0.00094
$\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{2}$	Eicosanoic acid	0	1	0	1	1	1	1	18	0	18	0	0	0	0	0	0	0	252.39776	252.514	0.00046

Table 15．104．The bond angle parameters of alkyl carboxylic acids and experimental values［1］．In the calculation of θ_{v} ，the parameters from the preceding angle were used．E_{T} is $E_{T}\left(\right.$ atom－atom，$\left.m s p^{3} . A O\right)$ ．

				$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$					$=\frac{0}{\substack{0}}$									
	$\begin{aligned} & \infty \\ & \stackrel{\infty}{6} \\ & \stackrel{\sim}{6} \end{aligned}$	$\begin{aligned} & \stackrel{冃}{\circ} \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\ddagger} \\ & \stackrel{\sim}{n} \end{aligned}$	$\underset{\stackrel{\rightharpoonup}{\mathrm{E}}}{2}$	$\underset{\substack{\mathrm{a}}}{\stackrel{\rightharpoonup}{n}}$		$\begin{aligned} & \text { O. } \\ & \stackrel{\sim}{\dot{u}} \end{aligned}$	$\begin{aligned} & \text { 志 } \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\stackrel{\stackrel{9}{+}}{\stackrel{\circ}{8}}$	$\stackrel{\stackrel{\rightharpoonup}{e}}{=}$	$\begin{aligned} & \text { 易 } \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ま } \\ & \vdots \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bullet} \\ & \stackrel{1}{\circ} \end{aligned}$	$\stackrel{\circ}{\circ}$	$\stackrel{\underset{\mathrm{y}}{3}}{\stackrel{1}{2}}$	$\stackrel{\widehat{e n}}{\equiv}$	$\stackrel{\stackrel{n}{n}}{\stackrel{\square}{0}}$
0゙○																		
－¢																		
－©									$\begin{aligned} & \overline{\bar{n}} \\ & 8 \end{aligned}$	$\overline{\bar{n}}$			号					Nin
䦽	－	－	$\stackrel{\text { n }}{\substack{\text { 年 }}}$	－	$\begin{aligned} & \stackrel{\circ}{\hat{6}} \\ & \stackrel{\text { Bn }}{4} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \frac{g}{g} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{n}{2}$	－			－			$\stackrel{\circ}{\circ}$ $\stackrel{0}{0}$ \rightarrow	－	－	$\stackrel{\circ}{\circ}$	
－	$\begin{aligned} & \text { ob } \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \text { Bo } \\ & \stackrel{y}{\circ} \end{aligned}$	$\stackrel{n}{\overbrace{0}^{0}}$	$\frac{E}{A}$	$\begin{aligned} & \text { I } \\ & \text { 岂 } \\ & \text { on } \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{?}{=} \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{y}{=} \end{aligned}$							
\checkmark	\％	$\stackrel{\text { ® }}{0}$	－	－	－	－	－	\％			－			－	－	\％	－	
v	－	－	－	－	－	－	－	－			－			－	－	－	－	
v	$\stackrel{R}{0}$	Co	－	\％	－	－	－	－			－			－	$\underset{O}{\mathrm{R}}$	戌	－	
v			$\begin{aligned} & \text { or } \\ & \text { O} \\ & \text { ob } \end{aligned}$	E		an	\circ 0 0 0 0	－			－			$\begin{gathered} \frac{9}{2} \\ \stackrel{y}{6} \\ \stackrel{y}{6} \end{gathered}$	$\frac{E}{a}$	$\frac{\mathrm{E}}{\mathrm{E}}$		
$\backsim \frac{\overline{ }}{4}$			$\begin{gathered} \stackrel{\rightharpoonup}{\infty} \\ \stackrel{\infty}{\infty} \\ \stackrel{\circ}{\circ} \end{gathered}$	－	$\begin{gathered} \substack{a \\ 0 \\ 0 \\ 0 \\ 0 \\ 0} \end{gathered}$	$\begin{gathered} \text { an } \\ \substack{0 \\ 0 \\ 0} \end{gathered}$	$\stackrel{n}{7}$	$\begin{aligned} & \text { ô } \\ & \text { O} \\ & 0.0 \end{aligned}$			$\begin{aligned} & \text { or } \\ & \text { oro } \\ & 0.0 \end{aligned}$						¢	
	00	\bigcirc	\sim	－	\bigcirc	\bigcirc	\cdots	\pm			\pm			$\stackrel{\square}{1}$	－	－	운	
	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{6} \\ & \stackrel{6}{9} \\ & \hline \end{aligned}$				$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{6} \\ & \stackrel{9}{9} \\ & \hline \end{aligned}$			\pm			\pm				第	第		
		in	$\stackrel{ \pm}{\text { d }}$	－	®	－	\cdots	\sim			－			$\stackrel{\square}{\circ}$	in	in	욱	
				$\begin{aligned} & \text { n } \\ & \underset{\sim}{\infty} \\ & \ddagger \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{8} \\ & \stackrel{\rightharpoonup}{6} \\ & \stackrel{n}{1} \end{aligned}$	$\begin{aligned} & \overline{\tilde{r}} \\ & \stackrel{n}{\hat{c}} \\ & \stackrel{0}{0} \\ & \end{aligned}$				等 $\stackrel{y}{6}$ $\substack{1 \\ \hline}$				器	颜		
	$\stackrel{\circ}{\otimes}$	$\stackrel{\stackrel{\circ}{\otimes}}{\stackrel{\infty}{\infty}}$	$\begin{gathered} \underset{\sim}{\underset{\sim}{c}} \\ \underset{子}{2} \end{gathered}$	帯	$\begin{aligned} & \text { だँ } \\ & \text { 学 } \end{aligned}$	$\begin{gathered} \text { 寻 } \\ \text { 子 } \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{2} \end{aligned}$				$\begin{aligned} & \text { İ } \\ & \text { なु } \end{aligned}$			$\begin{aligned} & \infty \\ & \stackrel{\infty}{\alpha} \\ & \underset{子}{2} \end{aligned}$	$\frac{\overparen{6}}{6}$	$\frac{\stackrel{6}{6}}{子}$	－\％	
ric	त̇ הु	$\begin{aligned} & \overline{\text { 子 }} \\ & \text { di } \end{aligned}$	$\begin{aligned} & \overline{子_{0}} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{0}{\infty} \\ & \end{aligned}$	䓂		$\bar{子}$ $\stackrel{\text { 子 }}{3}$ in	$\stackrel{\circ}{\square}$			$\begin{aligned} & \text { F } \\ & \text { 뭇 } \end{aligned}$			$\begin{aligned} & \text { f } \\ & \text { ì } \end{aligned}$	$\stackrel{\overparen{N}}{\bar{e}}$	$\underset{\text { Na }}{\stackrel{\rightharpoonup}{\mathrm{A}}}$	त⿹⿺⿻一⿰冫⿰亅⿱丿丶丶⿳亠二口欠彡	
	范				$\begin{aligned} & n \\ & \hat{0} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{\rightharpoonup}{0} \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { T } \\ & \text { ה } \\ & \text { ה } \end{aligned}$	$\stackrel{\circ}{\square}$							$\begin{aligned} & \text { F } \\ & \frac{\mathrm{F}}{2} \end{aligned}$	$\begin{aligned} & \frac{f}{\frac{5}{2}} \\ & i \end{aligned}$	ה	
$\begin{array}{\|c} \frac{0}{0} \\ \frac{0}{4} \\ \frac{0}{0} \\ 0 \\ 0 \\ \frac{0}{6} \\ \frac{0}{4} \end{array}$			$\begin{aligned} & 0_{0}^{0} \\ & 0_{0}^{0} \end{aligned}$	$\left.\begin{array}{r} 1 \\ \\ 20 \\ 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right]$	令	$\begin{aligned} & 0_{0}^{0} \\ & \text { 心 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { 心́ } \\ & \text { 心́ } \\ & \text { s. } \end{aligned}$	$\begin{aligned} & z \\ & z_{0}^{0} \\ & \text { v } \end{aligned}$	$\begin{aligned} & \text { 咅 } \\ & \frac{2}{2} \\ & 2 \end{aligned}$		V	$\begin{aligned} & 0_{0}^{0} .0 \\ & 0_{0}^{0} \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & x=0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		

CARBOXYLIC ACID ESTERS ($\left.C_{n} H_{2 n} O_{2}, n=1,2,3,4,5 \ldots \infty\right)$

The alkyl carboxylic acid esters, $C_{n} H_{2 n} O_{2}$, comprise a $C=O$ functional group, and the single bond of carbon to the carbonyl carbon atom, $C-C(O)$, is also a functional group. Formic acid ester has a $H C=O$ moiety that comprises a more stable $C=O$ functional group and a CH functional group. All carboxylic acid esters further comprise a $C O R$ moiety that comprises a $\mathrm{C}-\mathrm{O}$ functional group and three types of $O-R$ functional groups, one for R comprising methyl, one for R comprising an alkyl ester group of a formate, and one for R comprising an alkyl ester group of an alkyl carboxylate. The alkyl portion of the alkyl carboxylic acid ester may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $\mathrm{C}-\mathrm{C}$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in carboxylic acid esters are equivalent to those in branched-chain alkanes.

The $C H$ functional group is equivalent to that of formic acid. The alkyl carboxylic acid ester $C=O$ and $C-C(O)$ groups are equivalent to those given in the Carboxylic Acids section. The formic acid ester $C=O$ group is equivalent to that given in the Carboxylic Acids section except that $\bar{E}_{\text {Kvib }}$ is that corresponding to a formic acid ester. The $C-O$ group is equivalent to that given in the Carboxylic Acids section except that the parameters corresponding to oscillation of the bond in the transition state, $\bar{E}_{D}(e V)$ and $\bar{E}_{K v i b}$, are those of a carboxylic acid ester. As in the case with the alkyl ethers, each $O-C$ group is solved by hybridizing the $2 s$ and $2 p$ AOs of the C atom to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the $O \mathrm{AO}$ to form a MO permits each participating orbital to decrease in radius and energy. To meet the equipotential condition of the union of the $\mathrm{O}-\mathrm{C} \mathrm{H}_{2}$-type-ellipsoidal-MO with other orbitals of the molecule, the hybridization factor c_{2} of Eq. (15.60) for the $O-C$-bond MO given by Eq. (15.133) is: $c_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to $\left.O\right)=0.85395$.
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ (Eq. (15.61)) of (1) the $C=O$ group of alkyl carboxylic acid esters, (2) the $C=O$ group of formic acid esters, (3) the alkyl carboxylic acid ester $C-C(O)$ group, and (4) the carboxylic acid ester $C-O$ group are equivalent to those of the corresponding carboxylic acids. The values given in the Carboxylic Acids section are -2.69893 eV , $-3.58557 \mathrm{eV},-1.85836 \mathrm{eV}$, and -1.85836 eV , respectively. $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-O$ group matches that of the $C-C(O)$ group. Also, as in the case of aldehydes, $C_{1 o}=2 C_{1}$ in Eq. (15.61) for the $C-C(O)$ group.
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $O-C$-bond MO in Eq. (15.61) due to the charge donation from the C and O atoms to the MO is -1.13379 eV for the $\mathrm{O}-\mathrm{CH}_{3}$ group of formate and alkyl carboxylates, -1.44915 eV for the $\mathrm{O}-\mathrm{R}$ group of alkyl carboxylates, and -1.85836 eV for the $O-R$ group of alkyl formates, where R is an alkyl group. Each is based on the energy match between the $O \mathrm{AO}$, initially at the Coulomb potential of a proton and an electron (Eqs. (1.257) and (10.162), respectively), the $C 2 s p^{3} \mathrm{HO}$ of the methyl or alkyl ester group, and the carbonyl carbon. The increasing energy contributions to the single bond correspond to the increasing hybridization of linear combinations of increasing bond order. The energy contributions corresponding to one half of a double bond and those of the methyl-methyl and methylene-methylene bonds are -1.13379 eV (Eq. (14.247)), two times -0.72457 eV (Eq. (14.151)), and two times -0.92918 eV (Eq. (14.513)), respectively.

The symbols of the functional groups of alkyl carboxylic acid esters are given in Table 15.105. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl carboxylic acid esters are given in Tables $15.106,15.107$, and 15.108 , respectively. The total energy of each alkyl carboxylic acid ester given in Table 15.109 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.108 corresponding to functional-group composition of the molecule. For each set of unpaired electrons created by bond breakage , the $C 2 s p^{3}$ HO magnetic energy $E_{m a g}$ that is subtracted from the weighted sum of the E_{D} (Group) (eV) values based on composition is given by Eq. (15.67). The bond angle parameters of alkyl carboxylic acid esters determined using Eqs. (15.8815.117) are given in Table 15.110. The color scale, translucent view of the charge-density of exemplary carboxylic acid ester, methyl acetate, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.18.

Figure 15.18. Color scale, translucent view of the charge-density of methyl acetate showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.105. The symbols of functional groups of alkyl carboxylic acid esters.

Functional Group	Group Symbol
CH (formic acid ester) group	$C-H$ (i)
$C-C(O)$	$C-C(O)$
$C=O$ (formic acid ester)	$C=O$ (i)
$C=O$ (alkyl carboxylic acid ester)	$C=O$ (ii)
(O) $\mathrm{C}-\mathrm{O}$	C-O
$\mathrm{O}-\mathrm{CH}_{3}$	$O-C$ (i)
$O-R$ (formic acid ester)	$O-C$ (ii)
$O-R$ (alkyl acid ester)	$O-C$ (iii)
OH group	OH
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH (alkyl) group	$C-H$ (ii)
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to $t-C$)	$C-C$ (e)
$\underline{C C}(t$ to iso-C)	$C-C$ (f)

Table 15.106. The geometrical bond parameters of alkyl carboxylic acid esters and experimental values [1].

Parameter	$\underset{\text { Group }}{C-H \text { (i) }}$	$\begin{gathered} C-C(O) \\ \text { Group } \end{gathered}$	$\begin{gathered} C=O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C=O \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \mathrm{C}-\mathrm{O} \\ & \text { Group } \end{aligned}$	$\begin{gathered} O-C \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} O-C \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} O-C \text { (iii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\underset{\text { Group }}{C-H \text { (ii) }}$	$\begin{aligned} & C-C \text { (a) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (d) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (f) } \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.61341	2.04740	1.290799	1.29907	1.73490	1.82683	1.78255	1.80717	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.03711	1.43087	1.13613	1.13977	1.31716	1.35160	1.33512	1.34431	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.09763	1.51437	1.20243	1.20628	1.39402	1.43047	1.41303	1.42276	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	1.101 (methyl formate)	$\begin{gathered} 1.520 \\ \text { (acetic acid) } \end{gathered}$	1.206 (methyl formate)	$\begin{gathered} 1.214 \\ \text { (acetic acid) } \end{gathered}$	$\begin{gathered} 1.393 \\ \text { (avg. methy1 } \\ \text { formate) } \end{gathered}$	$\begin{gathered} 1.393 \\ \text { (avg. methyl } \\ \text { formate) } \end{gathered}$	$\begin{gathered} 1.393 \\ \text { (avg. methyl } \\ \text { formate) } \end{gathered}$	$\begin{gathered} 1.393 \\ \text { (avg. methyl } \\ \text { formate) } \end{gathered}$	1.08 (methyl formate) 1.107 $(C-H$ propane $)$ 1.117 $(C-H$ butane $)$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$						
$b, c\left(a_{0}\right)$	1.23591	1.46439	0.61267	0.62331	1.12915	1.22901	1.18107	1.20776	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.64281	0.69887	0.88018	0.87737	0.75921	0.73986	0.74900	0.74388	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15．107．The MO to HO intercept geometrical bond parameters of alkyl carboxylic acid esters．$R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups．E_{T} is $E_{T}\left(\right.$ atom $\left.-a t o m, m s p^{3} . A O\right)$ ．

が远	$\frac{\square}{\partial}$	$\begin{aligned} & \stackrel{\circ}{R} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 爰 } \end{aligned}$	$\begin{aligned} & \text { à } \\ & \text { d } \\ & \text { do } \end{aligned}$	$\begin{aligned} & \text { od } \\ & \text { d } \\ & \text { d } \end{aligned}$	$\begin{aligned} & \text { od } \\ & \text { d } \\ & \text { do } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	殓	$\begin{aligned} & \frac{0}{\circ} \\ & \frac{8}{0} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{י}{0} \end{aligned}$		$\frac{\stackrel{\rightharpoonup}{\partial}}{\vdots}$	∞ ${ }_{3}^{\circ}$	－
－®o	等		$\frac{9}{\bar{A}}$		$\begin{aligned} & \bar{\sigma} \\ & \frac{2}{2} \\ & \hline \end{aligned}$	$\frac{\sqrt{2}}{9}$	$\begin{aligned} & \stackrel{0}{\infty} \\ & \stackrel{\infty}{=} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{6} \\ & \underset{\substack{4 \\ \hline}}{ } \end{aligned}$	$\stackrel{8}{7}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\substack{4}}{1} \end{aligned}$	$\stackrel{\circ}{\underset{\infty}{\infty}}$	$\begin{aligned} & \stackrel{\infty}{\underset{\sim}{9}} \\ & \hline-1 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{9} \\ & \underset{-}{9} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\leftrightarrow}{c} \\ & \underset{-}{4} \end{aligned}$	资
－	$\underset{\text { ¢ }}{\underset{\sim}{c}}$		$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{o}} \\ \stackrel{y}{\mathrm{o}} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{y}{*} \end{aligned}$	$\stackrel{\circ}{\underset{\sim}{q}}$	$\stackrel{\circ}{\stackrel{\sim}{f}}$		$\begin{gathered} \underset{\sim}{\mathrm{J}} \end{gathered}$	$\underset{\mathfrak{q}}{\mathfrak{q}}$	$\begin{aligned} & \underset{\text { g }}{2} \end{aligned}$		$\stackrel{\stackrel{\rightharpoonup}{7}}{\underset{F}{2}}$	＋	$\stackrel{\stackrel{\rightharpoonup}{F}}{\stackrel{1}{2}}$	9
－○	$\begin{gathered} \bar{m} \\ \infty \end{gathered}$	$\stackrel{\rightharpoonup}{\dot{j}}$	$\underset{\substack{\circ}}{\bar{\circ}}$	$\stackrel{\bar{⿺}}{\dot{\circ}}$	$\begin{aligned} & \infty \\ & \underset{\infty}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\infty}{\infty} \\ & \infty \end{aligned}$	$\stackrel{\leftrightarrow}{\dot{\infty}}$	$\stackrel{\text { O}}{\substack{\circ \\ \hline}}$	$\underset{\infty}{\tilde{N}}$	$\underset{\substack{\circ \\ \hline \\ \hline}}{\circ}$	$\frac{8}{\infty}$	$\underset{\infty}{\stackrel{\rightharpoonup}{\infty}}$	$\stackrel{\infty}{\stackrel{\infty}{\infty}}$		¢ ¢ ¢
－©	$$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\text { g}}{\text { Bi }}$	$\underset{\text { gi }}{\substack{\text { g }}}$	$\underset{\substack{N \\ \underset{\alpha}{2} \\ \hline}}{ }$	$\underset{\vdots}{\underset{\sigma}{N}}$	$\underset{\alpha}{\alpha}$	ホু	$\stackrel{\infty}{\stackrel{\infty}{\alpha}}$	$\underset{\text { S. }}{\substack{\text { O}}}$	$\stackrel{\text { ox }}{\substack{\alpha}}$	$\stackrel{\circ}{\circ}$	๗̈	$\stackrel{\circ}{\circ}$	$\stackrel{\bigcirc}{\stackrel{1}{1}}$
		$\begin{aligned} & \infty \\ & \vdots \\ & \\ & \end{aligned}$						$\begin{aligned} & \text { no } \\ & \stackrel{0}{6} \\ & \stackrel{n}{7} \end{aligned}$		$\begin{aligned} & \text { no } \\ & \stackrel{0}{6} \\ & \stackrel{n}{7} \end{aligned}$				$\stackrel{\stackrel{\rightharpoonup}{9}}{\stackrel{\text { ¢ }}{+}}$	
					$\begin{aligned} & \bar{V} \\ & \stackrel{\rightharpoonup}{4} \\ & \vdots \end{aligned}$		$\begin{aligned} & \mathscr{\infty} \\ & \stackrel{\text { and }}{\substack{0}} \end{aligned}$				$\begin{aligned} & \mathscr{\infty} \\ & \stackrel{\text { and }}{\substack{0}} \end{aligned}$		$\begin{aligned} & \bar{V} \\ & \stackrel{\rightharpoonup}{4} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{\omega}{\dot{\omega}} \end{aligned}$	
－©		$\begin{aligned} & \text { İ } \\ & \text { © } \\ & \text { © } \end{aligned}$				$\begin{aligned} & \text { ƠO } \\ & \text { d } \\ & \text { dion } \end{aligned}$	品	$\begin{aligned} & \stackrel{\circ}{n} \\ & \underset{C}{i} \\ & \hline \end{aligned}$					$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { do } \\ & \text { on } \end{aligned}$		
－B60	苞	$\frac{\mathrm{E}}{\mathrm{E}}$	若	$\frac{\mathrm{E}}{\stackrel{\mathrm{E}}{2}}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \\ & \hline \end{aligned}$	$\stackrel{E}{\mathrm{E}} \underset{\mathrm{~B}}{2}$	苞	$\frac{\mathrm{E}}{\mathrm{~A}}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	$\frac{\bar{A}}{\partial}$	O	$\frac{\mathrm{E}}{\mathrm{E}}$		$\frac{\mathrm{E}}{\mathrm{~A}}$	
		$\begin{aligned} & \stackrel{I}{2} \\ & \frac{\infty}{1} \\ & \stackrel{i}{1} \end{aligned}$				$$									
途 家言若	－	－	－	－	－	－	－	－	－	－	－	\bigcirc	\bigcirc	－	－
N家高荡	－	－	－	－	－	－	－	－	－	\bigcirc	\bigcirc	$$	\bigcirc	$\stackrel{\text { co }}{\text { co }}$	－
以家営		－	$\frac{\infty}{\grave{c}}$	$$		$$		$\begin{gathered} \infty \\ \stackrel{\rightharpoonup}{\grave{N}} \\ \hline \end{gathered}$	$\begin{aligned} & \infty \\ & \frac{\infty}{A} \\ & \stackrel{\text { dit }}{6} \end{aligned}$	$\begin{aligned} & \frac{\infty}{\overline{2}} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \text { ⿳亠丷⿵冂⿱十口月 } \\ & \stackrel{1}{6} \end{aligned}$		$\begin{gathered} \text { 采 } \\ \end{gathered}$	$\begin{aligned} & \text { 导 } \\ & \text { 管 } \end{aligned}$	－
心家宸	$$		$$			$\begin{aligned} & \text { 葉 } \\ & \stackrel{1}{\AA} \end{aligned}$	$\frac{\infty}{\frac{\infty}{a}}$				$\begin{aligned} & \infty \\ & \stackrel{\text { an }}{\substack{4}} \end{aligned}$	$$	$\frac{\infty}{\substack{4 \\ \hline}}$		$\stackrel{\infty}{\text { Ј }}$
圧	\bigcirc	0 －	\bigcirc	0°	\bigcirc	0°	\bigcirc	0°	\bigcirc	0°	\bigcirc	0°	\bigcirc	0°	\bigcirc
或	$\begin{array}{ll} 20 \\ 0 & 0 \\ 0 & 0 \\ 1 & a \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{aligned} & \text { 20 } \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { an } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 1$					$\begin{aligned} & =0 \\ & 00 \\ & 103 \\ & 000 \\ & 0.00 \\ & 0.0 \end{aligned}$	a 1 O 0 0		$\begin{aligned} & 20 \\ & 00 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 0$	$\left.\begin{array}{l} \text { 2 } \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\}$	$\begin{aligned} & \approx \\ & \text { z } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \approx \\ & z_{1} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 0$	$\left\{\begin{array}{l} 0 \\ 0 \end{array}\right.$

Table 15.107 Cont' d. The MO to HO intercept geometrical bond parameters of alkyl carboxylic acid esters. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}($ atom -

Bond	Atom	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \\ \text { Bond 2 } \end{gathered}$	$\begin{gathered} E_{F_{r}}^{(\mathrm{eV})} \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{E_{r}}^{(\mathrm{eV}} \\ \text { Bond 4 } \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {mpal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {malal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coulomb }} \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (e v) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\begin{aligned} & H C_{a}(O R)=O \\ & (C=O \text { (i) }) \end{aligned}$	C_{a}	-1.79278	-0.92918	0	0	-154.33766	0.91771	0.77536	-17.54772	-17.35685	135.24	44.76	63.02	0.58561	0.55053
$\begin{aligned} & R^{\prime} C_{b} H_{2} C_{a}(O R)=O \\ & (C=O \text { (ii)) } \end{aligned}$	o	-1.34946	0	0	0		1.00000	0.84115	-16.17521		137.27	42.73	66.31	0.52193	0.61784
$\begin{aligned} & R^{\prime} C_{b} H_{2} C_{o}(O R)=O \\ & (C=O \text { (ii) }) \end{aligned}$	C_{a}	-1.34946	-0.92918	-0.92918	0	-154.82352	0.91771	0.75447	-18.03358	-17.84272	133.47	46.53	61.46	0.62072	0.51995
$\begin{aligned} & \mathrm{H}-\mathrm{CO}(\mathrm{O}) \mathrm{OR} \\ & \mathrm{CH}(\mathrm{i})) \end{aligned}$	C	-1.79278	-0.92918	0	0	-154.33766	0.91771	0.77536	-17.54772	-17.35685	69.89	110.11	36.09	1.30373	0.26662
$R^{\prime} H_{2} C_{b}-C_{a}(O) O R$	C_{a}	-0.92918	-1.34946	-0.92918	0	-154.82352	0.91771	0.75447	-18.03358	-17.84272	56.25	123.75	25.37	1.85002	0.41915
$\mathrm{H}_{3} \mathrm{C}_{b}-\mathrm{C}_{a}(\mathrm{O}) \mathrm{OR}$	C_{b}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	72.27	107.73	34.17	1.69388	0.26301
$\mathrm{R}^{\prime} H_{2} \mathrm{C}_{d} \mathrm{H}_{2} \mathrm{C}_{b}-\mathrm{C}_{a}(\mathrm{O}) \mathrm{OR}$	C_{b}	-0.92918	-0.92918	0	0	-153.47405	0.91771	0.81549	-16.68411	-16.49325	65.99	114.01	30.58	1.76270	0.33183
$\mathrm{C-H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C-H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}(\mathrm{CH})(\mathrm{ii)}$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{\mathrm{H}} \mathrm{CH}_{3}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{5} \mathrm{C}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-H_{2} C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C \text { (b)) } \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-H_{2} C_{C}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) C H_{2}- \\ & (C-C(c)) \\ & \left(\mathrm{C}={ }^{2}\right. \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { iso }_{a} C_{b}\left(H_{2} C_{-}-R^{\prime}\right) H C H_{2}- \\ & (C-C(d)) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & \operatorname{terlC}_{C_{0}}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C-C}(\mathrm{e})) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & \text { tert } C_{a} C_{b}\left(H_{2} C_{C}-R^{\prime}\right) H C H_{2}- \\ & (C-C(f)) \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & \text { iso }_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f}) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15．108．The energy parameters (eV) of functional groups of alkyl carboxylic acid esters．

$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	－	0	0 \％	－	$-\left\|\begin{array}{c} \vec{N} \\ \hat{N} \\ 0 \end{array}\right\|$		\sim	－		$-\begin{gathered}\stackrel{\sim}{\square} \\ \vdots \\ \vdots \\ \\ 1\end{gathered}$	$\frac{\grave{N}}{\hat{N}}$	¢			\bigcirc	$\begin{aligned} & 0 \\ & \text { y } \\ & \text { n } \\ & \vdots \\ & \end{aligned}$		$\begin{aligned} & \frac{n}{\bar{G}} \\ & \underset{\sim}{f} \end{aligned}$	$\begin{aligned} & \text { N్ } \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \text { 険 } \\ & \text { in } \end{aligned}$		$\begin{aligned} & 0 \\ & \underset{0}{0} \\ & \hdashline \mathbf{0} \end{aligned}$	$\frac{\stackrel{N}{2}}{\underset{\sim}{0}}$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \end{array}\right\|$		$\underset{\substack{\underset{\infty}{\infty} \\ \underset{\sim}{\infty} \\ \hline}}{\mid}$		－	$\underset{\sim}{\text { c }}$
	－	－	0 \％	－	$-\frac{E}{\hat{A}}$	－	\sim	－		$-\begin{gathered}\underset{\sim}{c} \\ \vdots \\ \underset{\sim}{c} \\ 1\end{gathered}$	$\begin{aligned} & \underset{N}{N} \\ & \end{aligned}$	$\left\|\begin{array}{c} 8 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{gathered} 0 \\ 0 \\ \vdots \\ \vdots \\ \underset{i}{2} \\ \hline \end{gathered}$	$$	\bigcirc	$\begin{aligned} & 0 \\ & \underset{0}{0} \\ & \vdots \\ & \underset{n}{n} \end{aligned}$		$\begin{aligned} & n \\ & \frac{n}{f} \\ & \underset{i}{\prime} \end{aligned}$		$\begin{gathered} \text { 甜 } \\ \stackrel{n}{2} \end{gathered}$			$\frac{\stackrel{N}{2}}{\underset{O}{0}}$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \vdots \\ i \end{array}\right\|$		$\begin{gathered} \underset{\sim}{\sim} \\ \underset{\sim}{\infty} \\ \underset{\sim}{2} \\ \hline \end{gathered}$		－	ה্ড
$\begin{aligned} & \text { an } \\ & 0 \\ & \text { y } \\ & \text { b } \\ & 0 \end{aligned}$	－	－	0 \％	－	$-\frac{\stackrel{\rightharpoonup}{A}}{\hat{O}}$	－	\sim	\bigcirc			$\begin{aligned} & \tilde{N} \\ & \hat{N} \\ & \hat{\sigma} \end{aligned}$	$\left\lvert\,\right.$	$\begin{gathered} \underset{\sim}{N} \\ \infty \\ \infty \\ \underset{\sim}{n} \end{gathered}$	$\begin{gathered} \hat{\imath} \\ \hat{y} \\ \stackrel{n}{n} \\ \vdots \end{gathered}$	\bigcirc	$\begin{aligned} & \hat{y} \\ & \stackrel{y}{0} \\ & \stackrel{n}{n} \\ & \end{aligned}$		$\begin{gathered} \stackrel{\circ}{\infty} \\ \stackrel{\infty}{\infty} \\ \underset{\sim}{\infty} \end{gathered}$	$\begin{gathered} \aleph \\ \underset{\sim}{\alpha} \\ \underset{\sim}{c} \end{gathered}$	$\begin{aligned} & \text { o} \\ & \text { of } \\ & \underset{\sigma}{9} \end{aligned}$	$\frac{\stackrel{\rightharpoonup}{7}}{\underset{\text { Nु }}{2}}$	$\begin{aligned} & \frac{n}{2} \\ & \frac{0}{0} \\ & \hline 0 \end{aligned}$	$\frac{\stackrel{N}{\pi}}{\frac{\sim}{0}} \mathbb{N}$	$\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{c} \\ \underset{i}{2} \end{gathered}$		$\begin{gathered} \underset{\sim}{N} \\ \stackrel{n}{n} \\ \underset{\sim}{2} \end{gathered}$		－	$\stackrel{\overline{2}}{\substack{2 \\ \hline \\ \hline}}$
$\begin{array}{ll} 0 \\ 0 & 0 \\ 0 & \vdots \\ 1 \\ 0 & 0 \\ 0 \end{array}$	－	－	0 n	－	$-\frac{\vec{N}}{\hat{O}}$	\bigcirc	～	\bigcirc		$-\begin{gathered}\frac{2}{5} \\ \frac{\square}{2} \\ \substack{1}\end{gathered}$	$\begin{gathered} \hat{N} \\ \end{gathered}$	8 0 0 0 0	$\begin{gathered} 0 \\ 0 \\ 2 \\ \vdots \\ \underset{i}{2} \end{gathered}$		－		$\begin{gathered} n \\ n \\ \hat{n} \\ \vdots \\ \cdots \end{gathered}$			$\begin{aligned} & \text { ơ } \\ & \stackrel{\circ}{\alpha} \\ & \stackrel{1}{2} \end{aligned}$		$\begin{array}{\|l} \text { O} \\ 0 \\ 0 \\ \text { ch } \\ \hline \end{array}$		$\left\|\begin{array}{c} 4 \\ 2 \\ 6 \\ 0 \\ i \end{array}\right\|$	$\left\lvert\, \begin{gathered} 0 \\ \stackrel{\circ}{4} \\ \substack{0} \end{gathered}\right.$	$\begin{gathered} \stackrel{\rightharpoonup}{c} \\ \underset{\sim}{z} \\ \underset{\sim}{2} \\ \hline \end{gathered}$		－	¢
$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	－	－	0 \％	－	$-\frac{\stackrel{N}{\hat{N}}}{\hat{O}}$	\bigcirc	～	\bigcirc			$\begin{aligned} & \tilde{N} \\ & \hat{N} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\,\right.$	$\left.\begin{gathered} \underset{N}{\infty} \\ \underset{\sim}{\infty} \\ \underset{\sim}{2} \end{gathered} \right\rvert\,$		－	$\begin{aligned} & \hat{y} \\ & \stackrel{y}{0} \\ & \stackrel{n}{n} \\ & \end{aligned}$	$\begin{gathered} \hat{N} \\ \hat{N} \\ \vdots \\ \cdots \\ \end{gathered}$	$\begin{gathered} \infty \\ \stackrel{\infty}{\infty} \\ \infty \\ \underset{\infty}{\infty} \\ \vdots \end{gathered}$	$\begin{gathered} \stackrel{N}{\aleph} \\ \underset{\sim}{\underset{~}{c}} \end{gathered}$	$\begin{aligned} & \text { oे } \\ & \stackrel{\rightharpoonup}{ণ} \\ & \underset{\sigma}{2} \end{aligned}$	$\left\|\begin{array}{c} \underset{\sim}{n} \\ \underset{i}{N} \end{array}\right\|$	$\begin{aligned} & n \\ & \frac{n}{6} \\ & 0 \\ & \hline 9 \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\circ}} \pm$	$\left\|\begin{array}{l} 0 \\ \\ 0 \\ 0 \\ \vdots \end{array}\right\|$		$\begin{gathered} \kappa \\ \kappa \\ \underset{c}{c} \\ \underset{i}{2} \end{gathered}$		－	ন̇
	－	0	0 n	－	$-\frac{\underset{N}{\hat{N}}}{\hat{O}}$	\bigcirc	\sim	\bigcirc		$-\begin{gathered} \frac{d}{2} \\ \vdots \\ \alpha \\ \hline \end{gathered}$	$\begin{aligned} & \tilde{N} \\ & \tilde{N} \\ & \hat{2} \end{aligned}$	$\left\lvert\,\right.$	$\begin{gathered} \underset{\sim}{2} \\ \underset{\infty}{\infty} \\ \underset{?}{2} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{y} \\ & \stackrel{y}{n} \\ & \stackrel{n}{n} \end{aligned}$	－	$\begin{array}{\|l\|l} \hat{y} \\ 0 \\ 0 \\ \vdots \end{array}$	$\begin{gathered} \hat{N} \\ \hat{N} \\ \vdots \\ \vdots \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \\ & \underset{\sim}{n} \\ & \end{aligned}$	$\begin{aligned} & \text { o} \\ & \text { of } \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\underset{\sim}{\hat{N}}}{\underset{\sim}{\mathrm{o}}}$	$\begin{aligned} & n \\ & 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\frac{\underset{y}{3}}{\substack{3}}$	$\begin{gathered} \underset{0}{2} \\ \underset{0}{0} \\ \vdots \\ \hline \end{gathered}$		$\begin{gathered} \underset{\sim}{n} \\ \underset{n}{2} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{+} \\ & \underset{\substack{0 \\ ~ \\ \vdots \\ \vdots}}{ } \end{aligned}$	－	$\underset{\sim}{4}$
	－	－	－	－	$-\frac{\underset{N}{\hat{a}}}{\hat{O}}$	－	－	－	$\underset{\substack{n \\ i \\ \hline}}{ }$	$-\begin{gathered} n \\ 2 \\ \frac{3}{3} \\ m \\ \hline \end{gathered}$	$\begin{aligned} & o \\ & \stackrel{\circ}{6} \\ & \infty \\ & \infty \\ & \underset{y}{c} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \\ & \vdots \\ & \dot{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \overrightarrow{\mathrm{a}} \\ & \underset{y}{c} \\ & \underset{\sim}{2} \end{aligned}$		－			－	$\frac{n}{\substack{n \\ \cdots \\ \cdots}}$		$\begin{gathered} \underset{\mathrm{y}}{2} \\ \frac{\mathrm{y}}{2} \\ \stackrel{y}{2} \end{gathered}$	$\stackrel{\square}{4}$		$\begin{aligned} & 0 \\ & \mathbf{N} \\ & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \stackrel{N}{\hat{N}} \\ \stackrel{\rightharpoonup}{\hat{\sim}} \\ \stackrel{\sim}{1} \end{gathered}$			त
N	\sim	－	$0 \stackrel{i}{0}$	－	$-\frac{N}{\hat{O}}$	－	－	N	$\stackrel{n}{0}$		$\begin{gathered} \underset{o}{o} \\ \underset{\sim}{o} \\ \underset{\sim}{i} \end{gathered}$	$\left\lvert\, \begin{gathered} \stackrel{n}{0} \\ 0 \\ 0 \\ \vdots \\ \dot{N} \end{gathered}\right.$	$\begin{aligned} & \hat{N} \\ & \tilde{N} \\ & \underset{1}{1} \end{aligned}$	$\begin{aligned} & \tilde{y} \\ & 0 \\ & 0 \\ & \vdots \\ & \end{aligned}$	\bigcirc	$\begin{aligned} & \hat{y} \\ & \stackrel{y}{0} \\ & 0 \\ & \end{aligned}$		－		$\begin{aligned} & \bar{n} \\ & \text { त } \\ & \text { N} \end{aligned}$	$\begin{aligned} & \bar{\infty} \\ & \underset{\infty}{\varsigma} \\ & \stackrel{\omega}{n} \end{aligned}$	19		$\begin{aligned} & \substack{2 \\ b \\ \vdots \\ \vdots \\ \hline \\ \hline} \end{aligned}$	$\left\lvert\, \begin{gathered} n \\ \vdots \\ \vdots \\ \vdots \end{gathered}\right.$		$\begin{aligned} & \circ \\ & \stackrel{\circ}{+} \\ & \underset{\substack{0 \\ ~ \\ \vdots}}{ } \end{aligned}$		$\stackrel{\circ}{\circ}$
	m	N	$0 \stackrel{\text { n }}{0}$	－	$-\begin{gathered} \underset{N}{\hat{N}} \\ \vec{O} \end{gathered}$	\bigcirc	－	m	气		$\begin{gathered} \infty \\ \underset{\sim}{N} \\ \alpha \\ \infty \\ \infty \end{gathered}$		$\begin{aligned} & \hat{\imath} \\ & \mathbf{0} \\ & \underset{c}{0} \\ & \underset{1}{2} \end{aligned}$	$\begin{aligned} & \hat{r} \\ & \underset{0}{0} \\ & \underset{n}{n} \\ & \end{aligned}$	－	$\left\lvert\, \begin{gathered} \hat{0} \\ \hat{0} \\ \hat{0} \\ \mathfrak{n} \\ \hline \end{gathered}\right.$		－		$\begin{aligned} & \ddot{0} \\ & \underset{1}{2} \\ & \dot{\sim} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}\right.$	N		$\begin{gathered} n \\ \tilde{n} \\ \vdots \end{gathered}$	$\begin{aligned} & n \\ & \substack{0 \\ \vdots \\ \vdots \\ \hline} \end{aligned}$	$\begin{array}{\|c} \stackrel{\rightharpoonup}{\mathrm{a}} \\ \text { 人} \\ \stackrel{1}{2} \end{array}$	$\begin{aligned} & \text { ò } \\ & \stackrel{y}{c} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & G \\ & Z \\ & \vdots \\ & \\ & \end{aligned}$	$\stackrel{\circ}{\otimes}$
	－	－	0 n	－	$-\begin{gathered} n \\ 0 \\ \omega \\ 0 \\ 0 \end{gathered}$	\bigcirc	\sim	－	\bigcirc	$-\frac{\hat{n}}{\frac{n}{n}}$	$\begin{aligned} & \frac{0}{9} \\ & 9 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{\sim}{\infty} \\ \stackrel{\sim}{c} \\ \underset{\sigma}{2} \end{gathered}\right.$	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & \stackrel{\sim}{2} \\ & \underset{寸}{2} \end{aligned}$	$\begin{aligned} & \mathscr{2} \\ & \substack{1 \\ 6 \\ \vdots \\ \dot{1} \\ \hline} \end{aligned}$	$\begin{aligned} & n \\ & \frac{n}{g} \\ & \underset{-1}{2} \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{\sim}{n} \\ \stackrel{\infty}{n} \\ \underset{\sim}{n} \end{gathered}\right.$	$$	$\begin{aligned} & \frac{n}{2} \\ & \frac{7}{7} \\ & \hdashline \end{aligned}$	$\begin{gathered} \underset{\sim}{\tilde{L}} \\ \underset{\sim}{\infty} \\ \underset{\sim}{c} \end{gathered}$	$\begin{aligned} & \text { c̀ } \\ & \text { ci } \\ & \text { ci } \end{aligned}$	$\begin{gathered} \infty \\ \underset{\sim}{2} \\ \text { a } \end{gathered}$		$\frac{\infty}{3} \underset{0}{0} \pm$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \vdots \\ i \end{array}\right\|$	$\begin{aligned} & n \\ & \substack{0 \\ \vdots \\ \vdots 心 \\ \hline} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{m}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{m} \end{aligned}$		－	$\stackrel{\sim}{\infty}$
	－	0	0 \％	－	$\left.-\begin{gathered} 2 \\ 0 \\ 0 \\ \infty \\ 0 \end{gathered} \right\rvert\,$	\bigcirc	N	\bigcirc	\cdots	$-\begin{gathered}0 \\ \infty \\ \infty \\ \sim \\ \infty \\ \sim \\ i\end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \hline 0 \end{aligned}$	$\begin{array}{\|c} \mathbf{~} \\ \stackrel{y}{f} \\ \underset{\sim}{7} \end{array}$	$\begin{gathered} \underset{\sim}{\underset{\sim}{*}} \\ \underset{\sim}{\sim} \end{gathered}$		$\begin{gathered} \circ \\ \infty \\ \infty \\ \infty \\ \underset{\sim}{\infty} \\ \vdots \end{gathered}$		$\begin{gathered} 0 \\ \hat{n} \\ \hat{n} \\ \hat{6} \\ \vdots \\ \hline \end{gathered}$	$\begin{gathered} \stackrel{\circ}{\infty} \\ \stackrel{\sim}{\infty} \\ \underset{\sim}{\infty} \\ \underset{1}{2} \end{gathered}$	$\begin{gathered} \aleph \\ \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$	$\underset{\text { ה̀ }}{\substack{\text { ה }}}$	$\begin{aligned} & \circ \\ & 0 \\ & \vdots \\ & \vdots \\ & \dot{j} \end{aligned}$	$\begin{array}{\|c} \text { n } \\ \text { on } \\ 0 \\ \end{array}$		$\left\|\begin{array}{c} \vec{g} \\ \frac{1}{c} \\ \bar{i} \end{array}\right\|$		$\begin{aligned} & \text { d } \\ & \text { à } \\ & \text { on } \\ & \text { c. } \end{aligned}$		－	
$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 1 & \overline{0} \\ 0 & 0 \end{array}$	－	\bigcirc	0 n	－	$-\begin{gathered} 2 \\ - \\ \\ \infty \\ 0 \end{gathered}$	\bigcirc	\sim	－	$\stackrel{3}{0}$		$\begin{aligned} & \text { I } \\ & \text { O} \\ & 0 \\ & 0 . \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{\rightharpoonup}{y} \\ \underset{\infty}{y} \\ \hline \end{gathered}\right.$	$\begin{aligned} & 0 \\ & \underset{7}{f} \\ & \dot{寸} \end{aligned}$		$\begin{aligned} & \stackrel{\imath}{n} \\ & \\ & \hdashline-1 \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \stackrel{n}{7} \\ & \cdots \end{aligned}$	$\begin{aligned} & \overline{\hat{N}} \\ & \hat{6} \\ & \cdots \\ & \cdots \end{aligned}$	$\begin{aligned} & \stackrel{\imath}{\lambda} \\ & \\ & \underset{\sim}{7} \end{aligned}$		$\begin{aligned} & \stackrel{n}{n} \\ & \stackrel{n}{i} \\ & \hdashline \end{aligned}$	$\begin{aligned} & \underset{\mathrm{I}}{\mathrm{I}} \\ & \underset{\mathrm{~J}}{2} \end{aligned}$		$\stackrel{\stackrel{\rightharpoonup}{b}}{\substack{\square \\=\\ 0}}$	$\left\|\begin{array}{c} \infty \\ 0 \\ 0 \\ \hdashline \\ \hline \\ \hline \end{array}\right\|$	$\left\lvert\, \begin{gathered} 0 \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{gathered}\right.$			－	\％
A.	－	\bigcirc	0 n	－	$-\begin{gathered} 2 \\ 2 \\ 0 \\ \infty \\ 0 \end{gathered}$	\bigcirc	\sim	－	\cdots		$\begin{aligned} & \infty \\ & \stackrel{\circ}{6} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{i}{7} \\ & \underset{0}{3} \end{aligned}$	$\begin{aligned} & n \\ & n \\ & \hat{n} \\ & 0 \\ & \stackrel{n}{2} \end{aligned}$		$\begin{aligned} & \text { ô } \\ & 0 \\ & 0 \\ & \underset{O}{0} \\ & i \end{aligned}$	$\begin{aligned} & \circ \\ & \underset{N}{2} \\ & \underset{=}{\prime} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \infty \\ & \infty \\ & \underset{\sim}{\infty} \\ & \hdashline- \end{aligned}$	$\begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{2} \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \text { O} \\ & \text { 人̀ } \\ & \text { in } \end{aligned}$		$\begin{gathered} \infty \\ \underset{\sim}{2} \\ \stackrel{\rightharpoonup}{i} \end{gathered}$		$\left\lvert\, \begin{gathered} \mathfrak{q} \\ \underset{7}{7} \\ \underset{i}{2} \end{gathered}\right.$		$\begin{gathered} \infty \\ \vec{\jmath} \\ \stackrel{1}{j} \\ \stackrel{N}{?} \end{gathered}$		－	
$\left\lvert\, \begin{aligned} & \text { E } \\ & 0 \\ & 0 \\ & \text { il } \\ & 0 \end{aligned}\right.$	a	\bigcirc	$0{ }^{\circ}$	－	$-\begin{gathered} n \\ -2 \\ \infty \\ \infty \\ 0 \end{gathered}$	\cdots	－	－	\cdots		$\begin{aligned} & \hat{y} \\ & \vdots \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$		$\begin{aligned} & g \\ & \underset{7}{7} \\ & \underset{\sim}{4} \end{aligned}$	\bigcirc	$\begin{aligned} & \text { た } \\ & 0 \\ & 0 \\ & 0 \\ & \underset{O}{2} \end{aligned}$	$\begin{gathered} \text { o } \\ \text { on } \\ \mathbf{c} \\ \text { in } \end{gathered}$	$\begin{gathered} \text { J } \\ \text { 人 } \\ \text { N } \\ \text { Sin } \end{gathered}$	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { + } \\ & \text { in } \end{aligned}$			$\frac{\stackrel{N}{O}}{\substack{\mathrm{O}}}$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ i \end{array}\right\|$	$\frac{\vec{F}}{\overrightarrow{0}}$	$\begin{gathered} \infty \\ \underset{y}{c} \\ \vdots \\ \hat{6} \\ \vdots \end{gathered}$		－	－
$\left\lvert\, \begin{array}{cc} 0 \\ 0 \\ 0 \\ 0 \\ i & 0.0 \\ 0 \end{array}\right.$	\sim	－	0%	－	$-\begin{gathered} \stackrel{0}{0} \\ 0 \\ \infty \\ \infty \\ 0 \end{gathered}$	\sim	＋	－	\cdots		$\begin{aligned} & \hat{\imath} \\ & \stackrel{\rightharpoonup}{n} \\ & \underset{\lambda}{\lambda} \end{aligned}$	$\left\lvert\, \begin{gathered} 20 \\ \overparen{O} \\ \underset{G}{q} \\ \dot{子} \end{gathered}\right.$		0	$\begin{aligned} & \stackrel{\pi}{n} \\ & \infty \\ & 0 \\ & \stackrel{n}{0} \end{aligned}$	$\begin{aligned} & \hat{n} \\ & \hat{n} \\ & n \\ & n \\ & \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{\rightharpoonup}{c} \\ & \\ & \end{aligned}$	$\begin{aligned} & \hat{n} \\ & \hat{\infty} \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$	$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 1 \end{array}$	$\bar{\infty}$ 0 O－	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ \underset{y}{c} \\ \dot{c} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \bar{\Delta} \\ \stackrel{\infty}{7} \\ \stackrel{-}{\prime} \end{gathered}\right.$	$\frac{\text { tiv }}{\substack{\text { Non }}}$		$\frac{\vec{F}}{\vec{j}}$			－	¢
	－	\bigcirc	0 \％	－	$-\begin{aligned} & \underset{A}{\hat{a}} \\ & \dot{O} \end{aligned}$	\bigcirc	\sim	\bigcirc	－		$\begin{aligned} & \mathrm{A} \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|c} \underset{\sim}{\underset{\sim}{\underset{\sim}{2}}} \\ \underset{\sim}{2} \end{array}$	$\begin{gathered} 0 \\ \hdashline 0_{0} \\ 0 \\ \vdots \end{gathered}$		－		$\begin{aligned} & \text { 士 } \\ & \hat{N} \\ & \hat{6} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{gathered} \stackrel{\infty}{\infty} \\ \stackrel{\sim}{\infty} \\ \stackrel{\infty}{\infty} \\ \underset{-}{2} \end{gathered}$	$\begin{gathered} \kappa \\ \\ \underset{\sim}{c} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \hat{\Omega} \\ & \hat{n} \\ & \hat{\jmath} \\ & \hat{\varrho} \end{aligned}$	¢		$\left\|\begin{array}{c} n \\ \\ \vdots \\ \vdots \end{array}\right\|$		会		－	$\underset{\substack{\text { ¢ } \\ \underset{\sim}{\sim} \\ \hline}}{ }$
$\begin{array}{ll} \text { an } \\ \text { in } \\ 1 & 0 \\ i & 0 \\ 0 \end{array}$	－	－	0 年	－	$-\begin{aligned} & \underset{A}{A} \\ & \underset{0}{0} \end{aligned}$	\bigcirc	－	－	$\stackrel{i}{6}$		$\stackrel{\substack{\circ \\ \underset{\sim}{c} \\ \sim}}{ }$		$\begin{gathered} \hat{N} \\ \underset{\sim}{6} \\ \mathfrak{c} \end{gathered}$		$\begin{aligned} & \infty \\ & \text { ते } \\ & \text { 人} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{n} \\ \stackrel{2}{\kappa} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \stackrel{0}{n} \\ & \stackrel{n}{n} \\ & \frac{1}{9} \end{aligned}$	\bigcirc	婨	$\begin{aligned} & \text { ì } \\ & \hat{0} \\ & \stackrel{N}{0} \end{aligned}$	$\begin{gathered} \frac{n}{n} \\ \frac{n}{i} \\ i \end{gathered}$	－		$\begin{gathered} n \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$					$\stackrel{n}{n}$
	$=-$	\approx	$=0$	v^{-}	0	0	0^{+}			U^{8}	\underbrace{s}_{Δ}	\because	$\underbrace{s}_{ \pm}$				$\underbrace{(\overbrace{0}^{2}}_{6}$		害					（10）	\％			$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{\rightharpoonup}{0}}$	－

Formula	Name	$\begin{gathered} C-H \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(O) \\ \text { Group } \end{gathered}$	$\begin{gathered} C=O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C=O \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-O \\ & \text { Group } \end{aligned}$	$\begin{gathered} O-C \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} O-C \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} O-C \text { (iii) } \\ \text { Group } \end{gathered}$	CH_{3}	CH_{2}	CH (ii)	$\underset{\text { (a) }}{C-C}$	$\begin{gathered} C-C \\ \text { (b) } \end{gathered}$	$\begin{gathered} C-C \\ \text { (c) } \end{gathered}$	$\begin{gathered} C-C \\ \text { (d) } \end{gathered}$	$\begin{gathered} C-C \\ \text { (e) } \end{gathered}$	$\underset{\text { (f) }}{C-C}$	$E_{\text {mag }}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	Methyl formate	1	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	32.71076	32.762	0.00156
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	Methyl acetate	0	1	0	1	1	1	0	0	2	0	0	0	0	0	0	0	0	0	45.24849	45.288	0.00087
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	Methyl pentanoate	0	1	0	1	I	1	0	0	2	3	0	3	0	0	0	0	0	0	81.72159	81.726	0.00005
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	Methyl hexanoate	0	1	0	1	1	1	0	0	2	4	0	4	0	0	0	0	0	0	93.87929	93.891	0.00012
$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	Methyl heptanoate	0	1	0	1	1	1	0	0	2	5	0	5	0	0	0	0	0	0	106.03699	106.079	0.00040
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	Methyl octanoate	0	1	0	1	1	1	0	0	2	6	0	6	0	0	0	0	0	0	118.19469	118.217	0.00018
$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$	Methyl nonanoate	0	1	0	1	1	1	0	0	2	7	0	7	0	0	0	0	0	0	130.35239	130.373	0.00016
$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{2}$	Methyl decanoate	0	1	0	1	1	1	0	0	2	8	0	8	0	0	0	0	0	0	142.51009	142.523	0.00009
$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}$	Methyl undecanoate	0	1	0	1	1	1	0	0	2	9	0	9	0	0	0	0	0	0	154.66779	154.677	0.00006
$\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2}$	Methyl dodecanoate	0	1	0	1	1	1	0	0	2	10	0	10	0	0	0	0	0	0	166.82549	166.842	0.00010
$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{2}$	Methyl tridecanoate	0	1	0	1	1	1	0	0	2	11	0	11	0	0	0	0	0	0	178.98319	179.000	0.00009
$\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2}$	Methyl tetradecanoate	0	1	0	1	1	1	0	0	2	12	0	12	0	0	0	0	0	0	191.14089	191.170	0.00015
$\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2}$	Methyl pentadecanoate	0		0	1	,	1	0	0	2	13		13	0	0	0	0	0	0	203.29859	203.356	0.00028
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	Propyl formate	1		1		1	0	1	0	1	2	0	2	0	0	0	0	0	0	57.76366	57.746	-0.00030
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	Ethyl acetate	0	1	0	1	1	0	0	1	2	1	0	1	0	0	0	0	0	0	57.63888	57.548	-0.00157
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	Isopropyl acetate	0	1	0	1	1	0	0	1	3	0	1	0	2	0	0	0	0	0	69.89747	69.889	-0.00013
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	Ethyl propanoate	0	1	0	1	1	0	0	,	2	2	0	2	0	0	0	0	0	0	69.79658	69.700	-0.00139
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	Butyl acetate	0	1	0	1	1	0	0	1	2	3	0	3	0	0	0	0	0	0	81.95428	81.873	-0.00099
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	t-Butyl acetate	0	1	0	1	1	0	0	1	4	0	0	0	0	3		0	0	-1	82.23881	82.197	-0.00051
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	Methyl 2,2-dimethylpropanoate	0	I	0	1	1	I	0	0	4	0	0	0		3	0	0	0	-1	82.00612	81.935	-0.00087
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	Ethyl pentanoate	0	1	0	1	1	0	0	1	2	4	0	4	0	0		0	0	0	94.11198	94.033	-0.00084
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	Ethyl 3-methylbutanoate	,	1	0	1	1	0	0		3		,	1		0	0	0	0	0	94.18454	94.252	0.00072
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	Ethyl 2,2-dimethylpropanoate	0	1	0	1	1	0	0	1	4	1	0	1	0	3	0	0	0	-1	94.39651	94.345	-0.00054
$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	Isobutyl isobutanoate	0	1	0	1	1	0	0	1	4	1	2	0	5	0	0	0	0	0	106.44313	106.363	-0.00075
$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	Propyl pentanoate	0	1	0	1	1	0	0	1	2	5	0	5	0	0	0	0	0	0	106.26968	106.267	-0.00003
$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	Isopropyl pentanoate	0	1	0	1	1	0	0	1	3	3	1	3	2	0	0	0	0	0	106.37057	106.384	0.00013
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	Butyl pentanoate	0	1	0	1	1	0	0	1	2	6	0	6	0	0	0	0	0	0	118.42738	118.489	0.00052
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	sec-Butyl pentanoate	0	1	0	,	1	0	0	1	3	4	1	4	2	0	0	0	0	0	118.52827	118.624	0.00081
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	Isobutyl pentanoate	0	1	0	1	1	0	0	1	3	4	1	3	3	0	0	0	0	0	118.49994	118.576	0.00064

Table 15.110. The bond angle parameters of alkyl carboxylic acid esters and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is $E_{T}\left(\right.$ atom - atom, msp $\left.{ }^{3} \cdot A O\right)$.

AMIDES ($\left.C_{n} H_{2 n+1} N O, n=1,2,3,4,5 \ldots \infty\right)$

The alkyl amides, $C_{n} H_{2 n+1} N O$, comprise a $C=O$ functional group, and the single bond of carbon to the carbonyl carbon atom, $C-C(O)$, is also a functional group. Formamide has a $H C=O$ moiety that comprises a more stable $C=O$ functional group and a CH functional group that is equivalent to that of the $C H$ (i) of aldehydes given in the corresponding section. It is also equivalent to that of the iso- CH group of branched-chain-alkyl portion of the alkyl amide except that $E_{\text {mag }}$ (Eq. (15.47)) is not subtracted from $E_{D}($ Group $)$. All amides further comprise a $\mathrm{C}-\mathrm{NH}_{2}$ moiety that comprises a NH_{2} functional group and two types of $C-N$ functional groups, one for formamide and the other for alkyl amides $\left(R C(O) N H_{2}\right.$ where R is alkyl). The alkyl portion of the alkyl amide may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $\mathrm{C}-\mathrm{C}$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in amides are equivalent to those in branched-chain alkanes.

The NH_{2} functional group was solved in the Dihydrogen Nitride $\left(\mathrm{NH}_{2}\right)$ section except that the energy of the $\mathrm{N}-\mathrm{H}$
MO is matched to the nitrogen-atom contribution to $\Delta E_{H_{2} M O}(A O / H O)$ and $E_{T}\left(\right.$ atom-atom, msp $\left.{ }^{3} \cdot A O\right)$ of the $C-N$ group. Both alkyl amide $C=O$ groups and the $C-C(O)$ group are equivalent to those given in the Carboxylic Acid Esters section except that $\bar{E}_{K v i b}$ of the $C-C(O)$ group is matched to that of an amide. The $C-N$ groups are equivalent to those of alkyl amines given in the corresponding section except that the energy of the $C-N$ MO is matched to that of the $C=O$ group and $\bar{E}_{\text {Kvib }}$ is that of a amide. $\Delta E_{H_{2} M O}(A O / H O)$ of the $C-N$ group is equal to $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} \cdot A O\right)$ of the alkyl $C=O$ and $C-N$ groups in order to match the energies of the corresponding MOs.

As in the case of primary amines, each $C-N$ group is solved by hybridizing the $2 s$ and $2 p$ AOs of the C atom to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the $N \mathrm{AO}$ to form a MO permits each participating orbital to decrease in radius and energy. To meet the equipotential condition of the union of the $\mathrm{C}-\mathrm{N} \quad \mathrm{H}_{2}$-type-ellipsoidal-MO with other orbitals of the molecule, the hybridization factor c_{2} of Eq. (15.52) for the $C-N$-bond MO given by Eq. (15.133) is $c_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to $\left.N\right)=0.91140$.
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ (Eq. (15.52)) of the $C=O$ group of alkyl amides and the $C=O$ group of formamide are equivalent to those of the corresponding carboxylic acids and esters. The values given in the Carboxylic Acids section are -2.69893 eV and -3.58557 eV , respectively.
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the amide $C-C(O)$ group is the same as alkanes, aldehydes, carboxylic acids, and carboxylic acid esters, -1.85836 eV , where both energy contributions are given by Eq. (14.513). Also, as in the case of aldehydes, $C_{1 o}=2 C_{1}$ in Eq. (15.61).

In order to match energy throughout the chain of the amide molecule, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-N$-bond MO in Eq. (15.61) due to the charge donation from the C and N atoms to the MO is -1.65376 eV . It is based on the energy match between the $C 2 s p^{3} \mathrm{HO}$ of the carbonyl and the primary amino group NH_{2}. It is given by the linear combination of -0.92918 eV (Eq. (14.513)) which matches the contiguous $C-C(O)$ or $H C(O)$ group and -0.72457 eV (Eq. (14.151)), the contribution of a primary amino group given in the Primary Amines section.

The symbols of the functional groups of alkyl amides are given in Table 15.111. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl amides are given in Tables $15.112,15.113$, and 15.114 , respectively. The total energy of each alkyl amide given in Table 15.115 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.114 corresponding to functional-group composition of the molecule. The bond angle parameters of alkyl amides determined using Eqs. (15.88-15.117) are given in Table 15.116. The color scale, translucent view of the charge-density of exemplary amide, propionamide, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.19.

Figure 15.19. (A)-(B) Color scale, translucent views of the charge-density of propionamide showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.111. The symbols of functional groups of alkyl amides.

Functional Group	Group Symbol
CH (formamide) group	$C-H$ (i)
C-C(O)	$C-C(O)$
$C=O$ (formamide)	$C=O$ (i)
$C=O$ (alkyl amide)	$C=O$ (ii)
(O) C - N (formamide)	$C-N$ (i)
(O)C-N (alkyl amide)	$C-N$ (ii)
NH_{2} group	NH_{2}
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH (alkyl) group	C-H (ii)
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
CC (iso to iso-C)	$C-C$ (d)
$C C$ (t to t - C)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.112. The geometrical bond parameters of alkyl amides and experimental values [1].

Parameter	$\begin{gathered} C-H \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(O) \\ \text { Group } \end{gathered}$	$\begin{gathered} C=O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C=O \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \text { (ii) } \\ \text { Group } \end{gathered}$	NH_{2} Group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$ Group	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-H \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (c) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.67465	2.04740	1.290799	1.29907	1.70920	1.75370	1.32297	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.05661	1.43087	1.13613	1.13977	1.30736	1.32427	0.97065	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
	1.11827	1.51437	1.20243	1.20628	1.38365	1.40155	1.02729	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$\begin{gathered} 1.125 \\ \text { (formamide) } \end{gathered}$	1.519 (acetamide) 1.520 (N- methylacetamide)	$\begin{gathered} 1.212 \\ \text { (formamide) } \end{gathered}$	1.220 (acetamide) 1.225 ($\mathrm{N}-$ methylacetamide)	$\begin{gathered} 1.368 \\ \text { (formamide) } \end{gathered}$	$\begin{gathered} 1.380 \\ \text { (acetamide) } \end{gathered}$	$\begin{gathered} 1.027 \\ \text { (formamide) } \\ 1.022 \\ \text { (acetamide) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \\ \text { propane }) \\ 1.117 \\ (C-H \\ \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \\ \text { propane }) \\ 1.117 \\ (C-H \\ \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$						
$b, c\left(a_{0}\right)$	1.29924	1.46439	0.61267	0.62331	1.10098	1.14968	0.89894	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.63095	0.69887	0.88018	0.87737	0.76490	0.75513	0.73369	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15．113．The MO to HO intercept geometrical bond parameters of alkyl amides．$R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups．E_{T} is $E_{T}\left(\right.$ atom－atom，msp ${ }^{3}$ ．$A O$ ）．

でぎ®	$\begin{aligned} & \text { İn } \\ & \text { Nan } \end{aligned}$	I్ ̇ㅓㅇ	$\begin{aligned} & \text { 寺 } \\ & \text { 合 } \end{aligned}$	$\begin{aligned} & \stackrel{8}{n} \\ & \stackrel{i n}{8} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { O} \\ & \hline 0.8 \end{aligned}$	$\begin{aligned} & \infty \\ & \vdots \\ & \vdots \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 骨 } \\ & \text { 答 } \end{aligned}$	$\begin{aligned} & \stackrel{ \pm}{\circ} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		$$	$\begin{gathered} \stackrel{\rightharpoonup}{9} \\ \frac{9}{7} \\ \hline \end{gathered}$	$\left\|\begin{array}{c} \overrightarrow{0} \\ \substack{c} \\ \hline \end{array}\right\|$	$\frac{\infty}{\infty}$		dick	$\begin{aligned} & \text { స్లై } \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \substack{0 \\ \\ \hline} \end{aligned}$	$\stackrel{\stackrel{7}{8}}{\substack{8}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \stackrel{8}{n} \end{aligned}$	$\begin{aligned} & \text { 侖 } \\ & \text { 感 } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \stackrel{i}{6} \end{aligned}$			－
\bigcirc－	$\begin{aligned} & \text { 采 } \\ & \substack{0 \\ \hline \\ \hline} \end{aligned}$	$\begin{aligned} & \stackrel{t}{\stackrel{\rightharpoonup}{\circ}} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\begin{array}{r} \underset{\sim}{2} \\ \underset{\sim}{2} \end{array}$	$\stackrel{N}{\Sigma}$	$\frac{n}{9}$	$\begin{aligned} & \text { n } \\ & \text { 骨 } \\ & \text { Co } \end{aligned}$	$\begin{aligned} & \text { 喜 } \\ & \text { 丽 } \end{aligned}$		$\begin{aligned} & \text { ס } \\ & \stackrel{e}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \circ \\ & \substack{\infty \\ \underset{\sim}{7} \\ \hline} \end{aligned}$	$\left\lvert\,\right.$	$\left\lvert\, \begin{gathered} \infty \\ 0 \\ 0 \\ \hline-0 \end{gathered}\right.$			－	\％	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\alpha}{2} \\ & \stackrel{2}{2} \end{aligned}$	$\frac{\stackrel{O}{6}}{\underset{-}{2}}$		$\stackrel{\text { O}}{\underset{\sim}{6}}$	$\stackrel{\text { g }}{\substack{2 \\ ~}}$	$\begin{gathered} \text { 等 } \\ \hline \end{gathered}$	筞
o゙き	$\underset{\substack{\mathrm{N}}}{ }$	$\begin{gathered} \text { O. } \\ \stackrel{\rightharpoonup}{n} \end{gathered}$	$\stackrel{R}{f}$	$\stackrel{\circ}{\stackrel{\rightharpoonup}{子}}$	$\stackrel{8}{\stackrel{8}{7}}$		$\begin{gathered} \infty \\ \underset{\sim}{2} \end{gathered}$	$\overline{\widehat{0}}$	$\begin{aligned} & 8 \\ & \stackrel{R}{6} \end{aligned}$	$\underset{\sim}{\underset{\sim}{j}}$	$\begin{gathered} \stackrel{0}{2} \\ \stackrel{y}{c} \end{gathered}$	$\underset{\sim}{f}$	$\left\lvert\, \begin{gathered} \infty \\ \substack{\infty \\ \dot{c} \\ \hline} \end{gathered}\right.$	$\stackrel{\infty}{\underset{\sim}{c}}$	$\underset{\substack{d \\ \stackrel{\rightharpoonup}{n} \\ n}}{ }$	$\frac{\sqrt[3]{m}}{m}$	$\stackrel{\infty}{\circ}$	$\underset{\substack{\circ \\ \hline}}{ }$	$\stackrel{\stackrel{1}{\mathrm{~N}}}{2}$	$\stackrel{\underset{\sim}{\sim}}{\stackrel{t}{2}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{2}$	$\begin{aligned} & \text { هٌ } \\ & \text { R } \end{aligned}$	$\underset{\text { + }}{\stackrel{\text { U }}{2}}$	¢
σ°－	$\begin{aligned} & \circ \\ & \stackrel{\circ}{6} \end{aligned}$	$\stackrel{\text { ¢ }}{\substack{\text { e }}}$	$\underset{\infty}{\mathscr{\infty}}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{9}{9} \\ & \underset{\infty}{2} \end{aligned}$	$\begin{aligned} & \text { gi } \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\text { 等 }}{+}$	$\underset{\substack{\mathfrak{c} \\ \hline}}{ }$	$\begin{gathered} \text { §్子 } \\ \hline \end{gathered}$	$\stackrel{\stackrel{\rightharpoonup}{\leftrightharpoons}}{\leftrightharpoons}$	$\left\lvert\, \begin{gathered} \infty \\ \underset{\sim}{d} \\ \hline \end{gathered}\right.$	\mathfrak{B}	$\stackrel{\rightharpoonup}{\dot{f}}$	$\begin{aligned} & \overline{\hat{n}} \\ & \stackrel{\rightharpoonup}{\mathrm{G}} \end{aligned}$	$\stackrel{n}{=}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{\infty}{6} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{6} \\ & \stackrel{\circ}{6} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \underset{\text { d}}{ } \end{aligned}$	$\stackrel{\stackrel{R}{9}}{\stackrel{\rightharpoonup}{m}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\substack{2}}$	$\stackrel{\stackrel{R}{9}}{\stackrel{1}{2}}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{a}} \\ & \underset{\text { an }}{ } \end{aligned}$	$\underset{\sim}{\text { त্}}$	$\stackrel{\circ}{\text { ¢ }}$
－	$\begin{aligned} & \stackrel{\circ}{\oplus} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \text { ल̆ } \\ & \stackrel{\text { en }}{6} \end{aligned}$	$\stackrel{\rightharpoonup}{6}$	$\begin{aligned} & \stackrel{t}{8} \\ & \stackrel{y}{8} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \text { Bo } \end{aligned}$		$\begin{gathered} \underset{\sim}{J} \\ \stackrel{N}{2} \end{gathered}$	$\underset{\underset{\sim}{n}}{\substack{~}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\sim}{n} \end{aligned}$	त్రे	$\left\|\begin{array}{c} \text { d } \\ \stackrel{i}{n} \end{array}\right\|$	$\begin{gathered} y_{n} \\ \end{gathered}$	$\begin{gathered} 2 \\ \stackrel{y}{6} \end{gathered}$	$\stackrel{9}{\stackrel{9}{\wedge}}$	$\begin{gathered} \stackrel{\rightharpoonup}{9} \\ \stackrel{y}{6} \end{gathered}$	$\stackrel{9}{\vdots}$		$\begin{gathered} \text { F⿳亠口冋口} \end{gathered}$	筞	$\begin{aligned} & \overline{\mathrm{y}} \\ & \stackrel{\rightharpoonup}{\alpha} \end{aligned}$	$\stackrel{\circ}{\dot{\alpha}}$	$\stackrel{\text { 鬲 }}{ }$	$\underset{i}{\infty}$	亳
$\frac{\overline{\hat{x}}}{\frac{\text { Un }}{4}}$			$$		$\begin{aligned} & \text { 喜 } \\ & \stackrel{1}{7} \end{aligned}$		$$		$\begin{aligned} & \text { Fo } \\ & \substack{\text { an }\\ } \end{aligned}$	$\begin{aligned} & \text { 令 } \\ & \underset{~}{7} \end{aligned}$	$\left\|\begin{array}{c} 7 \\ \text { 袁 } \\ \end{array}\right\|$	$\left\lvert\, \begin{gathered} \hat{0} \\ \stackrel{\rightharpoonup}{n} \\ \\ \end{gathered}\right.$	\mathfrak{c}	$\begin{aligned} & 0 \\ & \stackrel{6}{6} \\ & \stackrel{6}{6} \\ & \end{aligned}$	－	$$	$\begin{aligned} & \text { 䯧 } \\ & \stackrel{6}{6} \end{aligned}$		$\begin{aligned} & \text { 柰 } \\ & \stackrel{7}{\leftrightarrows} \end{aligned}$	$\begin{aligned} & \text { À } \\ & \underset{九}{7} \end{aligned}$	$\begin{aligned} & \text { 声 } \\ & \underset{~}{\leftrightarrows} \end{aligned}$	$\begin{aligned} & \text { ה̀ } \\ & \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{4} \\ & \stackrel{\infty}{\leftrightarrows} \end{aligned}$	
			$\begin{aligned} & \text { F. } \\ & \text { 导 } \\ & \vdots \end{aligned}$			$\begin{aligned} & \mathscr{2} \\ & \frac{\infty}{6} \\ & \stackrel{6}{6} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \stackrel{N}{؟} \end{aligned}$	$\begin{aligned} & \text { 寺 } \\ & \text { 喿 } \end{aligned}$	$\begin{gathered} \stackrel{\pi}{亏} \\ \underset{2}{7} \\ \underset{\sim}{2} \end{gathered}$	\mathfrak{c}	\mathfrak{c}			$\begin{aligned} & \stackrel{0}{n} \\ & \stackrel{n}{6} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \text { 等 } \\ & \stackrel{4}{2} \end{aligned}$		$\begin{aligned} & \text { 을 } \\ & \stackrel{n}{6} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \text { ®. } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{1}{7} \end{aligned}$	$\begin{aligned} & \text { on } \\ & \stackrel{n}{6} \\ & \stackrel{1}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{a}{1} \\ & \stackrel{1}{7} \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \stackrel{8}{7} \\ & \stackrel{7}{7} \end{aligned}$	$\xrightarrow[\text { ® }]{\text { ¢ }}$
B	$\begin{aligned} & \text { gib } \\ & \text { obid } \end{aligned}$		$\stackrel{\text { a }}{\stackrel{\rightharpoonup}{\circ}}$		$\begin{aligned} & \text { en } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{N}{0} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{\infty} \\ \stackrel{\infty}{\infty} \\ \stackrel{\infty}{\infty} \end{gathered}$		$\stackrel{n}{\underset{\sim}{0}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{\circ}{6} \end{aligned}$	$\stackrel{\text { a }}{\stackrel{\rightharpoonup}{\circ}}$	$\left\|\begin{array}{c} \infty \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$		瓷	$\begin{array}{\|c} 9 \\ \substack{2 \\ \infty \\ 0 \\ 0} \end{array}$	$\begin{aligned} & \text { 底 } \\ & \text { N } \end{aligned}$				$\begin{aligned} & \stackrel{\otimes}{\mathrm{o}} \\ & \stackrel{\text { R}}{\circ} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \hline 1 \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{y}{6} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { in } \\ & \stackrel{i n}{\infty} \\ & \stackrel{0}{\circ} \end{aligned}$	
追		$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{\mathrm{a}} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{\circ} \\ \stackrel{\rightharpoonup}{o} \end{gathered}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \\ & \hline-9 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	若	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{\bar{A}}{\bar{a}}$	$\left\|\begin{array}{c} \vec{E} \\ \bar{\partial} \\ 0 \end{array}\right\|$		$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{a} \\ \underset{\partial}{c} \end{array}\right\|$	$\stackrel{E}{2}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~A} \\ & \mathrm{O} \end{aligned}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\stackrel{E}{\mathrm{E}}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\begin{aligned} & \text { E } \\ & \stackrel{y}{0} \end{aligned}$	$\stackrel{\text { E }}{\text { E }}$
					g d d		$\begin{aligned} & \text { nen } \\ & \hat{\sim} \\ & \underset{\sim}{n} \\ & \end{aligned}$		$\begin{aligned} & \frac{\overline{1}}{1} \\ & \frac{1}{\text { n }} \end{aligned}$	$$					－			$\begin{aligned} & \text { 旁 } \\ & \text { 呆 } \\ & \end{aligned}$			$\begin{aligned} & \text { tr } \\ & \text { 等 } \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \text { or } \\ & \frac{0}{n} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { 合 } \\ & \stackrel{\circ}{7} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$	
四要镸	－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－	－	－	－	－	－	－		－	¢	－	¢
$\therefore \text { Se }$	－	－	－	－	$\frac{\infty}{\text { ®it }}$	－	－	－	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\hbar} \\ & \stackrel{1}{6} \end{aligned}$	－		－	－	－	－	¢	－	－		$\begin{aligned} & \text { 烒 } \\ & \substack{0} \end{aligned}$		$\begin{aligned} & \text { 烒 } \\ & \substack{\text { n }} \end{aligned}$		coic
N 合高	－	－	$\begin{aligned} & \stackrel{\infty}{\overleftarrow{\Sigma}} \\ & \underset{~}{-1} \end{aligned}$	－		－	$$	－			$\begin{gathered} 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ \hdashline \end{gathered}$	－	¢	－	¢	－	－		$$	$$	$\begin{gathered} \infty \\ \text { ત్రి } \end{gathered}$			
$\leftrightarrow \stackrel{S}{\overrightarrow{0}}$						$\begin{aligned} & \infty \\ & \stackrel{\infty}{1} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{gathered} \infty \\ \underset{\substack{4}}{\stackrel{1}{4}} \end{gathered}$			$\begin{gathered} \infty \\ \stackrel{\infty}{~} \\ \end{gathered}$			$\begin{array}{lll} 0 & \infty \\ \\ \hline \end{array}$	$\begin{array}{c\|c} \circ \\ 0 & \infty \\ \hline \end{array}$	$\begin{array}{l\|l} \infty & \infty \\ \\ \hline \end{array}$	$\begin{array}{l\|l} \infty & \infty \\ \hline \end{array}$	$$			$\frac{\infty}{\text { No }}$	$\begin{aligned} & \infty \\ & \stackrel{\text { cotr }}{6} \end{aligned}$	$$		¢
$\frac{5}{6}$	z	z	\cup	z	0°	\bigcirc	0°	\bigcirc	0°	\cup	0°	0°	U	0	ט	ט	0°	ט	ט	ט	ט	ט゙	ט゙	ט゙
㦴			$\begin{aligned} & \text { â } \\ & 0 \\ & \text { out } \\ & \text { Ú } \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & n_{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\{\begin{array}{l} n_{n} \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{array}\right.$		$\begin{gathered} n_{2}^{c} \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \end{gathered}$			$\left\{\begin{array}{l} 0 \\ y \\ y \\ u \\ u \end{array}\right.$	$\begin{aligned} & E \\ & E \\ & E \\ & 0 \\ & y \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{ll} 1 \\ y_{n} & \\ 0 & 0 \\ y_{0} & 0 \\ 0 & 0 \\ x_{2} & 1 \\ \hline \end{array}$				$\begin{array}{\|c} \\ 1 \\ 1 \\ 0 \\ 0 \\ 2 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$			

Table 15．114．The energy parameters（ eV ）of functional groups of alkyl amides．

	－	\bigcirc	0 \％	$\bigcirc-$	$-\begin{aligned} & \frac{E}{A} \\ & \underset{O}{0} \end{aligned}$	\bigcirc	N	－	\％		$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{N} \end{aligned}$	$\left\|\begin{array}{c} 8 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{gathered} 0 \\ 0 \\ \underset{\sim}{2} \\ \stackrel{y}{2} \end{gathered}$	$\begin{aligned} & \frac{8}{t} \\ & \hat{N} \\ & i \end{aligned}$	\bigcirc	$\begin{aligned} & 0 \\ & \stackrel{0}{n} \\ & \underset{n}{n} \end{aligned}$	\bigcirc				$\begin{aligned} & \text { 喜 } \\ & \text { in } \\ & 0 \end{aligned}$	त्वे	$\left\|\begin{array}{c} 0 \\ \hline 6 \\ \vdots \\ \hline 1 \end{array}\right\|$	$\frac{\pi}{c}$	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ 0 \\ \hline \mathbf{O} \\ \hline \end{gathered}\right.$		$\underset{\underset{\sim}{\infty}}{\underset{\sim}{\infty}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{8}} \\ & \underset{6}{6} \\ & \underset{1}{\prime} \end{aligned}$	－	
$\left\lvert\, \begin{aligned} & \text { © } \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}\right.$	－	0	0%	\％	$-\frac{\hat{N}}{\hat{\sigma}}$	－	N	\bigcirc	\％		$\begin{gathered} \underset{N}{N} \\ \underset{N}{N} \end{gathered}$	$\left\|\begin{array}{c} 8 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$$	$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & n \\ & \vdots \\ & \vdots \end{aligned}$	\bigcirc	$\begin{aligned} & 9 \\ & \vdots \\ & n \\ & n \\ & n \end{aligned}$	\bigcirc				$\begin{gathered} \text { 娄 } \\ \stackrel{n}{n} \\ 0 \end{gathered}$	$\begin{aligned} & \text { त్ర } \\ & \text { ç } \\ & \text { Sु } \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{7} \\ & \hdashline \mathbf{0} \end{aligned}$	$\frac{\pi}{\underset{0}{3}}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { O} \\ & \vdots \\ & \hline i \end{aligned}$		$\underset{\underset{\sim}{\infty}}{\underset{\sim}{\infty}}$		－	
	－	－	0%	\％	$-\frac{E}{\hat{E}} \underset{0}{2}$	－	N	\bigcirc	\cdots	$-\begin{gathered} -\frac{1}{\lambda} \\ \frac{\partial}{\alpha} \\ \end{gathered}$	$\begin{aligned} & \underset{N}{N} \\ & \aleph \\ & \end{aligned}$		$\begin{gathered} \underset{\sim}{\sim} \\ \underset{\sim}{\infty} \\ \underset{\sim}{c} \end{gathered}$	$\left\|\begin{array}{c} \hat{y} \\ 0 \\ 0 \\ n \\ i \end{array}\right\|$	－		\bigcirc			$\stackrel{+}{2}$	$\begin{aligned} & \text { a} \\ & \text { O} \\ & \underset{\sim}{2} \end{aligned}$	$\frac{\stackrel{2}{7}}{\underset{\sim}{c}}$	$\begin{aligned} & n \\ & 2 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{\stackrel{1}{7}}{\stackrel{y}{3}}$	$\left.\begin{gathered} 0 \\ \hat{O} \\ \vdots \\ 0 \end{gathered} \right\rvert\,$	$\begin{aligned} & n \\ & \underset{\substack{0}}{\substack{2}} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{\omega} \\ & \text { N} \end{aligned}$		－	
	－	－	$0{ }^{0}$	$\stackrel{3}{6}$	$-\frac{\hat{N}}{\hat{O}}$	\bigcirc	N	0	\％		$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{\lambda} \end{gathered}$	$\left\|\begin{array}{c} 8 \\ 0 \\ 0 \\ 6 \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{gathered} 0 \\ \vdots \\ \vdots \\ \underset{c}{2} \\ i \end{gathered}\right.$	$\begin{aligned} & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & n \\ & \underset{n}{2} \end{aligned}$	\bigcirc	$\begin{aligned} & 0 \\ & \stackrel{y}{n} \\ & \hat{n} \\ & \hat{n} \end{aligned}$	\bigcirc			c	$\begin{aligned} & \circ \\ & \stackrel{0}{\infty} \\ & \vdots \\ & \vdots \\ & \end{aligned}$		$\begin{gathered} 2 \\ 2 \\ 0 \\ \text { ch } \\ \hline \end{gathered}$	$\begin{aligned} & \frac{t}{\Delta} \\ & \frac{\partial}{i}, ~ \end{aligned}$	$\begin{gathered} 7 \\ 2 \\ \vdots \\ \vdots \\ \vdots \end{gathered}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{4} \\ & \text { N} \\ & \end{aligned}$	$\begin{aligned} & \dot{2} \\ & \substack{0 \\ \vdots \\ \vdots \\ \vdots \\ \hline} \end{aligned}$	－	co
	－	－	$0{ }^{\circ}$	\cdots－	$-\frac{\vec{N}}{\hat{N}}$	\bigcirc	\sim	－	\％		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{2} \\ & \underset{\sigma}{2} \end{aligned}$	$\begin{array}{\|c} \underset{\mathrm{t}}{\mathrm{O}} \\ \underset{\sim}{\mathrm{~A}} \end{array}$	$\begin{gathered} \underset{\sim}{\infty} \\ \infty \\ \underset{\sim}{\infty} \end{gathered}$	$\left\lvert\, \begin{aligned} & \hat{0} \\ & 0 \\ & 0 \\ & i \\ & \end{aligned}\right.$	－	$\begin{aligned} & \hat{0} \\ & 0 \\ & 0 \\ & n \\ & n \end{aligned}$	－			$\stackrel{\text { c }}{\text { c }}$	$\begin{aligned} & \hat{a} \\ & \stackrel{0}{6} \\ & \stackrel{\rightharpoonup}{9} \end{aligned}$	$\underset{\text { テु }}{\underset{\sim}{n}}$	$\begin{aligned} & n \\ & \hat{n} \\ & \stackrel{n}{0} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{c}} \underset{0}{\circ} \pm$	$\begin{aligned} & 0 \\ & \text { N} \\ & 0 \\ & \vdots \\ & i \end{aligned}$		$\begin{gathered} \underset{\sim}{\alpha} \\ \underset{\sim}{\underset{\sim}{c}} \end{gathered}$		－	ন̇
	－	\bigcirc	$0{ }^{\circ}$	\％	$-\frac{\underset{N}{\partial}}{\hat{O}}$	\bigcirc	N	－	\cdots		$\begin{aligned} & \tilde{N} \\ & \\ & \underset{\sim}{2} \end{aligned}$		$\begin{gathered} \underset{\sim}{\kappa} \\ \underset{\infty}{\infty} \\ \underset{\sim}{2} \end{gathered}$	$\left\lvert\, \begin{aligned} & \hat{0} \\ & 0 \\ & \hat{n} \\ & \hat{n} \end{aligned}\right.$	－	$\begin{array}{\|l\|l\|} \hat{0} \\ \stackrel{y}{n} \\ \vdots \\ \end{array}$	\bigcirc			$\stackrel{\underset{\sim}{\dot{\sim}}}{\stackrel{\rightharpoonup}{n}}$		$\begin{array}{\|l} \stackrel{\rightharpoonup}{n} \\ \underset{\text { N}}{ } \end{array}$	$\begin{aligned} & n \\ & \stackrel{n}{0} \\ & 0 \\ & 0 \end{aligned}$	$\frac{\stackrel{1}{n}}{\substack{0}}$				$\left\lvert\, \begin{gathered} 0 \\ \underset{\substack{0}}{\substack{0}} \\ \dot{j} \end{gathered}\right.$		＋
	－	－	$0 \stackrel{\text { n }}{0}$	¢	$-\frac{\underset{N}{A}}{2}$	－	－	－	$\stackrel{n}{\substack{0}}$	$-\left\lvert\, \begin{gathered} n \\ 0 \\ \vdots \\ \\ \end{gathered}\right.$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \infty \\ & \underset{j}{\mathrm{j}} \end{aligned}$		$\begin{aligned} & \bar{\sim} \\ & \underset{\sim}{4} \\ & \underset{\sim}{c} \end{aligned}$		－	$\begin{aligned} & 2 \\ & \substack{+\vdots \\ 6 \\ \vdots \\ \hline \\ \hline} \end{aligned}$	－			？	$\stackrel{\underset{\sim}{\grave{N}}}{\underset{\sim}{7}}$	$\begin{gathered} \stackrel{\rightharpoonup}{\grave{1}} \\ \stackrel{\rightharpoonup}{9} \end{gathered}$	$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ \text { a } \\ \text { a } \end{array}$		$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{N} \\ & \vdots \\ & i \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{8}{4} \\ & \stackrel{y}{6} \end{aligned}$	$\stackrel{\text { N}}{\stackrel{N}{¿}}$		$\underset{\alpha}{\circ}$	－
	\sim	－	$0 \stackrel{2}{2}$	¢	$-\frac{\vec{N}}{\hat{O}}$	－	－	\sim	$\stackrel{\cong}{0}$		$\begin{gathered} \underset{O}{O} \\ \underset{\circ}{\circ} \\ \underset{\sim}{n} \end{gathered}$			$\begin{array}{\|} \hat{c} \\ \hat{0} \\ \hat{0} \\ \stackrel{n}{1} \end{array}$	－	$\begin{aligned} & \hat{y} \\ & 0 \\ & 0 \\ & n \\ & \end{aligned}$	－			Y	$\begin{aligned} & \bar{n} \\ & \underset{y}{n} \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{\infty} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \hat{3} \\ & 0 \\ & \\ & \text { on } \end{aligned}$						$\stackrel{\circ}{6}$	$\stackrel{\circ}{\circ}$
気	∞	\sim	$0 \stackrel{\text { n }}{0}$	$\hat{c}_{0}-$		\bigcirc	－	m	$\stackrel{n}{0}$	$-\left\|\begin{array}{c} \infty \\ \underset{\sim}{N} \\ \underset{\sim}{0} \\ \stackrel{0}{1} \end{array}\right\|$	$\left.\begin{gathered} \infty \\ \underset{N}{N} \\ \underset{\sim}{\infty} \\ \infty \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} \mathrm{d} \\ \underset{\sim}{n} \\ \underset{\sim}{m} \end{array}\right\|$		$\left\lvert\, \begin{gathered} \hat{0} \\ \hat{0} \\ \hat{n} \\ \dot{n} \end{gathered}\right.$	－		－			$\begin{gathered} 0 \\ \substack{0 \\ 0 \\ 6 \\ 6 \\ \hline \\ \hline} \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \underset{\sim}{1} \\ & \underset{\sim}{~} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{gathered} \hat{N} \\ \hat{n} \\ \hat{O} \\ \vdots \end{gathered}$		$\begin{gathered} n \\ \hat{n} \\ \vdots \\ \vdots \end{gathered}$	$\begin{aligned} & \text { n} \\ & \stackrel{8}{4} \\ & \underset{0}{6} \end{aligned}$			∞	
筁言	\sim	－	－		$\stackrel{n}{\circ}-$	－	－	\sim	$\stackrel{n}{\sim}$	$-\left\lvert\, \begin{gathered} \underset{\sim}{\underset{~}{2}} \\ \underset{\sim}{\infty} \\ \underset{i}{\infty} \end{gathered}\right.$		$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{i} \end{aligned}$		$\begin{gathered} \underset{\sim}{t} \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{gathered}$	$\begin{gathered} \stackrel{\circ}{0} \\ 0 \\ \vdots \\ \hdashline \end{gathered}$		$\begin{aligned} & \underset{7}{ \pm} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	＋			$\begin{aligned} & 6 \\ & 8 \\ & \vdots \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ \vdots \\ \underset{\sim}{0} \end{gathered}$	$$	ভ̀	$\begin{aligned} & N \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\frac{\ddot{\infty}}{\frac{\otimes}{\Xi}}$		$\begin{aligned} & \underset{\sim}{U} \\ & \underset{\sim}{n} \\ & \underset{\sim}{u} \end{aligned}$		$\stackrel{\substack{2 \\ \stackrel{y}{c} \\ \sim \\ \sim}}{ }$
	－	－	$0 \stackrel{n}{0}$	\bigcirc	$-\left\|\frac{g}{\partial}\right\|$	\bigcirc	\sim	0	\％	$-\left\|\begin{array}{c} \infty \\ \omega \\ \omega \\ \infty \\ \omega \\ e \\ e \\ 0 \end{array}\right\|$	$\begin{aligned} & \mathrm{I} \\ & \underset{\sim}{\mathrm{I}} \\ & \underset{O}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \hat{0} \\ & \stackrel{n}{2} \\ & \stackrel{0}{2} \end{aligned}$	$\left\|\begin{array}{c} n \\ 0 \\ 0 \\ \\ 0 \end{array}\right\|$		$\begin{gathered} \infty \\ 0 \\ \\ \underset{\sim}{1} \end{gathered}$	$\begin{aligned} & \overline{\mathrm{a}} \\ & \underset{\sim}{\mathrm{o}} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$	－	，		$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \underset{\sim}{6} \\ & \underset{\sim}{2} \end{aligned}$		$\left.\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \infty \end{gathered} \right\rvert\,$	$\begin{aligned} & \stackrel{i}{2} \\ & \underset{\sim}{\infty} \\ & \stackrel{i}{2} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{n}} \underset{\substack{i}}{\infty}$	$\begin{gathered} \infty \\ \widehat{C} \\ \vdots \\ \hline i \end{gathered}$		$\begin{aligned} & \frac{2}{2} \\ & \underset{\sim}{\infty} \end{aligned}$		－	$\xrightarrow{\text { ה }}$
$\left\lvert\, \begin{array}{ll} a & 0 \\ z & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 \end{array}\right.$	－	\bigcirc	$0 \stackrel{n}{8}$	\bigcirc	$-\left\|\frac{o}{a}\right\|$	\bigcirc	N	\bigcirc	$\stackrel{\sim}{\circ}$	$-\begin{gathered}\infty \\ 0 \\ \vdots \\ \vdots \\ 0 \\ \sim \\ i\end{gathered}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \hat{N} \\ \underset{\sim}{2} \\ \underset{\sim}{n} \end{gathered}$		$\begin{aligned} & \underset{N}{2} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \hat{n} \\ 2 \\ 2 \\ \underset{i}{2} \end{gathered}$	－		－	$\begin{gathered} \stackrel{\rightharpoonup}{\partial} \\ \underset{\sim}{c} \\ \stackrel{\rightharpoonup}{?} \end{gathered}$	$\begin{aligned} & \tilde{Z} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} 2 \\ \underset{0}{6} \\ 0 \\ \infty \end{gathered}$	$\begin{gathered} n \\ \vdots \\ \vdots \\ \vdots \end{gathered}$	$\stackrel{\infty}{\stackrel{\infty}{n}}$	$\begin{array}{\|c} \hat{G} \\ \underset{O}{i} \\ \hline \mathbf{i} \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \underset{\sim}{\square} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{\hat{2}} \\ \underset{\sim}{\omega} \end{gathered}$		－	$\overline{0}$ $\underset{\sim}{7}$
	\sim	\bigcirc	0 \％	$\bigcirc-$	$-\begin{gathered}n \\ \sim \\ \omega \\ 0 \\ 0\end{gathered}$	\sim	＋	0	\％		$\begin{aligned} & \hat{j} \\ & \grave{+} \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$			\bigcirc	$\begin{aligned} & \text { O} \\ & \underset{O}{o} \\ & \text { O} \\ & \text { in } \end{aligned}$		\bigcirc	ל	，	$\begin{aligned} & \text { Qo } \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { 宗 } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \text { t } \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\frac{\hat{B}}{\stackrel{N}{\mathrm{~N}}}$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ i \end{array}\right\|$		∞ $\stackrel{y}{4}$ i 0 		－	O 0 0 \sim \sim
$\left\lvert\, \begin{array}{cc} 0 & 2 \\ 0 & \stackrel{0}{0} \\ 0 & 0 \\ 0 & 0 \end{array}\right.$	\sim	\bigcirc	0 \％	$\bigcirc-$	$-\begin{gathered} \check{n} \\ - \\ \omega \\ 0 \\ 0 \end{gathered}$	\sim	＋	\bigcirc	\cdots		$\begin{gathered} \hat{\rightharpoonup} \\ \stackrel{\rightharpoonup}{N} \\ \stackrel{\rightharpoonup}{\lambda} \end{gathered}$	$\begin{gathered} \underset{0}{2} \\ \underset{\substack{c}}{\dot{子}} \end{gathered}$	$\left\|\begin{array}{c} ⿱ 艹 \\ \underset{\sim}{\infty} \\ \underset{\sim}{c} \end{array}\right\|$	－	$\begin{aligned} & \hat{\sim} \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \hat{n} \\ & \hat{\infty} \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$	\bigcirc	－	i	$\begin{aligned} & 0 \\ & \widehat{0} \\ & \infty \\ & 0.6 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \bar{\infty} \\ & \text { ó } \\ & \hat{0} \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ \\ 0 \\ \dot{c} \end{gathered}\right.$	$\left\lvert\,\right.$		$\begin{gathered} \hat{N} \\ \frac{0}{2} \\ 0 \\ 0 \end{gathered}$	$\frac{\underset{F}{J}}{\underset{\sigma}{J}}$	$\begin{aligned} & \text { to } \\ & \stackrel{\text { d }}{4} \\ & \stackrel{y}{4} \end{aligned}$		－	$\stackrel{\sim}{0}$
$\begin{array}{ll} 0 & 0 \\ 0 & \ddot{0} \\ 1 & 0 \\ 0 & 0 \end{array}$	－	－	0%	\％	$-\begin{aligned} & \frac{\tilde{E}}{\hat{O}} \\ & \hat{O} \end{aligned}$	\bigcirc	\sim	0	－		$\left.\begin{array}{\|c} A \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{\|c} \underset{\sim}{c} \\ \underset{\sim}{c} \\ \underset{\sim}{2} \end{array}$			－		－	－	\div	$\begin{gathered} \stackrel{N}{\kappa} \\ \stackrel{\rightharpoonup}{\alpha} \\ \stackrel{\rightharpoonup}{\omega} \end{gathered}$	$\underset{J}{\Xi}$	$\begin{aligned} & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|c} 2 \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{array}$						－	coin
	－	－	$0 \stackrel{n}{0}$	$\stackrel{-}{\circ}-$	$-\frac{\hat{N}}{\hat{\lambda}}$	－	－	－	$\stackrel{\sim}{i}$	$-$$n$ 2 \vdots n n	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$				－		－				$\stackrel{\underset{\sim}{\underset{\sim}{c}}}{\underset{\sim}{j}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{त} \\ & \stackrel{\rightharpoonup}{9} \\ & \stackrel{y}{2} \end{aligned}$			$\begin{aligned} & 0 \\ & a_{1} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{8}{4} \\ & \vdots 0 \end{aligned}$	$\begin{gathered} \hat{N} \\ \stackrel{N}{n} \\ \underset{\sim}{n} \end{gathered}$		晏	$\xrightarrow{+}$
$\begin{aligned} & \text { y } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$=$	ご	En	U ${ }^{\prime \prime}$	\checkmark	心	0	心1		\sim_{5}^{5}	\underbrace{e}_{i}	$\stackrel{\stackrel{e}{e}}{\stackrel{e}{4}}$					$\begin{gathered} 5 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$			佱	$\begin{array}{\|c} 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 0 \\ 0 \end{array}$	$\begin{gathered} \stackrel{5}{5} \\ e_{0}^{*} \\ x^{2} \end{gathered}$	－					cos	－	令

Table 15.115. The total bond energies of alkyl amides calculated using the functional group composition and the energies of Table 15.114 compared to the experimental values [3].

Formula	Name	$\begin{gathered} \mathrm{C}-\mathrm{H} \\ \text { (i) } \\ \text { Group } \end{gathered}$	$C-C(O)$ Group	$\begin{aligned} & C=O \\ & \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C=O \\ \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-N \\ & \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-N \\ \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{NH}_{2} \\ \text { Group } \end{gathered}$	CH_{3}	CH_{2}	CH (ii)	$C-C$ (a)	$\underset{\text { (b) }}{C-C}$	$C-C$ (c)	$C-C$ (d)	$C-C$ (e)	$\underset{(\mathrm{f})}{C-C}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{CH}_{3} \mathrm{NO}$	Formamide	1	0	1	0	1	0	I	0	0	0	0	0	0	0	0	0	23.68712	23.697	0.00041
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}$	Acetamide	0	1	0	1	0	1	1	1	0	0	0	0	0	0	0	0	36.15222	36.103	-0.00135
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$	Propanamide	0	1	0	1	0	1	1	1	1	0	1	0	0	0	0	0	48.30992	48.264	-0.00094
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$	Butanamide	0	1	0	1	0	1	1	1	2	0	2	0	0	0	0	0	60.46762	60.449	-0.00030
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$	2-Methylpropanamide	0	0	0	1	0	1	1	2	0	1	0	3	0	0	0	0	60.51509	60.455	-0.00099
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}$	Pentanamide	0	1	0	1	0	1	1	1	3	0	3	0	0	0	0	0	72.65232	72.481	-0.00200
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}$	2,2-Dimethylpropanamide	0	0	0	1	0	1	1	3	0	0	0	0	3	0	0	0	72.67890	72.718	0.00054
$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}$	Hexanamide	0	1	0	1	0	1	1	1	4	0	4	0	0	0	0	0	84.78302	84.780	-0.00004
$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}$	Octanamide	0	1	0	1	0	1	1	1	6	0	6	0	0	0	0	0	109.09842	109.071	-0.00025

Table 15．116．The bond angle parameters of alkyl amides and experimental values［1］．In the calculation of θ_{v} ，the parameters from the preceding angle were used． E_{T} is $E_{T}\left(\right.$ atom－atom，msp $\left.{ }^{3} . A O\right)$ ．

oi											気								
$\stackrel{\rightharpoonup}{\mathrm{j}} \mathrm{E}$	$\begin{aligned} & \text { ̄} \\ & \stackrel{\circ}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{~}} \\ & \stackrel{\otimes}{=} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{a}} \\ & \hline \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{6}}$	$\begin{aligned} & \text { ত্ণ } \\ & \text { In } \end{aligned}$	$\begin{aligned} & \hat{6} \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathfrak{Q} \\ & \underset{\sim}{9} \end{aligned}$	$\stackrel{\check{ }}{\stackrel{\circ}{\Omega}}$	$\begin{aligned} & \dot{G} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{g}{\mathrm{O}} \\ & \stackrel{2}{2} \end{aligned}$	$\stackrel{\text { g. }}{\stackrel{\circ}{=}}$	$\begin{aligned} & 0 \\ & \hat{2} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~g} \\ & \mathrm{O} \end{aligned}$	哭	$\begin{aligned} & \text { O} \\ & \stackrel{\Xi}{3} \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{=}{=} \end{aligned}$	$\stackrel{\text { Y }}{\Xi}$	$\stackrel{\hat{N}}{\Xi}$	号
0																			
0 O																			
0 －										\bar{i}	$\overline{\mathrm{n}}$		$\begin{gathered} \stackrel{\circ}{n} \\ \stackrel{2}{2} \end{gathered}$	$\stackrel{\circ}{\sim}$					¢
स5	－	\bigcirc	\bigcirc	\bigcirc	$\stackrel{n}{\underset{\sim}{G}}$		$\begin{aligned} & \stackrel{0}{0} \\ & \text { ê } \\ & \hdashline-1 \end{aligned}$	$\begin{gathered} n \\ \frac{n}{G} \\ \hdashline-1 \end{gathered}$	－			－				－	\bigcirc	$\begin{gathered} \stackrel{\circ}{\infty} \\ \stackrel{\infty}{\infty} \\ \stackrel{\infty}{\infty} \end{gathered}$	
－		$\begin{aligned} & \text { No } \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$		$$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\sim}{\infty} \\ & \underset{\sim}{\circ} \end{aligned}$	$\underset{\substack{\text { な } \\ \infty \\ \hline}}{\substack{0}}$	$\begin{gathered} \underset{\mathcal{C}}{\underset{\sim}{\infty}} \\ \underset{O}{0} \end{gathered}$	$\begin{gathered} \stackrel{\circ}{0} \\ \stackrel{0}{\infty} \\ 0 \end{gathered}$	$\begin{aligned} & \stackrel{2}{2} \\ & \stackrel{1}{3} \\ & \hdashline \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{4} \\ & \stackrel{i}{3} \\ & \hline \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{9} \\ & \stackrel{N}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \stackrel{\infty}{\infty} \\ & \stackrel{+}{+} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{+}{+} \\ & \stackrel{+}{4} \end{aligned}$	$\begin{aligned} & \stackrel{9}{9} \\ & \stackrel{N}{\infty} \\ & \underset{0}{0} \end{aligned}$	
v	$\underset{\substack{\circ}}{ }$	$\underset{\substack{i}}{ }$	$\underset{\substack{\circ}}{ }$	$\underset{i}{i}$	－	－	－	－	$\underset{\substack{\circ}}{ }$			$\underset{\substack{0}}{ }$			－	$\underset{\delta}{\approx}$	$\stackrel{n}{\circ}$	－	
${ }^{\circ}$	－	－	－	－	－	－	－	－	－			－			－	－	－	－	
v	－	$\stackrel{\AA}{\circ}$	$\stackrel{\AA}{\diamond}$	$\underset{\sim}{n}$	－	－	－	－	－			－			－	$\underset{o}{\hat{\circ}}$	$\stackrel{n}{\circ}$	－	
$0 \stackrel{N}{\square}$	－	$\frac{\stackrel{\rightharpoonup}{A}}{\hat{O}}$			$\stackrel{\infty}{\stackrel{\infty}{\circ}}$			$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{0}{0} \end{aligned}$	－			－			$\begin{aligned} & \text { 子े } \\ & \stackrel{y}{\infty} \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\rightharpoonup}{\hat{N}}$	$\begin{aligned} & \text { E} \\ & \frac{i}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{0}{\infty} \\ & \stackrel{0}{0} \end{aligned}$	
$v^{\circ} \bar{E}$			$\begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{A} \\ & \stackrel{i}{0} \end{aligned}$	$\stackrel{n}{\ddagger}$		$\frac{\stackrel{\rightharpoonup}{6}}{\substack{\infty \\ 0}}$	$\stackrel{n}{\underset{\infty}{\infty}}$	$\begin{aligned} & \text { Non } \\ & \underset{0}{\infty} \\ & 0 \end{aligned}$						$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{gathered} \text { 冗} \\ \stackrel{\infty}{\infty} \\ \stackrel{\circ}{\circ} \end{gathered}$	$\begin{gathered} \check{(2} \\ \stackrel{\infty}{\infty} \\ \stackrel{\circ}{\circ} \end{gathered}$	$\begin{aligned} & \stackrel{a}{6} \\ & \stackrel{\infty}{\infty} \end{aligned}$	
	\pm	－	z	\bigcirc	$\stackrel{\infty}{\sim}$	z	\bigcirc	$\stackrel{\infty}{\sim}$	\pm			\pm			$\stackrel{\sim}{\sim}$	－	－	\cdots	
	\pm			$\begin{aligned} & \circ \\ & 0 \\ & \stackrel{0}{0} \\ & \stackrel{j}{7} \end{aligned}$		$\begin{aligned} & \stackrel{寸}{寸} \\ & \underset{\sim}{n} z \\ & \underset{\sim}{f} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{0} \\ & \stackrel{i}{1} \end{aligned}$	$\begin{aligned} & \overrightarrow{\mathrm{N}} \\ & \underset{\mathrm{~N}}{2} z \\ & \stackrel{y}{1} \end{aligned}$	む			エ							
	z	z	－	－	\cdots	\sim	へ	$\stackrel{m}{ }$	\wedge			\sim			¢	in	in	¢	
	$\begin{aligned} & \frac{J}{7} \\ & \stackrel{n}{n} \\ & \underset{7}{7} \end{aligned}$	$\begin{aligned} & \underset{寸}{ \pm} \\ & \underset{\sim}{n} z \\ & \underset{1}{7} \end{aligned}$	$\begin{aligned} & n \\ & \grave{n} \\ & \infty \\ & \dot{j} \\ & 0^{\circ} \end{aligned}$		$\begin{aligned} & \text { 측 } \\ & \stackrel{\text { ® }}{0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{\sim}{*}} \\ & \underset{\sim}{n} \\ & \stackrel{n}{1} \\ & 0 \end{aligned}$										$\begin{aligned} & \text { ल } \\ & \stackrel{n}{n} \\ & \stackrel{n}{n} \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { n } \\ & \hat{N} \\ & \hat{n} \\ & \cdots \\ & \cdots \end{aligned}$		
	$\underset{\sim}{\text { to }}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \text { n } \\ & \stackrel{\infty}{\infty} \\ & \dot{+} \end{aligned}$	$\stackrel{\infty}{\underset{\sim}{\underset{\sim}{c}}}$	$\underset{\substack{\underset{\sim}{\sim} \\ \underset{\sim}{2}}}{ }$		$\begin{aligned} & \hat{0} \\ & \text { 号 } \end{aligned}$	$\stackrel{\underset{\sim}{c}}{\underset{\sim}{m}}$	$\underset{\underset{\sim}{\mathrm{N}}}{\underset{\sim}{\mathrm{~N}}}$			$\underset{\sim}{\underset{\sim}{\sim}}$			$\stackrel{\infty}{\underset{\sim}{\gamma}}$	$\frac{\substack{6 \\ 子 \\ 子}}{}$	$\frac{\substack{\text { ¢ }}}{\substack{\text { ¢ }}}$	$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	
\dot{N}	$\begin{aligned} & \text { O} \\ & \underset{\sim}{9} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{7}{7} \\ & \hline \end{aligned}$	$\underset{\substack{\infty \\ \underset{\sim}{t} \\ \hline}}{ }$	$\begin{aligned} & \text { N} \\ & \text { Ǹ } \\ & \text { N } \end{aligned}$			$\begin{aligned} & \text { ホ } \\ & \text { N } \\ & \text { הָ } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { on } \\ & \stackrel{6}{6} \\ & i \end{aligned}$	$\stackrel{\circ}{\underset{\sim}{J}}$			$\begin{aligned} & \bar{B} \\ & \stackrel{\rightharpoonup}{\Delta} \\ & \text { in } \end{aligned}$			$\stackrel{\text { ¢ }}{\substack{\text { a } \\ \text { ì }}}$		$\underset{\text { F }}{\text { F }}$		
드뭉	$\begin{aligned} & 0 \\ & \frac{0}{7} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{G} \\ & \text { in } \end{aligned}$	$\stackrel{\underset{\sim}{\mathrm{N}}}{\stackrel{\mathrm{~N}}{2}}$	$\stackrel{\underset{\sim}{\mathrm{N}}}{\stackrel{\text { N}}{2}}$	$\begin{aligned} & \text { त̃ } \\ & \text { तु } \\ & \text { N } \end{aligned}$	$\begin{gathered} n \\ \stackrel{n}{0} \\ \end{gathered}$	$\underset{\substack { n \\ \begin{subarray}{c}{\infty{ n \\ \begin{subarray} { c } { \infty } } \\ {\hline}\end{subarray}}{ }$	$\begin{aligned} & \text { J } \\ & \text { ה̀ } \\ & \text { ה̀ } \end{aligned}$	$\stackrel{\bullet}{\rightrightarrows}$			$\underset{\substack{\text { O} \\ \text { B }}}{ }$				$\begin{aligned} & \text { Y } \\ & \underset{\sim}{\mathrm{N}} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { f } \\ & \stackrel{y}{6} \\ & \underset{i}{2} \end{aligned}$	ה	
	䨗			$\begin{aligned} & 0_{0}^{\circ} \text { a } \\ & 0.0 \\ & \text { N } \end{aligned}$	$\begin{array}{ll} 2 & \widehat{E} \\ 0_{0} & 0 \\ 0 & 11 \\ & 0 \end{array}$	$\begin{array}{ll} 2 & \widehat{\Theta} \\ z_{0} & 0 \\ 0_{0}^{0} & 0 \\ 1 & 0^{\circ} \end{array}$	$\begin{array}{ll} 0 & \overparen{\Xi} \\ 0 & \ddots \\ 0 & 0 \\ 0 & 0 \\ 0 & e^{0} \end{array}$	$\begin{aligned} & 2 \\ & 20 \\ & 0_{0} \\ & 0 \\ & 0 \\ & =0 \\ & 100 \end{aligned}$		$\begin{aligned} & u_{0}^{0} \\ & u_{0}^{0} \\ & \end{aligned}$	$\begin{aligned} & \mathbb{N}_{0} \\ & \mathrm{U}_{0} \end{aligned}$		$\begin{aligned} & 0_{0}^{\circ} \\ & v_{0}^{\circ} \\ & v_{0} \end{aligned}$	V	$\left\|\begin{array}{lll} 0_{0}^{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{array}\right\|$	$\begin{aligned} & y_{1} \\ & 0_{0} \\ & 0_{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & v_{0} \\ & 0_{0} \\ & 0_{0} \\ & v_{0} .0 \end{aligned}$	$\begin{aligned} & 0_{0}^{0} \\ & 0_{0} \\ & 0_{0}^{0} \\ & v_{0} \end{aligned}$	辰

N-ALKYL AND N,N-DIALKYL-AMIDES ($\left.C_{n} H_{2 n+1} N O, n=2,3,4,5 \ldots \infty\right)$

The N-alkyl and N, N-dialkyl amides, $C_{n} H_{2 n+1} N O$, comprise a $C=O$ functional group, and the single bond of carbon to the carbonyl carbon atom, $C-C(O)$, is also a functional group. Formamide has a $H C=O$ moiety that comprises a more stable $C=O$ functional group and a CH functional group that is equivalent to that of the iso- CH group of branched-chain-alkyl portion of the N -alkyl or N, N-dialkyl amide. All amides further comprise a $\mathrm{C}-N\left(R_{1}\right) R_{2}$ moiety that comprises two types of $C-N$ functional groups, one for formamide and the other for alkyl amides $\left(R C(O) N\left(R_{1}\right) R_{2}\right.$ where R is alkyl). The N or $\mathrm{N}, \mathrm{N}-$ dialkyl moiety comprises three additional groups depending on the alkyl substitution of the nitrogen. In the case of a single methyl or alkyl substitution, the $\mathrm{NH}-\mathrm{C}$ bond and NH are functional groups, and the $N-C$ bond of a di-substituted nitrogen is the third.

The alkyl portion of the N -alkyl or N, N-dialkyl amide may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carboncarbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $C-C$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and tbutyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in N -alkyl or N, N-dialkyl amides are equivalent to those in branched-chain alkanes.

The $N H$ functional group was solved in the Hydrogen Nitride $(N H)$ section except that the energy of the $N-H$ MO is matched to the nitrogen-atom contribution to $\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(A O / H O)$ and $E_{T}\left(\right.$ atom-atom, msp $\left.{ }^{3} \cdot A O\right)$ of the $C-N$ group. The $C-C(O)$ group, both N -alkyl or N, N-dialkyl amide $C=O$ groups, and both $C-N$ groups are equivalent to those given in the Amides section.

As in the case of primary amines, each $N-C$ group is solved by hybridizing the $2 s$ and $2 p$ AOs of the C atom to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the $N \mathrm{AO}$ to form a MO permits each participating orbital to decrease in radius and energy. To meet the equipotential condition of the union of the $\mathrm{N}-\mathrm{C} \quad \mathrm{H}_{2}$-type-ellipsoidal-MO with other orbitals of the molecule, the hybridization factor c_{2} of Eq. (15.61) for the $N-C$ bond MO given by Eq. (15.133) is $c_{2}\left(C 2 s p^{3} H O\right.$ to $\left.N\right)=0.91140$.
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the N -substituted amide $C-C(O)$ group is the same as alkanes, aldehydes, carboxylic acids, carboxylic acid esters, and amides, -1.85836 eV , where both energy contributions are given by Eq. (14.513). Also, as in the case of aldehydes, $C_{1 o}=2 C_{1}$ in Eq. (15.61).
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ (Eq. (15.61)) of the $C=O$ group of N -substituted alkyl amides and the $C=O$ group of Nsubstituted formamide are equivalent to those of the corresponding carboxylic acids, carboxylic esters, and amides. The values given in the Carboxylic Acids section are -2.69893 eV and -3.58557 eV , respectively.
$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of both $C-N$ functional groups are the same as those of the corresponding groups of amides, $-1.65376 \mathrm{eV} . E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)$ of the singly-substituted $\mathrm{NH}-\mathrm{C}$-bond MO in Eq. (15.61) due to the charge donation from the N and C atoms to the MO is -0.92918 eV . It is equivalent to that of tertiary amines and matches the energy of the $N H-C$ group to that of the $C-N$ group wherein $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the latter is a linear combination of -0.92918 eV (Eq. (14.513)) and -0.72457 eV (Eq. (14.151)). $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the doubly-substituted $N-C$ bond MO is -0.72457 eV . It is equivalent to that of the contribution of each atom of a primary amine and also matches the energy of the $N-C$ group to that of the $C-N$ group by matching one of the components of $E_{T}\left(\right.$ atom-atom,msp $\left.{ }^{3} . A O\right)$ of the latter.

The symbols of the functional groups of N -alkyl and N, N-dialkyl amides are given in Table 15.117. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of Nalkyl and N, N-dialkyl amides are given in Tables $15.118,15.119$, and 15.120 , respectively. The total energy of each N -alkyl or N, N-dialkyl amide given in Table 15.121 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.120 corresponding to functional-group composition of the molecule. The bond angle parameters of N -alkyl and N, N-dialkyl amides determined using Eqs. (15.79-15.108) are given in Table 15.122. The color scale, translucent view of the charge-density of exemplary alkyl-amide, N, N-dimethylacetamide, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.20.

Figure 15.20. Color scale, translucent view of the charge-density of N,N-dimethylacetamide showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

0

Table 15.117. The symbols of functional groups of N -alkyl and N, N-dialkyl amides.

Functional Group	Group Symbol
CH (formamide) group	$C-H$ (i)
C-C(O)	$C-C(O)$
$C=O$ (N -alkyl and N, N-dialkyl formamide)	$C=O$ (i)
$C=O$ (N -alkyl and N, N-dialkyl amide)	$C=O$ (ii)
(O) $C-N(\mathrm{~N}$-alkyl and N, N-dialkyl formamide)	$C-N$ (i)
(O) $\mathrm{C}-\mathrm{N}$ (N -alkyl and N, N-dialkyl amide)	$C-N$ (ii)
NH group	NH
$\mathrm{N}-\mathrm{C}$ (N -alkyl)	$N-C$ (i)
$\mathrm{N}-\mathrm{C}$ (N, N, -dialkyl)	$N-C$ (ii)
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH (alkyl) group	$C-H$ (ii)
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to $t-C$)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.118. The geometrical bond parameters of N -alkyl and N, N-dialkyl amides and experimental values [1].

Parameter	$\begin{gathered} C-H \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(O) \\ \text { Group } \end{gathered}$	$\begin{gathered} C=O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C=O(\text { ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-N \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} N H \\ \text { Group } \end{gathered}$	$\begin{gathered} N-C \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} N-C \text { (ii) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-H \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(a) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(b) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.67465	2.04740	1.290799	1.29907	1.70920	1.75370	1.28620	1.96313	1.97794	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.05661	1.43087	1.13613	1.13977	1.30736	1.32427	0.95706	1.40112	1.40639	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
Bond Length $2 c^{\prime}(A)$	1.11827	1.51437	1.20243	1.20628	1.38365	1.40155	1.01291	1.48288	1.48846	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$\begin{gathered} 1.125 \\ \text { (formamide) } \end{gathered}$	$\begin{gathered} 1.520 \\ \text { (N-methyl- } \\ \text { acetamide) } \end{gathered}$	$\begin{gathered} 1.212 \\ \text { (formamide) } \end{gathered}$	1.225 (N-methylacetamide)	$\begin{gathered} 1.368 \\ \text { (formamide) } \end{gathered}$	$\begin{gathered} 1.380 \\ \text { (acetamide) } \end{gathered}$		1.469 (N- methylacetamide)		$\begin{gathered} 1.107 \\ (C-H \\ \text { propane }) \\ 1.117 \\ (C-H \\ \text { butane }) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \\ \text { propane }) \\ 1.117 \\ (C-H \\ \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$					
$b, c\left(a_{0}\right)$	1.29924	1.46439	0.61267	0.62331	1.10098	1.14968	0.85927	1.37505	1.39079	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.63095	0.69887	0.88018	0.87737	0.76490	0.75513	0.74410	0.71372	0.71104	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15．119．The MO to HO intercept geometrical bond parameters of N －alkyl and N, N－dialkyl amides．$R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups．E_{T} is E_{T}（atom－atom，msp.$A O$ ）．

がき	㚜	皆	당	咢	$\begin{aligned} & \frac{2}{2} \\ & \frac{1}{c} \end{aligned}$	長	$\frac{\text { 合 }}{\partial}$	亮	$\frac{\stackrel{\partial}{\partial}}{\stackrel{\partial}{0}}$	$\begin{aligned} & \text { 髟 } \\ & \hline \end{aligned}$	$\stackrel{\text { a }}{\text { \％}}$	$\frac{\text { 古 }}{0}$		哭	䩧
－	哑	合	咢	哀	袁	宮	$\frac{\stackrel{\infty}{6}}{\underline{c}}$	呂	$\frac{\stackrel{\infty}{6}}{\underline{\omega}}$	呂	高	$\stackrel{\text { \％}}{\text { ¢ }}$	管	$\stackrel{\text { 鏟 }}{\text { a }}$	$\stackrel{\text { a }}{\text { a }}$
－＂0	枵	$\stackrel{8}{6}$	\＆	\％	喜	\％	\％	\％	\％	\％	\％	衰	年	等	星
－－	\％	$\stackrel{\text { ？}}{\text { O }}$	\％	$\stackrel{\text { \％}}{\underline{\text { ® }}}$	$\stackrel{\text { ？}}{\text { ¢ }}$	㟺	\％	等	丕	寔	$\stackrel{\text { \％}}{\text { ¢ }}$	$\stackrel{8}{8}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	突	$\stackrel{\text { \％}}{\sim}$
\bigcirc－	$\stackrel{\text { 莫 }}{ }$	$\stackrel{\text { ¢ }}{\substack{\text { c．}}}$	${ }^{5}$	$\stackrel{\overline{⿷ 匚}}{\substack{*}}$	$\stackrel{\text { \％}}{\text { \％}}$	5	\％	5	\％	5	$\stackrel{\text { a }}{ }$	츤		号	\％
$\frac{2}{2}$			$\begin{aligned} & \frac{0}{⿳ 士 口 䒑 口 阝 ~} \\ & \stackrel{y}{6} \end{aligned}$						$\begin{aligned} & \text { 言 } \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$		$\begin{aligned} & \text { 骨 } \\ & \stackrel{y}{6} \end{aligned}$		$\begin{aligned} & \text { 等 } \\ & \end{aligned}$		
			$\begin{aligned} & \stackrel{⿳ 士 口 䒑 口 斤}{~} \\ & \stackrel{y}{6} \end{aligned}$			$\begin{aligned} & \text { ein } \\ & \frac{0}{6} \\ & \hline 1 \end{aligned}$					$\begin{aligned} & \text { an } \\ & \frac{\text { din }}{6} \end{aligned}$	$\begin{aligned} & \text { \#̃ } \\ & \frac{\text { In }}{\bar{\theta}} \end{aligned}$	$\begin{aligned} & \text { 秉 } \\ & \stackrel{1}{2} \end{aligned}$		
（®）	善			$\begin{aligned} & \text { 胥 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 䧻 } \end{aligned}$	$\begin{aligned} & \text { 薮 } \end{aligned}$	$\begin{aligned} & \text { 䤞 } \end{aligned}$	$\begin{aligned} & \text { 龠 } \end{aligned}$	$\begin{aligned} & \text { 关 } \\ & \text { 感 } \end{aligned}$		$\begin{aligned} & \frac{\infty}{\text { 和 }} \end{aligned}$	慧	響		产
1®	喜	$\begin{aligned} & \text { 喜 } \\ & \text { 篗 } \end{aligned}$	\bar{E}	$\begin{aligned} & \text { 喜 } \\ & \hline \end{aligned}$	$\frac{E}{a}$	喜	E	$\begin{aligned} & \text { 喜 } \\ & \hline \end{aligned}$	$\frac{E}{a}$		\bar{E}	$\begin{aligned} & \text { 喜 } \\ & \hline \end{aligned}$	\bar{E}	$\begin{aligned} & \text { 喜 } \\ & \text { 號 } \end{aligned}$	宗
					$\begin{aligned} & \text { 喜 } \\ & \text { 耪 } \end{aligned}$		$\begin{aligned} & \text { 关 } \\ & \frac{2}{\square} \end{aligned}$						－		－
－5喜	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
	－	－	－	－	－		－		－	$\begin{aligned} & \text { た్g్రి } \\ & \hline \end{aligned}$	－	－	－	镸	－
	$\begin{aligned} & \text { 喜 } \\ & \text { 虽 } \end{aligned}$	$\begin{gathered} \text { 喜 } \\ \stackrel{+}{+} \end{gathered}$	－				－	$\begin{gathered} \text { ধ্তి } \\ \stackrel{\rightharpoonup}{i} \end{gathered}$	－	$\begin{gathered} \text { た్రి } \\ \stackrel{\rightharpoonup}{5} \end{gathered}$		喜	\％	零	\％
迬惑	$\begin{aligned} & \text { 細 } \end{aligned}$	$\begin{aligned} & \text { 豼 } \\ & \text { 毞 } \end{aligned}$	$\begin{aligned} & \text { 覃 } \\ & \stackrel{1}{c} \end{aligned}$	紕		$\begin{aligned} & \text { 爰 } \\ & \hline \end{aligned}$	皆	$\begin{aligned} & \text { 彩 } \\ & \text { Kin } \end{aligned}$	皆			$\begin{aligned} & \text { 鬯 } \end{aligned}$	器	哭	\％
㓪	z	z	0	z	ט	z	ט	z	ט	z	ט	\geq	$0 \times$	z	ט®
唇											$\begin{aligned} & \text { En } \\ & 08 \\ & 0 \\ & 0 \end{aligned}$				

Table 15.119 cont＇d．The MO to HO intercept geometrical bond parameters of N －alkyl and N, N－dialkyl amides．$R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups．E_{T} is $E_{T}\left(\right.$ atom atom,$\left.m s p^{3} \cdot A O\right)$ ．

－®®	$\begin{aligned} & \text { N} \\ & \text { O. } \\ & \hline 0 . \end{aligned}$		$\begin{aligned} & \text { İ } \\ & \text { O. } \\ & \text {. } \end{aligned}$		$\begin{aligned} & \text { ơ } \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline- \end{aligned}$			$\underset{\substack{\underset{0}{7} \\ \hline \\ \hline}}{ }$	$\begin{gathered} \overline{0} \\ \text { ăd } \\ \text { On } \end{gathered}$	$\frac{\infty}{\infty}$	$\begin{gathered} \infty \\ \stackrel{\infty}{\hat{\omega}} \\ \stackrel{\infty}{\infty} \\ \hline \end{gathered}$			$\stackrel{\circ}{\infty}$	$\underset{\substack{7 \\ \hline \\ \hline \\ \hline}}{ }$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{0}{2} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { R } \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{m}{3} \\ & \stackrel{3}{2} \end{aligned}$		$\begin{aligned} & \text { ì } \\ & \text { f } \end{aligned}$	
で®	$\frac{n}{2}$	$\begin{aligned} & \text { त্ત̃ } \\ & \underline{\text { In }} \end{aligned}$	$\frac{i n}{\stackrel{i n}{3}}$	$\begin{aligned} & \text { no } \\ & \text { on } \\ & \text { nin } \end{aligned}$	$\begin{aligned} & \text { 䢘 } \\ & \stackrel{8}{0} \end{aligned}$	$\frac{2}{2}$	$\begin{aligned} & \mathbb{Z} \\ & \stackrel{\circ}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \underset{\underset{\sim}{\infty}}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{+}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{0} \\ & \hline-1 \end{aligned}$	$\begin{aligned} & \text { त̂̀ } \\ & \text { ch } \end{aligned}$	$\begin{aligned} & \text { ț } \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{+}{n} \\ & \stackrel{N}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\otimes}{\underset{~}{~}} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\circ}{\circ}$ $\stackrel{\circ}{6}$		$\begin{aligned} & \text { t } \\ & \stackrel{N}{N} \\ & \end{aligned}$	$\frac{\underset{O}{O}}{\underset{\sim}{2}}$	$$	$\begin{aligned} & \text { 等 } \end{aligned}$	¢
$0 \times$	$\stackrel{\stackrel{e}{7}}{\underset{\sim}{2}}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\stackrel{\stackrel{e}{7}}{\underset{\sim}{2}}$	$\begin{gathered} \text { 答 } \end{gathered}$	$\stackrel{\sim}{3}$	$\overline{\text { gु }}$	$\stackrel{i}{6}$	$\underset{\sim}{\text { in }}$	$\underset{\substack{n \\ \underset{\sim}{c} \\ \hline}}{ }$	$\underset{\sim}{\underset{\sim}{f}}$	$\begin{aligned} & \stackrel{\infty}{n} \\ & \stackrel{\sim}{0} \end{aligned}$	$\stackrel{\infty}{\stackrel{\circ}{\underset{\sim}{+}}}$	$\begin{aligned} & \vec{\sim} \\ & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{n}{2} \end{aligned}$	$\frac{\sqrt{m}}{m}$	$\stackrel{\infty}{\circ}$	$$	$\frac{\stackrel{Q}{\lambda}}{\stackrel{1}{2}}$	$\stackrel{\text { t }}{\underset{\sim}{\lambda}}$	$\frac{\stackrel{\otimes}{\mathrm{N}}}{}$	$\begin{aligned} & \text { ® } \\ & \text { di } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \underset{\sim}{+} \end{aligned}$	－
－\％	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{1}{2}}$		$\stackrel{\underset{\infty}{\circ}}{\substack{0}}$		$\begin{gathered} \stackrel{\circ}{n} \\ \underset{寸}{7} \end{gathered}$	$\underset{\substack{\mathrm{X} \\ \\ \hline}}{ }$		$\stackrel{-}{\vdots}$		$\stackrel{n}{\stackrel{n}{0}}$	$\begin{aligned} & \underset{+}{ \pm} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{gathered} \overline{\mathrm{N}} \\ \underset{\mathrm{i}}{2} \end{gathered}$	$\stackrel{n}{\Xi}$	$\begin{aligned} & \stackrel{\otimes}{\infty} \\ & \stackrel{\infty}{=} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\widehat{\circ}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { in } \\ & \text { ণi } \end{aligned}$	$\underset{\sim}{\underset{\sim}{2}}$	$\stackrel{\underset{i}{\mathrm{~m}}}{\stackrel{2}{2}}$	$\stackrel{R}{\underset{\sim}{\sim}}$	$\begin{aligned} & \stackrel{\text { ®}}{2} \end{aligned}$		$\stackrel{\text { ® }}{\text { ® }}$
\bigcirc	$\stackrel{\bar{n}}{\alpha}$	$\stackrel{\text { ®}}{\stackrel{\circ}{\mathrm{O}}}$	$\begin{aligned} & \overline{6} \\ & \text { ¿ু } \end{aligned}$	$\begin{aligned} & \stackrel{9}{1} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \underset{\sim}{J} \\ & \underset{\sim}{J} \end{aligned}$	$\begin{gathered} \hat{\mathrm{A}} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { in } \end{aligned}$	ત̇	$\stackrel{8}{6}$	$\stackrel{\stackrel{\rightharpoonup}{f}}{\stackrel{1}{\lambda}}$	$\underset{\substack{\mathrm{O}}}{\substack{\text { a }}}$	$\begin{aligned} & 0 \\ & \hline \vdots \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \text { § } \end{aligned}$	$\begin{gathered} \text { Fi } \\ \text { •in } \end{gathered}$	$\begin{gathered} \stackrel{\circ}{\circ} \\ \stackrel{y}{c} \end{gathered}$	$\begin{gathered} \text { নু } \\ \text { ó } \end{gathered}$	$\begin{gathered} \stackrel{\circ}{\infty} \\ \stackrel{\circ}{f} \end{gathered}$	$\begin{aligned} & \text { t. } \\ & \stackrel{\circ}{i} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{i}}$	$\stackrel{ \pm}{\circ}$
	$\begin{aligned} & \text { F } \\ & \underset{\sim}{さ} \\ & \underset{\sim}{7} \end{aligned}$		$\begin{aligned} & \text { F } \\ & \underset{\sim}{\underset{~}{4}} \end{aligned}$		$\xrightarrow[\sim]{\stackrel{\sim}{4}}$		$\begin{aligned} & \text { F } \\ & \underset{\sim}{さ} \\ & \underset{~}{7} \end{aligned}$		$\begin{aligned} & \text { F } \\ & \text { 呆 } \\ & \underset{~}{1} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { in } \\ & \end{aligned}$		$\begin{aligned} & \hat{o} \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{n}{n} \\ & \end{aligned}$	$\begin{aligned} & \text { n } \\ & \tilde{2} \\ & \underset{\sim}{2} \\ & \end{aligned}$	$\begin{aligned} & \text { 寺 } \\ & \underset{\sim}{\underset{~}{2}} \end{aligned}$	$\begin{aligned} & \hat{H} \\ & \stackrel{\rightharpoonup}{n} \\ & \substack{n\\ } \end{aligned}$		$\begin{aligned} & \text { J } \\ & \text { 木 } \\ & \stackrel{7}{7} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{A}}}{\stackrel{1}{\mathrm{C}}}$	$\begin{aligned} & \text { 寺 } \\ & \underset{\sim}{\leftrightarrows} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\stackrel{\text { N}}{\uparrow}}$	$\begin{aligned} & \stackrel{\infty}{\stackrel{1}{2}} \\ & \stackrel{1}{\leftrightharpoons} \end{aligned}$	$\stackrel{\text { ® }}{\stackrel{\text { N}}{\text { ¢ }}}$
	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{y}{\leftrightharpoons} \end{aligned}$		$\frac{\stackrel{\rightharpoonup}{\mathrm{I}}}{\underset{\sim}{2}}$	$\begin{aligned} & \text { n } \\ & \stackrel{\infty}{\infty} \\ & \stackrel{0}{6} \\ & -1 \end{aligned}$	$\begin{aligned} & \underset{\sim}{7} \\ & \stackrel{7}{7} \\ & \stackrel{1}{7} \end{aligned}$	$\begin{gathered} \bar{\sim} \\ \\ \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{I}} \\ & \stackrel{\text { N}}{-} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{I}} \\ & \underset{ڭ}{犬} \end{aligned}$			$\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{\hat{c}} \\ \underset{\sim}{c} \end{gathered}$	$\begin{aligned} & \frac{1}{7} \\ & \underset{0}{0} \\ & \underset{-}{6} \end{aligned}$	\circ $\stackrel{\circ}{\circ}$ $\stackrel{+}{+}$ $\stackrel{-}{4}$			$\begin{aligned} & \stackrel{\circ}{n} \\ & \stackrel{y}{0} \\ & \underset{\vdots}{9} \end{aligned}$	$\begin{aligned} & \text { Q } \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\dagger} \\ & \vdots \end{aligned}$	$\stackrel{\circ}{\stackrel{\circ}{6}}$ $\stackrel{+}{\square}$		$\begin{aligned} & \text { O} \\ & 0 \\ & \stackrel{0}{4} \\ & \stackrel{1}{4} \end{aligned}$	
－\％	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \text { N } \\ & \text { 心 } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \substack{0 \\ 0 \\ 0} \end{aligned}$		$\begin{aligned} & \stackrel{F}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\circ}{0} \end{aligned}$		$\stackrel{n}{\bar{\infty}}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \text { 心. } \\ & \hline 8 \end{aligned}$	⿹ㅡㅊ 충			$\begin{aligned} & \stackrel{9}{9} \\ & \stackrel{i}{\infty} \\ & \substack{0} \end{aligned}$		$\begin{aligned} & \stackrel{9}{9} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \underset{\infty}{\infty} \end{aligned}$	$\underset{\substack{\text { N } \\ \text { N }}}{ }$		$\begin{aligned} & \stackrel{9}{9} \\ & \frac{1}{\infty} \\ & \substack{\infty \\ \hline} \end{aligned}$	$\underset{\text { N }}{\substack{\text { N }}}$	$\begin{aligned} & \stackrel{2}{2} \\ & \stackrel{\text { R}}{0} \end{aligned}$	$\underset{\substack{\text { N } \\ \text { N }}}{\text { n }}$	$\begin{aligned} & \text { Ro } \\ & \stackrel{0}{0} \\ & \end{aligned}$	$\stackrel{i n}{\stackrel{i n}{\infty}} \underset{\stackrel{\infty}{\infty}}{ }$	
\cdots	$\frac{\stackrel{\rightharpoonup}{E}}{\hat{O}}$		$\begin{aligned} & \bar{E} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline 0.6 \\ & \hline \end{aligned}$	$\frac{\vec{E}}{\stackrel{\rightharpoonup}{0}}$	$\begin{aligned} & \text { otb } \\ & \text { O} \\ & \hline \end{aligned}$	$\frac{\underset{E}{E}}{\stackrel{i}{0}}$	$\frac{\underset{B}{B}}{\stackrel{i}{\circ}}$	$\frac{\mathrm{E}}{\mathrm{a}}$	$\frac{\underset{E}{2}}{\stackrel{i}{0}}$	$\frac{\bar{E}}{\hat{O}}$	$\frac{\stackrel{\rightharpoonup}{E}}{\partial}$	$\frac{\vec{A}}{\hat{O}}$	$\frac{\stackrel{\rightharpoonup}{E}}{\stackrel{\rightharpoonup}{i}}$	$\frac{\bar{A}}{\bar{O}}$	$\frac{\vec{A}}{\hat{O}}$	$\frac{\stackrel{\rightharpoonup}{E}}{\hat{O}}$	$\frac{\stackrel{\rightharpoonup}{E}}{\stackrel{i}{0}}$	$\frac{\vec{E}}{\hat{O}}$	$\frac{\bar{E}}{\hat{O}}$	$\frac{\bar{N}}{\stackrel{\rightharpoonup}{\circ}}$	$\stackrel{\text { E }}{\text { E }}$
	$\begin{aligned} & \bar{y} \\ & \underset{N}{C} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$		$\begin{aligned} & \bar{y} \\ & \underset{N}{N} \\ & \underset{\sim}{4} \end{aligned}$		$\begin{aligned} & \text { N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{\omega} \end{aligned}$		$\begin{aligned} & \bar{\beth} \\ & \underset{\sim}{\square} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	n $\stackrel{n}{n}$ $\underset{\sim}{4}$ $\underset{1}{1}$	\bar{y} $\underset{~ N}{4}$ $\stackrel{1}{4}$		n $\stackrel{n}{4}$ $\stackrel{n}{4}$			$\begin{aligned} & \text { ָ } \\ & \text { O} \\ & \dot{W} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$						$\stackrel{2}{6}$ $\frac{0}{7}$ $\stackrel{6}{7}$ $\frac{6}{4}$		a $\stackrel{2}{n}$ $\stackrel{1}{6}$ \cdots
N家荡	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	$\begin{aligned} & \text { ñ } \\ & \text { ה̂ } \\ & \text { in } \end{aligned}$	－		\bigcirc	
N		$\begin{aligned} & \text { त్ত్రి } \\ & \text { Ò } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\alpha}{\alpha} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	－	－	－	$\begin{aligned} & \infty \\ & \stackrel{\infty}{2} \\ & \stackrel{i}{1} \end{aligned}$	－	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \hline \end{aligned}$	－	－	－	\bigcirc	$\frac{\infty}{\grave{\alpha}}$	\bigcirc	－	¢	$\begin{aligned} & \text { Na } \\ & \text { N } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\grave{\alpha}} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\stackrel{\text { N }}{\substack{\text { ¢ } \\ \text { ¢ }}}$	¢	
N合苞		त्ف్ర ¢	+ 9	－	¢	－	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{\omega}{0} \\ & \stackrel{1}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{1}{0} \end{aligned}$		－	$\begin{aligned} & \infty \\ & \text { む̀ } \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	－	¢	$\begin{gathered} \infty \\ \stackrel{\alpha}{2} \\ \stackrel{\rightharpoonup}{\top} \end{gathered}$	\bigcirc	$\begin{aligned} & \infty \\ & \text { तิ̀ } \\ & \text { לें } \end{aligned}$	$\begin{aligned} & \infty \\ & \text { む̀ } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{N}{\text { N }} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\text { an }} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { in } \end{aligned}$	¢	
心家	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{1}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \text { © } \\ & \hline i \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\infty}{0} \\ \text { © } \\ \text { in } \end{gathered}$	$\stackrel{\infty}{\stackrel{\infty}{\grave{c}}} \stackrel{+}{+}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ } \\ \multirow{1}{+}{\hline}\\ \hline}}$	¢ $\substack{4 \\ \stackrel{1}{4} \\ \hline}$	¢ $\substack { \text { a } \\ \begin{subarray}{c}{1{ \text { a } \\ \begin{subarray} { c } { 1 } } \\ {\hline}$			$\begin{gathered} \infty \\ \stackrel{\sim}{\alpha} \\ \stackrel{\rightharpoonup}{\top} \end{gathered}$	$\begin{gathered} \infty \\ \stackrel{\sim}{\sigma} \\ \stackrel{\rightharpoonup}{\top} \end{gathered}$	$\begin{gathered} \infty \\ \underset{\sim}{\pi} \\ \underset{\sim}{2} \end{gathered}$	$\begin{gathered} \infty \\ \stackrel{\rightharpoonup}{\sigma} \\ \stackrel{\rightharpoonup}{\circ} \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\text { むे }}{2} \end{aligned}$			$\begin{aligned} & \infty \\ & \stackrel{\text { むे }}{\mathbf{N}} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\text { did }}{1} \\ & \text { Si } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { Ni } \end{aligned}$		
圧	0°	z	0°	\bigcirc	0°	\bigcirc	0°	\cup	0°	ט	0°	\checkmark	\cup	\checkmark	0°	ט	ט゚	ט゚	\cup°	0°	ט゚	00
䔍												$\begin{aligned} & \substack{e \\ e \\ z \\ i \\ ~} \end{aligned}$										

Table 15.120. The energy parameters (eV) of functional groups of N -alkyl and N, N-dialkyl amides.

Parameters	$\begin{aligned} & C-H \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(O) \\ \text { Group } \end{gathered}$	$\begin{gathered} C=O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C=O \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N(\mathrm{i}) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-N \\ & \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} N H \\ \text { Group } \end{gathered}$	$N-C$ (i)	$\begin{gathered} N-C \\ \text { (ii) } \end{gathered}$	CH_{3} Group	CH_{2} Group	$\begin{aligned} & C-H \\ & \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \text { (b) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{c}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(d) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
n_{1}	1	1	2	2	1	1	1	1	1	3	2	1	1	1	1	1	1	1
n_{2}	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.75	0.5	0.5	0.5	0.5	0.5	0.75	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	1	1	1	1	1	1	0.93613	1	1	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	0.75	1	1	1	1	1	1	1	1	1	1	1
c_{2}	0.91771	0.91771	0.85395	0.85395	0.91140	0.91140	1	0.91140	0.91140	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	0	0	2	2	0	0	1	0	0	0	1	1	0	0	0	1	1	0
c_{4}	1	2	4	4	2	2	1	2	2	1	1	1	2	2	2	2	2	2
c_{5}	1	0	0	0	0	0	1	0	0	3	2	1	0	0	0	0	0	0
C_{10}	0.75	1	0.5	0.5	0.5	0.5	0.75	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-35.12015	-30.19634	-112.61934	-111.25473	-38.24008	-36.88558	-40.92593	-31.67393	-31.36351	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	12.87680	9.50874	23.95107	23.87467	10.40705	10.27417	14.21618	9.71067	9.67426	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	10.48582	7.37432	43.62389	42.82081	11.18655	10.51650	15.90963	8.06719	7.92833	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-5.24291	-3.68716	-21.81195	-21.41040	-5.59327	-5.25825	-7.95482	-4.03359	-3.96416	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E (Аооно) (eV)	-14.63489	-14.63489	0	0	-14.63489	-14.63489	-14.53414	-14.63489	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$\Delta E_{\mathrm{H}_{2} \mathrm{NO}}($ AO/HO) (eV)	0	0	-3.58557	-2.69893	-5.23932	-4.35268	-1.65376	-0.92918	-0.72457	0	0	0	0	0	0	0	0	0
E_{T} (Ао но) (eV)	-14.63489	-14.63489	3.58557	2.69893	-9.39557	-10.28221	-12.88038	-13.70571	-13.91032	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(H_{2} M O\right)(\mathrm{eV})$	0	-31.63534	-63.27075	-63.27074	-31.63533	-31.63537	-31.63531	-31.63537	-31.63540	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-31.63533	-1.85836	-3.58557	-2.69893	-1.65376	-1.65376	0	-0.92918	-0.72457	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}(\mathrm{mo})(\mathrm{eV})$	0	-33.49373	-66.85630	-65.96966	-33.28912	-33.28912	-31.63537	-32.56455	-32.35994	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	-31.63537	14.1117	60.9581	59.4034	13.0822	12.5874	44.9494	10.6278	10.5087	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	24.1759	9.28860	40.12366	39.10034	8.61093	8.28526	29.58649	6.99543	6.91703	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(\mathrm{eV})$	15.91299	-0.20195	-0.41891	-0.40804	-0.19325	-0.18957	-0.34043	-0.17039	-0.16837	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kvub }}(\mathrm{eV})$	-0.24966	$\begin{gathered} 0.14655 \\ {[28]} \end{gathered}$	$\begin{gathered} 0.21747 \\ {[32]} \end{gathered}$	$\begin{gathered} 0.21077 \\ {[12]} \end{gathered}$	$\begin{gathered} 0.17358 \\ {[33]} \end{gathered}$	$\begin{gathered} 0.17358 \\ {[33]} \end{gathered}$	$\begin{gathered} 0.40696 \\ {[24]} \end{gathered}$	$\begin{gathered} 0.12944 \\ {[23]} \end{gathered}$	$\begin{gathered} 0.12944 \\ {[23]} \end{gathered}$	$\begin{gathered} 0.35532 \\ (\text { Eq. } \\ (13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ (\text { Eq. } \\ (13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ (\mathrm{Eq} . \\ (13.458)) \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\underset{[2]}{0.12312}$
$\bar{E}_{\text {occ }}(\mathrm{eV})$	$\begin{array}{\|c\|} \hline 0.35532 \\ (\mathrm{Eq.} \\ (13.458)) \\ \hline \end{array}$	-0.12867	-0.31017	-0.30266	-0.10647	-0.10278	-0.13695	-0.10567	-0.10365	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mog }}(\mathrm{eV})$	-0.07200	0.14803	0.11441	0.11441	0.14803	0.14803	0.14185	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
E_{T} (Group) (eV)	0.14803	-33.62241	-67.47664	-66.57498	-33.39559	-33.39190	-31.77232	-32.67022	-32.46359	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
$E_{\text {mitrala }}\left(\varepsilon_{4}\right.$ AO/H\%) (eV)	-31.70737	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.53414	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
	-14.63489	0	0	0	0	0	-13.59844	0	0	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
$E_{D}($ Group $)(\mathrm{eV})$	-13.59844	4.35263	8.70826	7.80660	4.12581	4.12212	3.49788	3.40044	3.19381	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

Table 15.121. The total bond energies of N -alkyl and N, N-dialkyl amides calculated using the functional group composition and the energies of Table 15.120 compared to the experimental values [3].

Formula	Name	$\begin{gathered} C-H \\ \text { (i) } \\ \text { Group } \\ \hline \end{gathered}$	$C-C(O)$ Group	$\begin{gathered} C=O \\ \text { (i) } \\ \text { Group } \end{gathered}$	$C=O$ (ii) Group	$\begin{aligned} & C-N \\ & \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-N \\ & \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{NH} \\ \text { Group } \end{gathered}$	$\begin{gathered} N-C \\ \text { (i) } \end{gathered}$	$\begin{gathered} N-C \\ \text { (ii) } \end{gathered}$	CH_{3}	CH_{2}	$\begin{aligned} & \mathrm{CH} \\ & \text { (ii) } \end{aligned}$	$C-C$ (a)	$\begin{gathered} C-C \\ \text { (b) } \end{gathered}$	$\begin{gathered} C-C \\ \text { (c) } \end{gathered}$	$C-C$ (d)	$\begin{gathered} C-C \\ \text { (e) } \end{gathered}$	$\begin{gathered} C-C \\ \text { (f) } \end{gathered}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$	N,N-Dimethylformamide	1	0	1	0	1	0	0	0	2	2	0	0	0	0	0	0	0	0	47.67945	47.574	0.00221
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$	N,N-Dimethylacetamide	0	1	0	1	0	1	0	0	2	3	0	0	0	0	0	0	0	0	60.14455	59.890	-0.00426
$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}$	N -Butylacetamide	0	1	0	1	0	1	1	1	0	2	3	0	3	0	0	0	0	0	84.63649	84.590	-0.00055

Table 15．122．The bond angle parameters of N －alkyl and N, N－dialkyl amides and experimental values［1］．In the calculation of θ_{v} ，the parameters from the preceding angle were used．E_{T} is $E_{T}\left(\right.$ atom－atom，$\left.m s p^{3} . A O\right)$ ．

$\stackrel{0}{\dot{x}} \dot{\text { in }}$															
엉ㅇ	$\begin{aligned} & \bar{\sim} \\ & \underset{\sim}{d} \end{aligned}$		$\begin{aligned} & \text { ? } \\ & \underset{~}{4} \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{N}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\ddagger} \\ & \stackrel{O}{\otimes} \end{aligned}$	$\stackrel{\stackrel{\text { G}}{\ominus}}{\stackrel{1}{\theta}}$	$\stackrel{\stackrel{\rightharpoonup}{\ominus}}{\stackrel{\rightharpoonup}{e}}$	$\begin{aligned} & \dot{n} \\ & \underline{g} \end{aligned}$	$\begin{aligned} & \text { f } \\ & \text { O } \end{aligned}$	$\begin{array}{\|c\|} \hline f \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bullet} \\ & \stackrel{0}{=} \end{aligned}$	$\stackrel{ٌ}{\stackrel{0}{\theta}}$	$\stackrel{\overparen{Y}}{=}$	$\stackrel{\widehat{9}}{\equiv}$	－
がき															
－0															
が。						$\overline{5}$	$\begin{aligned} & \overline{5} \\ & 80 \end{aligned}$		$\begin{array}{\|l\|l\|l} \stackrel{\circ}{R} \\ \stackrel{n}{2} \end{array}$	－					令
\＆	$\frac{n}{\frac{2}{a}}$	$\frac{n}{\frac{2}{a}}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\leftrightarrow}{6} \\ & \underset{\sim}{2} \end{aligned}$	－			－			$\begin{aligned} & \circ \circ \mathrm{B} \\ & \stackrel{\circ}{\infty} \\ & \stackrel{1}{2} \end{aligned}$	－	－		
\cdots		$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{aligned} & \text { Ny } \\ & \stackrel{y}{\infty} \\ & \stackrel{\infty}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\gtrless}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{!}{3} \end{aligned}$			$\stackrel{\circ}{n}$ $\stackrel{5}{=}$			$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \frac{\stackrel{\rightharpoonup}{2}}{0} \\ & 0 \end{aligned}$			$\begin{gathered} \frac{9}{c} \\ \substack{6 \\ 0 \\ 0} \end{gathered}$	
\checkmark	－	－	－	－	\％			－			－	\％	\％	－	
U	－	－	－	－	－			－			－	－	－	－	
v	－	－	－	－	－			－			－	¢	¢	－	
$\cdots \frac{N}{\frac{\pi}{4}}$			x_{0}^{x}	$\begin{aligned} & \mathscr{\circ} \\ & \stackrel{\otimes}{\infty} \\ & \stackrel{0}{0} \end{aligned}$	－			－			$\begin{aligned} & \stackrel{9}{6} \\ & \stackrel{y}{\infty} \\ & \stackrel{0}{0} \end{aligned}$	$\frac{E}{a}$	$\frac{E}{a}$		
$\text { v } \overline{\frac{1}{c}}$	$\stackrel{n}{7}$		$\begin{aligned} & \text { 名 } \\ & \stackrel{y}{\infty} \\ & \underset{\alpha}{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{8} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \text { or } \\ & \text { óm } \\ & 0 \end{aligned}$						$\begin{aligned} & \frac{9}{2} \\ & \stackrel{y}{6} \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & \frac{2}{4} \\ & \substack{\infty \\ 0} \end{aligned}$	$\begin{gathered} \text { 2o } \\ \stackrel{y}{+} \\ \substack{\infty \\ \hline} \end{gathered}$	$\begin{gathered} \frac{9}{6} \\ \substack{6 \\ 0} \end{gathered}$	
	\simeq	z	\bigcirc	\sim	\pm			\pm			\％	－	－	간	
$\frac{1}{2} \frac{1}{4}$			\circ $\stackrel{\circ}{\circ}$ $\stackrel{\circ}{6}$ $\stackrel{i}{9}$		\pm			\pm							
	\sim	$\stackrel{ }{ }$	๕	in	\sim			\sim			\because	in	in	$\stackrel{\text { ci}}{ }$	
	$\begin{aligned} & \overline{\tilde{r}} \\ & \stackrel{\rightharpoonup}{=} \\ & \stackrel{-}{0} \end{aligned}$							$\begin{aligned} & \text { 合 } \\ & \stackrel{c}{c} \\ & \stackrel{n}{7} \end{aligned}$						$\underset{\substack{\mathrm{N} \\ \underset{\sim}{0} \\ \underset{\sim}{0} \\ 0}}{ }$	
票會	$\begin{gathered} \underset{\sim}{\mathrm{a}} \\ \underset{\sim}{2} \end{gathered}$		$\begin{gathered} \stackrel{\rightharpoonup}{6} \\ \underset{\sim}{6} \end{gathered}$	$\begin{gathered} \text { to } \\ \substack{\text { a }} \end{gathered}$				N 简			$\begin{aligned} & \infty \\ & \stackrel{\infty}{+} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$		$\stackrel{\text { ¢ }}{\underset{\sim}{6}}$	$\begin{aligned} & \stackrel{\infty}{\stackrel{1}{+}} \underset{+}{+} \end{aligned}$	
䓂			さ $\underset{A}{\alpha}$ ה		$\stackrel{\circ}{\square}$			$\begin{gathered} \text { F } \\ \underset{\text { in }}{2} \end{gathered}$			$\begin{aligned} & \frac{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{2} \\ & \text { in } \end{aligned}$	$\stackrel{\text { ® }}{\underset{N}{~}}$	$\begin{aligned} & \underset{\rightharpoonup}{\underset{\sim}{c}} \\ & \end{aligned}$	त्ते הे 	
綺	$\begin{aligned} & \text { U } \\ & \text { ה } \\ & \text { ה } \end{aligned}$	$\stackrel{n}{\stackrel{n}{o}}$	$\begin{aligned} & \stackrel{n}{o} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		$\underset{\text { in }}{\stackrel{\circ}{\bar{u}}}$			$\begin{aligned} & \text { F } \\ & \text { id } \end{aligned}$			－	$\begin{aligned} & \text { f } \\ & \text { ín } \end{aligned}$	$\begin{aligned} & \text { f } \\ & \frac{\text { a }}{⿳ 亠 丷 厂} \end{aligned}$	त्ते ì	
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{4} \\ & \frac{0}{4} \\ & 0 \\ & 0 \\ & \frac{0}{4} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{array}{ll} 2 & \widehat{E} \\ z_{0} & 0 \\ 0_{0} & 0 \\ 0 & e_{0} \end{array}\right.$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0_{0} \\ & v_{0} \\ & 0_{0} \end{aligned}$		0	$\begin{aligned} & 心_{0}^{0} \\ & 心_{0}^{2} \end{aligned}$			－	N	$\begin{aligned} & 0_{0}^{0} 0_{0}^{0} \\ & 0_{0} 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & x \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0_{0} 0^{0} \\ & 0^{2} \underline{y} \end{aligned}$	Br

UREA ($\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$)

Urea, $\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$, comprises a $\mathrm{C}=\mathrm{O}$ functional group and two $\mathrm{C}-\mathrm{NH}_{2}$ moieties that each comprise a NH_{2} functional group and a $C-N$ functional group. The $C=O$ group is equivalent to that given for formamide in the Amides section except that the energy terms due to oscillation in the transition state are matched to that of urea. The NH_{2} and $\mathrm{C}-\mathrm{N}$ functional groups are also equivalent to those given in the Amides section. $E_{T}\left(\right.$ atom-atom, $m s p^{3} . A O$) (Eq. (15.61)) of the $C=O$ and $C-N$ groups are equivalent to those of formamide. The values given in the Amides section are -3.58557 eV , and -1.65376 eV , respectively.

The symbols of the functional groups of urea are given in Table 15.123. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of urea are given in Tables 15.124, 15.125 , and 15.126 , respectively. The total energy of urea given in Table 15.127 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.126 corresponding to functional-group composition of the molecule. The bond angle parameters of urea determined using Eqs. (15.88-15.117) are given in Table 15.128. The color scale, translucent view of the charge-density of urea comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.21.

Figure 15.21. Color scale, translucent view of the charge-density of urea showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.123. The symbols of functional groups of urea.

Functional Group	Group Symbol
$\mathrm{C=O}$ (urea)	$\mathrm{C}=\mathrm{O}$
$(\mathrm{O}) \mathrm{C}-\mathrm{N}$ (urea)	$\mathrm{C}-\mathrm{N}$
NH_{2} group	NH_{2}

Table 15.124. The geometrical bond parameters of urea and experimental values [1].

Parameter	$C=O$ Group	$C-N$ Group	$N H_{2}$ Group
$a\left(a_{0}\right)$	1.290799	1.70920	1.32297
$c^{\prime}\left(a_{0}\right)$	1.13613	1.30736	0.97065
Bond Length $2 c^{\prime}(A)$	1.20243	1.38365	1.02729
Exp. Bond Length (A)	1.212 (formamide)	1.368 (formamide)	1.027 (formamide) (acetamide) $b, c\left(a_{0}\right)$
e	0.61267	1.10098	0.89894
0.88018	0.76490	0.73369	

Table 15.125. The MO to HO intercept geometrical bond parameters of urea. E_{T} is E_{T} (atom-atom,msp ${ }^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 1$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 3 \end{gathered}$	$\begin{gathered} E_{V} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Total Energy C2sp ${ }^{3}$ (eV)	$\begin{aligned} & r_{\text {rimatal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {frad }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coumonb }} \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \hline \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \hline \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\mathrm{H}_{2} \mathrm{NC}(\mathrm{O}) \mathrm{N}(\mathrm{H})-\mathrm{H}$	N	-0.82688	0	0	0		0.93084	0.86923	-15.65263		113.90	66.10	62.13	0.61843	0.35222
$\mathrm{H}_{2} \mathrm{NC}(\mathrm{O})-\mathrm{NH}_{2}$	N	-0.82688	0	0	0		0.93084	0.86923	-15.65263		103.93	76.07	50.02	1.09814	0.20922
$\mathrm{H}_{2} \mathrm{NC}(\mathrm{O})-\mathrm{NH}_{2}$	C	-0.82688	-1.79278	-0.82688	0	-155.06223	0.91771	0.74461	-18.27229	-18.08143	93.56	86.44	42.45	1.26106	0.04630
$\mathrm{H}_{2} \mathrm{NC}_{a}\left(\mathrm{NH}_{2}\right)=\mathrm{O}$	o	-1.79278	0	0	0		1.00000	0.81871	-16.61853		137.10	42.90	65.45	0.53635	0.59978
$H_{2} \mathrm{NC}_{a}\left(\mathrm{NH}_{2}\right)=\mathrm{O}$	C	-1.79278	--0.82688	-0.82688	0	-155.06223	0.91771	0.74461	-18.27229	-18.08143	133.82	46.18	61.27	0.62054	0.51559

Table 15.126. The energy parameters $(e V)$ of functional groups of urea.

Parameters	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-N \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \mathrm{NH}_{2} \\ & \text { Group } \end{aligned}$
n_{1}	2	1	2
n_{2}	0	0	0
n_{3}	0	0	1
C_{1}	0.5	0.5	0.75
C_{2}	1	1	0.93613
c_{1}	1	1	0.75
c_{2}	0.85395	0.91140	1
c_{3}	2	0	0
c_{4}	4	2	1
c_{5}	0	0	2
$C_{1 o}$	0.5	0.5	1.5
C_{20}	1	1	1
$V_{e}(e \mathrm{~V})$	-112.61934	-38.24008	-78.77719
$V_{p}(e V)$	23.95107	10.40705	28.03446
$T(e V)$	43.62389	11.18655	29.77286
$V_{m}(\mathrm{eV})$	-21.81195	-5.59327	-14.88643
$E($ Ао/но) (eV)	0	-14.63489	-14.53414
$\Delta E_{\mathrm{H}_{2} M O}(\mathrm{AO} / \mathrm{HO})(\mathrm{eV})$	-3.58557	-5.23932	-1.65376
$E_{T}(А$ / $/ \mathrm{HO})(\mathrm{eV})$	3.58557	-9.39557	-12.88038
$E\left({ }_{3}, \mathrm{AO/HO}\right)(\mathrm{eV})$	0	0	-14.53414
$E_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)(\mathrm{eV})$	-63.27075	-31.63533	-48.73668
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-3.58557	-1.65376	0
$E_{T}($ мо $)(\mathrm{eV})$	-66.85630	-33.28912	-48.73660
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	19.9334	13.0822	59.4067
$E_{K}(\mathrm{eV})$	13.12053	8.61093	39.10250
$\bar{E}_{D}(e V)$	-0.23955	-0.19325	-0.39136
$\bar{E}_{\text {Kvib }}(e \mathrm{eV})$	$\begin{gathered} 0.21747 \\ {[32]} \\ \hline \end{gathered}$	$\begin{gathered} 0.17358 \\ {[33]} \\ \hline \end{gathered}$	$\begin{gathered} 0.40929 \\ {[22]} \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.13081	-0.10647	-0.18672
$E_{\text {mag }}(\mathrm{eV})$	0.11441	0.14803	0.14185
$E_{T}($ (Group $)(\mathrm{eV})$	-67.11793	-33.39559	-49.11003
$E_{\text {initial }}\left(\mathrm{c}_{4}\right.$ АО/HO) (eV)	-14.63489	-14.63489	-14.53414
$E_{\text {initial }}\left(\mathrm{c}_{5}\right.$, О / Но) $)(\mathrm{eV})$	0	0	-13.59844
$E_{D}($ Group $)(\mathrm{eV})$	8.34955	4.12581	7.37901

Table 15.127. The total bond energies of urea calculated using the functional group composition and the energies of Table 15.126 compared to the experimental values [3].

Formula	Name					$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$		$\begin{aligned} & C-N \\ & \text { Group } \end{aligned}$		NH_{2}Group			CalculatedTotal Bond Energy (eV)		ExperimentalTotal Bond Energy (eV)				Relative Error
$\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$	Urea						Group			,			31.35919		31.393			0.00108 E_{T} is	
$\begin{aligned} & \text { ble } 15.1 \\ & \text { atom-ato } \end{aligned}$	$\cdot \underset{n s p^{3} .}{ }$	$\begin{aligned} & \text { bond a } \\ & \text { b). } \end{aligned}$	ngle pa	ameter	f urea and	experi	ntal valu	es [1]. In	calc	101			ers	$\text { ne } \mathrm{pr}$	edin				
Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \begin{array}{c} \text { Bond } 2 \\ \left(a_{0}\right) \end{array} \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Terminal } \\ \text { Atoms } \\ \left(a_{0}\right) \end{gathered}$	$\begin{aligned} & E_{\text {Coumamatic }}^{C} \\ & \text { Atom 1 } \end{aligned}$		$E_{\text {Coulomble }}$ Atom 2	Atom 2 Hybridization Designation (Table 15.3.A)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{aligned} & E_{T} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & \hline \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right. \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\angle H N H$	1.94130	1.94130	3.1464	-14.53414	N	H	H	$\begin{gathered} 0.93613 \\ \text { Eq. (15.71)) } \end{gathered}$	1	1	1	0.75	1.06823	0				108.27	
$\angle C_{a} N H$	2.61473	1.94130	3.9328	$\underset{N}{-14.53414}$	N	$\begin{array}{\|c} \hline-14.82575 \\ C_{a} \end{array}$	1	$\begin{gathered} 0.93613 \\ (\mathrm{Eq} . \\ (15.71)) \end{gathered}$	0.91771	0.75	1	0.75	0.98033	0				118.61	$\begin{gathered} 119.2 \\ \text { (formamide) } \end{gathered}$
$\angle O C_{a} N$	2.27227	2.61473	4.3359	$\underset{O}{16.17521}$	13	$\begin{array}{\|c} -16.37720 \\ N \end{array}$	19	0.84115	0.83078	1	1	1	0.83596	-1.44915				124.91	$\begin{gathered} 125.0 \\ \text { (formamide) } \end{gathered}$

CARBOXYLIC ACID HALIDES ($\left.C_{n} H_{2 n-1} O X, X=F, C l, B r, I ; n=1,2,3,4,5 \ldots \infty\right)$

The alkyl carboxylic acid halides, $C_{n} H_{2 n-1} O X$, comprise a $C=O$ functional group, and the single bond of carbon to the carbonyl carbon atom, $C-C(O)$, is also a functional group. All carboxylic acid halides further comprise a $C-X$ functional group where X is a halogen atom. The alkyl portion of the alkyl carboxylic acid halide may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straightchain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t -butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in carboxylic acids are equivalent to those in branched-chain alkanes.

The alkyl carboxylic acid halide $C=O$ and $C-C(O)$ groups are equivalent to those given in the Aldehydes section and the Ketones section, respectively. The values of $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ given in these sections are -2.69893 eV and -1.44915 eV , respectively.

As in the case of alkyl halides, each $(O) C-X$ group is solved by hybridizing the $2 s$ and $2 p$ AOs of the C atom to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the X AO to form a MO permits each participating orbital to decrease in radius and energy. For example, to meet the equipotential condition of the union of the O$) \mathrm{C}-\mathrm{Cl} \mathrm{H}_{2}$-type-ellipsoidal-MO with other orbitals of the molecule, the hybridization factor C_{2} of Eq. (15.61) for the $(O) C-C l$-bond MO given by Eq. (15.130) is $C_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to Cl$)=0.81317$. The solution is equivalent to that of the alkyl chloride bond except that the energy parameters corresponding to oscillation in the transition state are matched to those of a carboxylic acid chloride.

As in the case with the $C-C l$ group of alkyl chlorides, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $(O) C-C l$-bond MO in Eq. (15.61) of alkyl carboxylic acid chlorides due to the charge donation from the C and Cl atoms to the MO is -1.44915 eV where both energy contributions are given by Eq. (14.511). This matches the energy of the $C-C(O)$ functional group with that of the $(O) \mathrm{C}-\mathrm{Cl}$ group within the carboxylic acid chloride molecule.

The symbols of the functional groups of alkyl carboxylic acid chlorides are given in Table 15.129. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl carboxylic acid chlorides are given in Tables $15.130,15.131$, and 15.132 , respectively. The total energy of each alkyl carboxylic acid chloride given in Table 15.133 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.132 corresponding to functional-group composition of the molecule. The bond angle parameters of alkyl carboxylic acid chlorides determined using Eqs. (15.88-15.117) are given in Table 15.134. The color scale, translucent view of the charge-density of exemplary carboxylic acid halide, acetyl chloride, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.22.

Figure 15.22. Color scale, translucent view of the charge-density of acetyl chloride showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

$0 \square 1 \mathrm{e} / \AA^{2}$

Table 15.129. The symbols of functional groups of alkyl carboxylic acid chlorides.

Functional Group	Group Symbol
$C-C(O)$	$C-C(O)$
$C=O$ (alkyl carboxylic acid chloride)	$C=O$
(O) $\mathrm{C}-\mathrm{Cl}$	$\mathrm{C}-\mathrm{Cl}$
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH (alkyl) group	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to t - C)	$C-C$ (e)
$\underline{C C}(t$ to iso- C)	$C-C$ (f)

Table 15.130. The geometrical bond parameters of alkyl carboxylic acid chlorides and experimental values [1].

Parameter	$\begin{gathered} C-C(O) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \mathrm{C-Cl} \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(a) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(d) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	2.04740	1.29907	2.32621	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.43087	1.13977	1.69136	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.51437	1.20628	1.79005	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	1.520 (acetone) 1.518 (2-butanone)	1.187 (acetyl chloride) 1.214 (acetic acid)	$\begin{gathered} 1.798 \\ \text { (acetyl chloride) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	1.532 (propane) 1.531 (butane)					
$b, c\left(a_{0}\right)$	1.46439	0.62331	1.59705	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.69887	0.87737	0.72709	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.131. The MO to HO intercept geometrical bond parameters of alkyl carboxylic acid chlorides. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom,msp ${ }^{3}$. $A O$).

Bond	Atom	$\begin{gathered} E_{7} \\ (\mathrm{eV}) \\ \text { Bond } \end{gathered}$	$\begin{gathered} E_{T} \\ (\text { eV } \\ \text { (end } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 4 } \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {mpal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {manal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {calomat }} \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (e V) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\mathrm{H}_{3} \mathrm{C}_{b} \mathrm{C}_{a}(\mathrm{O})-\mathrm{Cl}$	Cl	-0.72457	0	0	0		1.05158	0.87495	-15.55033		69.62	110.38	30.90	1.99599	0.30463
$\mathrm{H}_{3} \mathrm{C}_{b} \mathrm{C}_{0}(\mathrm{O})-\mathrm{Cl}$	C_{a}	-1.34946	-0.72457	-0.72457	0	-154.41430	0.91771	0.77199	-17.62436	-17.43350	54.69	125.31	23.23	2.13760	0.44625
$\mathrm{H}_{3} \mathrm{C}_{b} \mathrm{C}_{a}(\mathrm{Cl})=\mathrm{O}$	o	-1.34946	0	0	0		1.00000	0.84115	-16.17521		137.27	42.73	66.31	0.52193	0.61784
$H_{3} C_{b} C_{o}(C l)=O$	C_{a}	-1.34946	-0.72457	-0.72457	0	-154.41430	0.91771	0.77199	-17.62436	-17.43350	134.28	45.72	62.45	0.60076	0.53901
$\mathrm{H}_{3} C_{b}-C_{a}(\mathrm{O})-\mathrm{Cl}$	C_{a}	-0.72457	-1.34946	-0.72457	0	-154.41430	0.91771	0.77199	-17.62436	-17.43350	59.30	120.70	26.96	1.82495	0.39408
$\mathrm{H}_{3} C_{b}-\mathrm{C}_{a}(\mathrm{O})-\mathrm{Cl}$	C_{b}	-0.72457	0	0	0	-152.34026	0.91771	0.87495	-15.55033	-15.35946	73.62	106.38	34.98	1.67762	0.24675
$\mathrm{C-H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
C-H (CH) (ii)	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} C_{a} C_{C} H_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{4} \mathrm{C}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-H_{2} C_{a} C_{C}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C(b)) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-H_{2} C_{C}\left(R^{\prime} H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) C H_{2}- \\ & (C-C(c)) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { iso } \mathrm{C}_{a} C_{b}\left(\mathrm{H}_{2} \mathrm{C}_{\mathrm{c}}-\mathrm{R}^{\prime}\right) H C H_{2}- \\ & (\mathrm{C}-\mathrm{C} \text { (d)) } \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & \operatorname{terlC}_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (C-C(\mathrm{e})) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & \operatorname{tertC}_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f})) \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & {\text { iso } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{e}\right) \mathrm{CH}_{2}-}^{(C-C(\mathrm{f}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.132. The energy parameters (eV) of functional groups of alkyl carboxylic acid chlorides.

Parameters	$\begin{gathered} C-C(O) \\ \text { Group } \\ \hline \end{gathered}$	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \mathrm{C-Cl} \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} C-H \text { (ii) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \\ \hline \end{gathered}$	$\begin{gathered} C-C \text { (e) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
n_{1}	1	2	1	3	2	1	1	1	1	1	1	1
n_{2}	0	0	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.5	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	1	1	0.81317	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	1	1	1	1	1	1
c_{2}	0.91771	0.85395	1	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	0	2	1	0	1	1	0	0	0	1	1	0
c_{4}	2	4	2	1	1	1	2	2	2	2	2	2
c_{5}	0	0	0	3	2	1	0	0	0	0	0	0
C_{10}	1	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	1	1	0.81317	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-30.19634	-111.25473	-29.68411	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	9.50874	23.87467	8.04432	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	7.37432	42.82081	6.38036	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-3.68716	-21.41040	-3.19018	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E(Аолно) (eV)	-14.63489	0	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$\Delta E_{\mathrm{H}_{2} \mathrm{NO}}($ (АО/ HO$)(\mathrm{eV})$	0	-2.69893	-1.44915	0	0	0	0	0	0	0	0	0
$E_{T}($ (оюно) (eV)	-14.63489	2.69893	-13.18574	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(H_{2} N 0\right)(\mathrm{eV})$	-31.63534	-63.27074	-31.63536	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-1.44915	-2.69893	-1.44915	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}(\mathrm{mo})(\mathrm{eV})$	-33.08452	-65.96966	-33.08452	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	- 33.08452
${ }^{\omega}$ ($10^{15} \mathrm{rad} / \mathrm{s}$)	16.4962	59.4034	7.42995	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	10.85807	39.10034	4.89052	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(\mathrm{eV})$	-0.21568	-0.40804	-0.14475	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.14655 \\ {[28]} \\ \hline \end{gathered}$	$\begin{gathered} 0.21077 \\ {[12]} \end{gathered}$	$\begin{gathered} 0.09063 \\ {[34]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \\ \hline \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$
$\bar{E}_{\text {asc }}(\mathrm{eV})$	-0.14240	-0.30266	-0.09943	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.11441	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{t}($ (roup) (eV)	-33.22692	-66.57498	-33.18395	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
$E_{\text {murual }}($ G , Ао' но) $)(\mathrm{eV})$	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
$E_{\text {mintal }}(\mathrm{E}$, Ао но) (e V$)$	0	0	0	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
$E_{D}($ croup $)(\mathrm{eV})$	3.95714	7.80660	3.76614	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

Table 15.133. The total bond energies of alkyl carboxylic acid chlorides calculated using the functional group composition and the energies of Table 15.132 compared to the experimental values [3].
 angle were used. E_{T} is $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$.

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond 2 } \\ \left(a_{0}\right) \end{gathered}$	$2 c^{\prime}$ Terminal Atoms $\left(\boldsymbol{a}_{0}\right)$ (a_{0}	$\begin{aligned} & E_{E_{\text {Colamatio }}} \text { Atom } 1 \end{aligned}$	Atom 1 Hybridization Designation (Table 15.3.A)	$E_{\text {Coulmbic }}$ Atom 2	Atom 2 $\begin{gathered}\text { Hybridization } \\ \text { Designation } \\ \text { (Table 15.3.A) }\end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{array}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\angle C_{b} C_{a} O$	2.86175	2.27954	4.5826	-16.68411	25	-13.61806	o	0.81549	$\begin{gathered} 0.85395 \\ \text { (Eq. } \\ (15.132)) \end{gathered}$	1	${ }^{1}$	1	0.83472	-1.65376				125.70	
$\angle C_{b} C_{a} C l$	2.86175	3.38271	5.1539	$\begin{gathered} -15.75493 \\ C_{b} \end{gathered}$	7	$\begin{array}{\|cl} -12.96764 \\ C l \end{array}$	Cl	0.86359	0.86359	1		1	0.86359	-0.92918				110.98	$\begin{gathered} 111.6 \\ \text { (acetyl chloride) } \end{gathered}$
$\angle O C_{4} C l$	2.27954	3.38271	4.9841	$\begin{gathered} -16.68412 \\ 0 \end{gathered}$	26	$\stackrel{-15.55033}{\mathrm{Cl}}$	5	0.81549	0.87495	1	$\begin{gathered} 0.81317 \\ (15 q . \\ (15.130)) \end{gathered}$	1	0.84522	-0.92918				122.13	$\begin{gathered} 121.2 \\ \text { (acetyl chloride) } \\ \hline \end{gathered}$
$\begin{aligned} & \text { Methylene } \\ & \text { HHCH } \end{aligned}$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} 107 \\ \text { (propane) } \end{gathered}$
$\angle C_{a} C_{b} C_{c}$															69.51			110.49	112 (propane) 113.8 (butane) 110.8 (isobutane)
$\angle C_{a} C_{b} H$															69.51			110.49	$\begin{gathered} 111.0 \\ \begin{array}{c} (\text { butane) } \\ 111.4 \\ \text { (isobutane) } \end{array} \end{gathered}$
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{a} C_{b} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b} H$															70.56			109.44	
$\begin{aligned} & \angle C_{b} C_{a} C_{c} \\ & \text { iso } C_{a} \end{aligned}$	2.91547	2.91547	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	$\begin{gathered} -16.68412 \\ C_{8} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				110.67	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\begin{gathered} \angle C_{b} C_{a} H \\ \text { iso } C_{a} \\ \hline \end{gathered}$	2.91547	2.11323	4.1633	$\begin{gathered} -15.55033 \\ C_{a} \end{gathered}$	5	$\begin{array}{\|c\|} \hline-14.82575 \\ C_{5} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{aligned} & \angle C_{a} C_{b} H \\ & \text { iso } C_{a} \\ & \hline \end{aligned}$	2.91547	2.09711	4.1633	$\begin{gathered} -15.55033 \\ C_{b} \end{gathered}$	5	$\begin{array}{\|l\|} \hline-14.82575 \\ C_{s} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	$\begin{gathered} 1111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \angle C_{b} C_{a} C_{b} \\ & \text { tert } C_{a} \end{aligned}$	2.90327	2.90327	4.7958		26	$\begin{array}{\|c\|} \hline-16.64412 \\ C_{b} \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				111.37	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\angle C_{b} C_{a} C_{d}$															72.50			107.50	

CARBOXYLIC ACID ANHYDRIDES ($\left.\mathrm{C}_{n} \mathrm{H}_{2 n-2} \mathrm{O}_{3}, n=2,3,4,5 \ldots \infty\right)$

The alkyl carboxylic acid anhydrides, $\mathrm{C}_{n} \mathrm{H}_{2 n-2} \mathrm{O}_{3}$, have two $(\mathrm{O}) \mathrm{C}-\mathrm{O}$ moieties that each comprise $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{O}$ functional groups. The single bond of carbon to the carbonyl carbon atom, $\mathrm{C}-\mathrm{C}(\mathrm{O})$, is also a functional group. The alkyl portion of the alkyl carboxylic acid anhydride may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n -alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $C-C$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in carboxylic acid anhydrides are equivalent to those in branched-chain alkanes.

The alkyl carboxylic acid anhydride $C=O$ and $C-C(O)$ groups are equivalent to those given in the Carboxylic Acid Esters section and the Ketones section, respectively. The values of $E_{T}\left(\right.$ atom-atom, msp $\left.{ }^{3} . A O\right)$ given in these sections are -2.69893 eV and -1.44915 eV , respectively. The $C-O$ group is also equivalent to that given in the Carboxylic Acid Esters section except that $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ is equivalent to that of an alkyl ether as given in the corresponding section and the energy terms due to oscillation in the transition state are matched to that of a carboxylic acid anhydride.

For the $C-O$ group, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ is -1.65376 eV . It is based on the energy match between the O AO and the $C 2 s p^{3} \mathrm{HO}$ of each $C-C(O)$ group and is given by the linear combination of -0.72457 eV (Eq. (14.151)) and -0.92918 eV (Eq. (14.513)), respectively. This matches -0.72457 eV , the energy contribution of each of the $C 2 s p^{3}$ HOs to each $C-C(O)$ functional group, with that of the corresponding energy component of the $C-O$ group and gives a minimum energy within the carboxylic acid anhydride molecule.

The symbols of the functional groups of alkyl carboxylic acid anhydrides are given in Table 15.135. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl carboxylic acid anhydrides are given in Tables 15.136 , 15.137 , and 15.138 , respectively. The total energy of each alkyl carboxylic acid anhydride given in Table 15.139 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.138 corresponding to functional-group composition of the molecule. The bond angle parameters of alkyl carboxylic acid anhydrides determined using Eqs. (15.88-15.117) are given in Table 15.140. The color scale, translucent view of the chargedensity of exemplary carboxylic acid anhydride, acetic anhydride, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.23.

Figure 15.23. (A)-(B), color scale, translucent views of the charge-density of acetic anhydride showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.135 . The symbols of functional groups of alkyl carboxylic acid anhydrides.

Functional Group	Group Symbol
$C-C(O)$	$C-C(O)$
$C=O$ (alkyl carboxylic acid anhydride)	$C=O$
(O) $\mathrm{C}-\mathrm{O}$	C-O
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH (alkyl) group	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to t-C)	$C-C$ (e)
$\underline{C C}(t$ to iso- C)	$C-C$ (f)

Table 15.136. The geometrical bond parameters of alkyl carboxylic acid anhydrides and experimental values [1].

Parameter	$\begin{aligned} & C-C(O) \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-O \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & \mathrm{C}-\mathrm{H} \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(c) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	2.04740	1.29907	1.73490	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.43087	1.13977	1.31716	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{gathered} \hline \text { Bond Length } \\ 2 c^{\prime}(A) \end{gathered}$	1.51437	1.20628	1.39402	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	1.520 (acetone) 1.518 (2-butanone)	$\begin{gathered} 1.214 \\ \text { (acetic acid) } \end{gathered}$	$\begin{gathered} 1.393 \\ \text { (avg. methyl } \\ \text { formate) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$
$b, c\left(a_{0}\right)$	1.46439	0.62331	1.12915	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.69887	0.87737	0.75921	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.137. The MO to HO intercept geometrical bond parameters of alkyl carboxylic acid anhydrides. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom $\left.-a t o m, m s p^{3} . A O\right)$.

Bond	Atom				E_{7} (eV) Bond 4	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {murialal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {final }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} \hline E_{\text {Coulumb }} \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	${ }^{\circ}$)	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$R C_{b} H_{2} C_{a}(O)-O_{a}-C_{a}(O) C_{c} H_{2} R^{\prime}$	O_{a}	-0.82688	-0.82688	0	0		1.00000	0.82562	-16.47951		98.32	81.68	46.34	1.19766	0.11949
$R C_{b} H_{2} C_{a}(O)-O_{a}-C_{a}(O) C_{c} H_{2} R^{\prime}$	C_{a}	-0.82688	-1.34946	-0.82688	0	-154.51660	0.91771	0.76753	-17.72667	-17.53580	93.21	86.79	42.74	1.27417	0.04298
$R C_{b} H_{2}\left(R^{\prime} C_{c} H_{2} C_{a}\left(O_{a}\right) O\right) C_{a}=O_{a}$	O_{a}	-1.34946	0	0	0		1.00000	0.84115	-16.17521		137.27	42.73	66.31	0.52193	0.61784
$R C_{b} H_{2}\left(R^{\prime} C_{c} H_{2} C_{a}\left(O_{a}\right) O\right) C_{a}=O_{a}$	C_{a}	-1.34946	-0.72457	-0.82688	0	-154.51660	0.91771	0.76753	-17.72667	-17.53580	134.08	45.92	62.20	0.60583	0.53394
$R H_{2} C_{b}-C_{a}(O) O C_{a}(O) C_{c} H_{2} R^{\prime}$	C_{a}	-0.72457	-1.34946	-0.82688	0	-154.51660	0.91771	0.76753	-17.72667	-17.53580	58.55	121.45	26.56	1.83133	0.40045
$\mathrm{H}_{3} \mathrm{C}_{b}-\mathrm{C}_{a}(\mathrm{O}) O \mathrm{OC}_{a}(\mathrm{O}) \mathrm{C}_{c} \mathrm{H}_{2} \mathrm{R}^{\prime}$	C_{b}	-0.72457	0	0	0	-152.34026	0.91771	0.87495	-15.55033	-15.35946	73.62	106.38	34.98	1.67762	0.24675
$\begin{aligned} & \mathrm{RH}_{2} \mathrm{C}_{b}-C_{a}(O) O C_{a}(O) C_{c} H_{2} R^{\prime} \\ & R=\text { alkyl } \\ & \hline \end{aligned}$	C_{b}	-0.72457	-0.92918	0	0	-153.26945	0.91771	0.82562	-16.47951	-16.28865	67.40	112.60	31.36	1.74821	0.31734
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}(\mathrm{CH})(\mathrm{ii})$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \\ & \hline \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & \mathrm{R}-\mathrm{H}_{2} \mathrm{C}_{a} \mathrm{C}_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-H_{2} C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) C H_{2}- \\ & (C-C \text { (c)) } \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { isoC }_{a} \mathrm{C}_{b}\left(\mathrm{H}_{2} \mathrm{C}_{\mathrm{c}}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~d})) \\ & \hline \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\text { tert } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}_{(C-C(e))}\left(\begin{array}{l} \text { C } \end{array}\right. \\ & \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & {\text { tert } C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{f}))} \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & {\text { iso } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{f}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.139. The total bond energies of alkyl carboxylic acid anhydrides calculated using the functional group composition and the energies of Table 15.138 compared to the experimental values [3].

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \\ \left(a_{0}\right) \end{gathered}$	$2 c^{\prime}$ $\substack{\text { Terminal } \\ \text { Atoms } \\\left(a_{0}\right)}$ y^{2}	$E_{\text {Contombic }}$	Atom 1Hybridization Designation(Table 15.3.A)	${ }_{E_{\text {coumombe }}}$	Atom 2 Hybridization Designation (Table 15.3.A)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom 2 } \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{aligned} & E_{r} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & \theta_{0} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	Cal. θ $\left({ }^{\circ}\right)$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\angle O_{a} C_{a} O_{b}$	2.27954	2.63431	4.3012	$\begin{array}{\|c} \hline-16.17521 \\ O_{a} \\ \hline \end{array}$	13	$\begin{array}{\|c} -16.47951 \\ O_{b} \end{array}$	22	0.84115	0.82562	1	1	1	0.83339	-1.44915				122.00	$\begin{gathered} 121.7[36] \\ \text { (acetic anhydride) } \end{gathered}$
$\angle C_{a} O_{b} C_{a}$	2.63431	2.63431	4.4944	$\begin{array}{\|c} -17.30638 \\ C_{b} \\ \hline \end{array}$	42	$\begin{array}{\|c} \hline-17.30638 \\ C_{a} \\ \hline \end{array}$	42	0.78617	0.78617	1	1	1	0.78617	-1.85836				117.09	$\begin{gathered} 115.8[36] \\ \text { (acetic anhydride) } \end{gathered}$
$\angle C_{b} C_{a} O_{b}$	2.86175	2.63431	4.4944	-15.55033	5	-13.61806	o	0.87495	$\begin{gathered} 0.85395 \\ (\text { (Eq. } \\ (15.133)) \end{gathered}$	1	1	1	0.86445	-1.44915				109.65	$\begin{gathered} 108.3[36] \\ \text { (acetic anhydride) } \end{gathered}$
$\angle C_{b} C_{a} O_{a}$	2.86175	2.27954	4.6368	-16.47951	22	-13.61806	o	0.82562	$\begin{aligned} & 0.85395 \\ & (\text { Eq. } \\ & (15.133)) \end{aligned}$	1	1	1	0.83979	-1.65376				128.46	
$\begin{aligned} & \text { Methylene } \\ & H H C H \end{aligned}$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} 107 \\ \text { (propane) } \end{gathered}$
$\angle C_{a} C_{b} C_{c}$															69.51			110.49	112 (propane) 113.8 (butane) 110.8 (isobutane)
$\angle C_{a} C_{b} H$															69.51			110.49	$\begin{gathered} 111.0 \\ \text { (butane) } \\ \text { (11b.4 } \\ \text { (isobutane) } \end{gathered}$
Methyl $\angle H C_{n} H$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{a} C_{b} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b} H$															70.56			109.44	
$\begin{aligned} & \angle C_{b} C_{a} C_{c} \\ & \text { iso } C_{a} \\ & \hline \end{aligned}$	2.91547	2.91547	4.7958	$\begin{array}{\|c\|} \hline-16.68412 \\ C_{b} \\ \hline \end{array}$	26	$\begin{array}{\|c} \hline-16.68412 \\ C_{c} \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				110.67	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\begin{gathered} \angle C_{b} C_{a} H \\ \text { iso } C_{a} \\ \hline \end{gathered}$	2.91547	2.11323	4.1633	$\begin{array}{\|c} -15.55033 \\ C_{a} \end{array}$	5	$\begin{array}{\|c} -14.82575 \\ C_{b} \\ \hline \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{gathered} \angle C_{a} C_{b} H \\ \text { iso } C_{a} \\ \hline \end{gathered}$	2.91547	2.09711	4.1633	$\begin{gathered} -15.55033 \\ C_{b} \end{gathered}$	5	$\begin{array}{\|c} \hline-14.82575 \\ C_{a} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	$\begin{gathered} 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \angle C_{b} C_{a} C_{b} \\ & \text { tert } C_{a} \end{aligned}$	2.90327	2.90327	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	$\begin{array}{\|c} -16.68412 \\ C_{b} \\ \hline \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				111.37	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\angle C_{b} C_{a} C_{d}$															72.50			107.50	

NITRILES ($\left.C_{n} H_{2 n-1} N, n=2,3,4,5 \ldots \infty\right)$

The nitriles, $C_{n} H_{2 n-1} N$, comprise a $C \equiv N$ functional group, and the single bond of carbon to the nitrile carbon atom, $C-C N$, is also a functional group. The alkyl portion of the nitrile may comprise at least two terminal methyl groups (CH_{3}) at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carboncarbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $C-C$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and tbutyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in nitriles are equivalent to those in branched-chain alkanes.

The nitrile $C \equiv N$ is solved equivalently to acetylene as given in the Acetylene Molecule section except that the energy for $E\left(\begin{array}{ll}\text { (Ао/но }\end{array}\right)$ is two times that given in Eq. (14.343), 16.20002 eV , in order to match the N AOs to that of the nitrile $C 2 s p^{3} \mathrm{HO}$ having a bond order of three. $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . \mathrm{AO}\right)$ of the $C \equiv N$ functional group is -1.56513 eV (Eq. (14.342)) corresponding to the third-order bonded $C 2 s p^{3} \mathrm{HO}$.

The $C-C N$ functional group is equivalent to that of an alkyl $C-C$ group given in the Continuous-Chain Alkanes section except that $E_{T}\left(\mathrm{H}_{2} M O\right)$ and $\bar{E}_{K v i b}$ are those corresponding to a nitrile. As given in the Continuous-Chain Alkanes section, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the alkyl $C-C$ group is -1.85836 eV where both energy contributions are given by Eq. (14.513). It is based on energy matching within the nitrile. It corresponds to the maximum-magnitude energy contributions of a single-bonded and a third-order bonded $C 2 s p^{3} \mathrm{HO}$.

The symbols of the functional groups of nitriles are given in Table 15.141. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of nitriles are given in Tables $15.142,15.143$, and 15.144 , respectively. The total energy of each nitrile given in Table 15.139 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.144 corresponding to functional-group composition of the molecule. For each set of unpaired electrons created by bond breakage, the $C 2 s p^{3} \mathrm{HO}$ magnetic energy $E_{\text {mag }}$ that is subtracted from the weighted sum of the $E_{D}($ Group $)(e V)$ values based on composition is given by Eq. (15.67). The bond angle parameters of nitriles determined using Eqs. (15.88-15.117) are given in Table 15.146. The C of the $C \equiv N$ group can further bond with only one atom, and the bond is linear as a minimum of energy as in the case of acetylene and alkynes. The color scale, translucent view of the charge-density of exemplary nitrile, propanenitrile, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.24.

Figure 15.24. Color scale, translucent view of the charge-density of propanenitrile showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

$0 \square 1 \mathrm{e} / \AA^{2}$

Table 15.141. The symbols of functional groups of nitriles.

Functional Group	Group Symbol
C-CN	$C-C$ (i)
CN	$C \equiv N$
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH (alkyl) group	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to t-C)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.142. The geometrical bond parameters of nitriles and experimental values [1].

Parameter	$\begin{gathered} C-C \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C \equiv N \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.91255	1.20590	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.38295	1.09813	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.46365	1.16221	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$\begin{gathered} 1.468 \\ \text { (acetonitrile) } \end{gathered}$	$\begin{gathered} 1.159 \\ \text { (acetonitrile) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	1.532 (propane) 1.531 (butane)	1.532 (propane) 1.531 (butane)	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$
$b, c\left(a_{0}\right)$	1.382110	0.49828	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.72309	0.91064	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.143 . The MO to HO intercept geometrical bond parameters of nitriles. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom,msp $\left.{ }^{3} . A O\right)$.

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 1$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 2$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 3$		Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {murual }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {fnal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coulomb }} \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$R H_{2} C_{b} C_{a} \equiv N$	N	-0.78257	0	0	0		0.93084	0.87170	-15.60832		147.01	32.99	72.28	0.36699	0.73114
$R H_{2} C_{b} C_{a} \equiv N$	C_{a}	-0.78257	-0.92918	0	0	-153.32744	0.91771	0.82272	-16.53750	-16.34664	145.42	34.58	69.58	0.42077	0.67736
$\mathrm{RH}_{2} \mathrm{C}_{b}-\mathrm{C}_{a} \mathrm{~N}$	C_{a}	-0.92918	-0.78257	0	0	-153.32744	0.91771	0.82272	-16.53750	-16.34664	81.32	98.68	38.00	1.50718	0.12423
$\mathrm{H}_{3} \mathrm{C}_{b}-\mathrm{Ca}_{a} \mathrm{~N}$	C_{b}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	85.50	94.50	40.67	1.45066	0.06771
$\begin{aligned} & \mathrm{RH}_{2} \mathrm{C}_{c} \mathrm{H}_{2} \mathrm{C}_{b}-C_{a} \mathrm{~N} \\ & \mathrm{R}=\text { alkyl } \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	80.53	99.47	37.51	1.51718	0.13423
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}(\mathrm{CH})$ (ii)	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C} \text { (a) }) \\ & \hline \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{\mathrm{C}} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \\ & \hline \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-\mathrm{H}_{2} C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-\mathrm{H}_{2} \mathrm{C}_{a}\left(R^{\prime}-\mathrm{H}_{2} \mathrm{C}_{d}\right) \mathrm{C}_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{c})) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & i^{i s o C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}-} \\ & (C-C \text { (d)) } \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\text { terl } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{e}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & \text { teri } C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f})) \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & {\text { iso } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{f}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15．144．The energy parameters（ eV ）of functional groups of nitriles．

$\begin{array}{ll} \text { Er } \\ 0 & 0 \\ 0 & \vdots \\ 0 & 0 \\ 0 \end{array}$	－	\bigcirc	\bigcirc	\％	－	－		－	\sim	－	\bigcirc			$\stackrel{N}{\lambda}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \stackrel{y}{2} \\ & \underset{\sim}{2} \end{aligned}$		－			$\frac{n}{\frac{n}{7}}$	$\begin{gathered} \underset{\sim}{\tilde{c}} \\ \stackrel{c}{\circ} \\ \underset{r}{2} \end{gathered}$	$\begin{aligned} & \text { ఫ్ } \\ & \stackrel{n}{n} \end{aligned}$	$\begin{gathered} \overline{\mathrm{O}} \\ \text { तु } \end{gathered}$	$\begin{gathered} \stackrel{0}{6} \\ \hline 9 \\ \hline \end{gathered}$	$\frac{\pi}{2} \frac{\pi}{2}$	$$	$\begin{aligned} & ⿳ ⺈ ⿴ 囗 㐅 ⿸ 厂 巳 寸 \\ & \stackrel{\alpha}{0} \end{aligned}$	$\underset{\underset{\sim}{\infty}}{\underset{\sim}{\infty}} \underset{\sim}{\infty}$	$\begin{aligned} & \stackrel{\otimes}{\otimes} \\ & \stackrel{\rightharpoonup}{6} \\ & \underset{\sim}{1} \end{aligned}$	－	$\xrightarrow{\text { d }}$
	－	－	\bigcirc	\％	－	-2	$\stackrel{\underset{N}{\hat{O}}}{\stackrel{\rightharpoonup}{2}}$	－	N	0	\％			$\underset{\sim}{n}$	8 6 人े on	$\begin{gathered} \stackrel{0}{4} \\ \underset{\sim}{2} \\ \stackrel{i}{i} \end{gathered}$	$\begin{gathered} 0 \\ \vdots \\ \\ \\ \hline \end{gathered}$	－			$\frac{n}{\overparen{f}} \underset{i}{\prime}$	$\begin{gathered} \underset{\sim}{2} \\ \stackrel{\circ}{\circ} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \text { fo } \\ & \stackrel{n}{n} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{N}} \\ & \text { तु } \\ & \text { © } \end{aligned}$	$\begin{gathered} \stackrel{\circ}{6} \\ \hline \mathbf{i} \\ \hline \end{gathered}$	$\frac{\pi}{\tilde{\sim}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline i \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{4} \\ & \stackrel{\text { O}}{0} \end{aligned}$	$\frac{\underset{\sim}{N}}{\stackrel{\infty}{\infty}} \underset{\sim}{N}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{c}} \\ & \stackrel{y}{6} \\ & \underset{\substack{1}}{ } \end{aligned}$	－	co
$\begin{aligned} & \text { ©o } \\ & 0 \\ & \text { u } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	－	\bigcirc	\bigcirc	\％	－	$-\frac{5}{2}$	$\stackrel{\rightharpoonup}{\hat{E}}$	－	\sim	\bigcirc	3	$-\begin{gathered} \delta \\ \\ \underset{\sim}{2} \end{gathered}$		$\stackrel{N}{\stackrel{N}{\omega}} \underset{\sim}{\kappa}$		$\begin{gathered} \underset{\sim}{\infty} \\ \underset{\sim}{\infty} \\ \underset{\sim}{2} \end{gathered}$		－			$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \underset{-1}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$		$\frac{n}{7}$	$\begin{gathered} \frac{n}{6} \\ \frac{6}{i} \end{gathered}$	$\frac{\pi}{3}$	$\begin{aligned} & \underset{\sim}{0} \\ & \underset{o}{i} \\ & i \end{aligned}$	$\frac{\stackrel{2}{\circ}}{\substack{木}}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$		－	$\stackrel{\overline{2}}{\substack{2}}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	－	\bigcirc	\bigcirc	n	－	－	$\begin{aligned} & \stackrel{\rightharpoonup}{\lambda} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	\bigcirc	\sim	－	$\stackrel{3}{3}$	$-$		$\underset{\sim}{N}$	$\begin{gathered} 0 \\ 0.0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \stackrel{\rightharpoonup}{i} \\ \hat{N} \\ \underset{i}{2} \end{gathered}$	0 0 2 n \cdots	－				$\begin{gathered} \stackrel{\sim}{\tilde{2}} \\ \stackrel{\rightharpoonup}{\circ} \\ \stackrel{\rightharpoonup}{\mathrm{p}} \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{gathered} \underset{\alpha}{2} \\ \stackrel{\rightharpoonup}{ف} \end{gathered}$	$\begin{gathered} \stackrel{\circ}{0} \\ \stackrel{\text { chen }}{ } \end{gathered}$		$\begin{gathered} 7 \\ 2 \\ \vdots \\ \stackrel{y}{i} \\ i \end{gathered}$	$$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{+}{6} \\ & \underset{~+~}{+} \end{aligned}$	－	cos
$\begin{aligned} & a \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	－	－	－	$\stackrel{n}{0}$	－	－	$\stackrel{\rightharpoonup}{\hat{N}} \underset{\dot{O}}{ }$	－	\sim	－	$\stackrel{3}{3}$	$-\begin{gathered} \underset{\alpha}{\alpha} \\ \underset{\sim}{2} \end{gathered}$		$$	$$	$\begin{gathered} \underset{\sim}{\infty} \\ \underset{\sim}{\infty} \\ \underset{i}{2} \end{gathered}$		－	$\begin{aligned} & \substack{\text { cin } \\ \\ \\ \hline} \end{aligned}$		$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{+} \end{aligned}$	$\begin{gathered} \hat{n} \\ \underset{\sim}{q} \\ \underset{\sim}{i} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\text { g}}{0} \end{aligned}$	$\stackrel{\substack{7\\}}{ }$	$\begin{aligned} & n \\ & \stackrel{n}{3} \\ & \stackrel{1}{i} \end{aligned}$	$\frac{\infty}{2}$	$$	$\stackrel{\text { O}}{\stackrel{O}{\square}}$		$\begin{aligned} & \stackrel{\otimes}{6} \\ & \stackrel{\text { chen }}{\substack{1}} \end{aligned}$	－	a c c
$\begin{aligned} & \text { a } \\ & \text { e } \\ & \text { y } \\ & \text { d } \\ & 0 \end{aligned}$	－	－	－	\cdots	－	$-$	층	\bigcirc	\sim	－	\％	－		$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{2} \end{gathered}$		$\begin{gathered} \underset{\sim}{\kappa} \\ \underset{\sim}{\infty} \\ \underset{\sim}{2} \end{gathered}$		－			$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{\infty} \\ & \hdashline \end{aligned}$	$\begin{gathered} \hat{\hat{N}} \\ \underset{\sim}{\underset{2}{2}} \end{gathered}$		$\begin{gathered} \stackrel{n}{त} \\ \underset{0}{3} \end{gathered}$	$\begin{gathered} n \\ \stackrel{n}{3} \\ \stackrel{1}{2} \end{gathered}$	$\frac{\pi}{N_{0}^{2}}$	$\begin{gathered} \stackrel{0}{\hat{2}} \\ \hat{\theta} \\ 0 \end{gathered}$		$\begin{aligned} & \tilde{\sim} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\grave{c}} \\ & \stackrel{c}{c} \\ & \underset{~+}{4} \end{aligned}$	－	

	－	－	\bigcirc		－	－	E 	－	－		ก	$-$	$\begin{gathered} n \\ \stackrel{n}{7} \\ \stackrel{1}{3} \\ \stackrel{n}{2} \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{y}{\infty} \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$				\bigcirc	$\begin{aligned} & \infty \\ & \substack{0 \\ 0 \\ \underset{1}{2} \\ \hline} \end{aligned}$	ก		\hat{n}	$\underset{\underset{\sim}{\underset{\sim}{7}}}{\stackrel{\text { N }}{1}}$						－	¢			

Parameters	$\begin{gathered} C-C \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C \equiv N \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$
n_{1}	1	3	3	2
n_{2}	0	0	2	1
n_{3}	0	0	0	0
C_{1}	0.5	0.5	0.75	0.75
C_{2}	1	1	1	1
c_{1}	1	1	1	1
c_{2}	0.91771	0.91140	0.91771	0.91771
c_{3}	0	1	0	1
c_{4}	2	6	1	1
c_{5}	0	0	3	2
C_{10}	0.5	0.5	0.75	0.75
C_{20}	1	1	1	1
$V_{e}(\mathrm{eV})$	－33．01231	－207．49229	－107．32728	－70．41425
$V_{p}(\mathrm{eV})$	9.83824	37.16984	38.92728	25.78002
$T(\mathrm{eV})$	8.63043	86.03250	32.53914	21.06675
$V_{m}(\mathrm{eV})$	－4．31522	－43．01625	－16．26957	－10．53337
E（өоно）（eV）	－14．63489	32.40004	－15．56407	－15．56407
$\Delta E_{H_{2} \mathrm{HO}^{\prime}}($（10／$/ \mathrm{HO})(\mathrm{eV})$	－1．85837	0	0	0
$E_{T}(10 / \mathrm{Ho})(\mathrm{eV})$	－12．77652	32.40004	－15．56407	－15．56407
$E_{T}\left(H_{2} \mathrm{NO}\right)(\mathrm{eV})$	－31．63537	－94．90616	－67．69451	－49．66493
$E_{T}\left(\text { atom-atom }, \mathrm{msp} \mathrm{p}^{3} \cdot \mathrm{AO}\right)(\mathrm{eV})$	－1．85836	－1．56513	0	0
$E_{r}(\mathrm{no})(\mathrm{eV})$	－33．49374	－96．47124	－67．69450	－49．66493
ω c（100＇r rad $/ \mathrm{s}$ ）	19.2516	22.0753	24.9286	24.2751
$E_{K}(\mathrm{eV})$	12.67172	14.53031	16.40846	15.97831
$\bar{E}_{D}(\mathrm{eV})$	－0．23588	－0．24250	－0．25352	－0．25017
$\bar{E}_{\text {Kvb }}(\mathrm{eV})$	$\begin{gathered} 0.11407 \\ {[37]} \end{gathered}$	$\begin{gathered} 0.28107 \\ {[37]} \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. (13.458)) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$
$\bar{E}_{\text {occ }}(\mathrm{eV})$	－0．17884	－0．10197	－0．22757	－0．14502
$E_{\operatorname{mag}}(\mathrm{eV})$	0.14803	0.14185	0.14803	0.14803
$E_{T}($（imur $)(\mathrm{eV})$	－33．67258	－96．77713	－67．92207	－49．80996
	－14．63489	－14．63489	－14．63489	－14．63489
	0	0	－13．59844	－13．59844
$E_{D}($ Goupu $)(\mathrm{eV})$	4.40280	8.82594	12.49186	7.83016

Table 15．145．The total bond energies of nitriles calculated using the functional group composition and the energies of Table 15.144 compared to the experimental values［3］．The magnetic energy $E_{m a g}$ that is subtracted from the weighted sum of the $E_{D}(G r o u p)(e V)$ values based on composition is given by（15．58）．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Formula \& Name \& \[
\begin{gathered}
C-C \text { (i) } \\
\text { Group }
\end{gathered}
\] \& \[
\begin{aligned}
\& C \equiv N \\
\& \text { Group }
\end{aligned}
\] \& \(\mathrm{CH}_{3}\) \& \(\mathrm{CH}_{2}\) \& CH \& \(C-C\)（a） \& \(C-C\)（b） \& \(C-C\)（c） \& \(C-C\)（d） \& \(C-C\)（e） \& \(C-C\)（f） \& \(E_{\text {mag }}\) \& \begin{tabular}{l}
Calculated \\
Total Bond \\
Energy（eV）
\end{tabular} \& \[
\begin{aligned}
\& \text { Experiment } \\
\& \text { al } \\
\& \text { Total Bond } \\
\& \text { Energy (eV) }
\end{aligned}
\] \& Relative Error \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\) \& Acetonitrile \& 1 \& 1 \& 1 \& \({ }_{0}\) \& 0 \& \({ }_{0}\) \& 0 \& \({ }^{0}\) \& 0 \& 0 \& 0 \& 0 \& 25.72060

3787830 \& ${ }^{25} 577$ \& ${ }^{0.00174}$

\hline $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}$ \& Propanenitrile \& 1 \& 1 \& 1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 37.87830 \& 37.94 \& 0.00171

\hline $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}$ \& Butanenitrile \& 1 \& 1 \& 1 \& 2 \& 0 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 50.03600 \& 50.08 \& 0.00082

\hline $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}$ \& 2－Methylpropanenitrile \& 1 \& 1 \& 2 \& 0 \& 1 \& 0 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 \& 50.13689 \& 50.18 \& 0.00092

\hline $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}$ \& Pentanenitrile \& 1 \& 1 \& 1 \& 3 \& 0 \& 3 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 62.19370 \& 62.26 \& 0.00111

\hline $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}$ \& 2，2－Dimethylpropanenitrile \& 1 \& 1 \& 3 \& 0 \& 0 \& 0 \& 0 \& 3 \& 0 \& 0 \& 0 \& －1 \& 62.47823 \& 62.40 \& －0．00132

\hline $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$ \& Heptanenitrile \& 1 \& 1 \& 1 \& 5 \& 0 \& 5 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 86.50910 \& 86.59 \& 0.00089

\hline $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}$ \& Octanenitrile \& 1 \& 1 \& 1 \& 6 \& 0 \& 6 \& \& 0 \& 0 \& 0 \& \& 0 \& 98.66680 \& 98.73 \& 0.00069

\hline $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}$ \& Decanenitrile \& 1 \& 1 \& 1 \& 8 \& 0 \& 8 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 122.98220 \& 123.05 \& 0.00057

\hline $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}$ \& Tetradecanenitrile \& 1 \& 1 \& 1 \& 12 \& 0 \& 12 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 171.61300 \& 171.70 \& 0.00052

\hline
\end{tabular}

Table 15．146．The bond angle parameters of nitriles and experimental values［1］．In the calculation of θ_{v} ，the parameters from the preceding angle were used．E_{T} is

	$\stackrel{\square}{\square}$		$\begin{aligned} & \text { 声 } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \stackrel{+}{+} \\ & \stackrel{\theta}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{e} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { gे } \\ & \stackrel{0}{\bullet} \end{aligned}$				$\begin{aligned} & \dot{7} \\ & \dot{\theta} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bullet} \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{セ 2}{\stackrel{2}{0}}$	$\stackrel{\widehat{N}}{\Xi}$	$\stackrel{\overline{\hat{0}}}{=}$	$\stackrel{\stackrel{n}{n}}{\stackrel{\rightharpoonup}{0}}$
－－															
－¢															
0 ©			$\stackrel{\stackrel{n}{2}}{\stackrel{\rightharpoonup}{8}}$		$\begin{aligned} & \bar{n} \\ & 0 . \end{aligned}$	$\begin{aligned} & \bar{n} \\ & 0 \\ & 0 \end{aligned}$			$\stackrel{\square}{\circ}$	$\begin{aligned} & \stackrel{\circ}{n} \\ & \stackrel{n}{2} \end{aligned}$					－
成感		－		－							$\begin{aligned} & \mathscr{\circ} \\ & \stackrel{\circ}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	－	－	$\xrightarrow{\circ}$	
－		$\begin{gathered} 2 \\ \stackrel{2}{2} \\ \stackrel{2}{2} \end{gathered}$		$\begin{aligned} & \stackrel{\circ}{\bullet!} \\ & \stackrel{n}{7} \end{aligned}$							$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \stackrel{o}{\infty} \\ & \stackrel{+}{4} \\ & \stackrel{y}{4} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{y}{\infty} \\ & \stackrel{y}{\infty} \end{aligned}$	
v		$\underset{0}{n}$		\cdots							－	\bigcirc	\％	－	
\checkmark^{\prime}		－		－							－	－	－	－	
v		－		－							－	N	ก	－	
$v^{\frac{\pi}{4}}$		－		－							$\frac{\stackrel{\rightharpoonup}{6}}{\frac{\stackrel{\rightharpoonup}{0}}{\infty}}$	$\frac{\underset{\rightharpoonup}{a}}{\stackrel{\rightharpoonup}{\circ}}$	$\frac{\underset{a}{2}}{\stackrel{\rightharpoonup}{\circ}}$	$\begin{aligned} & \frac{9}{2} \\ & \substack{\infty \\ 0.0} \end{aligned}$	
$v^{\frac{\bar{g}}{4}}$				$\begin{aligned} & \text { ờ } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{0}{0} \end{aligned}$								$$	$\begin{gathered} \stackrel{2}{9} \\ \stackrel{y}{\infty} \\ \stackrel{y}{\circ} \end{gathered}$	$\begin{aligned} & \text { for } \\ & \substack{\infty \\ 0 \\ 0} \end{aligned}$	
		\pm		\pm							¢	－	－	\bigcirc	
		I		\pm									－	硅	
		\cdots		－							¢	in	in	$\stackrel{\sim}{i}$	
		$\left\lvert\, \begin{gathered} \mathfrak{g} \\ \stackrel{y}{c} \\ \stackrel{n}{2} \\ \hline \end{gathered}\right.$		$\begin{aligned} & \stackrel{2}{2} \\ & \stackrel{\rightharpoonup}{c} \\ & \stackrel{y}{n} \end{aligned}$							哭	骨第じ	骨	哭	
O		$\left\|\begin{array}{c} \tilde{i} \\ \underset{\sim}{z} \\ \dot{\sim} \end{array}\right\|$		$\begin{aligned} & \text { ָ̃ } \\ & \text { な寸⿵ } \end{aligned}$							$\begin{gathered} \stackrel{\otimes}{2} \\ \underset{+}{+} \end{gathered}$		$\stackrel{\pi}{7}$	¢	
㱍				$\stackrel{\circ}{\bar{i}}$							$\begin{aligned} & \text { fín } \\ & \stackrel{y}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{i} \end{aligned}$	$\begin{aligned} & \text { F } \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$	䂞	
玩䓂忥		$\left\|\begin{array}{c} \underset{a}{\vec{a}} \\ \underset{i}{i} \end{array}\right\|$		$\stackrel{\circ}{シ}$							$\begin{aligned} & \text { f } \\ & \stackrel{\rightharpoonup}{2} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { f } \\ & \stackrel{6}{2} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { f } \\ & \stackrel{y}{2} \\ & \text { in } \end{aligned}$	त⿹⿺⿻⿻一㇂㇒丶⿱一口犬灬力	
	$\left\lvert\, \begin{aligned} & z \\ & z_{0} \\ & v_{0} \end{aligned}\right.$	$\begin{aligned} & y \\ & y \\ & 0 \\ & y \end{aligned}$	$\begin{aligned} & \text { 花 } \\ & \hline \end{aligned}$		$\begin{aligned} & 0_{0}^{0} \\ & \text { Us } \end{aligned}$	$\begin{aligned} & z= \\ & \text { Es } \\ & \text { vis } \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0_{0}^{0} \\ & v_{0} \end{aligned}$	$\begin{aligned} & y \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{ll} 0_{0}^{0} \\ 0 & 0 \\ 0 \\ 0 & 0 \\ 0 & .0 \end{array}$	$\begin{cases}y_{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ \text { vo }\end{cases}$	$\left[\begin{array}{ll} x_{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ \text { vo } \end{array}\right.$		$\begin{aligned} & c_{0}^{s} 0_{0}^{0} \\ & v_{0} \end{aligned}$

THIOLS ($\left.C_{n} H_{2 n+2} S_{m}, \quad n=1,2,3,4,5 \ldots \infty\right)$

The alkyl thiols, $C_{n} H_{2 n+2} S_{m}$, comprise a $S H$ functional group and a $C-S$ functional group. The alkyl portion of the alkyl thiol may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in thiols are equivalent to those in branched-chain alkanes.

The parameters of the $S H$ functional group is solved using Eq. (15.41). As in the case of the $C-H$ bonds of $C H_{n} n=1,2,3$, the $S-H$-bond MO is a partial prolate spheroid in between the sulfur and hydrogen nuclei and is continuous with the $S 3 p$ shell. The energy of the H_{2}-type ellipsoidal MO is matched to that of the $S 3 p$ shell and comprises 75% of a H_{2}-type ellipsoidal MO in order to match potential, kinetic, and orbital energy relationships. Since the energy of S, $E(S)=-10.36001 \mathrm{eV}$, is less that that of H, the linear combination of the H_{2}-type ellipsoidal MO with the $S 3 p$ shell further comprises an excess 50% charge-density donation from H to the $S 3 p$ shell of the $S-H$-bond MO to achieve an energy minimum. The initial total energy of the shell is given by the sum over the four $3 p$ electrons. From Eq. (15.12), the sum $E_{T}(S, 3 p)$ of the energies of S, S^{+}, S^{2+}, and S^{3+} [38] is:

$$
\begin{equation*}
E_{T}(S, 3 p)=10.36001 \mathrm{eV}+23.33788 \mathrm{eV}+34.79 \mathrm{eV}+47.222 \mathrm{eV}=115.70989 \mathrm{eV} \tag{15.137}
\end{equation*}
$$

By considering that the central field decreases by an integer for each successive electron of the shell, the radius $r_{3 p}$ of the $S 3 p$ shell may be calculated from the Coulombic energy using Eqs. (15.13) and (15.137).

$$
\begin{equation*}
r_{3 p}=\sum_{q=12}^{15} \frac{(Z-q) e^{2}}{8 \pi \varepsilon_{0}(e 115.70989 \mathrm{eV})}=\frac{10 e^{2}}{8 \pi \varepsilon_{0}(\mathrm{e} 115.70989 \mathrm{eV})}=1.17585 a_{0} \tag{15.138}
\end{equation*}
$$

where $Z=16$ for sulfur. Using Eqs. (15.14) and (15.138), the Coulombic energy $E_{\text {Coulomb }}(S, 3 p)$ of the outer electron of the $S 3 p$ shell is:

$$
\begin{equation*}
E_{\text {Coulomb }}(S, 3 p)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{3 p}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} 1.17585 a_{0}}=-11.57099 \mathrm{eV} \tag{15.139}
\end{equation*}
$$

The sharing of the electrons between the S and H atoms permits the formation an $S-H$-bond MO that is lowered more in energy than the participating $S 3 p$ orbital which consequently increases in energy. By considering the 50% electron redistribution in the $S-H$ group as well as the fact that the central field decreases by an integer for each successive electron of the shell, the radius $r_{S-H 3 p}$ of the $S 3 p$ shell may be calculated from the Coulombic energy using Eq. (15.18).

$$
\begin{equation*}
r_{S-H 3 p}=\left(\sum_{n=12}^{15}(Z-n)+2(0.25)\right) \frac{e^{2}}{8 \pi \varepsilon_{0}(e 115.70989 \mathrm{eV})}=\frac{10.5 e^{2}}{8 \pi \varepsilon_{0}(e 115.70989 \mathrm{eV})}=1.23465 a_{0} \tag{15.140}
\end{equation*}
$$

where the $s=-2$ in Eq. (15.18) due to the charge donation from H to S. Using Eqs. (15.19) and (15.121), the Coulombic energy $E_{\text {Coulomb }}\left(S_{S-H}, 3 p\right)$ of the outer electron of the $S 3 p$ shell is:

$$
\begin{equation*}
E_{\text {Coulomb }}\left(S_{S-H}, 3 p\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{S-H 3 p}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} 1.23465 a_{0}}=-11.01999 \mathrm{eV} \tag{15.141}
\end{equation*}
$$

Thus, $E_{T}(S-H, 3 p)$, the energy change of each $S 3 p$ shell with the formation of the $S-H$-bond MO is given by the difference between Eq. (15.139) and Eq. (15.141):

$$
\begin{equation*}
E_{T}(S-H, 3 p)=E\left(S_{S-H}, 3 p\right)-E(S, 3 p)=-11.01999 \mathrm{eV}-(-11.57099 \mathrm{eV})=0.55100 \mathrm{eV} \tag{15.142}
\end{equation*}
$$

Then, in Eq. (15.51):

$$
\begin{equation*}
E_{T}(A O / H O)=E(S)-E_{T}(S-H, 3 p)=-10.36001 \mathrm{eV}-0.55100 \mathrm{eV}=-10.91101 \mathrm{eV} \tag{15.143}
\end{equation*}
$$

And, in Eq. (15.65),

$$
\begin{equation*}
E_{T}\left(\text { atom - atom }, \mathrm{msp}^{3} . A O\right)=0.55100 \mathrm{eV} \tag{15.144}
\end{equation*}
$$

Due to the charge donation from H to $S, c_{1}=1$ in both Eqs. (15.51) and (15.65). As in the case of the $C-H$-bond $\mathrm{MO}, C_{1}=0.75$ based on the orbital composition. In alkyl thiols, the energy of sulfur is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264). Thus, c_{2} in Eq. (15.61) is also one, and the energy matching condition is determined by the C_{2} parameter. Using the energy of $S, E(S)=-10.36001 \mathrm{eV}$ in Eq. (15.74), the hybridization factor C_{2} of Eq. (15.61) for the $S-H$-bond MO is:

$$
\begin{equation*}
C_{2}(S 3 p \text { to } H)=\frac{E(S, 3 p)}{E(H)}=\frac{-10.36001 \mathrm{eV}}{-13.60580 \mathrm{eV}}=0.76144 \tag{15.145}
\end{equation*}
$$

Since the energy of S is matched to the Coulombic energy between the electron and proton of $H, E\left(H\left(a_{0}\right)\right)$, $E_{\text {initial }}\left(c_{4} A O / H O\right)=E\left(H\left(a_{0}\right)\right)=-13.60580 \mathrm{eV}, E_{\text {initial }}\left(c_{5} A O / H O\right)=E(H)=-13.59844 \mathrm{eV}$, and $E_{\text {mag }}$ is that corresponding to $E\left(H\left(a_{0}\right)\right)$ given by Eq. (15.67). $E_{D}($ Group $)$ for hydrogen sulfide is equivalent to that of the $S H$ functional group, and the $E_{D}($ Group $)(e V)$ for dihydrogen sulfide follows the same derivation as that for the $S H$ functional group except that the parameters correspond to $n_{1}=2$ rather than $n_{1}=1$ in Eqs. (15.51) and (15.65).

Furthermore, with the energy of S matched to the Coulombic energy between the electron and proton of H, the energy of the $C-S$-bond MO is the sum of the component energies of the H_{2}-type ellipsoidal MO given in Eq. (15.51) with $E(A O / H O)=0$ and $E_{T}(A O / H O)=\Delta E_{H_{2} M O}(A O / H O)$. Then, the solution of the $C-S$ functional group comprises the hybridization of the $2 s$ and $2 p$ AOs of C to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the $S \mathrm{AO}$ to form a MO permits each participating orbital to decrease in radius and energy. Since the energy of sulfur is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264), c_{2} in Eq. (15.61) is one, and the energy matching condition is determined by the C_{2} parameter. Then, $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)), and the S AO has an energy of $E(S)=-10.36001 \mathrm{eV}$. To meet the equipotential condition of the union of the $C-S H_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor C_{2} of Eq. (15.60) for the $C-S$-bond MO given by Eqs. (15.77) and (15.79) is:

$$
\begin{equation*}
C_{2}\left(C 2 s p^{3} \mathrm{HO} \text { to } \mathrm{S}\right)=\frac{E(S)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=\frac{-10.36001 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.91771)=0.64965 \tag{15.146}
\end{equation*}
$$

Since the sulfur is energy matched to $E\left(H\left(a_{0}\right)\right)$ in the $S-H$-bond MO, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-S$-bond MO in Eq. (15.61) due to the charge donation from the C and S atoms to the MO is -0.72457 eV corresponding to the energy contribution equivalent to that of a methyl group (Eq. (14.151)).

The symbols of the functional groups of branched-chain alkyl thiols are given in Table 15.147. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl thiols are given in Tables 15.148, 15.149, and 15.150, respectively. The total energy of each alkyl thiol given in Table 15.151 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.150 corresponding to functional-group composition of the molecule. For each set of unpaired electrons created by bond breakage, the $C 2 s p^{3}$ HO magnetic energy $E_{\text {mag }}$ that is subtracted from the weighted sum of the $E_{D}($ Group $)(\mathrm{eV})$ values based on composition is given by Eq. (15.67). The $C-C$ bonds to the $H C S H$ group (one H bond to C) were each treated as an iso $C-C$ bond. The $C-C$ bonds to the CSH group (no H bonds to C) were each treated as a tert-butyl $C-C . E_{\text {mag }}$ was subtracted for each t-butyl group. The bond angle parameters of alkyl thiols determined using Eqs. (15.88-15.117) are given in Table 15.152. The color scale, translucent view of the charge-density of exemplary thiol, ethanethiol, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.25.

Figure 15.25. Color scale, translucent view of the charge-density of ethanethiol showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.147. The symbols of functional groups of alkyl thiols.

Functional Group	Group Symbol
SH group	SH
$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{H}_{2} \mathrm{~S}$
C-S	C-S
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to $t-C$)	$C-C$ (e)
$\underline{C C}(t$ to iso-C)	$C-C$ (f)

Table 15.148. The geometrical bond parameters of alkyl thiols and experimental values [1].

Parameter	$S-H\left(H_{2} S\right)$	$\begin{gathered} \text { SH } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-S \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\text { a }) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(c) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (d) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.83762	1.83762	1.90975	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.26842	1.26842	1.71455	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.34244	1.34244	1.81460	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	1.3356	1.34066 (hydrogen sulfide) 1.34 (methanethiol)	1.819 (methanethiol) 1.829 (ethanethiol)	$\begin{gathered} 1.107 \\ (\mathrm{C}-H \text { propane }) \\ 1.117 \\ (\mathrm{C}-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$						
$b, c\left(a_{0}\right)$	1.32964	1.32964	0.84112	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.69025	0.69025	0.89778	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.149. The MO to HO intercept geometrical bond parameters of alkyl thiols. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom,msp ${ }^{3}$. $A O$).

Bond	Atom	$\begin{gathered} E_{Y} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 1$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 2$	Bond 3 $\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 4$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {mental }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {jinal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Columbenb }} \\ \text { (ev) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \theta_{1} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \theta_{2} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$S-H$ (hydrogen sulfide) (dihydrogen sulfide)	S	0.55100	0	0	0		1.32010	1.23465	-11.01999		108.65	71.35	61.62	0.87355	0.39487
$R S-H$	S	-0.36229	0.55100	0	0		1.32010	0.92955	-14.63704		87.09	92.91	44.28	1.31557	0.04714
$\mathrm{Ca}_{a} \mathrm{H}_{3}-\mathrm{SH}$	S	-0.36229	0.55100	0	0		1.32010	0.92955	-14.63704		132.06	47.94	55.13	1.09181	0.62274
$\mathrm{Ca}_{a} \mathrm{H}_{3}-\mathrm{SH}$	C_{a}	-0.36229	0	0	0	-151.97798	0.91771	0.89582	-15.18804	-14.99717	69.84	110.16	88.87	0.03762	1.67692
$R \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}_{b} \mathrm{H}_{2}-\mathrm{C}_{a} \mathrm{H}_{3} \mathrm{SH}$	C_{a}	-0.36229	-0.92918	0	0	-152.90716	0.91771	0.84418	-16.11722	-15.92636	128.69	51.31	51.57	1.18689	0.52765
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C}-\mathrm{H}(\mathrm{CH})$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-\mathrm{H}_{2} \mathrm{C}_{a} C_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-\mathrm{H}_{2} \mathrm{C}_{a}\left(R^{\prime}-\mathrm{H}_{2} \mathrm{C}_{d}\right) \mathrm{C}_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{c})) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { isoC } C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~d})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\text { tert } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{e}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & {\text { tert } C_{a} C_{o}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{f}))} \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & {\text { iso } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{b}\right) \mathrm{CH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{f}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.150. The energy parameters (eV) of functional groups of alkyl thiols.

Parameters	$\mathrm{H}_{2} \mathrm{~S}$	$\begin{gathered} \text { SH } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-S \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Groun } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Groun } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \text { (a) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
n_{1}	2	1	1	3	2	1	1	1	1	1	1	1
n_{2}	0	0	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.75	0.75	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	0.76144	0.76144	0.64965	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	1	1	1	1	1	1
c_{2}	1	1	1	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	2	1	0	0	1	1	0	0	0	1	1	0
c_{4}	1	1	2	1	1	1	2	2	2	2	2	2
c_{5}	1	1	0	3	2	1	0	0	0	0	0	0
C_{10}	0.75	0.75	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	0.76144	0.76144	0.64965	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-72.80662	-36.40331	-46.36495	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	21.45310	10.72655	7.93551	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	19.81003	9.90502	12.13899	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-9.90502	-4.95251	-6.06949	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E(Ао/но) (eV)	-20.72002	-10.36001	0	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
	1.10200	0.55100	-0.72457	0	0	0	0	0	0	0	0	0
$E_{\gamma}($ (оо/но) (eV)	-19.61802	-10.91101	0.72457	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{7}\left(H_{2} \mu \mathrm{MO}\right)(\mathrm{eV})$	-63.27052	-31.63526	-31.63537	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{7}\left(\right.$ atom - atom, msp $\left.{ }^{3} . \mathrm{AO}\right)(\mathrm{eV})$	1.10200	0.55100	-0.72457	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{7}(\mathrm{mo})(\mathrm{eV})$	-62.16874	-31.08437	-32.35994	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	12.5415	12.5415	30.5436	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	8.25504	8.25504	20.10434	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(\mathrm{eV})$	-0.17669	-0.17669	-0.28705	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kub }}(\mathrm{eV})$	$\begin{gathered} 0.32422 \\ {[39]} \\ \hline \end{gathered}$	$\begin{gathered} 0.33620 \\ {[40]} \\ \hline \end{gathered}$	$\begin{gathered} 0.08146 \\ {[41]} \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$
$\bar{E}_{\text {acc }}(\mathrm{eV})$	-0.01458	-0.00859	-0.24632	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mag }}(\mathrm{eV})$	0.11441	0.11441	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{r}($ Group $)(\mathrm{eV})$	-31.10493 ${ }^{\text {a }}$	-31.09296	-32.60626	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
	-13.60580	-13.60580	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
$E_{\text {intual }}(\mathrm{c}$, Ао/ но) (eV)	-13.59844	-13.59844	0	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
$E_{D}($ cirum $)(\mathrm{eV})$	3.78628	3.77430	3.33648	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

[^3]Table 15.151. The total bond energies of alkyl thiols calculated using the functional group composition and the energies of Table 15.150 compared to the experimental
values [3]. The magnetic energy $E_{\text {mag }}$ that is subtracted from the weighted sum of the E_{D} (Group) (eV) values based on composition is given by (15.58).

Formila	Name	$\begin{gathered} I_{2} \mathrm{~S} \\ \text { Group } \end{gathered}$	$\begin{gathered} \text { SH } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-S \\ & \text { Grour } \end{aligned}$	CH_{3}	CH_{2}	CH	$C-C(a)$	$C-C$ (b)	$C-C$ (c)	$C-C$ (d)	$C-C(e)$	$C-C$ (f)	$E_{\text {nuy }}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
HS	Hydrogen Sulfide	0	1	0	0	0	0	0	0	0	0	0	0	0	3.77430	3.653	-0.03320
$\mathrm{H}_{2} \mathrm{~S}$	Dihydrogen Sulfide	1	1	0	0	0	0	0	0	0	0	0	0	0	7.56058	7.605	0.00582
$\mathrm{CH}_{4} \mathrm{~S}$	Methanethiol	0	1	1	1	0	0	0	0	0	0	0	0	0	19.60264	19.575	-0.00141
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}$	Ethanethiol	0	1	1	1	1	0	1	0	0	0	0	0	0	31.76034	31.762	0.00005
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~S}$	1-Propanethiol	0	1	1	1	2	0	2	0	0	0	0	0	0	43.91804	43.933	0.00035
$\mathrm{C}_{3} \mathrm{II}_{8} \mathrm{~S}$	2-Propanethiol	0	1	1	2	0	1	0	2	0	0	0	0	0	44.01893	44.020	0.00003
$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~S}$	1-Butanethiol	0	1	1	1	3	0	3	0	0	0	0	0	0	56.07574	56.089	0.00024
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}$	2-Butanethiol	0	1	1	2	1	1	1	2	0	0	0	0	0	56.17663	56.181	0.00009
$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~S}^{\text {S }}$	2-Methyl-1-propanethiol	0	1	1	2	1	1	0	3	0	0	0	0	0	56.14830	56.186	0.00066
$\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~S}$	2-Mehyl-2-propanethiol	0	1	1	3	0	0	0	0	3	0		0	-1	56.36027	56.313	-0.00084
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}$	2-Methyl-1-butarethiol	0	1	1	2	2	1	1	3	0	0	0	0	0	68.30600	68.314	0.00012
$\mathrm{C}_{5} \mathrm{I}_{12} \mathrm{~S}$	1-Pentanetriol	0	1	1	1	4	0	4	0	0		0	0	0	68.23344	68.264	0.00044
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}$	2-Methyl-2-butanethiol	0	1	1	3	1	0	1	0	3	0	-	0	-1	68.51797	68.441	-0.00113
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}$	3-Methyl-2-butarethiol	0	1	1	3	0	2		3	0	1	0	0	0	68.31552	68.381	0.00095
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}$	2,2-Dimethyl-1-propanethiol	0	1	1	3	1	0	1	0	3	0	0	0	-1	68.16441	68.461	0.00433
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~S}$	1-Hexanethiol	0	1	1	1	5	0	5	0	0	0	0	0	0	80.39114	80.416	0.00031
$\mathrm{C}_{6} \mathrm{H}_{44} \mathrm{~S}$	2-Methyl-2-pentanethiol	0	1	1	3	2	0	2	0	3	0	0	0	-1	80.67567	80.607	-0.00085
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~S}$	2,3-Dimethyl-2-butanethiol	0	1	1	4	0	1		2	2	0		1	-1	80.71992	80.603	-0.00145
$\mathrm{C}_{3} \mathrm{H}_{18} \mathrm{~S}$	1-Heptanethiol	0	1	1	1	6	0	6	0	0	0		0	0	92.54884	92.570	0.00023
$\mathrm{C}_{1 \mathrm{c}} \mathrm{H}_{22} \mathrm{~S}$	1-Decanethiol	0	1	1	1	9		9	0	0	0	0	,	0	129.02194	129.048	0.00020

Table 15.152. The bond angle parameters of alkyl thiols and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used.

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Terminal } \\ \text { Atoms } \\ \left(a_{0}\right) \\ \hline \end{gathered}$	$E_{\text {Coulombic }}$ Atom 1		$E_{\text {Coutomble }}$ Atom 2	Atom 2 $\begin{gathered}\text { Hybridization } \\ \text { Designation } \\ \text { (Table 15.3.A) }\end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\angle H S C_{a}$	2.53685	3.42910	4.5166	$\begin{gathered} -10.36001 \\ S \end{gathered}$	S	$\stackrel{-15.75493}{C_{a}}$	7	$\begin{gathered} 0.76144 \\ (E q . \\ 15.144)) \end{gathered}$	0.86359	0.75	1	0.75	1.13415	0				97.28	$\begin{gathered} 96.5 \\ \text { (methanethiol) } \\ 9.4 \\ \text { (ethanethiol) } \end{gathered}$
$\angle C_{b} C_{a} S$	2.91547	3.42910	5.2344	$\begin{array}{\|l\|l\|l\|} \hline-16.68412 \\ C_{b} \end{array}$	26	$\stackrel{-10.36001}{S}$	s	0.81549	$\begin{gathered} 0.64965 \\ (\text { Eq. } \\ (15.146)) \end{gathered}$	1	$\begin{gathered} 0.64969 \\ (\text { Eq. } \\ (15.146)) \end{gathered}$	1	0.73257	-0.72457				110.92	$\begin{gathered} 108.3 \\ \text { (ethanethiol) } \end{gathered}$
Methylene $\angle H C_{a} H$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} 107 \\ \text { (propane) } \\ \hline \end{gathered}$
$\angle C_{a} C_{b} C_{c}$															69.51			110.49	112 (propane) 13.8 (butane) 110.8 (isobutane)
$\angle C_{a} C_{b} H$															69.51			110.49	$\begin{gathered} 111.0 \\ \text { (butane) } \\ 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{a} C_{b} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b} H$															70.56			109.44	
$\begin{aligned} & \angle C_{k} C_{a} C_{c} \\ & \text { iso } C_{a} \end{aligned}$	2.91547	2.91547	4.7958	$\begin{array}{\|c} -16.68412 \\ C_{b} \end{array}$	26	$\begin{gathered} -16.68412 \\ C_{c} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				110.67	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\begin{gathered} \angle C_{k} C_{a} H \\ \text { iso } C_{a} \\ \hline \end{gathered}$	2.91547	2.11323	4.1633	$\begin{array}{\|c} \hline-15.55033 \\ C_{a} \end{array}$	5	$\underset{C_{b}}{-14.8255}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{gathered} \angle C_{a} C_{b} H \\ \text { iso } C_{a} \\ \hline \end{gathered}$	2.91547	2.09711	4.1633	$\begin{gathered} -15.55033 \\ C_{b} \end{gathered}$	5	${ }^{-14.82575} C_{a}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	$\begin{gathered} 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \angle C_{b} C_{a} C_{b}{ }_{b} \\ & \text { tert } C_{a} \end{aligned}$	2.90327	2.90327	4.7958	$\begin{array}{\|c} \hline-16.68412 \\ C_{b} \end{array}$	26	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				111.37	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\angle C_{b} C_{a} C_{d}$															72.50			107.50	

SULFIDES ($\left.C_{n} H_{2 n+2} S_{m}, \quad n=2,3,4,5 \ldots \infty\right)$

The alkyl sulfides, $C_{n} H_{2 n+2} S_{m}$, comprise two types of $C-S$ functional groups, one for t-butyl groups corresponding to the C and the other for the remaining general alkyl groups including methyl. The alkyl portion of the alkyl sulfide may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in sulfides are equivalent to those in branched-chain alkanes.

Each $C-S$ group is solved by hybridizing the $2 s$ and $2 p$ AOs of the C atom to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the $S \mathrm{AO}$ to form a MO permits each participating orbital to decrease in radius and energy. Since the energy of sulfur is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264), c_{2} in Eq. (15.61) is one, and the energy matching condition is determined by the C_{2} parameter. As in the case of thiols, C_{2} of Eq. (15.61) for the $C-S$-bond MO given by Eq. (15.146) is $C_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to S$)=0.64965$.

The $C-S$ group of alkyl sulfides is equivalent to that of thiols where $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$ is -0.72457 eV (Eq. (14.151)). The t-butyl- $C-S$ group is also equivalent to that of thiols except that the energy parameters corresponding to the oscillation in the transition state are matched to those of the t-butyl group.

The symbols of the functional groups of branched-chain alkyl sulfides are given in Table 15.153. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl sulfides are given in Tables $15.154,15.155$, and 15.156 , respectively. Consider that the $C-S$ bond is along the x axis in the xy plane. The S nucleus is at the focus +c and the C nucleus is at the focus -c. The elliptic angle θ^{\prime} is taken as counterclockwise from the x-axis for S and as clockwise from the -x-axis for C. The total energy of each alkyl sulfide given in Table 15.157 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.156 corresponding to functional-group composition of the molecule. $E_{\text {mag }}$ given by Eq. (15.67) was subtracted for each t-butyl group. The bond angle parameters of alkyl sulfides determined using Eqs. (15.88-15.117) are given in Table 15.158. The color scale, translucent view of the chargedensity of exemplary sulfide, dimethyl sulfide, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.26.

Figure 15.26. Color scale, translucent view of the charge-density of dimethyl sulfide showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.153. The symbols of functional groups of alkyl sulfides.

Functional Group	Group Symbol
C-S (methyl, alkyl)	$C-S$ (i)
$\mathrm{C}-\mathrm{S}\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{S}-\mathrm{)}\right.$	$C-S$ (ii)
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to t - C)	$C-C$ (e)
$C C$ (t to iso- C)	$C-C$ (f)

Table 15.154. The geometrical bond parameters of alkyl sulfides and experimental values [1].

Parameter	$\begin{gathered} C-S(\mathrm{i}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-S \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & \mathrm{C}-\mathrm{H} \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(a) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.90975	1.90975	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.71455	1.71455	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
Bond Length $2 c^{\prime}(A)$	1.81460	1.81460	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	1.807 (dimethyl sulfide) 1.813 (ethyl methyl sulfide, avg.)	1.807 (dimethyl sulfide) 1.813 (ethyl methyl sulfide, avg.)	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$
$b, c\left(a_{0}\right)$	0.84112	0.84112	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.89778	0.89778	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.155. The MO to HO intercept geometrical bond parameters of alkyl sulfides. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom,msp $\left.{ }^{3} . A O\right)$.

Bond	Atom	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{\mathrm{r}} \\ (\mathrm{eV}) \\ \text { Bond 2 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\text { (eV) } \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\text { (eV) } \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {maal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {rmal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {chanomb }} \\ \text { (ev) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (e v) \\ \text { Final } \end{gathered}$	$\left.{ }^{\circ}\right)$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\begin{aligned} & R-S-R \\ & (C-S \text { (i) and (ii)) } \end{aligned}$	s	-0.36229	-0.36229	0	0		1.32010	0.87495	-15.55033		129.96	50.04	52.88	1.15262	0.56193
$\begin{aligned} & H_{3} \mathrm{C}_{a}-S-\mathrm{C}_{b} \mathrm{H}_{2} \mathrm{H}_{2} R \\ & (\mathrm{C}-S \text { (i) } \end{aligned}$	C_{a}	-0.36229	0	0	0	-151.97798	0.91771	0.89582	-15.18804	-14.99717	130.79	49.21	53.75	1.12937	0.58518
$\begin{aligned} & H_{3} \mathrm{C}_{a}-\mathrm{S}-\mathrm{C}_{\mathrm{b}} \mathrm{H}_{2} \mathrm{CH}_{2} R \\ & (\mathrm{C}-\mathrm{S} \text { (i) } \end{aligned}$	C_{b}	-0.36229	-0.92918	0	0	-152.90716	0.91771	0.84418	-16.11722	-15.92636	128.69	51.31	51.57	1.18689	0.52765
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{S}-\mathrm{C}_{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3} \\ & (\mathrm{C}-S \text { (i) and (ii) }) \end{aligned}$	C_{c}	-0.36229	-0.72457	-0.72457	-0.72457	-154.15170	0.91771	0.78367	-17.36176	-17.17090	125.97	54.03	48.94	1.25430	0.46025
$\mathrm{C-H}\left(\mathrm{CH}_{3}\right)$	c	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{CH}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	c	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}$ (CH)	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a_{C}} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-H_{2} C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C(b)) \\ & \text { (} \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-C_{2} C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (C-C(\mathrm{c})) \\ & \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { isoCo } C_{G}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C \text { (d) }) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & \text { teri } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{e})) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & \text { tertC C C C } C_{0}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C(f)) \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & \text { iso } C_{o}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f})) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15．156．The energy parameters (eV) of functional groups of alkyl sulfides．

	－	－	\bigcirc	\cdots	－	－	$\stackrel{\text { E }}{\text { E }}$ O	－	\sim	－	\bigcirc			$\begin{gathered} \underset{N}{N} \\ \underset{\sim}{n} \\ y \end{gathered}$				\bigcirc					$\begin{aligned} & \frac{3}{6} \\ & \stackrel{n}{n} \end{aligned}$	$\begin{array}{\|c} \underset{\mathrm{C}}{\mathrm{O}} \\ \underset{\mathrm{c}}{ } \end{array}$		$\frac{\pi}{2}$	$\begin{gathered} \stackrel{8}{0} \\ \frac{0}{6} \\ \hline \mathbf{i} \end{gathered}$	$\begin{gathered} 0.0 \\ \frac{8}{c} \\ \frac{1}{0} \end{gathered}$		$\begin{aligned} & 6 \\ & \stackrel{\leftrightarrow}{1} \\ & \hline \end{aligned}$		$\stackrel{+}{N}$
	－	－	－	\％	－		E． $\stackrel{\rightharpoonup}{0}$ \vdots	－	\sim	－	\because	-		${ }_{\lambda}^{\kappa}$		$\begin{gathered} 0 \\ \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$		\bigcirc					$\begin{aligned} & \text { 答 } \\ & \sim \end{aligned}$		$\begin{gathered} 0 \\ \frac{0}{0} \\ \hdashline \mathbf{i} \end{gathered}$	$\frac{\pi}{2} \frac{\pi}{2}$	$\begin{gathered} \stackrel{0}{6} \\ \stackrel{c}{6} \\ \hline i \end{gathered}$	$\begin{aligned} & \text { 茹 } \\ & \hline \end{aligned}$	$\frac{\underset{\sim}{\infty}}{\frac{\infty}{n}}$		－	$\xrightarrow{\substack{\text { ¢ }}}$
虎	－	－	\bigcirc	\because	－		$\stackrel{\underset{E}{E}}{\stackrel{\rightharpoonup}{2}}-$	－	\sim	－	3	-						\bigcirc				$\begin{gathered} \kappa \\ \underset{\alpha}{\alpha} \\ \underset{\sim}{\omega} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\text { an }} \end{aligned}$	$\frac{\underset{i}{2}}{\underset{0}{2}}$	$\begin{gathered} \frac{n}{6} \\ \frac{0}{i} \\ i \end{gathered}$	$\frac{\pi}{2}$	$\frac{\stackrel{i}{0}}{\substack{6 \\ i \\ i}}$	$\begin{gathered} \stackrel{\rightharpoonup}{4} \\ \frac{\square}{0} \end{gathered}$			－	$\stackrel{\overline{2}}{2}$
	－	－	\bigcirc	\cdots	－	$-\frac{1}{\square}$		－	\sim	\bigcirc	3.							\bigcirc				$\begin{aligned} & \underset{\sim}{\sim} \\ & \stackrel{y}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$$	$\begin{gathered} \underset{\text { Na }}{2} \\ \stackrel{\rightharpoonup}{\circ} \end{gathered}$	$\begin{aligned} & \text { ®o } \\ & 0 \\ & \text { ci } \end{aligned}$	$\begin{gathered} \text { 寺 } \\ \text { On } \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \underset{2}{2} \\ \stackrel{n}{i} \\ i \end{gathered}$	$\begin{aligned} & \frac{0}{0} \\ & \frac{1}{9} \\ & \hline 0 \end{aligned}$	$\stackrel{\text { con }}{\substack{\text { che }\\}}$		－	¢
$\left\lvert\, \begin{array}{ll} 2 \\ 0 & 0 \\ 0 & \vdots \\ 1 & 0 \\ 0 & 0 \end{array}\right.$	－	－	－	\because	－		$\frac{\mathrm{E}}{2} \mathrm{O}$		N	－	\％	－				$\begin{gathered} \underset{\sim}{\sim} \\ \infty \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \hat{0} \\ & \stackrel{y}{6} \\ & \underset{n}{n} \\ & \end{aligned}$	－				$\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { O} \\ & \text { O} \end{aligned}$	$\begin{array}{\|c} \underset{\sim}{\lambda} \\ \underset{6}{2} \end{array}$	$\begin{gathered} \frac{n}{7} \\ 0 . \\ \hline 9 \end{gathered}$	$\frac{\infty}{2} \pm$	O 0 0 0 0	$\stackrel{8}{8}$		＋	－	Ј

	$-$	－	－	\％	－	－	$\stackrel{\text { E }}{\text { E }}$	－	\sim	－	3	－	－	${ }_{\text {N}}^{\text {N}}$	等	$\stackrel{\sim}{\sim}$	＋	－	容	$\widehat{\sim}$	$\begin{aligned} & \mathscr{\infty} \\ & \stackrel{\infty}{\infty} \\ & \end{aligned}$	$\begin{gathered} \kappa \\ \tilde{\kappa} \\ \underset{\sim}{2} \end{gathered}$		－			$\stackrel{\rightharpoonup}{ }$				－	

	－		0				$\frac{\underset{\rightharpoonup}{\mathrm{B}}}{\stackrel{\rightharpoonup}{\partial}}$					－	$\begin{gathered} n \\ \underset{~}{n} \\ \underset{n}{n} \\ \underset{r}{2} \end{gathered}$				$\begin{gathered} \underset{\alpha}{\infty} \\ \underset{c}{c} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$		－						$\begin{aligned} & \underset{\mathrm{y}}{2} \\ & \underset{\mathrm{y}}{2} \end{aligned}$								
和苍	\sim	－	－		－	－	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{\lambda} \\ \stackrel{\partial}{\partial} \end{array}\right\|$	－	－	\sim	in	－	$\begin{aligned} & n \\ & \underset{y}{7} \\ & \underset{\sim}{f} \end{aligned}$		$\begin{gathered} \text { n } \\ 0 \\ 0 \\ \vdots \\ \vdots \end{gathered}$		$\begin{aligned} & \hat{y} \\ & \stackrel{y}{6} \\ & \stackrel{n}{n} \\ & \end{aligned}$		－	$\begin{aligned} & \hat{e} \\ & \stackrel{y}{0} \\ & \end{aligned}$		－	$\begin{gathered} 9 \\ \stackrel{q}{6} \\ \stackrel{y}{6} \\ \dot{q} \end{gathered}$	$\begin{gathered} \bar{n} \\ \underset{y}{j} \\ \vec{N} \end{gathered}$	$\begin{gathered} \overline{\mathscr{N}} \\ \underset{\alpha}{\dot{n}} \end{gathered}$								$\begin{array}{\|l} 0 \\ \\ \underset{\sim}{\infty} \end{array}$
気	m	\sim	0		－	－	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{\partial} \\ \dot{\partial} \end{array}\right\|$	－	－	m	Nos	－	$\begin{gathered} \infty \\ \underset{\sim}{n} \\ \stackrel{n}{0} \\ \vdots \end{gathered}$	$\begin{gathered} \infty \\ \underset{\sim}{N} \\ \infty \\ \infty \\ \infty \end{gathered}$					－	$\begin{aligned} & \stackrel{0}{4} \\ & \stackrel{y}{n} \\ & \stackrel{n}{1} \end{aligned}$	$\begin{aligned} & \text { 鬲 } \\ & \text { of } \\ & \stackrel{1}{2} \end{aligned}$	－		$\begin{gathered} \circ \stackrel{\circ}{1} \\ \underset{\sim}{c} \\ \underset{\sim}{2} \end{gathered}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & \text { N} \\ & \text { స్ } \\ & \text { in } \end{aligned}$				$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{N}} \\ \text { 人} \\ \stackrel{\rightharpoonup}{\mathrm{i}} \end{gathered}$			$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \underset{\underset{\sim}{i}}{ } \\ & \hline \end{aligned}$
	－	\bigcirc	0	\cdots	$\begin{gathered} 20 \\ 0 \\ \vdots \\ 0 \\ 0 \end{gathered}$	－	－	－	N	\bigcirc	\％	$\begin{gathered} n \\ 0 \\ \substack{0 \\ 0 \\ 0} \end{gathered}$		$\begin{aligned} & \underset{\sim}{n} \\ & \text { 合 } \end{aligned}$	$\left\lvert\, \begin{gathered} 2 \\ \underset{\sim}{2} \\ \underset{a}{s} \\ \hline \end{gathered}\right.$				$\begin{gathered} \hat{\sim} \\ \underset{\sim}{\hat{N}} \\ \stackrel{i}{2} \end{gathered}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$		$\begin{aligned} & \stackrel{i}{i n} \\ & \underset{\sim}{A} \\ & \underset{i}{2} \end{aligned}$	$\begin{gathered} \Delta \\ \stackrel{\rightharpoonup}{\mathrm{h}} \\ \underset{i}{i} \\ \underset{i}{2} \end{gathered}$		$\begin{gathered} \underset{y}{c} \\ \underset{\infty}{\infty} \\ i n \end{gathered}$	$\begin{gathered} \frac{9}{n} \\ \stackrel{n}{3} \\ \vdots \end{gathered}$	$\frac{\infty}{\infty}$	$=\frac{1}{7}$	$\begin{aligned} & \text { n } \\ & \stackrel{\circ}{\square} \\ & \underset{\sim}{4} \end{aligned}$			－	C
$\begin{aligned} & 0 \\ & 0 \\ & \text { a } \\ & \text { it } \\ & 0 \end{aligned}$	－	－	－	\cdots	$\begin{gathered} 6 \\ 0 . \\ 0 \\ 0 \\ 0 \end{gathered}$	－	－	－	－	－	in	会		$\begin{aligned} & \underset{\sim}{n} \\ & \text { 合 } \end{aligned}$		יִ				$\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \hat{N} \\ & \underset{6}{2} \\ & \cdots \end{aligned}$		$\begin{gathered} t \\ \vdots \\ \omega \\ \tilde{u} \\ \tilde{i} \end{gathered}$	$\begin{aligned} & \stackrel{0}{c} \\ & \underset{y}{c} \\ & \underset{\sim}{c} \end{aligned}$			$\frac{\dot{C}}{\infty} \bar{\infty}$		$\begin{aligned} & \text { n } \\ & \frac{0}{4} \\ & \hdashline \mathbf{6} \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \text { in } \\ \hline \end{gathered}\right.$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \underset{S}{\mathrm{O}} \\ & \underset{寸}{\prime} \end{aligned}$	－	\cdots
	$=$	ミ	＝	U	U	v	v	v	0^{*}	0		V^{2}	$\underbrace{\stackrel{5}{e}}_{-1}$	\underbrace{s}_{i}	E						en		害	$\begin{array}{\|c} 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\underset{c}{\frac{s}{e}}$	$\underbrace{s}_{1 \leqslant 4}$	$\underbrace{s}_{1 \times 2}$						©

Table 15.157. The total bond energies of alkyl sulfides calculated using the functional group composition and the energies of Table 15.156 compared to the

Formula	Name	$\begin{gathered} C-S \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-S \text { (ii) } \\ \text { Group } \end{gathered}$	CH_{3}	CH_{2}	CH	$C-C$ (a)	$C-C^{\prime}(\mathrm{b})$	$C-C$ (c)	$C-C$ (d)	$C-C$ (e)	$C-C$ (${ }^{\prime}$	$E_{\text {max }}$	Calculated Total Bond Encrgy (cV)	Experimental Total Bond Encrgy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}$	Dimethyl sulfide	2	0	2	0	0	0	0	0	0	0	0	0	31.65668	31.672	0,00048
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~S}$	Ethyl methyl sulfide	2	0	2	1	0	1	0	0	0	0	0	0	43.81438	43.848	0.00078
$\mathrm{C}_{4} \mathrm{H}_{: 0}$, S	Diethyl sulfide	2	0	2	2	0	2	0	0	0	0	0	0	55.97208	56.043	0.00126
$\mathrm{C}_{4} \mathrm{H}_{0} \mathrm{~S}$	Methyl propyl sulfide	2	0	2	2	0	2	0	0	0	0	0	0	55.97208	56.029	0.00102
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~S}$	Isopropyl methyl sulfide	2	0	3	0		0	2	0	0	0	0	0	56.07297	56.115	0.00075
$\mathrm{C}_{5} \mathrm{II} \mathrm{i}_{2} \mathrm{~S}$	Butyl methyl sulfide	2	0	2	3	0	3	0	0	0	0	0	0	68.12978	68.185	0.00081
$\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~S} \mathrm{~S}$	t-Butyl methyl sulfide	1	1	4	0	0	0	0	3	0	0	0	-1	68.28245	68.381	0.00144
$\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~S}$	Ethyl propyl sulfide	2	0	2	3	0	3	0	0	0	0	0	0	68.12978	68.210	0.00117
$\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~S}^{\text {S }}$	Ethyl isopropyl sulfide	2	0	3	1	1	1	2	0	0	0	0	0	68.23067	68.350	0.00174
$\mathrm{C}_{6} \mathrm{H}_{4}{ }_{4} \mathrm{~S}$	Diisopropyl sulfide	2	0	4	0	2	0	4	0	0	0	0	0	80.48926	80.542	0.00065
$\mathrm{C}_{6} \mathrm{H}_{4}+\mathrm{S}$	Butyl ethyl sulfide	2	0	2	4	0	4	0	0	0	0	0	0	80.28748	80.395	0.00133
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}$	Methyl pentyl sulfide	2	0	2	4	0	4	0	0	0	0	0	0	80.28748	80.332	0.00056
$\mathrm{C}_{8} \mathrm{I} \mathrm{I}: 8 \mathrm{~s}$	Dibutyl sulfide	2	0	2	6	0	6	0	0	0	0	0	0	104.60288	104.701	0.00094
$\mathrm{C}_{8} \mathrm{H}: 88$	Di-sec-butyl sulfide	2	0	4	2	2	2	4	0	0	0	0	0	104.80466	104.701	-0.00099
$\mathrm{C}_{8} \mathrm{H}_{8} 8 \mathrm{~S}$	Di-t-butyl sulfide	0	2	6	0	0	0	0	6	0	0	0	-2	104.90822	104.920	0.00011
$\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{~S}$	Diisobutyl sulfide	2	0	4	2	2	0	6	0	0	0	0	0	104.74800	104.834	0.00082
$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~S}$	Dipentyl sulfide	2	0	2	8	0	8	0	0	0	0	0	0	128.91828	128.979	0.00047
$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~S}$	Diisopentyl sulfide	2	0	4		2	2	6	0	0	0	0	0	129.06340	129.151	0.00068

Table 15.158. The bond angle parameters of alkyl sulfides and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is $E_{7}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$.

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \begin{array}{c} \text { Bond } 2 \\ \left(a_{0}\right) \end{array} \end{gathered}$	$2 c^{\prime}$ Terminal Atoms $\left(a_{0}\right)$	$E_{\text {Coulombic }}$ Atom 1	Atom 1 Hybridization Designation (Table 15.3.A)	$\begin{aligned} & E_{\text {Conlomitic }} \\ & \text { Atom } \end{aligned}$	Atom 2 Hybridization Designation (Table 15.3.A)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{y} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Cal. } \theta \\ \left({ }^{\circ}\right) \\ \hline \end{array}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\begin{gathered} \angle C_{a} S C_{a} \\ (C-S(\mathrm{i})) \end{gathered}$	3.42910	3.42910	5.2173	-16.11722	12	-16.11722	12	0.84418	0.84418	1	1	1	0.84418	-1.85836				99.06	$\begin{gathered} 99.05 \\ \text { (dimethyl sulfide) } \end{gathered}$
$\begin{gathered} \angle C_{C} S C_{b} \\ (C-S(\mathrm{i})) \end{gathered}$	3.42910	3.42910	5.1381	$\begin{gathered} -15.75493 \\ \text { methyl } \\ C_{a} \end{gathered}$	7	$\begin{aligned} & -16.66412 \\ & \text { methylene } \end{aligned}$ C_{b}	26	0.86359	0.81549	1	1	1	0.83954	-1.85836				97.04	$\begin{gathered} 97 \\ \text { (ethyl methyl sulfide) } \end{gathered}$
$\begin{gathered} \angle S C_{a} C_{b} \\ (C-S(i i)) \end{gathered}$	3.42910	2.91547	5.3364	-10.36001	s	-16.27490	16	$\begin{aligned} & 0.64965 \\ & (\text { Eq9. } \\ & (15.146)) \end{aligned}$	0.83600	1	$\begin{gathered} 0.64966 \\ (\text { EqG } \\ (15.146)) \end{gathered}$	1	0.74282	-0.72457				114.27	$\begin{gathered} 114.0 \\ \text { (ethyl methyl sulfide) } \end{gathered}$
Methylene $\angle H C_{a} H$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} 107 \\ \text { (propane) } \end{gathered}$
$\angle C_{a} C_{b} C_{c}$															69.51			110.49	112 (propane) 113.8 (butane) 110.8 (isobutane)
$\angle C_{a} C_{b} H$															69.51			110.49	$\begin{gathered} 111.0 \\ \text { (butane) } \\ 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	109.3(dimethys sulfide) 10 (ethyl methyl sulfide)
$\angle C_{a} C_{b} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b} H$															70.56			109.44	
$\begin{aligned} & \angle C_{b} C_{a} C_{c} c_{c} \\ & \text { iso } C_{a} \end{aligned}$	2.91547	2.91547	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	$\begin{gathered} -16.68412 \\ C_{c} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				110.67	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\begin{gathered} \angle C_{C_{C} C_{a} H} H \\ \text { iso } C_{a} \end{gathered}$	2.91547	2.11323	4.1633	$\begin{gathered} -15.55033 \\ C_{a} \end{gathered}$	5	$\begin{array}{\|c} -14.82575 \\ C_{b} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{gathered} \angle C_{a} C_{C} H \\ \text { iso } C_{a} \\ \hline \end{gathered}$	2.91547	2.09711	4.1633	$\begin{gathered} -15.55033 \\ C_{b} \\ \hline \end{gathered}$	5	$\begin{array}{\|c} \hline-14.82575 \\ C_{a} \\ \hline \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	$\begin{gathered} 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \angle C_{b} C_{a} C_{b}, \\ & \text { tert } C_{a} \\ & \hline \end{aligned}$	2.90327	2.90327	4.7958	$\begin{gathered} \hline-16.68412 \\ C_{b} \end{gathered}$	26	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				111.37	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\angle C_{b} C_{a} C_{d}$															72.50			107.50	

DISULFIDES ($\left.C_{n} H_{2 n+2} S_{2 m}, \quad n=2,3,4,5 \ldots \infty\right)$

The alkyl disulfides, $C_{n} H_{2 n+2} S_{2 m}$, comprise $C-S$ and $S-S$ functional groups. The alkyl portion of the alkyl disulfide may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in disulfides are equivalent to those in branched-chain alkanes.

Each $C-S$ group is equivalent to that of general alkyl sulfides given in the corresponding section. As in the case of thiols and sulfides, C_{2} of Eq. (15.61) for the $C-S$-bond MO given by Eq. (15.146) is $C_{2}\left(C 2 s p^{3} H O\right.$ to S$)=0.64965$ and $E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)$ is -0.72457 eV (Eq. (14.151)).

The $S-S$ group is solved as an H_{2}-type-ellipsoidal-MO that is energy matched to the energy of sulfur, $E(S)=-10.36001 \mathrm{eV}$, such that $E(A O / H O)=-10.36001 \mathrm{eV}$ in Eq. (15.51) with $E_{T}(A O / H O)=E(A O / H O)$. The $S-S-$ bond MO is further energy matched to the $C 2 s p^{3} \mathrm{HO}$ of the $C-S$-bond MO. C_{2} of Eq. (15.61) for the S-S -bond MO given by Eq. (15.146) is also $C_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to S$)=0.64965$. In order to match $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} \cdot A O\right)$ of the $C-S$ group $\left(-0.72457 \mathrm{eV}\right.$ (Eq. (14.151))), $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $S-S$-bond MO is determined using a linear combination of the AOs corresponding to -0.72457 eV and 0 eV in Eq. (15.29), Eq. (15.31), and Eqs. (15.19-15.20). The result corresponding to bond order 1/2I in Table 15.2 is $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)=-0.36229 \mathrm{eV}$.

The symbols of the functional groups of branched-chain alkyl disulfides are given in Table 15.159. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl disulfides are given in Tables 15.160, 15.161, and 15.162, respectively. The total energy of each alkyl disulfide given in Table 15.163 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.162 corresponding to functionalgroup composition of the molecule. E_{mag} given by Eq. (15.67) was subtracted for each t-butyl group. The bond angle parameters of alkyl disulfides determined using Eqs. (15.88-15.117) are given in Table 15.164. The color scale, translucent view of the charge-density of exemplary disulfide, dimethyl disulfide, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.27.

Figure 15.27. Color scale, translucent view of the charge-density of dimethyl disulfide showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.159. The symbols of functional groups of alkyl disulfides.

Functional Group	Group Symbol
C-S	$C-S$
S-S	$S-S$
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to t - C)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.160. The geometrical bond parameters of alkyl disulfides and experimental values [1].

Parameter	$\begin{gathered} C-S \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & S-S \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & \mathrm{C-H} \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(c) \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C(\mathrm{~d}) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.90975	2.37173	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.71455	1.91070	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
Bond Length $2 c^{\prime}(A)$	1.81460	2.02220	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$\begin{gathered} 1.816 \\ \text { (dimethyl disulfide) } \end{gathered}$	$\begin{gathered} 2.029 \\ \text { (dimethyl disulfide) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$			1.532 (propane) 1.531 (butane)	1.532 (propane) 1.531 (butane)		1.532 (propane) 1.531 (butane)
$b, c\left(a_{0}\right)$	0.84112	1.40510	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.89778	0.80562	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.161. The MO to HO intercept geometrical bond parameters of alkyl disulfides. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is E_{T} (atom - atom,msp ${ }^{3}$. $A O$).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 1$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 2$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 3$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	\qquad	$\begin{aligned} & r_{\text {mprual }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {spal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coulumb) }} \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	${ }^{\circ}$)	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\begin{array}{\|l\|} \hline R S-S R \\ (C-S \text { (i) and (ii) }) \\ \hline \end{array}$	S	-0.36229	-0.18114	0	0		1.32010	0.88527	-15.36918		94.25	85.75	38.93	1.84513	0.06558
$\mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{SS}-\mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{R}$	C_{a}	-0.36229	0	0	0	-151.97798	0.91771	0.89582	-15.18804	-14.99717	130.79	49.21	53.75	1.12937	0.58518
$\begin{aligned} & \hline \mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{SS}-\mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{R} \\ & (\mathrm{C}-\mathrm{S}(\mathrm{i})) \end{aligned}$	C_{b}	-0.36229	-0.92918	0	0	-152.90716	0.91771	0.84418	-16.11722	-15.92636	128.69	51.31	51.57	1.18689	0.52765
	C_{c}	-0.36229	-0.72457	-0.72457	-0.72457	-154.15170	0.91771	0.78367	-17.36176	-17.17090	125.97	54.03	48.94	1.25430	0.46025
$\mathrm{C-H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C}-\mathrm{H}(\mathrm{CH})$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \\ & \hline \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \\ & \hline \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & \mathrm{R}-\mathrm{H}_{2} \mathrm{C}_{a} \mathrm{C}_{\mathrm{b}}\left(\mathrm{H}_{2} \mathrm{C}_{\mathrm{c}}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-H_{2} C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) C H_{2}- \\ & (C-C(c)) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & i s O_{a} C_{b}\left(\mathrm{H}_{2} \mathrm{C}_{\mathrm{c}}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C} \text { (d) }) \\ & \hline \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\operatorname{teriC} C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}_{(C-C(\mathrm{e}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & \text { teri. } C_{a} C_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f})) \\ & \hline \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & {i s o C_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) \mathrm{C}_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{f}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15．162．The energy parameters (eV) of functional groups of alkyl disulfides．

	－	－	－	\cdots	－	－	$\frac{\stackrel{\rightharpoonup}{N}}{\hat{O}}$	－	\sim	0 \％	－			$\begin{aligned} & 8.0 \\ & \text { ò } \\ & \text { in } \end{aligned}$		$\left\lvert\, \begin{gathered} o \\ 0 \\ 0 \\ \hat{n} \\ \end{gathered}\right.$	－	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & n \\ & n \\ & \end{aligned}$			$\underset{\substack{\text { N} \\ \hline \multirow{2}{c}{\hline \multirow{2}{*}{\hline}}\\ \hline \multirow {2} { * } \\ \hline}}{2}$	$\begin{gathered} \underset{\sim}{\hat{N}} \\ \stackrel{\sim}{n} \end{gathered}$	Cotict	$\begin{aligned} & 0 \\ & \frac{1}{0} \\ & \frac{1}{9} \\ & \hline \end{aligned}$	$\frac{\pi}{2} \frac{\pi}{0}$	$\begin{gathered} \stackrel{0}{i} \\ \stackrel{0}{6} \\ \stackrel{i}{i} \end{gathered}$		$\begin{gathered} \underset{\sim}{\underset{\sim}{n}} \\ \underset{\sim}{\infty} \\ \underset{\sim}{2} \end{gathered}$		－$\frac{\pi}{\frac{\pi}{2}}$
	$-$	0	\bigcirc	\％	－	$-\frac{1}{t}$	$\frac{\underset{i}{i}}{\underset{O}{\circ}}$	－	\sim	0 \％	\％						\bigcirc		$\frac{n_{n}^{n}}{\substack{2}}$			$\begin{aligned} & \text { ?⿳士口䒑口力} \\ & \stackrel{n}{n} \end{aligned}$		$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & \hline 1 \\ & \hline \end{aligned}$	$\frac{\pi}{\pi} \frac{\pi}{0}$	$\begin{gathered} \stackrel{0}{0} \\ \hline-1 \\ \hline i \end{gathered}$		$\begin{gathered} \underset{\sim}{\infty} \\ \underset{\sim}{\infty} \\ \underset{\sim}{n} \end{gathered}$		
	$-$	－	－	\％			$\frac{\mathrm{E}}{2}$	－	N	－＇2	\bigcirc					$\begin{array}{\|c} \stackrel{0}{4} \\ \stackrel{y}{6} \\ \stackrel{n}{2} \end{array}$	\bigcirc		$\begin{aligned} & \hat{n} \\ & \hat{N} \\ & \overline{9} \end{aligned}$	〒	$\underset{\sim}{\kappa}$			$\stackrel{0}{i}$	$\frac{\square}{2} \frac{1}{2}$	$\begin{gathered} \hat{2} \\ \frac{2}{i} \\ \vdots \end{gathered}$	$$	$\underset{\substack{n \\ \\ \\ \\ \hline}}{ }$	$\stackrel{\infty}{\infty}$	$\bigcirc \frac{\substack{\pi \\ \\ 7}}{}$

Table 1

	－	－	\bigcirc	会	－		$\frac{\underset{N}{\hat{N}}}{\stackrel{\rightharpoonup}{\circ}}-$	－	－－	$-\underset{0}{0}$	－	$\left\|\begin{array}{c} n \\ 0 \\ \vdots \\ \cdots \\ c \\ c \end{array}\right\|$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{\infty} \\ & \stackrel{\text { d }}{ } \end{aligned}$			－	$\begin{gathered} \stackrel{\rightharpoonup}{\mathbf{o}} \\ \stackrel{c}{6} \\ \stackrel{+}{1} \end{gathered}$					$\begin{aligned} & \stackrel{\rightharpoonup}{9} \\ & \frac{1}{2} \\ & i n \end{aligned}$				$\left\lvert\, \begin{gathered} \hat{N} \\ \stackrel{N}{2} \\ \underset{\sim}{r} \end{gathered}\right.$			$\begin{array}{\|c} \underset{0}{0} \\ \underset{\sim}{2} \\ \text { nj } \end{array}$
気苞		－	\bigcirc	N	－		$\frac{\bar{E}}{\hat{O}}-$	－－	－	\sim	－	$\begin{aligned} & \text { N } \\ & \underset{7}{7} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{d} \end{aligned}$			\bigcirc	$\begin{aligned} & \hat{0} \\ & \stackrel{\rightharpoonup}{n} \\ & \underset{n}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\dot{G}} \end{aligned}$	－		$\underset{\sim}{c}$	$\begin{gathered} \bar{\infty} \\ \stackrel{1}{2} \\ \dot{2} \end{gathered}$	$\begin{aligned} & \hat{y} \\ & 0 \\ & \\ & i \end{aligned}$		$\begin{aligned} & \text { n} \\ & \frac{\vdots}{\substack{0}} \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \underset{寸}{2} \end{aligned}$			$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ \end{array}$
気 榢	m	N	－	N	－	$-$	$\frac{\vec{N}}{\hat{a}}$	－－	－	\cdots	－		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\circ} \\ & \underset{\sim}{\infty} \end{aligned}$			－	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{n}{n} \\ & \end{aligned}$	－	－		ざ	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	N N Ǹ N		$$			$\begin{aligned} & \text { } \\ & \underset{\sim}{2} \\ & \vdots \\ & \\ & \end{aligned}$	$\xrightarrow{\circ}$

$\begin{aligned} & \sin \\ & n_{0}^{\circ} \end{aligned}$	－		－	$\stackrel{n}{6}$	$$	－	－	－	\sim	－		－	$\frac{n}{\underset{d}{d}}$	$\begin{gathered} 0 \\ \underset{\sim}{2} \\ \end{gathered}$	$\begin{array}{\|c} \stackrel{\rightharpoonup}{\mathrm{A}} \\ \underset{0}{0} \end{array}$	$\begin{gathered} \infty \\ \stackrel{\infty}{c} \\ \stackrel{6}{6} \end{gathered}$	－	\bigcirc	$\begin{aligned} & \bar{\circ} \\ & \stackrel{0}{2} \\ & \stackrel{1}{\top} \end{aligned}$		$\begin{aligned} & \text { त్త్రి } \\ & \text { గి, } \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{y}{4} \\ & 6 . \end{aligned}$	－	－						$\stackrel{\square}{1}$	

$\begin{aligned} & \text { En } \\ & \text { in } \\ & \text { it } \end{aligned}$	－	\bigcirc	－	\％	O	－	－	\bigcirc	\sim	\bigcirc	\cdots	－	＋	$\stackrel{\stackrel{\sim}{\aleph}}{\stackrel{\sim}{2}}$	－	－					－	$\begin{aligned} & \underset{\rightharpoonup}{t} \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{\rightharpoonup}{c} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{f} \\ & \text { 管 } \end{aligned}$	等					－			

Table 15.163 . The total bond energies of alkyl disulfides calculated using the functional group composition and the energies of Table 15.162 compared to the experimental values [3]. The magnetic energy $E_{\text {mag }}$ that is subtracted from the weighted sum of the E_{D} (Group) (eV) values based on composition is given by (15.58).
 Error

-0.00199
0.00129
0.00068
-0.00072 Total Bond Total Bond nergy (eW
34.413
58.873
83.169
1.7 .8
Table 15.164. The bond angle parameters of alkyl disulfides and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \begin{array}{c} \text { Bond } \\ \left(a_{0}\right) \end{array} \end{gathered}$	$2 c^{\prime}$ Terminal Atoms $\left(a_{0}\right)$	$E_{\text {Countance }}$ Atom 1		$\begin{aligned} & E_{\text {Coutombic }} \text { Atom 2 } \end{aligned}$	Atom 2Hybridization Designation(Table 15.3.A)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	c_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{aligned} & E_{T} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\angle \mathrm{HC} \mathrm{a}_{\text {H }}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle S C_{a} H$															70.56			109.44	$\begin{gathered} 111.3 \\ \text { (dimethyl disulfide) } \end{gathered}$
$\angle H C_{a} S$	2.09711	3.42910	4.6220	$\begin{gathered} -15.55033 \\ C_{e} \end{gathered}$	5	$\begin{array}{\|r} -10.36001 \\ S \end{array}$	s	0.87495	$\begin{gathered} 0.76144 \\ (\text { (Eq. } \\ (15.145)) \end{gathered}$	0.75	$\begin{aligned} & 0.76144 \\ & (5.4 \\ & 15.145)) \end{aligned}$	0.75	0.87026	0				111.22	$\begin{gathered} 111.3 \\ \text { (dimethyl disulfide) } \end{gathered}$
$\angle S S C{ }_{a}$	3.82141	3.42910	5.7017	$\stackrel{-10.36001}{S}$	S	$\begin{array}{\|c} \hline-14.82575 \\ C_{a} \\ \hline \end{array}$	1	$\begin{gathered} 0.64965 \\ \begin{array}{c} \text { (1Eq. } \\ (15.146)) \end{array} \\ \hline \end{gathered}$	0.91771	1	$\begin{gathered} 0.64965 \\ \left(\begin{array}{c} 9 \\ (15.146)) \end{array}\right. \end{gathered}$	1	0.78368	-0.72457				103.57	$\begin{gathered} 103.2 \\ \text { (dimethyl disulfide) } \\ \hline \end{gathered}$
$\begin{aligned} & \text { Methylene } \\ & \angle H C_{a} H \end{aligned}$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} 107 \\ \text { (propane) } \\ \hline \end{gathered}$
$\angle C_{a} C_{b} C_{c}$															69.51			110.49	$\begin{gathered} 112 \\ \text { (propane) } \\ 113.8 \\ \text { (butane) } \\ \text { (ition. } \\ \text { (isobutane) } \end{gathered}$
$\angle C_{a} C_{b} H$															69.51			110.49	$\begin{gathered} 111.0 \\ \text { (butane) } \\ 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{a} C_{b} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b} H$															70.56			109.44	
$\begin{aligned} & \angle C_{b} C_{a} C_{c} \\ & \text { iso } C_{a} \end{aligned}$	2.91547	2.91547	4.7958	$\begin{array}{\|c} -16.68412 \\ C_{t} \end{array}$	26	$\begin{array}{\|c} -16.68412 \\ C_{c} \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				110.67	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\begin{gathered} \angle C_{b} C_{a} H \\ \text { iso } C_{a} \\ \hline \end{gathered}$	2.91547	2.11323	4.1633	$\begin{gathered} -15.55033 \\ C_{e} \end{gathered}$	5	$\begin{gathered} -14.82575 \\ C_{b} \end{gathered}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{aligned} & \angle C_{a} C_{b} H \\ & \text { iso } C_{a} \\ & \hline \end{aligned}$	2.91547	2.09711	4.1633	$\begin{array}{\|l\|} \hline-15.55033 \\ C_{t} \end{array}$	5	$\begin{array}{\|l\|} \hline-14.82575 \\ C_{a} \\ \hline \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	$\begin{gathered} 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \angle C_{b} C_{a} C_{b} C_{b} \\ & \operatorname{tert} C_{a} \end{aligned}$	2.90327	2.90327	4.7958	$\begin{gathered} -16.68412 \\ C_{k} \end{gathered}$	26	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				111.37	$\begin{aligned} & 110.8 \\ & \text { (isobutane) } \end{aligned}$
$\angle C_{b} C_{a} C_{d}$															72.50			107.50	

SULFOXIDES ($\left.C_{n} H_{2 n+2}(S O)_{m}, \quad n=2,3,4,5 \ldots \infty\right)$
The alkyl sulfoxides, $C_{n} H_{2 n+2}(S O)_{m}$, comprise a $C-S O-C$ moiety that comprises $C-S$ and $S O$ functional groups. The alkyl portion of the alkyl sulfoxide may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $C-C$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isop.ropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in sulfoxides are equivalent to those in branched-chain alkanes.

The electron configuration of oxygen is $1 s^{2} 2 s^{2} 2 p^{4}$, and the orbital arrangement given by Eq. (10.154) has two unpaired electrons corresponding to the ground state ${ }^{3} P_{2}$. The $S O$ functional group comprises a double bond between the two unpaired electrons of O. The sulfur atom is energy matched to the $C 2 s p^{3} \mathrm{HO}$. In alkyl sulfoxides, the $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)), and the S AO has an initial energy of $E(S)=-10.36001 \mathrm{eV}$ [38]. To meet the equipotential condition of the union of the $S=O \quad H_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor c_{2} of Eq. (15.61) for the $S=O$-bond MO given by Eqs. (15.77) and (15.79) is:

$$
\begin{equation*}
c_{2}\left(O \text { to } S 3 s p^{3} \text { to } C 2 s p^{3} H O\right)=\frac{E(O)}{E(S)} c_{2}\left(C 2 s p^{3} H O\right)=\frac{-13.61806 \mathrm{eV}}{-10.36001 \mathrm{eV}}(0.91771)=1.20632 \tag{15.147}
\end{equation*}
$$

The S atom also forms a single bond with each of the $C 2 s p^{3}$ HOs of the two $C-S$ groups. The formation of these bonds is permitted by the hybridization of the four electrons of the $S 3 p$ shell to give the orbital arrangement:

$$
3 \mathrm{sp}^{3} \text { state }
$$

$$
\begin{equation*}
\frac{\uparrow}{0,0} \frac{\uparrow}{1,-1} \frac{\uparrow}{1,0} \quad \frac{\uparrow}{1,1} \tag{15.148}
\end{equation*}
$$

where the quantum numbers (ℓ, m_{ℓ}) are below each electron. The $3 s$ shell remains unchanged. Then, the Coulombic energy $E_{\text {Coulomb }}\left(S, 3 s p^{3}\right)$ of the outer electron of the $S 3 s p^{3}$ shell given by Eq. (15.137) with $r_{3 s p^{3}}=1.17585 a_{0}$ (Eq. (15.138)) is -11.57099 eV . Using Eq. (15.16) with the radius of the sulfur atom $r_{16}=1.32010 a_{0}$ given by Eq. (10.341), the energy $E\left(S 3 s p^{3}\right)$ of the outer electron of the $S 3 s p^{3}$ shell is given by the sum of $E_{\text {Coulomb }}\left(S 3 s p^{3}\right)$ and E (magnetic):

$$
\begin{align*}
E\left(S 3 s p^{3}\right) & =\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{3 s p^{3}}}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2} r_{16}^{3}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} 1.17585 a_{0}}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}\left(1.32010 a_{0}\right)^{3}} \tag{15.149}\\
& =-11.57099 \mathrm{eV}+0.04973=-11.52126 \mathrm{eV}
\end{align*}
$$

Then, the hybridization energy $E_{\text {hbbridiacaion }}\left(S 3 s p^{3}\right)$ of the $S 3 s p^{3} \mathrm{HO}$ is

$$
\begin{equation*}
E_{\text {hbbridiataion }}\left(S 3 s p^{3}\right)=E\left(S 3 s p^{3}\right)-E(S)=-11.52126 \mathrm{eV}-10.36001 \mathrm{eV}=-1.16125 \mathrm{eV} \tag{15.150}
\end{equation*}
$$

The $S O$ group is matched to the $C-S$ group with which it shares the common hybridized S atom. Consequently, $E_{\text {hybridiation }}\left(S 3 s p^{3}\right)$ is subtracted from $E_{T}($ Group $)$ in the determination of $E_{D}($ Group $)$ (Eq. (15.65)). Furthermore, the energy of the $S=O$-bond MO is the sum of the component energies of the H_{2}-type ellipsoidal MO given in Eq. (15.51) with the energy matched to the final energy of the hybridized S atom such that $E(A O / H O)=E\left(S 3 s p^{3}\right)=-11.52126 \mathrm{eV}$ and $\Delta E_{\mathrm{H}_{2} M O}$ $(A O / H O)=E_{\text {hobridization }}\left(S 3 s p^{3}\right)=-1.16125 \mathrm{eV}$. Then, $E_{T}(A O / H O)=E(S)=-10.36001 \mathrm{eV}$. Also, $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$ of the $S=O$ bond is zero since there are no bonds with a $C 2 s p^{3}$ HO.

The $C-S$ group is solved as an energy minimum by hybridizing the $2 s$ and $2 p$ AOs of the C atom to form a single $2 s p^{3}$ shell and by hybridizing the four $S 3 p$ electrons to form a $S 3 s p^{3}$ shell, and the sharing of electrons between the $C 2 s p^{3}$ HO and the $S 3 s p^{3}$ HO to form a MO permits each participating orbital to decrease in radius and energy. Using the Coulombic energy of the $S 3 s p^{3}$ shell, $E_{\text {Coulomb }}\left(S 3 s p^{3}\right)$ given by Eq. (15.139) in Eq. (15.72), the $S 3 s p^{3}$-shell hybridization factor, $c_{2}\left(S 3 s p^{3}\right)$, is:

$$
\begin{equation*}
c_{2}\left(S 3 s p^{3}\right)=\frac{E_{\text {Coulomb }}\left(S 3 s p^{3}\right)}{E(H)}=\frac{-11.57099 \mathrm{eV}}{-13.60580 \mathrm{eV}}=0.85045 \tag{15.151}
\end{equation*}
$$

As in the case of thiols, sulfides, and disulfides, the energy of sulfur is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264). Thus, c_{1} and c_{2} are equal to one in Eq. (15.61), and the energy matching condition is determined by the C_{2} parameter. In alkyl sulfoxides, the $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)) and the $S 3 s p^{3} \mathrm{HO}$ has an energy of $E\left(S 3 s p^{3}\right)=-11.52126 \mathrm{eV}$ (Eq. (15.149)). To meet the equipotential condition of the union of the $C-S H_{2}$-type-ellipsoidalMO with these orbitals, the hybridization factor C_{2} of Eq. (15.61) for the $C-S$-bond MO given by Eqs. (15.77) and (15.79) is:

$$
\begin{equation*}
C_{2}\left(C 2 s p^{3} H O \text { to } S 3 s p^{3}\right)=\frac{E\left(S 3 s p^{3}\right)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(S 3 s p^{3}\right)=\frac{-11.52126 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.85045)=0.66951 \tag{15.152}
\end{equation*}
$$

As in the case of thiols, sulfides, and disulfides, with the energy of S matched to the Coulombic energy between the electron and proton of H, the energy of the $C-S$-bond MO is the sum of the component energies of the H_{2}-type ellipsoidal MO given in Eq. (15.51) with $E(A O / H O)=0$ and $E_{T}(A O / H O)=\Delta E_{H_{2} M O}(A O / H O)$. For sulfoxides, $\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(\mathrm{AO} / \mathrm{HO})=-0.72457 \mathrm{eV}$. Further equivalently, $E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} . A O\right)=-0.72457 \mathrm{eV}$ (Eq. (14.151)).

The symbols of the functional groups of branched-chain alkyl sulfoxides are given in Table 15.165. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl sulfoxides are given in Tables $15.166,15.167$, and 15.168 , respectively. Consider that the $C-S$ bond is along the x axis in the xy-plane. The S nucleus is at the focus +c and the C nucleus is at the focus -c . The elliptic angle θ^{\prime} is taken as counterclockwise from the x-axis for S and as clockwise from the -x-axis for C. The total energy of each alkyl sulfoxide given in Table 15.169 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.168 corresponding to functional-group composition of the molecule. The bond angle parameters of alkyl sulfoxides determined using Eqs. (15.8815.117) are given in Table 15.170. The color scale, translucent view of the charge-density of exemplary sulfoxide, dimethyl sulfoxide, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.28.

Figure 15.28. (A)-(B) Color scale, translucent views of the charge-density of dimethyl sulfoxide showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

0

Table 15.165. The symbols of functional groups of alkyl sulfoxides.

Functional Group	Group Symbol
C-S	$C-S$
SO	SO
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to t - C)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.166. The geometrical bond parameters of alkyl sulfoxides and experimental values [1].

Parameter	$\begin{aligned} & C-S \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \text { SO } \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(a) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (c) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(d) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.87325	1.98517	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.67271	1.40896	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.77031	1.49118	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$\begin{gathered} 1.799 \\ \text { (dimethyl sulfoxide) } \end{gathered}$	1.485 (dimethyl sulfoxide)	$\begin{gathered} 1.107 \\ (\mathrm{C}-H \text { propane }) \\ 1.117 \\ (\mathrm{C}-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	1.532 (propane) 1.531 (butane)				1.532 (propane) 1.531 (butane)	1.532 (propane) 1.531 (butane)
$b, c\left(a_{0}\right)$	0.84328	1.39847	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.89294	0.70974	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.167. The MO to HO intercept geometrical bond parameters of alkyl sulfoxides. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom,msp $\left.{ }^{3} . A O\right)$.

Bond	Atom	$\begin{gathered} E_{r_{r}}^{(e v)} \\ \text { (evend } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{r} \\ \text { (eV) } \\ \text { (ond } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	$\begin{gathered} \hline \text { Final Total } \\ \text { Energy } \\ C 2 s p^{3} \\ (\mathrm{eV}) \\ \hline \end{gathered}$	$\left(\begin{array}{l} r_{\text {manal }} \\ \left(a_{0}\right) \end{array}\right.$	$\begin{aligned} & r_{\text {malal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {calomen }} \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ \text { (ev) } \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$R_{2} S=O$	s	0	-0.36229	-0.36229	0		1.32010	0.87495	-15.55033		79.78	100.22	38.00	1.56425	0.15529
$R_{2} S=O$	o	0	0	0	0		1.00000	0.91771	-14.82575		84.06	95.94	40.75	1.50400	0.09504
$\mathrm{R}_{2}-\mathrm{SO}$	s	-0.36229	-0.36229	0	0		1.32010	0.87495	-15.55033		129.35	50.65	53.36	1.11799	0.55472
$\mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{S}(\mathrm{O})-\mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{R}$	C_{a}	-0.36229	0	0	0	-151.97798	0.91771	0.89582	-15.18804	-14.99717	130.19	49.81	54.24	1.09461	0.57809
$\mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{SO}(\mathrm{O})-\mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{R}$	C_{b}	-0.36229	-0.92918	0	0	-152.90716	0.91771	0.84418	-16.11722	-15.92636	128.05	51.95	52.03	1.15245	0.52026
$\mathrm{C-H}\left(\mathrm{CH}_{3}\right)$	c	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{CH}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	c	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}(\mathrm{CH})$	c	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{C} H_{C} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-H_{2} C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C(b)) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-H_{2} C_{C}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (C-C(\mathrm{c})) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { isoC } C_{b}\left(H_{H} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C(d)) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & \operatorname{tertC_{a}(R^{\prime }-H_{2}C_{d})C_{b}(R^{\prime \prime }-H_{2}C_{c})\mathrm {CH}_{2}-} \\ & (\mathrm{C}-\mathrm{C}(\mathrm{e})) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & \text { teri } C_{a} C_{0}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C(f)) \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\operatorname{isoC}_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-$ $(C-C(f))$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.169. The total bond energies of alkyl sulfoxides calculated using the functional group composition and the energies of Table 15.168 compared to the experimental values [3].

DIMETHYL SULFOXIDE DIHEDRAL ANGLE

The dihedral angle $\theta_{\angle S=O / C S C}$ between the plane defined by the CSC MO comprising a linear combination of two $S-C$-bond MOs and a line defined by the $S=O$-bond MO where S is the central atom is calculated using the results given in Table 15.170 and Eqs. (15.114-15.117). The distance d_{1} along the bisector of $\theta_{\angle C S C}$ from S to the internuclear-distance line between C and $C, 2 c^{\prime}{ }_{C-C}$, is given by:

$$
\begin{equation*}
d_{1}=2 c^{\prime}{ }_{S-C} \cos \frac{\theta_{\angle C S C}}{2}=4.9800 a_{0} \cos \frac{96.20^{\circ}}{2}=2.23423 a_{0} \tag{15.153}
\end{equation*}
$$

where $2 c^{\prime}{ }_{S-C}$ is the internuclear distance between S and C. The atoms C, C, and O define the base of a pyramid. Then, the pyramidal angle $\theta_{\angle C O C}$ can be solved from the internuclear distances between C and $C, 2 c^{\prime}{ }_{C-C}$, and between C and O, $2 c^{\prime}{ }_{C-O}$, using the law of cosines (Eq. (15.115)):

Then, the distance d_{2} along the bisector of $\theta_{\angle C O C}$ from O to the internuclear-distance line $2 c^{\prime}{ }_{C-C}$, is given by:

$$
\begin{equation*}
d_{2}=2 c^{\prime}{ }_{C-O} \cos \frac{\theta_{\angle C O C}}{2}=4.95984 a_{0} \cos \frac{60.27^{\circ}}{2}=4.28952 a_{0} \tag{15.155}
\end{equation*}
$$

The lengths d_{1}, d_{2}, and $2 c^{\prime}{ }_{S=O}$ define a triangle wherein the angle between d_{1} and the internuclear distance between O and S, $2 c_{S=O}^{\prime}$, is the dihedral angle $\theta_{\angle S=O / C S C}$ that can be solved using the law of cosines (Eq. (15.117)).

$$
\begin{equation*}
\theta_{\angle S=O / C S C}=\cos ^{-1}\left(\frac{d_{1}^{2}+\left(2 c_{S=O}^{\prime}\right)^{2}-d_{2}^{2}}{2 d_{1}\left(2 c_{S=O}^{\prime}\right)}\right)=\cos ^{-1}\left(\frac{(2.23423)^{2}+(2.81792)^{2}-(4.28952)^{2}}{2(2.23423)(2.81792)}\right)=115.74^{\circ} \tag{15.156}
\end{equation*}
$$

The experimental [1] dihedral angle $\theta_{\angle S=O / C S C}$ is

$$
\begin{equation*}
\theta_{\angle S=O / C S C}=115.5^{\circ} \tag{15.157}
\end{equation*}
$$

SULFONES ($\left.C_{n} H_{2 n+2}\left(S O_{2}\right)_{m}, n=2,3,4,5 \ldots \infty\right)$
The alkyl sulfones, $\mathrm{C}_{n} \mathrm{H}_{2 n+2}\left(\mathrm{SO}_{2}\right)_{m}$, comprise a $\mathrm{C}-\mathrm{SO}_{2}-\mathrm{C}$ moiety that comprises $\mathrm{C}-\mathrm{S}$ and SO_{2} functional groups. The alkyl portion of the alkyl sulfone may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $\mathrm{C}-\mathrm{C}$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in sulfones are equivalent to those in branched-chain alkanes.

The two unpaired electrons of each O atom form a MO with two unpaired electrons of the sulfur atom such that the MO comprises a linear combination of two bonds, each of bond order two involving the sulfur HOs and oxygen AOs of both oxygen atoms. Due to the bonding between unpaired electrons of different oxygen atoms $E_{\text {mag }}$ (Eq. (15.68)) is subtracted from the total energy. Otherwise, the SO_{2}-bond MO of sulfones is solved in the same manner as the SO -bond MO of sulfoxides given in the corresponding section wherein n_{1} in Eqs. (15.51) and (15.61) is four versus two. Also, the $C-S$-bond MO is equivalent to that of sulfoxides having $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)=-0.72457 \mathrm{eV}$ (Eq. (14.151)).

The symbols of the functional groups of branched-chain alkyl sulfones are given in Table 15.171. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl sulfones are given in Tables $15.172,15.173$, and 15.174 , respectively. The total energy of each alkyl sulfone given in Table 15.165 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.174 corresponding to functional-group composition of the molecule. The bond angle parameters of alkyl sulfones determined using Eqs. (15.88-15.117) are given in Table 15.176. The color scale, translucent view of the charge-density of exemplary sulfone, dimethyl sulfone, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.29.

Figure 15.29. (A)-(B) Color scale, translucent views of the charge-density of dimethyl sulfone showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.171. The symbols of functional groups of alkyl sulfones.

Functional Group	Group Symbol
C-S	$C-S$
SO_{2}	SO_{2}
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
CC (iso to iso-C)	$C-C$ (d)
$C C$ (t to $t-C$)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.172. The geometrical bond parameters of alkyl sulfones and experimental values [1]

Parameter	$\begin{aligned} & C-S \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{SO}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\text { a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(b) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(d) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.87325	1.85851	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.67271	1.36327	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond } \\ & \text { Length } \end{aligned}$ $2 c^{\prime}(A)$	1.77031	1.44282	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$\begin{gathered} 1.771 \\ \text { (dimethyl sulfone) } \end{gathered}$	1.435 (dimethyl sulfone)	$\begin{gathered} 1.107 \\ (\mathrm{C}-H \text { propane }) \\ 1.117 \\ (\mathrm{C}-\mathrm{H} \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (\mathrm{C}-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$
$b, c\left(a_{0}\right)$	0.84328	1.26315	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.89294	0.73353	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.173. The MO to HO intercept geometrical bond parameters of alkyl sulfones. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(a t o m-a t o m, m s p^{3} . A O\right)$.

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {mprual }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {fral }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coulumb } h} \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$R_{2}(O) S=O$	S	0	0	-0.36229	-0.36229		1.32010	0.87495	-15.55033		91.47	88.53	43.82	1.34086	0.02242
$R_{2}(O) S=O$	O	0	0	0	0		1.00000	0.91771	-14.82575		95.05	84.95	46.36	1.28256	0.08071
$\mathrm{R}_{2}-\mathrm{SO}$	S	-0.36229	-0.36229	0	0		1.32010	0.87495	-15.55033		129.35	50.65	53.36	1.11799	0.55472
$\mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{S}(\mathrm{O})-\mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{R}$	C_{a}	-0.36229	0	0	0	-151.97798	0.91771	0.89582	-15.18804	-14.99717	130.19	49.81	54.24	1.09461	0.57809
$\mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{S}(\mathrm{O})-\mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{R}$	C_{b}	-0.36229	-0.92918	0	0	-152.90716	0.91771	0.84418	-16.11722	-15.92636	128.05	51.95	52.03	1.15245	0.52026
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C}-\mathrm{H}(\mathrm{CH})$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \hline \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \\ & \hline \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \\ & \hline \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & \mathrm{R}-\mathrm{H}_{2} \mathrm{C}_{\mathrm{a}} \mathrm{C}_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-\mathrm{H}_{2} \mathrm{C}_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) \mathrm{C}_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{c})) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { isoC } C_{a} C_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~d})) \\ & \hline \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\text { tert } C_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) \mathrm{C}_{n}\left(R^{\prime \prime}-\mathrm{H}_{2} C_{c}\right) \mathrm{CH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{e}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & {\text { terl } C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{f}))} \\ & \hline \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & \text { isoC }_{a}\left(R^{\prime}-\mathrm{H}_{2} \mathrm{C}_{d}\right) \mathrm{C}_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C} \text { (f) }) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.174. The energy parameters (eV) of functional groups of alkyl sulfones.

$C-C$ (f) Group
1
0
0
0.5
1
1
0.91771
0
2
0
0.5
1
-29.10112
9.37273
6.90500
-3.45250
-15.35946
0
-15.35946
-31.63535
-1.44915
-33.08452
9.55643
6.29021
-0.16416
0.12312
$[2]$
-0.10260
0.14803
-33.18712
-14.63489
0
3.91734

-14.63489
-13.59844
3.32601

Table 15.176 . The bond angle parameters of alkyl sulfones and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} \cdot A O\right)$.

SULFITES ($\left.\mathrm{C}_{n} \mathrm{H}_{2 n+2}\left(\mathrm{SO}_{3}\right)_{m}, n=2,3,4,5 \ldots \infty\right)$
The alkyl sulfites, $\mathrm{C}_{n} \mathrm{H}_{2 n+2}\left(\mathrm{SO}_{3}\right)_{m}$, comprise a $\mathrm{C}-\mathrm{O}-\mathrm{SO}-\mathrm{O}-\mathrm{C}$ moiety that comprises two types $\mathrm{C}-\mathrm{O}$ functional groups, one for methyl and one for alkyl, and $O-S$ and $S O$ functional groups. The alkyl portion of the alkyl sulfite may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene (CH_{2}), and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t -butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in sulfites are equivalent to those in branched-chain alkanes.

The $S O$ functional group is equivalent to that of sulfoxides with $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)=0$ as given in the Sulfoxides section. The methyl and alkyl $C-O$ functional groups having $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)=-1.44915 \mathrm{eV}$ and $E_{T}\left(\right.$ atom - atom,$\left.m s p^{3} . A O\right)=-1.65376 \mathrm{eV}$, respectively, are equivalent to the corresponding ether groups given in the Ethers section except for the energy terms corresponding to oscillation of the bond in the transition state.

The electron configuration of oxygen is $1 s^{2} 2 s^{2} 2 p^{4}$, and the orbital arrangement given by Eq. (10.154) has two unpaired electrons corresponding to the ground state ${ }^{3} P_{2}$. The $S O$ functional group comprises a double bond between the S atom and the two unpaired electrons of O. The S atom also forms single bonds with two additional oxygen atoms that are each further bound to methyl or alkyl groups. The first bond-order bonding in the $O-S$ groups is between the sulfur atom and a $O 2 p$ AO of each oxygen of the two bonds. The formation of these four bonds with the sulfur atom is permitted by the hybridization of the four electrons of the $S 3 p$ shell to give the orbital arrangement given by Eq. (15.148). Then, the Coulombic energy $E_{\text {Coulomb }}\left(S, 3 s p^{3}\right)$ of the outer electron of the $S 3 s p^{3}$ shell given by Eq. (15.139) with $r_{3 s p^{3}}=1.17585 a_{0}$ (Eq. (15.138)) is -11.57099 eV . Using Eq. (15.16) with the radius of the sulfur atom $r_{16}=1.32010 a_{0}$ given by Eq. (10.341), the energy $E\left(S 3 s p^{3}\right)$ of the outer electron of the $S 3 s p^{3}$ shell given by the sum of $E_{\text {Coulomb }}\left(S 3 s p^{3}\right)$ and E (magnetic) is $E\left(S 3 s p^{3}\right)=-11.52126 \mathrm{eV}$ (Eq. (15.149)).

Thus, the $O-S$ group is solved as an energy minimum by hybridizing the four $S 3 p$ electrons to form a $S 3 s p^{3}$ shell, and the sharing of electrons between the $O 2 p$ AO and the $S 3 s p^{3}$ HO to form a MO permits each participating orbital to decrease in radius and energy. As in the case of thiols, sulfides, disulfides, and sulfoxides, the energy of sulfur is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264). Thus, c_{1} and c_{2} are equal to one in Eq. (15.61), and the energy matching condition is determined by the C_{2} parameter. Each $C 2 s p^{3}$ HO has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)), and the S HO has an energy of $E\left(S 3 s p^{3}\right)=-11.52126 \mathrm{eV}$. To meet the equipotential condition of the union of the $\mathrm{O}-S \mathrm{H}_{2}$-type-ellipsoidal-MO with these orbitals with the oxygen that further bonds to a $C 2 s p^{3} \mathrm{HO}$, the hybridization factor C_{2} of Eq. (15.61) for the $O-S$-bond MO given by Eqs. (15.77) and (15.79) is:

$$
\begin{equation*}
C_{2}\left(S 3 s p^{3} \text { to } O \text { to } C 2 s p^{3} H O\right)=\frac{E\left(S, 3 s p^{3}\right)}{E(O, 2 p)} c_{2}\left(C 2 s p^{3} H O\right)=\frac{-11.52126 \mathrm{eV}}{-13.61806 \mathrm{eV}}(0.91771)=0.77641 \tag{15.158}
\end{equation*}
$$

As in the case of thiols, sulfides, disulfides, and sulfoxides, with the energy of S matched to the Coulombic energy between the electron and proton of H, the energy of the $O-S$-bond MO is the sum of the component energies of the H_{2}-type ellipsoidal MO given in Eq. (15.51) with $E(A O / H O)=0$ and $E_{T}(A O / H O)=\Delta E_{H_{2} N O}(A O / H O)$. For sulfites, $\Delta E_{H_{2} M O}(A O / H O)=-0.92918 \mathrm{eV}$ and equivalently, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)=-0.92918 \mathrm{eV}$ (Eq. (14.513)) due to the maximum energy match with the oxygen AO as in the case with carboxylic acid esters.
The symbols of the functional groups of branched-chain alkyl sulfites are given in Table 15.177. The geometrical (Eqs. (15.115.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl sulfites are given in Tables $15.178,15.179$, and 15.180 , respectively. The total energy of each alkyl sulfite given in Table 15.175 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.180 corresponding to functional-group composition of the molecule. The bond angle parameters of alkyl sulfites determined using Eqs. (15.88-15.117) are given in Table 15.182. The color scale, translucent view of the charge-density of sulfite, dimethyl sulfite, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.30.

Figure 15.30. Color scale, translucent view of the charge-density of dimethyl sulfite showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

0 $1 \mathrm{e} / \AA^{2}$

Table 15.177. The symbols of functional groups of alkyl sulfites.

Functional Group	Group Symbol
C-O (methyl)	$C-O$ (i)
C-O (alkyl)	$C-O$ (ii)
$\mathrm{O}-\mathrm{SO}_{2}$	$O-S$
SO	SO
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C(t$ to t - C)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.178. The geometrical bond parameters of alkyl sulfites and experimental values [1].

Parameter	$\begin{gathered} C-O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (ii) } \\ \text { Group } \end{gathered}$	$O-S$	SO	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(a) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(b) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{c}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.80717	1.79473	1.70299	1.98517	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.34431	1.33968	1.48102	1.40896	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
Bond Length $2 c^{\prime}(A)$	1.42276	1.41785	1.56744	1.49118	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)			$\begin{gathered} 1.574 \\ \left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \end{gathered}$	$\begin{gathered} 1.485 \\ \text { (dimethyl } \\ \text { sulfoxide) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$
$b, c\left(a_{0}\right)$	1.20776	1.19429	0.84069	1.39847	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.74388	0.74645	0.86966	0.70974	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.179. The MO to HO intercept geometrical bond parameters of alkyl sulfites. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom,msp $\left.{ }^{3} . A O\right)$.

Bond	Atom	$\begin{gathered} E_{V_{1}} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 2 } \end{gathered}$		E_{T} (eV) Bond 4	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {munual }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {final }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coutomb }}(\mathrm{eV}) \\ \text { Final } \\ \text { Fin } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\left({ }^{\circ}\right)$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\left.\begin{array}{c} d_{1} \\ \left(a_{0}\right) \end{array}\right)$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$(\mathrm{RO})_{2} \mathrm{~S}=\mathrm{O}_{a}$	S	0	-0.46459	-0.46459	0		1.32010	0.86359	-15.75493		78.56	101.44	37.25	1.58026	0.17130
(RO$)_{2} \mathrm{~S}=\mathrm{O}_{a}$	O_{a}	0	0	0	0		1.00000	0.91771	-14.82575		84.06	95.94	40.75	1.50400	0.09504
$\mathrm{CH}_{3} \mathrm{O}_{a}-\mathrm{S}(\mathrm{O}) \mathrm{OR}{ }^{\prime}$	S	-0.46459	-0.46459	0	0		1.32010	0.86359	-15.75493		126.68	53.32	55.47	0.96521	0.51581
$\begin{aligned} & \mathrm{CH}_{3} \mathrm{O}_{a}-\mathrm{S}(\mathrm{O}) \mathrm{OR}^{\prime} \\ & (\mathrm{C}-\mathrm{O} \text { (i)) } \end{aligned}$	O_{a}	-0.46459	-0.72457	0	0		1.00000	0.84957	-16.01492		126.03	53.97	54.81	0.98133	0.49969
$\begin{aligned} & \mathrm{RCH}_{2} \mathrm{O}_{a}-\mathrm{S}(\mathrm{O}) O \mathrm{R}^{\prime} \\ & (\mathrm{C}-\mathrm{O}(\mathrm{iii}) \end{aligned}$	O_{a}	-0.46459	-0.82688	0	0		1.00000	0.84418	-16.11722		125.77	54.23	54.56	0.98753	0.49349
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{O}_{a} \mathrm{SO}(\mathrm{O}) O R \\ & (\mathrm{C}-\mathrm{O}(\mathrm{i})) \end{aligned}$	O_{a}	-0.72457	-0.46459	0	0		1.00000	0.84957	-16.01492		93.85	86.15	44.57	1.28731	0.05700
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{O}_{a} \mathrm{~S}(\mathrm{O}) \mathrm{OR} \\ & (\mathrm{C}-\mathrm{O}(\mathrm{i})) \end{aligned}$	C_{0}	-0.72457	0	0	0	-152.34026	0.91771	0.87495	-15.55033	-15.35946	95.98	84.02	46.10	1.25319	0.09112
$\begin{aligned} & \mathrm{RH}_{2} \mathrm{C}_{a}-\mathrm{O}_{a} \mathrm{~S}(\mathrm{O}) O R^{\prime} \\ & (\mathrm{C}-\mathrm{O} \text { (ii)) } \end{aligned}$	O_{a}	-0.82688	-0.46459	0	0		1.00000	0.84418	-16.11722		94.50	85.50	44.80	1.27343	0.06624
$\begin{aligned} & \mathrm{RH}_{2} \mathrm{C}_{a}-\mathrm{O}_{a} \mathrm{~S}(\mathrm{O}) O R^{\prime} \\ & (\mathrm{C}-\mathrm{O} \text { (ii)) } \end{aligned}$	C_{a}	-0.82688	-0.92918	0	0	-153.37175	0.91771	0.82053	-16.58181	-16.39095	92.41	87.59	43.35	1.30512	0.03456
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}(\mathrm{CH})$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{n}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & \mathrm{R}-\mathrm{H}_{2} \mathrm{C}_{a} C_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-H_{2} C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{c})) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { iso } \mathrm{C}_{a} \mathrm{C}_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~d})) \end{aligned}$	C_{h}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\operatorname{tert~} C_{d}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{e}))} \end{aligned}$	C_{n}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & \operatorname{tertC}_{b} C_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f})) \end{aligned}$	C_{h}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & \text { iso }_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) \mathrm{C}_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f})) \end{aligned}$	C_{h}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.180. The energy parameters (eV) of functional groups of alkyl sulfites

Parameters	$\begin{gathered} C-O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & O-S \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \text { SO } \\ & \text { Group } \end{aligned}$	CH_{3} Group	CH_{2} Group	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \text { (a) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(\mathrm{c}) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \text { (e) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
n_{1}	1	1	1	2	3	2	1	1	1	1	1	1	1
n_{2}	0	0	0	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.5	0.5	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	1	1	0.77641	1	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1
c_{2}	0.85395	0.85395	1	1.20632	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	0	0	0	0	0	1	1	0	0	0	1	1	0
c_{4}	2	2	2	4	1	1	1	2	2	2	2	2	2
c_{5}	0	0	0	1	3	2	1	0	0	0	0	0	0
C_{10}	0.5	0.5	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	1	1	0.77641	1	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-33.15757	-33.47304	-48.93512	-82.63003	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	10.12103	10.15605	9.18680	19.31325	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	9.17389	9.32537	14.36741	20.81183	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-4.58695	-4.66268	-7.18371	-10.40592	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E(ноно) (eV)	-14.63489	-14.63489	0	-11.52126	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$\Delta E_{\mathrm{H}_{2} \mathrm{YO}}($ (10/ HO$)(\mathrm{eV})$	-1.44915	-1.65376	-0.92918	-1.16125	0	0	0	0	0	0	0	0	0
$E_{T}($ (Ао/ Ho$)(\mathrm{eV})$	-13.18574	-12.98113	0.92918	-10.36001	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(H_{2} \mathrm{NO}\right)(\mathrm{eV})$	-31.63533	-31.63544	-31.63543	-63.27088	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-1.44915	-1.65376	-0.92918	0	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}(\mathrm{NO})(\mathrm{eV})$	-33.08452	-33.28912	-32.56455	-63.27074	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	22.0240	12.1583	33.4164	17.6762	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	14.49660	8.00277	21.99527	11.63476	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(\mathrm{eV})$	-0.24921	-0.18631	-0.30214	-0.21348	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kulb }}(\mathrm{eV})$	$\begin{gathered} 0.13663 \\ {[21]} \\ \hline \end{gathered}$	$\begin{gathered} 0.13663 \\ {[21]} \\ \hline \end{gathered}$	$\begin{gathered} 0.08679 \\ {[42]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12832 \\ {[43]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.18089	-0.11799	-0.25875	-0.14932	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.11441	0.11441	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{T}($ comup $)(\mathrm{eV})$	-33.26541	-33.40711	-32.82330	-63.56937	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
$E_{\text {irrtala }}\left(\mathrm{E}_{\text {, AO/ Ho }}\right)(\mathrm{eV})$	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
	0	0	0	-1.16125	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
$E_{D}($ Gioup $)(e \mathrm{eV})$	3.99563	4.13733	3.55352	3.86856	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

Table 15．181．The total bond energies of alkyl sulfites calculated using the functional group composition and the energies of Table 15.180 compared to the experimental values［3］．

Formula	Name	$\begin{aligned} & C-O \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-O \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & O-S \\ & \text { Group } \end{aligned}$	$\begin{gathered} \text { SO } \\ \text { Group } \end{gathered}$	CH_{3}	CH_{2}	CH	$C-C$（a）	$C-C$（b）	$C-C$（c）	$C-C$（d）	$C-C$（e）	$C-C$（f）	Calculated Total Bond Energy （eV）	Experimental Total Bond Energy（eV）	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}_{3}$	Dimethyl sulfite	2	0	2	1	2	0	0	0	0	0	0	0	0	43.95058	44.042	0.00207
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{SO}_{3}$	Diethyl sulfite	0	2	2	1	2	2	0	2	0	0	0	0	0	68.54939	68.648	0.00143
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{SO}_{3}$	Dibutyl sulfite	0	2	2	1	2	6	0	6	0	0	0	0	0	117.18019	117.191	0.00009

Table 15．182．The bond angle parameters of alkyl sulfites and experimental values［1］．In the calculation of θ_{v} ，the parameters from the preceding angle were used．

会き				准总总	O									
$\begin{aligned} & \text { Q } \\ & \text { ब̈ं } \end{aligned}$	$\begin{aligned} & \text { ọ } \\ & \stackrel{\circ}{0} \end{aligned}$	$\begin{aligned} & \text { n} \\ & \stackrel{\theta}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\underset{~}{c}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \text { 志 } \\ & \stackrel{\leftrightarrow}{\bullet} \end{aligned}$	$\stackrel{\stackrel{G}{\bullet}}{\stackrel{\circ}{\square}}$	$\stackrel{\stackrel{\rightharpoonup}{\theta}}{\stackrel{\rightharpoonup}{0}}$	$\begin{aligned} & \text { O} \\ & \text { g } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 寺 } \\ & \text { a } \end{aligned}$		$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{1}{0} \end{aligned}$	$\stackrel{\circ}{\circ}$	$\stackrel{\widehat{y}}{=}$	$\stackrel{\hat{e n}}{=}$	$\stackrel{0}{n}$
－こ														
－¢														
óo					$\overline{7}$	$\begin{aligned} & \bar{n} \\ & 0 . \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{n}{2} \\ & \stackrel{n}{2} \end{aligned}$						$\xrightarrow{\circ}$
呺気			$$	－			－			$\begin{aligned} & \mathscr{\circ} \\ & \stackrel{\circ}{\infty} \\ & \end{aligned}$	－	－	$\begin{aligned} & \mathscr{\circ} \\ & \stackrel{\circ}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	
\sim		$\stackrel{\infty}{\frac{\infty}{7}} \stackrel{\substack{a \\ \stackrel{a}{0}}}{ }$	$\begin{gathered} \text { ob} \\ \text { a } \\ \hline 0 \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{n} \\ & \stackrel{i n}{3} \end{aligned}$			$\begin{aligned} & \stackrel{2}{2} \\ & \stackrel{n}{7} \end{aligned}$			$\begin{aligned} & \stackrel{q}{2} \\ & \stackrel{y}{x} \\ & \stackrel{x}{0} \end{aligned}$				
\checkmark	－	－	－	\％			No			－	$\stackrel{8}{\circ}$	¢	－	
U＇	－			－			－			－	－	－	－	
v	－	－	－	－			－			－	\％	\％	－	
$\because \frac{\pi}{3}$	$\stackrel{\infty}{\substack{\underset{a}{*} \\ \stackrel{\rightharpoonup}{0}}}$	$\stackrel{\infty}{\frac{\infty}{⿳ 亠 丷 厂 ⿰ ㇒ ⿻ 土 一 𧘇 ~}}$		－			－			$\begin{gathered} \stackrel{\rightharpoonup}{2} \\ \stackrel{\leftrightarrow}{\infty} \\ \stackrel{y}{0} \end{gathered}$	$\frac{\bar{i}}{\hat{a}}$	$\frac{\bar{k}}{\hat{O}}$		
$\because \overline{\#}$	$\begin{aligned} & \text { rin } \\ & \stackrel{\infty}{\infty} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \text { O} \\ & \stackrel{0}{\circ} \end{aligned}$				$\begin{aligned} & \text { O} \\ & \text { O} \\ & 0.0 \end{aligned}$				$\begin{aligned} & \text { O} \\ & \substack{\infty \\ \hline 0} \end{aligned}$	$\begin{gathered} \text { 名 } \\ \substack{\infty \\ 0} \end{gathered}$		
	\simeq	\simeq	∞	\pm			\pm			둔	－	－	¢	
	$\begin{aligned} & \pi \\ & \tilde{j} \\ & \vdots \\ & \vdots \end{aligned} 0^{\circ}$		$\bar{\circ}$ $\stackrel{\rightharpoonup}{0}$ $\stackrel{\rightharpoonup}{1}$ $\stackrel{1}{1}$	\pm			＝			哭		¢		
	\bigcirc	\simeq	\sim	\sim			\cdots			¢	in	in	¢	
				$\begin{aligned} & \stackrel{3}{8} \\ & \stackrel{c}{d} \\ & \stackrel{y}{c} \end{aligned}$							骨	骨		
	$\underset{\substack{\text { a } \\ \underset{子}{4} \\ \hline}}{ }$	$\begin{aligned} & \text { O} \\ & \substack{\text { a } \\ \hline} \end{aligned}$	$\stackrel{\stackrel{\circ}{7}}{\underset{\sim}{*}}$	$\begin{aligned} & \text { ָ̈ } \\ & \underset{\sim}{\sim} \end{aligned}$			$\begin{aligned} & \text { N} \\ & \underset{\sim}{c} \end{aligned}$			$\begin{gathered} \infty \\ \stackrel{\infty}{+} \\ \underset{\sim}{2} \end{gathered}$		$\stackrel{\overparen{6}}{\underset{子}{6}}$	$\begin{gathered} \infty \\ \stackrel{\circ}{+} \\ \hline \end{gathered}$	
䓂	$\begin{aligned} & \text { ⿳్大్ర్ర } \\ & \text { in } \end{aligned}$	$\begin{gathered} \text { む̆ } \\ \text { à } \end{gathered}$		$\stackrel{\circ}{7}$			$\underset{\substack{\text { In } \\ \text { N}}}{ }$			$\begin{aligned} & \text { 旁 } \\ & \text { in } \end{aligned}$	$\stackrel{\text { ẽ }}{\underset{\sim}{i}}$		$\begin{aligned} & \text { त్⿳亠二口欠口 } \\ & \text { à } \end{aligned}$	
絹	$\begin{aligned} & \text { İ } \\ & \stackrel{\rightharpoonup}{\infty} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { ⿳亠厶⺝彡几 } \\ & \text { in } \end{aligned}$		$\stackrel{\otimes}{\bar{i}}$							$\begin{aligned} & \text { f } \\ & \stackrel{y}{2} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { in } \\ & \frac{\rightharpoonup}{2} \end{aligned}$		
$\begin{array}{\|l\|l} \frac{0}{0} \\ \frac{0}{4} \\ \frac{4}{b} \\ \frac{0}{0} \\ \frac{0}{4} \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { 0 } \end{aligned}$	$\begin{aligned} & n_{0} \\ & \mathrm{O}_{0} \end{aligned}$	$\begin{aligned} & \frac{0}{2} \\ & \frac{2}{2} \\ & \frac{2}{2} \\ & \frac{0}{2} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \text { U }_{0}^{0} \\ & \mathrm{U}^{\circ} \end{aligned}$	$\begin{aligned} & z= \\ & \text { 心 } \\ & \text { vi } \end{aligned}$		V	0		$\begin{array}{ll} y_{0} & 0 \\ 0 \\ 0 \\ 0 \\ 0 & 0 \\ 0 \end{array}$			\mathfrak{c}

SULFATES $\left(C_{n} H_{2 n+2}\left(S O_{4}\right)_{m}, n=2,3,4,5 \ldots \infty\right)$
The alkyl sulfates, $\mathrm{C}_{n} \mathrm{H}_{2 n+2}\left(\mathrm{SO}_{4}\right)_{m}$, comprise a $\mathrm{C}-\mathrm{O}-\mathrm{SO}_{2}-\mathrm{O}-\mathrm{C}$ moiety that comprises two types $\mathrm{C}-\mathrm{O}$ functional groups, one for methyl and one for alkyl, and $\mathrm{O}-\mathrm{S}$ and SO_{2} functional groups. The alkyl portion of the alkyl sulfate may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in sulfates are equivalent to those in branched-chain alkanes.

The methyl and alkyl $C-O$ functional groups having $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)=-1.44915 \mathrm{eV}$ and $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)=-1.65376 \mathrm{eV}$, respectively, are equivalent to the corresponding groups given in the Sulfites section. The $O-S$ functional group having $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)=-0.92918 \mathrm{eV}$ is equivalent to that given in the Sulfites section. The SO_{2} functional group is equivalent to that of sulfones with $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)=0$ as given in the Sulfones section.

The symbols of the functional groups of branched-chain alkyl sulfates are given in Table 15.183. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl sulfates are given in Tables 15.184, 15.185, and 15.186, respectively. The total energy of each alkyl sulfate given in Table 15.187 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.186 corresponding to functional-group composition of the molecule. The bond angle parameters of alkyl sulfates determined using Eqs. (15.88-15.117) are given in Table 15.188. The color scale, translucent view of the charge-density of exemplary sulfate, dimethyl sulfate, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.31.

Figure 15.31. (A)-(B) Color scale, translucent views of the charge-density of dimethyl sulfate showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.183. The symbols of functional groups of alkyl sulfates.

Functional Group	Group Symbol
C-O (methyl)	$C-O$ (i)
C-O (alkyl)	$C-O$ (ii)
$\mathrm{O}-\mathrm{SO}_{3}$	$O-S$
SO_{2}	SO_{2}
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to t-C)	$C-C$ (e)
$\underline{C C}(t$ to iso-C)	$C-C$ (f)

Table 15.184. The geometrical bond parameters of alkyl sulfates and experimental values [1].

Parameter	$\begin{gathered} C-O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (ii) } \\ \text { Group } \end{gathered}$	$O-S$	SO_{2}	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\text { a }) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{c}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (d) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.80717	1.79473	1.70299	1.85851	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.34431	1.33968	1.48102	1.36327	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
Bond Length $2 c^{\prime}(A)$	1.42276	1.41785	1.56744	1.44282	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)			$\begin{gathered} 1.574 \\ \left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \end{gathered}$	$\begin{gathered} 1.435 \\ \text { (dimethyl } \\ \text { sulfone) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	1.532 (propane) 1.531 (butane)				1.532 (propane) 1.531 (butane)	1.532 (propane) 1.531 (butane)
$b, c\left(a_{0}\right)$	1.20776	1.19429	0.84069	1.26315	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
	0.74388	0.74645	0.86966	0.73353	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.185. The MO to HO intercept geometrical bond parameters of alkyl sulfates. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom,msp $\left.{ }^{3} \cdot A O\right)$.

Bond	Atom	E_{T} (eV) Bond 1	E_{T} (eV) Bond 2	E_{7} (eV) Bond 3	E (eV) Bond 4	Final Total Energy $C 2 s{ }^{3}$ (eV)	$\begin{aligned} & r_{\text {mural }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {fnnad }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} \hline E_{\text {Coutomb }} \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$(\mathrm{RO})_{2}\left(\mathrm{O}_{a}\right) \mathrm{S}=\mathrm{O}_{a}$	S	0	0	-0.46459	-0.46459		1.32010	0.86359	-15.75493		90.46	89.54	43.13	1.35635	0.00693
$(\mathrm{RO})_{2}\left(\mathrm{O}_{a}\right) \mathrm{S}=\mathrm{O}_{a}$	O_{a}	0	0	0	0		1.00000	0.91771	-14.82575		95.05	84.95	46.36	1.28256	0.08071
$\mathrm{CH}_{3} \mathrm{O}_{a}-\mathrm{S}\left(\mathrm{O}_{2}\right) \mathrm{OR}{ }^{\prime}$	S	-0.46459	-0.46459	0	0		1.32010	0.86359	-15.75493		126.68	53.32	55.47	0.96521	0.51581
$\begin{aligned} & \mathrm{CH}_{3} \mathrm{O}_{a}-\mathrm{S}\left(\mathrm{O}_{2}\right) O R^{\prime} \\ & (\mathrm{C}-\mathrm{O}(\mathrm{i})) \\ & \hline \end{aligned}$	O_{a}	-0.46459	-0.72457	0	0		1.00000	0.84957	-16.01492		126.03	53.97	54.81	0.98133	0.49969
$\begin{aligned} & \mathrm{RCH}_{2} \mathrm{O}_{a}-\mathrm{S}\left(\mathrm{O}_{2}\right) O R^{\prime} \\ & (\mathrm{C}-\mathrm{O} \text { (ii) }) \\ & \hline \end{aligned}$	O_{a}	-0.46459	-0.82688	0	0		1.00000	0.84418	-16.11722		125.77	54.23	54.56	0.98753	0.49349
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{O}_{\mathrm{a}} \mathrm{~S}\left(\mathrm{O}_{2}\right) \mathrm{OR} \\ & (\mathrm{C}-\mathrm{O}(\mathrm{i})) \\ & \hline \end{aligned}$	O_{a}	-0.72457	-0.46459	0	0		1.00000	0.84957	-16.01492		93.85	86.15	44.57	1.28731	0.05700
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{O}_{\mathrm{a}} \mathrm{~S}\left(\mathrm{O}_{2}\right) \mathrm{OR} \\ & (\mathrm{C}-\mathrm{O} \text { (i)) } \\ & \hline \end{aligned}$	C_{a}	-0.72457	0	0	0	-152.34026	0.91771	0.87495	-15.55033	-15.35946	95.98	84.02	46.10	1.25319	0.09112
$\begin{aligned} & \mathrm{RH}_{2} \mathrm{C}_{a}-\mathrm{O}_{\mathrm{a}} \mathrm{~S}\left(\mathrm{O}_{2}\right) O R^{\prime} \\ & (\mathrm{C}-\mathrm{O} \text { (ii) }) \end{aligned}$	O_{a}	-0.82688	-0.46459	0	0		1.00000	0.84418	-16.11722		94.50	85.50	44.80	1.27343	0.06624
$\begin{aligned} & \mathrm{RH}_{2} \mathrm{C}_{a}-\mathrm{O}_{\mathrm{Q}} \mathrm{~S}\left(\mathrm{O}_{2}\right) O R^{\prime} \\ & (\mathrm{C}-\mathrm{O} \text { (ii) }) \end{aligned}$	C_{a}	-0.82688	-0.92918	0	0	-153.37175	0.91771	0.82053	-16.58181	-16.39095	92.41	87.59	43.35	1.30512	0.03456
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}(\mathrm{CH})$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{-} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{-} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \\ & \hline \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & \mathrm{R}-\mathrm{H}_{2} \mathrm{C}_{a} \mathrm{C}_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \\ & \hline \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & \mathrm{R}-\mathrm{H}_{2} \mathrm{C}_{a}\left(\mathrm{R}^{\prime}-\mathrm{H}_{2} \mathrm{C}_{d}\right) \mathrm{C}_{b}\left(\mathrm{R}^{\prime \prime}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{c})) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { iso } \mathrm{C}_{a} \mathrm{C}_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~d})) \\ & \hline \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\operatorname{tert~} C_{d}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}^{(C-C(\mathrm{e}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & \text { tert } C_{a} C_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f})) \\ & \hline \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & {\text { iso } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{f}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.186. The energy parameters (eV) of functional groups of alkyl sulfates.

Parameters	$\begin{gathered} C-O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & O-S \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{SO}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$	$\begin{aligned} & \mathrm{C}-\mathrm{H} \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (c) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(\mathrm{~d}) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (e) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
n_{1}	1	1	1	4	3	2	1	1	1	1	1	1	1
n_{2}	0	0	0	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.5	0.5	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	1	1	0.77641	1	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1
c_{2}	0.85395	0.85395	1	1.20632	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	0	0	0	1	0	1	1	0	0	0	1	1	0
c_{4}	2	2	2	8	1	1	1	2	2	2	2	2	2
c_{5}	0	0	0	1	3	2	1	0	0	0	0	0	0
C_{10}	0.5	0.5	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	1	1	0.77641	1	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-33.15757	-33.47304	-48.93512	-180.36454	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	10.12103	10.15605	9.18680	39.92103	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	9.17389	9.32537	14.36741	48.52397	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{m}(\mathrm{eV})$	-4.58695	-4.66268	-7.18371	-24.26198	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E($\mathrm{\prime} \mathrm{\prime} / \mathrm{Ho}$) (eV)	-14.63489	-14.63489	0	-11.52126	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$\Delta E_{H_{2} \mathrm{HO}}($ AO/ HO$)(\mathrm{eV})$	-1.44915	-1.65376	-0.92918	-1.16125	0	0	0	0	0	0	0	0	0
$E_{T}($ (Ао но) (eV)	-13.18574	-12.98113	0.92918	-10.36001	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(H_{2} \mathrm{NO}\right)(\mathrm{eV})$	-31.63533	-31.63544	-31.63543	-126.54154	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{T}\left(\right.$ atom - atom, msp $\left.{ }^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-1.44915	-1.65376	-0.92918	0	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}(\mathrm{no})(\mathrm{eV})$	-33.08452	-33.28912	-32.56455	-126.54147	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	22.0240	12.1583	33.4164	11.5378	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	14.49660	8.00277	21.99527	7.59437	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(e \mathrm{~V})$	-0.24921	-0.18631	-0.30214	-0.17247	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kuvb }}(\mathrm{eV})$	$\begin{gathered} 0.13663 \\ {[21]} \end{gathered}$	$\begin{gathered} 0.13663 \\ {[21]} \end{gathered}$	$\begin{gathered} 0.08679 \\ {[42]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12832 \\ {[43]} \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$
$\bar{E}_{\text {occ }}(\mathrm{eV})$	-0.18089	-0.11799	-0.25875	-0.10831	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.11441	0.11441	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{T}($ cium $)(e V)$	-33.26541	-33.40711	-32.82330	-126.97472	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
$E_{\text {mintual }}\left(\mathrm{C}_{\text {c }}\right.$ AO/ HO$)(\mathrm{eV})$	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
	0	0	0	-1.16125	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
$E_{D}($ Gioup $)(\mathrm{eV})$	3.99563	4.13733	3.55352	8.61994	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

experimental values [3].

Formula	Name	$\begin{gathered} C-O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & O-S \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{SO}_{2} \\ \text { Group } \end{gathered}$	CH_{3}	CH_{2}	CH	$C-C$ (a)	$C-C$ (b)	$C-C$ (c)	$C-C$ (d)	$C-C$ (e)	$C-C(f)$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}_{4}$	Dimethyl sulfate	2	0	2	1	2	0	0	0	0	0	0	0	0	48.70196	48.734	0.00067
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{SO}_{4}$	Diethyl sulfate	0	2	2	1	2	2	0	2	0	0		0	0	73.30077	73.346	0.00061
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{4}$	Dipropyl sulfate	0	2	2	1	2	4	0	4	0	0	0	0	0	97.61617	97.609	-0.00008

Table 15.188. The bond angle parameters of alkyl sulfates and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is $E_{T}\left(\right.$ atom - atom,$\left.m s p^{3} . A O\right)$.

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{\mathrm{c}}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Terminal } \\ \text { Atoms } \\ \left(a_{0}\right) \end{gathered}$	$\begin{aligned} & E_{\text {Cuabontic }} \\ & \text { Atom 1 } \end{aligned}$	Atom 1 Hybridization Designation (Table 15.3.A)	$E_{\text {Coulombic }}$ Atom 2	Atom 2Hybridization Designation(Table 15.3.A)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\angle \mathrm{O}_{4} \mathrm{SO}_{3}$	2.72654	2.72654	4.7329	$\begin{gathered} -15.95954 \\ O_{a} \\ \hline \end{gathered}$	10	$\begin{gathered} -15.95954 \\ O_{b} \end{gathered}$	10	0.85252	0.85252	1	1	1	0.85252	-1.65376				120.44	$\begin{gathered} 120.9[44] \\ \text { (dimethyl sulfate) } \end{gathered}$
$\angle \mathrm{O}_{a} \mathrm{SO}_{e}$	2.72654	2.96203	4.6690	$\begin{gathered} -15.95954 \\ O_{a} \\ \hline \end{gathered}$	10	$\underset{O_{c}}{-16.11722}$	12	0.85252	0.84418	1	1	1	0.84835	-1.65376				110.26	$\begin{gathered} 109.67[44] \\ \text { (dimethyl sulfate) } \end{gathered}$
$\angle O_{c} \mathrm{SO}_{4}$	2.96203	2.96203	4.6476	$\begin{gathered} -16.11722 \\ o_{c} \\ \hline \end{gathered}$	12	$\begin{gathered} -16.11722 \\ O_{d} \\ \hline \end{gathered}$	12	0.84418	0.84418	1	1	1	0.84418	-1.65376				103.35	$\begin{gathered} 103.85[44] \\ \text { (dimethyl sulfate) } \\ \hline \end{gathered}$
$\angle C_{a} O_{c} S$	2.68862	2.96203	4.8416	$\begin{gathered} -15.75493 \\ C_{a} \end{gathered}$	7	$\begin{array}{\|c} -10.36001 \\ S \end{array}$	S	0.86359	$\begin{gathered} 0.77641 \\ (\text { Eq. } \\ (15.158)) \end{gathered}$	1	$\begin{gathered} 0.77641 \\ \left(\begin{array}{c} 0.79 \\ (15.158)) \end{array}\right. \end{gathered}$	1	0.82000	-0.72457				117.84	$117.43[44]$ (dimethyl sulfate)
$\begin{aligned} & \text { Methylene } \\ & \angle H C H \end{aligned}$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} 107 \\ \text { (propane) } \\ \hline \end{gathered}$
$\angle C_{a} C_{b} C_{c}$															69.51			110.49	112 (propane) 113.8 (butane) 110.8 (isobutane)
$\angle C_{a} C_{b} H$															69.51			110.49	$\begin{gathered} 111.0 \\ \text { (butane) } \\ 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{a} C_{b} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b} H$															70.56			109.44	
$\begin{gathered} \angle C_{b} C_{a} C_{c} \\ \text { iso } C_{a} \\ \hline \end{gathered}$	2.91547	2.91547	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	$\begin{array}{\|l\|l\|} \hline-16.68412 \\ C_{c} \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	${ }^{-1.85836}$				110.67	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\begin{gathered} \angle C_{b} C_{a} H \\ \text { iso } C_{a} \end{gathered}$	2.91547	2.11323	4.1633	$\begin{gathered} -15.55033 \\ C_{a} \end{gathered}$	5	$\begin{array}{\|c\|c\|} \hline-14.82575 \\ C_{b} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{gathered} \angle C_{a} C_{b} H \\ \text { iso } C_{a} \end{gathered}$	2.91547	2.09711	4.1633	$\begin{gathered} -15.55033 \\ C_{b} \end{gathered}$	5	$\begin{array}{\|c} \hline-14.82575 \\ C_{a} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	$\begin{gathered} 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \angle C_{b} C_{a} C_{b}{ }_{b} \\ & \text { tert } C_{b} \end{aligned}$	2.90327	2.90327	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	$\begin{array}{\|c\|} \hline-16.68412 \\ C_{b} \\ \hline \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	${ }^{-1.85836}$				111.37	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\angle C_{b} C_{a} C_{d}$															50			107.50	

NITROALKANES $\left(C_{n} H_{2 n+2-m}\left(\mathrm{NO}_{2}\right)_{m}, n=1,2,3,4,5 \ldots \infty\right)$

The nitroalkanes, $\mathrm{C}_{n} \mathrm{H}_{2 n+2-m}\left(\mathrm{NO}_{2}\right)_{m}$, comprise a NO_{2} functional group and a $\mathrm{C}-\mathrm{N}$ functional group. The alkyl portion of the nitroalkane may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $\mathrm{C}-\mathrm{C}$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and tbutyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in nitroalkanes are equivalent to those in branched-chain alkanes.

The electron configuration of oxygen is $1 s^{2} 2 s^{2} 2 p^{4}$, and the orbital arrangement given by Eq. (10.154) has two unpaired electrons corresponding to the ground state ${ }^{3} P_{2}$. The electron configuration of nitrogen is $1 s^{2} 2 s^{2} 2 p^{3}$, and the orbital arrangement given by Eq. (10.134) has three unpaired electrons corresponding to the ground state ${ }^{4} S_{3 / 2}^{0}$. The bonding in the nitro $\left(\mathrm{NO}_{2}\right)$ functional group is similar to that in the SO_{2} group given previously. It also has similarities to the bonding in the carbonyl functional group. In the NO_{2} group, the two unpaired electrons of the O atoms form a MO with two unpaired electrons of the nitrogen atom such that the MO comprises a linear combination of two bonds, each of bond order two involving the nitrogen AOs and oxygen AOs of both oxygen atoms. The nitrogen atom is then energy matched to the $C 2 s p^{3} \mathrm{HO}$. In nitroalkanes, the $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)), the N AO has an energy of $E(N)=-14.53414 \mathrm{eV}$, and the O AO has an energy of $E(O)=-13.61806 \mathrm{eV}$ [38]. To meet the equipotential condition of the union of the $N=O H_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor c_{2} of Eq. (15.61) for the $N=O$-bond MO given by Eqs. (15.77) and (15.79) is:

$$
\begin{equation*}
c_{2}\left(O \text { to } N 2 p \text { to } C 2 s p^{3} H O\right)=\frac{E(O)}{E(N)} c_{2}\left(C 2 s p^{3} H O\right)=\frac{-13.61806 \mathrm{eV}}{-14.53414 \mathrm{eV}}(0.91771)=0.85987 \tag{15.159}
\end{equation*}
$$

Since there are two O atoms in a linear combination that comprises the bonding of the NO_{2} group, the unpaired electrons of each O cancel each others effect such that $E_{\text {mag }}$ is not subtracted from the total energy of $N O_{2}$. Additionally, $E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . A O\right)=-3.71673 \mathrm{eV}=4(-0.92918 \mathrm{eV})$ (Eq. (14.513)) is the maximum given the bonding involves four electrons comprising two bonds, each having a bond order of one.

The $C-N$ group is equivalent to that of primary amines except that the energies corresponding to vibration in the transition state are matched to a nitroalkane and $\Delta E_{\mathrm{H}_{2} M O}(A O / H O)=-0.72457 \mathrm{eV}$ for nitroalkane and $\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(\mathrm{AO} / \mathrm{HO})=-1.44915 \mathrm{eV}$ for primary amines. Whereas, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . \mathrm{AO}\right)=-1.44915 \mathrm{eV}$ for both functional groups. This condition matches the energy of the $\mathrm{C}-\mathrm{N}$ group with the NO_{2} having $\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(\mathrm{AO} / \mathrm{HO})=0$.

The symbols of the functional groups of branched-chain nitroalkanes are given in Table 15.189. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of nitroalkanes are given in Tables $15.190,15.191$, and 15.192 , respectively. The total energy of each nitroalkane given in Table 15.193 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.192 corresponding to functional-group composition of the molecule. $E_{\text {mag }}$ given by Eq. (15.67) was subtracted for each t-butyl group. The bond angle parameters of nitroalkanes determined using Eqs. (15.88-15.117) are given in Table 15.194. The color scale, translucent view of the chargedensity of exemplary nitroalkane, nitroethane, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.32.

Figure 15.32. Color scale, translucent view of the charge-density of nitroethane showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

$0 \square 1 \mathrm{e} / \AA^{2}$

Table 15.189. The symbols of functional groups of nitroalkanes.

Functional Group	Group Symbol
NO_{2} group	NO_{2}
$\mathrm{C}-\mathrm{N}$	$\mathrm{C}-\mathrm{N}$
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	$\mathrm{C}-\mathrm{H}$
CC bond (n- C$)$	$\mathrm{C}-\mathrm{C}$ (a)
CC bond (iso-C)	$\mathrm{C}-\mathrm{C}$ (b)
CC bond $($ tert- C$)$	$\mathrm{C}-\mathrm{C}$ (c)
CC (iso to iso-C)	$\mathrm{C}-\mathrm{C}$ (d)
$\mathrm{CC}(t$ to $t-C)$	$\mathrm{C}-\mathrm{C}$ (e)
$\mathrm{CC}(t$ to iso- $C)$	$\mathrm{C}-\mathrm{C}$ (f)

Table 15．190．The geometrical bond parameters of nitroalkanes and experimental values［1］．

Parameter	$\begin{gathered} \mathrm{NO}_{2} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-N \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(d) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.33221	1.97794	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.15421	1.40639	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.22157	1.48846	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp．Bond Length （A）	$\begin{gathered} 1.224 \\ \text { (nitromethane) } \end{gathered}$	$\begin{gathered} 1.489 \\ \text { (nitromethane) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (\mathrm{C}-H \text { propane }) \\ 1.117 \\ (\mathrm{C}-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$						1.532 （propane） 1.531 （butane）
$b, c\left(a_{0}\right)$	0.66526	1.39079	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.86639	0.71104	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15．191．The MO to HO intercept geometrical bond parameters of nitroalkanes．$R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups．E_{T} is $E_{T}\left(\right.$ atom - atom，msp $\left.{ }^{3} . A O\right)$ ．

－©			듬	$\|\underset{寸}{\|c\|}\|$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{0} \end{aligned}$			$$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \stackrel{y}{n} \\ & \hline \end{aligned}$	号 冏			$\begin{aligned} & \text { ते } \\ & \text { 亲 } \end{aligned}$	－
－¢0			$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{6} \end{aligned}$	$\|\underset{\square}{\mathrm{J}}\|$			$\begin{aligned} & \infty \\ & \stackrel{y}{4} \\ & \underset{-}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{\infty} \\ & \stackrel{y}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{y}{c} \end{aligned}$	$$	$\begin{aligned} & \text { 䓂 } \\ & \text { N } \end{aligned}$	$\stackrel{\text { İ }}{\underset{\sim}{4}}$	梊	$\begin{gathered} \text { 筑 } \\ \end{gathered}$	等
－	0		$\underset{\underset{\sim}{\mathrm{N}}}{\stackrel{\mathrm{~N}}{2}}$	$\left\|\begin{array}{l} \infty \\ \dot{m} \\ \dot{m} \end{array}\right\|$	$\stackrel{\stackrel{\infty}{\dot{f}}}{\underset{子}{+}}$		$\frac{\hat{m}}{\mathrm{~m}}$	$\stackrel{\infty}{0}$	-্ֻণী	$\stackrel{\otimes}{\mathrm{N}}$	$\stackrel{\text { N }}{\text { ה }}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{a}}}{ }$	$$	$\underset{\substack{\text { a } \\ \underset{\sim}{2}}}{\substack{\text { } \\ \hline \\ \hline}}$	－
－\％			$\begin{aligned} & R \\ & \stackrel{e}{\theta} \\ & \hline \end{aligned}$	\pm	\dot{b}	$\stackrel{n}{\Xi}$	$\begin{aligned} & \stackrel{\circ}{6} \\ & \stackrel{\infty}{6} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\bullet}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{o}} \\ & \underset{\text { In }}{ } \end{aligned}$	$\stackrel{R}{\underset{\sim}{9}}$	$\stackrel{\stackrel{\rightharpoonup}{\oplus}}{\stackrel{y}{m}}$	$\stackrel{R}{9}$	$\begin{aligned} & \text { ® } \\ & \text { त्र } \end{aligned}$	$\underset{\text { d }}{ }$	$\begin{aligned} & \stackrel{\text { O}}{\text { an }} \end{aligned}$
－－	$\begin{array}{c\|c} \substack{n \\ \\ \\ \\ \hline} \end{array}$		$\frac{8}{6}$		$\stackrel{9}{\stackrel{9}{\approx}}$		$\stackrel{\circ}{6}$	$\begin{gathered} \tilde{\infty} \\ \underset{c}{2} \end{gathered}$	$\begin{aligned} & \text { f } \\ & \stackrel{6}{6} \end{aligned}$	$\begin{gathered} \text { ò } \\ \stackrel{\delta}{2} \end{gathered}$	$\begin{aligned} & \overline{\mathrm{y}} \\ & \text { 俋 } \end{aligned}$	$\begin{gathered} \stackrel{\circ}{2} \\ \substack{\infty \\ \hline} \end{gathered}$	$\begin{aligned} & \text { 茄 } \end{aligned}$	$\stackrel{\infty}{i}$	亳
$\overbrace{\mathbb{N}}^{\substack{\tilde{U}}}$		管			$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{n}{9} \end{aligned}$	\％	$\begin{aligned} & \text { 柰 } \\ & \underset{\text { I }}{\uparrow} \end{aligned}$	$\begin{aligned} & \text { 暠 } \\ & \text { in } \end{aligned}$			$\stackrel{\text { ®̃ }}{\substack{~}}$	$\begin{aligned} & \stackrel{7}{\text { g }} \\ & \underset{寸}{\leftrightarrows} \end{aligned}$	$\stackrel{\text { N̂ }}{\substack{\text { ®n }}}$	$\begin{aligned} & \mathscr{\unrhd} \\ & \stackrel{\unrhd}{\leftrightharpoons} \\ & \cline { 1 - 1 } \end{aligned}$	$\stackrel{\text { N}}{\substack{~}}$
			$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{+}{\subsetneq} \end{aligned}$		$\begin{gathered} \text { 等 } \\ \stackrel{y}{c} \\ \stackrel{1}{2} \end{gathered}$	年	$\stackrel{\circ}{n}$ $\stackrel{N}{3}$ $\underset{\sim}{3}$	$\begin{aligned} & \text { n } \\ & \substack{c \\ \stackrel{y}{c}\\ } \end{aligned}$	$\begin{aligned} & \stackrel{y}{7} \\ & \substack{0 \\ \hline} \\ & \hline 1 \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{n} \\ & \stackrel{6}{6} \\ & \underset{~}{2} \end{aligned}$	$\begin{aligned} & \text { ٌo } \\ & \stackrel{\text { an }}{\dagger} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{1}{\leftrightarrows} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{1}{\top} \end{aligned}$
－©			$\begin{aligned} & i n \\ & \stackrel{i n}{\infty} \\ & \stackrel{\infty}{0} \end{aligned}$		$\begin{aligned} & \text { Ro } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{y}{\infty} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{gathered} \text { A } \\ \underset{\sim}{A} \end{gathered}$	$\begin{aligned} & \text { or } \\ & \text { on } \\ & 0 \end{aligned}$		$\underset{\substack{\text { A } \\ \text { A } \\ \hline}}{\text { n }}$	$\begin{aligned} & \text { ®̀ } \\ & \stackrel{\text { N}}{0} \end{aligned}$	$\underset{\substack{\text { A } \\ \text { A }}}{\text { n }}$	$\begin{aligned} & 6 \\ & \stackrel{0}{6} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & i n \\ & \substack{i n \\ \infty \\ \hline} \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
B	Boble		$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{o}{\alpha_{0}} \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \vdots \\ & 0 \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{A}} \\ \underset{O}{2} \end{gathered}$	O．	$$	$\stackrel{E}{\mathrm{~A}}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{\mathrm{E}}{\mathrm{a}}$	$\begin{aligned} & \text { E } \\ & \stackrel{A}{O} \end{aligned}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{\mathrm{E}}{\mathrm{~A}}$	$\frac{\mathrm{E}}{\mathrm{E}}$
		筞		$\begin{aligned} & \text { 笴 } \\ & \underset{\sim}{n} \\ & \end{aligned}$	年等	율		$\begin{gathered} \text { 采 } \\ \text { 寺 } \\ \underset{\sim}{n} \end{gathered}$						$\begin{aligned} & \text { ơ } \\ & \stackrel{0}{7} \\ & \underset{\sim}{1} \end{aligned}$	
心家高	－ 0		－	－	－	－	－	－	－	－		－		－	－
\&				－	－	－	¢	\bigcirc	－	$\begin{aligned} & \frac{\infty}{\grave{L}} \\ & \stackrel{1}{6} \end{aligned}$	$$	$$	$\begin{aligned} & \text { Ǩ } \\ & \substack{\text { N} \\ \hline} \end{aligned}$	$$	
\&	－				－	$\stackrel{\text {－}}{ }$	\％	－	$$	$$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{A} \\ & \stackrel{\text { din }}{4} \end{aligned}$	$\begin{aligned} & \text { 䒫 } \\ & \substack{0 \\ \hline} \end{aligned}$		
乐可言				$$	$\begin{aligned} & \infty \\ & \\ & \text { did } \\ & \vdots \end{aligned}$					$\frac{\infty}{\bar{a}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{4} \\ & \hline \stackrel{y}{4} \end{aligned}$				
$\frac{5}{4}$	$0 \geqslant$		\gtrless	\bigcirc	\checkmark	u	\checkmark	$0 \sim$	ט＊	0 －	ט	ט	ט	ט゙	ט
号	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \end{aligned} 0_{2}^{2}$	$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & = \end{aligned}$		$\begin{aligned} & 8 \\ & 1 \\ & 0 \\ & x^{2} \end{aligned}$		I			$\begin{aligned} & 1 \\ & \mathbf{s}^{\prime} \\ & x_{0} \\ & 00 \\ & 0 \\ & \text { co } \end{aligned}$			$\begin{aligned} & 1 \\ & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$

Table 15.192. The energy parameters $(e V)$ of functional groups of nitroalkanes.

Table 15．193．The total bond energies of nitroalkanes calculated using the functional group composition and the energies of Table 15.192 compared to the experimental values［3］．The magnetic energy $E_{\text {mag }}$ that is subtracted from the weighted sum of the E_{D}（ Group ）（ eV ）values based on composition is given by（15．58）． $\begin{array}{cc}\text { Calculated } & \text { Experimental } \\ \text { Total Bond } & \text { Total Bond } \\ \text { Energy（eV）} & \text { Energy（eV）}\end{array}$

$\begin{array}{c}\text { Relative } \\ \text { Error }\end{array}$
-0.00168
-0.00040
-0.00028
0.00074
-0.00036
0.00061
-0.00028

Table 15．194．The bond angle parameters of nitroalkanes and experimental values［1］．In the calculation of θ_{v} ，the parameters from the preceding angle were used． E_{T} is E_{T}（atom－atom，msp ${ }^{3} . A O$ ）．

这				\mathfrak{c}	©								
$\stackrel{\ominus}{\dot{j} 巳}$	$\begin{aligned} & \text { 仓̀ } \\ & \stackrel{\Delta}{\bullet} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { ã } \end{aligned}$	$\begin{aligned} & \stackrel{寸}{\circ} \\ & \stackrel{\otimes}{\bullet} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bullet} \\ & \stackrel{\rightharpoonup}{\bullet} \end{aligned}$	$\begin{aligned} & \stackrel{9}{\bullet} \\ & \stackrel{1}{\bullet} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{y}{0} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \xlongequal{2} \end{aligned}$	$\stackrel{ٌ}{\circ}$	$\stackrel{\underset{y}{=}}{\stackrel{1}{=}}$	$\stackrel{\widehat{e n}}{=}$	－
が。													
かっ													
－0				5	b		$\stackrel{8}{2}$	$\begin{gathered} \circ \\ \\ \end{gathered}$					N
5	－	$\frac{n}{\frac{n}{j}}$	－			－			$\begin{gathered} \circ \\ \stackrel{0}{0} \\ \stackrel{\infty}{\infty} \\ \vdots \end{gathered}$	－	－		
\cdots	$\frac{\mathrm{N}}{\mathrm{~N}}$		$\begin{aligned} & \stackrel{\circ}{n} \\ & \stackrel{n}{7} \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{y}{n} \end{aligned}$			$$				
v	\％	－	气io			\％			－	\％	\％	－	
U	－	－	－			－			－	－	－	－	
v	会	－	－			－			－	\％	会	－	
v		$\begin{aligned} & \text { 名 } \\ & \frac{0}{2} \\ & \text { on } \end{aligned}$	－			－			$\begin{gathered} \stackrel{\rightharpoonup}{2} \\ \stackrel{y}{\infty} \\ \stackrel{y}{0} \end{gathered}$	$\frac{E}{\partial}$	$\frac{E}{a}$		
$0 \overline{\frac{8}{4}}$	$\frac{\bar{E}}{\hat{a}}$	$\begin{gathered} \stackrel{\rightharpoonup}{2} \\ \frac{1}{\alpha} \\ \underset{\alpha}{\infty} \end{gathered}$	$\begin{aligned} & \text { or } \\ & \text { O} \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \substack{\alpha \\ \text { on }} \end{aligned}$				
	z	\cdots	\pm			\pm			¢	－	－	$\stackrel{\sim}{\square}$	
量筑			\pm			\pm					¢	（\％	
	－	ล	\sim			\sim			¢	n	i	®	
						$\begin{aligned} & \substack{\stackrel{\rightharpoonup}{c} \\ \stackrel{\rightharpoonup}{j} \\ \stackrel{\rightharpoonup}{c} \\ \hline} \end{aligned}$					䳐	硅	
	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{c} \end{aligned}$	$\frac{\bar{\sim}}{\underset{子}{7}}$	$\begin{gathered} \text { N} \\ \underset{\sim}{c} \end{gathered}$						$\begin{aligned} & \stackrel{\infty}{8} \\ & \stackrel{+}{+} \end{aligned}$	$\frac{ल ্ ক ্}{7}$	$\stackrel{\frac{\pi}{6}}{\underset{子}{6}}$	$\underset{\sim}{\infty}$	
	$\underset{\text { íc}}{\underset{\text { in }}{\text { N}}}$	$\begin{aligned} & \text { 采 } \\ & \underset{\sim}{c} \end{aligned}$	$\stackrel{\bullet}{\bar{i}}$						$\begin{gathered} \text { f } \\ \stackrel{y}{2} \end{gathered}$	$\begin{aligned} & \underset{\sim}{3} \\ & \stackrel{N}{i} \end{aligned}$	$\underset{\text { ì }}{\underset{\text { in }}{\stackrel{1}{2}}}$	cion	
旀荷	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{I}}}{\stackrel{\rightharpoonup}{\mathrm{c}}}$	$\begin{gathered} \text { 僉 } \\ \underset{\sim}{n} \end{gathered}$	$\stackrel{\circ}{\bar{i}}$			$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$			誓	$\begin{aligned} & \text { 寽 } \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \text { f } \\ & \stackrel{y}{\mathrm{~N}} \end{aligned}$	－	
		$\begin{aligned} & \mathrm{S}_{0}^{\circ} \\ & \mathrm{o}_{0} \end{aligned}$		$\begin{aligned} & 心_{0}^{0} \\ & \text { Úc}_{0}^{0} \end{aligned}$		$\begin{aligned} & \frac{2}{2} \\ & \frac{2}{2} \\ & 2 \end{aligned}$	－	Nos	$\begin{aligned} & 0_{0}^{0} 0_{0}^{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} x \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & x \\ & x_{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left(\begin{array}{c} c_{0}^{0} \\ 0 \\ 0 \\ 0 \end{array}\right.$

```
ALKYL NITRITES \(\left(C_{n} H_{2 n+2-m}\left(\mathrm{NO}_{2}\right)_{m}, \quad n=1,2,3,4,5 \ldots \infty\right)\)
```

The alkyl nitrites, $C_{n} H_{2 n+2-m}\left(\mathrm{NO}_{2}\right)_{m}$, comprise a $\mathrm{RC}-\mathrm{O}-\mathrm{NO}$ moiety that comprises $\mathrm{C}-\mathrm{O}, \mathrm{O}-\mathrm{N}$, and NO functional groups. The alkyl portion of the alkyl nitrite may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $C-C$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in alkyl nitrites are equivalent to those in branched-chain alkanes.

The electron configuration of oxygen is $1 s^{2} 2 s^{2} 2 p^{4}$, and the orbital arrangement given by Eq. (10.154) has two unpaired electrons corresponding to the ground state ${ }^{3} P_{2}$. The electron configuration of nitrogen is $1 s^{2} 2 s^{2} 2 p^{3}$, and the orbital arrangement given by Eq. (10.134) has three unpaired electrons corresponding to the ground state ${ }^{4} S_{3 / 2}^{0}$. The bonding in the nitro ($N O$) functional group is similar to that in the $S O$ group given previously. It also has similarities to the bonding in the carbonyl functional group. In the $N O$ group, the two unpaired electrons of the O atom form a MO with two unpaired electrons of the nitrogen atom such that the MO comprises a double bond. The nitrogen atom is then energy matched to the $O-N$ functional group that is further energy matched to the $C 2 s p^{3} \mathrm{HO}$ of the $C-O$ functional group. To meet the equipotential condition of the union of the $\mathrm{N}=\mathrm{O} \mathrm{H}_{2}$-type-ellipsoidal-MO with other orbitals of the molecule, the hybridization factor c_{2} of Eq. (15.60) for the $N=O$-bond MO given by Eq. (15.159) is $c_{2}\left(O\right.$ to $N 2 p$ to $\left.C 2 s p^{3} H O\right)=0.85987$.

As in the case of the carbonyl group, two unpaired O electrons result upon bond breakage of the $N=O$ bond which requires that two times $E_{m a g}$ of oxygen (Eq. (15.68)) be subtracted from the total energy of $N O$. Additionally, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ and $\Delta E_{H_{2} M O}(A O / H O)$ are equal to -0.92918 eV (Eq. (14.513)) which matches the energy of the $N=O$ bond with the contiguous $O-N$ bond and matches the energy contribution of an oxygen atom.

The $\mathrm{O}-\mathrm{N}$ functional group comprise a single-bond, H_{2}-type-ellipsoidal-MO between the remaining unpaired nitrogen electron and an unpaired electron of the second oxygen atom which further forms a single bond with the $C 2 s p^{3} \mathrm{HO}$ of the $C-O$ functional group. In alkyl nitrites, the hybridization factor c_{2} of Eq. (15.61) for the $C-O$-bond MO given by Eq. (15.133) is $c_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to $\left.O\right)=0.85395$. The hybridization factor c_{2} of Eq. (15.61) for a $C-N$-bond MO given by Eq. (15.135) is $c_{2}\left(C 2 s p^{3} \mathrm{HO}\right.$ to $\left.N\right)=0.91140$. Thus, the hybridization factor c_{2} of Eq. (15.61) for $O-N$ that bridges the $C-O$ and $N=O$ bonds given by Eq. (15.78) is:

$$
\begin{equation*}
c_{2}(N 2 p \text { to } O 2 p)=\frac{c_{2}\left(C 2 s p^{3} H O \text { to } N\right)}{c_{2}\left(C 2 s p^{3} H O \text { to } O\right)}=\frac{0.91140}{0.85395}=1.06727 \tag{15.160}
\end{equation*}
$$

$E_{T}\left(\right.$ atom-atom,$\left.m s p^{3} . A O\right)=-0.92918 \mathrm{eV}$ in order to match the energy of the NO group and $E(A O / H O)=-15.35946 \mathrm{eV}$ in order to match the $C-O$ functional group.

The $C-O$ functional group is equivalent to that of an ether as given in the corresponding section except that $E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)$ and $\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(\mathrm{AO} / \mathrm{HO})$ are both -0.72457 eV which matches the energy contribution of an independent $C 2 s p^{3} \mathrm{HO}$ (Eq. (14.151)). Also, the energy terms corresponding to the oscillation of the bond in the transition state are matched to a nitrite.

The symbols of the functional groups of branched-chain alkyl nitrites are given in Table 15.195. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl nitrites are given in Tables $15.196,15.197$, and 15.198 , respectively. The total energy of each alkyl nitrite given in Table 15.199 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.198 corresponding to functional-group composition of the molecule. The bond angle parameters of alkyl nitrites determined using Eqs. (15.88-15.117) are given in Table 15.200. The color scale, translucent view of the charge-density of exemplary alkyl nitrite, methyl nitrite, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.33.

Figure 15.33. (A)-(B) Color scale, translucent views of the charge-density of methyl nitrite showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).
A

B

$0 \square 1 \mathrm{e} / \mathrm{A}^{2}$

Table 15.195. The symbols of functional groups of alkyl nitrites.

Functional Group	Group Symbol
$N O$ group	NO
$\mathrm{O}-\mathrm{N}$	$O-N$
C-O	C-O
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
CC (iso to iso-C)	$C-C$ (d)
$C C$ (t to t - C)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.196. The geometrical bond parameters of alkyl nitrites and experimental values [1].

Parameter	$\begin{gathered} N O \\ \text { Group } \end{gathered}$	$\begin{aligned} & O-N \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-O \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(a) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{c}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.32255	1.76440	1.85327	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.15002	1.32831	1.36135	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{gathered} \text { Bond Length } \\ 2 c(\AA) \\ \hline \end{gathered}$	1.21713	1.40582	1.44079	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (\AA)	1.205 (methyl nitrate) 1.2 $\left(\mathrm{HNO}_{2}\right)$	1.402 (methyl nitrate) 1.432 $\left(\mathrm{HNO}_{2}\right)$	$\begin{gathered} 1.437 \\ \text { (methyl nitrate) } \end{gathered}$	$\begin{gathered} 1.107 \\ (\mathrm{C}-H \text { propane }) \\ 1.117 \\ (\mathrm{C}-\mathrm{H} \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	1.532 (propane) 1.531 (butane)	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	1.532 (propane) 1.531 (butane)	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	1.532 (propane) 1.531 (butane)
$b, c\left(a_{0}\right)$	0.65314	1.16134	1.25751	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.86955	0.75284	0.73457	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.197. The MO to HO intercept geometrical bond parameters of alkyl nitrites. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom,msp $\left.{ }^{3} . A O\right)$.

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 1$	E_{f} (eV) Bond 2		E_{T} (eV) Bond 4	\qquad	$\begin{aligned} & r_{\text {intual }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {final }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Cotomb }} \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
RON $=0$	O	-0.46459	0	0	0		1.00000	0.88983	-15.29034		137.15	42.85	67.90	0.49764	0.65238
$R O N=O$	N	-0.46459	-0.46459	0	0		0.93084	0.86359	-15.75493		136.09	43.91	66.48	0.52781	0.62221
$R O_{b}-\mathrm{NO}_{a}$	O	-0.46459	-0.36229	0	0		1.00000	0.86923	-15.65263		99.22	80.78	47.63	1.18905	0.13925
$\mathrm{RO}_{b}-\mathrm{NO}_{a}$	N	-0.46459	-0.46459	0	0		0.93084	0.86359	-15.75493		98.78	81.22	47.30	1.19655	0.13175
$\begin{aligned} & \mathrm{RH}_{2} \mathrm{C}_{a}-\mathrm{O}_{b} \mathrm{NO}_{a} \\ & R=H, \text { alkyl } \end{aligned}$	$O_{\text {b }}$	-0.36229	-0.46459	0	0		1.00000	0.86923	-15.65263		91.43	88.57	43.71	1.33962	0.02173
$\mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{O}_{b} \mathrm{NO}_{a}$	C_{a}	-0.36229	0	0	o	-151.97798	0.91771	0.89582	-15.18804	-14.99717	93.71	86.29	45.31	1.30342	0.05793
$-\mathrm{CH}_{2} \mathrm{H}_{2} \mathrm{C}_{a}-\mathrm{O}_{b} \mathrm{NO}_{a}$	C_{a}	-0.36229	-0.92918	0	o	-152.90716	0.91771	0.84418	-16.11722	-15.92636	89.16	90.84	42.16	1.37373	0.01238
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C}-\mathrm{H}(\mathrm{CH})$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{\mathrm{a}} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{\mathrm{a}} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{0}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & \mathrm{R}-\mathrm{H}_{2} \mathrm{C}_{a} \mathrm{C}_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-\mathrm{H}_{2} \mathrm{C}_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) \mathrm{C}_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{c})) \end{aligned}$	C_{0}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { iso } C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~d})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & {\text { tert } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{e}))} \end{aligned}$	C_{0}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & {\text { tertC } C_{a} C_{b}\left(\mathrm{H}_{2} \mathrm{C}_{c}-\mathrm{R}^{\prime}\right) \mathrm{HCH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{f}))} \end{aligned}$	C_{0}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & {\text { iso } C_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) \mathrm{C}_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}-}^{(\mathrm{C}-\mathrm{C}(\mathrm{f}))} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.198 ．The energy parameters (eV) of functional groups of alkyl nitrites．

$\begin{aligned} & \text { En } \\ & \text { ن } \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	－	－	－	\cdots	－	－	$\frac{\underset{N}{A}}{\underset{O}{\circ}}$	\bigcirc	\sim	\bigcirc	\cdots	－		$\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \\ & \underset{\sigma}{2} \end{aligned}$				－				$\frac{n}{9}$	$\begin{gathered} \tilde{\sim} \\ \underset{\sim}{\alpha} \\ \underset{\sim}{c} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \text { 筑 } \\ & \stackrel{i}{n} \end{aligned}$		$\begin{aligned} & 0 \\ & \frac{7}{6} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{0} \\ & 0 \end{aligned}$				$\begin{gathered} \stackrel{\rightharpoonup}{t} \\ \underset{\substack{3 \\ ~}}{\substack{1}} \end{gathered}$		$\frac{\pi}{c}$
©	－	－	－	\％	－	－	$\frac{1}{2}$	－	N	\bigcirc	$\mathfrak{\sim}$	－		$\underset{\substack{\text { N} \\ \\ \hline}}{ }$			$\left\lvert\, \begin{aligned} & 0 \\ & \vdots \\ & 0 \\ & \vdots \\ & \underset{n}{n} \end{aligned}\right.$	－	$\begin{aligned} & \text { Li } \\ & \stackrel{y}{6} \\ & \stackrel{n}{3} \end{aligned}$			$\begin{aligned} & \stackrel{n}{2} \\ & \stackrel{F}{i} \end{aligned}$		$\begin{aligned} & \text { 兴 } \\ & \hat{n} \end{aligned}$	$\begin{array}{\|c} \text { స్তे } \\ \text { तुָ } \end{array}$		$\frac{\underset{\sim}{2}}{\frac{2}{2}}$	－		y		－	¢
虎	－	－	－	\cdots	\％	－	$\frac{\underset{N}{\mathrm{~A}}}{\mathrm{o}}$	－	N	\bigcirc	\cdots	－		$\begin{aligned} & \underset{\sim}{\kappa} \\ & \kappa ু \\ & \underset{\sim}{2} \end{aligned}$		$\begin{gathered} \tilde{N} \\ \underset{\sim}{\infty} \\ \\ \end{gathered}$	$\begin{gathered} \hat{y} \\ \hat{0} \\ \hat{n} \\ \dot{n} \end{gathered}$	－				$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \stackrel{\infty}{\infty} \end{aligned}$		$\begin{aligned} & \text { ô } \\ & \text { of } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \text { ת } \\ \underset{\text { תु }}{ } \end{gathered}$	$\begin{gathered} \frac{n}{3} \\ \vdots \\ \vdots \\ \vdots \end{gathered}$	$\frac{1}{2}$	－				\bigcirc	$\stackrel{\overline{2}}{\stackrel{\rightharpoonup}{2}}$
	－	－	0	\％	\％	－	E	\bigcirc	\sim	－	\％	－	$\frac{\underset{y}{3}}{\frac{1}{2}}$	$\begin{aligned} & \grave{N} \\ & \end{aligned}$			$\begin{aligned} & 0 \\ & \vdots \\ & 0 \\ & n \\ & n \\ & n \end{aligned}$	－	$\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \stackrel{n}{c} \end{aligned}$			$\begin{aligned} & \stackrel{n}{9} \\ & \stackrel{G}{7} \end{aligned}$		$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \end{aligned}$	$\left\lvert\, \begin{gathered} \text { İ } \\ \stackrel{\text { N }}{0} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \circ \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \end{gathered}\right.$	$\begin{aligned} & \dot{Z} \\ & \frac{y}{2} \\ & 0 \\ & 0 \end{aligned}$	＋			$\begin{aligned} & \stackrel{\rightharpoonup}{+} \\ & \stackrel{y}{c} \\ & \underset{~}{4} \end{aligned}$	－	com
	－	－	－	\％	－	－	$\frac{\underset{A}{A}}{\hat{O}}$	\bigcirc	N	0	\％	－		$\begin{aligned} & N \\ & \tilde{\sim} \\ & \underset{\sim}{2} \end{aligned}$			$\begin{aligned} & \hat{y} \\ & 0 \\ & 0 \\ & \\ & \end{aligned}$	－				$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{-}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{\hat{2}} \\ \underset{\sim}{c} \end{gathered}$	$\begin{aligned} & \text { o} \\ & \text { of } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \frac{2}{7} \\ & \frac{0}{6} \\ & 9 \end{aligned}$	$\begin{aligned} & \infty \\ & 2 \\ & 20 \\ & 0 \\ & 0 \end{aligned}$	－			$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{6} \\ & \underset{\sim}{\dot{1}} \end{aligned}$	－	－
	－	－	－	\cdots	－	－	$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{O}} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	\bigcirc	N	0	\％	－		$\begin{aligned} & \tilde{N} \\ & \underset{\sim}{2} \\ & \underset{2}{2} \end{aligned}$	$$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\left\lvert\, \begin{gathered} \hat{y} \\ \hat{0} \\ \hat{h} \\ \stackrel{n}{1} \end{gathered}\right.$	－		$\begin{gathered} \hat{n} \\ \substack{n \\ 0 \\ \hdashline \\ \hline} \end{gathered}$			$\begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{\hat{2}} \\ \underset{i}{\alpha} \end{gathered}$		$\begin{gathered} \text { 亿. } \\ \underset{\text { Nु }}{ } \end{gathered}$	$\left\|\begin{array}{c} n \\ \frac{n}{6} \\ \hdashline-9 \end{array}\right\|$		－			$\begin{aligned} & \stackrel{\rightharpoonup}{\grave{c}} \\ & \stackrel{y}{6} \\ & \underset{1}{+} \end{aligned}$	－	＋
$\left.\begin{array}{cc} \text { F } \\ 1 & 0 \\ 0 \\ 0 & 0 \\ j \end{array} \right\rvert\,$	－	0	－	$\stackrel{n}{0}$	－	－	$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{A}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	－	－	－	$\stackrel{n}{n}$	－	$\left\lvert\, \begin{gathered} n \\ \stackrel{n}{c} \\ \underset{\sim}{n} \\ \underset{c}{2} \end{gathered}\right.$	$\begin{aligned} & \stackrel{\otimes}{\infty} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \infty \\ & \dot{O} \\ & \dot{O} \end{aligned}$			－		$\overline{\text { ch}}$		\bigcirc		$\underset{\sim}{\underset{\sim}{\text { I }}}$	$\begin{aligned} & \stackrel{2}{2} \\ & \stackrel{1}{2} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{gathered} \text { O} \\ \substack{\text { an } \\ \hline} \end{gathered}$		－		e?	$\begin{aligned} & \stackrel{\rightharpoonup}{女} \\ & \stackrel{c}{6} \\ & \underset{\sim}{\dot{1}} \end{aligned}$		馬
z^{2}	\sim	－	－	$\stackrel{n}{0}$	－	－	$\frac{\underset{\rightharpoonup}{E}}{\underset{O}{\circ}}$	－	－	\sim	$\stackrel{n}{n}$	－	$\begin{aligned} & \text { n } \\ & \underset{\sim}{7} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \underset{O}{O} \\ & \underset{o}{\circ} \\ & \underset{\sim}{i} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { in } \\ & \stackrel{-0}{0} \\ & \stackrel{\rightharpoonup}{n} \\ & \hline \end{aligned}\right.$	$\begin{aligned} & \text { n } \\ & \tilde{\mu} \\ & \tilde{0} \\ & \vdots \end{aligned}$	$\begin{gathered} \hat{o} \\ \hat{o} \\ \hat{n} \\ \stackrel{n}{1} \end{gathered}$	－		子		\bigcirc		$\begin{aligned} & \bar{n} \\ & \underset{y}{c} \\ & \text { n } \end{aligned}$	$\begin{gathered} \vec{\infty} \\ \stackrel{\rightharpoonup}{\circ} \\ \stackrel{n}{n} \end{gathered}$	$\begin{gathered} \hat{\rightharpoonup} \\ 0 \\ \\ \text { in } \end{gathered}$		守			$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \underset{6}{6} \\ & \underset{\sim}{1} \end{aligned}$	\ddagger \vdots \vdots \vdots	$\stackrel{\circ}{\circ}$
	∞	\sim		会	－	$-$	$\frac{\underset{N}{\hat{N}}}{2}$	－	－	o	$\stackrel{n}{\text { n }}$	－	$\left\lvert\, \begin{gathered} \infty \\ \underset{N}{n} \\ \\ \vdots \end{gathered}\right.$	$\begin{gathered} \infty \\ \underset{\sim}{\alpha} \\ \underset{\sim}{\infty} \\ \hline \end{gathered}$	$\begin{array}{\|c} \underset{\sim}{U} \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \hat{0} \\ & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$	$\left\lvert\, \begin{gathered} \hat{y} \\ 0 \\ 0 \\ n \\ \end{gathered}\right.$	－				\bigcirc		$\begin{aligned} & 0 \\ & \underset{\sim}{2} \\ & \underset{\sim}{c} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \hline \end{gathered}\right.$	$\begin{aligned} & \text { N్} \\ & \text { ત̀ } \\ & \text { î } \end{aligned}$		A					$\xrightarrow{\circ}$
$\left\|\begin{array}{ll} 0 & 0 \\ 1 & \vdots \\ 0 & 0.0 \end{array}\right\|$	－	－	\bigcirc	\cdots	－	－	$\begin{gathered} \stackrel{\circ}{2} \\ \stackrel{\alpha}{\infty} \\ \end{gathered}$	\bigcirc	\sim	\bigcirc	\because	－	$\begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{Z} \\ \underset{\sim}{i} \end{gathered}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{4} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$						\dot{m}		$\begin{aligned} & \hat{4} \\ & \underset{i}{\hat{N}} \\ & \stackrel{1}{2} \end{aligned}$		$\begin{aligned} & \vec{\sim} \\ & \stackrel{\sim}{i} \\ & \dot{o} \end{aligned}$		$\begin{aligned} & \stackrel{\leftrightarrow}{0} \\ & \text { Ni } \\ & \text { in } \end{aligned}$		－		$\underset{\sim}{2}$		－	¢
$\left\|\begin{array}{ll} z_{1} \\ 1 & \text { gib } \\ 0 & 0 \end{array}\right\|$	－	－	－	\cdots	－		$\begin{gathered} \stackrel{\rightharpoonup}{\hat{0}} \\ \stackrel{-}{2} \end{gathered}$	\bigcirc	\sim	－	\％		$\begin{aligned} & \mathscr{O} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{y} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \mathrm{N} \\ & \underset{\mathrm{~N}}{\mathrm{~g}} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & \end{aligned}$	－				$\begin{aligned} & \infty \\ & \stackrel{\infty}{\lambda} \\ & \text { ò } \\ & \hline 1 \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{n}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\left\lvert\, \begin{aligned} & \stackrel{0}{y} \\ & \underset{n}{n} \\ & \end{aligned}\right.$		$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \underset{\alpha}{2} \\ \frac{\alpha}{0} \end{gathered}$		ci	$\begin{aligned} & \stackrel{\leftrightarrow}{\circ} \\ & \stackrel{\rightharpoonup}{6} \\ & \underset{\sim}{4} \end{aligned}$	－	¢
Q 菏	\sim	－	－	\cdots	－	－	¢	N	＋	－	n	－	$\begin{aligned} & \underset{7}{7} \\ & 0 \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & \mathscr{O} \\ & \frac{0}{0} \\ & \underset{\sim}{i} \end{aligned}$		$\begin{aligned} & 8 \\ & 0 \\ & \frac{2}{7} \\ & \text { ci } \end{aligned}$	－	∞ $\stackrel{\infty}{2}$ $\stackrel{\rightharpoonup}{1}$	o	Ş		$\begin{aligned} & \infty \\ & \text { ふ̈ } \\ & \text { Ò } \end{aligned}$	$\frac{\underset{2}{2}}{\frac{2}{7}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\lambda} \\ & \underset{\sim}{2} \end{aligned}$		$$		$\xrightarrow{\text { a }}$			$\begin{aligned} & \stackrel{\otimes}{\circ} \\ & \stackrel{y}{6} \\ & \stackrel{+}{\dot{1}} \end{aligned}$	－	¢
	$=$	ご	＝	ט	U	v	v	vid	0^{*}	0^{*}	\cup^{-}	\bigcirc	se	\underbrace{s}_{Δ}	$\begin{aligned} & \frac{1}{e} \\ & \mathrm{t} \end{aligned}$	$\underbrace{2}_{i}$				4				$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\underbrace{e}_{1 \leqslant 2}$		I			coss	$\stackrel{\rightharpoonup}{4}$	－

Table 15．199．The total bond energies of alkyl nitrites calculated using the functional group composition and the energies of Table 15.198 compared to the experimental values［3］．

Table 15．200．The bond angle parameters of alkyl nitrites and experimental values［1］．In the calculation of \square_{v} ，the parameters from the preceding angle were used．

容〇													
部	$\stackrel{\cong}{\stackrel{M}{2}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \underset{G}{\mathscr{O}} \\ & \stackrel{\infty}{0} \end{aligned}$	$\stackrel{\stackrel{G}{+}}{\stackrel{1}{=}}$	$\stackrel{\text { g }}{\stackrel{\circ}{\circ}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \underline{O} \end{aligned}$		$\underset{\sim}{7}$	$\begin{aligned} & \stackrel{\circ}{\bullet} \\ & \stackrel{1}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{1}{0} \end{aligned}$	$\stackrel{\grave{1}}{=}$	$\stackrel{\check{9}}{=}$	¢
－¢													
σ° こ													
∞－				5	$\begin{aligned} & \bar{n} \\ & 0 . \end{aligned}$		$\begin{gathered} \circ \\ \\ \stackrel{n}{2} \end{gathered}$	\％					－
心会			－			－				－	－	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{\leftrightarrow}{\infty} \\ & \stackrel{1}{4} \end{aligned}$	
－	$\begin{aligned} & \text { 准 } \\ & \stackrel{0}{\circ} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{6} \\ & \stackrel{n}{7} \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{!}{7} \end{aligned}$					$\begin{aligned} & \text { ®. } \\ & \stackrel{\oplus}{\overleftarrow{1}} \end{aligned}$	$\begin{aligned} & d \\ & \stackrel{y}{0} \\ & \stackrel{0}{\infty} \end{aligned}$	
\checkmark	－	－	n			n			－	n	ño	－	
U	－	－	－			－			－	－	－	－	
v	－	－	－			－			－	¢	¢	－	
$v^{\circ} \frac{\sqrt{6}}{6}$		$\begin{aligned} & \frac{8}{2} \\ & \frac{8}{2} \\ & \end{aligned}$	－			－			$\begin{aligned} & \frac{9}{2} \\ & \substack{20 \\ 0 \\ 0} \end{aligned}$	$\begin{aligned} & \text { E } \\ & \frac{\partial}{\partial} \end{aligned}$	$\stackrel{\text { E }}{\underset{\partial}{\circ}}$	$\begin{gathered} \text { for } \\ \substack{0 \\ 0} \end{gathered}$	
$\backsim \frac{\bar{\pi}}{\frac{\pi}{4}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{y}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{U}{\omega} \\ & \stackrel{y}{\infty} \end{aligned}$	$\begin{aligned} & \text { or } \\ & \text { on } \\ & 0 \end{aligned}$						$\begin{aligned} & \stackrel{\rightharpoonup}{t} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{y}{0} \end{aligned}$		$\begin{aligned} & \stackrel{2}{2} \\ & \substack{\infty \\ \infty \\ \hline} \end{aligned}$		
	z	\％	\pm			\pm			－	－	－	\because	
㫨筑			\pm			\pm				¢	会		
	$\stackrel{\square}{1}$	\％	\checkmark			－			－	in	n	¢	
	邫 $\stackrel{-}{1}$		$\begin{gathered} \text { 合 } \\ \substack{6\\ } \end{gathered}$						$\begin{aligned} & \text { 差 } \\ & \text { 总 } \\ & \stackrel{1}{1} \end{aligned}$	$\begin{aligned} & \text { 第 } \\ & \stackrel{n}{n} 0^{\circ} \end{aligned}$			
票會会会	$\begin{gathered} \text { 柰 } \\ \text { 子 } \end{gathered}$	$\stackrel{\bar{\pi}}{\underset{子}{x}}$	$\begin{aligned} & \text { İ } \\ & \underset{\sim}{\sim} \end{aligned}$			$$			$\begin{gathered} \infty \\ \stackrel{\infty}{\overleftarrow{\circ}} \\ \hline \end{gathered}$	$\stackrel{\text { Noc }}{\underset{子}{6}}$	$\stackrel{\text { ¢ }}{\substack{7}}$	－	
N 䓂		$\begin{aligned} & \text { 흥 } \\ & \text { in } \end{aligned}$	$\stackrel{\text { ®}}{\underset{i}{i}}$			$\begin{aligned} & \underset{\substack{\mathrm{i}}}{ } \end{aligned}$			$\begin{aligned} & \text { f } \\ & \frac{\mathrm{V}}{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{i} \end{aligned}$	F	त⿹\zh26灬力灬力	
祳	$\begin{aligned} & \text { ìd } \\ & \text { הin } \end{aligned}$	$\begin{aligned} & \text { t } \\ & \text { don } \\ & \text { an } \end{aligned}$	$\stackrel{\mathrm{g}}{\bar{i}}$			$\begin{aligned} & \underset{\text { a }}{\text { in }} \end{aligned}$			$\begin{aligned} & \text { f } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { f } \\ & \stackrel{y}{2} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { f. } \\ & \text { הे } \end{aligned}$	－	
	$\begin{aligned} & z \\ & e_{0} \end{aligned}$	$\begin{aligned} & 0_{0}^{0} \\ & \mathcal{O}_{0} \end{aligned}$		$\begin{aligned} & 0_{0}^{0} \\ & \mathrm{U}_{0} \end{aligned}$	$\begin{aligned} & z \\ & \text { zs } \\ & \text { ن́ } \end{aligned}$		V	V	$\begin{aligned} & 0_{0}^{0} 0^{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{ll} y_{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0.0 \end{array}$		$\left(\begin{array}{c} c_{0}^{s} \\ c_{0}^{0} \\ v_{1} \end{array}\right.$

ALKYL NITRATES $\left(C_{n} H_{2 n+2-m}\left(\mathrm{NO}_{3}\right)_{m}, \quad n=1,2,3,4,5 \ldots \infty\right)$
The alkyl nitrates, $\mathrm{C}_{n} \mathrm{H}_{2 n+2-m}\left(\mathrm{NO}_{3}\right)_{m}$, comprise a $\mathrm{RC}-\mathrm{O}-\mathrm{NO}_{2}$ moiety that comprises $\mathrm{C}-\mathrm{O}, \mathrm{O}-\mathrm{N}$, and NO_{2} functional groups. The alkyl portion of the alkyl nitrate may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of the chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $C-C$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in alkyl nitrates are equivalent to those in branched-chain alkanes.

The NO_{2} functional group is equivalent to that of nitro alkanes with the exception that $\Delta E_{\mathrm{H}_{2} \mathrm{NO}}(\mathrm{AO} / \mathrm{HO})$ as well as $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ is equal to -3.71673 eV in order to match the group energy to that of the contiguous $O-N$ bond. Furthermore, the $O-N$ group with $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)=-0.92918 \mathrm{eV}$ is equivalent to that of nitrites as given in the corresponding section.

The $C-O$ functional group is equivalent to that of an ether as given in the corresponding section except that $E_{T}\left(\right.$ atom-atom,$\left.m s p^{3} . A O\right)$ and $\Delta E_{H_{2} M O}(A O / H O)$ are both -0.92918 eV which matches the energy contribution of an independent $C 2 s p^{3} \mathrm{HO}$ (Eq. (14.513)). Also, the energy terms corresponding to the oscillation of the bond in the transition state are matched to a nitrate.

The symbols of the functional groups of branched-chain alkyl nitrates are given in Table 15.201. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl nitrates are given in Tables 15.202, 15.203, and 15.204, respectively. The total energy of each alkyl nitrate given in Table 15.205 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.204 corresponding to functional-group composition of the molecule. The bond angle parameters of alkyl nitrates determined using Eqs. (15.88-15.117) are given in Table 15.206. The color scale, translucent view of the charge-density of exemplary alkyl nitrate, ethyl nitrate, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.34.

Figure 15.34. (A)-(B) Color scale, translucent views of the charge-density of ethyl nitrate showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

B

Table 15.201. The symbols of functional groups of alkyl nitrates.

Functional Group	Group Symbol
NO_{2} group	NO_{2}
$\mathrm{O}-\mathrm{N}$	$\mathrm{O}-\mathrm{N}$
C-O	C-O
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
CC (iso to iso-C)	$C-C$ (d)
$C C$ (t to $t-C$)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.202. The geometrical bond parameters of alkyl nitrates and experimental values [1].

Parameter	$\begin{gathered} \mathrm{NO}_{2} \\ \text { Group } \end{gathered}$	$\begin{aligned} & O-N \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-O \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C(\mathrm{~d}) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.29538	1.76440	1.83991	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.13815	1.32831	1.35643	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.20456	1.40582	1.43559	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	1.205 (methyl nitrate) 1.2 $\left(\mathrm{HNO}_{2}\right)$ 0.6185	1.402 (methyl nitrate) 1.432 $\left(\mathrm{HNO}_{2}\right)$	$\begin{gathered} 1.437 \\ \text { (methyl nitrate) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (\mathrm{C}-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	1.532 (propane) 1.531 (butane)	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	1.532 (propane) 1.531 (butane)	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	1.532 (propane) 1.531 (butane)
$b, c\left(a_{0}\right)$	0.61857	1.16134	1.24312	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.87862	0.75284	0.73723	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.203. The MO to HO intercept geometrical bond parameters of alkyl nitrates. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is E_{T} (atom-atom,msp ${ }^{3}$. $A O$).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	E_{T} (eV) Bond 2	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 4 } \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {mutual }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {flnal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} \hline E_{\text {Cautumb }} \\ \text { (ev) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\left({ }^{\circ}\right)$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \theta_{2} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$R O N(O)=O$	O	-0.92918	0	0	0		1.00000	0.86359	-15.75493		138.49	41.51	67.70	0.49144	0.64671
$\operatorname{RON}(\mathrm{O})=O$	N	-0.92918	-0.92918	-0.46459	0		0.93084	0.79340	-17.14870		135.60	44.40	63.83	0.57133	0.56682
$R O_{b}-N\left(O_{a}\right)_{2}$	O_{b}	-0.46459	-0.46459	0	0		1.00000	0.86359	-15.75493		98.78	81.22	47.30	1.19655	0.13175
$R O_{b}-N\left(O_{a}\right)_{2}$	N	-0.46459	-0.92918	-0.92918	0		0.93084	0.79340	-17.14870		92.78	87.22	43.03	1.28978	0.03852
$\begin{aligned} & \mathrm{RH}_{2} \mathrm{C}_{a}-\mathrm{O}_{t} \mathrm{~N}\left(\mathrm{O}_{a}\right)_{2} \\ & \mathrm{R}=\mathrm{H}, \text { alkyl } \end{aligned}$	O_{b}	-0.46459	-0.46459	0	0		1.00000	0.86359	-15.75493		92.13	87.87	43.96	1.32431	0.03212
$\mathrm{H}_{3} \mathrm{C}_{a}-\mathrm{O}_{b} \mathrm{~N}\left(\mathrm{O}_{a}\right)_{2}$	C_{a}	-0.46459	0	0	o	-152.08028	0.91771	0.88983	-15.29034	-15.09948	94.36	85.64	45.54	1.28872	0.06771
$-\mathrm{CH}_{2} \mathrm{H}_{2} \mathrm{C}_{a}-\mathrm{O}_{b} \mathrm{~N}\left(\mathrm{O}_{a}\right)_{2}$	C_{a}	-0.46459	-0.92918	0	o	-153.00946	0.91771	0.83885	-16.21952	-16.02866	89.90	90.10	42.44	1.35787	0.00143
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C}-\mathrm{H}(\mathrm{CH})$	C	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{a} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C} \text { (a)) } \\ & \hline \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{3} \mathrm{C}_{\mathrm{a}} \mathrm{C}_{b} \mathrm{H}_{2} \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{a})) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-\mathrm{H}_{2} C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{~b})) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-\mathrm{H}_{2} C_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{c})) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & \text { isoC } C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) \mathrm{HCH}_{2}- \\ & (\mathrm{C}-\mathrm{C} \text { (d) }) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & \operatorname{tert~}_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{e})) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & \operatorname{tert} C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (\mathrm{C}-\mathrm{C}(\mathrm{f})) \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & \text { iso } C_{a}\left(R^{\prime}-\mathrm{H}_{2} C_{d}\right) \mathrm{C}_{b}\left(\mathrm{R}^{\prime \prime}-\mathrm{H}_{2} \mathrm{C}_{c}\right) \mathrm{CH}_{2}- \\ & (\mathrm{C}-\mathrm{C} \text { (f)) } \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.204. The energy parameters (eV) of functional groups of alkyl nitrates.

Parameters	NO_{2} Group	$\begin{aligned} & O-N \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-O \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{a}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(b) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{c}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(d) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
n_{1}	2	1	1	3	2	1	1	1	1	1	1	1
n_{2}	0	0	0	2	1	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.5	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{2}	1	1	1	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	1	1	1	1	1	1
c_{2}	0.85987	1.06727	0.85395	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	0	0	0	0	1	1	0	0	0	1	1	0
c_{4}	4	2	2	1	1	1	2	2	2	2	2	2
c_{5}	0	0	0	3	2	1	0	0	0	0	0	0
C_{10}	0.5	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5
C_{20}	1	1	1	1	1	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-112.63415	-42.83043	-32.35681	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112
$V_{p}(\mathrm{eV})$	23.90868	20.48593	10.03058	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273
$T(\mathrm{eV})$	43.47534	12.13739	8.79304	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500
$V_{s i n}(\mathrm{eV})$	-21.73767	-6.06870	-4.39652	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250
E (Ао/но) (eV)	0	-15.35946	-14.63489	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$\Delta E_{H_{2} \mathrm{NO}}($ (оо но) $)(\mathrm{eV})$	-3.71673	0	-0.92918	0	0	0	0	0	0	0	0	0
$E_{T}($ (ою но) (eV)	3.71673	-15.35946	-13.70571	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946
$E_{T}\left(H_{2} / 20\right)(\mathrm{eV})$	-63.27107	-31.63527	-31.63542	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-3.71673	-0.92918	-0.92918	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915
$E_{T}(\mathrm{no})(\mathrm{eV})$	-66.98746	-32.56455	-32.56455	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	19.8278	23.3578	21.0910	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643
$E_{K}(\mathrm{eV})$	13.05099	15.37450	13.88249	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021
$\bar{E}_{D}(\mathrm{eV})$	-0.23938	0.25261	-0.24004	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416
$\bar{E}_{\text {Kvlb }}(\mathrm{eV})$	$\begin{gathered} 0.19342 \\ {[45]} \\ \hline \end{gathered}$	$\begin{gathered} 0.10725 \\ {[47]} \end{gathered}$	$\begin{gathered} 0.13663 \\ {[21]} \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458)) \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.14267	0.19899	-0.17172	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260
$E_{\text {mag }}(\mathrm{eV})$	0.11441	0.11441	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
E_{r} ((irup) (eV)	-67.27281	32.76354	-32.73627	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712
$E_{\text {iputalal }}\left(\mathrm{E}_{\text {c }}\right.$ AOIHO) $)(\mathrm{eV})$	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
$E_{\text {mutalal }}\left(\mathrm{f}_{\text {s }}^{\text {AOOHO }}\right.$) (eV)	0	0	0	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0
$E_{D}($ (rinup $)(\mathrm{eV})$	8.73325	3.49376	3.46649	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734

Table 15.206. The bond angle parameters of alkyl nitrates and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is E_{T} (atom-atom, $m s p^{3} \cdot A O$).

CYCLIC AND CONJUGATED ALKENES ($C_{n} H_{2 n+2-2 m-2 c}, n=3,4,5 \ldots \infty, m=1,2,3 \ldots, c=0$ or 1)

The cyclic and conjugated alkenes are represented by the general formula $C_{n} H_{2 n+2-2 m-2 c}, n=3,4,5 \ldots \infty, m=1,2,3 \ldots, c=0$ or 1 where m is the number of double bonds and $c=0$ for a straight-chain alkene and $c=1$ for a cyclic alkene. They have at least one carbon-carbon double bond comprising a functional group that is solved equivalently to the double bond of ethylene. Consider the cyclic and conjugated alkenes 1,3-butadiene, 1,3-pentadiene, 1,4-pentadiene, 1,3-cyclopentadiene, and cyclopentene. Based on the condition of energy matching of the orbital, any magnetic energy due to unpaired electrons in the constituent fragments, and differences in oscillation in the transition state, five distinct $C-C$ functional groups can be identified as given in Table 15.208. The designation of the structure of the groups are shown in Figures 15.35A-E. In addition, CH_{2} of any $-\mathrm{C}=\mathrm{CH}_{2}$ moiety is a conjugated alkene functional group. The alkyl portion of the cyclic or conjugated alkene may comprise at least one terminal methyl group $\left(\mathrm{CH}_{3}\right)$, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups that are equivalent to those of branched-chain alkanes.

The solution of the functional groups comprises the hybridization of the $2 s$ and $2 p$ AOs of each C to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $C 2 s p^{3}$ HOs to form a MO permits each participating hybridized orbital to decrease in radius and energy. The $C-C$ groups are solved in the same manner as those of the branched-chain alkanes given in the corresponding section. For example, the cyclopentene $C_{a}-C_{b}$ group is equivalent to the $\mathrm{n}-C-C$ alkane group. Many of the corresponding energies of the molecules of this class are similar, and they can be related to one another based on the structure. For example, cyclopentadiene is formed by ring closure of 1,3-pentadiene with the elimination of H from the terminal methyl and methylene groups. Thus, the energy of each of the corresponding carbon-carbon bonds in cyclopentadiene is the same as that in 1,3-pentadiene except that the difference between the energies of the 1,3pentadiene $C_{c}-C_{d}$ and the cyclopentadiene $C_{a}-C_{b}$ groups is the magnetic energy (Eq. (15.67)) which is subtracted from the $C_{a}-C_{b}$ total bond energy according to Eqs. (13.524-13.527) due to the formation of a CH group from the methylene group. The color scale, translucent view of the charge-density of exemplary cyclic and conjugated alkene, 1,3-butadiene, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.35.

Figure 15.35. Color scale, translucent view of the charge-density of 1,3-butadiene showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C=C$-bond MO in Eq. (15.61) due to the charge donation from the C atoms to the MO is equivalent to that of ethylene, -2.26759 eV , given by Eq. (14.247). $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of each $C-C$-bond MO in Eq. (15.61) is -2.26759 eV or -1.85836 eV based on the energy match between the $C 2 \mathrm{sp}^{3} \mathrm{HOs}$ corresponding to the energy contributions equivalent to those of alkene, -1.13379 eV (Eq. (14.247)), or methylene, -0.92918 eV (Eq. (14.513)), groups, respectively, that are contiguous with the $C-C$-bond carbons. In the former case, the total energy of the $C-C$ bond MO is matched to that of the alkane energy in the determination of the bond length. The charge density of 0.5 e must be donated to the $C-C$ bond in order to match the energy of the adjacent flanking double bonds. This further lowers the total energy of the $C-C$-bond MO and increases the $C-C$ bond energy. This additional lowering of the $C-C$-bond energy by additional charge donation over that of an alkane bond due to adjacent double bonds is called conjugation.

The symbols of the functional groups of cyclic and conjugated alkenes are given in Table 15.207. The structures of 1,3butadiene, 1,3-pentadiene, 1,4-pentadiene, 1,3-cyclopentadiene, and cyclopentene are shown in Figures 15.35A-E, respectively. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of cyclic and conjugated alkenes are given in Tables $15.208,15.209$, and 15.210 , respectively. The total energy of each cyclic or conjugated alkenes given in Table 15.211 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of

Table 15.210 corresponding to functional-group composition of the molecule. For each set of unpaired electrons created by bond breakage, the $C 2 s p^{3} \mathrm{HO}$ magnetic energy $E_{\text {mag }}$ that is subtracted from the weighted sum of the $E_{D}(G r o u p)(e V)$ values based on composition is given by Eq. (15.67). The bond angle parameters of cyclic and conjugated alkenes determined using Eqs. (15.88-15.117) are given in Table 15.212.

Figure 15.35A. 1,3 Butadiene

Figure 15.35 B. 1,3 Pentadiene

Figure 15.35C. 1,4 Pentadiene

Figure 15.35D. 1,3 Cyclopentadiene

Figure 15.35E. Cyclopentene

Table 15.207. The symbols of functional groups of cyclic and conjugated alkenes.

Functional Group	Group Symbol
$C C$ double bond	$\mathrm{C}=\mathrm{C}$
1,3-butadiene, 1,3-pentadiene $C_{b}-C_{b}$	$\mathrm{C}-\mathrm{C}$ (a)
1,3-cyclopentadiene $C_{c}-C_{c}$	
1,3-pentadiene $C_{c}-C_{d}$	$\mathrm{C}-\mathrm{C}$ (b)
cyclopentene $C_{b}-C_{c}$	$\mathrm{C}-\mathrm{C}$ (c)
1,4-pentadiene $\mathrm{C}_{b}-C_{c}$	$\mathrm{C}-\mathrm{C}$ (d)
1,3-cyclopentadiene $\mathrm{C}_{a}-\mathrm{C}_{b}$	$\mathrm{C}-\mathrm{C}$ (e)
cyclopentene $\mathrm{C}_{a}-\mathrm{C}_{b}$	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)($ i)
CH_{2} alkenyl group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$ (ii)
CH_{2} alkyl group	$\mathrm{C}-\mathrm{H}$
CH	

Table 15.208. The geometrical bond parameters of cyclic and conjugated alkenes and experimental values [1].

Parameter	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \text { (b) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C(\mathrm{c}) \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \text { (d) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { (i) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { (ii) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$
$a\left(a_{0}\right)$	1.47228	1.91256	2.04740	2.04740	2.04740	2.12499	1.64010	1.64920	1.67122	1.67465
$c^{\prime}\left(a_{0}\right)$	1.26661	1.38295	1.43087	1.43087	1.43087	1.45773	1.04566	1.04856	1.05553	1.05661
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.34052	1.46365	1.51437	1.51437	1.51437	1.54280	1.10668	1.10974	1.11713	1.11827
Exp. Bond Length (A)	1.349 (1,3-butadiene) 1.342 (1,3-cyclopentadiene) 1.342 (cyclopentene)		1.519 (cyclopentene)		$\begin{gathered} 1.509 \\ \text { (1,3-cyclopentadiene) } \end{gathered}$	$\begin{gathered} 1.546 \\ \text { (cyclopentene) } \end{gathered}$	$\begin{gathered} 1.10 \\ \text { (2-methylpropene) } \\ 1.108 \text { (avg.) } \\ \text { (1,3-butadiene) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$
$b, c\left(a_{0}\right)$	0.75055	1.32110	1.46439	1.46439	1.46439	1.54615	1.26354	1.27295	1.29569	1.29924
e	0.86030	0.72309	0.69887	0.69887	0.69887	0.68600	0.63756	0.63580	0.63159	0.63095

Table 15.209. The MO to HO intercept geometrical bond parameters of cyclic and conjugated alkenes. R_{l} is an alkyl group and $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is E_{T} (atom - atom, $m s p^{3} . A O$).

Table 15.210. The energy parameters (eV) of functional groups of cyclic and conjugated alkenes.

Parameters	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{aligned} & C-C(\text { b) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (c) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (d) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{CH}_{2} \text { (i) } \\ & \text { Group } \end{aligned}$	CH_{3} Group	$\begin{gathered} \mathrm{CH}_{2} \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$
n_{1}	2	1	1	1	1	1	2	3	2	1
n_{2}	0	0	0	0	0	0	1	2	1	0
n_{3}	0	0	0	0	0	0	0	0	0	0
c_{1}	0.5	0.5	0.5	0.5	0.5	0.5	0.75	0.75	0.75	0.75
C_{2}	0.91771	1	1	1	1	1	1	1	1	1
c_{1}	1	1	1	1	1	1	1	1	1	1
c_{2}	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771
c_{3}	0	0	0	0	1	0	1	0	1	1
c_{4}	4	2	2	2	2	2	1	1	1	1
c_{s}		0	0	0	0	0	2	3	2	1
C_{10}	0.5	0.5	0.5	0.5	0.5	0.5	0.75	0.75	0.75	0.75
C_{20}	0.91771	1	1	1	1	1	1	1	1	1
$V_{c}(\mathrm{eV})$	-102.08992	-33.01226	-30.19634	-30.19634	-30.19634	-28.79214	-72.03287	-107.32728	-70.41425	-35.12015
$V_{p}(e V)$	21.48386	9.83824	9.50874	9.50874	9.50874	9.33352	26.02344	38.92728	25.78002	12.87680
$T(\mathrm{eV})$	34.67062	8.63041	7.37432	7.37432	7.37432	6.77464	21.95990	32.53914	21.06675	10.48582
$V_{\text {we }}(\mathrm{eV})$	-17.33531	-4.31520	-3.68716	-3.68716	-3.68716	-3.38732	-10.97995	-16.26957	-10.53337	-5.24291
E (\%or/u) (eV)	0	-14.63489	-14.63489	-14.63489	-14.63489	-15.56407	-14.63489	-15.56407	-15.56407	-14.63489
$\Delta E_{H_{2} \text { 人о }}$ (Ао Іоб) (eV)	0	-1.85836	0	0	0	0	0	0	0	0
E_{r} (10\% Ho) $^{\text {(}}$ (eV)	0	-12.77653	-14.63489	-14.63489	-14.63489	-15.56407	-14.63489	-15.56407	-15.56407	-14.63489
$E_{T}\left(\mathrm{H}_{2}, 2 \mathrm{O}\right)(\mathrm{eV})$	-63.27075	-31.63535	-31.63534	-31.63534	-31.63534	-31.63537	-49.66437	-67.69451	-49.66493	-31.63533
$E_{t}\left(\right.$ atom - atom, msp $\left.{ }^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-2.26759	-1.85836	-1.85836	-1.85836	-1.85836	0	0	0	0
$E_{f}(\mathrm{No})(\mathrm{eV})$	-65.53833	-33.90295	-33.49373	-33.49373	-33.49373	-33.49373	-49.66493	-67.69450	-49.66493	-31.63537
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	43.0680	11.0522	9.97851	23.3291	9.97851	9.43699	25.2077	24.9286	24.2751	24.1759
$E_{K}(\mathrm{eV})$	28.34813	7.27475	6.56803	15.35563	6.56803	6.21159	16.59214	16.40846	15.97831	15.91299
$\bar{E}_{D_{D}}(e \mathrm{~V})$	-0.34517	-0.18090	-0.16982	-0.25966	-0.16982	-0.16515	-0.25493	-0.25352	-0.25017	-0.24966
$\overline{\bar{E}_{\text {Kitb }}(e V)}$	$\begin{aligned} & 0.17897 \\ & {[6]} \\ & {[6]} \end{aligned}$	$\begin{gathered} 0.14829 \\ {[48]} \end{gathered}$	$\begin{gathered} 0.11159 \\ {[12]} \end{gathered}$	$\begin{gathered} 0.11159 \\ {[12]} \end{gathered}$	$\begin{gathered} 0.11159 \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. (13.458) } \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. (13.458) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. (13.458) } \end{gathered}$
$\bar{E}_{\text {oce }}(e \mathrm{~V})$	-0.25568	-0.10676	-0.11402	-0.20386	-0.11402	-0.10359	-0.07727	-0.22757	-0.14502	-0.07200
$E_{\text {mog }}(\mathrm{e} V)$	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{r}($ (romp) (eV)	-66.04969	-34.00972	-33.60776	-33.69760	-33.60776	-33.59732	-49.81948	-67.92207	-49.80996	-31.70737
$E_{\text {manad }}($ (e, AOIHO) (eV)	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
$E_{\text {mantal }}($ S AOIHO) (eV)	0	0	0	0	0	0	-13.59844	-13.59844	-13.59844	-13.59844
$E_{D}(\underline{\text { gimpu }}$) $(e \mathrm{~V})$	7.51014	4.73994	4.33798	4.42782	4.18995	4.32754	7.83968	12.49186	7.83016	3.32601

Table 15.211. The total bond energies of cyclic and conjugated alkenes calculated using the functional group composition and the energies of Table 15.210 compared to the experimental values [3]. The magnetic energy $E_{m a g}$ that is subtracted from the weighted sum of the E_{D} (Group) (eV) values based on composition is given by (15.58).
 Error 0.00084
0.00031 ${ }^{\circ}$ 0.00058
0.00047 Total Bond Total Bond $42.09159 \quad 42.12705$

Table 15.212. The bond angle parameters of cyclic and conjugated alkenes and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$.

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond 2 } \\ \left(a_{0}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline 2 c^{\prime} \\ \text { Terminal } \\ \text { Atoms } \\ \left(a_{0}\right) \end{array}$	$E_{\text {Columboble }}$ Atom 1	Atom 1 Hybridization Designation (Table 15.3.A)	$E_{\text {Coulmbic }}$ Atom 2	Atom 2 Hybridization Designation (Table 15.3.A)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\begin{gathered} \angle H C_{a} H \\ H_{2} C_{a} C_{b} \\ 1,3 \text {-butadiene } \end{gathered}$	2.09132	2.09132	3.4928	-15.95955	10	H	H	0.85252	1	1	1	0.75	1.17300	0				113.25	
$\begin{gathered} \angle C_{b} C_{a} H_{a} \\ H_{2} C_{a}=C_{b} \\ 1,3 \text {-butadiene } \end{gathered}$																113.25		123.38	$\begin{gathered} 120.9 \\ \text { (1,3-butadiene) } \end{gathered}$
$\begin{gathered} \angle C_{b} C_{a} H_{a} \\ H_{2}=C_{b}=C_{b} \\ 1,3 \text {-butadiene } \end{gathered}$	2.53321	2.09132	4.0000	$\underset{C_{a}}{-15.95954}$	10	$\stackrel{-15.95954}{C_{b}}$	10	0.85252	0.85252	0.75	1	0.75	1.00000	0				119.45	$\begin{gathered} 120.9 \\ \text { (1,3-butadiene) } \end{gathered}$
$\begin{gathered} \angle C_{a} C_{b} C_{b} \\ C_{a}=C_{b} C_{b} \\ \text { 1,3-butadiene } \end{gathered}$	2.53321	2.76590	4.6904	$\underset{C_{s}}{-16.88873}$	29	$\underset{C_{b}}{-17.09334}$	34	0.80561	0.79597	1	1	1	0.85395	-1.85836				124.48	124.4 (1,3-butadiene CCC) 124.4 $(1,3,5$-hexatriene CbCcCc $)$ 121.7 $(1,3,5$-hexatriene CaCbCc $)$ 125.3 (2-butene CbCaCc)
$\begin{aligned} & \angle C_{b} C_{C} C_{c} c_{c} \\ & C_{b}=C_{c} C_{c} \end{aligned}$ 1,3-cyclopentadiene	2.53321	2.76590	4.3012	$\begin{array}{\|c} -17.81791 \\ C_{0} \end{array}$	53	$\begin{gathered} -17.81791 \\ C_{8} \end{gathered}$	53	0.76360	0.76360	1	1	1	0.76360	-1.85836				108.44	$\begin{gathered} 109.4 \\ \text { (1,3-cyclopentadiene) } \end{gathered}$
$\begin{aligned} & \angle C_{a} C_{b} C_{c} \\ & C_{a} C_{b}=C_{c} \end{aligned}$ 1,3-cyclopentadiene	2.86175	2.53321	4.3818	$\begin{array}{\|c} -17.61330 \\ C_{s} \end{array}$	49	$\stackrel{-17.61330}{C_{e}}$	49	0.77247	0.77247	1	1	1	0.77247	-1.85836				108.47	$\begin{gathered} 109.3 \\ \text { (1,3-cyclopentadiene) } \end{gathered}$
$\begin{gathered} \angle C_{b_{C} C_{C} C_{b}} \\ =C_{C} H C_{b} H_{2} C_{b}(H)= \\ \text { 1,3-cyclopentadiene } \end{gathered}$	2.86175	2.86175	4.4609	$\begin{array}{\|c} -17.40869 \\ C_{0} \end{array}$	44	$\begin{gathered} -17.40869 \\ C_{b} \end{gathered}$	44	0.78155	0.78155	1	1	1	0.78155	-1.85836				102.41	$\begin{gathered} 102.8 \\ \text { (1,3-cyclopentadiene) } \end{gathered}$
$\begin{gathered} \angle C_{b} C_{c} C_{c} \\ -H_{2} C_{b} H C_{c} C_{c} H C_{b} H_{2}- \\ \text { cyclopentene } \end{gathered}$	2.86175	2.53321	4.4272	$\begin{array}{\|c} -17.40869 \\ C_{0} \end{array}$	44	$\begin{gathered} -17.61330 \\ C_{b} \end{gathered}$	49	0.78155	0.77247	1	1	1	0.77701	-1.85836				110.14	$\begin{gathered} 110.0 \\ \text { (cyclopentene) } \end{gathered}$
$\begin{gathered} \angle C_{C} C_{b} C_{c} \\ -H_{2} C_{a} H_{2} C_{2} H C_{c}=C_{C} H- \\ \text { cyclopentene } \end{gathered}$	2.91548	2.86175	4.5166	$\begin{gathered} -17.20408 \\ C_{s} \end{gathered}$	39	$\stackrel{-17.40869}{C_{8}}$	44	0.79085	0.78155	1	1	1	0.78620	-1.85836				102.85	$\begin{aligned} & 103.0 \\ & \text { (cyclopentene) } \end{aligned}$
$\begin{gathered} \angle C_{b} C_{b} C_{b} \\ -C_{b} H_{2} H_{2} H_{b} C_{b} H_{2}- \\ \text { cycloppenten } \end{gathered}$	2.91548	2.91548	4.5826	$\begin{gathered} -17.20408 \\ C_{0} \end{gathered}$	39	$\begin{gathered} -17.20408 \\ C_{b} \end{gathered}$	39	0.79085	0.79085	1	1	1	0.79085	-1.85836				103.61	$\begin{gathered} 104.0 \\ \text { (cyclopentene) } \end{gathered}$

AROMATIC AND HETEROCYCLIC COMPOUNDS

Aromatic and heterocyclic molecules comprise at least one of an aromatic or a cyclic conjugated alkene functional group. The latter was described in the Cyclic and Conjugated Alkenes section. The aromatic bond is uniquely stable and requires the sharing of the electrons of multiple H_{2}-type MOs. The results of the derivation of the parameters of the benzene molecule given in the Benzene Molecule $\left(\mathrm{C}_{6} H_{6}\right)$ section can be generalized to any aromatic functional group(s) of aromatic and heterocyclic compounds.
$\mathrm{C}_{6} \mathrm{H}_{6}$ can be considered a linear combination of three ethylene molecules wherein a $\mathrm{C}-\mathrm{H}$ bond of each CH_{2} group of $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ is replaced by a $\mathrm{C}=\mathrm{C}$ bond to form a six-member ring of carbon atoms. The solution of the ethylene molecule is given in the Ethylene Molecule $\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ section. The radius $r_{\text {ethylene } 2 s p^{3}}\left(0.85252 a_{0}\right)$ of the $C 2 s p^{3}$ shell of ethylene calculated from the Coulombic energy is given by Eq. (14.244). The Coulombic energy $E_{\text {Coulomb }}\left(C_{\text {ethylene }}, 2 s p^{3}\right)(-15.95955 \mathrm{eV})$ of the outer electron of the $C 2 s p^{3}$ shell is given by Eq. (14.245). The energy $E\left(C_{\text {ethylene }}, 2 s p^{3}\right)(-15.76868 \mathrm{eV})$ of the outer electron of the $C 2 s p^{3}$ shell is given by Eq. (14.246). $E_{T}\left(C=C, 2 s p^{3}\right)(-1.13380 \mathrm{eV})$ (Eq. (14.247)), the energy change of each $C 2 s p^{3}$ shell with the formation of the $C=C$-bond MO is given by the difference between $E\left(C_{\text {ethylene }}, 2 s p^{3}\right)$ and $E\left(C, 2 s p^{3}\right) . C_{6} H_{6}$ can be solved using the same principles as those used to solve ethylene wherein the $2 s$ and $2 p$ shells of each C hybridize to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $C 2 s p^{3}$ hybridized orbitals (HOs) to form a molecular orbital (MO) permits each participating hybridized orbital to decrease in radius and energy. Each $2 s p^{3} \mathrm{HO}$ of each carbon atom initially has four unpaired electrons. Thus, the $6 H$ atomic orbitals (AOs) of benzene contribute six electrons and the six $s p^{3}$-hybridized carbon atoms contribute twenty-four electrons to form six $C-H$ bonds and six $C=C$ bonds. Each $C-H$ bond has two paired electrons with one donated from the $H \mathrm{AO}$ and the other from the $C 2 s p^{3} \mathrm{HO}$. Each $C=C$ bond comprises a linear combination of a factor of 0.75 of four paired electrons (three electrons) from two sets of two $C 2 s p^{3} \mathrm{HOs}$ of the participating carbon atoms. Each $C-H$ and each $C=C$ bond comprises a linear combination of one and two diatomic H_{2} type MOs developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section, respectively. Consider the case where three sets of $C=C$-bond MOs form bonds between the two carbon atoms of each molecule to form a six-member ring such that the six resulting bonds comprise eighteen paired electrons. Each bond comprises a linear combination of two MOs wherein each comprises two $C 2 s p^{3} \mathrm{HOs}$ and 75% of a H_{2}-type ellipsoidal MO divided between the $C 2 s p^{3}$ HOs:

$$
\begin{equation*}
\binom{3\left(2 \mathrm{C} 2 s p^{3}+0.75 \mathrm{H}_{2} M O\right) \rightarrow 3(C=C) \text {-ethylene-type - bond } M O}{\rightarrow 6\left(C_{=}^{3 e}=C\right) \text {-bond MO of benzene }} \tag{15.161}
\end{equation*}
$$

The linear combination of each H_{2}-type ellipsoidal MO with each $C 2 s p^{3}$ HO further comprises an excess of 25% chargedensity contribution per bond from each $C 2 s p^{3} \mathrm{HO}$ to the $C=C$-bond MO to achieve an energy minimum. Thus, the dimensional parameters of each bond $C=C$-bond are determined using Eqs. (15.51) and (15.1-15.5) in a form that are the same equations as those used to determine the same parameters of the $C=C$-bond MO of ethylene (Eqs. (14.242-14.268)) while matching the boundary conditions of the structure of benzene.

Hybridization with 25% electron donation to each $C=C$-bond gives rise to the $C_{\text {benzene }} 2 s p^{3}$ HO-shell Coulombic energy $E_{\text {Coulomb }}\left(C_{\text {benzene }}, 2 s p^{3}\right)$ given by Eq. (14.245). To meet the equipotential condition of the union of the six $C 2 s p^{3} \mathrm{HOs}, c_{2}$ and C_{2} of Eq. (15.51) for the aromatic $C \stackrel{3 e}{=} C$-bond MO is given by Eq. (15.71) as the ratio of 15.95955 eV , the magnitude of $E_{\text {Coulomb }}\left(C_{\text {benzene }}, 2 s p^{3}\right)$ (Eq. (14.245)), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H (Eq. (1.264)):

$$
\begin{equation*}
C_{2}\left(\text { benzene } C 2 s p^{3} \mathrm{HO}\right)=c_{2}\left(\text { benzene } C 2 s p^{3} \mathrm{HO}\right)=\frac{13.605804 \mathrm{eV}}{15.95955 \mathrm{eV}}=0.85252 \tag{15.162}
\end{equation*}
$$

The energies of each $C \stackrel{3 e}{=} C$ bond of benzene are also determined using the same equations as those of ethylene (Eqs. (14.251-14.253) and (14.319-14.333)) with the parameters of benzene. Ethylene serves as a basis element for the $C=C$ bonding of benzene wherein each of the six $C \stackrel{3 e}{=} C$ bonds of benzene comprises $(0.75)(4)=3$ electrons according to Eq. (15.161). The total energy of the bonds of the eighteen electrons of the $C=\frac{3 e}{=} C$ bonds of benzene, $E_{T}\left(C_{6} H_{6}, C=C\right)$, is given by (6)(0.75) times $E_{T+o s c}(C=C)($ Eq. (14.492)), the total energy of the $C \stackrel{3 e}{=} C$-bond MO of benzene including the Doppler term, minus eighteen times $E\left(C, 2 s p^{3}\right)$ (Eq. (14.146)), the initial energy of each $C 2 s p^{3} \mathrm{HO}$ of each C that forms the $C=C$ bonds of bond order two.

Thus, the total energy of the six $C \stackrel{3 e}{=} C$ bonds of benzene with three electron per aromatic bond given by Eq. (14.493) is:

$$
\begin{align*}
E_{T}\left(C_{6} H_{6}, C \stackrel{3 e}{=} C\right) & =(6)(0.75) E_{T+\text { osc }}(C=C)-(6)(3) E\left(C, 2 s p^{3}\right) \\
& =(6)(0.75)(-66.05796 \mathrm{eV})-18(-14.63489 \mathrm{eV}) \tag{15.163}\\
& =-297.26081 \mathrm{eV}-(-263.42798 \mathrm{eV})=-33.83284 \mathrm{eV}
\end{align*}
$$

The results of benzene can be generalized to the class of aromatic and heterocyclic compounds. $E_{h v}$ of an aromatic bond is given by $E_{T}\left(H_{2}\right)$ (Eqs. (11.212) and (14.486)), the maximum total energy of each H_{2}-type MO such that:

$$
\begin{equation*}
\bar{E}_{\text {osc }}=n_{1}\left(\bar{E}_{D}+\bar{E}_{\text {Kvib }}\right)=n_{1}\left(-31.63536831 \mathrm{eV} \sqrt{\frac{2 \bar{E}_{K}}{M c^{2}}}+\frac{1}{2} \hbar \sqrt{\frac{k}{\mu}}\right) \tag{15.164}
\end{equation*}
$$

The factor of 0.75 corresponding to the three electrons per aromatic bond of bond order two given in the Benzene Molecule $\left(C_{6} H_{6}\right)$ section modifies Eqs. (15.61-15.65). Multiplication of the total energy given by Eq. (15.64) by $f_{1}=0.75$ with the substitution of Eq. (15.164) gives the total energy of the aromatic bond:

The total bond energy of the aromatic group $E_{D}($ Group $)$ is the negative difference of the total energy of the group (Eq. (15.165)) and the total energy of the starting species given by the sum of $c_{4} E_{\text {initial }}\left(c_{4} \mathrm{AO} / \mathrm{HO}\right)$ and $c_{5} E_{\text {initial }}\left(c_{5} \mathrm{AO} / \mathrm{HO}\right)$:

$$
E_{D}(\text { Group })=-\binom{\binom{E(\text { basis energies })+E_{T}\left(\text { atom }- \text { atom }, m s p^{3} . A O\right)}{f_{1}\left(\begin{array}{l}
2 \hbar \sqrt{\frac{C_{10} C_{2 o} e^{2}}{4 \pi \varepsilon_{0} R^{3}}} \tag{15.166}\\
-31.63536831 \mathrm{eV} \\
\frac{m_{e}}{m_{e} c^{2}}
\end{array}+n_{1} \bar{E}_{K v i b}+c_{3} \frac{8 \pi \mu_{0} \mu_{B}^{2}}{r^{3}}\right.}}{-\left(c_{4} E_{\text {initial }}(A O / H O)+c_{5} E_{\text {initial }}\left(c_{5} A O / H O\right)\right)}
$$

Since there are three electrons per aromatic bond, c_{4} is three times the number of aromatic bonds.
Benzene can also be considered as comprising chemical bonds between six $C H$ radicals wherein each radical comprises a chemical bond between carbon and hydrogen atoms. The solution of the parameters of CH is given in the Hydrogen Carbide (CH) section. Those of the benzene are given in the Benzene Molecule $\left(\mathrm{C}_{6} H_{6}\right)$ section. The energy components of V_{e}, V_{p}, T, V_{m}, and E_{T} are the same as those of the hydrogen carbide radical, except that $E_{T}\left(C=C, 2 s p^{3}\right)=-1.13379 \mathrm{eV}$ (Eq. (14.247)) is subtracted from $E_{T}(C H)$ of Eq. (13.495) to match the energy of each $C-H$-bond MO to the decrease in the energy of the corresponding $C 2 s p^{3} \mathrm{HO}$. In the corresponding generalization of the aromatic CH group, the geometrical parameters are determined using Eq. (15.51) and Eqs. (15.1-15.5) with $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)=-1.13379 \mathrm{eV}$.

The total energy of the benzene $C-H$-bond MO, $E_{T_{\text {beresene }}}(C-H)$, given by Eq. (14.467) is the sum of $0.5 E_{T}\left(C=C, 2 s p^{3}\right)$, the energy change of each $C 2 s p^{3}$ shell per single bond due to the decrease in radius with the formation of the corresponding $C \stackrel{3 e}{=} C$-bond MO (Eq. (14.247)), and $E_{T_{\text {berememe }}}(C H)$, the σ MO contribution given by Eq. (14.441). In the corresponding generalization of the aromatic $C H$ group, the energy parameters are determined using Eqs. (15.165-15.166) with $f_{1}=1$ and $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)=\frac{-1.13379 \mathrm{eV}}{2}$. Thus, the energy contribution to the single aromatic CH bond is one half that of the $C \stackrel{3 e}{=} C$ double bond contribution. This matches the energies of the $C H$ and $C=C$ aromatic groups, conserves the electron number with the equivalent charge density as that of $s=1$ in Eqs. (15.18-15.21), and further gives a minimum energy for the molecule. Breakage of the aromatic $C \stackrel{3 e}{=} C$ bonds to give $C H$ groups creates unpaired electrons in these fragments that corresponds to $c_{3}=1$ in Eq. (15.65) with $E_{\text {mag }}$ given by Eq. (15.67).

Each of the $C-H$ bonds of benzene comprises two electrons according to Eq. (14.439). From the energy of each $C-H$ bond, $-E_{D_{\text {benzene }}}\left({ }^{12} \mathrm{CH}\right)$ (Eq. (14.477)), the total energy of the twelve electrons of the six $C-H$ bonds of benzene, $E_{T}\left(C_{6} H_{6}, C-H\right)$, given by Eq. (14.494) is:

$$
\begin{equation*}
E_{T}\left(C_{6} H_{6}, C-H\right)=(6)\left(-E_{D_{\text {benzene }}}\left({ }^{12} \mathrm{CH}\right)\right)=6(-3.90454 \mathrm{eV})=-23.42724 \mathrm{eV} \tag{15.167}
\end{equation*}
$$

The total bond dissociation energy of benzene, $E_{D}\left(C_{6} H_{6}\right)$, given by Eq. (14.495) is the negative sum of $E_{T}\left(C_{6} H_{6}, C \stackrel{3 e}{=} C\right)$ (Eq. (14.493)) and $E_{T}\left(C_{6} H_{6}, C-H\right)$ (Eq. (14.494)):

$$
\begin{equation*}
E_{D}\left(C_{6} H_{6}\right)=-\left(E_{T}\left(C_{6} H_{6}, C \stackrel{3 e}{=} C\right)+E_{T}\left(C_{6} H_{6}, C-H\right)\right)=-((-33.83284 \mathrm{eV})+(-23.42724 \mathrm{eV}))=57.2601 \mathrm{eV} \tag{15.168}
\end{equation*}
$$

Using the parameters given in Tables 15.214 and 15.216 in the general equations (Eqs. (15.51), (15.1-15.5), and (15.165-15.166)) reproduces the results for benzene given in the Benzene Molecule $\left(C_{6} H_{6}\right)$ section as shown in Tables 15.214 and 15.216.

The symbols of the functional groups of aromatics and heterocyclics are given in Table 15.213. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of aromatics and heterocyclics are given in Tables $15.214,15.215$, and 15.216 , respectively. The total energy of benzene given in Table 15.217 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.216 corresponding to functional-group composition of the molecule. The bond angle parameters of benzene determined using Eqs. (15.88-15.117) are given in Table 15.218. The color scale, translucent view of the charge-density of exemplary aromatic, benzene, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.36.

Figure 15.36. Color scale, translucent view of the charge-density of benzene showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.213. The symbols of functional groups of aromatics and heterocyclics.

Functional Group	Group Symbol
$C C$ (aromatic bond)	$C=C$
$C H$ (aromatic)	$C H$ (i)

Table 15.214. The geometrical bond parameters of aromatics and heterocyclics and experimental values [1].
\(\left.$$
\begin{array}{|c|c|c|}\hline \text { Parameter } & \begin{array}{c}\text { 3e } \\
= \\
\hline\end{array} \text { Group } & C H \text { Group } \\
\hline a\left(a_{0}\right) & 1.47348 & 1.60061 \\
\hline c^{\prime}\left(a_{0}\right) & 1.31468 & 1.03299 \\
\hline \text { Bond Length } 2 c^{\prime}(\AA) & 1.39140 & 1.09327 \\
\hline \text { Exp. Bond Length } \\
(A)\end{array}
$$ \begin{array}{c}1.399

(benzene)\end{array}\right]\)| 1.101 |
| :---: |
| (benzene) |

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\text { (eV) } \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV) ($r_{\text {mutal }}$ (a_{0})	$\begin{aligned} & r_{\text {mand }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Counomom }}\left(C 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
C-H (CH)	c	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	74.42	105.58	38.84	1.24678	0.21379
$C^{36}=H C_{a}=C=$	C_{a}	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	134.24	45.76	58.98	0.75935	0.55533

Table 15.216. The energy parameters (eV) of functional groups of aromatics and heterocyclics.

Parameters	$\begin{gathered} \stackrel{3 e}{C=} C \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$
f_{1}	0.75	1
n_{1}	2	1
n_{2}	0	0
n_{3}	0	0
C_{1}	0.5	0.75
C_{2}	0.85252	1
c_{1}	1	1
c_{2}	0.85252	0.91771
c_{3}	0	1
c_{4}	3	1
c_{5}	0	1
C_{10}	0.5	0.75
C_{20}	0.85252	1
$V_{e}(\mathrm{eV})$	-101.12679	-37.10024
$V_{p}(e \mathrm{~V})$	20.69825	13.17125
$T(\mathrm{eV})$	34.31559	11.58941
$V_{m}(e \mathrm{~V})$	-17.15779	-5.79470
E ($\mathrm{AO/HO}$) (eV)	0	-14.63489
$\Delta E_{\mathrm{H}_{2} \mathrm{MO}}($ ($\mathrm{O} / \mathrm{HO})(\mathrm{eV})$	0	-1.13379
$E_{T}($ Ао/ $/ \mathrm{H})(\mathrm{eV})$	0	-13.50110
$E_{T}\left(H_{2} \mathrm{MO}\right)(\mathrm{eV})$	-63.27075	-31.63539
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}{ }^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690
$E_{T}(\mathrm{mo})(\mathrm{eV})$	-65.53833	-32.20226
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	49.7272	26.4826
$E_{K}(\mathrm{eV})$	32.73133	17.43132
$\bar{E}_{D}(e V)$	-0.35806	-0.26130
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.25982	-0.08364
$E_{\text {mag }}(e V)$	0.14803	0.14803
$E_{T}($ (roup $)(\mathrm{eV})$	-49.54347	-32.28590
$E_{\text {initial }}\left(\mathrm{E}_{4}\right.$ AO/ $\left./ \mathrm{HO} \mathrm{O}\right)(\mathrm{eV})$	-14.63489	-14.63489
$E_{\text {initial }}(\underline{s}, ~ А О /$ Ho $)(\mathrm{eV})$	0	-13.59844
$E_{D}($ Group $)(\mathrm{eV})$	5.63881	3.90454

Table 15.217. The total bond energies of benzene calculated using the functional group composition and the energies of Table 15.216 compared to the experimental values [3].

NAPHTHALENE

Naphthalene has the formula $C_{10} H_{8}$ and comprises a planar molecule with two aromatic rings that share a common $C-C$ group. In order to be aromatic, the total number of bonding electrons must be a multiple of 3 since the number of electrons of the aromatic bond is $(0.75)(4)=3$ as shown in the Benzene section. In the case of naphthalene, the peripheral 10 carbons form the aromatic MO with the center bridged by a $C-C$ single bond. Then, 30 electrons of the 48 available form aromatic bonds, two electrons form the bridging $C-C$ single bond, and 16 electrons form the eight $C-H$ single bonds. The energies of the aromatic carbons are given by the same equations as those of benzene (Eqs. (15.51), (15.1-15.5), and (15.165-15.166)), except that there are 10 in naphthalene versus six in benzene. Since there are three electrons per aromatic bond, c_{4} is three times ten, the number of aromatic bonds. Similarly, the aromatic $C-H$ group of naphthalene is equivalent to that of benzene.

To meet the equipotential condition of the union of the ten $C 2 s p^{3}$ HOs bridged by the $C-C$ single bond, the parameters c_{1}, C_{2}, and $C_{2 o}$ of Eq. (15.51) are one for the $C-C$ group, $C_{1 o}$ and C_{1} are 0.5 , and c_{2} given by Eq. (15.161) is $c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=0.85252$. Otherwise, the solutions of the $C-C$ bond parameters are equivalent to those of the replaced $C-H$ groups with $E(A O / H O)=-14.63489 \mathrm{eV}$ and $\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(\mathrm{AO} / \mathrm{HO})=-1.13379 \mathrm{eV}$ per carbon in Eq. (15.51). Similarly, the energy parameters are determined using Eqs. (15.61-15.65) with $E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} . A O\right)=\frac{-1.13379 \mathrm{eV}}{2}$.

The symbols of the functional groups of naphthalene are given in Table 15.219. The corresponding designation of the structure is shown in Figure 15.37B. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of naphthalene are given in Tables 15.220, 15.221, and 15.222, respectively. The total energy of naphthalene given in Table 15.223 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.222 corresponding to functional-group composition of the molecule. The bond angle parameters of naphthalene determined using Eqs. (15.88-15.117) are given in Table 15.224. The color scale, translucent view of the chargedensity of naphthalene, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.37A. The polycyclic aromatic hydrocarbon pentacene was imaged by atomic force microscopy using a single CO molecule as the probe [53]. The resulting breakthrough in resolution revealed that in contrast to the fuzzy images touted by quantum theoreticians as proof of the cloud model of the electron, the images showed localized bonding MOs and AOs in agreement with the classical solution as shown in Figure 15.38.

Figure 15.37. (A) Color scale, translucent view of the charge-density of naphthalene showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (B) Chemical structure and atom designation of naphthalene.

B

Figure 15.38. Atomic force microscopy image of pentacene by Gross et al. [53] and the superimposed analytical classical solution that matches the physical structure.

Table 15.219. The symbols of functional groups of naphthalene.

Functional Group	Group Symbol
$C_{a} C_{a}$ (aromatic bond)	$C^{3 e}=C$
$C H$ (aromatic)	$C H$ (i)
$C_{b}-C_{b}$ (bridging bond)	$C-C$

Table 15.220. The geometrical bond parameters of naphthalene and experimental values [1].

Table 15.222. The energy parameters (eV) of functional groups of naphthalene.

Parameters	$\begin{gathered} C=C \\ C=C \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \\ & \text { Group } \end{aligned}$
f_{1}	0.75	1	1
n_{1}	2	1	1
n_{2}	0	0	0
n_{3}	0	0	0
C_{1}	0.5	0.75	0.5
C_{2}	0.85252	1	1
c_{1}	1	1	1
c_{2}	0.85252	0.91771	0.85252
c_{3}	0	1	0
c_{4}	3	1	2
c_{5}	0	1	0
C_{10}	0.5	0.75	0.5
C_{20}	0.85252	1	1
$V_{e}(\mathrm{eV})$	-101.12679	-37.10024	-34.43791
$V_{p}(e \mathrm{~V})$	20.69825	13.17125	10.26723
$T(e V)$	34.31559	11.58941	9.80539
$V_{m}(\mathrm{eV})$	-17.15779	-5.79470	-4.90270
E (Аолно) (eV)	0	-14.63489	-14.63489
$\Delta E_{\mathrm{H}_{2} \text { MO }}($ Ао/ HO$)(\mathrm{eV})$	0	-1.13379	-1.13379
$E_{T}($ АО/ $/ \mathrm{HO})(\mathrm{eV})$	0	-13.50110	-13.50110
$E_{T}\left(H_{2} M O\right)(e V)$	-63.27075	-31.63539	-31.63529
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} \cdot \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-0.56690
$E_{T}(\mathrm{mo})(\mathrm{eV})$	-65.53833	-32.20226	-32.20226
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	49.7272	26.4826	23.6343
$E_{K}(e V)$	32.73133	17.43132	15.55648
$\bar{E}_{D}(e \mathrm{~V})$	-0.35806	-0.26130	-0.25127
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.25982	-0.08364	-0.18971
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803
$E_{T}($ Group $)(\mathrm{eV})$	-49.54347	-32.28590	-32.39198
$E_{\text {initiol }}\left(\mathrm{c}_{4}\right.$ AO/HO) (eV)	-14.63489	-14.63489	-14.63489
$E_{\text {initial }}\left(\mathrm{c}_{5}\right.$, Ао/но) (eV)	0	-13.59844	0
$E_{D}($ Group $)(e V)$	5.63881	3.90454	3.12220

Table 15.223 . The total bond energies of naphthalene calculated using the functional group composition and the energies of Table 15.222 compared to the experimental values [3].

TOLUENE

Toluene has the formula $C_{7} H_{8}$ and comprises the benzene molecule with one hydrogen atom replaced by a methyl group corresponding to a CH_{3} functional group and a $\mathrm{C}-\mathrm{C}$ functional group. The aromatic $C=\stackrel{3 e}{=} C$ and $C-H$ functional groups are equivalent to those of benzene given in the Aromatic and Heterocyclic Compounds section. The CH_{3} functional group is the same as that of continuous and branched-chain alkanes given in the corresponding sections.

The bond between the methyl and aromatic ring comprises a $C-C$ functional group that is solved using the same principles as those used to solve the alkane functional groups wherein the $2 s$ and $2 p$ AOs of each C hybridize to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $C 2 s p^{3}$ HOs to form a MO permits each participating hybridized orbital to decrease in radius and energy. To match energies within the MO that bridges methyl and aromatic carbons, $E(A O / H O)$ and $\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(A O / H O)$ in Eq. (15.50) are -15.35946 eV (Eq. (14.155)) and $\frac{-1.13379 \mathrm{eV}}{2}$, respectively.

To meet the equipotential condition of the union of the aromatic and methyl $C 2 s p^{3} \mathrm{HOs}$ of the $C-C$ single bond, the parameters c_{1}, C_{2}, and $C_{2 o}$ of Eq. (15.51) are one for the $C-C$ group, $C_{1 o}$ and C_{1} are 0.5 , and c_{2} given by Eq. (13.430) is $c_{2}\left(C 2 s p^{3} H O\right)=0.91771$. To match the energies of the functional groups, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} \cdot A O\right)$ of the $C-C$-bond MO in Eq. (15.61) due to the charge donation from the C atoms to the MO is -1.13379 eV which is the same energy per $C 2 s p^{3} \mathrm{HO}$ as that of the replaced $C-H$ group.

The symbols of the functional groups of toluene are given in Table 15.225. The corresponding designation of the structure is shown in Figure 15.39B. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of toluene are given in Tables 15.226, 15.227, and 15.228, respectively. The total energy of toluene given in Table 15.229 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.228 corresponding to functional-group composition of the molecule. The bond angle parameters of toluene determined using Eqs. (15.88-15.117) are given in Table 15.230. The color scale, translucent view of the charge-density of toluene comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.39A.

Figure 15.39. (A) Color scale, translucent view of the charge-density of toluene showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (B) Chemical structure and atom designation of toluene.

Table 15.225. The symbols of functional groups of toluene.

Functional Group	Group Symbol
CC (aromatic bond)	$\mathrm{C}=\mathrm{C}$
CH (aromatic)	CH (i)
$\mathrm{C}_{a}-\mathrm{C}_{b}\left(\mathrm{CH}_{3}\right.$ to aromatic bond)	$\mathrm{C}-\mathrm{C}$
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$

Table 15.226. The geometrical bond parameters of toluene and experimental values [1].

Parameter	$C=3 e$ Group	$C H(i)$ Group	$C-C$ Group	$C-H\left(\mathrm{CH}_{3}\right)$ Group
$a\left(a_{0}\right)$	1.47348	1.60061	2.06004	1.64920
$c^{\prime}\left(a_{0}\right)$	1.31468	1.03299	1.43528	1.04856
Bond Length $2 c^{\prime}(A)$	1.399 (toluene)	1.11 (avg.) (toluene)	1.51904 (toluene)	1.10974
Exp. Bond Length (A)	0.66540	1.22265	1.47774	1.11 (avg.) (toluene)
$b, c\left(a_{0}\right)$	0.89223	0.64537	0.69673	1.27295
e			0.63580	

Table 15.227. The MO to HO intercept geometrical bond parameters of toluene. E_{T} is E_{T} (atom-atom,msp ${ }^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 1$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 3 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 4 } \end{gathered}$	Final Total Energy C2sp ${ }^{3}$ (eV)	$\begin{aligned} & r_{\text {rmata }}\left(a_{0}\right. \end{aligned}$	$\begin{aligned} & r_{\text {mand }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Contanom }}(\text { (eVsp }) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{ev}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
C-H $\left(C_{a} H_{3}\right)$	C_{a}	-0.56690	0	0	0	-152.18259	0.91771	0.88392	-15.39265	-15.20178	79.89	101.11	43.13	1.20367	0.15511
$C-H\left(C_{c} H\right)$	$C_{\text {c }}$	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	74.42	105.58	38.84	1.24678	0.21379
$\begin{aligned} & C^{3 e}=H C_{c}^{3 e}=C \\ & C^{3 e}=\left(H_{3} C_{a}\right) C_{b}=C \end{aligned}$	$\begin{aligned} & C_{c} \\ & C_{b} \end{aligned}$	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	134.24	45.76	58.98	0.75935	0.55533
$\left(C^{3 c}\right)_{2} C_{b}-C_{a} H_{3}$	C_{a}	-0.56690	0	0	0	-152.18259	0.91771	0.88392	-15.39265	-15.20178	73.38	106.62	34.97	1.68807	0.25279
$\left(C^{3 c}\right) C_{b}-C_{a} H_{3}$	C_{b}	-0.56690	-0.85035	-0.85035	0	-153.88328	0.91771	0.79597	-17.09334	-16.90247	61.56	118.44	28.27	1.81430	0.37901

Table 15.228. The energy parameters (eV) of functional groups of toluene.

Parameters	$C \stackrel{3 c}{=} C$ Group	CH (i) Group	$\begin{aligned} & C-C \\ & \text { Group } \end{aligned}$	CH_{3} Group
f_{1}	0.75	1		
n_{1}	2	1	1	3
n_{2}	0	0	0	2
n_{3}	0	0	0	0
C_{1}	0.5	0.75	0.5	0.75
C_{2}	0.85252	1	1	1
c_{1}	1	1	1	1
c_{2}	0.85252	0.91771	0.91771	0.91771
c_{3}	0	1	0	0
c_{4}	3	1	2	1
c_{5}	0	1	0	3
C_{1} o	0.5	0.75	0.5	0.75
C_{2} 。	0.85252	1	1	1
$V_{e}(\mathrm{eV})$	-101.12679	-37.10024	-29.95792	-107.32728
$V_{p}(e \mathrm{~V})$	20.69825	13.17125	9.47952	38.92728
$T(e V)$	34.31559	11.58941	7.27120	32.53914
$V_{m}(\mathrm{eV})$	-17.15779	-5.79470	-3.63560	-16.26957
E (Ао/но) (eV)	0	-14.63489	-15.35946	-15.56407
$\Delta E_{\mathrm{H}_{2} \mathrm{MO}}$ ((О'Но) (eV)	0	-1.13379	-0.56690	0
E_{T} ((о/но) (eV)	0	-13.50110	-14.79257	-15.56407
$E_{T}\left(H_{2} M O\right)(e V)$	-63.27075	-31.63539	-31.63537	-67.69451
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}{ }^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-1.13379	0
$E_{T}(\mathrm{mo})(\mathrm{eV})$	-65.53833	-32.20226	-32.76916	-67.69450
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	49.7272	26.4826	16.2731	24.9286
$E_{K}(\mathrm{eV})$	32.73133	17.43132	10.71127	16.40846
$\bar{E}_{D}(e V)$	-0.35806	-0.26130	-0.21217	-0.25352
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. (13.458) } \end{gathered}$	$\begin{gathered} 0.14940 \\ {[54]} \end{gathered}$	$\begin{gathered} 0.35532 \\ (\mathrm{Eq} . \\ (13.458)) \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.25982	-0.08364	-0.13747	-0.22757
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803
$E_{T}($ Group $)(e V)$	-49.54347	-32.28590	-32.90663	-67.92207
$E_{\text {initial }}\left(c_{1}\right.$ АО $/$ Hо) $)(\mathrm{eV})$	-14.63489	-14.63489	-14.63489	-14.63489
$E_{\text {initital }}\left(c_{s}\right.$, АО $/$ Hо) (eV)	0	-13.59844	0	-13.59844
E_{D} (Group) (eV)	5.63881	3.90454	3.63685	12.49186

Table 15.229. The total bond energies of toluene calculated using the functional group composition and the energies of Table 15.228 compared to the experimental values [3].

HALOBENZENES

Halobenzenes have the formula $C_{6} H_{6-m} X_{m} \quad X=F, C l, B r, I$ and comprise the benzene molecule with at least one hydrogen atom replaced by a halogen atom corresponding to a $C-X$ functional group. The aromatic $C \stackrel{3 e}{=} C$ and $C-H$ functional groups are equivalent to those of benzene given in the Aromatic and Heterocyclic Compounds section. The hybridization factors of the aryl $C-X$ functional groups are equivalent to those of the corresponding alkyl halides as given in Tables $15.30,15.36,15.42$, and 15.48 , and are solved using the same principles as those used to solve the alkyl halide functional groups as given in the corresponding sections. In each case, the $2 s$ and $2 p$ AOs of each C hybridize to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and X AO to form a MO permits each participating hybridized orbital to decrease in radius and energy. Therefore, the MO is energy matched to the $C 2 s p^{3} \mathrm{HO}$ such that $E(A O / H O)$ in Eq. (15.51) is $-14.63489 \mathrm{eV} . \quad E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of each $C-X$ functional group given in Table 15.234 that achieves matching of the energies of the AOs and HOs within the functional groups of the MOs are those of alkanes and alkenes given in Tables 15.1 and 15.2. To further match energies within each MO that bridges the halogen AO and aromatic carbon $C 2 s p^{3} \mathrm{HO}$, $\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(\mathrm{AO} / \mathrm{HO})$ in Eq. (15.51) is $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . \mathrm{AO}\right)$ of the alkene $C=C$ functional group, -2.26759 eV given by Eq. (14.247), plus the maximum possible contribution of $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-X$ functional group to minimize the energy of the MO as given in Table 15.234. $E_{\text {initial }}\left(c_{4} A O / H O\right)$ is -14.63489 eV (Eq. (15.25)), except for $C-I$ due to the low ionization potential of the I AO. In order to achieve an energy minimum with energy matching within iodo-aryl molecules, $E_{\text {initial }}\left(c_{4} A O / H O\right)$ of the $C-I$ functional group is -15.76868 eV (Eq. (14.246)), and $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ is -1.65376 eV given by the linear combination of -0.72457 eV (Eq. (14.151)) and -0.92918 eV (Eq. (14.513)), respectively.

The small differences between energies of ortho, meta, and para-dichlorobenzene is due to differences in the energies of vibration in the transition state that contribute to $E_{o s c}$. Two types of $\mathrm{C}-\mathrm{Cl}$ functional groups can be identified based on symmetry that determine the parameter R in Eq. (15.57). One corresponds to the special case of $1,3,5$ substitution and the other corresponds to other cases of single or multiple substitutions of Cl for H . P-dichlorobenzene is representative of the bonding with $R=a$. 1,2,3-trichlorobenzene is the particular case wherein $R=b$. Also, beyond the binding of three chlorides $E_{\text {mag }}$ is subtracted for each additional Cl due to the formation of an unpaired electrons on each $\mathrm{C}-\mathrm{Cl}$ bond.

The symbols of the functional groups of halobenzenes are given in Table 15.231. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of halobenzenes are given in Tables 15.232, 15.233, and 15.234, respectively. The total energy of each halobenzene given in Table 15.235 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.234 corresponding to functional-group composition of the molecule. For each set of unpaired electrons created by bond breakage, the $C 2 s p^{3}$ HO magnetic energy $E_{\text {mag }}$ that is subtracted from the weighted sum of the $E_{D}(G r o u p)(e V)$ values based on composition is given by Eq. (15.67). The bond angle parameters of halobenzenes determined using Eqs. (15.88-15.117) are given in Table 15.236. The color scale, translucent view of the charge-density of chlorobenzene comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.40.

Figure 15.40. Color scale, translucent view of the charge-density of chlorobenzene showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

0
$\square 1 \mathrm{e} / \AA^{2}$

Table 15.231. The symbols of functional groups of halobenzenes.

Functional Group	Group Symbol
$C C$ (aromatic bond)	$\mathrm{C}_{=}^{3 e} \mathrm{C}$
CH (aromatic)	CH (i)
$\mathrm{F}-\mathrm{C}(\mathrm{F}$ to aromatic bond)	$\mathrm{C}-\mathrm{F}$
$\mathrm{Cl}-\mathrm{C}(\mathrm{Cl}$ to aromatic bond $)$	$\mathrm{C}-\mathrm{Cl}(\mathrm{a})$
$\mathrm{Cl}-\mathrm{C}(\mathrm{Cl}$ to aromatic bond of $1,3,5-$	$\mathrm{C}-\mathrm{Cl}(\mathrm{b})$
trichlorobenzene $)$	$\mathrm{C}-\mathrm{Br}$
$\mathrm{Br}-\mathrm{C}(\mathrm{Br}$ to aromatic bond $)$	$\mathrm{C}-I$
$I-C(I$ to aromatic bond $)$	

Table 15.232 . The geometrical bond parameters of halobenzenes and experimental values [1].

Parameter	$\begin{aligned} & C^{3 e}=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \mathrm{CH} \text { (i) } \\ & \text { Group } \\ & \hline \end{aligned}$	$\begin{aligned} & C-F \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{Cl}(\mathrm{a}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C l \text { (b) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{aligned} & C-B r \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-I \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.47348	1.60061	1.60007	2.20799	2.20799	2.30810	2.50486
$c^{\prime}\left(a_{0}\right)$	1.31468	1.03299	1.26494	1.64782	1.64782	1.76512	1.95501
Bond Length $2 c^{\prime}(A)$	1.39140	1.09327	1.33875	1.74397	1.74397	1.86812	2.06909
Exp. Bond Length (A)	1.400 (chlorobenzene)	1.083 (chlorobenzene)	1.356 [55] (fluorobenzene)	1.737 (chlorobenzene)	1.737 (chlorobenzene)	1.8674 [56] (bromobenzene)	$\begin{gathered} 2.08[57] \\ \text { (iodobenzene) } \end{gathered}$
$b, c\left(a_{0}\right)$	0.66540	1.22265	0.97987	1.46967	1.46967	1.48718	1.56597
e	0.89223	0.64537	0.79055	0.74630	0.74630	0.76475	0.78049

Table 15.23 3. The MO to HO intercept geometrical bond parameters of halobenzenes. E_{T} is $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} \cdot A O\right)$.

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 2$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 3$		Final Total Energy C2sp ${ }^{3}$ (eV)	$\begin{aligned} & r_{\text {mintal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {final }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coulombl }}\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\left({ }^{\circ}\right)$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
C-H ($\left.C_{b} H\right)$	C_{b}	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	74.42	105.58	38.84	1.24678	0.21379
$C \stackrel{3 e}{=} H C_{b}=C$	C_{b}	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	134.24	45.76	58.98	0.75935	0.55533
$(C \stackrel{3 e}{=})_{2} C_{a}-F$	C_{a}	-1.03149	-0.85035	-0.85035	0	-154.34787	0.91771	0.77491	-17.55793	-17.36707	106.58	73.42	49.28	1.04378	0.22116
$(C \stackrel{3 e}{=})_{2} C_{a}-F$	F	-1.03149	0	0	0		0.78069	0.85802	-15.85724		112.35	67.65	54.08	0.93865	0.32629
$(C \stackrel{3 c}{=})_{2} C_{a}-\mathrm{Cl}$	C_{a}	-0.36229	-0.85035	-0.85035	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	73.32	106.68	31.67	1.87911	0.23129
$(C \stackrel{3 c}{3})_{2} C_{a}-C l$	Cl	-0.36229	0	0	0		1.05158	0.89582	15.18804		82.92	97.08	37.22	1.75824	0.11042
$\begin{aligned} & C_{b}{ }_{b}^{3 e}(C l) C_{a}{ }^{3 e}=C_{b} \\ & \left(C_{b} \text { bound to } \mathrm{Cl}\right) \end{aligned}$	C_{b}	-0.36229	-0.85035	-0.85035	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	134.65	45.35	59.47	0.74854	0.56614
$(C \stackrel{3 e}{=})_{2} C_{a}-B r$	C_{a}	-0.18114	-0.85035	-0.85035	0	-153.49753	0.91771	0.81435	-16.70759	-16.51672	76.64	103.36	32.19	1.95326	0.18814
$(C \stackrel{3 e}{=})_{2} C_{a}-B r$	Br	-0.18114	0	0	0		1.15169	0.90664	-15.00689		85.73	94.27	37.44	1.83258	0.06746
$\left(C^{3 e}=\right)_{2} C_{a}-I$	C_{a}	-0.82688	-0.85035	-0.85035	0	-154.14326	0.91771	0.78405	-17.35332	-17.16246	71.42	108.58	28.33	2.20480	0.24979
$(C \stackrel{3 e}{=})_{2} C_{a}-I$	I	-0.82688	0	0	0		1.30183	0.86923	-15.65263		80.69	99.31	33.21	2.09565	0.14064

Parameters	$\begin{aligned} & \stackrel{3 e}{=} C \\ & \text { Group } \end{aligned}$	CH (i) Group	$\begin{aligned} & C-F \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{Cl} \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C l(b) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-B r \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-I \\ \text { Group } \end{gathered}$
f_{1}	0.75	1	1	1	1	1	1
n_{1}	2	1	1	1	1	2	2
n_{2}	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0
C_{1}	0.5	0.75	0.5	0.5	0.5	0.5	0.5
C_{2}	0.85252	1	1	0.81317	0.81317	0.74081	0.65537
c_{1}	1	1	1	1	1	1	1
c_{2}	0.85252	0.91771	0.77087	1	1	1	1
c_{3}	0	1	0	0	0	0	0
c_{4}	3	1	2	2	2	2	2
c_{5}	0	1	0	0	0	0	0
C_{1} o	0.5	0.75	1	0.5	0.5	0.5	0.5
$C_{2 o}$	0.85252	1	0.5	0.81317	0.81317	0.74081	0.65537
$V_{e}(\mathrm{eV})$	-101.12679	-37.10024	-35.58388	-31.85648	-31.85648	-31.06557	-29.13543
$V_{p}(\mathrm{eV})$	20.69825	13.17125	10.75610	8.25686	8.25686	7.70816	6.95946
$T(\mathrm{eV})$	34.31559	11.58941	11.11948	7.21391	7.21391	6.72969	5.81578
$V_{m}(\mathrm{eV})$	-17.15779	-5.79470	-5.55974	-3.60695	-3.60695	-3.36484	-2.90789
E (Ао/но) (eV)	0	-14.63489	-14.63489	-14.63489	-14.63489	-2.99216	-2.26759
$\Delta E_{\mathrm{H}_{2} \text { МО }}$ (АО/но) (eV)	0	-1.13379	-2.26759	-2.99216	-2.99216	-14.63489	-14.63489
E_{T} ((о/но) (eV)	0	-13.50110	-12.36730	-11.64273	-11.64273	-11.64273	-12.36730
$E_{T}\left(H_{2} \mathrm{MO}\right)(\mathrm{eV})$	-63.27075	-31.63539	-31.63535	-31.63539	-31.63539	-31.63530	-31.63538
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} \cdot \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-2.06297	-0.72457	-0.72457	-0.36229	-1.65376
$E_{T}(\mathrm{mo})(\mathrm{eV})$	-65.53833	-32.20226	-33.69834	-32.35994	-32.35994	-31.99766	-33.28912
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	49.7272	26.4826	14.4431	8.03459	14.7956	7.17533	12.0764
$E_{K}(\mathrm{eV})$	32.73133	17.43132	9.50672	5.28851	9.73870	4.72293	7.94889
$\bar{E}_{D}(e V)$	-0.35806	-0.26130	-0.20555	-0.14722	-0.19978	-0.13757	-0.18568
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.10911 \\ {[11]} \\ \hline \end{gathered}$	$\begin{gathered} 0.08059 \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} 0.08059 \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} 0.08332 \\ {[15]} \\ \hline \end{gathered}$	$\begin{gathered} 0.06608 \\ {[16]} \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.25982	-0.08364	-0.15100	-0.10693	-0.15949	-0.09591	-0.15264
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
E_{T} (Group) (eV)	-49.54347	-32.28590	-33.84934	-32.46687	-32.51943	-32.09357	-33.44176
$E_{\text {initial }}\left(\mathrm{c}_{+}\right.$AO/HO) (eV)	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-15.76868
$E_{\text {initial }}\left(\mathrm{c}_{5}\right.$ AO/HO) (eV)	0	-13.59844	0	0	0	0	0
E_{D} (Group) (eV)	5.63881	3.90454	4.57956	3.19709	3.24965	2.82379	1.90439

Table 15.235. The total bond energies of halobenzenes calculated using the functional group composition and the energies of Table 15.234 compared to the experimental values [3]. The magnetic energy $E_{m a g}$ that is subtracted from the weighted sum of the $E_{D}($ Group $)(\mathrm{eV})$ values based on composition is given by

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \\ \left(a_{5}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Terminal } \\ \text { Atoms } \\ \left(a_{0}\right) \end{gathered}$	$\begin{aligned} & E_{\text {Colamancuc }} \\ & \text { Atom } 1 \end{aligned}$	Atom 1Hybridization Designation(Table 15.3.A)	$\begin{aligned} & E_{\text {Coulombic }} \\ & \text { Atom } 2 \end{aligned}$	Atom 2 Hybridization Designation (Table 15.3.A)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom 2 } \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\left.\begin{array}{c} E_{r} \\ (\mathrm{eV}) \end{array}\right)$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\underset{\text { (aromatic) }}{\angle C C C}$	2.62936	2.62936	4.5585	-17.17218	38	-17.17218	38	0.79232	0.79232	1	1	1	0.79232	-1.85836				120.19	120 $(\angle C C(H) C$ chlorobenzene $)$ 121.7 $(\angle C C(C l) C$ chlorobenzene $)$ $120[50-52]$ (benzene)
$\begin{gathered} \angle C C H \\ \angle C C X \\ \text { (aromatic) } \end{gathered}$																120.19		119.91	$\begin{gathered} 120[50-52] \\ \text { (benzene) } \end{gathered}$

PHENOL

Phenol has the formula $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ and comprises the benzene molecule with one hydrogen atom replaced by a hydroxyl corresponding to an $O H$ functional group and a $C-O$ functional group. The aromatic $C=\frac{3 e}{=} C$ and $C-H$ functional groups are equivalent to those of benzene given in the Aromatic and Heterocyclic Compounds section. The $O H$ functional group is the same as that of alcohols given in the corresponding section.

The bond between the hydroxyl and aromatic ring comprises a $C-O$ functional group that is solved using the same principles as those used to solve the alcohol functional groups wherein the $2 s$ and $2 p$ AOs of each C hybridize to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and O AO to form a MO permits each participating hybridized orbital to decrease in radius and energy. In aryl alcohols, the aromatic $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.85252 (Eq. (15.162)) with an initial energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)) and the O AO has an energy of $E(O)=-13.61806 \mathrm{eV}$. To meet the equipotential condition of the union of the $\mathrm{C}-\mathrm{O} \mathrm{H}_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor c_{2} of Eq. (15.61) for the $C-O$-bond MO given by Eqs. (15.77) and (15.79) is:

$$
\begin{equation*}
c_{2}\left(\text { arylC2sp }{ }^{3} \mathrm{HO} \text { to } O\right)=\frac{E(O)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(\operatorname{arylC} 2 s p^{3} \mathrm{HO}\right)=\frac{-13.61806 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.85252)=0.79329 \tag{15.169}
\end{equation*}
$$

$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-O$-bond MO in Eq. (15.61) due to the charge donation from the C and O atoms to the MO is -1.49608 eV . It is based on the energy match between the OH group and the $C 2 s p^{3} \mathrm{HO}$ of an aryl group and is given by the linear combination of -0.92918 eV (Eq. (14.513)) and -1.13379 eV (Eq. (14.247)), respectively.

The symbols of the functional groups of phenol are given in Table 15.237. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of phenol are given in Tables $15.238,15.239$, and 15.240 , respectively. The total energy of phenol given in Table 15.241 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.240 corresponding to functional-group composition of the molecule. The bond angle parameters of phenol determined using Eqs. (15.88-15.117) are given in Table 15.242. The color scale, translucent view of the charge-density of phenol comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.41.

Figure 15.41. Color scale, translucent view of the charge-density of phenol showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

$0 \square 1 \mathrm{e} / \AA^{2}$

Table 15.237. The symbols of functional groups of phenol.

Functional Group	Group Symbol
$C C$ (aromatic bond)	$\mathrm{C}_{=}^{3 e} \mathrm{C}$
CH (aromatic)	CH (i)
Aryl $\mathrm{C}-\mathrm{O}$	$\mathrm{C}-\mathrm{O}$ (a)
$O H$ group	OH

Table 15.238. The geometrical bond parameters of phenol and experimental values [1].

Parameter	$C=C$ Group	$C H(\mathrm{i})$ Group	$C-O$ (a) Group	$O H$ Group
$a\left(a_{0}\right)$	1.47348	1.60061	1.68220	1.26430
$c^{\prime}\left(a_{0}\right)$	1.31468	1.03299	1.29700	0.91808
Bond Length $2 c^{\prime}(A)$	1.39140	1.09327	1.37268	0.971651
Exp. Bond Length (A)	1.397 avg. (phenol)	1.084 (phenol)	1.364 (phenol)	0.956 (phenol)
$b, c\left(a_{0}\right)$	0.66540	1.22265	1.07126	0.86925
e	0.89223	0.64537	0.77101	0.72615

Table 15.239. The MO to HO intercept geometrical bond parameters of phenol. E_{T} is E_{T} (atom-atom,msp ${ }^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 2 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 3 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	$\begin{gathered} \text { Final Total } \\ \text { Energy } C 2 s p^{3} \end{gathered}$ (eV)	$\begin{aligned} & r_{\text {mutral }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {fyukl }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coullomb }}\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \\ \hline \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$C-H\left(C_{b} H\right)$	C_{b}	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	74.42	105.58	38.84	1.24678	0.21379
$\left(C_{b} \stackrel{3 c}{=}\right)_{2} C_{a} O-H$	O	-0.74804	0	0	0		1.00000	0.87363	-15.57379		115.79	64.21	64.82	0.53799	0.38009
$\left(\mathrm{C}_{b} \stackrel{3 e}{=}\right)_{2} \mathrm{C}_{a}-\mathrm{OH}$	C_{a}	-0.74804	-0.85035	-0.85035	0	-154.06442	0.91771	0.78762	-17.27448	-17.08362	100.00	80.00	46.39	1.16026	0.13674
$\left(\mathrm{C}_{b} \stackrel{3 c}{=}\right)_{2} \mathrm{C}_{a}-\mathrm{OH}$	O	-0.74804	0	0	0		1.00000	0.87363	15.57379		106.51	73.49	51.43	1.04871	0.24829
$\left(\mathrm{C}_{b} \stackrel{3 e}{=}\right)_{2} \mathrm{C}_{a} \mathrm{OH}$	C_{a}	-0.74804	-0.85035	-0.85035	0	-154.06442	0.91771	0.78762	-17.27448	-17.08362	133.88	46.12	58.55	0.76870	0.54598
$\left({ }^{3 e}(\mathrm{H}) \mathrm{C}_{b}\right)_{2} \mathrm{C}_{a} \mathrm{OH}$	C_{b}	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	134.24	45.76	58.98	0.75935	0.55533

Table 15.240 . The energy parameters (eV) of functional groups of phenol.

Parameters	$\begin{gathered} C \stackrel{3 e}{=} C \\ \text { Group } \end{gathered}$	CH (i) Group	$\begin{aligned} & C-O \text { (a) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$
f_{1}	0.75	1		
n_{1}	2	1	1	1
n_{2}	0	0	0	0
n_{3}	0	0	0	0
C_{1}	0.5	0.75	0.5	0.75
C_{2}	0.85252	1	1	1
c_{1}	1	1	1	0.75
c_{2}	0.85252	0.91771	0.79329	1
c_{3}	0	1	0	1
c_{4}	3	1	2	1
c_{5}	0	1	0	1
C_{10}	0.5	0.75	0.5	0.75
C_{20}	0.85252	1	1	1
$V_{e}(\mathrm{eV})$	-101.12679	-37.10024	-34.04658	-40.92709
$V_{p}(\mathrm{eV})$	20.69825	13.17125	10.49024	14.81988
$T(e V)$	34.31559	11.58941	10.11966	16.18567
$V_{m}(e \mathrm{~V})$	-17.15779	-5.79470	-5.05983	-8.09284
$E($ Ао/ $/ \mathrm{HO})(\mathrm{eV})$	0	-14.63489	-14.63489	-13.6181
$\Delta E_{\mathrm{H}_{2} M O}($ ($\mathrm{O} / \mathrm{HO})(\mathrm{eV})$	0	-1.13379	-1.49608	0
$E_{T}($ (АО/Но) $)(\mathrm{eV})$	0	-13.50110	-13.13881	-13.6181
$E_{T}\left(H_{2} M O\right)(e V)$	-63.27075	-31.63539	-31.63532	-31.63247
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}{ }^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-1.49608	0
$E_{T}(\mathrm{mo})(\mathrm{eV})$	-65.53833	-32.20226	-33.13145	-31.63537
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	49.7272	26.4826	13.3984	44.1776
$E_{K}(\mathrm{eV})$	32.73133	17.43132	8.81907	29.07844
$\bar{E}_{D}(e V)$	-0.35806	-0.26130	-0.19465	-0.33749
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.12808 \\ {[19]} \\ \hline \end{gathered}$	$\begin{aligned} & 0.46311 \\ & {[17-18]} \\ & \hline \end{aligned}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.25982	-0.08364	-0.13061	-0.10594
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.11441
$E_{T}($ Group $)(\mathrm{eV})$	-49.54347	-32.28590	-33.26206	-31.74130
$E_{\text {initial }}\left(\mathrm{E}_{4}\right.$ Ао/но) $)(\mathrm{eV})$	-14.63489	-14.63489	-14.63489	-13.6181
$E_{\text {initital }}\left(\mathrm{c}_{5}\right.$ tol HO$)(\mathrm{eV})$	0	-13.59844	0	-13.59844
$E_{D}($ Group $)(e \mathrm{~V})$	5.63881	3.90454	3.99228	4.41035

Table 15.241. The total bond energies of phenol calculated using the functional group composition and the energies of Table 15.240 compared to the experimental values [3].

ANILINE

Aniline and methyl aniline have the formula $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$ and $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$, respectively. They comprise the benzene and toluene molecules with one hydrogen atom replaced by an amino group corresponding to an NH_{2} functional group and a $\mathrm{C}-\mathrm{N}$ functional group. The aromatic $C=C$ and $C-H$ functional groups are equivalent to those of benzene given in the Aromatic and Heterocyclic Compounds section. The $\mathrm{C}-\mathrm{C}$ and CH_{3} functional groups of methyl anilines are equivalent to those of toluene given in the corresponding section.

The aryl amino $\left(\mathrm{NH}_{2}\right)$ functional group was solved using the procedure given in the Dihydrogen Nitride $\left(\mathrm{NH}_{2}\right)$ section. Using the results of Eqs. (13.245-13.368), the aryl amino parameters in Eq. (15.60) are $n_{1}=2, C_{1}=0.75, C_{2}=0.93613$ (Eqs. (13.248-13.249)), $C_{1 o}=1.5$, and $c_{1}=0.75$. In the determination of the hybridization factor c_{2} of Eq. (15.61) for the $N-H$ bond MO of aryl amines, the $C 2 s p^{3} \mathrm{HO}$ of the $\mathrm{C}-\mathrm{NH}_{2}$-bond MO has an energy of $E\left(C, 2 s p^{3}\right)=-15.76868 \mathrm{eV}$ (Eq. (15.18)) corresponding to $s=2$ in Eqs. (15.18-15.20), and the $N \mathrm{AO}$ has an energy of $E(N)=-14.53414 \mathrm{eV}$. To meet the equipotential condition of the union of the $\mathrm{N}-\mathrm{H} \quad \mathrm{H}_{2}$-type-ellipsoidal-MO with the $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$, the hybridization factor c_{2} given by Eq. (15.77) is:

$$
\begin{equation*}
c_{2}(H \text { to aniline } N)=\frac{E(N)}{E\left(C, 2 s p^{3}\right)}=\frac{-14.53414 \mathrm{eV}}{-15.76868 \mathrm{eV}}=0.92171 \tag{15.170}
\end{equation*}
$$

The bond between the amino and aromatic ring comprises a $C-N$ functional group that is the same as that of 2° amines (methylene) except that the energies corresponding to oscillation in the transition state are those of aniline. The group is solved using the same principles as those used to solve the primary and secondary-amine functional groups wherein the $2 s$ and $2 p$ AOs of each C hybridize to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3}$ HO and N AO to form a MO permits each participating hybridized orbital to decrease in radius and energy. The hybridization is determined in a similar manner to that of the $C-O$ group of phenol. In anilines, the aromatic $C 2 s p^{3} \mathrm{HO}$ has a hybridization factor of 0.85252 (Eq. (15.162)) with an initial energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)) and the N AO has an energy of $E(N)=-14.53414 \mathrm{eV}$. To meet the equipotential condition of the union of the $\mathrm{C}-\mathrm{N} \mathrm{H}_{2}$-type-ellipsoidal-MO with these orbitals, the hybridization factor c_{2} of Eq. (15.60) for the $C-N$-bond MO given by Eqs. (15.77) and (15.79) is:

$$
\begin{align*}
c_{2}\left(\text { arylC } 2 s p^{3} \mathrm{HO} \text { to } \mathrm{N}\right) & =\frac{E(N)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(\operatorname{arylC} 2 s p^{3} \mathrm{HO}\right) \\
& =\frac{-14.53414 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.85252) \tag{15.171}\\
& =0.84665
\end{align*}
$$

$E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-N$-bond MO in Eq. (15.61) due to the charge donation from the C and N atoms to the MO is -1.13379 eV (Eq. (14.247)). It is based on the energy match between the NH_{2} group and the $\mathrm{C} 2 \mathrm{sp}{ }^{3} \mathrm{HO}$ of the aryl group and is twice that of the aryl $C-H$ group that it replaces.

The symbols of the functional groups of aniline and methyl-substituted anilines are given in Table 15.243. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of aniline and methyl-substituted anilines are given in Tables 15.244, 15.245, and 15.246, respectively. The total energy of each aniline and methyl-substituted aniline given in Table 15.247 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.246 corresponding to functional-group composition of the molecule. The bond angle parameters of aniline and methyl-substituted anilines determined using Eqs. (15.88-15.117) are given in Table 15.248. The color scale, translucent view of the charge-density of aniline comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.42.

Figure 15.42. Color scale, translucent view of the charge-density of aniline showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.243. The symbols of functional groups of aniline and methyl-substituted anilines.

Functional Group	Group Symbol
CC (aromatic bond)	$\mathrm{C}=\mathrm{Ce}$
CH (aromatic)	CH (i)
Aryl $\mathrm{C}-\mathrm{N}$	$\mathrm{C}-\mathrm{N}$ (a)
NH_{2} group	NH_{2}
$\mathrm{C}_{a}-\mathrm{C}_{b}\left(\mathrm{CH}_{3}\right.$ to aromatic bond)	$\mathrm{C}-\mathrm{C}($ a)
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$

Table 15.244. The geometrical bond parameters of aniline and methyl-substituted anilines and experimental values [1].

Parameter	$\begin{aligned} & C^{3 e}=C \\ & \text { Group } \end{aligned}$	CH (i) Group	$\begin{aligned} & C-N(\mathrm{a}) \\ & \text { Group } \end{aligned}$	NH_{2} Group	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.47348	1.60061	1.81158	1.24428	2.06004	1.64920
$c^{\prime}\left(a_{0}\right)$	1.31468	1.03299	1.34595	0.94134	1.43528	1.04856
Bond Length $2 c^{\prime}(A)$	1.39140	1.09327	1.42449	0.99627	1.51904	1.10974
Exp. Bond Length (A)	$\begin{aligned} & 1.397 \mathrm{avg} \text {. } \\ & \text { (phenol) } \end{aligned}$	$\begin{aligned} & 1.084 \\ & \text { (phenol) } \end{aligned}$	$\begin{gathered} 1.431 \\ \text { (aniline) } \end{gathered}$	$\begin{gathered} 0.998 \\ \text { (aniline) } \end{gathered}$	$\begin{gathered} 1.524 \\ \text { (toluene) } \end{gathered}$	1.11 (avg.) (toluene)
$b, c\left(a_{0}\right)$	0.66540	1.22265	1.21254	0.81370	1.47774	1.27295
e	0.89223	0.64537	0.74297	0.75653	0.69673	0.63580

Table 15.245. The MO to HO intercept geometrical bond parameters of aniline and methyl-substituted anilines. E_{T} is E_{T} (atom-atom,msp ${ }^{3}$.AO).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\text { eV) } \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} r_{\text {motat }} \end{aligned}$	$\begin{aligned} & r_{\text {max }} \\ & \left(a_{0}\right) \end{aligned}$		$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\text { eve }) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
C-H ($C_{b} H$)	C_{b}	-0.85035	-0.85035	-0.56690	0	-153.88328	0.91771	0.79597	-17.09334	-16.90248	74.42	105.58	38.84	1.24678	0.21379
C-H ($\left.C_{a} H_{3}\right)$	C_{a}	-0.56690	0	0	0	-152.18259	0.91771	0.88392	-15.39265	-15.20178	79.89	101.11	43.13	1.20367	0.15511
$\left(C_{b}{ }^{30}\right)_{2} C_{a} C_{a} N H-H$	N	-0.56690	0	0	0		0.93084	0.88392	-15.39265		121.74	58.26	67.49	0.47634	0.46500
$\left(C_{b}{ }^{3 e^{3}}\right)_{2} C_{a}-\mathrm{NH}_{2}$	C_{a}	-0.56690	-0.85035	-0.85035	0	-153.88328	0.91771	0.79597	-17.09334	-16.90248	88.49	91.51	41.01	1.36696	0.02101
$\left(C_{b}{ }^{3 c}\right)_{2} C_{a}-N H_{2}$	N	-0.56690	0	0	0		0.93084	0.88392	-15.39265		96.32	83.68	46.43	1.24859	0.09736
$\left(C^{3 c}\right)_{2} C_{b}-C_{a} H_{3}$	C_{a}	-0.56690	0	0	0	-152.18259	0.91771	0.88392	-15.39265	-15.20178	73.38	106.62	34.97	1.68807	0.25279
$(C=)_{2}{ }^{\text {a }} C_{b}-C_{a} H_{3}$	C_{b}	-0.56690	-0.85035	-0.85035	0	-153.88328	0.91771	0.79597	-17.09334	-16.90247	61.56	118.44	28.27	1.81430	0.37901
$\begin{aligned} & C==C_{c}^{30}=C \\ & C=\left(H_{2} N\right) C_{a}^{3 e}=C \\ & C=\left(H_{3} C_{a}\right) C_{b}=C \end{aligned}$	$\begin{aligned} & C_{c} \\ & C_{a} \\ & C_{b} \end{aligned}$	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	134.24	45.76	58.98	0.75935	0.55533

Table 15.246 . The energy parameters (eV) of functional groups of aniline and methyl-substituted anilines.

Parameters	$\begin{aligned} & C^{3 e}=C \\ & \text { Group } \end{aligned}$	CH (i) Group	$\begin{gathered} C-N \text { (a) } \\ \text { Group } \end{gathered}$	NH_{2} Group	$\begin{gathered} C-C(\mathrm{a}) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \end{gathered}$
f_{1}	0.75	1				
n_{1}	2	1	1	2	1	3
n_{2}	0	0	0	0	0	2
n_{3}	0	0	0	1	0	0
C_{1}	0.5	0.75	0.5	0.75	0.5	0.75
C_{2}	0.85252	1	1	0.93613	1	1
c_{1}	1	1	1	0.75	1	1
c_{2}	0.85252	0.91771	0.84665	0.92171	0.91771	0.91771
c_{3}	0	1	0	0	0	0
c_{4}	3	1	2	1	2	1
c_{5}	0	1	0	2	0	3
C_{10}	0.5	0.75	0.5	1.5	0.5	0.75
C_{20}	0.85252	1	1	1	1	1
$V_{e}(e \mathrm{~V})$	-101.12679	-37.10024	-32.76465	-78.97795	-29.95792	-107.32728
$V_{p}(\mathrm{eV})$	20.69825	13.17125	10.10870	28.90735	9.47952	38.92728
$T(e V)$	34.31559	11.58941	9.04312	31.73641	7.27120	32.53914
$V_{m}(\mathrm{eV})$	-17.15779	-5.79470	-4.52156	-15.86820	-3.63560	-16.26957
$E($ Ао/Но) (eV)	0	-14.63489	-14.63489	-14.53414	-15.35946	-15.56407
$\Delta E_{\mathrm{H}_{2} \mathrm{MO}}($ АО $/ \mathrm{HO})(\mathrm{eV})$	0	-1.13379	-1.13379	0	-0.56690	0
$E_{T}($ Ао/ $/ \mathrm{Ho})(\mathrm{eV})$	0	-13.50110	-13.50110	-14.53414	-14.79257	-15.56407
$E\left(n_{3}\right.$ Ао/но) (eV)	0	0	0	-14.53414	0	0
$E_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)(\mathrm{eV})$	-63.27075	-31.63539	-31.63549	-48.73654	-31.63537	-67.69451
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} \cdot \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-1.13379	0	-1.13379	0
$E_{T}($ мо) (eV)	-65.53833	-32.20226	-32.76916	-48.73660	-32.76916	-67.69450
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	49.7272	26.4826	11.9890	68.9812	16.2731	24.9286
$E_{K}(\mathrm{eV})$	32.73133	17.43132	7.89138	45.40465	10.71127	16.40846
$\bar{E}_{D}(e V)$	-0.35806	-0.26130	-0.18211	-0.42172	-0.21217	-0.25352
$\bar{E}_{\text {Kıib }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \end{gathered}$	$\begin{gathered} 0.15498 \\ {[58]} \end{gathered}$	$\begin{gathered} 0.40929 \\ {[22]} \end{gathered}$	$\begin{gathered} 0.14940 \\ {[54]} \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Fq. } \\ (13.458) \text {) } \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.25982	-0.08364	-0.10462	-0.21708	-0.13747	-0.22757
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{T}($ Group $)(\mathrm{eV})$	-49.54347	-32.28590	-32.87379	-49.17075	-32.90663	-67.92207
$E_{\text {initial }}\left(c_{+}\right.$AO/HO) (eV)	-14.63489	-14.63489	-14.63489	-14.53414	-14.63489	-14.63489
$E_{\text {initial }}\left(\mathrm{c}_{\mathrm{s}}\right.$ АО/ $\left./ \mathrm{HO}\right)(\mathrm{eV})$	0	-13.59844	0	-13.59844	0	-13.59844
$E_{D}($ Group $)(\mathrm{eV})$	5.63881	3.90454	3.60401	7.43973	3.63685	12.49186

Table 15.247. The total bond energies of aniline and methyl-substituted anilines calculated using the functional group composition and the energies of Table 15.246 compared to the experimental values [3].

Formula	Name	$C \stackrel{3 e}{=} \mathrm{C}$	CH (i)	$\begin{gathered} C-N \text { (a) } \\ \text { Group } \end{gathered}$	NH_{2} Group	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	CH_{3}	(eV)	$\begin{gathered} \text { Experimental } \\ \text { Total Bond Energy (eV) } \end{gathered}$	Relative Error
$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$	Aniline	6	5	1	1	0	0	64.43373	64.374	-0.00093
$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$	2-methylaniline	6	4	1	1	1	1	76.62345	76.643	-0.00025
$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$	3-methylaniline	6	4	1	1	1	1	76.62345	76.661	0.00050
$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$	4-methylaniline	6	4	1	1	1	1	76.62345	76.654	0.00040

Table 15.248. The bond angle parameters of aniline and methyl-substituted anilines and experimental values [1]. E_{T} is E_{T} (atom-atom,msp ${ }^{3}$. $A O$).

Atoms of Angle	(a_{0}) $2 c^{\prime}$ Bond 1 $\left(a_{0}\right)$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \end{gathered}$ $\left(a_{0}\right)$	$2 c^{\prime}$ Terminal Atoms $\left(a_{0}\right)$	$\begin{aligned} & E_{\text {Coulomblic }} \\ & \text { Atom } 1 \end{aligned}$	Atom 1 Hybridization Designation (Table 15.3.A)	$\begin{aligned} & E_{\text {Coulombic }} \\ & \text { Atom } 2 \end{aligned}$	Atom 2 Hybridization Designation (Table 15.3.A)	c_{2} Atom 1	c_{2} Atom 2	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	θ_{v} $\left({ }^{\circ}\right)$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\begin{gathered} \angle C C C \\ \text { (aromatic) } \end{gathered}$	2.62936	2.62936	4.5585	-17.17218	38	-17.17218	38	0.79232	0.79232	1	1	1	0.79232	-1.85836				120.19	$\begin{gathered} 120[50-52] \\ \text { (benzene) } \end{gathered}$
$\begin{gathered} \angle C C H \\ \text { (aromatic) } \end{gathered}$																120.19		119.91	$\begin{gathered} 120[50-52] \\ \text { (benzene) } \end{gathered}$
$\angle H N H$	1.88268	1.88268	3.1559	-14.53414	N	H	H	$\begin{gathered} 0.93613 \\ \text { Eq. } \\ (13.248)) \end{gathered}$	1	1	1	0.75	1.06823	0				113.89	$\begin{gathered} 113.9 \\ \text { (aniline) } \end{gathered}$
$\angle H N C_{a}$	1.88268	2.69190	4.0332	-14.53414	N	-15.95955	10	$\begin{gathered} 0.84665 \\ (E q . \\ (15.171)) \\ \hline \end{gathered}$	$\begin{gathered} 0.86284 \\ (\text { Eq. } \\ (15.73)) \end{gathered}$	0.75	1	0.75	1.01912	0				122.70	

ARYL NITRO COMPOUNDS

Aryl nitro compounds have a hydrogen of an aryl group replaced by a nitro corresponding to an NO_{2} functional group and a $C-N$ functional group. Examples include nitrobenzene, nitrophenol, and nitroaniline with formulas $C_{6} H_{5} \mathrm{NO}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{3}$, and $C_{6} H_{6} N_{2} O_{2}$, respectively. The aromatic $C \stackrel{3 e}{=} C$ and $C-H$ functional groups are equivalent to those of benzene given in the Aromatic and Heterocyclic Compounds section. The $O H$ and $C-O$ functional groups of nitrophenols are the same as those of phenol given in the corresponding section. The NH_{2} and $\mathrm{C}-\mathrm{N}$ functional groups of nitroanilines are the same as those of aniline given in the corresponding section. The differences between the total bond energies of the nitroanilines given in Table 15.252 are due to differences in the $E_{o s c}$ term. For simplicity and since the differences are small, the $E_{\text {osc }}$ terms for nitroanilines were taken as the same.

The NO_{2} group is the same as that given in the Nitroalkanes section. The bond between the nitro and aromatic ring comprises a $C-N$ functional group that is the same as that of nitroalkanes given in the corresponding section except that $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ is -0.72457 eV , one half of that of the $C-N$-bond MO of nitroalkanes and equivalent to that of methyl (Eq. (14.151)) in order to maintain the independence and aromaticity of the benzene functional group. In addition, the energy terms due to oscillation in the transition state correspond to those of an aryl nitro compound.

The symbols of the functional groups of aryl nitro compounds are given in Table 15.249. The geometrical (Eqs. (15.115.5) and (15.42)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of aryl nitro compounds are given in Tables 15.250 , 15.251 , and 15.252 , respectively. The total energy of each aryl nitro compound given in Table 15.253 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.252 corresponding to functional-group composition of the molecule. For each set of unpaired electrons created by bond breakage, the $C 2 s p^{3}$ HO magnetic energy $E_{\text {mag }}$ that is subtracted from the weighted sum of the E_{D} (Group) (eV) values based on composition is given by Eq. (15.67). The bond angle parameters of aryl nitro compounds determined using Eqs. (15.88-15.117) are given in Table 15.254. The color scale, translucent view of the charge-density of exemplary aryl nitro, nitrobenzene, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.43.

Figure 15.43. Color scale, translucent view of the charge-density of nitrobenzene showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

Table 15.249. The symbols of functional groups of aryl nitro compounds.

Functional Group	Group Symbol
CC (aromatic bond)	$\mathrm{C}=\mathrm{Ce}$
CH (aromatic)	CH (i)
Aryl $\mathrm{C}-\mathrm{N}$ (aniline)	$\mathrm{C}-\mathrm{N}$ (a)
Aryl $\mathrm{C}-\mathrm{N}$ (nitro)	$\mathrm{C}-\mathrm{N}$ (b)
Aryl $\mathrm{C}-\mathrm{O}$	$\mathrm{C}-\mathrm{O}$ (a)
NO_{2} group	NO_{2}
NH_{2} group	NH_{2}
OH group	OH

Table 15.250. The geometrical bond parameters of aryl nitro compounds and experimental values [1].

Parameter	$\begin{aligned} & C \stackrel{3 e}{C=C} \\ & \text { Group } \end{aligned}$	CH (i) Group	$\begin{gathered} C-N \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N(\mathrm{~b}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{NO}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{NH}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.47348	1.60061	1.81158	1.97794	1.68220	1.33221	1.24428	1.26430
$c^{\prime}\left(a_{0}\right)$	1.31468	1.03299	1.34595	1.40639	1.29700	1.15421	0.94134	0.91808
Bond Length $2 c^{\prime}(A)$	1.39140	1.09327	1.42449	1.48846	1.37268	1.22157	0.99627	0.971651
Exp. Bond Length (A)	$\begin{aligned} & 1.397 \text { avg. } \\ & \text { (phenol) } \end{aligned}$	$\begin{gathered} 1.084 \\ \text { (phenol) } \end{gathered}$	$\begin{gathered} 1.431 \\ \text { (aniline) } \end{gathered}$		$\begin{gathered} 1.364 \\ \text { (phenol) } \end{gathered}$	$\begin{gathered} 1.224 \\ \text { (nitromethane) } \end{gathered}$	$\begin{gathered} 0.998 \\ \text { (aniline) } \end{gathered}$	$\begin{gathered} 0.956 \\ \text { (phenol) } \end{gathered}$
$b, c\left(a_{0}\right)$	0.66540	1.22265	1.21254	1.39079	1.07126	0.66526	0.81370	0.86925
e	0.89223	0.64537	0.74297	0.71104	0.77101	0.86639	0.75653	0.72615

Table 15.251. The MO to HO intercept geometrical bond parameters of aryl nitro compounds. E_{T} is E_{T} (atom-atom,msp ${ }^{3}$. $A O$).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 4 } \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {mentalal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {final }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coulumb }}\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\left({ }^{\circ}\right)$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$C-H\left(C_{b} H\right)$	C_{b}	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	74.42	105.58	38.84	1.24678	0.21379
$\left(C_{b} \stackrel{3 c}{=}\right)_{2} C_{a} O-H$	O	-0.74804	0	0	0		1.00000	0.87363	-15.57379		115.79	64.21	64.82	0.53799	0.38009
$\left(\mathrm{C}_{b} \stackrel{3 c}{=}\right)_{2} \mathrm{C}_{a}-\mathrm{OH}$	C_{a}	-0.74804	-0.85035	-0.85035	0	-154.06442	0.91771	0.78762	-17.27448	-17.08362	100.00	80.00	46.39	1.16026	0.13674
$\left(\mathrm{C}_{b}{ }^{3 e}\right)_{2} \mathrm{C}_{a}-\mathrm{OH}$	O	-0.74804	0	0	0		1.00000	0.87363	15.57379		106.51	73.49	51.43	1.04871	0.24829
$\left(\mathrm{C}_{b} \stackrel{3 c}{=}\right)_{2} \mathrm{C}_{a} \mathrm{OH}$	C_{a}	-0.74804	-0.85035	-0.85035	0	-154.06442	0.91771	0.78762	-17.27448	-17.08362	133.88	46.12	58.55	0.76870	0.54598
$\begin{aligned} & C \stackrel{3 e}{=} H C_{c}=C \\ & C^{3 e}=\left(H_{2} \mathrm{~N}\right) C_{a}^{3 e}=C \\ & \left(\begin{array}{l} 3 e \\ = \\ = \\ \left.(H) C_{b}\right)_{2} C_{a} O H \\ C^{3 e}=\left(H_{3} C_{a}\right) C_{b}=C \end{array}\right. \end{aligned}$	$\begin{aligned} & C_{c} \\ & C_{a} \\ & C_{b} \\ & C_{b} \end{aligned}$	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	134.24	45.76	58.98	0.75935	0.55533
$\left.\left(\mathrm{Cb}^{3 e}\right)_{2}\right)_{2} C_{a} \mathrm{NH}-\mathrm{H}$	N	-0.56690	0	0	0		0.93084	0.88392	-15.39265		121.74	58.26	67.49	0.47634	0.46500
$\left(\mathrm{C}_{b} \stackrel{3 e}{=}\right)_{2} \mathrm{C}_{a}-\mathrm{NH}_{2}$	C_{a}	-0.56690	-0.85035	-0.85035	0	-153.88328	0.91771	0.79597	-17.09334	-16.90248	88.49	91.51	41.01	1.36696	0.02101
$\left(\mathrm{C}_{b} \stackrel{3 e}{=}\right)_{2} \mathrm{C}_{a}-\mathrm{NH}_{2}$	N	-0.56690	0	0	0		0.93084	0.88392	-15.39265		96.32	83.68	46.43	1.24859	0.09736
$\left(C^{3 c}\right)_{2} C_{b}-C_{a} H_{3}$	C_{a}	-0.56690	0	0	0	-152.18259	0.91771	0.88392	-15.39265	-15.20178	73.38	106.62	34.97	1.68807	0.25279
$\left(C^{3 c}\right)_{2} C_{b}-C_{a} H_{3}$	C_{b}	-0.56690	-0.85035	-0.85035	0	-153.88328	0.91771	0.79597	-17.09334	-16.90247	61.56	118.44	28.27	1.81430	0.37901
$R N(O)=O$	O	-0.92918	0	0	0		1.00000	0.86359	-15.75493		135.25	44.75	66.05	0.54089	0.61333
$R N(O)=O$	N	-0.92918	-0.92918	-0.36229	0		0.93084	0.79816	-17.04640		132.36	47.64	62.44	0.61640	0.53781
$\left(\mathrm{C}^{30}=\right)_{2} \mathrm{Ca}_{a}-\mathrm{NO}_{2}$	C_{a}	-0.36229	-0.85035	-0.85035	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	72.49	107.51	33.53	1.64875	0.24236
$\left(\mathrm{C}={ }_{2}^{30}\right)_{2} C_{a}-\mathrm{NO}_{2}$	N	-0.92918	-0.92918	-0.36229	0		0.93084	0.79816	-17.04640		71.53	108.47	32.98	1.65923	0.25284
$C^{3 e}\left(O_{2} N\right) C_{a}{ }^{3 e}=C$	C_{a}	-0.36229	-0.85035	-0.85035	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	134.65	45.35	59.47	0.74854	0.56614

Table 15.252. The energy parameters (eV) of functional groups of aryl nitro compounds.

Parameters	$\begin{aligned} & C_{=3 e}^{=} C \\ & \text { Group } \end{aligned}$	CH (i) Group	$\begin{gathered} C-N(\text { a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{NO}_{2} \\ \text { Group } \end{gathered}$	NH_{2} Group	$\begin{gathered} O H \\ \text { Group } \end{gathered}$
f_{1}	0.75	1						
n_{1}	2	1	1	1	1	2	2	1
n_{2}	0	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	1	0
C_{1}	0.5	0.75	0.5	0.5	0.5	0.5	0.75	0.75
C_{2}	0.85252	1	1	1	1	1	0.93613	1
c_{1}	1	1	1	1	1	1	0.75	0.75
c_{2}	0.85252	0.91771	0.84665	0.91140	0.79329	0.85987	0.92171	1
c_{3}	0	1	0	0	0	0	0	1
c_{4}	3	1	2	2	2	4	1	1
c_{5}	0	1	0	0	0	0	2	1
C_{10}	0.5	0.75	0.5	0.5	0.5	0.5	1.5	0.75
C_{2} 。	0.85252	1	1	1	1	1	1	1
$V_{e}(\mathrm{eV})$	-101.12679	-37.10024	-32.76465	-31.36351	-34.04658	-106.90919	-78.97795	-40.92709
$V_{p}(\mathrm{eV})$	20.69825	13.17125	10.10870	9.67426	10.49024	23.57588	28.90735	14.81988
$T(\mathrm{eV})$	34.31559	11.58941	9.04312	7.92833	10.11966	40.12475	31.73641	16.18567
$V_{m}(\mathrm{eV})$	-17.15779	-5.79470	-4.52156	-3.96416	-5.05983	-20.06238	-15.86820	-8.09284
E (Ао/но) (eV)	0	-14.63489	-14.63489	-14.63489	-14.63489	0	-14.53414	-13.6181
$\Delta E_{\mathrm{H}_{2} \text { МО }}($ (Ао/но) (eV)	0	-1.13379	-1.13379	-0.72457	-1.49608	0	0	0
E_{T} (Ао/но) (eV)	0	-13.50110	-13.50110	-13.91032	-13.13881	0	-14.53414	-13.6181
$E\left(n_{3}\right.$ Ао/ $/$ \%) $)(\mathrm{eV})$	0	0	0	0	0	0	-14.53414	0
$E_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)(\mathrm{eV})$	-63.27075	-31.63539	-31.63549	-31.63540	-31.63532	-63.27093	-48.73654	-31.63247
$E_{T}\left(\right.$ atom -atom, msp $\left.{ }^{3} \cdot \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-1.13379	-0.72457	-1.49608	-3.71673	0	0
$E_{T}($ мо $)(\mathrm{eV})$	-65.53833	-32.20226	-32.76916	-32.35994	-33.13145	-66.98746	-48.73660	-31.63537
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	49.7272	26.4826	11.9890	17.8228	13.3984	19.0113	68.9812	44.1776
$E_{K}(\mathrm{eV})$	32.73133	17.43132	7.89138	11.73128	8.81907	12.51354	45.40465	29.07844
$\bar{E}_{D}(e V)$	-0.35806	-0.26130	-0.18211	-0.21927	-0.19465	-0.23440	-0.42172	-0.33749
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \end{gathered}$	$\begin{gathered} 0.15498 \\ {[58]} \end{gathered}$	$\begin{gathered} 0.10539 \\ {[45]} \end{gathered}$	$\begin{gathered} 0.12808 \\ {[19]} \end{gathered}$	$\begin{gathered} 0.19342 \\ {[45]} \end{gathered}$	$\begin{gathered} 0.40929 \\ {[22]} \end{gathered}$	$\begin{aligned} & 0.46311 \\ & {[17-18]} \end{aligned}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.25982	-0.08364	-0.10462	-0.16658	-0.13061	-0.13769	-0.21708	-0.10594
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803	0.11441	0.14803	0.11441
$E_{T}($ Group $)(e V)$	-49.54347	-32.28590	-32.87379	-32.52652	-33.26206	-67.26284	-49.17075	-31.74130
$E_{\text {initial }}\left(c_{4}\right.$ Ао/но) (eV)	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.53414	-13.6181
$E_{\text {initial }}\left(\mathrm{c}_{5}\right.$ АО/ $/$ но) (eV)	0	-13.59844	0	0	0	0	-13.59844	-13.59844
$E_{D}($ Group $)(e V)$	5.63881	3.90454	3.60401	3.25674	3.99228	8.72329	7.43973	4.41035

Table 15.25 3．The total bond energies of aryl nitro compounds calculated using the functional group composition and the energies of Table 15.252 compared to the experimental values［3］．The magnetic energy $E_{m a g}$ that is subtracted from the weighted sum of the E_{D}（Group）（ eV ）values based on composition is given by（15．58）．

Formula	Name	$C \stackrel{3 e}{=} C$	CH（i）	$C-N \text { (a) }$ Group	$\begin{gathered} C-N \text { (b) } \\ \text { Group } \end{gathered}$	$C-O \text { (a) }$ Group	$\begin{gathered} \mathrm{NO}_{2} \\ \text { Group } \end{gathered}$	$\begin{aligned} & \mathrm{NH}_{2} \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$	$E_{\text {mag }}$	Calculated Total Bond Energy（eV）	Experimental Total Bond Energy（eV）	Relative Error
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	Nitrobenzene	6	5	0	1	0	1	0	0	1	65.18754	65.217	0.00046
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{5}$	2，4－dinitrophenol	6	4	0	2	1	2	0	1	2	77.61308	77.642	0.00037
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$	2－nitroaniline	6	4	1	1	0	1	1	0	0	72.47476	72.424	－0．00070
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$	3－nitroaniline	6	4	1	1	0	1	1	0	0	72.47476	72.481	－0．00009
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$	4－nitroaniline	6	4	1	1	0	1	1	0	0	72.47476	72.476	－0．00002

Table 15．254．The bond angle parameters of aryl nitro compounds and experimental values［1］．E_{T} is E_{T}（atom－atom，msp ${ }^{3} . A O$ ）．

$\stackrel{\dot{x}}{\dot{4}} \dot{\text { in }}$							
$\stackrel{\circ}{0}$		$\bar{\partial}$		$\begin{aligned} & \mathscr{\infty} \\ & \stackrel{\infty}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{6} \\ & \stackrel{1}{2} \end{aligned}$	
－¢							
σ O							
－¢							
स）			$\begin{aligned} & \frac{n}{2} \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { Noٌ } \\ & \substack{e \\ \hdashline} \end{aligned}$	－	－	－
－	$\begin{aligned} & \text { त्స్ } \\ & \stackrel{\text { ® }}{\circ} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{6}{0} \\ & \hline 0.0 \end{aligned}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\begin{aligned} & \text { ® } \\ & \stackrel{\otimes}{6} \\ & \stackrel{y}{c} \end{aligned}$	㤹
v	－		－	－	\％	\％	\％
U＇	－		－	－	－	－	－
v	－		－	－	R	－	¢
心筞	$\begin{aligned} & \text { त्ब̃ } \\ & \stackrel{1}{\circ} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{N}} \\ & \stackrel{y}{\infty} \\ & \stackrel{0}{0} \end{aligned}$		E	－	
$0^{\prime} \frac{\bar{\pi}}{\frac{8}{4}}$			$\begin{aligned} & \frac{9}{2} \\ & \substack{0 \\ 0 \\ 0} \end{aligned}$	笑 $\stackrel{y}{8}$			
			ส	\bigcirc	－	＝	z
${ }^{2}$	$\begin{aligned} & \stackrel{\infty}{స} \\ & \stackrel{1}{\tau} \end{aligned}$		$\begin{aligned} & \overline{\mathcal{B}_{0}^{*}} \\ & \stackrel{0}{6} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{6} \\ & \stackrel{̣}{2} \end{aligned}$		\pm	
	¢		๕	\％	－	z	\bigcirc
${ }^{2}$	$\begin{aligned} & \stackrel{\infty}{N} \\ & \stackrel{1}{\leftrightarrows} \\ & \hline \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{6} \\ & \stackrel{\text { B }}{7} \end{aligned}$			
	$\begin{aligned} & \text { ® } \\ & \stackrel{2}{n} \\ & \underset{子}{2} \end{aligned}$		$\stackrel{\bar{\pi}}{\underset{\sim}{7}}$	$\begin{aligned} & \frac{0}{7} \\ & \underset{寸}{+} \end{aligned}$	$\stackrel{n}{6}$	$\begin{aligned} & \stackrel{i n}{e n} \\ & \stackrel{i}{n} \end{aligned}$	\％
梯	$\begin{gathered} \text { ®. } \\ \text { cic } \end{gathered}$			$\begin{aligned} & \text { 慜 } \\ & \underset{i}{i} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{\infty} \\ & \underset{\sim}{2} \end{aligned}$		$\stackrel{\text { ® }}{\text { ® }}$
気歌			発 ì	$\underset{\substack{\text { in } \\ \text { in }}}{ }$	$\begin{aligned} & \text { ⿳亠丷厂犬} \\ & \text { הi } \end{aligned}$	$\stackrel{\leftrightarrow}{\circ}$	－
			$\begin{aligned} & \sum_{0}^{0} \\ & 0_{0}^{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { 苓 } \end{aligned}$	$\begin{aligned} & \tilde{D}_{0}^{0} \\ & v_{0} \end{aligned}$	N	\sum_{0}^{2}

BENZOIC ACID COMPOUNDS

Benzoic acid compounds have a hydrogen of an aryl group replaced by a carboxylic acid group corresponding to an $C-C(O)-O H$ moiety that comprises $C=O$ and $O H$ functional groups that are the same as those of carboxylic acids given in the corresponding section. The single bond of aryl carbon to the carbonyl carbon atom, $C-C(O)$, is also a functional group. This group is also equivalent to the same group of carboxylic acids except that $\Delta E_{H_{2} M O}(A O / H O)$ in Eq. (15.51) and $E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)$ in Eq. (15.61) are both -1.29147 eV which is a linear combination of $\frac{-1.13379 \mathrm{eV}}{2}$, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-H$ group that the $C-C(O)$ group replaces, and that of an independent $C 2 s p^{3} \mathrm{HO}$, -0.72457 eV (Eq. (14.151)).

Examples include benzoic acid, chlorobenzoic acid, and aniline carboxylic acid with formulas $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}, \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{Cl}$, and $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$, respectively. The aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ functional groups are equivalent to those of benzene given in Aromatic and Heterocyclic Compounds section. The NH_{2} and $\mathrm{C}-\mathrm{N}$ functional groups of aniline carboxylic acids are the same as those of aniline given in the corresponding section. The $\mathrm{C}-\mathrm{Cl}$ functional group of 2-chlorobenzoic acids corresponding to meta substitution is equivalent to that of chlorobenzene given in the corresponding section. The $\mathrm{C}-\mathrm{Cl}$ functional group of 3 or 4 -chlorobenzoic acids corresponding to ortho and para substitution is also equivalent to that of chlorobenzene, except that $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ in Eq. (15.61) is -0.92918 eV (Eq. (14.513)) for both cases since each of these positions can form a resonance structure with the carboxylic acid group which is permissive of greater charge donation from the $C 2 s p^{3} \mathrm{HO}$.

The symbols of the functional groups of benzoic acid compounds are given in Table 15.255. The corresponding designations of benzoic acid is shown in Figure 15.44B. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.8015.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of benzoic acid compounds are given in Tables $15.256,15.257$, and 15.258 , respectively. The total energy of each benzoic acid compound given in Table 15.259 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.258 corresponding to functional-group composition of the molecule. The bond angle parameters of benzoic acid compounds determined using Eqs. (15.88-15.117) are given in Table 15.260. The color scale, translucent view of the charge-density of benzoic acid comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.44A.

Figure 15.44. (A) Color scale, translucent view of the charge-density of benzoic acid showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (B) Chemical structure and atom designation of benzoic acid.

B

0

Table 15.255. The symbols of functional groups of benzoic acid compounds.

Functional Group	Group Symbol
CC (aromatic bond)	$\mathrm{C}=\mathrm{C}$
CH (aromatic)	CH (i)
$\mathrm{C}-\mathrm{C}(\mathrm{O})$	$\mathrm{C}-\mathrm{C}(\mathrm{O})$
$\mathrm{C=O}$ (aryl carboxylic acid)	$\mathrm{C}=\mathrm{O}$
$(\mathrm{O}) \mathrm{C}$ - C	$\mathrm{C}-\mathrm{O}$
OH group	OH
$\mathrm{Cl}-\mathrm{C}$ (Cl to aromatic bond of 2-	$\mathrm{C}-\mathrm{Cl}$ (i)
chlorobenzoic acid)	
$\mathrm{Cl}-\mathrm{C}(\mathrm{Cl}$ to aromatic bond of 3 or 4- chlorobenzoic acid $)$ $\mathrm{C}-\mathrm{Cl}$ (ii) Aryl $\mathrm{C}-\mathrm{N}$ (aniline) $\mathrm{C}-\mathrm{N}$ NH_{2} group NH_{2} l	

Table 15.256. The geometrical bond parameters of benzoic acid compounds and experimental values [1].

Parameters	$C \stackrel{3 e}{=} C$ Group	CH (i) Group	$\begin{aligned} & C-C(O) \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-O \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{Cl}(\mathrm{i}) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{Cl} \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-N \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{NH}_{2} \\ \text { Group } \\ \hline \end{gathered}$
f_{1}	0.75	1								
n_{1}	2	1	1	2	1	1	1	1	1	2
n_{2}	0	0	0	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	1
C_{1}	0.5	0.75	0.5	0.5	0.5	0.75	0.5	0.5	0.5	0.75
C_{2}	0.85252	1	1	1	1	1	0.81317	0.81317	1	0.93613
c_{1}	1	1	1	1	1	0.75	1	1	1	0.75
c_{2}	0.85252	0.91771	0.91771	0.85395	0.85395	1	1	1	0.84665	0.92171
c_{3}	0	1	0	2	0	1	0	0	0	0
c_{4}	3	1	2	4	2	1	2	2	2	1
c_{5}	0	1	0	0	0	1	0	0	0	2
C_{10}	0.5	0.75	0.5	0.5	0.5	0.75	0.5	0.5	0.5	1.5
C_{20}	0.85252	1	1	1	1	1	0.81317	0.81317	1	1
$V_{e}(\mathrm{eV})$	-101.12679	-37.10024	-32.15216	-111.25473	-35.08488	-40.92709	-31.85648	-32.14474	-32.76465	-78.97795
$V_{p}(\mathrm{eV})$	20.69825	13.17125	9.74055	23.87467	10.32968	14.81988	8.25686	8.28394	10.10870	28.90735
$T(\mathrm{eV})$	34.31559	11.58941	8.23945	42.82081	10.11150	16.18567	7.21391	7.32700	9.04312	31.73641
$V_{m}(\mathrm{eV})$	-17.15779	-5.79470	-4.11973	-21.41040	-5.05575	-8.09284	-3.60695	-3.66350	-4.52156	-15.86820
E (Ао/но) (eV)	0	-14.63489	-14.63489	0	-14.63489	-13.6181	-14.63489	-14.63489	-14.63489	-14.53414
	0	-1.13379	-1.29147	-2.69893	-2.69893	0	-2.99216	-2.99216	-1.13379	0
E_{T} (Ао। но) (eV)	0	-13.50110	-13.34342	2.69893	-11.93596	-13.6181	-11.64273	-11.64273	-13.50110	-14.53414
$E(n$, АО $/$ но) ((eV)	0	0	0	0	0	0	0	0	0	-14.53414
$E_{T}\left(H_{2} M O\right)(\mathrm{eV})$	-63.27075	-31.63539	-31.63530	-63.27074	-31.63541	-31.63247	-31.63539	-31.63542	-31.63549	-48.73654
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-1.29147	-2.69893	-1.85836	0	-0.72457	-0.92918	-1.13379	0
$E_{T}(\underline{\text { м }}$) (eV$)$	-65.53833	-32.20226	-32.92684	-65.96966	-33.49373	-31.63537	-32.35994	-32.56455	-32.76916	-48.73660
ω) (10 ${ }^{15} \mathrm{rad} / \mathrm{s}$)	49.7272	26.4826	10.7262	59.4034	24.3637	44.1776	8.03459	8.11389	11.9890	68.9812
$E_{K}(\mathrm{eV})$	32.73133	17.43132	7.06019	39.10034	16.03660	29.07844	5.28851	5.34070	7.89138	45.40465
$\bar{E}_{D}(\mathrm{eV})$	-0.35806	-0.26130	-0.17309	-0.40804	-0.26535	-0.33749	-0.14722	-0.14888	-0.18211	-0.42172
$\bar{E}_{\text {Kvvb }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.10502 \\ {[29]} \\ \hline \end{gathered}$	$\begin{gathered} 0.21077 \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} 0.14010 \\ {[31]} \\ \hline \end{gathered}$	$\begin{aligned} & 0.46311 \\ & {[17-18]} \end{aligned}$	$\begin{gathered} 0.08059 \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} 0.08059 \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} 0.15498 \\ {[58]} \\ \hline \end{gathered}$	$\begin{gathered} 0.40929 \\ {[22]} \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.25982	-0.08364	-0.12058	-0.30266	-0.19530	-0.10594	-0.10693	-0.10859	-0.10462	-0.21708
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.11441	0.14803	0.11441	0.14803	0.14803	0.14803	0.14803
$E_{T}($ Grimp $)(\mathrm{eV})$	-49.54347	-32.28590	-33.04742	-66.57498	-33.68903	-31.74130	-32.46687	-32.67314	-32.87379	-49.17075
$E_{\text {inutal }}\left(\mathrm{c}_{4}\right.$ AOI Ho) (eV)	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-13.6181	-14.63489	-14.63489	-14.63489	-14.53414
$E_{\text {irutal }}(\mathrm{cs}$, AO/ $/$ Ho) (eV)	0	-13.59844	0	0	0	-13.59844	0	0	0	-13.59844
$E_{D}($ (ioup $)(e \mathrm{eV})$	5.63881	3.90454	3.77764	7.80660	4.41925	4.41035	3.19709	3.40336	3.60401	7.43973

Table 15.257. The MO to HO intercept geometrical bond parameters of benzoic acid compounds. E_{T} is E_{T} (atom-atom,msp ${ }^{3}$. $A O$).

Table 15.258. The energy parameters (eV) of functional groups of benzoic acid compounds.

Parameters	$\begin{aligned} & C^{3 e}=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \mathrm{CH} \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(O) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-O \\ & \text { Group } \end{aligned}$	$\begin{gathered} O H \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{Cl} \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{Cl} \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-N \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \mathrm{NH}_{2} \\ & \text { Group } \end{aligned}$
f_{1}	0.75	1								
n_{1}	2	1	1	2	1	1	1	1	1	2
n_{2}	0	0	0	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	1
C_{1}	0.5	0.75	0.5	0.5	0.5	0.75	0.5	0.5	0.5	0.75
C_{2}	0.85252	1	1	1	1	1	0.81317	0.81317	1	0.93613
c_{1}	1	1	1	1	1	0.75	1	1	1	0.75
c_{2}	0.85252	0.91771	0.91771	0.85395	0.85395	1	1	1	0.84665	0.92171
c_{3}	0	1	0	2	0	1	0	0	0	0
c_{4}	3	1	2	4	2	1	2	2	2	1
c_{5}	0	1	0	0	0	1	0	0	0	2
C_{10}	0.5	0.75	0.5	0.5	0.5	0.75	0.5	0.5	0.5	1.5
C_{2} o	0.85252	1	1	1	1	1	0.81317	0.81317	1	1
$V_{e}(\mathrm{eV})$	-101.12679	-37.10024	-32.15216	-111.25473	-35.08488	-40.92709	-31.85648	-32.14474	-32.76465	-78.97795
$V_{p}(\mathrm{eV})$	20.69825	13.17125	9.74055	23.87467	10.32968	14.81988	8.25686	8.28394	10.10870	28.90735
$T(\mathrm{eV})$	34.31559	11.58941	8.23945	42.82081	10.11150	16.18567	7.21391	7.32700	9.04312	31.73641
$V_{m}(\mathrm{eV})$	-17.15779	-5.79470	-4.11973	-21.41040	-5.05575	-8.09284	-3.60695	-3.66350	-4.52156	-15.86820
E (Ао/но) (eV)	0	-14.63489	-14.63489	0	-14.63489	-13.6181	-14.63489	-14.63489	-14.63489	-14.53414
$\Delta E_{\mathrm{H}_{2} \mathrm{MO}}($ (АО $/ \mathrm{HO})(\mathrm{eV})$	0	-1.13379	-1.29147	-2.69893	-2.69893	0	-2.99216	-2.99216	-1.13379	0
E_{T} (Ао/но) (eV)	0	-13.50110	-13.34342	2.69893	-11.93596	-13.6181	-11.64273	-11.64273	-13.50110	-14.53414
$E(0$, AO/Ho) (eV$)$	0	0	0	0	0	0	0	0	0	-14.53414
$\boldsymbol{E}_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)(\mathrm{eV})$	-63.27075	-31.63539	-31.63530	-63.27074	-31.63541	-31.63247	-31.63539	-31.63542	-31.63549	-48.73654
$E_{T}\left(\right.$ atom-atom, msp $\left.{ }^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-1.29147	-2.69893	-1.85836	0	-0.72457	-0.92918	-1.13379	0
$\boldsymbol{E}_{T}(\mathrm{mo})(\mathrm{eV})$	-65.53833	-32.20226	-32.92684	-65.96966	-33.49373	-31.63537	-32.35994	-32.56455	-32.76916	-48.73660
ω) (10 ${ }^{15} \mathrm{rad} / \mathrm{s}$)	49.7272	26.4826	10.7262	59.4034	24.3637	44.1776	8.03459	8.11389	11.9890	68.9812
$E_{K}(\mathrm{eV})$	32.73133	17.43132	7.06019	39.10034	16.03660	29.07844	5.28851	5.34070	7.89138	45.40465
$\bar{E}_{D}\left({ }^{(e V)}\right.$	-0.35806	-0.26130	-0.17309	-0.40804	-0.26535	-0.33749	-0.14722	-0.14888	-0.18211	-0.42172
$\bar{E}_{\text {Kub }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.10502 \\ {[29]} \\ \hline \end{gathered}$	$\begin{gathered} 0.21077 \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} 0.14010 \\ {[31]} \\ \hline \end{gathered}$	$\begin{aligned} & 0.46311 \\ & {[17-18]} \end{aligned}$	$\begin{gathered} 0.08059 \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} 0.08059 \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} 0.15498 \\ {[58]} \\ \hline \end{gathered}$	$\begin{gathered} 0.40929 \\ {[22]} \\ \hline \end{gathered}$
$\bar{E}_{\text {occ }}(\mathrm{eV})$	-0.25982	-0.08364	-0.12058	-0.30266	-0.19530	-0.10594	-0.10693	-0.10859	-0.10462	-0.21708
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.11441	0.14803	0.11441	0.14803	0.14803	0.14803	0.14803
E_{T} (Grup) (eV)	-49.54347	-32.28590	-33.04742	-66.57498	-33.68903	-31.74130	-32.46687	-32.67314	-32.87379	-49.17075
$E_{\text {intual }}\left(\mathrm{c}_{4}\right.$ AO/Ho) (eV)	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-13.6181	-14.63489	-14.63489	-14.63489	-14.53414
$E_{\text {intrat }}\left(\mathrm{cs}_{\text {s }}\right.$, $1 / \mathrm{H}$ Ho) (eV)	0	-13.59844	0	0	0	-13.59844	0	0	0	-13.59844
E_{D} (Group) (eV)	5.63881	3.90454	3.77764	7.80660	4.41925	4.41035	3.19709	3.40336	3.60401	7.43973

Table 15.259 ．The total bond energies of benzoic acid compounds calculated using the functional group composition and the energies of Table 15.258 compared to the experimental values［3］．

Formula	Name	$\begin{aligned} & C^{3 e}=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \mathrm{CH} \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(O) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \mathrm{C}-\mathrm{O} \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C-Cl} \text { (i) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{Cl} \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-N \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{NH}_{2} \\ \text { Group } \end{gathered}$	Calculated Total Bond Energy（eV）	Experimental Total Bond Energy（eV）	Relative Error
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$	Benzoic acid	6	5	1	1	1	1	0	0	0	0	73.76938	73.762	－0．00009
$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClO}_{2}$	2－chlorobenzoic acid	6	4	1	，	1	1	1	0	0	0	73.06193	73.082	0.00027
$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClO}_{2}$	3－chlorobenzoic acid	6	4	1	1	1	1	0	1	0	0	73.26820	73.261	－0．00010
$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClO}_{2}$	4－chlorobenzoic acid	6	4	1	1	1	1	0	1	0	0	73.26820	73.247	－0．00028
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$	Aniline－2－carboxylic acid	6	4	1	1	1	1	0	0	1	1	80.90857	80.941	0.00041
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$	Aniline－3－carboxylic acid	6	4	1	1	1	1	0	0	1	1	80.90857	80.813	－0．00118
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$	Aniline－4－carboxylic acid	6	4	1	1	1	1	0	0	1	1	80.90857	80.949	0.00050

Table 15．260．The bond angle parameters of benzoic acid compounds and experimental values［1］．E_{T} is E_{T}（atom－atom，msp ${ }^{3} . A O$ ）．

$\underset{\substack{0 \\ \dot{x} \\ \dot{x}}}{ }$										
$\stackrel{\rightharpoonup}{\mathrm{j}}$	$\stackrel{\rightharpoonup}{\mathrm{O}}$	$\begin{aligned} & \bar{\sigma} \\ & \stackrel{\rightharpoonup}{\Xi} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{E}}}{\stackrel{\rightharpoonup}{\mathrm{O}}}$	$\begin{aligned} & \stackrel{\circ}{\beth} \\ & \stackrel{\square}{2} \end{aligned}$	$\stackrel{\text { 尔 }}{\leftrightharpoons}$	$\begin{aligned} & \text { §్ర్ర } \\ & \text { O- } \end{aligned}$	$\frac{\underset{\sim 1}{7}}{9}$	$\begin{aligned} & \bar{\varrho} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{j}{=} \end{aligned}$	
0 0										
0 O		$\stackrel{\rightharpoonup}{\mathrm{a}}$						$\stackrel{9}{\square}$		
0 O										
近栜	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\otimes}{\infty} \\ & \underset{\sim}{+} \end{aligned}$		\bigcirc	$\begin{aligned} & \stackrel{0}{3} \\ & \stackrel{\hat{6}}{1} \\ & \hdashline \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{N}{6} \\ & \vdots \end{aligned}$	$\frac{n}{\frac{n}{寸}} \underset{\vdots}{i}$			\bigcirc	\bigcirc
\sim	$\begin{aligned} & \text { त్ } \\ & \text { 人̀ } \end{aligned}$		$\left\|\begin{array}{c} \vec{E} \\ \hat{O} \end{array}\right\|$	$\begin{aligned} & \stackrel{\sim}{2} \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{\circ} \end{aligned}$		$\begin{aligned} & \widehat{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \text { त̂ } \\ & \text { ু̀ } \end{aligned}$			¢ 8
v	－		$\stackrel{\cong}{0}$	－	－	－	－		气	气。
\checkmark	－		－	－	－	－	－		－	－
U	－		$\stackrel{n}{0}$	－	－	－	－		－	ño
$\therefore \frac{\pi}{\frac{\pi}{4}}$	$\begin{aligned} & \text { N} \\ & \text { ล̀ } \\ & \text { 人 } \end{aligned}$		$\left\|\frac{\underset{A}{\lambda}}{\frac{\lambda}{2}}\right\|$	$\overbrace{0}^{2}$		$\begin{aligned} & \text { N} \\ & \hat{0} \\ & \stackrel{\infty}{\infty} \\ & 0 \end{aligned}$			－	淢
$\because \frac{\bar{y}}{\frac{1}{4}}$	$\begin{aligned} & \text { N} \\ & \text { N} \\ & \text { ¿} \end{aligned}$		－	$\begin{aligned} & \text { た్ } \\ & \text { だ } \end{aligned}$	侖	$\stackrel{n}{\underset{\sim}{\infty}}$				
	∞		－	\bigcirc	\bigcirc	\checkmark	∞		\pm	z
	$\underset{\underset{\sim}{\infty}}{\substack{\text { N}}}$		$\begin{aligned} & n \\ & \hat{n} \\ & \infty \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & \stackrel{0}{0} \\ & \underset{1}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & \stackrel{0}{4} \\ & \stackrel{1}{2} \end{aligned}$	$\left\lvert\, \begin{gathered} n \\ \underset{\sim}{n} \\ \underset{\sim}{n} \\ \underset{i}{n} \end{gathered}\right.$	$\stackrel{\infty}{\text { त̇ }}$		二	\pm $\underset{\sim}{\sim}$ $\stackrel{\sim}{\sim}$
	∞		－	∞	त	$\stackrel{m}{\square}$	∞		z	\bigcirc
	$\begin{aligned} & \stackrel{\infty}{N} \\ & \underset{\sim}{\lambda} \end{aligned}$		$\left(\begin{array}{l} n \\ \\ \infty \\ \underset{1}{1} \end{array}\right.$	$\begin{aligned} & \stackrel{\infty}{\lambda} \\ & \underset{\sim}{-} \end{aligned}$		$\begin{aligned} & \bar{\lambda} \\ & \stackrel{n}{c} \\ & \underset{\sigma}{\circ} \end{aligned} 0^{\circ}$	$\xrightarrow{\substack{\text { ® } \\ \vdots \\ \vdots}}$		$\begin{aligned} & \underset{\sim}{t} \\ & \underset{\sim}{*} \\ & \underset{\sim}{*} \end{aligned}$	in $\stackrel{n}{\hat{N}}$ $\stackrel{i}{1}$
	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \\ & \stackrel{y}{2} \end{aligned}$		$\begin{gathered} n \\ 0 \\ \underset{\sim}{c} \\ \mathrm{c} \end{gathered}$	$\begin{gathered} \bar{N} \\ \underset{子}{+} \end{gathered}$	$$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{\sim}{6} \\ & \underset{\sim}{2} \end{aligned}$		$\frac{i}{n}$	ल
シi	$\begin{aligned} & \text { ® } \\ & \text { ते } \\ & \text { ì } \end{aligned}$		$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & \infty \\ & -\infty \\ & -1 \end{aligned}\right.$	$\begin{gathered} \text { H } \\ \text { ה̀ } \\ \text { ה̀ } \end{gathered}$	$\begin{aligned} & \overline{\mathrm{c}} \\ & \stackrel{\rightharpoonup}{6} \\ & \text { in } \end{aligned}$				∞ $\stackrel{\circ}{\circ}$ $\stackrel{\leftrightarrow}{\infty}$ $\stackrel{\circ}{8}$	$\stackrel{\sim}{\circ}$
드릉	$\begin{aligned} & \text { ®o } \\ & \text { ©े } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \bar{c} \\ & \underset{y}{c} \\ & \underset{~}{n} \end{aligned}$	$\begin{aligned} & \text { ®} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \text { ®} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \text { ì } \end{aligned}$	$\begin{gathered} \text { さ } \\ \text { ה̀ } \\ \text { N } \end{gathered}$	$\begin{aligned} & \text { o } \\ & \text { Co } \\ & \text { Co } \end{aligned}$		$\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\circ}{\circ} \end{aligned}$	8 $\stackrel{8}{6}$ ci
$\begin{aligned} & \frac{0}{2} \\ & \frac{0}{b y} \\ & \frac{0}{4} \\ & \frac{0}{0} \\ & 0 \\ & \frac{0}{0} \\ & \frac{2}{4} \end{aligned}$				$\begin{aligned} & 0_{0}^{0} \\ & 0_{0}^{0} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & 0_{0}^{0} \\ & \mathrm{~S}_{0}^{0} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & 0_{0}^{0} \\ & 0_{0}^{0} \\ & \mathrm{~V} \end{aligned}$			논	

ANISOLE

Anisole has the formula $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$ and comprises the phenol molecule with the hydroxyl hydrogen atom replaced by the moiety $-\mathrm{O}-\mathrm{CH}_{3}$ to form an ether comprising aromatic and methyl functional groups as well as two types of $\mathrm{C}-\mathrm{O}$ functional groups, one for aryl carbon to oxygen and one for methyl carbon to oxygen. The aromatic $C=C$ and $C-H$ functional groups are equivalent to those of benzene given in the Aromatic and Heterocyclic Compounds section. The CH_{3} and methyl $\mathrm{C}-\mathrm{O}$ functional groups are the same as those of the corresponding ether groups given in the corresponding section.

The $C-O$ functional group comprising the bond between the ether oxygen and aromatic ring is equivalent to that of the methyl ether $C-O$ functional group except that $\Delta E_{\mathrm{H}_{2} M O}(A O / H O)$ in Eq. (15.51) and $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ in Eq. (15.61) are both -1.13379 eV (Eq. (14.247)). $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . \mathrm{AO}\right)$ is based on the energy match between the OCH_{3} group and the $C 2 s p^{3} \mathrm{HO}$ of the aryl group and is twice that of the aryl $C-H$ group that it replaces.

The symbols of the functional groups of anisole are given in Table 15.261. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of anisole are given in Tables 15.262, 15.263, and 15.264, respectively. The total energy of anisole given in Table 15.265 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.264 corresponding to functional-group composition of the molecule. The bond angle parameters of anisole determined using Eqs. (15.88-15.117) are given in Table 15.266. The color scale, translucent view of the charge-density of anisole comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.45.

Figure 15.45. Color scale, translucent view of the charge-density of anisole showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).

$0 \square 1 \mathrm{e} / \AA^{2}$

Table 15.261. The symbols of functional groups of anisole.

Functional Group	Group Symbol
CC (aromatic bond)	$\mathrm{C}=\mathrm{C}$
CH (aromatic)	CH (i)
Aryl $\mathrm{C}-\mathrm{O}$	$\mathrm{C}-\mathrm{O}$ (a)
Methyl $\mathrm{C}-\mathrm{O}$	$\mathrm{C}-\mathrm{O}(\mathrm{b})$
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$

Table 15.262. The geometrical bond parameters of anisole and experimental values [1].

Parameter	$C=C$ Group	$C H$ (i) Group	$C-O$ (a) Group	$C-O$ (b) Group	$C-\mathrm{H}_{(}\left(\mathrm{CH}_{3}\right)$ Group
$a\left(a_{0}\right)$	1.47348	1.60061	1.82682	1.80717	1.64920
$c^{\prime}\left(a_{0}\right)$	1.31468	1.03299	1.35160	1.34431	1.04856
Bond Length $2 c^{\prime}(A)$	1.39140	1.09327	1.43047	1.42276	1.10974
Exp. Bond Length (A)	1.397 avg. (phenol)	1.084 (phenol)			1.11 (avg.) (toluene)
$b, c\left(a_{0}\right)$	0.66540	1.22265	1.22900	1.20776	1.27295
e	0.89223	0.64537	0.73986	0.74388	0.63580

Table 15.263 . The MO to HO intercept geometrical bond parameters of anisole. E_{T} is $E_{T}\left(\right.$ atom-atom,msp $\left.{ }^{3} . A O\right)$.

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 2 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 3 \end{gathered}$	$\begin{gathered} E_{V} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV) (5.	$\begin{aligned} & r_{\text {mpata }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {mant }} \\ & \left(a_{\mathrm{c}}\right) \end{aligned}$	$\begin{gathered} E_{\text {Comomom }}\left(C 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
C-H ($\left.C_{b} H\right)$	C_{b}	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	74.42	105.58	38.84	1.24678	0.21379
$\mathrm{C-H}\left(\mathrm{OC}_{c} \mathrm{H}_{3}\right)$	$C_{\text {c }}$	-0.72457	0	0	0	-152.34026	0.91771	0.87495	-15.55033	-15.35946	78.85	101.15	42.40	1.21777	0.16921
$\left(C_{h}{ }^{3 c}\right)_{2} C_{a} O-C_{c} H_{3}$	$C_{\text {c }}$	-0.72457	0	0	0	-152.34026	0.91771	0.87495	-15.55033	-15.35946	95.98	84.02	46.10	1.25319	0.09112
$\left(C_{b}{ }^{3 c}\right)_{2} C_{a} O-C_{c} H_{3}$	o	-0.72457	-0.56690	0	0		1.00000	0.84418	-16.11722		93.38	86.62	44.25	1.29456	0.04975
$\left(C_{b}{ }^{\text {e }}\right)_{2} C_{a}-O C_{c} H_{3}$	C_{a}	-0.56690	-0.85035	-0.85035	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	87.00	93.00	40.30	1.39329	0.04170
$\left(C_{b}{ }^{36}\right)_{2} C_{a}-O C_{c} H_{3}$	o	-0.56690	-0.72457	0	0		1.00000	0.84418	-16.11722		91.59	88.41	43.36	1.32814	0.02346
$\left(C_{b}{ }^{3 e}\right)_{2} C_{a} O C_{c} H_{3}$	C_{a}	-0.56690	-0.85035	-0.85035	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	134.24	45.76	58.98	0.75935	0.55533
$\left({ }^{3 e}(H) C_{b}\right)_{2} C_{a} O O_{c} H_{3}$	C_{b}	-0.85035	${ }^{-0.85035}$	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	134.24	45.76	58.98	0.75935	0.55533

Table 15.264. The energy parameters (eV) of functional groups of anisole.
$\left.\begin{array}{|l|c|c|c|c|c|}\hline \text { Parameters } & \begin{array}{c}\text { Ce } \\ \text { Group }\end{array} & \begin{array}{c}C H(\mathrm{i}) \\ \text { Group }\end{array} & \begin{array}{c}C-O \text { (a) } \\ \text { Group }\end{array} & \begin{array}{c}C-O \text { (b) } \\ \text { Group }\end{array} \\ \hline f_{1} & 0.75 & 1 & & \\ \hline \text { Group }\end{array}\right]$
Table 15.265. The total bond energies of anisole calculated using the functional group composition and the energies of Table 15.264 compared to the experimental values [3].

Formula		Name	$C=C$	CH (i)	$\begin{gathered} C-O(\text { a } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-O \text { (b) } \\ \text { Group } \end{gathered}$	CH_{3} Group	$\begin{gathered} \text { Calculated } \\ \text { Total Bond Energy (eV) } \end{gathered}$	$\begin{gathered} \text { Experimental } \\ \text { Total Bond Energy (eV) } \end{gathered}$	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{O}$	Anisole		6	5	1	1	1	73.39006	73.355	-0.00047

Table 15.26 6. The bond angle parameters of anisole and experimental values [1]. E_{T} is E_{T} (atom-atom, $\mathrm{msp}^{3} . A O$).

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \\ \left(a_{0}\right) \end{gathered}$	$2 c^{\prime}$ Terminal Atoms $\left(a_{0}\right)$	$\begin{aligned} & E_{\text {Coumamole }} \text { Atom } \end{aligned}$		$\begin{aligned} & E_{\text {Coulombic }} \text { Atom } 2 \end{aligned}$	$\begin{gathered} \text { Atom 2 } \\ \text { Hybridization } \\ \text { Designation } \\ \text { (Table 15.3.A) } \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \mathrm{Cal} . \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\underset{\text { (aromatic) }}{\angle C C C}$	2.62936	2.62936	4.5585	-17.17218	38	-17.17218	38	0.79232	0.79232	1	1	1	0.79232	-1.85836				120.19	$\begin{gathered} 120[50-52] \\ \text { (benzene) } \end{gathered}$
$\begin{gathered} \angle C C H \\ \text { (aromatic) } \end{gathered}$																120.19		119.91	$\begin{gathered} 120[50-52] \\ \text { (benzene) } \end{gathered}$

PYRROLE

Pyrrole having the formula $\mathrm{C}_{4} \mathrm{H}_{5} N$ comprises the conjugated alkene 1,3-butadiene that forms a cyclic structure by terminalatom bonding to a $N H$ functional group. The two symmetrical carbon-to-nitrogen bonds comprise the $C-N-C$ functional group. The 1,3 -butadiene moiety comprises $C-C, C=C$, and $C H$ functional groups. The $C-C$ and $C=C$ groups are equivalent to the corresponding groups of 1,3-butadiene given in the Cyclic and Conjugated Alkenes section except that the energy terms corresponding to oscillation in the transition state match pyrrole. Furthermore, the conjugated double bonds have the same bonding as in 1,3-butadiene except that the hybridization terms c_{2} of the $C-C$ and $C=C$ groups and C_{2} and $C_{2 o}$ of the $C=C$ group in Eqs. (15.51) and (15.61) become that of benzene given by Eq. (15.162), $\left(C_{2}\left(\right.\right.$ benzene $\left.2 s p^{3} \mathrm{HO}\right)=c_{2}\left(\right.$ benzene $\left.C 2 s p^{3} \mathrm{HO}\right)=0.85252$), in the cyclic pyrrole MO which has aromatic character. The bonding in pyrrole, furan, and thiophene are the same except for the energy match to the corresponding heteroatoms. The hybridization permits double-bond character in the carbon-heteroatom bonding.

The $N H$ group is solved equivalently to that of a secondary amine as given in the corresponding section except that the hybridization term c_{2} is that of the amino group of aniline in order provide double-bond character to match the group to the other orbitals of the molecule. Similarly, the CH functional group is equivalent to that of 1,3-butadiene, except that $\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(\mathrm{AO} / \mathrm{HO})=-2.26758 \mathrm{eV}$ (Eq. (14.247)) in Eq. (15.51) in order to provide matching double-bond character.

The solution of the $C-N-C$ functional group comprises the hybridization of the $2 s$ and $2 p$ AOs of each C to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $C 2 s p^{3}$ HOs and the nitrogen atom to form a MO permits each participating hybridized orbital to decrease in radius and energy. Thus, the $C-N-C$-bond MO comprising a linear combination of two single bonds is solved in the same manner as a double bond with $n_{1}=2$ in Eqs. (15.51) and (15.61). The hybridization factor $c_{2}\left(\operatorname{arylC} 2 s p^{3} \mathrm{HO}\right.$ to $\left.N\right)=0.84665$ (Eq. (15.171)) matches the double-bond character of the $C 2 s p^{3}$ HOs to the N atom of the $N H$ group, and C_{2} and C_{20} in Eqs. (15.51) and (15.61) become that of benzene given by Eq. (15.162), $C_{2}\left(\right.$ benzene $\left.C 2 s p^{3} H O\right)=0.85252$. Furthermore, $\Delta E_{H_{2} M O}(A O / H O)$ in Eq. (15.51) and $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$ in Eq. (15.61) are both -0.92918 eV (Eq. (14.513)) per atom corresponding to -3.71673 eV in total. This is the maximum energy for a single bond and corresponds to methylene character as given in the Continuous-Chain Alkanes section.
The symbols of the functional groups of pyrrole are given in Table 15.267. The structure of pyrrole is shown in Figure 15.46B. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of pyrrole are given in Tables $15.268,15.269$, and 15.270 , respectively. The total energy of pyrrole given in Table 15.271 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.270 corresponding to functional-group composition of the molecule. The bond angle parameters of pyrrole determined using Eqs. (15.88-15.117) are given in Table 15.272. The color scale, translucent view of the charge-density of pyrrole comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.46A.

Figure 15.46 . (A) Color scale, translucent view of the charge-density of pyrrole showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (B) Chemical structure and atom designation of pyrrole.

Table 15.267. The symbols of functional groups of pyrrole.

Functional Group	Group Symbol
$\mathrm{C}_{a}=C_{b}$ double bond	$\mathrm{C}=\mathrm{C}$
$\mathrm{C}_{b}-\mathrm{C}_{b}$	$\mathrm{C}-\mathrm{C}$
$\mathrm{C}_{a}-\mathrm{N}-\mathrm{C}_{a}$	$\mathrm{C}-\mathrm{N}-\mathrm{C}$
NH group	NH
CH	CH

Table 15.268. The geometrical bond parameters of pyrrole and experimental values [1].

Parameter	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \\ & \text { Group } \end{aligned}$	$\underset{\text { Group }}{C-N-C}$	$\begin{gathered} N H \\ \text { Group } \end{gathered}$	$\underset{\text { Group }}{\mathrm{CH}}$
${ }^{a}\left(a_{0}\right)$	1.45103	1.77965	1.43222	1.24428	1.53380
$c^{\prime}\left(a_{0}\right)$	1.30463	1.33404	1.29614	0.94134	1.01120
Bond Length $2 c^{\prime}(A)$	1.38076	1.41188	1.37178	0.996270	1.07021
Exp. Bond Length (A)	$\begin{gathered} 1.382 \\ \text { (pyrrole) } \end{gathered}$	$\begin{gathered} 1.417 \\ \text { (pyrrole) } \end{gathered}$	$\begin{gathered} \hline 1.370 \\ \text { (pyrrole) } \end{gathered}$	$\begin{aligned} & 0.996 \\ & \text { (pyrrole) } \end{aligned}$	$\begin{aligned} & \text { (pyrrole) } \end{aligned}$
$b, c\left(a_{0}\right)$	0.63517	1.17792	0.60931	0.81370	1.15326
e	0.89910	0.74961	0.90499	0.75653	0.65928

Table 15.26 . The MO to HO intercept geometrical bond parameters of pyrrole. R_{l} is an alkyl group and $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is E_{T} (atom atom, $m s p^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{r_{V}} \\ (\mathrm{eV}) \\ \text { Bond 1 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\text { (eV) } \\ \text { Bond 2 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {maxal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {mad }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & E_{\text {Coumemomb }}\left(\text { (eV) }\left(2 s p^{3}\right)\right. \\ & \text { Final } \end{aligned}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \theta_{1} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$C-H\left(C_{a} H\right)$	C_{a}	-1.13380	-0.92918	0	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	83.35	96.65	43.94	1.10452	0.09331
$C-H\left(C_{b} H\right)$	C_{b}	-1.13380	-1.13380	0	0	-153.88328	0.91771	0.79597	-17.09334	-16.90248	82.21	97.79	43.14	1.11914	0.10794
$C_{a}=(H) C_{b}-C_{b}(H)=C_{a}$	C_{b}	-1.13380	-1.13380	0	0	-153.88328	0.91771	0.79597	-17.09334	-16.90248	91.57	88.43	42.49	1.31226	0.02177
$C_{a}=C_{b}(H)(H) C_{b}=C_{a}$	C_{b}	-1.13380	-1.13380	0	0	-153.88328	0.91771	0.79597	-17.09334	-16.90248	136.36	43.64	59.86	0.72857	0.57606
$H N C_{a}=C_{b}(H)$	C_{a}	-1.13380	-0.92918	0	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	136.75	43.25	60.35	0.71784	0.58678
$C_{a}(H) N-C_{a}=C_{b}(H)$	C_{a}	-1.13380	-0.92918	0	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	138.54	41.46	61.09	0.69238	0.60376
$C_{a}(H) N-C_{a}=C_{b}(H)$	N	-0.92918	-0.92918	0	0		0.93084	0.81549	-16.68411		138.92	41.08	61.59	0.68147	0.61467
$N-H(N H)$	N	-0.92918	-0.92918	0	0		0.93084	0.81549	-16.68411		117.34	62.66	62.90	0.56678	0.37456

Table 15.270. The energy parameters (eV) of functional groups of pyrrole.

Parameters	$C=C$ Group	$\begin{aligned} & C-C \\ & \text { Group } \end{aligned}$	$C-N-C$ Group	NH Group	CH Group
n_{1}	2	1	2	1	1
n_{2}	0	0	0	0	0
n_{3}	0	0	0	0	0
C_{1}	0.5	0.5	0.5	0.75	0.75
C_{2}	0.85252	1	0.85252	0.93613	1
c_{1}	1	1	1	0.75	1
c_{2}	0.85252	0.85252	0.84665	0.92171	0.91771
c_{3}	0	0	0	1	1
c_{4}	4	2	4	1	1
c_{5}	0	0	0	1	1
C_{10}	0.5	0.5	0.5	0.75	0.75
$C_{2 o}$	0.85252	1	0.85252	1	1
$V_{e}(\mathrm{eV})$	-104.37986	-33.80733	-106.58684	-39.48897	-39.09538
$V_{p}(e \mathrm{~V})$	20.85777	10.19898	20.99432	14.45367	13.45505
$T(e V)$	35.96751	9.49831	37.21047	15.86820	12.74462
$V_{m}(\mathrm{eV})$	-17.98376	-4.74915	-18.60523	-7.93410	-6.37231
$E($ Ао/но) (eV)	0	-14.63489	0	-14.53414	-14.63489
$\Delta E_{\mathrm{H}_{2} \mathrm{MO}}($ АО/ HO$)(\mathrm{eV})$	-2.26759	-1.85836	-3.71673	0	-2.26758
$E_{T}($ Ао/ $/$ \%) $)(\mathrm{eV})$	2.26759	-12.77653	3.71673	-14.53414	-12.36731
$E_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)(\mathrm{eV})$	-63.27075	-31.63572	-63.27056	-31.63534	-31.63533
$E_{l}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-2.26759	-3.71673	0	0
$E_{T}($ мо) (eV)	-65.53833	-33.90295	-66.98746	-31.63537	-31.63537
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	15.4421	12.3131	15.7474	48.7771	28.9084
$E_{K}(\mathrm{eV})$	10.16428	8.10471	10.36521	32.10594	19.02803
$\bar{E}_{D}(e V)$	-0.20668	-0.19095	-0.21333	-0.35462	-0.27301
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.17897 \\ {[6]} \\ \hline \end{gathered}$	$\begin{gathered} 0.14829 \\ {[48]} \\ \hline \end{gathered}$	$\begin{gathered} 0.11159 \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} 0.40696 \\ {[24]} \\ \hline \end{gathered}$	$\begin{gathered} 0.39427 \\ {[59]} \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.11720	-0.11680	-0.15754	-0.15115	-0.07587
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{T}($ Group $)(e V)$	-65.77272	-34.01976	-67.30254	-31.78651	-31.71124
$E_{\text {initial }}\left(c_{4}\right.$ AO/HO) (eV)	-14.63489	-14.63489	-14.63489	-14.53414	-14.63489
$E_{\text {initial }}\left(c_{5}\right.$ АО/но) (eV)	0	0	0	-13.59844	-13.59844
$E_{D}($ Group $)(\mathrm{eV})$	7.23317	4.74998	8.76298	3.51208	3.32988

Table 15.271. The total bond energies of pyrrole calculated using the functional group composition and the energies of Table 15.270 compared to the experimental
values [3].

FURAN

Furan having the formula $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}$ comprises the conjugated alkene 1,3-butadiene that forms a cyclic structure by terminal-atom bonding to an oxygen atom. The two symmetrical carbon-to-oxygen bonds comprise the $C-O-C$ functional group. The 1,3butadiene moiety comprises $C-C, C=C$, and $C H$ functional groups. The $C H, C-C$, and $C=C$ groups are equivalent to the corresponding groups of pyrrole given in the corresponding section.

The $C-O-C$ functional group of furan is solved in a similar manner as that of the $C-N-C$ group of pyrrole. The solution of the $C-O-C$ functional group comprises the hybridization of the $2 s$ and $2 p$ AOs of each C to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $C 2 s p^{3}$ HOs and the oxygen atom to form a MO permits each participating hybridized orbital to decrease in radius and energy. Thus, the $C-O-C$-bond MO comprising a linear combination of two single bonds is solved in the same manner as a double bond with $n_{1}=2$ in Eqs. (15.51) and (15.61). The hybridization factor $c_{2}\left(\operatorname{arylC} 2 s p^{3} \mathrm{HO}\right.$ to $\left.O\right)=0.79329$ (Eq. (15.169)) matches the double-bond character of the $C 2 s p^{3} \mathrm{HOs}$ to the O atom, and C_{2} and $C_{2 o}$ in Eqs. (15.51) and (15.61) become that of benzene given by Eq. (15.162), $C_{2}\left(\right.$ benzene $\left.C 2 s p^{3} \mathrm{HO}\right)=0.85252$. Furthermore, $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$ in Eq. (15.61) is -0.92918 eV (Eq. (14.513)) per atom corresponding to -3.71673 eV in total.

The symbols of the functional groups of furan are given in Table 15.273. The structure of furan is shown in Figure 15.47B. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of furan are given in Tables $15.274,15.275$, and 15.276 , respectively. The total energy of furan given in Table 15.277 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.276 corresponding to functional-group composition of the molecule. The bond angle parameters of furan determined using Eqs. (15.88-15.117) are given in Table 15.278. The color scale, translucent view of the charge-density of furan comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.47A.

Figure 15.47. (A) Color scale, translucent view of the charge-density of furan showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (B) Chemical structure and atom designation of furan.

B

$$
0 \square 1 \mathrm{e} / \mathrm{A}^{2}
$$

Table 15.273. The symbols of functional groups of furan.

Functional Group	Group Symbol
$C_{a}=C_{b}$ double bond	$C=C$
$C_{b}-C_{b}$	$C-C$
$C_{a}-O-C_{a}$	$C-O-C$
$C H$	$C H$

Table 15.274. The geometrical bond parameters of furan and experimental values [1].

Parameter	$C=C$ Group	$C-C$ Group	$C-O-C$ Group	$C H$ Group
$a\left(a_{0}\right)$	1.45103	1.77965	1.41546	1.53380
$c^{\prime}\left(a_{0}\right)$	1.30463	1.33404	1.28854	1.01120
Bond Length $2 c^{\prime}(A)$	1.38076	1.41188	1.36373	1.07021
Exp. Bond (A)	Length	1.361 (furan)	1.431 (furan)	1.362 (furan)
$b, c\left(a_{0}\right)$	0.63517	1.17792	0.58583	1.075
e	0.89910	0.74961	0.91033	1.153326

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 3 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV) (5.	$\begin{aligned} & r_{\text {mama }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {mal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Cuatemb }}\left(\mathrm{C} 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$C-H\left(C_{a} H\right)$	C_{a}	-1.13380	-0.92918	0	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	83.35	96.65	43.94	1.10452	0.09331
${ }^{\text {C-H }}$ ($\left(C_{b} H\right)$	C_{b}	-1.13380	-1.13380	0	0	-153.88328	0.91771	0.79597	-17.09334	-16.90248	82.21	97.79	43.14	1.11914	0.10794
$C_{a}=(H) C_{b}-C_{b}(H)=C_{a}$	C_{b}	-1.13380	-1.13380	0	0	-153.88328	0.91771	0.79597	-17.09334	-16.90248	91.57	88.43	42.49	1.31226	0.02177
$C_{a}=C_{b}(H)(H) C_{b}=C_{a}$	C_{b}	-1.13380	-1.13380	0	0	-153.88328	0.91771	0.79597	-17.09334	-16.90248	136.36	43.64	59.86	0.72857	0.57606
$O C_{a}=C_{b}(H)$	C_{a}	-1.13380	-0.92918	0	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	136.75	43.25	60.35	0.71784	0.58678
$C_{a} O-C_{a}=C_{b}(H)$	C_{a}	-1.13380	-0.92918	0	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	140.16	39.84	61.75	0.66992	0.61862
$C_{a} O-C_{a}=C_{b}(H)$	o	-0.92918	-0.92918	0	0		1.00000	0.81549	-16.68411		140.52	39.48	62.25	0.65906	0.62947

Table 15.276. The energy parameters (eV) of functional groups of furan.

Parameters	$C=C$ Group	$\begin{aligned} & C-C \\ & \text { Group } \end{aligned}$	$C-O-C$ Group	$\begin{gathered} C H \\ \text { Group } \end{gathered}$
n_{1}	2	1	2	1
n_{2}	0	0	0	0
n_{3}	0	0	0	0
C_{1}	0.5	0.5	0.5	0.75
C_{2}	0.85252	1	0.85252	1
c_{1}	1	1	1	1
c_{2}	0.85252	0.85252	0.79329	0.91771
c_{3}	0	0	0	1
c_{4}	4	2	4	1
c_{5}	0	0	0	1
C_{10}	0.5	0.5	0.5	0.75
C_{20}	0.85252	1	0.85252	1
$V_{e}(\mathrm{eV})$	-104.37986	-33.80733	-102.49036	-39.09538
$V_{p}(\mathrm{eV})$	20.85777	10.19898	21.11822	13.45505
$T(e V)$	35.96751	9.49831	36.20391	12.74462
$V_{m}(\mathrm{eV})$	-17.98376	-4.74915	-18.10196	-6.37231
E (Ао/но) (eV)	0	-14.63489	0	-14.63489
$\Delta E_{\mathrm{H}_{2} \text { мо }}($ Ао/но) (eV)	-2.26759	-1.85836	0	-2.26758
E_{T} (Ао/но) (eV)	2.26759	-12.77653	0	-12.36731
$E_{T}\left(\mathrm{H}_{2} M \mathrm{MO}\right)(\mathrm{eV})$	-63.27075	-31.63572	-63.27019	-31.63533
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}{ }^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-2.26759	-3.71673	0
$E_{T}(\mathrm{mo})(\mathrm{eV})$	-65.53833	-33.90295	-66.98746	-31.63537
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	15.4421	12.3131	58.0664	28.9084
$E_{K}(e V)$	10.16428	8.10471	38.22034	19.02803
$\bar{E}_{D}(e V)$	-0.20668	-0.19095	-0.40965	-0.27301
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.17897 \\ {[6]} \\ \hline \end{gathered}$	$\begin{gathered} 0.14829 \\ {[48]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12523 \\ {[60} \\ \hline \end{gathered}$	$\begin{gathered} 0.39427 \\ {[59]} \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.11720	-0.11680	-0.34704	-0.07587
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803
E_{T} (Group) (eV)	-65.77272	-34.01976	-67.68154	-31.71124
$E_{\text {initial }}\left(\mathrm{c}_{4}\right.$ Ао'Но) (eV)	-14.63489	-14.63489	-14.63489	-14.63489
$E_{\text {initial }}\left(c_{5}\right.$, АО $/$ Hо) $)(\mathrm{eV})$	0	0	0	-13.59844
$E_{D}($ Group $)(e V)$	7.23317	4.74998	9.14198	3.32988

Table 15.277. The total bond energies of furan calculated using the functional group composition and the energies of Table 15.276 compared to the experimental values [3].
Table 15.278. The bond angle parameters of furan and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is T (atom-atom,msp ${ }^{3} \cdot A O$).

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Terminal } \\ \text { Atoms } \\ \left(a_{0}\right) \end{gathered}$	$\begin{aligned} & E_{\text {Emamathe }} \\ & \text { Atom } \end{aligned}$	Atom 1Hybridization Designation (Table 15.3.B)	$\begin{aligned} & E_{\text {Colimatic }} \\ & \text { Atom } \end{aligned}$	Atom 2 Hybridization Designation (Table 15.3.B)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	c_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{0} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\angle H C_{a} O$	2.02241	2.57707	3.9328	-16.88873	20	-13.61806	o	0.80561	$\begin{gathered} 0.79329 \\ (15.169) \\ (15.169) \end{gathered}$	0.75	1	0.75	0.98470	0				117.02	$\begin{gathered} 115.9 \\ \text { (furan) } \end{gathered}$
$\angle C_{b} \mathrm{C}_{a} H_{a}$																117.02	110.69	132.29	
$\angle H_{b} C_{b} C_{b}$	2.02241	2.66807	4.2269	$\begin{gathered} -16.88873 \\ C_{b} \\ \hline \end{gathered}$	20	$\begin{array}{\|c} -15.95954 \\ C_{b} \\ \hline \end{array}$	6	0.80561	0.85252	0.75	1	0.75	1.05822	0				128.09	$\begin{aligned} & 128.0 \\ & \text { (furan) } \end{aligned}$
$\angle H_{a} C_{a} C_{b}$	2.02241	2.60925	4.2269	$\begin{gathered} -16.88873 \\ C_{a} \\ \hline \end{gathered}$	20	$\begin{gathered} -15.95954 \\ C_{b} \\ \hline \end{gathered}$	6	0.80561	0.85252	0.75	1	0.75	1.05822	0				131.32	
$\angle H_{b} C_{b} C_{a}$	2.02241	2.60925	4.1312	$\begin{gathered} -17.09334 \\ C_{b} \end{gathered}$	24	$\begin{array}{\|c} \hline-16.47951 \\ C_{s} \end{array}$	14	0.79597	0.82562	0.75	1	0.75	1.03725	0				125.76	
$\angle C_{b} C_{b} H_{b}$																125.76	107.01	127.23	$\begin{aligned} & 128.0 \\ & \text { (furan) } \end{aligned}$
$\angle C_{b} C_{a} O$	2.60925	2.57707	4.2661	$\stackrel{-17.09334}{C_{b}}$	24	-13.61806	o	0.79597	$\begin{gathered} 0.79329 \\ \text { Eq. } \\ (15.169) \end{gathered}$	1	1	1	0.79463	-1.65376				110.69	$\begin{aligned} & 110.7 \\ & \text { (furan) } \end{aligned}$
$\angle C_{a} O C_{a}$	2.57707	2.57707	4.1231	-18.22713	41	-18.22713	41	0.74646	0.74646	1	1	1	0.74646	-1.85836				106.25	$\begin{aligned} & 106.6 \\ & \text { (furan) } \end{aligned}$
$\angle C_{a} C_{b} C_{b}$	2.60925	2.66807	4.2426	-17.81791	35	-18.02252	40	0.76360	0.75493	1	1	1	0.75927	-1.85836				107.01	$\begin{aligned} & 106.1 \\ & \text { (furan) } \end{aligned}$

THIOPHENE

Thiophene having the formula $\mathrm{C}_{4} \mathrm{H}_{4} S$ comprises the conjugated alkene 1,3-butadiene that forms a cyclic structure by terminalatom bonding to an oxygen atom. The two symmetrical carbon-to-sulfur bonds comprise the $C-S-C$ functional group. The 1,3-butadiene moiety comprises $C-C, C=C$, and $C H$ functional groups. The $C H, C-C$, and $C=C$ groups are equivalent to the corresponding groups of pyrrole and furan given in the corresponding sections.

The $C-S-C$ functional group of thiophene is solved in a similar manner as that of the $C-N-C$ group of pyrrole and the $C-O-C$ group of furan. The solution of the $C-S-C$ functional group comprises the hybridization of the $2 s$ and $2 p$ AOs of each C to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between two $C 2 s p^{3}$ HOs and the sulfur atom to form a MO permits each participating hybridized orbital to decrease in radius and energy. Thus, the $C-S-C$-bond MO comprising a linear combination of two single bonds is solved in the same manner as a double bond with $n_{1}=2$ in Eqs. (15.51) and (15.61).

In thiophene, the energy of sulfur is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264). Thus, c_{2} in Eq. (15.61) is $c_{2}\left(\right.$ benzene $\left.C 2 s p^{3} \mathrm{HO}\right)=0.85252$ to match the double-bond character of the $C 2 s p^{3}$ HOs, and the energy matching condition is further determined by the C_{2} parameter. Using the energy of $S, E(S)=-10.36001 \mathrm{eV}$ in Eq. (15.77) and the $C 2 s p^{3} \mathrm{HO}$ energy of $E\left(C, 2 s p^{3}\right)=-15.76868 \mathrm{eV}$ (Eq. (15.18)) corresponding to $s=2$ in Eqs. (15.18-15.20), the hybridization factor C_{2} of Eq. (15.61) for the $C-S-C$-bond MO is:

$$
\begin{equation*}
C_{2}\left(S 3 p \text { to aryl-type } C 2 s p^{3} H O\right)=\frac{E(S, 3 p)}{E\left(C, 2 s p^{3}\right)}=\frac{-10.36001 \mathrm{eV}}{-15.76868 \mathrm{eV}}=0.65700 \tag{15.172}
\end{equation*}
$$

$C_{1 o}$ is also given by Eq. (15.172). Furthermore, $\Delta E_{H_{2} M O}(A O / H O)$ of the $C-S-C$-bond MO in Eq. (15.51) and $E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)$ in Eq. (15.61) are both -0.72457 eV per atom corresponding to -2.89830 eV in total. The energy contribution equivalent to that of a methyl group (Eq. (14.151)) and that of the $C-S$-bond MO of thiols given in the corresponding section matches the energy of the sulfur atom to the $C 2 s p^{3} \mathrm{HOs}$.

The symbols of the functional groups of thiophene are given in Table 15.279. The structure of thiophene is shown in Figure 15.48B. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of thiophene are given in Tables 15.280, 15.281, and 15.282, respectively. The total energy of thiophene given in Table 15.283 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.282 corresponding to functional-group composition of the molecule. The bond angle parameters of thiophene determined using Eqs. (15.88-15.117) are given in Table 15.284. The color scale, translucent view of the charge-density of thiophene comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.48A.

Figure 15.48. (A) Color scale, translucent view of the charge-density of thiophene showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (B) Chemical structure and atom designation of thiophene.

B

0

Table 15.279. The symbols of functional groups of thiophene.

Functional Group	Group Symbol
$C_{a}=C_{b}$ double bond	$C=C$
$C_{b}-C_{b}$	$C-C$
$C_{a}-S-C_{a}$	$C-S-C$
$C H$	$C H$

Table 15.280. The geometrical bond parameters of thiophene and experimental values [1].

Parameter	$C=C$ Group	$C-C$ Group	$C-S-C$ Group	$C H$ Group
$a\left(a_{0}\right)$	1.45103	1.77965	1.74058	1.53380
$c^{\prime}\left(a_{0}\right)$	1.30463	1.33404	1.62766	1.01120
Bond Length $2 c^{\prime}(\AA)$	1.38076	1.41188	1.72264	1.07021
Exp. Bond Length (A)	1.370 (thiophene)	1.423 (thiophene)	1.714 (thiophene)	1.078 (thiophene)
$b, c\left(a_{0}\right)$	0.63517	1.17792	0.61671	1.15326
e	0.89910	0.74961	0.93513	0.65928

Table 15.281. The MO to HO intercept geometrical bond parameters of thiophene. R_{l} is an alkyl group and $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}($ atom -

Bond	Atom	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \\ \text { Bond 1 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 2 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\text { (eV) } \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{V} \\ (\text { (eV) } \\ \text { Bond 4 } \end{gathered}$	Final Total Energy $C 2 s p^{p}$ (eV) -5.51	$\begin{aligned} & r_{\text {miad }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {panal }} \\ & \left(a_{0}\right) \end{aligned}$		$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
${ }^{\text {c }}$ - $H\left(C_{a} H\right)$	C_{a}	-1.13380	-0.72457	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49326	84.49	95.51	44.74	1.08953	0.07833
$C-H\left(C_{b} H\right)$	C_{b}	-1.13380	-1.13380	0	0	-153.88328	0.91771	0.79597	-17.09334	-16.90248	82.21	97.79	43.14	1.11914	0.10794
$C_{a}=(H) C_{b}-C_{b}(H)=C_{a}$	C_{b}	-1.13380	-1.13380	0	0	-153.88328	0.91771	0.79597	-17.09334	-16.90248	91.57	88.43	42.49	1.31226	0.02177
$C_{a}=C_{b}(H)(H) C_{b}=C_{a}$	C_{b}	-1.13380	-1.13380	0	0	-153.88328	0.91771	0.79597	-17.09334	-16.90248	136.36	43.64	59.86	0.72857	0.57606
$S C_{a}=C_{b}(H)$	C_{a}	-1.13380	-0.72457	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49326	137.14	42.86	60.85	0.70685	0.59777
$C_{a} S-C_{a}=C_{b}(H)$	C_{a}	-1.13380	-0.72457	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49326	141.52	38.48	55.36	0.98926	0.63840
$C_{a} S-C_{a}=C_{b}(H)$	s	-0.72457	-0.72457	0	0		1.3201	0.83600	-16.27490		142.17	37.83	56.24	0.96733	0.66033

Table 15.282. The energy parameters $(e V)$ of functional groups of thiophene.

Parameters	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-S-C \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$
n_{1}	2	1	2	1
n_{2}	0	0	0	0
n_{3}	0	0	0	0
C_{1}	0.5	0.5	0.5	0.75
C_{2}	0.85252	1	0.65700	1
c_{1}	1	1	1	1
c_{2}	0.85252	0.85252	0.85252	0.91771
c_{3}	0	0	0	1
c_{4}	4	2	4	1
c_{5}	0	0	0	1
C_{10}	0.5	0.5	0.5	0.75
C_{2} o	0.85252	1	0.65700	1
$V_{e}(\mathrm{eV})$	-104.37986	-33.80733	-96.78916	-39.09538
$V_{p}(\mathrm{eV})$	20.85777	10.19898	16.71820	13.45505
$T(e V)$	35.96751	9.49831	27.80371	12.74462
$V_{m}(\mathrm{eV})$	-17.98376	-4.74915	-13.90186	-6.37231
E (Аогно) (eV)	0	-14.63489	0	-14.63489
$\Delta E_{\mathrm{H}_{2} \text { MO }}($ Ао'Но) (eV)	-2.26759	-1.85836	-2.89830	-2.26758
$E_{T}(\mathrm{AO/HO})(\mathrm{eV})$	2.26759	-12.77653	2.89830	-12.36731
$E_{T}\left(H_{2} M O\right)(e V)$	-63.27075	-31.63572	-63.27080	-31.63533
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-2.26759	-2.89830	0
$E_{T}(\mathrm{mo})(\mathrm{eV})$	-65.53833	-33.90295	-66.16903	-31.63537
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	15.4421	12.3131	10.3184	28.9084
$E_{K}(\mathrm{eV})$	10.16428	8.10471	6.79173	19.02803
$\bar{E}_{D}(\mathrm{eV})$	-0.20668	-0.19095	-0.17058	-0.27301
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.17897 \\ {[6]} \\ \hline \end{gathered}$	$\begin{gathered} 0.14829 \\ {[48]} \\ \hline \end{gathered}$	$\begin{gathered} 0.08146 \\ {[41]} \end{gathered}$	$\begin{gathered} 0.39427 \\ {[59]} \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.11720	-0.11680	-0.12985	-0.07587
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803
E_{T} (Group) (eV)	-65.77272	-34.01976	-66.42873	-31.71124
$E_{\text {initial }}\left(\mathrm{c}_{4}\right.$ Ао। но $)(\mathrm{eV})$	-14.63489	-14.63489	-14.63489	-14.63489
$E_{\text {initial }}\left(c_{5}\right.$, Ао/ (\%) $)(\mathrm{eV})$	0	0	0	-13.59844
$E_{D}($ Group $)(\mathrm{eV})$	7.23317	4.74998	7.88917	3.32988

Table 15.28 3. The total bond energies of thiophene calculated using the functional group composition and the energies of Table 15.282 compared to the experimental values [3].

IMIDAZOLE

Imidazole having the formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}$ comprises a conjugated system that is equivalent to pyrrole with one of the conjugated CH groups replaced by a nitrogen atom. The CH, NH, and $\mathrm{C}=\mathrm{C}$ groups are equivalent to the corresponding groups of pyrrole, furan, and thiophene where present. In addition, the nitrogen substitution creates a $C-N=C$ moiety comprising $C-N$ and $N=C$ functional groups. The $C-N$ bonding is the same as that of a tertiary amine except that the hybridization term c_{2} in Eqs. (15.51) and (15.61) is that of the amino group of aniline, $c_{2}\left(\operatorname{arylC} 2 s p^{3} \mathrm{HO}\right.$ to $\left.N\right)=0.84665$ (Eq. (15.171)). The hybridization factor provides double-bond character to match the group to the other orbitals of the molecule. $\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(\mathrm{AO} / \mathrm{HO})$ in Eq. (15.51) and $E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . A O\right)$ in Eq. (15.61) are both -0.92918 eV (Eq. (14.513)). This matches the energy of the group to that of the contiguous $N=C$ group wherein $\Delta E_{H_{2} M O}(A O / H O)$ in Eq. (15.51) and $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$ in Eq. (15.61) are both -0.92918 eV (Eq. (14.513)) per atom of the double bond with aromatic character as in the case of the prior heterocyclic compounds. As in the prior cases of pyrrole, furan, and thiophene, $n_{1}=2$ and C_{2} and $C_{2 o}$ are the same as $C_{2}\left(\right.$ benzene $\left.C 2 s p^{3} H O\right)=0.85252$ (Eq. (15.162)) in Eqs. (15.51) and (15.61). To match the energy of the nitrogen to the $C 2 s p^{3}$ HO, c_{2} of the $N=C$-bond MO is also given by Eq. (15.171). These parameters also provide an energy match to the $C-N-C$ group.

As in the case of pyrrole, the $C-N-C$-bond MO comprising a linear combination of two single bonds is solved in the same manner as a double bond with $n_{1}=2$ in Eqs. (15.51) and (15.61). The hybridization factor $c_{2}\left(\operatorname{arylC2sp}{ }^{3} \mathrm{HO}\right.$ to $\left.N\right)=0.84665$ (Eq. (15.171)) matches the double-bond character of the $C 2 s p^{3} \mathrm{HOs}$ to the N atom of the NH group, and C_{2} and $C_{2 o}$ in Eqs. (15.51) and (15.61) become that of benzene given by Eq. (15.162), $C_{2}\left(\right.$ benzene $\left.C 2 s p^{3} H O\right)=0.85252$. Furthermore, $\Delta E_{H_{2} M O}(A O / H O)$ in Eq. (15.51) and $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$ in Eq. (15.61) are both -0.92918 eV (Eq. (14.513)) per atom corresponding to -3.71673 eV in total.

The symbols of the functional groups of imidazole are given in Table 15.285. The structure of imidazole is shown in Figure 15.49B. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of imidazole are given in Tables 15.286, 15.287, and 15.288, respectively. The total energy of imidazole given in Table 15.289 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.288 corresponding to functional-group composition of the molecule. The bond angle parameters of imidazole determined using Eqs. (15.88-15.117) are given in Table 15.290 . The color scale, translucent view of the charge-density of imidazole, comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.49A.

Figure 15.49. (A) Color scale, translucent view of the charge-density of imidazole showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (B) Chemical structure and atom designation of imidizole.

B

0

Table 15.285. The symbols of functional groups of imidazole.

Functional Group	Group Symbol
$C_{a}=C_{b}$ double bond	$C=C$
$N_{b}=C_{c}$ double bond	$N=C$
$C_{b}-N_{b}$	$C-N$
$C_{a}-N_{a}-C_{c}$	$C-N-C$
$N_{a} H$ group	$N H$
$C H$	$C H$

Table 15.286. The geometrical bond parameters of imidazole and experimental values [1].

Parameter	$C=C$ Group	$N=C$ Group	$C-N$ Group	$C-N-C$ Group	$N H$ Group	$C H$ Group
$a\left(a_{0}\right)$	1.45103	1.44926	1.82450	1.43222	1.24428	1.53380
$c^{\prime}\left(a_{0}\right)$	1.30463	1.30383	1.35074	1.29614	0.94134	1.01120
Bond Length $2 c^{\prime}(A)$	1.38076	1.37991	1.42956	1.37178	0.996270	1.07021
Exp. Bond Length (A)	1.382 $($ pyrrole)			1.370 (pyrrole)	0.996 (pyrrole)	1.076 (pyrrole)
$b, c\left(a_{0}\right)$	0.63517	0.63276	1.22650	0.60931	0.81370	1.15326
e	0.89910	0.89965	0.74033	0.90499	0.75653	0.65928

Table 15.287. The MO to HO intercept geometrical bond parameters of imidazole. R_{l} is an alkyl group and $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}($ atom atom, $m s p^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{V} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{F_{r}} \\ (\text { (eV) } \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Total Energy C2sp ${ }^{3}$ (eV)	$\begin{aligned} & r_{\text {manal }}\left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {malal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coutamemb }}\left(C 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{gathered} \theta_{1} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
C-H ($C_{a}{ }^{\text {H }}$)	C_{a}	-1.13380	-0.92918	0	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	83.35	96.65	43.94	1.10452	0.09331
C-H ($C_{b} H$)	C_{b}	-1.13380	-0.46459	0	0	-153.21408	0.91771	0.82840	-16.42414	-16.23327	85.93	94.07	45.77	1.06995	0.05875
C-H ($\left.C_{c} H\right)$	C_{c}	-0.92918	-0.92918	0	0	-153.47405	0.91771	0.81549	-16.68411	-16.49325	84.49	95.51	44.47	1.08953	0.07833
$C_{a}=(H) C_{b}-N_{b}=C_{c}$	C_{b}	-0.46459	-1.13380	0	0	-153.21408	0.91771	0.82840	-16.42414	-16.23327	90.36	89.64	42.49	1.34547	0.00527
$C_{a}=(H) C_{b}-N_{b}=C_{c}$	N_{b}	-0.46459	-0.92918	0	0		0.93084	0.83885	-16.21953		91.32	88.68	43.14	1.33135	0.01939
$C_{a}=C_{b}(H) N_{b}=C_{c}$	C_{b}	-1.13380	-0.46459	0	0	-153.21408	0.91771	0.82840	-16.42414	-16.23327	137.64	42.36	61.49	0.69250	0.61213
$\mathrm{CN}_{a} C_{a}=C_{b}(H)$	C_{a}	-1.13380	-0.92918	0	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	136.75	43.25	60.35	0.71784	0.58678
$C_{c}(H) N_{a}-C_{a}=C_{b}(H)$	C_{a}	-1.13380	-0.92918	0	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	138.54	41.46	61.09	0.69238	0.60376
$C_{c}(H) N_{a}-C_{a}=C_{b}(H)$	N_{a}	-0.92918	-0.92918	0	0		0.93084	0.81549	-16.68411		138.92	41.08	61.59	0.68147	0.61467
$N-H\left(N_{a} H\right)$	N_{a}	-0.92918	-0.92918	0	0		0.93084	0.81549	-16.68411		117.34	62.66	62.90	0.56678	0.37456
(H) $C_{c}-N_{a} C_{a}=C_{b}(H)$	C_{c}	-0.92918	-0.92918	0	0	-153.47405	0.91771	0.81549	-16.68411	-16.49325	138.92	41.08	61.59	0.68147	0.61467
$C_{a}=(H) C_{b} N_{b}=C_{c}$	C_{c}	-0.92918	-0.92918	0	0	-153.47405	0.91771	0.81549	-16.68411	-16.49325	137.31	42.69	60.92	0.70446	0.59938
$C_{a}=(H) C_{b} N_{b}=C_{c}$	N_{b}	-0.92918	-0.46459	0	0		0.93084	0.83885	-16.21953		138.20	41.80	62.08	0.67849	0.62534

Table 15.288. The energy parameters (eV) of functional groups of imidazole.

Table 15.28 . The total bond energies of imidazole calculated using the functional group composition and the energies of Table 15.288 compared to the experimental values [3].
Table 15.290. The bond angle parameters of imidazole and experimental values [62]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T}

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Terminal } \\ \text { Atoms } \\ \left(a_{0}\right) \end{gathered}$	$\begin{aligned} & E_{\text {Coutombic }}^{\text {c }} \text { Atom } 1 \end{aligned}$		$\begin{aligned} & E_{\text {Cenlombic } C} \\ & \text { Atom 2 } \end{aligned}$		$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom 2 } \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{E_{r}} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\angle H C_{a} N_{a}$	2.02241	2.59228	4.0166	-14.82575	1	-14.53414	N	0.91771	$\begin{gathered} 0.92171 \\ \text { Eq. } \\ (15.170)) \end{gathered}$	0.75	1	0.75	1.00435	0				120.51	$\begin{gathered} 117.4 \\ \text { (imidazole) } \end{gathered}$
$\angle C_{b} C_{a} H_{a}$																120.51	106.63	132.86	$\begin{array}{\|c\|} \hline 136.3 \\ \text { (imidazole) } \end{array}$
$\angle H N_{a} C_{a}$	1.88268	2.59228	3.8987	-14.53414	N	-16.49325	$\begin{gathered} 25 \\ \text { (Table 15.3A) } \end{gathered}$	$\begin{array}{\|c\|} \hline 0.84665 \\ (\mathrm{Eq.} \\ (15.170)) \end{array}$	$\begin{gathered} 0.82493 \\ (159.73) \\ (\text { (Eq) } \end{gathered}$	0.75	1	0.75	0.97435	0				120.37	$\begin{gathered} 122.9 \\ \text { (imidazole) } \end{gathered}$
$\angle H_{a} C_{a} C_{b}$	2.02241	2.60925	4.2895	$\begin{array}{\|c} \hline-16.88873 \\ \hline C_{a} \\ \hline \end{array}$	20	$\begin{gathered} -15.75493 \\ C_{b} \\ \hline \end{gathered}$	4	0.80561	0.86359	0.75	1	0.75	1.07196	0				135.30	$\begin{gathered} 136.3 \\ \text { (imidazole) } \\ \hline \end{gathered}$
$\angle H_{b} C_{b} C_{a}$	2.02241	2.60925	4.2740	$\begin{array}{\|c} \hline-15.95954 \\ C_{b} \\ \hline \end{array}$	6	$\begin{array}{\|c} -14.82575 \\ C_{a} \\ \hline \end{array}$	1	0.85252	0.91771	0.75	1	0.75	1.07647	0				134.28	$\begin{array}{\|c\|} \hline 133.2 \\ \text { (imidazole) } \\ \hline \end{array}$
$\angle N_{b} C_{b} H_{b}$																134.28	111.18	114.54	$\begin{array}{\|c\|} \hline 115.8 \\ \text { (imidazole) } \end{array}$
$\angle H_{c} C_{c} N_{a}$	2.02241	2.59228	3.8471	$\begin{array}{\|c} -15.95954 \\ C_{c} \end{array}$	6	-14.53414	N	0.87495	$\begin{array}{\|c\|c} \hline 0.84665 \\ (\text { Eq. } \\ (15.171)) \end{array}$	0.75	1	0.75	0.96765					112.37	$\begin{gathered} 110.4 \\ \text { (imidazole) } \end{gathered}$
$\angle N_{b} C_{c} H_{c}$																112.37	109.83	137.80	$\begin{array}{\|c\|} \hline 138.2 \\ \text { (imidazole) } \end{array}$
$\angle H N_{a} C_{\text {c }}$	1.88268	2.59228	4.0661	-14.53414	N	-15.76868	6	$\begin{array}{\|c\|} \hline 0.84665 \\ (\text { Eq. } \\ (15.170)) \\ \hline \end{array}$	$\begin{aligned} & 0.86284 \\ & (\text { (Eq. } \\ & (15.73)) \end{aligned}$	0.75	1	0.75	1.01912	0				129.96	$\begin{gathered} 129.1 \\ \text { (imidazole) } \end{gathered}$
$\angle N_{a} C_{a} C_{b}$	2.59228	2.60925	4.1952	-14.53414	N	$\begin{array}{\|c} -17.09334 \\ C_{b} \\ \hline \end{array}$	24	$\begin{aligned} & 0.84665 \\ & (\text { (Eq. } \\ & (15.171)) \end{aligned}$	0.79597	1	1	1	0.82131	-1.44915				107.52	$\begin{gathered} 106.3 \\ \text { (imidazole) } \end{gathered}$
$\angle C_{a} N_{a} C_{c}$	2.59228	2.59228	4.2426	-17.81791	35	-17.81791	35	0.76360	0.76360	1	1	1	0.76360	-1.85836				109.83	$\begin{array}{c\|} 107.2 \\ \text { (imidazole) } \end{array}$
$\angle C_{c} N_{b} C_{b}$	2.60766	2.70148	4.3128	-17.61330	32	-17.61330	32	0.77247	0.77247	1	1	1	0.77247	-1.85836				108.64	$\begin{gathered} 105.4 \\ \text { (imidazole) } \end{gathered}$
$\angle C_{a} C_{b} N_{b}$	2.60925	2.70148	4.3818	-15.95955	6	-14.53414	N	0.85252	$\begin{array}{\|c\|} \hline 0.84665 \\ (\text { (EG. } \\ (15.171)) \end{array}$	1	1	1	0.84958	-1.85836				111.18	109.8 (imidazole)
$\angle N_{a} C_{c} N_{b}$	2.59228	2.60766	4.2544	-16.68411	17	-16.21953	9	0.81549	0.83885	1	1	1	0.82717	-1.44915				109.80	111.3 (imidazole)

PYRIDINE

Pyridine has the formula $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ and comprises the benzene molecule with one CH group replaced by a nitrogen atom which gives rise to a $C \stackrel{3 e}{=} N$ functional group. The aromatic $C \stackrel{3 e}{=} C$ and $C-H$ functional groups are equivalent to those of benzene given in the Aromatic and Heterocyclic Compounds section with the aromaticity maintained by the electrons from nitrogen in the $C=N$ group, which is also aromatic.

As in the case of the aromatic carbons of benzene, each pyridine $C 2 s p^{3} \mathrm{HO}$ initially has four unpaired electrons. Each $C-H$ bond has two paired electrons with one donated from the $H \mathrm{AO}$ and the other from the $C 2 s p^{3} \mathrm{HO}$. In pyridine the three $N 2 p$ electrons are donated to the aromatic bond. Thus, as in the case of the $C \stackrel{3 e}{=} C$ group, each $C=N$ bond comprises a linear combination of a factor of 0.75 of four paired electrons (three electrons) from the $C 2 s p^{3} \mathrm{HO}$ and the $N 2 p$ AO of the participating carbon and nitrogen atoms, respectively.

The solution of the $C \stackrel{3 e}{=} N$ functional group comprises the hybridization of the $2 s$ and $2 p$ AOs of each C to form a single $2 s p^{3}$ shell as an energy minimum, and the sharing of electrons between the $C 2 s p^{3} \mathrm{HO}$ and the nitrogen atom to form a MO permits each participating hybridized orbital to decrease in radius and energy. The $C=N$-bond MO is solved as a double bond with $n_{1}=2$ in Eqs. (15.51) and (15.166). The hybridization factor $c_{2}\left(C 2 s p^{3} H O\right.$ to $\left.N\right)=0.91140$ (Eq. (15.135)) matches the double-bond character of the $C 2 s p^{3} \mathrm{HO}$ to the N atom, and C_{2} and $C_{2 o}$ in Eqs. (15.51) and (15.166) are also given by Eq. (15.135) in order to match the nitrogen to the aromatic $C 2 s p^{3} \mathrm{HO}$ such that $\Delta E_{\mathrm{H}_{2} M O}(\mathrm{AO} / \mathrm{HO})=0$ in Eq. (15.51). Furthermore, $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C \stackrel{3 e}{=} N$-bond MO in Eq. (15.166) due to the charge donation from the C and N atoms to the MO is -1.44915 eV corresponding to an energy contribution from each atom that is equivalent to that of an independent methyl group, -0.72457 eV (Eq. (14.151)). The contributions are also the same as those for a primary amine group as given in the corresponding section. As in the case of benzene, the aromatic $E_{T}($ Group $)$ and E_{D} (Group) are given by Eqs. (15.165) and (15.166), respectively, with $f_{1}=0.75$. The breakage of the $C N C$ bonds results in three unpaired electrons on the N atom. Thus, the corresponding $E_{\text {mag }}$ given by Eq. (15.69) was normalized for the two bonds per atom and for $f_{1}=0.75$ and was subtracted from the total energy of the $C \stackrel{3 e}{=} N$-bond MO in Eq. (15.166). The pyridine vibrational energies are similar to those of benzene [63]; thus, the value for benzene was used.

The symbols of the functional groups of pyridine are given in Table 15.291. The corresponding designation of the structure is shown in Figure 15.50B. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of pyridine are given in Tables 15.292, 15.293, and 15.294, respectively. The total energy of pyridine given in Table 15.295 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.294 corresponding to functional-group composition of the molecule. The bond angle parameters of pyridine determined using Eqs. (15.88-15.117) are given in Table 15.296. The color scale, translucent view of the charge-density of pyridine comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.50A.

Figure 15.50 . (A) Color scale, translucent view of the charge-density of pyridine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (B) Chemical structure and atom designation of pyridine.

B

$$
0 \square 1 \mathrm{e} / \AA^{2}
$$

Table 15.291. The symbols of functional groups of pyridine.

Functional Group	Group Symbol
$C C$ (aromatic bond)	$C=C$
$C H$ (aromatic)	$C H$
$C_{a}^{3 e}=N$	$C \stackrel{3 e}{=} N$

Table 15.292. The geometrical bond parameters of pyridine and experimental values [1].

Parameter	$C \stackrel{3 e}{=} C$ Group	$C H$ Group	$C=3$ Group
$a\left(a_{0}\right)$	1.47348	1.60061	1.47169
$c^{\prime}\left(a_{0}\right)$	1.31468	1.03299	1.27073
Bond Length $2 c^{\prime}(A)$	1.39140	1.09327	1.34489
Exp. Bond Length (A)	1.394 (pyridine)	0.66540	1.084
(pyridine)	1.22265	1.340	
(pyridine)			

Table 15.293. The MO to HO intercept geometrical bond parameters of pyridine. E_{T} is E_{T} (atom-atom,msp ${ }^{3} . A O$).

Bond	Atom		$\begin{gathered} E_{T} \\ \text { (eV) } \\ \text { Bond 2 } \end{gathered}$		$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {mintalal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {final }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coulombl }}\left(C 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
C-H ($\mathrm{C}_{a} H$)	C_{a}	-0.54343	-0.85035	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	76.35	103.65	40.11	1.22423	0.19124
$C-H\left(C_{b} H\right)$	C_{b}	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	74.42	105.58	38.84	1.24678	0.21379
$(H) C_{b}(H) C_{a}{ }^{3 c}=N C_{a}$	C_{a}	-0.85035	-0.54343	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	128.54	51.46	58.65	0.76572	0.50501
$(H) C_{b}(H) C_{a}=N C_{a}$	N	-0.54343	-0.54343	0	0		0.93084	${ }^{0.85503}$	-15.91261		130.61	49.39	60.97	0.71418	0.55656
(H) $C_{b}{ }^{3 e}=C_{a}(H) N$	C_{a}	-0.54343	-0.85035	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	134.85	45.15	59.72	0.74304	0.57165
$\begin{aligned} & (H) C_{b} \stackrel{3 e}{=} C_{a}(H) N \\ & (H) C_{b}=C_{b}(H) C_{a}(H) \end{aligned}$	C_{b}	-0.85035	${ }^{-0.85035}$	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	134.24	45.76	58.98	0.75935	0.55533

Table 15.294. The energy parameters (eV) of functional groups of pyridine.

Parameters	$\begin{aligned} & C=\frac{3 e}{C=} \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C_{=}^{3 e} N \\ & \text { Group } \end{aligned}$
f_{1}	0.75	1	0.75
n_{1}	2	1	2
n_{2}	0	0	0
n_{3}	0	0	0
C_{1}	0.5	0.75	0.5
C_{2}	0.85252	1	0.91140
c_{1}	1	1	1
c_{2}	0.85252	0.91771	0.91140
c_{3}	0	1	0
c_{4}	3	1	3
c_{5}	0	1	0
$C_{1 o}$	0.5	0.75	0.5
C_{20}	0.85252	1	0.91140
$V_{e}(\mathrm{eV})$	-101.12679	-37.10024	-102.01431
$V_{p}(e \mathrm{~V})$	20.69825	13.17125	21.41410
$T(\mathrm{eV})$	34.31559	11.58941	34.65890
$V_{m}(e \mathrm{~V})$	-17.15779	-5.79470	-17.32945
E (Ао/но) (eV)	0	-14.63489	0
$\Delta E_{\mathrm{H}_{2} \text { MO }}($ Ао' $/ \mathrm{HO}$) (eV)	0	-1.13379	0
$E_{l}($ Ао/ но) $)(\mathrm{eV})$	0	-13.50110	0
$E_{T}\left(H_{2} \mathrm{MO}\right)(\mathrm{eV})$	-63.27075	-31.63539	-63.27076
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} \cdot \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-1.44915
$E_{T}($ мо $)(\mathrm{eV})$	-65.53833	-32.20226	-64.71988
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	49.7272	26.4826	43.6311
$E_{K}(\mathrm{eV})$	32.73133	17.43132	28.71875
$\bar{E}_{D}(e \mathrm{~V})$	-0.35806	-0.26130	-0.33540
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.25982	-0.08364	-0.23715
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.09457
$E_{T}($ Group $)(\mathrm{eV})$	-49.54347	-32.28590	-48.82472
$E_{\text {initial }}\left(\mathrm{E}_{4}\right.$ AO/ $\left./ \mathrm{HO}\right)(\mathrm{eV})$	-14.63489	-14.63489	-14.63489
$E_{\text {initial }}\left(\mathrm{c}_{5}\right.$ Ао/ $/ \mathrm{Ho}$) (eV)	0	-13.59844	0
$E_{D}($ Group $)(e V)$	5.63881	3.90454	4.92005

Table 15.295. The total bond energies of pyridine calculated using the functional group composition and the energies of Table 15.294 compared to the experimental values [3].

Formula	Name	C	$C H$	$C^{3 e}$ $=$ Group	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)
			5	2	51.91802	51.87927

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	Bond 2 (a_{0})	$2 c^{\prime}$ Terminal Atoms $\left(a_{0}\right)$	$\begin{aligned} & E_{\text {Conlombic }} \\ & \text { Atom } 1 \end{aligned}$	Atom 1 Hybridization Designation (Table 15.3B)	$\begin{aligned} & E_{\text {Coulombic }} \\ & \text { Atom } 2 \end{aligned}$	Atom 2 Hybridization Designation (Table 15.3B)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \theta_{2} \\ \left({ }^{\circ}\right) \end{gathered}$	Cal. θ $\left({ }^{\circ}\right)$	Exp. θ $\left({ }^{\circ}\right)$
$\underset{\text { (aromatic) }}{\angle C C C}$	2.62936	2.62936	4.5585	-17.17218	27	-17.17218	27	0.79232	0.79232	1	1	1	0.79232	-1.85836				120.19	$120[50-$ $52]$ (benzene) 118.3 (pyridine) 118.5 (pyridine)
$\underset{\text { (aromatic) }}{\angle C C H}$																120.19		119.91	$\begin{gathered} 120[50- \\ 52] \\ \text { (benzene) } \\ 121.3 \\ \text { (pyridine) } \end{gathered}$
$\angle H C_{a} N$	2.06598	2.54147	3.9497	-14.82575	1	-14.53414	N	0.91771	$\begin{aligned} & 0.91140 \\ & \text { Eq. } \\ & (15.135)) \end{aligned}$	0.75	1	0.75	0.99312	0				117.65	$\begin{gathered} 115.9 \\ \text { (pyridine) } \end{gathered}$
$\angle N C_{c} C_{b}$	2.54147	2.62936	4.5607	-14.53414	N	$\begin{gathered} -16.52644 \\ C_{b} \end{gathered}$	15	$\begin{gathered} 0.91140 \\ \text { Eq. } \\ (15.135)) \end{gathered}$	0.82327	1	1	1	0.86734	-1.44915				123.76	$\begin{gathered} 123.9 \\ \text { (pyridine) } \end{gathered}$
$\angle C_{a} N C_{a}$	2.54147	2.54147	4.3359	-17.71560	33	-17.71560	33	0.76801	0.76801	1	1	1	0.76801	-1.85836				117.09	$\begin{gathered} 116.8 \\ \text { (pyridine) } \end{gathered}$

PYRIMIDINE

Pyrimidine has the formula $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$ and comprises the pyridine molecule with one additional CH group replaced by a nitrogen atom, which gives rise to a second $C \stackrel{3 e}{=} N$ functional group that is equivalent to that of pyridine given in the corresponding section. The aromatic $C=\frac{3 e}{=} C$ and $C-H$ functional groups are also equivalent to those of pyridine and benzene given in the Aromatic and Heterocyclic Compounds section with the aromaticity maintained by the electrons from nitrogen in the $C=N$ group which is also aromatic.

The symbols of the functional groups of pyrimidine are given in Table 15.297. The corresponding designation of the structure is shown in Figure 15.51B. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of pyrimidine are given in Tables 15.298, 15.299, and 15.300 , respectively. The total energy of pyrimidine given in Table 15.301 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.300 corresponding to functional-group composition of the molecule. The bond angle parameters of pyrimidine determined using Eqs. (15.88-15.117) are given in Table 15.302. The color scale, translucent view of the chargedensity of pyrimidine comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.51A.

Figure 15.51. (A) Color scale, translucent view of the charge-density of pyrimidine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (B) Chemical structure and atom designation of pyrimidine.

A

$$
0 \square 1 \mathrm{e} / \AA^{2}
$$

Table 15.297. The symbols of functional groups of pyrimidine.

Functional Group	Group Symbol
$C C$ (aromatic bond)	$C^{3 e}=C$
$C H$ (aromatic)	$C H$
$C_{a, b, d}{ }^{3 e} N$	$C=N$

Table 15.298. The geometrical bond parameters of pyrimidine and experimental values [1].

Parameter	$C=\left[\begin{array}{l}= \\ \text { Group }\end{array}\right.$	$C H$ Group	$C=N$ Group
$a\left(a_{0}\right)$	1.47348	1.60061	1.47169
$c^{\prime}\left(a_{0}\right)$	1.31468	1.03299	1.27073
Bond Length $2 c^{\prime}(A)$	1.39140	1.09327	1.34489
Exp. Bond Length (A)	1.393 (pyrimidine)	1.084 (pyridine)	1.340 (pyrimidine)
$b, c\left(a_{0}\right)$	0.66540	1.22265	0.74237
e	0.89223	0.64537	0.86345

Table 15.299. The MO to HO intercept geometrical bond parameters of pyrimidine. E_{T} is $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$.

Bond	Atom	E_{T} (eV) Bond 1	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 2$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 4 } \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {moata }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {mal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & E_{\text {Counomom }}\left(\mathrm{CV} 2 s p^{3}\right) \\ & \text { (eV) } \\ & \text { Final } \end{aligned}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{aligned} & \hline \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \hline \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$C-H\left(C_{a} H\right)$	C_{a}	-0.54343	-0.54343	-0.56690	0	-153.26945	0.91771	0.82562	-16.47951	-16.28864	78.27	101.73	41.39	1.20084	0.16785
C-H $\left(C_{b, d} H\right)$	$\begin{aligned} & C_{b} \\ & C_{d} \end{aligned}$	-0.54343	-0.85035	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	76.35	103.65	40.11	1.22423	0.19124
$\overline{C-H}\left(C_{c} H\right)$	C_{c}	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	74.42	105.58	38.84	1.24678	0.21379
$\begin{aligned} & (H) C_{c}(H) C_{b}={ }^{30}=N_{b} C_{a} \\ & (H) C_{c}(H) C_{d}=N_{a}=N_{a} C_{a} \end{aligned}$	$\begin{aligned} & C_{b} \\ & C_{d} \end{aligned}$	-0.85035	-0.54343	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	128.54	51.46	58.65	0.76572	0.50501
$\begin{aligned} & (H) C_{c}(H) C_{b}={ }^{3.0}=N_{b} C_{a} \\ & (H) C_{c}(H) C_{d}=N_{a}=N_{a} C^{2} \end{aligned}$	$\begin{aligned} & N_{b} \\ & N_{a} \end{aligned}$	-0.54343	-0.54343	0	0		0.93084	0.85503	-15.91261		130.61	49.39	60.97	0.71418	0.55656
$\begin{aligned} & (H) C_{c}(H) C_{b} N_{b}=C_{a}={ }^{30}(H) \\ & (H) C_{c}(H) C_{d} N_{a}=C_{a}(H) \end{aligned}$	C_{a}	-0.54343	-0.54343	-0.56690	0	-153.26945	0.91771	0.82562	-16.47951	-16.28865	129.26	50.74	59.44	0.74824	0.52249
$\begin{aligned} & (H) C_{c}(H) C_{b} N_{b}={ }^{3 e}=C_{a}(H) \\ & (H) C_{c}(H) C_{d} N_{a}=C_{a}=C_{a}(H) \end{aligned}$	$\begin{aligned} & N_{b} \\ & N_{a} \end{aligned}$	-0.54343	-0.54343	0	0		0.93084	0.85503	-15.91261		130.61	49.39	60.97	0.71418	0.55656
$\begin{aligned} & N_{a}(H) C_{d}={ }^{30}=C_{c}(H) C_{b} \\ & N_{b}(H) C_{b}=C_{c}=C_{c}(H) C_{d} \end{aligned}$	C_{c}	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	134.24	45.76	58.98	0.75935	0.55533
$\begin{aligned} & N_{a}(H) C_{d}={ }^{30}=C_{c}(H) C_{b} \\ & N_{b}(H) C_{b}=C_{c}=C_{c}(H) C_{d} \end{aligned}$	$\begin{aligned} & C_{b} \\ & C_{d} \end{aligned}$	-0.85035	-0.54343	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	134.85	45.15	59.72	0.74304	0.57165

Table 15.300. The energy parameters (eV) of functional groups of pyrimidine.

Parameters	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$C \stackrel{s e}{=} N$ Group
f_{1}	0.75	1	0.75
n_{1}	2	1	2
n_{2}	0	0	0
n_{3}	0	0	0
C_{1}	0.5	0.75	0.5
C_{2}	0.85252	1	0.91140
c_{1}	1	1	1
c_{2}	0.85252	0.91771	0.91140
c_{3}	0	1	0
c_{4}	3	1	3
c_{5}	0	1	0
C_{10}	0.5	0.75	0.5
$C_{2 o}$	0.85252	1	0.91140
$V_{e}(\mathrm{eV})$	-101.12679	-37.10024	-102.01431
$V_{p}(e \mathrm{~V})$	20.69825	13.17125	21.41410
$T(\mathrm{eV})$	34.31559	11.58941	34.65890
$V_{m}(\mathrm{eV})$	-17.15779	-5.79470	-17.32945
E(Аогно) (eV)	0	-14.63489	0
$\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(\mathrm{AO/HO})(\mathrm{eV})$	0	-1.13379	0
$E_{T}($ Ао/ $/ \mathrm{O})(\mathrm{eV})$	0	-13.50110	0
$E_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)(\mathrm{eV})$	-63.27075	-31.63539	-63.27076
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-1.44915
$E_{T}(\mathrm{mo})(\mathrm{eV})$	-65.53833	-32.20226	-64.71988
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	49.7272	26.4826	43.6311
$E_{K}(e \mathrm{~V})$	32.73133	17.43132	28.71875
$\bar{E}_{D}(e V)$	-0.35806	-0.26130	-0.33540
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.25982	-0.08364	-0.23715
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.09457
$E_{T}($ (roup) $)(e \mathrm{~V})$	-49.54347	-32.28590	-48.82472
$E_{\text {initial }}\left({ }_{\text {c }}+\right.$ AO/ $\left./ \mathrm{Ho}\right)(\mathrm{eV})$	-14.63489	-14.63489	-14.63489
$E_{\text {initial }}\left(\mathrm{c}_{5}\right.$, АО/ HO$)(\mathrm{eV})$	0	-13.59844	0
$E_{D}($ (roup $)(\mathrm{eV})$	5.63881	3.90454	4.92005

Table 15.301. The total bond energies of pyrimidine calculated using the functional group composition and the energies of Table 15.300 compared to the experimental values [3].

Atoms of Angle	$\left(a_{0}\right)$ $2 c^{\prime}$ Bond 1 $\left(a_{0}\right)$	(a_{0}) $2 c^{\prime}$ Bond 2 $\left(a_{0}\right)$	$2 c^{\prime}$ Terminal Atoms $\left(a_{0}\right)$	$\begin{aligned} & E_{\text {Coulombic }} \\ & \text { Atom } 1 \end{aligned}$	Atom 1 Hybridization Designation (Table 15.3B)	$\begin{aligned} & E_{\text {Conlemblic }} \\ & \text { Atom } 2 \end{aligned}$	Atom 2 Hybridization Designation (Table 15.3B)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{gathered} \theta_{v} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\begin{gathered} \angle C C C \\ \text { (aromatic) } \end{gathered}$	2.62936	2.62936	4.5585	-17.17218	27	-17.17218	27	0.79232	0.79232	1	1	1	0.79232	-1.85836				120.19	$\begin{gathered} 120[50-52] \\ \text { (benzene) } \\ 118.3 \\ \text { (pyridine) } \\ 118.5 \\ \text { (pyridine) } \\ \hline \end{gathered}$
$\begin{gathered} \angle C C H \\ \text { (aromatic) } \end{gathered}$																120.19		119.91	$\begin{gathered} 120[50-52] \\ \text { (benzene) } \\ 121.3 \\ \text { (pyridine) } \end{gathered}$
$\angle H C N$	2.06598	2.54147	3.9497	-14.82575	1	-14.53414	N	0.91771	$\begin{array}{c\|} \hline 0.91140 \\ \text { Eq. } \\ (15.135)) \\ \hline \end{array}$	0.75	1	0.75	0.99312	0				117.65	$\begin{gathered} 115.9 \\ \text { (pyridine) } \end{gathered}$
$\angle N C C$	2.54147	2.62936	4.5607	-14.53414	N	-16.52644	15		0.82327	1	1	1	0.86734	-1.44915				123.76	$\begin{gathered} 123.9 \\ \text { (pyridine) } \end{gathered}$
$\angle C N C$	2.54147	2.54147	4.3359	-17.71560	33	-17.71560	33	0.76801	0.76801	1	1	1	0.76801	-1.85836				117.09	$\begin{gathered} 115.5 \\ \text { (pyrimidine) } \end{gathered}$
$\angle N C N$	2.54147	2.54147	4.5826	-15.55033	3	-15.55033	3	0.87495	0.87495	1	1	1	0.87495	-1.85836				128.73	$\begin{gathered} 127.6 \\ \text { (pyrimidine) } \end{gathered}$

PYRAZINE

Pyrazine has the formula $\mathrm{C}_{4} \mathrm{H}_{4} N_{2}$ and comprises the pyrimidine molecule with para rather than ortho aromatic nitrogen atoms. The $C \stackrel{3 e}{=} N$ functional group is equivalent to that of pyrimidine and pyridine given in the corresponding sections. The aromatic $C \stackrel{3 e}{=} C$ and $C-H$ functional groups are also equivalent to those of pyrimidine, pyridine, and benzene given in the Aromatic and Heterocyclic Compounds section with the aromaticity maintained by the electrons from nitrogen in the $C \stackrel{3 e}{=} N$ group, which is also aromatic.

The symbols of the functional groups of pyrazine are given in Table 15.303. The corresponding designation of the structure is shown in Figure 15.52B. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of pyrazine are given in Tables 15.304, 15.305, and 15.306, respectively. The total energy of pyrazine given in Table 15.307 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.306 corresponding to functional-group composition of the molecule. The bond angle parameters of pyrazine determined using Eqs. (15.88-15.117) are given in Table 15.308. The color scale, translucent view of the charge-density of pyrazine comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.52A.

Figure 15.52 . (A) Color scale, translucent view of the charge-density of pyrazine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (B) Chemical structure and atom designation of pyrazine.

$0 \square 1 \mathrm{e} / \mathrm{A}^{2}$

Table 15.303 . The symbols of functional groups of pyrazine.

Functional Group	Group Symbol
$C C$ (aromatic bond)	$C^{3 e}=C$
$C H$ (aromatic)	$C H$
$C_{a}^{3 e}=N$	$C^{3 e}=N$

Table 15.304. The geometrical bond parameters of pyrazine and experimental values [1].

Parameter	$C e$ Group	$C H$ Group	$C=N$ Group
$a\left(a_{0}\right)$	1.47348	1.60061	1.47169
$c^{\prime}\left(a_{0}\right)$	1.31468	1.03299	1.27073
Bond Length $2 c^{\prime}(A)$	1.39140	1.09327	1.34489
Exp. Bond Length (A)	1.339 (pyrazine)	1.115 (pyrazine)	1.22265
$b, c\left(a_{0}\right)$	0.66540	0.89223	
e		1.403	

Table 15.305. The MO to HO intercept geometrical bond parameters of pyrazine. E_{T} is E_{T} (atom-atom,msp ${ }^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 1$	E_{7} (eV) Bond 2	E (eV) Bond 3	E_{T} (eV) Bond 4	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {mintal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {finad }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coulemem }}\left(\mathrm{CV} 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\mathrm{C}-\mathrm{H}\left(\mathrm{C}_{a} \mathrm{H}\right)$	C_{a}	-0.54343	-0.85035	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	76.35	103.65	40.11	1.22423	0.19124
$(H) C_{a}(H) C_{a}=N C_{a}$	C_{a}	-0.85035	-0.54343	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	128.54	51.46	58.65	0.76572	0.50501
$(H) C_{a}(H) C_{a}{ }_{a}^{3 e}=N C_{a}$	N	-0.54343	-0.54343	0	0		0.93084	0.85503	-15.91261		130.61	49.39	60.97	0.71418	0.55656
$N(H) C_{a}{ }^{3 e} C_{a}(H) N$	C_{a}	-0.85035	-0.54343	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	134.85	45.15	59.72	0.74304	0.57165

Table 15.306. The energy parameters (eV) of functional groups of pyrazine.

Parameters	$C \stackrel{s e}{=} C$ Group	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$C \stackrel{s e}{=} N$ Group
f_{1}	0.75	1	0.75
n_{1}	2	1	2
n_{2}	0	0	0
n_{3}	0	0	0
C_{1}	0.5	0.75	0.5
C_{2}	0.85252	1	0.91140
c_{1}	1	1	1
c_{2}	0.85252	0.91771	0.91140
c_{3}	0	1	0
c_{4}	3	1	3
c_{5}	0	1	0
C_{10}	0.5	0.75	0.5
C_{20}	0.85252	1	0.91140
$V_{e}(e \mathrm{~V})$	-101.12679	-37.10024	-102.01431
$V_{p}(e \mathrm{~V})$	20.69825	13.17125	21.41410
$T(\mathrm{eV})$	34.31559	11.58941	34.65890
$V_{m}(e \mathrm{~V})$	-17.15779	-5.79470	-17.32945
E (Ао/ HO) (eV)	0	-14.63489	0
$\Delta E_{\mathrm{H}_{2} \text { МО }}($ (ОО/ HO$)(\mathrm{eV})$	0	-1.13379	0
$E_{T}($ Ао/ $/ \mathrm{H})(\mathrm{eV})$	0	-13.50110	0
$E_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)(\mathrm{eV})$	-63.27075	-31.63539	-63.27076
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-1.44915
$E_{T}($ мо) $)(\mathrm{eV})$	-65.53833	-32.20226	-64.71988
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	49.7272	26.4826	43.6311
$E_{K}(\mathrm{eV})$	32.73133	17.43132	28.71875
$\bar{E}_{D}(e V)$	-0.35806	-0.26130	-0.33540
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.25982	-0.08364	-0.23715
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.09457
E_{T} (Group) (eV)	-49.54347	-32.28590	-48.82472
$E_{\text {initiol }}\left(\mathrm{c}_{4}\right.$ AO/ $\left.{ }^{\text {HO}}\right)(\mathrm{eV})$	-14.63489	-14.63489	-14.63489
$E_{\text {initial }}(\underline{c}$, AO/HO) (eV)	0	-13.59844	0
$E_{D}($ Group $)(e V)$	5.63881	3.90454	4.92005

Table 15.307. The total bond energies of pyrazine calculated using the functional group composition and the energies of Table 15.306 compared to the experimental | values [3]. |
| :--- |
| Formula |
| $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$ |

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \\ \left(a_{0}\right) \end{gathered}$		$E_{\text {Coulomblic }}$ Atom 1	Atom 1 Hybridization Designation (Table 15.3B)	$\begin{aligned} & E_{\text {Coulombic }} \\ & \text { Atom } 2 \end{aligned}$	Atom 2 Hybridization Designation (Table 15.3B)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom 2 } \end{gathered}$	C_{1}	C_{2}	c_{1}	c^{\prime}	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\text { Cal. } \theta$ $\left({ }^{\circ}\right)$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\underset{\text { (aromatic) }}{\angle C C C C}$	2.62936	2.62936	4.5585	-17.17218	27	-17.17218	27	0.79232	0.79232	1	1	1	0.79232	-1.85836				120.19	$\begin{gathered} 120[50-52] \\ \text { (benzene) } \\ 118.3 \\ \text { (pyridine) } \\ 118.5 \\ \text { (pyridine) } \\ \hline \end{gathered}$
$\underset{\text { (aromatic) }}{\angle C C H}$																120.19		119.91	$\begin{aligned} & 120[50-52] \\ & \text { (benzen) } \\ & 121.3 \\ & \text { (pyridine } \end{aligned}$
$\angle H C N$	2.06598	2.54147	3.9497	-14.82575	1	-14.53414	N	0.91771	$\begin{gathered} 0.91140 \\ \text { Eq. } \\ (15.135)) \end{gathered}$	0.75	1	0.75	0.99312	0				117.65	$\begin{gathered} 115.9 \\ \text { (pyridine) } \end{gathered}$
$\angle \mathrm{CCH}$																117.65	116.81	125.54	$\begin{gathered} 123.9 \\ \text { (pyrazine) } \end{gathered}$
$\angle N C C$	2.54147	2.62936	4.4045	-14.53414	N	-17.09334	23	$\begin{gathered} 0.91140 \\ \text { Eq. } \\ (15.135)) \end{gathered}$	0.79597	1	1	1	0.85368	-1.44915				116.81	$\stackrel{115.6}{\text { (pyrazine }}$
$\angle C N C$	2.54147	2.54147	4.3359	-17.71560	33	-17.71560	33	0.76801	0.76801	1	1	1	0.76801	-1.85836				117.09	$\begin{gathered} 116.8 \\ \text { (pyrimidine) } \end{gathered}$

QUINOLINE

Quinoline has the formula $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$ and comprises the naphthalene molecule with one CH group replaced by a nitrogen atom which gives rise to a $C \stackrel{3 e}{=} N$ functional group. The aromatic $C \stackrel{3 e}{=} C$ and $C-H$ functional groups are equivalent to those of naphthalene given in the corresponding section with the aromaticity maintained by the electrons from nitrogen in the $C=N$ group, which is also aromatic. The $C-C$ functional group is also equivalent to that of naphthalene. The bonding in quinoline can be further considered as a linear combination of the naphthalene and pyridine groups wherein the $C \stackrel{3 e}{=} N$ group is equivalent to that of pyridine, pyrimidine, and pyrazine as given in the corresponding sections.

The symbols of the functional groups of quinoline are given in Table 15.309. The corresponding designation of the structure is shown in Figure 15.53B. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of quinoline are given in Tables 15.310, 15.311, and 15.312, respectively. The total energy of quinoline given in Table 15.313 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.312 corresponding to functional-group composition of the molecule. The bond angle parameters of quinoline determined using Eqs. (15.88-15.117) are given in Table 15.314. The color scale, translucent view of the chargedensity of quinoline comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.53A.

Figure 15.53 . (A) Color scale, translucent view of the charge-density of quinoline showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (B) Chemical structure and atom designation of quinoline.

0
$\square 1 \mathrm{e} / \AA^{2}$

Table 15.309. The symbols of functional groups of quinoline.

Functional Group	Group Symbol
$C C$ (aromatic bond)	$C^{3 e}=C$
$C H$ (aromatic)	$C H$
$C_{b}-C_{b}$ (bridging bond)	$C-C$
$C_{a, d}=N$	$C^{3 e}=N$

Table 15.310. The geometrical bond parameters of quinoline and experimental values [1].

Parameter	$C=$ Group	$C H$ Group	$C-C$ Group	$C=N$ Group
$a\left(a_{0}\right)$	1.47348	1.60061	1.75607	1.47169
$c^{\prime}\left(a_{0}\right)$	1.31468	1.03299	1.32517	1.27073
Bond Length $2 c^{\prime}(A)$	1.39140	1.09327	1.40250	1.34489
Exp. Bond Length (A)	1.40 (avg.) (naphthalene)	1.101 (benzene)	1.42 (naphthalene)	1.340 (pyridine)
$b, c\left(a_{0}\right)$	0.66540	1.22265	1.15226	0.74237
e	0.89223	0.64537	0.75462	0.86345

Table 15.311. The MO to HO intercept geometrical bond parameters of quinoline. E_{T} is E_{T} (atom-atom,msp ${ }^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{V_{1}} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{r} \\ (\text { (eV) } \\ \text { Bond 2 } \end{gathered}$	$\begin{gathered} E_{r} \\ \text { (eV) } \\ \text { (ond } 3 \end{gathered}$	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Total Energy C2sp ${ }^{3}$ (eV)	$\begin{aligned} & r_{\text {mpata }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {matat }} \\ & \left(a_{0}\right) \end{aligned}$		$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
C-H ($C_{a}{ }_{\text {a }}$)	C_{a}	-0.85035	-0.54343	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	76.35	103.65	40.11	1.22423	0.19124
$C-H\left(C_{b} H\right)$	C_{b}	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	74.42	105.58	38.84	1.24678	0.21379
$N(H) C_{a}=C_{b}(H)$	C_{a}	-0.85035	-0.54343	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	134.85	45.15	59.72	0.74304	0.57165
(H) $C_{b}{ }^{3 e} C_{a b, b, c t}(H)$	C_{b}	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	134.24	45.76	58.98	0.75935	0.55533
(H)C $C_{b}\left(C_{d}\right) C_{c}{ }^{3}=C_{b}$	C_{c}	-0.85035	-0.85035	-0.28345	0	-153.59983	0.91771	0.80939	-16.80989	-16.61903	134.81	45.19	59.66	0.74430	0.57038
$N\left(C_{c}\right) C_{d}=C_{b}$	C_{d}	-0.85035	-0.54343	-0.28345	0	-153.29292	0.91771	0.82445	-16.50298	-16.31211	135.42	44.58	60.42	0.72743	0.58725
$C_{b}(H) C_{a}=N$	C_{a}	-0.85035	-0.54343	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	128.54	51.46	58.65	0.76572	0.50501
$\begin{aligned} & C_{b}(H) C_{a}{ }^{3 e}=N \\ & C_{b}\left(C_{c}\right) C_{d}=N \end{aligned}$	N	-0.54343	-0.54343	0	0		0.93084	0.85503	-15.91261		130.61	49.39	60.97	0.71418	0.55656
$C_{b}\left(C_{c}\right) C_{d}{ }^{3 \cdot}=N$	C_{d}	-0.85035	-0.54343	-0.28345	0	-153.29291	0.91771	0.82445	-16.50297	-16.31211	129.21	50.79	59.38	0.74960	0.52113
$\left((H) C_{b}={ }^{30}\right)_{2} C_{c}-C_{d}$	C_{0}	-0.85035	-0.85035	-0.28345	0	-153.59983	0.91771	0.80939	-16.80989	-16.61903	95.01	84.99	44.41	1.25451	0.07066
$N\left(C_{b}\right) C_{d}-C_{c}$	C_{d}	-0.85035	-0.54343	-0.28345	0	-153.29292	0.91771	0.82445	-16.50298	-16.31211	96.31	83.69	45.33	1.23456	0.09061

Table 15.312. The energy parameters (eV) of functional groups of quinoline.

Parameters	$C \stackrel{s e}{=} C$ Group	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \\ & \text { Group } \end{aligned}$	$C \stackrel{3 e}{=} N$ Group
f_{1}	0.75	1	1	0.75
n_{1}	2	1	1	2
n_{2}	0	0	0	0
n_{3}	0	0	0	0
C_{1}	0.5	0.75	0.5	0.5
C_{2}	0.85252	1	1	0.91140
c_{1}	1	1	1	1
c_{2}	0.85252	0.91771	0.85252	0.91140
c_{3}	0	1	0	0
c_{4}	3	1	2	3
c_{5}	0	1	0	0
C_{1} o	0.5	0.75	0.5	0.5
C_{2} o	0.85252	1	1	0.91140
$V_{e}(\mathrm{eV})$	-101.12679	-37.10024	-34.43791	-102.01431
$V_{p}(e V)$	20.69825	13.17125	10.26723	21.41410
$T(\mathrm{eV})$	34.31559	11.58941	9.80539	34.65890
$V_{m}(\mathrm{eV})$	-17.15779	-5.79470	-4.90270	-17.32945
E(Ао/но) (eV)	0	-14.63489	-14.63489	0
$\Delta E_{\mathrm{H}_{2} \mathrm{MU}}(\mathrm{AO/HO})(\mathrm{eV})$	0	-1.13379	-1.13379	0
$E_{T}($ ($/ \bigcirc / \mathrm{HO})(\mathrm{eV})$	0	-13.50110	-13.50110	0
$E_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)(\mathrm{eV})$	-63.27075	-31.63539	-31.63529	-63.27076
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-0.56690	-1.44915
$E_{T}(\mathrm{mo})(\mathrm{eV})$	-65.53833	-32.20226	-32.20226	-64.71988
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	49.7272	26.4826	23.6343	43.6311
$E_{K}(\mathrm{eV})$	32.73133	17.43132	15.55648	28.71875
$\bar{E}_{D}(\mathrm{eV})$	-0.35806	-0.26130	-0.25127	-0.33540
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.25982	-0.08364	-0.18971	-0.23715
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.09457
$E_{T}($ (Group $)(\mathrm{eV})$	-49.54347	-32.28590	-32.39198	-48.82472
$E_{\text {initial }}\left(\mathrm{E}_{4}\right.$ AO/ $/ \mathrm{HO}$) (eV)	-14.63489	-14.63489	-14.63489	-14.63489
	0	-13.59844	0	0
$E_{D}($ croup $)(\mathrm{eV})$	5.63881	3.90454	3.12220	4.92005

Table 15.313. The total bond energies of quinoline calculated using the functional group composition and the energies of Table 15.312 compared to the experimental values [3].

Formula	Name				$C^{3}=C$		${ }^{\text {ch }}$	$\underset{\text { Group }}{C-C}$			$\begin{aligned} & { }^{3=}=N \\ & \text { Groun } \end{aligned}$		$\begin{gathered} \text { Calculated } \\ \text { Total Bond Energy (eV) } \end{gathered}$			$\underset{\text { Experimental }}{\text { Total Bond Energy (eV) }}$			$\begin{gathered} \text { Relative Error } \\ \hline 0.00178 \\ \hline \end{gathered}$
$\mathrm{Co}_{9} \mathrm{H}_{\mathrm{N}} \mathrm{N}$	Quinoline				8		7	1					85.40453			Total Bond Energy (eV)85.48607			
Table 15.314. The bond angle parameters of quinoline and experimental values [1]. E_{T} is $E_{T}\left(\right.$ atom -atom, msp ${ }^{3} . A O$).																			
Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \begin{array}{c} \text { Bond } 2 \\ \left(a_{0}\right) \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Terminal } \\ \text { Atoms }\left(a_{0}\right) \end{gathered}$	$\begin{aligned} & E_{\text {Eculamome }} \\ & \text { Atom } \end{aligned}$	Atom 1 Hybridization Designation (Table 15.3B)	$E_{\text {Coulumbic }}$ Atom 2		$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom 2 } \end{gathered}$	C_{1}	C_{2}	c	c_{2}^{\prime}	$\begin{aligned} & E_{r} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & \theta_{0} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ (\circ) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\angle C C C$	2.62936	2.65034	4.5585	-17.17218	27	-17.17218	27	0.79232	0.79232	1	1	1	0.79232	${ }^{-1.85836}$				119.40	$\begin{gathered} 119.4 \\ \text { (naphthalene) } \end{gathered}$
$\stackrel{\angle C C H}{ }{ }_{\left\langle C_{d} N C_{a}\right.}$	2.54147	2.54147	4.3818	-17.43216	31	-17.71560	33	0.78050	0.76801	1	1	1	0.77426	-1.85836		119.40		120.30 119.10	

ISOQUINOLINE

Isoquinoline has the formula $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$ and comprises the naphthalene molecule with one CH group replaced by a nitrogen atom which gives rise to a $C \stackrel{3 e}{=} N$ functional group. Isoquinoline is also equivalent to quinoline with the nitrogen in the meta rather than the ortho position relative to the benzene ring of the molecule. The aromatic $C=C=3$ and $C-H$ functional groups are equivalent to those of naphthalene given in the corresponding section with the aromaticity maintained by the electrons from nitrogen in the $C \stackrel{3 e}{=} N$ group which is also aromatic. The $C-C$ functional group is also equivalent to that of naphthalene. The bonding in isoquinoline can be further considered as a linear combination of the naphthalene and pyridine groups wherein the $C \stackrel{3 e}{=} N$ group is equivalent to that of pyridine, pyrimidine, pyrazine, and quinoline as given in the corresponding sections.

The symbols of the functional groups of isoquinoline are given in Table 15.315. The corresponding designation of the structure is shown in Figure 15.54B. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of isoquinoline are given in Tables 15.316, 15.317, and 15.318 , respectively. The total energy of isoquinoline given in Table 15.319 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.318 corresponding to functional-group composition of the molecule. The bond angle parameters of isoquinoline determined using Eqs. (15.88-15.117) are given in Table 15.320. The color scale, translucent view of the chargedensity of isoquinoline comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.54A.

Figure 15.54. (A) Color scale, translucent view of the charge-density of isoquinoline showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (B) Chemical structure and atom designation of isoquinoline.

Table 15.315. The symbols of functional groups of isoquinoline.

Functional Group	Group Symbol
$C C$ (aromatic bond)	$C^{3 e}=C$
$C H$ (aromatic)	$C H$
$C_{b}-C_{b}$ (bridging bond)	$C-C$
$C_{a, d}{ }^{3 e}=N$	$C=N$

Table 15.316. The geometrical bond parameters of isoquinoline and experimental values [1].

Parameter	$C=3 e$ Group	$C H$ Group	$C-C$ Group	$C=N$ Group
$a\left(a_{0}\right)$	1.47348	1.60061	1.75607	1.47169
$c^{\prime}\left(a_{0}\right)$	1.31468	1.03299	1.32517	1.27073
Bond Length $2 c^{\prime}(A)$	1.39140	1.09327	1.40250	
Exp. Bond Length (A)	1.40 (avg.) (naphthalene)	0.66540	1.101	
(benzene)	1.22265	1.42		
$b, c\left(a_{0}\right)$	0.89223	0.64537	1.15226	$($ naphthalene)

Table 15.317. The MO to HO intercept geometrical bond parameters of isoquinoline. E_{T} is $E_{T}\left(\right.$ atom - atom,msp ${ }^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 1$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 2 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	\qquad	$\begin{aligned} & r_{\text {murual }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {frat }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coumumem }\left(\mathrm{C} 2 s p^{3}\right)}^{(\mathrm{eV})} \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \theta_{1} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{aligned} & \theta_{2} \\ & \left(^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
C-H ($\left.C_{a} H\right)$	C_{a}	-0.85035	-0.54343	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	76.35	103.65	40.11	1.22423	0.19124
$C-H\left(C_{b} H\right)$	C_{b}	-0.85035	-0.54343	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	76.35	103.65	40.11	1.22423	0.19124
C-H $\left(C_{c} H\right)$	$C_{\text {c }}$	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	74.42	105.58	38.84	1.24678	0.21379
$\begin{aligned} & N(H) C_{a}{ }^{3 e}=C_{d} \\ & N(H) C_{b}=C_{c}^{3 e} \end{aligned}$	$\begin{aligned} & C_{a} \\ & C_{b} \end{aligned}$	-0.85035	-0.54343	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	134.85	45.15	59.72	0.74304	0.57165
$(H) C_{c}{ }^{3 e} C_{b, c, 4}(H)$	$C_{\text {c }}$	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	134.24	45.76	58.98	0.75935	0.55533
$(H) C_{c}\left(C_{d}\right) C_{d}{ }^{3 e}=C_{a, c}$	C_{d}	-0.85035	-0.85035	-0.28345	0	-153.59983	0.91771	0.80939	-16.80989	-16.61903	134.81	45.19	59.66	0.74430	0.57038
$\begin{aligned} & C_{d}(H) C_{a}=N \\ & C_{c}(H) C_{b}=N \end{aligned}$	$\begin{aligned} & C_{a} \\ & C_{b} \end{aligned}$	-0.85035	-0.54343	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	128.54	51.46	58.65	0.76572	0.50501
$\begin{aligned} & C_{d}(H) C_{a}=N \\ & C_{c}(H) C_{b}=N \end{aligned}$	N	-0.54343	-0.54343	0	0		0.93084	0.85503	-15.91261		130.61	49.39	60.97	0.71418	0.55656
$C_{a, c}\left(C_{c}\right) C_{d}-C_{d}$	C_{d}	-0.85035	-0.85035	-0.28345	0	-153.59983	0.91771	0.80939	-16.80989	-16.61903	95.01	84.99	44.41	1.25451	0.07066

Table 15.318. The energy parameters (eV) of functional groups of isoquinoline.

Parameters	$\begin{gathered} C \stackrel{3 e}{=} C \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C \stackrel{3 e}{=} N \\ & \text { Group } \end{aligned}$
f_{1}	0.75	1	1	0.75
n_{1}	2	1	1	2
n_{2}	0	0	0	0
n_{3}	0	0	0	0
C_{1}	0.5	0.75	0.5	0.5
C_{2}	0.85252	1	1	0.91140
c_{1}	1	1	1	1
c_{2}	0.85252	0.91771	0.85252	0.91140
c_{3}	0	1	0	0
c_{4}	3	1	2	3
c_{5}	0	1	0	0
C_{10}	0.5	0.75	0.5	0.5
$C_{2 o}$	0.85252	1	1	0.91140
$V_{e}(\mathrm{eV})$	-101.12679	-37.10024	-34.43791	-102.01431
$V_{p}(e \mathrm{~V})$	20.69825	13.17125	10.26723	21.41410
$T(\mathrm{eV})$	34.31559	11.58941	9.80539	34.65890
$V_{m}(\mathrm{eV})$	-17.15779	-5.79470	-4.90270	-17.32945
E(Ао/но) (eV)	0	-14.63489	-14.63489	0
$\Delta E_{\mathrm{H}_{2} \mathrm{MO}}(\mathrm{AO/HO})(\mathrm{eV})$	0	-1.13379	-1.13379	0
$E_{T}($ Ао/ $/ \mathrm{HO})(\mathrm{eV})$	0	-13.50110	-13.50110	0
$E_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)(\mathrm{eV})$	-63.27075	-31.63539	-31.63529	-63.27076
$E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} \cdot \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-0.56690	-1.44915
$E_{T}(\mathrm{mo})(\mathrm{eV})$	-65.53833	-32.20226	-32.20226	-64.71988
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	49.7272	26.4826	23.6343	43.6311
$E_{K}(\mathrm{eV})$	32.73133	17.43132	15.55648	28.71875
$\bar{E}_{D}(e V)$	-0.35806	-0.26130	-0.25127	-0.33540
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.25982	-0.08364	-0.18971	-0.23715
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.09457
$E_{T}($ Group $)(\mathrm{eV})$	-49.54347	-32.28590	-32.39198	-48.82472
$E_{\text {initial }}\left(\mathrm{c}_{+}\right.$Ао/но) $)(\mathrm{eV})$	-14.63489	-14.63489	-14.63489	-14.63489
$E_{\text {initial }}\left(\mathrm{c}_{5}\right.$, Ао но) (eV)	0	-13.59844	0	0
$E_{D}($ Group $)(e V)$	5.63881	3.90454	3.12220	4.92005

Table 15.319. The total bond energies of isoquinoline calculated using the functional group composition and the energies of Table 15.318 compared to the experimental values [3].

Formula	Name				$C{ }^{30}=C$		CH		$\begin{gathered} C-C \\ \text { Group } \end{gathered}$		$\begin{aligned} & \begin{array}{l} 3 e \\ C=N \\ \text { Group } \end{array} \end{aligned}$		CalculatedTotal Bond Energy (eV)			ExperimentalTotal Bond Energy (eV)			$\begin{gathered} \text { Relative Error } \\ \hline 0.00046 \end{gathered}$
$\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{~N}$	Isoquinoline				8		7		1		2		85.40453			85.44358			
Table 15.320. The bond angle parameters of isoquinoline and experimental values [1]. E_{T} is E_{T} (atom-atom,msp ${ }^{3} . A O$).																			
Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \end{gathered}$ $\left(a_{0}\right)$		$\begin{aligned} & E_{\text {Conlomblic } C} \text { Atom } 1 \end{aligned}$	Atom 1 Hybridization Designation (Table 15.3B)	$E_{\text {Coulomble }}$ Atom 2	Atom 2 Hybridization Designation (Table 15.3B)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\angle C C C$	2.62936	2.65034	4.5585	-17.17218	27	-17.17218	27	0.79232	0.79232	1	1	1	0.79232	-1.85836				119.40	$\begin{gathered} 119.4 \\ \text { (naphthalene) } \end{gathered}$
$\stackrel{\angle C C H}{\angle C N C H}$	2.54147	2.54147	4.3818	-17.43216	31	-17.71560	33	0.78050	0.76801	1	1	1	0.77426	-1.85836		119.40		120.30 119.10	

INDOLE

Indole having the formula $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}$ comprises a phenyl moiety with a conjugated five-membered ring which comprises pyrrole except that one of the double bonds is part of the aromatic ring. The structure is shown in Figure 15.55B. The aromatic $C=C$ and $C-H$ functional groups of the phenyl moiety are equivalent to those of benzene given in the Aromatic and Heterocyclic Compounds section. The $C H, N H$, and $C_{d}=C_{e}$ groups of the pyrrole-type ring are equivalent to the corresponding groups of pyrrole, furan, and thiophene where present as given in the corresponding sections. The $C_{b}-C_{d}$ single bond of aryl carbon to the $C_{d}=C_{e}$ bond is also a functional group. This group is equivalent to the $C-C(O)$ group of benzoic acids with regard to $\Delta E_{\mathrm{H}_{2} M O}(A O / H O)$ in Eq. (15.51) and $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ in Eq. (15.61) both being -1.29147 eV . This energy is a linear combination of $\frac{-1.13379 \mathrm{eV}}{2}, E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-H$ group that the $C_{b}-C_{d}$ and $C-C(O)$ groups replace, and that of an independent $C 2 s p^{3} \mathrm{HO},-0.72457 \mathrm{eV}$ (Eq. (14.151)). However, as in the case of pyrrole, the indole hybridization term c_{2} is the aromatic $c_{2}\left(\right.$ benzene $\left.C 2 s p^{3} H O\right)=0.85252$ to match the aryl $C 2 s p^{3} \mathrm{HO}$, and the energy terms corresponding to oscillation in the transition state correspond to indole.

As in the case of pyrrole, the $C-N-C$-bond MO comprising a linear combination of two single bonds is solved in the same manner as a double bond with $n_{1}=2$ in Eqs. (15.51) and (15.61). The hybridization factor $c_{2}\left(\right.$ arylC $2 s p^{3} \mathrm{HO}$ to N$)=0.84665$ (Eq. (15.171)) matches the aromatic character of the $C 2 s p^{3}$ HOs to the N atom of the $N H$ group, and C_{2} and C_{20} in Eqs. (15.51) and (15.61) become that of benzene given by Eq. (15.162), $C_{2}\left(\right.$ benzene $\left.C 2 s p^{3} H O\right)=0.85252$. Furthermore, $\Delta E_{\mathrm{H}_{2} M O}(A O / H O)$ in Eq. (15.51) and $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$ in Eq. (15.61) are both -2.42526 eV which is a linear combination of $\frac{-1.13379 \mathrm{eV}}{2}, E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ of the $C-H$ group that the $C_{c}-N$ bond replaces, and -1.85836 eV (Eq. (14.513)) which is equivalent to the corresponding component of the $C-N-C$-bond of pyrrole.

The symbols of the functional groups of indole are given in Table 15.321. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of indole are given in Tables $15.322,15.323$, and 15.324 , respectively. The total energy of indole given in Table 15.325 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.324 corresponding to functional-group composition of the molecule. The bond angle parameters of indole determined using Eqs. (15.88-15.117) are given in Table 15.326. The color scale, translucent view of the charge-density of indole comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2} type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.55A.

Figure 15.55. (A) Color scale, translucent view of the charge-density of indole showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). (B) Chemical structure and atom designation of indole.

Table 15.321. The symbols of functional groups of indole.

Functional Group	Group Symbol
CC (aromatic bond)	$\mathrm{C}=\mathrm{C}$
CH (aromatic)	CH (i)
$\mathrm{C}_{d}=\mathrm{C}_{e}$ double bond	$\mathrm{C}=\mathrm{C}$
$\mathrm{C}_{b}-\mathrm{C}_{d}$	$\mathrm{C}-\mathrm{C}$
CH	CH (ii)
$\mathrm{C}_{c}-\mathrm{N}-\mathrm{C}_{e}$	$\mathrm{C}-\mathrm{N}-\mathrm{C}$
NH group	NH

Table 15.322. The geometrical bond parameters of indole and experimental values [1].

Parameter	$\begin{aligned} & C \stackrel{3 e}{C}= \\ & \text { Group } \end{aligned}$	CH (i) Group	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \mathrm{CH} \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-N-C \\ \text { Group } \end{gathered}$	$\begin{gathered} N H \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.47348	1.60061	1.45103	1.53380	1.81395	1.44394	1.24428
$c^{\prime}\left(a_{0}\right)$	1.31468	1.03299	1.30463	1.01120	1.34683	1.30144	0.94134
Bond Length $2 c^{\prime}(A)$	1.39140	1.09327	1.38076	1.07021	1.42542	1.37738	0.996270
Exp. Bond Length (A)	$\begin{gathered} 1.399 \\ \text { (benzene) } \end{gathered}$	$\begin{gathered} 1.101 \\ \text { (benzene) } \end{gathered}$	$\begin{gathered} 1.382 \\ \text { (pyrrole) } \end{gathered}$	$\begin{gathered} 1.076 \\ \text { (pyrrole } \end{gathered}$	$\begin{gathered} 1.417 \\ \text { (pyrrole) } \end{gathered}$	$\begin{gathered} 1.370 \\ \text { (pyrrole) } \end{gathered}$	$\begin{gathered} 0.996 \\ \text { (pyrrole) } \end{gathered}$
$b, c\left(a_{0}\right)$	0.66540	1.22265	0.63517	1.15326	1.21510	0.62548	0.81370
e	0.89223	0.64537	0.89910	0.65928	0.74248	0.90131	0.75653

Table 15.323. The MO to HO intercept geometrical bond parameters of indole. R_{l} is an alkyl group and $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom,msp $\left.{ }^{3} . A O\right)$.

Bond	Atom	E (eV) Bond 1	E_{T} (eV) Bond 2	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 3$	E_{T} (eV) Bond 4	$\begin{gathered} \text { Final Total } \\ \text { Energy } \\ C 2 s p^{3} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & r_{\text {nurial }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {fynal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Culumsum }}\left(\mathrm{C} 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
C-H ($\left.\mathrm{C}_{a} \mathrm{H}\right)$	C_{a}	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	74.42	105.58	38.84	1.24678	0.21379
$C_{a} \stackrel{3 e}{=} H C_{a}=C_{a, b, c}$	C_{a}	-0.85035	-0.85035	-0.56690	0	-153.88327	0.91771	0.79597	-17.09334	-16.90248	134.24	45.76	58.98	0.75935	0.55533
$\begin{aligned} & C_{a}{ }^{3 e}=\left(C_{d}\right) C_{b}=C_{c} \\ & C_{c}{ }_{c}^{3 e}=\left(C_{d}\right) C_{b}{ }^{3 e}=C_{a} \end{aligned}$	C_{b}	-0.85035	-0.64574	-0.85035	0	-153.96212	0.91771	0.79232	-17.17218	-16.98132	134.09	45.91	58.79	0.76344	0.55124
$\begin{aligned} & C_{a}{ }_{a}^{3 c} C_{c}(N) C_{b} \\ & C_{b}=C_{c}(N) C_{a} \end{aligned}$	C_{c}	-0.60631	-0.85035	-0.85035	0	-153.92270	0.91771	0.79414	-17.13276	-16.94190	134.16	45.84	58.89	0.76140	0.55328
$C_{a}(H) C_{b}-C_{d}(H) C_{e}$	C_{b}	-0.85035	-0.85035	-0.64574	0	-153.96212	0.91771	0.79232	-17.17218	-16.98132	87.89	92.11	40.66	1.37597	0.02914
$C_{a}(H) C_{b}-C_{d}(H) C_{e}$	C_{d}	-0.64574	-1.13379	0	0	-153.39522	0.91771	0.81937	-16.60528	-16.41442	90.51	89.49	42.40	1.33953	0.00729
$C_{b}(H) C_{d}=C_{e} N$	C_{d}	-0.64574	-1.13379	0	0	-153.39522	0.91771	0.81937	-16.60528	-16.41442	137.29	42.71	61.04	0.70255	0.60208
$C_{b}(H) C_{d}=C_{e} N$	C_{e}	-1.13379	-0.60631	0	0	-153.35580	0.91771	0.82132	-16.56586	-16.37500	137.37	42.63	61.14	0.70038	0.60425
$\mathrm{C}_{d} \mathrm{C}_{e}-\mathrm{NC}_{e}$	C_{e}	-1.13379	-0.60631	0	0	-153.35580	0.91771	0.82132	-16.56586	-16.37500	138.03	41.97	61.42	0.69080	0.61064
$\begin{aligned} & C_{d} C_{e}-N C_{c} \\ & C_{a} C_{c}-N C_{e} \end{aligned}$	N	-0.60631	-0.60631	0	0		0.93084	0.84833	-16.03838		139.04	40.96	62.76	0.66083	0.64061
$N-H(N H)$	N	-0.60631	-0.60631	0	0		0.93084	0.84833	-16.03838		119.52	60.48	65.13	0.52338	0.41796
$\mathrm{Ca}_{a} C_{\text {c }}-\mathrm{NC}_{e}$	C_{c}	-0.85035	-0.85035	-0.60631	0	-153.92269	0.91771	0.79414	-17.13276	-16.94189	136.97	43.03	60.05	0.72095	0.58048

Table 15.324. The energy parameters (eV) of functional groups of indole.

Parameters	$C \stackrel{3 e}{3 e} C$ Group	CH (i) Group	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \\ \text { Group } \end{gathered}$	CH (ii) Group	$\begin{gathered} C-N-C \\ \text { Group } \end{gathered}$	$\begin{gathered} N H \\ \text { Group } \end{gathered}$
f_{1}	0.75	1	1	1	1	1	1
n_{1}	2	1	2	1	1	2	1
n_{2}	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0
C_{1}	0.5	0.75	0.5	0.5	0.75	0.5	0.75
C_{2}	0.85252	1	0.85252	1	1	0.85252	0.93613
c_{1}	1	1	1	1	1	1	0.75
c_{2}	0.85252	0.91771	0.85252	0.85252	0.91771	0.84665	0.92171
c_{3}	0	1	0	0	1	0	1
c_{4}	3	1	4	2	1	4	1
c_{5}	0	1	0	0	1	0	1
C_{10}	0.5	0.75	0.5	0.5	0.75	0.5	0.75
C_{20}	0.85252	1	0.85252	1	1	0.85252	1
$V_{e}(\mathrm{eV})$	-101.12679	-37.10024	-104.37986	-32.93291	-39.09538	-104.73877	-39.48897
$V_{p}(\mathrm{eV})$	20.69825	13.17125	20.85777	10.10210	13.45505	20.90891	14.45367
$T(\mathrm{eV})$	34.31559	11.58941	35.96751	9.07768	12.74462	36.26840	15.86820
$V_{m}(\mathrm{eV})$	-17.15779	-5.79470	-17.98376	-4.53884	-6.37231	-18.13420	-7.93410
E (Ао/но) (eV)	0	-14.63489	0	-14.63489	-14.63489	0	-14.53414
$\Delta E_{H_{2} \text { MO }}$ (АОНО) (eV)	0	-1.13379	-2.26759	-1.29147	-2.26758	-2.42526	0
E_{T} ((оно) (eV)	0	-13.50110	2.26759	-13.34342	-12.36731	2.42526	-14.53414
$E_{T}\left(H_{2} \mathrm{NOO}\right)(\mathrm{eV})$	-63.27075	-31.63539	-63.27075	-31.63539	-31.63533	-63.27040	-31.63534
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-2.26759	-1.29147	0	-2.42526	0
$E_{T}($ mol (eV)	-65.53833	-32.20226	-65.53833	-32.92684	-31.63537	-65.69600	-31.63537
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	49.7272	26.4826	15.4421	21.8249	28.9084	54.5632	48.7771
$E_{K}(\mathrm{eV})$	32.73133	17.43132	10.16428	14.36554	19.02803	35.91442	32.10594
$\bar{E}_{D}(\mathrm{eV})$	-0.35806	-0.26130	-0.20668	-0.24690	-0.27301	-0.38945	-0.35462
$\bar{E}_{\text {KVVb }}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.17897 \\ {[6]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \end{gathered}$	$\begin{gathered} 0.39427 \\ {[57]} \end{gathered}$	$\begin{gathered} 0.11159 \\ {[12]} \end{gathered}$	$\begin{gathered} 0.40696 \\ {[24]} \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.25982	-0.08364	-0.11720	-0.18534	-0.07587	-0.33365	-0.15115
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
E_{T} (Group) (eV)	-49.54347	-32.28590	-65.77272	-33.11218	-31.71124	-66.36330	-31.78651
$E_{\text {iminal }}\left(\mathrm{c}_{\text {c }}^{\text {, }}\right.$ O/HO) (eV)	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.53414
$E_{\text {intral }}\left(\mathrm{cs}_{\text {s AOIHO) }}(\mathrm{eV})\right.$	0	-13.59844	0	0	-13.59844	0	-13.59844
$E_{D}($ Group $)(\mathrm{eV})$	5.63881	3.90454	7.23317	3.84240	3.32988	7.82374	3.51208

Table 15.325. The total bond energies of indole calculated using the functional group composition and the energies of Table 15.324 compared to the experimental

ADENINE

Adenine having the formula $C_{5} H_{5} N_{5}$ comprises a pyrimidine moiety with an aniline-type moiety and a conjugated fivemembered ring, which comprises imidazole except that one of the double bonds is part of the aromatic ring. The structure is
shown in Figure 15.56B. The aromatic $C \stackrel{3 e}{=} C, C-H$, and $C \stackrel{3 e}{=} N$ functional groups of the pyrimidine moiety are equivalent to those of pyrimidine as given in the corresponding section. The $\mathrm{CH}, \mathrm{NH}, C_{d}-N_{e}$, and $N_{e}=C_{e}$ groups of the imidazole-type ring are equivalent to the corresponding groups of imidazole as given in the corresponding section. The $C-N-C$ functional group of the imidazole-type ring is equivalent to the corresponding group of indole having the same structure with the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ group bonding to aryl and alkenyl groups. The NH_{2} and $\mathrm{C}_{a}-N_{a}$ functional groups of the aniline-type moiety are equivalent to those of aniline as given in the corresponding section except that $\Delta E_{H_{2} M O}(A O / H O)$ of the $C_{a}-N_{a}$ group is equal to twice $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$, and to meet the equipotential condition of the union of the $C-N H_{2}$-type-ellipsoidalMO with these orbitals, the hybridization factor c_{2} of Eq. (15.60) for the $C-N$-bond MO given by Eqs. (15.77), (15.79), and (15.162) is:

$$
\begin{equation*}
c_{2}\left(\text { arylC2sp }{ }^{3} \mathrm{HO} \text { to } N\right)=\frac{E(N)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(\operatorname{arylC} 2 \mathrm{sp}{ }^{3} \mathrm{HO}\right)=\frac{-14.53414 \mathrm{eV}}{-15.95955 \mathrm{eV}}(0.85252)=0.77638 \tag{15.173}
\end{equation*}
$$

The symbols of the functional groups of adenine are given in Table 15.327. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of adenine are given in Tables $15.328,15.329$, and 15.330 , respectively. The total energy of adenine given in Table 15.331 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.330 corresponding to functional-group composition of the molecule. The bond angle parameters of adenine determined using Eqs. (15.88-15.117) are given in Table 15.332. The color scale, chargedensity of adenine comprising atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.56A.

Figure 15.56. (A) Color scale, charge-density of adenine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure and atomic designation of adenine.

B

0

Table 15.327. The symbols of functional groups of adenine.

Functional Group	Group Symbol
CC (aromatic bond)	$\mathrm{C}^{3 e}=\mathrm{C}$
CH (aromatic)	CH (i)
$\mathrm{C}_{b, c}{ }^{3 e} N_{c} \quad \mathrm{C}_{a, b}{ }^{3 e}=N_{b}$	$\mathrm{C}^{3 e}=\mathrm{N}$
$\mathrm{C}_{a}-N_{a}$	$\mathrm{C}-\mathrm{N}$ (a)
NH_{2} group	NH_{2}
$\mathrm{~N}_{e}=\mathrm{C}_{e}$ double bond	$\mathrm{N}=\mathrm{C}$
$\mathrm{C}_{d}-N_{e}$	$\mathrm{C}-\mathrm{N} \mathrm{(b)}$
$\mathrm{~N}_{d} \mathrm{H}$ group	NH
CH	CH (ii)
$\mathrm{C}_{c}-\mathrm{N}_{d}-\mathrm{C}_{e}$	$\mathrm{C}-\mathrm{N}-\mathrm{C}$

Table 15.328. The geometrical bond parameters of adenine and experimental values [1].

Parameter	$\begin{aligned} & C=\frac{3 e}{C=} \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \mathrm{CH} \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C^{3 e}=N \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-N(\text { a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{NH}_{2} \\ \text { Group } \end{gathered}$	$\begin{aligned} & N=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-N \text { (b) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} N H \\ \text { Group } \end{gathered}$	$\mathrm{CH} \text { (ii) }$ Group	$\begin{aligned} & C-N-C \\ & \text { Group } \end{aligned}$
$a\left(a_{0}\right)$	1.47348	1.60061	1.47169	1.61032	1.24428	1.44926	1.82450	1.24428	1.53380	1.44394
$c^{\prime}\left(a_{0}\right)$	1.31468	1.03299	1.27073	1.26898	0.94134	1.30383	1.35074	0.94134	1.01120	1.30144
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.39140	1.09327	1.34489	1.34303	0.99627	1.37991	1.42956	0.996270	1.07021	1.37738
Exp. Bond Length (A)	$\begin{gathered} 1.393 \\ \text { (pyrimidine) } \end{gathered}$	$\begin{gathered} 1.084 \\ \text { (pyridine) } \end{gathered}$	$\begin{gathered} 1.340 \\ \text { (pyrimidine) } \end{gathered}$	$\begin{aligned} & 1.34[64] \\ & \text { (adenine) } \end{aligned}$	$\begin{gathered} 0.998 \\ \text { (aniline) } \end{gathered}$			$\begin{gathered} 0.996 \\ \text { (pyrrole) } \end{gathered}$	$\begin{aligned} & 1.076 \\ & \text { (pyrrole) } \end{aligned}$	$\begin{gathered} 1.370 \\ \text { (pyrrole) } \end{gathered}$
$b, c\left(a_{0}\right)$	0.66540	1.22265	0.74237	0.99137	0.81370	0.63276	1.22650	0.81370	1.15326	0.62548
e	0.89223	0.64537	0.86345	0.78803	0.75653	0.89965	0.74033	0.75653	0.65928	0.90131

Table 15.329. The MO to HO intercept geometrical bond parameters of adenine. R_{1} is an alkyl group and $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is E_{T} (atom atom, $m s p^{3}$.AO).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$		$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 3 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	$\begin{aligned} & \text { Final Total } \\ & \text { Energy } \\ & C 2 s p^{3}(\mathrm{eV}) \end{aligned}$	$\begin{aligned} & r_{\text {invital }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {final }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Catuont }(}\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \\ \hline \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \\ \hline \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \theta_{1} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{\mathrm{c}}\right) \end{gathered}$
$C_{d}\left(N_{b}\right) C_{a} N_{a} H-H$	N_{a}	-0.56690	0	0	0		0.93084	0.88392	-15.39265		121.74	58.26	67.49	0.47634	0.46500
$\mathrm{C}_{d}\left(\mathrm{~N}_{b}\right) \mathrm{C}_{a}-\mathrm{N}_{a} \mathrm{H}_{2}$	C_{a}	-0.56690	-0.54343	-0.85035	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	108.27	71.73	50.93	1.01493	0.25406
$\mathrm{C}_{d}\left(\mathrm{~N}_{b}\right) \mathrm{C}_{a}-\mathrm{N}_{a} \mathrm{H}_{2}$	N_{a}	-0.56690	0	0	0		0.93084	0.88392	-15.39265		113.13	66.87	55.08	0.92180	0.34719
$C-H\left(C_{b} H\right)$	C_{b}	-0.54343	-0.54343	-0.56690	0	-153.26945	0.91771	0.82562	-16.47951	-16.28864	78.27	101.73	41.39	1.20084	0.16785
C-H ($\left.C_{e} H\right)$	C_{e}	-0.92918	-0.60631	0	0	-153.15119	0.91771	0.83159	-16.36125	-16.17038	86.28	93.72	46.02	1.06512	0.05392
$N-H\left(N_{d} H\right)$	N	-0.60631	-0.60631	0	0		0.93084	0.84833	-16.03838		119.52	60.48	65.13	0.52338	0.41796
$C_{d}\left(N H_{2}\right) C_{a} \stackrel{3 e}{=} N_{b} C_{b}$	C_{a}	-0.85035	-0.54343	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	128.54	51.46	58.65	0.76572	0.50501
$\begin{aligned} & C_{d}\left(N H_{2}\right) C_{a}=N_{b} C_{b} \\ & N_{b} C_{b}=N_{c} C_{c} \end{aligned}$	$\begin{aligned} & N_{b} \\ & N_{c} \end{aligned}$	-0.54343	-0.54343	0	0		0.93084	0.85503	-15.91261		130.61	49.39	60.97	0.71418	0.55656
$\begin{aligned} & N_{b} C_{b}{ }^{3 e}=N_{c} C_{c} \\ & C_{a} N_{b}=C_{b} N_{c} \end{aligned}$	C_{b}	-0.54343	-0.54343	-0.56690	0	-153.26945	0.91771	0.82562	-16.47951	-16.28865	129.26	50.74	59.44	0.74824	0.52249
$C_{d}\left(N_{d} H\right) C_{c} \stackrel{3 e}{=} N_{c} C_{b}$	C_{c}	-0.85035	-0.54343	-0.60631	0	-153.61578	0.91771	0.80863	-16.82584	-16.63498	128.45	51.55	58.55	0.76792	0.50281
$N_{b}\left(N_{a} H_{2}\right) C_{a}=C_{d}\left(N_{e}\right) C_{c}$	C_{a}	-0.85035	-0.54343	-0.56690	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	134.85	45.15	59.72	0.74304	0.57165
$\begin{aligned} & N_{b}\left(N_{a} H_{2}\right) C_{a}{ }_{a}^{3 e}=C_{d}\left(N_{e}\right) C_{c} \\ & C_{a}\left(N_{e}\right) C_{d}=C_{c}\left(N_{d} H\right) N_{c} \end{aligned}$	C_{d}	-0.85035	-0.85035	-0.46459	0	-153.78097	0.91771	0.80076	-16.99103	-16.80017	134.44	45.56	59.22	0.75398	0.56071
$C_{a}\left(N_{e}\right) C_{d}=C_{c}\left(N_{d} H\right) N_{c}$	C_{c}	-0.85035	-0.54343	-0.60631	0	-153.61578	0.91771	0.80863	-16.82584	-16.63498	134.77	45.23	59.62	0.74516	0.56952
$C_{d}\left(N_{c}\right) C_{c}-N_{d} H$	C_{c}	-0.85035	-0.54343	-0.60631	0	-153.61578	0.91771	0.80863	-16.82584	-16.63498	137.54	42.46	60.78	0.70488	0.59656
$\begin{aligned} & C_{e}(H) N_{d}-C_{c}\left(N_{c}\right) C_{d} \\ & N_{e}(H) C_{c}-N_{d}(H) C_{c} \\ & \hline \end{aligned}$	N_{d}	-0.60631	-0.60631	0	0		0.93084	0.84833	-16.03838		139.04	40.96	62.76	0.66083	0.64061
$N_{e}(H) C_{e}-N_{d}(H) C_{c}$	C_{e}	-0.60631	-0.92918	0	0	-153.15119	0.91771	0.83159	-16.36125	-16.17039	138.42	41.58	61.93	0.67940	0.62203
$C_{d} N_{e}=C_{e}(H) N_{d} H$	C_{e}	-0.92918	-0.60631	0	0	-153.15119	0.91771	0.83159	-16.36125	-16.17039	137.93	42.07	61.72	0.68657	0.61726
$C_{d} N_{e}=C_{p}(H) N_{d} H$	N_{e}	-0.92918	-0.46459	0	0		0.93084	0.83885	-16.21952		138.20	41.80	62.08	0.67849	0.62534
$C_{a}\left(C_{c}\right) C_{d}-N_{e} C_{e}$	N_{e}	-0.46459	-0.92918	0	0		0.93084	0.83885	-16.21952		91.32	88.68	43.14	1.33135	0.01939
$C_{a}\left(C_{c}\right) C_{d}-N_{e} C_{e}$	C_{d}	-0.46459	-0.85035	-0.85035	0	-153.78097	0.91771	0.80076	-16.99103	-16.80017	87.71	92.29	40.72	1.38280	0.03206

Table 15.330. The energy parameters (eV) of functional groups of adenine.

Parameters	$\begin{aligned} & \begin{array}{l} 3 e \\ C=C \\ \text { Group } \end{array} \end{aligned}$	$\begin{aligned} & \text { CH (i) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \begin{array}{l} C^{3 e} \\ \text { Group } \end{array} \end{aligned}$	$\begin{gathered} C-N \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{NH}_{2} \\ \text { Group } \end{gathered}$	$\begin{aligned} & N=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-N(\mathrm{~b}) \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{NH} \\ \text { Group } \end{gathered}$	CH (ii) Group	$\begin{gathered} C-N-C \\ \text { Group } \end{gathered}$
f_{1}	0.75	1	0.75	1	1	1	1	1	1	1
n_{1}	2	1	2	1	2	2	1	1	1	2
n_{2}	0	0	0	0	0	0	0	0	0	0
n_{3}	0	0	0	0	1	0	0	0	0	0
C_{1}	0.5	0.75	0.5	0.5	0.75	0.5	0.5	0.75	0.75	0.5
C_{2}	0.85252	1	0.91140	1	0.93613	0.85252	1	0.93613	1	0.85252
c_{1}	1	1	1	1	0.75	1	1	0.75	1	1
c_{2}	0.85252	0.91771	0.91140	0.84665	0.92171	0.84665	0.84665	0.92171	0.91771	0.84665
c_{3}	0	1	0	0	0	0	0	1	1	0
c_{4}	3	1	3	2	1	4	2	1	1	4
c_{5}	0	1	0	0	2	0	0	1	1	0
C_{10}	0.5	0.75	0.5	0.5	1.5	0.5	0.5	0.75	0.75	0.5
C_{20}	0.85252	1	0.91140	1	1	0.85252	1	1	1	0.85252
$V_{e}(\mathrm{eV})$	-101.12679	-37.10024	-102.01431	-35.50149	-78.97795	-103.92756	-32.44864	-39.48897	-39.09538	-104.73877
$V_{p}(\mathrm{eV})$	20.69825	13.17125	21.41410	10.72181	28.90735	20.87050	10.07285	14.45367	13.45505	20.90891
$T(\mathrm{eV})$	34.31559	11.58941	34.65890	11.02312	31.73641	35.85539	8.89248	15.86820	12.74462	36.26840
$V_{m}(\mathrm{eV})$	-17.15779	-5.79470	-17.32945	-5.51156	-15.86820	-17.92770	-4.44624	-7.93410	-6.37231	-18.13420
E\|иогно) (eV)	0	-14.63489	0	-14.63489	-14.53414	0	-14.63489	-14.53414	-14.63489	0
$\Delta E_{H_{2} \text { мо }}\left(\right.$ (Ао) Но) $^{\text {(}}$ (V$)$	0	-1.13379	0	-2.26759	0	-1.85836	-0.92918	0	-2.26758	-2.42526
	0	-13.50110	0	-12.36730	-14.53414	1.85836	-13.70571	-14.53414	-12.36731	2.42526
	0	0	0	0	-14.53414	0	0	0	0	0
$E_{t}\left(H_{2} M(1){ }^{\text {a }}\right.$ (eV)	-63.27075	-31.63539	-63.27076	-31.63543	-48.73654	-63.27100	-31.63527	-31.63534	-31.63533	-63.27040
$E_{f}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} \cdot \mathrm{AO}\right)(\mathrm{eV})$	-2.26759	-0.56690	-1.44915	-1.13379	0	-1.85836	-0.92918	0	0	-2.42526
$E_{f}(\mathrm{mo})(\mathrm{eV})$	-65.53833	-32.20226	-64.71988	-32.76916	-48.73660	-65.12910	-32.56455	-31.63537	-31.63537	-65.69600
© ($10^{15} \mathrm{rad} / \mathrm{s}$)	49.7272	26.4826	43.6311	14.3055	68.9812	15.4704	21.5213	48.7771	28.9084	54.5632
$E_{K}(\mathrm{eV})$	32.73133	17.43132	28.71875	9.41610	45.40465	10.18290	14.16571	32.10594	19.02803	35.91442
$\bar{E}_{p}(\mathrm{eV})$	-0.35806	-0.26130	-0.33540	-0.19893	-0.42172	-0.20558	-0.24248	-0.35462	-0.27301	-0.38945
$\overline{\bar{E}_{\text {gvub }}}(\mathrm{eV})$	$\begin{gathered} 0.19649 \\ {[49]} \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$	$\begin{gathered} 0.19649 \\ {[49]} \end{gathered}$	$\begin{gathered} 0.15498 \\ {[58]} \end{gathered}$	$\begin{gathered} 0.40929 \\ {[22]} \end{gathered}$	$\begin{gathered} 0.20768 \\ {[62]} \end{gathered}$	$\begin{gathered} 0.12944 \\ {[23]} \end{gathered}$	$\begin{gathered} 0.40696 \\ {[24]} \end{gathered}$	$\begin{gathered} 0.39427 \\ {[60]} \\ \hline \end{gathered}$	$\begin{gathered} 0.11159 \\ {[12]} \\ \hline \end{gathered}$
$\overline{\bar{E}_{\text {cc }}}(\mathrm{eV})$	-0.25982	-0.08364	-0.23715	-0.12144	-0.21708	-0.10174	-0.17775	-0.15115	-0.07587	-0.33365
$E_{\text {nag }}(\mathrm{eV})$	0.14803	0.14803	0.09457	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{F}($ (rour $)(\mathrm{eV})$	-49.54347	-32.28590	-48.82472	-32.89060	-49.17075	-65.33259	-32.74230	-31.78651	-31.71124	-66.36330
$E_{\text {nurual }}(\mathrm{c}$, Ао $/$ но) $)(\mathrm{eV})$	-14.63489	-14.63489	-14.63489	-14.63489	-14.53414	-14.63489	-14.63489	-14.53414	-14.63489	-14.63489
	0	-13.59844	0	0	-13.59844	0	0	-13.59844	-13.59844	0
$E_{\mathrm{D}}($ (Grueu) (eV)	5.63881	3.90454	4.92005	3.62082	7.43973	6.79303	3.47253	3.51208	3.32988	7.82374

Table 15.331. The total bond energies of adenine calculated using the functional group composition and the energies of Table 15.330 compared to the experimental values [3].
 E_{T} is E_{T} (atom-atom, $\mathrm{msp}^{3} \cdot A O$).

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{6}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \end{gathered}$ $\left(a_{0}\right)$	$2 c^{\prime}$ Terminal Atoms $\left(a_{0}\right)$	$\begin{aligned} & E_{\text {Coulomble }} \\ & \text { Atom } 1 \end{aligned}$	Atom 1 Hybridization Designation (Table 15.3B)	$\begin{aligned} & E_{\text {Colomblic }} \\ & \text { Atom 2 } \end{aligned}$	Atom 2 Hybridization Designation (Table 15.3B)	c_{2} Atom 1	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \theta_{1} \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	Cal. θ $\left({ }^{\circ}\right)$	Exp. θ $\left({ }^{\circ}\right)$
$\angle H N H$	1.88268	1.88268	3.1559	-14.53414	N	H	H	$\begin{gathered} 0.93613 \\ \text { Eq. } \\ (13.248) \end{gathered}$	1	1	1	0.75	1.06823	0				113.89	$\begin{aligned} & 113.9[1] \\ & \text { (aniline) } \end{aligned}$
$\angle C_{a}$ NH	2.53797	1.88268	3.8123	-16.78642	19	-14.53414	N	$\begin{gathered} 0.81052 \\ \text { Eq. } \\ (15.71) \end{gathered}$	$\begin{gathered} 0.77638 \\ \text { Eq. } \\ (15.173) \end{gathered}$	0.75	1	0.75	0.95787	0				118.42	118
$\angle N_{b} C_{b} N_{c}$	2.54147	2.54147	4.5826	-15.55033	3	-15.55033	3	0.87495	0.87495	1	1	1	0.87495	-1.44915				128.73	128.9
$\begin{aligned} & \angle H_{b} C_{b} N_{b} \\ & \angle H_{b} C_{b} N_{c} \end{aligned}$																	128.73	$\begin{gathered} 115.64 \\ \text { Eq. } \\ (15.109) \\ \hline \end{gathered}$	$\begin{aligned} & 115 \\ & 116 \end{aligned}$
$\angle H_{e} C_{e} N_{e}$	2.02241	2.60766	4.0661	-16.36125	12	-14.53414	N	0.83159	$\begin{gathered} \hline 0.84665 \\ \text { Eq. } \\ (15.171) \\ \hline \end{gathered}$	0.75	1	0.75	1.01811	0				122.35	126
$\angle N_{e} C_{e} N_{d}$	2.60766	2.60287	4.3359	-16.21952	9	-16.03838	7	0.83885	0.84833	1	1	1	0.84359	-1.44915				112.64	114.4
$\angle N_{c} C_{c} N_{d}$	2.54147	2.60287	4.6260	-14.53414	N	-14.53414	N	$\begin{gathered} 0.91140 \\ \text { Eq. } \\ (15.135) \\ \hline \end{gathered}$	$\begin{gathered} 0.84665 \\ \text { Eq. } \\ (15.171) \\ \hline \end{gathered}$	1	1	1	0.87902	-1.44915				128.11	127.8
$\angle H_{e} C_{e} N_{d}$																122.35	112.64	125.02	119
$\angle H_{d} N_{d} C_{e}$	1.88268	2.60287	4.0166	-14.53414	N	-15.95955	6	$\begin{aligned} & 0.84665 \\ & \text { Eq. } \\ & \text { (15.171) } \end{aligned}$	$\begin{aligned} & 0.85252 \\ & \text { Eq. } \\ & (15.162) \end{aligned}$	0.75	1	0.75	1.00693	0				126.39	127
$\angle C_{c} N_{d} C_{e}$	2.60287	2.60287	4.1952	-17.95963	39	-17.95963	39	0.75758	0.75758	1	1	1	0.75758	-1.85836				107.39	106.1
$\angle H_{d} N_{d} C_{c}$																126.39	107.39	126.22	127
$\angle N_{a} C_{a} C_{d}$	2.53797	2.62936	4.5387	-14.53414	N	$\begin{gathered} -16.52644 \\ C_{d} \end{gathered}$	15	$\begin{gathered} 0.91140 \\ \text { Eq. } \\ (15.135) \end{gathered}$	0.82327	1	1	1	0.86734	-1.44915				122.88	122.1
$\angle N_{b} C_{a} C_{d}$	2.54147	2.62936	4.4272	-14.53414	N	$\begin{gathered} -16.99103 \\ C_{d} \\ \hline \end{gathered}$	21	$\begin{gathered} 0.91140 \\ \text { Eq. } \\ (15.135) \end{gathered}$	0.80076	1	1	1	0.85608	-1.44915				117.77	118.2
$\angle N_{b} C_{a} N_{a}$																122.88	117.77	119.35	119.4
$\angle N_{e} C_{d} C_{c}$	2.70148	2.62936	4.3818	-14.53414	N	$\begin{gathered} -15.95955 \\ C_{c} \end{gathered}$	6	$\begin{gathered} \hline 0.84665 \\ \text { Eq. } \\ (15.171) \\ \hline \end{gathered}$	0.85252	1	1	1	0.84958	-1.44915				110.56	110.4
$\angle N_{d} C_{c} C_{d}$	2.60287	2.62936	4.1952	-14.53414	N	$\begin{gathered} -16.99103 \\ C_{d} \end{gathered}$	21	$\begin{gathered} 0.84665 \\ \text { Eq. } \\ (15.171) \\ \hline \end{gathered}$	0.80076	1	1	1	0.82371	-1.44915				106.60	105.9
$\angle N_{c} C_{c} C_{d}$	2.54147	2.62936	4.6043	-14.53414	N	$\begin{gathered} -16.52644 \\ C_{d} \\ \hline \end{gathered}$	15	$\begin{gathered} 0.84665 \\ \text { Eq. } \\ \text { (15.171) } \end{gathered}$	0.82327	1	1	1	0.83496	-1.65376				125.85	126.4
$\angle N_{e} C_{d} C_{a}$	2.70148	2.62936	4.8580	-14.53414	N	$\begin{gathered} -16.78642 \\ C_{a} \\ \hline \end{gathered}$	1	$\begin{gathered} 0.91140 \\ \text { Eq. } \\ (15.135) \\ \hline \end{gathered}$	0.81052	1	1	1	0.86096	-1.65376				131.37	132.8
$\angle C_{d} N_{e} C_{e}$	2.70148	2.60766	4.2661	-17.92022	37	-17.92022	37	0.75924	0.75924	1	1	1	0.75924	-1.85836				106.93	103.3
$\angle C_{b} N_{c} C_{c}$	2.54147	2.54147	4.1952	-17.95963	39	-17.95963	39	0.75758	0.75758	1	1	1	0.75758	-1.85836				111.25	111.3
$\angle C_{a} N_{b} C_{b}$	2.54147	2.54147	4.3704	-17.71560	33	-17.40869	30	0.76801	0.78155	1	1	1	0.77478	-1.85836				118.59	118.6
$\angle C_{a} C_{d} C_{c}$	2.62936	2.62936	4.4721	-17.71560	33	-17.14871	26	0.76801	0.79340	1	1	1	0.78071	-1.85836				116.52	116.7

THYMINE

Thymine having the formula $C_{5} H_{6} N_{2} O_{2}$ is a pyrimidine with carbonyl substitutions at positions C_{a} and C_{b} and a methyl substitution at position C_{d} further comprising a vinyl group as shown in Figure 15.57B. Each $C=O$, adjacent $C-N$, and $N H$ functional group is equivalent to the corresponding group of alkyl amides. The methyl-vinyl moiety is equivalent to the CH_{3}, $-C(C)=C, C H$, and $C=C$ functional groups of alkenes. Thymine further comprises $N_{b} H$ and $C_{b}-N_{c}-C_{c}$ groups that are equivalent to the corresponding groups of imidazole as given in the corresponding section. The $C_{a}-C_{d}$ bond comprises another functional group that is equivalent to the $C_{a}-C_{d}$ group of guanine.

The symbols of the functional groups of thymine are given in Table 15.333. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of thymine are given in Tables $15.334,15.335$, and 15.336 , respectively. The total energy of thymine given in Table 15.337 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.336 corresponding to functional-group composition of the molecule. The bond angle parameters of thymine determined using Eqs. (15.88-15.117) are given in Table 15.338. The color scale, chargedensity of thymine comprising atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.57A.

Figure 15.57. (A) Color scale, charge-density of thymine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure and atom designation of thyamine.

$0 \square 1 \mathrm{e} / \mathrm{A}^{2}$

Table 15.33 . The symbols of functional groups of thymine.

Functional Group	Group Symbol
$\mathrm{C}_{a}=\mathrm{O} \quad \mathrm{C}_{b}=\mathrm{O}$ (alkyl amide)	$\mathrm{C}=\mathrm{O}$
$\mathrm{C}_{a}-\mathrm{N}_{b} \quad C_{b}-N_{b}$ amide	$\mathrm{C}-\mathrm{N}$
$N_{b} \mathrm{H}$ amide group	NH (i)
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
$\mathrm{C}_{c}=C_{d}$ double bond	$\mathrm{C}=\mathrm{C}$
$\mathrm{C}_{d}-\mathrm{C}_{e}$	$\mathrm{C}-\mathrm{C}$ (i)
$\mathrm{C}_{a}-\mathrm{C}_{d}$	$\mathrm{C}-\mathrm{C}$ (ii)
$\mathrm{C}_{b}-\mathrm{N}_{c}-C_{c}$	$\mathrm{C}-\mathrm{N}-\mathrm{C}$
$\mathrm{N}_{c} \mathrm{H}$ group	NH (ii)
$C_{c} \mathrm{H}$	CH

Table 15.334. The geometrical bond parameters of thymine and experimental values [1].

Parameter	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-N \\ & \text { Group } \end{aligned}$	NH (i) Group	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N-C \\ \text { Group } \end{gathered}$	$\begin{aligned} & \text { NH (ii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.29907	1.75370	1.28620	1.64920	1.47228	2.04740	1.88599	1.43222	1.24428	1.53380
$c^{\prime}\left(a_{0}\right)$	1.13977	1.32427	0.95706	1.04856	1.26661	1.43087	1.37331	1.29614	0.94134	1.01120
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.20628	1.40155	1.01291	1.10974	1.34052	1.51437	1.45345	1.37178	0.996270	1.07021
Exp. Bond Length (A)	1.220 (acetamide) 1.225 (N-methylacetamide)	$\begin{gathered} 1.380 \\ \text { (acetamide) } \end{gathered}$		$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	1.34 [64] (thymine) 1.342 (2-methylpropene) 1.346 (2-butene) 1.349 (1,3-butadiene)		1.43 [65] (thymine)	$\begin{gathered} 1.370 \\ \text { (pyrrole) } \end{gathered}$	$\begin{gathered} 0.996 \\ \text { (pyrrole) } \end{gathered}$	$\begin{gathered} 1.076 \\ \text { (pyrrole) } \end{gathered}$
$b, c\left(a_{0}\right)$	0.62331	1.14968	0.85927	1.27295	0.75055	1.46439	1.29266	0.60931	0.81370	1.15326
e	0.87737	0.75513	0.74410	0.63580	0.86030	0.69887	0.72817	0.90499	0.75653	0.65928

Table 15.335. The MO to HO intercept geometrical bond parameters of thymine. R_{1} is an alkyl group and $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is E_{T} (atom atom, $m s p^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{\mathrm{T}} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 1$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 2$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 3 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\left(a_{0}\right)$	$\begin{aligned} & r_{\text {fral }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coultomb }}\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$N_{b}\left(C_{d}\right) C_{a}=O$	O_{a}	-1.34946	0	0	0		1.00000	0.84115	-16.17521		137.27	42.73	66.31	0.52193	0.61784
$N_{b}\left(C_{d}\right) C_{a}=O$	C_{a}	-1.34946	-0.82688	0	0	-153.79203	0.91771	0.80024	-17.00209	-16.81123	135.55	44.45	64.05	0.56855	0.57122
$N-H\left(N_{b} H\right)$	N_{b}	-0.82688	-0.82688	0	0		0.93084	0.82562	-16.47951		118.03	61.97	63.59	0.55339	0.38795
$C_{d}(O) C_{a}-N_{b} H\left(C_{b}\right)$	N_{b}	-0.82688	-0.82688	0	0		0.93084	0.82562	-16.47951		96.62	83.38	45.51	1.22903	0.09524
$C_{d}(O) C_{a}-N_{b} H\left(C_{b}\right)$	C_{a}	-0.82688	-1.34946	0	0	-153.79203	0.91771	0.80024	-17.00209	-16.81123	94.42	85.58	43.95	1.26264	0.06164
$C_{a} N_{b} H-C_{b}(O) N_{c} H$	N_{b}	-0.82688	-0.82688	0	0		0.93084	0.82562	-16.47951		96.62	83.38	45.51	1.22903	0.09524
$C_{a} N_{b} H-C_{b}(O) N_{c} H$	C_{b}	-0.82688	-1.34946	-0.82688	0	-154.61891	0.91771	0.76313	-17.82897	-17.63811	90.94	89.06	41.58	1.31179	0.01249
$\left(H N_{c}\right)\left(H N_{b}\right) C_{b}=O$	O_{b}	-1.34946	0	0	0		1.00000	0.84115	-16.17521		137.27	42.73	66.31	0.52193	0.61784
$\left(H N_{c}\right)\left(H N_{b}\right) C_{b}=O$	C_{b}	-1.34946	-0.82688	-0.92918	0	-154.72121	0.91771	0.75878	-17.93127	-17.74041	133.67	46.33	61.70	0.61582	0.52395
$N-H\left(N_{c} H\right)$	N_{c}	-0.92918	-0.92918	0	0		0.93084	0.81549	-16.68411		117.34	62.66	62.90	0.56678	0.37456
$N_{b}(O) C_{b}-N_{c} H C_{c}$	N_{c}	-0.92918	-0.92918	0	0		0.93084	0.81549	-16.68411		138.92	41.08	61.59	0.68147	0.61467
$N_{b}(O) C_{b}-N_{c} H_{c}$	C_{b}	-0.92918	-1.34946	-0.82688	0	-154.72121	0.91771	0.75878	-17.93127	-17.74041	136.68	43.32	58.70	0.74414	0.55200
$C_{b} H N_{c}-H C_{c} C_{d}$	N_{c}	-0.92918	-0.92918	0	0		0.93084	0.81549	-16.68411		138.92	41.08	61.59	0.68147	0.61467
$C_{b} H N_{c}-H C_{c} C_{d}$	C_{c}	-0.92918	-1.13379	0	0	-153.67866	0.91771	0.80561	-16.88873	-16.69786	138.54	41.46	61.09	0.69238	0.60376
$\mathrm{C}-\mathrm{H}\left(\mathrm{C}_{c} H\right)$	C_{c}	-1.13380	-0.92918	0	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	83.35	96.65	43.94	1.10452	0.09331
$N_{c} H C_{c}=C_{d} C_{a}\left(C_{c}\right)$	C_{c}	-1.13380	-0.92918	-0.72457	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	125.92	54.08	56.46	0.81345	0.45316
$N_{c} H C_{c}=C_{d} C_{a}\left(C_{c}\right)$	C_{d}	-1.13380	0	-0.72457	0	-153.47406	0.91771	0.81549	-16.68412	-16.49326	128.10	51.90	58.77	0.76344	0.50317
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	C_{e}	-0.72457	0	0	0	-152.34026	0.91771	0.87495	-15.55033	-15.35946	78.85	101.15	42.40	1.21777	0.16921
$\left(C_{a}\right) C_{c} C_{d}-\mathrm{C}_{e} \mathrm{H}_{3}$	C_{e}	-0.72457	0	0	0	-152.34026	0.91771	0.87495	-15.55033	-15.35946	73.62	106.38	34.98	1.67762	0.24675
$\left(C_{a}\right) C_{c} C_{d}-C_{e} H_{3}$	C_{d}	-0.72457	-1.13379	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	65.99	114.01	30.58	1.76270	0.33183
$\left(C_{c}\right) C_{c} C_{d}-C_{a}(O) N_{b}$	C_{a}	0	-1.34946	-0.82688	0	-153.79203	0.91771	0.80024	-17.00209	-16.81123	81.54	98.46	37.76	1.49107	0.11776
$\left(C_{e}\right) C_{c} C_{d}-C_{a}(O) N_{b}$	C_{d}	0	-1.13379	-0.72457	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	92.72	87.28	45.17	1.32975	0.04357

Table 15.337. The total gaseous bond energies of thymine calculated using the functional group composition and the energies of Table 15.336 compared to the experimental values [3].

Formula	Name		$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-N \\ & \text { Group } \end{aligned}$	NH (i) Group	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	CH_{3}Group		$\begin{gathered} C-C \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (ii) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N-C \\ \text { Group } \end{gathered}$		$\begin{aligned} & N H \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C H \\ \text { Group } \end{gathered}$	Calculated Total Bond Energy (eV)		$\begin{gathered} \text { Experimental } \\ \text { Total Bond Energy } \\ (\mathrm{eV}) \end{gathered}$		$\begin{aligned} & \text { Relative } \\ & \text { Error } \end{aligned}$
$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \quad$ Thymine			2	2	1	1	1		1	1		1	1	1		. 08792		6438	-0.00034
Table 15.338 . The bond angle parameters of thymine and experimental values [64]. In the calculation of θ_{v}, the parameters from the preceding angle we $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} \cdot A O\right)$.																			
Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \end{gathered}$ $\left(a_{0}\right)$		$\begin{aligned} & E_{\text {Coulomblic }} \\ & \text { Atom 1 } \end{aligned}$	Atom 1 Hybridization Designation (Table 15.3B)	$\begin{aligned} & E_{\text {Coulomble }} \\ & \text { Atom } \end{aligned}$	Atom 2 Hybridization Designation (Table 15.3B)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\angle N_{b} C_{a} C_{d}$	2.64855	2.74663	4.5277	-14.53414	N	$\begin{array}{\|c} -16.68412 \\ C_{d} \end{array}$	18	$\begin{gathered} 0.91140 \\ \text { Eq. } \\ (15.135) \end{gathered}$	0.81549	1	1	- ${ }^{1}$	0.86345	-1.44915				114.10	115.7
$\angle N_{b} C_{a} O$	2.64855	2.27954	4.2661	-16.47951	14	-16.17521	8	0.82562	0.84115	1	1	1	0.83339	-1.44915				119.73	119.5
$\angle O C_{a} C_{d}$																114.10	119.73	126.17	124.8
$\angle C_{b} N_{b} C_{a}$	2.64855	2.64855	4.6904	-17.40869	30	-16.58181	16	0.78155	0.82053	1	1	1	0.80104	-1.85836				124.62	126.1
$\angle N_{b} C_{b} N_{c}$	2.64855	2.59228	4.4497	-16.47951	14	-16.68411	17	0.82562	0.81549	1	1	1	0.82056	-1.65376				116.21	115.1
$\angle H_{b} N_{b} C_{a}$	1.88268	2.64855	3.9158	-14.53414	N	$\stackrel{-14.82575}{C_{a}}$	1	$\begin{gathered} 0.93613 \\ \text { Eq. } \\ (13.248) \end{gathered}$	0.91771	0.75	1	0.75	0.98033	0				118.60	
$\angle C_{b} N_{b} H_{b}$																124.62	118.60	116.78	
$\angle C_{b} N_{c} C_{c}$	2.59228	2.59228	4.4944	-17.93127	38	-16.88873	20	0.75878	0.80561	1	1	1	0.78219	-1.85836				120.20	120.7
$\angle N_{c} C_{b} O_{b}$	2.59228	2.27954	4.2661	-16.68411	18	-16.17521	8	0.81549	0.84115	1	1	1	0.82832	-1.44915				122.12	123.7
$\angle N_{b} C_{b} O_{b}$																116.21	122.12	121.67	121.2
$\angle N_{c} C_{c} C_{d}$	2.59228	2.53321	4.5387	-14.53414	N	-16.68412	18	$\begin{gathered} 0.84665 \\ \text { Eq. } \\ (15.171) \end{gathered}$	0.81549	1	1	- 1	0.83107	-1.65376				124.63	122.9
$\angle H_{c} N_{c} C_{c}$	1.88268	2.59228	3.8644	-14.53414	N	-16.68412	18	$\begin{gathered} 0.8465 \\ \text { Eq } \\ (15.171) \end{gathered}$	0.81549	0.75	1	0.75	0.96320	0				118.58	
$\left\langle H_{c} N_{c} C_{b}\right.$																120.20	118.58	121.23	
$\angle H_{c} C_{c} C_{d}$	2.02241	2.53321	3.9833	-15.95955	6	-15.95955	6	0.85252	0.85252	0.75	1	0.75	1.00000	0				121.54	
$\left\langle H_{c} C_{c} N_{c}\right.$																124.63	121.54	113.84	
$\angle C_{a} C_{d} C_{c}$	2.74663	2.53321	4.5387	-17.00209	22	-17.61330	32	0.80024	0.77247	1	1	1	0.78636	-1.85836				118.49	118.5
$\angle C_{e} C_{d} C_{c}$	2.86175	2.53321	4.7117	-16.47951	14	-17.40869	30	0.82562	0.78155	1	1	1	0.80359	-1.85836				121.58	123.3
$\angle C_{e} C_{d} C_{a}$																118.49	121.58	119.93	118.2
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{e} H \end{aligned}$	2.09711	2.09711	3.4252	$\begin{array}{\|c} -15.75493 \\ C_{e} \end{array}$	4	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	

GUANINE

Guanine having the formula $C_{5} H_{5} N_{5} \mathrm{O}$ is a purine with a carbonyl substitution at position C_{a}, and a primary amine moiety is at position C_{b} as shown in Figure 15.58B. The carbonyl functional group is equivalent to that of alkyl amides and the NH_{2} and $C_{b}-N_{a}$ functional groups of the primary amine moiety are equivalent to the NH_{2} and $\mathrm{C}_{a}-\mathrm{N}_{a}$ functional groups of adenine. Guanine further comprises an imidazole moiety wherein the $\mathrm{CH}, N_{d} H, C_{d}=C_{c}, C_{d}-N_{e}, N_{e}=C_{e}$, and $C_{c}-N_{d}-C_{e}$ groups of the imidazole-type ring are equivalent to the corresponding groups of imidazole as given in the corresponding section. The six-membered ring also comprises the groups $C_{a}-N_{b}-C_{b}, N_{b} H, N_{c}=C_{c}$, and $C_{c}-N_{d}$ that are equivalent to the corresponding imidazole and adenine functional groups. The $C_{a}-C_{d}$ bond comprises another functional group that is the $C_{60}{ }^{-}$ single-bond functional group except that $E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . A O\right)=0$ in order to match the energies of the single and doublebonded moieties within the molecule.

The symbols of the functional groups of guanine are given in Table 15.339. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of guanine are given in Tables $15.340,15.341$, and 15.342 , respectively. The total energy of guanine given in Table 15.343 was calculated as the sum over the integer multiple of each $E_{D}($ Group $)$ of Table 15.342 corresponding to functional-group composition of the molecule. The bond angle parameters of guanine determined using Eqs. (15.88-15.117) are given in Table 15.344. The color scale, chargedensity of guanine comprising atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.58A.

Figure 15.58. (A) Color scale, charge-density of guanine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure and atomic designation of guanine.

Table 15.339. The symbols of functional groups of guanine.

Functional Group	Group Symbol
$C_{a}=O$ (alkyl amide)	$\mathrm{C}=\mathrm{O}$
$C_{b}-N_{a}$	$\mathrm{C}-\mathrm{N} \quad$ (a)
NH_{2} group	NH_{2}
$C_{c}=C_{d}$ double bond	$\mathrm{C}=\mathrm{C}$
$C_{a}-C_{d}$	$\mathrm{C}-\mathrm{C}$
$N_{e}=C_{e} \quad N_{c}=C_{b}$ double bond	$\mathrm{N}=\mathrm{C}$
$C_{d}-N_{e} \quad C_{c}-N_{c}$	$\mathrm{C}-\mathrm{N} \mathrm{(b)}$
$C_{c}-N_{d}-C_{e} \quad C_{a}-N_{b}-C_{b}$	$\mathrm{C}-\mathrm{N}-\mathrm{C}$
$N_{d} H \quad N_{b} H$ group	NH
$C_{e} H$	CH

Table 15．340．The geometrical bond parameters of guanine and experimental values［1］．

Parameter	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-N(\mathrm{a}) \\ \text { Group } \end{gathered}$	NH_{2} Group	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & N=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-N \text { (b) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-N-C \\ \text { Group } \\ \hline \end{gathered}$	NH Group	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.29907	1.61032	1.24428	1.45103	1.88599	1.44926	1.82450	1.43222	1.24428	1.53380
$c^{\prime}\left(a_{0}\right)$	1.13977	1.26898	0.94134	1.30463	1.37331	1.30383	1.35074	1.29614	0.94134	1.01120
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.20628	1.34303	0.99627	1.38076	1.45345	1.37991	1.42956	1.37178	0.996270	1.07021
Exp．Bond Length （A）	1.220 （acetamide） 1.225 （N－methylacetamide）	1.34 ［64］ （guanine）	$\begin{gathered} 0.998 \\ \text { (aniline) } \end{gathered}$	$\begin{gathered} 1.382 \\ \text { (pyrrole) } \end{gathered}$	$\begin{aligned} & 1.42[64] \\ & \text { (guanine) } \end{aligned}$			$\begin{gathered} 1.370 \\ \text { (pyrrole) } \end{gathered}$	$\begin{gathered} 0.996 \\ \text { (pyrrole) } \end{gathered}$	$\begin{gathered} 1.076 \\ \text { (pyrrole) } \end{gathered}$
$b, c\left(a_{0}\right)$	0.62331	0.99137	0.81370	0.63517	1.29266	0.63276	1.22650	0.60931	0.81370	1.15326
－	0.87737	0.78803	0.75653	0.89910	0.72817	0.89965	0.74033	0.90499	0.75653	0.65928

Table 15．341．The MO to HO intercept geometrical bond parameters of guanine．R_{1} is an alkyl group and $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups．E_{T} is E_{T}（atom atom，$m s p^{3} . A O$ ）．

が		$\begin{aligned} & \circ \\ & \stackrel{0}{6} \\ & 0 . \end{aligned}$		$\begin{aligned} & \frac{1}{0} \\ & \frac{1}{6} \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \frac{\pi}{0} \\ & \frac{1}{6} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \underset{\sim}{\underset{2}{2}} \\ \underset{\sim}{c} \\ \hline \end{gathered}$	웅		$\begin{aligned} & \text { 2 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \frac{0}{0} \\ & \hline 0 . \end{aligned}$	$\begin{aligned} & \text { to } \\ & \vdots \\ & 0 \\ & 0.0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \substack{0 \\ \\ \hline} \end{aligned}$	$\begin{array}{\|c} \substack{n \\ \vdots \\ \vdots \\ 0 \\ \hline} \end{array}$		$\left\|\begin{array}{c} \hat{0} \\ \vdots \\ \vdots \\ 0 \\ 0 \end{array}\right\|$			$\begin{array}{\|l\|l} \substack{0 \\ 0 \\ 0 \\ 0 \\ 0} \end{array}$			$\begin{gathered} \infty \\ \underset{2}{n} \\ \underset{0}{n} \end{gathered}$	$\begin{gathered} 0 \\ \\ \vdots \\ 0 \end{gathered}$	$\begin{aligned} & \hat{N} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \substack{\tilde{y} \\ \underset{G}{3} \\ \hline} \end{gathered}$	n	
\approx E®	$\frac{\cong}{\grave{N}}$	$\begin{aligned} & \overline{\mathrm{O}} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\underset{\substack{\mathrm{F} \\ \underset{O}{\circ} \\ \hline 0}}{ }$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \\ & 0 \\ & \hline \end{aligned}$	$\underset{\substack{\mathrm{F} \\ \underset{O}{\circ} \\ 0 \\ \hline}}{ }$	$\stackrel{\infty}{\stackrel{\infty}{\approx}}$		$\begin{aligned} & 0 \\ & \underset{y}{2} \\ & \underset{O}{0} \end{aligned}$				$\begin{aligned} & \underset{n}{n} \\ & \underset{\sim}{m} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{N}{0} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{\sim}{A}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{0}{6} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\frac{\underset{Z}{G}}{\underset{O}{0}}$	$\begin{aligned} & \cong \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$					$\begin{aligned} & n \\ & \underset{m}{m} \\ & \underset{\sim}{2} \end{aligned}$		$\left\lvert\, \begin{gathered} \text { t } \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{gathered}\right.$	n	
0 －	$\begin{aligned} & \overline{9} \\ & \text { gen } \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{6}}$	$\begin{gathered} \text { Oi } \\ \text { Uু } \end{gathered}$	$\frac{\stackrel{n}{n}}{\square}$	$\begin{gathered} \infty \\ \\ 0 \\ \hline 8 \end{gathered}$	$\frac{\stackrel{i}{n}}{\substack{0}}$	$\begin{aligned} & \text { İ } \\ & 8 \end{aligned}$	$\stackrel{+}{\substack{9 \\ \hline \\ \hline}}$	$\begin{array}{\|l} \stackrel{\circ}{8} \\ \stackrel{n}{n} \\ \hline \end{array}$	$\begin{aligned} & 3 \\ & \stackrel{3}{q} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \stackrel{\otimes}{\mathrm{i}} \\ \underset{\mathrm{O}}{ } \end{array}$	in	$\underset{\underset{子}{ \pm}}{\underset{子}{ \pm}}$	$\begin{gathered} \underset{C}{c} \\ \underset{\sim}{\circ} \end{gathered}$	ar	$\begin{gathered} \underset{\sim}{g} \\ \dot{\sigma} \end{gathered}$	Oi	$\stackrel{i}{2}$	ig	$\begin{aligned} & \text { F } \\ & \text { 号 } \end{aligned}$	$\frac{0}{3}$	$\frac{2}{6}$	$\underset{\substack{\circ \\ \text { in } \\ \hline}}{\circ}$	$\begin{gathered} 2 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \underset{子}{J} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{g} \\ & \text { i } \end{aligned}$	$\stackrel{\underset{\sim}{f}}{\underset{\sim}{7}}$	$\stackrel{7}{7}$	
σ O	$\begin{aligned} & \underset{\sim}{\mathrm{N}} \\ & \underset{j}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{6} \\ & \dot{+} \end{aligned}$	$$	$\stackrel{\otimes}{\stackrel{\infty}{\dot{子}}}$	$\begin{aligned} & n \\ & \underset{子}{\infty} \\ & \hline \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{子}}$	$\begin{aligned} & \vec{~} \\ & \underset{子}{\prime} \end{aligned}$	$\begin{gathered} \circ \\ \stackrel{y}{\infty} \\ \end{gathered}$	$\begin{gathered} \hat{\infty} \\ \substack{\infty \\ 0 \\ \hline} \end{gathered}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\otimes}{\otimes}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \underset{子}{*} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\infty}{\infty} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{G} \end{aligned}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{array}{\|l} \circ \\ \text { i } \\ \text { O} \end{array}$	$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \dot{子} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2} \\ & \underset{寸}{ } \end{aligned}$	$\begin{aligned} & \bar{n} \\ & \underset{\alpha}{2} \end{aligned}$	$\stackrel{\stackrel{\infty}{\circ}}{\underset{子}{+}}$	$\stackrel{\infty}{\stackrel{\infty}{\stackrel{~}{+}}}$	$\stackrel{\varnothing}{\underset{\sim}{\infty}}$	$\begin{aligned} & \underset{\sim}{g} \\ & \text { i } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\infty}{\infty} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { t } \\ & \stackrel{\circ}{\infty} \end{aligned}$	$\underset{\circ}{\circ}$	$\stackrel{\sim}{\sim}$	
－©	$\begin{aligned} & \underset{y}{\mathrm{y}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{c} \\ \stackrel{\sim}{2} \end{gathered}$	$\stackrel{\text { I }}{\stackrel{\rightharpoonup}{\leftrightharpoons}}$	$\begin{aligned} & \underset{\sim}{\alpha} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & m \\ & \infty \\ & \infty \\ & m \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \stackrel{y}{c} \end{aligned}$	$\begin{gathered} \text { 寺 } \\ \underset{y}{2} \end{gathered}$	$\begin{aligned} & \underset{3}{9} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{6} \\ & \stackrel{\ominus}{6} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \infty \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { ત } \\ & \text { O} \\ & \text { on } \end{aligned}$	$\stackrel{\sim}{\underset{\sigma}{2}}$	$\begin{aligned} & 8 \\ & \underset{\infty}{8} \\ & . \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{n}{2} \end{aligned}$	$\stackrel{\mathrm{c}}{\stackrel{\mathrm{c}}{\mathrm{c}}}$	$\stackrel{y}{\underset{~}{n}}$	$\underset{\sim}{\infty}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\sim}{c}}$	$\underset{\substack{\underset{\sim}{*} \\ \dot{+} \\ \hline}}{ }$	$\underset{\sim}{\underset{\sim}{\infty}}$	$\underset{\sim}{\underset{\sim}{\infty}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \infty \\ & \sim \end{aligned}$	$\stackrel{\overline{2}}{\stackrel{\rightharpoonup}{2}}$	$\underset{\sim}{\underset{\sigma}{2}}$	$\begin{aligned} & \circ \\ & \underset{\sim}{2} \\ & \sigma_{2} \end{aligned}$	$\underset{\dot{\infty}}{\underset{\sim}{\sigma}}$	N	
		$\begin{aligned} & \hat{n} \\ & \stackrel{n}{2} \\ & \stackrel{1}{1} \end{aligned}$			$\begin{aligned} & \text { n } \\ & \frac{m}{9} \\ & \underset{1}{2} \end{aligned}$		$\begin{aligned} & n \\ & 0 \\ & 0 \\ & \vdots \\ & \end{aligned}$			$\begin{aligned} & n \\ & \stackrel{n}{0} \\ & \stackrel{0}{1} \end{aligned}$		$\begin{aligned} & \stackrel{n}{0} \\ & \stackrel{0}{\vdots} \\ & \underset{1}{2} \end{aligned}$	$\begin{aligned} & \frac{\pi}{n} \\ & \frac{\pi}{~} \\ & \underset{\sim}{1} \end{aligned}$						$\begin{aligned} & \text { 筞 } \\ & \underset{\sim}{7} \end{aligned}$			$\begin{aligned} & n \\ & \\ & \underset{y}{f} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & n \\ & \\ & \underset{\sim}{4} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \hat{N} \\ & \underset{\sim}{n} \\ & \underset{1}{2} \end{aligned}$	$\begin{aligned} & \hat{n} \\ & \underset{\sim}{9} \\ & \underset{1}{2} \end{aligned}$	－	
		$\begin{aligned} & \text { O} \\ & \underset{\sim}{7} \end{aligned}$			$\begin{aligned} & 9 \\ & \underset{~}{9} \\ & \underset{7}{7} \end{aligned}$	$\begin{array}{\|l} \overrightarrow{\mathrm{F}} \\ \stackrel{\rightharpoonup}{\mathrm{O}} \\ \stackrel{\rightharpoonup}{\mathrm{O}} \end{array}$	$\begin{aligned} & \frac{\rightharpoonup}{0} \\ & \underset{y}{1} \\ & \underset{1}{1} \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & \\ & \end{aligned}$	$\left\lvert\, \begin{aligned} & 2 \\ & 0 \\ & 0 \\ & \underset{\sim}{c} \\ & \underset{i}{2} \end{aligned}\right.$	$\begin{gathered} \stackrel{\rightharpoonup}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{7} \end{gathered}$	$\left\lvert\, \begin{gathered} \stackrel{\imath}{2} \\ \stackrel{1}{\mathrm{~N}} \\ \underset{1}{2} \end{gathered}\right.$	$\begin{aligned} & \frac{0}{n} \\ & \underset{1}{7} \\ & \underset{1}{2} \end{aligned}$	$\begin{gathered} \infty \\ \infty \\ \infty \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \tilde{N} \\ & \\ & \underset{\sim}{2} \\ & \end{aligned}$	$\begin{aligned} & 1 \\ & \tilde{n} \\ & \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \underset{\sim}{7} \\ & \underset{y}{7} \\ & \underset{\sim}{\dot{1}} \end{aligned}$			$\begin{aligned} & \underset{N}{N} \\ & \\ & \end{aligned}$	$\begin{aligned} & \overrightarrow{7} \\ & \stackrel{\rightharpoonup}{0} \\ & \vdots \\ & \hline 1 \end{aligned}$		$\begin{aligned} & \overline{\mathrm{F}} \\ & \stackrel{\rightharpoonup}{\mathrm{G}} \\ & \stackrel{\rightharpoonup}{\dot{\circ}} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\Omega} \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$				$\stackrel{y}{9}$	¢	
鹿	$\underset{\substack{\infty \\ \underset{\sim}{\infty} \\ 0}}{ }$	$$		$\begin{gathered} \underset{\sim}{q} \\ \stackrel{y}{\infty} \\ \infty \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$	$\begin{gathered} 9 \\ \frac{9}{6} \\ \frac{1}{\infty} \\ 0 \end{gathered}$	$\left\lvert\, \begin{aligned} & 0 \\ & \infty \\ & \\ & \\ & \hline \end{aligned}\right.$	$\begin{gathered} \text { O } \\ \infty \\ \infty \\ \infty \\ \hline \end{gathered}$	$\begin{gathered} \mathbb{O} \\ \underset{\infty}{\infty} \\ \infty \\ \infty \\ 0 \end{gathered}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\xrightarrow[\substack{尺 \\ \infty \\ \stackrel{\infty}{\infty} \\ \hline- \\ \hline}]{ }$	$\begin{aligned} & \text { d } \\ & \text { ab } \\ & \text { ó } \\ & \hline 0 \end{aligned}$	$\begin{gathered} n \\ \substack{0 \\ \underset{\sim}{0} \\ 0 \\ \hline} \end{gathered}$	$$	$\left\|\begin{array}{c} 0 \\ \underset{\sim}{\circ} \\ 0 \\ \infty \\ 0 \end{array}\right\|$	$\begin{aligned} & \text { of } \\ & \stackrel{y}{\infty} \\ & \infty \\ & 0 \end{aligned}$	$\begin{gathered} o \\ \frac{9}{9} \\ \frac{1}{\infty} \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & \text { n } \\ & \stackrel{\sim}{\alpha} \\ & \underset{\sim}{0} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{9} \\ & \stackrel{y}{\infty} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{y}{\infty} \\ & \underset{\infty}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{i} \\ & \stackrel{y}{\infty} \\ & \infty \\ & 0 \end{aligned}$	$\begin{gathered} \infty \\ \infty \\ \infty \\ \infty \\ \infty \end{gathered}$	$\begin{gathered} 0 \\ \underset{\sim}{\infty} \\ \infty \\ \infty \\ 0 \end{gathered}$		O	
－	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \\ & \text { O} \\ & \hline-1 \end{aligned}$	$\frac{\Sigma}{\vdots}$		$\begin{aligned} & t \\ & \stackrel{\infty}{\circ} \\ & \underset{\sim}{\circ} \end{aligned}$	$\frac{\underset{\lambda}{\lambda}}{\frac{\Sigma}{\partial}}$		$\frac{\underset{\rightharpoonup}{\lambda}}{\stackrel{\rightharpoonup}{\partial}}$	$\begin{aligned} & \text { + } \\ & \stackrel{\circ}{6} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{gathered} \underset{\circ}{\circ} \\ \stackrel{y}{o} \\ \widehat{o} \end{gathered}$	$\frac{\underset{\rightharpoonup}{\lambda}}{\stackrel{\rightharpoonup}{\partial}}$	士 ö ô	$\frac{\underset{\lambda}{\lambda}}{\hat{O}}$		$\begin{array}{\|l\|} \stackrel{\rightharpoonup}{A} \\ \vdots \\ O \end{array}$	$\frac{\stackrel{\rightharpoonup}{\lambda}}{\stackrel{\rightharpoonup}{\partial}}$		器		$\frac{\stackrel{\rightharpoonup}{\lambda}}{\partial}$	$\frac{\underset{\lambda}{\lambda}}{\hat{O}}$		$\frac{\underset{N}{\hat{Z}}}{\stackrel{\rightharpoonup}{\sigma}}$		$\frac{\underset{N}{\hat{A}}}{\frac{\rightharpoonup}{\partial}}$		$\begin{aligned} & \frac{\lambda}{\lambda} \\ & \frac{\partial}{\partial} \end{aligned}$	E	E	
		$\begin{gathered} \tilde{y} \\ \underset{\sim}{c} \\ \underset{\sim}{n} \end{gathered}$					$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$					$\begin{aligned} & \text { n} \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \end{aligned}$		$\begin{gathered} 0 \\ \underset{y}{c} \\ \underset{y}{4} \\ \underset{\sim}{4} \end{gathered}$		∞ $\stackrel{0}{c}$ $\stackrel{1}{4}$ $\stackrel{n}{7}$										$\begin{gathered} \infty \\ \frac{0}{4} \\ \underset{\sim}{1} \\ \stackrel{1}{1} \end{gathered}$	$\begin{aligned} & \underset{\sim}{\tilde{y}} \\ & \underset{c}{c} \\ & \underset{\sim}{c} \end{aligned}$	景	
sice	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	－	
$\Leftrightarrow \underset{\sim}{0}$	\bigcirc	0	－	－	\bigcirc	\bigcirc	$\begin{aligned} & \infty \\ & \frac{\infty}{2} \\ & \underset{\sim}{2} \end{aligned}$	\bigcirc	\bigcirc	$$	\bigcirc	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\bigcirc	$\begin{gathered} \infty \\ \underset{\alpha}{2} \\ \underset{i}{2} \end{gathered}$	$\begin{aligned} & \text { a } \\ & \text { 守 } \\ & \text { St } \\ & \hline \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	$\begin{aligned} & \text { a } \\ & \text { 守 } \\ & \text { of } \\ & \hline \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	O	
$\Leftrightarrow \text { E }$	－	$\frac{\infty}{\underset{\alpha}{2}}$	$\begin{gathered} \infty \\ \underset{\alpha}{2} \\ \text { ô } \end{gathered}$	$\begin{gathered} \infty \\ \underset{\sim}{\lambda} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$	$\begin{gathered} \infty \\ \underset{\sim}{2} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$	$\begin{gathered} \infty \\ \underset{\sim}{2} \\ \stackrel{\rightharpoonup}{i} \end{gathered}$	$\begin{gathered} \infty \\ \underset{\sim}{2} \\ \stackrel{\rightharpoonup}{i} \end{gathered}$	－	－	$\begin{gathered} \infty \\ \underset{\sim}{\lambda} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{\infty}{\grave{\alpha}}$	$\begin{gathered} \infty \\ \underset{\alpha}{\alpha} \\ \vdots \\ \hline \end{gathered}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \underset{N}{\leftrightarrows} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \infty \\ \underset{\alpha}{\alpha} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$		$\begin{gathered} \infty \\ \underset{\sim}{2} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$	$\begin{gathered} \infty \\ \underset{\underset{\alpha}{2}}{\hat{c}} \end{gathered}$	$\begin{gathered} \infty \\ \underset{\sim}{\lambda} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$	$\frac{\infty}{\grave{\alpha}}$	$\begin{gathered} \infty \\ \underset{\sim}{2} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$	$$		$\frac{\infty}{\underset{\alpha}{2}}$	$\begin{gathered} \infty \\ \underset{\alpha}{2} \\ \stackrel{\rightharpoonup}{i} \end{gathered}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \underset{\sim}{\leftrightarrows} \\ & \hdashline-1 \end{aligned}$			
\& 府			$\begin{gathered} \infty \\ \underset{\sim}{\underset{\alpha}{2}} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$	$\begin{gathered} \infty \\ \stackrel{\infty}{\lambda} \\ \stackrel{\rightharpoonup}{i} \end{gathered}$		$\begin{aligned} & \infty \\ & \underset{\sim}{\alpha} \\ & \underset{\sim}{\top} \end{aligned}$	$\begin{aligned} & \text { 各 } \\ & 0 . \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 僉 } \\ & \text { n } \\ & i \end{aligned}$	$\begin{array}{\|l\|l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \stackrel{8}{0} \\ & \stackrel{0}{0} \\ & \text { en } \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{2} \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\infty}{ন} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$			$\begin{aligned} & \stackrel{\otimes}{\infty} \\ & \underset{\sim}{n} \\ & \vdots \end{aligned}$	$\begin{aligned} & \varnothing \\ & \underset{\sim}{\infty} \\ & \vdots \end{aligned}$	$\begin{gathered} \infty \\ \underset{\sim}{\underset{\alpha}{2}} \\ \stackrel{y}{2} \end{gathered}$	$\begin{gathered} \infty \\ \underset{\sim}{\underset{\alpha}{2}} \\ \underset{\sim}{i} \end{gathered}$	$\stackrel{\underset{\sim}{2}}{\underset{\sim}{c}} \underset{\sim}{7}$	$\begin{gathered} \infty \\ \stackrel{\infty}{ন} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$			$\begin{gathered} \infty \\ \stackrel{\rightharpoonup}{\underset{~}{2}} \\ \stackrel{1}{2} \end{gathered}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\alpha} \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$		$\begin{gathered} o \\ \substack{\hat{u} \\ 0 \\ \vdots \\ i \\ \hline} \end{gathered}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & \hline 8 \\ & \hline \end{aligned}$	O	
$\begin{array}{\|l\|} \frac{\pi}{6} \\ \hline \end{array}$	\bigcirc	0°	z	z	0°	z	U	z°	z°	U	2	U	z	0°	0°	0^{2}	2	z	0°	0°	20	0°	z＇	0°	で	0^{7}	0°	U	
菏	$\left.\begin{gathered} 0 \\ 1 \\| \\ 0_{0}^{0} \\ 0^{0} \\ z^{0} \end{gathered} \right\rvert\,$	$=\begin{aligned} & 0 \\ & 11 \\ & 0_{0} \\ & e^{0} \\ & z^{0} \end{aligned}$	$\begin{aligned} & \text { I } \\ & Z \\ & Z \\ & Z \\ & z \end{aligned}$			2 20 3 2 0 1 2 2 2 0 0 0	$\begin{aligned} & 2 \\ & z^{0} \\ & z^{0} \\ & z^{0} \\ & 1 \\ & z \\ & z \\ & z_{0}^{0} \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & z \\ & 1 \\ & z \\ & z^{0} \\ & 0 \\ & z_{0}^{0} \\ & z^{0} \end{aligned}$	$\begin{array}{\|c\|} \substack{0 \\ z^{2} \\ 2 \\ 2 \\ 1 \\ 1 \\ 0 \\ 3 \\ 3 \\ 0 \\ 0} \end{array}$	$\begin{gathered} 20 \\ z_{0}^{0} \\ 2 \\ z_{0}^{\prime} \\ 1 \\ 0 \\ 0 \\ 3 \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 0 \\ & 2 \\ & 20 \\ & 0 \\ & 0 \\ & z_{1}^{0} \end{aligned}$	$\begin{aligned} & z_{10}^{0} \\ & z^{0} \\ & 0 \\ & z_{0}^{0} \\ & 11 \\ & 0 \\ & z \\ & z \end{aligned}$	$\begin{aligned} & E \\ & z \\ & z_{0} \\ & 0 \\ & 1 \\ & z \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & E \\ & z \\ & z_{0}^{0} \\ & 0 \\ & 1 \\ & z \\ & 0 \end{aligned}$		$\left.\begin{array}{\|c\|} e_{0}^{0} \\ z^{0} \\ v_{0}^{0} \\ 11 \\ 0^{0} \\ z_{0}^{0} \\ z^{0} \end{array} \right\rvert\,$	$\begin{aligned} & \text { E } \\ & z \\ & z \\ & z \\ & 1 \\ & z \end{aligned}$	$\left\lvert\, \begin{gathered} \hat{0}^{0} \\ 2 \\ z^{0} \\ 1 \\ 0^{0} \\ 0^{0} \\ z^{0} \end{gathered}\right.$	$\begin{gathered} e_{0}^{0} \\ v^{0} \\ z^{2} \\ 1 \\ 0^{0} \\ 0^{0} \end{gathered}$	$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { y } \\ & 1 \end{aligned}$		$\left\lvert\, \begin{array}{l\|} \substack{0 \\ z \\ 0 \\ 0 \\ 0 \\ 1 \\ y \\ 0 \\ 3 \\ 0 \\ 0} \end{array}\right.$	$\left.\begin{aligned} & 0^{0} \\ & z^{0} \\ & 11 \\ & 0^{0} \\ & E \\ & z^{0} \end{aligned} \right\rvert\,$	$\left\|\begin{array}{c} 0^{z} \\ z^{2} \\ 10 \\ 0^{0} \\ \Sigma^{3} \\ z^{z} \end{array}\right\|$		$\begin{gathered} \widehat{v^{0}} \\ v^{0} \\ v^{0} \\ 1 \\ z^{0} \\ 0^{2} \end{gathered}$	$\begin{gathered} z^{\circ} \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ z^{0} \\ \hline \end{gathered}$	2	

Table 15.342. The energy parameters (eV) of functional groups of guanine.

Parameters	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-N \text { (a) } \\ & \text { Group } \end{aligned}$	NH_{2} Group	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & N=C \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-N \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N-C \\ \text { Group } \\ \hline \end{gathered}$	$\begin{gathered} N H \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$
n_{1}	2	1	2	2	1	2	1	2	1	1
n_{2}	0	0	0	0	0	0	0	0	0	0
n_{3}	0	0	1	0	0	0	0	0	0	0
C_{1}	0.5	0.5	0.75	0.5	0.5	0.5	0.5	0.5	0.75	0.75
C_{2}	1	1	0.93613	0.85252	1	0.85252	1	0.85252	0.93613	1
c_{1}	1	1	0.75	1	1	1	1	1	0.75	1
c_{2}	0.85395	0.84665	0.92171	0.85252	0.91771	0.84665	0.84665	0.84665	0.92171	0.91771
c_{3}	2	0	0	0	0	0	0	0	1	1
c_{4}	4	2	1	4	2	4	2	4	1	1
c_{5}	0	0	2	0	0	0	0	0	1	1
C_{10}	0.5	0.5	1.5	0.5	0.5	0.5	0.5	0.5	0.75	0.75
C_{20}	1	1	1	0.85252	1	0.85252	1	0.85252	1	1
$V_{e}(\mathrm{eV})$	-111.25473	-35.50149	-78.97795	-104.37986	-33.63376	-103.92756	-32.44864	-106.58684	-39.48897	-39.09538
$V_{p}(\mathrm{eV})$	23.87467	10.72181	28.90735	20.85777	9.90728	20.87050	10.07285	20.99432	14.45367	13.45505
$T(\mathrm{eV})$	42.82081	11.02312	31.73641	35.96751	8.91674	35.85539	8.89248	37.21047	15.86820	12.74462
$V_{m}(\mathrm{eV})$	-21.41040	-5.51156	-15.86820	-17.98376	-4.45837	-17.92770	-4.44624	-18.60523	-7.93410	-6.37231
E (Ао/ HO) (eV)	0	-14.63489	-14.53414	0	-14.63489	0	-14.63489	0	-14.53414	-14.63489
$\Delta E_{H_{2} 1 / 0}($ Ао/но) (eV)	-2.69893	-2.26759	0	-2.26759	-2.26759	-1.85836	-0.92918	-3.71673	0	-2.26758
E_{T} (Ао) но) (eV)	2.69893	-12.36730	-14.53414	2.26759	-12.36730	1.85836	-13.70571	3.71673	-14.53414	-12.36731
$E(n$, Ао $/$ Ho) (e V$)$	0	0	-14.53414	0	0	0	0	0	0	0
$E_{T}\left(H_{2} \mathrm{NO}\right)(\mathrm{eV})$	-63.27074	-31.63543	-48.73654	-63.27075	-31.63541	-63.27100	-31.63527	-63.27056	-31.63534	-31.63533
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-2.69893	-1.13379	0	-2.26759	0.00000	-1.85836	-0.92918	-3.71673	0	0
$E_{T}($ мо) (eV)	-65.96966	-32.76916	-48.73660	-65.53833	-31.63537	-65.12910	-32.56455	-66.98746	-31.63537	-31.63537
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	59.4034	14.3055	68.9812	15.4421	19.8904	15.4704	21.5213	15.7474	48.7771	28.9084
$E_{K}(e \mathrm{~V})$	39.10034	9.41610	45.40465	10.16428	13.09221	10.18290	14.16571	10.36521	32.10594	19.02803
$\bar{E}_{D}(e \mathrm{~V})$	-0.40804	-0.19893	-0.42172	-0.20668	-0.22646	-0.20558	-0.24248	-0.21333	-0.35462	-0.27301
$\bar{E}_{\text {Kwb }}(\mathrm{eV})$	$\begin{gathered} 0.21077 \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} 0.15498 \\ {[58]} \\ \hline \end{gathered}$	$\begin{gathered} 0.40929 \\ {[22]} \\ \hline \end{gathered}$	$\begin{gathered} 0.17897 \\ {[6]} \\ \hline \end{gathered}$	$\begin{gathered} 0.14667 \\ {[67]} \\ \hline \end{gathered}$	$\begin{gathered} 0.20768 \\ {[62]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12944 \\ {[23]} \\ \hline \end{gathered}$	$\begin{gathered} 0.11159 \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} 0.40696 \\ {[24]} \\ \hline \end{gathered}$	$\begin{gathered} 0.39427 \\ {[60]} \\ \hline \end{gathered}$
$\bar{E}_{\text {asc }}(\mathrm{eV})$	-0.30266	-0.12144	-0.21708	-0.11720	-0.15312	-0.10174	-0.17775	-0.15754	-0.15115	-0.07587
$E_{\text {mag }}(\mathrm{eV})$	0.11441	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
E_{T} (Grup) (eV)	-66.57498	-32.89060	-49.17075	-65.77272	-31.64046	-65.33259	-32.74230	-67.30254	-31.78651	-31.71124
	-14.63489	-14.63489	-14.53414	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.53414	-14.63489
	0	0	-13.59844	0	0	0	0	0	-13.59844	-13.59844
$E_{D}($ Group $)(\mathrm{eV})$	7.80660	3.62082	7.43973	7.23317	2.37068	6.79303	3.47253	8.76298	3.51208	3.32988

[^4]

$\left\lvert\, \begin{aligned} & 0 \\ & \dot{\dot{x}} \approx \\ & 0 \end{aligned}\right.$	$\begin{aligned} & \stackrel{\infty}{0} \\ & = \end{aligned}$	$\underset{\sim}{\underset{\sim}{c}}$	$\underset{\sim}{\infty}$	$\begin{aligned} & 0 \\ & \underset{\sim}{\mathrm{a}} \end{aligned}$	へิ			$\stackrel{\infty}{\sim}$	）	$\stackrel{\square}{\square}$		$\mid \stackrel{O}{\mathrm{I}} \underset{\underset{\mathrm{I}}{ }}{ }$	$\begin{aligned} & \infty \\ & \underset{\sim}{\mathrm{a}} \end{aligned}$	$\underset{\sim}{\infty}$	$\stackrel{\ddot{\circ}}{\underset{\partial}{2}}$	$\stackrel{\underset{O}{\infty}}{\stackrel{\infty}{\circ}}$	$\stackrel{\grave{\theta}}{\dot{\theta}}$	$\stackrel{0}{\dot{0}}$	$\begin{aligned} & \text { ত্ত } \\ & \stackrel{\rightharpoonup}{\mathrm{I}} \end{aligned}$	ล	$$	$\left.\begin{array}{\|c} \frac{8}{8} \\ \frac{0}{7} \end{array} \right\rvert\,$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{O}}$	－
$\underset{j}{\dot{j}}$	$\begin{aligned} & \text { n } \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \text { ¿ิ } \\ & \text { In } \end{aligned}$		$\begin{aligned} & \underset{\sim}{\underset{y}{c}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { ñ } \\ & \text { In } \end{aligned}$	$\begin{aligned} & \stackrel{8}{0} \\ & \stackrel{\circ}{=} \end{aligned}$	$\stackrel{ }{\leftrightharpoons}$	$\stackrel{\substack{2 \\ \leftrightharpoons \\ \leftrightharpoons}}{ }$	$\begin{aligned} & \text { 청 } \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$	$\begin{aligned} & \text { V} \\ & \stackrel{y}{\mathrm{I}} \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{\mathrm{j}} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{array}{\|c} \underset{\mathrm{I}}{\mathrm{I}} \end{array}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\underset{\sim}{\mathrm{I}}}{\substack{0}}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\mathrm{y}} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\oplus} \end{aligned}$	$\begin{aligned} & \underset{\sim}{i} \\ & \stackrel{y}{c} \end{aligned}$	$\begin{aligned} & \mathrm{d} \\ & \underset{\mathrm{~d}}{2} \end{aligned}$		$\left\lvert\, \begin{aligned} & 0 \\ & \sim \\ & \underset{y}{n} \end{aligned}\right.$	$$	$\frac{\sqrt{n}}{\mathrm{n}}$	$\begin{gathered} \cong \\ 0.0 \\ 0 \end{gathered}$	$\underset{\stackrel{\varrho}{0}}{\stackrel{\sim}{0}}$	$\begin{aligned} & \circ \\ & \stackrel{O}{\circ} \\ & \sim \end{aligned}$
－			$\begin{aligned} & \infty \\ & \text { à } \\ & \text { In } \end{aligned}$				$\begin{aligned} & 8 \\ & 0 \\ & \underset{\sim}{\infty} \end{aligned}$													$\left\|\begin{array}{c} \circ \\ \underset{\sim}{\mathrm{a}} \\ \hline \end{array}\right\|$		$\left.\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{c} \end{aligned} \right\rvert\,$			
σ－			$\begin{aligned} & \hat{n} \\ & \stackrel{0}{0} \end{aligned}$				$\begin{aligned} & \underset{\sim}{\underset{\sim}{9}} \end{aligned}$													$\left\lvert\, \begin{gathered} \infty \\ \underset{\sim}{\infty} \\ \underset{\sim}{0} \end{gathered}\right.$		$\begin{gathered} \underset{~}{c} \\ \underset{~}{i} \end{gathered}$			
0 －0																									
4 ¢	$\begin{aligned} & n \\ & \stackrel{n}{寸} \\ & \underset{-1}{2} \end{aligned}$	$\begin{gathered} n \\ \frac{n}{9} \\ \hdashline \\ \hdashline \end{gathered}$		$\begin{gathered} 0 \\ 0 \\ \infty \\ \infty \\ 0 \\ \hdashline \end{gathered}$	$\begin{aligned} & n \\ & \underset{\sim}{q} \\ & \underset{\sim}{\prime} \end{aligned}$	\bigcirc		$\begin{aligned} & \frac{n}{9} \\ & \underset{\sim}{f} \\ & \hdashline \end{aligned}$	$\begin{aligned} & n \\ & \underset{i}{q} \\ & \underset{-}{2} \end{aligned}$	\bigcirc	\bigcirc	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hdashline \end{gathered}$	$\begin{aligned} & 0 \\ & \\ & \\ & \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{1}{6} \\ & \stackrel{1}{1} \end{aligned}$			$\begin{aligned} & n \\ & \frac{n}{q} \\ & \frac{7}{i} \end{aligned}$	$\begin{gathered} n \\ \frac{n}{q} \\ \hdashline-1 \end{gathered}$	\bigcirc		\bigcirc		$\begin{gathered} 0 \\ \infty \\ \infty \\ \infty \\ \hdashline-1 \end{gathered}$	$\begin{aligned} & \text { n } \\ & \stackrel{\rightharpoonup}{寸} \\ & \underset{-1}{2} \end{aligned}$	$\xrightarrow{\circ}$
－	$\stackrel{గ}{\overparen{\infty}}$	$\left\lvert\, \begin{gathered} \widetilde{\alpha} \\ \infty \\ \infty \\ \infty \\ 0 \end{gathered}\right.$		$\begin{gathered} \infty \\ 0 \\ 0 \\ \vdots \\ 0 \end{gathered}$	$\begin{aligned} & \underset{\sim}{n} \\ & \widehat{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { గ్ర } \\ & \stackrel{\circ}{\circ} \\ & \text { on } \end{aligned}$			$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{\infty}{\infty} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{な} \\ & \stackrel{2}{0} \end{aligned}$		$\left\lvert\, \begin{gathered} \hat{\widehat{o}} \\ \stackrel{0}{\infty} \\ \hat{0} \\ \hline \end{gathered}\right.$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\overleftarrow{\infty}} \\ & \stackrel{\infty}{\circ} \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { 佥 } \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\substack{\stackrel{n}{n} \\ \stackrel{n}{i} \\ \hline}}{ }$	$\begin{aligned} & \hat{\sim} \\ & \frac{\tilde{n}}{\infty} \\ & \infty \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{n}{2} \\ \underset{\sim}{\infty} \\ \underset{\sim}{0} \end{gathered}\right.$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ®. } \\ & \stackrel{\infty}{\circ} \\ & - \end{aligned}$			$\stackrel{\AA}{\infty}$	$\stackrel{\curvearrowleft}{\check{\sim}}$
v	－	－		－	－	$\underset{\sim}{i}$		－	－	$\underset{\sim}{n}$	$\stackrel{i}{0}$	－	－	－	－	－	－	－	$\underset{0}{n}$		$\underset{\substack{n \\ 0}}{ }$		－	－	－
U＇	－	－		－	－	－		－	－	－	－	－	－	－	－	－	－	－	－		－		－	－	－
v	－	－		－	－	$\stackrel{n}{\circ}$		－	－	$\stackrel{\cong}{\circ}$	－	－	－	－	－	－	－	－	$\underset{\substack{n}}{n}$		$\stackrel{n}{\circ}$		－	－	－
$\checkmark \frac{\stackrel{N}{E}}{\frac{0}{4}}$	$\begin{aligned} & \text { O+ } \\ & \stackrel{0}{\infty} \\ & 0.0 \end{aligned}$	$\begin{aligned} & \text { n } \\ & \underset{\infty}{\underset{O}{\circ}} \end{aligned}$		$\begin{array}{\|c} 0 \\ 6 \\ 0 \\ 2 \\ 0 \end{array}$	$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\infty}{\circ} \\ & 0 \end{aligned}$	$\frac{F}{2}$		$\left\lvert\, \begin{gathered} \mathbb{Z} \\ \mathscr{O} \\ \infty \\ \infty \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \infty \\ \otimes \\ \infty \\ \infty \\ \infty \\ \infty \end{gathered}\right.$	$\begin{aligned} & \stackrel{0}{0} \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	－	$\left\lvert\, \begin{gathered} n \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$		$\begin{aligned} & \text { N } \\ & \text { N } \\ & \infty \\ & \infty \end{aligned}$	$\left\lvert\, \begin{aligned} & 7 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\left\lvert\,\right.$	$$		$$					$\begin{aligned} & \stackrel{\leftrightarrow}{\circ} \\ & \text { O } \\ & \text { O- } \end{aligned}$	
$v^{\circ} \frac{\bar{K}}{\frac{1}{4}}$		$\begin{gathered} \substack{9 \\ m \\ \infty \\ \infty \\ 0} \end{gathered}$		$\left\lvert\, \begin{gathered} \underset{\infty}{\infty} \\ \underset{\infty}{\infty} \\ 0 \end{gathered}\right.$	$\begin{aligned} & \underset{\sim}{2} \\ & \hat{o} \\ & 0 \\ & 0 \end{aligned}$			$\left\lvert\, \begin{gathered} \underset{9}{9} \\ \substack{\infty \\ \infty \\ 0 \\ \hline} \end{gathered}\right.$	$\begin{gathered} \mathscr{O} \\ \underset{\infty}{\infty} \\ \infty \\ 0 \end{gathered}$	宝		\mathfrak{c}		θ_{0}^{6}		$\left\lvert\,\right.$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\sim}{\infty} \\ & \underset{\infty}{\infty} \end{aligned}$		寺	$\begin{aligned} & \hat{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
	\cdots	∞		へ	－	－		\sim	σ	＝	工	ते	z	\bigcirc	$\stackrel{\sim}{2}$	¢	ते	\checkmark	\bigcirc		z		－	$\stackrel{m}{ }$	z
	$\begin{aligned} & \underset{7}{7} \\ & \underset{y}{\rightrightarrows} \\ & \underset{1}{2} \end{aligned}$	$\begin{gathered} \pi \\ \frac{\pi}{\leftrightharpoons} \\ \frac{n}{6} \end{gathered}$		$\xrightarrow{\text { 害 }}$		$\begin{aligned} & \text { n } \\ & \stackrel{n}{\infty} \\ & \substack{\infty \\ +1} \end{aligned}$		$\begin{array}{\|c} 2 \\ 0 \\ 2 \\ \\ \end{array}$		$$	工	$\begin{array}{\|c} \underset{N}{N} \\ \\ \end{array}$	$\begin{aligned} & \underset{7}{7} \\ & \underset{\sim}{n} \\ & \underset{7}{2} \end{aligned}$	$\begin{aligned} & \hat{n} \\ & \hat{n} \\ & \hat{n} \\ & \hat{n} \end{aligned}$	$\begin{gathered} \underset{\sim}{\infty} \\ \underset{\infty}{\infty} \\ \underset{\sim}{\infty} \\ \hdashline-1 \end{gathered}$	2 2 2 \vdots \vdots	$\begin{aligned} & \text { N} \\ & \\ & \end{aligned}$	$\begin{array}{\|c\|} \hline \infty \\ \infty \\ 0 \\ 0 \\ \vdots \\ \hline 1 \end{array}$			$\begin{aligned} & \text { J } \\ & \stackrel{\text { N }}{n} \\ & \underset{\sim}{7} \end{aligned}$		ה	$\begin{aligned} & \underset{7}{7} \\ & \underset{\sim}{7} \\ & \underset{-}{2} \end{aligned}$	\pm $\underset{\sim}{*}$ $\stackrel{\sim}{*}$
	Z	$\stackrel{\infty}{\infty}$		$\stackrel{\sim}{\sim}$	－	Z		\cdots	N	z	z	$\stackrel{\sim}{\sim}$	z	z	$\stackrel{4}{4}$	\％	Z	a	z		$\stackrel{\sim}{\sim}$		侖	z	ス
				$\begin{aligned} & \frac{0}{2} \\ & \underset{\sim}{9} \\ & \underset{1}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{n} \\ \end{gathered}$	$\begin{aligned} & \underset{\sim}{\ddagger} \\ & \underset{\sim}{*} \\ & \underset{\sim}{*} \end{aligned}$			$\left[\begin{array}{c} 2 \\ 0 \\ \vdots \\ \underset{\sim}{n} \\ \end{array}\right.$	$\begin{aligned} & \underset{7}{7} \\ & \underset{\sim}{n} \\ & \underset{7}{7} \end{aligned}$	$\begin{aligned} & \underset{7}{J} \\ & \underset{\sim}{n} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{2} \\ & \underset{1}{1} \end{aligned}$		$\begin{aligned} & \underset{7}{7} \\ & \stackrel{N}{n} \\ & \underset{T}{\ddagger} \end{aligned}$	$\begin{aligned} & \text { 若 } \\ & \underset{\vdots}{1} \end{aligned}$		$\begin{aligned} & \underset{7}{7} \\ & \stackrel{N}{n} \\ & \underset{T}{7} \end{aligned}$	$\begin{gathered} \tilde{2} \\ \frac{2}{N} \\ \underset{\sim}{2} \end{gathered}$					$\begin{aligned} & \text { İ } \\ & \text { d } \\ & \underset{\sim}{1} \end{aligned}$		O $\substack{\text { a } \\ \hline \\ \hline \\ \hline}$
	$\begin{gathered} \stackrel{\rightharpoonup}{N} \\ \underset{\sim}{2} \end{gathered}$	$\begin{gathered} 0 \\ \underset{y}{c} \\ \text { ç } \end{gathered}$		$\left\lvert\, \begin{gathered} 0 \\ \infty \\ \underset{\sim}{\infty} \\ \underset{\sim}{2} \end{gathered}\right.$	$\frac{8}{9}$	$\begin{aligned} & \stackrel{\infty}{n} \\ & \underset{\sim}{2} \end{aligned}$		$\left\lvert\, \begin{gathered} \frac{\infty}{\infty} \\ \underset{\sim}{\infty} \\ \underset{\sim}{2} \end{gathered}\right.$	$\begin{gathered} \underset{\sim}{y} \\ \underset{子}{2} \end{gathered}$	$\begin{aligned} & \stackrel{\otimes}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\frac{\stackrel{i n}{n}}{\frac{n}{m}}$	$\left\lvert\, \begin{gathered} \mathbb{N} \\ \underset{寸}{\sim} \end{gathered}\right.$	$\underset{\underset{\sim}{*}}{\underset{\sim}{~}}$		$$	I y Y	$\frac{\mathfrak{N}}{\underset{子}{f}}$	$\left\lvert\, \begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{2} \end{gathered}\right.$	$\begin{aligned} & \stackrel{0}{0} \\ & +子 \end{aligned}$		$\frac{\mathrm{N}}{\frac{\mathrm{~m}}{7}}$			$\begin{aligned} & \text { n } \\ & \underset{y}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\alpha} \\ & \underset{子}{ } \end{aligned}$
in	$$	$\left\lvert\, \begin{gathered} \underset{\sim}{4} \\ \stackrel{y}{c} \\ \underset{\sim}{c} \end{gathered}\right.$		$\begin{aligned} & \infty \\ & \underset{Z}{2} \\ & \hat{\sim} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & 0 \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{0}{\infty} \\ & \stackrel{y}{c} \\ & i \end{aligned}$		$\left\|\begin{array}{c} \hat{\lambda} \\ \hat{\lambda} \\ \hat{\lambda} \\ \underset{i}{2} \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hat{\lambda} \\ \underset{\hat{N}}{\hat{N}} \end{gathered}$	$\stackrel{\infty}{\infty}$	$\left\|\begin{array}{c} \infty \\ \underset{\sim}{2} \\ \underset{i}{2} \end{array}\right\|$	$\begin{aligned} & \text { ત̈ } \\ & \text { ત̀ } \\ & \text { הi } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ô } \\ & \text { o } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & i \end{aligned}$	$\begin{gathered} \infty \\ \underset{\sim}{2} \\ \text { din } \\ \text { in } \end{gathered}$	$\begin{aligned} & \text { N } \\ & \text { O} \\ & \text { o } \\ & \text { i } \end{aligned}$	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{\infty} \\ 0 \\ 0 \\ 0 \\ \dot{o} \end{array}\right\|$			$\begin{aligned} & \text { B } \\ & \stackrel{0}{0} \\ & \text { i } \\ & \text { in } \end{aligned}$		$\left\|\begin{array}{l} 8 \\ 0 \\ 0 \\ 0 \\ 0 \\ i \end{array}\right\|$	$\begin{aligned} & \text { n } \\ & \text { ò } \\ & \text { oi } \end{aligned}$	
N		$\begin{gathered} \infty \\ \underset{Z}{2} \\ \underset{\sim}{\mathrm{i}} \end{gathered}$		$\begin{gathered} \infty \\ \underset{\sim}{2} \\ \underset{\sim}{n} \\ \text { in } \end{gathered}$	$\begin{aligned} & \infty \\ & \underset{\sim}{z} \\ & \underset{\sim}{i} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{0} \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{y}{c} \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$	$\begin{gathered} \stackrel{\imath}{\mathrm{I}} \\ \underset{\sim}{\lambda} \\ \underset{\sim}{\mathrm{~N}} \end{gathered}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$	$\left\|\begin{array}{l} \circ \\ 0 \\ 0 \\ 0 \\ 0 \\ i \end{array}\right\|$	$\underset{\substack{\infty \\ \stackrel{\infty}{2} \\ i}}{2}$			$\begin{gathered} \infty \\ \underset{\sim}{n} \\ \text { N } \\ \text { non } \end{gathered}$	$\begin{aligned} & \underset{\sim}{Z} \\ & \underset{\sim}{n} \\ & \text { in } \end{aligned}$	$\left\|\begin{array}{l} 0 \\ \stackrel{0}{0} \\ 0 \\ 0 \\ i \end{array}\right\|$	$\begin{aligned} & \text { त̃ } \\ & \text { Ǹ } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \text { 금 } \\ & \text { din } \end{aligned}$			$\underset{\underset{i}{\mathrm{i}}}{\stackrel{\infty}{\underset{2}{2}}}$	ה
$\left\lvert\, \begin{gathered} 0 \\ \frac{0}{b 0} \\ e \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	$\begin{aligned} & 0_{0}^{0} \\ & z_{0} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0_{0}^{0} \\ & z^{0} \end{aligned}\right.$	$\left(\begin{array}{c} C_{0}^{0} \\ 0_{0}^{0} \\ v \end{array}\right.$	$\begin{gathered} 0 \\ 20 \\ 0_{0}^{\circ} \\ 0^{\circ} \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$$	$\begin{aligned} & x_{0}^{0} \\ & z^{\circ} \\ & v_{0}^{6} \end{aligned}$	$\begin{aligned} & z_{0}^{0} \\ & z_{0}^{0} \\ & z \end{aligned}$	$\begin{aligned} & z \\ & 0 \\ & 0 \\ & z \end{aligned}$		$\begin{aligned} & z \\ & z \\ & z \end{aligned}$	$\left\|\begin{array}{c} 0 \\ z_{0}^{0} \\ v_{0}^{0} \end{array}\right\|$	$\begin{aligned} & z \\ & \mathrm{c} \\ & \mathrm{z} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \mathrm{Z} \end{aligned}$	$\begin{aligned} & v_{0}^{\circ} \\ & v_{0}^{\circ} \\ & v_{0}^{\circ} \end{aligned}$	$\begin{aligned} & 0^{\circ} \\ & z_{0}^{\prime} \\ & v^{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & 0^{5} \\ & z^{2} \end{aligned}$	$\begin{aligned} & z^{2} \\ & b^{2} \\ & z^{2} \end{aligned}$	$\begin{aligned} & z \\ & z_{0} \\ & \mathrm{v}^{2} \end{aligned}$	$\begin{aligned} & z \\ & z \\ & z_{0} \\ & v^{2} \end{aligned}$	$$	$\begin{aligned} & z_{0} \\ & 0 \\ & z_{0}^{0} \end{aligned}$	$\left\|\begin{array}{l} v^{0} \\ z^{0} \\ v_{0} \end{array}\right\|$	$\begin{aligned} & U_{0}^{0} \\ & Z^{0} \\ & V \end{aligned}$	$\begin{aligned} & z_{0}^{0} \\ & 0_{0}^{0} \\ & V \end{aligned}$

CYTOSINE

Cytosine having the formula $C_{4} H_{5} N_{3} O$ is a pyrimidine with a carbonyl substitution at position C_{b}, and a primary amine moiety is at position C_{a} as shown in Figure 15.59B. The carbonyl and adjacent $C_{b}-N_{b}$ functional groups are equivalent to the corresponding groups of alkyl amides. The NH_{2} and $\mathrm{C}_{a}-\mathrm{N}_{a}$ functional groups of the primary amine moiety are equivalent to the NH_{2} and $\mathrm{C}_{a}-\mathrm{N}_{a}$ functional groups of adenine. The vinyl moiety, $\mathrm{HC}_{c}=C_{d} H$, comprises $\mathrm{C}=\mathrm{C}$ and CH functional groups that are equivalent to the corresponding alkene groups. Cytosine further comprises $N_{b}=C_{a}, N_{c} H$, and $C_{b}-N_{c}-C_{c}$ groups that are equivalent to the corresponding groups of imidazole as given in the corresponding section. The $C_{a}-C_{d}$ bond comprises another functional group that is equivalent to the $C_{a}-C_{d}$ group of guanine and thymine except that $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ is equivalent to the contribution of a $C 2 s p^{3} \mathrm{HO}$ of an alkane, -0.92918 eV (Eq. (14.513)), in order to match the energies of the single and double-bonded moieties within the molecule.

The symbols of the functional groups of cytosine are given in Table 15.345. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of cytosine are given in Tables $15.346,15.347$, and 15.348 , respectively. The total energy of cytosine given in Table 15.349 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.348 corresponding to functional-group composition of the molecule. The bond angle parameters of cytosine determined using Eqs. (15.88-15.117) are given in Table 15.350. The color scale, chargedensity of cytosine comprising atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.59A.

Figure 15.59 . (A) Color scale, charge-density of cytosine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure and atomic designation of cytosine.

Table 15.345. The symbols of functional groups of cytosine.

Functional Group	Group Symbol
$C_{a}-N_{a}$	$C-N$ (a)
NH_{2} group	NH_{2}
$N_{b}=C_{a}$ double bond	$N=C$
$C_{b}=O \quad$ (alkyl amide)	$C=O$
$C_{b}-N_{b}$ amide	$C-N$ (b)
$C_{c}=C_{d}$ double bond	$C=C$
$\mathrm{C}_{c} \mathrm{H} \quad \mathrm{C}_{d} \mathrm{H}$	CH
$C_{a}-C_{d}$	C-C
$\mathrm{C}_{b}-\mathrm{N}_{c}-\mathrm{C}_{c}$	$C-N-C$
$N_{c} \mathrm{H}$ group	NH

Table 15.346. The geometrical bond parameters of cytosine and experimental values [1].

Parameter	$\begin{gathered} C-N(a) \\ \text { Group } \end{gathered}$	NH_{2} Group	$\begin{aligned} & N=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-N \text { (b) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \\ & \text { Group } \\ & \hline \end{aligned}$	$\begin{gathered} C-N-C \\ \text { Group } \end{gathered}$	$\begin{gathered} N H \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.61032	1.24428	1.44926	1.29907	1.75370	1.47228	1.53380	1.88599	1.43222	1.24428
$c^{\prime}\left(a_{0}\right)$	1.26898	0.94134	1.30383	1.13977	1.32427	1.26661	1.01120	1.37331	1.29614	0.94134
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.34303	0.99627	1.37991	1.20628	1.40155	1.34052	1.07021	1.45345	1.37178	0.996270
Exp. Bond Length (A)	$\begin{aligned} & 1.34[64] \\ & \text { (adenine) } \end{aligned}$	$\begin{gathered} 0.998 \\ \text { (aniline) } \end{gathered}$		1.220 (acetamide) 1.225 (N-methylacetamide)	$\begin{gathered} 1.380 \\ \text { (acetamide) } \end{gathered}$	1.34 [65] (cytosine) 1.342 (2-methylpropene) 1.346 (2-butene) 1.349 (1,3-butadiene)	$\begin{gathered} 1.076 \\ \text { (pyrrole) } \end{gathered}$	$\begin{gathered} 1.43 \text { [65] } \\ \text { (cytosine) } \end{gathered}$	$\begin{gathered} 1.370 \\ \text { (pyrrole) } \end{gathered}$	$\begin{aligned} & 0.996 \\ & \text { (pyrrole) } \end{aligned}$
$b, c\left(a_{0}\right)$	0.99137	0.81370	0.63276	0.62331	1.14968	0.75055	1.15326	1.29266	0.60931	0.81370
e	0.78803	0.75653	0.89965	0.87737	0.75513	0.86030	0.65928	0.72817	0.90499	0.75653

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 3 } \end{gathered}$	$\begin{gathered} E_{F_{r}} \\ (\text { (eV) } \\ \text { Bond 4 } \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {manal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {manal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Coumanem }}\left(C 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \hline \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$C_{d}\left(N_{b}\right) C_{a} N_{a} H-H$	N_{a}	-0.56690	0	0	0		0.93084	0.88392	-15.39265		121.74	58.26	67.49	0.47634	0.46500
$C_{d}\left(N_{b}\right) C_{a}-N_{a} H_{2}$	N_{a}	-0.56690	0	0	0		0.93084	0.88392	-15.39265		113.13	66.87	55.08	0.92180	0.34719
$C_{d}\left(N_{b}\right) C_{a}-N_{a} H_{2}$	C_{a}	-0.56690	-0.92918	-0.46459	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	108.27	71.73	50.93	1.01493	0.25406
$C_{d}\left(N_{a}\right) C_{a}=N_{b} C_{b}$	N_{b}	-0.92918	-0.82688	0	0		0.93084	0.82053	-16.58181		137.50	42.50	61.17	0.69886	0.60497
$C_{d}\left(N_{a}\right) C_{a}=N_{b} C_{b}$	C_{a}	-0.92918	-0.56690	-0.46459	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	137.11	42.89	60.67	0.70998	0.59385
$C_{a} N_{b}-C_{b}(O) N_{c}$	N_{b}	-0.82688	-0.92918	0	0		0.93084	0.82053	-16.58181		96.19	83.81	45.20	1.23578	0.08850
$C_{a} N_{b}-C_{b}(O) N_{c}$	C_{b}	-0.82688	-1.34946	-0.92918	0	-154.72121	0.91771	0.75878	-17.93127	-17.74041	90.51	89.49	41.30	1.31755	0.00672
$N_{b}\left(N_{c}\right) C_{b}=O$	O_{a}	-1.34946	0	0	0		1.00000	0.84115	-16.17521		137.27	42.73	66.31	0.52193	0.61784
$N_{b}\left(N_{c}\right) C_{b}=0$	C_{b}	-1.34946	-0.82688	-0.92918	0	-154.72121	0.91771	0.75878	-17.93127	-17.74041	133.67	46.33	61.70	0.61582	0.52395
$N-H\left(N_{c} H\right)$	N_{c}	-0.92918	-0.92918	0	0		0.93084	0.81549	-16.68411		117.34	62.66	62.90	0.56678	0.37456
$C-H\left(C_{c} H\right)$	C_{c}	-1.13380	-0.92918	0	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	83.35	96.65	43.94	1.10452	0.09331
$C-H\left(C_{d} H\right)$	C_{d}	-1.13380	-0.46459	0	0	-153.21408	0.91771	0.82840	-16.42414	-16.23327	85.93	94.07	45.77	1.06995	0.05875
$N_{b}(O) C_{b}-N_{c} H C_{c}$	N_{c}	-0.92918	-0.92918	0	0		0.93084	0.81549	-16.68411		138.92	41.08	61.59	0.68147	0.61467
$N_{b}(O) C_{b}-N_{c} H C_{c}$	C_{b}	-0.92918	-1.34946	-0.82688	0	-154.72121	0.91771	0.75878	-17.93127	-17.74041	136.68	43.32	58.70	0.74414	0.55200
$\mathrm{C}_{b} H N_{c}-\mathrm{C}_{c} H \mathrm{C}_{d}$	N_{c}	-0.92918	-0.92918	0	0		0.93084	0.81549	-16.68411		138.92	41.08	61.59	0.68147	0.61467
$C_{b} H N_{c}-C_{c} H C_{d}$	C_{d}	-0.92918	-1.13379	0	0	-153.67866	0.91771	0.80561	-16.88873	-16.69786	138.54	41.46	61.09	0.69238	0.60376
$N_{c} H C_{c}=C_{d} H C_{a}$	C_{c}	-1.13380	-0.92918	0.00000	0	-153.67867	0.91771	0.80561	-16.88873	-16.69786	127.61	52.39	58.24	0.77492	0.49168
$N_{c} H C_{c}=C_{d} H C_{a}$	C_{d}	-1.13380	-0.46459	0.00000	0	-153.21408	0.91771	0.82840	-16.42414	-16.23327	128.72	51.28	59.45	0.74844	0.51817
$H_{c} C_{c} C_{d}-C_{a}\left(N_{a}\right) N_{b}$	C_{a}	-0.46459	-0.56690	-0.92918	0	-153.57636	0.91771	0.81052	-16.78642	-16.59556	82.65	97.35	38.45	1.47695	0.10364
${ }_{H C} C_{c} C_{d}-C_{a}\left(N_{a}\right) N_{b}$	C_{d}	-0.46459	-1.13379	0	0	-153.21407	0.91771	0.82840	-16.42414	-16.23327	84.52	95.48	39.64	1.45240	0.07908

Table 15.348. The energy parameters (eV) of functional groups of cytosine.

Parameters	$\begin{gathered} C-N(\mathrm{a}) \\ \text { Group } \end{gathered}$	NH_{2} Group	$\begin{aligned} & N=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-N \text { (b) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C=C \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-N-C \\ \text { Group } \end{gathered}$	$\begin{gathered} N H \\ \text { Group } \end{gathered}$
n_{1}	1	2	2	2	1	2	1	1	2	1
n_{2}	0	0	0	0	0	0	0	0	0	0
n_{3}	0	1	0	0	0	0	0	0	0	0
C_{1}	0.5	0.75	0.5	0.5	0.5	0.5	0.75	0.5	0.5	0.75
C_{2}	1	0.93613	0.85252	1	1	0.91771	1	1	0.85252	0.93613
c_{1}	1	0.75	1	1	1	1	1	1	1	0.75
c_{2}	0.84665	0.92171	0.84665	0.85395	0.91140	0.91771	0.91771	0.91771	0.84665	0.92171
c_{3}	0	0	0	2	0	0	1	0	0	1
c_{4}	2	1	4	4	2	4	1	2	4	1
c_{5}	0	2	0	0	0	0	1	0	0	1
C_{1},	0.5	1.5	0.5	0.5	0.5	0.5	0.75	0.5	0.5	0.75
C_{20}	1	1	0.85252	1	1	0.91771	1	1	0.85252	1
$V_{e}(\mathrm{eV})$	-35.50149	-78.97795	-103.92756	-111.25473	-36.88558	-102.08992	-39.09538	-33.63376	-106.58684	-39.48897
$V_{p}(\mathrm{eV})$	10.72181	28.90735	20.87050	23.87467	10.27417	21.48386	13.45505	9.90728	20.99432	14.45367
$T(\mathrm{eV})$	11.02312	31.73641	35.85539	42.82081	10.51650	34.67062	12.74462	8.91674	37.21047	15.86820
$V_{m}(\mathrm{eV})$	-5.51156	-15.86820	-17.92770	-21.41040	-5.25825	-17.33531	-6.37231	-4.45837	-18.60523	-7.93410
E!яогно) (eV)	-14.63489	-14.53414	0	0	-14.63489	0	-14.63489	-14.63489	0	-14.53414
$\Delta E_{H_{2} \text { МО }}$ (Ао ио) (eV)	-2.26759	0	-1.85836	-2.69893	-4.35268	0	-2.26758	-2.26759	-3.71673	0
E_{T} ((ояно) (eV)	-12.36730	-14.53414	1.85836	2.69893	-10.28221	0	-12.36731	-12.36730	3.71673	-14.53414
E in, Ао Но) (e V$)$	0	-14.53414	0	0	0	0	0	0	0	0
$E_{T}\left(H_{2} M(0)(\mathrm{eV})\right.$	-31.63543	-48.73654	-63.27100	-63.27074	-31.63537	-63.27075	-31.63533	-31.63541	-63.27056	-31.63534
$E_{T}\left(\right.$ atom -atom, $\left.\mathrm{msp}{ }^{3} \cdot \mathrm{AO}\right)(\mathrm{eV})$	-1.13379	0	-1.85836	-2.69893	-1.65376	-2.26759	0	-0.92918	-3.71673	0
$E_{7}(\mathrm{mo})(\mathrm{eV})$	-32.76916	-48.73660	-65.12910	-65.96966	-33.28912	-65.53833	-31.63537	-32.56455	-66.98746	-31.63537
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	14.3055	68.9812	15.4704	59.4034	12.5874	43.0680	28.9084	19.8904	15.7474	48.7771
$E_{K}(\mathrm{eV})$	9.41610	45.40465	10.18290	39.10034	8.28526	28.34813	19.02803	13.09221	10.36521	32.10594
$\bar{E}_{D}(\mathrm{eV})$	-0.19893	-0.42172	-0.20558	-0.40804	-0.18957	-0.34517	-0.27301	-0.23311	-0.21333	-0.35462
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.15498 \\ {[58]} \\ \hline \end{gathered}$	$\begin{gathered} 0.40929 \\ {[22]} \\ \hline \end{gathered}$	$\begin{gathered} 0.20768 \\ {[62]} \\ \hline \end{gathered}$	$\begin{gathered} 0.21077 \\ {[12]} \end{gathered}$	$\begin{gathered} 0.17358 \\ {[33]} \\ \hline \end{gathered}$	$\begin{gathered} 0.17897 \\ {[6]} \\ \hline \end{gathered}$	$\begin{gathered} 0.39427 \\ {[60]} \\ \hline \end{gathered}$	$\begin{gathered} 0.14667 \\ {[67]} \\ \hline \end{gathered}$	$\begin{gathered} 0.11159 \\ {[12]} \end{gathered}$	$\begin{gathered} 0.40696 \\ {[24]} \\ \hline \end{gathered}$
$\bar{E}_{\text {acc }}(\mathrm{eV})$	-0.12144	-0.21708	-0.10174	-0.30266	-0.10278	-0.25568	-0.07587	-0.15977	-0.15754	-0.15115
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.11441	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{T}($ cruoup $)(\mathrm{eV})$	-32.89060	-49.17075	-65.33259	-66.57498	-33.39190	-66.04969	-31.71124	-32.57629	-67.30254	-31.78651
	-14.63489	-14.53414	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.53414
$E_{\text {intral }}(\mathrm{c}$, AO/ $/$ \%O) (eV)	0	-13.59844	0	0	0	0	-13.59844	0	0	-13.59844
$E_{D}($ Gimup $)(e V)$	3.62082	7.43973	6.79303	7.80660	4.12212	7.51014	3.32988	3.30651	8.76298	3.51208

Table 15.349. The total gaseous bond energies of cytosine calculated using the functional group composition and the energies of Table 15.348 compared to the experimental values [3].
Table 15.350. The bond angle parameters of cytosine and experimental values [64]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond I } \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \\ \left(a_{0}\right) \end{gathered}$	$\underset{\text { Terminal }}{2 c^{\prime}}$ Atoms $\left(a_{0}\right)$	$E_{\text {Coulombic }}$ Atom 1	Atom 1Hybridization Designation(Table 15.3B)	$E_{\text {Contombic }}$ Atom 2	Atom 2Hybridization Designation(Table 15.3B)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom 2 } \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{v} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\angle H N H$	1.88268	1.88268	3.1559	-14.53414	N	H	H	$\begin{gathered} 0.93613 \\ (13.248) \\ \text { Eq. } \\ (1) \end{gathered}$	1	1	1	0.75	1.06823	0				113.89	$\begin{gathered} 113.9[1] \\ (\text { aniline }) \end{gathered}$
$\angle C_{a} N H$	2.53797	1.88268	3.8123	-16.78642	19	-14.53414	N	$\begin{gathered} 0.81052 \\ \text { Eq. } \\ (15.71) \end{gathered}$	$\begin{gathered} \left.\begin{array}{c} 0.77638 \\ \text { Eq. } \\ (15.173) \end{array}\right) \end{gathered}$	0.75	1	0.75	0.95787	0				118.42	118 [66]
$\angle N_{b} C_{a} C_{d}$	2.60766	2.74663	4.6476	-14.53414	N	-16.42414	13	$\begin{gathered} 0.8466 \\ \text { Eq } \\ (15.171) \end{gathered}$	0.82840	1	1	1	0.83753	-1.65376				120.43	121.4
$\angle N_{b} \mathrm{C}_{a} N_{a}$	2.60766	2.53797	4.4272	-15.39265	2	-16.58181	16	0.88392	0.82053	1	1	1	0.85222	-1.44915				118.71	117.5
$\angle C_{d} C_{a} N_{a}$																120.43	118.71	120.85	121.1
$\angle C_{b} N_{b} C_{a}$	2.64855	2.60766	4.4944	-17.93127	38	-16.78642	19	0.75878	0.81052	1	1	1	0.78465	-1.85836				117.53	120.3
$\angle N_{b} C_{b} N_{c}$	2.64855	2.59228	4.4721	-16.58181	16	-16.68411	17	0.82053	0.81549	1	1	1	0.81801	-1.65376				117.15	118.9
$\angle N_{c} C_{b} O$	2.59228	2.27954	4.2426	-16.68411	17	-16.17521	8	0.81549	0.84115	1	1	1	0.82832	-1.44915				120.98	119.8
$\angle N_{b} C_{b} O$																117.15	120.98	121.87	121.3
$\angle C_{b} N_{c} C_{c}$	2.59228	2.59228	4.4944	-17.93127	38	-16.88873	20	0.75878	0.80561	1	1	1	0.78219	-1.85836				120.20	121.7
$\left\langle N_{c} C_{c} C_{d}\right.$	2.59228	2.53321	4.4272	-14.53414	N	-15.95955	6	$\left.\begin{array}{c} 0.84665 \\ \text { Eq. } \\ (15.171) \end{array}\right)$	0.85252	1	1	1	0.84958	-1.44915				119.48	121.4
$\angle H_{c} N_{c} C_{c}$	1.88268	2.59228	3.8644	-14.53414	N	-16.68411	17	$\begin{gathered} 0.84665 \\ \text { Eq. } \\ (15.171 \end{gathered}$	0.81549	0.75	1	0.75	0.96320	0				118.58	
$\left\langle H_{c} N_{c} C_{c}\right.$																120.20	118.58	121.23	
$\angle C_{a} C_{d} C_{c}$	2.74663	2.53321	4.5166	-16.78642	19	-17.81791	36	0.81052	0.76360	1	1	1	0.78706	-1.85836				117.56	116.4
$\angle H_{c} C_{c} C_{d}$	2.02241	2.53321	3.9833	-15.95955	6	-15.95955	6	0.85252	0.85252	0.75	1	0.75	1.00000	0				121.54	
$\left\langle H_{c} C_{c} N_{c}\right.$																119.48	121.54	118.99	
$\angle H_{d} C_{d} C_{c}$	2.02241	2.53321	3.9833	-15.95955	6	-15.95955	6	0.85252	0.85252	0.75	1	0.75	1.00000	0				121.54	
$\angle H_{d} C_{d} C_{a}$																117.56	121.54	120.90	

ALKYL PHOSPHINES ($\left.\left(C_{n} H_{2 n+1}\right)_{3} P, n=1,2,3,4,5 \ldots \infty\right)$

The alkyl phosphines, $\left(C_{n} H_{2 n+1}\right)_{3} P$, comprise a $P-C$ functional group. The alkyl portion of the alkyl phosphine may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of each chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in alkyl phosphines are equivalent to those in branched-chain alkanes. The $P-C$ group may further join the $P 3 s p^{3} \mathrm{HO}$ to an aryl HO .

As in the case of carbon, the bonding in the phosphorous atom involves $s p^{3}$ hybridized orbitals formed, in this case, from the $3 p$ and $3 s$ electrons of the outer shells with five $P 3 s p^{3}$ HOs rather than four $C 2 s p^{3}$ HOs. The $P-C$ bond forms between $P 3 s p^{3}$ and $C 2 s p^{3}$ HOs to yield phosphines. The semimajor axis a of the $P-C$ functional group is solved using Eq. (15.51). Using the semimajor axis and the relationships between the prolate spheroidal axes, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117) in the same manner as the organic functional groups given in Organic Molecular Functional Groups and Molecules section.

The energy of phosphorous is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264). A minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the Hydroxyl Radical (OH) section with hybridization of the phosphorous atom such that in Eqs. (15.51) and (15.61), the sum of the energies of the H_{2}-type ellipsoidal MOs is matched to that of the $P 3 s p^{3}$ shell as in the case of the corresponding carbon and silicon molecules.

The P electron configuration is $[N e] 3 s^{2} 3 p^{3}$ corresponding to the ground state ${ }^{4} S_{3 / 2}$, and the $3 s p^{3}$ hybridized orbital arrangement after Eq. (13.422) is:

\[

\]

where the quantum numbers $\left(\ell, m_{\ell}\right)$ are below each electron. The total energy of the state is given by the sum over the five electrons. The sum $E_{T}\left(P, 3 s p^{3}\right)$ of experimental energies [38] of P, P^{+}, P^{2+}, P^{3+}, and P^{4+} is:

$$
\begin{align*}
E_{T}\left(P, 3 s p^{3}\right) & =65.0251 \mathrm{eV}+51.4439 \mathrm{eV}+30.2027 \mathrm{eV}+19.7695 \mathrm{eV}+10.48669 \mathrm{eV} \\
& =176.92789 \mathrm{eV} \tag{15.175}
\end{align*}
$$

By considering that the central field decreases by an integer for each successive electron of the shell, the radius $r_{3 s p^{3}}$ of the $P 3 s p^{3}$ shell may be calculated from the Coulombic energy using Eq. (15.13).

$$
\begin{equation*}
r_{3 s p^{3}}=\sum_{n=10}^{14} \frac{(Z-n) e^{2}}{8 \pi \varepsilon_{0}(e 176.92789 \mathrm{eV})}=\frac{15 e^{2}}{8 \pi \varepsilon_{0}(e 176.92789 \mathrm{eV})}=1.15350 a_{0} \tag{15.176}
\end{equation*}
$$

where $Z=15$ for phosphorous. Using Eq. (15.14), the Coulombic energy $E_{\text {Coulomb }}\left(P, 3 s p^{3}\right)$ of the outer electron of the $P 3 s p^{3}$ shell is:

$$
\begin{equation*}
E_{\text {Coulomb }}\left(P, 3 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{3 s p^{3}}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} 1.15350 a_{0}}=-11.79519 \mathrm{eV} \tag{15.177}
\end{equation*}
$$

During hybridization, the spin-paired $3 s$ electrons are promoted to the $P 3 s p^{3}$ shell as paired electrons at the radius $r_{3 s p^{3}}$ of the $P 3 s p^{3}$ shell. The energy for the promotion is the difference in the magnetic energy given by Eq. (15.15) at the initial radius of the $3 s$ electrons and the final radius of the $P 3 s p^{3}$ electrons. From Eq. (10.255) with $Z=15$, the radius r_{12} of $P 3 s$ shell is

$$
\begin{equation*}
r_{12}=1.09443 a_{0} \tag{15.178}
\end{equation*}
$$

Using Eqs. (15.15) and (15.178), the unpairing energy is:

$$
\begin{equation*}
E(\text { magnetic })=\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}}\left(\frac{1}{\left(r_{12}\right)^{3}}-\frac{1}{\left(r_{3 s p^{3}}\right)^{3}}\right)=8 \pi \mu_{o} \mu_{B}^{2}\left(\frac{1}{\left(1.09443 a_{0}\right)^{3}}-\frac{1}{\left(1.15350 a_{0}\right)^{3}}\right)=0.01273 \mathrm{eV} \tag{15.179}
\end{equation*}
$$

Using Eqs. (15.177) and (15.179), the energy $E\left(P, 3 s p^{3}\right)$ of the outer electron of the $P 3 s p^{3}$ shell is:

$$
\begin{equation*}
E\left(P, 3 s p^{3}\right)=\frac{-e^{2}}{8 \pi \varepsilon_{0} r_{3 s p^{3}}}+\frac{2 \pi \mu_{0} e^{2} \hbar^{2}}{m_{e}^{2}}\left(\frac{1}{\left(r_{12}\right)^{3}}-\frac{1}{\left(r_{3 s p^{3}}\right)^{3}}\right)=-11.79519 \mathrm{eV}+0.01273 \mathrm{eV}=-11.78246 \mathrm{eV} \tag{15.180}
\end{equation*}
$$

For the $P-C$ functional group, hybridization of the $2 s$ and $2 p$ AOs of each C and the $3 s$ and $3 p$ AOs of each P to form single $2 s p^{3}$ and $3 s p^{3}$ shells, respectively, forms an energy minimum, and the sharing of electrons between the $C 2 s p^{3}$ and $P 3 s p^{3}$ HOs to form a MO permits each participating orbital to decrease in radius and energy. In branched-chain alkyl phosphines, the energy of phosphorous is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264). Thus, c_{2} in Eq. (15.61) is one, and the energy matching condition is determined by the C_{2} parameter. Then, the $C 2 s p^{3}$ HO has an energy of $E\left(C, 2 s p^{3}\right)=-14.63489 \mathrm{eV}$ (Eq. (15.25)), and the $P 3 s p^{3} \quad \mathrm{HO}$ has an energy of $E\left(P, 3 s p^{3}\right)=-11.78246 \mathrm{eV}$ (Eq. (15.180)). To meet the equipotential condition of the union of the $P-C H_{2}$-type-ellipsoidalMO with these orbitals, the hybridization factor C_{2} of Eq. (15.61) for the $P-C$-bond MO given by Eqs. (15.77), (15.79), and (13.430) is:

$$
\begin{equation*}
C_{2}\left(C 2 s p^{3} \mathrm{HO} \text { to } P 3 s p^{3} \mathrm{HO}\right)=\frac{E\left(P, 3 s p^{3}\right)}{E\left(C, 2 s p^{3}\right)} c_{2}\left(C 2 s p^{3} \mathrm{HO}\right)=\frac{-11.78246 \mathrm{eV}}{-14.63489 \mathrm{eV}}(0.91771)=0.73885 \tag{15.181}
\end{equation*}
$$

The energy of the $P-C$-bond MO is the sum of the component energies of the H_{2}-type ellipsoidal MO given in Eq. (15.51) with $E(A O / H O)=E\left(P, 3 s p^{3}\right)$ given by Eq. (15.180), and $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$ is one half -0.72457 eV given by Eq. (14.151) in order to match the energies of the carbon and phosphorous HOs.

The symbols of the functional groups of branched-chain alkyl phosphines are given in Table 15.351. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl phosphines are given in Tables 15.352, 15.353, and 15.354, respectively. The total energy of each alkyl phosphine given in Table 15.355 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.354 corresponding to functionalgroup composition of the molecule. The bond angle parameters of alkyl phosphines determined using Eqs. (15.88-15.117) are given in Table 15.356. The color scale, charge-density of exemplary alkyl phosphine, triphenylphosphine, comprising atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.60.

Figure 15.60. Color scale, charge-density of triphenylphosphine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (A) Top view. (B) Side view.

Table 15.351. The symbols of functional groups of alkyl phosphines.

Functional Group	Group Symbol
$P-C$	$P-C$
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H (i)
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to t-C)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)
$C C$ (aromatic bond)	$C \stackrel{3 e}{=} C$
CH (aromatic)	CH (ii)

Table 15.352. The geometrical bond parameters of alkyl phosphines and experimental values [1].

Parameter	$\begin{aligned} & P-C \\ & \text { Group } \end{aligned}$	$\underset{\text { Group }}{\mathrm{C-H}\left(\mathrm{CH}_{3}\right)}$	$\underset{\text { Group }}{\mathrm{C-H}\left(\mathrm{CH}_{2}\right)}$	$\begin{gathered} C-H(\mathrm{i}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C^{3 e}=C \\ & \text { Group } \end{aligned}$	$\begin{gathered} \text { CH (ii) } \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	2.29513	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725	1.47348	1.60061
$c^{\prime}\left(a_{0}\right)$	1.76249	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164	1.31468	1.03299
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.86534	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635	1.39140	1.09327
Exp. Bond Length (A)	$\begin{gathered} 1.847 \\ \left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PCH}\right. \\ 1.858 \\ \left(H_{2} \mathrm{PCH}_{3}\right) \\ \hline \end{gathered}$	$\begin{array}{c\|} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{array}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.399 \\ \text { (benzene) } \end{gathered}$	$\begin{gathered} 1.101 \\ \text { (benzene) } \end{gathered}$
$b, c\left(a_{0}\right)$	1.47012	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750	0.66540	1.22265
,	0.76793	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888	0.89223	0.64537

Table 15.353. The MO to HO intercept geometrical bond parameters of alkyl phosphines. R_{1} is an alkyl group and $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is E_{T} (atom atom, $m s p^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 1 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 3 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 4 \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV) 1	$\begin{aligned} & r_{\text {mpad }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {mal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {calumen }} \\ \text { (ev) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\text { ev) } \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$\mathrm{C-H}\left(\mathrm{CH}_{3}\right)$	c	-0.36229	0	0	0	-151.97798	0.91771	0.89582	-15.18804	-14.99717	81.24	98.76	44.07	1.18494	0.13638
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{P}-\mathrm{CH}_{3}$	C	-0.18114	0	0	0		0.91771	0.90664	-15.00689	-14.81603	87.12	92.88	38.02	1.80811	0.04562
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{P}-\mathrm{CH}_{3}$	P	-0.18114	-0.18114	-0.18114	0		1.15350	0.88527	-15.36918		85.24	94.76	36.88	1.83594	0.07345
$\mathrm{C-H}\left(\mathrm{CH}_{3}\right)$	C	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	77.49	102.51	41.48	1.23564	0.18708
$\mathrm{C-H}\left(\mathrm{CH}_{2}\right)$	C	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	68.47	111.53	35.84	1.35486	0.29933
$\mathrm{C-H}(\mathrm{CH})$	c	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	61.10	118.90	31.37	1.42988	0.37326
$\begin{aligned} & \mathrm{H}_{\mathrm{H}_{\mathrm{C}}{ }_{a} \mathrm{CH}_{2} \mathrm{CH}_{2}-} \\ & (\mathrm{C}-\mathrm{C} \text { (a)) } \end{aligned}$	C_{a}	-0.92918	0	0	0	-152.54487	0.91771	0.86359	-15.75493	-15.56407	63.82	116.18	30.08	1.83879	0.38106
$\begin{aligned} & \mathrm{H}_{\mathrm{H}_{C} C_{C} \mathrm{C}_{2} H_{2} \mathrm{CH}_{2}-} \\ & (\mathrm{C}-\mathrm{C} \text { (a) }) \end{aligned}$	C_{b}	-0.92918	-0.92918	0	0	-153.47406	0.91771	0.81549	-16.68412	-16.49325	56.41	123.59	26.06	1.90890	0.45117
$\begin{aligned} & R-H_{2} C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}- \\ & (C-C(b)) \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.4224	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & R-H_{2} C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (C-C(\mathrm{c})) \end{aligned}$	C_{b}	-0.92918	-0.72457	-0.72457	-0.72457	-154.71860	0.91771	0.75889	-17.92866	-17.73779	48.21	131.79	21.74	1.95734	0.50570
$\begin{aligned} & {\text { iso } C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}-}^{(C-C \text { (d)) }} \end{aligned}$	C_{b}	-0.92918	-0.92918	-0.92918	0	-154.40324	0.91771	0.77247	-17.61330	-17.42244	48.30	131.70	21.90	1.97162	0.51388
$\begin{aligned} & \operatorname{terliC}_{C}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) \mathrm{CH}_{2}- \\ & (C-C(\mathrm{e})) \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298
$\begin{aligned} & {\operatorname{terlC} C_{a} C_{b}\left(H_{2} C_{c}-R^{\prime}\right) H C H_{2}-}_{(C-C(\mathrm{f})} \end{aligned}$	C_{b}	-0.72457	-0.92918	-0.92918	0	-154.19863	0.91771	0.78155	-17.40869	-17.21783	52.78	127.22	24.04	1.92443	0.47279
$\begin{aligned} & {\text { iso } C_{a}\left(R^{\prime}-H_{2} C_{d}\right) C_{b}\left(R^{\prime \prime}-H_{2} C_{c}\right) C H_{2}-}^{(C-C(\mathrm{f})} \end{aligned}$	C_{b}	-0.72457	-0.72457	-0.72457	-0.72457	-154.51399	0.91771	0.76765	-17.92866	-17.73779	50.04	129.96	22.66	1.94462	0.49298

Table 15.354. The energy parameters (eV) of functional groups of alkyl phosphines

Parameters	$\begin{aligned} & P-C \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$	$\begin{aligned} & \mathrm{CH} \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \text { (a) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \text { (c) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(d) \\ \text { Group } \end{gathered}$	$\begin{gathered} \hline C-C \text { (e) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C^{3 e}=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \hline C H \text { (ii) } \\ & \text { Group } \end{aligned}$
f_{1}	1	1	1	1	1	1	1	1	1	1	0.75	1
n_{1}	1	3	2	1	1	1	1	1	1	1	2	1
n_{2}	0	2	1	0	0	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.75
C_{2}	0.73885	1	1	1	1	1	1	1	1	1	0.85252	1
c_{1}	1	1	1	1	1	1	1	1	1	1	1	1
c_{2}	1	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.85252	0.91771
c_{3}	0	0	1	1	0	0	0	1	1	0	0	1
c_{4}	2	1	1	1	2	2	2	2	2	2	3	1
c_{5}	0	3	2	1	0	0	0	0	0	0	0	1
C_{10}	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.75
C_{20}	0.73885	1	1	1	1	1	1	1	1	1	0.85252	1
$V_{e}(\mathrm{eV})$	-31.34959	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112	-101.12679	-37.10024
$V_{p}(\mathrm{eV})$	7.71965	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273	20.69825	13.17125
$T(\mathrm{eV})$	6.82959	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500	34.31559	11.58941
$V_{m}(\mathrm{eV})$	-3.41479	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250	-17.15779	-5.79470
E (лонно) (eV)	-11.78246	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946	0	-14.63489
$\Delta E_{H_{2} \mathrm{MO}^{\prime}}$ (АО/Ho) (eV)	-0.36229	0	0	0	0	0	0	0	0	0	0	-1.13379
$E_{T}^{\text {(Ао/ }}$ (\%)) (eV)	-11.42017	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946	0	-13.50110
$E_{T}\left(H_{2} M O\right)(\mathrm{eV})$	-31.63532	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535	-63.27075	-31.63539
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}{ }^{3} . \mathrm{AO}\right)(\mathrm{eV})$	-0.36229	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915	-2.26759	-0.56690
$E_{T}(\mathrm{no})(\mathrm{eV})$	-31.99766	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452	-65.53833	-32.20226
ω ف ($10^{15} \mathrm{rad} / \mathrm{s}$)	7.22663	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643	49.7272	26.4826
$E_{K}(\mathrm{eV})$	4.75669	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021	32.73133	17.43132
$\bar{E}_{D}(\mathrm{eV})$	-0.13806	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416	-0.35806	-0.26130
$\bar{E}_{\text {Kub }}(\mathrm{eV})$	$\begin{gathered} 0.17606 \\ {[68]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \\ \hline \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.05003	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260	-0.25982	-0.08364
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{T}($ Group $)(\mathrm{eV})$	-32.04769	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712	-49.54347	-32.28590
	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
	0	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0	0	-13.59844
$E_{D}($ Group) (eV)	2.77791	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734	5.63881	3.90454

Table 15.355. The total bond energies of alkyl phosphines calculated using the functional group composition and the energies of Table 15.354 compared to the experimental values [69].

Formula	Name	P-C	CH_{3}	CH_{2}	CH (i)	$C-C$ (a)	$C-C$ (b)	$C-C$ (c)	$C-C$ (d)	$C-C$ (e)	$C-C$ (f)	$C^{3 e}=C$	CH (ii)	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{P}$	Trimethylphosphine	3	3	0	0	0	0	0	0	0	0	0	0	45.80930	46.87333	0.02270
$\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{P}$	Triethylphosphine	3	3	3	0	3	0	0	0	0	0	0	0	82.28240	82.24869	-0.00041
$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}$	Triphenylphosphine	3	0	0	0	0	0	0	0	0	0	18	15	168.40033	167.46591	-0.00558

Table 15.35 . The bond angle parameters of alkyl phosphines and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is $E_{T}\left(\right.$ atom - atom, $\left.m s p^{3} . A O\right)$.

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Terminal } \\ \text { Atoms } \\ \left(a_{0}\right) \end{gathered}$	$E_{\text {Conlomice }}$ or E Atom 1	Atom 1Hybridization Designation(Table 15.3.A)	$\begin{aligned} & E_{\text {Coulomich }} \text { ic } \\ & \text { Atom } \end{aligned}$	Atom 2Hybridization Designation(Table 15.3.A)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	${ }^{\circ}$	c_{2}^{\prime}	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{y} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \operatorname{Exp} . \theta \\ \left({ }^{\circ}\right) \end{gathered}$
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle H_{a} C_{a} P$															70.56			109.44	$\begin{gathered} 110.7 \\ \begin{array}{c} \text { (trimethyl } \\ \text { phosphine) } \end{array} \\ \hline \end{gathered}$
$\angle C_{a} P C_{b}$	3.52498	3.52498	5.3479	-15.93607	9	-15.93607	9	0.85377	0.85377	1	1	1	0.85377	-1.85836				98.68	$\begin{gathered} 98.6 \\ \begin{array}{c} \text { (trimethyl } \\ \text { phosphine) } \end{array} \\ \hline \end{gathered}$
Methylene $\angle H C_{a} H$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} 107 \\ \text { (propane) } \\ \hline \end{gathered}$
$\angle C_{a} C_{b} C_{c}$															69.51			110.49	$\begin{gathered} 112 \\ \text { (propane) } \\ 113.8 \\ \text { (butane) } \\ 110.8 \\ \text { (isobutane) } \end{gathered}$
$\angle C_{a} C_{b} H$															69.51			110.49	$\begin{gathered} 111.0 \\ \text { (butane) } \\ 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{a} C_{b} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b} H$															70.56			109.44	
$\begin{aligned} & \angle C_{b} C_{a} C_{c} \\ & \text { iso } C_{a} \\ & \hline \end{aligned}$	2.91547	2.91547	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	$\begin{gathered} -16.68412 \\ C_{c} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				110.67	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\begin{gathered} \angle C_{b} C_{a} H \\ \text { iso } C_{a} \\ \hline \end{gathered}$	2.91547	2.11323	4.1633	$\begin{gathered} -15.55033 \\ C_{a} \end{gathered}$	5	$\begin{gathered} -14.82575 \\ C_{b} \end{gathered}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{gathered} \angle C_{a} C_{b} H \\ \text { iso } C_{a} \end{gathered}$	2.91547	2.09711	4.1633	$\begin{gathered} -15.55033 \\ C_{b} \end{gathered}$	5	$\stackrel{-14.82575}{C_{a}}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	$\begin{gathered} 1111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \angle C_{b} C_{a} C_{b} \\ & \text { tert } C_{a} \end{aligned}$	2.90327	2.90327	4.7958	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	$\begin{gathered} -16.68412 \\ C_{b} \end{gathered}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				111.37	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\angle C_{b} C_{a} C_{d}$															72.50			107.50	

ALKYL PHOSPHITES ($\left.\left(C_{n} H_{2 n+1} O\right)_{3} P, n=1,2,3,4,5 \ldots \infty\right)$

The alkyl phosphites, $\left(C_{n} H_{2 n+1} O\right)_{3} P$, comprise $P-O$ and $C-O$ functional groups. The alkyl portion of the alkyl phosphite may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of each chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in alkyl phosphites are equivalent to those in branched-chain alkanes.

The ether portion comprises two types of $C-O$ functional groups, one for methyl or t-butyl groups corresponding to the C, and the other for general alkyl groups that are equivalent to those in the Ethers section. The $P-O$ bond forms between the $P 3 s p^{3} \mathrm{HO}$ and an $O 2 p$ AO to yield phosphites. The semimajor axis a of the $P-O$ functional group is solved using Eq. (15.51). Using the semimajor axis and the relationships between the prolate spheroidal axes, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117) in the same manner as the organic functional groups given in Organic Molecular Functional Groups and Molecules section.

For the $P-O$ functional group, hybridization the $3 s$ and $3 p$ AOs of each to form a single $3 s p^{3}$ shell forms an energy minimum, and the sharing of electrons between the $O 2 p$ AOs and $P 3 s p^{3}$ HOs to form a MO permits each participating orbital to decrease in radius and energy. The O AO has an energy of $E(O)=-13.61805 \mathrm{eV}$, and the $P 3 s p^{3} \mathrm{HO}$ has an energy of $E\left(P, 3 s p^{3}\right)=-11.78246 \mathrm{eV}$ (Eq. (15.180)). In branched-chain alkyl phosphites, the energy matching condition is determined by the c_{2} and C_{2} parameters of Eq. (15.51) given by Eqs. (15.77), (15.79), and (13.430).

$$
\begin{equation*}
c_{2} \text { and } C_{2}\left(O 2 p A O \text { to } P 3 s p^{3} H O\right)=\frac{E\left(P, 3 s p^{3}\right)}{E(O, 2 p)} c_{2}\left(C 2 s p^{3} H O\right)=\frac{-11.78246 \mathrm{eV}}{-13.61805 \mathrm{eV}}(0.91771)=0.79401 \tag{15.182}
\end{equation*}
$$

The energy of the $\mathrm{P}-\mathrm{O}$-bond MO is the sum of the component energies of the H_{2}-type ellipsoidal MO given in Eq. (15.51) with $E(A O / H O)$ being $E\left(P, 3 s p^{3}\right)$ given by Eq. (23.180), and $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ is equivalent to that of single bond, -1.44914 eV , given by twice Eq. (14.151) in order to match the energies of the oxygen AO with the phosphorous and carbon HOs.

The symbols of the functional groups of branched-chain alkyl phosphites are given in Table 15.357. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl phosphites are given in Tables 15.358, 15.359, and 15.360, respectively. The total energy of each alkyl phosphite given in Table 15.361 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.360 corresponding to functionalgroup composition of the molecule. The bond angle parameters of alkyl phosphites determined using Eqs. (15.88-15.117) are given in Table 15.362. The color scale, charge-density of exemplary alkyl phosphite, tri-isopropyl phosphite, comprising atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.61.

Figure 15.61. Color scale, charge-density of tri-isopropyl phosphite showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei.

0

Table 15.357. The symbols of functional groups of alkyl phosphites.

Functional Group	Group Symbol
$P-O$	$P-O$
$\mathrm{C}-\mathrm{O}\left(\mathrm{CH}_{3}-\mathrm{O}-\right.$ and $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\right)$	$\mathrm{C}-\mathrm{O}$ (i)
C-O (alkyl)	$\mathrm{C}-\mathrm{O}$ (ii)
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to $t-C$)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)

Table 15.358. The geometrical bond parameters of alkyl phosphites and experimental values [1].

Parameter	$\begin{aligned} & P-O \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-O \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-H \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \text { (a) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(d) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(e) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.84714	1.80717	1.79473	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.52523	1.34431	1.33968	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.61423	1.42276	1.41785	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length (A)	$1.631[70]$ (MHP) 1.60 [65] (DNA)	1.416 (dimethyl ether)	$\begin{gathered} 1.418 \\ \begin{array}{c} \text { (ethyl methyl } \\ \text { ether (avg.)) } \end{array} \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \\ \hline \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$						
$b, c\left(a_{0}\right)$	1.04192	1.20776	1.19429	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.82573	0.74388	0.74645	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15.359. The MO to HO intercept geometrical bond parameters of alkyl phosphites. $R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups. E_{T} is $E_{T}\left(\right.$ atom - atom,msp $\left.{ }^{3} . A O\right)$.

Table 15．360．The energy parameters (eV) of functional groups of alkyl phosphites．

	－	－	－	$\%$	－		$\stackrel{\text { E }}{\text { O }}$	－	－	\％		$\begin{aligned} & \underset{7}{7} \\ & \underset{\substack{1}}{ } \end{aligned}$	$\begin{gathered} \underset{N}{N} \\ \hat{N} \\ \underset{\alpha}{2} \end{gathered}$		$\begin{gathered} 0 \\ 0 \\ \stackrel{1}{2} \\ \stackrel{y}{c} \end{gathered}$			$\begin{gathered} n \\ \underset{\sim}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & n \\ & \frac{n}{7} \\ & \hdashline- \end{aligned}$		$\begin{aligned} & \text { 僉 } \\ & \text { n? } \end{aligned}$	$\underset{\substack{\mathrm{N}}}{ }$	$\begin{aligned} & \frac{0}{6} \\ & \frac{6}{6} \end{aligned}$	$\frac{1}{2}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & i \end{aligned}$		$\left\|\begin{array}{c} \underset{\sim}{\infty} \\ \frac{\infty}{\infty} \\ \underset{\sim}{n} \end{array}\right\|$			筞
$\left\lvert\, \begin{array}{ll} 0 & 0 \\ 0 & \frac{0}{2} \\ i & \frac{0}{0} \\ 0 \end{array}\right.$	－	－	0	\cdots			$\frac{\text { ㅊ̇ㅇ }}{\text { ® }}$	－	\checkmark	\％${ }^{\circ}$			$\begin{array}{\|c} \underset{N}{N} \\ \underset{N}{2} \end{array}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ \text { in } \\ \text { 等 } \end{gathered}$		$\begin{gathered} 0 \\ \vdots \\ n \\ n \\ n \\ \end{gathered}$	$\begin{gathered} \mathfrak{\sim} \\ \underset{\sim}{2} \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{gathered}$			$\begin{aligned} & \text { ?⿳士口䒑口力} \\ & \stackrel{N}{n} \end{aligned}$	त्रे	$\begin{aligned} & 0 \\ & \frac{7}{6} \\ & i \\ & i \end{aligned}$	$\frac{1}{2} \frac{1}{2}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \hline \end{aligned}\right.$		$\underset{\sim}{\underset{\sim}{\infty}} \underset{\underset{\sim}{\infty}}{\underset{\sim}{\infty}}$			
$\left\lvert\, \begin{aligned} & \text { an } \\ & 0 \\ & 0 \\ & \text { 1. } \\ & 0 \end{aligned}\right.$	－	－	－	\cdots		－	$\frac{1}{2}$	－	\checkmark	0 ＇n	－	－	$\begin{gathered} \underset{\sim}{\aleph} \\ \underset{\sim}{2} \\ \underset{\alpha}{2} \end{gathered}$	$\begin{array}{\|c} \substack{t \\ d \\ \\ 0 \\ \hline} \end{array}$	$\begin{gathered} \underset{\sim}{N} \\ \infty \\ \infty \\ \underset{\sim}{\infty} \\ \hline \end{gathered}$		$\begin{aligned} & \hat{y} \\ & 0 \\ & 6 \\ & 0 \\ & \\ & \end{aligned}$	$\begin{gathered} \sqrt{n} \\ \\ \\ 0 \\ \cdots \\ \cdots \end{gathered}$		$\begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{2} \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{\sigma} \end{aligned}$	$\underset{\underset{i}{n}}{\stackrel{i}{n}}$	$\begin{gathered} n \\ \frac{n}{6} \\ \vdots \\ i \end{gathered}$	$\frac{1}{2}$	$\underset{\substack{0 \\ 0 \\ \vdots \\ i \\ i}}{ }$		$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$		－	

Table 15.361. The total bond energies of alkyl phosphites calculated using the functional group composition and the energies of Table 15.360 compared to the experimental values [69].
 E_{T} is $E_{T}\left(\right.$ atom - atom, $\left.\mathrm{msp}^{3} . A O\right)$.

ALKYL PHOSPHINE OXIDES ($\left.\left(C_{n} H_{2 n+1}\right)_{3} P=O, n=1,2,3,4,5 \ldots \infty\right)$

The alkyl phosphine oxides, $\left(C_{n} H_{2 n+1}\right)_{3} P=O$, comprise $P-C$ and $P=O$ functional groups. The alkyl portion of the alkyl phosphine oxide may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of each chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $\mathrm{C}-\mathrm{C}$ bond is the same as that of straight-chain alkanes. In addition, the $\mathrm{C}-\mathrm{C}$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $\mathrm{C}-\mathrm{C}$ bonds comprise functional groups. The branched-chain-alkane groups in alkyl phosphine oxides are equivalent to those in branched-chain alkanes

The $P-C$ functional group is equivalent to that of alkyl phosphines. The $P=O$ bond forms between the $P 3 s p^{3}$ HO and an $O 2 p$ AO to yield phosphine oxides. The semimajor axis a of the $P=O$ functional group is solved using Eq. (15.51). Using the semimajor axis and the relationships between the prolate spheroidal axes, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117) in the same manner as the organic functional groups given in Organic Molecular Functional Groups and Molecules section.
For the $P=O$ functional group, hybridization the $3 s$ and $3 p$ AOs of each P to form a single $3 s p^{3}$ shells forms an energy minimum, and the sharing of electrons between the $O 2 p$ AOs and $P 3 s p^{3}$ HOs to form a MO permits each participating orbital to decrease in radius and energy. In branched-chain alkyl phosphine oxides, the energy of phosphorous is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264). The energy matching condition is determined by the c_{2} parameter given by Eq. (15.182). The energy of the $P=O$-bond MO is the sum of the component energies of the H_{2} type ellipsoidal MO given in Eq. (15.51) with $E(A O / H O)$ being twice $E\left(P, 3 s p^{3}\right)$ given by Eq. (15.180) corresponding to the double bond, and $E_{T}\left(\right.$ atom-atom, $\left.m s p^{3} . A O\right)$ is equivalent to that of an alkene double bond, -2.26758 eV , given by Eq. (14.247) in order to match the energies of the carbon and phosphorous HOs and the oxygen AO.

The symbols of the functional groups of branched-chain alkyl phosphine oxides are given in Table 15.363. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl phosphine oxides are given in Tables $15.364,15.365$, and 15.366 , respectively. The total energy of each alkyl phosphine oxide given in Table 15.367 was calculated as the sum over the integer multiple of each E_{D} (Group) of Table 15.366 corresponding to functional-group composition of the molecule. The bond angle parameters of alkyl phosphine oxides determined using Eqs. (15.88-15.117) are given in Table 15.368. The color scale, charge-density of exemplary alkyl phosphine oxide, trimethylphosphine oxide, comprising atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.62.

Figure 15.62. Color scale, charge-density of trimethylphosphine oxide showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (A) Top view. (B) Side view.

$0 \square 1 \mathrm{e} / \AA^{2}$

Table 15.363. The symbols of functional groups of alkyl phosphine oxides.

Functional Group	Group Symbol
$\bar{P}=O$	$P=O$
$P-C$	$P-C$
CH_{3} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	$C-H$ (i)
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
CC (iso to iso-C)	$C-C$ (d)
$C C$ (t to t - C)	$C-C$ (e)
$C C$ (t to iso-C)	$C-C$ (f)
$C C$ (aromatic bond)	$C \stackrel{3 e}{=} C$
CH (aromatic)	CH (ii)

Table 15．364．The geometrical bond parameters of alkyl phosphine oxides and experimental values［1］．

Parameter	$\begin{aligned} & P=O \\ & \text { Group } \end{aligned}$	$\begin{gathered} P-C \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \\ \hline \end{gathered}$	$\begin{aligned} & C-H \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \text { (a) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(c) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{~d}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(f) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C_{=3 e}^{3 e} \\ & \text { Group } \end{aligned}$	$\begin{gathered} C H \text { (ii) } \\ \text { Group } \\ \hline \end{gathered}$
$a\left(a_{0}\right)$	1.91663	2.29513	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725	1.47348	1.60061
$c^{\prime}\left(a_{0}\right)$	1.38442	1.76249	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164	1.31468	1.03299
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \\ & \hline \end{aligned}$	1．46521E－10	1.86534	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635	1.39140	1.09327
Exp．Bond Length	$\begin{gathered} 1.48 \text { [65] } \\ (\mathrm{DNA}) \\ 1.4759 \\ (P O) \end{gathered}$	$\begin{gathered} 1.847 \\ \left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PCH}_{3}\right) \\ 1.858 \\ \left(\mathrm{H}_{2} \mathrm{PCH}_{3}\right) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$	$\begin{gathered} 1.399 \\ \text { (benzene) } \end{gathered}$	$\begin{gathered} 1.101 \\ \text { (benzene) } \end{gathered}$
$b, c\left(a_{0}\right)$	1.32546	1.47012	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750	0.66540	1.22265
e	0.72232	0.76793	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888	0.89223	0.64537

Table 15．365．The MO to HO intercept geometrical bond parameters of alkyl phosphine oxides．$R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups．E_{T} is E_{T}（atom - atom，msp ${ }^{3} . A O$ ）．

\sim°	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Co } \\ & \text { Cy } \\ & \hline 0 \end{aligned}$		$\begin{aligned} & 2 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{gathered} \text { ल్ } \\ \text { むे } \end{gathered}$	$\left.\begin{array}{\|c} 0 \\ \underset{\sim}{N} \\ \tilde{n} \end{array} \right\rvert\,$	$\begin{gathered} \stackrel{\circ}{\infty} \\ \underset{\sim}{\infty} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{7} \\ & \text { for } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{2} \\ & \stackrel{i}{3} \end{aligned}$	$\begin{aligned} & \text { R } \\ & \text { in } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\sim}{i} \end{aligned}$		$\underset{\substack{\text { ה } \\ \text { ¿ }}}{ }$	$\begin{aligned} & \text { む } \\ & \text { ¿े } \\ & \dot{0} \end{aligned}$
σ	$\begin{aligned} & \infty \\ & \underset{\sim}{\uparrow} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{n}{\mathrm{~N}} \\ & \stackrel{1}{n} \end{aligned}$	$\begin{aligned} & \bar{\infty} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \underset{\sim}{0} \end{aligned}$	$\stackrel{\underset{i n}{i n}}{\underset{\sim}{9}}$	$\begin{aligned} & \text { d } \\ & \text { N} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{+}{\stackrel{1}{0}} \\ & \stackrel{n}{2} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { ò } \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{~} \\ & \underset{\sim}{6} \end{aligned}$	$\begin{aligned} & \text { H } \\ & \stackrel{N}{\hat{N}} \end{aligned}$	$\frac{\text { O}}{\underset{-}{6}}$		筑	$$
0 －	$\underset{\sim}{i}$	$\frac{\underset{\sim}{\mathrm{N}}}{\underset{\sim}{2}}$	$\begin{gathered} \underset{O}{O} \\ \underset{\sim}{\infty} \\ \hline \end{gathered}$	$\underset{\sim}{\underset{\sim}{c}} \underset{\substack{f \\ \hline}}{ }$	$\stackrel{\infty}{\stackrel{\infty}{子}}$	$\begin{aligned} & \underset{\sim}{ \pm} \\ & \stackrel{y}{m} \end{aligned}$	$\frac{\stackrel{\rightharpoonup}{2}}{\frac{2}{m}}$	$\stackrel{\infty}{\infty}$		$\stackrel{\stackrel{\circ}{\mathrm{N}}}{2}$	$\stackrel{\text { ti }}{\stackrel{1}{i}}$	$\stackrel{\stackrel{8}{\mathrm{~N}}}{2}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{i}} \\ & \end{aligned}$	$\underset{\sim}{\text { I }}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{i}} \\ & \end{aligned}$
0 O	$\begin{aligned} & \underset{\sim}{\infty} \\ & \stackrel{y}{2} \end{aligned}$	$\bar{\alpha}$	$\begin{gathered} \infty \\ \infty \\ \dot{\alpha} \end{gathered}$	$\begin{aligned} & \hat{0} \\ & 0 . \\ & 0 . \end{aligned}$	$\begin{aligned} & \bar{n} \\ & \underset{\mathrm{i}}{2} \end{aligned}$	$\stackrel{n}{\Xi}$	$\begin{gathered} \stackrel{\otimes}{\infty} \\ \stackrel{\infty}{=} \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{6} \end{aligned}$	$\begin{aligned} & \text { in } \\ & \underset{\text { In }}{2} \end{aligned}$	$\stackrel{\gtrless}{\underset{\sim}{2}}$	$\stackrel{\imath}{\underset{\sim}{9}}$	$\stackrel{\stackrel{i}{2}}{\stackrel{2}{2}}$	$\begin{aligned} & \circ \\ & \stackrel{\text { ® }}{2} \end{aligned}$	$\underset{\sim}{\text { ָ̃ }}$	$\begin{aligned} & \circ \\ & \stackrel{\text { ® }}{2} \end{aligned}$
\bigcirc	$\underset{\substack{\underset{\sim}{\infty} \\ \dot{\sim}}}{ }$	$\frac{o}{\infty}$	$\underset{\sim}{\underset{\sim}{\infty}}$	$\begin{gathered} \stackrel{2}{2} \\ \stackrel{y}{2} \end{gathered}$	$\stackrel{\underset{\sim}{\mathrm{g}}}{\stackrel{y}{\wedge}}$		$\begin{gathered} 9 \\ \vdots \\ \hline 6 \end{gathered}$	$\underset{\substack{\infty \\ \overleftarrow{\delta} \\ \hline}}{ }$	F	$\begin{gathered} \text { ò } \\ \underset{\sim}{\infty} \end{gathered}$	$\underset{\substack{\text { ® } \\ \hline}}{ }$	$\begin{gathered} \text { ò } \\ \underset{\sim}{\infty} \end{gathered}$	$\begin{aligned} & \text { t } \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$	$\underset{\substack{\text { in }}}{\substack{\text { n }}}$	$\begin{aligned} & \text { t } \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$
			$\begin{gathered} \\ \frac{0}{\infty} \\ \underset{\sim}{\dot{1}} \end{gathered}$		$\begin{aligned} & \hat{y} \\ & \stackrel{y}{0} \\ & i n \\ & \vdots \end{aligned}$		$\begin{aligned} & \underset{\sim}{J} \\ & \text { y } \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \stackrel{y}{0} \\ & \stackrel{n}{n} \\ & \end{aligned}$	$\begin{aligned} & \underset{\sim}{\tilde{N}} \\ & \underset{\sim}{\underset{1}{2}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{J} \\ & \underset{\sim}{\underset{~}{7}} \end{aligned}$	$\stackrel{\underset{\sim}{\gtrless}}{\underset{\sim}{¿}}$	J I $\underset{\sim}{~}$		$\stackrel{\infty}{\underset{\sim}{\underset{~}{N}}}$	$\stackrel{\stackrel{i}{i}}{\underset{\sim}{\gtrless}}$
	$\begin{aligned} & \text { d } \\ & \text { N} \\ & \underset{\sim}{2} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \text { 人े } \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$			$\begin{gathered} \mathfrak{2} \\ \underset{\sim}{2} \\ \underset{\sim}{n} \end{gathered}$		$\begin{gathered} 0 \\ \stackrel{n}{2} \\ \stackrel{0}{\leftrightarrows} \\ \stackrel{1}{2} \end{gathered}$	$\begin{aligned} & \mathfrak{2} \\ & \underset{\sim}{i} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{7}{7} \\ & \stackrel{8}{8} \\ & \underset{-1}{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{n} \\ & \stackrel{0}{7} \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \text { 人 } \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \underset{-1}{2} \end{aligned}$	$$	$\begin{aligned} & \text { ab } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{+}{7} \end{aligned}$	$\begin{aligned} & \text { Qo } \\ & \text { a } \\ & \underset{\sim}{7} \end{aligned}$
骨	$\begin{aligned} & \underset{N}{n} \\ & \underset{\infty}{\infty} \\ & \end{aligned}$	$\begin{aligned} & \text { 等 } \\ & \infty \\ & \infty \end{aligned}$		$\begin{gathered} \text { n } \\ \neq \\ \infty \\ \infty \\ 0 \end{gathered}$		$\begin{aligned} & \stackrel{\rightharpoonup}{9} \\ & \stackrel{y}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{array}{\|c} \underset{\sim}{f} \\ \underset{\sim}{\hat{N}} \\ \hline \end{array}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{1}{2}} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{0}{0} \end{aligned}$	$\underset{\underset{\sim}{\text { N}}}{\substack{\text { 人}}}$	$\begin{aligned} & \stackrel{\otimes}{\infty} \\ & \stackrel{0}{\circ} \\ & \dot{0} \end{aligned}$	$\underset{\substack{\text { A } \\ \text { A }}}{ }$	$\begin{aligned} & \text { n} \\ & \stackrel{0}{6} \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{i n}{\stackrel{i n}{\infty}}$	in
－E	$\begin{aligned} & \text { O} \\ & \hline \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & n \\ & \end{aligned}$	$\begin{array}{\|c} \underset{A}{A} \\ \underset{O}{0} \end{array}$	$\begin{aligned} & 0 \\ & \stackrel{0}{n} \\ & \stackrel{n}{=} \end{aligned}$	$\frac{\stackrel{\rightharpoonup}{\lambda}}{\partial}$	$\begin{aligned} & \text { E } \\ & \text { Bin } \end{aligned}$	$\begin{array}{\|c} \underset{i}{i} \\ \underset{O}{0} \end{array}$	$\frac{\text { 츠́ }}{2}$	$\frac{E}{2}$	$\frac{\text { E }}{2}$	$\frac{E}{2}$	$\frac{E}{A}$	$\frac{E}{\vdots}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{E}{2}$
								$\begin{aligned} & \widehat{o} \\ & + \\ & + \\ & \vdots \\ & \vdots \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { N } \\ & \underset{4}{4} \end{aligned}$	$\begin{aligned} & 6 \\ & \stackrel{0}{\infty} \\ & \underset{\sim}{4} \end{aligned}$		$\begin{aligned} & \text { o} \\ & \stackrel{1}{3} \\ & \stackrel{4}{6} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{2} \\ & \stackrel{7}{7} \end{aligned}$	
NT 右	\bigcirc	$\underset{\substack{ \pm \underset{\sim}{\infty} \\ \hline \\ \hline}}{ }$	\bigcirc		\bigcirc	－	\bigcirc	－	\bigcirc	\bigcirc	$\begin{aligned} & \hat{i} \\ & \underset{N}{N} \\ & \stackrel{i}{n} \end{aligned}$	－	$$	\bigcirc	令
\& S Con	\bigcirc		－	$\stackrel{ \pm}{ \pm}$	\bigcirc	\bigcirc	$\begin{gathered} \infty \\ \frac{\infty}{2} \\ \vdots \\ \vdots \end{gathered}$	－	\bigcirc		$\begin{aligned} & \text { N } \\ & \underset{\sim}{\text { N }} \end{aligned}$	$\begin{aligned} & \infty \\ & \text { ふ̀ } \\ & \text { ה } \end{aligned}$		$\begin{aligned} & \infty \\ & \text { ふ̀ } \\ & \text { Si } \end{aligned}$	N
\&	－	$\stackrel{\underset{\sim}{\infty}}{\stackrel{J}{\vdots}}$	－	$\stackrel{\underset{\sim}{\infty}}{\underset{\sim}{\infty}}$	－	$\begin{aligned} & \infty \\ & \underset{\sim}{\alpha} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{gathered} \infty \\ \substack{2 \\ \vdots \\ \dot{c} \\ \hline} \end{gathered}$	－	$\begin{aligned} & \infty \\ & \stackrel{\alpha}{2} \\ & \stackrel{i}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\alpha}{\alpha} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	$\begin{aligned} & \text { 年 } \\ & \underset{\sim}{C} \end{aligned}$			$\begin{aligned} & \infty \\ & \underset{\alpha}{\alpha} \\ & \text { ò } \end{aligned}$	¢
\& 合	$\begin{aligned} & \stackrel{\imath}{\hat{n}} \\ & \underset{\sim}{\square} \end{aligned}$	$\begin{aligned} & \stackrel{2}{2} \\ & \underset{\sim}{1} \end{aligned}$	$\frac{\underset{\sim}{\infty}}{\underset{\Delta}{\Delta}}$	$\underset{\substack{\underset{\sim}{\infty} \\ \underset{\sim}{\infty}}}{\substack{2}}$	$\begin{aligned} & \infty \\ & \bar{\alpha} \\ & \text { הे } \end{aligned}$	$\begin{aligned} & \infty \\ & \text { д̀ } \\ & \text { in } \end{aligned}$	$\begin{gathered} \infty \\ \frac{\infty}{2} \\ 2 \\ \vdots \\ \vdots \end{gathered}$	$\begin{aligned} & \infty \\ & \text { ते } \\ & \text { ה̀ } \end{aligned}$	$\begin{aligned} & \infty \\ & \text { ふे } \\ & \text { 人े } \end{aligned}$	$\frac{\infty}{\text { 太े }}$	$\begin{gathered} \infty \\ \text { ふ̀ } \\ \text { 人े } \end{gathered}$	$\begin{aligned} & \infty \\ & \text { ふ̀ } \\ & \text { 人̀ } \end{aligned}$	$\underset{\substack{\text { N } \\ \multirow{2}{*}{\hline}\\ \hline}}{\text { n}}$	$\begin{gathered} \underset{\sim}{n} \\ \underset{i}{N} \end{gathered}$	N
$\frac{\sqrt{0}}{4}$	\bigcirc	2	\cup	a	\checkmark	\checkmark	\checkmark	0°	ט	ט	0°	v	u°	ű	0
菏	$\begin{aligned} & 0 \\ & \text { II } \\ & 2 \\ & \hat{E} \\ & \underline{E} \end{aligned}$	$\begin{gathered} 0 \\ 11 \\ 2 \\ \underset{y y}{2} \end{gathered}$				$\begin{aligned} & \text { In } \\ & =1 \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \widehat{E} \\ & = \\ & i \\ & 0 \\ & 0 \end{aligned}$								

Table 15.366. The energy parameters (eV) of functional groups of alkyl phosphine oxides.

Parameters	$\begin{aligned} & P=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & P-C \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{CH} \text { (i) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \text { (a) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (b) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{gathered} C-C \text { (c) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{aligned} & \hline C-C \text { (d) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \\ \hline \end{gathered}$	$\begin{aligned} & C-C(f) \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C^{3 e}=C \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \hline \mathrm{CH} \text { (ii) } \\ & \text { Group } \\ & \hline \end{aligned}$
f_{1}	1	1	1	1	1	1	1	1	1	1	1	0.75	1
n_{1}	2	1	3	2	1	1	1	1	1	1	1	2	1
n_{2}	0	0	2	1	0	0	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	0	0	0	0	0	0	0
C_{1}	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.75
C_{2}	1	0.73885	1	1	1	1	1	1	1	1	1	0.85252	1
c_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1
c_{2}	0.79401	1	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.91771	0.85252	0.91771
c_{3}	0	0	0	1	1	0	0	0	1	1	0	0	1
c_{4}	4	2	1	1	1	2	2	2	2	2	2	3	1
c_{5}	0	0	3	2	1	0	0	0	0	0	0	0	1
C_{10}	0.5	0.5	0.75	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.75
C_{20}	1	0.73885	1	1	1	1	1	1	1	1	1	0.85252	1
$V_{e}(\mathrm{eV})$	-56.96374	-31.34959	-107.32728	-70.41425	-35.12015	-28.79214	-28.79214	-29.10112	-28.79214	-29.10112	-29.10112	-101.12679	-37.10024
$V_{p}(\mathrm{eV})$	9.82777	7.71965	38.92728	25.78002	12.87680	9.33352	9.33352	9.37273	9.33352	9.37273	9.37273	20.69825	13.17125
$T(\mathrm{eV})$	14.86039	6.82959	32.53914	21.06675	10.48582	6.77464	6.77464	6.90500	6.77464	6.90500	6.90500	34.31559	11.58941
$V_{m}(\mathrm{eV})$	-7.43020	-3.41479	-16.26957	-10.53337	-5.24291	-3.38732	-3.38732	-3.45250	-3.38732	-3.45250	-3.45250	-17.15779	-5.79470
E (Аоно) (eV)	-23.56492	-11.78246	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946	0	-14.63489
	0	-0.36229	0	0	0	0	0	0	0	0	0	0	-1.13379
E_{T} (Аооно) (eV)	-23.56492	-11.42017	-15.56407	-15.56407	-14.63489	-15.56407	-15.56407	-15.35946	-15.56407	-15.35946	-15.35946	0	-13.50110
$E_{T}\left(H_{2} \mu \mathrm{O}\right)(\mathrm{eV})$	-63.27069	-31.63532	-67.69451	-49.66493	-31.63533	-31.63537	-31.63537	-31.63535	-31.63537	-31.63535	-31.63535	-63.27075	-31.63539
$E_{T}\left(\right.$ atom-atom, msp $\left.{ }^{3} . A O\right)(\mathrm{eV})$	-2.26758	-0.36229	0	0	0	-1.85836	-1.85836	-1.44915	-1.85836	-1.44915	-1.44915	-2.26759	-0.56690
$E_{T}(\mathrm{~mol})(\mathrm{eV})$	-65.53832	-31.99766	-67.69450	-49.66493	-31.63537	-33.49373	-33.49373	-33.08452	-33.49373	-33.08452	-33.08452	-65.53833	-32.20226
© ($10^{15} \mathrm{rad} / \mathrm{s}$)	11.0170	7.22663	24.9286	24.2751	24.1759	9.43699	9.43699	15.4846	9.43699	9.55643	9.55643	49.7272	26.4826
$E_{K}(\mathrm{eV})$	7.25157	4.75669	16.40846	15.97831	15.91299	6.21159	6.21159	10.19220	6.21159	6.29021	6.29021	32.73133	17.43132
$\bar{E}_{D}(e \mathrm{~V})$	-0.17458	-0.13806	-0.25352	-0.25017	-0.24966	-0.16515	-0.16515	-0.20896	-0.16515	-0.16416	-0.16416	-0.35806	-0.26130
$\bar{E}_{\text {Kuwb }}(\mathrm{eV})$	$\begin{gathered} 0.15292 \\ {[24]} \\ \hline \end{gathered}$	$\begin{gathered} 0.17606 \\ {[68]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. }(13.458) \text {) } \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { (Eq. (13.458)) } \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.17978 \\ {[4]} \\ \hline \end{gathered}$	$\begin{gathered} 0.09944 \\ {[5]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12312 \\ {[2]} \\ \hline \end{gathered}$	$\begin{gathered} 0.19649 \\ {[49]} \\ \hline \end{gathered}$	$\begin{gathered} 0.35532 \\ \text { Eq. }(13.458) \\ \hline \end{gathered}$
䂣 (eV)	-0.09812	-0.05003	-0.22757	-0.14502	-0.07200	-0.10359	-0.07526	-0.15924	-0.10359	-0.10260	-0.10260	-0.25982	-0.08364
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803	0.14803
$E_{T}($ Gmup) (eV)	-65.73455	-32.04769	-67.92207	-49.80996	-31.70737	-33.59732	-33.49373	-33.24376	-33.59732	-33.18712	-33.18712	-49.54347	-32.28590
$E_{\text {minual }}\left(\mathrm{c}_{\text {A AOI Ho) }}(\mathrm{eV})\right.$	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
	0	0	-13.59844	-13.59844	-13.59844	0	0	0	0	0	0	0	-13.59844
$E_{D}($ Gmup) (eV)	7.19500	2.77791	12.49186	7.83016	3.32601	4.32754	4.29921	3.97398	4.17951	3.62128	3.91734	5.63881	3.90454

Table 15.367. The total bond energies of alkyl phosphine oxides calculated using the functional group composition and the energies of Table 15.366 compared to the experimental values [69].

Table 15.368. The bond angle parameters of alkyl phosphine oxides and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle were used. E_{T} is E_{T} (atom-atom,msp ${ }^{3} . A O$).

Atoms of Angle	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 2 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Terminal } \\ \text { Atoms } \\ \left(a_{0}\right) \end{gathered}$	$E_{\text {Calumbic }}$ or E Atom 1	Atom 1Hybridization Designation(Table 15.3.A)	$\begin{aligned} & E_{\text {Coulambic }}^{\text {C }} \text { Atom } \end{aligned}$	Atom 2Hybridization Designation (Table 15.3.A)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	c_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{r} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \begin{array}{l} \theta_{v} \\ \left({ }^{\circ}\right) \end{array} \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \\ \hline \end{gathered}$
Methyl $\angle H C_{a} H$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle H_{a} C_{a} P$															70.56			109.44	$\begin{gathered} 110.7 \\ \begin{array}{c} \text { (trimethyl } \\ \text { phosphine) } \end{array} \end{gathered}$
$\angle C_{a} P C_{b}$	3.52498	3.52498	5.4955	-15.75493	7	-15.75493	7	0.86359	0.86359	1	1	1	0.86359	-1.85836				102.43	$104.31[73]$ $\left(\mathrm{Ph}_{2} P(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OH}\right)$
$\angle C_{a} \mathrm{PO}$	3.52498	2.76885	5.3104	-15.95954	10	-15.95954	10	0.85252	0.85252	1	1	1	0.85252	-1.85836				114.54	$\begin{gathered} 114.03[73] \\ \left(\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OH}\right) \end{gathered}$
$\begin{aligned} & \text { Methylene } \end{aligned}$ $\angle H C_{a} H$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} 107 \\ \text { (propane) } \\ \hline \end{gathered}$
$\angle C_{a} C_{b} C_{c}$															69.51			110.49	$\begin{gathered} 112 \\ \text { (propane) } \\ 113.8 \\ \text { (butane) } \\ \text { (i10.8 } \\ \text { (isobutane) } \end{gathered}$
$\angle C_{a} C_{b} H$															69.51			110.49	$\begin{gathered} 1111.0 \\ \text { (butane) } \\ \text { 111.4 } \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{a} C_{b} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b} H^{\text {a }}$															70.56			109.44	
$\begin{aligned} & \angle C_{b} C_{a} C_{c} \\ & \text { iso } C_{0} \end{aligned}$	2.91547	2.91547	4.7958	$\begin{array}{\|c} -16.68412 \\ C_{b} \end{array}$	26	$\begin{array}{\|c} \hline-16.68412 \\ C_{c} \\ \hline \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				110.67	$\begin{gathered} 110.8 \\ \text { (isobutane) } \\ \hline \end{gathered}$
$\begin{gathered} \angle C_{b} C_{a} H \\ \text { iso } C_{0} \\ \hline \end{gathered}$	2.91547	2.11323	4.1633	$\begin{array}{\|c} -15.55033 \\ C_{a} \end{array}$	5	$\begin{array}{\|c} \hline-14.82575 \\ C_{b} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{gathered} \angle C_{a} C_{b} H \\ \text { iso } C_{0} \\ \hline \end{gathered}$	2.91547	2.09711	4.1633	$\begin{array}{\|c} -15.55033 \\ C_{b} \end{array}$	5	$\begin{array}{\|c} \hline-14.82575 \\ C_{o} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	$\begin{gathered} 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \angle C_{b} C_{a} C_{b}, \\ & \operatorname{tent} C_{b} \end{aligned}$	2.90327	2.90327	4.7958	$\begin{array}{\|c} -16.68412 \\ C_{b} \end{array}$	26	$\begin{array}{\|c} -16.68412 \\ C_{b} \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				111.37	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\angle C_{b} C_{a} C_{d}$															72.50			107.50	

ALKYL PHOSPHATES $\left(\left(C_{n} H_{2 n+1} O\right)_{3} P=O, \quad n=1,2,3,4,5 \ldots \infty\right)$

The alkyl phosphates, $\left(C_{n} H_{2 n+1} O\right)_{3} P=O$, comprise $P=O, P-O$, and $C-O$ functional groups. The $P=O$ functional group is equivalent to that of alkyl phosphine oxides. The $P-O$ and $C-O$ functional groups are equivalent to those of alkyl phosphites. The alkyl portion of the alkyl phosphate may comprise at least two terminal methyl groups $\left(\mathrm{CH}_{3}\right)$ at each end of each chain, and may comprise methylene $\left(\mathrm{CH}_{2}\right)$, and methylyne (CH) functional groups as well as C bound by carbon-carbon single bonds. The methyl and methylene functional groups are equivalent to those of straight-chain alkanes. Six types of $C-C$ bonds can be identified. The n-alkane $C-C$ bond is the same as that of straight-chain alkanes. In addition, the $C-C$ bonds within isopropyl $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$ and t-butyl $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$ groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl $C-C$ bonds comprise functional groups. The branched-chain-alkane groups in alkyl phosphates are equivalent to those in branched-chain alkanes.

The symbols of the functional groups of branched-chain alkyl phosphates are given in Table 15.369. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl phosphates are given in Tables 15.370, 15.371, and 15.372, respectively. The total energy of each alkyl phosphate given in Table 15.373 was calculated as the sum over the integer multiple of each $E_{D}(G r o u p)$ of Table 15.372 corresponding to functionalgroup composition of the molecule. The bond angle parameters of alkyl phosphates determined using Eqs. (15.88-15.117) are given in Table 15.374. The color scale, charge-density of exemplary alkyl phosphate, tri-isopropyl phosphate, comprising of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.63.

Figure 15.63. Color scale, charge-density of tri-isopropyl phosphate showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei.

Table 15.369 . The symbols of functional groups of alkyl phosphates.

Functional Group	Group Symbol
$\bar{P}=O$	$P=O$
$\mathrm{P}-\mathrm{O}$	$P-O$
$\mathrm{C}-\mathrm{O}\left(\mathrm{CH}_{3}-\mathrm{O}-\right.$ and $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\right)$	$C-O$ (i)
C-O (alkyl)	$\mathrm{C}-\mathrm{O}$ (ii)
CH_{2} group	$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)$
CH	C-H
$C C$ bond ($n-C$)	$C-C$ (a)
$C C$ bond (iso-C)	$C-C$ (b)
$C C$ bond (tert-C)	$C-C$ (c)
$C C$ (iso to iso-C)	$C-C$ (d)
$C C$ (t to t-C)	$C-C$ (e)
$\underline{C C}(t$ to iso-C)	$C-C$ (f)

Table 15.370. The geometrical bond parameters of alkyl phosphates and experimental values [1].

Parameter	$\begin{aligned} & P=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & \hline P-O \\ & \text { Group } \\ & \hline \end{aligned}$	$\begin{gathered} C-O \text { (i) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-O \text { (ii) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right) \\ \text { Group } \end{gathered}$	$\begin{aligned} & \mathrm{C}-\mathrm{H} \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(a) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(b) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{c}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \text { (d) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{e}) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(\mathrm{f}) \\ \text { Group } \end{gathered}$
$a\left(a_{0}\right)$	1.91663	1.84714	1.80717	1.79473	1.64920	1.67122	1.67465	2.12499	2.12499	2.10725	2.12499	2.10725	2.10725
$c^{\prime}\left(a_{0}\right)$	1.38442	1.52523	1.34431	1.33968	1.04856	1.05553	1.05661	1.45744	1.45744	1.45164	1.45744	1.45164	1.45164
$\begin{aligned} & \text { Bond Length } \\ & 2 c^{\prime}(A) \end{aligned}$	1.46521E-10	1.61423	1.42276	1.41785	1.10974	1.11713	1.11827	1.54280	1.54280	1.53635	1.54280	1.53635	1.53635
Exp. Bond Length	$\begin{aligned} & 1.48 \text { [65] } \\ & \text { (DNA) } \\ & 1.4759 \\ & (P O) \end{aligned}$	1.631 [70] (MHP) . 60 [65] (DNA)	$\begin{gathered} 1.416 \\ \text { (dimethyl ether) } \end{gathered}$	$\begin{gathered} 1.418 \\ \text { (ethyl methyl } \\ \text { ether (avg.)) } \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.107 \\ (C-H \text { propane }) \\ 1.117 \\ (C-H \text { butane }) \end{gathered}$	$\begin{gathered} 1.122 \\ \text { (isobutane) } \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$		$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$	$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \end{gathered}$		$\begin{gathered} 1.532 \\ \text { (propane) } \\ 1.531 \\ \text { (butane) } \\ \hline \end{gathered}$
$b, c\left(a_{0}\right)$	1.32546	1.04192	1.20776	1.19429	1.27295	1.29569	1.29924	1.54616	1.54616	1.52750	1.54616	1.52750	1.52750
e	0.72232	0.82573	0.74388	0.74645	0.63580	0.63159	0.63095	0.68600	0.68600	0.68888	0.68600	0.68888	0.68888

Table 15．371．The MO to HO intercept geometrical bond parameters of alkyl phosphates．$R, R^{\prime}, R^{\prime \prime}$ are H or alkyl groups．E_{T} is $E_{T}\left(\right.$ atom - atom，msp $\left.{ }^{3} . A O\right)$ ．

が迫	$\left\lvert\, \begin{gathered} \infty \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { d } \\ \substack{a \\ 0} \\ \hline \end{gathered}\right.$	若	$\begin{aligned} & \text { O} \\ & \stackrel{\text { O}}{\circ} \end{aligned}$	$\begin{aligned} & \text { 导 } \\ & \text { cid } \\ & \text { den } \end{aligned}$	$\begin{aligned} & \overline{2} \\ & \frac{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{y}{\partial} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{m}{n} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \stackrel{y}{0} \\ & \hline 0 \end{aligned}$		$\begin{gathered} \text { के } \\ \stackrel{1}{0} \\ \hline 0 \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{\infty}{0} \end{aligned}$		$\begin{gathered} \% \\ \\ \\ \end{gathered}$	$\begin{gathered} \stackrel{\circ}{0} \\ \stackrel{y}{\infty} \\ \end{gathered}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{y}{n} \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { 合 } \\ & \text { 冏 } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{n}{2} \end{aligned}$	$\begin{aligned} & \text { ă } \\ & \stackrel{\substack{6 \\ \hline \\ \hline}}{ } \end{aligned}$	$\begin{aligned} & \text { ì } \\ & \text { A } \end{aligned}$	a $\substack{\text { ¢ } \\ \text { ¢ } \\ \hline \\ \hline}$
－	$\begin{aligned} & \infty \\ & \frac{\infty}{n} \\ & \underset{\sim}{7} \end{aligned}$	$\left\lvert\, \begin{gathered} \circ \\ \vdots \\ \vdots \\ \hline \end{gathered}\right.$	$\begin{aligned} & \text { 等 } \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{\hat{0}} \\ & \stackrel{\sim}{7} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \underset{\substack{0}}{ } \end{aligned}$		$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{\hat{a}} \\ \underset{\sim}{\hat{a}} \end{gathered}\right.$	$\begin{aligned} & \text { 吉 } \\ & \text { an } \end{aligned}$	$\begin{aligned} & \text { 员 } \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & \text { 高 } \\ & \text { on } \end{aligned}$		$\begin{aligned} & \stackrel{\infty}{\mathrm{I}} \\ & \stackrel{\text { chen }}{1} \end{aligned}$					$\begin{aligned} & \text { O. } \\ & \stackrel{\circ}{6} \\ & \hline \end{aligned}$	$\stackrel{\text { O. }}{\underset{\alpha}{\mathrm{S}}}$		$\frac{\stackrel{O}{6}}{\underset{-}{2}}$		$\begin{gathered} \text { 等 } \\ \hline \end{gathered}$	等
0 －	$\begin{array}{\|c} \mathrm{F} \\ \underset{\sim}{\circ} \end{array}$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{i} \\ \hline \end{array}\right\|$	$\underset{\substack{\stackrel{\infty}{\alpha} \\ \underset{\sim}{c}}}{ }$	¢	$\begin{aligned} & \overline{\text { g }} \\ & \stackrel{y}{c} \end{aligned}$	$\begin{aligned} & \text { did } \\ & \text { d } \end{aligned}$	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{\sigma} \end{gathered}\right.$	$\begin{aligned} & \text { \% } \\ & \stackrel{y}{\circ} \end{aligned}$	$\underset{\underset{\sim}{*}}{\underset{\sim}{*}}$		$\begin{gathered} \stackrel{\leftrightarrow}{n} \\ \stackrel{\rightharpoonup}{\sigma} \end{gathered}$	$\stackrel{\otimes}{\stackrel{\circ}{子}}$	$\stackrel{\substack{\underset{\sim}{q} \\ \underset{\sim}{2}}}{ }$			$\stackrel{\circ}{\circ}$	$$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{a}}}{\stackrel{1}{2}}$	$\stackrel{\text { N }}{\stackrel{N}{i}}$	$\stackrel{\stackrel{\rightharpoonup}{c}}{\stackrel{\rightharpoonup}{c}}$		$\underset{\underset{\sim}{+}}{\stackrel{\rightharpoonup}{*}}$	－
®こ	$\stackrel{\infty}{\circ}$	$\begin{aligned} & \dot{\infty} \\ & \dot{\dot{\Delta}} \end{aligned}$	$\underset{6}{\circ}$	$\stackrel{\infty}{ \pm}$	$\begin{aligned} & \text { I } \\ & \text { a } \end{aligned}$	$\stackrel{\because}{\overline{=}}$		$\stackrel{\rightharpoonup}{\alpha}$		$\begin{aligned} & \stackrel{n}{n} \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{n}{\vdots}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\substack{0}}$	$\begin{aligned} & \overline{\mathrm{n}} \\ & \stackrel{\rightharpoonup}{\mathrm{i}} \end{aligned}$	$\stackrel{n}{=}$	$\begin{gathered} \stackrel{\rightharpoonup}{\dot{\theta}} \\ \stackrel{\otimes}{\theta} \end{gathered}$	$\begin{aligned} & \stackrel{\infty}{\bullet} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\begin{aligned} & \underset{\sim}{i} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{尺}{\underset{\sim}{i}}$	$\stackrel{\stackrel{i}{9}}{\stackrel{y}{n}}$	$\stackrel{R}{\stackrel{R}{n}}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \text { त্d } \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\circ}{\text { a }}$
－©	$\left\|\begin{array}{c} \underset{\sim}{\underset{\infty}{2}} \\ \dot{d} \end{array}\right\|$	$\begin{gathered} \mathrm{m} \\ \underset{i}{2} \end{gathered}$	$\stackrel{\infty}{\doteq}$	$\begin{aligned} & \text { ત̈ } \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{n}{\stackrel{n}{=}}$	$\begin{aligned} & \check{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\left\lvert\, \begin{gathered} \infty \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{gathered}\right.$	$\stackrel{\substack{\text { en } \\ \underset{\infty}{2}}}{\substack{0}}$	$\begin{gathered} \stackrel{\circ}{\mathrm{i}} \\ \hline \end{gathered}$	$\underset{\text { Z }}{\text { İ }}$	$\begin{aligned} & \text { nu } \\ & \infty \end{aligned}$	$\aleph_{ু}^{\infty}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{g}}}{\stackrel{1}{2}}$	$\underset{\text { ¢ }}{\substack{8}}$	$\left\lvert\, \begin{aligned} & 0 \\ & \vdots \\ & \hline \end{aligned}\right.$	$\begin{gathered} \infty \\ \text { cin } \end{gathered}$	$\underset{\substack{f \\ \stackrel{0}{0}}}{ }$	$\begin{aligned} & \text { ò } \\ & \stackrel{8}{\alpha} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{y}} \\ & \stackrel{y}{c} \end{aligned}$	$\stackrel{\circ}{\substack{\alpha}}$	$\stackrel{\text { U }}{\substack{0 \\ \hline}}$	$\begin{gathered} \infty \\ \stackrel{\infty}{i} \end{gathered}$	$\stackrel{\text { d }}{\text { 合 }}$
						$\begin{aligned} & \substack{2 \\ \vdots \\ \\ \\ \hline} \end{aligned}$	洓			$\begin{aligned} & \text { 朐 } \\ & \text { on } \\ & \end{aligned}$	$\begin{aligned} & \text { m } \\ & \text { त्ल̃ } \\ & \end{aligned}$		$\begin{array}{\|c} \substack{0 \\ \stackrel{\rightharpoonup}{0} \\ \\ \\ \hline} \end{array}$			$\begin{aligned} & \text { 惑 } \\ & \end{aligned}$		$\begin{aligned} & \text { 柰 } \\ & \underset{7}{\text { g }} \\ & ؟ \end{aligned}$		$\begin{aligned} & \text { 寺 } \\ & \underset{\sim}{7} \\ & \underset{~}{2} \end{aligned}$		$\begin{aligned} & \stackrel{\otimes}{4} \\ & \stackrel{1}{4} \end{aligned}$	
		$\left\lvert\, \begin{gathered} 0 \\ \underset{\sim}{n} \\ \underset{\sim}{\dot{\alpha}} \\ \underset{\sim}{2} \end{gathered}\right.$		$\begin{aligned} & \stackrel{(0}{0} \\ & \stackrel{y}{c} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { तิ } \\ & \text { त̂ } \\ & \underset{1}{2} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{\rightharpoonup}{n} \\ & \underset{n}{9} \end{aligned}$				$\begin{aligned} & \bar{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{0}{0} \\ & \stackrel{\omega}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{n}{4} \end{aligned}$	$\begin{aligned} & \text { ì } \\ & \substack{6 \\ \hline} \end{aligned}$	$\left\lvert\, \begin{gathered} \mathfrak{n} \\ \substack{2\\ \\ } \end{gathered}\right.$			$\begin{aligned} & \text { 管 } \\ & \stackrel{c}{2} \end{aligned}$	$\begin{gathered} \stackrel{y}{\stackrel{\rightharpoonup}{6}} \\ \substack{0} \end{gathered}$	$\begin{aligned} & \circ \\ & \stackrel{0}{6} \\ & \stackrel{6}{\leftrightarrows} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{a}{4} \\ & \end{aligned}$	$\begin{aligned} & \text { on } \\ & \stackrel{0}{6} \\ & \underset{=}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\text { an }}{7} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{7} \\ & \stackrel{7}{7} \end{aligned}$	
國	$\left[\begin{array}{c} \tilde{Z} \\ 0 \\ 0 \\ 0 \end{array}\right.$	$\left\|\begin{array}{c} \underset{3}{c} \\ \stackrel{c}{6} \end{array}\right\|$	$\begin{aligned} & 8.0 \\ & \stackrel{0}{2} \\ & 0.8 \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{gathered} n \\ \substack{2 \\ 0 \\ 0 \\ 0} \end{gathered}\right.$	$\begin{aligned} & \text { 吕 } \\ & \stackrel{\rightharpoonup}{0} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{6} \\ & \text { in } \\ & 0 \end{aligned}$		爰	$\begin{gathered} \infty \\ \stackrel{\infty}{0} \\ \stackrel{0}{8} \\ \end{gathered}$			$$		$\begin{aligned} & \frac{8}{2} \\ & \frac{6}{\infty} \\ & \stackrel{y}{\infty} \end{aligned}$		$\begin{aligned} & \stackrel{\otimes}{8} \\ & \stackrel{y}{\mathrm{~B}} \end{aligned}$	$\underset{\substack{\text { A } \\ \text { A } \\ \hline}}{\text { n}}$	$\begin{aligned} & \text { 吕 } \\ & \stackrel{\rightharpoonup}{0} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \stackrel{i n}{n} \\ & \stackrel{i}{\infty} \\ & \stackrel{1}{0} \end{aligned}$	\％
－	O	$\begin{aligned} & 0 \\ & \stackrel{n}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\circ}{6}$	$\begin{aligned} & \text { 曷 } \\ & \stackrel{n}{=} \end{aligned}$	$$	$\begin{gathered} \mathrm{E} \\ \mathrm{~F} \\ \mathrm{O} \end{gathered}$	$\frac{\bar{E}}{\mathrm{E}}$	$\frac{\mathrm{E}}{\mathrm{E}}$	毕	$\frac{\mathrm{E}}{\mathrm{a}}$	$\frac{\mathrm{E}}{\mathrm{E}}$. ob	$\frac{\vec{i}}{\mathrm{E}}$	$\frac{\mathrm{E}}{\mathrm{E}} \mathrm{a}$	$\frac{E}{2}$	$\frac{E}{a}$	$\frac{\mathrm{E}}{\mathrm{a}}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{\mathrm{E}}{\mathrm{E}}$	$\frac{E}{E}$	$\frac{E}{E}$	E
								$\begin{aligned} & \text { oे } \\ & \frac{0}{6} \\ & \stackrel{1}{2} \\ & \stackrel{1}{2} \end{aligned}$		$\begin{aligned} & \text { 气n } \\ & \underset{n}{n} \\ & \underset{n}{2} \end{aligned}$			¢	－	等	$\begin{aligned} & \text { 总 } \\ & \stackrel{y}{n} \\ & \stackrel{y}{n} \\ & \end{aligned}$							
心気岩	－		－	$\stackrel{8}{\%}$ $\stackrel{?}{7}$	－	－	－	$\begin{aligned} & \text { 华 } \\ & \end{aligned}$	－	－	－	－	－	－	－	－	－	－	$\underset{\substack{\text { 花 } \\ \hline}}{ }$	－	¢	－	cick
जS	－		－	蒦 $\substack{1 \\ \hline}$	－	－	－	$\begin{aligned} & \text { 茋 } \\ & \end{aligned}$	－	－	$$	－	－	－	－	－	－	¢	$\begin{aligned} & \text { n } \\ & \substack{\text { an } \\ \hline} \end{aligned}$		$$	¢	
心家若	－	－	$\begin{aligned} & \text { 荷 } \\ & \end{aligned}$	$\begin{gathered} \text { 采 } \\ \end{gathered}$	$\begin{gathered} \infty \\ \stackrel{\circ}{\circ} \\ \stackrel{C}{\circ} \end{gathered}$	－	－			$\stackrel{\infty}{\bar{\epsilon}}$	$\begin{aligned} & \infty \\ & \text { à } \\ & \text { dit } \\ & \hline \end{aligned}$			¢	¢	－			$\begin{gathered} \stackrel{⿸}{\substack{c}} \\ \substack{0 \\ \hline} \end{gathered}$	$\stackrel{\infty}{\bar{G}}$	$\begin{gathered} \text { ñ } \\ \\ \hline \end{gathered}$	$$	¢
心気気宕	$\left\lvert\, \begin{gathered} 2 \\ \hat{n} \\ \underset{\sim}{7} \end{gathered}\right.$	$\begin{aligned} & 2 \\ & \hat{n} \\ & \underset{7}{7} \end{aligned}$	$$					$$				$$									$\begin{aligned} & \text { n } \\ & \\ & \end{aligned}$	$\begin{aligned} & \text { 筑 } \\ & \end{aligned}$	
砍	－	a	\bigcirc	2	\bigcirc	\cup°	0°	0°	\bigcirc	0°	0°	\bigcirc	\checkmark	\checkmark	\bigcirc	0°	ט	ט	ט゙	ט	ט	ט	ט゙
号	$\begin{gathered} 0 \\ 2 \\ 2 \\ 2 \\ \stackrel{E}{8} \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 20 \\ & 2 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { İ } \\ & \text { E E } \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	중		$\left\{\begin{array}{c} \widehat{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$							En				$\begin{array}{\|c} 1 \\ 0^{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$		$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$

Table 15．372．The energy parameters（ eV ）of functional groups of alkyl phosphates．

$\left\|\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 1 & \vdots \\ 0 & 0 \end{array}\right\|$		0	$0 \stackrel{n}{0}$	－	$-\frac{E}{A}$		\sim	－＇3	－			$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \vec{a} \\ & \text { an } \end{aligned}$					$\begin{aligned} & \underset{y}{\tilde{y}} \\ & \underset{\sim}{\alpha} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { 彭 } \\ & \stackrel{i}{n} \end{aligned}$			$\frac{1}{2}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{6} \end{aligned}$	$\begin{aligned} & \check{6} \\ & \underset{\sim}{\dot{\alpha}} \end{aligned}$	y		$\bigcirc \frac{1}{2}$
	－	－	0 ？	－	$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{A}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	－	\sim	－＇3	－	$\stackrel{\cong}{\vdots}$			$\left\lvert\, \begin{gathered} 0 \\ \\ \\ \end{gathered}\right.$						$\left\lvert\, \begin{gathered} \underset{\mathrm{c}}{\mathrm{c}} \\ \text { cic } \end{gathered}\right.$		$\frac{\pi}{3}$	$$	$\stackrel{6}{\substack{6}}$			
$\left\lvert\, \begin{aligned} & \text { or } \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	－	0	0%	－	$-\frac{\underset{A}{E}}{\partial}$		\sim	－＇	－			$\begin{gathered} \infty \\ \infty \\ \underset{\sim}{c} \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} \hat{0} \\ \hat{0} \\ n \\ \\ \end{gathered}\right.$	0			$\begin{gathered} n \\ \tilde{2} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$			$\begin{gathered} \overline{6} \\ \\ \hdashline \end{gathered}$	$\frac{1}{2}$	$\begin{aligned} & \stackrel{2}{6} \\ & \stackrel{\circ}{6} \end{aligned}$	$\begin{gathered} 0.6 \\ \stackrel{\leftrightarrow}{0} \\ \hline 0 \end{gathered}$			－$\frac{\overline{2}}{\frac{\square}{8}}$
$\left\|\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$	－	－ 0	$0 \ldots$	－	$-\frac{E}{2}$	E 0	\sim	\bigcirc	－	N		＋	（\％			\div		$\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \stackrel{1}{6} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\rightharpoonup}{2}$	$\begin{gathered} \infty \\ c_{0}^{2} \\ \\ \hline \end{gathered}$		\bigcirc			＋	－

	－ 0	0	\％		－	－			－＇	－	，	กิ	d	N		－		$\begin{gathered} n \\ \underset{n}{n} \\ \underset{n}{2} \end{gathered}$			＋	$\underset{\substack{\underset{\sim}{7} \\ \hline \\ \hline}}{2}$	－	－				令	？	－		

 12.87680
10.48582
-5.24291
-14.63489
0
-14.63489
-31.63533
0
-31.63537

24.1759 | 24.1759 |
| :---: |
| 15.91299 |
| -0.24966 |
| 0.35532 | q．(13.458)

-0.07200
0.14803 -31.70737
-14.63489
-13.59844
3.32601

礿 흥	－	－		$-$	$-\frac{\underset{N}{A}}{\partial}$		－	\sim	－			$\left\|\begin{array}{c} n \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{i} \\ \dot{\sim} \end{array}\right\|$	N	$\begin{aligned} & \hat{0} \\ & \stackrel{\rightharpoonup}{6} \\ & n \\ & \end{aligned}$		$\stackrel{!}{1}$	$\stackrel{\circ}{6}$	－		$\begin{gathered} \underset{\sim}{c} \\ \underset{\sim}{c} \\ \hline \end{gathered}$	$\bar{\infty}$								－
$\text { On 흥 } m$	\sim	－		－	$-\frac{\mathrm{E}}{\text { E }}$	0	－	m	N	$-\mathrm{c}$	$\begin{gathered} \infty \\ \text { N} \\ \text { a } \\ \infty \\ \end{gathered}$	\mathfrak{i}	$\begin{aligned} & i \\ & 0 \\ & \text { O} \\ & \end{aligned}$	$\begin{gathered} \hat{c} \\ 0 \\ 0 \\ n \\ n \\ n \end{gathered}$	－	$\begin{aligned} & \hat{0} \\ & \stackrel{0}{6} \\ & n \\ & n \\ & \end{aligned}$	－	－		$\begin{gathered} \infty \\ \underset{\sim}{0} \\ \dot{\sim} \end{gathered}$	$\stackrel{+}{0}$		－	$\begin{gathered} \text { ñ } \\ \text { Nin } \end{gathered}$	$\xrightarrow{\text { \％}}$	i	－	年	－

| $\begin{aligned} & @ \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | － | － | － | \％ | － | － | ¢ | \bigcirc | \sim | － | \％ | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | $\begin{array}{r}-33.47304 \\ 10.15605 \\ \hline 0.32537\end{array}$ $\begin{array}{r}-4.66268 \\ \hline\end{array}$ -1.65376

-12.98113 -31.63544
-1.65376
 ：
 0.14803
-33.39484
 4.1250

$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$	－	－	$0{ }^{\circ}$	－	$-\left\|\begin{array}{c} 2 \\ \\ 0 \\ 0 \end{array}\right\|$		$\cdots 0$		$-\frac{\stackrel{n}{n}}{\frac{n}{n}} \frac{2}{\underset{n}{n}}$			$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{\dot{6}} \\ \underset{6}{6} \\ \underset{子}{\prime} \end{gathered}\right.$				$\begin{gathered} \tilde{y} \\ \stackrel{y}{2} \\ 0 \\ \stackrel{\rightharpoonup}{6} \end{gathered}$	$\begin{aligned} & \text { ल్లి } \\ & \text { ভ̀ } \end{aligned}$		$\underset{\substack{0 \\ 0 \\ 0 \\ 0 \\ 0}}{\substack{2}}$				－
$\begin{array}{ll} 0 & 0 \\ 1 & 0 \\ \text { a } \\ \text { a } \end{array}$		－	0%	$-$	$-\left\lvert\, \begin{gathered} \bar{\delta} \\ \stackrel{\rightharpoonup}{0} \\ \hat{O} \end{gathered}\right.$		$\cdots 0$					$\left\lvert\, \begin{gathered} \substack{0 \\ \infty \\ \underset{\sim}{2} \\ \underset{\sim}{1} \\ \hline} \end{gathered}\right.$			$\begin{gathered} \stackrel{\rightharpoonup}{\vec{~}} \\ \stackrel{\rightharpoonup}{i} \\ \underset{i}{2} \end{gathered}$	$\begin{aligned} & \bar{\zeta} \\ & \stackrel{y}{\circ} \\ & \stackrel{y}{c} \\ & \stackrel{\rightharpoonup}{c} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\tilde{2}}{2} \end{aligned}$		$\frac{1}{9}=$				¢
$\begin{array}{ll} 0 & 0 \\ \text { O } \\ \text { II } \\ \text { an } \end{array}$	\sim	－	0%	－	$-\begin{gathered} \bar{C} \\ \hat{N} \\ \hat{O} \\ \hline \end{gathered}$		＋ 0					$\left\lvert\, \begin{gathered} \tilde{q} \\ \underset{\sim}{\hat{h}} \\ \underset{\sim}{n} \end{gathered}\right.$			$\begin{gathered} \infty \\ \stackrel{\infty}{0} \\ \stackrel{0}{n} \\ \underset{i}{2} \end{gathered}$	$\begin{aligned} & \text { n } \\ & \text { N } \\ & \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \underset{=}{2} \end{aligned}$		$\frac{\lambda_{n}^{2}}{\substack{n \\ 0}}$				$\xrightarrow{8}$
		$\underbrace{\prime \prime}$	$=\sim$	v	v 心					se		$=\frac{5}{2}$					$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						寿

 experimental values［69］．

-0.00876
-0.00656
-0.00475
-0.00105

m600
00
0 mo
e
000

0
$\begin{array}{r}3 \\ 3 \\ 6 \\ 3 \\ \hline\end{array}$

3
3
3
3

 0
 0
0
0
3
3
3
3
\qquad
$\begin{array}{ll}\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{P} & \text { Triethyl phosphate } \\ \mathrm{C}_{9} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P} & \text { Tri－n－propyl phosphate } \\ \mathrm{C}_{9} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P} & \text { Tri－isorpropl phosphate } \\ \mathrm{C}_{9} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{P} & \text { Tri－n－butyl phosphate }\end{array}$
Table 15．374．The bond angle parameters of alkyl phosphates and experimental values［1］．In the calculation of θ_{v} ，the parameters from the preceding angle were used． E_{T} is E_{T}（atom－atom， $\mathrm{msp}^{3} \cdot A O$ ）．

会き				Bice											
	$\stackrel{\odot}{\underset{-1}{4}}$	$\begin{aligned} & \stackrel{\infty}{\mathrm{T}} \\ & \stackrel{-}{2} \end{aligned}$	$\begin{aligned} & \stackrel{̣}{1} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\cong}{O}$	$\begin{aligned} & \text { 志 } \\ & \stackrel{\infty}{\bullet} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\ominus}}{\stackrel{\rightharpoonup}{\bullet}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\ominus} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{i}{2} \\ & \stackrel{O}{0} \end{aligned}$		$\begin{array}{\|c} \hline \\ \hline \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & = \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{\circ}} \\ & \stackrel{1}{4} \end{aligned}$	$\stackrel{\nwarrow}{\Xi}$	$\stackrel{\widetilde{3}}{\Xi}$	－
－0															
σ－															
oo						ה			\％	－					－
W			$$		－			－				－	－	$\xrightarrow{\circ}$	
\sim	$\begin{aligned} & \text { Ĩ } \\ & \stackrel{\text { dem }}{\circ} \end{aligned}$	$\begin{aligned} & \text { İ } \\ & \text { On } \\ & \text { On } \end{aligned}$	$\begin{gathered} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \tilde{F} \\ & \stackrel{\text { F }}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{6} \\ & \stackrel{n}{7} \end{aligned}$			$\begin{aligned} & \circ \\ & \stackrel{\circ}{n} \\ & \end{aligned}$			$\begin{aligned} & \stackrel{8}{2} \\ & \stackrel{6}{20} \\ & \hline 0 \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{0}{6} \\ & \stackrel{y}{0} \\ & \hline 0 \end{aligned}$	
\checkmark	－	－	－	－	No			会			－	\％	\％	－	
U	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\sim}{\circ} \end{aligned}$	－	－	－	－			－			－	－	－	－	
\checkmark	－	－	－	－	－			－			－	¢	¢	－	
$v^{\circ} \frac{\tilde{E}}{\frac{3}{4}}$		$\begin{aligned} & \tilde{\sim} \\ & \text { On } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Ï̃ } \\ & \text { On } \\ & \text { on } \end{aligned}$		－			－				$\frac{\mathrm{N}}{\hat{a}}$	$\frac{\mathrm{E}}{\mathrm{~A}}$	$\begin{gathered} \stackrel{\rightharpoonup}{6} \\ \stackrel{y}{0} \\ \stackrel{O}{0} \end{gathered}$	
$\because \frac{\overline{\#}}{4}$			$\begin{aligned} & \text { N} \\ & \text { Non } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{0}{\infty} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { oid } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \circ \end{aligned}$						$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{0}{\infty} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { n} \\ & \stackrel{2}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \text { n} \\ & \stackrel{2}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\circ}{\infty} \end{aligned}$	
	－	\bigcirc	\bigcirc	\bigcirc	\pm			\pm			¢	－	－	¢	
毕菏	$\begin{aligned} & \stackrel{2}{c} \\ & \stackrel{y}{c} \\ & \stackrel{6}{1} \end{aligned}$	$\begin{aligned} & \text { 劳 } \\ & \text { 合 } \\ & \end{aligned}$	$\begin{aligned} & \text { 落 } \\ & \stackrel{y}{6} \end{aligned}$	$\begin{aligned} & \circ .0 \\ & \stackrel{8}{6} \\ & \stackrel{6}{6} \end{aligned}$	\pm			\pm				$\begin{aligned} & n \\ & \\ & \underset{\sim}{\alpha} \\ & \underset{1}{1} \end{aligned}$	［	㷫じ	
	2	\bigcirc	\bigcirc	¢	－			－			－	in	in	－	
		$\begin{aligned} & \text { 䓌 } \\ & \text { an } \end{aligned}$			$\begin{aligned} & \text { no } \\ & \stackrel{0}{2} \\ & \stackrel{6}{1} \end{aligned}$			¢					哃		
票會合				$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\begin{aligned} & \tilde{\sim}_{2} \\ & \underset{\sim}{c} \end{aligned}$			N゙N			$\begin{aligned} & \infty \\ & \stackrel{\infty}{\alpha} \\ & \stackrel{+}{+} \end{aligned}$	$\frac{\overparen{6}}{\underset{\sim}{6}}$	$\frac{\sqrt[6]{6}}{\underset{子}{8}}$	$\stackrel{\otimes}{2}$	
高合	$\begin{aligned} & \text { n } \\ & \substack{0 \\ 0 \\ 0 \\ i} \end{aligned}$	$\begin{aligned} & \text { o! } \\ & \text { 高 } \\ & \text { en } \end{aligned}$		$\begin{aligned} & \text { n} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\underset{\sim}{\stackrel{\circ}{j}}$			\＃			$\begin{aligned} & \frac{5}{2} \\ & \frac{0}{2} \end{aligned}$	$\stackrel{\pi}{\underset{N}{i}}$	$\begin{aligned} & \underset{\text { N }}{\underset{\sim}{c}} \end{aligned}$	－	
部䓂	$\begin{aligned} & \text { Oị } \\ & \text { 呂 } \end{aligned}$			$\begin{aligned} & \text { f } \\ & \stackrel{\rightharpoonup}{2} \\ & i \end{aligned}$	$\stackrel{\circ}{\rightrightarrows}$			宕			誓	等		त	
	$\begin{aligned} & \stackrel{Y}{\circ} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & Q_{0}^{\circ} \\ & \mathrm{V}^{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 鍺 } \\ & 0_{0} \\ & 心_{0}^{1} \\ & \mathrm{~S}_{0} \end{aligned}$		$\begin{aligned} & \text { Us }_{0}^{0} \\ & \text { Us } \end{aligned}$	V		V	$\begin{aligned} & z \\ & z_{0} \\ & 0_{0} \end{aligned}$	$\begin{array}{ll} 0_{0}^{0} \\ 0_{0} \\ 0_{0} & 0 \\ 1.0 \end{array}$	$\begin{aligned} & y_{0} \\ & 0_{0} \\ & 0_{0} \\ & \text { vog } \end{aligned}$	$\left.\begin{array}{ll} y_{1} & \\ 心_{0} & 0^{0} \\ y_{0} & .0 \end{array} \right\rvert\,$		$\left\{\begin{array}{c} c_{0}^{u} \\ c_{0}^{c} \\ y_{0} \end{array}\right.$

ORGANIC AND RELATED IONS ($\mathrm{RCO}_{2}^{-}, \mathrm{ROSO}_{3}^{-}, \mathrm{NO}_{3}^{-},(\mathrm{RO})_{2} \mathrm{PO}_{2}^{-},(\mathrm{RO})_{3} \mathrm{SiO}^{-}$, $\left.(\mathrm{R})_{2} \mathrm{Si}\left(\mathrm{O}^{-}\right)_{2}, \mathrm{RNH}_{3}^{+}, \mathrm{R}_{2} \mathrm{NH}_{2}^{+}\right)$

Proteins comprising amino acids with amino and carboxylic acid groups are charged at physiological pH . Deoxyribonucleic acid (DNA), the genetic material of living organisms also comprises negatively charged phosphate groups. Thus, the bonding of organic ions is considered next. The molecular ions also comprise functional groups that have an additional electron or are deficient by an electron in the cases of monovalent molecular anions and cations, respectively. The molecular chemical bond typically comprises an even integer number of paired electrons, but with an excess of deficiency, the bonding may involve an odd number of electrons, and the electrons may be distributed over multiple bonds, solved as a linear combination of standard bonds. As given in the Benzene Molecule section and other sections on aromatic molecules such as naphthalene, toluene, chlorobenzene, phenol, aniline, nitrobenzene, benzoic acid, pyridine, pyrimidine, pyrazine, quinoline, isoquinoline, indole, and adenine, the paired electrons of MOs may be distributed over a linear combination of bonds such that the bonding between two atoms involves less than an integer multiple of two electrons. Specifically, the results of the derivation of the parameters of the benzene molecule given in the Benzene Molecule $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ section was generalized to any aromatic functional group of aromatic and heterocyclic compounds in the Aromatic and Heterocyclic Compounds section. Ethylene serves as a basis element for the $C \stackrel{3 e}{=} C$ bonding of the aromatic bond wherein each of the $C \stackrel{3 e}{=} C$ aromatic bonds comprises $(0.75)(4)=3$ electrons according to Eq. (15.161). Thus, in these aromatic cases, three electrons can be assigned to a given bond between two atoms wherein the electrons of the linear combination of bonded atoms are paired and comprise an integer multiple of two.

In graphite, the minimum energy structure with equivalent carbon atoms wherein each carbon forms bonds with three other such carbons requires a redistribution of charge within an aromatic system of bonds. Considering that each carbon contributes four bonding electrons, the sum of electrons of a vertex-atom group is four from the vertex atom plus two from each of the two atoms bonded to the vertex atom where the latter also contribute two each to the juxtaposed group. These eight electrons are distributed equivalently over the three bonds of the group such that the electron number assignable to each bond is $\frac{8}{3}$. Thus, the $C \stackrel{8 / 3 e}{=} C$ functional group of graphite comprises the aromatic bond with the exception that the electron-number per bond is $\frac{8}{3}$.

As given in the Bridging Bonds of Boranes section and the Bridging Bonds of Organoaluminum Hydrides section, other examples of electron deficient bonding involving two paired electrons centered on three atoms are three-center bonds as opposed to the typical single bond, a two-center bond. The $B 2 s p^{3}$ HOs comprise four orbitals containing three electrons as given by Eq. (23.1) that can form three-center as well as two-center bonds. The designation for a three-center bond involving two $B 2 s p^{3}$ HOs and a $H 1$ s AO is $B-H-B$, and the designation for a three-center bond involving three $B 2 s p^{3} H O s$ is $B-B-B$. In the aluminum case, each $A l-H-A l$-bond MO and $A l-C-A l$-bond MO comprises the corresponding single bond and forms with further sharing of electrons between each $\mathrm{Al} 3 s p^{3} \mathrm{HO}$ and each $H 1 s \mathrm{AO}$ and $C 2 s p^{3} \mathrm{HO}$, respectively. Thus, the geometrical and energy parameters of the three-center bond are equivalent to those of the corresponding two-center bonds except that the bond energy is increased in the former case since the donation of electron density from the unoccupied $\mathrm{Al} 3 \mathrm{sp}{ }^{3} \mathrm{HO}$ to each $A l-H-A l$-bond MO and $A l-C-A l$-bond MO permits the participating orbital to decrease in size and energy.

To match the energies of the AOs and MOs of the ionic functional group with the others within the molecular ion, the bonding in organic ions comprises a standard bond that serves as basis element and retains the same geometrical characteristics as that standard bond. In the case of organic oxyanions, the $A-O^{-}(A=C, S, N, P, S i)$ bond is intermediate between a single and double bond, and the latter serves as a basis element. Similar to the case of the $C=C$ aromatic bond wherein ethylene is the basis element, the $A=O$-bond functional group serves as the basis element for the $A-O^{-}$functional group of the oxyanion of carboxylates, sulfates, nitrates, phosphates, silanolates, and siloxanolates. This oxyanion group designated by $A=O^{-}$comprises $(0.75)(4)=3$ electrons after Eq. (15.161). Thus, the energy parameters of the $A{ }^{3 e} O^{-}$functional group are given by the factor of $(0.75)(4)=3$ times those of the corresponding $A=O$ functional group, and the geometric parameters are the same. The $C=O, S=O, N=O_{2}, P=O$, and $S i=O$ basis elements are given in the Carboxylic Acids, Sulfates, Alkyl Nitrates, Phosphates, and Silicon Oxides, Silicic Acids, Silanols, Siloxanes and Disiloxanes sections, respectively. A convenient means to obtain the final group energy parameters of $E_{T}($ Group $)$ and E_{D} (Group) is by using Eqs. (15.165-15.166) with $f_{1}=0.75$:

$$
\left.\begin{array}{l}
E_{T}(\text { Group })=f_{1}\left(\begin{array}{l}
\text { E(basis energies) }+E_{T}\left(\text { atom }- \text { atom }, m s p^{3} . A O\right) \\
-31.63536831 \mathrm{eV} \sqrt{\frac{\sqrt{\frac{C_{10} C_{20} e^{2}}{4 \pi \varepsilon_{0} R^{3}}}}{m_{e}}}
\end{array} n_{1} \bar{E}_{\text {Kvib }}+c_{3} \frac{8 \pi \mu_{o} \mu_{B}^{2}}{r^{3}}\right.
\end{array}\right)
$$

where c_{4} is $(0.75)(4)=3$ when $c_{5}=0$ and otherwise c_{4} is $(0.75)(2)=1.5$ and c_{5} is $(0.75)(2)=1.5$.
The nature of the bonding of the amino functional group of protonated amines is similar to that in H_{3}^{+}. As given in the Triatomic Molecular Hydrogen-type Ion (H_{3}^{+}) section, H_{3}^{+}comprises two indistinguishable spin-paired electrons bound by three protons. The ellipsoidal molecular orbital (MO) satisfies the boundary constraints as shown in the Nature of the Chemical Bond of Hydrogen-Type Molecules section. Since the protons are indistinguishable, ellipsoidal MOs about each pair of protons taken one at a time are indistinguishable. H_{3}^{+}is then given by a superposition or linear combinations of three equivalent ellipsoidal MOs that form an equilateral triangle where the points of contact between the prolate spheroids are equivalent in energy and charge density. Due to the equivalence of the H_{2}-type ellipsoidal MOs and the linear superposition of their energies, the energy components defined previously for the H_{2} molecule, Eqs. (11.207-11.212) apply in the case of the corresponding H_{3}^{+} molecular ion. And, each molecular energy component is given by the integral of corresponding force in Eq. (13.5). Each energy component is the total for the two equivalent electrons with the exception that the total charge of the two electrons is normalized over the three basis set H_{2}-type ellipsoidal MOs. Thus, the energies (Eqs. (13.12-13.17)) are those given in the Energies of Hydrogen-Type Molecules section with the electron charge, where it appears, multiplied by a factor of $3 / 2$, and the three sets of equivalent proton-proton pairs give rise to a factor of three times the proton-proton repulsion energy given by Eq. (11.208).

With the protonation of the imidogen $(N H)$ functional group, the minimum energy structure with equivalent hydrogen atoms comprises two protons bound to N by two paired electrons, one from H and one from N with the MO matched to the $N 2 p$ AO. These two electrons are distributed equivalently over the two $\mathrm{H}-\mathrm{N}$ bonds of the group such that the electron number assignable to each bond is $\frac{2}{2}$. Thus, the NH_{2}^{+}functional group has the imidogen energy parameters with the exception that each energy term is multiplied by the factor 2 due to the two bonds with electron-number per bond of $\frac{2}{2}$ and has the same geometric parameters as the $N H$ functional group given in the Secondary Amines section. A convenient means to obtain the final group energy parameters of $E_{T}($ Group $)$ and E_{D} (Group) is by using Eqs. (15.165-15.166) (Eqs. (15.183-15.184)) with $f_{1}=2$ and c_{4} and c_{5} multiplied by two.

With the protonation of the amidogen $\left(\mathrm{NH}_{2}\right)$ functional group, the minimum energy structure with equivalent hydrogen atoms comprises three protons bound to N by four paired electrons, two from $2 H$ and two from N with the MO matched to the $N 2 p$ AO. These four electrons are distributed equivalently over the three $H-N$ bonds of the group such that the electron number assignable to each bond is $\frac{4}{3}$. Thus, the NH_{3}^{+}functional group has the amidogen energy parameters with the exception that each energy term is multiplied by the factor $\frac{3}{2}$ due to the three bonds with electron-number per bond of $\frac{4}{3}$ and has the same geometric parameters as the NH_{2} functional group given in the Primary Amines section. A convenient means to obtain the final group energy parameters of $E_{T}($ Group $)$ and $E_{D}(G r o u p)$ is by using Eqs. (15.165-15.166) (Eqs. (15.183-15.184)) with $f_{1}=3 / 2$ and c_{4} and c_{5} multiplied by $3 / 2$.

The symbols of the functional groups of organic and related ions are given in Table 15.375. The geometrical (Eqs. (15.115.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters are given in Tables $15.376,15.377$, and 15.378 , respectively. Due to its charge, the bond angles of the organic and related ions that minimize the total energy are those that maximize the separation of the groups. For ions having three bonds to the central atom, the angles are 120°, and ions having four bonds are tetrahedral. The color scale, charge-density of exemplary organic ion, protonated lysine, comprising atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.64.

Figure 15.64. Color scale, charge-density of protonated lysine ion showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei.

Table 15.375. The symbols of functional groups of organic and related ions.

Functional Group	Group Symbol
$(\mathrm{O}) \mathrm{C}-\mathrm{O}^{-}($alkyl carboxylate $)$	$\mathrm{C}-\mathrm{O}^{-}$
$(\mathrm{RO})(\mathrm{O})_{2} \mathrm{~S}-\mathrm{O}^{-}$(alkyl sulfate)	$\mathrm{S}-\mathrm{O}^{-}$
$(\mathrm{O})_{2} \mathrm{~N}-\mathrm{O}^{-}$(nitrate)	$\mathrm{N}-\mathrm{O}^{-}$
$(\mathrm{RO})_{2}(\mathrm{O}) \mathrm{P}-\mathrm{O}^{-}$(alkyl phosphate $)$	$\mathrm{P}_{-} \mathrm{O}^{-}$
$(\mathrm{RO})_{3} \mathrm{Si}-\mathrm{O}^{-}$(alkyl siloxanolate)	$\mathrm{Si}-\mathrm{O}^{-}$
$(\mathrm{R})_{2} \mathrm{Si}\left(-\mathrm{O}^{-}\right)_{2}$ (alkyl silanolate)	NH_{2}^{+}
NH_{2}^{+}group	NH_{3}^{+}
NH_{3}^{+}group	

Table 15.376. The geometrical bond parameters of organic and related ions and experimental values of corresponding basis elements [1].

Parameter	$\begin{aligned} & \mathrm{C}-\mathrm{O}^{-} \\ & \text {Group } \\ & \hline \end{aligned}$	$\begin{aligned} & S-O^{-} \\ & \text {Group } \\ & \hline \end{aligned}$	$\begin{aligned} & N-O^{-} \\ & \text {Group } \\ & \hline \end{aligned}$	$\begin{aligned} & P-O^{-} \\ & \text {Group } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Si}-\mathrm{O}^{-} \\ \text {Group } \\ \hline \end{gathered}$	NH_{2}^{+} Group	NH_{3}^{+} Group
$a\left(a_{0}\right)$	1.29907	1.98517	1.29538	1.91663	2.24744	1.26224	1.28083
$c^{\prime}\left(a_{0}\right)$	1.13977	1.40896	1.13815	1.38442	1.41056	0.94811	0.95506
Bond Length $2 c^{\prime}(A)$	1.20628	1.49118	1.20456	1.46521	1.49287	1.00343	1.0108
Exp. Bond Length (A)	$\begin{gathered} 1.214 \\ \text { (acetic acid) } \end{gathered}$	$\begin{gathered} 1.485 \\ \text { (dimethyl sulfoxide) } \end{gathered}$	1.205 (methyl nitrate) 1.2 $\left(\mathrm{HNO}_{2}\right)$.087	$1.48 \text { [65] }$ (DNA)	$\begin{gathered} 1.509 \\ (\text { silicon oxide) } \\ {[74]} \end{gathered}$	$\begin{gathered} 1.00 \\ \text { (dimethylamine) } \end{gathered}$	$\begin{gathered} 1.010 \\ \text { (methylamine) } \end{gathered}$
$b, c\left(a_{0}\right)$	0.62331	1.39847	0.61857	1.32546	1.74966	0.83327	0.85345
e	0.87737	0.70974	0.87862	0.72232	0.62763	0.75113	0.74566

Table 15.377. The MO to HO intercept geometrical bond parameters of organic and related ions. E_{T} is E_{T} (atom-atom,msp ${ }^{3} . A O$).

Bond	Atom	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 1$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond } 2 \end{gathered}$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$ $\text { Bond } 3$	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \\ \text { Bond 4 } \end{gathered}$	Final Total Energy $C 2 s p^{3}$ (eV)	$\begin{aligned} & r_{\text {manal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{aligned} & r_{\text {manal }} \\ & \left(a_{0}\right) \end{aligned}$	$\begin{gathered} E_{\text {Conumomb }}\left(\mathrm{C} 2 s p^{3}\right) \\ \text { (eV) } \\ \text { Final } \end{gathered}$	$\begin{gathered} E\left(C 2 s p^{3}\right) \\ (\mathrm{eV}) \\ \text { Final } \end{gathered}$	$\begin{aligned} & \theta^{\prime} \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} d_{1} \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} d_{2} \\ \left(a_{0}\right) \end{gathered}$
$R H_{2} C_{b} C_{a}(O)-O^{-}$	o	-1.01210	0	0	0		1.00000	0.85907	-15.83785		137.99	42.01	67.29	0.50150	0.63827
$R H_{2} C_{b} C_{a}(O)-O^{-}$	C_{a}	-1.01210	-0.92918	-0.92918	0	-154.48615	0.91771	0.76885	-17.69621	-17.50535	134.14	45.86	62.28	0.60433	0.53544
$(\mathrm{RO})_{2}(\mathrm{O}) \mathrm{S}-\mathrm{O}^{-}$	s	0	-0.46459	-0.46459	0		1.32010	0.86359	-15.75493		78.56	101.44	37.25	1.58026	0.17130
$(\mathrm{RO})_{2}(O) S-O^{-}$	o	0	0	0	0		1.00000	0.91771	-14.82575		84.06	95.94	40.75	1.50400	0.09504
$\mathrm{O}_{2} \mathrm{~N}-\mathrm{O}^{-}$	o	-0.69689	0	0	0		1.00000	0.87651	-15.52264		135.13	44.87	63.23	0.58339	0.55475
$\mathrm{O}_{2} \mathrm{~N}-\mathrm{O}^{-}$	N	-0.92918	-0.92918	-0.69689	0		0.93084	0.78280	-17.38100		138.99	41.01	68.41	0.47673	0.66142
$(\mathrm{RO})_{2}(O) \mathrm{P}-\mathrm{O}^{-}$	P	-0.72457	-0.72457	-1.13379	-0.85034		1.15350	0.74515	-18.25903		71.42	108.58	32.20	1.62182	0.23739
$(\mathrm{RO})_{2}(O) \mathrm{P}-\mathrm{O}^{-}$	o	-0.85034	0	0	0		1.00000	0.86793	-15.67609		85.55	94.45	40.76	1.45184	0.06742
$(\mathrm{RO})_{3} \mathrm{Si}-\mathrm{O}^{-}$	Si	-1.55205	-0.62217	-0.62217	-0.62217		1.31926	0.99082	-13.73181		53.34	126.66	27.02	2.00216	0.59160
$(\mathrm{RO})_{3} \mathrm{Si}-\mathrm{O}^{-}$	o	-1.55205	0	0	0		1.00000	0.89688	-15.17010		34.26	145.74	16.77	2.15183	0.74128
$-\mathrm{H}_{2} \mathrm{C}_{a} \mathrm{NH}\left(\mathrm{R}_{\text {alty }}\right)-\mathrm{H}^{+}$	N	-0.56690	-0.56690	0	0		0.93084	0.85252	-15.95954		118.18	61.82	64.40	0.54546	0.40264
$-\mathrm{H}_{2} \mathrm{Ca}_{a} N\left(\mathrm{H}_{2}\right)-\mathrm{H}^{+}$	N	-0.72457	0	0	0		0.93084	0.87495	-15.55033		118.00	62.00	64.85	0.54432	0.41075

Table 15.378. The energy parameters $(e V)$ of functional groups of organic and related ions.

Parameters	$\begin{aligned} & \mathrm{C}-\mathrm{O}^{-} \\ & \text {Group } \end{aligned}$	$\begin{aligned} & S-O^{-} \\ & \text {Group } \end{aligned}$	$\begin{aligned} & N-O^{-} \\ & \text {Group } \end{aligned}$	$\begin{aligned} & P-O^{-} \\ & \text {Group } \end{aligned}$	$\begin{aligned} & \mathrm{Si}-\mathrm{O}^{-} \\ & \text {Group } \end{aligned}$	NH_{2}^{+} Group	NH_{3}^{+} Group
f_{1}	0.75	0.75	0.75	0.75	0.75	2	3/2
n_{1}	2	2	2	2	2	1	2
n_{2}	0	0	0	0	0	0	0
n_{3}	0	0	0	0	0	0	1
C_{1}	0.5	0.5	0.5	0.5	0.75	0.75	0.75
C_{2}	1	1	1	1	0.75304	0.93613	0.93613
c_{1}	1	1	1	1	1	0.75	0.75
c_{2}	0.85395	1.20632	0.85987	0.78899	1	0.93383	0.94627
c_{3}	2	0	0	0	0	1	0
c_{4}	4	4	4	4	2	1	1
c_{5}	0	1	0	0	2	1	2
C_{1}	0.5	0.5	0.5	0.5	0.75	0.75	1.5
C_{2} 。	1	1	1	1	0.75304	1	1
$V_{e}(\mathrm{eV})$	-111.25473	-82.63003	-112.63415	-56.96374	-56.90923	-39.21967	-77.89897
$V_{p}(\mathrm{eV})$	23.87467	19.31325	23.90868	9.82777	19.29141	14.35050	28.49191
$T(\mathrm{eV})$	42.82081	20.81183	43.47534	14.86039	12.66092	15.53581	30.40957
$V_{m}(\mathrm{eV})$	-21.41040	-10.40592	-21.73767	-7.43020	-6.33046	-7.76790	-15.20478
E (АоІно) (eV)	0	-11.52126	0	-11.78246	-20.50975	-14.53414	-14.53414
$\Delta E_{\mathrm{H}_{2} \text { МО }}$ (${ }^{\text {(о/Но) }}$ (eV)	-2.69893	-1.16125	-3.71673	0	0	0	0
$E(\mathrm{n}$, ло/но) (eV)	0	0	0	0	0	0	-14.53414
	2.69893	-10.36001	3.71673	-11.78246	-20.50975	-14.53414	-14.53414
$E_{T}\left(H_{2} \mu \mathrm{MO}\right)(\mathrm{eV})$	-63.27074	-63.27088	-63.27107	-63.27069	-51.79710	-31.63541	-48.73642
$E_{T}\left(\right.$ atom-atom, $\left.\mathrm{msp}{ }^{3} \cdot \mathrm{AO}\right)(\mathrm{eV})$	-2.69893	0	-3.71673	-2.26758	-4.13881	0	0
$E_{T}($ мо $)(\mathrm{eV})$	-65.96966	-63.27074	-66.98746	-65.53832	-55.93591	-31.63537	-48.73660
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	59.4034	17.6762	19.8278	11.0170	9.22130	47.0696	64.2189
$E_{K}(\mathrm{eV})$	39.10034	11.63476	13.05099	7.25157	6.06962	30.98202	42.27003
$\bar{E}_{D}(e V)$	-0.40804	-0.21348	-0.23938	-0.17458	-0.13632	-0.34836	-0.40690
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.21077 \\ {[12]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12832 \\ {[43]} \\ \hline \end{gathered}$	$\begin{gathered} 0.19342 \\ {[45]} \\ \hline \end{gathered}$	$\begin{gathered} 0.12337 \\ {[75]} \\ \hline \end{gathered}$	$\begin{gathered} 0.15393 \\ {[24]} \\ \hline \end{gathered}$	$\begin{gathered} 0.40696 \\ {[24]} \\ \hline \end{gathered}$	$\begin{gathered} 0.40929 \\ {[22]} \\ \hline \end{gathered}$
$\bar{E}_{\text {osc }}(\mathrm{eV})$	-0.30266	-0.14932	-0.14267	-0.11289	-0.05935	-0.14488	-0.20226
$E_{\text {mag }}(\mathrm{eV})$	0.11441	0.11441	0.11441	0.14803	0.04983	0.14803	0.14803
$E_{T}($ Group $)(\mathrm{eV})$	-49.93123	-47.67703	-50.45460	-49.32308	-42.04096	-63.56050	-73.71167
$E_{\text {initial }}\left(\mathrm{c}_{4}\right.$ AO/HO) (eV)	-14.63489	-14.63489	-14.63489	-14.63489	-10.25487	-14.53414	-14.53414
$E_{\text {Intual }}(\mathrm{c}$, Ао। но) (eV)	0	-1.16125	0	0	-13.61805	-13.59844	-13.59844
E_{D} (Group) (eV)	6.02656	2.90142	6.54994	5.41841	6.23157	7.01164	11.11514

MONOSACCHARIDES OF DNA AND RNA

The simple sugar moiety of DNA and RNA comprises the alpha forms of 2-deoxy-D-ribose and D-ribose, respectively. The sugars comprise the alkyl $\mathrm{CH}_{2}, \mathrm{CH}$, and $\mathrm{C}-\mathrm{C}$ functional groups and the alkyl alcohol $\mathrm{C}-\mathrm{O}$ and OH functional groups given in the Alcohols section. In addition, the alpha form of the sugars comprise the $C-O$ ether functional group given in the Ethers section, and the open-chain forms further comprise the carbon to carbonyl $C-C$, the methylyne carbon of the aldehyde carbonyl $C H$, and the aldehyde carbonyl $C=O$ functional groups given in the Aldehydes section. The total energy of each sugar given in Tables 15.379-15.382 was calculated as the sum over the integer multiple of each E_{D} (Group) corresponding to the functional-group composition wherein the group identity and energy $E_{D}($ Group $)$ are given in each table. The color scale, chargedensity of the monosaccharides, each comprising atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figure 15.65.

Figure 15.65. Color scale, charge-density of riboses showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (A) 2-deoxy-D-ribose. (B) D-ribose. (C) Alpha-2-deoxy-D-ribose. (D) Alpha-D-ribose.

Table 15.379. The total gaseous bond energy of 2-deoxy-D-ribose $\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{4}\right)$ calculated using the functional group composition and the energies given supra.

Formula	$\begin{aligned} & \mathrm{CH}_{2} \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{CH} \\ \text { (alkyl) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH} \\ (\mathrm{HC}=\mathrm{O}) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \\ & \text { (n-C) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C(O) \\ \text { (aldehyde) } \\ \text { Group } \end{gathered}$	$C=O$ (aldehyde) Group	$\begin{gathered} \mathrm{C}-\mathrm{O} \\ (\mathrm{C}-\mathrm{OH}) \\ \text { Group } \end{gathered}$	$\begin{gathered} \text { OH } \\ \text { Group } \end{gathered}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
Energies E_{D} (Group) of Functional Groups (eV)	7.83016	3.32601	3.47404	4.32754	4.41461	7.80660	4.34572	4.41035			
Composition	2	2	1	3	1	1	3	3	77.25842		

Table 15.380. The total gaseous bond energy of D-ribose $\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}\right)$ calculated using the functional group composition and the energies given supra. compared to the experimental values [3]. Formula

Formula	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$	$\begin{aligned} & \mathrm{CH} \\ & \text { (alkyl) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{CH} \\ (H C=O) \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \\ & \text { (n-C) } \\ & \text { Group } \end{aligned}$	$C-C(O)$ (aldehyde) Group	$\begin{aligned} & C=O \\ & \begin{array}{c} \text { (aldehyde) } \\ \text { Group } \end{array} \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{O} \\ (\mathrm{C}-\mathrm{OH}) \\ \text { Group } \end{gathered}$	$\begin{gathered} O H \\ \text { Group } \end{gathered}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
Energies E_{D} (Group) of Functional Groups (eV)	7.83016	3.32601	3.47404	4.32754	4.41461	7.80660	4.34572	4.41035			
Composition	1	3	1	3	1	1	4	4	81.51034	$83.498^{\text {a }}$	0.02381

Table 15.381 . The total gaseous bond energy of alpha-2-deoxy-D-ribose $\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{4}\right)$ calculated using the functional group composition and the energies given supra. OH Calculated Experimental Relative Error Group Total Bond $\quad \begin{gathered}\text { Total Bond } \\ \text { Ena }\end{gathered}$
4.41035

Table 15.382. The total gaseous bond energy of alpha-D-ribose $\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}\right)$ calculated using the functional group composition and the energies given supra. $\begin{array}{llllllll}\mathrm{CH}_{2} & \mathrm{CH} & \mathrm{C}-\mathrm{C} & \mathrm{C}-\mathrm{O} & \mathrm{C}-\mathrm{O} & \mathrm{OH} & \text { Calculated } & \text { Experimental }\end{array}$ | Group | $\begin{array}{c}\text { (alkyl) } \\ \text { Group }\end{array}$ | $\begin{array}{c}\text { (n-C) } \\ \text { Group }\end{array}$ | $\begin{array}{c}\text { (alkyl ether) } \\ \text { Group }\end{array}$ | $\begin{array}{c}(\mathrm{C}-\mathrm{OH}) \\ \text { Group }\end{array}$ | Group | $\begin{array}{c}\text { Total Bond } \\ \text { Energy (eV) }\end{array}$ | $\begin{array}{c}\text { Total Bond } \\ \text { Energy (eV) }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | $\begin{array}{llllll}783016 & 3.32601 & 432754 & 4.12506 & 434572 & 4.41035\end{array}$

82.31088

NUCLEOTIDE BONDS OF DNA AND RNA

DNA and RNA comprise a backbone of alpha-2-deoxy-D-ribose and alpha-D-ribose, respectively, with a charged phosphate moiety at the 3 ' and 5^{\prime} ' positions of two consecutive ribose units in the chain and a base bound at the 1 ' position wherein the ribose H of each of the corresponding 3 ' or $5^{\prime} O-H$ and $1^{\prime} C-H$ bonds is replaced by P and the base N, respectively. For the base, the H of the $N-H$ at the pyrimidine 1 position or the purine 9 position is replaced by the sugar C. The basic repeating unit of DNA or RNA is a nucleotide that comprises a monosaccharide, a phosphate moiety and a base. The structure of the nucleotide bond is shown in Figure 15.66 with the designation of the corresponding atoms. The phosphate moiety comprises the $P=O, P-O$, and $C-O$ functional groups given in the Phosphates section as well as the $P-O^{-}$group given in the Organic and Related Ions section. The nucleoside bond (sugar C to base N) comprises the tertiary amine $C-N$ functional group given in the corresponding section. The bases, adenine, guanine, thymine, and cytosine are equivalent to those given in the corresponding sections. The symbols of the functional groups of the nucleotide bond are given in Table 15.383. The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters are given in Tables 15.384, 15.385, and 15.386, respectively. The functional group composition and the corresponding energy $E_{D}($ Group $)$ of each group of the nucleotide bond of DNA and RNA are given in Table 15.387. The bond angle parameters of the nucleoside bond determined using Eqs. (15.88-15.117) are given in Table 15.388. The color scale rendering of the charge-density of the exemplary tetra-nucleotide, (deoxy)adenosine 3 '-monophosphate- 5^{\prime} '-(deoxy)thymidine 3'-monophosphate-5'-(deoxy)guanosine 3 '-monophosphate- 5^{\prime} '(deoxy)cytidine monophosphate (ATGC) comprising the concentric shells of atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.67. Figure 15.68 shows the color scale rendering of the charge-density of the exemplary DNA fragment $\begin{gathered}\text { ACTGACTGACTG } \\ \text { TGACTGACTGAC }\end{gathered}$ wherein each complementary strand comprises a dodeca-nucleotide of the form (base (1)deoxyribose) monophosphate-(base(2)-deoxyribose) monophosphate - with the phosphates bridging the 3' and 5' ribose carbons with the opposite order for the complementary stands. Figure 15.68 shows the color scale rendering of the chargedensity of an exemplary double-stranded DNA helix.

Figure 15.66. Designation of the atoms of the nucleotide bond.

Figure 15.67. The color scale rendering of the chargedensity of the exemplary tetra-nucleotide, (deoxy)adenosine monophosphate-(deoxy)thymidine monophosphate-(deoxy)guanosine monophosphate(deoxy)cytidine monophosphate (ATGC) showing the orbitals of the atoms at their radii and the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond.

Figure 15.68. Color scale rendering of the chargedensity of the DNA fragment ACTGACTGACTG showing the orbitals of the atoms at their radii and the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond.

Figure 15.69. Color scale, opaque view of the charge density of a double-stranded DNA helix created and modeled using Millsian 2.0.

Table 15.383. The symbols of functional groups of the nucleotide bond.

	Functional Group
$C-N$	$C-N$
C-O (alkyl)	$C-O$
$P=O$	$P=O$
$P-O$	$P-O$
$(R O)_{2}(O) P-O^{-}$(alkyl phosphate)	$P-O^{-}$

Table 15.384 . The geometrical bond parameters of the nucleotide bond and experimental values [1].

Parameter	$C-N$ Group	$C-O$ Group	$P=O$ Group	$P-O$ Group	$P-O^{-}$ Group
$a\left(a_{0}\right)$	1.96313	1.79473	1.91663	1.84714	1.91663
$c^{\prime}\left(a_{0}\right)$	1.40112	1.33968	1.38442	1.52523	1.38442
Bond Length $2 c^{\prime}(\AA)$	1.48288	1.41785	$1.46521 \mathrm{E}-10$	1.61423	1.46521
Exp. Bond Length (\AA)	1.458 (trimethylamine)	1.418 (ethyl methyl ether (avg.)	$1.48[65]$ (DNA) 1.4759 $(P O)$	$1.631[70]$ (MHP) $1.60[65]$ (DNA)	$1.48[65]$ (DNA)
$b, c\left(a_{0}\right)$	1.37505	1.19429	1.32546	1.04192	1.32546
e	0.71372	0.74645	0.72232	0.82573	0.72232

Table 15.38 ．The MO to HO intercept geometrical bond parameters of the nucleotide bond．E_{T} is E_{T}（atom－atom，msp ${ }^{3}$ ．$A O$ ）．

でき	$\stackrel{\overline{7}}{\stackrel{\rightharpoonup}{0}}$			高	$\stackrel{\text { 等 }}{2}$	$\begin{gathered} \pm \\ \underset{\substack{c}}{\prime} \end{gathered}$	$\begin{aligned} & \text { 己 } \\ & \underset{\sim}{\mathrm{I}} \end{aligned}$		$\begin{aligned} & \text { İ } \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{gathered} \underset{ন}{ন} \\ \underset{\sim}{7} \end{gathered}$	$\begin{aligned} & \text { 己 } \\ & \underset{\sim}{7} \\ & \hline \end{aligned}$	$\stackrel{ \pm}{\text { a }}$
－®os	$\stackrel{\infty}{\circ}$	$\begin{aligned} & \infty \\ & \stackrel{\otimes}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{め}{2} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \text { 吉 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$					$\begin{aligned} & \text { 啰 } \end{aligned}$		－
－¢	$\stackrel{i}{n}$	$\stackrel{4}{8}$	F	¢	$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{o}} \\ \substack{\text { n }} \end{gathered}$	$\underset{\sim}{n}$	$\begin{gathered} \text { g. } \\ \text { fin } \end{gathered}$	$\underset{\sim}{\mathrm{n}}$		$\underset{\sim}{\underset{\sim}{n}}$		$\underset{\sim}{n}$
σ O	$\stackrel{\infty}{\sim}$	$\stackrel{8}{\square}$	$\stackrel{8}{\square}$	$\stackrel{8}{7}$	$\begin{aligned} & \stackrel{B}{\oplus} \\ & \stackrel{\oplus}{\bullet} \end{aligned}$	$\begin{aligned} & \mathscr{O} \\ & \stackrel{\oplus}{\bullet} \end{aligned}$	$\begin{aligned} & \text { 寺 } \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \text { 志 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \underset{\varrho}{6} \end{aligned}$	$\begin{aligned} & \text { 寺 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\xrightarrow[0]{0}$
－		$\begin{gathered} \stackrel{\rightharpoonup}{\dot{o}} \\ \underset{\sim}{n} \end{gathered}$	$\begin{gathered} \stackrel{\rightharpoonup}{\dot{\phi}} \\ \underset{\sim}{n} \end{gathered}$	$\begin{gathered} \stackrel{\dot{\phi}}{\dot{\sim}} \end{gathered}$	$\begin{gathered} \text { ¢ } \\ \end{gathered}$	$\underset{\sim}{\wedge}$	$\begin{aligned} & \text { n } \\ & \end{aligned}$	$\underset{\sim}{\wedge}$	$\stackrel{\circ}{\underset{A}{A}}$	$\underset{\sim}{\wedge}$	$\begin{aligned} & \text { 呙 } \\ & \end{aligned}$	$\underset{\sim}{\sim}$
$\frac{\overline{e x}}{\frac{0}{4}}$												
	$$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{+}{7} \\ & \stackrel{n}{7} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\text { P/ }}{\nearrow} \end{aligned}$	$\begin{aligned} & \overline{\alpha_{4}^{2}} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \text { ⿳亠厶్ర口 } \\ & \text { بin } \end{aligned}$			$\begin{aligned} & \text { 要 } \\ & \stackrel{y}{c} \end{aligned}$	$\stackrel{\text { 品 }}{\leftrightharpoons}$	$\begin{aligned} & \text { of } \\ & \stackrel{y}{2} \\ & \vdots \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\text { P}}{\nearrow} \end{aligned}$	丵 ¢
－	$\underset{\substack{\text { 筞 } \\ \hline}}{ }$	$\begin{gathered} \text { g } \\ \stackrel{y}{\circ} \\ \hline 0 \end{gathered}$		$$	$\begin{gathered} \text { 等 } \\ \stackrel{\infty}{\circ} \end{gathered}$							
通	$\begin{aligned} & \text { 彦 } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$$		$\begin{aligned} & \text { 㯎 } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \text { 喜 } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\stackrel{E}{2}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \hline 0 \end{aligned}$	$\frac{\vec{A}}{\hat{\alpha}}$	$\begin{aligned} & \text { 高 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { E } \\ & \underset{A}{\alpha} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \end{aligned}$	E
N	－	－	－	－	－	－	－	－	－	－	－	－
$\approx \overbrace{0}^{\infty}$	$\begin{gathered} \text { op } \\ \text { 等 } \end{gathered}$			$\begin{aligned} & \text { 委 } \\ & \stackrel{y}{6} \end{aligned}$	啇		$$				$\frac{\infty}{\substack{4 \\ \hline \multirow{2}{c}{}}}$	¢
		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\bar{G}} \\ & \stackrel{\text { In }}{6} \end{aligned}$				$\begin{gathered} \infty \\ \bar{a} \\ \text { নे } \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\bar{G}} \\ & \hline \stackrel{y}{c} \end{aligned}$	$\begin{aligned} & \infty \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\frac{\infty}{\bar{\sigma}}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\bar{A}} \\ & \hline \stackrel{y}{4} \end{aligned}$	－
	$\begin{aligned} & \overrightarrow{\overparen{O}} 0 \\ & \text { 花 } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{A} \\ & \stackrel{\text { din }}{6} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\bar{G}} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$		$\begin{aligned} & \text { 受 } \\ & \text { 管 } \end{aligned}$	$\begin{aligned} & \text { of } \\ & \text { 常 } \\ & \hline \end{aligned}$					$\begin{aligned} & \text { of } \\ & \text { 杂 } \\ & 0 \end{aligned}$	喿
$\frac{\frac{\pi}{4}}{4}$	z゙	ż	z	z	で	品	z		z	䘡	ż	枈
宕		z_{0}^{2}		$\begin{aligned} & \text { E } \\ & \text { C } \\ & 1 \\ & 3 \end{aligned}$	${ }_{0}^{0}$							

Table 15.386. The energy parameters (eV) of functional groups of the nucleotide bond.

Parameters	$\begin{aligned} & C-N \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & P=O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & P-O \\ & \text { Group } \end{aligned}$	$\begin{aligned} & P-O^{-} \\ & \text {Group } \end{aligned}$
n_{1}	1	1	2	1	2
n_{2}	0	0	0	0	0
n_{3}	0	0	0	0	0
C_{1}	0.5	0.5	0.5	0.5	0.5
C_{2}	1	1	1	1	1
c_{1}	1	1	1	1	1
c_{2}	0.91140	0.85395	0.79401	0.79401	0.78899
c_{3}	0	0	0	0	0
c_{4}	2	2	4	2	4
c_{5}	0	0	0	0	0
C_{10}	0.5	0.5	0.5	0.5	0.5
$C_{2 o}$	1	1	1	0.79401	1
$V_{e}(e \mathrm{~V})$	-31.67393	-33.47304	-56.96374	-33.27738	-56.96374
$V_{p}(\mathrm{eV})$	9.71067	10.15605	9.82777	8.92049	9.82777
$T(e V)$	8.06719	9.32537	14.86039	9.00781	14.86039
$V_{m}(e V)$	-4.03359	-4.66268	-7.43020	-4.50391	-7.43020
E (Аогно) (eV)	-14.63489	-14.63489	-23.56492	-11.78246	-11.78246
$\Delta E_{\mathrm{H}_{2} \text { МО }}($ АОО/НО) (eV)	-0.92918	-1.65376	0	0	0
$E_{T}($ (ло/но) $)(\mathrm{eV})$	-13.70571	-12.98113	-23.56492	-11.78246	-11.78246
$E_{T}\left(\mathrm{H}_{2} \mathrm{MO}\right)(\mathrm{eV})$	-31.63537	-31.63544	-63.27069	-31.63544	-63.27069
$E_{T}\left(\right.$ atom -atom, msp $\left.{ }^{3} \cdot \mathrm{AO}\right)(\mathrm{eV})$	-0.92918	-1.65376	-2.26758	-1.44914	-2.26758
$E_{T}($ мо $)(\mathrm{eV})$	-32.56455	-33.28912	-65.53832	-33.08451	-65.53832
$\omega\left(10^{15} \mathrm{rad} / \mathrm{s}\right)$	18.1298	12.1583	11.0170	10.3761	11.0170
$E_{K}(\mathrm{eV})$	11.93333	8.00277	7.25157	6.82973	7.25157
$\bar{E}_{D}(e V)$	-0.22255	-0.18631	-0.17458	-0.17105	-0.17458
$\bar{E}_{\text {Kvib }}(\mathrm{eV})$	$\begin{gathered} 0.12944 \\ {[23]} \\ \hline \end{gathered}$	$\begin{gathered} 0.16118 \\ {[4]} \\ \hline \end{gathered}$	$\begin{gathered} 0.15292 \\ {[24]} \\ \hline \end{gathered}$	$\begin{gathered} 0.10477 \\ {[71]} \end{gathered}$	$\begin{gathered} 0.12337 \\ {[75]} \\ \hline \end{gathered}$
$\bar{E}_{\text {asc }}(\mathrm{eV})$	-0.15783	-0.10572	-0.09812	-0.11867	-0.11289
$E_{\text {mag }}(\mathrm{eV})$	0.14803	0.14803	0.14803	0.14803	0.14803
E_{T} (Group) (eV)	-32.72238	-33.39484	-65.73455	-33.20318	-49.32308
$E_{\text {initial }}\left(c_{+}\right.$AO/HO) (eV)	-14.63489	-14.63489	-14.63489	-14.63489	-14.63489
$E_{\text {initial }}\left(c_{5}\right.$, АО/но) (eV)	0	0	0	0	0
$E_{D}($ Group $)(\mathrm{eV})$	3.45260	4.12506	7.19500	3.93340	5.41841

Table 15.387. The functional group composition and the energy E_{D} (Group) of each group of the nucleotide bond.

Formula	$C-N$ $\left(3^{\circ}\right.$ amine) Group	$C-O$ (alkyl ether) Group	$P=O$ (phosphate) Group	$P-O$ (phosphate) Group	$P-O^{-}$ (organic ions) Group
Energies $E_{D}($ Group $)$ of Functional Groups (eV)	3.45260	4.12506	7.19500	3.93340	5.41841
Composition	1	2	1	2	1

Table 15.388. The bond angle parameters of the nucleotide bond and experimental values [1]. In the calculation of θ_{v}, the parameters from the preceding angle

$\begin{gathered} \text { Atoms of } \\ \text { Angle } \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond } 1 \\ \left(a_{0}\right) \end{gathered}$	$\begin{gathered} 2 c^{\prime} \\ \text { Bond 2 } \\ \left(a_{0}\right) \end{gathered}$		$E_{\text {Coulombth }}$	Atom 1Hybridization Designation(Table 15.3A)	$E_{\text {Coulombic }}$ Atom 2	Atom 2 Hybridization Designation (Table 15.3A)	$\begin{gathered} c_{2} \\ \text { Atom } 1 \end{gathered}$	$\begin{gathered} c_{2} \\ \text { Atom } 2 \end{gathered}$	C_{1}	C_{2}	c_{1}	c_{2}^{\prime}	$\begin{gathered} E_{T} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \theta_{y} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \theta_{2} \\ & \left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { Cal. } \theta \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Exp. } \theta \\ \left({ }^{\circ}\right) \\ \hline \end{gathered}$
$\angle(P) O C N$	2.67935	2.80224	4.5277	-16.47951	22	-16.47951	22	0.82562	0.82562	1	1	1	0.82562	-1.65376				111.36	111.3 [65]
$\angle P O C$	3.05046	2.67935	4.9904	-11.78246	$P s p^{3}$	-15.75493	7	$\begin{gathered} 0.73885 \\ \text { Eq. } \\ \text { E15.181) } \end{gathered}$	0.86359	1	0.73885	1	0.80122	-0.72457				121.00	121.3 [65]
$\angle O_{a} P \mathrm{OO}_{b}$	3.05046	3.05046	4.7539	-15.95954	10	-15.95954	10	0.85252	0.85252	1	1	1	0.85252	-1.65376				102.38	101.4 [65]
$\angle O_{b} P O_{c}$	3.05046	2.76885	4.7539	-15.95954	10	-15.95954	10	0.85252	0.85252	1	1	1	0.85395	-1.65376				109.46	109.7 [65]
$\angle O_{c} P O_{d}$	2.76885	2.76885	4.7539	-15.95954	10	-15.95954	10	0.85252	0.85252	1	1	1	0.85252	-1.65376				118.29	116.0 [65]
$\begin{gathered} \angle C_{a} O C_{b} \\ \left(C_{a}-O(\text { (i) })\right. \\ \left(C_{b}-O(\text { (ii) })\right. \end{gathered}$	2.68862	2.67935	4.4385	-17.51099	48	-17.51099	48	0.77699	0.77699	1	1	1	0.77699	-1.85836				111.55	111.9 (ethyl methyl ether)
$\begin{gathered} \angle C_{b} C_{a} O \\ \left(C_{a}-O(\text { (ii) })\right. \end{gathered}$	2.91547	2.67935	4.5607	-16.68412	26	-13.61806	O	0.81549	$\begin{gathered} 0.85395 \\ \text { (Eq. } \\ (15.133)) \end{gathered}$	1	1	1	0.83472	-1.65376				109.13	109.4 (ethyl methyl ether)
$\begin{gathered} \angle C_{a} O H \\ \left(C_{a}-O(\text { (ii) })\right. \end{gathered}$	2.67024	1.83616	3.6515	-14.82575	1	-14.82575	1	1	0.91771	0.75	1	0.75	0.91771	0				106.78	$\begin{gathered} 105 \\ \text { (ethanol) } \end{gathered}$
$\begin{gathered} \angle C_{b} C_{a} O \\ \left(C_{a}-O(\text { (ii) })\right. \end{gathered}$	2.91547	2.67024	4.5826	-16.68412	26	-13.61806	o	0.81549	$\begin{gathered} 0.85395 \\ (\text { Eq. } \\ (15.114)) \\ \hline \end{gathered}$	1	1	1	0.83472	-1.65376				110.17	$\begin{gathered} 107.8 \\ \text { (ethanol) } \end{gathered}$
$\begin{gathered} \angle C N C \\ \left(3^{\circ} \text { amine }\right) \end{gathered}$	2.80224	2.80224	4.6043	-17.14871	36	-17.14871	36	0.79340	0.79340	1	1	1	0.79340	-1.85836				110.48	$\begin{gathered} 110.9 \\ \text { (trimethyl amine) } \end{gathered}$
$\begin{aligned} & \text { Methylene } \\ & \angle H C_{a} H \end{aligned}$	2.11106	2.11106	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				108.44	$\begin{gathered} 107 \\ \text { (propane) } \\ \hline \end{gathered}$
$\angle C_{a} C_{b} C_{c}$															69.51			110.49	112 (propane) 113.8 (butane) 110.8 (isobutane)
$\angle C_{a} C_{b} H$															69.51			110.49	$\begin{gathered} 111.0 \\ \text { (butane) } \\ 111.4 \\ \text { (isobutane) } \end{gathered}$
$\begin{aligned} & \text { Methyl } \\ & \angle H C_{a} H \end{aligned}$	2.09711	2.09711	3.4252	-15.75493	7	H	H	0.86359	1	1	1	0.75	1.15796	0				109.50	
$\angle C_{a} C_{b} C_{c}$															70.56			109.44	
$\angle C_{a} C_{b} H$															70.56			109.44	
$\begin{aligned} & \angle C_{b} C_{a} C_{c} \\ & \text { iso } C_{a} \end{aligned}$	2.91547	2.91547	4.7958	$\begin{array}{\|c} \hline-16.68412 \\ C_{b} \end{array}$	26	$\begin{array}{\|c} \hline-16.68412 \\ C_{c} \end{array}$	26	0.81549	0.81549	1	1	1	0.81549	-1.85836				110.67	$\begin{gathered} 110.8 \\ \text { (isobutane) } \end{gathered}$
$\begin{gathered} \angle C_{b} C_{a} H \\ \text { iso } C_{a} \\ \hline \end{gathered}$	2.91547	2.11323	4.1633	$\begin{gathered} -15.55033 \\ C_{a} \end{gathered}$	5	$\begin{array}{\|c} -14.82575 \\ C_{b} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				110.76	
$\begin{aligned} & \angle C_{a} C_{b} H \\ & \text { iso } C_{a} \end{aligned}$	2.91547	2.09711	4.1633	$\begin{gathered} -15.55033 \\ C_{b} \end{gathered}$	5	$\begin{array}{\|c} -14.82575 \\ C_{a} \end{array}$	1	0.87495	0.91771	0.75	1	0.75	1.04887	0				111.27	$\begin{gathered} 111.4 \\ \text { (isobutane) } \end{gathered}$

AMINO ACIDS ($\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}(\mathrm{R})-\mathrm{COOH}$)

The amino acids, $\mathrm{H}_{2} \mathrm{NCH}(\mathrm{R}) \mathrm{COOH}$, each have a primary amine moiety comprised of NH_{2} and $\mathrm{C}-\mathrm{N}$ functional groups, an alkyl carboxylic acid moiety comprised of a $C=O$ functional group, and the single bond of carbon to the carbonyl carbon atom, $C-C(O)$, is also a functional group. The carboxylic acid moiety further comprises a $\mathrm{C}-\mathrm{OH}$ moiety that comprises $\mathrm{C}-\mathrm{O}$ and OH functional groups. The alpha carbon comprises a methylyne (CH) functional group bound to a side chain R group by an isopropyl $C-C$ bond functional group. These groups common to all amino acids are given in the Primary Amines section, the Carboxylic Acids section, and the Branched Alkanes section, respectively. The R group is unique for each amino acid and determines its characteristic hydrophilic, hydrophobic, acidic, and basic properties. These characteristic functional groups are given in the prior organic functional group sections. The total energy of each amino acid given in Tables 15.389-15.408 was calculated as the sum over the integer multiple of each E_{D} (Group) corresponding to the functional-group composition of the amino acid wherein the group identity and energy $E_{D}($ Group $)$ are given in each table. The structure and the color scale, charge-density of the amino acids, each comprising atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 15.70-15.89.

ASPARTIC ACID

Figure 15.70 . (A) Color scale, charge-density of aspartic acid showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of aspartic acid.

GLUTAMIC ACID

Figure 15.71. (A) Color scale, charge-density of glutamic acid showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of glutamic acid.
A

B

0
$\square 1 \mathrm{e} / \AA^{2}$

CYSTEINE

Figure 15.72. (A) Color scale, charge-density of cysteine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of cysteine.
A

B

$0 \square 1 \mathrm{e} / \mathrm{A}^{2}$

LYSINE

Figure 15.73. (A) Color scale, charge-density of lysine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of lysine.
A

B

0

$$
\square 1 \mathrm{e} / \AA^{2}
$$

Table 15.389. The total bond energy of aspartic acid $\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{4}\right)$ calculated using the functional group composition and the energies given supra. compared to the experimental values [3].

Table 15.390 . The total bond energy of glutamic acid $\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{4}\right)$ calculated using the functional group composition and the energies given supra. compared to the
experimental values [3]. Formula

Table 15.392. The total bond energy of lysine $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ calculated using the functional group composition and the energies given supra. compared to the experimental values [3].

Formula	CH_{2} Group	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \\ & \text { (n-C) } \\ & \text { Group } \end{aligned}$	$\begin{aligned} & C-C \\ & \text { (iso-C) } \\ & \text { Group } \end{aligned}$	$C-C(O)$ (alkyl carboxylic acid) Group	$C=O$ (alkyl carboxylic acid) Group	$\begin{gathered} C-O \\ ((O) C-O) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$	NH_{2} Group	$\begin{gathered} C-N \\ \left(1^{\circ} \text { amine }\right) \end{gathered}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
Energies E_{D} (Group) of Functional Groups (eV)	7.83016	3.32601	4.32754	4.29921	4.43110	7.80660	4.41925	4.41035	7.41010	3.98101			
Composition	4	1	3	1	1	1	1	1	2	2	95.77799	98.194a	0.02461

ARGININE

Figure 15.74. (A) Color scale, charge-density of arginine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of arginine.
A

B

$0 \longrightarrow 1 \mathrm{e} / \mathrm{A}^{2}$

HISTIDINE

Figure 15.75. (A) Color scale, charge-density of histidine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of histidine.
A

B

0

ASPARAGINE

Figure 15.76 . (A) Color scale, charge-density of asparagine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of asparagine.
A

B

0

GLUTAMINE

Figure 15.77. (A) Color scale, charge-density of glutamine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of Glutamine.
A

B

0

$$
\square 1 \mathrm{e} / \AA^{2}
$$

Table 15.393. The total bond energy of arginine $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ calculated using the functional group composition and the energies given supra. compared to the experimental values [3].

Formula	$\begin{aligned} & \mathrm{CH}_{2} \\ & \text { Group } \end{aligned}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \\ & (\mathrm{n}-\mathrm{C}) \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \\ \text { (iso-C) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(O) \\ \text { (alkyl } \\ \text { carboxylic } \\ \text { acid) } \\ \text { Group } \\ \hline \end{gathered}$	$C=O$ (alkyl carbxylic acid) Group	$\begin{gathered} C-O \\ ((O) C-O) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$	NH_{2} Group	$\begin{gathered} C-N \\ \left(1^{\circ} \text { amine }\right) \end{gathered}$	$\begin{gathered} N=C \\ \left(N_{b}=C_{c}\right. \\ \text { imidazole }) \\ \text { Group } \end{gathered}$	NH(heterocyclic imidazole) Group	$C-N$ (N alkyl amide) Group	$C-N$ ((O)C-N alkyl amide) Group	$\begin{gathered} \mathrm{NH}_{2} \\ \text { (amide) } \\ \text { Group } \end{gathered}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
Energies E_{D} (Group) of Functional Groups (eV)	7.83016	3.32601	4.32754	4.29921	4.43110	7.80660	4.41925	4.41035	7.41010	3.98101	6.79303	3.51208	3.40044	4.12212	7.37901			
Composition	3		2	1	1	1	1	1		1	1	2	1	2	1	105.0700	07.42	0.0218

Table 15.394. The total bond energy of histidine $\left(\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$ calculated using the functional group composition and the energies given supra. compared to the experimental values [3].

Formula	$\underset{\text { Group }}{\mathrm{CH}_{2}}$	$\underset{\text { Group }}{C H}$	$\begin{gathered} C-C \\ \begin{array}{l} \text { (iso-C) } \\ \text { Group } \end{array} \end{gathered}$	$\begin{gathered} C-C(O) \\ \text { (alkyl } \\ \text { carboxylic } \\ \text { acid) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C=O \\ \text { (alkyl } \\ \text { carboxylic } \\ \text { acid) } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-O \\ & C(O) C- \\ & O) \\ & \text { Group } \end{aligned}$	$\begin{gathered} \text { OH } \\ \text { Group } \end{gathered}$	$\begin{gathered} \hline \mathrm{NH}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \\ \left(1^{\circ}\right. \\ \text { amine) } \end{gathered}$	$\begin{gathered} C-C \\ (-C(C)=C) \\ \text { Group } \end{gathered}$	$\begin{gathered} C H \\ \begin{array}{c} \text { (imidazole) } \\ \text { Group } \end{array} \end{gathered}$	$\begin{gathered} C=C \\ \left(C_{a}=C_{b}\right. \\ \text { imidazole) }) \\ \text { Group } \end{gathered}$	$\begin{gathered} N=C \\ \left(N_{b}=C_{e}\right. \\ \text { imidazole }) \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \\ \left(C_{b}-N_{b}\right. \\ \text { imidazole }) \\ \text { Group }) \end{gathered}$	NH (heterocyclic imidazole) Group	$\begin{gathered} C-N-C \\ \left(C_{a}-N_{a}-C_{c}\right. \\ \text { imidazole }) \\ \text { Group } \end{gathered}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	$\begin{gathered} \text { Relative } \\ \text { Error } \end{gathered}$
Energies $E_{D}($ Group $) ~ o f ~$ Functional Groups (eV)	7.83016	3.32601	4.29921	4.43110	7.80660	4.41925	4.41035	7.41010	3.98101	3.75498	3.32988	7.23317	6.79303	3.47253	3.51208	8.76298			
Composition											2		1			1	88.10232	89.599 a	0.016

Table 15.395. The total bond energy of asparagine $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ calculated using the functional group composition and the energies given supra. compared to the experimental values [3].
CH_{2}
Group experimental values [3].

Formula	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \\ & (\text { n-C) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \\ \hline \text { (iso-C) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C(O) \\ \text { (alkyl carboxylic } \\ \text { acid) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C=O \\ \text { (alkyl carboxylic } \\ \text { acid) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{gathered} C-O \\ (C O) C-O) \\ \text { Group } \end{gathered}$	$\begin{gathered} \text { OH } \\ \text { Group } \end{gathered}$	$\begin{gathered} \hline \mathrm{NH}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \\ \left(1^{\circ} \text { amine }\right) \end{gathered}$	$\begin{gathered} C-C(O) \\ \text { (alkyl } \\ \text { amide) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \\ ((O) C-N \\ \text { alkyl amide) } \\ \text { Group } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NH}_{2} \\ \text { (amide) } \\ \text { Group } \end{gathered}$	$\begin{gathered} \text { Calculated } \\ \text { Total Bond } \\ \text { Energy (eV) } \end{gathered}$	Experimental Total Bond Energy (eV)	$\begin{aligned} & \text { Relative } \\ & \text { Error } \end{aligned}$
Energies $\quad E_{D}($ Group $) \quad$ of Functional Groups (eV)	7.83016	3.32601	4.32754	4.29921	4.43110	7.80660	4.41925	4.41035	7.41010	3.98101	4.35263	4.12212	7.37901			
Composition	2	1	1	1	1	2	1	1	1	1	1	1	1	83.73184	85.843a	0.02459

THREONINE

Figure 15.78. (A) Color scale, charge-density of threonine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of threonine.

A

B

$0 \square 1 \mathrm{e} / \mathrm{A}^{2}$

TYROSINE

Figure 15.79. (A) Color scale, charge-density of tyrosine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of tyrosine.
A

B

$0 \square 1 \mathrm{e} / \AA^{2}$

SERINE

Figure 15.80 . (A) Color scale, charge-density of serine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each $\mathrm{H}^{\text {or }} \mathrm{H}_{2}$-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of serine.
A

B

$0 \square 1 \mathrm{e} / \mathrm{A}^{2}$

TRYPTOPHAN

Figure 15.81. (A) Color scale, charge-density of tryptophan showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of tryptophan.
A

B

0

Table 15.397. The total bond energy of threonine $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{3}\right)$ calculated using the functional group composition and the energies given supra. compared to the experimental values [3].

PHENYLALANINE

Figure 15.82. (A) Color scale, charge-density of phenylalanine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of phenylalanine.

B

0

PROLINE

Figure 15.83. (A) Color scale, charge-density of proline showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of proline.
A

B

0 $1 \mathrm{e} / \AA^{2}$

METHIONINE

Figure 15.84. (A) Color scale, charge-density of methionine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of methionine.
A

B

0

LEUCINE

Figure 15.85 . (A) Color scale, charge-density of leucine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of leucine.
A

B

$0 \square 1 \mathrm{e} / \mathrm{A}^{2}$
Table 15.401. The total bond energy of phenylalanine $\left(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}\right)$ calculated using the functional group composition and the energies given supra. compared to the experimental values [3].

Formula	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \\ \begin{array}{c} C \text { (iso-C) } \\ \text { Group } \end{array} \end{gathered}$	$C-C(O)$ (alky1 carboxylic acid) Group	$C=O$ (alkyl carboxylic acid) Group	$\begin{gathered} C-O \\ ((O) C-O) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{NH}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \\ \left(1^{\circ} \text { amine }\right) \end{gathered}$	$\begin{gathered} C^{3 e}=C \\ (C C \text { aromatic bond) } \\ \text { Group } \end{gathered}$	CH $(\mathrm{CH}$ aromatic) Group	$C-C$ (C alkyl to aryl toluene) Group	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
Energies $\quad E_{D}($ Grapp $) \quad$ of Functional Groups (eV)	7.83016	3.32601	4.29921	4.43110	7.80660	4.41925	4.41035	7.41010	3.98101	5.63881	3.90454	3.63685			
Composition	1	1	1	1	1	1	2	1	1	6	5	1	104.90618	105.009	0.00098

Table 15.402. The total bond energy of proline $\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}\right)$ calculated using the functional group composition and the energies given supra. compared to the experimental values [3].

Formula	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \\ & \text { (n-C) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \\ \text { (iso-C) } \\ \text { Group } \end{gathered}$	$C-C(O)$ (alkyl carboxylic acid) Group	$C=O$ (alkyl carboxylic acid) Group	$\begin{aligned} & \mathrm{C-O} \\ & ((O) \mathrm{O}-\mathrm{O}) \\ & \text { Group } \end{aligned}$	$\begin{gathered} \text { OH } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{NH} \\ \left(2^{\circ} \text { amine }\right) \end{gathered}$	$\begin{gathered} C-N \\ \left(2^{\circ} \text { amine }\right) \end{gathered}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
Energies E_{D} (Group) of Functional Groups (eV)	7.83016	3.32601	4.32754	4.29921	4.43110	7.80660	4.41925	4.41035	3.50582	3.71218			
Composition	3	1	2	1	1	1	1	1	1	2	71.76826	71.332	-0.00611

Table 15.403 . The total bond energy of methionine $\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}\right)$ calculated using the functional group composition and the energies given supra. compared to the experimental values [3].

Formula	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \\ & \text { (iso-C) } \\ & \text { Group } \end{aligned}$	$C-C(O)$ (alkyl carboxylic acid) Group	$C=O$ (alky1 carboxylic acid) Group	$\begin{gathered} C-O \\ ((O) C-O) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{NH}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \\ \left(1^{\circ} \text { amine }\right) \end{gathered}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
Energies $\quad E_{D}($ Group $) \quad$ of Functional Groups (eV)	12.49186	7.83016	3.32601	4.29921	4.43110	7.80660	4.41925	4.41035	7.41010	3.98101			

[^5]
ISOLEUCINE

Figure 15.86 . (A) Color scale, charge-density of isoleucine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of isoleucine.
A

B

$0 \square 1 \mathrm{e} / \mathrm{A}^{2}$

VALINE

Figure 15.87. (A) Color scale, charge-density of valine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of valine.
A

B

$0 \square 1 \mathrm{e} / \AA^{2}$

ALANINE

Figure 15.88. (A) Color scale, charge-density of alanine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of alanine.
A

B

0

GLYCINE

Figure 15.89. (A) Color scale, charge-density of glycine showing the orbitals of the atoms at their radii, the ellipsoidal surface of each $\mathrm{H}^{\text {or }} \mathrm{H}_{2}$-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei. (B) Chemical structure of glycine.
A

B

0 \square
Table 15.405. The total bond energy of isoleucine $\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{2}\right)$ calculated using the functional group composition and the energies given supra. compared to the experimental values [3].

Formula	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \end{gathered}$	CH_{2} Group	$\begin{gathered} \text { CH } \\ \text { Group } \end{gathered}$	$\begin{aligned} & C-C \\ & \text { (n-C) } \\ & \text { Group } \end{aligned}$	$\begin{gathered} C-C \\ \text { (iso-C) } \\ \text { Group } \end{gathered}$	$C-C(O)$ (alkyl carboxylic acid) Group	$\begin{gathered} C-C \\ \text { (iso to iso-C) } \\ \text { Group } \end{gathered}$	$C=O$ (alkyl carboxylic acid) Group	$\begin{aligned} & C-O \\ & ((O) C-O) \\ & \text { Group } \end{aligned}$	$\begin{gathered} \text { OH } \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{NH}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \\ \left(1^{\circ} \text { amine }\right) \end{gathered}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
Energies E_{D} (Group) of Functional Groups (eV)	12.49186	7.83016	3.32601	4.32754	4.29921	4.43110	4.17951	7.80660	4.41925	4.41035	7.41010	3.98101			
Composition	2	1	2	1	2	1	1	1	1	1	1	1	89.02978	90.612	0.01746

Table 15.406. The total bond energy of valine $\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2}\right)$ calculated using the functional group composition and the energies given supra. compared to the experimental values [3].

Formula	$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \\ \text { (iso-C) } \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \\ \text { (iso to iso-C) } \\ \text { Group } \end{gathered}$	$C-C(O)$ (alkyl carboxylic acid) Group	$C=O$ (alkyl carboxylic acid) Group	$\begin{gathered} C-O \\ ((O) C-O) \end{gathered}$ Group	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$	NH_{2} Group	$\begin{gathered} C-N \\ \left(1^{\circ}\right. \\ \text { amine }) \end{gathered}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
Energies $\quad E_{D}$ (Group) \quad of Functional Groups (eV)	12.49186	3.32601	4.29921	4.17951	4.43110	7.80660	4.41925	4.41035	7.41010	3.98101			
Composition	2	2	2	1	1	1	1	1	1	1	76.87208	76.772	-0.00130

Table 15.407. The total bond energy of alanine $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}\right)$ calculated using the functional group composition and the energies given supra. compared to the experimental values [3].

Formula		$\begin{gathered} \mathrm{CH}_{3} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{CH} \\ \text { Group } \end{gathered}$	$\begin{gathered} C-C \\ \text { (iso-C) } \\ \text { Group } \end{gathered}$	$C-C(O)$ (alkyl carboxylic acid) Group	$C=O$ (alky1 carboxylic acid) Group	$\begin{gathered} C-O \\ ((O) C-O) \end{gathered}$ Group	$\begin{gathered} \hline \mathrm{OH} \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{NH}_{2} \\ \text { Group } \end{gathered}$	$\begin{gathered} C-N \\ \left(1^{\circ} \text { amine }\right) \end{gathered}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
Energies $\quad E_{D}$ (Group) Functional Groups (eV)		12.49186	3.32601	$\begin{gathered} 4.2992 \\ 1 \\ \hline \end{gathered}$	4.43110	7.80660	4.41925	4.41035	7.41010	3.98101			
Composition		1	1	1	1	1	1	1	1	1	52.57549	52.991	0.00785

Table 15.408. The total bond energy of glycine $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}\right)$ calculated using the functional group composition and the energies given supra. compared to the experimental values [3].

Formula		$\begin{gathered} \mathrm{CH}_{2} \\ \text { Group } \end{gathered}$	\qquad	$C=O$ (alkyl carboxylic acid) Group	$\begin{gathered} C-O \\ ((O) C-O) \\ \text { Group } \end{gathered}$	$\begin{gathered} \mathrm{OH} \\ \text { Group } \end{gathered}$	NH_{2} Group	$\begin{gathered} C-N \\ \left(1^{\circ} \text { amine }\right) \end{gathered}$	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
Energies $\quad E_{D}$ (Group) Functional Groups (eV)		7.83016	4.43110	7.80660	4.41925	4.41035	7.41010	3.98101			

POLYPEPTIDES ($-[H N-C H(R)-C(O)]_{n}-$)

The amino acids can be polymerized by reaction of the OH group from the carboxylic acid moiety of one amino acid with H from the alpha-carbon NH_{2} of another amino acid to form $\mathrm{H}_{2} \mathrm{O}$ and an amide bond as part of a polyamide chain of a polypeptide or protein. Each amide bond that forms by the condensation of two amino acids is called a peptide bond. It comprises a $C=O$ functional group, and the single bond of carbon to the carbonyl carbon atom, $C-C(O)$, is also a functional group. The peptide bond further comprises a $C-N H(R)$ moiety that comprises $N H$ and $C-N$ functional groups where R is the characteristic side chain of each amino acid that is unchanged in terms of its functional group composition upon the formation of the peptide bond. From the N-Alkyl and N,N-Dialkyl-Amides section, the functional group composition and the corresponding energy $E_{D}($ Group $)$ of each group of the peptide bond is given in Table 15.409. The color scale, charge-density of the exemplary polypeptide, phenylalanine-leucine-glutamine-asparic acid (phe-leu-gln-asp) comprising the atoms with the outer shell bridged by one or more H_{2}-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.90. The color scale, opaque view of the charge-density of the exemplary protein bovine pancreatic trypsin inhibitor (BPTI) is shown in Figure 15.91.

Figure 15.90. Color scale, charge-density of the polypeptide phenylalanine-leucine-glutamine-aspartic acid (phe-leu-glnasp) showing the orbitals of the atoms at their radii and the ellipsoidal surface of each H or H_{2}-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond.

Figure 15.91. Color scale, opaque view of the charge-density of bovine pancreatic trypsin inhibitor (BPTI) protein created and modeled using Millsian 2.0. BPTI has been used as a medication administered by injection to reduce bleeding during complex surgery, such as heart and liver surgery. Its main effect is the inhibition of fibrinolysis, the process that leads to the breakdown of blood clots. The aim in its use is to decrease the need for blood transfusions during surgery, as well as end-organ damage due to hypotension (low blood pressure) as a result of marked blood loss. However, this drug was temporarily withdrawn worldwide in 2007 after studies suggested that its use increased the risk of complications or death. This protein is usually used as the benchmark for bimolecular modeling method and with accurate knowledge of its structure, it is possible to engineer it to avoid its prior side effects.

Table 15.409. The functional group composition and the energy E_{D} (Group) of each group of the peptide bond.

Formula	$C-C(O)$ (alkyl amide) Group	$C-N$ $((O) C-N$ alkyl amide) Group	$C-N$ (N alkyl amide) Group	$N H$ (N alkyl amide) Group
Energies $E_{D}($ Group $)$ of Functional Groups (eV)	4.35263	4.12212	3.40044	3.49788
Composition	1	1	1	1

SUMMARY TABLES OF ORGANIC MOLECULES

The bond energies, calculated using closed-form equations having integers and fundamental constants only for classes of molecules whose designation is based on the main functional group, are given in the following tables with the experimental values.

Table 15.410.1. Summary results of n-alkanes.
\(\left.$$
\begin{array}{llccc}\text { Formula } & & \text { Name } & \begin{array}{c}\text { Calculated } \\
\text { Total Bond } \\
\text { Energy (eV) }\end{array} & \begin{array}{c}\text { Experimental } \\
\text { Total Bond } \\
\text { Energy (eV) }\end{array}\end{array}
$$ \begin{array}{c}Relative

Error\end{array}\right]\)| $\mathrm{C}_{3} \mathrm{H}_{8}$ | propane | 41.46896 | 41.434 | -0.00085 |
| :--- | :--- | :--- | :---: | :---: |
| $\mathrm{C}_{4} \mathrm{H}_{10}$ | butane | 53.62666 | 53.61 | -0.00036 |
| $\mathrm{C}_{5} \mathrm{H}_{12}$ | pentane | 65.78436 | 65.77 | -0.00017 |
| $\mathrm{C}_{6} \mathrm{H}_{14}$ | hexane | 77.94206 | 77.93 | -0.00019 |
| $\mathrm{C}_{7} \mathrm{H}_{16}$ | heptane | 90.09976 | 90.09 | -0.00013 |
| $\mathrm{C}_{8} \mathrm{H}_{18}$ | octane | 102.25746 | 102.25 | -0.00006 |
| $\mathrm{C}_{9} \mathrm{H}_{20}$ | nonane | 114.41516 | 114.40 | -0.00012 |
| $\mathrm{C}_{10} \mathrm{H}_{22}$ | decane | 126.57286 | 126.57 | -0.00003 |
| $\mathrm{C}_{11} \mathrm{H}_{24}$ | undecane | 138.73056 | 138.736 | 0.00004 |
| $\mathrm{C}_{12} \mathrm{H}_{26}$ | dodecane | 150.88826 | 150.88 | -0.00008 |
| $\mathrm{C}_{18} \mathrm{H}_{38}$ | octadecane | 223.83446 | 223.85 | 0.00008 |

Table 15.410.2. Summary results of branched alkanes.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{4} \mathrm{H}_{10}$	isobutane	53.69922	53.695	-0.00007
$\mathrm{C}_{5} \mathrm{H}_{12}$	isopentane	65.85692	65.843	-0.00021
$\mathrm{C}_{5} \mathrm{H}_{12}$	neopentane	65.86336	65.992	0.00195
$\mathrm{C}_{6} \mathrm{H}_{14}$	2-methylpentane	78.01462	78.007	-0.00010
$\mathrm{C}_{6} \mathrm{H}_{14}$	3-methylpentane	78.01462	77.979	-0.00046
$\mathrm{C}_{6} \mathrm{H}_{14}$	2,2-dimethylbutane	78.02106	78.124	0.00132
$\mathrm{C}_{6} \mathrm{H}_{14}$	2,3-dimethylbutane	77.99581	78.043	0.00061
$\mathrm{C}_{7} \mathrm{H}_{16}$	2-methylhexane	90.17232	90.160	-0.00014
$\mathrm{C}_{7} \mathrm{H}_{16}$	3-methylhexane	90.17232	90.127	-0.00051
$\mathrm{C}_{7} \mathrm{H}_{16}$	3-ethylpentane	90.17232	90.108	-0.00072
$\mathrm{C}_{7} \mathrm{H}_{16}$	2,2-dimethylpentane	90.17876	90.276	0.00107
$\mathrm{C}_{7} \mathrm{H}_{16}$	2,2,3-trimethylbutane	90.22301	90.262	0.00044
$\mathrm{C}_{7} \mathrm{H}_{16}$	2,4-dimethylpentane	90.24488	90.233	-0.00013
$\mathrm{C}_{7} \mathrm{H}_{16}$	3,3-dimethylpentane	90.17876	90.227	0.00054
$\mathrm{C}_{8} \mathrm{H}_{18}$	2-methylheptane	102.33002	102.322	-0.00008
$\mathrm{C}_{8} \mathrm{H}_{18}$	3-methylheptane	102.33002	102.293	-0.00036
$\mathrm{C}_{8} \mathrm{H}_{18}$	4-methylheptane	102.33002	102.286	-0.00043
$\mathrm{C}_{8} \mathrm{H}_{18}$	3-ethylhexane	102.33002	102.274	-0.00055
$\mathrm{C}_{8} \mathrm{H}_{18}$	2,2-dimethylhexane	102.33646	102.417	0.00079
$\mathrm{C}_{8} \mathrm{H}_{18}$	2,3-dimethylhexane	102.31121	102.306	-0.00005
$\mathrm{C}_{8} \mathrm{H}_{18}$	2,4-dimethylhexane	102.40258	102.362	-0.00040
$\mathrm{C}_{8} \mathrm{H}_{18}$	2,5-dimethylhexane	102.40258	102.396	-0.00006
$\mathrm{C}_{8} \mathrm{H}_{18}$	3,3-dimethylhexane	102.33646	102.369	0.00032
$\mathrm{C}_{8} \mathrm{H}_{18}$	3,4-dimethylhexane	102.31121	102.296	-0.00015
$\mathrm{C}_{8} \mathrm{H}_{18}$	3-ethyl-2-methylpentane	102.31121	102.277	-0.00033
$\mathrm{C}_{8} \mathrm{H}_{18}$	3-ethyl-3-methylpentane	102.33646	102.317	-0.00019
$\mathrm{C}_{8} \mathrm{H}_{18}$	2,2,3-trimethylpentane	102.38071	102.370	-0.00010
$\mathrm{C}_{8} \mathrm{H}_{18}$	2,2,4-trimethylpentane	102.40902	102.412	0.00003
$\mathrm{C}_{8} \mathrm{H}_{18}$	2,3,3-trimethylpentane	102.38071	102.332	-0.00048
$\mathrm{C}_{8} \mathrm{H}_{18}$	2,3,4-trimethylpentane	102.29240	102.342	0.00049
$\mathrm{C}_{8} \mathrm{H}_{18}$	2,2,3,3-tetramethylbutane	102.41632	102.433	0.00016
$\mathrm{C}_{9} \mathrm{H}_{20}$	2,3,5-trimethylhexane	114.54147	114.551	0.00008
$\mathrm{C}_{9} \mathrm{H}_{20}$	3,3-diethylpentane	114.49416	114.455	-0.00034
$\mathrm{C}_{9} \mathrm{H}_{20}$	2,2,3,3-tetramethylpentane	114.57402	114.494	-0.00070
$\mathrm{C}_{9} \mathrm{H}_{20}$	2,2,3,4-tetramethylpentane	114.51960	114.492	-0.00024
$\mathrm{C}_{9} \mathrm{H}_{20}$	2,2,4,4-tetramethylpentane	114.57316	114.541	-0.00028

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{9} \mathrm{H}_{20}$	2,3,3,4-tetramethylpentane	114.58266	114.484	-0.00086
$\mathrm{C}_{10} \mathrm{H}_{22}$	2-methylnonane	126.64542	126.680	0.00027
$\mathrm{C}_{10} \mathrm{H}_{22}$	5-methylnonane	126.64542	126.663	0.00014

Table 15.410.3. Summary results of alkenes.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{3} \mathrm{H}_{6}$	propene	35.56033	35.63207	0.00201
$\mathrm{C}_{4} \mathrm{H}_{8}$	1-butene	47.71803	47.78477	0.00140
$\mathrm{C}_{4} \mathrm{H}_{8}$	trans-2-butene	47.93116	47.90395	-0.00057
$\mathrm{C}_{4} \mathrm{H}_{8}$	isobutene	47.90314	47.96096	0.00121
$\mathrm{C}_{5} \mathrm{H}_{10}$	1-pentene	59.87573	59.95094	0.00125
$\mathrm{C}_{5} \mathrm{H}_{10}$	trans-2-pentene	60.08886	60.06287	-0.00043
$\mathrm{C}_{5} \mathrm{H}_{10}$	2-methyl-1-butene	60.06084	60.09707	0.00060
$\mathrm{C}_{5} \mathrm{H}_{10}$	2-methyl-2-butene	60.21433	60.16444	-0.00083
$\mathrm{C}_{5} \mathrm{H}_{10}$	3-methyl-1-butene	59.97662	60.01727	0.00068
$\mathrm{C}_{6} \mathrm{H}_{12}$	1-hexene	72.03343	72.12954	0.00133
$\mathrm{C}_{6} \mathrm{H}_{12}$	trans-2-hexene	72.24656	72.23733	-0.00013
$\mathrm{C}_{6} \mathrm{H}_{12}$	trans-3-hexene	72.24656	72.24251	-0.00006
$\mathrm{C}_{6} \mathrm{H}_{12}$	2-methyl-1-pentene	72.21854	72.29433	0.00105
$\mathrm{C}_{6} \mathrm{H}_{12}$	2-methyl-2-pentene	72.37203	72.37206	0.00000
$\mathrm{C}_{6} \mathrm{H}_{12}$	3-methyl-1-pentene	72.13432	72.19173	0.00080
$\mathrm{C}_{6} \mathrm{H}_{12}$	4-methyl-1-pentene	72.10599	72.21038	0.00145
$\mathrm{C}_{6} \mathrm{H}_{12}$	3-methyl-trans-2-pentene	72.37203	72.33268	-0.00054
$\mathrm{C}_{6} \mathrm{H}_{12}$	4-methyl-trans-2-pentene	72.34745	72.31610	-0.00043
$\mathrm{C}_{6} \mathrm{H}_{12}$	2-ethyl-1-butene	72.21854	72.25909	0.00056
$\mathrm{C}_{6} \mathrm{H}_{12}$	2,3-dimethyl-1-butene	72.31943	72.32543	0.00008
$\mathrm{C}_{6} \mathrm{H}_{12}$	3,3-dimethyl-1-butene	72.31796	72.30366	-0.00020
$\mathrm{C}_{6} \mathrm{H}_{12}$	2,3-dimethyl-2-butene	72.49750	72.38450	-0.00156
$\mathrm{C}_{7} \mathrm{H}_{14}$	1-heptene	84.19113	84.27084	0.00095
$\mathrm{C}_{7} \mathrm{H}_{14}$	5-methyl-1-hexene	84.26369	84.30608	0.00050
$\mathrm{C}_{7} \mathrm{H}_{14}$	trans-3-methyl-3-hexene	84.52973	84.42112	-0.00129
$\mathrm{C}_{7} \mathrm{H}_{14}$	2,4-dimethyl-1-pentene	84.44880	84.49367	0.00053
$\mathrm{C}_{7} \mathrm{H}_{14}$	4,4-dimethyl-1-pentene	84.27012	84.47087	0.00238
$\mathrm{C}_{7} \mathrm{H}_{14}$	2,4-dimethyl-2-pentene	84.63062	84.54445	-0.00102
$\mathrm{C}_{7} \mathrm{H}_{14}$	trans-4,4-dimethyl-2-pentene	84.54076	84.54549	0.00006
$\mathrm{C}_{7} \mathrm{H}_{14}$	2-ethyl-3-methyl-1-butene	84.47713	84.44910	-0.00033
$\mathrm{C}_{7} \mathrm{H}_{14}$	2,3,3-trimethyl-1-butene	84.51274	84.51129	-0.00002
$\mathrm{C}_{8} \mathrm{H}_{16}$	1-octene	96.34883	96.41421	0.00068
$\mathrm{C}_{8} \mathrm{H}_{16}$	trans-2,2-dimethyl-3-hexene	96.69846	96.68782	-0.00011
$\mathrm{C}_{8} \mathrm{H}_{16}$	3-ethyl-2-methyl-1-pentene	96.63483	96.61113	-0.00025
$\mathrm{C}_{8} \mathrm{H}_{16}$	2,4,4-trimethyl-1-pentene	96.61293	96.71684	0.00107
$\mathrm{C}_{8} \mathrm{H}_{16}$	2,4,4-trimethyl-2-pentene	96.67590	96.65880	-0.00018
$\mathrm{C}_{10} \mathrm{H}_{20}$	1-decene	120.66423	120.74240	0.00065
$\mathrm{C}_{12} \mathrm{H}_{24}$	1-dodecene	144.97963	145.07163	0.00063
$\mathrm{C}_{16} \mathrm{H}_{32}$	1-hexadecene	193.61043	193.71766	0.00055

Table 15.410.4. Summary results of alkynes.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{3} \mathrm{H}_{4}$	propyne	29.42932	29.40432	-0.00085
$\mathrm{C}_{4} \mathrm{H}_{6}$	1-butyne	41.58702	41.55495	-0.00077
$\mathrm{C}_{4} \mathrm{H}_{6}$	2-butyne	41.72765	41.75705	0.00070
$\mathrm{C}_{9} \mathrm{H}_{16}$	1-nonyne	102.37552	102.35367	-0.00021

Table 15.410.5. Summary results of alkyl fluorides.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
CF_{4}	tetrafluoromethane	21.07992	21.016	-0.00303
CHF_{3}	trifluoromethane	19.28398	19.362	0.00405
$\mathrm{CH}_{2} \mathrm{~F}_{2}$	difluoromethane	18.22209	18.280	0.00314
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~F}$	1-fluoropropane	41.86745	41.885	0.00041
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~F}$	2-fluoropropane	41.96834	41.963	-0.00012

Table 15.410.6. Summary results of alkyl chlorides.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
CCl_{4}	tetrachloromethane	13.43181	13.448	0.00123
CHCl_{3}	trichloromethane	14.49146	14.523	0.00217
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	dichloromethane	15.37248	15.450	0.00499
$\mathrm{CH}_{3} \mathrm{Cl}$	chloromethane	16.26302	16.312	0.00299
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	chloroethane	28.61064	28.571	-0.00138
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$	1-chloropropane	40.76834	40.723	-0.00112
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$	2-chloropropane	40.86923	40.858	-0.00028
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$	1-chlorobutane	52.92604	52.903	-0.00044
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$	2-chlorobutane	53.02693	52.972	-0.00104
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$	1-chloro-2-methylpropane	52.99860	52.953	-0.00085
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$	2-chloro-2-methylpropane	53.21057	53.191	-0.00037
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}$	1-chloropentane	65.08374	65.061	-0.00034
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}$	1-chloro-3-methylbutane	65.15630	65.111	-0.00069
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}$	2-chloro-2-methylbutane	65.36827	65.344	-0.00037
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}$	2-chloro-3-methylbutane	65.16582	65.167	0.00002
$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Cl}$	2-chlorohexane	77.34233	77.313	-0.00038
$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Cl}$	1-chlorooctane	101.55684	101.564	0.00007
$\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Cl}$	1-chlorododecane	150.18764	150.202	0.00009
$\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{Cl}$	1-chlorooctadecane	223.13384	223.175	0.00018

Table 15.410.7. Summary results of alkyl bromides.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
CBr_{4}	tetrabromomethane	11.25929	11.196	-0.00566
CHBr_{3}	tribromomethane	12.87698	12.919	0.00323
$\mathrm{CH}_{3} \mathrm{Br}$	bromomethane	15.67551	15.732	0.00360
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	bromoethane	28.03939	27.953	-0.00308
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$	1-bromopropane	40.19709	40.160	-0.00093
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$	2-bromopropane	40.29798	40.288	-0.00024
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{Br} \mathbf{r}_{2}$	2,3-dibromo-2-methylbutane	63.53958	63.477	-0.00098
$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Br}$	1-bromohexane	76.67019	76.634	-0.00047
$\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{Br}$	1-bromoheptane	88.82789	88.783	-0.00051
$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Br}$	1-bromooctane	100.98559	100.952	-0.00033
$\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Br}$	1-bromododecane	149.61639	149.573	-0.00029
$\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{Br}$	1-bromohexadecane	198.24719	198.192	-0.00028

Table 15.410 .8 . Summary results of alkyl iodides.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
CHI_{3}	triiodomethane	10.35888	10.405	0.00444
$\mathrm{CH}_{2} \mathrm{I}_{2}$	diiodomethane	12.94614	12.921	-0.00195
$\mathrm{CH}_{3} \mathrm{I}$	iodomethane	15.20294	15.163	-0.00263
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	iodoethane	27.36064	27.343	-0.00066
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{I}$	1-iodopropane	39.51834	39.516	-0.00006
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{I}$	2-iodopropane	39.61923	39.623	0.00009
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{I}$	2-iodo-2-methylpropane	51.96057	51.899	-0.00119

Table 15.410.9. Summary results of alkene halides.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$	chloroethene	22.46700	22.505	0.00170
$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}$	2-chloropropene	35.02984	35.05482	0.00071

Table 15.410 .10 . Summary results of alcohols.

F_{2} Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error	
$\mathrm{CH}_{4} \mathrm{O}$	methanol	21.11038	21.131	0.00097
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	ethanol	33.40563	33.428	0.00066
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	1-propanol	45.56333	45.584	0.00046
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	2-propanol	45.72088	45.766	0.00098
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	1-butanol	57.72103	57.736	0.00026
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	2-butanol	57.87858	57.922	0.00074
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	2-methyl-1-propananol	57.79359	57.828	0.00060
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	2-methyl-2-propananol	58.15359	58.126	-0.00048
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	1-pentanol	69.87873	69.887	0.00011
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	2-pentanol	70.03628	70.057	0.00029
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	3-pentanol	70.03628	70.097	0.00087
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	2-methyl-1-butananol	69.95129	69.957	0.00008
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	3-methyl-1-butananol	69.95129	69.950	-0.00002
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	2-methyl-2-butananol	70.31129	70.246	-0.00092
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	3-methyl-2-butananol	69.96081	70.083	0.00174
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	1-hexanol	82.03643	82.054	0.00021
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	2-hexanol	82.19398	82.236	0.00052
$\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}$	1-heptanol	94.19413	94.214	0.00021
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	1-octanol	106.35183	106.358	0.00006
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	2-ethyl-1-hexananol	106.42439	106.459	0.00032
$\mathrm{C}_{5} \mathrm{H}_{20} \mathrm{O}$	1-nonanol	118.50953	118.521	0.00010
$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}$	1-decanol	130.66723	130.676	0.00007
$\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}$	1-dodecanol	154.98263	154.984	0.00001
$\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}$	1-hexadecanol	203.61343	203.603	-0.00005

Table 15.410.11. Summary results of ethers.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	dimethyl ether	32.84496	32.902	0.00174
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	ethyl methyl ether	45.19710	45.183	-0.00030
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	diethyl ether	57.54924	57.500	-0.00086
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	methyl propyl ether	57.35480	57.355	0.00000
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	isopropyl methyl ether	57.45569	57.499	0.00075
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	dipropyl ether	81.86464	81.817	-0.00059
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	diisopropyl ether	82.06642	82.088	0.00026
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	t-butyl ethyl ether	82.10276	82.033	-0.00085
$\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}$	t-butyl isopropyl ether	94.36135	94.438	0.00081
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	dibutyl ether	106.18004	106.122	-0.00055
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	di-sec-butyl ether	106.38182	106.410	0.00027
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	di-t-butyl ether	106.36022	106.425	0.00061
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	t-butyl isobutyl ether	106.65628	106.497	-0.00218

Table 15.410.12. Summary results of 1° amines.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{CH}_{5} \mathrm{~N}$	methylamine	23.88297	23.857	-0.00110
$\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}$	ethylamine	36.04067	36.062	0.00060
$\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$	propylamine	48.19837	48.243	0.00092
$\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$	butylamine	60.35607	60.415	0.00098
$\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$	sec-butylamine	60.45696	60.547	0.00148
$\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$	t-butylamine	60.78863	60.717	-0.00118
$\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$	isobutylamine	60.42863	60.486	0.00094

Table 15.410.13. Summary results of 2° amines.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}$	dimethylamine	35.76895	35.765	-0.00012
$\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$	diethylamine	60.22930	60.211	-0.00030
$\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}$	dipropylamine	84.54470	84.558	0.00016
$\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}$	diisopropylamine	84.74648	84.846	0.00117
$\mathrm{C}_{8} \mathrm{H}_{19} \mathrm{~N}$	dibutylamine	108.86010	108.872	0.00011
$\mathrm{C}_{8} \mathrm{H}_{19} \mathrm{~N}$	diisobutylamine	109.00522	109.106	0.00092

Table 15.410.14. Summary results of 3° amines.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$	trimethylamine	47.83338	47.761	-0.00152
$\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}$	triethylamine	84.30648	84.316	0.00012
$\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{~N}$	tripropylamine	120.77958	120.864	0.00070

Table 15.410.15. Summary results of aldehydes.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{CH}_{2} \mathrm{O}$	formaldehyde	15.64628	15.655	0.00056
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	acetaldehyde	28.18711	28.198	0.00039
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	propanal	40.34481	40.345	0.00000
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$	butanal	52.50251	52.491	-0.00022
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$	isobutanal	52.60340	52.604	0.00001
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$	pentanal	64.66021	64.682	0.00034
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$	heptanal	88.97561	88.942	-0.00038
$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}$	octanal	101.13331	101.179	0.00045
$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}$	2-ethylhexanal	101.23420	101.259	0.00025

Table 15.410 .16 . Summary results of ketones.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	acetone	40.68472	40.672	-0.00031
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$	2-butanone	52.84242	52.84	-0.00005
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$	2-pentanone	65.00012	64.997	-0.00005
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$	3-pentanone	65.00012	64.988	-0.00005
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$	3-methyl-2-butanone	65.10101	65.036	-0.00099
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$	2-hexanone	77.15782	77.152	-0.00008
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$	3-hexanone	77.15782	77.138	-0.00025
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$	2-methyl-3-pentanone	77.25871	77.225	-0.00043
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$	3,3-dimethyl-2-butanone	77.29432	77.273	-0.00028
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$	3-heptanone	89.31552	89.287	-0.00032
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$	4-heptanone	89.31552	89.299	-0.00018
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$	2,2-dimethyl-3-pentanone	89.45202	89.458	0.00007

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$	2,4-dimethyl-3-pentanone	89.51730	89.434	-0.00093
$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}$	2,2,4-trimethyl-3-pentanone	101.71061	101.660	-0.00049
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$	2-nonanone	113.63092	113.632	0.00001
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$	5-nonanone	113.63092	113.675	0.00039
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$	2,6-dimethyl-4-heptanone	113.77604	113.807	0.00027

Table 15.410.17. Summary results of carboxylic acids.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{CH}_{2} \mathrm{O}_{2}$	formic acid	21.01945	21.036	0.00079
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	acetic acid	33.55916	33.537	-0.00066
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	propanoic acid	45.71686	45.727	0.00022
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	butanoic acid	57.87456	57.883	0.00015
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	pentanoic acid	70.03226	69.995	-0.00053
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	3-methylbutanoic acid	70.10482	70.183	0.00111
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	2,2-dimethylpropanoic acid	70.31679	69.989	-0.00468
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	hexanoic acid	82.18996	82.149	-0.00050
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	heptanoic acid	94.34766	94.347	0.00000
$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	octanoic acid	106.50536	106.481	-0.00022
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	nonanoic acid	118.66306	118.666	0.00003
$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$	decanoic acid	130.82076	130.795	-0.00020
$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}$	dodecanoic acid	155.13616	155.176	0.00026
$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{2}$	tetradecanoic acid	179.45156	179.605	0.00085
$\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2}$	pentadecanoic acid	191.60926	191.606	-0.00002
$\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2}$	hexadecanoic acid	203.76696	203.948	0.00089
$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$	stearic acid	228.08236	228.298	0.00094
$\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{2}$	eicosanoic acid	252.39776	252.514	0.00046

Table 15.410.18. Summary results of carboxylic acid esters.

F_{6} Narmula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	methyl formate	32.71076	32.762	0.00156
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	methyl acetate	45.24849	45.288	0.00087
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	methyl pentanoate	81.72159	81.726	0.00005
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	methyl hexanoate	93.87929	93.891	0.00012
$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	methyl heptanoate	106.03699	106.079	0.00040
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	methyl octanoate	118.19469	118.217	0.00018
$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$	methyl nonanoate	130.35239	130.373	0.00016
$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{2}$	methyl decanoate	142.51009	142.523	0.00009
$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}$	methyl undecanoate	154.66779	154.677	0.00006
$\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2}$	methyl dodecanoate	166.82549	166.842	0.00010
$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{2}$	methyl tridecanoate	178.98319	179.000	0.00009
$\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2}$	methyl tetradecanoate	191.14089	191.170	0.00015
$\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2}$	methyl pentadecanoate	203.29859	203.356	0.00028
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	propyl formate	57.76366	57.746	-0.00030
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	ethyl acetate	57.63888	57.548	-0.00157
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	isopropyl acetate	69.89747	69.889	-0.00013
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	ethyl propanoate	69.79658	69.700	-0.00139
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	butyl acetate	81.95428	81.873	-0.00099
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	t-butyl acetate	82.23881	82.197	-0.00051
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	methyl 2,2-dimethylpropanoate	82.00612	81.935	-0.00087
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	ethyl pentanoate	94.1198	94.033	-0.00084
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	ethyl 3-methylbutanoate	94.18454	94.252	0.00072
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	ethyl 2,2-dimethylpropanoate	94.39651	94.345	-0.00054
$\mathrm{C}_{8} \mathrm{H}_{16 \mathrm{O}_{2}}$	isobutyl isobutanoate	106.44313	106.363	-0.00075
$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	propyl pentanoate	106.26968	106.267	-0.00003

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	isopropyl pentanoate	106.37057	106.384	0.00013
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	butyl pentanoate	118.42738	118.489	0.00052
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	sec-butyl pentanoate	118.52827	118.624	0.00081
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	isobutyl pentanoate	118.49994	118.576	0.00064

Table 15.410.19. Summary results of amides.

Formula		Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{CH}_{3} \mathrm{NO}$	formamide	23.68712	23.697	0.00041
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}$	acetamide	36.15222	36.103	-0.00135
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$	propanamide	48.30992	48.264	-0.00094
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$	butanamide	60.46762	60.449	-0.00030
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$	2-methylpropanamide	60.51509	60.455	-0.00099
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}$	pentanamide	72.62532	72.481	-0.00200
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}$	2,2-dimethylpropanamide	72.67890	72.718	0.00054
$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}$	hexanamide	84.78302	84.780	-0.00004
$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}$	octanamide	109.09842	109.071	-0.00025

Table 15.410.20. Summary results of N -alkyl and N, N-dialkyl amides.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$	N,N-dimethylformamide	47.679454	47.574	0.00221
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$	N,N-dimethylacetamide	60.14455	59.890	-0.00426
$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}$	N-butylacetamide	84.63649	84.590	-0.00055

Table 15.410.21. Summary results of urea.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$	urea		31.35919	31.393

Table 15.410.22. Summary results of acid halide.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{ClO}$	acetyl chloride	28.02174	27.990	-0.00115

Table 15.410.23. Summary results of acid anhydrides.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$	acetic anhydride	56.94096	56.948	0.00013
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{3}$	propanoic anhydride	81.25636	81.401	0.00177

Table 15.410 .24 . Summary results of nitriles.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$	acetonitrile	25.72060	25.77	0.00174
$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}$	propanenitrile	37.87830	37.94	0.00171
$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}$	butanenitrile	50.03600	50.08	0.00082
$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}$	2-methylpropanenitrile	50.13689	50.18	0.00092
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}$	pentanenitrile	62.19370	62.26	0.00111
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}$	2,2-dimethylpropanenitrile	62.47823	62.40	-0.00132
$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~N}$	heptanenitrile	86.50910	86.59	0.00089
$\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}$	octanenitrile	98.66680	98.73	0.00069
$\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~N}$	decanenitrile	122.98220	123.05	0.00057
$\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}$	tetradecanenitrile	171.61300	171.70	0.00052

Table 15.410 .25 . Summary results of thiols.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
HS	hydrogen sulfide	3.77430	3.653	-0.03320
$\mathrm{H}_{2} \mathrm{~S}$	dihydrogen sulfide	7.56058	7.605	0.00582
$\mathrm{CH}_{4} \mathrm{~S}$	methanethiol	19.60264	19.575	-0.00141
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}$	ethanethiol	31.76034	31.762	0.00005
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~S}$	1-propanethiol	43.91804	43.933	0.00035
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~S}$	2-propanethiol	44.01893	44.020	0.00003
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}$	1-butanethiol	56.07574	56.089	0.00024
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}$	2-butanethiol	56.17663	56.181	0.00009
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}$	2-methyl-1-propanethiol	56.14830	56.186	0.00066
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}$	2-methyl-2-propanethiol	56.36027	56.313	-0.00084
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}$	2-methyl-1-butanethiol	68.30600	68.314	0.00012
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}$	1-pentanethiol	68.23344	68.264	0.00044
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}$	2-methyl-2-butanethiol	68.51797	68.441	-0.00113
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}$	3-methyl-2-butanethiol	68.31552	68.381	0.00095
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}$	2,2-dimethyl-1-propanethiol	68.16441	68.461	0.00433
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~S}$	1-hexanethiol	80.39114	80.416	0.00031
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~S}$	2-methyl-2-pentanethiol	80.67567	80.607	-0.00085
$\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~S}$	1-heptanethiol	92.54884	92.570	0.00023
$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~S}$	1-decanethiol	129.02194	129.048	0.00020

Table 15.410.26. Summary results of sulfides.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}$	dimethyl sulfide	31.65668	31.672	0.00048
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~S}$	ethyl methyl sulfide	43.81438	43.848	0.00078
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}$	diethyl sulfide	55.97208	56.043	0.00126
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}$	methyl propyl sulfide	55.97208	56.029	0.00102
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}$	isopropyl methyl sulfide	56.07297	56.115	0.00075
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}$	butyl methyl sulfide	68.12978	68.185	0.00081
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}$	t-butyl methyl sulfide	68.28245	68.381	0.00144
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}$	ethyl propyl sulfide	68.12978	68.210	0.00117
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~S}$	ethyl isopropyl sulfide	68.23067	68.350	0.00174
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~S}$	diisopropyl sulfide	80.48926	80.542	0.00065
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~S}$	butyl ethyl sulfide	80.28748	80.395	0.00133
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~S}$	methyl pentyl sulfide	80.28748	80.332	0.00056
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~S}$	dibutyl sulfide	104.60288	104.701	0.00094
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~S}$	di-sec-butyl sulfide	104.80466	104.701	-0.00099
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~S}$	di-t-butyl sulfide	104.90822	104.920	0.00011
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~S}$	diisobutyl sulfide	104.74800	104.834	0.00082
$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~S}$	dipentyl sulfide	128.91828	128.979	0.00047
$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~S}$	diisopentyl sulfide	129.06340	129.151	0.00068

Table 15.410.27. Summary results of disulfides.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}_{2}$	dimethyl disulfide	34.48127	34.413	-0.00199
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}_{2}$	diethyl disulfide	58.79667	58.873	0.00129
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~S}_{2}$	dipropyl disulfide	83.11207	83.169	0.00068
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~S}_{2}$	di-t-butyl disulfide	107.99653	107.919	-0.00072

Table 15.410.28. Summary results of sulfoxides.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}$	dimethyl sulfoxide	35.52450	35.435	-0.00253
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{SO}$	diethyl sulfoxide	59.83990	59.891	0.00085
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{SO}$	dipropyl sulfoxide	84.15530	84.294	0.00165

Table 15.410 .29. Summary results of sulfones.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}_{2}$	dimethyl sulfone	40.27588	40.316	0.00100

Table 15.410.30. Summary results of sulfites.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}_{3}$	dimethyl sulfite	43.95058	44.042	0.00207
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{SO}_{3}$	diethyl sulfite	68.54939	68.648	0.00143
$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{SO}_{3}$	dibutyl sulfite	117.18019	117.191	0.00009

Table 15.410.31. Summary results of sulfates.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}_{4}$	dimethyl sulfate	48.70196	48.734	0.00067
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{SO}_{4}$	diethyl sulfate	73.30077	73.346	0.00061
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{SO}_{4}$	dipropyl sulfate	97.61617	97.609	-0.00008

Table 15.410 .32 . Summary results of nitro alkanes.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{CH}_{3} \mathrm{NO}_{2}$	nitromethane	25.14934	25.107	-0.00168
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}$	nitroethane	37.30704	37.292	-0.00040
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}$	1-nitropropane	49.46474	49.451	-0.00028
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}$	2-nitropropane	49.56563	49.602	0.00074
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{2}$	1-nitrobutane	61.62244	61.601	-0.00036
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{2}$	2-nitroisobutane	61.90697	61.945	0.00061
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2}$	1-nitropentane	73.78014	73.759	-0.00028

Table 15.410.33. Summary results of nitrite.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{CH}_{3} \mathrm{NO}_{2}$	methyl nitrite	24.92328	24.955	0.00126

Table 15.410.34. Summary results of nitrate.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{CH}_{3} \mathrm{NO}_{3}$	methyl nitrate	28.18536	28.117	-0.00244
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{3}$	ethyl nitrate	40.34306	40.396	0.00131
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{3}$	propyl nitrate	52.50076	52.550	0.00093
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{3}$	isopropyl nitrate	52.60165	52.725	0.00233

Table 15.410.35. Summary results of conjugated alkenes.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{5} \mathrm{H}_{8}$	cyclopentene	54.83565	54.86117	0.00047
$\mathrm{C}_{4} \mathrm{H}_{6}$	1,3 butadiene	42.09159	42.12705	0.00084
$\mathrm{C}_{5} \mathrm{H}_{8}$	1,3 pentadiene	54.40776	54.42484	0.00031
$\mathrm{C}_{5} \mathrm{H}_{8}$	1,4 pentadiene	54.03745	54.11806	0.00149
$\mathrm{C}_{5} \mathrm{H}_{6}$	1,3 cyclopentadiene	49.27432	49.30294	0.00058

Table 15.410 .36 . Summary results of aromatics and heterocyclic aromatics.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{6} \mathrm{H}_{6}$	benzene	57.26008	57.26340	0.00006
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	fluorobenzene	57.93510	57.887	-0.00083
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	chlorobenzene	56.55263	56.581	0.00051
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$	m -dichlorobenzene	55.84518	55.852	0.00012
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$	1,2,3-trichlorobenzene	55.13773	55.077	-0.00111
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$	1,3,5-trichlorobenzene	55.29542	55.255	-0.00073
$\mathrm{C}_{6} \mathrm{Cl}_{6}$	hexachlorobenzene	52.57130	52.477	-0.00179
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$	bromobenzene	56.17932	$56.391^{\text {a }}$	0.00376
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$	iodobenzene	55.25993	55.261	0.00001
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	nitrobenzene	65.18754	65.217	0.00046
$\mathrm{C}_{7} \mathrm{H}_{8}$	toluene	69.48425	69.546	0.00088
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$	benzoic acid	73.76938	73.762	-0.00009
$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClO}_{2}$	2-chlorobenzoic acid	73.06193	73.082	0.00027
$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClO}_{2}$	3-chlorobenzoic acid	73.26820	73.261	-0.00010
$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$	aniline	64.43373	64.374	-0.00093
$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$	2-methylaniline	76.62345	76.643	-0.00025
$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$	3-methylaniline	76.62345	76.661	0.00050
$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$	4-methylaniline	76.62345	76.654	0.00040
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$	2-nitroaniline	72.47476	72.424	-0.00070
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$	3-nitroaniline	72.47476	72.481	-0.00009
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$	4-nitroaniline	72.47476	72.476	-0.00002
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$	aniline-2-carboxylic acid	80.90857	80.941	0.00041
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$	aniline-3-carboxylic acid	80.90857	80.813	-0.00118
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$	aniline-4-carboxylic acid	80.90857	80.949	0.00050
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$	phenol	61.75817	61.704	-0.00087
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O} 5$	2,4-dinitrophenol	77.61308	77.642	0.00037
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}$	anisole	73.39006	73.355	-0.00047
$\mathrm{C}_{10} \mathrm{H}_{8}$	naphthalene	90.74658	90.79143	0.00049
$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}$	pyrrole	44.81090	44.785	-0.00057
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}$	furan	41.67782	41.692	0.00033
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}$	thiophene	40.42501	40.430	0.00013
$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}$	imidazole	39.76343	39.74106	-0.00056
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	pyridine	51.91802	51.87927	-0.00075
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$	pyrimidine	46.57597	46.51794	-0.00125
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$	pyrazine	46.57597	46.51380	0.00095
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$	quinoline	85.40453	85.48607	0.00178
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$	isoquinoline	85.40453	85.44358	0.00046
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}$	indole	78.52215	78.514	-0.00010

${ }^{\text {a }}$ Liquid.

Table 15.410.37. Summary results of DNA bases.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5}$	adenine	70.85416	70.79811	-0.00079
$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$	thymine	69.08792	69.06438	-0.00034
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}$	guanine	76.88212	77.41849	-0.00055
$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}$	cytosine	59.53378	60.58056	0.01728

Table 15.410.38. Summary results of alkyl phosphines.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{P}$	trimethylphosphine	45.80930	46.87333	0.02270
$\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{P}$	triethylphosphine	82.28240	82.24869	-0.00041
$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}$	triphenylphosphine	168.40033	167.46591	-0.00558

Table 15.410.39. Summary results of alkyl phosphites.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{P}$	trimethyl phosphite	61.06764	60.94329	-0.00204
$\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}$	triethyl phosphite	98.12406	97.97947	-0.00148
$\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{P}$	tri-isopropyl phosphite	134.89983	135.00698	0.00079

Table 15.410.40. Summary results of alkyl phosphine oxides.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{PO}$	trimethylphosphine oxide	53.00430	52.91192	-0.00175

Table 15.410.41. Summary results of alkyl phosphates.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{P}$	triethyl phosphate	105.31906	104.40400	-0.00876
$\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}$	tri-n-propyl phosphate	141.79216	140.86778	-0.00656
$\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}$	tri-isopropyl phosphate	142.09483	141.42283	-0.00475
$\mathrm{C}_{9} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{P}$	tri-n-butyl phosphate	178.26526	178.07742	-0.00105

Table 15.410.42. Summary results of monosaccharides of DNA and RNA.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{4}$	2-deoxy-D-ribose	77.25842		
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$	D-ribose	81.51034	83.498a	0.02381
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{4}$	alpha-2-deoxy-D-ribose	77.46684		
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$	alpha-D-ribose	82.31088		

${ }^{\text {a }}$ Crystal

Table 15.410 .43 . Summary results of amino acids.

Formula	Name	Calculated Total Bond Energy (eV)	Experimental Total Bond Energy (eV)	Relative Error
$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{4}$	aspartic acid	68.98109	$70.843^{\text {a }}$	0.02628
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{4}$	glutamic acid	81.13879	$83.167^{\text {a }}$	0.02438
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{4} \mathrm{~S}$	cysteine	55.02457	$56.571^{\text {a }}$	0.02733
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$	lysine	95.77799	$98.194^{\text {a }}$	0.02461
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$	arginine	105.07007	$107.420^{\text {a }}$	0.02188
$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$	histidine	88.10232	89.599a	0.01671
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$	asparagine	71.57414	$73.513^{\text {a }}$	0.02637
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$	glutamine	83.73184	$85.843^{\text {a }}$	0.02459
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{3}$	threonine	68.95678	$71.058^{\text {a }}$	0.02956
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$	tyrosine	109.40427	$111.450^{\text {a }}$	0.01835
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{3}$	serine	56.66986	58.339a	0.02861
$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$	tryptophan	126.74291	$128.084^{\text {a }}$	0.01047
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$	phenylalanine	104.90618	105.009	0.00098
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}$	proline	71.76826	71.332	-0.00611
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}$	methionine	79.23631	79.214	-0.00028
$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{2}$	leucine	89.12115	89.047	-0.00083
$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{2}$	isoleucine	89.02978	90.612	0.01746
$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{2}$	valine	76.87208	76.772	-0.00130
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}$	alanine	52.57549	52.991	0.00785
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}$	glycine	40.28857	40.280	-0.00021

${ }^{a}$ Crystal

REFERENCES

1. D. R. Lide, CRC Handbook of Chemistry and Physics, 86th Edition, CRC Press, Taylor \& Francis, Boca Raton, (2005-6), pp. 9-19 to 9-45.
2. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold Company, New York, New York, (1945), p. 344.
3. D. R. Lide, CRC Handbook of Chemistry and Physics, 86th Edition, CRC Press, Taylor \& Francis, Boca Raton, (2005-6), pp. 9-63; 5-18 to 5-42.
4. R. J. Fessenden, J. S. Fessenden, Organic Chemistry, Willard Grant Press. Boston, Massachusetts, (1979), p. 320.
5. cyclohexane at http://webbook.nist.gov/.
6. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold Company, New York, New York, (1945), p. 326.
7. b1 2-methyl-1-propene at http://webbook.nist.gov/.
8. al 2-methyl-1-propene at http://webbook.nist.gov/.
9. 2-butyne at http://webbook.nist.gov/.
10. trifluoromethane at http://webbook.nist.gov/.
11. fluoroethane at http://webbook.nist.gov/.
12. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, Krieger Publishing Company, Malabar, FL, (1991), p. 195.
13. chloromethane at http://webbook.nist.gov/.
14. methyl bromide at http://webbook.nist.gov/.
15. tetrabromomethane at http://webbook.nist.gov/.
16. methyl iodide at http://webbook.nist.gov/.
17. K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York, (1979).
18. J. Crovisier, Molecular Database-Constants for molecules of astrophysical interest in the gas phase: photodissociation, microwave and infrared spectra, Ver. 4.2, Observatoire de Paris, Section de Meudon, Meudon, France, May 2002, pp. 34-37, available at http://wwwusr.obspm.fr/~crovisie/.
19. methanol at http://webbook.nist.gov/.
20. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 46.
21. dimethyl ether at http://webbook.nist.gov/.
22. T. Amano, P. F. Bernath, R. W. McKellar, "Direct observation of the v_{1} and v_{3} fundamental bands of NH_{2} by difference frequency laser spectroscopy," J. Mol. Spectrosc., Vol. 94, (1982), pp. 100-113.
23. methylamine at http://webbook.nist.gov/.
24. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Edition, CRC Press, Boca Raton, Florida, (1998-9), pp. 9-80 to 9-86.
25. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 482.
26. acetaldehyde at http://webbook.nist.gov/.
27. acetone at http://webbook.nist.gov/.
28. 2-butanone at http://webbook.nist.gov/.
29. acetic acid at http://webbook.nist.gov/.
30. formic acid at http://webbook.nist.gov/.
31. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 138
32. methyl formate at http://webbook.nist.gov/.
33. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 144.
34. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 147.
35. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 143.
36. H. J. Vledder, F. C. Mijlhoff, J. C. Leyte, C. Romers, "An electron diffraction investigation of the molecular structure of gaseous acetic anhydride," Journal of Molecular Structure, Vol. 7, Issues 3-4, (1971), pp. 421-429.
37. acetonitrile at http://webbook.nist.gov/.
38. D. R. Lide, CRC Handbook of Chemistry and Physics, 86th Edition, CRC Press, Taylor \& Francis, Boca Raton, (2005-6), pp. 10-202 to 10-204.
39. D. R. Lide, CRC Handbook of Chemistry and Physics, 86th Edition, CRC Press, Taylor \& Francis, Boca Raton, (2005-6), p. 9-79.
40. D. R. Lide, CRC Handbook of Chemistry and Physics, 86th Edition, CRC Press, Taylor \& Francis, Boca Raton, (2005-6), pp. 9-82 to 9-86.
41. thiirane at http://webbook.nist.gov/.
42. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 242.
43. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 241.
44. R. M. Ibberson, M. T. F. Telling, S. Parsons, "Structural determination and phase transition behavior of dimethyl sulfate," Acta. Cryst., Vol. B62, (2006), pp. 280-286.
45. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 187.
46. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 480.
47. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 187.
48. 1,3-butadiene at http://webbook.nist.gov/.
49. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold Company, New York, New York, (1945), pp. 362-369.
50. W. I. F. David, R. M. Ibberson, G. A. Jeffrey, J. R. Ruble, "The structure analysis of deuterated benzene and deuterated nitromethane by pulsed-neutron powder diffraction: a comparison with single crystal neutron analysis," Physica B (1992), $180 \& 181$, pp. 597-600.
51. G. A. Jeffrey, J. R. Ruble, R. K. McMullan, J. A. Pople, "The crystal structure of deuterated benzene," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 414, No. 1846, (Nov. 9, 1987), pp. 47-57.
52. H. B. Burgi, S. C. Capelli, "Getting more out of crystal-structure analyses," Helvetica Chimica Acta, Vol. 86, (2003), pp. 1625-1640.
53. L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, "The chemical structure of a molecule resolved by atomic force microscopy", Science, Vol. 325, (2009), pp. 1110-1114.
54. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 481.
55. E. Csakvari, I. Hargittai, "Molecular structure of 2,6-difluorobenzamine and 2-fluorobenzamine from gas-phase electron diffraction," J. Phys. Chem., Vol. 96, (1992), pp. 5837-5842.
56. E. Rosenthal, B. P. Dailey, "Microwave spectrum of bromobenzene, its structure, quadrupole coupling constants, and carbon-bromine bond," Journal of Chemical Physics, Vol. 43, No. 6, (1965), pp. 2093-2110.
57. H. J. M. Bowen, Tables of Interatomic Distances and Configuration in Molecules and Ions, L. Sutton, Editor, Special Publication No. 11, The Chemical Society, Burlington House, London (1958).
58. R. Boese, D. Blaser, M. Nussbaumer, T. M. Krygowski, "Low temperature crystal and molecular structure of nitrobenzene," Structural Chemistry, Vol. 3, No. 5, (1992), pp. 363-368.
59. G. A. Sim, J. M. Robertson, T. H. Goodwin, "The crystal and molecular structure of benzoic acid," Acta Cryst., Vol. 8, (1955), pp.157-164.
60. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 301.
61. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 303.
62. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 207.
63. S. Martinez-Carrera, "The crystal structure of Imidazole at $-150^{\circ} \mathrm{C}$," Acta. Cryst., Vol. 20, (1966), pp. 783-789.
64. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), pp. 296-297.
65. S. Arnott, S. D. Dover, A. J. Wonacott, "Least-squares refinement of the crystal and molecular structures of DNA and RNA from X-ray data and standard bond lengths and angles," Acta. Cryst., Vol. B-25, (1969), pp. 2192-2206.
66. H. Sternglanz, C. E. Bugg, "Conformations of N^{6}-monosubstituted adenine derivatives crystal structure of N^{6} methyladenine," Biochimica et Biophysica Acta, Vol. 308, (1973), pp. 1-8.
67. B. Chase, N. Herron, E. Holler, "Vibrational spectroscopy of C_{60} and C_{70} temperature-dependent studies," J. Phys. Chem., Vol. 96, (1992), pp. 4262-4266.
68. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 272.
69. J. D. Cox, G. Pilcher, Thermochemistry of Organometallic Compounds, Academic Press, New York, (1970), pp. 478-485.
70. M. G. Newton, B. S. Campbell, "Preparation and crystal structures of trans-methyl meso-hydrobenzoin phosphite and phosphate," JACS, Vol. 96, No. 25, (1974), pp. 7790-7797.
71. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 271.
72. J. C. J. Bart, G. Favini, R. Todeschini, "Conformational analysis of trimethylphoshite and its metal complexes," Phosphorous and Sulfur, Gordon and Breach Scientific Publishers, Inc. USA, Vol. 17, (1983), pp. 205-220.
73. N. J. Goodwin, W. Henderson, B. K. Nicholson, "Hydrogen bonding in hydroxymethylphosphine chalcogenides," Inorganica Chimica Acta, Vol. 335, (2002), pp. 113-118.
74. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, A. N. Syverud, JANAF Thermochemical Tables, Third Edition, Part II, Cr-Zr, J. Phys. Chem. Ref. Data, Vol. 14, Suppl. 1, (1985), p. 1728.
75. D. Lin-Vien. N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules, Academic Press, Inc., Harcourt Brace Jovanovich, Boston, (1991), p. 269.

Dr. Mills has replaced the field generally known as Quantum Mechanics which postulates that classical physical laws do not apply at the atomic scale by deriving a new atomic theory of from those first principles, which unifies Maxwell's Equations, Newton's Laws, and General and Special Relativity. The central feature is that physical laws hold over all scales, from the scale of subatomic particles to that of the cosmos.

Quantum Mechanics has remained mysterious to all who have encountered it. Schrödinger postulated a boundary condition $\Psi \rightarrow 0$ as $r \rightarrow \infty$ of a wavelike positional probability for a singularity that is everywhere at once until measurement. The result was a purely algorithmic mathematical model of the hydrogen atom. In contrast, Mills solved the exact structure of matter and energy and related phenomena from known classical physics, (e.g. Maxwell's Equations wherein under special conditions, an extended distribution of charge may accelerate without radiating energy). This leads to a physical model of subatomic particles, atoms, and molecules. The closed-form solutions containing fundamental constants only agree with experimental observations demonstrating that the fundamental quantum mechanical postulate, "classical physical laws do not apply to the atomic scale", was erroneous.

From two basic equations, the key building blocks of organic chemistry have been solved, allowing the true physical structure and parameters of an infinite number of organic molecules up to infinite length and complexity to be obtained. These equations were also applied to bulk forms of matter, such as the allotropes of carbon, the solid bond of silicon and the semiconductor bond; as well as fundamental forms of matter such as the ionic bond and the metallic bond; and major fields of chemistry such as that of silicon, tin, aluminum, boron, and coordinate compounds.

Further, the Schwarzschild Metric is derived by applying Maxwell's Equations to electromagnetic and gravitational fields at particle production. This

modifies General Relativity to include the conservation of spacetime and gives the origin of gravity, the families and masses of fundamental particles, the acceleration of the expansion of the universe (predicted by Dr. Mills in 1995 and since confirmed experimentally), and overturns the Big Bang model of the origin of the universe.
'Mills' theory explains the answers to some very old scientific questions, such as 'what happens to a photon upon absorption' and some very modern ones, such as 'what is dark matter.' ...Lastly, Mills has made an extremely important contribution to the philosophy of science. He has reestablished cause and effect as the basic principle of science." - Dr. John J. Farrell, former Chair of the Dept. of Chemistry, Franklin \& Marshall College
"Mills' ingenious way of thinking creates in different physical areas astonishing results with fascinating mathematical simplicity and harmony. And his theory is strongly supported by the fact that nearly all these results are in comfortable accordance with experimental findings, sometimes with breathtaking accuracy." - Dr Günther Landvogt, Retired Scientist, Philips Research Lab
"Dr. Mills has apparently completed Einstein's quest for a unified field theory... without largesse from the US Government, and without the benediction of the US scientific priesthood." - Shelby T. Brewer, former Assistant Secretary of Energy, former CEO of ABB Combustion Engineering, MS/Ph.D. MIT - Nuclear Engineering.
"Mills proposes such a basic approach to quantum theory that it deserves considerably more attention from the general scientific community than it has received so far. The new theory appears to be a realization of Einstein's vision and a fitting closure of the "Quantum Century" that started in 1900..." - Dr. Reinhart Engelmann, Professor of Electrical Engineering, Oregon Graduate Institute of Science and Technology

Dr. Randell Mills holds a Doctor of Medicine degree from Harvard, a BA degree in Chemistry from Franklin and Marshall College, and studied Electrical Engineering at MIT. He is President, Chairman and CEO of Brilliant Light Power, Inc.

[^0]: ${ }^{1}$ The experimental total energy of the hydrogen molecule is given by adding the first (15.42593 eV) [5] and second (16.2494 eV) ionization energies where the second ionization energy is given by the addition of the ionization energy of the hydrogen atom (13.59844 eV) [6] and the bond energy of H_{2}^{+} (2.651 eV) [7].
 ${ }^{2}$ The experimental total energy of the deuterium molecule is given by adding the first (15.466 eV) [9] and second (16.294 eV) ionization energies where the second ionization energy is given by the addition of the ionization energy of the deuterium atom (13.603 eV) [10] and the bond energy of D_{2}^{+}(2.692 eV) [9].

[^1]: ${ }^{3}$ The hybridization energy is the difference between $E(C, 2 p$ shell $)$ given by Eq. (13.421) and $E\left(C, 2 s p^{3}\right)$ given by Eq. (13.428). Since this term adds to $E(C, 2 p$ shell $)$ to give the total energy from which $E_{T+s c c}\left({ }^{12} \mathrm{CH}\right)$ is subtracted to give $E_{D}\left({ }^{12} \mathrm{CH}\right)$, it is more convenient to simply use $E\left(C, 2 s p^{3}\right)$ directly in Eq. (13.487).

[^2]: Table 15.25. The total bond energies of alkynes calculated using the functional group composition and the energies of Table 15.24 compared to the experimental values [3].

 | $\mathrm{C}_{3} \mathrm{H}_{4}$ | Propyne |
 | :--- | :--- |
 | $\mathrm{C}_{4} \mathrm{H}_{6}$ | 1-Butyne |
 | $\mathrm{C}_{4} \mathrm{H}_{6}$ | 2-Butyne |
 | $\mathrm{C}_{9} \mathrm{H}_{16}$ | 1-Nonyne |

[^3]: ${ }^{\mathrm{a}} E_{T}\left(H-S, H_{2}\right)=E_{T}\left(H_{2} S\right)-E_{T}(H S)=62.19789 \mathrm{eV}-(-31.09296 \mathrm{eV})$.

[^4]: Table 15.343. The total gaseous bond energies of guanine calculated using the functional group composition and the energies of Table 15.342 compared to the experimental values [3].

[^5]:

