
Part B



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THE GRAND UNIFIED THEORY  

OF CLASSICAL PHYSICS 

 

 

Volume 2B of 3 

 

 

 

 

 

 

 





 

THE GRAND UNIFIED THEORY  
OF CLASSICAL PHYSICS 

 

BY 

 

Dr. Randell L. Mills 

 

 

 

 

 

 

 

 

 

 

 

 

 
April 2023 Edition 

Volume 2B of 3 
 

Copyright © 2023 by Dr. Randell L. Mills 
 
 

All rights reserved.  No part of this work covered by copyright hereon may be reproduced or used in any form, or 
by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or information 
storage and retrieval systems-without written permission of Dr. Randell L. Mills. Manufactured in the United 
States of America. 

 
 
 
 
 

ISBN 979-8-218-17988-5 
Library of Congress Control Number 2023905641 



 

 



 
 

i

TABLE OF CONTENTS 
 
 

VOLUME 2 MOLECULAR PHYSICS Part B 
16. Applications: Pharmaceuticals, Specialty Molecular Functional Groups and Molecules,  
 Dipole Moments, and Interactions ..................................................................................................................................  1089 
  16.1 General Considerations of the Bonding in Pharmaceutical and Specialty Molecules ....................................  1089 
  16.2 Aspirin (Acetylsalicylic Acid) ........................................................................................................................  1089 
  16.3 Cyclotrimethylene-trinitramine (C

3
H

6
N

6
O

6
) .................................................................................................  1094 

  16.4 Sodium Hydride Molecule ( NaH ) .................................................................................................................  1099 
  16.5 Bond and Dipole Moments .............................................................................................................................  1103 
  16.6 Nature of the Dipole Bond: Dipole-Dipole, Hydrogen, and van der Waals Bonding ....................................  1108 
    16.6.1  Condensed Matter Physics ............................................................................................................  1108 
    16.6.2  Geometrical Parameters and Energies of the Hydrogen Bond of  
       H

2
O  in the Ice Phase ....................................................................................................................  1109 

    16.6.3  Geometrical Parameters and Energies of the Hydrogen Bond of 
        H

2
O  in the Vapor Phase ..............................................................................................................  1117 

    16.6.4  Geometrical Parameters and Energies of the Hydrogen Bond of 
        H

2
O  and NH

3
 .............................................................................................................................  1121 

    16.6.5  Geometrical Parameters Due to the Interplane van der Waals 
        Cohesive Energy of Graphite .......................................................................................................  1126 

16.6.6   Geometrical Parameters and Energies Geometrical Parameters Due to the  
   Interatomic van der Waals Cohesive Energy of Liquid Helium .................................................  1130 
16.6.7 Geometrical Parameters and Energies Geometrical Parameters Due to the  

       Interatomic van der Waals Cohesive Energy of Solid Neon .......................................................  1134 
16.6.8 Geometrical Parameters and Energies Geometrical Parameters Due to the  
   Interatomic van der Waals Cohesive Energy of Solid Argon .....................................................  1138 
16.6.9 Geometrical Parameters and Energies Geometrical Parameters Due to the  
   Interatomic van der Waals Cohesive Energy of Solid Krypton ..................................................  1142 
16.6.10 Geometrical Parameters and Energies Geometrical Parameters Due to the  
   Interatomic van der Waals Cohesive Energy of Solid Xenon .....................................................  1146 

  16.7 Geometrical Parameters and Energies due to the Intermolecular van der Waals Cohesive Energies  
    of H2 Dimer, Solid H2, H2(1/p) Dimer, and Solid H2(1/p) ..............................................................................  1151 
    16.7.1  Parameters and Energies Due to the Intermolecular van der Waals  
       Cohesive Energies of H2 Dimer ....................................................................................................  1152 
    16.7.2  Parameters and Energies Due to the Intermolecular van der Waals  
       Cohesive Energies of Solid H2 ......................................................................................................  1154 
    16.7.3  Parameters and Energies Due to the Intermolecular van der Waals  
       Cohesive Energies of H2(1/4) Dimer ............................................................................................  1157 
    16.7.4  Parameters and Energies Due to the Intermolecular van der Waals  
       Cohesive Energies of Solid H2(1/4) ..............................................................................................  1159
  16.7.5  Parameters and Magnetic Energies Due to the Spin Magnetic Moment of H2(1/4) ...................................  1162 
    16.7.6  Rotational Energies Due to the Spin Magnetic Moment of H2(1/4) .............................................  1170
    16.7.7  End Over End Rotation of Hydrogen-Type Molecular Dimers ....................................................  1174 
  16.8 Reaction Kinetics and Thermodynamics ........................................................................................................  1175 
  16.9 Transition State Theory ...................................................................................................................................  1176 
    16.9.1  SN2 Reaction of Cl  with CH 3Cl  ...............................................................................................  1177 
    16.9.2  Transition State .............................................................................................................................  1177 
    16.9.3  Negatively-charged Molecular Ion Complex  ...........................................................................  1181 
 References ...................................................................................................................................................................  1185 
17. Nature of the Solid Molecular Bond of the Three Allotropes of Carbon .........................................................................  1191 
   17.1 General Considerations of the Solid Molecular Bond ....................................................................................  1191 
   17.2 Diamond ..........................................................................................................................................................  1191 
   17.3 Fullerene (C60) ................................................................................................................................................  1197 
   17.3.1 Fullerene Dihedral Angles ............................................................................................................  1202 
   17.4 Graphene and Graphite ...................................................................................................................................   1204 
  References ...................................................................................................................................................................  1209 



 
 
ii 

18. Nature of the Ionic Bond of Alkali Hydrides and Halides ................................................................................................  1211 
   18.1 Alkali-Hydride Crystal Structures ..................................................................................................................  1211 
    18.1.1 Lithium Hydride............................................................................................................................  1212 
    18.1.2 Sodium Hydride ............................................................................................................................  1212 
    18.1.3 Potassium Hydride ........................................................................................................................  1214 
    18.1.4 Rubidium and Cesium Hydride ....................................................................................................  1214 
    18.1.5 Potassium Hydrino Hydride ..........................................................................................................  1215 
  18.2 Alkali-Halide Crystal Structures .....................................................................................................................  1215 
  18.3 Alkali-Halide Lattice Parameters and Energies ..............................................................................................  1215 
  18.4 Radius and Ionization of the Outer Electron of the Fluoride Ion ...................................................................  1216 
 18.5 Radius and Ionization of the Outer Electron of the Chloride Ion ...................................................................  1218 
 18.6 Change in the Radius and Ionization Energy of the Fluoride Ion Due to the Ion Field .................................  1219 
 18.7 Change in the Radius and Ionization Energy of the Chloride Ion Due to the Ion Field .................................  1220 
  18.7.1 Lithium Fluoride ...........................................................................................................................  1221 
  18.7.2 Sodium Fluoride............................................................................................................................  1221 
  18.7.3 Potassium Fluoride........................................................................................................................  1222 
  18.7.4 Rubidium Fluoride ........................................................................................................................  1223 
  18.7.5 Cesium Fluoride ............................................................................................................................  1223 
  18.7.6 Lithium Chloride ...........................................................................................................................  1224 
  18.7.7 Sodium Chloride ...........................................................................................................................  1225 
  18.7.8 Potassium Chloride .......................................................................................................................  1225 
  18.7.9 Rubidium Chloride ........................................................................................................................  1225 
  18.7.10 Cesium Chloride ...........................................................................................................................  1226 
  References ...................................................................................................................................................................  1226 
19. Nature of the Metallic Bond of Alkali Metals ..................................................................................................................  1227 
   19.1 Generalization of the Nature of the Metallic Bond .........................................................................................  1227 
   19.2 Alkali-Metal Crystal Structures ......................................................................................................................  1232 
   19.2.1 Lithium Metal ...............................................................................................................................  1235 
   19.2.2 Sodium Metal ................................................................................................................................  1239 
   19.2.3 Potassium Metal ............................................................................................................................  1240 
   19.2.4 Rubidium and Cesium Metals .......................................................................................................  1241 
  19.3 Physical Implications of the Nature of Free Electrons in Metals ...................................................................     1242 
  References ……………...............................................................................................................................................       1244 
20. Silicon Molecular Functional Groups and Molecules ......................................................................................................  1245 
   20.1 General Considerations of the Silicon Molecular Bond .................................................................................  1245 
   20.2 Silanes .............................................................................................................................................................  1245 
   20.3 Alkyl Silanes and Disilanes ............................................................................................................................  1255 
   20.4 Silicon Oxides, Silicic Acids, Silanols, Siloxanes, and Disiloxanes ..............................................................  1262 
   20.5 Summary Tables of Silicon Molecules ...........................................................................................................  1271 
  References ...................................................................................................................................................................  1272 
21. Nature of the Solid Semiconductor Bond of Silicon ........................................................................................................  1273 
   21.1 Generalization of the Nature of the Semiconductor Bond ..............................................................................  1273 
   21.2 Nature of the Insulator-Type Semiconductor Bond ........................................................................................  1274 
   21.3 Nature of the Conductor-Type Semiconductor Bond .....................................................................................  1279 
  References ...................................................................................................................................................................  1280 
22. Boron Molecular Functional Groups and Molecules ........................................................................................................  1281 
   22.1 General Considerations of the Boron Molecular Bond ...................................................................................  1281 
   22.2 Boranes ...........................................................................................................................................................  1281 
   22.2.1 Bridging Bonds of Boranes ...........................................................................................................  1285 
   22.3 Alkyl Boranes .................................................................................................................................................  1290 
   22.4 Alkoxy Boranes and Alkyl Borinic Acids ......................................................................................................  1299 
   22.5 Tertiary and Quarternary Aminoboranes and Borane Amines .......................................................................  1308 
   22.6 Halido Boranes................................................................................................................................................  1318 
   22.7 Summary Tables of Boron Molecules ............................................................................................................  1329 
  References ...................................................................................................................................................................  1332 
23. Organometallic and Coordinate Functional Groups and Molecules .................................................................................  1333 
  23.1 General Considerations of the Organometallic and Coordinate Bond ............................................................  1333 
  23.2 Alkyl Aluminum Hydrides .............................................................................................................................  1333 
    23.2.1 Bridging Bonds of Organoaluminum Hydrides ............................................................................  1336 
  23.3 Transition Metal Organometallic and Coordinate Bond .................................................................................  1343 
  23.4 Scandium Functional Groups and Molecules .................................................................................................  1345 



 
 

iii

  23.5 Titanium Functional Groups and Molecules ...................................................................................................  1350 
  23.6 Vanadium Functional Groups and Molecules .................................................................................................  1357 
  23.7 Chromium Functional Groups and Molecules ................................................................................................  1363 
  23.8 Manganese Functional Groups and Molecules ...............................................................................................  1369 
  23.9 Iron Functional Groups and Molecules ...........................................................................................................  1374 
  23.10 Cobalt Functional Groups and Molecules .......................................................................................................  1379 
  23.11 Nickel Functional Groups and Molecules .......................................................................................................  1385 
  23.12 Copper Functional Groups and Molecules .....................................................................................................  1391 
  23.13 Zinc Functional Groups and Molecules ..........................................................................................................  1396 
  23.14 Germanium Organometallic Functional Groups and Molecules ....................................................................  1401 
  23.15 Tin Functional Groups and Molecules ............................................................................................................  1407 
  23.16 Lead Organometallic Functional Groups and Molecules ...............................................................................  1421 
  23.17 Alkyl Arsines ..................................................................................................................................................  1428 
  23.18 Alkyl Stibines..................................................................................................................................................  1434 
  23.19 Alkyl Bismuths ...............................................................................................................................................  1440 
  23.20 Summary Tables of Organometallic and Coordinate Molecules ....................................................................  1447 
  References ...................................................................................................................................................................  1451 
 



 

 

1089

 
Chapter 16 
  
APPLICATIONS: PHARMACEUTICALS, SPECIALTY 
MOLECULAR FUNCTIONAL GROUPS AND MOLECULES, 
DIPOLE MOMENTS AND INTERACTIONS 
  
 
 
 
 
GENERAL CONSIDERATIONS OF THE BONDING IN PHARMACEUTICALS  
AND SPECIALTY MOLECULES 
Pharmaceutical and specialty molecules comprising an arbitrary number of atoms can be solved using similar principles and 
procedures as those used to solve general organic molecules of arbitrary length and complexity.  Pharmaceuticals and specialty 
molecules can be considered to be comprised of functional groups such as those of alkanes, branched alkanes, alkenes, branched 
alkenes, alkynes, alkyl fluorides, alkyl chlorides, alkyl bromides, alkyl iodides, alkene halides, primary alcohols, secondary 
alcohols, tertiary alcohols, ethers, primary amines, secondary amines, tertiary amines, aldehydes, ketones, carboxylic acids, 
carboxylic esters, amides, N-alkyl amides, N,N-dialkyl amides, ureas, acid halides, acid anhydrides, nitriles, thiols, sulfides, 
disulfides, sulfoxides, sulfones, sulfites, sulfates, nitro alkanes, nitrites, nitrates, conjugated polyenes, aromatics, heterocyclic 
aromatics, substituted aromatics, and others given in the Organic Molecular Functional Groups and Molecules section.  The 
solutions of the functional groups can be conveniently obtained by using generalized forms of the geometrical and energy 
equations.  The functional-group solutions can be made into a linear superposition and sum, respectively, to give the solution of 
any pharmaceutical or specialty molecule comprising these groups.  The total bond energies of exemplary pharmaceutical or 
specialty molecules such as aspirin, RDX, and NaH are calculated using the functional group composition and the corresponding 
energies derived in the previous sections as well as those of any new component functional groups derived herein. 

 
ASPIRIN (ACETYLSALICYLIC ACID) 
Aspirin comprises salicylic acid (ortho-hydroxybenzoic acid) with the H  of the phenolic OH  group replaced by an acetyl 
group.  Thus, aspirin comprises the benzoic acid ( )C C O OH   moiety that comprises C O  and OH  functional groups that 
are the same as those of carboxylic acids given in the corresponding section.  The single bond of aryl carbon to the carbonyl 

carbon atom, ( )C C O , is also a functional group given in the Benzoic Acid Compounds section.  The aromatic 
3e

C C  and 
C H  functional groups are equivalent to those of benzene given in the Aromatic and Heterocyclic Compounds section.  The 
phenolic ester C O  functional group is equivalent to that given in the Phenol section.  The acetyl 3( )O C O CH   moiety 

comprises (i) C O  and C C  functional groups that are the same as those of carboxylic acids and esters given in the 
corresponding sections, (ii) a 3CH  group that is equivalent to that of alkanes given in the corresponding sections, (iii) and a 

C O  bridging the carbonyl carbon and the phenolic ester which is equivalent to that of esters given in the corresponding 
section.   

The symbols of the functional groups of aspirin are given in Table 16.1.   
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The corresponding designations of aspirin are shown in Figure 16.1B.  The geometrical (Eqs. (15.1-15.5) and (15.51)), 
intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of aspirin are given in Tables 16.2, 
16.3, and 16.4, respectively.  The total energy of aspirin given in Table 16.5 was calculated as the sum over the integer multiple 
of each  GroupDE  of Table 16.4 corresponding to functional-group composition of the molecule.  The bond angle parameters of 

aspirin determined using Eqs. (15.88-15.117) are given in Table 16.6.  The color scale, translucent view of the charge density of 
aspirin comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined 

with one or more hydrogen MOs is shown in Figure 16.1A. 
 
Figure 16.1.   (A) Color scale, translucent view of the charge density of aspirin showing the orbitals of the atoms at their radii, 
the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale).  (B) Chemical structure and designation of aspirin. 
 

 
 
 
Table 16.1.   The symbols of functional groups of aspirin. 

 
Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  
Aryl C-C(O) ( )C C O  (i) 

Alkyl C-C(O) ( )C C O  (ii) 

C=O (aryl carboxylic acid) C O  
Aryl (O)C-O C O  (i) 
Alkyl (O)C-O C O  (ii) 
Aryl C-O C O  (iii) 
OH group OH  

CH3 group 3CH  
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CYCLOTRIMETHYLENE-TRINITRAMINE ( 3 6 6 6C H N O ) 
The compound cyclotrimethylene-trinitramine, commonly referred to as Cyclonite or by the code designation RDX, is a well-
known explosive.  RDX comprises three methylene ( 2CH ) groups joined by six alkyl C N  secondary amine functional groups 

given in the corresponding section.  Each of the three N ’s of the six-membered ring shown in Figure 16.2B is bonded to a 2NO  

functional group given in the Nitroalkanes section by a N N  functional group.  The latter requires hybridization of the nitrogen 
atoms in order to match the energies of the bridged groups. 

Similar to the case of carbon, silicon, and aluminum, the bonding in the nitrogen of the N N  functional group involves 

four 3sp  hybridized orbitals formed from the outer 2 p  and 2s  shells.  In RDX, bonds form between two 32N sp  HOs ( N N  

functional group), between a 32N sp  HO and a 32C sp  HO ( C N  functional group), and between a 32N sp  HO and a 2O p  AO 

(each N O  bond of the 2NO  functional group).  The geometrical and energy equations of the N N  functional group are 

given in the Derivation of the General Geometrical and Energy Equations of Organic Chemistry section wherein the energy is 

matched to  3, 2 14.63489 E C sp eV   (Eq. (15.25)). 

The 32sp  hybridized orbital arrangement after Eq. (13.422) is: 
 

 

3                2sp  state

                       

 0,0       1,-1      1,0       1,1

     (16.1) 

 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the five 

electrons.  The sum  3,2TE N sp  of experimental energies [15] of N , N  , 2N  , 3N  , and 4N   is: 

  3 97.8902 77.4735 47.44924 
,2

29.6013 14.53414 

266.94838 

T

eV eV eV
E N sp

eV eV

eV

  
    
 

 (16.2) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 32sp
r  of the 

32N sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 26

02
2 0 0

( ) 15
0.76452

8 266.94838 8 266.94838 sp
n

Z n e e
r a

e eV e eV 


    (16.3) 

where 7Z   for nitrogen.  Using Eq. (15.14), the Coulombic energy  3,2CoulombE N sp  of the outer electron of the 32N sp  shell 

is: 

  
3

2 2
3

0 0 02

, 2 17.79656 
8 8 0.76452Coulomb

sp

e e
E N sp eV

r a 
 

     (16.4) 

In RDX, the 32C sp  HO has a hybridization factor of 0.91771  (Eq. (13.430)) with a corresponding energy of 

 3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the N  HO has an energy of  3, 2 17.79656 E N sp eV   (Eq. (16.4)).  To meet 

the equipotential, minimum-energy condition of the union of the 32N sp  and 32C sp  HOs, 2 1C   in Eqs. (15.2-15.5), (15.51), 

and (15.61) for the N N -bond MO, and 2c  given by Eqs. (15.77) and (15.79) is: 

    
     

3

3 3 3 3
2 23

, 2 14.63489 
2   2   2 2 0.91771 0.75468

17.79656 , 2
b a

E C sp eV
c C sp HO to N sp HO to N sp HO c C sp HO

eVE N sp


  


 (16.5) 

The energy of the N N -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in Eq. (15.51).  

Since the energy of the MO is matched to that of the 32C sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is: 

 3, 2 14.63489 E C sp eV   given by Eq. (15.25) and  3, .TE atom atom msp AO  is 0 eV . 

The symbols of the functional groups of RDX are given in Table 16.7.  The geometrical (Eqs. (15.1-15.5) and (15.51)), 
intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of RDX are given in Tables 16.8, 
16.9, and 16.10, respectively.  The total energy of RDX given in Table 16.11 was calculated as the sum over the integer multiple 
of each  GroupDE  of Table 16.10 corresponding to functional-group composition of the molecule.  The bond angle parameters of 

RDX determined using Eqs. (15.88-15.117) are given in Table 16.12.  The color scale charge density of RDX comprising atoms 
with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in 

Figure 16.2A. 
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Figure 16.2.   (A) Color scale charge density of RDX showing the outer orbitals of the atoms at their radii and the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond.  (B) Chemical structure and atom designation of RDX. 
 
 
 

 
 
 
 
Table 16.7.    The symbols of functional groups of RDX. 
 

Functional Group Group Symbol

NO2 group 2NO  

N-N N N  
C-N (alkyl) C N  

CH2 group  2 C H CH  

 
Table 16.8.   The geometrical bond parameters of RDX and experimental values [1]. 
 

Parameter 
2NO  

Group 

N N  
Group 

C N  
Group 

 2 C H CH  

Group 
 0 a a  1.33221 1.68711 1.94862 1.67122 

 0'  c a  1.15421 1.29889 1.39593 1.05553 

Bond Length 

 2 '  c Å  1.22157 1.37468 1.47739 1.11713 

Exp. Bond Length 
1.224 

(nitromethane) 
1.22 avg. [16] 

(RDX) 

1.390 [16] 
(RDX) 

1.468 [16] 
(RDX) 

1.107 
( C H  propane) 

1.117 
( C H  butane) 

1.092 [16] 
(RDX) 

 0,  b c a  0.66526 1.07668 1.35960 1.29569 

e  0.86639 0.76989 0.71637 0.63159 
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Table 16.10.   The energy parameters (eV) of functional groups of RDX. 
 

Parameters 
2NO  

Group

N N  
Group 

C N  
Group 

2CH  

Group

1n  2 1 1 2 

2n  0 0 0 1 

3n  0 0 0 0 

1C  0.5 0.5 0.5 0.75 

2C  1 1 1 1 

1c  1 1 1 1 

2c  0.85987 0.75468 0.91140 0.91771 

3c  0 0 0 1 

4c  4 2 2 1 

5c  0 0 0 2 

1oC  0.5 0.5 1 0.75 

2oC  1 1 1 1 

 ( )eV eV  -106.90919 -32.25503 -31.98456 -70.41425 

 ( )pV eV  23.57588 10.47496 9.74677 25.78002 

 ( )T eV  40.12475 9.55926 8.20698 21.06675 

 ( )mV eV  -20.06238 -4.77963 -4.10349 -10.53337 

 /  ( )AO HOE eV  0 -14.63489 -14.63489 -15.56407 
 

2
/  ( )AO HOH MOE eV  0 0 -1.13379 0 

 /  ( )AO HOTE eV  0 -14.63489 -13.50110 -15.56407 

 2  ( )H MOTE eV  -63.27093 -31.63533 -31.63540 -49.66493 

 3, .  ( )TE atom atom msp AO eV  -3.71673 0 -1.13379 0 

   ( )MOTE eV  -66.98746 -31.63537 -32.76916 -49.66493 

 15 10  /rad s  19.0113 26.1663 26.0778 24.2751 

 ( )KE eV  12.51354 17.22313 17.16484 15.97831 

 ( )DE eV  -0.23440 -0.25974 -0.26859 -0.25017 

 ( )KvibE eV  0.19342 
[17]

0.12770 
[18]

0.11159 
[19] 

0.35532 
(Eq. (13.458))

 ( )oscE eV  -0.13769 -0.19588 -0.21280 -0.14502 

 ( )magE eV  0.11441 0.14803 0.14803 0.14803 

   ( )GroupTE eV  -67.26284 -31.83125 -32.98196 -49.80996 

 4  /  ( )c AO HOinitialE eV   -14.63489 -14.63489 -14.63489 -14.63489 

 5  /  ( )c AO HOinitialE eV  0 0 0 -13.59844 

   ( )GroupDE eV  8.72329 2.56147 3.71218 7.83016 

Exp.    ( )GroupDE eV   Est. 2.86, 2.08 [20] 3.69 [20]  

 
Table 16.11.   The total bond energy of gaseous-state RDX calculated using the functional group composition and the 
energies of Table 16.10. 

 

 
 



Chapter 16 

 

1098

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T
a

b
le

 1
6

.1
2

.  
 T
h
e 
b
o
n
d
 a
n
gl
e 
p
ar
am

et
er
s 
o
f 
R
D
X
 a
n
d
 e
xp
er
im

en
ta
l v
al
u
e
s 
[1
].
 E

T 
is
 E

T 
(a
to
m
 –
 a
to
m
,m

sp
3
.A
O
).
 



Applications: Pharmaceuticals, Specialty Molecular Functional Groups and Molecules,  
Dipole Moments and Interactions 

 

1099

SODIUM HYDRIDE MOLECULE (NaH ) 
Alkali hydride molecules each comprising an alkali metal atom and a hydrogen atom can be solved using similar principles and 
procedures as those used to solve organic molecules.  The solutions of these molecules can be conveniently obtained by using 
generalized forms of the force balance equation given in the Force Balance of the   MO of the Carbon Nitride Radical section 
and the geometrical and energy equations given in the Derivation of the General Geometrical and Energy Equations of Organic 
Chemistry section. 

The bonding in the sodium atom involves the outer 3s  atomic orbital (AO), and the Na H  bond forms between the 
3Na s  AO and the 1H s  AO.  The energy of the reactive outer electron of the sodium atom is significantly less than the 

Coulombic energy between the electron and proton of H  given by Eq. (1.276).  Consequently, the outer electron comprising the 
3Na s  AO and the 1H s  AO form a  -MO, and the inner AOs of Na  remain unaltered.  The MO semimajor axis of molecular 

sodium hydride is determined from the force balance equation of the centrifugal, Coulombic, and magnetic forces as given in the 
Polyatomic Molecular Ions and Molecules section and the More Polyatomic Molecules and Hydrocarbons section.  Then, the 
geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117) wherein the distance from the origin of the 

2H -type-ellipsoidal-MO to each focus 'c , the internuclear distance 2 'c , and the length of the semiminor axis of the prolate 

spheroidal 2H -type MO b c  are solved from the semimajor axis a. 

The force balance of the centrifugal force equated to the Coulombic and magnetic forces is solved for the length of the 
semimajor axis.  The Coulombic force on the pairing electron of the MO is: 

 
2

2
08Coulomb

e
D

ab 
F i  (16.6) 

The spin pairing force is 

 
2

2 22spin pairing
e

D
m a b  F i


 (16.7) 

The diamagnetic force is: 

 
2

1 2 24
e

diamagneticMO
e

n
D

m a b  F i


 (16.8) 

where en  is the total number of electrons that interact with the binding  -MO electron.  The diamagnetic force 2diamagneticMOF  on 

the pairing electron of the   MO is given by the sum of the contributions over the components of angular momentum:  

 2 2 2
, 2

i
diamagneticMO

i j j e

L
D

Z m a b  F i


 (16.9) 

where L  is the magnitude of the angular momentum of each atom at a focus that is the source of the diamagnetism at the  -

MO.  The centrifugal force is:  

 
2

2 2centrifugalMO
e

D
m a b  F i


 (16.10) 

The force balance equation for the  -MO of the Na H -bond MO with 2en   and 
3

2
4

L
 

   
 

  is: 

 
2 2 2 2

2 2 2 2 2 2 2
0

3
2 2 4

8 2 2 2e e e

e
D D D D

m a b ab m a b Z Z m a b

 
 
     
 

  
 (16.11) 

 0

3
2 42a a
Z Z

 
 
   
 

 (16.12) 

With 11Z  , the semimajor axis of the Na H -bond MO is: 
 02.26055a a  (16.13) 

Using the semimajor axis, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117) in the 
same manner as the organic functional groups given in the Organic Molecular Functional Groups and Molecules section.  For the 
Na H -bond MO of the NaH , 1 1c  , 2 1c   and 2 1C   in both the geometry relationships (Eqs. (15.2-15.5)) and the energy 

equation (Eq. (15.61)).  In NaH  the molecule, the 3Na s  AO has an energy of  3 5.139076 E Na s eV   [15] and the H  AO 

has an energy of   13.59844 E H eV   [15].  To meet the equipotential condition of the union of the 3Na s  AO and the 1H s  

AO, 2c  and 2C  of Eqs. (15.2-15.5) and Eq. (15.61) for the Na H -bond MO given by Eq. (15.77) is: 
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    2 2

5.139076 
3    1  3    1  0.37792

13.59844 

eV
C Na s AO to H s AO c Na s AO to H s AO

eV


  


 (16.14) 

The energy of the MO is matched to that of the 2Na p  AO with which it intersects such that  /E AO HO  is 

 2 47.2864 E Na p eV   [15]; thus,  4 /  ( )initialE c AO HO eV  is given by the sum of  2 47.2864 E Na p eV   and 

 3 5.139076 E Na s eV  . 

The symbol of the functional group of molecular NaH  is given in Table 16.13.  The geometrical (Eqs. (15.1-15.5) and 
(16.11-16.14)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.61-15.65) and (16.13-16.14)) parameters of molecular NaH  
are given in Tables 16.14, 16.15, and 16.16, respectively.  The color scale, translucent view of the charge-densities of molecular 
NaH  comprising the concentric shells of the inner AOs of the Na  atom and an outer MO formed from the outer 3Na s  AO and 
the 1H s  AO are shown in Figure 16.3.  
 
Figure 16.3.   Color scale, translucent view of the charge-densities of molecular NaH  showing the inner orbitals of the Na  
atom at their radii, the ellipsoidal surface of the 2H -type ellipsoidal MO formed from the outer 3Na s  AO and the 1H s  AO H , 
and the hydrogen nucleus (red, not to scale). 
 

 
 
 
 
 
 
 
 
 
 
 
 
Table 16.13.   The symbol of the functional group of molecular NaH . 
 

Functional Group Group Symbol
NaH group Na H  

 
Table 16.14.   The geometrical bond parameters of molecular NaH  and experimental values [20]. 
 

Parameter Na H  
Group

 0 a a  2.26055 

 0'  c a  1.72939 

Bond Length  2 '  c Å  1.83031 

Exp. Bond Length 

 Å  
1.88654 
 NaH  

 0,  b c a  1.45577 
e  0.76503
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Table 16.16.   The energy parameters (eV) of the Na–H functional group of molecular NaH. 
 
 

Parameters Na H  Group 

1n  1 

2n  0 

3n  0 

1C  0.37792 

2C  1 

1c  1 

2c  1 

3c  0 

4c  1 

5c  1 

1oC  0.37792 

2oC  1 

 ( )eV eV  -31.72884 

 ( )pV eV  7.86738 

 ( )T eV  7.01795 

 ( )mV eV  -3.50898 

 /  ( )AO HOE eV  -47.2864 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  -47.2864 

 2  ( )H MOTE eV  -67.63888 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -67.63888 

 15 10  /rad s  14.4691 [20] 

 ( )KE eV  9.52384 

 ( )DE eV  -0.41296 

 ( )KvibE eV  0.14534 

 ( )oscE eV  -0.34029 

 ( )magE eV  0.11441 

   ( )GroupTE eV  -67.97917 

 4  /  ( )c AO HOinitialE eV   -52.425476 

 5  /  ( )c AO HOinitialE eV  -13.59844 

   ( )GroupDE eV  1.95525 

Exp.    ( )GroupDE eV  1.92451 ( Na H  [21]) 

 

  



Applications: Pharmaceuticals, Specialty Molecular Functional Groups and Molecules,  
Dipole Moments and Interactions 

 

1103

BOND AND DIPOLE MOMENTS 
The bond moment of a functional group may be calculated by considering the charge donation between atoms of the functional 
group.  Since the potential of an MO is that of a point charge at infinity (Eq. (11.36)), an asymmetry in the distribution of charge 
between nonequivalent HOs or AOs of the MO occurs to maintain an energy match of the MO with the bridged orbitals.  The 
charge must redistribute between the spherical orbitals to achieve a corresponding current-density that maintains constant current 
at the equivalent-energy condition according to the energy-matching factor such as 2c  or 2C  of Eqs. (15.51) and (15.61).  Since 

the orbital energy and radius are reciprocally related, the contribution scales as the square of the ratio (over unity) of the energy 
of the resultant net positively-charged orbital and the initial matched energy of the resultant net negatively-charged orbital of the 
bond multiplied by the energy-matching factor (e.g. 2c  or 2C ).  The partial charges on the HOs or AOs corresponding to the 

charge contribution are equivalent to point charges centered on the nuclei.  Due to symmetry, the bond moment   of each 
functional group is along the internuclear axis and is calculated from the partial charges at the separation distance, the 
internuclear distance.  

Using the reciprocal relationship between the orbital energies and radii, the dependence of the orbital area on the radius 
squared, and the relationship of the partial charge q  to the areas with energy matching for each electron of the MO, the bond 
moment   along the internuclear axis of A B  wherein A  is the net positively-charged atom is given by: 

 
 
 

2

1 1 2 'A

B

E valence
qd n ce c

E valence


  
         

 (16.15) 

wherein 1n  is the number of equivalent bonds of the MO, c  is energy-matching factor such as 1c , 2c , 1C , or 2C  of Eqs. (15.51) 

and (15.61) where 1c  and 2C  may correspond to both electrons of a MO localized on one AO or HO such as when the magnitude 

of the valence or Coulombic energy of the AO or HO is less than that of   13.605804 CoulombE H eV   or when the orbital may 

contain paired or shared electrons in a linear combination with the partner orbital, and d  is the charge-separation distance, the 
internuclear distance 2 'c .   BE valence  is the initial matched energy of the resultant net negatively-charged orbital of the bond 

that is further lowered by bonding (Eqs. (15.32) and (15.16)) to atom A  having an energy  AE valence .  Typically, 

 BE valence  of a carbon-heteroatom bond is 14.63489 eV , the initial 32C sp  HO (Eq. (15.25)) energy to which the 

heteroatom is energy matched.  Functional group bond moments determined using Eq. (16.15) are given in Table 16.17. 
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Table 16.17. The bond moments of functional groups compared to experimental values [22–87] wherein the parameters 
correspond to those given previously except as indicated. 
 

Functional Group a 1n  ( 1c ) 2c  ( 1C ) 2C   BE valence   AE valence

 

q

e
 

Bond  
Length 

 2 '  c Å  

Bond 
Moment 
  (D) 

Exp. Bond 
Moment 
  (D) 

H C  (alkyl) 1 0.91771 1 14.63489 15.35946 0.070 1.11713 0.37 0.4 
H C  (aromatic) 1 0.91771 1 15.95955 15.95955 0 1.09327 0 0 

—H N b (amine) 1 0.78896 1 13.59844 15.81768 0.279 1.00343 1.34 1.31 

—H N c (ammonia) 1 0.74230 1 13.59844 15.81768 0.262 1.03677 1.30 1.31 

—H O d (alcohol) 1 0.91771 1 13.59844 15.81768 0.324 0.97165 1.51 1.51 

—H O e (water) 1 0.91419 1 13.59844 15.81768 0.323 0.97157 1.51 1.51 

C N  1 0.91140 1 14.53414 14.82575 0.037 1.46910 0.26 0.22 
C O  1 0.85395 1 14.63489 15.56407 0.112 1.41303 0.76 0.74 

C F f 1 1.09254b 1 14.63489 15.98435 0.211 1.38858 1.41 1.41 

C Cl  1 1 (2)0.81317 14.63489 15.35946 0.165 1.79005 1.42 1.46 
C Br  1 1 (2)0.74081 14.63489 15.35946 0.150 1.93381 1.40 1.38 

C I g 1 1 (2)0.65537 14.63489 15.28545 0.119 2.13662 1.22 1.19 

C O  2 0.85395 1 14.63489 16.20002 0.385 1.20628 2.23 2.3 
C N  3 0.91140 1 14.63489 16.20002 0.616 1.16221 3.44 3.5 

H S h 1 0.69878 1 14.63489 15.81768 0.118 1.34244 0.76 0.69 

C S  1 1 0.91771 14.63489 15.35946 0.093 1.81460 0.81 0.9 
S O  1 1 0.77641 14.63489 15.76868 0.125 1.56744 0.94 1.0 

S O i 2 0.82897 1 10.36001 11.57099 0.410 1.49118 2.94 2.93 

N O  1 1.06727 1 14.53414 14.82575 0.043 1.40582 0.29 0.30 
N O  (nitro) 2 0.91140 1 14.63489 15.95955 0.345 1.22157 2.02 2.01 
C P  1 1 0.73885 14.63489 15.35946 0.075 1.86534 0.67 0.69 
P O  1 0.79401 1 14.63489 15.35946 0.081 1.61423 0.62 0.60 

P O j 2 1.25942 1 14.63489 15.76868 0.405 1.46521 2.85 2.825 

Si H  1 1 0.75800 10.25487 11.37682 0.131 1.48797 0.94 0.99 
Si C  1 1 0.70071 14.63489 15.35946 0.071 1.87675 0.64 0.60 

Si O k 1 1 1.32796 10.25487 10.87705 0.166 1.72480 1.38 1.38 

B H l 1 1.14361 1 11.80624 12.93364 0.172 1.20235 0.99 1.0 
B C  1 0.80672 1 14.63489 15.35946 0.082 1.57443 0.62 0.69 
B O  (alkoxy) 1 1 0.79562 11.80624 12.93364 0.159 1.37009 1.05 0.93 
B N  1 1 0.81231 11.89724 14.53414 0.400 1.36257 2.62 2.68 

B F m 1 0.85447 1 14.88734 17.42282 0.316 1.29621 1.97 1.903 
B Cl  1 1 0.91044 11.80624 12.93364 0.182 1.76065 1.54 1.58 

a The more positive atom is on the left. 

b 
2

c  from Eqs. (15.77), (15.79), and Eq. (13.430) and  AE valence  is given by 1/2 two 2H -type ellipsoidal MOs (Eq. (11.212)). 
c 

2
c  from Eqs. (15.77), (15.79), and the product of 0.936127 (Eq. (13.248)) and 0.92235 given by 13.59844 / (13.59844 0.25 )DeV eV E   where DE  is 

the N H  bond energy 14
3 4.57913 DE NH eV 

 
 

  given by Eq. (13.404) and the energy of H  is 13.59844  eV ;  AE valence  is given by 1/2 two 

2H -type ellipsoidal MOs (Eq. (11.212)). 
d  AE valence  is given by 1/2 two 2H -type ellipsoidal MOs (Eq. (11.212)). 
e 

2
c  from Eqs. (15.77) given by 13.59844 / (13.59844 0.25 )DeV eV E   where DE  is the O H  bond energy 16( ) 5.1059 DE H OH eV  given by 

Eq. (13.222) and the energy of H  is 13.59844  eV ;  AE valence  is given by 1/2 two 2H -type ellipsoidal MOs (Eq. (11.212)). 
f Eq. (15.129) with the inverse energy ratio of   17.42282 E F eV   and  3, 2 14.63489 E C sp eV   corresponding to the higher binding energy of 

the former. 
g  AE valence  is given by 15.35946 1 / 2 mageV E  (Eqs. (14.150) and (15.67)). 
h 

1
c  from Eqs.  (15.79), (15.145), and (13.430);  AE valence  is given by 1/2 two 2H -type ellipsoidal MOs (Eq. (11.212)). 

i 
2

c  from the reciprocal of Eq. (15.147),  AE valence  is given by Eq. (15.139), and  BE valence  is   10.36001 E S eV  . 
j 

2
c  from the reciprocal of Eq. (15.182). 

k 
2

c  from the reciprocal of Eq. (20.49). 
l 

2
c  from the reciprocal of Eq. (22.29). 

m 
2

c  from Eq. (15.77) using   17.42282 E F eV   and  3, 2 14.88734 B FboraneE B sp eV    (Eq. (22.61)). 
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The dipole moment of a given molecule is then given by the vector sum of the bond moments in the molecule.  Thus, the dipole 
moment is given by taking into account the magnitude and direction of the bond moment of each functional group wherein the 
functional group bond moment stays constant from molecule to molecule and is in the vector direction of the internuclear axis.  
The dipole moments of water and ammonia to compare to the experimental values are given from the corresponding moments in 
Table 16.17.  The calculated dipole moment of 2H O  is: 

  
2

106
2 1.51 cos 1.8128

2H O D    
 

 (16.16) 

where the angle between the O H  bond is 106° given by Eq. (13.242).  The experimental dipole moment of 2H O  is [23] : 

 
2

1.8546H O D   (16.17) 

The calculated dipole moment of 3NH  is: 

    
3

3 1.30 cos 68 1.467NH D     (16.18) 

where the angle between each N H  bond and the z-axis is 68° given by Eq. (13.417).  The experimental dipole moment of 

3NH  is [23]: 

 
3

1.4718NH D   (16.19) 

The charge distributions of the functional groups given in Table 16.17 facilitate the rendering of the charge distribution 
of molecules of unlimited complexity comprised of these functional groups.  What was previously impossible to achieve using 
supercomputers can be readily accomplished on a personal computer (PC).  The rendering of the true charge densities of the 
exemplary proteins insulin and lysozyme are shown in color scale, opaque view in Figures 16.4 and 16.5, respectively.  The 
color scale, opaque view of the charge density of an exemplary double-stranded RNA helix is shown in Figure 16.6. 
 
Figure 16.4.   Color scale, opaque view of the charge density of insulin created and modeled using Millsian 2.0 on a PC. 
 

 
 



Chapter 16 

 

1106

Figure 16.5.  Color scale, opaque view of the charge density of lysozyme created and modeled using Millsian 2.0 on a PC. 
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Figure 16.6.  Color scale, opaque view of the charge density of a double-stranded DNA helix created and modeled using 
Millsian 2.0 on a PC. 
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NATURE OF THE DIPOLE BOND: DIPOLE-DIPOLE, HYDROGEN, AND VAN DER 
WAALS BONDING 
The boundless number and length of permutations of the functional groups can form a correspondingly infinite number of 
molecules.  The intermolecular forces instill upon molecules their inherent properties such as state—being solid, liquid, or gas, 
the temperatures at which phase transitions occur, and the energy content change required to change the state.  However, the 
types of bonding are relatively few even though the breadth of molecular compositions is infinite.  Since all molecules comprise 
nuclei that behave on the scale of molecules as electrostatic point charges, and electrically charged electrons exist as charge and 
current densities that obey Maxwell’s equations, the binding is determined by electrical and electrodynamics forces.  These 
typically dominate over any magnetic forces since the latter is a relativistic effect of the former and is thus negligible as the 
norm.  Thus, essentially all molecular bonding is Coulombic in nature.  The extreme case involves ions, and ionic bonding 
between charged functional groups of molecules obeys the same physical principles as inorganic ions as given in the Nature of 
the Solid Ionic Bond of Alkali Hydrides and Halides section.  Similarly, the charge-density distributions of negatively-charged 
electrons relative to the positively-charged nuclei of neutral molecules gives rise to Coulombic-based bonding that can be 
grouped into two main categories, bonding that comprises permanent dipole-dipole interactions further including an extreme 
case, hydrogen bonding, and bonding regarding reversible mutually induced dipole fields in near-neighbor molecules called van 
der Waals bonding.   

The H bond is exemplary of the extreme of dipole-dipole interactions as the source of bond energy and rises from the 
extremely high dipole moments of H  bound to F , O , or N  as shown in the Bond and Dipole Moments section.  The bond 
energies of these types of bonds are large due to the very high Coulombic energy associated with the dipole-dipole interaction 
between H-bonded molecules compared to those having much lower dipole moments.  Still H-bond energies are typically small 
by the standards of covalent bonds.  The differences are also reflected in the relative bond lengths.  In water for example, the 
O H  bond distance and energy are 2 0.970 .005 c Å    (Eq. (13.186)) and 16( ) 5.1059 DE H OH eV  (Eq. (13.222), 

respectively; whereas, those of the hydrogen bond of water are 2 1.78 O Hc Å   (Eq. (16.27) and ,0 0.233 /vapor CE eV H bond    

(Eq. (16.57)), respectively.  On the other end of the spectrum, van der Waals bonds are also Coulombic in nature and are 
between dipoles.  However, the dipoles are mutually induced rather than permanent, and the mutual induction is typically small.  
Thus, the bond distances are on the order of angstroms and the energies in the 10’s of meV’s range.  The bonding between 
molecules gives rise to condensed matter, and the classical theory of condensed matter based on these forms of bonding is 
treated next.  
 
CONDENSED MATTER PHYSICS 
Condensed matter comprises liquids and solids of atoms and molecules.  It is shown infra that the geometrical parameters, 
energies, and properties of the latter can be solved using the same equations as those used to solve the geometrical parameters 
and component energies of the individual molecules as given in the Organic Molecular Functional Groups and Molecules 
section. 

The structure and properties of liquids can be solved by first solving the unit cell of the corresponding condensed solid.  
The unit cell may be solved by first determining the packing that minimizes the lattice energy.  In nature, there are a small, finite 
number of packing arrangements.  The particular arrangement relates to the most efficient one giving the most objects packed 
into a given space with the size and shape limitations.  The water molecule, for example, is small compared to the unit cell of 
ice; so, it will naturally assume a tetrahedral structure and hexagonal packing given the geometry of its electric dipoles with a 
partial positive on the H ’s and partial negative on the O .  In general, a reiterative algorithm is used that optimizes the packing 
of the molecules and tests that packing against the unit cell parameters and lattice energy until an optimum is found.  The lattice 
parameters can be verified by X-ray crystallography and neutron diffraction.  The lattice energy can be measured using 
calorimetry; so, the model can be directly tested. 

Bonding in neutral condensed solids and liquids arises from interactions between molecules wherein the molecules of the 
lattice have multipoles that give rise to corresponding Coulombic or magnetic interactions.  Typically, the multipoles are electric 
or magnetic dipoles.  Consider the former case.  Since the separated partial charges that give rise to bond moments are equivalent 
to point charges centered on the bond nuclei as given in the Bond and Dipole Moments section, the maximum interaction energy 
between interacting species can be calculated using Coulomb’s law with the corresponding partial monopole charges and 
separation distance.  The energy from the interaction of the partial charges increases as the separation decreases, but 
concomitantly, the energy of a bond that may form between the interacting species increases as well.  The equilibrium separation 
distance corresponds to the occurrence of the balance between the Coulombic potential energy of the interacting atoms and the 
energy of the bond whose formation involves the interacting atoms.  Thus, the balance is at the energy threshold for the 
formation of a nascent bond that would replace the interacting partial charges while also destabilizing the standard bonds of the 
interacting molecules.  Then, an optimal lattice structure corresponds to an energy minimum with an associated energy.  The 
minimum energy structure corresponds to the highest density of interacting dipoles in their minimum energy state.  A convenient 
method to calculate the lattice energy is to determine the electric or magnetic field in the material having an electric or magnetic 
polarization density, and in turn, the energy can be calculated from the energy of each dipole in the corresponding field using the 
electrostatic or magnetostatic form of Gauss’ or Amperes’ equation, respectively. 

Once the a, b , and c  parameters of the unit cell are solved from the energy (force) balance between the electric 
monopoles and the nascent bond energy, the unit cell is determined.  Then, the unit cell can be proliferated to arbitrary scale to 
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render the solid.  Typically, only one lattice parameter needs to be determined since the additional distances can be determined 
from geometrical relations based on the unit cell structure.  The lattice energy may be calculated from the potential between 
dipoles using the cell parameters.  The dielectric constant and other properties may also be calculated using Maxwell’s equations 
and other first principles.   

The structures of liquids can be modeled as linear combinations of unit cells comprising perturbations of the solid unit 
cell.  In one approach, increasing disorder is added to the solid structure in the transition from solid to liquid to gas.  Complete 
disorder or statistical gas behavior applies in the ideal gas limit.  Thus, liquid states may be modeled by adding more cells with 
increasing loss of order of the solid unit cell as the temperature of the liquid is increased.  The disorder is due to population of 
translational, rotational, and vibrational levels to match the internal energy at a given temperature.  Consider thermodynamics.  
In principle, it is possible to classically calculate the fields over all space, the exact field interactions, and the position, trajectory, 
momentum, and energy of every particle of a material at each instance.  Then, the material properties can be determined from 
these parameters.  However, in practice, it is impossible computationally.  For the same reason, simple underlying physical 
principles are applied to derive statistical properties for large ensembles of particles as given in the Statistical Mechanics section.  
The same statistical thermodynamic methods may be applied to modeling liquids and gases using the exact solutions of the 
individual molecules.  Using the molecular geometrical parameters, charge distributions, and corresponding interactions as input, 
unit cells can be computed based on the solid unit cell.  Working with increasing numbers of unit cells of increasing randomness 
and populating the unit cells based on appropriate statistical models such as Boltzmann statistics for increasing enthalpy input 
and temperature, accurate models of liquids are provided.  The corresponding liquid properties can be solved from each liquid 
structure. 

A preferred approach to solving the energy and geometric parameters of ice, considered next, is to solve the separation 
distance of the electric monopoles comprising a partial positive on each H  and a partial negative charge on each O  as the 
balance between the Coulombic attraction energy between the partial charges and the repulsion energy due to the formation of a 
nascent H O  bond between the hydrogen-bonded atoms.  The nascent bond substitutes for the hydrogen bond while also 
removing electron density and stability from the standard water molecule bonds.  Thus, it offsets the Coulombic energy and 
establishes the equilibrium minimum approach distance of the interacting atoms of the water molecules.  Then, using Gauss’s 
law, the energy per water molecule is calculated as the dipole energy in the electric field of the lattice of electric dipoles. 
 

GEOMETRICAL PARAMETERS AND ENERGIES OF THE HYDROGEN BOND OF 2H O  
IN THE ICE PHASE 
The extraordinary properties of water are determined by hydrogen (H) bonds, designated by the dotted bond O H O    , each 
between a participating H  of one water molecule and an O  of another.  The structure of each phase of water is then determined 
by the number of H bonds on average per water molecule.  As shown in the Bond and Dipole Moments section, the O H  bond 
has a bond moment   of 1.51 D corresponding to a partial charge on each H  of 0.323e  and a component of partial charge on 
each O  per bond moment of 0.323e .  The thermodynamic basis of the H bond is the minimization of the Coulombic energy 
between the H  and O  of the hydrogen bond, limited by the formation of a nascent bond between these atoms that destabilizes 
the initial O H  bond.  The sum of the torques and forces are zero at force balance to achieve a hexagonal crystal structure that 
is an energy minimum.  The maximum electrostatic energy of the partial charges is calculated for the components along the H-
bond axis.  This energy is balanced by the total energy of the nascent bond that can form between the H O    atoms of the H 
bond.  The bond length of the H bond, the internuclear distance between the H  and O  of the H O    bond, is calculated by a 
similar method as that used to determine the bond angle given in the Bond Angle of 2H O  section. 

The 2H O  MO comprises a linear combination of two O H -bond MOs.  Each O H -bond MO comprises the 

superposition of a 2H -type ellipsoidal MO and the 2 zO p  AO or the 2 yO p  AO with a relative H  partial orbital contribution to 

the MO of 0.75; otherwise, the 2O p  orbitals are the same as those of the oxygen atom.  The solution of the geometrical 

parameters and component energies are given in the Water Molecule ( 2H O ) section and the color scale charge density of the

2H O  MO is shown in Figure 16.7. 
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Figure 16.7.   2H O  MO comprising the linear combination of two O H -bond MOs.  Each O H -bond MO comprises the 

superposition of a 2H -type ellipsoidal MO and the 2 zO p  AO or the 2 yO p  AO with a relative charge-density of 0.75 to 1.25; 

otherwise, the 2O p  orbitals are the same as those of the oxygen atom.  The internuclear axis of one O H  bond is 

perpendicular to the bonding yp  orbital, and the internuclear axis of the other O H  bond is perpendicular to the bonding zp  

orbital.  (A) Color scale, translucent view of the charge-density of the 2H O  MO from the top.  For each O H  bond, the 

ellipsoidal surface of each 2H -type ellipsoidal MO transitions to the 2O p  AO.  The 2O p  shell, the 2O s  shell, the 1O s  shell, 

and the nuclei (red, not to scale) are shown.  (B) Cut-away view showing the innermost 1O s  shell, and moving radially, the 2O s  
shell, the 2O p  shell, and the 2H -type ellipsoidal MO that transitions to the 2O p  AO for each O H  bond. Bisector current 

not shown. 
 

 
 
 
Rather than consider the possible bond between the two H atoms of the O H  bonds in the determination of the bond angle, 
consider that the hydrogen bond may achieve a partial bond order or partial three-centered O H O   bond as given in the 
Bridging Bonds of Organoaluminum Hydrides ( Al H Al   and Al C Al  ) and Bridging Bonds of Boranes ( B H B   and 
B B B  ) sections, and the H can become mobile between water molecules corresponding to H exchange.  Such exchange of 
O H O     to O H O    bonding would decrease the initial O H -bond strength since electron density would be shifted from 
the O H  bonds to the O H    bond.  Concomitantly, the Coulombic energy of the H bond would be eliminated.  Thus, the 
equilibrium distance er  or internuclear bond distance of O H    designated as 2 O H ec r   is determined by the condition that the 

total energy of the nascent 2H -type ellipsoidal MO formed from the atoms of the O H    bond is equal to the maximum 

Coulombic energy between the partial charges of the H  and O  atoms of the H bond. 
The O H  bond moments superimpose at the central O .  The minimum energy corresponds to the maximum separation 

of the    of each bond moment on the O  atom that occurs in space and time with   phase.  The corresponding distance is the 
hypotenuse of the right triangle having the distance 2 O Hc   between the H  and O  nuclei of the H O    bond as one side and the 

radius of the oxygen atom, 2 0O pr a  (Eq. (10.162)), as the other.  Then, the maximum Coulomb energy  CoulombE H bond  

between the atoms of the O H    bond due to the two separated   ’s on the oxygen atom with the    centered on the nucleus of 
hydrogen is: 

  
   

2 2

22

0 2

2

4 2
Coulomb

O H O p

e
E H bond

c r



 


 

 
 (16.20) 

Since each H  bond is between two 2H O  molecules and there are four H  bonds per 2H O  molecule, the Coulomb energy per 

2H O   2CoulombE H O  is equivalent to two times  CoulombE H bond  (Eq. (16.20)): 

  
   

2 2

2 22
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4 2
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 (16.21) 
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Eq. (16.21) is the energy to be equated to that of the nascent covalent bonds involving the atoms of the H bonds of the 
water molecule.  Using Eq. (15.3), the internuclear distance of this bond, 2 O H ec r  , in terms of the corresponding semimajor 

axis O Ha   is:  

 0

1 2

2 2
2

O H
O H

a a
c

C C


   (16.22) 

The length of the semiminor axis of the prolate spheroidal MO b c  is given by: 

    2 2

O H O H O Hb a c     (16.23) 

And, the eccentricity, e , is: 

 O H
O H

O H

c
e

a






  (16.24) 

The semimajor axis O Ha   of the O H    bond is determined using the general equation for determination of the bond 

angle between terminal atoms given by Eqs. (15.93) and (15.99) with Eqs. (15.46-15.47) except that the MO energy is matched 
to the Coulombic energy of the H bond (Eq. (16.21) with substitution of Eq. (15.3)) rather than being set equal to zero for zero 
interaction energy in the case of the bond-angle determination: 
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 (16.25) 

where 1n  is the number of equivalent bonds of the MO, 1c  is the fraction of the 2H -type ellipsoidal MO basis function, 2c  is the 

factor that results in an equipotential energy match of the participating at least two atomic orbitals of each chemical bond, 1oC  is 

the fraction of the 2H -type ellipsoidal MO basis function of the oscillatory transition state of a chemical bond of the group, and 

2oC  is the factor that results in an equipotential energy match of the participating at least two atomic orbitals of the transition 

state of the chemical bond,  /TE AO HO  is the total energy comprising the difference of the energy  /E AO HO  of at least 

one atomic or hybrid orbital to which the MO is energy matched and any energy component  
2

/H MOE AO HO  due to the AO 

or HO’s charge donation to the MO,  3, .TE atom atom msp AO  is the change in the energy of the AOs or HOs upon forming 

the bond, and   is the reduced mass. 
For the determination of the H-bond distance, the energy parameters are the same as those of water given in the Water 

Molecule  2H O  section except that any parameters due to matching AO’s,  /TE AO HO  and  3, .TE atom atom msp AO , is 

zero since only the energies of the MO electrons to form the O H    MO are considered.  The partial charge /q e   from 

Table 16.17 is 0.323, and the reduced mass is 
16

17
  .  The parameters are summarized in Table 16.18 and Eq. (16.26). 
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Table 16.18.   The energy parameters (eV) of the O H    functional group of the hydrogen bond of Type I ice. 
Parameters O H   Group 
  0.323

1n  2 

1C  0.75 

2C  1 

1c  0.75 

2c  1 

1oC  1.5 

2oC  1 

 ( )eV eV  -20.30177 

 ( )pV eV  16.15958 
( )T eV  2.38652

 ( )mV eV  -1.19326 
 /  ( )A O H OE eV  0

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -2.94892 

 3, .  ( )TE atom atom msp AO eV  0 

   ( )MOTE eV  -2.94892 

 15 10  /rad s  6.55917 

 ( )KE eV  4.31736 

 ( )DE eV  -0.012122 

 ( )KvibE eV  0.03263 

 ( )oscE eV  0.004191 

   ( )GroupTE eV  -2.94054 

 

Substitution of the parameters of Table 16.18, the internuclear distance 2 O Hc   given by Eq. (13.185), and R  given by Eq. 

(16.23) and (16.22) into Eq. (16.25) gives: 
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 (16.26) 

 
From the energy relationship given by Eq. (16.26) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the O H    MO can be solved. 

The most convenient way to solve Eq. (16.26) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is:  

 10
04.25343 2.25082  10  O Ha a X m

    (16.27) 

The component energy parameters at this condition are given in Table 16.18.  Substitution of Eq. (16.27) into Eq. (16.22) gives 

 11
01.68393 8.91097  10  O Hc a X m

    (16.28) 

and internuclear distance of the H bond: 

 10
02 3.36786 1.78219  10  1.78219 O Hc a X m Å

     (16.29) 

The internuclear distance of the O H given by Eq. (13.185) is:  

 11
02 1.83601 9.71574  10  c a X m    (16.30) 

The internuclear distance 2 O Hc   of the O H  bond added to 2 O Hc   gives the internuclear distance 2 O HOc   between the oxygen 

atoms of the group O H O    : 

 2 2 2O HO O H O Hc c c       (16.31) 

Substitution of 2 O Hc   (Eq. (16.29)) and 2 O Hc   (Eq. (13.185)) into Eq. (16.31) gives the nearest-neighbor separation, the 

internuclear distance 2 O HOc   between the oxygen atoms of the O H O     bond in Type I ice: 

 10 11 102 2 2 1.78219  10  9.71574  10  2.75377  10  2.75377 O HO O H O Hc c c X m X m X m Å  
           (16.32) 

The experimental oxygen nearest-neighbor separation distance 2 O HOc   is [88]: 

 2 2.75 O HOc Å   (16.33) 

The experimental internuclear distance of the O H bond of 2H O  is [89]: 

 112 9.70 .005  10  c X m    (16.34) 

Using Eqs. (16.33) and (16.34), the experimental H bond distance 2 O Hc   in Type I ice is [88, 89]: 

 2 1.78 O Hc Å   (16.35) 

The other H-bond MO parameters can also be determined by the relationships among the parameters.  Substitution of 
Eqs. (16.27) and (16.28) into Eq. (16.23) gives: 

 10
03.90590 2.06691  10  O H O Hb c a X m

     (16.36) 

Substitution of Eqs. (16.27) and (16.28) into Eq. (16.24) gives: 

 0.39590O He    (16.37) 
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Since water is a hexagonal crystal system in common with the carbon allotrope diamond, the internuclear distance of the 

two terminal O  atoms of a set of three 2H O ’s corresponding to the hexagonal lattice parameter la  is calculated using the same 

approach as that given by Eqs. (17.1-17.3) using the law of cosines:   

 2 2 2
1 2 1 2 32 cosines s s s s    (16.38) 

where 3 ls a  is the hypotenuse of the isosceles triangle having equivalent sides of length equal to 2 O HOc  .  With the bond 

angle between three water molecules formed by the two corresponding H bonds given by 
2 2 2, , 109.5H O H O H O   [90] and 

1 2 2 O HOs s c    given by Eq. (16.32), the distance between the oxygen atoms of the terminal water molecules along the 

hypotenuse, 
2 23 2 H O H O ls c a  , is: 

          
2 2

22
2 2 2 1 cos 109.5 2 2.75377 1 cos 109.5 4.49768 l H O H O O HOa c c ine Å ine Å           (16.39) 

Due to the tetrahedral structure shown in Figure 16.8, four water molecules form a pyramidal structure with a central 

 2 1H O  at the apex designated as on the z-axis, and the three other water molecules,  2   2,3,4H O n n  , form the base in the 

xy-plane.  As further shown in Figure 16.8, a fifth  2 5H O  is positioned a distance 2 O HOc   along the z-axis.  Twice the height 

along the z-axis from the base of the pyramid to the fifth 2H O  comprises the Type I ice unit cell parameter c which is 

determined next using Eqs. (13.412-13.417). 

Since any two O H O     bonds having the internuclear distance 2 O HOc   between the oxygen atoms of Type I ice form 

an isosceles triangle having the hypotenuse la  between the terminal oxygens, the distance origin Od   from the origin of the 

pyramidal base to the nucleus of a terminal oxygen atom is given by: 

 
2sin 60

l
origin O

a
d  


 (16.40) 

Substitution of Eq. (16.39) into Eq. (16.40) gives 
 02.59674origin Od a   (16.41) 

The height heightd  along the z-axis of the pyramid from the origin to the O  nucleus of  2 1H O  is given by: 

    22
2height O HO origin Od c d    (16.42) 

Substitution of Eqs. (16.32) and (16.41) into Eq. (16.42) gives: 
 00.91662heightd a  (16.43) 

The angle v  of each O H O     bond from the z-axis is given by: 

 1tan origin O
v

height

d

d
 

 
   

 
 (16.44) 

Substitution of Eqs. (16.41) and (16.43) into Eq. (16.44) gives: 

 70.56°v   (16.45) 

Using Eqs. (16.32) and (16.43), the hexagonal lattice parameter lc  for Type I ice given by twice the height along the z-axis from 

the base of the pyramid to the fifth water,  2 5H O , is 

    2 2 2 2.75377 0.91662 7.34077 l O HO heightc c d Å Å Å      (16.46) 

The experimental lattice parameters la  and lc  for Type I ice are [90, 91]: 

 
4.49 

4.5212 
l

l

a Å

a Å




 (16.47) 

and [91, 92] : 

 
7.31 

7.3666 
l

l

c Å

c Å




 (16.48) 

The tetrahedral unit cell and the ideal hexagonal lattice structure of Type I ice are shown in Figures 16.8–16.10, using the color 
scale charge density of each water molecule. 
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Figure 16.8.   Tetrahedral unit cell structure of Type I ice using the transparent color scale charge density of each 2H O  MO 

comprising the linear combination of two O H -bond MOs. (A) Each dipole-dipole bond that is Coulombic in nature is 
depicted by connecting sticks.  (B) Bond representation removed. 
 

 
 

Figure 16.9.   C-axis view of the ideal hexagonal lattice structure of Type I ice using the opaque color scale charge density 

of each 2H O  MO comprising the linear combination of two O H -bond MOs. Each dipole-dipole bond that is Coulombic 

in nature is depicted by connecting sticks. 
 

 
 
 
Figure 16.10.  An off-angle view of the ideal hexagonal lattice structure of Type I ice using the opaque color scale charge 

density of each 2H O  MO comprising the linear combination of two O H -bond MOs.  Each dipole-dipole bond that is 

Coulombic in nature is depicted by connecting sticks. 
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A convenient method to calculate the lattice energy is to determine the electric field in ice having an electric polarization 
density corresponding to the aligned molecular water dipoles moments, and in turn, the energy can be calculated from the energy 
of each dipole in the corresponding field using the electrostatic form of Gauss’ equation.  The electric field inside of a material 

having a uniform polarization density 0P  given by Eq. (6.3.3.15) of Haus and Melcher [93] is: 

    0
2

0

cos sin
3 r

P
H O  


  E i i  (16.49) 

The polarization density 0P  given by Eq. (6.3.3.3) of Haus and Melcher [93] is: 

 
20 H OP N  (16.50) 

where 
2H O  is the dipole moment of water and N  is the number density of water dipoles given by the density ice  divided by the 

molecular weight MW  and multiplied by the Avogadro constant AN : 

 ice
AN N

MW


  (16.51) 

Substitution of Eqs. (16.50) and (16.51) into Eq. (16.49) gives: 

    
2

2
0

cos sin
3

ice
H O A

r

N
MWH O 


 


  E i i  (16.52) 

The energy of forming the condensed phase is that of the alignment of the water dipoles each comprised of two O H  
component dipoles where the angular dependence along the z-axis in ice is unity, and this condition applies even in the case of 
the local order in water.  The corresponding energy  2U H O  per water dipole due to the polarization electric field of the lattice 

of hexagonal dipoles is given by: 

    
 

2

2

2

2 2
0

2
2

3

ice
H O A

H O

N
MWU H O H O







  E  (16.53) 

Substitution of the density of ice 
6 3

0.92 

1  10  

g

X m
   [90], the 18 /M W g mole , 236.0221415  10  /AN X molecules mole , and the 

water dipole moment given by Eq. (16.16) with the predicted and experimental hexagonal bond angle of ice, 
2

109.5H O    

[90]: 
    

2

302 1.51 cos 109.5 / 2 5.79898  10H O X C m      (16.54) 

into Eq. (16.53) gives 

  
 

 

6 3230 23

2
0

0.92 
1  10  2 5.79898  10 6.0221415  10  /
18 /

3

0.48643  46.934 /

g
X mX C m X molecules mole

g mole
U H O

eV kJ mole




 



  

 (16.55) 

 2U H O  is also the negative of ,0vapor CE  , the energy of water initially at 0 °C or the energy of vaporization of water at 0 °C: 

    ,0 2 0.48643  46.934 /vapor CE U H O eV kJ mole     (16.56) 

The experimental energy of vaporization of water at 0 °C (Type I ice) is [94] : 
 ,0 45.054 /vapor CE kJ mole   (16.57) 

The calculated results based on first principles and given analytical equations are summarized in Table 16.19. 
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Table 16.19.   The calculated and experimental geometrical and energy parameters of the H bond of water of Type I ice. 
 

Parameter Calculated Experimental 
Ref. for 

Exp. 

H Bond Length 2 O Hc   1.78219 Å 1.78 Å 88, 89 

Nearest Neighbor Separation 

Distance 2 O HOc   
2.75377 Å 2.75 Å 88 

2H O Lattice Parameter la  4.49768 Å 
4.49 Å 

4.5212 Å
90 
91 

2H O Lattice Parameter lc  7.34077 Å 
7.31 Å 

7.3666 Å
92 
91 

Energy of Vaporization of Water 
at 0 °C 

46.934 kJ/mole 45.054 kJ/mole 94 

 
As the temperature increases, the corresponding molecular kinetic energy can excite a vibrational mode along the H bond 

axis.  Concomitantly, the O H  bond elongates and decreases in energy.  As a consequence, the hydrogen bond achieves a 
partial bond order or partial three-centered O H O   bond, and the H  can undergo exchange between water molecules.  The 
time-average effect of exchange is to decrease the statistical equilibrium separation distance of water molecules.  In competition 
with the separation-distance decreasing effect of exchange is the increasing effect due to collisional impact and recoil as a 
function of increasing temperature.  The former effect dominates from the temperature of ice to 4°C at which point water 
assumes a maximum density.  Thereafter, the momentum imparted with water-water collisions overwhelms the decrease due to 
exchange, and the molecular separation statistically increases with temperature until a totally gaseous state is achieved at 
atmospheric pressure at 100°C.  Unit cells with increasing entropy can be derived from the ice unit cell by populating 
translational, rotational, and vibrational levels of molecules within the cells to match the internal energy at a given temperature.  
Using statistical mechanical models such as Boltzmann statistics to populate an increasing number of basis units cells of 
increasing disorder and based on the ice unit cell, the behavior of water as a function of temperature can be modeled over the 
range of states from ice to liquid to steam.  The structure of each phase of water is then determined by the number of H bonds on 
average per water molecule.  Based on the 10% energy change in the heat of vaporization in going from ice at 0°C to water at 
100°C [94], the average number of H bonds per water molecule in boiling water is 3.6.  The H bond distance is calculated next 
using the enthalpy to form steam from boiling water. 

 

GEOMETRICAL PARAMETERS AND ENERGIES OF THE HYDROGEN BOND OF 2H O 
IN THE VAPOR PHASE 
Two or more water molecules can interact along the O H    or H  bond axis.  In the gas phase, the maximum energy of 
interaction between water molecules of steam is equivalent to the negative of the heat of vaporization of water at the boiling 
point, 100°C; otherwise, water vapor would form the corresponding condensed state.  For the determination of the H-bond 
distance, the energy parameters, partial charge, and reduced mass are the same as those of the water molecules of ice given in 
Eq. (16.26) except that the negative of the experimental  ,100 0.42137  40.657 /vapor CE eV kJ mole   [94] is equated to the 

nascent covalent bond energy.  The parameters are summarized in Table 16.20 and Eq. (16.58). 
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Table 16.20.   The energy parameters (eV) of the O H    functional group of the hydrogen bond of water vapor. 
 

Parameters O H   Group 
  0.323

1n  2 

1C  0.75 

2C  1 

1c  0.75 

2c  1 

1oC  1.5 

2oC  1 

 ( )eV eV  -15.20020 

 ( )pV eV  14.08285 

 ( )T eV  1.35707 

 ( )mV eV  -0.67853 

 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.43882 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.43882 

 15 10  /rad s  4.20131 

 ( )KE eV  2.76538 

 ( )DE eV  -0.001444 

 ( )KvibE eV  0.02033 

 ( )oscE eV  0.008724 

   ( )GroupTE eV  -0.42137 

 

Substitution of the parameters of Table 16.20 and ,0vapor CE   (Eq. (16.57)) into Eq. (16.26) gives: 
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 (16.58) 

From the energy relationship given by Eq. (16.58) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the O H  MO can be solved. 

The most convenient way to solve Eq. (16.58) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 

 
10

05.60039 2.96360  10  O Ha a X m
    (16.59) 

The component energy parameters at this condition are given in Table 16.20.  Substitution of Eq. (16.59) into Eq. (16.22) gives 

 
10

01.93225 1.02250  10  O Hc a X m
    (16.60) 

and internuclear distance of the H bond: 

 
10

02 3.86450 2.04501  10  O Hc a X m
    (16.61) 

The experimental H bond distance 2 O Hc   in the gas phase is [95]: 

 
102 2.02  10  O Hc X m

   (16.62) 

and [96] 

 
102 2.05  10  O Hc X m

   (16.63) 

The other H-bond MO parameters can also be determined by the relationships among the parameters.  Substitution of Eqs. 
(16.59) and (16.60) into Eq. (16.23) gives: 

 
10

05.25650 2.78162  10  O H O Hb c a X m
     (16.64) 

Substitution of Eqs. (16.59) and (16.60) into Eq. (16.24) gives: 

 0.34502O He    (16.65) 

Substitution of 2 O Hc   (Eq. (16.61)) and 2 O Hc   (Eq. (13.185)) into Eq. (16.31) gives the nearest neighbor separation, the 

internuclear distance 2 O HOc   between the oxygen atoms of the O H O   bond of water vapor: 

 
10 11 102 2 2 2.04501  10  9.71574  10  3.01658  10  3.01658 O HO O H O Hc c c X m X m X m Å  

           (16.66) 

Using Eqs. (16.31), (16.34), and (16.63), the experimental nearest neighbor separation 2 O HOc   is [89, 96]: 

 
10 11 102 2 2 2.05  10  9.70  10  3.02  10  3.02 O HO O H O Hc c c X m X m X m Å  

           (16.67) 

H-bonded water vapor molecules in steam are shown in Figure 16.11 using the color scale charge density of each water 
molecule. 
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Figure 16.11.   Structure of steam.  (A). Ensemble of gaseous water molecules undergoing elastic hard-sphere collisions.  (B). 

H-bonded water vapor molecules using the color scale charge density of each 2H O  MO comprising the linear combination of 

two O H -bond MOs. 

 
 

The calculated results based on first principles and given by analytical equations are summarized in Table 16.21. 
 
Table 16.21.   The calculated and experimental geometrical and energy parameters of the H bond of steam. 
 

Parameter Calculated Experimental Ref. for Exp.

H Bond Length 2 O Hc   2.04501 Å 
2.02 Å 
2.05 Å

95, 96 

Nearest Neighbor Separation Distance 

2 O HOc   
3.01658 Å 3.02 Å 89, 96 
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GEOMETRICAL PARAMETERS AND ENERGIES OF THE HYDROGEN BOND OF 2H O 
AND 3NH  
Similar to the water molecule, the ammonia molecule has a strong dipole moment along each of its N H -bonds.  The 3NH  MO 

comprises the linear combination of three N H -bond MOs.  Each N H -bond MO comprises the superposition of a 2H -type 

ellipsoidal MO and the 2 xN p , 2 yN p , or 2 zN p  AO with a relative H  partial orbital contribution to the MO of 0.75.  The 

solution of the geometrical parameters and component energies are given in the Ammonia ( 3NH ) section, and the color scale 

charge density of the 3NH  MO is shown in Figure 16.12. 

 

Figure 16.12.   3NH  MO comprising the linear combination of three N H -bonds.  Each N H -bond MO comprises the 

superposition of a 2H -type ellipsoidal MO and the 2 xN p , 2 yN p , or 2 zN p  AO.  (A) Color scale, translucent view of the charge 

density of the 3NH  MO shown obliquely from the top.  For each N H  bond, the ellipsoidal surface of each 2H -type ellipsoidal 

MO transitions to a 2N p  AO.  The 2N p  shell, the 2N s  shell, the 1N s  shell, and the nuclei (red, not to scale) are shown.  (B) 
Off-center cut-away view showing the complete inner most 1N s  shell, and moving radially, the cross section of the 2N s  shell, 

the 2N p  shell, and the 2H -type ellipsoidal MO that transitions to a 2N p  AO for each N H  bond.  (C)-(E) Color scale, side-

on, top, and bottom translucent views of the charge density of the 3NH  MO, respectively. 

 
 

 
 
Due to the interacting dipoles, hydrogen bonds also form between the nitrogen of ammonia and the hydrogen of water 
molecules.  Water hydrogen bonds to ammonia molecules by interaction along the N HO  or H  bond axis.  As shown in the 
Bond and Dipole Moments section, each N H  bond of ammonia has a bond moment   of 1.30 D corresponding to a N  

component of partial charge of 0.262e , and the O H  bond has a bond moment   of 1.51 D corresponding to a H  partial 
charge  of 0.323e .  The thermodynamic basis of the H bond is the minimization of the Coulombic energy between the 

hydrogen bonded H  of 2H O  and N  of ammonia, limited by the formation of a nascent N H  bond between these atoms that 

destabilizes the initial O H  bond of the water molecule partner.  As in the case of ice, the maximum electrostatic energy of the 
partial charges is calculated for the components along the H-bond axis.  This energy is balanced by the total energy of the 
nascent bond that can form between the N H  atoms of the H bond.  The bond length of the H bond, the internuclear distance 
between the N  and H  of the N H  bond, is calculated using Eq. (16.25) by a similar method as that used to calculate the 
O H  bond distance of ice.  According to the method given in the Geometrical Parameters and Energies of the Hydrogen Bond 

of 2H O  section, the equilibrium distance er  or internuclear bond distance of N H  designated as 2 N H ec r   is determined by 

the condition that the total energy of the nascent 2H -type ellipsoidal MO formed from the atoms of the N H  bond is equal to 

the maximum Coulombic energy between the partial charges of the N  and H  atoms of the H bond. 
The maximum Coulumbic energy corresponds to the minimum separation distance of N  and H  atoms corresponding to 

the alignment along the N H  bond axis.  The corresponding distance from the   of the 2H O  H and the 3NH  N  is the 
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distance 2 N Hc   between the N  and H  nuclei of the N H  bond.  Then, the maximum Coulomb energy  CoulombE H bond  

between the atoms of the N H  bond due to the    on the nitrogen atom with the    centered on the nucleus of hydrogen is: 

  
2

04 2
N H

Coulomb
N H

e
E H bond

c

 


 




 


 (16.68) 

Eq. (16.68) is the energy to be equated to that of the nascent bonds involving the atoms of the H bond. 
For the determination of the H-bond distance, the energy parameters of the nascent N H  bond are the same as those of 

ammonia given in the Ammonia  3NH  section except that any parameter due to matching AO’s,  /TE AO HO  and 

 3, .TE atom atom msp AO , is zero since only the energies of the MO electrons to form the N H  MO are considered.  The 

energy of Eq. (16.68) is multiplied by three to match the total energy of the three N H  bond MOs of ammonia.  The partial 

charges /q e   from Table 16.17 are –0.262 and +0.323, and the reduced mass is 14

15
  .  The parameters are summarized in 

Table 16.22 and Eq. (16.69). 
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Table 16.22.   The energy parameters (eV) of the N H  functional group of the hydrogen bond of the ammonia-water 
molecular dimer. 
 

Parameters N H  
Group

N

 0.262 

H

 0.323 

1n  3 

1C  0.75 

2C  0.93613 

1c  0.75 

2c  1 

1oC  1.5 

2oC  1 

 ( )eV eV  -23.60741 

 ( )pV eV  20.75035 

 ( )T eV  2.17246 

 ( )mV eV  -1.08623 

 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -1.77083 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -1.77083 

 15 10  /rad s  4.44215 

 ( )KE eV  2.92390 

 ( )DE eV  -0.00599 

 ( )KvibE eV  0.021843 

 ( )oscE eV  0.00493 

   ( )GroupTE eV  1.75603 

   ( )GroupTE eV  per N H  0.58534 
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Substitution of the parameters of Table 16.22 into Eq. (16.25) with N HR a   gives: 
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 (16.69) 

From the energy relationship given by Eq. (16.69) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the N H  MO can be solved. 

The most convenient way to solve Eq. (16.69) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 

 
10

05.43333 2.87519  10  N Ha a X m
    (16.70) 

The component energy parameters at this condition are given in Table 16.22.  Substitution of Eq. (16.70) into Eq. (16.22) gives 

 
10

01.96707 1.04093  10  N Hc a X m
    (16.71) 

and internuclear distance of the H bond: 

 
10

02 3.93414 2.08186  10  2.08186 N Hc a X m Å
     (16.72) 

The experimental H bond distance 2 N Hc   in the gas phase is [96, 97]: 

 
102 2.02  10  N HOc X m

   (16.73) 

The other H-bond MO parameters can also be determined by the relationships among the parameters.  Substitution of Eqs. 
(16.70) and (16.71) into Eq. (16.23) gives 

 
10

05.06475 2.68015  10  N H N Hb c a X m
     (16.74) 

Substitution of Eqs. (16.70) and (16.71) into Eq. (16.24) gives: 

 0.36204N He    (16.75) 

The addition of 2 N Hc   (Eq. (16.72)) and 2 O Hc   (Eq. (13.185)) gives the nearest neighbor separation, the internuclear distance 

2 N HOc   between the nitrogen and oxygen atoms of the N H O   bond of the ammonia-water molecular dimer: 

 
10 11

10

2 2 2 2.08186  10  9.71574  10  

3.05343  10  3.05343 

N HO N H O Hc c c X m X m

X m Å

 
  



     

 
 (16.76) 

The addition of the experimental 2 N Hc   (Eq. (16.73)) and 2 O Hc   (Eq. (13.185)) gives the experimental nearest neighbor 

separation 2 N HOc   [96, 89]: 

 
10 11

10

2 2 2 2.02  10  9.70  10  

2.99  10  2.99 

N HO N H O Hc c c X m X m

X m Å

 
  



     

 
 (16.77) 

H-bonded ammonia-water molecular dimer is shown in Figure 16.13 using the color scale charge density of each molecule. 
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Figure 16.13.   Structure of the 3H N H OH   H bond.  The H-bonded ammonia-water vapor molecular dimer using the 

color scale charge density of each 3NH  and 2H O  MO comprising the linear combination of three N H  and two O H -bond 

MOs, respectively. 
 

 
 
 

The energy of forming the dimer in the gas phase is that of the alignment of the ammonia dipole moment in the electric 

field of the H O  water dipole.  Using 
3

301.467 4.89196  10H N D X C m     Eq. (16.18), 

2

30
, 1.51 5.02385  10H O H O D X C m 

     (Table 16.17), and the N H  distance, 
102 2.08186  10  N Hc X m

   (Eq. (16.72)), the 

N H  bond dissociation energy  DE N H  of the ammonia-water molecular dimer is: 

 

 
 

  
 

2

3

,

3

0

30 30

210
0

2

4 2

4.89196  10 5.02385  10
29.48 

4 2.08186  10  

H O H O
D H N

N H

E N H
c

X C m X C m
kJ

X m












 



  


 
 

 (16.78) 

The experimental N H  bond dissociation energy between amino N  and hydroxyl H  is approximately [98] : 

   29 DE N H kJ   (16.79) 

The calculated results based on first principles and given by analytical equations are summarized in Table 16.23. 
 
Table 16.23.   The calculated and experimental geometrical and energy parameters of the H-bonded ammonia-water vapor 
molecular dimer. 
 

Parameter Calculated Experimental Ref. for Exp.

H Bond Length 2 N Hc   2.08186 Å 2.02 Å 96, 97 

Nearest Neighbor Separation Distance 

2 N HOc   
3.05343 Å 2.99 Å 96, 89 

N H    Bond Dissociation Energy 29.48 kJ/mole 29 kJ/mole 98 
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GEOMETRICAL PARAMETERS DUE TO THE INTERPLANE VAN DER WAALS 
COHESIVE ENERGY OF GRAPHITE 
Eq. (16.25) can be applied to other solids such as graphite.  Graphite is an allotrope of carbon that comprises planar sheets of 
covalently bound carbon atoms arranged in hexagonal aromatic rings of a macromolecule of indefinite size.  The structure of 
graphite is shown in Figures 16.14A and B.  The structure shown in Figure 16.14 has been confirmed directly by TEM imaging, 
and the Pi cloud predicted by quantum mechanics has been dispatched [99]. 
 
Figure 16.14.   The structure of graphite. (A) Single plane of macromolecule of indefinite size. (B) Layers of graphitic planes. 
 

(A)  (B) 
 
 
 

 
 
 

 
As given in the Graphite section, the structure of the indefinite network of aromatic hexagons of a sheet of graphite is 

solved using a linear combination of aromatic 
3e

C C  aromatic bonds comprising   0.75 4 3  electrons according to Eq. 

(15.161).  In graphite, the minimum energy structure with equivalent carbon atoms wherein each carbon forms bonds with three 
other such carbons requires a redistribution of charge within an aromatic system of bonds.  Considering that each carbon 
contributes four bonding electrons, the sum of electrons of graphite at a vertex-atom comprises four from the vertex atom plus 
two from each of the two atoms bonded to the vertex atom where the latter also contribute two each to the juxtaposed bond.  
These eight electrons are distributed equivalently over the three bonds of the group such that the electron number assignable to 

each bond is 8

3
.  Thus, the 

  8/3e

C C  functional group of graphite comprises the aromatic bond with the exception that the 

electron-number per bond is 8

3
.  The sheets, in turn, are bound together by weaker intermolecular van der Waals forces.  The 

geometrical and energy parameters of graphite are calculated using Eq. (16.25) with the van der Waals energy equated to the 
nascent bond energy.  

The van der Waals energy is due to mutually induced nonpermanent dipoles in near-neighbor bonds.  Albeit, the 
  8/3e

C C  functional group is symmetrical such that it lacks a permanent dipole moment, a reversible dipole can be induced upon 

van der Waals bonding.  The parameters of the 
  8/3e

C C  functional group are the same as those of the aromatic 
  3e

C C  
functional group, the basis functional group of aromatics, except that the bond order is 8/3 (e.g. 8/3 32 2e e

C C C C
c c

 
  ).  Using Eq. 

(16.15) wherein 2C  of Eq. (15.51) for the aromatic 
3e

C C -bond MO is 

   3 3
2 22 2 0.85252C aromaticC sp HO c aromaticC sp HO   (Eq. (15.162)) and  3, 2Coulomb benzeneE C sp  is 15.95955 eV  (Eq. 

(14.245)),  3,2 14.63489 E C sp eV   (Eq. (14.143)) and 102 1.39140  10  c X m   (Table 15.214), the van der Waals dipole of 

graphite is given in Table 16.24. 
 

Table 16.24.  The parameters and van der Waals dipole bond moment of the 
  8/3e

C C  functional group of graphite. 
 

Functional 
Group 

1n
 

( 1c ) 2c  ( 1C )

2C  

 BE valence

 

 AE valence

 

q

e
 Bond Length 

 2 '  c Å  
Bond Moment 

  (D) 
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  8/3e

C C  

8

3
 

0.85252 1 14.82575 15.95955 0.36101 1.3914 2.41270 

 
The interaction between a dipole in one plane with the nearest neighbor in another plane is zero in the case that the aromatic 
rings of one layer are aligned such that they would superimpose as the interlayer separation goes to zero.  But, the energy of 
interaction is nonzero when one plane is translated relative to a neighboring plane.  A minimum equal-energy is achieved 

throughout the graphite structure when each layer is displaced by 32 e
C C

c

 , the bond length of 

  8/3e

C C , along an intra-planar 2C  

axis relative to the next as shown in Figure 16.14B.  Then, a pair of dipoles exists for each dipole of a given plane with one 
dipole above and one below in neighboring planes such that all planes can be equivalently bound by van der Waals forces.  In 

this case, the distance 
1 2...r   between dipole 1  in one plane and its nearest neighbor 2  above or below on a neighboring and 

32 e
C C

c

 -displaced plane is: 

    3
1 2

2
2

... 2 2e C C
C C

r c c  

    (16.80) 

where 2 C Cc   is the interplane distance.  The alignment angle 
1 2...   between the dipoles is: 

 

   
1 2

1 2
3

1 1
... 2

2...

2 2
sin sin

2 2e

C C C C

C C
C C

c c

r
c c

 
 

   




 
 

 
 (16.81) 

The van der Waals energy is the potential energy between interacting neighboring pairs of 
  8/3e

C C  induced dipoles.  Using Eqs. 

(16.80-16.81), 
  8/3

302.41270 8.04790  10e
C C

D X C m 


    (Table 16.24), and the 

  8/3e

C C  distance, 

  8/3

102 1.39140  10  e
C C

c X m


   (Table 15.214), the van der Waals energy of graphite between two planes at a vertex atom is: 
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4
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2
2
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2

e
C C

van der Waals

C C

C C

C C

E graphite
r
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 (16.82) 

where there are three bonds at each vertex atom. 
The graphite inter-plane distance of 3.5Å [100] is calculated using Eq. (16.25) with the van der Waals energy (Eq. 

(16.82)) between dipoles of two neighboring planes equated to the nascent bond energy.  The energy matching parameter 2c  is 

the same that of the graphite sheet corresponding to the aromatic carbons as given in the Graphite section, and the reduced mass 
is 6  .  The parameters are summarized in Table 16.25 and Eq. (16.83).  
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Table 16.25.  The energy parameters (eV) of the graphite interplanar functional group ( aromatic aromaticC C ). 

 
Parameters 

aromatic aromaticC C  

Group

1n  1 

1C  0.5 

2C  1 

1c  1 

2c  0.85252 

1oC  0.5 

2oC  1 

 ( )eV eV  -4.35014 

 ( )pV eV  4.10093 

 ( )T eV  0.19760 

 ( )mV eV  -0.09880 

 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.15042 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.15042 

 15 10  /rad s  0.800466 

 ( )KE eV  0.52688 

 ( )DE eV  -0.00022 

 ( )KvibE eV  0.00317 

 ( )oscE eV  0.00137 

   ( )GroupTE eV  -0.14905 

 
Substitution of the parameters of Table 16.25 and the interlayer cohesive energy of graphite (Eq. (16.82)) into Eq. (16.25) with 

C CR a   gives: 
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 (16.83) 

From the energy relationship given by Eq. (16.83) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the C C    MO can be solved. 

The most convenient way to solve Eq. (16.83) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 

 
10

011.00740 5.82486  10  C Ca a X m
    (16.84) 

The component energy parameters at this condition are given in Table 16.25.  Substitution of Eq. (16.84) into Eq. (16.22) gives: 

 
10

03.31774 1.75567  10  C Cc a X m
    (16.85) 

and internuclear distance of the graphite interplane bond at vacuum ambient pressure: 

 
10

02 6.63548 3.51134  10  3.51134 C Cc a X m Å
     (16.86) 

The experimental graphite interplane distance 2 C Cc   is [100]: 

 
102 3.5  10  3.5 C Cc X m Å

    (16.87) 

The other interplane bond MO parameters can also be determined by the relationships among the parameters.  Substitution of 
Eqs. (16.84) and (16.85) into Eq. (16.23) gives: 

 
10

010.49550 5.55398  10  C C C Cb c a X m
     (16.88) 

Substitution of Eqs. (16.84) and (16.85) into Eq. (16.25) gives: 

 0.30141C Ce    (16.89) 

Using Eqs. (16.80) and (16.86), the distance 
1 2...r   between dipole 1  on one plane and its nearest neighbor 2  above or below 

on a juxtaposed and 32 e
C C

c

 -displaced plane is: 

 
1 2

10
... 3.77697  10  r X m 

  (16.90) 

Using Eqs. (16.81) and (16.86), the alignment angle 
1 2...   between the dipoles is: 

 
1 2... 68.38365      (16.91) 

Using Eqs. (16.82) and (16.90-91), the van der Waals energy per carbon atom is: 

    / 0.04968 van der WaalsE graphite C eV  (16.92) 

The experimental van der Waals energy per carbon atom is [101]: 

    / 0.052 van der WaalsE graphite C eV  (16.93) 

The calculated results based on first principles and given by analytical equations are summarized in Table 16.26. 
 



Chapter 16 

 

1130

Table 16.26.   The calculated and experimental geometrical parameters and interplane van der Waals cohesive energy of 
graphite. 
 

Parameter Calculated Experimental Ref. for Exp.

Graphite Interplane Distance 2 C Cc   3.51134 Å 3.5 Å 100 

van der Waals Energy per Carbon Atom 0.04968 eV 0.052 eV 101
 

Graphite has a high cohesive energy due to its significant van der Waals dipole bond moment of 2.41270D.  Other 
species such as atoms and molecules having mirror symmetry and consequently no permanent dipole moment also form 
reversible van der Waals dipole bond moments.  Different phases can be achieved according to the extent of the van der Waals 
dipole bonding as the internal energy as a function of temperature and pressure changes analogously to the H-bonded system 
water that can exist as ice, water, and steam.  Thus, the factors in the van der Waals bonding can give rise to numerous material 
behaviors.  In the case of atoms such as noble gas atoms and certain diatomic molecules such as hydrogen, the moments, their 
interaction energies, and the corresponding nascent bond energies are much smaller.  Thus, except at cryogenic temperatures, 
these elements exist as gases, and even at temperatures approaching absolute zero, solidification of helium has not been achieved 
in the absence of high pressure.  This is due to the nature of the induced dipoles and van der Waals phenomena in helium.  Since 
this system is a good example of van der Waals forces in atoms, it will be treated next. 
 
GEOMETRICAL PARAMETERS AND ENERGIES DUE TO THE INTERATOMIC VAN 
DER WAALS COHESIVE ENERGY OF LIQUID HELIUM 
Noble gases such as helium are typically gaseous and comprised of non-interacting atoms having no electric or magnetic 
multipoles.  But, at very low temperatures it is possible to form diffuse diatomic molecules, or alternatively, these gases may be 
condensed with the formation of mutually induced van der Waals dipole interactions.  As a measure of the nascent bond between 
two noble gas atoms used to calculate the limiting separation for condensation, consider that the experimental bond energies of 
diatomic molecules of helium and argon, for example, are only 49.7 meV and 49 meV, respectively [21].  This is a factor of 
about 100 smaller than the bond energy of a carbon-carbon bond that is the form of nascent bond in graphite.  Thus, the 
corresponding energy of the interspecies interaction is smaller and the van der Waals spacing is larger, except wherein the 
nascent bond energy as a function of separation distance mitigates this relationship to some extent.  The nature of the helium 
bonding is solved using the same approach as that of other functional groups given in the Organic Molecular Functional Groups 
and Molecules section. 
Helium is a two-electron neutral atom with both electrons paired as mirror-image current densities in a shell of radius 

00.566987a (Eq. (7.35)).  Thus, in isolation or at sufficient separation, there is no energy between helium atoms.  The absence of 

any force such as so-called long-range London forces having a ; 2nr n   dependency is confirmed by elastic electron scattering 
from helium atoms as shown in the Electron Scattering Equation for the Helium Atom Based on the Atomic Orbital Model 
section.  However, reversible mutual van der Waals dipoles may be induced by collisions when the atoms are in close proximity 
such that helium gas can condense into a liquid.  The physics is similar to the case of graphite except that the dipoles are atomic 
rather than molecular, and in both cases the limiting separation is based on the formation of a nascent bond to replace the dipole-
dipole interaction.  Thus, Eq. (16.25) can also be applied to atoms such as helium. 

The van der Waals bonding in the helium atom involves hybridizing the one 1s  AO into 11s  HO orbitals containing two 
electrons.  The total energy of the state is given by the sum over the two electrons.  The sum  1,1TE He s  of experimental 

energies [15] of He  and He  is: 

  1,1 54.41776 24.587387 

79.005147 

TE He s eV eV

eV

 


 (16.94) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 11s
r  of the 11He s  

shell may be calculated from the Coulombic energy using Eq. (15.13): 

 
   1

2 21

01
0 0 0

( ) 3
0.51664

8 79.005147 8 79.005147 s
n

Z n e e
r a

e eV e eV 


    (16.95) 

where 2Z   for helium.  Using Eq. (15.14), the Coulombic energy  1,1CoulombE He s  of the outer electron of the van der Waals 

bound 11He s  shell is: 

  
1

2 2
1

0 0 01

,1 26.335049 
8 8 0.51664Coulomb

s

e e
E He s eV

r a 
 

     (16.96) 

To meet the equipotential condition of the union of the two 11He s  HOs in a nascent bond, 2c  of Eqs. (15.2-15.5) and Eq. (15.61) 

for the nascent He He -bond MO is given by Eq. (15.75) as the ratio of the valance energy of the He  AO, 

  24.587387 E He eV  and the magnitude of  1,1CoulombE He s  (Eq. (16.96)): 
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  1
2

24.587387 
, 1 0.93364

26.33505 

eV
c He He He s HO

eV
    (16.97) 

The opposite charge distributions act as symmetrical point charges at the point of maximum separation, each being centered at 

1/2 the He -atom radius from the origin.  Using the parameters of Eq. (16.97) and 
11

02 0.51664 2.73395  10  c a X m    (Eq. 

(16.95)), the van der Waals dipole of helium is given in Table 16.27. 
 
Table 16.27.   The parameters and van der Waals dipole bond moment of the He  functional group of liquid helium. 
 

Functional 
Group 

1n  ( 1c ) 2c  ( 1C ) 2C   BE valence   AE valence  q

e
 Bond  

Length 

 2 '  c Å  

Bond 
Moment 
  (D) 

He  1 0.93364 1 24.587387 26.33505 0.13744 0.273395 0.18049 
 
As in the case with graphite, the van der Waals energy is the potential energy between interacting neighboring induced 

dipoles.  Using 
310.18049 6.02040  10He D X C m     (Table 16.27), the van der Waals energy is: 

    
 

 22 31

  3 3

0 ... 0
0

1 2

2 6.02040  102
2

4
4 2

2

He
van der Waals

He He He He

X C m
E He

r a a
C C










 
 

 
   

  
  
  

 (16.98) 

where there are two bonds at each vertex atom. 
The helium interatomic distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.98)) between 

neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  is the same as that of the helium 

dipole, and the reduced mass is 2  .  The parameters are summarized in Table 16.28 and Eq. (16.99).  
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Table 16.28.   The energy parameters (eV) of the helium functional group ( He He ). 
 

Parameters He He  
Group

1n  1 

1C  0.5 

2C  0.93364
-1
 

1c  1 

2c  0.93364 

1oC  0.5 

2oC  0.93364
-1
 

 ( )eV eV  -3.96489 

 ( )pV eV  3.88560 

 ( )T eV  0.15095 

 ( )mV eV  -0.07548 

 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.00382 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.00382 

 15 10  /rad s  0.635696 

 ( )KE eV  0.41843 

 ( )DE eV  0.00000 

 ( )KvibE eV  0.00443 

 ( )oscE eV  0.00221 

   ( )GroupTE eV  -0.00160 
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Substitution of the parameters of Table 16.28 and the interatomic cohesive energy of helium (Eq. (16.98)) into Eq. (16.25) with 

He HeR a   gives: 
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 (16.99) 

From the energy relationship given by Eq. (16.99) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the He He  MO can be solved. 

The most convenient way to solve Eq. (16.99) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 

 
10

013.13271 6.94953  10  He Hea a X m
    (16.100) 

The component energy parameters at this condition are given in Table 16.28.  Substitution of Eq. (16.100) into Eq. (16.22) gives 

 
10

03.50160 1.85297  10  He Hec a X m
    (16.101) 

and internuclear distance between neighboring helium atoms: 

 
10

02 7.00320 3.70593  10  3.70593 He Hec a X m Å
     (16.102) 

The experimental helium interatomic distance 2 C Cc   at 4.24K and <2.25 K are [102]: 

 
 
 

10

10

2 4.24 3.72  10  3.72 

2 2.25 3.70  10  3.70 

He He

He He

c K X m Å

c K X m Å







  

   
 (16.103) 

The other interatomic bond MO parameters can also be determined by the relationships among the parameters.  Substitution of 
Eqs. (16.100) and (16.101) into Eq. (16.23) gives 

 
10

012.65729 6.69795  10  He He He Heb c a X m
     (16.104) 

Substitution of Eqs. (16.100) and (16.101) into Eq. (16.25) gives: 

 0.26663He Hee    (16.105) 

Using Eqs. (16.99) and (16.102) and the relationship that there are two van der Waals bonds per helium atom and two atoms per 
bond, the van der Waals energy per helium atom is: 

     / 0.000799 van der WaalsE liquid He He eV  (16.106) 

The experimental van der Waals energy calculated from the heat of vaporization per helium atom is [103]: 

    ,4.221 0.0829 / 0.000859 /van der Waals vapor KE liquid He E kJ mole eV He    (16.107) 

At 1.7 K, the viscosity of liquid helium is close to zero, and a characteristic roton scattering dominates over phonon scattering at 
this temperature and below [104].  The van der Waals bond energy is also equivalent to the roton energy [105, 106] 

   8.7 0.00075 rotonE liquid He K eV   (16.108) 

and the roton is localized within a region of radius 3.7 4.0   Å [104, 106-108] that matches the He He  van der Waals bond 
distance (Eq. (16.102)).  The origin of the roton energy and its cross section as belonging to the van der Waals bond resolves its 
nature.  Independent of this result, the modern view of the roton is that it is not considered associated with the excitation of 
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vorticity as it was historically; rather it is considered to be due to short-wavelength phonon excitations [105].  Its role in 
scattering free electrons in superfluid helium is discussed in the Free Electrons in Superfluid Helium are Real in the Absence of 
Measurement Requiring a Connection of   to Physical Reality section.  The calculated results based on first principles and 
given by analytical equations are summarized in Table 16.29. 
 

Table 16.29.   The calculated and experimental geometrical parameters and interatomic van der Waals cohesive energy of 
liquid helium. 
 

Parameter Calculated Experimental Ref. for Exp.

Liquid Helium Interatomic Distance 2 C Cc   3.70593 Å 
3.72 Å (T=4.24 K) 

3.70 (T<2.25K) 
102 

Roton Length Scale 3.70593 Å 3.7-4.0 Å 104, 106-108
van der Waals Energy per Helium Atom 
(4.221 K) 

0.000799 eV 0.000859 eV 103 

Roton Energy 0.000799 eV 0.00075 eV 105, 106
 

Helium exhibits unique behavior due to its possible phases based on the interplay of the factors that determine the van der 
Waals bonding at a given temperature and pressure to achieve an energy minimum.  In extreme cases of sufficient ultra-low 
temperatures with the atoms driven in phase with an external excitation field such that the formation of a van der Waals-dipole-
bound macromolecular state or other forms of bonding, such as metallic bonding in the case of alkali metals or van der Waals 
bonding in meta-stable helium atoms, are suppressed, a pure statistical thermodynamic state called a Bose-Einstein condensate 
[109] (BEC)1 can form having a predominant population of the atoms in a single, lowest-energy translational state in the trap. 
Since helium has only two electrons in an outer s-shell having a small diameter, the dipole moment is too weak to form 
transverse dipoles associated with packing.  Specifically, with the angular dependence of packed dipoles interactions, the van der 

Waals energy    van der WaalsE He  (Eqs. (16.98) and (16.99)) between neighboring dipoles becomes less than the vibrational energy 

in the transition state ( KvibE  term of Eq. (16.99) from Eq. (15.53)).  Consequently, helium can only mutually induce and form 

linear dipole-dipole bonds having end-to-end interactions as an energy minimum.  Interposed atoms can form a non-bonded 
phase having correlated translational motion and obeying Bose-Einstein statistics.  This phase forms a Bose-Einstein condensate 
(BEC) as an energy minimum wherein the translations are synchronous.  Since a phase comprised of linearly ordered unit cells 
held together by dipole interactions, specifically van der Waals dipole interactions, can exist with a BEC phase, super-fluidity 
can arise wherein the lines of bound dipoles move without friction relative to the BEC phase having correlated-translational 
motion.  The linear bonding is also the origin of quantized vortex rings that enter as quantized vortex lines to form rings. 

The van der Waals bonds undergo breakage and formation and exist on a time-average basis depending on the internal 
energy and pressure as in the case of liquid water.  The van der Waals bonding exhibits a maximum extent as the temperature is 
lowered below the boiling point, and the BEC phase comprises the balance of the atoms as the temperature is further lowered to 
absolute zero.  Helium cannot form a solid without application of high pressure to decrease the interatomic separation and permit 
energetically favorable transverse dipole interactions as well as linear ones.  In contrast, other noble gases such as Ne , Ar, Kr
, and Xe each possess additional shells including an outer p-shell having a relatively larger radius that gives rise to a significant 
bond moment supportive of dipole packing interactions; thus, these gases can form solids without the application of high 
pressure. 
 
GEOMETRICAL PARAMETERS AND ENERGIES DUE TO THE INTERATOMIC VAN 
DER WAALS COHESIVE ENERGY OF SOLID NEON 
Neon is a ten-electron neutral atom having the electron configuration 

2 2 61 2 2s s p  with the electrons of each shell paired as mirror-

image current densities in a shell wherein the radius of the outer shell is 10 00.63659r a  (Eq. (10.202)).  Thus, in isolation or at 

sufficient separation, there is no energy between neon atoms.  However, reversible mutual van der Waals dipoles may be induced 
by collisions when the atoms are in close proximity such that neon gas can condense into a liquid and further solidify at 
sufficiently low temperatures due to the strong dipole moment that accommodates close packing.  As in the case of helium, the 
dipoles are atomic rather than molecular, and the limiting separation is based on the formation of a nascent bond to replace the 
dipole-dipole interaction.  Thus, Eq. (16.25) can also be applied to neon atoms. 

 
1 The BEC is incorrectly interpreted as a single large atom having a corresponding probability wave function of quantum mechanics.  Since excitation 

occurs in units of  in order of to conserve angular momentum as shown previously for electronic (Chapter 2), vibrational (Chapter 11), rotational 
(Chapter 12), and translational excitation (Chapter 3) and Bose-Einstein statistics arise from an underlying deterministic physics (Chapter 24), this state 
comprised of an ensemble of individual atoms is predicted classically using known equations [110].  As in the case of the coherent state of photons in a 
laser cavity (Chapter 4), the coherency of the BEC actually disproves the inherent Heisenberg Uncertainty Principle (HUP) of quantum mechanics since 
the atomic positions and energies are precisely determined simultaneously.  Furthermore, it is possible to form a BEC comprising molecules in addition to 
atoms [111] wherein the molecules lack zero-order vibration in contradiction to the HUP.  The classical physics underlying Bose-Einstein statistics was 
covered in the Statistical Mechanics section. 
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The van der Waals bonding in the neon atom involves hybridizing the three 2 p  AOs into 
32p  HO orbitals containing 

six electrons.  The total energy of the state is given by the sum over the six electrons.  The sum  3, 2TE Ne p  of experimental 

energies [15] of Ne , Ne , 2N e  , 3Ne  , 4N e  , and 5N e   is 

  3 157.93 126.21 97.12 
,2 507.2375 

63.45 40.96296 21.56454 T

eV eV eV
E Ne p eV

eV eV eV

  
     

 (16.109) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 32 p
r  of the 

32Ne p  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 29

02
4 0 0

( ) 21
0.56329

8 507.2375 8 507.2375 p
n

Z n e e
r a

e eV e eV 


    (16.110) 

where 10Z   for neon.  Using Eq. (15.14), the Coulombic energy  3, 2CoulombE Ne p  of the outer electron of the van der Waals 

bound 
32Ne p  shell is: 

  
3

2 2
3

0 0 02

, 2 24.154167 
8 8 0.56329Coulomb

p

e e
E Ne p eV

r a 
 

     (16.111) 

To meet the equipotential condition of the union of the two 
32Ne p  HOs in a nascent bond, 2c  of Eqs. (15.2-15.5) and Eq. 

(15.61) for the nascent Ne Ne -bond MO is given by Eq. (15.75) as the ratio of the valance energy of the Ne  AO, 

  21.56454 E Ne eV  and the magnitude of  3, 2CoulombE Ne p  (Eq. (16.111)). 

  3
2

21.56454 
, 2 0.89279

24.154167 

eV
c Ne Ne Ne p HO

eV
    (16.112) 

The opposite charge distributions act as symmetrical point charges at the point of maximum separation, each being centered at 

1/2 the Ne -atom radius from the origin.  Using the parameters of Eq. (16.112) and 
11

02 0.56329 2.98080  10  c a X m    (Eq. 

(16.110)), the van der Waals dipole of neon is given in Table 16.30. 
 
Table 16.30.   The parameters and van der Waals dipole bond moment of the Ne  functional group of solid neon. 
 

Functional 
Group 

1n  ( 1c ) 2c  ( 1C ) 2C   BE valence   AE valence  q

e
 Bond  

Length 

 2 '  c Å  

Bond 
Moment 
  (D) 

Ne  1 0.89279 1 21.56454 24.15417 0.22730 0.298080 0.32544 
 

The minimum-energy packing of neon dipoles is face-centered cubic also called cubic close packing.  In this case, each 

neon atom has 12 nearest neighbors and the angle between the aligned dipoles is 
4

  radians.  As in the case with graphite, the 

van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 
300.32544 1.08554  10Ne D X C m     (Table 16.30), the van der Waals energy is: 

    
 

 22 30

  3 3

0 ... 0
0

1 2

24 1.08554  102
12 cos cos

4 44
4 2

2

Ne
van der Waals

Ne Ne Ne Ne

X C m
E Ne

r a a
C C

  








 
 

          
     

  
  

 (16.113) 

The neon interatomic distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.113)) between 

neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  is the same as that of the neon 

dipole, and the reduced mass is 10  .  The parameters are summarized in Table 16.31 and Eq. (16.114).  
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Table 16.31.   The energy parameters (eV) of the neon functional group ( Ne Ne ). 
 

Parameters Ne Ne  
Group

1n  1 

1C  0.5 

2C  0.89279
-1
 

1c  1 

2c  0.89279 

1oC  0.5 

2oC  0.89279
-1
 

 ( )eV eV  -4.40464 

 ( )pV eV  4.27694 

 ( )T eV  0.19429 

 ( )mV eV  -0.09714 

 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.03055 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.03055 

 15 10  /rad s  0.810674 

 ( )KE eV  0.53360 

 ( )DE eV  -0.00004 

 ( )KvibE eV  0.00240 

 ( )oscE eV  0.00116 

   ( )GroupTE eV  -0.02939 

 



Applications: Pharmaceuticals, Specialty Molecular Functional Groups and Molecules,  
Dipole Moments and Interactions 

 

1137

Substitution of the parameters of Table 16.31 and the interatomic cohesive energy of neon (Eq. (16.113)) into Eq. (16.25) with 

Ne NeR a   gives: 
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 (16.114)  

From the energy relationship given by Eq. (16.114) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the Ne Ne  MO can be solved. 

The most convenient way to solve Eq. (16.114) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is:  

 
10

011.33530 5.99838  10  Ne Nea a X m
    (16.115) 

The component energy parameters at this condition are given in Table 16.31.  Substitution of Eq. (16.115) into Eq. (16.22) gives 

 
10

03.18120 1.68342  10  Ne Nec a X m
    (16.116) 

and internuclear distance between neighboring neon atoms: 

 
10

02 6.36239 3.36683  10  3.36683 Ne Nec a X m Å
     (16.117) 

The experimental neon interatomic distance 2 C Cc   at the melting point of 24.48 K is [112, 113]: 

   102 24.48 3.21  10  3.21 Ne Nec K X m Å
    (16.118) 

The other interatomic bond MO parameters can also be determined by the relationships among the parameters.  Substitution of 
Eqs. (16.115) and (16.116) into Eq. (16.23) gives: 

 
10

010.87975 5.75732  10  Ne Ne Ne Neb c a X m
     (16.119) 

Substitution of Eqs. (16.115) and (16.116) into Eq. (16.25) gives: 

 0.28065Ne Nee    (16.120) 

A convenient method to calculate the lattice energy is to determine the electric field in solid neon having an electric 
polarization density corresponding to the aligned dipoles moments, and in turn, the energy can be calculated from the energy of 
each dipole in the corresponding field using the electrostatic form of Gauss’ equation.  Substitution of the density of solid neon 

at the melting point 
6 3

1.433 

1  10  

g

X m
   [113], the 20.179 /MW g mole , 

236.0221415  10  /AN X molecules mole , and the neon 

dipole moment given in Table 16.30 into Eq. (16.53) gives: 

  
   

 

6 3230 232  

0 0

1.433 
1  10  2 1.08554  10 6.0221415  10  /2

20.179 /
3 3

0.02368  2.285 /

solid Ne
Ne A

g
X mX C m X molecules moleN

g moleMWU Ne

eV kJ mole



 


 

 

  

 (16.121) 

 U Ne  is also the negative of   van der WaalsE , the van der Waals energy per neon atom: 
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     / 0.02368 2.285 /van der WaalsE solid Ne Ne eV kJ mole   (16.122) 

The experimental van der Waals energy calculated from the heat of vaporization and fusion per neon atom at the boiling point 
and triple point, respectively, is [103] : 

     0.02125 / 2.0502 /van der Waals vapor fusionE solid Ne E E eV Ne kJ mole     (16.123) 

The calculated results based on first principles and given by analytical equations are summarized in Table 16.32.  Using neon the 
atomic radius (Eq. (16.110)) and the nearest-neighbor distance (Eq. (16.117)), the lattice structure of neon is shown in Figure 
16.17A.  The charge density of the van der Waals dipoles of the crystalline lattice is shown in Figure 16.18A. 
 
Table 16.32.   The calculated and experimental geometrical parameters and interatomic van der Waals cohesive energy of 
solid neon. 
 

Parameter Calculated Experimental Ref. for Exp.

Solid Neon Interatomic Distance 2 C Cc   3.36683 Å 3.21 Å (T=24.48 K) 113 

van der Waals Energy per Neon Atom 0.02368 eV 0.02125 eV 103
 
GEOMETRICAL PARAMETERS AND ENERGIES DUE TO THE INTERATOMIC VAN 
DER WAALS COHESIVE ENERGY OF SOLID ARGON 
Argon is an eighteen-electron neutral atom having the electron configuration 

2 2 6 2 61 2 2 3 3s s p s p  with the electrons of each shell 

paired as mirror-image current densities in a shell wherein the radius of the outer shell is 18 00.86680r a  (Eq. (10.386)).  Thus, in 

isolation or at sufficient separation, there is no energy between argon atoms.  However, reversible mutual van der Waals dipoles 
may be induced by collisions when the atoms are in close proximity such that argon gas can condense into a liquid and further 
solidify at sufficiently low temperatures due to the strong dipole moment that accommodates close packing.  As in the case of 
helium, the dipoles are atomic rather than molecular, and the limiting separation is based on the formation of a nascent bond to 
replace the dipole-dipole interaction.  Thus, Eq. (16.25) can also be applied to argon atoms. 

The van der Waals bonding in the argon atom involves hybridizing the three 3p  AOs into 
33p  HO orbitals containing six 

electrons.  The total energy of the state is given by the sum over the six electrons.  The sum  3,3TE Ar p  of experimental 

energies [15] of Ar, Ar  , 2Ar  , 3Ar  , 4Ar  , and 5Ar   is: 

  3 91.009 75.02 59.81 
,3 309.96827 

40.74 27.62966 15.75961 T

eV eV eV
E Ar p eV

eV eV eV

  
     

 (16.124) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 33 p
r  of the 

33Ar p  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3
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0.92178
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Z n e e
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e eV e eV 


    (16.125) 

where 18Z   for argon.  Using Eq. (15.14), the Coulombic energy  3,3CoulombE Ar p  of the outer electron of the van der Waals 

bound 
33Ar p  shell is 

  
3

2 2
3

0 0 03

,3 14.760394 
8 8 0.92178Coulomb

p

e e
E Ar p eV

r a 
 

     (16.126) 

To meet the equipotential condition of the union of the two 
33Ar p  HOs in a nascent bond, 2c  of Eqs. (15.2-15.5) and Eq. 

(15.61) for the nascent Ar Ar -bond MO is given by Eq. (15.75) as the ratio of the valance energy of the Ar AO, 

  15.75961 E Ar eV  and the magnitude of  3,3CoulombE Ar p  (Eq. (16.126)). 

  3
2

14.760394 
, 3 0.93660

15.75961 

eV
c Ar Ar Ar p HO

eV
    (16.127) 

Since the outer 
33Ar p  HO shell is at a lower energy and greater radius than the non-polarized 3p  shell, the inner shells are 

polarized as well.  The dipole of the outer shell can polarize the inner shells to the limit that the sum of the primary and 
secondary dipoles is twice the primary scaled by the energy matching factors of the van der Waals bond given in Eq. (16.15).  
Thus, the limiting dipole due to polarization of the inner shells is given by: 

 
       1 11 11

1 2

30

2 2 ' 2 0.93660 0.13110 0.93660 4.87784  10  

                           2.49410  10 0.74771 

Ar c qC c e X m

X C m D

   



 

  
 (16.128) 
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The condition of Eq. (16.128) is matched by the participation of the outer four shells as given in Table 16.33.  At each shell, 
opposite charge distributions act as symmetrical point charges at the point of maximum separation, each being centered at 1/2 the 

shell radius from the origin.  Using the parameters of Eq. (16.127) and 
11

02 0.92178 4.87784  10  c a X m    (Eq. (16.125)) as 

well as the radii of the inner shells of argon (Table 10.17), the van der Waals dipole of argon is given in Table 16.33 as the sum 
of the moments of each participating shell.  
 
Table 16.33.   The parameters and van der Waals dipole bond moment of the Ar functional group of solid argon. 
 

Functional 
Group 

1n
 

( 1c ) 

2c  

( 1C ) 

2C  

 BE valence

 

 AE valence

 

q

e
 Bond  

Length  2 '  c Å  
Bond 

Moment 
  (D) 

Ar 1 0.93660 1 14.76039 15.75961 0.13110 

33Ar p  HO 0.48778 
3Ar s  AO 0.41422 
2Ar p  AO 0.15282 
2Ar s  AO 0.12615 

0.74366 

 
The minimum-energy packing of argon dipoles is face-centered cubic also called cubic close packing.  In this case, each 

argon atom has 12 nearest neighbors and the angle between the aligned dipoles is 
4

  radians.  As in the case with graphite, the 

van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 
300.74366 2.48058  10Ar D X C m     (Table 16.33), the van der Waals energy is: 

    
 

 22 30

  3 3

0 ... ... 0
0

1 2

24 2.48058  102
12 cos cos

4 44
4 2

2

Ar
van der Waals

Ar Ar Ar Ar

X C m
E Ar

r a a
C C

  




              
     

 (16.129) 

The argon interatomic distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.129)) between 

neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  is the same as that of the argon 

dipole, and the reduced mass is 20  .  The parameters are summarized in Table 16.34 and Eq. (16.130).  
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Table 16.34.   The energy parameters (eV) of the argon functional group ( Ar Ar ). 
Parameters Ar Ar Group

1n  1 

1C  0.5 

2C  0.93660
-1
 

1c  1 

2c  0.93660 

1oC  0.5 

2oC  0.93660
-1
 

 ( )eV eV  -4.18356 

 ( )pV eV  3.97600 

 ( )T eV  0.16731 

 ( )mV eV  -0.08365 

 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.12391 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.12391 

 15 10  /rad s  0.683262 

 ( )KE eV  0.44974 

 ( )DE eV  -0.00016 

 ( )KvibE eV  0.00153 

 ( )oscE eV  0.00060 

   ( )GroupTE eV  -0.12331 

 
Substitution of the parameters of Table 16.34 and the interatomic cohesive energy of argon (Eq. (16.129)) into Eq. (16.25) with 

...Ar ArR a  gives: 
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 (16.130) 

From the energy relationship given by Eq. (16.130) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the Ar Ar  MO can be solved. 

The most convenient way to solve Eq. (16.130) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is:  

 
10

... 012.50271 6.61615  10  Ar Ara a X m   (16.131) 

The component energy parameters at this condition are given in Table 16.34.  Substitution of Eq. (16.131) into Eq. (16.22) gives 

 
10

03.42199 1.81084  10  Ar Arc a X m
    (16.132) 

and internuclear distance between neighboring argon atoms: 

   10
02 0 6.84397 3.62167  10  3.62167 Ar Arc K a X m Å

     (16.133) 

The experimental argon interatomic distance 2 C Cc   is [114] 

   102 4.2 3.71   10  3.71  Ar Arc K X m Å
    (16.134) 

The other interatomic bond MO parameters can also be determined by the relationships among the parameters.  Substitution of 
Eqs. (16.131) and (16.132) into Eq. (16.23) gives: 

 
10

... ... 012.02530 6.36351  10  Ar Ar Ar Arb c a X m    (16.135) 

Substitution of Eqs. (16.131) and (16.132) into Eq. (16.25) gives: 

 ... 0.27370Ar Are   (16.136) 

A convenient method to calculate the lattice energy is to determine the electric field in solid argon having an electric 
polarization density corresponding to the aligned dipoles moments, and in turn, the energy can be calculated from the energy of 
each dipole in the corresponding field using the electrostatic form of Gauss’ equation.  Substitution of the density of solid argon 

at 4.2 K 
6 3

1.83 

1  10  

g

X m
   [114], the 39.948 /MW g mole , 

236.0221415  10  /AN X molecules mole , and the argon dipole 

moment given in Table 16.33 into Eq. (16.53) gives: 

 

 
 

 

 

2  

0

6 3230 23

0

2

3

1.83 
1  10  2 2.48058  10 6.0221415  10  /

39.948 /
3

0.07977  7.697 /

solid Ar
Ar AN

MWU Ar

g
X mX C m X molecules mole

g mole

eV kJ mole













 


  

 (16.137) 

 U Ar  is also the negative of   van der WaalsE , the van der Waals energy per argon atom: 
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     ,4.2 / 0.07977 7.697 /van der WaalsE solid Ar K Ar eV kJ mole   (16.138) 

The experimental van der Waals energy is the cohesive energy [115]: 

     ,0 0.08022 / 7.74 /van der WaalsE solid Ar K eV Ar kJ mole   (16.139) 

The calculated results based on first principles and given by analytical equations are summarized in Table 16.35. Using argon the 
atomic radius (Eq. (16.125)) and the nearest-neighbor distance (Eq. (16.133)), the lattice structure of argon is shown in Figure 
16.17B.  The charge density of the van der Waals dipoles of the crystalline lattice is shown in Figure 16.18B. 
 
Table 16.35.   The calculated and experimental geometrical parameters and interatomic van der Waals cohesive energy of 
solid argon. 
 

Parameter Calculated Experimental Ref. for Exp.

Solid Argon Interatomic Distance 2 C Cc   3.62167 Å (T=0 K) 3.71 Å (T=4.2 K) 114 

van der Waals Energy per Argon Atom 0.07977 eV (T=4.2 K) 0.08022 eV (T=0 K) 115
 
GEOMETRICAL PARAMETERS AND ENERGIES DUE TO THE INTERATOMIC VAN 
DER WAALS COHESIVE ENERGY OF SOLID KRYPTON 
Krypton is a thirty-six-electron neutral atom having the electron configuration 

2 2 6 2 6 10 2 61 2 2 3 3 3 4 4s s p s p d s p  with the electrons 

of each shell paired as mirror-image current densities in a shell wherein the radius of the outer shell is 36 00.97187r a  (Eq. 

(10.102)).  Thus, in isolation or at sufficient separation, there is no energy between krypton atoms.  However, reversible mutual 
van der Waals dipoles may be induced by collisions when the atoms are in close proximity such that krypton gas can condense 
into a liquid and further solidify at sufficiently low temperatures due to the strong dipole moment that accommodates close 
packing.  As in the case of helium, the dipoles are atomic rather than molecular, and the limiting separation is based on the 
formation of a nascent bond to replace the dipole-dipole interaction.  Thus, Eq. (16.25) can also be applied to krypton atoms. 

The van der Waals bonding in the krypton atom involves hybridizing the three 4 p  AOs into 
34p  HO orbitals 

containing six electrons.  The total energy of the state is given by the sum over the six electrons.  The sum  3, 4TE Kr p  of 

experimental energies [15, 116-119] of Kr , Kr  , 2Kr  , 3Kr  , 4Kr  , and 5Kr   is: 

  3 78.5 64.7 52.5 
,4 271.00945 

36.950 24.35984 13.99961 T

eV eV eV
E Kr p eV

eV eV eV

  
     

 (16.140) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 34 p
r  of the 

34Kr p  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 235

04
30 0 0

( ) 21
1.05429

8 271.00945 8 271.00945 p
n

Z n e e
r a

e eV e eV 


    (16.141) 

where 36Z   for krypton.  Using Eq. (15.14), the Coulombic energy  3, 4CoulombE Kr p  of the outer electron of the van der 

Waals bound 
34Kr p  shell is: 

  
3

2 2
3

0 0 04

, 4 12.905212 
8 8 1.05429Coulomb

p

e e
E Kr p eV

r a 
 

     (16.142) 

To meet the equipotential condition of the union of the two 
34Kr p  HOs in a nascent bond, 2c  of Eqs. (15.2-15.5) and Eq. 

(15.61) for the nascent Kr Kr -bond MO is given by Eq. (15.75) as the ratio of the valance energy of the Kr  AO, 

  13.99961 E Kr eV  and the magnitude of  3, 4CoulombE Kr p  (Eq. (16.142)). 

  3
2

12.905212 
, 4 0.92183

13.99961 

eV
c Kr Kr Kr p HO

eV
    (16.143) 

Since the outer 
34Kr p  HO shell is at a lower energy and greater radius than the non-polarized 4 p  shell, the inner shells are 

polarized as well.  The dipole of the outer shell can polarize the inner shells to the limit that the sum of the primary and 
secondary dipoles is twice the primary scaled by the energy matching factors of the van der Waals bond given in Eq. (16.15).  
Thus, the limiting dipole due to polarization of the inner shells is given by: 

 
     11 11

1 2

30

2 2 ' 2 0.16298 0.92183 5.57905  10  

                          3.42870  10 1.02790 

Kr c qC c e X m

X C m D

  



 

  
 (16.144) 

The condition of Eq. (16.144) is matched by the participation of the outer three shells as given in Table 16.36.  At each shell, 
opposite charge distributions act as symmetrical point charges at the point of maximum separation, each being centered at 1/2 the 
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shell radius from the origin.  Using the parameters of Eq. (16.143) and 
11

02 1.05429 5.57905  10  c a X m    (Eq. (16.141)) as 

well as the radii of the inner shells of krypton (Eq. (10.102)), the van der Waals dipole of krypton is given in Table 16.36 as the 
sum of the moments of each participating shell.  
 
Table 16.36.   The parameters and van der Waals dipole bond moment of the Kr  functional group (FG) of solid krypton.  
 

FG 
1n

 

( 1c ) 

2c  

( 1C ) 

2C  

 BE valence   AE valence  q

e
 / /Ion IP Z  

[116-119] 
Bond  

Length 

 2 '  c Å  

(Eqs. (16.141) 
and (10.102)) 

Bond 
Moment 
  (D) 

Kr
 

1 0.92183 1 12.90521 13.99961 0.16298  
 
 
6Kr   

111.0 
7 
 
8Kr   

231.5 
9 

34Kr p  HO 
0.55790 

 
4Kr s AO 

0.45405 
 
 

3Kr d  AO 
0.27991 

1.01129 

 
The minimum-energy packing of krypton dipoles is face-centered cubic also called cubic close packing.  In this case, 

each krypton atom has 12 nearest neighbors and the angle between the aligned dipoles is 
4

  radians.  As in the case with 

graphite, the van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 
301.01129 3.37329  10Kr D X C m     (Table 16.36), the van der Waals energy is: 

    
 

 22 30

  3 3

0 ... ... 0
0

1 2

24 3.37329  102
12 cos cos

4 44
4 2

2

Kr
van der Waals

Kr Kr Kr Kr

X C m
E Kr

r a a
C C

  




              
     

 (16.145) 

The krypton interatomic distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.145)) between 

neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  is the same as that of the krypton 

dipole, and the reduced mass is 42  .  The parameters are summarized in Table 16.37 and Eq. (16.146).  
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Table 16.37.   The energy parameters (eV) of the krypton functional group ( Kr Kr ). 

Parameters Kr Kr  
Group

1n  1 

1C  0.5 

2C  0.92183 

1c  1 

2c  0.92183 

1oC  0.5 

2oC  0.92183 

 ( )eV eV  -3.75058 

 ( )pV eV  3.52342 

 ( )T eV  0.13643 

 ( )mV eV  -0.06821 

 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.15895 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.15895 

 15 10  /rad s  0.550731 

 ( )KE eV  0.36250 

 ( )DE eV  -0.00019 

 ( )KvibE eV  0.00091 

 ( )oscE eV  0.00026 

   ( )GroupTE eV  -0.15869 
 
Substitution of the parameters of Table 16.37 and the interatomic cohesive energy of krypton (Eq. (16.145)) into Eq. (16.25) 

with ...Kr KrR a  gives: 
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2 0.5 0.921831

2 42

                    

o Kr Kr

e

e

o Kr Kr Kr Kr
o Kr Kr

e

a

m

m c

e e

a a a
a








 
   

 
 
 

 
 
 
 
 

 
 
  
  
  
  
    
  
 
 
 
 
    

  





 (16.146)  

From the energy relationship given by Eq. (16.146) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the Kr Kr  MO can be solved. 

The most convenient way to solve Eq. (16.146) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is:  

 
10

013.74580 7.27396  10  Kr Kra a X m
    (16.147) 

The component energy parameters at this condition are given in Table 16.37.  Substitution of Eq. (16.147) into Eq. (16.22) gives 

 
10

03.86154 2.04344  10  Kr Krc a X m
    (16.148) 

and internuclear distance between neighboring krypton atoms: 

   10
02 0 7.72308 4.08688  10  4.08688 Kr Krc K a X m Å

     (16.149) 

The experimental krypton interatomic distance 2 C Cc   is [113] 

   102 0 3.992   10  3.992  Kr Krc K X m Å
    (16.150) 

The other interatomic bond MO parameters can also be determined by the relationships among the parameters.  Substitution of 
Eqs. (16.147) and (16.148) into Eq. (16.23) gives: 

 
10

013.19225 6.98104  10  Kr Kr Kr Krb c a X m
     (16.151) 

Substitution of Eqs. (16.147) and (16.148) into Eq. (16.25) gives: 

 0.28092Kr Kre    (16.152) 

A convenient method to calculate the lattice energy is to determine the electric field in solid krypton having an electric 
polarization density corresponding to the aligned dipoles moments, and in turn, the energy can be calculated from the energy of 
each dipole in the corresponding field using the electrostatic form of Gauss’ equation.  Substitution of the density of solid 

krypton at 4.2 K 
6 3

3.094 

1  10  

g

X m
   [113], the 83.80 /MW g mole , 

236.0221415  10  /AN X molecules mole , and the krypton 

dipole moment given in Table 16.36 into Eq. (16.53) gives: 

 

 
 

 

 

2  

0

6 3230 23

0

2

3

3.094 
1  10  2 3.37329  10 6.0221415  10  /

83.80 /
3

0.11890  11.472 /

solid Kr
Kr AN

MWU Kr

g
X mX C m X molecules mole

g mole

eV kJ mole













 


  

 (16.153) 

[  U Kr ] is also the negative of   van der WaalsE , the van der Waals energy per krypton atom: 
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     ,0 / 0.11890 11.472 /van der WaalsE solid Kr K Kr eV kJ mole   (16.154) 

The experimental van der Waals energy is the cohesive energy [120]: 

     ,0 / 0.11561 11.15454 /van der WaalsE solid Kr K Kr eV kJ mole   (16.155) 

The calculated results based on first principles and given by analytical equations (0 K) are summarized in Table 16.38.  Using 
krypton the atomic radius (Eq. (16.141)) and the nearest-neighbor distance (Eq. (16.149)), the lattice structure of krypton is 
shown in Figure 16.15C.  The charge density of the van der Waals dipoles of the crystalline lattice is shown in Figure 16.16C. 
 
Table 16.38.   The calculated and experimental geometrical parameters and interatomic van der Waals cohesive energy (0 K) 
of solid krypton. 
 

Parameter Calculated Experimental Ref. for Exp.

Solid Krypton Interatomic Distance 2 C Cc  4.08688 Å 3.992 Å 113 

van der Waals Energy per Krypton Atom 0.11890 eV 0.11561 eV 120
 
GEOMETRICAL PARAMETERS AND ENERGIES DUE TO THE INTERATOMIC VAN 
DER WAALS COHESIVE ENERGY OF SOLID XENON 
Xenon is a fifty-four-electron neutral atom having the electron configuration 

2 2 6 2 6 10 2 6 10 2 61 2 2 3 3 3 4 4 4 5 5s s p s p d s p d s p  with the 

electrons of each shell paired as mirror-image current densities in a shell wherein the radius of the outer shell is 54 01.12168r a  

(Eq. (10.102)).  Thus, in isolation or at sufficient separation, there is no energy between xenon atoms.  However, reversible 
mutual van der Waals dipoles may be induced by collisions when the atoms are in close proximity such that xenon gas can 
condense into a liquid and further solidify at sufficiently low temperatures due to the strong dipole moment that accommodates 
close packing.  As in the case of helium, the dipoles are atomic rather than molecular, and the limiting separation is based on the 
formation of a nascent bond to replace the dipole-dipole interaction.  Thus, Eq. (16.25) can also be applied to xenon atoms. 

The van der Waals bonding in the xenon atom involves hybridizing the three 5p  AOs into 
35p  HO orbitals containing 

six electrons.  The total energy of the state is given by the sum over the six electrons.  The sum  3,5TE Xe p  of experimental 

energies [15, 121-122] of Xe, Xe , 2X e  , 3Xe  , 4X e  , and 5Xe   is: 

  3 66.703 54.14 40.9 
,5 225.89784 

31.050 20.975 12.129842 T

eV eV eV
E Xe p eV

eV eV eV

  
     

 (16.156) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 35 p
r  of the 

35Xe p  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 253

05
48 0 0

( ) 21
1.26483

8 225.897842 8 225.897842 p
n

Z n e e
r a

e eV e eV 


    (16.157) 

where 54Z   for xenon.  Using Eq. (15.14), the Coulombic energy  3,5CoulombE Xe p  of the outer electron of the van der Waals 

bound 
35Xe p  shell is: 

  
3

2 2
3

0 0 05

,5 10.757040 
8 8 1.26483Coulomb

p

e e
E Xe p eV

r a 
 

     (16.158) 

To meet the equipotential condition of the union of the two 
35Xe p  HOs in a nascent bond, 2c  of Eqs. (15.2-15.5) and Eq. 

(15.61) for the nascent Xe Xe -bond MO is given by Eq. (15.75) as the ratio of the valance energy of the Xe AO, 

  12.129842 E Xe eV   and the magnitude of  3,5CoulombE Xe p  (Eq. (16.158)). 

  3
2

10.75704 
, 5 0.88682

12.129842 

eV
c Xe Xe Xe p HO

eV
    (16.159) 

Since the outer 
35Xe p  HO shell is at a lower energy and greater radius than the non-polarized 5p  shell, the inner shells are 

polarized as well.  The dipole of the outer shell can polarize the inner shells to the limit that the sum of the primary and 
secondary dipoles is twice the primary scaled by the energy matching factors of the van der Waals bond given in Eq. (16.15).  
Thus, the limiting dipole due to polarization of the inner shells is given by: 
     1 11 30

1 22 2 ' 2 0.24079 0.88682 6.69318  10  5.16444  10 1.54826 Xe c qC c e X m X C m D         (16.160) 

The condition of Eq. (16.160) is matched by the participation of the outer two shells as given in Table 16.39.  At each shell, 
opposite charge distributions act as symmetrical point charges at the point of maximum separation, each being centered at 1/2 the 

shell radius from the origin.  Using the parameters of Eq. (16.159) and 
11

02 1.26483 6.69318  10  c a X m    (Eq. (16.157)) as 
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well as the radius of the inner 5s  shell of xenon (Eq. (10.102)), the van der Waals dipole of xenon is given in Table 16.39 as the 
sum of the moments of each participating shell.  
 
Table 16.39.   The parameters and van der Waals dipole bond moment of the Xe functional group (FG) of solid xenon.  
 

FG 
1n

 

( 1c ) 

2c  

( 1C ) 

2C  

 BE valence   AE valence  q

e
 / /Ion IP Z  

[121-122] 
Bond Length 

 2 '  c Å  

(Eqs. (16.157) 
and (10.102)) 

Bond 
Moment 
  (D) 

Xe 1 0.88682 1 10.75704 12.12984 0.24079  
 
 
6Xe   

91.6 
7

35Xe p  HO 

0.66932 
 

5Xe s AO 
0.55021 

1.41050 

 

 
The minimum-energy packing of xenon dipoles is face-centered cubic also called cubic close packing.  In this case, each 

xenon atom has 12 nearest neighbors and the angle between the aligned dipoles is 
4

  radians.  As in the case with graphite, the 

van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 
301.41050 4.70492  10Xe D X C m     (Table 16.39), the van der Waals energy is: 

    
 

 22 30

  3 3

0 ... ... 0
0

1 2

24 4.70492  102
12 cos cos

4 44
4 2

2

Xe
van der Waals

Xe Xe Xe Xe

X C m
E Xe

r a a

C C

  




              
     

 (16.161) 

The xenon interatomic distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.161)) between 

neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  is the same that of the xenon 

dipole, and the reduced mass is 65  .  The parameters are summarized in Table 16.40 and Eq. (16.162).  
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Table 16.40.   The energy parameters (eV) of the xenon functional group ( Xe Xe ). 
 

Parameters Xe Xe  Group 

1n  1 

1C  0.5 

2C  0.88682 

1c  1 

2c  1 

1oC  0.5 

2oC  0.88682 

 ( )eV eV  -3.49612 

 ( )pV eV  3.20821 

 ( )T eV  0.10960 

 ( )mV eV  -0.05480 
 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.23311 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.23311 

 15 10  /rad s  0.432164 

 ( )KE eV  0.28446 

 ( )DE eV  -0.00025 

 ( )KvibE eV  0.00062 

 ( )oscE eV  0.00006 

   ( )GroupTE eV  -0.23305 

 
 
Substitution of the parameters of Table 16.40 and the interatomic cohesive energy of xenon (Eq. (16.161)) into Eq. (16.25) with 

...Xe XeR a  gives: 
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 (16.162)  

From the energy relationship given by Eq. (16.162) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the Xe Xe  MO can be solved. 

The most convenient way to solve Eq. (16.162) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 

 
10

015.94999 8.44037  10  Xe Xea a X m
    (16.163) 

The component energy parameters at this condition are given in Table 16.40.  Substitution of Eq. (16.163) into Eq. (16.22) gives 

 
10

04.24093 2.24420  10  Xe Xec a X m
    (16.164) 

and internuclear distance between neighboring xenon atoms: 

   10
02 0 8.48187 4.48841  10  4.48841 Xe Xec K a X m Å

     (16.165) 

The experimental xenon interatomic distance 2 C Cc   at the melting point of 161.35 K is [112, 113]: 

   102 161.35 4.492   10  4.492  Xe Xec K X m Å
    (16.166) 

The other interatomic bond MO parameters can also be determined by the relationships among the parameters.  Substitution of 
Eqs. (16.163) and (16.164) into Eq. (16.23) gives: 

 
10

015.37585 8.13655  10  Xe Xe Xe Xeb c a X m
     (16.167) 

Substitution of Eqs. (16.163) and (16.164) into Eq. (16.25) gives: 

 0.26589Xe Xee    (16.168) 

A convenient method to calculate the lattice energy is to determine the electric field in solid xenon having an electric 
polarization density corresponding to the aligned dipoles moments, and in turn, the energy can be calculated from the energy of 
each dipole in the corresponding field using the electrostatic form of Gauss’ equation.  Substitution of the density of solid xenon 

at 0 K 
6 3

3.780 

1  10  

g

X m
   [113], the 131.29 /MW g mole , 

236.0221415  10  /AN X molecules mole , and the xenon dipole 

moment given in Table 16.39 into Eq. (16.53) gives: 

 

 
 

 

 

2  

0

6 3230 23

0

2

3

3.780 
1  10  2 4.70492  10 6.0221415  10  /

131.29 /
3

0.18037  17.403 /
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Xe AN

MWU Xe

g
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eV kJ mole













 


  

 (16.169) 
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 U Xe  is also the negative of   van der WaalsE , the van der Waals energy per xenon atom: 

     ,0 / 0.18037 17.403 /van der WaalsE solid Xe K Xe eV kJ mole   (16.170) 

The experimental van der Waals energy is the cohesive energy [123]: 

     ,0 0.16608 / 16.02472 /van der WaalsE solid Xe K eV Xe kJ mole   (16.171) 

The calculated results based on first principles and given by analytical equations are summarized in Table 16.41.  Using xenon 
the atomic radius (Eq. (16.157)) and the nearest-neighbor distance (Eq. (16.165)), the lattice structure of xenon is shown in 
Figure 16.15D.  The charge density of the van der Waals dipoles of the crystalline lattice is shown in Figure 16.16D. 
 
Table 16.41.   The calculated and experimental geometrical parameters and interatomic van der Waals cohesive energy of 
solid xenon. 
 

Parameter Calculated Experimental Ref. for Exp.

Solid Xenon Interatomic Distance 2 C Cc   4.4884 Å (T=0 K) 4.492 Å (T=161.35K) 113 

van der Waals Energy per Xenon Atom 
(0 K) 

0.18037 eV 0.16608 eV 123 

 
Figure 16.15.   The face-centered cubic crystal structures of noble gas condensates, all to the same scale.  (A) The crystal 
structure of neon.  (B) The crystal structure of argon.  (C) The crystal structure of krypton.  (D) The crystal structure of xenon. 
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Figure 16.16.   The charge densities of the van der Waals dipoles and face-centered cubic crystal structures of noble gas 
condensates, all to the same scale.  (A) The charge density and crystal structure of neon.  (B) The charge density and crystal 
structure of argon.  (C) The charge density and crystal structure of krypton.  (D) The charge density and crystal structure of 
xenon. 
 

 
 

GEOMETRICAL PARAMETERS AND ENERGIES DUE TO THE INTERMOLECULAR 
VAN DER WAALS COHESIVE ENERGIES OF H2 DIMER, SOLID H2, H2(1/p) DIMER, 
AND SOLID H2(1/p) 
Molecular hydrogen and molecular hydrino are typically gaseous molecules having no net electric field.  But, at very low 
temperatures it is possible to form diffuse dimers, or alternatively, these gases may be condensed with the formation of mutually 
induced van der Waals dipole interactions. The nature of the van der Waals bonding of molecular hydrogen and molecular 
hydrino is solved using the same approach as that of condensed helium atoms, except analogously with the comparison of 
isoelectronic helium and H2 excited states, the prolate spherical coordinate equations replace the spherical coordinate equations 
of the two-electron system. 

Molecular hydrogen and molecular hydrino are each a two-electron neutral molecule with both electrons paired as 
mirror-image current densities in a prolate spheroidal shell of semimajor and minor axes given by Eqs. (11.202) and (11.205), 
respectively.  Thus, in isolation or at sufficient separation, there is no energy between hydrogen-type molecules.  However, 
reversible mutual van der Waals dipoles may be induced by collisions when the atoms are in close proximity such that hydrogen-
type gas can condense into dimers, liquid, and solid states depending on the temperature and pressure.  The limiting separation of 
the corresponding van der Waals bonding between molecular dipoles is based on the formation of a nascent bond to replace the 
dipole-dipole interaction.  Thus, the isoelectronic helium case of general van der Waals Eq. (16.25) given by Eq. (16.99) also 
applies to hydrogen-type molecules.  Based on symmetry, the molecules at aligned along their semimajor axes, the induces 
charges act the position of the nuclei at the foci, and the dipole separation is in the direction of the semimajor axes given by the 
internuclear distance (Eq. (11.204)). 

The van der Waals bonding in the hydrogen-type molecules involves hybridizing the1s molecular orbitals (MO) into a 
11s hybridized molecular orbital (HMO) containing two electrons.  The total energy of the state is given by the sum over the two 

electrons given by Eq. (11.241).  The sum   1
2 1 / ,1TE H p s  is: 

 
2 331.351 0.326469 TE p eV p eV   (16.172)  
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The HMO electron energy is equally distributed to each equivalent electron to give the Coulombic energy   1
2 1/ ,1CoulombE H p s  

of the outer electron of the van der Waals bound   1
2 1/ 1H p s  shell: 

   
2 3

1
2

2 3

31.351 0.326469 
1 / ,1

2

15.6755 0.16323 

Coulomb

p eV p eV
E H p s

p eV p eV

 


  

 (16.173)  

To meet the equipotential condition of the union of the two   1
2 1/ 1H p s  HOs in a nascent bond, 2c  of Eqs. (15.2-15.5) and Eq. 

(15.61) for the nascent    2 21/ 1/H p H p -bond MO is given by Eq. (15.75) as the ratio of the valance energy of the  2 1/H p  

MO,   
1

2 3
2 1/ 15.2171 0.207714 IPE H p p eV p eV  given by Eq. (11. 244) and the magnitude of   1

2 1/ ,1CoulombE H p s  (Eq. 

(16.173)): 

       
2 3

1
2 2 2 2 2 3

15.2171 0.207714 
1/ 1/ , 1/ 1

15.6755 0.16323 

p eV p eV
c H p H p H p s HMO

p eV p eV


 


 (16.174)  

The opposite charge distributions act as point charges at the foci, the position of the nuclei such that the separation distance is the 
internuclear distance given by Eq. (11.204). 

The van der Waals dipole of  2 1/H p is calculated by the same method as that of helium using the parameters of Eq. 

(16.174) and 0 2
2 '

a
c

p
  (Eq. (11.204)).  As in the case with helium, the van der Waals energy is the potential energy between 

interacting neighboring induced dipoles.  Using the van der Waals dipole of  2 1/H p , the van der Waals energy for a hydrogen 

type dimer is: 

      
    

2

2 2

2

1/

  2 3

0 1/ ... 1/

2
1 /

4

H p

van der Waals

H p H p

E H p
r




  (16.175)  

The dimer interatomic distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.175)) between 
neighboring dipoles equated to the nascent bond energy.  From the energy relationship given by Eq. (16.25) and the relationships 

between the axes given by Eqs. (16.22-16.24), the dimensions of the    2 21/ 1/H p H p  MO can be solved. 

 

PARAMETERS AND ENERGIES DUE TO THE INTERMOLECULAR VAN DER WAALS COHESIVE 
ENERGIES OF H2 DIMER 

In the case of 2H , 1p   such that the parameter 2c  is given by  

  
2 3

1
2 2 2 2 2 3

115.2171 1 0.207714 
, 1 0.9739

115.6755 1 0.16323 

eV eV
c H H H s HMO

eV eV


  


 (16.176)  

Using the parameters of Eq. (16.176) and 02 ' 2c a  (Eq. (11.204)), the van der Waals dipole of 2H is given in Table 16.42. 

 

Table 16.42.   The parameters and van der Waals dipole bond moment of the 2H  functional group of hydrogen dimer. 

 
Functional 

Group 1n
 

( 1c ) 2c  ( 1C ) 2C   BE valence
 

 AE valence
 

q

e
 

Bond 
Length 

 2 '  c Å

Bond 
Moment 
  (D) 

2H  1 0.9739 1 15.4248 15.83901 0.05300 0.748369 0.19053
 

The van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 

2

316.30.19053   105524H D X C m    (Table 16.42), the van der Waals energy is: 

    
 

 
2

2 2 2 2

2 231

  2 3 3

0 0
0

1 2

6.35522 2   10

4
4

4

2
2

H

van der Waals

H H H H

X C m
E H

r a a

C C








 


 

 
  
 

 (16.177)  
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The hydrogen dimer intermolecular distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.177)) 

between neighboring dipoles equated to the nascent bond energy. The energy matching parameter 2c  of 2 2H H  is the same as 

that of the 2H  dipole, and the reduced mass is 1  . The parameters are summarized in Table 16.43 and Eq. (16.178).  

 

Table 16.43.   The energy parameters (eV) of the hydrogen dimer functional group ( 2 2H H ). 

 
Parameters 

2 2H H  

Group

1n  1 

1C  0.5 

2C  0.97385
-1

 

1c  1 

2c  0.97385 

1oC  0.5 

2oC  0.97385
-1

 

 ( )eV eV  -3.64208

 ( )pV eV  3.57387
 ( )T eV  0.12236

 ( )mV eV  -0.06118
 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.00703

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.00703

 15 10  /rad s  0.515948 

 ( )KE eV  0.33961 

 ( )DE eV  0.00001 

 ( )KvibE eV  0.00028 

 ( )oscE eV  -0.00013 

   ( )GroupTE eV  -0.00069 

 
Substitution of the parameters of Table 16.43 and the interatomic cohesive energy of hydrogen dimer (Eq. (16.177)) into Eq. 

(16.25) with 
2 2H HR a   gives: 
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 (16.178)  

wherein  0.05300  is /q e  the induced charge from Table 16.42.  From the energy relationship given by Eq. (16.178) and the 

relationships between the axes given by Eqs. (16.22-16.24), the dimensions of the 2 2H H  MO can be solved. 

The most convenient way to solve Eq. (16.178) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 
 

2 2

10
0  2  114.88 60 7.87553 0  H Ha a X m

    (16.179)  

The component energy parameters at this condition are given in Table 16.43.  Substitution of Eq. (16.179) into Eq. (16.22) gives 
 

2 2

10
0   3.80702 2.0145 109  H Hc a X m

    (16.180)  

and internuclear distance between neighboring 2H  nuclei: 

 
2 2

10
0 22 7.61404 4.0 918 4  91 80  .02 1 H Hc a X m Å

     (16.181)  

The other intermolecular bond MO parameters can also be determined by the relationships among the parameters.  Substitution 
of Eqs. (16.179) and (16.180) into Eq. (16.23) gives 
 

2 2 2 2

10
014.387 6  .  10  44 7 1350H H H Hb c a X m

     (16.182)  

Substitution of Eqs. (16.179) and (16.180) into Eq. (16.25) gives: 
 

2 2
0.25580H He    (16.183)  

Using Eqs. (16.177) and (16.181), the van der Waals energy of the hydrogen dimer is: 
    1

  2 2[ ]  5.0.00069 59 van der WaalsE H eV cm  (16.184)  

The experimental 0D is shown in Figure of Ref. [124], [125]  is: 

 1
0 5.6 D cm  (16.185)  

From Table 16.43, the hydrogen dimer vibrational energy ( )KvibE eV  that matches the experimental dimer spectrum [126] is  

  1 ( ) 0.00028 2.3 KvibE eV eV cm  (16.186)  

 

PARAMETERS AND ENERGIES DUE TO THE INTERMOLECULAR VAN DER WAALS COHESIVE 
ENERGIES OF SOLID H2 

The minimum-energy packing of 2H  dipoles is face-centered cubic also called cubic close packing.  In this case, each 2H  

molecule has 12 nearest neighbors and the angle between the aligned dipoles is 
4

  radians.  As in the case with hydrogen dimer, 

the van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 

2

316.30.19053   105524H D X C m     (Table 16.42), the van der Waals energy is: 
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 (16.187)  

The hydrogen dimer intermolecular distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.187)) 

between neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  of 2 2H H  is the same as 

that of the 2H  dipole, and the reduced mass is 1  .  The parameters are summarized in Table 16.44 and Eq. (16.188).  

 

Table 16.44.   The energy parameters (eV) of the solid hydrogen functional group ( 2 2H H ). 

 

Parameters 2 2H H  

Group

1n  1 

1C  0.5 

2C  0.97385
-1

 

1c  1 

2c  0.97385 

1oC  0.5 

2oC  0.97385
-1

 

 ( )eV eV  -3.63998
 ( )pV eV  3.57286

 ( )T eV  0.12222

 ( )mV eV  -0.06111
 /  ( )AO HOE eV  0

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.00601

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.00601

 15 10  /rad s  0.515511 

 ( )KE eV  0.33932 

 ( )DE eV  0.00001 

 ( )KvibE eV  0.00028 

 ( )oscE eV  -0.00013 

   ( )GroupTE eV  -0.00587 

 

Substitution of the parameters of Table 16.43 and the interatomic cohesive energy of solid hydrogen (Eq. (16.187)) into Eq. 
(16.25) with 

2 2H HR a   gives: 
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 (16.188)  
wherein  0.05300  is /q e  the induced charge from Table 16.42.  From the energy relationship given by Eq. (16.188) and the 

relationships between the axes given by Eqs. (16.22-16.24), the dimensions of the 2 2H H  MO can be solved. 

The most convenient way to solve Eq. (16.188) is by the reiterative technique using a computer.  The result to within the 

round-off error with five-significant figures is: 
 

2 2

10
0  1  114.89 00 7.87998 0  H Ha a X m

    (16.189)  

The component energy parameters at this condition are given in Table 16.44.  Substitution of Eq. (16.189) into Eq. (16.22) gives 
 

2 2

10
0   3.80810 2.0151 106  H Hc a X m

    (16.190)  

and internuclear distance between neighboring 2H  nuclei: 

 
2 2

10
0 32 7.61619 4.0 031 4  01 10  .03 3 H Hc a X m Å

     (16.191)  

The other intermolecular bond MO parameters can also be determined by the relationships among the parameters.  Substitution 

of Eqs. (16.189) and (16.190) into Eq. (16.23) gives 
 

2 2 2 2

10
014.395 6  .  10  84 7 1795H H H Hb c a X m

     (16.192)  

Substitution of Eqs. (16.189) and (16.190) into Eq. (16.25) gives: 
 

2 2
0.25573H He    (16.193)  

A convenient method to calculate the lattice energy is to determine the electric field in solid molecular hydrogen having an 

electric polarization density corresponding to the aligned dipoles moments, and in turn, the energy can be calculated from the 

energy of each dipole in the corresponding field using the electrostatic form of Gauss’ equation.  Substitution of the density of 

solid hydrogen 
6 3

0.086 

1  10  

g

X m
   [127], the 2.016 /MW g mole , 236.0221415  10  /AN X molecules mole , and the 2H  dipole 

moment given in Table 16.42 into Eq. (16.53) gives: 
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 (16.194)  

 2U H is also the negative of   van der WaalsE , the van der Waals energy per 2H  molecule: 

    2 2 / 0.00488 0.470 /van der WaalsE solid H H eV kJ mole   (16.195)  

The experimental van der Waals energy calculated from the heat of vaporization and fusion per hydrogen molecule [128] is 

 

   2

0.44936 0 .05868

0

 

/  /

 /.50804

van der Waals vapor fusionE solid H E E

kJ mole kJ mole

kJ mole

 

 


 (16.196)  

 

PARAMETERS AND ENERGIES DUE TO THE INTERMOLECULAR VAN DER WAALS COHESIVE 
ENERGIES OF H2(1/4) DIMER 

In the case of 2H , 4p   such that the parameter 2c  is given by  

 
      

2 3
1

2 2 2 2 2 3

4 15.2171 4 0.207714 
1/ 4 1/ 4 , 1/ 4 1

4 15.6755 4 0.16323 
0.9828

eV eV
c H H H s HMO

eV eV


 




 (16.197)  

Using the parameters of Eq. (16.197) and 0

2
2 '

4
c a  (Eq. (11.204)), the van der Waals dipole of  2 1/ 4H is given in Table 

16.45. 
 
Table 16.45.   The parameters and van der Waals dipole bond moment of the  2 1/ 4H  functional group of hydrogen dimer. 

 
Functional 

Group 1n
 

( 1c )

2c  

( 1C )

2C  

 BE valence
 

 AE valence
 

q

e
 

Bond 
Length 

 2 '  c Å

Bond 
Moment 
  (D) 

 2 1/ 4H  1 0.9828 1 256.767 261.255 0.03466 0.187092 0.03114

 
The van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 

 2

31
1/4 0.03114 1 8  .038 105 H D X C m    (Table 16.45), the van der Waals energy is: 

      
    

 
   

2

2 22 2

2 231
1/4

  2 3 3

00 1/4 1/41/4 1/4
0

1 2

1.0
1

38852 2   10
/ 4

4
4 2

2

H

van der Waals

H HH H

X C m
E H

a ar

C C











 

 
 
 
 

 (16.198)  

The molecular hydrino dimer intermolecular distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. 

(16.198)) between neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  of 

   2 21/ 4 1/ 4H H  is the same as that of the  2 1/ 4H  dipole, and the reduced mass is 1  . The parameters are summarized 

in Table 16.46 and Eq. (16.199).  
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Table 16.46.   The energy parameters (eV) of the hydrogen dimer functional group (    2 21/ 4 1/ 4H H ). 

 
Parameters    2 21/ 4 1/ 4H H  

Group

1n  1 

1C  0.5 

2C  0.9828
-1

 

1c  1 

2c  0.9828 

1oC  0.5 

2oC  0.9828
-1

 

 ( )eV eV  -56.96364
 ( )pV eV  56.03381

 ( )T eV  1.85462

 ( )mV eV  -0.92731
 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.00253

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.00253

 15 10  /rad s  7.83940

 ( )KE eV  5.16003

 ( )DE eV  0.00001

 ( )KvibE eV  0.00285

 ( )oscE eV  -0.00141

   ( )GroupTE eV  -0.00111
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Substitution of the parameters of Table 16.46 and the interatomic cohesive energy of hydrogen dimer (Eq. (16.198)) into Eq. 
(16.25) with    2 21/4 1/4H HR a   gives: 
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   (16.199)  

wherein  0.03466  is /q e  the induced charge from Table 16.45.  From the energy relationship given by Eq. (16.199) and the 

relationships between the axes given by Eqs. (16.22-16.24), the dimensions of the    2 21/ 4 1/ 4H H  MO can be solved. 

The most convenient way to solve Eq. (16.199) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 
    2 2 2

10
01/4 1/4 3.  3  10839 1 2 3.0 168H Ha a X m

    (16.200)  

The component energy parameters at this condition are given in Table 16.46.  Substitution of Eq. (16.200) into Eq. (16.22) gives 
    2 2 2

11
01/4 1/4 0.  2  1971 6 5.13967 0H Hc a X m


    (16.201)  

and internuclear distance between neighboring 2H  nuclei: 

    2 2 2

10
01/4 1/4 1.94251 1.02793 12    .10  02793H Hc a X m Å


     (16.202)  

The other intermolecular bond MO parameters can also be determined by the relationships among the parameters.  Substitution 
of Eqs. (16.200) and (16.201) into Eq. (16.23) gives 
        2 2 2 22 2

10
01/4 1/4 1/4 1/4 3.71443 1.9   106559H H H Hb c a X m

     (16.203)  

Substitution of Eqs. (16.200) and (16.201) into Eq. (16.25) gives: 
    2 2 2

1/4 1/4 0.25298H He    (16.204)  

Using Eqs. (16.198) and (16.202), the van der Waals energy of the hydrogen dimer is: 
     1

  2 2 0.0014 11 8.9 9[ 1 / ]  1van der WaalsE H eV cm  (16.205)  

 

PARAMETERS AND ENERGIES DUE TO THE INTERMOLECULAR VAN DER WAALS COHESIVE 
ENERGIES OF SOLID H2(1/4) 
The minimum-energy packing of  2 1/ 4H  dipoles is face-centered cubic also called cubic close packing.  In this case, each 

 2 1/ 4H  molecule has 12 nearest neighbors and the angle between the aligned dipoles is 
4

 radians.  As in the case with 

 2 1/ 4H  dimer, the van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 

 2

31
1/4 0.03114 1 8  .038 105 H D X C m     (Table 16.45), the van der Waals energy is: 
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 (16.206)  

The hydrogen dimer intermolecular distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.206)) 

between neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  of    2 21/ 4 1/ 4H H  is 

the same as that of the  2 1/ 4H  dipole, and the reduced mass is 1  .  The parameters are summarized in Table 16.47 and Eq. 

(16.207).  
 
Table 16.47.   The energy parameters (eV) of the solid hydrogen functional group (    2 21/ 4 1/ 4H H ). 

 
Parameters    2 21/ 4 1/ 4H H  

Group

1n  1 

1C  0.5 

2C  0.9828
-1

 

1c  1 

2c  0.9828 

1oC  0.5 

2oC  0.9828
-1

 

 ( )eV eV  -56.98072
 ( )pV eV  56.04202

 ( )T eV  1.85572

 ( )mV eV  -0.92786
 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.01084

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.01084

 15 10  /rad s  7.84284

 ( )KE eV  5.16229

 ( )DE eV  0.00005

 ( )KvibE eV  0.00285

 ( )oscE eV  -0.00138

   ( )GroupTE eV  -0.00946
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Substitution of the parameters of Table 16.47 and the interatomic cohesive energy of solid hydrogen (Eq. (16.206)) into Eq. 
(16.25) with    2 21/4 1/4H HR a   gives: 
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   (16.207)  

wherein  0.03466  is /q e  the induced charge from Table 16.42.  From the energy relationship given by Eq. (16.207) and the 

relationships between the axes given by Eqs. (16.22-16.24), the dimensions of the    2 21/ 4 1/ 4H H  MO can be solved. 

The most convenient way to solve Eq. (16.207) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 
    2 2

10
01/4 1/4 3.  9  108381 2 3.0 108H Ha a X m

    (16.208)  

The component energy parameters at this condition are given in Table 16.47.  Substitution of Eq. (16.208) into Eq. (16.22) gives 
    2 2 2

11
01/4 1/4 0.  1  1971 1 5.13891 0H Hc a X m


    (16.209)  

and internuclear distance between neighboring  nuclei: 

    2 2

10
01/4 1/42 11.94223 .0277  8 1.0 277810  H Hc a X m Å


     (16.210)  

The other intermolecular bond MO parameters can also be determined by the relationships among the parameters.  Substitution 
of Eqs. (16.208) and (16.209) into Eq. (16.23) gives 
        2 2 2 22 2

10
01/4 1/4 1/4 1/4 3.71330 1.9   106499H H H Hb c a X m

     (16.211)  

Substitution of Eqs. (16.208) and (16.209) into Eq. (16.25) gives: 
    2 2 2

1/4 1/4 0.25301H He    (16.212)  

A convenient method to calculate the lattice energy is to determine the electric field in solid molecular hydrogen having an 
electric polarization density corresponding to the aligned dipoles moments, and in turn, the energy can be calculated from the 
energy of each dipole in the corresponding field using the electrostatic form of Gauss’ equation.  The  2 1/ 4H  number density 

of solid  2 1/ 4H N  is given by the 4, the number of  2 1/ 4H  molecules per unit cell divided by the volume of the face centered 

cubic cell.  Using the neighbor internuclear distance    2 21/4 1/42 H Hc 
  (Eq. (16.210)) as the length of the unit cell, N  can be 

approximated by 

 

      
 

2 2

1

330
3 30

1/4 1 4

2

/

3.684 1/ 4
1.  027

4 4
 10  

  18 02 7
H H

N X
X

H m
mc
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Substitution of number density of solid  2 1/ 4H N  given by Eq. (16.213) and the  dipole moment given in Table 

16.45 into Eq. (16.53) gives: 

H
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H
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 (16.214)  

  2 1/ 4U H is also the negative of   van der WaalsE , the van der Waals energy per  2 1/ 4H  molecule: 

         2 2 0.01869 1. 1/ 4 / 1/ 4   /803van der WaalsE solid H H eV kJ mole  (16.215)  

 
PARAMETERS AND MAGNETIC ENERGIES DUE TO THE SPIN MAGNETIC MOMENT OF H2(1/4) 
Molecular hydrino  2 1/H p  comprises (i) two electrons bound in a minimum energy, equipotential, prolate spheroidal, two-

dimensional current membrane comprising a molecular orbital (MO), (ii) two 1Z   nuclei such as two protons at the foci of the 
prolate spheroid, and (iii) a photon wherein the photon equation of each state is different from that of an excited H2 state given in 
the Excited States of the Hydrogen Molecule section, in that the photon increases the central field by an integer rather than 
decreasing the central prolate spheroidal field to that of a reciprocal integer of the fundamental charge at each nucleus centered 
on the foci of the spheroid, and the electrons of  2 1/H p  are paired in the same shell at the same position   versus being in 

separate   positions.  The interaction of the hydrino state photon electric field with each electron gives rise to a nonradiative 
radial monopole such that the state is stable.  In contrast, by the same mechanism, the excited H2 state photon gives rise to a 
radiative radial dipole at the outer excited state electron resulting in the state being unstable to radiation.  For exited states, the 
photon electric field comprises a prolate spheroidal harmonic in space and time that modulates the constant prolate spheroidal 
current of the outer electron in-phase.  The former corresponds to orbital angular momentum and the latter corresponds to spin 
angular momentum.  Due to the unique stable state of molecular hydrino comprising two nonradiative electrons in a single MO, 
the nature of the trapped photon field, the nature of the vector photon propagation inside the molecular hydrino serving as a 
resonator cavity, and the nature of the electron currents are unique.  

Consider the formation of a nonradiative state H2 molecule from two non-radiative 1n   state H atoms requiring the 
bond energy to be removed by a third body collision: 

 2 *H H M H M     (16.216a) 

wherein *M  denotes the third body in an energetic state2.  Molecular hydrino may form by the same nonradiative mechanism 
wherein, hydrino atoms and hydrino molecules comprise an additional photon component of the central field that is nonradiative 
by virtue of being equivalent to an integer multiple of the central field of a proton at the origin and at each focus of the prolate 
spheroid MO, respectively.  The combination of two electrons into a single molecular orbital while maintaining the radiationless 
integer photonic central field gives rise to the special case of a doublet MO state in molecular hydrino rather than a singlet state.  

The singlet state is nonmagnetic; whereas, the doublet state has a net magnetic moment of a Bohr magneton B . 

Specifically, the basis element of the current of each hydrogen-type atom is a great circle as shown in the Generation of 
the Atomic Orbital-CVFS section, and the great circle current basis elements transition to elliptic current basis elements in 
hydrogen-type molecules as shown in the Force Balance of Hydrogen-Type Molecules section.  As shown in the Equation of the 
Electric Field inside the Atomic Orbital section, (i) photons carry electric field and comprise closed field line loops, (ii) a 
hydrino or a molecular hydrino each comprises a trapped photon wherein the photon field-line loops each travel along a mated 
great circle or elliptic current loop basis element in the same vector direction, (iii) the direction of each field line increases in the 
direction perpendicular to the propagation direction with relative motion as required by special relativity, and (iv) since the linear 
velocity of each point along a field line loop of a trapped photon is light speed c, the electric field direction relative to the 

laboratory frame is purely perpendicular to its mated current loop and it exists only at  nr r  .  The paired electrons of the 

hydrogen molecular orbital comprise a singlet state having no net magnetic moment.  However, the photon field lines of two 

 

2 The hydrino molecule comprises two hydrogen isotope nuclei and two electrons in a single molecular orbital (MO).  Uniquely the MO comprises a 

paired and unpaired electron (Parameters and Magnetic Energies Due to the Spin Magnetic Moment of H2(1/4) section).  To conserve spin angular 

momentum during the formation of a bond between two hydrino atoms, the bond energy must be released as a neutrino such as an electron neutrino of spin 

½ that serves the function of the third body of *M  Eq. (16.216a): 
      21 / 1 / 1 /

e
H p H p H p     (16.216b)  

Specifically, a neutrino comprises a photon having 
2

  angular momentum in its electric and magnetic fields (Neutrinos section).  During the reaction of Eq. 

(16.216b), the angular momentum of the reactants is conserved in the products wherein each of the two reacting hydrino atoms are electron spin ½, and the 
product molecular hydrino and electron neutrino are also each spin ½.  The neutrino emission reaction (Eq. (16.216b)) may be exploited for 
communication (e.g. a neutrino telecommunication system). 
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hydrino atoms that superimpose during the formation of a molecular hydrino can only propagate in one direction to avoid 
cancellation and give rise to a central field to provide force balance between the centrifugal and central forces (Eq. (11.200)).  
This special case gives rise to a doublet state in molecular hydrino. 

The MO may be treated as a linear combination of the great ellipses that comprise the current density function of each 
electron as given in the Generation of the Orbitsphere-CVFS section and the Force Balance of Hydrogen-Type Molecules 
section.  To meet the boundary conditions that each corresponding photon is matched in direction with each electron current and 
that the electron angular momentum is  are satisfied, one half of electron 1 and one half of electron 2 may be spin up and 
matched with the two photons of the two electrons on the MO, and the other half of electron 1 may be spin up and the other half 
of electron 2 may be spin down such that one half of the currents are paired and one half of the currents are unpaired.  Thus, the 

spin of the MO is  1

2
    where each arrow designates the spin vector of one electron.  The two photons that bind the two 

electrons in the molecular hydrino state are phase-locked to the electron currents and circulate in opposite directions.  Given the 
indivisibility of each electron and the condition that the MO comprises two identical electrons, the force of the two photons is 
transferred to the totality of the electron MO comprising a linear combination of the two identical electrons to satisfy Eq. 
(11.200).  The resulting angular momentum and magnetic moment of the unpaired current density are  and a Bohr magneton 

B , respectively.   

Due to its unpaired electron, molecular hydrino is electron paramagnetic resonance (EPR) spectroscopy active.  
Moreover, due to the unpaired electron in a common molecular orbital with a paired electron, the EPR spectrum is uniquely 
characteristic of and identifies molecular hydrino as shown infra.  As given in the Electron g Factor section, flux is linked by an 

unpaired electron in quantized units of the fluxon or magnetic flux quantum 
2

h

e
.  The electric energy, the magnetic energy, and 

the dissipated energy of a fluxon treading the atomic orbital given by Eqs. (1.226 -1.227) is  

 

2
2

 

2 4
2 1

2 3 2 3 2
spin
mag g B BE B g B

    
  

                  
 (16.217) 

In the case of the molecular hydrino, the unpaired electron is a linear combination of two electrons of the MO wherein one half 
of the current density is paired, and one half is unpaired.  The fluxon links both interlocked electrons such that the contribution 
of the flux linkage terms are doubled.  The corresponding g factor is  

 
2

2
2

(1/ )

2 4
2 1 2 2.0046386

2 3 2 3 2H pg
  
  

                     
 (16.218) 

The energy between parallel and antiparallel levels of the unpaired electron in an applied magnetic field is  
 

2 2.0046 (1/ ) 2.0046386spin
mag H p B BE g B B     (16.219) 

The result of Eq. (16.218) was confirmed wherein the electron paramagnetic resonance peak was observed with g factor of 
2.00445 [131].  

Molecular hydrino comprises a linear combination of an unpaired and a paired electron in a common prolate spheroidal 
molecular orbital (MO) wherein ellipsoidal current elements alternate in pairs of contiguous parallel and antiparallel currents.  
Consider the designation of the prolate spheroidal MO wherein the y and z-axes are semiminor axes and the x-axis is the 

semimajor axis.  The resulting current density comprises a prolate spheroid possessing 
2

  of angular momentum along either the 

+z-axis or –z-axis and 
4

  along each of the +y and –y-axes as shown in Figure 11.4 wherein the unpaired-paired intrinsic 

current density may occupy two degenerate distributions about either the +z-axis or –z-axis.  The application of a magnetic field 
lifts the degeneracy.  The semimajor or x-axis of the molecular hydrino aligns parallel or antiparallel to an applied magnetic field 
with capture of a photon of the Larmor frequency corresponding to the applied field-electron spin interaction energy /

E   given 

by the Bohr magneton B  times the applied flux B : 

 / BE B    (16.220) 
The resulting cylindrical rotation of the MO current about the semimajor axis gives rise to  of angular momentum along either 
the +x or –x-axis (Figure 11.4) and causes the spin current vectors in the transverse plane containing the semiminor axes to 
average to zero.  A 180° electron spin flip transition along the semimajor axis may occur with the absorption of a resonant 
microwave photon having the energy given by Eqs. (16.217-16.219).  The  of angular momentum of the spin flip photon aligns 

along either the +z or –z-axis in the transverse plane wherein the unpaired current 
2

  of angular momentum along the either the 

+z-axis or –z-axis quantizes the orientation of spin flip photon angular momentum.  In the case that the angular momentum of 
the spin flip photon is opposite that of the unpaired current, the unpaired current also flips its orientation with a concomitant flip 
of the corresponding angular momentum by 180° in the transverse plane.  The semiminor axis spin flip transition lifts the 
degeneracy of the semimajor axis spin flip transition due to an interaction of the paired and unpaired current of the MO.  The 
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three sources of splitting of the spin flip transition are considered: (i) the energy of interaction of the internal magnetic field of 
the electron MO on the proton magnetic moments, (ii) the energy of interaction of the transition between nuclear spin isomer 
states on the spin of the electron MO, and (iii) the coupling energy between the spin unpaired electro and the spin paired electron 
of the  2 1/ 4H  electron MO.  

Hydrogen-type molecules comprise a proton at each focus of the prolate spheroid molecular orbital, each with nuclear 

spin and a corresponding magnetic dipole moment of P .  Consider that effect on the protons when a magnetic field is applied 

along the semimajor axis, the x-axis, that excites the Larmor precession of the unpaired electron of  2 1/H p  to give rise to an 

electron spin magnetic moment of a Bohr magneton also aligned along the semimajor axis.  The intrinsic electron spin vectors 
along the two transverse semiminor axes, the y-axis and the z-axis, as shown in Figure 11.4 rotate around the applied magnetic 
field and the electron spin magnetic moment at the Larmor frequency given by Eq. (1.227).  The magnetic field inside the 

ellipsoidal MO, x
H , (Eq. (12.31)) is: 

 

2

2 2

0 3/2 2 22
3

22

1 1
1

2 1 ln
2

1 11
x

e

b
e b aB
m a bb

a
aa



 
  

   
          

   (16.221) 

Substitution of the  2 1/ 4H  semimajor axis a (Eq. (11.202)) and the  2 1/ 4H  semiminor axis b (Eq. (11.205)) into Eq. (16.221) 

gives 

 404.5 1  2 x X TB    (16.222) 

This large electrodynamic field aligns parallel or antiparallel to the applied field corresponding to the direction of the Larmor 
electron magnetic moment.  However, this electrodynamic field is transverse to the vector direction of the proton magnetic 
moments that must align along the direction of the magnetostatic intrinsic spin as a condition of the formation and energy 
stability of the  2 1/ 4H  molecule.  Thus, the nuclear magnetic moments align in the transverse plane, the yz-plane that is 

perpendicular to three-semimajor axis magnetic components: (i) the applied magnetic field that excites the Larmor rotation, (ii) 
the electron spin magnetic moment, and (iii) the electrodynamic magnetic field of the electron’s Larmor rotation.  The intrinsic 
electron spin vectors along the transverse two semiminor axes, the y-axis and the z-axis, (Figure 11.4) rotate around these three-
semimajor axis magnetic components at the Larmor frequency given by Eq. (1.227).  Since the nuclear magnetic moments are 
transverse to the three-semimajor axis magnetic components, and the Larmor-frequency rotation causes the intrinsic electron 
spin magnetic interaction with the nuclear spins to average to zero, the nuclear magnetic moments do not interact with the three-
semimajor axis magnetic components.  Then, the energy contribution of the nuclear magnetic moments to an electron spin 
transition depends only on the mutual interaction of the nuclear magnetic moments.   

Next, the interaction between the proton nuclear magnetic moments resulting in the splitting of the quantized energy 
levels of the electron spin transition by the energy corresponding to the interaction is considered.  In general, the potential energy 

of interaction  mag dipoleE  of two quantized magnetic dipoles 1m and 2m  separated by a distance r  is given by 

    0
 1 2 1 23

ˆ ˆ3
4

mag dipoleE



     m r m r m m
 r

 (16.223)  

where 0  is the permeability of free space and r̂  is a unit vector parallel to the line joining the centers of the two dipoles.  The 

energy is decreased in the case of antiparallel interacting magnetic moments, and the energy is increased in the case of parallel 
magnetic moments.  Consider the splitting energy of interaction with two parallel-aligned nuclear magnetic moments.  With the 

substitution of the proton magnetic moment P  for each parallel-aligned nuclear magnetic moment and the  2 1/ 4H  internuclear 

separation given by Eq. (11.204) for r  into Eq. (16.223), the energy   e-P mag dipoleE  to flip the spin direction of one proton 

magnetic moment of  2 1/ 4H relative to the other is 
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 (16.224)  

In order for this ortho-para nuclear spin isomer energy of Eq. (16.224) to split the electron spin transition, there must be a 
coupling mechanism between the nuclear and electron spins.  Since the electron spin vector is along the semimajor axis, and the 
proton spins are transversely oriented in the plane containing the semiminor axes, there is no direct coupling mechanism.  
Moreover, the flux change inside of the electron MO due to the transition of the nuclear spin isomer state corresponding to Eq. 
(16.224) has an insignificant effect on the spin transition energy as shown by flux linkage terms of Eq. (16.217).  Since the spin 
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transition is independent of the nuclear spin transition, the electron spin transition leaves the ortho or para nuclear spin state of 

 2 1/ 4H  unchanged, and there is no nuclear spin state energy splitting. 

Consider the third electron spin splitting mechanism regarding the coupling energy of the spin unpaired and paired 
electrons of the electron MO.  The semiminor axis spin flip transition lifts the degeneracy of the semimajor axis spin flip 
transition due to an interaction of the paired and unpaired current of the MO.  The magnetic field of the unpaired electron 
induces a diamagnetic current in the paired electron.  The resulting magnetic moment that shifts the spin flip transition energy is 
opposite that of the spin magnetic moment and proportionally much smaller.  In addition to the intrinsic relative motion of the 
linear combination of the paired and unpaired electron currents of  2 1/ 4H  and the rotation of the electron MO about the 

semimajor axis corresponding to electron spin along this axis, the paired and unpaired electrons may rotate relative to each other 

during a spin transition similar to the case of excited-state 2H  as given in the Excited States of the Hydrogen Molecule section.  

The relative rotation is quantized in terms of m  integer units of  in opposite directions wherein the magnetic moments cancel, 
but the relativistic effect gives rise to a corresponding electron spin-orbital coupling quantum number m .  The unpaired-paired 
coupling or spin-orbital coupling energy is given as the diamagnetic moment times the magnetic flux of the unpaired electron.  

Since flux is linked by an unpaired electron in units of the magnetic flux quantum, the spin-orbital coupling energy /S OE  between 

two magnetic moments of  2 1/ 4H  given by Eq. (2.194) can be expressed as: 

 
 

 25 2
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1 3
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44 2
S O m eE m m c  

 
   
  

 (16.225) 

wherein the semiminor radius of the  2 1/ 4H  MO is given by Eq. (11.205) with 4p   and m  is the magnitude of the 

diamagnetic susceptibility of the paired electron given by Eq. (11.416):   
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In the case of spin-orbital coupling involving the intrinsic spin of 
2

 , the electron spin-orbital coupling quantum number m  is 

1 / 2m  .  Additional states arise due to the relative motion of the two electrons of the  2 1/ 4H  MO.  Consider the case of 2H  

excited states given in the Excited States of the Hydrogen Molecule section wherein the relative rotational motion of the two 
excited state electrons corresponds to the quantum number m  being a positive or negative integer such that net relative motion 
obeys the condition 0 .  The quantum number m  also applies to the molecular hydrino electron spin flip split by electron 
spin-orbital coupling wherein m  is a positive integer.  With the substitution of Eq. (16.226) into Eq. (16.225), the unpaired-
paired coupling is 

     1.5 27 5 2 27
/

3
7.0821 10 64 2 .2 7 426 10  

4
 s o eE m X m c m X J     (16.227) 

The electron paramagnetic resonance (EPR) comprises a peak at the energy equivalent position given by Eq. (16.219), that is 
symmetrically split into a series of pairs of peaks, one shifted downfield by the energy of Eq. (16.227), and the other shifted 
upfield by the energy of Eq. (16.227), wherein downfield and upfield denote lower and higher magnetic flux for a resonant 
transition at fixed EPR frequency, respectively.  

Consider the case that the EPR frequency is 9.820295 GHz, the resonance magnetic flux B  for the principal peak given 
by Eq. (16.219) is 

 .  
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4 38
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   (16.228) 

where h is Planck’s constant and B  is the Bohr magneton.  The resonance magnetic flux shift CB  of a principal peak at 

position 1B  due to a splitting energy CE  is given by 

 
1 9.820295

C
C

E
B

GHz
B

h
   (16.229) 

Using Eqs. (16.227-16.229), the downfield and upfield shifts /S OB  with quantized spin-orbital splitting energies /S OE  (Eq. 

(16.227) and electron spin-orbital coupling quantum numbers 0.5,1, 2, 3, 5....m   are given in units of Gauss by 
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The spin-orbital splitting shift of 277.426   10m X J  is independent of the applied EPR field/frequency combination for both 
downfield and upfield shifted peaks.  

The potential energy of a superconducting quantum interference device (SQUID) given by Eq. (42.115) comprises the 
sum of the Josephson coupling energy of the junction and the equivalent of the magnetic energy of the loop.  The free electron of 

 2 1/ 4H  behaves equivalently to a superconducting quantum interference device (SQUID).  In addition to the flux linked by the 

unpaired electron during the spin flip transition corresponding to the energy terms of the 
2 (1/ )H pg  (Eqs. (16.218) and (16.219)), a 

free electron of  2 1/ 4H  must link the magnetic flux component corresponding to spin-orbital coupling.  This flux contribution 

increases the magnetic energy and the energy of the combined spin flip (Eq. (16.228)) and spin-orbital coupling (Eq. (16.227)) 
transition energy for a given spin-orbital quantum number m .  Thus, the downfield spin-orbital splitting peaks are shifted further 
downfield by the corresponding magnetic energies; whereas, the upfield spin-orbital splitting peaks are not shifted since the 
upfield peaks correspond to emission of the spin-orbital coupling transition energies alone, and the magnetic energies thermalize.  
The Josephson coupling energies due to fluxon linkage during spin-orbital transitions are given by Eq. (16.227), and the 
magnetic energies /S OMagU  arising from the absorption of the corresponding spin-orbital coupling transitional flux are given by 
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 (16.231) 

wherein m  is the spin-orbital quantum number, ½ the spin flip transition energy corresponds to the terms 0U  and  as given 

by Eqs. (16.217), (16.218), and (16.228) in units of magnetic flux (i.e. the equivalent SQUID parameters of  2 1/ 4H  are 

2

 2.0046
0 0

(1/ )

0.5 spin
mag

H p B

E
U

g 


   ), and the flux change due to the transition   is the spin-orbital splitting energy of quantum number 

m  given in units of magnetic flux by Eqs. (16.227) and (16.230).  The corresponding magnetic energies  given by Eqs. 

(16.231), (16.217), and (16.218) in units of Joules are 

  (16.232) 

The downfield magnetic energy shifts /S OMagU  given by Eq. (16.232) are added to the quantized spin-orbital splitting energies 

/S OE  ( /S OB ) (Eq. (16.227)) to given combined quantized spin-orbital splitting energies /S OcombinedE  in units of Joules: 
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   (16.233) 

The downfield magnetic energy shifts /S OMagU  given by Eq. (16.231) are added to the quantized spin-orbital splitting energies 

/S OE  (Eq. (16.230)) to given combined quantized spin-orbital downfield shift energies /
downfield
S OcombinedB  in units of Gauss: 
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 (16.234) 

The downfield peak positions /
downfield
S OcombinedB  due to the combined shifts due to the magnetic energy and the spin-orbital coupling 

energy given by Eq. (16.228) and (16.234) are: 
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 (16.235) 

There is no magnetic energy shift for upfield shift peaks corresponding to the emission of the spin-orbital coupling energy given 

by Eq. (16.230).  Using Eq. (16.228) and Eqs. (16.227-16.230), the upfield peak positions /
upfield
S OB  with quantized spin-orbital 


0

U
S /OMag

U
S /OMag

 g
H2 (1/ p)


B

0.5 
2m3.99427 X  104 2

0.1750
J



Applications: Pharmaceuticals, Specialty Molecular Functional Groups and Molecules,  
Dipole Moments and Interactions 

 

1167

splitting energies /S OE  (Eq. (16.227)) and electron spin-orbital coupling quantum numbers  are given by 
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4
/
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 (16.236) 

The downfield shifts due to the magnetic energies in units of Joules (Eq. (16.232)) and Gauss (Eq. (16.231)), the downfield 
shifts due to spin-orbital coupling energies in units of Joules (Eq. (16.227) and Gauss (Eq. (16.230)) for spin-orbital coupling 
quantum numbers 0.5,1, 2, 3, 5....m   are given in Table 16.48. 
 

Table 16.48.   The 9.820295 GHz  2 1/ 4H
 
EPR downfield shifts due to the magnetic energies and the downfield shifts 

due to spin-orbital coupling energies for spin-orbital coupling quantum numbers 0 .5,1, 2, 3, 5m  . 
m Downfield 

Magnetic 
Energy Shift (J)

Downfield 
Magnetic 

Energy Shift (G)

Spin-Orbital 
Shift 
(J)

Spin-Orbital 
Shift 
(G) 

0.5 8.36376E-29 0.04499 3.71288E-27 1.99714 
1 3.34550E-28 0.17995 7.42576E-27 3.99427 
2 1.33820E-27 0.71981 1.48515E-26 7.98854 
3 3.01095E-27 1.61957 2.22773E-26 11.98281 
4 5.35280E-27 2.87924 2.97030E-26 15.97708 
5 8.36376E-27 4.49881 3.71288E-26 19.97135 

 
The combined downfield shifts due to the magnetic and spin-orbital coupling energies in units of Joules (Eq. (16.233) and Gauss 
(Eq. (16.234)), the resulting downfield peak positions (Eq. (16.235), and the upfield peak positions (Eq. (16.236)) shifted only 
by the spin-orbital coupling energies (Eqs. (16.227) and (16.230)), for spin-orbital coupling quantum numbers 0.5,1, 2, 3, 5....m   
wherein the principal peak with the g-factor of 2.0046386 (Eq. (16.218)) is observed at 0.35001 T (Eq. (16.228) are given in 
Table 16.49.   
 
Table 16.49.   The 9.820295 GHz  2 1/ 4H

 
EPR combined downfield shifts due to the magnetic and spin-orbital coupling, 

the resulting downfield peak positions, and the upfield peak positions shifted only by the spin-orbital coupling energies for spin-
orbital coupling quantum numbers 0 .5,1, 2, 3, 5m  . 

m Combined 
Downfield 
Magnetic 

Energy Shift (J)

Combined 
Downfield 
Magnetic 

Energy Shift (G)

Downfield Peak 
Position 

(T) 

Upfield Peak 
Position 

(T) 

0.5 3.79652E-27 2.04212 0.34980 0.35021 
1 7.76031E-27 4.17422 0.34959 0.35041 
2 1.61897E-26 8.70835 0.34914 0.35081 
3 2.52882E-26 13.60238 0.34865 0.35121 
4 3.50559E-26 18.85632 0.34812 0.35160 
5 4.54926E-26 24.47016 0.34756 0.35200 

 
As given in the Electron g Factor section, magnetic flux is linked by an unpaired electron in quantized units of the fluxon 

or the magnetic flux quantum 
2

h

e
.  As shown in the Hydrino Hydride Ion Hyperfine Lines section, hydrino hydride ion 

 1/H p  also possesses a linear combination of two electrons with one paired and the other unpaired in a common atomic 

orbital versus a MO.  The emission spectrum of the binding of a free electron to a hydrino atom to form the corresponding 
hydrino hydride ion results in a series of evenly spaced emission peaks wherein the energy spacing matches that predicted for the 
binding electron to link the magnetic flux of the hydrino atom in units of the magnetic flux quantum in the bound-free emission 
spectral region.  The flat intensity profile matches that of Josephson junctions such as ones of superconducting quantum 

interference devices (SQUIDs) that also link magnetic flux in quantized units of the magnetic flux quantum or fluxon 
2

h

e
.  The 

same behavior is predicted for the linkage of magnetic flux by molecular hydrino during a spin transition and the derivation of 
the corresponding fluxon linkage energies follows that of Eq. (7.93) of the Hydrino Hydride Ion Hyperfine Lines section.   

As given by Eq. (16.218), the fluxon links both correlated electrons such that the energy contribution of the flux linkage 
of a fluxon by molecular hydrino is 
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m  0.5,1,2,3,5....
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Using the energy of MO due to an applied flux given by Eq. (16.220), wherein (i) both the magnetic moments due to spin and 

the corresponding induced diamagnetic moment are corrected for the vector projection of 
3

4
 (Eqs. (16.226-16.227) 

corresponding to an increase of the energy for resonant flux linkage, (ii) the magnetic flux density B  is given by the ratio of the 

flux and the area, and (iii) the flux is linked in units of the fluxon 
2

h

e  , the fluxon linkage energies E by molecular hydrino 

 2 1/ 4H  during a spin transition are  
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 (16.238) 

In Eq. (16.238), the energy of flux linkage is an integer function of the components of angular moment involved in the splitting 

of the principal transition corresponding to the electron fluxon quantum number m .  Therefore, the electron fluxon quantum 

number m  has the following integer values: (i) the electron fluxon quantum number m  corresponding to the spin-orbital 

coupling involving the intrinsic spin of 
2

  is 1m  , (ii) the electron fluxon quantum number m  corresponding to the spin 

with 1m   involving the semimajor axis spin is 2m  , and (iii) the electron fluxon quantum number m  corresponding to the 

spin with 1;  1m m    involving the semimajor axis spin and relative motion of the two electrons of the  2 1/ 4H  MO is 

3m  .  In addition, j  is an integer corresponding to the number of fluxons linked having fluxion linkage quantum number m

, 1/ 2s  , A  is the area of the continuous distribution of current element loops (Force Balance of Hydrogen-Type Molecules 
section and Figure 11.2) linked by the integer number of fluxons as given in the Electron g Factor section, and the magnitude of 

the diamagnetic susceptibility m   is given by 

  2 3 728.01 1.49  1 80 .1777 10m p p X ppm X   
     (16.239) 

With the substitution of Eq. (16.239) into Eq. (16.238), E is 
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 (16.240) 

wherein the semiminor radius of the  2 1/ 4H  MO is given by Eq. (11.205) with 4p  .  Using Eq. (16.229) with the E, the 

fluxon linkage energy of  2 1/ 4H  (Eq. (16.240)), and the spin-orbital peak positions (Eqs. (16.235) and (16.236)), the separation 

B  of the integer series of peaks at each spin-orbital peak position (Table 16.49) for an EPR frequency of 9.820295 GHz is 

given by 

    24 28
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and 
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 (16.242) 

The 9.820295 GHz  2 1/ 4H  EPR spectral separations B  (Eqs. (16.235) and (16.236)) of each integer series of the peaks 

comprising sub-splitting of the downfield and upfield peaks of Table 16.49 corresponding to the principal peak having a g-factor 

of 2.0046386 (Eq. (16.218)) split by quantized spin-orbital coupling energies /S OE  (Eqs. (16.227) and (16.230)) and magnetic 

energies /S OMagU  (Eqs. (16.231) and (16.232)) for electron spin-orbital coupling quantum numbers 0.5,1, 2, 3, 4, 5m   and 

electron fluxon quantum numbers 1,2,3m   (Eq. (16.240) are given in Table 16.50. 
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Table 16.50.   The 9.820295 GHz  2 1/ 4H  EPR spectral separation B  of each integer series of the peaks comprising 

sub-splitting of the downfield and upfield peaks of Table 16.49 for electron spin-orbital coupling quantum numbers 

0.5,1, 2, 3, 4, 5m   and electron fluxon quantum numbers 1,2,3m  . 

m m  Downfield 
Peak Position 

(T) 

B
 

(G) 
Upfield  

Peak 
Position 

(T)

B
 

(G) 

0.5 1 0.34980 0.3109 0.35021 0.3112 
1 2 0.34959 0.6214 0.35041 0.6228 
2 3 0.34914 0.9309 0.35081 0.9353 
3 3 0.34865 0.9296 0.35121 0.9364 
4 3 0.34812 0.9282 0.35160 0.9375 
5 3 0.34756 0.9267 0.35200 0.9385 

 
The spin-orbital splitting peak intensity for electron spin-orbital coupling quantum number 0.5m  is predicted to be 

dominant due to the high cross section of the spin flip transition to involve a torque about the intrinsic angular moment vector as 
shown in Resonant Precession of the Spin-1/2-Current-Density Function Gives Rise to the Bohr Magneton section.  For integer 
electron spin-orbital coupling quantum number m  spin-orbital splitting peaks, the relative intensities are predicted to decrease 
with integer electron spin-orbital coupling quantum number m .  In the case that the statistical population obeys the rules of 
multipole transitions, the relative peak intensities according to Eqs. (1.7-1.8) and Eq. (1.19) go as  
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1
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1 2 2
m

m

m mI m
m

I m m m
 
  

    (16.243) 

Furthermore, consider the relative intensities of fluxon peaks within an integer series.  If the cross-sectional area of the flux 
linker is constant relative to the flux source, then the line intensities for the sub-splitting would be equal.  However, the cross-
sectional area of the electron current relative to the applied field changes as the current comprising a continuous ensemble of 
current loops flips orientation by 180°.  The current flowing over the surface of the prolate spheroidal to reverse the spin 
direction by 180° is a mechanism whereby the relative intensities of the sub-splitting is higher for the center lines compared to 
those at the extrema.  The line intensities and widths reflect the electron MO geometrical form factor in the case of 0.5m . 

In summary, the predicted  2 1/ 4H  EPR spectrum comprises a principal peak with a theoretical g-factor of 2.0046386 

(Eq. (16.218)) that is split by spin-orbital coupling energies /S OE  and corresponding magnetic energies  on the downfield 

side into a series of pairs of peaks with members separated by the sum of  (Eqs. (16.227) and (16.230)) and  (Eqs. 

(16.231) and (16.232)) that is a function of electron spin-orbital coupling quantum number m .  Each spin-orbital splitting peak 

is further sub-split into a series of equally spaced peaks of integer fluxon energy B  (Eqs. (16.241) and (16.242)) that is a 

function of electron fluxon quantum number m .  As given in the Hydrino Hydride Ion Hyperfine Lines section, the pattern of 

integer-spaced peaks predicted for the EPR spectrum of  2 1/ 4H  is very similar to that experimentally observed on the hydrino 

hydride ion that also comprises a paired and unpaired electron in a common orbital, except that the orbital is an atomic orbital 
[132-135].  The peak separations and sub-splitting due to spin-orbital splitting energies, spin-orbital splitting magnetic energies, 
and fluxon energies may deviate from the values given in Tables 16.49 and 16.50.  Interactions may exist with the matrix 
surrounding the hydrino molecule.  For example, protons of water molecules absorbed as waters of hydration of a crystalline 
matrix having trapped hydrino molecules could cause and external nuclear splitting effect.   

The predicted EPR spectrum was confirmed experimentally [131].  The 9.820295 GHz EPR spectrum was performed on 
a white polymeric compound (WPC) identified by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), 
transmission electron spectroscopy (TEM), scanning electron microscopy (SEM), time-of-flight secondary ionization mass 
spectroscopy (ToF-SIMs), Rutherford backscattering spectroscopy (RBS), and X-ray photoelectron spectroscopy (XPS) as 
GaOOH:H2(1/4).  The WPC was formed by dissolving Ga2O3 collected from a hydrino reaction run in a SunCell® in 4M 
aqueous KOH, allowing fibers to grow, and float to the surface where they were collected by filtration.  The white fibers were 
not solution in concentrated acid or base; whereas control GaOOH is.  No white fibers formed in control solutions.  Control 
GaOOH showed no EPR spectrum.  The experimental EPR was acquired by Professor Fred Hagen, TU Delft, with a high 
sensitivity resonator at a microwave power of -28 dB and a modulation amplitude of 0.02 G, that can be changed to 0.1 G since 
Dr. Hagen rigorously determined that the minimum line width is 0.15 to 0.2 G.  The average error between the EPR spectrum 
and theory for peak positions given in Tables 16.49-16.50 was 0.097 G.  The EPR spectrum was replicated by Bruker using two 
instruments on two samples.   

Specifically, the observed principal peak at g = 2.0045(5)) was assigned to the theoretical peak having a g-factor of 
2.0046386 (Eq. (16.218)).  This principal peak was split into a series of pairs of peaks with members separated by energies 
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matching /S OE  (Eqs. (16.227) and (16.230)) corresponding to each electron spin-orbital coupling quantum number m .  The 

results confirmed the spin-orbital coupling between the spin magnetic moment of the unpaired electron and an orbital 
diamagnetic moment induced in the paired electron alone or in combination with rotational current motion about the semimajor 
molecular axis that shifted the flip energy of the spin magnetic moment.  The data further matched the theoretically predicted 
one-sided tilt of the spin-orbital splitting energies wherein the downfield shift was observed to increase with quantum number m  

due to the magnetic energies  (Eqs. (16.231) and (16.232)) of the corresponding magnetic flux linked during a spin-

orbital transition.  Each spin-orbital splitting peak was further sub-split into a series of equally spaced peaks that matched the 

integer fluxon energies B  (Eqs. (16.241) and (16.242)) dependent on electron fluxon quantum number m  corresponding to 

the number of angular momentum components involved in the transition.  The evenly spaced series of sub-splitting peaks was 
assigned to flux linkage during the coupling between the paired and unpaired magnetic moments in units of the magnetic flux 

quantum 
2

h

e
 while a spin flip transition occurs.  The EPR spectrum recorded at different frequencies showed that the peak 

assigned the g factor of 2.0046386 (Eq. (16.218)) remained at constant g factor.  Moreover, the peaks, shifted by the fixed spin-
orbital splitting energies relative to this true g-factor peak, exactly maintained the separation of the spin-orbital splitting energies 
independent of frequency as predicted.   

Another consideration is that molecular hydrino can also form dimers that would alter the EPR spectrum.  Consider the 
splitting energy of interaction with two axially aligned magnetic moments of a  2 1/ 4H  dimer.  With the substitution of a Bohr 

magneton B for each axially aligned magnetic moment and the  2 1/ 4H  dimer separation given by Eq. (16.202) for r  into Eq. 

(16.223), the energy 
2 2 [ (1/4)]  -mag H e dipoleE  to flip the spin direction of two electron magnetic moments of  2 2

1/ 4H    is 
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  (16.244)  

 
ROTATIONAL ENERGIES DUE TO THE SPIN MAGNETIC MOMENT OF H2(1/4) 

Molecular hydrino  2 1/H p  possesses an unpaired electron that causes rotational transitions to be forbidden.  This 

selection rule barrier to observing infrared and Raman spectra may be circumvented by application of an external magnetic field 
or by recording the spectrum on a compound or material with intrinsic magnetization such as one being ferromagnetic or 
paramagnetic.  An example of the former is molecular hydrino bonded or absorbed on the surface of a nickel or iron foil.  An 
example of the latter is a paramagnetic compound that cages the molecular hydrino such as FeOOH, Fe2O3 or a compound that 
may be diamagnetic but possess paramagnetic ions in proximity to  2 1/H p  such as 3G a   ions in the case of GaOOH  that 

serves as a cage for  2 1/H p .   

The presence of molecular hydrino in strong matrix magnetic field may result in the alignment of the free electron 

angular moment of 
2

  along the magnetic field vector direction in either the z-axis or the y-axis direction of the coordinates of 

 2 1/H p  shown in Figure 11.4.  The alignment permits the excitation of a concerted transition of a rotational molecular 

hydrino transition coupling to the spin-orbital splitting and fluxon linkage sub-splitting of the free electron energy levels.  The 
spin flip energy given by Eq. (16.219) with an exemplary intrinsic field of 1 T is  
 

2 2.0046 (1/ )
23 12.004638 )1.85910  10  (0.93 86 5 8 spin

mag H p B BE g B B X J cm        (16.245) 
To conserve the photon’s angular momentum of , rotational excitation requires  of angular momentum along the axis of 
molecular rotation, a semiminor axis being either the z-axis or y-axis.  The  of angular momentum gives rise to a corresponding 
magnet moment of a Bohr magneton along this rotational angular momentum axis.  Typically, the unpaired electron of 

 2 1/H p  gives rise to a Bohr magneton of magnetic moment along the internuclear axis when a magnetic field is applied.  

However, the molecular rotation of the hydrino molecule about one of the semiminor axes causes the excitation of the 
semimajor-axis Bohr magneton of magnetic moment to be forbidden.  The rotational transition energy may be split by the spin-
orbital energy given by Eq. (16.225), except that the orbital component of spin-orbital splitting is not diamagnetically induced 

such that 1m   and the spin-orbital energy / ,S O rotE  due to rotational excitation is: 

U
S /OMag
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 (16.246) 

wherein 0 .5,1, 2, 3, ...m  . The spin-orbital splitting energies due to rotation are given in Table 16.51. 
The energies of the concerted excitation of the rotational and spin-orbital coupling transitions are sub-split by the energy 

corresponding to flux linkage in units of the magnetic flux quantum 
2

h

e
.  The free electron angular momentum of 

2

  and the 

rotational angular momentum of  add when the corresponding vectors are aligned along a common z-axis to give a resultant 

angular momentum of 3

2
L   .  The energy contribution of the flux linkage of a fluxon by molecular hydrino is given by Eq. 

(16.238) with 1m   since the orbital component of spin-orbital coupling is not diamagnetically induced.  In the case of 3

2
L   , 

the  2 1/ 4H  fluxon linkage energies , ,rot concertedE  for fluxon sub-splitting quantum numbers 3/2 0.5,1,2,3...m   due to spin-

orbital coupling to a molecular rotational transition are 
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 (16.247) 

wherein j  is an integer corresponding to the number of fluxons linked having fluxon linkage quantum number 3/2m  and the 

semiminor radius of the  2 1/ 4H  MO is given by Eq. (11.205) with 4p   (
0

4 2

a
r  ).  As in the case with spin flip transitions 

observable by EPR spectroscopy, the fluxon sub-splitting quantum number is determined by the number of angular momentum 
components active during the transition.  Due to the nature of the rotation transition wherein the rotational quantum number J  
may be arbitrarily large, the upper range of the fluxon sub-splitting quantum number is not bounded. 

Alternatively, the spin component of 
2

  may align perpendicular to the rotational angular momentum of  to give a 

resultant z-axis angular momentum of  wherein the spin component averages to zero since it rotates about the z-axis due to 
molecular rotation.  In the case of L   , the  2 1/ 4H  fluxon linkage energies ,rotE  for fluxon sub-splitting quantum numbers 

0.5,1,2,3,...m   due to spin-orbital coupling to a molecular rotational transition are 
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 (16.248) 

wherein j  is an integer corresponding to the number of fluxons linked having fluxon linkage quantum number m  and the 

semiminor radius of the  2 1/ 4H  MO is given by Eq. (11.205) with 4p   (
0

4 2

a
r  ).  The fluxon linkage energies ,rotE  due to 

spin-orbital coupling to molecular rotation transition are given in Table 16.51. 
The absorption of fluxons increases the magnetic energy of  2 1/H p .  Using Eq. (16.231), the Josephson coupling 

energies due to fluxon linkage during concerted rotational-spin rotational and spin-orbital transitions are given by Eq. (16.247), 
and the magnetic energies / ,S OMag concertedU  arising from the absorption of the integer number of fluxons j  having fluxon linkage 

quantum number 3/2m  are given by 
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wherein 1 1
0 , , 3/246.24 ; 46.24 rot concertedU cm E m cm 

      (Eq. (16.247)), and the energy between rotational transitions 

corresponds to the term  (Eq. (16.256, 4p  )).  The fluxon peak spacing increases as the energy of the concerted rotation-

fluxon absorption transition increases and decreases in the case of emission.  
Using Eq. (16.231), the magnetic energies /S OMagU  arising from the absorption of the integer number of fluxons j  having 

fluxon linkage quantum number m  during concerted rotational and spin-orbital transitions are given by 
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 (16.250) 

wherein 1 1
0 , 3/230.83 ; 30.83 rotU cm E m cm 

     (Eq. (16.248)), and the energy between rotational transitions corresponds 

to the term  (Eq. (16.256, 4p  )).  The fluxon peak spacing increases as the energy of the concerted rotation-fluxon 

absorption transition increases and decreases in the case of emission.  

 

Table 16.51.  .   The electron spin-orbital coupling splitting energies and fluxon sub-splitting energies of molecular 

rotational transitions for spin-orbital coupling quantum numbers m  0.5,1,2,3,...,10 and for electron fluxon quantum numbers 

m  1,2,3,...,10 and m3/2
 1,2,3,...,10 . 

m Spin-Orbital 
Splitting 
Energy 
(cm-1) 

m  Fluxon Sub-
Splitting Energy 

(cm-1) 

m3/2
 Fluxon Sub-

Splitting 
Energy 
(cm-1) 

0.5 264 0.5 15.4 0.5 23.1 
1 528 1 30.8 1 46.2 
2 1056 2 61.7 2 92.5 
3 1583 3 92.5 3 138.7 
4 2111 4 123.3 4 185.0 
5 2639 5 154.1 5 231.2 
6 3167 6 185.0 6 277.5 
7 3695 7 215.8 7 323.7 
8 4223 8 246.6 8 370.0 
9 4750 9 277.5 9 416.2 
10 5278 10 308.3 10 462.4 

 
The observation of spin-orbital transitions by Raman spectroscopy may be greatly enhanced by the deposition of molecular 
hydrinos on a metal surface to enhance the Raman spectrum.  Surface enhanced Raman (SER) is very sensitive because of the 
surface plasmon waves set up by the stimulating wavelength.  The surface plasmon field may extend about 40-60 nm below the 
surface, providing some depth sensitivity in the material.   

The moment of inertia may be measured using rotational energy spectroscopy such as Raman spectroscopy, and using the 
known nuclear masses, the moment of inertia gives the nuclear separation which is characteristic of and identifies molecular 

hydrino of a given quantum state p .  Specifically, for a diatomic molecule having atoms of masses 1m  and 2m , the moment of 

inertia is (Eq. (12.66)):  

 
2I r  (16.251) 

where   is the reduced mass given by (Eq. (12.67)): 

 1 2

1 2

mm

m m



 (16.252) 

and where r  is the distance between the centers of the atoms, the internuclear distance.  The rotational energy levels follow from 
Eq. (1.71) and are given by (Eq. (12.68)): 

 
2

( 1)
2rotationalE J J
I

 


 (16.253) 

where J  is an integer.  The pure rotational energies of hydrogen type molecules for transition from the J  to the quantized 'J  


0


0
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rotational state are given by (Eq. (12.77)): 
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 (16.254) 

wherein Pm  is the mass of the proton, the moment of inertia 

2117.411 10
0.5 p

X m
I m

p

 
  

 
, and the integer-squared dependence is 

due to the reciprocal integer dependence of the internuclear distance given by (Eq. (12.76)): 

 
0.7411

2 '  c Å
p

  (16.255) 

For example, the predicted rotational energy of  2 1/ 4H is four squared or 16 times that of 2H  due to the internuclear distance 

being one fourth that of 2H  (Eq. (16.254)).  At ambient laboratory temperature, molecules overwhelmingly populate the 

rotational state 0J  .  Then, Eq. (16.253) becomes 

 
  2 1

0 '

' ' 1
 121.89 

2J J

J J
E p cm

 


   (16.256) 

Molecular hydrino  2 1/H p  is a diatomic molecule comprising two protons and two electrons, except that it is unique from 

molecular hydrogen in that it has an unpaired electron having an intrinsic angular momentum of 
2

 .  This electron spin angular 

momentum may align along the same axis as the rotational angular of  or transverse to it.  Consider that the rotational energy 

 of  2 1/H p  about z-axis which is the common axis of the intrinsic electron angular momentum of 
2

  and rotational 

angular momentum of .  The rotational energy due to the concerted double excitation of rotation due to spin and diatomic 
rotation is given by the sum of the diatomic molecular rotational energy given by Eq. (16.253) and the spin rotational energy also 
given by Eq. (16.253) with the exception that the rotational quantum number J  can only change by : 
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 (16.257) 

In the case that the initial rotational state is 0J  , Eq. (16.256) becomes 
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 (16.258) 

Consider that the diatomic molecular rotation is about the z-axis such that the corresponding rotational angular momentum of  
is aligned along the z-axis.  In the case that the axis of the intrinsic electron spin angular momentum of 

2

  is along the 

orthogonal semiminor axis, the y-axis, the rotation energy  of  2 1/H p  is given by Eq. (16.255). 

The radiation of a multipole of order (, m) carries m  units of the z component of angular momentum per photon of 

energy  .  Thus, the z component of the angular momentum of the corresponding excited rotational state is (Eq. (12.69)): 
  (16.259) 
Thus, the selection rule for dipole and quadrupole rotational transitions are (Eq. (12.70)):  
 1J    (16.260) 
and  
 2J    (12.261) 
Not only are the lowest energy Raman transitions for pure rotational transitions (Eq.(16.255)) and for concerted rotational-spin 
transition (Eq. (16.257)) allowed by each of the selection rules given by Eqs. (16.259) and (16.260), but coupling of allowed 
dipole and quadrupole transitions permit excitation of higher rotational energy levels.  Isotopic substitution and ortho-para state 
occupancy also determines the section rules of Raman transitions.  Exemplary transitions are given in Table 16.52. 

E
rotational

1

E
rotational
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Due to the equivalence of the two semiminor axes, a double rotational excitation comprising the superposition of the 

independent rotations about each may occur.  The energy of the double excitation of these two rotational modes is the sum of the 

individual pure and concerted rotational transitions.  Using Eqs. (16.256) and (16.258), the energies  double rotationE  of the combined 

rotational excitations are 

 
 ' ''2 '2

2 1
 

12
121.89 

2 2
p pc c

double rotational

J JJ J
E p cm

  
  
 

 (16.262) 

Exemplary transitions are given in Table 16.52.   

 
Table 16.52.   H2(1/4) Raman energies for (i) pure 0J   to ' 1, 2,3,...J   rotational transitions, (ii) concerted 0J   to 

' 0,1, 2, 3, ...J   molecular rotational transition involving a spin rotation transition having the spin rotational state quantum 

number change from 0J   to 1J  , and double transition having energies given by the sum of the independent transitions. 

J’ Pure Rotational  

Transition (cm-1) 

Concerted Molecular 
Rotational-Spin Rotation 

Transition (cm-1) 

' '/p cJ J  Double Rotational 
Transition (cm-1) 

0 0 1950 1/0 3900 
1 1950 3900 2/0 7801 
2 5851 7801 2/1 9751 
3 11701 13652 3/0 13652 
4 19502 21453 3/1 15602 
5 29254 31204 3/2 19502 
6 40955 42905 4/0 21453 
7 54607 56557 4/1 23403 
8 70209 72159 4/2 27303 
9 87761 89711 4/3 33154 
10 107263 109213 5/0 31204 

 

The rotation energies shown in Table 16.52 with spin-orbital splitting and fluxon linkage sub-splitting energy shifts were 
observed by Raman spectroscopy [136].  Moreover, some of the observed lines matched those of the Diffuse Interstellar Bands 
(DIBs) [136, 137]. 
 

END-OVER-END ROTATION OF HYDROGEN-TYPE MOLECULAR DIMERS 
The reduced masses of hydrogen-type molecular dimers having two protons 

2H  or deuterons 
2D  are given by Eqs. (12.67) and 

(12.72) where 1 2 pm m m   and 1 2 2 pm m m  , respectively: 
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 (16.263)  
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D p
p p

m m
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 (16.264)  

where pm  is the mass of the proton.  The moment of inertia of hydrogen-type molecular dimers is given by summation of the 

moments of inertial for two sets of nuclei, each equidistant from the center of rotation along the x-axis.  The moment of inertia of 
the nearest neighbor nuclei is given by substitution of the reduced mass (Eqs. (16.263) or (16.264)) for   of Eq. (12.66) and 

substitution of the internuclear distance dimer2 'c  (Eq. (16.181) or (16.202))for r  of Eq. (12.66).  The moment of inertia of the 

farthest neighbor nuclei is given by substitution of the reduced mass (Eqs. (16.263) or (16.264)) for   of Eq. (12.66) and 

substitution of the internuclear distance dimer2 'c  (Eq. (16.181) or (16.202))) plus the internuclear distance 2 'c  (Eq. (11.204) for 

r  of Eq. (12.66). 
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      22
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 (16.266)  
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Using Eqs. (12.71), (12.67), and (12.74), the rotational energies absorbed by a hydrogen-type molecular dimer with the transition 

from the state with the rotational quantum number J  to one with the rotational quantum number 1J   are: 
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  (16.269)  
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  (16.272)  

The results for 2H and 2D  dimers (Eqs. (16.269) and (16.270)) match experimental observations [138]. 

 
REACTION KINETICS AND THERMODYNAMICS 
Reaction kinetics may be modeled using the classical solutions of reacting species and their interactions during collisions 
wherein the bond order of the initial and final bonds undergo a decreasing and increasing bond order, respectively, with 
conservation of charge and energy.  Collisions can be modeled starting with the simple hard sphere model with conservation of 
energy and momentum.  The energy distribution may be modeled using the appropriate statistical thermodynamics model such as 
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Maxwell-Boltzmann statistics.  Low-energy collisions are elastic, but for sufficiently high energy, a reaction may occur.  Hot 
reacting species such as molecules at the extreme of the kinetic energy distribution can achieve the transition state, the 
intermediate species at the cross over point in time and energy between the reactants and products.  The rate function to form the 
transition state may depend on the collisional orientation as well as the collisional energy.  Bond distortion conserves the energy 
and momentum of the collision from the trajectories of the reactants.  For sufficient distortion due to a sufficiently energetic 
collision at an appropriate relative orientation, a reaction occurs wherein the products exiting the collision event are different 
from the reactants entering the collision.  The initial reactant energy and momentum as well as those arising from any bonding 
energy changes are conserved in the translational, rotational, and vibrational energies of the products.  The bond energy changes 
are given by the differences in the energies of the product and reactants molecules wherein the geometrical parameters, energies, 
and properties of the latter can be solved using the same equations as those used to solve the geometrical parameters and 
component energies of the individual molecules as given in the Organic Molecular Functional Groups and Molecules section.  
The bond energy changes at equilibrium determine the extent of a reaction according to the Gibbs free energy of reaction.  
Whereas, the corresponding dynamic reaction-trajectory parameters of translational, rotational, and vibrational energies as well 
as the time dependent electronic energy components such as the electron potential and kinetic energies of intermediates 
correspond to the reaction kinetics.  Each aspect will be treated next in turn. 

Consider the gas-phase reaction of two species A  and B  comprising the reactants that form one or more products nC  

where n is an integer: 

 1 nA B C C   (16.273) 

Arising from collisional probabilities, the concentrations (denoted    , ,...A B ) as a function of time can be fitted to a second-

order rate law 

 
      

1

'
n

i
i

d A
k A B k C

dt 

     (16.274) 

where k  and 'k  are the forward and reverse rate constants.  The equilibrium constant K  corresponding to the balance between 
the forward and reverse reactions is given by the quotient of the forward and reverse rate constants: 

 
'

k
K

k
  (16.275) 

The relationship between the temperature-dependent equilibrium constant and the standard Gibbs free energy of reaction 

 0
TG T  at temperature T  is: 

  
 0

TG T

RT
KK Q T e



  (16.276) 

where R  is the ideal gas constant,  
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 (16.277) 

is the reaction quotient at the standard state, and  
    0 0 0

T T TG T H T T S      (16.278) 

where  0
TH T  and 0

TS  are the standard-state enthalpy and entropy of reaction, respectively.  Rearranging Eq. (16.276) gives 

the free energy change upon reaction: 

 KQ
G RTln

K
   (16.279) 

If the instantaneous free energy change is zero, then the reaction is at equilibrium.  An exergonic or work-producing reaction 
corresponds to the cases with  0

TG T  or G  negative, and endergonic or work consuming reactions corresponds to positive 

values.  The enthalpy of reaction or heat of reaction at constant pressure is negative for an exothermic (heat releasing) reaction, 
and is positive for an endothermic (heat absorbing) reaction.  The enthalpy of reaction may be calculated by Hess’s law as the 
difference of the sum of the heats of formation of the products minus the sum of the heats of formation of the reactants wherein 
the individual heats of the molecules are solved using the equations given in the Organic Molecular Functional Groups and 
Molecules section. 
 
TRANSITION STATE THEORY 
Transition state theory (TST) has been widely validated experimentally.  It entails the application of classical trajectory 
calculations that allow the study of the dynamics at the microscopic level such as differential cross sections, total cross sections, 
and product energy distributions, as well as at the macroscopic level for the determination of thermal rate constants by solving 
the classical equations of motion with the formation of the transition state.  The reaction trajectory parameters give rise to terms 
of a classical thermodynamic kinetics equation discovered in 1889 by Arrhenius and named after him.  The data of the variation 
of the rate constant k  with temperature of many reactions fit the Arrhenius equation given by 
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aE

RTk Ae


  (16.280) 

where aE  is the activation energy and A  is a preexponential or frequency factor that may have a relatively small temperature 

dependence compared to the exponential term of Eq. (16.244).  For reactions that obey the Arrhenius equation, when ln k  is 

plotted versus 1/T  in a so-called Arrhenius plot, the slope is the constant /aE R , and the intercept is A .  Eq. (16.280) confirms 

that typically two colliding molecules require a certain minimum kinetic energy of relative motion to sufficiently distort initial 
reactant bonds and concomitantly allow nascent bonds to form.  The crossover species from reactants to products called the 
transition state will proceed through the minimum energy complex involving the reactants.  Thus, the activation energy can be 
interpreted as the minimum energy that the reactants must have in order to form the transition state and transform to product 

molecules.  aE  can be calculated from the total energy of the transition state relative to that of the reactants and is achieved when 

the thermal energy of the reactants overcomes the energy deficit between the energy of the reactants and that of the transition 
state.  The preexponential factor corresponds to the collision frequency and energy of collisions upon which the formation of the 
transition state is dependent. 
 For bimolecular reactions, transition state theory yields [139]: 

        ‡1
exp /T

B

k T T K G RT
k T h

     (16.281) 

where ‡
TG   is the quasi-thermodynamic free energy of activation,  T  is a transmission coefficient, K   is the reciprocal of 

the concentration, h is Planck’s constant, and Bk  is the Boltzmann constant.  The factor  
1

Bk T h
 is obtained by dynamical 

classical equations of motion involving species trajectories having a statistical mechanical distribution.  Specifically, the reactant 
molecular distribution is typically a Maxwell-Boltzmann distribution.  The classical derivation of the preexponential term of the 
Arrhenius equation can be found in textbooks and review articles such as section 2.4 of Ref. [139].  Typically the A  term can be 
accurately determined from the Maxwell-Boltzmann-distribution-constrained classical equations of motion by sampling or by 
using Monte Carlo methods on many sets (usually more than ten thousand) of initial conditions for the coordinates and momenta 
involving the trajectories.  The translational levels are a continuous distribution, and the rotational and vibrational levels are 
quantized according to the classical equations given, for example, in the Vibration of the Hydrogen Molecular Ion section and 
the Diatomic Molecular Rotation section. 
 

SN2 REACTION OF Cl  WITH 3CH Cl  
Consider the SN2 (bimolecular nucleophilic substitution) gas-phase reaction of C l   with chloromethane through a transition 
state: 

 3 3Cl CH Cl ClCH Cl     (16.282) 

The corresponding Arrhenius equation for the reaction given by Eq. (16.280) is: 

  
‡

‡
B

E

k TB
R

k T Q
k T e

h






 (16.283) 

where Bk  is the Boltzmann constant, h is Planck’s constant, ‡E  is the activation energy of the transition state ‡, T  is the 

temperature, R  is the reaction partition per unit volume, and 
‡Q  is the coordinate independent transition-state partition 

function.  The preexponential factor 
‡

B
R

k T Q

h 
 has previously been calculated classically and shown to be in agreement with the 

experimental rate constant [140].  Then, only the transition state need be calculated and its geometry and energy compared to 
observations to confirm that classical physics is predictive of reaction kinetics.  The activation energy can be calculated by 
determining the energy at the point that the nascent bond with the chloride ion is the same as that of the leaving chlorine wherein 
the negative charge is equally distributed on the chlorines.  The rearrangement of bonds and the corresponding electron MOs of 
the reactants and products can be modeled as a continuous transition of the bond orders of the participating bonds from unity to 
zero and vice versa, respectively, wherein the transition state is a minimum-energy molecule having bonds between all of the 

reactants, C l   and 3CH Cl  
 
TRANSITION STATE 
The reaction proceeds by back-side attack of C l   on 3CH Cl .  Based on symmetry, the reaction pathway passes through a 3hD  

configuration having Cl C Cl  

   on the 3C  axis.  The hydrogen atoms are in the h  plane with the bond distances the same 

as those of the 3CH  functional group given in the Alkyl Chlorides section, since this group is not involved in the substitution 

reaction.  The transition-state group Cl C Cl  

   is treated as a three-centered-bond functional group that comprises a linear 
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combination of C l   and the C Cl  group of chloromethane ( C Cl  (i) given in Table 15.33).  It is solved using the Eq. 

(15.51) with the total energy matched to the sum of the 2H -type ellipsoidal MO total energy, 31.63536831 eV  given by Eq. 

(11.212) as in the case of chloromethane, and the energy of the two outer electrons of C l  , 

  1 2 12.96764 3.612724 16.58036 E Cl IP IP eV eV eV          [15, 141].  These electrons are contributed to form the 

back-side-attack bond.  Then, the corresponding parameter  / ( )AO HOTE eV  is 14.63489 16.58036 31.21525 eV eV eV     due 

to the match of the MO energy to both  3, 2 14.63489 E C sp eV   (Eq. (15.25)) and  E Cl  , and  5 / ( )c AO HOinitialE eV  is 

16.58036 eV  corresponding to the initial energy of the C l   electrons.  Also, due to the two C Cl  bonds of the 

Cl C Cl  

   functional group 1 2n  .  Otherwise all of the parameters of Eq. (15.51) remain the same as those of 

chloromethane given in Table 15.36.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy 
(Eqs. (15.6-15.11) and (15.17-15.65)) parameters are given in Tables 16.53, 16.54, and 16.55, respectively.  The color scale, 

translucent view of the charge density of the chloride-ion-chloromethane transition state comprising the Cl C Cl  

   

functional group is shown in Figure 16.17.  The transition state bonding comprises two paired electrons in each Cl C   MO 

with two from C l  , one from Cl  and one from 3CH .  As a symmetrical three-centered bond, the central bonding species are two 

Cl  bound to a central 3CH   per Cl C   MO with a continuous current onto the C H  MO at the intersection of each 

Cl C   MO with the 3CH   group.  Due to the four electrons and the valence of the chlorines, the latter possess a partial 

negative charge of 0.5e  distributed on each Cl C   MO such that the far field is equivalent to that of the corresponding point 
charge at each Cl  nucleus. 
 

Figure 16.17.  Color scale, translucent view of the chloride-ion-chloromethane transition state comprising the Cl C Cl  

   

functional group showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that 

transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 

 
 

Table 16.53.   The geometrical bond parameters of the Cl C Cl  

   and 3CH  functional groups of the chloride-ion-

chloromethane transition state. 
 

Parameter Cl C Cl  

   Group  3 C H CH  Group 

 0 a a  3.70862 1.64920 

 0' c a  2.13558 1.04856 

Bond Length  2 '  c Å  2.26020 1.10974 

Literature Bond Length 

 Å  2.3-2.4 [140,142] 1.06-1.07 [140] 

 0,  b c a  3.03202 1.27295 

e 0.57584 0.63580 
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Table 16.55.   The energy parameters (eV) of the  and  functional groups of the chloride-ion-

chloromethane transition state. 
 

Parameters 
 Group  Group 

 2 3 

 0 2 

 1 0 

 0.5 0.75 

 0.81317 1 

 1 1 

 1 0.91771 

 1 0 

 2 1  

 1 3 

 0.5 0.75 

 0.81317 1 

 -33.44629 -107.32728 

 12.74200 38.92728 
 4.50926 32.53914 

 -2.25463 -16.26957 
 -31.21525 -15.56407 

 -1.44915 0 

 -29.76611 -15.56407 
 -16.58036 0 

 -48.21577 -67.69451 

 -1.44915 0 

 -49.66491 -67.69450 

 3.69097 24.9286 

 2.42946 16.40846 

 -0.07657 -0.25352 

 

0.08059 
[5]

0.35532 
(Eq. (13.458)) 

 -0.03628 -0.22757 

 0.14803 0.14803 

 -49.73747 -67.92207 

  -14.63489 -14.63489 

 -16.58036 -13.59844 

 3.73930 12.49186 

 

 The bond energy of the  group of chloromethane from Table 15.36 is  compared to 

the bond energy of the  functional group of the chloride-ion-chloromethane transition state of 

Cl C Cl  

  3CH

Cl C Cl  

  3CH

1n

2n

3n

1C

2C

1c

2c

3c

4c

5c

1oC

2oC

 ( )eV eV

 ( )pV eV
 ( )T eV

 ( )mV eV
 /  ( )AO HOE eV

 
2

/  ( )AO HOH MOE eV

 /  ( )AO HOTE eV
 3  /  ( )n AO HOE eV

 2  ( )H MOTE eV

 3, .  ( )TE atom atom msp AO eV

   ( )MOTE eV

 15 10  /rad s

 ( )KE eV

 ( )DE eV

 ( )KvibE eV

 ( )oscE eV

 ( )magE eV

   ( )GroupTE eV

 4  /  ( )c AO HOinitialE eV

 5  /  ( )c AO HOinitialE eV

   ( )GroupDE eV

C Cl   ( ) 3.77116 GroupDE eV eV

Cl C Cl  
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 (Table 16.55).  Since the energies of the  functional groups are unchanged, the chloride-ion-

chloromethane transition state is  higher in energy than chloromethane.  

Experimentally, the transition state is about  higher [137].  Using this energy as the corresponding activation 

energy  of Eq. (16.283) with the classically determined preexponential factor  predicts the experimental reaction 

rate very well [140]. 

NEGATIVELY-CHARGED MOLECULAR ION COMPLEX  
In addition to the nature and energy of the transition state designated by , experimental gas-phase rate constants indicate that 

the reaction of  with  passes through a bound state comprising the attachment of  to the positive dipole of 

 [140, 142, 143] (the dipole moment of the  functional group is given in the Bond and Dipole Moments section).  

This negatively-charged molecular ion complex designated  exists as a more stable state in between the reactants and the 
transition state, and by equivalence of the chlorines, it also exists between the transition state and the products.  Experimentally 

 is  more stable than the isolated reactants and products,  and .  Thus, an energy well 

corresponding to  occurs on either side of the energy barrier of the transition state  that is about  above the 
reactants and products [140, 143].  Thus, the combination of the depth of this well and the barrier height yields an intrinsic 
barrier to nucleophilic substitution given by the reaction of Eq. (16.282) of  [140, 143]. 

The negatively-charged molecular ion complex  comprises the functional groups of  (  (i) and  

given in Table 15.33 of the Alkyl Chlorides section) and a  functional group wherein  is bound to the  

moiety by an ion-dipole bond.  As given in the case of the dipole-dipole bonding of ice, liquid water, and water vapor as well as 
the van der Waals bonding in graphite and noble gases given in the Condensed Matter Physics section, the bond energy and bond 

distance of the  functional group are determined by the limiting energy and distance of the formation of a corresponding 

nascent  covalent bond that destabilizes the  bond of the  moiety by involving charge density of its 

electrons in the formation the nascent bond.  Subsequently, the higher energy  functional group of the transition 
state is formed. 

The energy and geometric parameters of the  functional group are solved using Eq. (15.51) with the total energy 

matched to the -type ellipsoidal MO total energy, .  The parameter  is 

 due to the match of the MO energy to both  (Eq. 

(15.25)) and the outer electron of  ( ) [141] that forms the nascent bond by the involving the 

electrons of the  group of the  moiety.  Then,  is  corresponding to the initial 

energy of the outer  electron.  Also,  in Eq. (15.61) is  due to the charge donation 

from the  HO to the MO based on the energy match between the  HOs corresponding to the energy contribution of 

methylene,  (Eq. (14.513)).   since the  electrons are paired upon dissociation, and the vibrational 

energy of the transition state is appropriate for .  Otherwise, all of the parameters of Eq. (15.51) remain the same as 
those of chloromethane given in Table 15.36.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), 
and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters are given in Tables 16.56, 16.57, and 16.58, respectively.  The 

color scale, translucent view of the charge density of the negatively-charged molecular ion complex  comprising the  

functional group is shown in Figure 16.18.  The bonding in the  complex comprises two paired electrons in the  MO 

with 1/2 of the charge density from  and the other half from .  The central bonding species are a  bound to a central 

 with a continuous current onto the  MO at the intersection of the  MO with the  group.  Due to the 

two electrons and the valence of the chlorine, the latter possess a negative charge of  distributed on the  MO such that 

the far field is equivalent to that of the corresponding point charge at the  nucleus.  The bonding in the  moiety is 

equivalent to that of chloromethane except that the  bonds are in a plane to accommodate the  MO. 
 

   ( ) 3.73930 GroupDE eV eV 3CH

 0.03186 +0.73473 /E eV kcal mole  
1 1 /kcal mole

‡E
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k T Q
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Figure 16.18.  Color scale, translucent view of the negatively-charged molecular ion complex  comprising the  

functional group showing the orbitals of the atoms at their radii, the ellipsoidal surface of each  or -type ellipsoidal MO 

that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to 
scale). 
 

 
 

Table 16.56.  The geometrical bond parameters of the , , and  functional groups of the negatively-

charged molecular ion complex . 
 

Parameter 
 Group  Group  (i) 

Group 

 2.66434 1.64920 2.32621 

 1.81011 1.04856 1.69136 

Bond Length 
 1.91574 1.10974 1.79005 

Literature Bond 
Length 

 

>1.80 
curve fit [136] 

1.06-1.07 [1] 
1.785 [1] 

(methyl chloride) 

 1.95505 1.27295 1.59705 

 0.67938 0.63580 0.72709 
 
 

 Cl C 
H 2H

Cl C  C Cl 3CH


Cl C   3 C H CH C Cl

 0 a a

 0'  c a

 2 '  c Å

 Å

 0,  b c a
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Table 16.58.   The energy parameters (eV) of the , , and  functional groups of the negatively-charged 

molecular ion complex . 
 

Parameters 
 Group  Group  

(i) 
Group 

 1 3 1 

 0 2 0 

 0 0 0 

 0.5 0.75 0.5 

 0.81317 1 0.81317 

 1 1 1 

 1 0.91771 1 

 0 0 1 

 2 1  2 

 1 3 0 

 0.5 0.75 0.5 

 0.81317 1 0.81317 

 -24.89394 -107.32728 -29.68411 

 7.51656 38.92728 8.04432 
 4.67169 32.53914 6.38036 

 -2.33584 -16.26957 -3.19018 
 -18.24761 -15.56407 -14.63489 

 -1.65376 0 -1.44915 

 -16.59386 -15.56407 -13.18574 

 -31.63537 -67.69451 -31.63536 

 -1.65376 0 -1.44915 

 -33.28913 -67.69450 -33.08452 

 6.06143 24.9286 7.42995 

 3.98974 16.40846 4.89052 

 -0.13155 -0.25352 -0.14475 

 

0.02790 
[144]

0.35532 
(Eq. (13.458))

0.08059 
[5] 

 -0.11760 -0.22757 -0.10445 

 0 0.14803 0.14803 

 -33.40672 -67.92207 -33.18897 

  -14.63489 -14.63489 -14.63489 

 -3.612724 -13.59844 0 

 0.52422 12.49186 3.77116 

 

The bond energies of the  moiety are unchanged to the limit of the formation of the  functional group of 

the negatively-charged molecular ion complex .  Thus, the energy of stabilization of forming the ion-dipole complex is 

Cl C  C Cl 3CH


Cl C  3CH C Cl
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2n

3n
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2C

1c
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 ( )eV eV

 ( )pV eV
 ( )T eV

 ( )mV eV
 /  ( )AO HOE eV
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/  ( )AO HOH MOE eV

 /  ( )AO HOTE eV

 2  ( )H MOTE eV

 3, .  ( )TE atom atom msp AO eV

   ( )MOTE eV

 15 10  /rad s
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 ( )DE eV
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 4  /  ( )c AO HOinitialE eV
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equivalent to the bond energy of the  functional group.  Experimentally  is  more stable than the 

isolated reactants and products [134, 136, 137],  and .  The bond energy of the  functional group of the 

negatively-charged molecular ion complex  of  given in Table 16.58 matches 

the experimental stabilization energy very well.  A simulation of the reaction of Eq. (16.282) is available on the internet [145]. 
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Chapter 17 
  
NATURE OF THE SOLID MOLECULAR BOND  
OF THE THREE ALLOTROPES OF CARBON 
  
 
 
 
 
GENERAL CONSIDERATIONS OF THE SOLID MOLECULAR BOND 
The solid molecular bond of a material comprising an arbitrary number of atoms can be solved using similar principles and 
procedures as those used to solve organic molecules of arbitrary length.  Molecular solids are also comprised of functional 
groups.  Depending on the material, exemplary groups are C C , C C , C O , C N , C S , and others given in the Organic 
Molecular Functional Groups and Molecules section.  The solutions of these functional groups or any others corresponding to 
the particular solid can be conveniently obtained by using generalized forms of the geometrical and energy equations given in 
the Derivation of the General Geometrical and Energy Equations of Organic Chemistry section.  The appropriate functional 
groups with their geometrical parameters and energies can be added as a linear sum to give the solution of any molecular solid.  

 
DIAMOND 
It is demonstrated in this Diamond section as well as the Fullerene ( 60C ) and Graphite sections, that very complex 

macromolecules can be simply solved from the groups at each vertex carbon atom of the structure.  Specifically, for fullerene a 
C C  group is bound to two C C  bonds at each vertex carbon atom of 60C .  The solution of the macromolecule is given by 

superposition of the geometrical and energy parameters of the corresponding two groups. In graphite, each sheet of joined 
hexagons can be constructed with a C C  group bound to two C C  bonds at each vertex carbon atom that hybridize to an 

aromatic-like functional group, 
  8 /3e

C C , with 
8

3
 electron-number per bond compared to the pure aromatic functional group, 

  3e

C C , with 3  electron-number per bond as given in the Aromatics section.  Similarly, diamond comprising, in principle, an 
infinite network of carbons can be solved using the functional group solutions where the task is also simple since diamond has 
only one functional group, the diamond C C  functional group. 

The diamond C C  bonds are all equivalent, and each C C  bond can be considered bound to a t-butyl group at the 
corresponding vertex carbon.  Thus, the parameters of the diamond C C  functional group are equivalent to those of the t-butyl 
C C  group of branched alkanes given in the Branched Alkanes section.  Based on symmetry, the parameter R  in Eqs. (15.56) 
and (15.61) is the semimajor axis a , and the vibrational energy in the oscE  term is that of diamond.  Also, the 32C sp  HO 

magnetic energy magE  given by Eq. (15.67) was subtracted for each t-butyl group of alkyl fluorides, alkyl chlorides, alkyl 

iodides, thiols, sulfides, disulfides, and nitroalkanes as given in the corresponding sections of Chapter 15 due to a set of unpaired 
electrons being created by bond breakage.  Since each C C  group of diamond bonds with a t-butyl group at each vertex carbon, 

3c  of Eq. (15.65) is one, and magE  is given by Eq. (15.67). 

The symbol of the functional group of diamond is given in Table 17.1.  The geometrical (Eqs. (15.1-15.5) and (15.51)) 
parameters of diamond are given in Table 17.2.  The lattice parameter la  was calculated from the bond distance using the law of 

cosines:   
 2 2 2

1 2 1 2 32 cosines s s s s    (17.1) 
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With the bond angle 109.5CCC    [1] and 1 2 2 C Cs s c   , the internuclear distance of the C C  bond, 3 2
t tC Cs c  , the 

internuclear distance of the two terminal C  atoms is given by: 

     2
2 2 2 ' 1 cosine 109.5

t tC C C Cc c      (17.2) 

Two times the distance 2
t tC Cc   is the hypotenuse of the isosceles triangle having equivalent sides of length equal to the lattice 

parameter la .  Using Eq. (17.2) and 2 1.53635 C Cc Å   from Table 17.2, the lattice parameter la  for the cubic diamond structure 

is given by: 

 
 

    22 2
2 2 2 ' 1 cos ine 109.5 3.54867 

2
t tC C

l C C

c
a c Å






      (17.3) 

The intercept (Eqs. (15.80-15.87)) and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of diamond are given in 
Tables 17.2, 17.3, and 17.4, respectively.  The total energy of diamond given in Table 17.5 was calculated as the sum over the 
integer multiple of each  GroupDE  of Table 17.4 corresponding to functional-group composition of the molecular solid.  The 

experimental C C  bond energy of diamond,  
expDE C C  at 298 K, is given by the difference between the enthalpy of 

formation of gaseous carbon atoms from graphite (   f graphiteH C gas ) and the heat of formation of diamond 

(   
fH C diamond ) wherein graphite has a defined heat of formation of zero (   0fH C graphite  : 

        
exp

1

2D f graphite fE C C H C gas H C diamond       (17.4) 

where the heats of formation of atomic carbon and diamond are [2]: 
     716.68 /  7.42774 /f graphiteH C gas kJ mole eV atom   (17.5) 

     1.9 /  0.01969 /fH C diamond kJ mole eV atom   (17.6) 

Using Eqs. (17.4-17.6),  
expDE C C  is: 

    
exp

1
7.42774 0.01969 3.704 

2DE C C eV eV eV     (17.7) 

where the factor of one half corresponds to the ratio of two electrons per bond and four electrons per carbon atom.  The bond 
angle parameters of diamond determined using Eqs. (15.88-15.117) are given in Table 17.6.  The structure of diamond is shown 
in Figure 17.1. 
 
Figure 17.1.  (A-B) The structure of diamond.  
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Table 17.1.   The symbols of the functional group of diamond. 

Functional Group Group Symbol
CC bond (diamond-C) C C  

 
Table 17.2.   The geometrical bond parameters of diamond and experimental values [1, 3]. 

Parameter C C  
Group

 0 a a  2.10725 

 0'  c a  1.45164 

Bond Length  2 '  c Å  1.53635 

Exp. Bond Length  Å  1.54428 

 0,  b c a  1.52750 

e  0.68888

Lattice Parameter   la Å  3.54867 

Exp. Lattice Parameter   la Å  3.5670 
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Table 17.4.   The energy parameters (eV) of the functional group of diamond. 
 
 
 
 
 
   
 

 

Table 17.5.   The total bond energy of diamond calculated using the functional group composition and the energy of Table 
17.4 compared to the experimental value [1-2]. 
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FULLERENE ( 60C ) 
60C  comprises 60 equivalent carbon atoms that are bound as 60 single bonds and 30 double bonds in the geometric form of a 

truncated icosahedron: twelve pentagons and twenty hexagons joined such that no two pentagons share an edge.  To achieve this 
minimum energy structure each equivalent carbon atom serves as a vertex incident with one double and two single bonds.  Each 
type of bond serves as a functional group which has aromatic character.  The aromatic bond is uniquely stable and requires the 
sharing of the electrons of multiple 2H -type MOs.  The results of the derivation of the parameters of the benzene molecule given 

in the Benzene Molecule ( 6 6C H ) section was generalized to any aromatic functional group of aromatic and heterocyclic 

compounds in the Aromatic and Heterocyclic Compounds section.  Ethylene serves as a basis element for the 
3e

C C  bonding of 

the aromatic bond wherein each of the 
3e

C C  aromatic bonds comprises   0.75 4 3  electrons according to Eq. (15.161) 

wherein 2C  of Eq. (15.51) for the aromatic 
3e

C C -bond MO given by Eq. (15.162) is 

   3 3
2 22 2 0.85252C aromaticC sp HO c aromaticC sp HO   and  3, . 2.26759 TE atom atom msp AO eV   .  In 60C , the 

minimum energy structure with equivalent carbon atoms wherein each carbon forms bonds with three other such carbons 
requires a redistribution of charge within an aromatic system of bonds.  The C C  functional group of 60C  comprises the 

aromatic bond with the exception that it comprises four electrons.  Thus,  GroupTE  and  GroupDE  are given by Eqs. (15.165) and 

(15.166), respectively, with 1 1f  , 4 4c  , and ( )KvibE eV  is that of 60C . 

 In addition to the C C  bond, each vertex carbon atom of 60C  is bound to two C C  bonds that substitute for the 

aromatic 
3e

C C  and C H  bonds.  As in the case of the C C -bond MO of naphthalene, to match energies within the MO that 
bridges single and double-bond MOs,  /E AO HO  and  

2
/H MOE AO HO  in Eq. (15.51) are 14.63489 eV  and 2.26759 eV , 

respectively. 
To meet the equipotential condition of the union of the 32C sp  HOs of the C C  single bond bridging double bonds, the 

parameters 1c , 2C , and 2oC  of Eq. (15.51) are one for the C C  group, 1oC  and 1C  are 0.5, and 2c  given by Eq. (13.430) is 

 3
2 2 0.91771c C sp HO  .  To match the energies of the functional groups with the electron-density shift to the double bond, 

 3, .TE atom atom msp AO  of each of the equivalent C C -bond MOs in Eq. (15.61) due to the charge donation from the C  

atoms to the MO can be considered a linear combination of that of C C -bond MO of toluene, 1.13379 eV  and that of the 

aromatic C H -bond MO, 
1.13379 

2

eV
.  Thus,  3, .TE atom atom msp AO  of each C C -bond MO of 60C  is 

   1.13379 0.5 1.13379 
0.75 1.13379 0.85034 

2

eV eV
eV eV

  
    .  As in the case of the aromatic C H  bond, 3 1c   in 

Eq. (15.65) with magE  given by Eq. (15.67), and ( )KvibE eV  is that of 60C . 

The symbols of the functional groups of 60C  are given in Table 17.7.  The geometrical (Eqs. (15.1-15.5) and (15.51)), 

intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of 60C  are given 

in Tables 17.8, 17.9, and 17.10, respectively.  The total energy of 60C  given in Table 17.11 was calculated as the sum over the 

integer multiple of each  GroupDE  of Table 17.10 corresponding to functional-group composition of the molecule.  The bond 

angle parameters of 60C  determined using Eqs. (15.87-15.117) are given in Table 17.12.  The structure of 60C  is shown in 

Figures 17.2A and B. The fullerene vertex-atom group comprising a double and two single bonds can serve as a basis element to 
form other higher-order fullerene-type macromolecules, hyperfullerenes, and complex hybrid conjugated carbon and aromatic 
structures comprising a mixture of elements from the group of fullerene, graphitic, and diamond carbon described in the 
corresponding sections. 
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Figure 17.2.   60C  MO comprising a hollow cage of sixty carbon atoms bound with the linear combination of sixty sets of 

C C -bond MOs bridged by 30 sets of C C -bond MOs.  A C C  group is bound to two C C  groups at each vertex carbon 
atom of 60C .  Color scale, translucent pentagonal view (A), and hexagonal view (B), of the charge-density of the 60C -bond MO 

with each 32C sp  HO shown transparently.  For each C C  and C C  bond, the ellipsoidal surface of the 2H -type ellipsoidal 

MO that transitions to the 32C sp  HO, the 32C sp  HO shell, inner most 1C s  shell, and the nuclei (red, not to scale), are shown. 
 

 
 
 

 
 

 
 

 
 
Table 17.7.   The symbols of functional groups of 60C . 
 

Functional Group Group Symbol
C C  (aromatic-type) C C  
C C  (bound to C C  aromatic-type) C C  

 
Table 17.8.   The geometrical bond parameters of 60C  and experimental values [5]. 
 

Parameter 
C C  
Group

C C  
Group 

 0 a a  1.47348 1.88599 

 0'  c a  1.31468 1.37331 

Bond Length  2 '  c Å  1.39140 1.45345 

Exp. Bond Length 

 Å  
1.391 
( 60C ) 

1.455 
( 60C ) 

 0,  b c a  0.66540 1.29266 

e  0.89223 0.72817 
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 Table 17.10.  The energy parameters (eV) of functional groups of C60.  

Table 17.11.   The total bond energies of C60 calculated using the functional group composition and the energies of Table 
17.10 compared to the experimental values [7]. 



Nature of the Solid Molecular Bond of the Three Allotropes of Carbon 
 

1201

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

T
a

b
le

 1
7

.1
2

. 
 T

he
 b

on
d 

an
gl

e 
pa

ra
m

et
er

s 
of

 C
60

 a
nd

 e
xp

er
im

en
ta

l v
al

ue
s 

[8
].

  E
T
 is

 E
T
 (

at
om

 -
 a

to
m

 m
sp

3 .
A

O
).

  T
he

 la
w

 o
f 

co
si

ne
s 

w
as

 u
se

d 
to

 c
al

cu
la

te
 th

e 
an

gl
e.

 



Chapter 17 1202

FULLERENE DIHEDRAL ANGLES 
For 60C , the bonding at each vertex atom bC  comprises two single bonds, a b aC C C  , and a double bond, b cC C .  The 

dihedral angle /C C C C C     between the plane defined by the a b aC C C   moiety and the line defined by the corresponding 

b cC C  moiety is calculated using the results given in Table 17.12 and Eqs. (15.114-15.117).  The distance 1d  along the bisector 

of 
a bC C C a    from bC  to the internuclear-distance line between one aC  and the other aC , 2 '

a aC Cc  , is given by: 

 1 0 0

108.00°
2 ' cos 2.74663 cos 1.61443

2 2
a b

b a

C C C a
C Cd c a a

  
    (17.8) 

where 2 '
b aC Cc   is the internuclear distance between bC  and aC .  The atoms aC , aC , and cC  define the base of a pyramid.  Then, 

the pyramidal angle 
a c aC C C  can be solved from the internuclear distances between cC  and aC , 2 '

c aC Cc  , and between aC  and 

aC , 2 '
a aC Cc  , using the law of cosines (Eq. (15.115)). 

 
     

  
     

  

2 2 2
2 2 2

0 0 01 1

0 0

2 ' 2 ' 2 ' 4.65618a 4.65618a 4.4441a
cos cos

2 4.65618a 4.65618a2 2 ' 2 '

57.01°

c a c a a a

a b a

c a c a

C C C C C C

C C C

C C C C

c c c

c c
    


 

               


 (17.9) 

Then, the distance 2d  along the bisector of 
a c aC C C  from cC  to the internuclear-distance line 2 '

a aC Cc  , is given by: 

 2 0 0

57.01
2 ' cos 4.65618 cos 4.09176

2 2
a c a

c a

C C C
C Cd c a a





    (17.10) 

The lengths 1d , 2d , and 2 '
b cC Cc   define a triangle wherein the angle between 1d  and the internuclear distance between bC  and 

cC , 2 '
b cC Cc  , is the dihedral angle /C C C C C     that can be solved using the law of cosines (Eq. (15.117)). 

 
 
 

     
  

22 2 2 2 2
1 2 0 0 01 1

/
0 01

2 ' 1.61443a 2.62936a 4.09176a
cos cos

2 1.61443a 2.62936a2 2 '

148.29°

b c

b c

C C

C C C C C

C C

d c d

d c
  
   



               


 (17.11) 

The dihedral angle for a truncated icosahedron corresponding to /C C C C C     is: 

 / 148.28°C C C C C      (17.12) 

The dihedral angle /C C C C C     between the plane defined by the a b cC C C   moiety and the line defined by the 

corresponding b aC C  moiety is calculated using the results given in Table 17.12 and Eqs. (15.118-15.127).  The parameter 1d  

is the distance from bC  to the internuclear-distance line between aC  and cC , 2 '
a cC Cc  .  The angle between 1d  and the b aC C  

bond, 
1a bC C d , can be solved reiteratively using Eq. (15.121). 

 

     
      

     
 
   

1 1

1

1

22 2

2

2 2

2 ' 2 '
2 '

2 2 ' cosine 2 ' cosine

2 ' 2 '
2 2 ' c

2 ' cosine
2

2 ' cosine

 


    

 


 

  

  
  
 
  
  
  
      

b a b c

b a

b a a b b c a b c a b

b a b c

b a

b a a b

b c a b c a b

C C C C

C C

C C C C d C C C C C C C d

C C C C

C C

C C C C d

C C C C C C C d

c c
c

c c

c c
c

c

c

  



 

     
      

     

1

1 1

2

2
2 2

2 0 0
0

0 0

2 2

0 0
0

osine 0

2 '

2

2.74663a 2.62936a
2.74663a

2 2.74663a cosine 2.62936a cosine 120.00

2.74663a 2.62936a
2 2.74663a

2.74663a
2





 

 
 
 
 
 
 
  
 
 
 
 
       

  
   




a b

a c

a b a b

C C d

C C

C C d C C d

c



 

 
   

1

1

1

0

0

2

0

cosine 0
cosine

2.62936a cosine 120.00

4.6562a

2






 
 
 
 
 

   
                    

 
      

a b

a b

a b

C C d
C C d

C C d





 (17.13) 
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The solution of Eq. (17.13) is: 
 

2
57.810

a aC C d    (17.14) 

Eq. (17.14) can be substituted into Eq. (15.120) to give 1d : 

 

   
      

   
        

1 1

2 2

1

2 2

0 0
0

0 0

2 ' 2 '

2 2 ' cosine 2 ' cosine

2.74663a 2.62936a
1.33278a

2 2.74663a cosine 57.810 2.62936a cosine 120.00 57.810

b a b c

b a a b b c a b c a b

C C C C

C C C C d C C C C C C C d

c c
d

c c  
 

    




 


 

   

 (17.15) 

The atoms aC , aC , and cC  define the base of a pyramid.  Then, the pyramidal angle 
a a cC C C  can be solved from the 

internuclear distances between aC  and aC , 2 '
a aC Cc  , and between aC  and cC , 2 '

a cC Cc  , using the law of cosines (Eq. (15.115)). 

 

     
  

     
  

2 2 2

1

2 2 2

0 0 01

0 0

2 ' 2 ' 2 '
cos

2 2 ' 2 '

4.44410a 4.65618a 4.65618a
cos 61.50°

2 4.44410a 4.65618a

a a a c a c

a a c

a a a c

C C C C C C

C C C

C C C C

c c c

c c
   


 



   
 
 
  

   
 

 (17.16) 

The parameter 2d  is the distance from aC  to the bisector of the internuclear-distance line between aC  and cC , 2 '
a cC Cc  .  

The angle between 2d  and the a aC C  axis, 
2a aC C d , can be solved reiteratively using Eq. (15.126). 

 

     
      

     
 
   

2 2

2

2

22 2

2

2 2

2 ' 2 '
2 '

2 2 ' cosine 2 ' cosine

2 ' 2 '
2 2 ' c

2 ' cosine
2

2 ' cosine

 


    

 


 

  

  
   
  
  
  
      

a a a c

a a

a a a a a c a a c a a

a a a c

b a

a a a a

a c a a c a a

C C C C

C C

C C C C d C C C C C C C d

C C C C

C C

C C C C d

C C C C C C C d

c c
c

c c

c c
c

c

c

  



 

     
      

     
 

1

2 2

2

2
2 2

2 0 0
0

0 0

2 2

0 0
0

0
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2 '

2

4.44410a 4.65618a
4.44410a

2 4.44410a cosine 4.65618a cosine 61.50

4.44410a 4.65618a
2 4.44410a

4.44410a
2





 

 
 
 
 
 
 
  
 
 
 
 
       

  
   




a b

a c

a a a a

C C d

C C

C C d C C d

c



 

   
2

2

20

2

0

cosine 0
cosine

4.65618a cosine 61.50

4.6562a

2






 
 
 
 
 

   
                     

 
      

a a

a a

a a

C C d
C C d

C C d





 (17.17) 

The solution of Eq. (17.17) is: 
 

2
31.542

a aC C d    (17.18) 

Eq. (17.18) can be substituted into Eq. (15.125) to give 2d : 

 

   
      

   
        

2 2

2 2

2

2 2

0 0
0

0 0

2 ' 2 '

2 2 ' cosine 2 ' cosine

4.44410a 4.65618a
3.91101a

2 4.44410a cosine 31.542 4.65618a cosine 61.50 31.542

a a a c

a a a a a c a a c a a

C C C C

C C C C d C C C C C C C d

c c
d

c c  
 

    




 


 

   

 (17.19) 

The lengths 1d , 2d , and 2 '
b aC Cc   define a triangle wherein the angle between 1d  and the internuclear distance between bC  and 

aC , 2 '
b aC Cc  , is the dihedral angle /C C C C C     that can be solved using the law of cosines (Eq. (15.117)). 
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22 2
1 21

/

1

2 2 2

0 0 01

0 0

2 '
cos

2 2 '

1.33278a 2.74663a 3.91101a
cos 144.71°

2 1.33278a 2.74663a

b a

b a

C C

C C C C C

C C

d c d

d c
 
   





   
 
 
  

   
 

 (17.20) 

The dihedral angle for a truncated icosahedron corresponding to /C C C C C     is: 

 / 144.24°C C C C C      (17.21) 

 
GRAPHENE AND GRAPHITE 
In addition to fullerene and diamond described in the corresponding sections, graphite is the third allotrope of carbon.  It 
comprises planar sheets of covalently bound carbon atoms arranged in hexagonal aromatic rings of a macromolecule of 
indefinite size.  Each sheet comprises graphene.  The sheets, in turn, are bound together by weaker intermolecular forces.  It was 
demonstrated in the Fullerene ( 60C ) section, that a very complex macromolecule, fullerene, could be simply solved from the 

groups at each vertex carbon atom of the structure.  Specifically, a C C  group is bound to two C C  bonds at each vertex 
carbon atom of 60C .  The solution of the macromolecule is given by superposition of the geometrical and energy parameters of 

the corresponding two groups.  Similarly, diamond comprising, in principle, an infinite network of carbons was also solved in 
the Diamond section using the functional group solutions, the diamond C C  functional group which is the only functional 
group of diamond. 
 The structure of the indefinite network of aromatic hexagons of a sheet of graphite can also be solved by considering the 
vertex atom.  As in the case of fullerene, each sheet of joined hexagons can be constructed with a C C  group bound to two 
C C  bonds at each vertex carbon atom of graphite.  However, an alternative bonding to that of 60C  is possible for graphite due 

to the structure comprising repeating hexagonal units.  In this case, the lowest energy structure is achieved with a single 
functional group, one which has aromatic character.  The aromatic bond is uniquely stable and requires the sharing of the 
electrons of multiple 2H -type MOs.  The results of the derivation of the parameters of the benzene molecule given in the 

Benzene Molecule ( 6 6C H ) section was generalized to any aromatic functional group of aromatic and heterocyclic compounds in 

the Aromatic and Heterocyclic Compounds section.  Ethylene serves as a basis element for the 
3e

C C  bonding of the aromatic 

bond wherein each of the 
3e

C C  aromatic bonds comprises   0.75 4 3  electrons according to Eq. (15.161) wherein 2C  of Eq. 

(15.51) for the aromatic 
3e

C C -bond MO given by Eq. (15.162) is    3 3
2 22 2 0.85252C aromaticC sp HO c aromaticC sp HO   

and  3, . 2.26759 TE atom atom msp AO eV   . 

In graphite, the minimum energy structure with equivalent carbon atoms wherein each carbon forms bonds with three 
other such carbons requires a redistribution of charge within an aromatic system of bonds.  Considering that each carbon 
contributes four bonding electrons, the sum of electrons of a vertex-atom group is four from the vertex atom plus two from each 
of the two atoms bonded to the vertex atom where the latter also contribute two each to the juxtaposed group.  These eight 
electrons are distributed equivalently over the three bonds of the group such that the electron number assignable to each bond is 
8

3
.  Thus, the 

  8 /3e

C C  functional group of graphite comprises the aromatic bond with the exception that the electron-number per 

bond is 
8

3
.   GroupTE  and  GroupDE  are given by Eqs. (15.165) and (15.166), respectively, with 1

2

3
f   and 4

8

3
c  .  As in the case 

of diamond comprising equivalent carbon atoms, the 32C sp  HO magnetic energy magE  given by Eq. (15.67) was subtracted due 

to a set of unpaired electrons being created by bond breakage such that 3c  of Eqs. (15.165) and (15.166) is one. 

The symbol of the functional group of graphite is given in Table 17.13.  The geometrical (Eqs. (15.1-15.5) and (15.51)), 
intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of graphite are 
given in Tables 17.14, 17.15, and 17.16, respectively.  The total energy of graphite given in Table 17.17 was calculated as the 
sum over the integer multiple of each  GroupDE  of Table 17.16 corresponding to functional-group composition of the molecular 

solid.  The experimental 
  8 /3e

C C  bond energy of graphite at 0 K,  
exp

  8/3e

DE C C , is given by the difference between the 

enthalpy of formation of gaseous carbon atoms from graphite,   f graphiteH C gas , and the interplanar binding energy, xE , 

wherein graphite solid has a defined heat of formation of zero (   0fH C graphite  : 

   
exp

  8/3 2

3

e

D f graphite xE C C H C gas E          
 (17.22) 
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The factor of 
2

3
 corresponds to the ratio of 

8

3
 electrons per bond and 4  electrons per carbon atom.  The heats of formation of 

atomic carbon from graphite [9] and xE  [10] are: 

     711.185 /  7.37079 /f graphiteH C gas kJ mole eV atom   (17.23) 

 0.0228 /xE eV atom  (17.24) 

Using Eqs. (17.21-17.23),  
exp

  8 /3e

DE C C  is: 

  
exp

  8/3 2
7.37079 0.0228 4.89866 

3

e

DE C C eV eV eV     
 

 (17.25) 

The bond angle parameters of graphite determined using Eqs. (15.87-15.117) are given in Table 17.18.  The inter-plane 
distance for graphite of 3.5Å is calculated in the Geometrical Parameters Due to the Interplane van der Waals Cohesive Energy 

of Graphite section.  The structure of graphite is shown in Figure 17.3A and B.  The graphite 
  8/3e

C C  functional group can 
serve as a basis element to form additional complex polycyclic aromatic carbon structures such as nanotubes [11-15]. 
 
Figure 17.3.  The structure of graphite. (A) Single plane of macromolecule of indefinite size. (B) Layers of graphitic 
planes. 

 
(A)  (B) 

 
 
 

 
 
 
 

 
Table 17.13.   The symbols of the functional group of graphite. 
 

Functional Group Group Symbol

CC bond (graphite-C) 
  8/3e

C C  
 
Table 17.14.   The geometrical bond parameters of graphite and experimental values. 
 

Parameter   8/3e

C C  
Group

 0 a a  1.47348 

 0'  c a  1.31468 

Bond Length  2 '  c Å  1.39140 

Exp. Bond Length  Å  

1.42 
(graphite) [11] 

1.399 
(benzene) [16]

 0,  b c a  0.66540 

e  0.89223
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Table 17.16.   The energy parameters (eV) of the functional group of graphite. 
 

Table 17.17 .   The total bond energy of graphite calculated using the functional group composition and the energy of Table 
17.16 compared to the experimental value [9-10]. 
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Table 17.19.  The calculated and experimental total bond energies of allotropes of carbon using closed-form equations 
having integers and fundamental constants only. 
 

Formula Name 
Calculated 

Total Bond Energy 
(eV)

Experimental 
Total Bond Energy 

(eV)

Relative Error

Cn diamond 3.74829 3.704 -0.01 
C60 fullerene 419.75539 419.73367 -0.00005
Cn graphite 4.91359 4.89866 -0.00305
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Chapter 18 
  
NATURE OF THE IONIC BOND OF ALKALI HYDRIDES 
AND HALIDES 
  
 
 
 
 
ALKALI-HYDRIDE CRYSTAL STRUCTURES 
The alkali hydrides are lithium hydride ( LiH ), sodium hydride ( NaH ), potassium hydride ( KH ), rubidium hydride ( RbH ), 
and cesium hydride ( CsH ).  These saline or salt-like alkali-metal hydrides each comprise an equal number of alkali cations and 
hydride ions [1] in unit cells of a crystalline lattice.  The crystal structure of these ionic compounds is the face-centered cubic 
NaCl  structure [2].  This close-packed structure is expected since it gives the optimal approach of the positive and negative ions 
[3].  The structure comprises face-centered cubes of both M   and H   ions combined, but offset by half a unit cell length in one 
direction so that M   ions are centered in the edges of the H   lattice and vice versa.  Each M   is surrounded by six nearest 
neighbor H   ions and vice versa.  The resulting unit cell consists of anions (or cations) at the midpoint of each edge and at the 
center of the cell such that the unit cell contains four cations and four anions. 

The interionic radius of each hydride can be derived by considering the radii of the alkali ion and the hydride ion, the 
electron energies at these radii, and the conditions for stability of the ions as the internuclear distance changes and the ions are 
mutually influenced by Coulombic forces.  Then, the lattice energy is given by the sum over the crystal of the minimum energy 
of the interacting ion pairs at the radius of minimum approach for which the ions are stable.  The sum is further over all 
Coulombic interactions of the ions of the crystal. 

Each hydride MH  ( , , , ,M Li Na K Rb Cs ) is comprised of M   and H   ions.  From Coulomb’s Law, the lattice energy 
U  for point charges is given by the Born-Mayer equation [3] 
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where N  is Avogadro’s number, cM  is the Madelung constant (the convergent sum of all Coulombic interactions of any given 

ion with the lattice of ions), Z  and Z  are the ionic charges in elementary charge units, 0r  is the distance between ion centers, 

and   is a constant that corrects for higher-order terms (e.g. 6
01/ r  to 12

01/ r  terms) in repulsion between close neighbor ions.  The 

—M H  distance can be calculated from the minimum energy packing of the ions, which is stable.  Each ion is surrounded in a 
symmetrical octahedral field of six counterions.  From Eq. (18.1), the lattice energy increases as the interionic distance 
decreases.  But, the interionic distance cannot be the sum of the contact radii.  This is easily appreciated by considering that the 
energies of the outer electron of M   and the outer two electrons of H   are very different.  For sufficiently small interionic 
distances, the most energetic reaction that can occur which eliminates the cation and consequently the lattice energy is the 
following : 
 M e M    (18.2) 
For shorter distances, the spherically symmetrical 1

0S  state of the hydride ion is distorted by M  , and it is not stable in the ionic 

crystal when the —M H  distance is given by the condition that the total Coulombic energy of attractive terms of H   in the 
field of M   as well as the repulsive terms between like-charged ions is equal to the binding energy of M ,  BE M , for the 

cations of the crystal.  Then, the lattice energy is given by the product of Avogadro’s number,  BE M , and the Madelung 

constant which takes into account all inverse 0r  (point-like) Coulombic interactions of the crystal: 

  cU NM BE M   (18.3) 
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Thus, cM  is the factor of stability of forming the crystal from M   and H   ions.  The value for the NaCl  structure is 

1.74756cM   [3]. 

Since the Coulombic potential of the ions is equivalent to that of point charges with some higher order ion-ion-interaction 
repulsive terms, the —M H  distance  0r MH  given using Eq. (18.1), Eq. (18.3), and  BE M  is: 
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wherein 100.4  10  X m   for alkali hydrides [4-5].  The parameters of the hydride ion are given in the corresponding section. 
 
LITHIUM HYDRIDE 
The calculated ionic radii for Li  and H   ions given in Tables 7.1 and 7.2 are 00.35566a  and 01.8660a , respectively.  But, the 

interionic distance cannot be the sum of the contact radii since the calculated ionization energies of Li  (Eqs. (7.35), (7.45-7.46), 
and (7.63)) and H   (Eq. (7.69)) are 75.665 eV  and 0.75471 eV , respectively.  Furthermore, since the calculated ionization 
energy (Eq. (10.25)) of Li  to Li  is 5.40381 eV  as shown in Table 10.1 and the ionization energy (Eq. (7.69)) of H   to H  is 

190.75471  (1.20836  10  )eV X J , for sufficiently small interionic distances, the lithium ion may be reduced. 

Substitution of   198.65786  10  BE Li X J  into Eq. (18.3) gives the calculated lattice energy of 

    191.74756 8.65786  10  911.1 /  217.8 /cU NM BE Li N X J kJ mole kcal mole     (18.5) 

This agrees well with the experimental lattice energy of 217.95 /U kcal mole   [1] and confirms that the ionic compound 
LiH  comprises a precise packing of discrete ions. 

The calculated radius of Li  (Eq. (10.13)) given in Table 10.1 is 02.55606a , and the calculated binding energy is 
195.40381  (8.65786  10  )eV X J  (Eq. (10.25)).  The —Li H  distance,  0r LiH , calculated using Eq. (18.4) with the 

substitution of   198.65786  10  BE Li X J  is: 

   10
0 2.17  10  r LiH X m  (18.6) 

The calculated —Li H  is in reasonable agreement with the experimental distance of   10
0 2.04  10  r LiH X m  [1] given the 

experimental difficulty of performing X-ray diffraction on lithium and hydrogen due to the low electron densities.  Furthermore, 
there is a 15% variation in experimental measurements of the density of LiH  [1] that affects the internuclear spacing.  Using the 

—Li H  distance and the calculated ionic radii, the lattice structure of LiH  is shown in Figure 18.1A. 
 
SODIUM HYDRIDE 
The calculated ionic radii for Na  and H   ions given in Tables 10.8 and 7.2 are 00.560945a  and 01.8660a , respectively.  But, 

the interionic distance can not be the sum of the contact radii since the calculated ionization energies of Na  (Eqs. (10.212-
10.213)) and H   (Eq. (7.69)) are 48.5103 eV  and 0.75471 eV , respectively.  Furthermore, since the calculated ionization 
energy (Eqs. (10.226-10.227)) of Na  to Na  is 5.12592 eV  as shown in Table 10.10 and the ionization energy (Eq. (7.69)) of 
H   to H  is 190.75471  (1.20836  10  )eV X J , for sufficiently small interionic distances, the sodium ion may be reduced. 

Substitution of   198.21263  10  BE Na X J  into Eq. (18.3) gives the calculated lattice energy of 

    191.74756 8.21263  10  864.3 /  206.6 /cU NM BE Na N X J kJ mole kcal mole     (18.7) 

This agrees well with the experimental lattice energy of 202.0 /U kcal mole   [2] and confirms that the ionic 
compound NaH  comprises a precise packing of discrete ions. 

The calculated radius of Na  (Eq. (10.226)) given in Table 10.10 is 02.65432a , and the calculated binding energy is 
195.12592  (8.21263  10  )eV X J  (Eqs. (10.226-10.227)).  The —Na H  distance,  0r NaH , calculated using Eq. (18.4) with 

the substitution of   198.21263  10  BE Na X J  is: 

   10
0 2.33  10  r NaH X m  (18.8) 

The calculated —Na H  is in good agreement with the experimental distance of   10
0 2.44  10  r NaH X m  [2].  Using the 

—Na H  distance and the calculated ionic radii, the lattice structure of NaH  is shown in Figure 18.1B. 
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Figure 18.1.   The crystal structures of MH  all to the same scale.  ( Li = green, Na = yellow, K  = purple, and H   and 
1

4
H   

 
 

= blue).  (A) The crystal structure of LiH .  (B) The crystal structure of NaH .  (C) The crystal structure of KH .  (D) 

The crystal structure of 
1

4
KH

 
 
 

. 
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POTASSIUM HYDRIDE 
The calculated ionic radii for K   and H   ions given in Tables 10.17 and 7.2 are 00.85215a  and 01.8660a , respectively.  But, 

the interionic distance cannot be the sum of the contact radii since the calculated ionization energies of K   (Eqs. (10.399-
10.400)) and H   (Eq. (7.69)) are 31.9330 eV  and 0.75471 eV , respectively.  Furthermore, since the calculated ionization 
energy (Eqs. (10.414-10.415)) of K  to K   is 4.33 eV  as shown in Table 10.19 and the ionization energy (Eq. (7.69)) of H   to 
H  is 190.75471  (1.20836  10  )eV X J , for sufficiently small interionic distances, the potassium ion may be reduced. 

Substitution of   196.93095  10  BE K X J  into Eq. (18.3) gives the calculated lattice energy of: 

    191.74756 6.93095  10  729.4 /  174.3 /cU NM BE K N X J kJ mole kcal mole     (18.9) 

This agrees well with the experimental lattice energy of 177.2 /U kcal mole   [2] and confirms that the ionic 
compound KH  comprises a precise packing of discrete ions. 

The calculated radius of K  (Eq. (10.414)) given in Table 10.19 is 03.14515a , and the calculated binding energy is 
194.32596  (6.93095  10  )eV X J  (Eqs. (10.414-10.415)).  The —K H  distance,  0r KH , calculated using Eq. (18.4) with the 

substitution of   196.93095  10  BE K X J  is: 

   10
0 2.86  10  r KH X m  (18.10) 

The calculated —K H  is in good agreement with the experimental distance of   10
0 2.85  10  r KH X m  [2].  Using the 

—K H  distance and the calculated ionic radii, the lattice structure of KH  is shown in Figure 18.1C.  An aggregate crystal of 
unit cells is shown in Figure 18.2. 
 
Figure 18.2.   The crystal structure of KH .  ( K  = purple and H  = blue).  (A) Opaque view showing the external 
geometrical crystal structure of an aggregate of unit cells of KH .  (B) The crystal structure of KH  showing an aggregate of 
units cells. 
 

A B 
 

 
RUBIDIUM AND CESIUM HYDRIDE 
As further tests of the boundary condition, the lattice energies of RbH  and CsH  are given by the product of Avogadro’s 
number, the Madelung constant of 1.74756cM  , and the binding energy of Rb  and Cs  of 4.17713 eV  and 3.89390 eV  [6], 

respectively.  Using Eq. (18.3), the calculated lattice energy of RbH  is: 
  1.74756 4.17713 704.3 / 168.3 /U N e eV kJ mole kcal mole     (18.11) 

This agrees well with the experimental lattice energy of 168.6 /U kcal mole   [2] and confirms that the ionic compound RbH  
comprises a precise packing of discrete ions.   

Substitution of   196.6925  10  BE Rb X J  into Eq. (18.4) gives the —Rb H  distance  0r RbH : 

   10
0 2.99  10  r RbH X m  (18.12) 

The calculated —Rb H  is in good agreement with the experimental distance of   10
0 3.02  10  r RbH X m  [2].  

Using Eq. (18.3), the calculated lattice energy of CsH  is: 
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  1.74756 3.89390 656.6 / 156.9 /U N e eV kJ mole kcal mole     (18.13) 

This agrees well with the experimental lattice energy of 154.46 /U kcal mole   [1] and 162.0 /U kcal mole   [2] and 
confirms that the ionic compound CsH  comprises a precise packing of discrete ions.   

Substitution of   196.23872  10  BE Cs X J  into Eq. (18.4) gives the —Cs H  distance  0r CsH : 

   10
0 3.24  10  r CsH X m  (18.14) 

The calculated —Cs H  is in good agreement with the experimental distance of   10
0 3.19  10  r CsH X m  [2].  
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shown in Figure 18.1D. 
 
ALKALI-HALIDE CRYSTAL STRUCTURES 
The alkali halides ( MX ) are lithium, sodium, potassium, rubidium, and cesium cations, M  , with fluoride, chloride, bromide, 
and iodide anions, X  .  These saline or salt-like alkali-metal halides each comprise an equal number of alkali cations and halide 
ions [3] in unit cells of a crystalline lattice.  The crystal structure of these ionic compounds is the face-centered cubic NaCl  
structure except for CsCl , CsBr , and CsI  that have the CsCl  structure at ordinary temperatures and pressures [3].  These 
close-packed structures are expected since it gives the optimal approach of the positive and negative ions [3].  The NaCl  
structure comprises face-centered cubes of both M   and X   ions combined, but offset by half a unit cell length in one direction 
so that M   ions are centered in the edges of the X   lattice and vice versa.  Each M   is surrounded by six nearest neighbor X   
ions and vice versa.  The resulting unit cell consists of anions (or cations) at the midpoint of each edge and at the center of the 
cell such that the unit cell contains four cations and four anions.  The CsCl  structure comprises body-centered cubes of both M   
and X   ions wherein M   is in the center of cubes of X   and vice versa. 
 
ALKALI-HALIDE LATTICE PARAMETERS AND ENERGIES 
The interionic radius of each alkali halide can be derived by considering the radii of the alkali ion and the halide ion, the electron 
energies at these radii, and the conditions for stability of the ions as the internuclear distance changes and the ions are mutually 
influenced by the Coulombic fields.  Then, the lattice energy is given by the sum over the crystal of the minimum energy of the 
interacting ion pairs at the radius of minimum approach for which the ions are stable.  The sum is further over all Coulombic 
interactions of the ions of the crystal. 

As in the case with alkali hydrides, each alkali halide MX  ( , , , ,M Li Na K Rb Cs  and , , ,X F Cl Br I ) is comprised of 

M   and X   ions.  From Coulomb’s law, the lattice energy U  for point charges is given by Eq. (18.1), the Born-Mayer 
equation.  The —M X  distance can be calculated from the minimum energy packing of the ions, which is stable.  Each ion of 
the NaCl  and CsCl  structure is surrounded in a symmetrical octahedral or cubic field of six or four counterions, respectively.  
From Eq. (18.1), the lattice energy increases as the interionic distance decreases.  But, the interionic distance cannot be the sum 
of the contact radii.  This is easily appreciated by considering that the energies of the outer electron of M   and the outer 
electrons of X   are very different.  For sufficiently small interionic distances, the most energetic reaction that can occur which 
eliminates the cation and consequently the lattice energy is given by Eq. (18.2).  For shorter distances, the spherically 
symmetrical 1

0S  state of the halide ion is distorted by M  , and it is not stable in the ionic crystal when the —M X  distance is 

sufficiently small.  To first order, this distance is given by the condition that the total Coulombic energy of attractive terms of 
X   in the field of M   as well as the repulsive terms between like-charged ions is equal to the binding energy of M ,  BE M , 

for the cations of the crystal. 
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As in the case of the alkali hydrides, the lattice energies of alkali halides are determined by the binding energy of the 
corresponding metal atom.  However, for each alkali halide an additional energy term arises corresponding to the effect of the 
electric field of the metal ion on the magnetic forces and energy of the halide ion.  With the binding of the ions in both alkali 
hydrides and halides, the electric field lines of the metal ions end on those of the negative ions.  But, each electron of the hydride 
ion occupies a symmetrically symmetrical s  orbital, and the electrons collectively comprise a filled s  shell only such that there 
is no dipole to interact with the external electric field of the positive ions.  Whereas, the outer shell of the halide ions comprise 
p -orbital electrons having magnetic dipoles.  These dipoles can interact with the external electric field having dipole 

components.  Thus, the cation-anion separation in ionic compounds having electrons with magnetic dipole moments due to 
orbital angular momentum is dependent on the effect of the electric field on the magnetic forces of the anion. 

Since the magnetic field is a relativistic effect of the electric field and the electron’s charge, e , charge-to-mass ratio, 
e

e

m
, 

angular momentum of  , and the magnetic moment of B  are relativistically invariant, it is not surprising as shown in the Stark 

Effect section that the energy, StarkE , of a one-electron atom in an electric field follows from that of a magnetic dipole in a 

magnetic field, Eqs. (2.68-2.69), with the magnetic dipole moment replaced by the electric dipole moment and the magnetic flux 
replaced by the electric field appliedE .  Thus, in alkali halides, the change in Coulombic lattice energy due to the Stark effect is 

given by the change in magnetic energy of the anion.  The Stark-effect energy can be expressed in terms of the magnetic-dipole 
energy according to Eqs. (2.73-2.75): 
 BE B  (18.15) 

The corresponding force StarkF  on the outer nth electron of the anion is given by Eqs. (7.27-7.31). 
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From the radius change and the magnetic energy change, the Stark energy component ( ;  )E ionization X   is calculated.  Then, 

the lattice energy is given by the product of Avogadro’s number, the Madelung constant which takes into account all inverse 0r  

(point-like) Coulombic interactions of the crystal, and the sum of  BE M , and ( ;  )E ionization X  : 

   ( ;  )cU NM BE M E ionization X      (18.17) 

Thus, cM  is the factor of stability of forming the crystal from M   and X   ions.  The values for the NaCl  and CsCl  structures 

are 1.74756cM   and 1.76267cM  [3], respectively. 

Since the Coulombic potential of the ions is equivalent to that of point charges with some higher order ion-ion-interaction 
repulsive terms, the —M X  distance  0r MX  given using Eq. (18.1), Eq. (18.3),  BE M  and ( ;  )E ionization X   is: 
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  (18.18) 

wherein 100.2  10  X m   for alkali halides [5, 7].  The parameters of the gas-phase halide ions are derived next following the 
same procedure as that used to solve multielectron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
FLUORIDE ION 
The fluoride atom comprises a nine-electron atom having a central charge of 9Z   times that of the proton.  There are two 
indistinguishable spin-paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two 

indistinguishable spin-paired electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and two sets of paired 

and an unpaired electron in an atomic orbital at 9r  given by Eq. (10.182).  The next electron which binds to form the 

corresponding ten-electron fluoride ion is attracted by the net magnetic force between the pairing (electron 10) and unpaired 
(electron 9) to form three pairs of electrons of opposite spin in xp , yp , and zp  orbitals of an atomic orbital at the same radius 

10r .  The resulting electron configuration is 2 2 61 2 2s s p , and the orbital arrangement is: 

 

        2p state

          

  1        0        -1

       (18.19) 

corresponding to the ground state 1
0S . 
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Unlike the case of the hydride ion comprising a filled s  shell only, the outer shell of the fluoride ion comprises additional 
orbitals to the one filled by the electron which binds to form the negative ion.  The forces are purely magnetic in order to 
maintain the boundary conditions of an equipotential minimum energy for electrons of the additional orbitals.  Thus, the central 
Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most electron due to the 
nucleus and the inner nine electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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 rF i  (18.20) 

for 9r r  with 9Z  . 

As in the case with the closed-shell s  orbitals, the spin-pairing force magF  between electron 9 and electron 10 given by 

Eq. (7.24) is: 
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 (18.21) 

Due to the spin-pairing force the diamagnetic forces and paramagnetic forces are altered relative to those of the 
isoelectronic neon atom.  The energy of the fluoride ion is minimized and the angular momentum is conserved with the pairing 
of electron ten to fill the 2 yp  orbital.  Then, the orbital angular momentum of each set of the 2 xp  and zp  spin-paired electrons 

give rise to the diamagnetic force (Eq. (10.82)), diamagneticF : 
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From Eq. (10.84),  2magF  due to spin and orbital angular momentum is: 
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The outward centrifugal force on electron 10 is balanced by the electric force and the magnetic forces (on electron 10).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (18.20)), 
diamagnetic (Eq. (18.22)), and paramagnetic (Eqs. (18.21) and (18.23)) forces as follows: 
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Substitution of 10
10e

v
m r




 (Eq. (1.35)), 9Z  , and 
1

2
s   into Eq. (18.24) gives: 
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Substitution of 3

0

0.51382
r

a
  (Eq. (10.62)) into Eq. (18.27) gives: 

 10 02.75769r a  (18.28) 

The ionization energy of the fluoride ion is given by the magnetic energy of the outer electron calculated by integrating 
the sum of the diamagnetic (Eq. (18.22)) and paramagnetic (Eqs. (18.21) and (18.23)) forces from 10r  to  : 
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Eq. (18.29) with 3 00.51382r a  (Eq. (10.62)), 10 02.75769r a  (Eq. (18.28)), and 9Z   gives: 

 ( ;  ) 3.40603 E ionization F eV   (18.30) 
The experimental ionization energy of the fluoride ion is [8] : 
 ( ;  ) 3.4011895 E ionization F eV   (18.31) 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
CHLORIDE ION 
The chlorine atom comprises a seventeen-electron atom having a central charge of  Z = 17 times that of the proton.  There are 
two indistinguishable spin-paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two 

indistinguishable spin-paired electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired 

electrons in an atomic orbital at 10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with 

radii 11r  and 12r  both given by Eq. (10.255), and two sets of paired and an unpaired electron in an atomic orbital with radius 17r  

given by Eq. (10.363).  The next electron which binds to form the corresponding eighteen-electron chloride ion is attracted by 
the net magnetic force between the pairing (electron 18) and unpaired (electron 17) to form three pairs of electrons of opposite 
spin in xp , yp , and zp  orbitals of an atomic orbital at the same radius 18r .  The resulting electron configuration is 

2 2 6 2 61 2 2 3 3s s p s p , and the orbital arrangement is: 

 

        3p state

          

  1         0       -1

       (18.32) 

corresponding to the ground state 1
0S . 

Unlike the case of the hydride ion, the outer shell of the chloride ion comprises additional orbitals to the one filled by the 
electron which binds to form the negative ion.  The forces are purely magnetic in order to maintain the boundary conditions of an 
equipotential minimum energy for electrons of the additional orbitals.  Thus, the central Coulomb force acts on the outer electron 
to cause it to bind wherein this electric force on the outer-most electron due to the nucleus and the inner seventeen electrons is 
given by Eq. (10.70) with the appropriate charge and radius: 
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for 17r r  with 17Z  . 

As in the case with the closed-shell s  orbitals, the spin-pairing force magF  between electron 18 and electron 17 given by 

Eq. (7.24) is 
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Due to the spin-pairing force the diamagnetic forces and paramagnetic forces are altered relative to those of the 
isoelectronic argon atom.  The energy of the chloride ion is minimized and the angular momentum is conserved with the pairing 
of electron eighteen to fill the 3 yp  orbital when the orbital angular momentum of each set of the xp , yp , and zp  spin-paired 

electrons add negatively to cancel.  Then, the diamagnetic force (Eq. (10.82)), diamagneticF , is zero as in the case of the closed- p -

shell atom neon: 
 0diamagnetic F  (18.35) 

The orbital angular momentum of each set of the 3 xp  and zp  spin-paired electrons and the spin and orbital angular 

momentum of electrons 17 and 18 that pair upon the binding to fill the 3 yp  shell give rise to the magnetic force 2magF  with the 

corresponding contributions given by Eqs. (10.83) and (10.84), respectively: 
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The outward centrifugal force on electron 18 is balanced by the electric force and the magnetic forces (on electron 18).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (18.33)), 
diamagnetic (Eq. (18.35)), and paramagnetic (Eqs. (18.34) and (18.36)) forces as follows: 
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Substitution of 18
18e

v
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 (Eq. (1.35)), 17Z  , and 
1

2
s   into Eq. (18.37) gives: 
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 (18.39) 
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Substitution of 12

0

0.86545
r

a
  (Eq. (10.255)) into Eq. (18.40) gives: 

 18 02.68720r a  (18.41) 

The ionization energy of the chloride ion is given by the magnetic energy of the outer electron calculated by integrating 
the sum of the diamagnetic (Eq. (18.35)) and paramagnetic (Eqs. (18.34) and (18.36)) forces from 18r  to  : 
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 (18.42) 

Eq. (18.42) with 12 00.86545r a  (Eq. (10.255)), 18 02.68720r a  (Eq. (18.41)), and 17Z   gives: 

 ( ;  ) 3.67238 E ionization Cl eV   (18.43) 
The experimental ionization energy of the chloride ion is [8]: 
 ( ;  ) 3.612724 E ionization Cl eV   (18.44) 
 
CHANGE IN THE RADIUS AND IONIZATION ENERGY OF THE FLUORIDE ION 
DUE TO THE ION FIELD 
As in the case of the alkali hydrides, the lattice energies of alkali halides are equivalent to the binding energy of the 
corresponding metal atom, except for an additional energy term corresponding to the Stark effect of the metal ion on the 
magnetic forces and energy of the halide ion.  The corresponding force StarkF  on the outer electron of the fluoride ion given by 

Eq. (18.16) is 
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 (18.45) 

Then, the outward centrifugal force on electron 10 is balanced by the electric force and the magnetic forces (on electron 10).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (18.20)), 
diamagnetic (Eq. (18.22)), and paramagnetic (Eqs. (18.21), (18.23), and (18.45)) forces as follows: 
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Substitution of 10
10e

v
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 (Eq. (1.35)), 9Z  , and 
1

2
s   into Eq. (18.46) gives: 
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Substitution of 3

0

0.51382
r

a
  (Eq. (10.62)) into Eq. (18.47) gives: 

 10 02.46408r a  (18.48) 

The ionization energy of the fluoride ion is given by the magnetic energy of the outer electron calculated by integrating 
the sum of the diamagnetic (Eq. (18.22)) and paramagnetic (Eqs. (18.21), (18.23), and (18.45)) forces from 10r  to  : 
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 (18.49) 

Eq. (18.49) with 3 00.51382r a  (Eq. (10.62)), 10 02.46408r a  (Eq. (18.48)), and 9Z   gives: 

 ( ;  ) 4.05046 E ionization F eV   (18.50) 

The energy change of the fluoride ion ( ;  )E ionization F   due to the Stark effect is given by the difference between Eqs. (18.50) 
and (18.30): 
 ( ;  ) 4.05046 3.40603 0.64444 E ionization F eV eV eV     (18.51) 
 
CHANGE IN THE RADIUS AND IONIZATION ENERGY OF THE CHLORIDE ION 
DUE TO THE ION FIELD 
Similar to the case of the alkali fluorides, the lattice energies of alkali chlorides are equivalent to the binding energy of the 
corresponding metal atom, except for those cases where there is an additional energy term corresponding to the Stark effect of 
the metal ion on the magnetic forces and energy of the chloride ion.  The selection rules for the Stark effect in one-electron 
atoms given by Eq. (2.78) is: 
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    (18.52) 

The corresponding energies are given in Table 2.3.  For fluoride having an outer 2p shell: 
 1m   (18.53) 

corresponding to the force StarkF  on the outer electron of the fluoride ion given by Eq. (18.45) and the binding energy change 

( ;  )E ionization F   given by Eq. (18.50). 
In the case of the chloride ion, the outer shell is 3p .  For cations having an outer filled  ;  3ns or np n   shell, the interaction of 

the 3p  and 2 p  shells of Cl  due to the field of the cation gives rise to a diamagnetic Stark force StarkF  corresponding to the 

selection rule: 
 1m    (18.54) 

wherein the cation’s electrons cannot compensate for the diamagnetism by changing orientation.  Thus, for Li  and Na  
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 (18.55) 

and for K  , Rb , and Cs  with   ;  3ns or np n   

 0Stark F  (18.56) 

Then, the outward centrifugal force on electron 18 is balanced by the electric force and the magnetic forces (on electron 18).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (18.33)), 
diamagnetic (Eq. (18.35)), and paramagnetic (Eqs. (18.34), (18.36), and (18.55)) forces as follows: 
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Substitution of 18
18e

v
m r




 (Eq. (1.35)), 17Z  , and 
1
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Substitution of 12

0

0.86545
r

a
  (Eq. (10.255)) into Eq. (18.58) gives: 

 18 02.83145r a  (18.59) 

The ionization energy of the chloride ion is given by the magnetic energy of the outer electron calculated by integrating 
the sum of the diamagnetic (Eq. (18.35)) and paramagnetic (Eqs. (18.34), (18.36), and (18.55)) forces from 18r  to  : 
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 (18.60) 

Eq. (18.60) with 12 00.86545r a  (Eq. (10.255)), 18 02.83145r a  (Eq. (18.59)), and 17Z   gives: 

 ( ;  ) 3.39420 E ionization Cl eV   (18.61) 

For Li  and Na  chlorides, the energy change of the chloride ion ( ;  )E ionization Cl  due to the Stark effect is given by the 
difference between Eqs. (18.61) and (18.43). 
 ( ;  ) 3.39420 3.67238 0.27818 E ionization Cl eV eV eV      (18.62) 
 
LITHIUM FLUORIDE 
The calculated ionic radii for Li  and F   ions in LiF  given by Eqs. (10.49) and (18.48) are 00.35566a  and 02.46408a , 

respectively.  But, the interionic distance cannot be the sum of the contact radii since the calculated ionization energies of Li  
(Eqs. (7.35), (7.45-7.46), and (7.63)) and F   (Eq. (18.50)) are 75.665 eV  and 4.05046 eV , respectively.  Furthermore, since the 
calculated ionization energy (Eq. (10.25)) of Li  to Li  is 5.40381 eV  as shown in Table 10.1 and the ionization energy (Eq. 
(18.50)) of F   to F  is 4.05046 eV , for sufficiently small interionic distances, the lithium ion may be reduced. 

Substitution of   198.65786  10  BE Li X J  and  19( ;  ) 0.64444  1.03251  10  E ionization F eV X J    (Eq. (18.51)) 

into Eq. (18.17) gives the calculated lattice energy of: 
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 (18.63) 

This agrees well with the experimental lattice energy of 250.7 /U kcal mole   [9] and confirms that the ionic compound LiF  
comprises a precise packing of discrete ions. 

The —Li F  distance,  0r LiF , calculated using Eq. (18.18) with the substitution of   198.65786  10  BE Li X J  and 
19( ;  ) 1.03251  10  E ionization F X J    is: 

   10
0 2.16  10  r LiF X m  (18.64) 

The calculated —Li F  is in reasonable agreement with the experimental distance of   10
0 2.01  10  r LiF X m  [10].  Using the 

—Li F  distance and the calculated ionic radii, the lattice structure of LiF  is shown in Figure 18.3A. 
 
SODIUM FLUORIDE 
The calculated ionic radii for Na  and F   ions in NaF  given by Eqs. (10.212) and (18.48) are 00.560945a  and 02.46408a , 

respectively.  But, the interionic distance cannot be the sum of the contact radii since the calculated ionization energies of Na  
(Eqs. (10.212-10.213)) and F   (Eq. (18.50)) are 48.5103 eV  and 4.05046 eV , respectively.  Furthermore, since the calculated 
ionization energy (Eqs. (10.226-10.227)) of Na  to Na  is 5.12592 eV  as shown in Table 10.10 and the ionization energy (Eq. 
(18.50)) of F   to F  is 4.05046 eV , for sufficiently small interionic distances, the sodium ion may be reduced. 

Substitution of   198.21263  10  BE Na X J  and 19( ;  ) 1.03251  10  E ionization F X J    (Eq. (18.51)) into Eq. (18.17) 

gives the calculated lattice energy of: 
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 (18.65) 

This agrees well with the experimental lattice energy of 222 /U kcal mole   [9] and confirms that the ionic compound NaF  
comprises a precise packing of discrete ions. 

The —Na F  distance,  0r NaF , calculated using Eq. (18.18) with the substitution of   198.21263  10  BE Na X J  and 
19( ;  ) 1.03251  10  E ionization F X J    is: 
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   10
0 2.28  10  r NaF X m  (18.66) 

The calculated —Na F  is in reasonable agreement with the experimental distance of   10
0 2.32  10  r NaF X m  [10].  Using 

the —Na F  distance and the calculated ionic radii, the lattice structure of NaF  is shown in Figure 18.3B. 
 
Figure 18.3.   The crystal structures of MF  all to the same scale.  ( Li = green, Na = yellow, K  = purple, Rb = blue, Cs = 
red, and F  = gold).  (A) The crystal structure of LiF .  (B) The crystal structure of NaF .  (C) The crystal structure of KF .  (D) 
The crystal structure of RbF .  (E) The crystal structure of CsF . 
 

 
 

POTASSIUM FLUORIDE 
The calculated ionic radii for K   and F   ions in KF  given by Eqs. (10.399) and (18.48) are 00.85215a  and 02.46408a , 

respectively.  But, the interionic distance cannot be the sum of the contact radii since the calculated ionization energies of K   
(Eqs. (10.399-10.400)) and F   (Eq. (18.50)) are 31.9330 eV  and 4.05046 eV , respectively.  Furthermore, since the calculated 
ionization energy (Eqs. (10.414-10.415)) of K  to K   is 4.33 eV  as shown in Table 10.19 and the ionization energy (Eq. 
(18.50)) of F   to F  is 4.05046 eV , for sufficiently small interionic distances, the potassium ion may be reduced. 

Substitution of   196.93095  10  BE K X J  and 19( ;  ) 1.03251  10  E ionization F X J    (Eq. (18.51)) into Eq. (18.17) 

gives the calculated lattice energy of: 
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 (18.67) 
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This agrees well with the experimental lattice energy of 198 /U kcal mole   [9] and confirms that the ionic compound KF  
comprises a precise packing of discrete ions. 

The —K F  distance,  0r KF , calculated using Eq. (18.18) with the substitution of   196.93095  10  BE K X J  and 
19( ;  ) 1.03251  10  E ionization F X J    is: 

   10
0 2.68  10  r KF X m  (18.68) 

The calculated —K F  is in reasonable agreement with the experimental distance of   10
0 2.67  10  r KF X m  [10].  Using the 

—K F  distance and the calculated ionic radii, the lattice structure of KF  is shown in Figure 18.3C. 
 
RUBIDIUM FLUORIDE 
The Rb  ionic radius calculated using Eq. (10.102) and the experimental ionization energy of Rb , 27.2895 eV  [6] is 

00.99714a  and the calculated ionic radius F   ions in RbF  given by Eq. (18.48) is 02.46408a .  But, the interionic distance 

cannot be the sum of the contact radii since the experimental and calculated ionization energies of Rb  [6] and F   (Eq. (18.50)) 
are 27.2895 eV  and 4.05046 eV , respectively.  Furthermore, since the experimental ionization energy of Rb  to Rb  is 
4.177128 eV  [6] and the ionization energy (Eq. (18.50)) of F   to F  is 4.05046 eV , for sufficiently small interionic distances, 
the rubidium ion may be reduced. 

Substitution of   196.6925  10  BE Rb X J  and 19( ;  ) 1.03251  10  E ionization F X J    (Eq. (18.51)) into Eq. (18.17) 

gives the calculated lattice energy of: 
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 (18.69) 

This agrees well with the experimental lattice energy of 190 /U kcal mole   [9] and confirms that the ionic compound RbF  
comprises a precise packing of discrete ions. 

The —Rb F  distance,  0r RbF , calculated using Eq. (18.18) with the substitution of   196.6925  10  BE Rb X J  and 
19( ;  ) 1.03251  10  E ionization F X J    is: 

   10
0 2.77  10  r RbF X m  (18.70) 

The calculated —Rb F  is in reasonable agreement with the experimental distance of   10
0 2.83  10  r RbF X m  [10].  Using the 

—Rb F  distance and the ionic radii, the lattice structure of RbF  is shown in Figure 18.3D. 
 
CESIUM FLUORIDE 
The Cs  ionic radius calculated using Eq. (10.102) and the experimental ionization energy of Cs , 23.15744 eV  [6] is 

01.17506a  and the calculated ionic radius F   ions in CsF  given by Eq. (18.48) is 02.46408a .  But, the interionic distance 

cannot be the sum of the contact radii since the experimental and calculated ionization energies of Cs  [6] and F   (Eq. (18.50)) 
are 23.15744 eV  and 4.05046 eV , respectively.  Furthermore, since the experimental ionization energy of Cs  to Cs  is 
3.893905 eV  [6] and the ionization energy (Eq. (18.50)) of F   to F  is 4.05046 eV , for sufficiently small interionic distances, 
the cesium ion may be reduced. 

Substitution of   196.23872  10  BE Cs X J  and 19( ;  ) 1.03251  10  E ionization F X J    (Eq. (18.51)) into Eq. (18.17) 

gives the calculated lattice energy of: 

 

  
 

 

19 19

( ;  )

      1.74756 6.23872  10  1.03251  10  

      765.21 /  182.89 /

cU NM BE Cs E ionization F

N X J X J

kJ mole kcal mole



 

   

 



 (18.71) 

This agrees well with the experimental lattice energy of 181 /U kcal mole   [9] and confirms that the ionic compound CsF  
comprises a precise packing of discrete ions. 

The —Cs F  distance,  0r CsF , calculated using Eq. (18.18) with the substitution of   196.23872  10  BE Cs X J  and 
19( ;  ) 1.03251  10  E ionization F X J    is: 

   10
0 2.96  10  r CsF X m  (18.72) 

The calculated —Cs F  is in reasonable agreement with the experimental distance of   10
0 3.01  10  r CsF X m  [10].  Using the 

—Cs F  distance and the ionic radii, the lattice structure of CsF  is shown in Figure 18.3E. 
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LITHIUM CHLORIDE 
The calculated ionic radii for Li  and Cl  ions in LiCl  given by Eqs. (10.49) and (18.59) are 00.35566a  and 02.83145a , 

respectively.  But, the interionic distance cannot be the sum of the contact radii since the calculated ionization energies of Li  
(Eqs. (7.35), (7.45-7.46), and (7.63)) and Cl  (Eq. (18.61)) are 75.665 eV  and 3.39420 eV , respectively.  Furthermore, since 
the calculated ionization energy (Eq. (10.25)) of Li  to Li  is 5.40381 eV  as shown in Table 10.1 and the ionization energy (Eq. 
(18.61)) of Cl  to Cl  is 3.39420 eV , for sufficiently small interionic distances, the lithium ion may be reduced. 

Substitution of   198.65786  10  BE Li X J  and  20( ;  ) 0.27818  4.45691  10  E ionization Cl eV X J      (Eq. 

(18.62)) into Eq. (18.17) gives the calculated lattice energy of: 
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 (18.73) 

This agrees well with the experimental lattice energy of 207 /U kcal mole   [9] and confirms that the ionic compound LiCl  
comprises a precise packing of discrete ions. 

The —Li Cl  distance,  0r LiCl , calculated using Eq. (18.18) with the substitution of   198.65786  10  BE Li X J  and 
20( ;  ) 4.45691  10  E ionization Cl X J     is: 

   10
0 2.59  10  r LiCl X m  (18.74) 

The calculated —Li Cl  is in reasonable agreement with the experimental distance of   10
0 2.57  10  r LiCl X m  [10].  Using 

the —Li Cl  distance and the calculated ionic radii, the lattice structure of LiCl  is shown in Figure 18.4A. 
 

Figure 18.4.   The crystal structures of MCl  all to the same scale.  ( Li = green, Na = yellow, K  = purple, Rb = blue, 
Cs = red, and Cl = brown).  (A) The crystal structure of LiCl .  (B) The crystal structure of NaCl .  (C) The crystal structure of 
KCl .  (D) The crystal structure of RbCl .  (E) The crystal structure of CsCl . 
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SODIUM CHLORIDE 
The calculated ionic radii for Na  and Cl  ions in NaCl  given by Eqs. (10.212) and (18.59) are 00.560945a  and 02.83145a , 

respectively.  But, the interionic distance cannot be the sum of the contact radii since the calculated ionization energies of Na  
(Eqs. (10.212-10.213)) and Cl  (Eq. (18.61)) are 48.5103 eV  and 3.39420 eV , respectively.  Furthermore, since the calculated 
ionization energy (Eqs. (10.226-10.227)) of Na  to Na  is 5.12592 eV  as shown in Table 10.10 and the ionization energy (Eq. 
(18.61)) of Cl  to Cl  is 3.39420 eV , for sufficiently small interionic distances, the sodium ion may be reduced. 

Substitution of   198.21263  10  BE Na X J  and 20( ;  ) 4.45691  10  E ionization Cl X J     (Eq. (18.62)) into Eq. 

(18.17) gives the calculated lattice energy of: 
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 (18.75) 

This agrees well with the experimental lattice energy of 189 /U kcal mole   [9] and confirms that the ionic compound NaCl  
comprises a precise packing of discrete ions. 

The —Na Cl  distance,  0r NaCl , calculated using Eq. (18.18) with the substitution of   198.21263  10  BE Na X J  

and 20( ;  ) 4.45691  10  E ionization Cl X J     is: 

   10
0 2.75  10  r NaCl X m  (18.76) 

The calculated —Na Cl  is in reasonable agreement with the experimental distance of   10
0 2.82  10  r NaCl X m  [10].  Using 

the —Na Cl  distance and the calculated ionic radii, the lattice structure of NaCl  is shown in Figure 18.4B. 
 
POTASSIUM CHLORIDE 
The calculated ionic radii for K   and Cl  ions in KCl  given by Eqs. (10.399) and (18.59) are 00.85215a  and 02.83145a , 

respectively.  But, the interionic distance cannot be the sum of the contact radii since the calculated ionization energies of K   
(Eqs. (10.399-10.400)) and Cl  (Eq. (18.61)) are 31.9330 eV  and 3.39420 eV , respectively.  Furthermore, since the calculated 
ionization energy (Eqs. (10.414-10.415)) of K  to K   is 4.33 eV  as shown in Table 10.19 and the ionization energy (Eq. 
(18.61)) of Cl  to Cl  is 3.39420 eV , for sufficiently small interionic distances, the potassium ion may be reduced. 

Substitution of   196.93095  10  BE K X J  and 20( ;  ) 4.45691  10  E ionization Cl X J     (Eq. (18.62)) into Eq. 

(18.17) gives the calculated lattice energy of: 
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 (18.77) 

This agrees well with the experimental lattice energy of 172 /U kcal mole   [9] and confirms that the ionic compound KCl  
comprises a precise packing of discrete ions. 

The —K Cl  distance,  0r KCl , calculated using Eq. (18.18) with the substitution of   196.93095  10  BE K X J  and 
20( ;  ) 4.45691  10  E ionization Cl X J     is: 

   10
0 3.11  10  r KCl X m  (18.78) 

The calculated —K Cl  is in reasonable agreement with the experimental distance of   10
0 3.15  10  r KCl X m  [10].  Using the 

—K Cl  distance and the calculated ionic radii, the lattice structure of KCl  is shown in Figure 18.4C. 
 
RUBIDIUM CHLORIDE 
The Rb  ionic radius calculated using Eq. (10.102) and the experimental ionization energy of Rb , 27.2895 eV  [6] is 

00.99714a  and the calculated ionic radius Cl  ions in RbCl  given by Eq. (18.59) is 02.83145a .  But, the interionic distance 

cannot be the sum of the contact radii since the experimental and calculated ionization energies of Rb  [6] and Cl  (Eq. (18.61)) 
are 27.2895 eV  and 3.39420 eV , respectively.  Furthermore, since the experimental ionization energy of Rb  to Rb  is 
4.177128 eV  [6] and the ionization energy (Eq. (18.61)) of Cl  to Cl  is 3.39420 eV , for sufficiently small interionic distances, 
the rubidium ion may be reduced. 

Substitution of   196.6925  10  BE Rb X J  and 20( ;  ) 4.45691  10  E ionization Cl X J     (Eq. (18.62)) into Eq. 

(18.17) gives the calculated lattice energy of: 
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 (18.79) 

This agrees well with the experimental lattice energy of 166 /U kcal mole   [9] and confirms that the ionic compound RbCl  
comprises a precise packing of discrete ions. 

The —Rb Cl  distance,  0r RbCl , calculated using Eq. (18.18) with the substitution of   196.6925  10  BE Rb X J  and 
20( ;  ) 4.45691  10  E ionization Cl X J     is: 

   10
0 3.23  10  r RbCl X m  (18.80) 

The calculated —Rb Cl  is in reasonable agreement with the experimental distance of   10
0 3.29  10  r RbCl X m  [10].  Using 

the —Rb Cl  distance and the ionic radii, the lattice structure of RbCl  is shown in Figure 18.4D. 
 
CESIUM CHLORIDE 
The Cs  ionic radius calculated using Eq. (10.102) and the experimental ionization energy of Cs , 23.15744 eV  [6] is 

01.17506a  and the calculated ionic radius Cl  ions in CsCl  given by Eq. (18.59) is 02.83145a .  But, the interionic distance 

cannot be the sum of the contact radii since the experimental and calculated ionization energies of Cs  [6] and Cl  (Eq. (18.61)) 
are 23.15744 eV  and 3.39420 eV , respectively.  Furthermore, since the experimental ionization energy of Cs  to Cs  is 
3.893905 eV  [6] and the ionization energy (Eq. (18.61)) of Cl  to Cl  is 3.39420 eV , for sufficiently small interionic distances, 
the cesium ion may be reduced. 

Substitution of   196.23872  10  BE Cs X J  and 20( ;  ) 4.45691  10  E ionization Cl X J     (Eq. (18.62)) into Eq. 

(18.17) gives the calculated lattice energy of: 

 

  
 

 

19 20

( ;  )

      1.76267 6.23872  10  4.45691  10  

      662.23 /  158.28 /

cU NM BE Cs E ionization Cl

N X J X J

kJ mole kcal mole



 

   

 



 (18.81) 

This agrees well with the experimental lattice energy of 160 /U kcal mole   [9] and confirms that the ionic compound CsCl  
comprises a precise packing of discrete ions. 

The —Cs Cl  distance,  0r CsCl , calculated using Eq. (18.18) with the substitution of   196.23872  10  BE Cs X J  and 
20( ;  ) 4.45691  10  E ionization Cl X J     is: 

   10
0 3.49  10  r CsCl X m  (18.82) 

The calculated —Cs Cl  is in reasonable agreement with the experimental distance of   10
0 3.54  10  r CsCl X m  [10].  Using 

the —Cs Cl  distance and the ionic radii, the lattice structure of CsCl  is shown in Figure 18.4E. 
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Chapter 19 
  
THE NATURE OF THE METALLIC BOND  
OF ALKALI METALS 
  
 
 
 
 
GENERALIZATION OF THE NATURE OF THE METALLIC BOND 
Common metals comprise alkali, alkaline earth, and transition elements and have the properties of high electrical and thermal 
conductivity, opacity, surface luster, ductility, and malleability.  From Maxwell’s equations, the electric field inside of a metal 
conductor is zero.  As shown in Appendix II, the bound electron exhibits this feature.  The charge is confined to a two-
dimensional layer and the field is normal and discontinuous at the surface.  The relationship between the electric field equation 
and the electron source charge-density function is given by Maxwell’s equation in two dimensions [1-3]. 

  1 2
0




  n E E  (19.1) 

where n  is the normal unit vector, 1 0E  ( 1E  is the electric field inside of the MO), 2E  is the electric field outside of the MO 

and   is the surface charge density.  The properties of metals can be accounted for by the existence of free electrons bound to 
the corresponding lattice of positive ions.  Based on symmetry, the natural coordinates are Cartesian.  Then, the problem of the 
solution of the nature of the metal bonds reduces to a familiar electrostatics problem—the fields and the two-dimensional surface 
charge density induced on a planar conductor by a point charge such that a zero potential inside of the conductor is maintained 
according to Maxwell’s equations. 

There are many examples of charges located near a conductor such as an electron emitted from a cathode or a power line 
suspended above the conducting earth.  Consider a point charge e  at a position  0,0, d  near an infinite planar conductor as 

shown in Figure 19.1. 
 
Figure 19.1.   A point charge above an infinite planar conductor. 
 
 
 
 
 
 
 
 
 
 
 
 

With the potential of the conductor set equal to zero, the potential   in the upper half space ( 0z  ) is given by 
Poisson’s equation (Eq. (3.9)), subject to the boundary condition that 0   at 0z   and at z   .  The potential for the point 
charge in free space is: 

  
 22 2

0

1
, ,

4

e
x y z

x y z d
        

 (19.2) 

 
The Poisson solution that meets the boundary condition that the potential is zero at the surface of the infinite planar conductor is 
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that due to the point charge and an image charge of e  at the position  0,0, d  as shown in Figure 19.2. 

 
Figure 19.2.   A point charge above an infinite planar conductor and the image charge to meet the boundary condition 0   
at 0z  . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The potential for the corresponding electrostatic dipole in the positive half space is: 

      2 22 2 2 2
0

1 1
        0

4, ,

0                                                                                    0

e
for z

x y z x y z d x y z d

for z


                
 

 

 (19.3) 

The electric field shown in Figure 19.3 is nonzero only in the positive half space and is given by: 

 
 

  
 

  3/ 2 3/ 22 22 2 2 204
y z y zx y z d x y z de

x y z d x y z d
      

    
       

x xi i i i i i
E  (19.4) 

 
Figure 19.3.   Electric field lines from a positive point charge near an infinite planar conductor. 

 

 
 
At the surface ( 0z  ), the electric field is normal to the conductor as required by Gauss' and Faraday's laws: 

  
 3/ 22 2 2

0

, ,0
2

zed
x y

x y d




 

i
E  (19.5) 

The surface charge density shown in Figure 19.4 is given by Eq. (19.1) with zn i  and 2 0E : 

 
   3/ 2 3/ 22 2 2 2 22 2

ed ed

x y d d


  

 
 

  
 (19.6) 
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Figure 19.4.   The surface charge density distribution on the surface of the conduction planar conductor induced by the point 
charge at the position  0,0, d .  (A) The surface charge density     (shown in color-scale relief).  (B) The cross-sectional 

view of the surface charge density. 
 

 
A 

 
 
 

 
B 

The total induced charge is given by the integral of the density over the surface: 
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 (19.7) 

wherein the change of variables  
1

2 2 2 tany x d    and tan 'x d   were used.  The total surface charge induced on the surface 

of the conductor is exactly equal to the negative of the point charge located above the conductor. 
Now consider the case where the infinite planar conductor is charged with a surface charge density   corresponding to a 

total charge of a single electron, e , and the point charge of e  is due to a metal ion M  .  Then, according to Maxwell’s 
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equations, the potential function of M   is given by Eq. (19.3), the electric field between M   and   is given by Eqs. (19.4-
19.5), and   is given by Eq. (19.6).  The field lines of M   end on  , and the electric field is zero in the metal and in the 
negative half space.  The potential energy between M   and   at the surface ( 0z  ) given by the product of Eq. (19.2) and Eq. 
(19.6) is 

 
 3/ 22 2 2 2 2 2

0

1

4 2

e ed
V dxdy

x y d x y d 

 

 

           
   (19.8) 
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Using a change of coordinates to cylindrical and integral # 47 of Lide [4] gives: 
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The corresponding force from the negative gradient as well as the integral of the product of the electric field (Eq. (19.5)) and the 
charge density (Eq. (19.6)) is: 
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 (19.14) 

where d  is treated as a variable to be solved as discussed below.  The potential is equivalent to that of the charge and its image 
charge located a distance 2d  apart.  In addition, the potential and force are equivalent to those of the charge e  and an image 

charge 
2

e
 located a distance d  apart. 

In addition to the infinite planar conductor at 0z   and the point charge e  at a position  0,0, d  near the infinite planar 

conductor as shown in Figure 19.1, next consider the introduction of a second infinite planar conductor located at position 
2z d  as shown in Figure 19.5. 

 
Figure 19.5.   A point charge located between two infinite planar conductors. 
 
 
 
 
 
 
 
 
 

+q 2d
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As shown, by Kong [5], an image charge at  0,0, d  meets the boundary condition of zero potential at the bottom plate, but it 

gives rise to a potential at the top.  Similarly, an image charge at  0,0,3d , meets the boundary condition of zero potential at the 

top plate, but it gives rise to a potential at the bottom.  Satisfaction of the boundary condition of zero potential at both plates due 
to the presence of the initial real charge requires an infinite series of alternating positive and negative image charges spaced a 
distance d  apart with the potential given by the summation over the real point source and its point-source image charges of e  
and e .  Since fields superimpose, by adding real charges in a periodic lattice, the image charges cancel except for one per each 
real charge at a distance 2d  apart as in the original case considered in Figure 19.1. 

In the real world, the idealized infinite planar conductor is a planar metal sheet experimentally comprised of an 
essentially infinite lattice of metal ions M   and free electrons that provide surface densities   in response to an applied external 
field such as that due to an external charge of e  due to a metal ion M  .  Then, it is required that the solutions of the external 
point charge at an infinite planar conductor are also those of the metal ions and free electrons of metals based on the uniqueness 
of solutions of Maxwell’s equations and the constraint that the individual electrons in a metal conserve the classical physical 
laws of the macro-scale conductor.  In metals, a superposition of planar free electrons given in the Electron in Free Space section 
replaces the infinite planar conductor.  Then, the nature of the metal bond is a lattice of metal ions with field lines that end on the 
corresponding lattice of electrons wherein each has the two-dimensional charge density   given by Eq. (19.6) to match the 
boundary conditions of equipotential, minimum energy, and conservation of charge and angular momentum for an ionized 
electron.  Consider an infinite lattice of positive charges in the hollow Cartesian cavities whose walls are the intersecting planes 
of conductors and that each planar conductor comprises an electron.  By Gauss’ law, the field lines of each real charge end on 
each of the n  planar-electron walls of the cavity wherein the surface charge density of contribution of each electron is that of 

image charge of 
e

n


 equidistant across each wall from a given charge e .  Then, each electron contributes the charge 

e

n


 to the 

corresponding ion where each is equivalent electrostatically to an image point charge at twice the distance from the point charge 
of e  due to M  . 

Thus, the metallic bond is equivalent to the ionic bond given in the Alkali-Hydride Crystal Structures section with a 
Madelung constant of one with each negative ion at a position of one half the distance between the corresponding positive ions, 
but electrostatically equivalent to being positioned at twice this distance, the M  - M  -separation distance.  The surface charge 
density of a planar electron having an electric field equivalent to that of image point charge for the corresponding positive ion of 
the lattice is shown in Figure 19.6. 
 
Figure 19.6.  The surface charge density     of a planar electron shown in color scale. 
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ALKALI-METAL CRYSTAL STRUCTURES 
The alkali metals are lithium ( Li ), sodium ( Na ), potassium ( K ), rubidium ( Rb ), and cesium ( Cs ).  These alkali metals each 
comprise an equal number of alkali cations and electrons in unit cells of a crystalline lattice.  The crystal structure of these 
metals is the body-centered cubic CsCl  structure [6-8].  This close-packed structure is expected since it gives the optimal 

approach of the positive ions and negative electrons.  For a body-centered cell, there is an identical atom at , ,
2 2 2

a a a
x y z    

for each atom at , ,x y z .  The structure of the ions with lattice parameters a b c   and electrons at the diagonal positions 

centered at , ,
4 4 4

a a a
x y z    

 
 are shown in Figure 19.7.  In this case 8n   electron planes per body-centered ion are 

perpendicular to the four diagonal axes running from each corner of the cube through the center to the opposite corner.  The 
planes intersect these diagonals at one half the distance from each corner to the center of the body-centered atom.  The mutual 
intersection of the planes forms a hexagonal cavity about each ion of the lattice.  The length 1l  to a perpendicular electron plane 

along the axis from a corner atom to a body-centered atom that is the midpoint of this axis is: 

 
2 2 2

1

3

4 4 4 4

a a a a
l

             
     

 (19.15) 

The angle d  of each diagonal axis from the xy-plane of the unit cell is: 

 1

1
4tan 35.26
2

4



 
 

   
  
 

d  (19.16) 

The angle p  from the horizontal to the electron plane that is perpendicular to the diagonal axis is: 

 180 90 35.26 54.73p        (19.17) 

 
The length 3l  along a diagonal axis in the xy-plane from a corner atom to another at which point an electron plane intersects the 

xy-plane is: 

 
 

1
3

3 3
34 4

cos cos 35.26 2 4 2
3

d

a a
l
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 (19.18) 

The length 2l  of the octagonal edge of the electron plane from a body-centered atom to the xy-plane defined by four corner 

atoms is: 

  2 3

3 3 1 3
sin sin 35.26

4 24 2 4 2 3
d

a
l l a a      (19.19) 

The length 4l  along the edge of the unit cell in the xy-plane from a corner atom to another at which point an electron plane 

intersects the xy-plane at this axis is:  

 
   

3
4

3
34 2

cos 45 cos 45 4
  

 

a
l

l a  (19.20) 

The dimensions and angles given by Eqs. (19.15-19.20) are shown in Figure 19.7. 
Each M   is surrounded by six planar two-dimensional membranes that are comprised of electron density   on which 

the electric field lines of the positive charges end.  The resulting unit cell consists cations at the end of each edge and at the 
center of the cell with an electron membrane as the perpendicular bisector of the axis from an identical atom at 

, ,
2 2 2

a a a
x y z    for each atom at , ,x y z  such that the unit cell contains two cations and two electrons.  The ions and electrons 

of the unit cell are also shown in Figure 19.7.  The electron membranes exist throughout the metal, but they terminate on metal 
atomic orbitals or MOs of bonds between metal atoms and other reacted atoms such as the MOs of metal oxide bonds at the 
edges of the metal. 
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Figure 19.7. The body-centered cubic lithium metal lattice showing the electrons as planar two-dimensional membranes of 
zero thickness that are each an equipotential energy surface comprised of the superposition of multiple electrons.  (A) and (B) 
The unit-cell component of the surface charge density of a planar electron having an electric field equivalent to that of an image 
point charge for each corresponding positive ion of the lattice.  (C) Opaque view of the ions and electrons of a unit cell.  (D) 
Transparent view of the ions and electrons of a unit cell. 

 



Chapter 19 
 

 

1234

 

 
The interionic radius of each cation and electron membrane can be derived by considering the electron energies at these 

radii and by calculating the corresponding forces of the electrons with the ions.  Then, the lattice energy is given by the sum over 
the crystal of the energy of the interacting ion and electron pairs at the radius of force balance between the electrons and ions. 

For each point charge of e  due to a metal ion M  , the planar two-dimensional membrane comprised of electrons 
contributes a surface charge density   given by Eq. (19.6) corresponding to that of a point image charge having a total charge of 
a single electron, e .  The potential of each electron is double that of Eq. (19.13) since there are two mirror-image M   ions per 
planar electron membrane: 

 
2

04

e
V

d


  (19.21) 

where d  is treated as a variable to be solved.  The same result is obtained from considering the integral of the product of two 
times the electric field (Eq. (19.5)) and the charge density (Eq. (19.6)) according to Eq. (19.14).  In order to conserve angular 
momentum and maintain current continuity, the kinetic energy has two components.  Since the free electron of a metal behaves 
as a point mass, one component using Eq. (1.35) with r d  is:  
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 (19.22) 

The other component of kinetic energy is given by integrating the mass density  m r  (Eq. (19.6)) with e  replaced by em  and 

velocity  v r  (Eq. (1.35)) over their radial dependence ( 2 2 2 2 2r x y z d     ): 
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where integral #47 of Lide [4] was used.  Thus, the total kinetic energy given by the sum of Eqs. (19.22) and (19.23) is: 
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 (19.24) 

Each metal M  ( , , , ,M Li Na K Rb Cs ) is comprised of M   and e  ions. The structure of the ions comprises lattice parameters 

a b c   and electrons at the diagonal positions centered at , ,
4 4 4

a a a
x y z    

 
.  Thus, the separation distance d  between 

each M   and the corresponding electron membrane is: 

 
2 2 2 2 2 2

1 1 1 3

2 2 2 4 4 4 4

x y z
d a a a a

                              
           

 (19.25) 

where 
2

a
x y z      .  Thus, the lattice parameter a  is given by: 

 
4

3

d
a   (19.26) 

The molar metal bond energy DE  is given by Avogadro's number N  times the negative sum of the potential energy, kinetic 

energy, and ionization or binding energy (  BE M ) of M : 

     
2 2

2
0

4 1

4 3 2D
e

e
E N V T BE M N BE M

d m d
  

           


 (19.27) 

The separation distance d  between each M   and the corresponding electron membrane is given by the force balance 
between the outward centrifugal force and the sum of the electric, paramagnetic and diamagnetic forces as given in the Three- 
Through Twenty-Electron Atoms section.  The electric force eleF  corresponding to Eq. (19.21) given by its negative gradient is: 
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2

2
04ele z

e

d
F i  (19.28) 

where inward is taken as the positive direction.  The centrifugal force centrifugalF  is given by the negative gradient of Eq. (19.24) 

times two since the charge and mass density are doubled due to the presence of mirror image M   ion pairs across the electron 
membrane at the origin for any given ion. 

 
2

3

8

3centrifugal z
em d

 F i


 (19.29) 

where d  is treated as a variable to be solved.  In addition, there is an outward spin-pairing force magF  between the electron 

density elements of two opposing ions that is given by Eqs. (7.24) and (10.52): 

 
2

3

1
( 1)mag z

e

s s
Z m d

  F i


 (19.30) 

where 
1

2
s  .  The remaining magnetic forces are determined by the electron configuration of the particular atom as given for the 

examples of lithium, sodium, and potassium metals in the corresponding sections. 

 
LITHIUM METAL  

For Li , there are two spin-paired electrons in an atomic orbital with: 

 1 2 0

3
1 4
2 6

r r a

 
 
   
 

 (19.31) 

as given by Eq. (7.35) where nr  is the radius of electron n  which has velocity nv .  For the next electron that contributes to the 
metal-electron membrane, the outward centrifugal force on electron 3 is balanced by the electric force and the magnetic forces 
(on electron 3).  The radius of the metal-band electron is calculated by equating the outward centrifugal force (Eq. (19.29)) to the 
sum of the electric (Eq. (19.28)) and diamagnetic (Eq. (19.30)) forces as follows: 
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 (19.33) 

where 3Z  .  Using Eq. (19.26), the lattice parameter a  is: 
 10

06.82507 3.61167  10  a a X m   (19.34) 

The experimental lattice parameter a  [7] is: 
 10

06.63162 3.5093  10  a a X m   (19.35) 

The calculated —Li Li  distance is in reasonable agreement with the experimental distance given the experimental difficulty of 
performing X-ray diffraction on lithium due to the low electron densities. 

Using Eq. (19.27) and the experimental binding energy of lithium,   195.39172 8.63849  10  BE Li eV X J   [9], the 

molar metal bond energy DE  is: 

  
2 2

19
210 10

0

4 1
8.63849  10  

4 1.56390  10  3 2 1.56390  10  

167.76 /

D

e

e
E N X J

X m m X m

kJ mole




 

  
    

    



 (19.36) 

This agrees well with the experimental lattice [10] energy of: 
 159.3 /DE kJ mole  (19.37) 

and confirms that Li  metal comprises a precise packing of discrete ions, Li  and e . Using the —Li Li  and —Li e   
distances and the calculated (Eq. (7.35)) Li  ionic radius of 00.35566 0.18821a Å , the crystalline lattice structure of the unit 

cell of Li  metal is shown in Figure 19.8 , a portion of the crystalline lattice of Li  metal is shown in Figure 19.9, and  the Li  
unit cell is shown relative to the other alkali metals in Figure 19.10. 
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Figure 19.8.  The body-centered cubic metal lattice of lithium showing the unit cell of electrons and ions.   (A) Diagonal 
view.   (B) Top view. 
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Figure 19.9.  A portion of the crystalline lattice of Li  metal comprising 33  body-centered cubic unit cells of electrons and 
ions.  (A) Rotated diagonal opaque view.  (B) Rotated diagonal transparent view.  (C) Side transparent view. 
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Figure 19.10.  The crystalline unit cells of the alkali metals showing each lattice of ions and electrons to the same scale.  

( Li = green, Na = yellow, K  = purple, Rb = blue, Cs = red).  (A) The crystal structure of Li .  (B) The crystal structure of 
Na .  (C) The crystal structure of K .  (D) The crystal structure of Rb .  (E) The crystal structure of Cs . 
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SODIUM METAL 
For Na , there are two indistinguishable spin-paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) 

(Eq. (10.51)), two indistinguishable spin-paired electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and 

three sets of paired electrons in an atomic orbital at 10r  given by Eq. (10.212).  For 11Z  , the next electron which binds to 

contribute to the metal electron membrane to form the metal bond is attracted by the central Coulomb field and is repelled by 
diamagnetic forces due to the 3 sets of spin-paired inner electrons. 

In addition to the spin-spin interaction between electron pairs, the three sets of 2p electrons are orbitally paired.  The 
metal electron of the sodium atom produces a magnetic field at the position of the three sets of spin-paired 2p electrons.  In order 
for the electrons to remain spin and orbitally paired, a corresponding diamagnetic force,  3diamagneticF , on electron eleven from the 

three sets of spin-paired electrons follows from Eqs. (10.83-10.84) and (10.220): 

  
2

 3 3

1 10
1diamagnetic z

e

s s
Z m d

  F i


 (19.38) 

corresponding to the xp  and yp  electrons with no spin-orbit coupling of the orthogonal zp  electrons (Eq. (10.84)).  The outward 

centrifugal force on electron 11 is balanced by the electric force and the magnetic forces (on electron 11).  The radius of the 
outer electron is calculated by equating the outward centrifugal force (Eq. (19.29)) to the sum of the electric (Eq. (19.28)) and 
diamagnetic (Eqs. (19.30) and (19.38)) forces as follows: 
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where 11Z   and 
1

2
s  .  Using Eq. (19.26), the lattice parameter a  is: 

 10
08.15840 4.31724  10  a a X m   (19.41) 

The experimental lattice parameter a  [7] is: 

 10
08.10806 4.2906  10  a a X m   (19.42) 

The calculated —Na Na  distance is in good agreement with the experimental distance. 
Using Eq. (19.27) and the experimental binding energy of sodium,   195.13908 8.23371  10  BE Na eV X J   [9], the 

molar metal bond energy DE  is: 
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This agrees well with the experimental lattice [10] energy of: 

 107.5 /DE kJ mole  (19.44) 

and confirms that Na  metal comprises a precise packing of discrete ions, Na  and e .  Using the —Na Na  and —Na e   
distances and the calculated (Eq. (10.212)) Na  ionic radius of 00.56094 0.29684a Å , the crystalline lattice structure of Na  

metal is shown in Figure 19.10B. 
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POTASSIUM METAL 
For K  , there are two indistinguishable spin-paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) 

(Eq. (10.51)), two indistinguishable spin-paired electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), 

three sets of paired electrons in an atomic orbital at 10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an 

atomic orbital with radii 11r  and 12r  both given by Eq. (10.255), and three sets of paired electrons in an atomic orbital with radius 

18r  given by Eq. (10.399).  With 19Z  , the next electron which binds to contribute to the metal electron membrane to form the 

metal bond is attracted by the central Coulomb field and is repelled by diamagnetic forces due to the 3 sets of spin-paired inner 
3p electrons. 

 
The spherically symmetrical closed 3p shell of nineteen-electron atoms produces a diamagnetic force, diamagneticF , that is 

equivalent to that of a closed s shell given by Eq. (10.11) with the appropriate radii.  The inner electrons remain at their initial 
radii, but cause a diamagnetic force according to Lenz's law that is: 
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 (19.45) 

The diamagnetic force,  3diamagneticF , on electron nineteen from the three sets of spin-paired electrons given by Eq. (10.409) 

is  
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 (19.46) 

corresponding to the 3 xp , yp , and zp  electrons. 

The outward centrifugal force on electron 19 is balanced by the electric force and the magnetic forces (on electron 19).  
The radius of the outer electron is calculated by equating the outward centrifugal force (Eq. (19.29)) to the sum of the electric 
(Eq. (19.28)) and diamagnetic (Eqs. (19.30), (19.45), and (19.46)) forces as follows: 
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 (19.48) 

Substitution of 18

0

0.85215
r

a
  (Eq. (10.399) with 19Z  ) into Eq. (19.48) gives: 

 10
04.36934 2.31215  10  d a X m   (19.49) 

Using Eq. (19.26), the lattice parameter a  is: 

 10
010.09055 5.33969  10  a a X m   (19.50) 

The experimental lattice parameter a  [7] is: 

 10
010.05524 5.321  10  a a X m   (19.51) 

The calculated —K K  distance is in good agreement with the experimental distance. 
Using Eq. (19.27) and the experimental binding energy of potassium,   194.34066 6.9545  10  BE K eV X J   [9], the 

molar metal bond energy DE  is: 
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This agrees well with the experimental lattice [10] energy of  
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 89 /DE kJ mole  (19.53) 

and confirms that K  metal comprises a precise packing of discrete ions, K   and e .  Using the —K K  and —K e   distances 
and the calculated (Eq. (10.399)) K   ionic radius of 00.85215 0.45094a Å , the crystalline lattice structure of K  metal is 

shown in Figure 19.10C. 
 
RUBIDIUM AND CESIUM METALS 
Rubidium and cesium provide further examples of the nature of the bonding in alkali metals.  The distance d  between each 
metal ion M   and the corresponding electron membrane is calculated from the experimental parameter a , and then the molar 
metal bond energy DE  is calculated using Eq. (19.27). 

The experimental lattice parameter a  [7] for rubidium is: 
 10

010.78089 5.705  10  a a X m   (19.54) 

Using Eq. (19.25), the lattice parameter d  is: 
 10

04.66826 2.47034  10  d a X m   (19.55) 

Using Eqs. (19.27) and (19.55) and the experimental binding energy of rubidium,   194.17713 6.6925  10  BE Rb eV X J   [9], 

the molar metal bond energy DE  is: 
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This agrees well with the experimental lattice [10] energy of:  

 80.9 /DE kJ mole  (19.57) 

and confirms that Rb  metal comprises a precise packing of discrete ions, Rb  and e .  Using the —Rb Rb  and —Rb e   
distances and the Rb  ionic radius of 0.52766 Å calculated using Eq. (10.102) and the experimental ionization energy of Rb , 
27.2895 eV  [9], the crystalline lattice structure of Rb  metal is shown in Figure 19.10D. 

The experimental lattice parameter a  [7] for cesium is: 

 10
011.60481 6.141  10  a a X m   (19.58) 

Using Eq. (19.25), the lattice parameter d  is: 

 10
05.02503 2.65913  10  d a X m   (19.59) 

Using Eqs. (19.27) and (19.59) and the experimental binding energy of cesium,   193.8939 6.23872  10  BE Cs eV X J   [9], 

the molar metal bond energy DE  is: 
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This agrees well with the experimental lattice [10] energy of:  

 76.5 /DE kJ mole  (19.61) 

and confirms that Cs  metal comprises a precise packing of discrete ions, Cs  and e .  Using the —Cs Cs  and —Cs e   
distances and the Cs  ionic radius of 0.62182 Å calculated using Eq. (10.102) and the experimental ionization energy of Cs , 
23.15744 eV  [9], the crystalline lattice structure of Cs  metal is shown in Figure 19.10E. 

Other metals can be solved in a similar manner.  Iron, for example, is also a body-centered cubic lattice, and the solution 
of the lattice spacing and energies are given by Eqs. (19.21-19.30).  The parameter d  is given by the iron force balance which 
has a corresponding form to those of alkali metals such as that of lithium given by Eqs. (19.32-19.35).  In addition, the changes 
in radius and energy of the second 4s  electron due to the ionization of the first of the two 4s  electrons to the metal band is 
calculated in the similar manner as those of the atoms of diatomic molecules such as N2  given by Eqs. (13.621-13.632).  This 

energy term is added to those of Eq. (19.27) to give the molar metal bond energy E
D

. 
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PHYSICAL IMPLICATIONS OF THE NATURE OF FREE ELECTRONS IN METALS 
The extension of the free-electron membrane throughout the crystalline lattice is the reason for the high thermal and electrical 
conductivity of metals.  Electricity can be conducted on the extended electron membranes by the application of an electric field 
and a connection with a source of electrons to maintain current continuity.  Heat can be transferred by radiation or by collisions, 
or by infrared-radiation-induced currents propagated through the crystal.  The surface luster and opacity is due to the reflection 
of electromagnetic radiation by mirror currents on the surfaces of the free-planar electron membranes.  Ductility and malleability 
result from the feature that the field lines of a given ion end on the induced electron surface charge of the planar, perfectly 
conducting electron membrane.  Thus, layers of the metal lattice can slide over each other without juxtaposing charges of the 
same sign which causes ionic crystals to fracture. 

The electrons in metals have surface-charge distributions that are merely equivalent to the image charges of the ions.  
When there is vibration of the ions, the thermal electron kinetic energy can be directed through channels of least resistance from 
collisions.  The resulting kinetic energy distribution over the population of electrons can be modeled using Fermi Dirac statistics 
wherein the specific heat of a metal is dominated by the motion of the ions since the electrons behave as image charges.  Based 
on the physical solution of the nature of the metallic bond, the small electron contribution to the specific heat of a metal is 
predicted to be proportional to the ratio of the temperature to the electron kinetic energy [11].  Based on Fermi-Dirac statistics, 
the electron contribution to the specific heat of a metal given by Eq. (23.68) is: 
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Now that the true structure of metals has been solved, it is interesting to relate the Fermi energy to the electron kinetic energy.  
The relationships between the electron velocity, the de Broglie wavelength, and the lattice spacing used to calculate the Fermi 
energy in the Electron-Energy Distribution section are also used in the kinetic energy derivation.  The Fermi energy given by Eq. 
(23.61) is: 
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where the electron density parameter for alkali metals is two electrons per body-centered cubic cell of lattice spacing a .  Since 
in the physical model, the field lines of two mirror-image ions M   end on opposite sides per section of the two-dimensional 
electron membrane, the kinetic energy equivalent to the Fermi energy is twice that given by Eq. (19.24).  Then, the ratio /F TR  of  

the Fermi energy to the kinetic energy provides a comparison of the statistical model to the solution of the nature of the metallic 
bond in the determination of electron contribution to the specific heat: 
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 (19.64) 

where Eq. (19.26) was used to convert the parameter a  to d . 
From the physical nature of the current, the electrical and thermal conductivities corresponding to the currents can be 

determined.  The electrical current is classically given by  

 Fi e
he

    (19.65) 

where the energy and angular momentum of the conduction electrons are quantized according to   and Planck’s equation (Eq. 
(4.8)), respectively.  From Eq. (19.65), the electrical conductivity is given by:  
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where   is the frequency of the unit current carried by each electron.  The thermal current is also carried by the kinetic energy of 
the electron plane waves.  Since there are two degrees of freedom in the plane of each electron rather than three, the thermal 
conductivity   is given by: 
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The Wiedemann-Franz law gives the relationship of the thermal conductivity   to the electrical conductivity   and absolute 
temperature T .  Thus, using Eqs. (19.66-19.67), the constant 0L  is given by:  

 

22

22

0 2

3

3

B

F B

F

hk

k
L

heT e


 




 
 

      
 

 (19.68) 

From Eqs. (19.64) and (19.68), the statistical model is reasonably close to the physical model to be useful in modeling the 
specific-heat contribution of electrons in metals based on their inventory of thermal energy and the thermal-energy distribution 
in the crystal.  However, the correct physical nature of the current carriers comprising two-dimensional electron planes is 
required in cases where the simplistic statistical model fails as in the case of the anisotropic violation of the Wiedemann-Franz 
law [12-13]. 

Semiconductors comprise covalent bonds wherein the electrons are of sufficiently high energy that excitation creates an 
ion and a free electron.  The free electron forms a membrane as in the case of metals.  This membrane has the same planar 
structure throughout the crystal.  This feature accounts for the high conductivity of semiconductors when the electrons are 
excited by the application of external fields or electromagnetic energy that causes ion-pair ( M  — e ) formation. 

Superconductors comprise free-electron membranes wherein current flows in a reduced dimensionality of two or one 
dimensions with the bonding being covalent along the remaining directions such that electron scattering from other planes does 
not interfere with the current flow.  In addition, the spacing of the electrons along the membrane is such that the energy is band-
passed with respect to magnetic interactions of conducting electrons as given in the superconductivity section. 
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Chapter 20 
  
SILICON MOLECULAR FUNCTIONAL GROUPS  
AND MOLECULES 
  
 
 
 
 
GENERAL CONSIDERATIONS OF THE SILICON MOLECULAR BOND 
Silane molecules comprising an arbitrary number of atoms can be solved using similar principles and procedures as those used to 
solve organic molecules of arbitrary length and complexity.  Silanes can be considered to be comprised of functional groups such 
as 3SiH , 2SiH , SiH , Si Si , and C Si .  The solutions of these functional groups or any others corresponding to the particular 

silane can be conveniently obtained by using generalized forms of the force balance equation given in the Force Balance of the 
  MO of the Carbon Nitride Radical section for molecules comprised of silicon and hydrogen only and the geometrical and 
energy equations given in the Derivation of the General Geometrical and Energy Equations of Organic Chemistry section for 
silanes further comprised of heteroatoms such as carbon.  The appropriate functional groups with their geometrical parameters 
and energies can be added as a linear sum to give the solution of any silane. 

 

SILANES ( 2 2n nSi H  ) 
As in the case of carbon, the bonding in the silicon atom involves four 3sp  hybridized orbitals formed from the 3p  and 3s  

electrons of the outer shells.  Si Si  and Si H  bonds form between 33Si sp  HOs and between a 33Si sp  HO and a 1H s  AO to 

yield silanes.  The geometrical parameters of each Si Si  and 1,2,3nSiH   functional group is solved from the force balance 

equation of the electrons of the corresponding  -MO and the relationships between the prolate spheroidal axes.  Then, the sum 
of the energies of the 2H -type ellipsoidal MOs is matched to that of the 33Si sp  shell as in the case of the corresponding carbon 
molecules.  As in the case of ethane given in the Ethane Molecule section, the energy of the Si – Si  functional group is 
determined for the effect of the donation of 25% electron density from each participating 33Si sp  HO to the Si – Si-bond MO. 

The energy of silicon is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  A 
minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the Hydroxyl 
Radical (OH ) section with the donation of 75% electron density from the participating 33Si sp  HO to each Si H -bond MO.  

As in the case of acetylene given in the Acetylene Molecule section, the energy of each nSi H  functional group is determined 
for the effect of the charge donation. 

The 33sp  hybridized orbital arrangement after Eq. (13.422) is: 
 

 

3             3sp  state

                       

 0,0      1,-1      1,0       1,1

     (20.1) 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the four 

electrons.  The sum  3,3TE Si sp  of experimental energies [1] of Si , Si , 2Si  , and 3Si   is: 

  3,3 45.14181 33.49302 16.34584 8.15168 =103.13235 TE Si sp eV eV eV eV eV     (20.2) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 33sp
r  of the 

33Si sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 
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where 14Z   for silicon.  Using Eq. (15.14), the Coulombic energy  3,3CoulombE Si sp  of the outer electron of the 33Si sp  shell 

is: 
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During hybridization, one of the spin-paired 3s  electrons is promoted to the Si3sp3 shell as an unpaired electron.  The energy for 
the promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 3s  electrons.  From Eq. (10.255) with 
Z = 14, the radius r12 of the Si3s shell is: 
 12 01.25155r a  (20.5) 

Using Eqs. (15.15) and (20.5), the unpairing energy is: 
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 (20.6) 

Using Eqs. (20.4) and (20.6), the energy E(Si,3sp3) of the outer electron of the Si3sp3 shell is 
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 (20.7) 

Next, consider the formation of the Si–Si-bond MO of silanes wherein each silicon atom has a Si3sp3 electron with an 
energy given by Eq. (20.7).  The total energy of the state of each silicon atom is given by the sum over the four electrons.  The 

sum  3,3T silaneE Si sp  of energies of 33Si sp  (Eq. (20.7)), Si , 2Si  , and 3Si   is: 

 
    

 

3 3,3 45.14181 33.49302 16.34584 ,3

                        45.14181 33.49302 16.34584 10.25487 105.23554 

T silaneE Si sp eV eV eV E Si sp

eV eV eV eV eV

    

      
 (20.8) 

where E(Si,3sp3) is the sum of the energy of Si, –8.15168 eV, and the hybridization energy. 
The sharing of electrons between two Si3sp3 HOs to form a Si–Si-bond MO permits each participating orbital to decrease 

in size and energy.  In order to further satisfy the potential, kinetic, and orbital energy relationships, each  Si3sp3 HO donates an 
excess of 25% of its electron density to the  Si–Si-bond MO to form an energy minimum.  By considering this electron 
redistribution in the silane molecule as well as the fact that the central field decreases by an integer for each successive electron 
of the shell, the radius 33silane sp

r  of the Si3sp3 shell may be calculated from the Coulombic energy using Eq. (15.18): 
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  (20.9) 

Using Eqs. (15.19) and (20.9), the Coulombic energy  3,3Coulomb silaneE Si sp  of the outer electron of the 33Si sp  shell is: 
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     (20.10) 

During hybridization, one of the spin-paired 3s  electrons is promoted to the Si3sp3 shell as an unpaired electron.  The energy for 

the promotion is the magnetic energy given by Eq. (20.6).  Using Eqs. (20.6) and (20.10), the energy  3,3silaneE Si sp  of the outer 

electron of the Si3sp3 shell is: 
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 (20.11) 

Thus, ET (Si–Si,3sp3), the energy change of each Si3sp3  shell with the formation of the Si–Si-bond MO is given by the difference 
between Eq. (20.11) and Eq. (20.7): 
        3 3 3,3 ,3 ,3 10.73503 10.25487 0.48015 T silaneE Si Si sp E Si sp E Si sp eV eV eV          (20.12) 

Next, consider the formation of the Si H -bond MO of silanes wherein each silicon atom contributes a 33Si sp electron 

having the sum  3,3T silaneE Si sp of energies of 33Si sp  (Eq. (20.7)), Si , 2Si  , and 3Si   given by Eq. (20.8).  Each Si H -bond 

MO of each functional group 1,2,3nSiH   forms with the sharing of electrons between each 33Si sp  HO and each 1H s  AO.  As in 

the case of C H , the 2H -type ellipsoidal MO comprises 75% of the Si H -bond MO according to Eq. (13.429).  

Furthermore, the donation of electron density from each Si3sp3 HO to each Si H -bond MO permits the participating orbital to 
decrease in size and energy.  In order to further satisfy the potential, kinetic, and orbital energy relationships, each 33Si sp  HO 
donates an excess of 75% of its electron density to the Si H -bond MO to form an energy minimum.  By considering this 
electron redistribution in the silane molecule as well as the fact that the central field decreases by an integer for each successive 
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electron of the shell, the radius 33silane sp
r  of the 33Si sp  shell may be calculated from the Coulombic energy using Eq. (15.18). 

 
   3

2 213

03
10 0 0

9.25
( ) 0.75 1.19592

8 105.23554 8 105.23554 silane sp
n

e e
r Z n a

e eV e eV 
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Using Eqs. (15.19) and (20.13), the Coulombic energy  3,3Coulomb silaneE Si sp  of the outer electron of the 33Si sp  shell is: 
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     (20.14) 

During hybridization, one of the spin-paired 3s  electrons is promoted to the Si3sp3  shell as an unpaired electron.  The energy for 

the promotion is the magnetic energy given by Eq. (20.6).  Using Eqs. (20.6) and (20.14), the energy  3,3silaneE Si sp  of the outer 

electron of the 33Si sp  shell is: 
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 (20.15) 

Thus,  3,3TE Si H sp , the energy change of each 33Si sp  shell with the formation of the Si H -bond MO is given by the 

difference between Eq. (20.15) and Eq. (20.7): 
        3 3 3,3 ,3 ,3 11.31845 10.25487 1.06358         T silaneE Si H sp E Si sp E Si sp eV eV eV  (20.16) 

Silane ( 4SiH ) involves only Si – H -bond MOs of equivalent tetrahedral structure to form a minimum energy surface 

involving a linear combination of all four hydrogen MOs.  Here, the donation of electron density from the Si3sp3 HO to each 
Si H -bond MO permits the participating orbital to decrease in size and energy as well.  However, given the resulting 
continuous electron-density surface and the equivalent MOs, the 33Si sp  HO donates an excess of 100% of its electron density to 
the Si H -bond MO to form an energy minimum.  By considering this electron redistribution in the silane molecule as well as 
the fact that the central field decreases by an integer for each successive electron of the shell, the radius 33silane sp

r  of the 33Si sp  

shell may be calculated from the Coulombic energy using Eq. (15.18): 
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Using Eqs. (15.19) and (20.17), the Coulombic energy  3,3Coulomb silaneE Si sp  of the outer electron of the 33Si sp  shell is 
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     (20.18) 

During hybridization, one of the spin-paired 3s  electrons is promoted to the 33Si sp  shell as an unpaired electron.  The energy 

for the promotion is the magnetic energy given by Eq. (20.6).  Using Eqs. (20.6) and (20.18), the energy  3,3silaneE Si sp  of the 

outer electron of the Si3sp3 shell is: 
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 (20.19) 

Thus,  3,3TE Si H sp , the energy change of each 33Si sp  shell with the formation of the Si H -bond MO is given by the 

difference between Eq. (20.19) and Eq. (20.7): 

        3 3 3,3 ,3 ,3 11.63448 10.25487 1.37960 T silaneE Si H sp E Si sp E Si sp eV eV eV          (20.20) 

Consider next the radius of the HO due to the contribution of charge to more than one bond.  The energy contribution due 
to the charge donation at each silicon atom superimposes linearly.  In general, the radius 33mol sp

r  of the 33Si sp  HO of a silicon 

atom of a given silane molecule is calculated after Eq. (15.32) by considering  3,3
molTE MO sp , the total energy donation to 

all bonds with which it participates in bonding.  The general equation for the radius is given by: 

 
       3

2 2

3 3 3 3
0 0

8 ,3 ,3 8 10.31324 ,3
mol mol

mol sp
Coulomb T T

e e
r

E Si sp E MO sp e eV E MO sp 


 

  
 (20.21) 

where  3,3CoulombE Si sp  is given by Eq. (20.4).  The Coulombic energy  3,3CoulombE Si sp  of the outer electron of the Si sp3 shell 

considering the charge donation to all participating bonds is given by Eq. (15.14) with Eq. (20.4).  The energy E (Si,3sp3) of the 
outer electron of the 3 3Si sp  shell is given by the sum of  3,3CoulombE Si sp  and ( )E magnetic  (Eq. (20.6)).  The final values of 

the radius of the 33Si sp  HO, 33sp
r ,  3,3CoulombE Si sp , and  33silaneE Si sp  calculated using  3,3

molTE MO sp , the total energy 



Chapter 20 1248

donation to each bond with which an atom participates in bonding are given in Table 20.1.  These hybridization parameters are 
used in Eqs. (15.88-15.117) for the determination of bond angles given in Table 20.7. 
 

Table 20.1.   Hybridization parameters of atoms for determination of bond angles with final values of 33sp
r ,  3,3CoulombE Si sp , 

and  33silaneE Si sp  calculated using the appropriate values of  3,3
molTE MO sp  (  3,3

molTE MO sp  designated as TE ) for each 

corresponding terminal bond spanning each angle. 
 

Atom 
Hybridization 
Designation 

TE  TE

 
TE

 
TE

 
TE

 
33sp

r  

Final 
 3,3CoulombE Si sp

(eV) 
Final 

 3,3E Si sp

 
(eV) 
Final 

1 0 0 0 0 0 1.31926 -10.31324 -10.25487 
2 -0.48015 0 0 0 0 1.26057 -10.79339 -10.73503 

 

The MO semimajor axis of each functional group of silanes is determined from the force balance equation of the 
centrifugal, Coulombic, and magnetic forces as given in the Polyatomic Molecular Ions and Molecules section and the More 
Polyatomic Molecules and Hydrocarbons section.  The distance from the origin of the 2H -type-ellipsoidal-MO to each focus 'c , 

the internuclear distance 2 'c , and the length of the semiminor axis of the prolate spheroidal 2H -type MO b c  are solved from 

the semimajor axis a .  Then, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117).   
The force balance of the centrifugal force equated to the Coulombic and magnetic forces is solved for the length of the 

semimajor axis.  The Coulombic force on the pairing electron of the MO is: 

 
2

2
08Coulomb

e
D

ab 
F i  (20.22) 

The spin pairing force is 

 
2

2 22spin pairing
e

D
m a b  F i


 (20.23) 

The diamagnetic force is: 

 
2

1 2 24
e

diamagneticMO
e

n
D

m a b  F i


 (20.24) 

where en  is the total number of electrons that interact with the binding  -MO electron.  The diamagnetic force 2diamagneticMOF  on 

the pairing electron of the   MO is given by the sum of the contributions over the components of angular momentum:  

 
2

2 2 2
, 2

i
diamagneticMO

i j j e

L
D

Z m a b  F i


 (20.25) 

where L  is the magnitude of the angular momentum of each atom at a focus that is the source of the diamagnetism at the  -

MO.  The centrifugal force is:  

 
2

2 2centrifugalMO
e

D
m a b  F i


 (20.26) 

The force balance equation for the  -MO of the Si Si -bond MO with 3en   and 
3

4
4

L    corresponding to four 

electrons of the 33Si sp  shell is: 

 
2 2 2 2

2 2 2 2 2 2 2
0

3
4

3 4
8 2 2 2e e e

e
D D D D

m a b ab m a b Z m a b

 
 
    
 

  
 (20.27) 

 0

3
4

5 4
2

a a
Z

 
 
  
 

 (20.28) 

With 14Z  , the semimajor axis of the Si Si -bond MO is: 
 02.74744a a  (20.29) 

The force balance equation for each  -MO of the Si H -bond MO with 2en   and 
3

4
4

L    corresponding to four 

electrons of the 33Si sp  shell is: 
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2 2 2 2

2 2 2 2 2 2 2
0

3
4

41
8 2 2e e e

e
D D D D

m a b ab m a b Z m a b

 
 
    
 

  
 (20.30) 

 0

3
4

42a a
Z

 
 
  
 

 (20.31) 

With Z = 14, the semimajor axis of the Si – H-bond MO is: 
 02.24744a a  (20.32) 

Using the semimajor axis, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117) in the 
same manner as the organic functional groups given in the Organic Molecular Functional Groups and Molecules section.  For the 
Si Si  functional group, the 33Si sp  HOs are equivalent; thus, 1 1c   in both the geometry relationships (Eqs. (15.2-15.5)) and 

the energy equation (Eq. (15.61)).  In order for the bridging MO to intersect the 33Si sp  HOs while matching the potential, 

kinetic, and orbital energy relationships given in the Hydroxyl Radical (OH ) section, for the Si Si  functional group, 1

0.75

2
C   

in both the geometry relationships (Eqs. (15.2-15.5)) and the energy equation (Eq. (15.61)).  This is the same value as 1C  of the 

chlorine molecule given in the corresponding section.  The hybridization factor gives the parameters 2c  and 2C  for both as well.  

To meet the equipotential condition of the union of the two 33Si sp  HOs, 2c  and 2C  of Eqs. (15.2-15.5) and Eq. (15.61) for the 

Si Si -bond MO is given by Eq. (15.72) as the ratio of 10.31324 eV , the magnitude of  3,3Coulomb silaneE Si sp  (Eq. (20.4)), and 

13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H  (Eq. (1.264)): 

    3 3
2 2

10.31324 
3 3 0.75800

13.605804 

eV
C silaneSi sp HO c silaneSi sp HO

eV
    (20.33) 

The energy of the MO is matched to that of the 33Si sp  HO such that  /E AO HO  is  3,3E Si sp  given by Eq. (20.7) and 

 3, .TE atom atom msp AO  is two times  3,3TE Si Si sp  given by Eq. (20.12). 

For the Si H -bond MO of the 1,2,3nSiH   functional groups, 1c  is one and 1 0.75C   based on the orbital composition as 

in the case of the C H -bond MO.  In silanes, the energy of silicon is less than the Coulombic energy between the electron and 
proton of H  given by Eq. (1.264).  Thus, 2c  in Eq. (15.61) is also one, and the energy matching condition is determined by the 

2C  parameter, the hybridization factor for the Si H -bond MO given by Eq. (20.33).  Since the energy of the MO is matched to 

that of the 33Si sp  HO,  /E AO HO  is  3,3E Si sp  given by Eq. (20.7) and  3, .TE atom atom msp AO  is  3,3TE Si H sp  

given by Eq. (20.16).  The energy  1,2,3D nE SiH   of the functional groups 1,2,3nSiH   is given by the integer n times that of Si – H: 

    1,2,3D n DE SiH nE SiH   (20.34) 

Similarly, for silane,  3, .TE atom atom msp AO  is  3,3TE Si H sp  given by Eq. (20.20).  The energy  4DE SiH  of 

4SiH  is given by the integer 4  times that of the 4nSiH   functional group: 

    4 44D D nE SiH E SiH   (20.35) 

The symbols of the functional groups of silanes are given in Table 20.2.  The geometrical (Eqs. (15.1-15.5), (20.1-20.16), 
(20.29), and (20.32-20.33)), intercept (Eqs. (15.80-15.87) and (20.21)), and energy (Eqs. (15.61), (20.1-20.16), and (20.33-
20.35)) parameters of silanes are given in Tables 20.3, 20.4, and 20.5, respectively.  The total energy of each silane given in 
Table 20.6 was calculated as the sum over the integer multiple of each  GroupDE  of Table 20.5 corresponding to functional-group 

composition of the molecule.  magE  of Table 20.5 is given by Eqs. (15.15) and (20.3).  The bond angle parameters of silanes 

determined using Eqs. (15.88-15.117) are given in Table 20.7.  In particular for silanes, the bond angle HSiH  is given by Eq. 

(15.99) wherein  3, .TE atom atom msp AO  is given by Eq. (20.16) in order to match the energy donated from the 33Si sp  HO to 

the Si – H-bond MO due to the energy of silicon being less than the Coulombic energy between the electron and proton of H 
given by Eq. (1.264).  The parameter 2c  is given by Eq. (15.100) as in the case of a H – H  terminal bond of an alkyl or alkenyl 

group, except that 3
2 ( 3 )c Si sp  is given by Eq. (15.63) such that 2c  is the ratio of 2c  of Eq. (15.72) for the H – H bond which is 

one and 2c  of the silicon of the corresponding Si – H-bond considering the effect of the formation of the H – H terminal bond: 

 
 2 3 3

2

1 13.605804 

( 3 )  3Coulomb

eV
c

c Si sp E Si H Si sp
  


 (20.36) 

The color scale, translucent view of the charge-densities of the series 1,2,3,4nSiH   comprising the concentric shells of the central 

Si  atom of each member with the outer shell joined with one or more hydrogen MOs are shown in Figures 20.1A-D.  The 



Chapter 20 1250

charge-density of disilane is shown in Figure 20.2. 
 
 
 
Figure 20.1.   (A)-(D) Color scale, translucent view of the charge-densities of the series 1,2,3,4nSiH  , showing the orbitals of 

each member Si  atom at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO of H  that transitions to the outer 

shell of the Si  atom participating in each Si H  bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
 
Figure 20.2.   Disilane. Color scale, translucent view of the charge-density of 3 3H SiSiH  comprising the linear combination of 

two sets of three Si H -bond MOs and a Si Si -bond MO with the 33silaneSi sp  HOs of the Si Si -bond MO shown 

transparently.  The Si Si -bond MO comprises a 2H -type ellipsoidal MO bridging two 33silaneSi sp  HOs.  For each Si H  and 

the Si Si  bond, the ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to the 33silaneSi sp  HO, the 33silaneSi sp  HO 

shell with radius 00.97295a  (Eq. (20.21)), inner 1Si s , 2Si s , and 2Si p  shells with radii of 01 0.07216Si s a  (Eq. (10.51)), 

02 0.31274Si s a  (Eq. (10.62)), and 02 0.40978Si p a  (Eq. (10.212)), respectively, and the nuclei (red, not to scale), are shown. 
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Table 20.2.   The symbols of the functional groups of silanes. 
 

Functional Group Group Symbol
SiH group of 1,2,3nSiH   Si H  (i) 

SiH group of 4nSiH   Si H  (ii) 

SiSi bond (n-Si) Si Si  
 
Table 20.3.   The geometrical bond parameters of silanes and experimental values [2]. 
 

Parameter Si H  (i) and (ii) Group Si Si  Group 

 0 a a  2.24744 2.74744 

 0'  c a  1.40593 2.19835 

Bond Length  2 '  c Å  1.48797 2.32664 

Exp. Bond Length  Å  1.492 ( 2 6Si H ) 
2.331 ( 2 6Si H ) 

2.32 ( 2 6Si Cl ) 

 0,  b c a  1.75338 1.64792 

e  0.62557 0.80015 
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Table 20.5.   The energy parameters (eV) of the functional groups of silanes. 
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ALKYL SILANES AND DISILANES (  2 2,   , 1,2,3,4,5...m n m nSi C H m n    ) 
The branched-chain alkyl silanes and disilanes,  2 2m n m nSi C H   , comprise at least a terminal methyl group ( 3CH ) and at least one 

Si  bound by a carbon-silicon single bond comprising a C Si  group, and may comprise methylene ( 2CH ), methylyne (CH ), 

C C , 1,2,3nSiH  , and Si Si  functional groups.  The methyl and methylene functional groups are equivalent to those of 

straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-
chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to 

isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  These groups in branched-chain 
alkyl silanes and disilanes are equivalent to those in branched-chain alkanes, and the 1,2,3nSiH   functional groups of alkyl silanes 

are equivalent to those in silanes ( 2 2n nSi H  ).  The Si Si  functional group of alkyl silanes is equivalent to that in silanes; 

however, in dialkyl silanes, the Si Si  functional group is different due to an energy matching condition with the C Si  bond 
having a mutual silicon atom. 

For the C Si  functional group, hybridization of the 2s  and 2 p  AOs of each C  and the 3s  and 3p  AOs of each Si  to 

form single 32sp  and 33sp  shells, respectively, forms an energy minimum, and the sharing of electrons between the 32C sp  and 
33Si sp  HOs to form a MO permits each participating orbital to decrease in radius and energy.  In branched-chain alkyl silanes, 

the energy of silane is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  Thus, 2c  in 

Eq. (15.61) is one, and the energy matching condition is determined by the 2C  parameter.  Then, the 32C sp  HO has an energy of 

 3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the 33Si sp  HO has an energy of  3,3 10.25487 E Si sp eV   (Eq. (20.7)).  To 

meet the equipotential condition of the union of the C Si  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor 

2C  of Eq. (15.61) for the C Si -bond MO given by Eq. (15.77) is: 

    
 

3

3 3
2 3

,3 10.25487 
2   3 0.70071

14.63489 , 2

E Si sp eV
C C sp HO to Si sp HO

eVE C sp


  


 (20.37) 

For monosilanes,  3, .TE atom atom msp AO  of the C Si -bond MO is 1.20473 eV  corresponding to the single-bond 

contributions of carbon and silicon of 0.72457 eV  given by Eq. (14.151) and 0.48015 eV  given by Eq. (14.151) with 1s   in 
Eq. (15.18).  The energy of the C Si -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in 

Eq. (15.51) with    3/ ,3E AO HO E Si sp  given by Eq. (20.7) and    
2

3/ , .H MO TE AO HO E atom atom msp AO    in order to 

match the energies of the carbon and silicon HOs. 

For the co-bonded Si Si  group of the C Si  group of disilanes,  3, .TE atom atom msp AO  is 0.96031 eV , two 

times  3,3TE Si Si sp  given by Eq. (20.12).  Thus, in order to match the energy between these groups, 

 3, .TE atom atom msp AO  of the C Si -bond MO is 0.92918 eV  corresponding to the single-bond methylene-type 

contribution of carbon given by Eq. (14.513).  As in the case of monosilanes,    3/ ,3E AO HO E Si sp  given by Eq. (20.7) 

and    
2

3/ , .H MO TE AO HO E atom atom msp AO    in order to match the energies of the carbon and silicon HOs. 

The symbols of the functional groups of alkyl silanes and disilanes are given in Table 20.8.  The geometrical (Eqs. (15.1-
15.5), (20.1-20.16), (20.29), (20.32-20.33) and (20.37)) and intercept (Eqs. (15.80-15.87) and (20.21)) parameters of alkyl 
silanes and disilanes are given in Tables 20.9 and 20.10, respectively.  Since the energy of the 33Si sp  HO is matched to that of 

the 32C sp  HO, the radius 32mol sp
r  of the 33Si sp  HO of the silicon atom and the 32C sp  HO of the carbon atom of a given C Si -

bond MO is calculated after Eq. (15.32) by considering  3, 2
molTE MO sp , the total energy donation to all bonds with which 

each atom participates in bonding.  In the case that the MO does not intercept the Si  HO due to the reduction of the radius from 
the donation of 3 3Si sp  HO charge to additional MO’s, the energy of each MO is energy matched as a linear sum to the Si  HO 

by contacting it through the bisector current of the intersecting MOs as described in the Methane Molecule ( 4CH ) section.  The 

energy (Eqs. (15.61), (20.1-20.16), and (20.33-20.37)) parameters of alkyl silanes and disilanes are given in Table 20.11. The 
total energy of each alkyl silane and disilane given in Table 20.12 was calculated as the sum over the integer multiple of each 

 GroupDE  of Table 20.11 corresponding to functional-group composition of the molecule.  The bond angle parameters of alkyl 

silanes and disilanes determined using Eqs. (15.88-15.117) and Eq. (20.36) are given in Table 20.13.  The charge-densities of 
exemplary alkyl silane, dimethylsilane and alkyl disilane, hexamethyldisilane comprising the concentric shells of atoms with the 
outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 

20.3A and B, respectively. 
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Figure 20.3.   (A) Dimethylsilane and (B) Hexamethyldisilane, color scale, translucent views of the charge-density of each 
silane showing the orbitals of the Si  and C  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO 

that transitions to the corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to 
scale). 
 

 
 
 

 
 
Table 20.8.  The symbols of functional groups of alkyl silanes and disilanes. 
 

Functional Group Group Symbol
CSi bond (monosilanes) C Si  (i) 
CSi bond (disilanes) C Si  (ii) 
SiSi bond (n-Si) Si Si  
SiH group of 1,2,3nSiH   Si H  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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SILICON OXIDES, SILICIC ACIDS, SILANOLS, SILOXANES AND DISILOXANES 
The silicon oxides, silicic acids, silanols, siloxanes, and disiloxanes each comprise at least one Si O  group, and this group in 
disiloxanes is part of the  Si O Si  moiety.  Silicic acids may have up to three Si H  bonds corresponding to the 1,2,3nSiH  

functional groups of alkyl silanes, and silicic acids and silanols further comprise at least one OH  group equivalent to that of 
alcohols.  In addition to the 1,2,3nSiH  group of alkyl silanes, silanols, siloxanes, and disiloxanes may comprise the functional 

groups of organic molecules as well as the C Si  group of alkyl silanes.  The alkyl portion of the alkyl silanol, siloxane, or 
disiloxane may comprise at least one terminal methyl group ( 3CH ) the end of each alkyl chain, and may comprise methylene 

( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene 

functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane 
C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-

butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise 

functional groups.  The branched-chain-alkane groups in silanols, siloxanes, and disiloxanes are equivalent to those in branched-
chain alkanes.  The alkene groups when present such as the C C  group are equivalent to those of the corresponding alkene.  
Siloxanes further comprise two types of C O  functional groups, one for methyl or t-butyl groups corresponding to the C  and 
the other for general alkyl groups as given for ethers.   

The distinguishing aspect of silicon oxides, silicic acids, silanols, siloxanes, and disiloxane is the nature of the 
corresponding Si O  functional group.  In general, the sharing of electrons between a 33Si sp  HO and an 2O p  AO to form a 

Si O -bond MO permits each participating orbital to decrease in size and energy.  Consider the case wherein the 33Si sp  HO 
donates an excess of 50% of its electron density to the Si O -bond MO to form an energy minimum while further satisfying the 
potential, kinetic, and orbital energy relationships.  By considering this electron redistribution in the molecule comprising a 

Si O  bond as well as the fact that the central field decreases by an integer for each successive electron of the shell, the radius 

33Si O sp
r  of the 33Si sp  shell may be calculated from the Coulombic energy using Eq. (15.18). 
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 (20.38) 

Using Eqs. (15.19) and (20.38), the Coulombic energy  3,3Coulomb Si OE Si sp  of the outer electron of the 33Si sp  shell is: 
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 (20.39) 

During hybridization, the spin-paired 3s  electrons are promoted to the 33Si sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (20.6).  Using Eqs. (20.6) and (20.39), the energy  3,3Si OE Si sp  of the outer 

electron of the 33Si sp  shell is: 
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 (20.40) 

Thus,  3,3TE Si O sp , the energy change of each 33Si sp  shell with the formation of the Si O -bond MO is given by the 

difference between Eq. (20.40) and Eq. (20.7): 

        3 3 3,3 ,3 ,3 11.01906 10.25487 0.76419         T Si OE Si O sp E Si sp E Si sp eV eV eV  (20.41) 

Using Eq. (15.28), to meet the energy matching condition in silanols and siloxanes for all   MOs at the 33Si sp  HO and 

2O p  AO of each Si O -bond MO as well as with the 32C sp  HOs of the molecule, the energy  3
' ,3RSi ORE Si sp  ( , 'R R  are 

alkyl or H ) of the outer electron of the 33Si sp  shell of the silicon atom must be the average of  3,3silaneE Si sp  (Eq. (20.11)) and 

 3,3TE Si O sp  (Eq. (20.40)). 

          3 3

3
'
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   silane Si O

RSi OR

E Si sp E Si sp eV eV
E Si sp eV  (20.42) 

Using Eq. (15.29),  
,

3,3
silanol siloxaneTE Si O sp , the energy change of each 33Si sp  shell with the formation of each 'RSi OR -bond 

MO, must be the average of  3,3TE Si Si sp  (Eq. (20.12)) and  3,3TE Si O sp  (Eq. (20.41)). 
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To meet the energy matching condition in silicic acids for all   MOs at the 33Si sp  HO and 2O p  AO of each Si O -

bond MO as well as all H  AOs, the energy   
4

3,3
n n

H Si OHE Si sp  of the outer electron of the 33Si sp  shell of the silicon atom 

must be the average of  3,3silaneE Si sp  (Eq. (20.15)) and  3,3TE Si O sp  (Eq. (20.40)). 

           
4

3 3

3
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n n

silane Si O

H Si OH

E Si sp E Si sp eV eV
E Si sp eV  (20.44) 

Using Eq. (15.29),  
 

3,3
silicic acidTE Si O sp , the energy change of each 33Si sp  shell with the formation of each 'RSi OR -bond 

MO, must be the average of  3,3TE Si H sp  (Eq. (20.16)) and  3,3TE Si O sp  (Eq. (20.41)). 

          
 

3 3

3
,3 ,3 1.06358 0.76419 

,3 0.91389 
2 2

     
    

silicic acid

T T

T

E Si H sp E Si O sp eV eV
E Si O sp eV  (20.45) 

Using Eqs. (20.22-22.26), the general force balance equation for the  -MO of the silicon to oxygen Si O -bond MO in 
terms of en  and iL  corresponding to the angular momentum terms of the 33sp  HO shell is: 
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Having a solution for the semimajor axis a  of: 
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In terms of the angular momentum L , the semimajor axis a  is: 

 01
2

    
 

en L
a a

Z
 (20.48) 

Using the semimajor axis, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117) in the 
same manner as the organic functional groups given in the Organic Molecular Functional Groups and Molecules section.  The 
semimajor axis a  solutions given by Eq. (20.48) of the force balance equation, Eq. (20.46), for the  -MO of the Si O -bond 
MO of each functional group of silicon oxide, silicon dioxide, silicic acids, silanols, siloxanes, and disiloxanes are given in Table 
20.15 with the force-equation parameters 14Z , en , and L  corresponding to the angular momentum of the 33Si sp  HO shell. 

For the Si O  functional groups, hybridization of the 3s  and 3p  AOs of Si  to form a single 33sp  shell forms an energy 

minimum, and the sharing of electrons between the 33Si sp  HO and the O  AO to form a MO permits each participating orbital to 

decrease in radius and energy.  The O  AO has an energy of   13.61805  E O eV , and the 33Si sp  HO has an energy of 

 3,3 10.25487  E Si sp eV  (Eq. (20.7)).  To meet the equipotential condition of the union of the Si O  2H -type-ellipsoidal-

MO with these orbitals, the corresponding hybridization factors 2c  and 2C  of Eq. (15.61) for silicic acids, silanols, siloxanes, 

and disiloxanes and the hybridization factor 2C of silicon oxide and silicon dioxide given by Eq. (15.77) are: 
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Each bond of silicon oxide and silicon dioxide is a double bond such that 1 2c  and 1 0.75C  in the geometry relationships 

(Eqs. (15.2-15.5)) and the energy equation (Eq. (15.61)).  Each Si O  bond in silicic acids, silanols, siloxanes, and disiloxanes 
is a single bond corresponding to 1 1c  and 1 0.5C  as in the case of alkanes (Eq. (14.152)). 

Since the energy of the MO is matched to that of the 33Si sp  HO,  /E AO HO  in Eq. (15.61) is  3,3E Si sp  given by 

Eq. (20.7) and twice this value for double bonds.  3, .TE atom atom msp AO  of the Si O -bond MO of each functional group is 

determined by energy matching in the molecule while achieving an energy minimum.  For silicon oxide and silicon dioxide, 

 3, .TE atom atom msp AO  is three and two times 1.37960  eV  given by Eq. (20.20), respectively.  

 3, .TE atom atom msp AO  of silicic acids is two times 0.91389  eV  given by Eq. (20.45).   3, .TE atom atom msp AO  of 

silanols, siloxanes, and disiloxanes is two times 0.62217  eV  given by Eq. (20.43). 
The symbols of the functional groups of silicon oxides, silicic acids, silanols, siloxanes, and disiloxanes are given in 

Table 20.14.  The geometrical (Eqs. (15.1-15.5), (20.1-20.21), (20.29), (20.32-20.33), (20.37), and (20.46-20.49)) and intercept 
(Eqs. (15.80-15.87) and (20.21)) parameters are given in Tables 20.15 and 20.16, respectively.  The energy (Eqs. (15.61), (20.1-
20.20), (20.33-20.35), (20.37-45), and (20.49)) parameters are given in Table 20.17.  The total energy of each silicon oxide, 
silicic acid, silanol, siloxane, or disiloxane given in Table 20.18 was calculated as the sum over the integer multiple of each 

 GroupDE  of Table 20.17 corresponding to functional-group composition of the molecule.  The bond angle parameters determined 
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using Eqs. (15.88-15.117) are given in Table 20.19.  The charge-densities of exemplary siloxane,   3 2 3
CH SiO and disiloxane, 

hexamethyldisiloxane comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal 

MOs or joined with one or more hydrogen MOs are shown in Figures 20.4A and B, respectively. 
 
Figure 20.4.   (A) Color scale, translucent view of the charge-density of   3 2 3

CH SiO  showing the orbitals of the Si , O , 

and C  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding 

outer shell of the atoms participating in each bond, and the nuclei (red, not to scale).  (B) Color scale, translucent view of the 
charge-density of    3 33 3

CH SiOSi CH  showing the orbitals of the Si , O , and C  atoms at their radii, the ellipsoidal surface of 

each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atoms participating in each bond, and 

the nuclei (red, not to scale). 
 
 

 
 
 

 
 
Table 20.14.  The symbols of functional groups of silicon oxides, silicic acids, silanols, siloxanes and disiloxanes. 

 
Functional Group Group Symbol

SiO bond (silicon oxide) Si – O (i)
SiO bond (silicon dioxide) Si – O  (ii)
SiO bond (silicic acid) Si – O  (iii)
SiO bond (silanol and siloxane) Si – O  (iv)
Si-OSi bond (disiloxane) Si – O  (v)
SiH group of 1,2,3nSiH   Si – H  

CSi bond C – Si  (i)
OH group OH
CO ( 3  CH O  and  3 3

 CH C O )  C – O (i) 

CO (alkyl) C – O (ii)

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C – H 
CC bond (n-C) C – C (a)
CC bond (iso-C) C – C (b)
CC bond (tert-C) C – C (c)
CC (iso to iso-C) C – C (d)
CC (t to t-C) C – C (e)
CC (t to iso-C) C – C (f)
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SUMMARY TABLES OF SILICON MOLECULES 
The bond energies, calculated using closed-form equations having integers and fundamental constants only for classes of 
molecules whose designation is based on the main functional group, are given in the following tables with the experimental 
values. 
 
Table 20.20.1.  Summary results of silanes. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

SiH silylidyne 3.07526 3.02008 [6] -0.01827 
SiH2 silylene 6.15052 6.35523 [7] 0.03221 
SiH3 silyl 9.22578 9.36494 [7] 0.01486 
SiH4 silane 13.57257 13.34577 [6] -0.01699 
Si2H6 disilane 21.76713 22.05572 [7] 0.01308 
Si3H8 trisilane 31.23322 30.81334 [7] -0.01363 

 
Table 20.20.2.  Summary results of alkyl silanes and disilanes. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

CH6Si methylsilane 25.37882 25.99491 [9] 0.02370 
C2H8Si dimethylsilane 38.45660 38.64819 [9] 0.00496 
C3H10Si trimethylsilane 51.53438 51.33567 [9] -0.00387 
C4H12Si tetramethylsilane 64.61216 64.22319 [14] -0.00606 
C4H12Si diethylsilane 62.77200 63.37771 [15] 0.00956 
C6H16Si triethylsilane 88.00748 87.46141 [15] -0.00624 
C8H20Si tetraethylsilane 113.24296 112.06547[15] -0.01051 
CH8Si2 methyldisilane 34.56739 34.73920 [16] 0.00495 
C2H10Si2 1,1-dimethyldisilane 47.36764 47.42283 [16] 0.00116 
C2H10Si2 1,2-dimethyldisilane 47.36764 47.42283 [16] 0.00116 
C3H12Si2 1,1,1-trimethyldisilane 60.16789 60.10646 [16] -0.00102 
C3H12Si2 1,1,2-trimethyldisilane 60.16789 60.10646 [16] -0.00102 
C4H14Si2 1,1,1,2-tetramethyldisilane 72.96815 72.79442 [16] -0.00239 
C4H14Si2 1,1,2,2-tetramethyldisilane 72.96815 72.79442 [16] -0.00239 
C5H16Si2 1,1,1,2,2-pentamethyldisilane 85.76840 85.47805 [16] -0.00340 
C6H18Si2 hexamethyldisilane 98.56865 98.32646 [16] -0.00246 

 
Table 20.20.3.  Summary results of silicon oxides, silicic acids, silanols, siloxanes, and disiloxanes. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

SiO silicon oxide 8.30876 8.29905 [18] -0.00117 
SiO2 silicon dioxide 12.94190 12.98073 [19] 0.00299 
SiH4O H3SiOH 18.67184 19.00701a [27] 0.01763 
SiH4O2 H2Si(OH)2 25.04264 25.04264 a [27] 0.00563 
SiH4O3 HSi(OH)3 31.41344 31.47012a [27] 0.00180 
SiH4O4 Si(OH)4 37.78423 38.03638 [28] 0.00663 
C3H10SiO trimethylsilanol 57.31895 57.30073 [29] -0.00032 
C2H6SiO vinylsilanol 37.33784  
CH6SiO4 (HO)3SiOCH3 47.45144 49.28171a [30] 0.03714 
C4H12SiO4 tetramethoxysilioxane 83.48783 84.04681 [31] 0.00665 
C6H16SiO3 triethoxysilioxane 102.74755 102.57961 [31] -0.00164 
C8H20SiO4 tetraethoxysilioxane 132.89639 133.23177 [31] 0.00252 
C6H18Si3O3 ((CH3)2SiO)3 123.61510 123.22485 [31] -0.00317 
C8H24Si4O4 ((CH3)2SiO)4 164.82014 164.79037 [31] -0.00018 
C10H30Si5O5 ((CH3)2SiO)5 206.02517 206.35589 [31] 0.00160 
C6H18Si2O hexamethyldisiloxane 105.24639 105.20196 [31] -0.00042 

a theory 
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Chapter 21 
  
THE NATURE OF THE SEMICONDUCTOR BOND  
OF SILICON 
  
 
 
 
 
GENERALIZATION OF THE NATURE OF THE SEMICONDUCTOR BOND 
Semiconductors are solids that have properties intermediate between insulators and metals.  For an insulator to conduct, high 
energy and power are required to excite electrons into a conducting state in sufficient numbers.  Application of high energy to 
cause electron ionization to the continuum level or to cause electrons to transition to conducing molecular orbitals (MOs) will 
give rise to conduction when the power is adequate to maintain a high population density of such states.  Only high temperatures 
or extremely high-strength electric fields will provide enough energy and power to achieve an excited state population 
permissive of conduction.  In contrast, metals are highly conductive at essentially any field strength and power.  Diamond and 
alkali metals given in the corresponding sections are representative of insulator and metal classes of solids at opposite extremes 
of conductivity.  It is apparent from the bonding of diamond comprising a network of highly stable MOs that it is an insulator, 
and the planar free-electron membranes in metals give rise to their high conductivity.  

Column IV elements silicon, germanium, and  -gray tin all have the diamond structure and are insulators under standard 
conditions.  However, the electrons of these materials can be excited into a conducting excited state with modest amounts of 
energy compared to a pure insulator.  As opposed to the 5.2 eV  excitation energy for carbon, silicon, germanium, and  -gray 
tin have excitation energies for conduction of only 1.1 eV , 0.61 eV , and 0.078 eV , respectively.  Thus, a semiconductor can 
carry a current by providing the relatively small amount of energy required to excite electrons to conducting excited states.  As 
in the case of insulators, excitation can occur thermally by a temperature increase.  Since the number of excited electrons 
increases with temperature, a concomitant increase in conductance is observed.  This behavior is the opposite of that of metals.  
Alternatively, the absorption of photons of light causes the electrons in the ground state to be excited to a conducting state that is 
the basis of conversion of solar power into electricity in solar cells and detection and reception in photodetectors and fiber optic 
communications, respectively.  In certain semiconductors, rather than decay by internal conversion to phonons, the energy of 
excited-state electrons is emitted as light as the electrons transition from the excited conducting state to the ground state.  This 
photon emission process is the basis of light emitting diodes (LEDs) and semiconductor lasers which have broad application in 
industry. 

In addition to elemental materials such as silicon and germanium, semiconductors may be compound materials such as 
gallium arsenide and indium phosphide, or alloys such as silicon germanium or aluminum arsenide.  Conduction in materials 
such as silicon and germanium crystals can be enhanced by adding small amounts (e.g. 1-10 parts per million) of dopants such as 
boron or phosphorus as the crystals are grown.  Phosphorous with five valence electrons has a free electron even after 
contributing four electrons to four single bond-MOs of the diamond structure of silicon.  Since this fifth electron can be ionized 
from a phosphorous atom with only 0.011 eV  provided by an applied electric field, phosphorous as an electron donor makes 
silicon a conductor. 

In an opposite manner to that of the free electrons of the dopant carrying electricity, an electron acceptor may also 
transform silicon to a conductor.  Atomic boron has only three valence electrons rather than the four needed to replace a silicon 
atom in the diamond structure of silicon.  Consequently, a neighboring silicon atom has an unpaired electron per boron atom.  
These electrons can be ionized to carry electricity as well.  Alternatively, a valence electron of a silicon atom neighboring a 
boron atom can be excited to ionize and bind to the boron.  The resulting negative boron ion can remain stationary as the 
corresponding positive center on silicon migrates from atom to atom in response to an applied electric field.  This occurs as an 
electron transfers from a silicon atom with four electrons to one with three to fill the vacant silicon orbital.  Concomitantly, the 
positive center is transferred in the opposite direction.  Thus, inter-atomic electron transfer can carry current in a cascade effect 
as the propagation of a “hole” in the opposite direction as the sequentially transferring electrons. 

The ability of the conductivity of semiconductors to transition from that of insulators to that of metals with the 
application of sufficient excitation energy implies a transition of the excited electrons from covalent to metallic-bond electrons.  
The bonding in diamond shown in the Nature of the Molecular Bond of Diamond section is a network of covalent bonds.  
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Semiconductors comprise covalent bonds wherein the electrons are of sufficiently high energy that excitation creates an ion and 
a free electron.  The free electron forms a membrane as in the case of metals given in the Nature of the Metallic Bond of Alkali 
Metals section.  This membrane has the same planar structure throughout the crystal.  This feature accounts for the high 
conductivity of semiconductors when the electrons are excited by the application of external fields or electromagnetic energy 
that causes ion-pair ( M  — e ) formation.  

It was demonstrated in the Nature of the Metallic Bond of Alkali Metals section that the solutions of the external point 
charge at an infinite planar conductor are also those of the metal ions and free electrons of metals based on the uniqueness of 
solutions of Maxwell’s equations and the constraint that the individual electrons in a metal conserve the classical physical laws 
of the macro-scale conductor.  The nature of the metal bond is a lattice of metal ions with field lines that end on the 
corresponding lattice of electrons comprising two-dimensional charge density   given by Eq. (19.6) where each is equivalent 
electrostatically to an image point charge at twice the distance from the point charge of e  due to M  .  Thus, the metallic bond 
is equivalent to the ionic bond given in the Alkali-Hydride Crystal Structures section with a Madelung constant of one with each 
negative ion at a position of one half the distance between the corresponding positive ions, but electrostatically equivalent to 
being positioned at twice this distance, the M  - M  -separation distance.  Then, the properties of semiconductors can be 
understood as due to the excitation of a bound electron from a covalent state such as that of the diamond structure to a metallic 
state such as that of an alkali metal.  The equations are the same as those of the corresponding insulators and metals. 
 
NATURE OF THE INSULATOR-TYPE SEMICONDUCTOR BOND 
As given in the Nature of the Solid Molecular Bond of Diamond section, diamond C - C bonds are all equivalent, and each C - C 
bond can be considered bound to a t-butyl group at the corresponding vertex carbon.  Thus, the parameters of the diamond C - C 
functional group are equivalent to those of the t-butyl C - C group of branched alkanes given in the Branched Alkanes section.  
Silicon also has the diamond structure.  The diamond Si - Si bonds are all equivalent, and each Si - Si  bond can be considered 
bound to three other Si - Si bonds at the corresponding vertex silicon.  Thus, the parameters of the crystalline silicon Si - Si 
functional group are equivalent to those of the Si - Si group of silanes given in the Silanes ( 2 2n nSi H  ) section except for the 

 3, .TE atom atom msp AO  term of Eq. (15.61).  Since bonds in pure crystalline silicon are only between 33Si sp  HOs having 

energy less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264) 

 3, . 0TE atom atom msp AO  .  Also, as in the case of the C - C functional group of diamond, the 33Si sp  HO magnetic energy 

magE  is subtracted due to a set of unpaired electrons being created by bond breakage such that 3c  of Eq. (15.65) is one, and magE  

is given by Eqs. (15.15) and (20.3). 

  
 

2 2
3 0 0

3 3 333

0

8 8
3 0.04983 

1.31926
B B

magE Si sp c c c eV
r a

   
    (21.1) 

The symbols of the functional group of crystalline silicon is given in Table 21.1.  The geometrical (Eqs. (15.1-15.5), 
(20.3-20.7), (20.29), and (20.33)) parameters of crystalline silicon are given in Table 21.2.  Using the internuclear distance 2 'c , 
the lattice parameter a  of crystalline silicon is given by Eq. (17.3).  The intercept (Eqs. (15.80-15.87), (20.3), and (20.21)) and 
energy (Eqs. (15.61), (20.3-20.7), and (20.33)) parameters of crystalline silicon are given in Tables 21.2, 21.3, and 21.4, 
respectively.  The total energy of crystalline silicon given in Table 21.5 was calculated as the sum over the integer multiple of 
each  GroupDE  of Table 21.4 corresponding to functional-group composition of the solid.  The bond angle parameters of 

crystalline silicon determined using Eqs. (15.88-15.117), (20.4), (20.33), and (21.1) are given in Table 21.6.  The diamond 
structure of silicon in the insulator state is shown in Figure 21.1.  The predicted structure matches the experimental images of 
silicon determined using STM [1] as shown in Figure 21.2. 
 

Figure 21.1.  The diamond structure of silicon in the insulator state.  Axes indicate positions of additional bonds of the 
repeating structure.  (A) Twenty six C C -bond MOs.  (B) Fifty one C C -bond MOs. 
  
 (A) (B) 
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Figure 21.2.  (A)-(B) STM topographs of the clean Si(111)-(7X7) surface.  Reprinted with permission from Ref. [1].  
Copyright 1995 American Chemical Society. 
 

    
(A) (B) 

 
Table 21.1.  The symbols of the functional group of crystalline silicon. 
 

Functional Group Group Symbol
SiSi bond (diamond-type-Si) Si Si  

 
Table 21.2.   The geometrical bond parameters of crystalline silicon and experimental values. 
 

Parameter Si Si  
Group

 0 a a  2.74744 

 0'  c a  2.19835 

Bond Length  2 '  c Å  2.32664 

Exp. Bond Length  Å  2.35 [2] 

 0,  b c a  1.64792 

e  0.80015

Lattice Parameter   la Å  5.37409 

Exp. Lattice Parameter   la Å  5.4306 [3] 
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Table 21.4.   The energy parameters (eV) of the functional group of crystalline silicon. 
 

 
 

Table 21.5.   The total bond energy of crystalline silicon calculated using the functional group composition and the energy of 
Table 21.4 compared to the experimental value [5]. 
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NATURE OF THE CONDUCTOR-TYPE SEMICONDUCTOR BOND 
With the application of excitation energy equivalent to at least the band gap in the form of photons for example, electrons in 
silicon transition to conducting states.  The nature of these states are equivalent to those of the electrons of metals with the 
appropriate lattice parameters and boundary conditions of silicon.  Since the planar electron membranes are in contact 
throughout the crystalline matrix, the Maxwellian boundary condition that an equipotential must exist between contacted perfect 
conductors maintains that all of the planar electrons are at the energy of the highest energy state electron.  This condition with 
the availability of a multitude of states with different ion separation distances and corresponding energies coupled with a near 
continuum of phonon states and corresponding energies gives rise to a continuum energy band or conduction band in the 
excitation spectrum.  Thus, the conducting state of silicon comprises a background covalent diamond structure with free metal-
type electrons and an equal number of silicon cations dispersed in the covalent lattice wherein excitation has occurred.  The band 
gap can be calculated from the difference between the energy of the free electrons at the minimum electron-ion separation 
distance (the parameter d  given in the Nature of the Metallic Bond of Alkali Metals section) and the energy of the covalent-type 
electrons of the diamond-type bonds given in the Nature of the Insulator-Type Semiconductor Bond section. 

The band gap is the lowest energy possible to form free electrons and corresponding Si  ions.  Since the gap is the 
energy difference between the total energy of the free electrons and the MO electrons, a minimum gap corresponds to the lowest 
energy state of the free electrons.  With the ionization of silicon atoms, planar electron membranes form with the corresponding 
ions at initial positions of the corresponding bond in the silicon lattice.  The potential energy between the electrons and ions is a 
maximum if the electron membrane comprises the superposition of the two electrons ionized from a corresponding Si Si  bond, 
and the orientation of the membrane is the transverse bisector of the former bond axis such that the magnitude of the potential is 
four times that of a single —Si e   pair.  In this case, the potential is given by two times Eq. (19.21).  Furthermore, all of the 
field lines of the silicon ions end on the intervening electrons.   Thus, the repulsion energy between Si  ions is zero and the 
energy of the ionized state is a minimum.  Using the parameters from Tables 21.1 and 21.6, the —Si e   distance of 

' 1.16332 c Å , and the calculated Si  ionic radius of 3 03
1.16360 0.61575 

Si sp
r a Å    (Eq. 20.17), the lattice structure of 

crystalline silicon in a conducting state is shown in Figure 21.3. 
 

Figure 21.3.  (A), (B), and (C) The conducting state of crystalline silicon showing the covalent diamond-structure network 
of the unit cell with two electrons ionized from a MO shown as a planar two-dimensional membrane of zero thickness that is the 
perpendicular bisector of the former Si Si  bond axis.  The corresponding two Si  ions (smaller radii) are centered at the 
positions of the atoms that contributed the ionized 33Si sp -HO electrons.  The electron equipotential energy surface may 
superimpose with multiple planar electron membranes.  The surface charge density of each electron gives rise to an electric field 
equivalent to that of an image point charge for each corresponding positive ion of the lattice. 
 
 (A) (B) (C) 

 
 
The optimal Si  ion-electron separation distance parameter d  is given by: 

 10
0' 2.19835 =1.16332  10  d c a X m   (21.2) 

The band gap is given by the difference in the energy of the free electrons at the optimal Si -electron separation distance 
parameter d  given by Eq. (21.2) and the energy of the electrons in the initial state of the Si Si -bond MO.  The total energy of 
electrons of a covalent Si Si -bond MO  T Si SiMOE Si   given by Eq. (15.65) and Table 21.4 is: 

     22.81274 0.04888 0.04983 22.81369 T Si SiMO T osc magE Si E MO E E eV eV eV           (21.3) 
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The minimum energy of a free-conducting electron in silicon for the determination of the band gap       T band gapE free e in Si  is 

given by the sum of twice the potential energy and the kinetic energy given by Eqs. (19.21) and (19.24), respectively:   

    
2 2

 2
0

2 4 1
   

4 3 2T band gap
e

e
E free e in Si V T

d m d
  

     
 


 (21.4) 

In addition, the ionization of the MO electrons increases the charge on the two corresponding 33Si sp  HO with a corresponding 

energy decrease,  3, .TE atom atom msp AO  given by one half that of Eq. (20.20).  With d  given by Eq. (21.2), 

       T band gapE free e in Si  is: 

 

   

 

 
 

2

10
0

2

 210

3

2

4 1.16332  10  

4 1
   

3 2 1.16332  10  

, .

1.37960
24.75614 3.75374  

2
21.69220 







 
 
 
        

  
   

   

 


T band gap

e

T

e

X m

E free e in Si
m X m

E atom atom msp AO

eV eV eV

eV



 (21.5) 

The band gap in silicon gE  given by the difference between       T band gapE free e in Si  (Eq. (21.5)) and  T Si SiMOE Si   (Eq. (21.3)) 

is: 

 

     
 

    

21.69220 22.81179 

1.120 

g T Si SiMOT band gapE E free e in Si E Si

eV eV

eV


 

   



 (21.6) 

The experimental band gap for silicon [6] is: 

 1.12 gE eV  (21.7) 

The calculated band gap is in excellent agreement with the experimentally measured value.  This result along with the prediction 
of the correct lattice parameters, cohesive energy, and bond angles given in Tables 21.2, 21.5, and 21.6, respectively, confirms 
that conductivity in silicon is due to the creation of discrete ions, Si  and e , with the excitation of electrons from covalent 
bonds.  The current carriers are free metal-type electrons that exist as planar membranes with current propagation along these 
structures shown in Figure 21.3.  Since the conducting electrons are equivalent to those of metals, the resulting kinetic energy 
distribution over the population of electrons can be modeled using the statistics of electrons in metals, Fermi Dirac statistics 
given in the Fermi-Dirac section and the Physical Implications of Free Electrons in Metals section. 
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Chapter 22 
  
BORON MOLECULAR FUNCTIONAL GROUPS  
AND MOLECULES 
  
 
 
 
 
GENERAL CONSIDERATIONS OF THE BORON MOLECULAR BOND 
Boron molecules comprising an arbitrary number of atoms can be solved using similar principles and procedures as those used to 
solve organic molecules of arbitrary length and complexity.  Boron molecules can be considered to be comprised of functional 
groups such as B B , B C , B H , B O , B N , B X  ( X  is a halogen atom), and the alkyl functional groups of organic 
molecules.  The solutions of these functional groups or any others corresponding to the particular boron molecule can be 
conveniently obtained by using generalized forms of the force balance equation given in the Force Balance of the   MO of the 
Carbon Nitride Radical section for molecules comprised of boron and hydrogen only and the geometrical and energy equations 
given in the Derivation of the General Geometrical and Energy Equations of Organic Chemistry section for boron molecules 
further comprised of heteroatoms such as carbon.  The appropriate functional groups with their geometrical parameters and 
energies can be added as a linear sum to give the solution of any molecule containing boron.. 

 
BORANES ( x yB H ) 
As in the case of carbon, silicon, and aluminum, the bonding in the boron atom involves four 3sp  hybridized orbitals formed 

from the 2 p  and 2s  electrons of the outer shells except that only three HOs are filled.  Bonds form between the 32B sp  HOs of 

two boron atoms and between a 32B sp  HO and a 1H s  AO to yield boranes.  The geometrical parameters of each B H  and 
B B  functional group is solved from the force balance equation of the electrons of the corresponding  -MO and the 
relationships between the prolate spheroidal axes.  Then, the sum of the energies of the 2H -type ellipsoidal MOs is matched to 

that of the 32B sp  shell as in the case of the corresponding carbon molecules.  As in the case of ethane (C C  functional group 
given in the Ethane Molecule section) and silane ( Si Si  functional group given in the Silanes section), the energy of the B B  
functional group is determined for the effect of the donation of 25% electron density from each participating 32B sp  HO to the 
B B -bond MO. 

The energy of boron is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264).  A 
minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the Hydroxyl 
Radical (OH) section with the donation of 25% electron density from each participating B2sp3 HO to each B - H and B - B-bond 
MO.  As in the case of acetylene given in the Acetylene Molecule section, the energies of the B - H and B - B functional groups 
are determined for the effect of the charge donation. 

The 32sp  hybridized orbital arrangement is: 

 

3             2sp  state

                            

0,0      1,-1      1,0       1,1

    (22.1) 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the four 

electrons.  The sum  3, 2TE B sp  of experimental energies [1] of B , B , and 2B   is: 

  3, 2 37.93064 25.1548 8.29802 =71.38346 TE B sp eV eV eV eV    (22.2) 
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By considering that the central field decreases by an integer for each successive electron of the shell, the radius 32sp
r  of the 

32B sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 24

02
2 0 0

( ) 6
1.14361

8 71.38346 8 71.38346 sp
n

Z n e e
r a

e eV e eV 


    (22.3) 

where 5Z   for boron.  Using Eq. (15.14), the Coulombic energy  3, 2CoulombE B sp  of the outer electron of the 32B sp  shell is: 

  
3

2 2
3

0 0 02

, 2 11.89724 
8 8 1.14361Coulomb

sp

e e
E B sp eV

r a 
 

     (22.4) 

During hybridization, one of the spin-paired 2s  electrons is promoted to the 32B sp  shell as an unpaired electron.  The energy 
for the promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 2s  electrons.  From Eq. (10.62) with 

5Z  , the radius 3r  of 2B s  shell is 

 3 01.07930r a  (22.5) 
Using Eqs. (15.15) and (22.5), the unpairing energy is: 

 
   

2 2 2
0 0

3 32
3 0

2 8
( ) 0.09100 

1.07930
B

e

e
E magnetic eV

m r a

  
  


 (22.6) 

Using Eqs. (24.4) and (22.6), the energy  3, 2E B sp  of the outer electron of the 32B sp  shell is: 

  
 3

2 22
3 0

32
0 32

2
,2 11.89724 0.09100 11.80624 

8
esp

ee
E B sp eV eV eV

r m r





      


 (22.7) 

Next, consider the formation of the B H  and B B -bond MOs of boranes wherein each boron atom has a 32B sp  
electron with an energy given by Eq. (22.7).  The total energy of the state of each boron atom is given by the sum over the three 
electrons.  The sum  3, 2T boraneE B sp  of energies of 32B sp  (Eq. (22.7)), B , and 2B   is: 

 
    

 

3 3, 2 37.93064 25.1548 , 2

                        37.93064 25.1548 11.80624 74.89168 

T boraneE B sp eV eV E B sp

eV eV eV eV

   

     
 (22.8) 

where  3, 2E B sp  is the sum of the energy of B , 8.29802 eV , and the hybridization energy. 

Each C - H-bond MO forms with the sharing of electrons between each 32B sp  HO and each H1s AO.  As in the case of 
C - H, the H2-type ellipsoidal MO comprises 75% of the B - H -bond MO according to Eq. (13.429) and Eq. (13.59).  Similarly 
to the case of C - C, the B - B H2-type ellipsoidal MO comprises 50% contribution from the participating B2sp3  HOs according 
to Eq. (14.152).  The sharing of electrons between a B2sp3 HO and one or more H1s  AOs to form B - H -bond MOs or between 
two B2sp3 HOs to form a B - B -bond MO permits each participating orbital to decrease in size and energy.  As shown below, the 
boron HOs have spin and orbital angular momentum terms in the force balance which determines the geometrical parameters of 
each   MO.  The angular momentum term requires that each   MO be treated independently in terms of the charge donation.  
In order to further satisfy the potential, kinetic, and orbital energy relationships, each B2sp3  HO donates an excess of 25% of its 
electron density to the B - H or B - B -bond MO to form an energy minimum.  By considering this electron redistribution in the 
borane molecule as well as the fact that the central field decreases by an integer for each successive electron of the shell, the 
radius 32borane sp

r  of the B2sp3 shell may be calculated from the Coulombic energy using Eq. (15.18). 

 
   3

2 24

02
2 0 0

5.75
( ) 0.25 1.04462

8 74.89168 8 74.89168 borane sp
n

e e
r Z n a

e eV e eV 

      
 
  (22.9) 

Using Eqs. (15.19) and (22.9), the Coulombic energy  3, 2Coulomb boraneE B sp  of the outer electron of the 32B sp  shell is: 

  
3

2 2
3

0 0 02

, 2 13.02464 
8 8 1.04462Coulomb borane

borane sp

e e
E B sp eV

r a 
 

     (22.10) 

During hybridization, one of the spin-paired 2s  electrons are promoted to the 32B sp  shell as an unpaired electron.  The energy 

for the promotion is the magnetic energy given by Eq. (22.6).  Using Eqs. (22.6) and (22.10), the energy  3, 2boraneE B sp  of the 

outer electron of the 32B sp  shell is: 
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2 22
3 0

32
0 32

2
, 2 13.02464 0.09100 12.93364 
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eborane sp

ee
E B sp eV eV eV
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 (22.11) 

Thus,  3, 2TE B H sp  and  3, 2TE B B sp , the energy change of each 32B sp  shell with the formation of the B H  and 

B B -bond MO, respectively, is given by the difference between Eq. (22.11) and Eq. (22.7): 
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3 3 3 3, 2 , 2 , 2 ,2

                         12.93364 11.80624 1.12740 

T T boraneE B H sp E B B sp E B sp E B sp

eV eV eV

    

     
 (22.12) 

Next, consider the case that each 32B sp  HO donates an excess of 50% of its electron density to the   MO to form an 
energy minimum.  By considering this electron redistribution in the borane molecule as well as the fact that the central field 
decreases by an integer for each successive electron of the shell, the radius 32borane sp

r  of the 32B sp  shell may be calculated from 

the Coulombic energy using Eq. (15.18). 

 
   3

2 24

02
2 0 0

5.5
( ) 0.5 0.99920

8 74.89168 8 74.89168 borane sp
n

e e
r Z n a

e eV e eV 

 
     
 
  (22.13) 

Using Eqs. (15.19) and (22.13), the Coulombic energy  3, 2Coulomb boraneE B sp  of the outer electron of the 32B sp  shell is: 

  
3

2 2
3

0 0 02

, 2 13.61667 
8 8 0.99920Coulomb borane

borane sp

e e
E B sp eV

r a 
 

     (22.14) 

During hybridization, one of the spin-paired 2s  electrons is promoted to the 32B sp  shell as an unpaired electron.  The energy 

for the promotion is the magnetic energy given by Eq. (22.6).  Using Eqs. (22.6) and (22.14), the energy  3, 2boraneE B sp  of the 

outer electron of the 32B sp  shell is: 

  
 3

2 22
3 0

32
0 32

2
, 2 13.61667 0.09100 13.52567 

8borane

eborane sp

ee
E B sp eV eV eV

r m r





      


 (22.15) 

Thus,  3, 2TE B atom sp , the energy change of each 32B sp  shell with the formation of the B atom -bond MO is given by the 

difference between Eq. (22.15) and Eq. (22.7): 

        3 3 3, 2 , 2 , 2 13.52567 11.80624 1.71943 T boraneE B atom sp E B sp E B sp eV eV eV          (22.16) 

Consider next the radius of the HO due to the contribution of charge to more than one bond.  The energy contribution due 
to the charge donation at each boron atom superimposes linearly.  In general, the radius 32mol sp

r  of the 32B sp  HO of a boron atom 

of a given borane molecule is calculated after Eq. (15.32) by considering  3, 2
molTE MO sp , the total energy donation to all 

bonds with which it participates in bonding.  The general equation for the radius is given by: 

 
       3

2 2

3 3 3 3
0 0

8 , 2 , 2 8 11.89724 , 2
mol mol

mol sp
Coulomb T T

e e
r

E B sp E MO sp e eV E MO sp 


 

  
 (22.17) 

where  3, 2CoulombE B sp  is given by Eq. (22.4).  The Coulombic energy  3, 2CoulombE B sp  of the outer electron of the 32B sp  

shell considering the charge donation to all participating bonds is given by Eq. (15.14) with Eq. (22.4).  The energy  3, 2E B sp  

of the outer electron of the 3 2B sp  shell is given by the sum of  3, 2CoulombE B sp  and ( )E magnetic  (Eq. (22.6)).  The final 

values of the radius of the 32B sp  HO, 32sp
r ,  3, 2CoulombE B sp , and  32boraneE B sp  calculated using  3, 2

molTE MO sp , the total 

energy donation to each bond with which an atom participates in bonding are given in Table 22.1.  These hybridization 
parameters are used in Eqs. (15.88-15.117) for the determination of bond angles given in Table 22.7. 
 
Table 22.1.   Atom hybridization designation (# first column) and hybridization parameters of atoms for determination of 

bond angles with final values of 32sp
r ,  3, 2CoulombE B sp  (designated as CoulombE ), and  32boraneE B sp  (designated as E ) 

calculated using the appropriate values of  3, 2
molTE MO sp  (designated as TE ) for each corresponding terminal bond 

spanning each angle. 
 

# 
TE  TE  TE  TE  TE  33sp

r  

Final 

CoulombE  

(eV) 
Final 

E  
(eV) 
Final 

1 0 0 0 0 0 1.14361 11.89724 11.80624 
2 -1.71943 0 0 0 0 0.99920 -13.61667 -13.52567 
3 -1.18392 -1.18392 0 0 0 0.95378 -14.26508 -14.17408 
4 -1.12740 -1.12740 -0.56370 0 0 0.92458 -14.71574 -14.62474 

 

The MO semimajor axes of the B H  and B B  functional groups of boranes are determined from the force balance 
equation of the centrifugal, Coulombic, and magnetic forces as given in the Polyatomic Molecular Ions and Molecules section 
and the More Polyatomic Molecules and Hydrocarbons section.  In each case, the distance from the origin of the 2H -type-

ellipsoidal-MO to each focus 'c , the internuclear distance 2 'c , and the length of the semiminor axis of the prolate spheroidal 
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2H -type MO b c  are solved from the semimajor axis a .  Then, the geometric and energy parameters of each MO are 

calculated using Eqs. (15.1-15.117).   
The force balance of the centrifugal force equated to the Coulombic and magnetic forces is solved for the length of the 

semimajor axis.  The Coulombic force on the pairing electron of the MO is: 

 
2

2
08Coulomb

e
D

ab 
F i  (22.18) 

The spin-pairing force is: 

 
2

2 22spin pairing
e

D
m a b  F i


 (22.19) 

The diamagnetic force is:  

 
2

1 2 24
e

diamagneticMO
e

n
D

m a b  F i


 (22.20) 

where en  is the total number of electrons that interact with the binding  -MO electron.  The diamagnetic force 2diamagneticMOF  on 

the pairing electron of the   MO is given by the sum of the contributions over the components of angular momentum:  

 2 2 2
, 2

i
diamagneticMO

i j j e

L
D

Z m a b  F i


 (22.21) 

where L  is the magnitude of the angular momentum of each atom at a focus that is the source of the diamagnetism at the  -

MO.  The centrifugal force is:  

 
2

2 2centrifugalMO
e

D
m a b  F i


 (22.22) 

The force balance equation for the  -MO of the two-center B H -bond MO is the given by centrifugal force given by 
Eq. (22.22) equated to the sum of the Coulombic (Eq. (22.18)), spin-pairing (Eq. (22.19)), and 2diamagneticMOF  (Eq. (22.21)) with 

3
4

4
L    corresponding to the four 32B sp  HOs: 

 
2 2 2 2

2 2 2 2 2 2 2
0

3
4

4
8 2 2e e e

e
D D D D

m a b ab m a b Z m a b
  

  
 (22.23) 

 0

3
4

41a a
Z

 
 
  
 

 (22.24) 

With 5Z  , the semimajor axis of the B H -bond MO is: 
 01.69282a a  (22.25) 

The force balance equation for each  -MO of the B B -bond MO with 2en   and 
3

3
4

L    corresponding to three 

electrons of the 32B sp  shell is: 

 
2 2 2 2

2 2 2 2 2 2 2
0

3
3

41
8 2 2e e e

e
D D D D

m a b ab m a b Z m a b

 
 
    
 

  
 (22.26) 

 0

3
3

42a a
Z

 
 
  
 

 (22.27) 

With 5Z  , the semimajor axis of the B B -bond MO is: 
 02.51962a a  (22.28) 

Using the semimajor axis, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.127) in the 
same manner as the organic functional groups given in the Organic Molecular Functional Groups and Molecules section.  For the 
B H  functional group, 1c  is one and 1 0.75C   based on the MO orbital composition as in the case of the C H -bond MO.  In 

boranes, the energy of boron is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  
Thus, the energy matching condition is determined by the 2c  and 2C  parameters in Eqs. (15.51) and (15.61).  Then, the 

hybridization factor for the B H -bond MO given by the ratio of 11.89724 eV , the magnitude of  3, 2Coulomb boraneE B sp  (Eq. 

(22.4)), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H  (Eq. (1.264)): 
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  3
2 2

11.89724 
2 0.87442

13.605804 

eV
c C borane sp HO

eV
    (22.29) 

Since the energy of the MO is matched to that of the 32B sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3, 2E B sp  given 

by Eq. (22.7), and  3, .TE atom atom msp AO  is one half of 1.12740 eV  corresponding to the independent single-bond charge 

contribution (Eq. (22.12)) of one center. 
For the B B  functional group, 1c  is one and 1 0.5C   based on the MO orbital composition as in the case of the C C -

bond MO.  The energy matching condition is determined by the 2c  and 2C  parameters in Eqs. (15.51) and (15.61), and the 

hybridization factor for the B B -bond MO given is by Eq. (22.29).  Since the energy of the MO is matched to that of the B2sp3 
HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3, 2E B sp  given by Eq. (22.7), and  3, .TE atom atom msp AO  is two times –

 1.12740 eV corresponding to the independent single-bond charge contributions (Eq. (22.12)) from each of the two B2sp3 HOs. 
 
BRIDGING BONDS OF BORANES ( B H B   AND B B B  ) 
As in the case of the 33Al sp  HOs given in the Organoaluminum Hydrides ( Al H Al   and Al C Al  ) section, the 32B sp  
HOs comprise four orbitals containing three electrons as given by Eq. (23.1) that can form three-center as well as two-center 
bonds.  The designation for a three-center bond involving two 32B sp  HOs and a 1H s  AO is B H B  , and the designation for 

a three-center bond involving three 32B sp  HOs is B B B  . 

The parameters of the force balance equation for the  -MO of the B H B  -bond MO are 2en   and 0L   due to the 

cancellation of the angular momentum between borons: 

 
2 2 2 2

2 2 2 2 2 2 2
08 2 2e e e

e
D D D D

m a b ab m a b m a b
  

  
 (22.30) 

From Eq. (22.30), the semimajor axis of the B H B  -bond MO is 
 02a a  (22.31) 

The parameters in Eqs. (15.51) and (15.61) are the same as those of the B H B   functional group except that 

 3, .TE atom atom msp AO  is two times 1.12740 eV  corresponding to the independent single-bond charge contributions (Eq. 

(22.12)) from each of the two 32B sp  HOs. 
 The force balance equation and the semimajor axis for the  -MO of the B B B  -bond MO are the same as those of the 
B B -bond MO given by Eqs. (22.30) and (22.31), respectively.  The parameters in Eqs. (15.51) and (15.61) are the same as 

those of the B B  functional group except that  3, .TE atom atom msp AO  is three times 1.12740 eV  corresponding to the 

independent single-bond charge contributions (Eq. (22.12)) from each of the three 32B sp  HOs. 

The 2H -type ellipsoidal MOs of the B H B   three-center bond intersect and form a continuous single surface.  

However, in the case of the B B B  -bond MO the current of each B B  MO forms a bisector current described in the 
Methane Molecule ( 4CH ) section that is continuous with the center 32B sp -HO shell (Eqs. (15.36-15.44)).  Based on symmetry, 

the polar angle   at which the B H B   2H -type ellipsoidal MOs intersect is given by the bisector of the external angle 

between the B H  bonds: 

 
360 360 85.4

137.3
2 2

BHB    
     (22.32) 

where [2] 
 85.4BHB    (22.33) 

The polar radius ir  at this angle is given by Eqs. (13.84-13.85). 
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 (22.34) 

Substitution of the parameters of Table 22.2 into Eq. (22.34) gives: 
 10

02.26561 1.19891  10  ir a X m   (22.35) 

The polar angle   at which the B B B   2H -type ellipsoidal MOs intersect is given by the bisector of the external 

angle between the B B  bonds: 

 
360 360 58.9

150.6
2 2

BBB    
     (22.36) 

where [3] 
 58.9BHB    (22.37) 
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The polar radius ir  at this angle is given by Eqs. (13.84-13.85): 

  
'

1
'

'
1 cos '

i

c
ar a c

c
a




 


 (22.38) 

Substitution of the parameters of Table 22.2 into Eq. (22.38) gives: 
 10

03.32895 1.76160  10  ir a X m   (22.39) 

 The symbols of the functional groups of boranes are given in Table 22.2.  The geometrical (Eqs. (15.1-15.5) and (22.23-
22.39)), intercept (Eqs. (15.80-15.87) and (22.17)), and energy (Eq. (15.61), (22.4), (22.7), (22.12), and (22.29)) parameters of 
boranes are given in Tables 22.3, 22.4, and 22.5, respectively.  In the case that the MO does not intercept the B  HO due to the 
reduction of the radius from the donation of 3Bsp  HO charge to additional MOs, the energy of each MO is energy matched as a 
linear sum to the B  HO by contacting it through the bisector current of the intersecting MOs as described in the Methane 
Molecule ( 4CH ) section.  The total energy of each borane given in Table 22.6 was calculated as the sum over the integer 

multiple of each  GroupDE  of Table 22.5 corresponding to functional-group composition of the molecule.  magE  of Table 22.5 is 

given by Eqs. (15.15) and (22.3).  The bond angle parameters of boranes determined using Eqs. (15.88-15.117) and (20.36) with 
32B sp  replacing 33Si sp  are given in Table 22.7.  The charge-density in diborane is shown in Figure 22.1. 

 
Figure 22.1.   Diborane. Color scale, opaque view of the charge-density of 2 6B H  comprising the linear combination of two 

sets of two B H -bond MOs and two B H B  -bond MOs.  For each B H  and B H B   bond, the ellipsoidal surface of 
the 2H -type ellipsoidal MO transitions to the 32B sp  HO shell with radius 00.89047a  (Eq. (22.17)).  The inner 1B s  radius is 

00.20670a  (Eq. (10.51)).  

 

 
 

Table 22.2.   The symbols of the functional groups of boranes. 
 

Functional Group Group Symbol
BH group B H
BHB (bridged H) B H B 
BB bond B B
BBB (bridged B) B B B 

 

Table 22.3.   The geometrical bond parameters of boranes and experimental values. 
 

Parameter B H  
Group 

B H B   
Group 

B B  
and 

B B B   
Groups 

 0 a a  1.69282 2.00000 2.51962 

 0'  c a  1.13605 1.23483 1.69749 

Bond Length 

 2 '  c Å  1.20235 1.30689 1.79654 

Exp. Bond 
Length 

 Å  

1.19 [4] 
(diborane) 

1.32 [4] 
(diborane) 

1.798 [3] 
( 13 19B H ) 

 0,  b c a  1.25500 1.57327 1.86199 

e  0.67110 0.61742 0.67371 
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Table 22.5.   The energy parameters (eV) of functional groups of boranes. 
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ALKYL BORANES ( ;x y zR B H R alkyl ) 
The alkyl boranes may comprise at least a terminal methyl group ( 3CH ) and at least one B  bound by a carbon-boron single 

bond comprising a C B  group, and may comprise methylene ( 2CH ), methylyne (CH ), C C , B H , B B , B H B  , and 

B B B   functional groups.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six 
types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the 
C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, 

and t-butyl to t-butyl C C  bonds comprise functional groups. Additional groups include aromatics such as phenyl.  These 
groups in alkyl boranes are equivalent to those in branched-chain alkanes and aromatics, and the B H , B B , B H B  , and 
B B B   functional groups of alkyl boranes are equivalent to those in boranes. 

For the C B  functional group, hybridization of the 2s  and 2 p  AOs of each C  and B  to form single 32sp  shells forms 

an energy minimum, and the sharing of electrons between the 32C sp  and 32B sp  HOs to form a MO permits each participating 
orbital to decrease in radius and energy.  In alkyl boranes, the energy of boron is less than the Coulombic energy between the 
electron and proton of H  given by Eq. (1.264).  Thus, 1c  in Eq. (15.61) is one, and the energy matching condition is determined 

by the 2c  and 2C  parameters.  Then, the 32C sp  HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the 32B sp  

HOs have an energy of  3, 2 11.80624 E B sp eV   (Eq. (22.7)).  To meet the equipotential condition of the union of the C B  

2H -type-ellipsoidal-MO with these orbitals, the hybridization factors 2c  and 2C  of Eq. (15.61) for the C B -bond MO given by 

Eq. (15.77) is: 

      
 

3

3 3 3 3
2 2 3

, 2 11.80624 
2   2 2   2 0.80672

14.63489 , 2

E B sp eV
c C sp HO to B sp HO C C sp HO to B sp HO

eVE C sp


   


 (22.40) 

 3, .TE atom atom msp AO  of the C B -bond MO is 1.44915 eV  corresponding to the single-bond contributions of carbon 

and boron of 0.72457 eV  given by Eq. (14.151).  The energy of the C B -bond MO is the sum of the component energies of 

the 2H -type ellipsoidal MO given in Eq. (15.51) with    3/ , 2E AO HO E B sp  given by Eq. (22.7) and 

   
2

3/ , .H MO TE AO HO E atom atom msp AO    in order to match the energies of the carbon and boron HOs. 

Consider next the radius of the HO due to the contribution of charge to more than one bond.  The energy contribution due 
to the charge donation at each boron atom and carbon atom superimposes linearly.  In general, since the energy of the 32B sp  HO 

is matched to that of the 32C sp  HO, the radius 32mol sp
r  of the 32B sp  HO of a boron atom and the 32C sp  HO of a carbon atom of 

a given alkyl borane molecule is calculated after Eq. (15.32) by considering  3, 2
molTE MO sp , the total energy donation to all 

bonds with which it participates in bonding.  The Coulombic energy  3, 2CoulombE atom sp  of the outer electron of the 32atom sp  

shell considering the charge donation to all participating bonds is given by Eq. (15.14).  The hybridization parameters used in 
Eqs. (15.88-15.117) for the determination of bond angles of alkyl boranes are given in Table 22.8. 
 
Table 22.8.   Atom hybridization designation (# first column) and hybridization parameters of atoms for determination of 
bond angles with final values of r2sp3, ECoulomb(atom,2sp3) (designated as ECoulomb), and ECoulomb(atomalkylborane2sp3)  (designated as 

E) calculated using the appropriate values of  ETmol(MO,2sp3) (designated as ET) for each corresponding terminal bond spanning 

each angle. 
 

# 
TE  TE  TE  TE  TE  33sp

r  

( 0a ) 

Final

CoulombE  

(eV) 
Final 

E  
(eV) 
Final 

1 -0.36229 -0.92918 0 0 0 0.84418 -16.11722 -15.92636 
 

The symbols of the functional groups of alkyl boranes are given in Table 22.9. The geometrical (Eqs. (15.1-15.5) and 
(22.23-22.40)), intercept (Eqs. (15.32) and (15.80-15.87)), and energy (Eq. (15.61), (22.4), (22.7), (22.12), (22.29), and (22.40)) 
parameters of alkyl boranes are given in Tables 22.10, 22.11, and 22.12, respectively.  In the case that the MO does not intercept 
the B  HO due to the reduction of the radius from the donation of 32B sp  HO charge to additional MOs, the energy of each MO 
is energy matched as a linear sum to the B  HO by contacting it through the bisector current of the intersecting MOs as described 
in the Methane Molecule ( 4CH ) section.  The total energy of each alkyl borane given in Table 22.13 was calculated as the sum 

over the integer multiple of each  GroupDE  of Table 22.12 corresponding to functional-group composition of the molecule.  magE  

of Table 22.13 is given by Eqs. (15.15) and (22.3) for B H .  The bond angle parameters of alkyl boranes determined using 
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Eqs. (15.88-15.117) are given in Table 22.14.  The charge-densities of exemplary alkyl boranes, trimethylborane, 
tetramethyldiborane, and methyldecaborane comprising the concentric shells of atoms with the outer shell bridged by one or 
more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 22.2A-B and 22.3A-B, 

respectively. 
 

Figure 22.2.   A. Trimethylborane. Color scale, translucent views of the charge-density of  3 3
H C B  showing the orbitals of 

the B  and C  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale).  
B. Tetramethyldiborane. Color scale, opaque view of the charge-density of    3 2 32 2

CH BH B CH  showing the orbitals of the B  

and C  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding 

outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 

 
 
 
Figure 22.3.   A-B. Methyldecaborane. Color scale, translucent view of the charge-density of methyldecaborane showing the 
orbitals of the B and C atoms at their radii, the ellipsoidal surface of each H or 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Table 22.9.   The symbols of the functional groups of alkyl boranes. 
 

Functional Group Group Symbol
C-B bond C B  
BH bond B H
BHB (bridged H) B H B 
BB bond B B
BBB (bridged B) B B B 
CC  (aromatic bond) 

3e

C C  
CH (aromatic) CH  (i) 

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  (ii) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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ALKOXY BORANES (  ;y zx
RO B H R alkyl ) AND ALKYL BORINIC ACIDS 

(   r sq t
RO B H HO ) 

The alkoxy boranes and borinic acids each comprise a B O  functional group, at least one boron-alkyl-ether moiety or one or 
more hydroxyl groups, respectively, and in some cases one or more alkyl groups and borane moieties.  Each alkoxy moiety, 

2 1n nC H O , of alkoxy boranes comprises one of two types of C O  functional groups that are equivalent to those given in the 

Ethers ( 2 2 ,   2,3,4,5...n n mC H O n   ) section.  One is for methyl or t-butyl groups, and the other is for general alkyl groups.  

Each hydroxyl functional group of borinic acids and alkyl borinic acids is equivalent to that given in the Alcohols 
( 2 2 ,   1, 2,3,4,5...n n mC H O n   ) section.  The alkyl portion may be part of the alkoxy moiety, or an alkyl group may be bound to 

the central boron atom by a carbon-boron single bond comprising the C B  group of the Alkyl Boranes ( ;x y zR B H R alkyl ) 

section.  Each alkyl portion may comprise at least a terminal methyl group ( 3CH ) and methylene ( 2CH ), methylyne (CH ), and 

C C  functional groups.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six 
types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the 
C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, 

and t-butyl to t-butyl C C  bonds comprise functional groups.  Additional R  groups include aromatics such as phenyl.  These 
groups in alkoxy boranes and alkyl borinic acids are equivalent to those in branched-chain alkanes and aromatics given in the 
corresponding sections.  Furthermore, B H , B B , B H B  , and B B B   groups may be present that are equivalent to 
those in boranes as given in the Boranes ( x yB H ) section. 

The MO semimajor axes of the B O  functional groups of alkoxy alkanes and borinic acids are determined from the 
force balance equation of the centrifugal, Coulombic, and magnetic forces as given in the Boranes ( x yB H ) section.  In each case, 

the distance from the origin of the 2H -type-ellipsoidal-MO to each focus 'c , the internuclear distance 2 'c , and the length of the 

semiminor axis of the prolate spheroidal 2H -type MO b c  are solved from the semimajor axis a .  Then, the geometric and 

energy parameters of each MO are calculated using Eqs. (15.1-15.117).   
The parameters of the force balance equation for the  -MO of the B O -bond MO in Eqs. (22.18-22.22) are 2en   and 

0L  : 

 
2 2 2 2

2 2 2 2 2 2 2
08 2 2e e e

e
D D D D

m a b ab m a b m a b
  

  
 (22.41) 

From Eq. (22.41), the semimajor axis of the B O -bond MO is: 
 02a a  (22.42) 

For the B O  functional groups, hybridization of the 2s  and 2 p  AOs of each C  and B  to form single 32sp  shells 

forms an energy minimum, and the sharing of electrons between the 32C sp  and 32B sp  HOs to form a MO permits each 
participating orbital to decrease in radius and energy.  The energy of boron is less than the Coulombic energy between the 
electron and proton of H  given by Eq. (1.264).  Thus, in 1c  and 2c  in Eq. (15.61) is one, and the energy matching condition is 

determined by the 2C  parameter.  The approach to the hybridization factor of O  to B  in boric acids is similar to that of the O  to 

S  bonding in the SO  group of sulfoxides.  The O  AO has an energy of   13.61805 E O eV  , and the 32B sp  HOs has an 

energy of  3, 2 11.80624 E B sp eV   (Eq. (22.7)).  To meet the equipotential condition of the union of the B O  2H -type-

ellipsoidal-MO with these orbitals in borinic acids and to energy match the OH  group, the hybridization factor 2C  of Eq. 

(15.61) for the B O -bond MO given by Eq. (15.77) is: 

    
 

3
2 3

13.61805 
  2 1.15346

11.80624 , 2

E OAO eV
C OAO to B sp HO

eVE B sp


  


 (22.43) 

Since the energy of the MO is matched to that of the 32B sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3, 2E B sp  given 

by Eq. (22.7), and  3, .TE atom atom msp AO  is 1.12740 eV  corresponding to the independent single-bond charge 

contribution (Eq. (22.12)) of one center. 
The parameters of the B O  functional group of alkoxy boranes are the same as those of borinic acids except for 1C  and 

2C .  Rather than being bound to an H , the oxygen is bound to a 32C sp  HO, and consequently, the hybridization of the C O  

given by Eq. (15.133) includes the 32C sp  HO hybridization factor of 0.91771  (Eq. (13.430)).  To meet the equipotential 

condition of the union of the B O  2H -type-ellipsoidal-MO with the 32B sp  HOs having an energy of 

 3, 2 11.80624 E B sp eV   (Eq. (22.7)) and the O  AO having an energy of   13.61805 E O eV   such that the hybridization 
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matches that of the C O -bond MO, the hybridization factor 2C  of Eq. (15.61) for the B O -bond MO given by Eqs. (15.77) 

and (15.79) is: 

    
     

3

3 3
2 2

, 2 11.80624 
2   2 0.91771 0.79562

13.61805 

E B sp eV
C B sp HO to O c C sp HO

E O eV


  


 (22.44) 

Furthermore, in order to form an energy minimum in the B O -bond MO, oxygen acts as an H  in bonding with B  since the 
2 p  shell of O  is at the Coulomb energy between an electron and a proton (Eq. (10.163)).  In this case, 'k  is 0.75 as given by 

Eq. (13.59) such that 1 0.75C   in Eq. (15.61). 

Consider next the radius of the HO due to the contribution of charge to more than one bond.  The energy contribution due 
to the charge donation at each boron atom and oxygen atom superimposes linearly.  In general, since the energy of the 32B sp  

HO and O  AO is matched to that of the 32C sp  HO when the molecule contains a C B -bond MO and a C O -bond MO, 

respectively, the corresponding radius 32mol sp
r  of the 32B sp  HO of a boron atom, the 32C sp  HO of a carbon atom, and the O  AO 

of a given alkoxy borane or borinic acid molecule is calculated after Eq. (15.32) by considering  3, 2
molTE MO sp , the total 

energy donation to all bonds with which it participates in bonding.  The Coulombic energy  3, 2CoulombE atom sp  of the outer 

electron of the 3 2atom sp  shell considering the charge donation to all participating bonds is given by Eq. (15.14).  In the case 

that the boron or oxygen atom is not bound to a 32C sp  HO, 32mol sp
r  is calculated using Eq. (15.31) where  3,CoulombE atom msp  is 

 32 11.89724 CoulombE B sp eV   and   13.61805 E O eV  , respectively. 

The symbols of the functional groups of alkoxy boranes and borinic acids are given in Table 22.15.  The geometrical 
(Eqs. (15.1-15.5) and (22.42-22.44)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eq. (15.61), (22.4), (22.7), 
(22.12), (22.29), and (22.43-22.44)) parameters of alkoxy boranes and borinic acids are given in Tables 22.16, 22.17, and 22.18, 
respectively.  In the case that the MO does not intercept the B  HO due to the reduction of the radius from the donation of 

3 2B sp  HO charge to additional MO’s, the energy of each MO is energy matched as a linear sum to the B  HO by contacting it 

through the bisector current of the intersecting MOs as described in the Methane Molecule ( 4CH ) section.  The total energy of 

each alkyl borane given in Table 22.19 was calculated as the sum over the integer multiple of each  GroupDE  of Table 22.18 

corresponding to functional-group composition of the molecule.  magE  of Table 22.18 is given by Eqs. (15.15) and (22.3) for the 

B O  groups and the B H , B B , B H B  , and B B B   groups.  magE  of Table 22.18 is given by Eqs. (15.15) and 

(10.162) for the OH  group.  The bond angle parameters of alkoxy boranes and borinic acids determined using Eqs. (15.88-
15.117) are given in Table 22.20.  The charge-densities of exemplary alkoxy borane, trimethoxyborane, boric acid, and 
phenylborinic anhydride comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type 

ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 22.4, 22.5, and 22.6, respectively. 
 
Figure 22.4.   Trimethoxyborane. Color scale, translucent views of the charge-density of  3 3

H CO B  showing the orbitals of 

the B , O , and C  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Figure 22.5.  Boric Acid. Color scale, translucent view of the charge-density of  3
HO B  showing the orbitals of the B  and 

O  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer 

shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale). 

 
 

Figure 22.6.   Phenylborinic Anhydride. Color scale, translucent view of the charge-density of phenylborinic anhydride 
showing the orbitals of the B  and O  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that 

transitions to the corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale). 

 
Table 22.15.   The symbols of the functional groups of alkoxy boranes and borinic acids. 

 

Functional Group Group Symbol
B-O bond (borinic acid) B O  (i) 
B-O bond (alkoxy borane) B O  (ii) 
OH group OH  

C-O ( 3CH O   and  3 3
CH C O  ) C O  (i) 

C-O (alkyl) C O  (ii) 
C-B bond C B  
BH bond B H
BHB (bridged H) B H B 
BB bond B B
BBB (bridged B) B B B 
CC  (aromatic bond) 

3e

C C  
CH (aromatic) CH  (i) 

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  (ii) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
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TERTIARY AND QUATERNARY AMINOBORANES AND BORANE AMINES 
( ; ;q r s tR B N R R H alkyl ) 
The tertiary and quaternary amino boranes and borane amines each comprise at least one B  bound by a boron-nitrogen single 
bond comprising a B N  group, and may comprise at least a terminal methyl group ( 3CH ), as well other alkyl and borane 

groups such as methylene ( 2CH ), methylyne (CH ), C C , B H , B C , B H , B B , B H B  , and B B B   

functional groups.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of 
C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  
bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-

butyl to t-butyl C C  bonds comprise functional groups.  These groups in tertiary and quaternary amino boranes and borane 
amines are equivalent to those in branched-chain alkanes, the B C  group is equivalent to that of alkyl boranes, and the B H , 
B B , B H B  , and B B B   functional groups are equivalent to those in boranes. 

In tertiary amino boranes and borane amines, the nitrogen atom of each B N  bond is bound to two other atoms such 
that there are a total of three bounds per atom.  The amino or amine moiety may comprise 2NH ,  N H R , and 2NR .  The 

corresponding functional group for the 2NH  moiety is the 2NH  functional group given in the Primary Amines 

( 2 2 ,   1, 2,3,4,5...n n m mC H N n    ) section.  The  N H R  moiety comprises the NH  functional group of the Secondary Amines 

( 2 2 ,   2,3,4,5...n n m mC H N n    ) section and the C N  functional group of the Primary Amines 

( 2 2 ,   1, 2,3,4,5...n n m mC H N n    ) section.  The 2NR  moiety comprises two types of C N  functional groups, one for the 

methyl group corresponding to the C  of C N  and the other for general alkyl secondary amines given in the Secondary Amines 
( 2 2 ,   2,3,4,5...n n m mC H N n    ) section. 

In quaternary amino boranes and borane amines, the nitrogen atom of each B N  bond is bound to three other atoms 
such that there are a total of four bonds per atom.  The amino or amine moiety may comprise 3NH ,  2N H R ,   2N H R , and 

3NR .  The corresponding functional group for the 3NH  moiety is ammonia given in the Ammonia ( 3NH ) section.  The 

 2N H R  moiety comprises the 2NH  and the C N  functional groups given in the Primary Amines 

( 2 2 ,   1, 2,3,4,5...n n m mC H N n    ) section.  The   2N H R  moiety comprises the NH  functional group and two types of C N  

functional groups, one for the methyl group corresponding to the C  of C N  and the other for general alkyl secondary amines 
given in the Secondary Amines ( 2 2 ,   2,3,4,5...n n m mC H N n    ) section.  The 3NR  moiety comprises the C N  functional 

group of tertiary amines given in the Tertiary Amines ( 2 3 ,   3, 4,5...n nC H N n   ) section. 

The bonding in the B N  functional groups of tertiary and quaternary amino boranes and borane amines is similar to 
that of the B O  groups of alkoxy boranes and borinic acids given in the corresponding section.  The MO semimajor axes of the 
B N  functional groups are determined from the force balance equation of the centrifugal, Coulombic, and magnetic forces as 
given in the Boranes ( x yB H ) section.  In each case, the distance from the origin of the 2H -type-ellipsoidal-MO to each focus 'c , 

the internuclear distance 2 'c , and the length of the semiminor axis of the prolate spheroidal 2H -type MO b c  are solved from 

the semimajor axis a .  Then, the geometric and energy parameters of each MO are calculated using Eqs. (15.1-15.117).   
As in the case of the B O -bond MOs, the  -MOs of the tertiary and quaternary B N -bond MOs is energy matched 

to the 32B sp  HO which determines that the parameters of the force balance equation based on electron angular momentum are 
determined by those of the boron atom.  Thus, the parameters of the force balance equation for the  -MO of the B N -bond 

MOs in Eqs. (22.18-22.22) are 1en   and 

3
3

4L
Z

  corresponding to the three electrons of the boron atom: 
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 (22.45) 
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Z

 
 
  
 

 (22.46) 

With 5Z  , the semimajor axis of the tertiary B N -bond MO is: 
 02.01962a a  (22.47) 

For the B N  functional groups, hybridization of the 2s  and 2 p  AOs of B  to form single 32sp  shells forms an energy 

minimum, and the sharing of electrons between the 32B sp  HO and N  AO to form a MO permits each participating orbital to 
decrease in radius and energy.  The energy of boron is less than the Coulombic energy between the electron and proton of H  
given by Eq. (1.264).  Thus, in 1c  and 2c  in Eq. (15.61) is one, and the energy matching condition is determined by the 1C  and 
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2C  parameters.  The N  AO has an energy of   14.53414 E N eV  , and the 32B sp  HOs have an energy of 

 3, 2 11.80624 E B sp eV   (Eq. (22.7)).  To meet the equipotential condition of the union of the B N  2H -type-ellipsoidal-

MO with these orbitals, the hybridization factor 2C  of Eq. (15.61) for the B N -bond MO given by Eq. (15.77) is: 

    
 

3

3
2

, 2 11.80624 
  2 0.81231

14.53414 

E B sp eV
C NAO to B sp HO

E NAO eV


  


 (22.48) 

Since the energy of the MO is matched to that of the 32B sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3, 2E B sp  given 

by Eq. (22.7), and  3, .TE atom atom msp AO  for ternary B N  is 1.12740 eV  corresponding to the independent single-bond 

charge contribution (Eq. (22.12)) of one center as in the case of the alkoxy borane B O  functional group.  Furthermore, 'k  is 
0.75  as given by Eq. (13.59) such that 1 0.75C   in Eq. (15.61) which is also equivalent to 1C  of  the B O  alkoxy borane 

group. 

 3, .TE atom atom msp AO  of the quaternary B N -bond MO is determined by considering that the bond involves an 

electron transfer from the nitrogen atom to the boron atom to form zwitterions such as 3 3'R N B R  .  By considering the 

electron redistribution in the quaternary amino borane and borane amine molecule as well as the fact that the central field 
decreases by an integer for each successive electron of the shell, the radius 32B Nborane sp

r


 of the 32B sp  shell may be calculated 

from the Coulombic energy using Eq. (15.18) , except that the sign of the charge donation is positive: 

 
   3

2 24

02
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7
( ) 1 1.27171

8 74.89168 8 74.89168 B Nborane sp
n

e e
r Z n a

e eV e eV 


      
 
  (22.49) 

Using Eqs. (15.19) and (22.49), the Coulombic energy  3, 2Coulomb B NboraneE B sp  of the outer electron of the 32B sp  shell is: 

  
3

2 2
3

0 0 02

, 2 10.69881 
8 8 1.27171Coulomb B Nborane

B Nborane sp

e e
E B sp eV

r a 



 
     (22.50) 

During hybridization, one of the spin-paired 2s  electrons is promoted to the 32B sp  shell as an unpaired electron.  The energy 

for the promotion is the magnetic energy given by Eq. (22.6).  Using Eqs. (22.6) and (22.50), the energy  3, 2B NboraneE B sp  of 

the outer electron of the 32B sp  shell is: 

  
 3

2 22
3 0

32
0 32

2
, 2 10.69881 0.09100 10.60781 

8B Nborane

eB Nborane sp

ee
E B sp eV eV eV

r m r







      


 (22.51) 

Thus,  3, 2TE B N sp , the energy change of each 32B sp  shell with the formation of the B N -bond MO is given by the 

difference between Eq. (22.51) and Eq. (22.7). 
        3 3 3, 2 , 2 ,2 10.60781 11.80624 1.19843 T B NboraneE B N sp E B sp E B sp eV eV eV         (22.52) 

Thus,  3, .TE atom atom msp AO  of the quaternary B N -bond MO is 1.19843 eV . 

Consider next the radius of the HO due to the contribution of charge to more than one bond.  The energy contribution due 
to the charge donation at each boron atom and nitrogen atom superimposes linearly.  In general, since the energy of the 32B sp  

HO and N  AO is matched to that of the 32C sp  HO when a molecule contains a C B -bond MO and a C N -bond MO, 

respectively, the corresponding radius 32mol sp
r  of the 32B sp  HO of a boron atom, the 32C sp  HO of a carbon atom, and the N  

AO of a given B N -containing borane molecule is calculated after Eq. (15.32) by considering  3, 2
molTE MO sp , the total 

energy donation to all bonds with which it participates in bonding.  The Coulombic energy  3, 2CoulombE atom sp  of the outer 

electron of the 3 2atom sp  shell considering the charge donation to all participating bonds is given by Eq. (15.14).  In the case 

that the boron or nitrogen atom is not bound to a 32C sp  HO, 32mol sp
r  is calculated using Eq. (15.31) where  3,CoulombE atom msp  

is  32 11.89724 CoulombE B sp eV   and   14.53414 E N eV  , respectively.  The hybridization parameters used in Eqs. 

(15.88-15.117) for the determination of bond angles of tertiary and quaternary amino boranes and borane amines are given in 
Table 22.21. 
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Table 22.21.   Atom hybridization designation (# first column) and hybridization parameters of atoms for determination of 
bond angles with final values of r2sp3, ECoulomb(atom,2sp3) (designated as ECoulomb), and E(atom B-Nborane 2sp3) (designated as E) 

calculated using the appropriate values of  ETmol(MO,2sp3) (designated as ET) for each corresponding terminal bond spanning 

each angle. 
# 

TE  TE  TE  TE  TE  33sp
r  

Final 

CoulombE  

(eV) 
Final 

E  
(eV) 
Final 

1 -0.46459 0 0 0 0 0.88983
(Eq. (15.32))

-15.29034 -15.09948 

2 -0.56370 -0.56370 -0.56370 0 0 0.82343
(Eq. (15.32))

-16.52324  

 

The symbols of the functional groups of tertiary and quaternary amino boranes and borane amines are given in Table 
22.22.  The geometrical (Eqs. (15.1-15.5) and (22.47)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eq. 
(15.61), (22.4), (22.7), (22.12), (22.48), and (22.52)) parameters of tertiary and quaternary amino boranes and borane amines are 
given in Tables 22.23, 22.24, and 22.25, respectively.  In the case that the MO does not intercept the B  HO due to the reduction 
of the radius from the donation of 3 2B sp  HO charge to additional MOs, the energy of each MO is energy matched as a linear 
sum to the B  HO by contacting it through the bisector current of the intersecting MOs as described in the Methane Molecule 
( 4CH ) section.  The total energy of each tertiary and quaternary amino borane or borane amine given in Table 22.26 was 

calculated as the sum over the integer multiple of each  GroupDE  of Table 22.25 corresponding to functional-group composition 

of the molecule.  magE  of Table 22.26 is given by Eqs. (15.15) and (22.3) for the B N  groups and the B H , B B , 

B H B  , and B B B   groups.  magE  of Table 22.26 is given by Eqs. (15.15) and (10.142) for 3NH .  The bond angle 

parameters of tertiary and quaternary amino boranes and borane amines determined using Eqs. (15.88-15.117) are given in Table 
22.27.  The charge-densities of exemplary tertiary amino borane, tris(dimethylamino)borane and quaternary amino borane, 
trimethylaminotrimethylborane comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type 

ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 22.7 and 22.8, respectively. 
 
Figure 22.7.   Trisdimethylaminoborane. Color scale, opaque views of the charge-density of   3 2 3

H C N B  showing the 

orbitals of the B, N, and C atoms at their radii, the ellipsoidal surface of each H or H2-type ellipsoidal MO that transitions to the 
corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Figure 22.8.   Trimethylaminotrimethylborane. Color scale, opaque view of the charge-density of    3 33 3

CH BN CH  

showing the orbitals of the B, N, and C atoms at their radii, the ellipsoidal surface of each H or H2-type ellipsoidal MO that 
transitions to the corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
Table 22.22.   The symbols of the functional groups of tertiary and quaternary amino boranes and borane amines. 
 

Functional Group Group Symbol
B-N bond 3° B N  (i) 
B-N bond 4° B N  (ii) 
C-N bond 1° amine C N  (i) 
C-N bond 2° amine (methyl) C N  (ii) 
C-N bond 2° amine (alkyl) C N  (iii) 
C-N bond 3° amine C N  (iv) 

NH3 group 3NH  

NH2 group 2NH  

NH group NH  
C-B bond C B  
BH bond B H
BHB (bridged H) B H B 
BB bond B B
CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  (i) 
CC bond (n-C) C C  (a) 
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HALIDOBORANES 
The halidoboranes each comprise at least one B  bound by a boron-halogen single bond comprising a B X  group where 

, , ,X F Cl Br I , and may further comprise one or more alkyl groups and borane moieties.  The latter comprise alkyl and aryl 
moieties and B C , B H , B B , B H B  , and B B B   functional groups wherein the B C  group is equivalent to that 
of alkyl boranes, and the B H , B B , B H B  , and B B B   functional groups are equivalent to those in boranes given in 
the corresponding sections.  Alkoxy boranes and borinic acids moieties given in the Alkoxy Boranes and Alkyl Borinic Acids 
(    r sq t

RO B H HO ) section may be bound to the B X  group by a B O  functional group.  The former further comprise at 

least one boron-alkyl-ether moiety, and the latter comprise one or more hydroxyl groups, respectively.  Each alkoxy moiety, 

2 1n nC H O , comprises one of two types of C O  functional groups that are equivalent to those given in the Ethers 

( 2 2 ,   2,3, 4,5...n n mC H O n   ) section.  One is for methyl or t-butyl groups, and the other is for general alkyl groups.  Each 

borinic acid hydroxyl functional group is equivalent to that given in the Alcohols ( 2 2 ,   1, 2,3,4,5...n n mC H O n   ) section.   

Tertiary amino-borane and borane-amine moieties given in the Tertiary and Quaternary Aminoboranes and Borane 
Amines ( ; ;q r s tR B N R R H alkyl ) section can be bound to the B X  group by a B N  functional group.  The nitrogen atom of 

each B N  functional group is bound to two other atoms such that there are a total of three bonds per atom.  The amino or 
amine moiety may comprise 2NH ,  N H R , and 2NR .  The corresponding functional group for the 2NH  moiety is the 2NH  

functional group given in the Primary Amines ( 2 2 ,   1, 2,3,4,5...n n m mC H N n    ) section.  The  N H R  moiety comprises the 

NH  functional group of the Secondary Amines ( 2 2 ,   2,3, 4,5...n n m mC H N n    ) section and the C N  functional group of the 

Primary Amines ( 2 2 ,   1, 2,3,4,5...n n m mC H N n    ) section.  The 2NR  moiety comprises two types of C N  functional groups, 

one for the methyl group corresponding to the C  of C N  and the other for general alkyl secondary amines given in the 
Secondary Amines ( 2 2 ,   2,3, 4,5...n n m mC H N n    ) section. 

Quaternary amino-borane and boraneamine moieties given in the Tertiary and Quaternary Aminoboranes and Borane 
Amines ( ; ;q r s tR B N R R H alkyl ) section can be bound to the B X  group by a B N  functional group.  The nitrogen atom of 

each B N  bond is bound to three other atoms such that there are a total of four bonds per atom.  The amino or amine moiety 
may comprise 3NH ,  2N H R ,   2N H R , and 3NR .  The corresponding functional group for the 3NH  moiety is ammonia 

given in the Ammonia ( 3NH ) section.  The  2N H R  moiety comprises the 2NH  and the C N  functional groups given in the 

Primary Amines ( 2 2 ,   1, 2,3,4,5...n n m mC H N n    ) section.  The   2N H R  moiety comprises the NH  functional group and two 

types of C N  functional groups, one for the methyl group corresponding to the C  of C N  and the other for general alkyl 
secondary amines given in the Secondary Amines ( 2 2 ,   2,3, 4,5...n n m mC H N n    ) section.  The 3NR  moiety comprises the 

C N  functional group of tertiary amines given in the Tertiary Amines ( 2 3 ,   3, 4,5...n nC H N n   ) section. 

The alkyl portion may be part of the alkoxy moiety, amino or amine moiety, or an alkyl group, or it may be bound to the 
central boron atom by a carbon-boron single bond comprising the C B  group of the Alkyl Boranes ( ;x y zR B H R alkyl ) 

section.  Each alkyl portion may comprise at least a terminal methyl group ( 3CH ) and methylene ( 2CH ), methylyne (CH ), and 

C C  functional groups.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six 
types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the 
C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, 

and t-butyl to t-butyl C C  bonds comprise functional groups.  Additional R  groups include aromatics such as phenyl and 

2HC CH  .  These groups in halidobroanes are equivalent to those in branched-chain alkanes, aromatics, and alkenes given in 

the corresponding sections. 
The bonding in the B X  functional groups of halidoboranes is similar to that of the B O  and B N  groups of alkoxy 

boranes and borinic acids and tertiary and quaternary amino boranes and borane amines given in the corresponding sections.  
The MO semimajor axes of the B X  functional groups are determined from the force balance equation of the centrifugal, 
Coulombic, and magnetic forces as given in the Boranes ( x yB H ) section.  In each case, the distance from the origin of the 2H -

type-ellipsoidal-MO to each focus 'c , the internuclear distance 2 'c , and the length of the semiminor axis of the prolate 
spheroidal 2H -type MO b c  are solved from the semimajor axis a .  Then, the geometric and energy parameters of each MO 

are calculated using Eqs. (15.1-15.117).   
As in the case of the B O - and B N -bond MOs, the  -MOs of the B X -bond MOs are energy matched to the 

32B sp  HO which determines that the parameters of the force balance equation based on electron angular momentum are 
determined by those of the boron atom.  The parameters of the force balance equation for the  -MO of the B F -bond MO in 
Eqs. (22.18-22.22) are 1en   and 0L  : 

 
2 2 2 2

2 2 2 2 2 2 2
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8 2 2 2e e e
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 (22.53) 
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From Eq. (22.53), the semimajor axis of the tertiary B - F -bond MO is 
 01.5a a  (22.54) 

The force balance equation for each  -MO of the B Cl  is equivalent to that of the B B -bond MO with 2en   and 

3
3

4
L    corresponding to three electrons of the 32B sp  shell is: 
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 (22.55) 
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42a a
Z

 
 
  
 

 (22.56) 

With 5Z  , the semimajor axis of the B Cl -bond MO is: 
 02.51962a a  (22.57) 

The hybridization of the bonding in the B - X  functional groups of halidoboranes is similar to that of the C - X  groups of 
alkyl halides given in the corresponding sections.  For the B - X  functional groups, hybridization of the 2s and 2p AOs of B to 
form single 2sp3  shells forms an energy minimum, and the sharing of electrons between the B2sp3  HO and X AO to form a MO 
permits each participating orbital to decrease in radius and energy.  The F AO has an energy of   17.42282 E F eV  , and the 

32B sp  HOs have an energy of  3, 2 11.80624 E B sp eV   (Eq. (22.7)).  To meet the equipotential condition of the union of the 

B F  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor 2c  of Eq. (15.61) for the B F -bond MO given by 

Eq. (15.77) is: 

    
 

3

3
2

, 2 11.80624 
  2 0.68285

17.42282 

E B sp eV
c FAO to B sp HO

E FAO eV


  


 (22.58) 

Since the energy of the MO is matched to that of the 32B sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3, 2E B sp  given 

by Eq. (22.7). 

 3, .TE atom atom msp AO  of the B F -bond MO is determined by considering that the bond involves an electron 

transfer from the boron atom to the fluorine atom to form zwitterions such as 2H B F  .  By considering the electron 

redistribution in the fluoroborane as well as the fact that the central field decreases by an integer for each successive electron of 
the shell, the radius 32B Fborane sp

r


 of the B2sp3 shell may be calculated from the Coulombic energy using Eq. (15.18). 
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  (22.59) 

Using Eqs. (15.19) and (22.13), the Coulombic energy  3, 2Coulomb B FboraneE B sp  of the outer electron of the 32B sp  shell is: 

  
3

2 2
3

0 0 02

, 2 14.97834 
8 8 0.90837Coulomb B Fborane

B Fborane sp

e e
E B sp eV

r a 



 
     (22.60) 

During hybridization, one of the spin-paired 2s electrons is promoted to the B2sp3 shell as an unpaired electron.  The energy for 

the promotion is the magnetic energy given by Eq. (22.6).  Using Eqs. (22.6) and (22.60), the energy  3, 2B XboraneE B sp  of the 

outer electron of the B2sp3 shell is: 
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 (22.61) 

Thus,  3, 2TE B F sp , the energy change of each 32B sp  shell with the formation of the B F -bond MO is given by the 

difference between Eq. (22.15) and Eq. (22.7). 

        3 3 3, 2 , 2 , 2 14.88734 11.80624 3.08109 T B FboraneE B F sp E B sp E B sp eV eV eV          (22.62) 

Thus,  3, .TE atom atom msp AO  for ternary B F  is 6.16219 eV  corresponding to the maximum charge contribution of an 

electron given by two times Eq. (22.62). 
In chloroboranes, the energies of chlorine and boron are less than the Coulombic energy between the electron and proton 

of H given by Eq. (1.264).  Thus, 1c  and 2c  in Eq. (15.61) are one, and the energy matching condition is determined by the C2 

parameter.  The Cl AO has an energy of E(Cl) = –12.96764 eV, and the B2sp3 HOs have an energy of E(B,2sp3) = –11.80624 eV  
(Eq. (22.7)).  To meet the equipotential condition of the union of the B - Cl H2-type-ellipsoidal-MO with these orbitals, the 
hybridization factor 2c  of Eq. (15.61) for the B - Cl -bond MO given by Eq. (15.77) is: 
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 (22.63) 

Since the energy of the MO is matched to that of the 32B sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3, 2E B sp  given 

by Eq. (22.7), and  3, .TE atom atom msp AO  is given by two times Eq. (22.12) corresponding to the two centers. 

Consider next the radius of the HO due to the contribution of charge to more than one bond.  The energy contribution due 
to the charge donation at each boron atom and halogen atom superimposes linearly.  In general, since the energy of the 32B sp  

HO and X  AO is matched to that of the 32C sp  HO when a molecule contains a C B -bond MO and a C X -bond MO, 

respectively, the corresponding radius 32mol sp
r  of the 32B sp  HO of a boron atom, the 32C sp  HO of a carbon atom, and the X  

AO of a given halidoborane molecule is calculated after Eq. (15.32) by considering  3, 2
molTE MO sp , the total energy 

donation to all bonds with which it participates in bonding.  The Coulombic energy  3, 2CoulombE atom sp  of the outer electron of 

the 3 2atom sp  shell considering the charge donation to all participating bonds is given by Eq. (15.14).  In the case that the boron 

or halogen atom is not bound to a 32C sp  HO, 32mol sp
r  is calculated using Eq. (15.31) where  3,CoulombE atom msp  is 

 32 11.89724 CoulombE B sp eV  ,   17.42282 E F eV  , or   12.96764 E Cl eV  .  The hybridization parameters used in 

Eqs. (15.88-15.117) for the determination of bond angles of halidoboranes are given in Table 22.28. 
 
Table 22.28.   Atom hybridization designation (# first column) and hybridization parameters of atoms for determination of 

bond angles with final values of 32sp
r ,  3, 2CoulombE atom sp  (designated as CoulombE ), and  32B XboraneE atom sp  (designated as E ) 

calculated using the appropriate values of  3, 2
molTE MO sp  (designated as TE ) for each corresponding terminal bond 

spanning each angle. 
 

# 
TE  TE  TE  TE  TE  33sp

r  

Final 

CoulombE  

(eV) 
Final 

E  
(eV) 
Final 

1 -0.56370 0 0 0 0 0.95939
(Eq. (15.31))

-14.18175  

2 -3.08109 -3.08109 0 0 0 0.75339
(Eq. (15.31))

-18.05943 -17.96843 

3 -3.08109 0 0  0 0.66357
(Eq. (15.31))

-20.50391 -20.26346 

 

The symbols of the functional groups of halidoboranes are given in Table 22.29.  The geometrical (Eqs. (15.1-15.5) and 
(22.47)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eq. (15.61), (22.4), (22.7), (22.12), (22.48), and (22.52)) 
parameters of halidoboranes are given in Tables 22.30, 22.31, and 22.32, respectively.  In the case that the MO does not intercept 
the B  HO due to the reduction of the radius from the donation of 32B sp  HO charge to additional MOs, the energy of each MO 
is energy matched as a linear sum to the B  HO by contacting it through the bisector current of the intersecting MOs as described 
in the Methane Molecule ( 4CH ) section.  The total energy of each halidoborane given in Table 22.33 was calculated as the sum 

over the integer multiple of each  GroupDE  of Table 22.32 corresponding to functional-group composition of the molecule.  magE  

of Table 22.33 is given by Eqs. (15.15) and (22.3) for the B X  groups and the B O , B N , B H , B B , B H B  , and 
B B B   groups.  magE  of Table 22.33 is given by Eqs. (15.15) and (10.162) for the OH  group.  The bond angle parameters of 

halidoboranes determined using Eqs. (15.88-15.117) are given in Table 22.34.  The charge-densities of exemplary fluoroborane, 
boron trifluoride and choloroborane, boron trichloride comprising the concentric shells of atoms with the outer shell bridged by 
one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 22.9 and 22.10, 

respectively. 
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Figure 22.10.   (A) Boron Trifluoride. Color scale, translucent view of the charge-density of BF3 showing the orbitals of the B 
and  F atoms at their radii, and the ellipsoidal surface of each H2-type ellipsoidal MO that transitions to the corresponding outer 
shell of the atoms participating in each bond.  (B) Boron Trichloride. Color scale, translucent views of the charge-density of 
BCl3 showing the orbitals of the B and Cl atoms at their radii, and the ellipsoidal surface of each H2-type ellipsoidal MO that 
transitions to the corresponding outer shell of the atoms participating in each bond. 
 

 
 

Table 22.29.  The symbols of the functional groups of halidoboranes. 
 

Functional Group Group Symbol
B-F bond B F
B-Cl bond B Cl  
B-N bond 3° B N  (i) 
B-N bond 4° B N  (ii) 
C-N bond 1° amine C N  (i) 
C-N bond 2° amine (methyl) C N  (ii) 
C-N bond 2° amine (alkyl) C N  (iii) 
C-N bond 3° amine C N  (iv) 

NH3 group 3NH  

NH2 group 2NH  

NH group NH  
B-O bond (borinic acid) B O  (i) 
B-O bond (alkoxy borane) B O  (ii) 
OH group OH  

C-O ( 3CH O   and  3 3
CH C O  ) C O  (i) 

C-O (alkyl) C O  (ii) 
C-B bond C B  
BH bond B H
BHB (bridged H) B H B 
BB bond B B
BBB (bridged B) B B B 
CC (aromatic bond) 

3e

C C  
CH (aromatic) CH  (i) 

CH3 group  3 C H CH  

CH2 alkyl group  2 C H CH  (i) 

CH C H  (ii) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
HC = CH2HC (ethylene bond) C C  

CH2 alkenyl group 2CH  (ii) 
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SUMMARY TABLES OF BORON MOLECULES 
The bond energies, calculated using closed-form equations having integers and fundamental constants only for classes of 
molecules whose designation is based on the main functional group, are given in the following tables with the experimental 
values. 
 
Table 22.35.1.  Summary results of boranes. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative 
Error 

BB diboron 3.12475 3.10405 -0.00667
B2H6 diborane 24.94229 24.89030 -0.00209
B4H10 tetraborane(10) 44.92160 45.33134 0.00904
B5H9 pentaborane(9) 48.25462 48.85411 0.01227
B5H11 pentaborane(11) 54.00546 53.06086 -0.01780
B6H10 hexaborane(10) 56.55063 56.74739 0.00347
B9H15 nonaborane(15) 85.61380 84.95008 -0.00781
B10H14 decaborane(14) 89.73467 89.69790 -0.00041

 
Table 22.35.2.  Summary results of alkyl boranes. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative 
Error 

CH5B methylborane 24.60991 24.49350 [16] -0.00475
C2H7B dimethylborane  37.08821 37.17713 [16] 0.00239
B2CH8 methyldiborane 37.42060 37.58259 [16] 0.00431
B2C2H10 ethyldiborane 49.57830 49.50736 [16] -0.00143
C3H9B trimethylboron 49.56652 49.76102 [17] 0.00391
B2C2H10 1,1-dimethyldiborane 49.89890 50.20118 [16] 0.00602
B2C2H10 1,2-dimethyldiborane 49.89890 50.20118 [16] 0.00602
B4CH12 methyltetraborane 57.39990 57.74604 [16] 0.00599
B5CH11 methylpentaborane 60.73292 61.51585 [16] 0.01273
B2C3H12 trimethyldiborane 62.37721 62.88481 [16] 0.00807
B4C2H14 ethyltetraborane 69.55760 69.99603 [16] 0.00626
B5C2H13 ethylpentaborane 72.89062 73.76585 [16] 0.01186
B2C4H14 1,1-diethyldiborane 74.21430 74.34420 [16] 0.00175
B2C4H14 tetramethyldiborane 74.85551 75.48171 [16] 0.00830
B5C3H15 propylpentaborane 85.04832 85.84239 [16] 0.00925
C6H15B triethylboron 86.03962 86.12941 [18] 0.00104
B2C6H18 triethyldiborane 98.85031 98.59407 [16] -0.00260
B10CH16 methyldecaborane 102.21298 101.91775 [16] -0.00290
C8H17B n-butylboracyclopentane 105.35916 105.69874a [18]  0.00321
B10C2H18 ethyldecaborane 114.37068 113.56066 [16] -0.00713
C9H21B tripropylboron 122.51272 122.59753 [18] 0.00069
C9H21B tri-isopropylboron 122.81539 122.75798 [18] -0.00047
B2C8H22 tetraethyldiborane 123.48631 123.74017 [16] 0.00205
B10C3H20 propyldecaborane 126.52838 125.94075 [16] -0.00467
C12H27B tri-s-butylboron 159.28849 158.50627 [18] -0.00493
C12H27B tributylboron 158.98582 159.03530 [16] 0.00031
C12H27B tri-isobutylboron 159.20350 159.34318 [16] 0.00088
C18H15B triphenylboron 172.15755 172.09681 [18] -0.00035
C15H33B tri-3-methylbutylboron 195.67660 195.78095 [18] 0.00053
C18H33B tricyclohexylboron 217.24711 218.23763 [18] 0.00454
C18H39B tri-n-hexylboron 231.93202 231.76340 [18] -0.00073
C21H45B tri-n-heptylboron 268.40512 268.22285 [18] -0.00068
C24H51B tri-s-octylboron 305.18089 304.61292 [18] -0.00186
C24H51B tri-n-octylboron 304.87822 304.68230 [18] -0.00064

a Crystal. 
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Table 22.35.3.  Summary results of alkoxy boranes and borinic acids. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative 
Error 

BH3O hydroxyborane 18.29311 18.22572 [17] -0.00370
BH3O2 dihydroxyborane 24.45460 24.43777 [17] -0.00069
BH3O3 boric acid 30.61610 30.68431 [7] 0.00222
BC2H7O2 dimethoxyborane 47.75325 47.72358 [16] -0.00062
BC3H9O3 trimethyl borate 65.56408 65.53950 [17] -0.00037
C5H11OB methoxyboracyclopentane 74.21858 74.47566a [18] 0.00345 
C6H7O2B phenylborinic acid 77.79659 78.86121a [18] 0.01350 
C6H15O2B di-isoproxyborane 96.97471 97.41737a [18] 0.00454 
BC6H15O3 triethyl borate 102.62050 102.50197 [16] -0.00116
C8H19OB di-n-butylborinic acid 116.19591 116.45117 [18] 0.00219
BC9H21O3 tri-n-propyl borate 139.09360 139.11319 [16] 0.00014
C12H27OB n-butyl di-n-butylborinate 164.51278 165.29504a [18] 0.00473 
C12H27O2B di-n-butyl n-butylboronate 170.03974 170.86964a [18] 0.00486 
BC12H27O3 tri-n-butyl borate 175.56670 175.62901 [18] 0.00035
C18H15O3B3 phenylborinic anhydride 204.75082 205.96548a [18] 0.00590 
C16H36OB2 di-n-butylborinic anhydride 222.84551 223.70232a [18] 0.00383 
C24H20OB2 diphenylborinic anhydride 240.40782 241.38941a [18] 0.00407 

a Crystal. 
 

Table 22.35.4.  Summary results of tertiary and quaternary amino boranes and borane amines. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative 
Error 

B2H7N aminodiborane 32.36213 31.99218 [16] -0.01156
B2C2H11N n-dimethylaminodiborane 57.21517 57.52855 [17] 0.00545
C6H18N3B tris(dimethylamino)borane 108.95023 108.64490 [18] -0.00281
C8H20NB di-n-butylboronamine 117.45425 119.49184 a [18] 0.01705
C12H28NB di-n-butylboron-n-butylamine 166.49595 167.83269 a [18] 0.00796
C2H10NB dimethylaminoborane 49.30740 49.52189 [18] 0.00433
BC3H12N trimethylaminoborane 61.37183 61.05205 [16] -0.00524
BC3H12N ammonia-trimethylborane 62.91857 62.52207 [16] -0.00634
C6H18NB triethylaminoborane 97.84493 97.42044 [18] -0.00436
BC6H18N trimethylaminotrimethylborane 98.80674 98.27036 [17] -0.00546

a Crystal. 
 

Table 22.35.5.  Summary results of halidoboranes. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative 
Error 

HBF2 difluoroboron  17.55666 17.41845 [17] -0.00793
BF3 boron trifluoride 20.26918 20.09744 [7] -0.00855
BF2HO difluoroborinic acid 23.71816 23.64784 [17] -0.00297
BFH2O2 fluoroboronic acid 27.16713 27.18135 [17] 0.00052
BCH3F2 difluoro-methyl-borane 30.03496 30.33624 [17] 0.00993
BC2H3F2 vinyldifluoroborane 36.21893 36.54981 [17] 0.00905
BC3H9NF3 trimethylamine-trifluoroborane 69.50941 69.11368 [16] -0.00573
HBCl2 dichloroboron 13.21640 13.25291 [17] 0.00276
BCl3 boron trichloride  13.75879 13.80748 [17] 0.00353
BCl2F dichlorofluoroborane 15.92892 15.87507 [17] -0.00339
BClF2 chlorodifluoroborane 18.09905 17.98169 [17] -0.00653
C2H5OCl2B ethoxydichloroborane 43.37936 43.55732 [18] 0.00409
C2H4O2ClB 2-chloro-1,3,2-dioxaborolan 43.68867 43.99361a [18] 0.00693 
C2H6NCI2B dimethylaminodichloroborane 45.48927 45.73940 [16] 0.00547
BC2ClH602 dimethoxychloroborane 48.29565 48.40390 [17] 0.00224
C3H6O2ClB 4-methyl-2-chloro-1,3,2-dioxaborolan 55.94726 56.39537a [18] 0.00795 
BC6H5Cl2 phenylboron dichloride 66.55838 66.97820 [17] 0.00627
C4H8O2ClB 4,5-dimethyl-2-chloro-1,3,2-dioxaborolan 68.23418 68.72342a [18] 0.00712 
C4H10O2ClB diethoxychloroborane 72.99993 73.07735 [18] 0.00106
C4H12N2ClB bis(dimethlamino) chloroborane 77.21975 77.38078 [18] 0.00208
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Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative 
Error 

C8H18ClB di-n-butylchloroborane 110.57681 110.99317 [18] 0.00375
C12H10ClB diphenylchloroborane 119.35796 119.79335 [18] 0.00363

a Crystal. 
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Chapter 23 
  
ORGANOMETALLIC AND COORDINATE FUNCTIONAL 
GROUPS AND MOLECULES 
  
 
 
 
 
GENERAL CONSIDERATIONS OF THE ORGANOMETALLIC AND COORDINATE 
BOND 
Organometallic and coordinate compounds comprising an arbitrary number of atoms can be solved using similar principles and 
procedures as those used to solve organic molecules of arbitrary length and complexity.  Organometallic and coordinate 
compounds can be considered to be comprised of functional groups such as M C , M H , M X  ( , , ,X F Cl Br I ), 
M OH , M OR , and the alkyl functional groups of organic molecules.  The solutions of these functional groups or any others 
corresponding to the particular organometallic or coordinate compound can be conveniently obtained by using generalized forms 
of the force balance equation given in the Force Balance .of the   MO of the Carbon Nitride Radical section for molecules 
comprised of metal and atoms other than carbon and the geometrical and energy equations given in the Derivation of the General 
Geometrical and Energy Equations of Organic Chemistry section for organometallic and coordinate compounds comprised of 
carbon.  The appropriate functional groups with their geometrical parameters and energies can be added as a linear sum to give 
the solution of any organometallic or coordinate compound. 
 
ALKYL ALUMINUM HYDRIDES ( 3n nR AlH  ) 
Similar to the case of carbon and silicon, the bonding in the aluminum atom involves four 3sp  hybridized orbitals formed from 
the outer 3p  and 3s  shells except that only three HOs are filled.  In organoaluminum compounds, bonds form between a 

33Al sp  HO and at least one 32C sp  HO and one or more 1H s  AOs.  The geometrical parameters of each AlH  functional group 
is solved from the force balance equation of the electrons of the corresponding  -MO and the relationships between the prolate 
spheroidal axes.  Then, the sum of the energies of the 2H -type ellipsoidal MOs is matched to that of the 33Al sp  shell as in the 
case of the corresponding carbon and silicon molecules.  As in the case of alkyl silanes given in the corresponding section, the 
sum of the energies of the 2H -type ellipsoidal MO of the Al C  functional group is matched to that of the 33Al sp  shell, and 

Eq. (15.51) is solved for the semimajor axis with 1 1n   in Eq. (15.50). 

The energy of aluminum is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  
A minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the Hydroxyl 
Radical (OH ) section with the donation of 25% electron density from the participating 33Al sp  HO to each Al H -bond MO. 

The 33sp  hybridized orbital arrangement after Eq. (13.422) is 
 

 

3             3sp  state

                            

0,0      1,-1      1,0       1,1

    (23.1) 

 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the three 

electrons.  The sum  3,3TE Al sp  of experimental energies [1] of Al , Al , and 2Al   is 

    3,3 28.44765 18.82856 5.98577 53.26198 TE Al sp eV eV eV eV       (23.2) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 33sp
r  of the 
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33Al sp  shell may be calculated from the Coulombic energy using Eq. (15.13): 

 
   3

2 212

03
10 0 0

( ) 6
1.53270

8 53.26198 8 53.26198 sp
n

Z n e e
r a

e eV e eV 


    (23.3) 

where 13Z   for aluminum.  Using Eq. (15.14), the Coulombic energy  3,3CoulombE Al sp  of the outer electron of the 33Al sp  

shell is: 

  
3

2 2
3

0 0 03

,3 8.87700 
8 8 1.53270Coulomb

sp

e e
E Al sp eV

r a 
 

     (23.4) 

During hybridization, the spin-paired 3s  electrons are promoted to the 33Al sp  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 3s electrons.  From Eq. (10.255) with 13Z  , 
the radius 12r  of  the 3Al s  shell is: 

 12 01.41133r a  (23.5) 
Using Eqs. (15.15) and (23.5), the unpairing energy is: 

 
   

2 2 2
0

3 32
12 0

2 8
( ) 0.04070 

1.41133
o B

e

e
E magnetic eV

m r a

  
  


 (23.6) 

Using Eqs. (23.4) and (23.6), the energy  3,3E Al sp  of the outer electron of the 33Al sp  shell is: 

  
 3

2 22
3 0

32
0 123

2
,3 8.87700 0.04070 8.83630 

8
esp

ee
E Al sp eV eV eV

r m r





      


 (23.7) 

Next, consider the formation of the Al H -bond MO of organoaluminum hydrides wherein each aluminum atom has an 
33Al sp  electron with an energy given by Eq. (23.7).  The total energy of the state of each aluminum atom is given by the sum 

over the three electrons.  The sum  33T organoAlE Al sp  of energies of 33Al sp  (Eq. (23.7)), Al , and 2Al   is: 

 
    

 

3 33 28.44765 18.82856 ,3

                        28.44765 18.82856 8.83630 56.11251 

T organoAlE Al sp eV eV E Al sp

eV eV eV eV

   

     
 (23.8) 

where  3,3E Al sp  is the sum of the energy of Al , 5.98577 eV , and the hybridization energy. 

Each Al H -bond MO of each functional group 1,2,3nAlH   forms with the sharing of electrons between each 33Al sp  HO 

and each 1H s  AO.  As in the case of C H , the 2H -type ellipsoidal MO comprises 75% of the Al H -bond MO according to 

Eq. (13.429).  Furthermore, the donation of electron density from each 33Al sp  HO to each Al H -bond MO permits the 
participating orbital to decrease in size and energy.  As shown below, the aluminum HOs have spin and orbital angular 
momentum terms in the force balance which determines the geometrical parameters of the   MO.  The angular momentum term 
requires that each Al H -bond MO be treated independently in terms of the charge donation.  In order to further satisfy the 
potential, kinetic, and orbital energy relationships, each 33Al sp  HO donates an excess of 25% of its electron density to each 
Al H -bond MO to form an energy minimum.  By considering this electron redistribution in the organoaluminum hydride 
molecule as well as the fact that the central field decreases by an integer for each successive electron of the shell, the radius 

33organoAlH sp
r  of the 33Al sp  shell may be calculated from the Coulombic energy using Eq. (15.18). 

 
   3

2 212

03
10 0 0

5.75
( ) 0.25 1.39422

8 56.11251 8 56.11251 organoAlH sp
n

e e
r Z n a

e eV e eV 

      
 
  (23.9) 

Using Eqs. (15.19) and (23.9), the Coulombic energy  3,3Coulomb organoAlHE Al sp  of the outer electron of the 33Al sp  shell is: 

  
3

2 2
3

0 0 03

,3 9.75870 
8 8 1.39422Coulomb organoAlH

organoAlH sp

e e
E Al sp eV

r a 
 

     (23.10) 

During hybridization, the spin-paired 3s  electrons are promoted to the 33Al sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (23.6).  Using Eqs. (23.6) and (23.10), the energy  3,3organoAlHE Al sp  of the outer 

electron of the 33Al sp  shell is: 

  
 3

2 22
3 0

32
0 123

2
,3 9.75870 0.04070 9.71800 

8organoAlH
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ee
E Al sp eV eV eV

r m r





      


 (23.11) 

Thus,  3,3TE Al H sp , the energy change of each 33Al sp  shell with the formation of the Al H -bond MO is given by the 

difference between Eq. (23.11) and Eq. (23.7): 
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        3 3 3,3 ,3 ,3 9.71800 8.83630 0.88170 T organoAlHE Al H sp E Al sp E Al sp eV eV eV          (23.12) 

The MO semimajor axis of the Al H  functional group of organoaluminum hydrides is determined from the force 
balance equation of the centrifugal, Coulombic, and magnetic forces as given in the Polyatomic Molecular Ions and Molecules 
section and the More Polyatomic Molecules and Hydrocarbons section.  The distance from the origin of the 2H -type-ellipsoidal-

MO to each focus 'c , the internuclear distance 2 'c , and the length of the semiminor axis of the prolate spheroidal 2H -type MO 

b c  are solved from the semimajor axis a .  Then, the geometric and energy parameters of the MO are calculated using Eqs. 
(15.1-15.117).   

The force balance of the centrifugal force equated to the Coulombic and magnetic forces is solved for the length of the 
semimajor axis.  The Coulombic force on the pairing electron of the MO is: 

 
2

2
08Coulomb

e
D

ab 
F i  (23.13) 

The spin pairing force is 

 
2

2 22spin pairing
e

D
m a b  F i


 (23.14) 

The diamagnetic force is: 

 
2

1 2 24
e

diamagneticMO
e

n
D

m a b  F i


 (23.15) 

where en  is the total number of electrons that interact with the binding  -MO electron.  The diamagnetic force 2diamagneticMOF  on 

the pairing electron of the   MO is given by the sum of the contributions over the components of angular momentum:  

 2 2 2
, 2

i
diamagneticMO

i j j e

L
D

Z m a b  F i


 (23.16) 

where L  is the magnitude of the angular momentum of each atom at a focus that is the source of the diamagnetism at the  -

MO.  The centrifugal force is:  

 
2

2 2centrifugalMO
e

D
m a b  F i


 (23.17) 

The force balance equation for the  -MO of the Al H -bond MO is the same as that of the Si H  except that 13Z   
and there are three spin-unpaired electron in occupied orbitals rather than four, and the orbital with ,m  angular momentum 

quantum numbers of (1,1) is unoccupied.  With 2en   and 
3

3
4

L    and 
3

3
4

L    corresponding to the spin and orbital 

angular momentum of the three occupied HOs of the 33Al sp  shell, the force balance equation is: 
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 (23.18) 
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3
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42a a
Z

 
 
  
 

 (23.19) 

With 13Z  , the semimajor axis of the Al H -bond MO is: 
 02.39970a a  (23.20) 

Using the semimajor axis, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.127) in the 
same manner as the organic functional groups given in the Organic Molecular Functional Groups and Molecules section.  For the 
Al H  functional group, 1c  is one and 1 0.75C   based on the orbital composition as in the case of the C H -bond MO.  In 

organoaluminum hydrides, the energy of aluminum is less than the Coulombic energy between the electron and proton of H  
given by Eq. (1.264).  Thus, 2c  in Eqs. (15.51) and (15.61) is also one, and the energy matching condition is determined by the 

2C  parameter.  Then, the hybridization factor for the Al H -bond MO is given by the ratio of 8.87700 eV , the magnitude of 

 3,3Coulomb organoAlHE Al sp  (Eq. (23.4)), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and 

proton of H  (Eq. (1.264)): 

  3
2

8.87700 
3 0.65244

13.605804 

eV
C organoAlH sp HO

eV
   (23.21)  

Since the energy of the MO is matched to that of the 33Al sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3,3E Al sp  given 

by Eq. (23.7), and  3, .TE atom atom msp AO  is 0.88170 eV  corresponding to the independent single-bond charge 
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contribution (Eq. (23.12)).  The energies  1,2D nE AlH   of the functional groups 1,2nAlH   of organoaluminum hydride molecules 

are each given by the corresponding integer n  times that of Al H : 

    1,2D n DE AlH nE AlH   (23.22) 

The branched-chain organoaluminum hydrides, 3n nR AlH  , comprise at least a terminal methyl group ( 3CH ) and at least 

one Al  bound by a carbon-aluminum single bond comprising a C Al  group, and may comprise methylene ( 2CH ), methylyne 

(CH ), C C , and 1,2nAlH   functional groups.  The methyl and methylene functional groups are equivalent to those of straight-

chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain 
alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to 

isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  These groups in branched-chain 
organoaluminum hydrides are equivalent to those in branched-chain alkanes. 

For the C Al  functional group, hybridization of the 2s  and 2 p  AOs of each C  and the 3s  and 3p  AOs of Al  to form 

single 32sp  and 33sp  shells, respectively, forms an energy minimum, and the sharing of electrons between the 32C sp  and 
33Al sp  HOs to form a MO permits each participating orbital to decrease in radius and energy.  Furthermore, the energy of 

aluminum is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  Thus, in 
organoaluminum hydrides, the 32C sp  HO has a hybridization factor of 0.91771  (Eq. (13.430)) with a corresponding energy of 

 3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the Al  HO has an energy of  3,3 8.83630 E Al sp eV  .  To meet the 

equipotential, minimum-energy condition of the union of the 33Al sp  and 32C sp  HOs, 2c  and 2C  of Eqs. (15.2-15.5), (15.51), 

and (15.61) for the Al C -bond MO given by Eqs. (15.77) and (15.79) is: 

 

   
 
     

3 3 3 3
2 2

3

3
23

2   3 2   3

,3 8.83630 
2 0.91771 0.55410

14.63489 , 2

C C sp HO to Al sp HO c C sp HO to Al sp HO

E Al sp eV
c C sp HO

eVE C sp




  



 (23.23) 

The energy of the C Al -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in Eq. (15.51).  

Since the energy of the MO is matched to that of the 33Al sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3,3E Al sp  given 

by Eq. (23.7).  Since the 32C sp  HOs have four electrons with a corresponding total field of ten in Eq. (15.13); whereas, the 
33Al sp  HOs have three electrons with a corresponding total field of six,  3, .TE atom atom msp AO  is 0.72457 eV  

corresponding to the single-bond contributions of carbon (Eq. (14.151)).     
2

3/ , .H MO TE AO HO E atom atom msp AO    in 

order to match the energies of the carbon and aluminum HOs. 
 

BRIDGING BONDS OF ORGANOALUMINUM HYDRIDES ( Al H Al   AND Al C Al  ) 
As given in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section, the Organic Molecular 
Functional Groups and Molecules section, and other sections on bonding in neutral molecules, the molecular chemical bond 
typically comprises an integer number of paired electrons.  One exception given in the Benzene Molecule section and other 
sections on aromatic molecules such as naphthalene, toluene, chlorobenzene, phenol, aniline, nitrobenzene, benzoic acid, 
pyridine, pyrimidine, pyrazine, quinoline, isoquinoline, indole, adenine, fullerene, and graphite is that the paired electrons are 
distributed over a linear combination of bonds such that the bonding between two atoms involves less than an integer multiple of 
two electrons.  In these aromatic cases, three electrons can be assigned to a given bond between two atoms wherein the electrons 
of the linear combination of bonded atoms are paired and comprise an integer multiple of two. 

The 33Al sp  HOs comprise four orbitals containing three electrons as given by Eq. (23.1).  These three occupied orbitals 

can form three single bonds with other atoms wherein each 33Al sp  HO and each orbital from the bonding atom contribute one 
electron each to the pair of the corresponding bond.  However, an alternative bonding is possible that further lowers the energy 
of the resulting molecule wherein the remaining unoccupied orbital participates in bonding.  (Actually an unoccupied orbital has 
no physical basis.  It is only a convenient concept for the bonding electrons in this case additionally having the electron angular 
momentum state with ,m  quantum numbers of (1,1)).  In this case the set of two paired electrons are distributed over three 

atoms and belong to two bonds.  Such an electron deficient bonding involving two paired electrons centered on three atoms is 
called a three-center bond as opposed to the typical single bond called a two-center bond.  The designation for a three-center 
bond involving two 33Al sp  HOs and a 1H s  AO is Al H Al  , and the designation for a three-center bond involving two 

33Al sp  HOs and a 32C sp  HO is Al C Al  . 
Each Al H Al  -bond MO and Al C Al  -bond MO comprises the corresponding single bond and forms with further 

sharing of electrons between each 33Al sp  HO and each 1H s  AO and 32C sp  HO, respectively.  Thus, the geometrical and 
energy parameters of the three-center bond are equivalent to those of the corresponding two-center bonds except that the bond 
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energy is increased in the former case since the donation of electron density from the unoccupied 33Al sp  HO to each 
Al H Al  -bond MO and Al C Al  -bond MO permits the participating orbital to decrease in size and energy.  In order to 
further satisfy the potential, kinetic, and orbital energy relationships, the 33Al sp  HO donates an additional excess of 25% of its 
electron density to form the bridge (three-center-bond MO) to decrease the energy in the multimer.  By considering this electron 
redistribution in the organoaluminum hydride molecule as well as the fact that the central field decreases by an integer for each 
successive electron of the shell, the radius 33organoAlH sp

r  of the 33Al sp  shell calculated from the Coulombic energy, the Coulombic 

energy  3,3Coulomb organoAlHE Al sp  of the outer electron of the 33Al sp  shell, and the energy  3,3organoAlHE Al sp  of the outer 

electron of the 33Al sp  shell are given by Eqs. (23.9), (23.10), and (23.11), respectively.  Thus,  3,3TE Al H Al sp   and 

 3,3TE Al C Al sp  , the energy change with the formation of the three-center-bond MO from the corresponding two-center-

bond MO and the unoccupied 33Al sp  HO is given by Eq. (23.12): 

    3 3,3 ,3 0.88170 T TE Al H Al sp E Al C Al sp eV        (23.24) 

The upper range of the experimental association enthalpy per bridge for both of the reactions. 
    3 32 2 2

2AlH CH AlH CH     (23.25) 

and  
    3 33 3 2

2Al CH Al CH     (23.26) 

is [2] 
    3 3,3 ,3 0.867 T TE Al H Al sp E Al C Al sp eV        (23.27) 

which agrees with Eq. (23.24) very well. 
 The symbols of the functional groups of alkyl organoaluminum hydrides are given in Table 23.1.  The geometrical (Eqs. 
(15.1-15.5), (23.20), and (23.23)) and intercept (Eqs. (15.80-15.87)) parameters of alkyl organoaluminum hydrides are given in 
Tables 23.2 and 23.3, respectively.  Since the energy of the 33Al sp  HO is matched to that of the 32C sp  HO, the radius 32mol sp

r  of 

the 33Al sp  HO of the aluminum atom and the 32C sp  HO of the carbon atom of a given C Al -bond MO are calculated after 

Eq. (15.32) by considering  3, 2
molTE MO sp , the total energy donation to all bonds with which each atom participates in 

bonding.  In the case that the MO does not intercept the Al  HO due to the reduction of the radius from the donation of 33Al sp  
HO charge to additional MO’s, the energy of each MO is energy matched as a linear sum to the Al  HO by contacting it through 
the bisector current of the intersecting MOs as described in the Methane Molecule ( 4CH ) section.  The energy (Eq. (15.61), 

(23.4), (23.7), and (23.21-23.23)) parameters of alkyl organoaluminum hydrides are given in Table 23.5.  The total energy of 
each alkyl aluminum hydride given in Table 23.5 was calculated as the sum over the integer multiple of each  GroupDE  of Table 

23.4 corresponding to functional-group composition of the molecule.  magE  of Table 23.4 is given by Eqs. (15.15) and (23.3).  

The bond angle parameters of organoaluminum hydrides determined using Eqs. (15.88-15.117) are given in Table 23.6.  The 
charge-density in trimethyl aluminum is shown in Figure 23.1. 
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Figure 23.1.  Trimethylaluminum. Color scale, translucent view of the charge-density of  3 3
H C Al  comprising the linear 

combination of three sets of three C H -bond MOs and three C Al -bond MOs with the 33ogranoAlAl sp  HOs and 32C sp  HOs 

shown transparently.  Each C Al -bond MO comprises a 2H -type ellipsoidal MO bridging 32C sp  and 33Al sp  HOs.  For each 

C H  and C Al  bond, the ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to the 32C sp  HO shell with 

radius 00.89582a  (Eq. (15.32)) or 33Al sp  HO, the 33Al sp  HO shell with radius 00.85503a  (Eq. (15.32)), inner 1Al s , 2Al s , 

and 2Al p  shells with radii of 01 0.07778Al s a  (Eq. (10.51)), 02 0.33923Al s a  (Eq. (10.62)), and 02 0.45620Al p a  (Eq. 

(10.212)), respectively, and the nuclei (red, not to scale), are shown.  

 
 

Table 23.1.  The symbols of the functional groups of organoaluminum hydrides. 
 

Functional Group Group Symbol
AlH group of 1,2nAlH   Al H  

AlHAl (bridged H) Al H Al   
CAl bond C Al  
AlCAl (bridged C) Al C Al   

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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TRANSITION METAL ORGANOMETALLIC AND COORDINATE BOND 
The transition-metal atoms fill the 3d  orbitals in the series Sc  to Zn .  The 4s  orbitals are filled except in the cases of Cr  and 
Cu  wherein one 4s  electron occupies a 3d  orbital to achieve a half-filled and filled 3d  shell, respectively.  Experimentally the 
transition-metal elements ionize successively from the 4s  shell to the 3d  shell [12].  Thus, bonding in the transition metals 
involves the hybridization of the 3d  and 4s  electrons to form the corresponding number of 3 4d s  HOs except for Cu  and Zn  
which each have a filled inner 3d  shell and one and two outer 4s  electrons, respectively. Cu  may form a single bond involving 
the 4s  electron or the 3d  and 4s shells may hybridize to form multiple bonds with one or more ligands.  The 4s  shell of Zn  
hybridizes to form two 4s  HOs that provide for two possible bonds, typically two metal-alkyl bonds. 

For organometallic and coordinate compounds comprised of carbon, the geometrical and energy equations are given in 
the Derivation of the General Geometrical and Energy Equations of Organic Chemistry section.  For metal-ligand bonds other 
than to carbon, the force balance equation is that developed in the Force Balance of the   MO of the Carbon Nitride Radical 
section wherein the diamagnetic force terms include orbital and spin angular momentum contributions.  The electrons of the 
3 4d s  HOs may pair such that the binding energy of the HO is increased.  The hybridization factor accordingly changes which 
effects the bond distances and energies.  The diamagnetic terms of the force balance equations of the electrons of the MOs 
formed between the 3 4d s  HOs and the AOs of the ligands also changes depending on whether the nonbonding HOs are 
occupied by paired or unpaired electrons.  The orbital and spin angular momentum of the HOs and MOs is then determined by 
the state that achieves a minimum energy including that corresponding to the donation of electron charge from the HOs and AOs 
to the MOs.  Historically, according to crystal field theory and molecular orbital theory [13] the possibility of a bonding metal 
atom achieving a so called “high-spin” or “low-spin” state having unpaired electrons occupying higher-energy orbitals versus 
paired electrons occupying lower-energy orbitals was due to the strength of the ligand crystal field or the interaction between 
metal orbitals and the ligands, respectively.  Excited-state spectral data recorded on transition-metal organometallic and 
coordinate compounds has been misinterpreted.  Excitation of an unpaired electron in a 3 4d s  HO to a 3 4d s  paired state is 
equivalent to an excitation of the molecule to a higher energy MO since the MOs change energy due to the corresponding change 
in the hybridization factor and diamagnetic force balance terms.  But, levels misidentified as crystal field levels do not exist in 
the absence of excitation by a photon. 

The parameters of the 3 4d s  HOs are determined using Eqs. (15.12-15.21).  For transition metal atoms with electron 
configuration 23 4nd s , the spin-paired 4s  electrons are promoted to the 3 4d s  shell during hybridization as unpaired electrons.  
Also, for 5n   the electrons of the 3d  shell are spin-paired and these electrons are promoted to the 3 4d s  shell during 
hybridization as unpaired electrons.  The energy for each promotion is the magnetic energy given by Eq. (15.15) at the initial 
radius of the 4s  electrons and the paired 3d  electrons determined using Eq. (10.102) with the corresponding nuclear charge Z  
of the metal atom and the number of electrons, n , of the corresponding ion with the filled outer shell from which the pairing 
energy is determined.  Typically, the electrons from the 4s  and 3d  shells successively fill unoccupied HOs until the HO shell is 
filled with unpaired electrons, then the electrons pair per HO.  The magnetic energy of pairing given by Eqs. (15.13) and (15.15) 
is added to  ,3 4CoulombE atom d s  the for each pair.  Thus, after Eq. (15.16), the energy  ,3 4E atom d s  of the outer electron of 

the  3 4atom d s  shell is given by the sum of  ,3 4CoulombE atom d s  and ( )E magnetic : 
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 (23.28) 

The sharing of electrons between the metal 3 4d s  HOs and the ligand AOs or HOs to form a M L -bond MO ( L  not 
C ) permits each participating hybridized or atomic orbital to decrease in radius and energy.  Due to the low binding energy of 
the metal atom and the high electronegativity of the ligand, an energy minimum is achieved while further satisfying the potential, 
kinetic, and orbital energy relationships, each metal 3 4d s  HO donates an excess of an electron per bond of its electron density to 
the M L -bond MO.  In each case, the radius of the hybridized shell is calculated from the Coulombic energy equation by 
considering that the central field decreases by an integer for each successive electron of the shell and the total energy of the shell 
is equal to the total Coulombic energy of the initial AO electrons plus the hybridization energy.  After Eq. (15.17), the total 
energy  . ,3 4TE mol atom d s  of the HO electrons is given by the sum of energies of successive ions of the atom over the n  

electrons comprising the total electrons of the initial AO shell and the hybridization energy: 
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T m
m

E mol atom d s E atom d s IP


   (23.29) 

where mIP  is the m th ionization energy (positive) of the atom and the sum of 1IP  plus the hybridization energy is 

 ,3 4E atom d s .  Thus, the radius 3 4d sr  of the hybridized shell due to its donation of a total charge Qe  to the corresponding 

MO is given by: 
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   (23.30) 

where e  is the fundamental electron charge, 1, 2,3s   for a single, double, and triple bond, respectively, and 4s   for typical 

coordinate and organometallic compounds wherein L  is not carbon.  The Coulombic energy  . ,3 4CoulombE mol atom d s  of the 

outer electron of the  3 4atom d s  shell is given by 
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In the case that during hybridization the metal spin-paired 4s  AO electrons are unpaired to contribute electrons to the 3 4d s  HO, 
the energy change for the promotion to the unpaired state is the magnetic energy ( )E magnetic  at the initial radius r of the AO 
electron given by Eq. (15.15).  In addition in the case that the 3 4d s  HO electrons are paired, the corresponding magnetic energy 
is added.  Then, the energy  . ,3 4E mol atom d s  of the outer electron of the 3 4atom d s  shell is given by the sum of 

 . ,3 4CoulombE mol atom d s  and ( )E magnetic : 
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 (23.32) 

 ,3 4TE atom atom d s , the energy change of each 3 atom msp  shell with the formation of the atom-atom-bond MO is given by 

the difference between  . ,3 4E mol atom d s  and  ,3 4E atom d s : 

      ,3 4 . ,3 4 ,3 4TE atom atom d s E mol atom d s E atom d s    (23.33) 

Any unpaired electrons of ligands typically pair with unpaired HO electrons of the metal.  In the case that no such 
electrons of the metal are available, the ligand electrons pair and form a bond with an unpaired metal HO when available.  An 
unoccupied HO may form by the pairing of the corresponding HO electrons to form an energy minimum due to the effect on the 

bond parameters such as the diamagnetic force term, hybridization factor, and the  3, .TE atom atom msp AO  term.  In the case 

of carbonyls, the two unpaired 3Csp  HO electrons on each carbonyl pair with any unpaired electrons of the metal HOs.  Any 
excess carbonyl electrons pair in the formation of the corresponding MO and any remaining metal HO electrons pair where 
possible.  In the latter case, the energy of the HO for the determination of the hybridization factor and other bonding parameters 
in Eqs. (15.51) and (15.65) is given by the Coulombic energy plus the pairing energy. 

The force balance of the centrifugal force equated to the Coulombic and magnetic forces is solved for the length of the 
semimajor axis.  The Coulombic force on the pairing electron of the MO is: 
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The spin pairing force is 
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 (23.35) 

The diamagnetic force is: 

 
2

1 2 24
e

diamagneticMO
e

n
D

m a b  F i


 (23.36) 

where en  is the total number of electrons that interact with the binding  -MO electron.  The diamagnetic force 2diamagneticMOF  on 

the pairing electron of the   MO is given by the sum of the contributions over the components of angular momentum:  
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 (23.37) 

where iL  is the magnitude of the angular momentum component of the metal atom at a focus that is the source of the 

diamagnetism at the  -MO.  The centrifugal force is: 
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 (23.38) 

The general force balance equation for the  -MO of the metal (M) to ligand (L) M L -bond MO in terms of en  and iL  

corresponding to the orbital and spin angular momentum terms of the 3 4d s  HO shell is: 
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 (23.39) 

Having a solution for the semimajor axis a  of: 
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  (23.40) 

In term of the total angular momentum L , the semimajor axis a  is: 

 01
2

en L
a a

Z
    
 

 (23.41) 

Using the semimajor axis, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117) in the same 
manner as the organic functional groups given in the Organic Molecular Functional Groups and Molecules section. 
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Bond angles in organometallic and coordinate compounds are determined using the standard Eqs. (15.70-15.79) and 

(15.88-15.117) with the appropriate  3, .TE atom atom msp AO  for energy matching with the B C  terminal bond of the 

corresponding angle BAC .  For bond angles in general, if the groups can be maximally displaced in terms of steric interactions 
and magnitude of the residual TE  term is less that the steric energy, then the geometry that minimizes the steric interactions is 

the lowest energy.  Steric-energy minimizing geometries include tetrahedral ( dT ) and octahedral symmetry ( hO ).  
 

SCANDIUM FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of scandium is   24 3Ar s d  having the corresponding term 2

3/ 2D .  The total energy of the state is 

given by the sum over the three electrons.  The sum  ,3 4TE Sc d s  of experimental energies [1] of Sc , Sc , and 2Sc   is: 

    ,3 4 24.75666 12.79977 6.56149 44.11792 TE Sc d s eV eV eV eV       (23.42) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Sc d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 
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    (23.43) 

where 21Z   for scandium.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Sc d s  of the outer electron of the 3 4Sc d s  

shell is: 
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e e
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     (23.44) 

During hybridization, the spin-paired 4s  electrons are promoted to the 3 4Sc d s  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 4s  electrons.  From Eq. (10.102) with 21Z   
and 21n  , the radius 21r  of the 4Sc s  shell is: 

 21 02.07358r a  (23.45) 
Using Eqs. (15.15) and (23.45), the unpairing energy is: 
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 (23.46) 

Using Eqs. (23.44) and (23.46), the energy  ,3 4E Sc d s  of the outer electron of the 3 4Sc d s  shell is: 
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 (23.47) 

Next, consider the formation of the Sc L -bond MO wherein each scandium atom has an 3 4Sc d s  electron with an 
energy given by Eq. (23.47).  The total energy of the state of each scandium atom is given by the sum over the three electrons.  
The sum  3 4T Sc LE Sc d s  of energies of 3 4Sc d s  (Eq. (23.47)), Sc , and 2Sc   is: 

 
    

 
3 4 24.75666 12.79977 ,3 4

                        24.75666 12.79977 7.34015 44.89658 

T Sc LE Sc d s eV eV E Sc d s

eV eV eV eV

    

     
 (23.48) 

where  ,3 4E Sc d s  is the sum of the energy of Sc , 6.56149 eV , and the hybridization energy. 

The scandium HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the Sc3d4s shell calculated 
from the Coulombic energy is: 
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Using Eqs. (15.19) and (23.49), the Coulombic energy  ,3 4Coulomb Sc LE Sc d s  of the outer electron of the 3 4Sc d s  shell is: 
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     (23.50) 

The only magnetic energy term is that for the unpairing of the 4s  electrons given by Eq. (23.46).  Using Eqs. (23.32), (23.46), 
and (23.50), the energy  ,3 4Sc LE Sc d s  of the outer electron of the 3 4Sc d s  shell is: 
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 (23.51) 

Thus,  ,3 4TE Sc L d s , the energy change of each 3 4Sc d s  shell with the formation of the Sc L -bond MO is given by the 

difference between Eq. (23.51) and Eq. (23.47). 
        ,3 4 ,3 4 ,3 4 8.96648 7.34015 1.62633 T Sc LE Sc L d s E Sc d s E Sc d s eV eV eV          (23.52) 
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The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Sc L -bond MO of nScL  is given in Table 23.8 with the force-equation parameters 21Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell. 
For the Sc L  functional groups, hybridization of the 4s  and 3d  AOs of Sc  to form a single 3 4d s  shell forms an 

energy minimum, and the sharing of electrons between the 3 4Sc d s  HO and L  AO to form a MO permits each participating 
orbital to decrease in radius and energy.  The F  AO has an energy of   17.42282 E F eV  , the Cl  AO has an energy of 

  12.96764 E Cl eV  , the O  AO has an energy of   13.61805 E O eV  , and the 3 4Sc d s  HOs have an energy of 

 ,3 4 7.34015 E Sc d s eV   (Eq. (23.47)).  To meet the equipotential condition of the union of the Sc L  2H -type-ellipsoidal-

MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the Sc L -bond MO given by 
Eq. (15.77) is: 
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E Sc d s eV
c FAO to Sc d sHO C FAO to Sc d sHO
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 (23.53) 
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 (23.54) 
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 (23.55) 

Since the energy of the MO is matched to that of the 3 4Sc d s  HO,  /E AO HO  in Eq. (15.61) is  ,3 4E Sc d s  given by Eq. 

(23.47) and twice this value for double bonds.   3, .TE atom atom msp AO  of the Sc L -bond MO is determined by considering 

that the bond involves an electron transfer from the scandium atom to the ligand atom to form partial ionic character in the bond 
as in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.   3, .TE atom atom msp AO  is 

3.25266 eV , two times the energy of Eq. (23.52) for single bonds, and 6.50532 eV , four times the energy of Eq. (23.52) for 
double bonds. 

The symbols of the functional groups of scandium coordinate compounds are given in Table 23.7.  The geometrical (Eqs. 
(15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33))  
parameters of scandium coordinate compounds are given in Tables 23.8, 23.9, and 23.10, respectively.  The total energy of each 
scandium coordinate compound given in Table 23.11 was calculated as the sum over the integer multiple of each  GroupDE  of 

Table 23.10 corresponding to functional-group composition of the compound.  The charge-densities of exemplary scandium 
coordinate compound, scandium trifluoride comprising the concentric shells of atoms with the outer shell bridged by one or 
more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 23.2. 
 

Figure 23.2.  Scandium Trifluoride. Color scale, translucent view of the charge-density of 3ScF  showing the orbitals of the Sc  

and F  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the corresponding outer 
shell of the atoms participating in each bond, and the nuclei (red, not to scale). 
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Table 23.7.  The symbols of the functional groups of scandium coordinate compounds. 
 

Functional Group Group Symbol
ScF group of ScF  Sc F  (a) 
ScF group of 2ScF  Sc F  (b) 

ScF group of 3ScF  Sc F  (c) 
ScCl group of ScCl  Sc Cl  
ScO group of ScO  Sc O  

 
Table 23.8.  The geometrical bond parameters of scandium coordinate compounds and experimental values. 
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Table 23.10.  The energy parameters (eV) of functional groups of scandium coordinate compounds. 
 
 

 
 
 
 

 
Table 23.11.   The total bond energies of gaseous-state scandium coordinate compounds calculated using the functional group 
composition and the energies of Table 23.10 compared to the gaseous-state experimental values [15]. 
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TITANIUM FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of titanium is   2 24 3Ar s d  having the corresponding term 3

2F .  The total energy of the state is given 

by the sum over the four electrons.  The sum  ,3 4TE Ti d s  of experimental energies [1] of Ti , Ti , 2Ti  , and 3Ti   is 

    ,3 4 43.2672 27.4917 13.5755 6.82812 91.16252 TE Ti d s eV eV eV eV eV        (23.56) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Ti d s  shell may be calculated from the Coulombic energy using Eq. (15.13): 
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    (23.57) 

where 22Z   for titanium.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Ti d s  of the outer electron of the 3 4Ti d s  

shell is: 
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     (23.58) 

During hybridization, the spin-paired 4s  electrons are promoted to the 3 4Ti d s  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 4s  electrons.  From Eq. (10.102) with 22Z   
and 22n  , the radius 22r  of the 4Ti s  shell is: 

 22 01.99261r a  (23.59) 

Using Eqs. (15.15) and (23.59), the unpairing energy is: 
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 (23.60) 

Using Eqs. (23.58) and (23.60), the energy  ,3 4E Ti d s  of the outer electron of the 3 4Ti d s  shell is: 
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 (23.61) 

Next, consider the formation of the Ti L -bond MO wherein each titanium atom has a 3 4Ti d s  electron with an energy 
given by Eq. (23.61).  The total energy of the state of each titanium atom is given by the sum over the four electrons.  The sum 

 3 4T Ti LE Ti d s  of energies of 3 4Ti d s  (Eq. (23.61)), Ti , 2Ti  , and 3Ti   is: 

 

    
 

3 4 43.2672 27.4917 13.5755 ,3 4

                        43.2672 27.4917 13.5755 9.10179 

                        93.43619 

T Ti LE Ti d s eV eV eV E Ti d s
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eV

     

    

 

 (23.62) 

where  ,3 4E Ti d s  is the sum of the energy of Ti , 6.82812 eV , and the hybridization energy. 

The titanium HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4Ti d s  shell calculated 

from the Coulombic energy is: 
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  (23.63) 

Using Eqs. (15.19) and (23.63), the Coulombic energy  ,3 4Coulomb Ti LE Ti d s  of the outer electron of the 3 4Ti d s  shell is: 
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     (23.64) 

The only magnetic energy term is that for the unpairing of the 4s  electrons given by Eq. (23.60).  Using Eqs. (23.32), (23.60), 
and (23.64), the energy  ,3 4Ti LE Ti d s  of the outer electron of the 3 4Ti d s  shell is: 
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 (23.65) 

Thus,  ,3 4TE Ti L d s , the energy change of each 3 4Ti d s  shell with the formation of the Ti L -bond MO is given by the 

difference between Eq. (23.65) and Eq. (23.61). 
        ,3 4 ,3 4 ,3 4 10.36734 9.10179 1.26555 T Ti LE Ti L d s E Ti d s E Ti d s eV eV eV          (23.66) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Ti L -bond MO of nTiL  is given in Table 23.13 with the force-equation parameters 22Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell. 
For the Ti L  functional groups, hybridization of the 4s  and 3d  AOs of Ti  to form a single 3 4d s  shell forms an energy 

minimum, and the sharing of electrons between the 3 4Ti d s  HO and L  AO to form a MO permits each participating orbital to 
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decrease in radius and energy.  The F AO has an energy of   17.42282 E F eV  , the Cl AO has an energy of 

  12.96764 E Cl eV  , the Br  AO has an energy of   11.8138 E Br eV  , the I  AO has an energy of 

  10.45126 E I eV  , the O  AO has an energy of   13.61805 E O eV  , and the 3 4Ti d s  HOs have an energy of 

 ,3 4 9.10179 E Ti d s eV   (Eq. (23.61)).  To meet the equipotential condition of the union of the Ti L  2H -type-ellipsoidal-

MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the Ti L -bond MO given by 

Eq. (15.77) is: 
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Since the energy of the MO is matched to that of the 3 4Ti d s  HO,  /E AO HO  in Eq. (15.61) is  ,3 4E Ti d s  given by Eq. 

(23.61) and twice this value for double bonds.   3, .TE atom atom msp AO  of the Ti L -bond MO is determined by considering 

that the bond involves an electron transfer from the titanium atom to the ligand atom to form partial ionic character in the bond 
as in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.   3, .TE atom atom msp AO  is 

2.53109 eV , two times the energy of Eq. (23.66). 
The symbols of the functional groups of titanium coordinate compounds are given in Table 23.12.  The geometrical (Eqs. 

(15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of titanium coordinate compound are given in Tables 23.13, 23.14, and 23.15, respectively.  The total energy of each 
titanium coordinate compounds given in Table 23.16 was calculated as the sum over the integer multiple of each  GroupDE  of 

Table 23.15 corresponding to functional-group composition of the compound.  The bond angle parameters of titanium coordinate 
compounds determined using Eqs. (15.88-15.117) are given in Table 23.17.  The  3, .TE atom atom msp AO  term for 2TiOCl  

was calculated using Eqs. (23.30-23.33) as a linear combination of 1s   and 2s   for the energies of  ,3 4E Ti d s  given by 

Eqs. (23.63-23.66) corresponding to a Ti Cl  single bond and a Ti O  double bond.  The charge-densities of exemplary 
titanium coordinate compound, titanium tetrafluoride comprising the concentric shells of atoms with the outer shell bridged by 
one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 23.3. 

 
Figure 23.3.  Titanium Tetrafluoride. Color scale, translucent view of the charge-density of 4TiF  showing the orbitals of the Ti  

and F  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the corresponding outer 

shell of the atoms participating in each bond, and the nuclei (red, not to scale). 
 

 
 



Chapter 23 1352

Table 23.12.   The symbols of the functional groups of titanium coordinate compounds. 
 

Functional Group Group Symbol
TiF group of TiF  Ti F  (a) 
TiF group of 2TiF  Ti F  (b) 

TiF group of 3TiF  Ti F  (c) 

TiF group of 4TiF  Ti F  (d) 
TiCl group of TiCl  Ti Cl  (a) 
TiCl group of 2TiCl  Ti Cl  (b) 

TiCl group of 3TiCl  Ti Cl  (c) 

TiCl group of 4TiCl  Ti Cl  (d) 

TiBr group of TiBr  Ti Br  (a) 
TiBr group of 2TiBr  Ti Br  (b) 

TiBr group of 3TiBr  Ti Br  (c) 

TiBr group of 4TiBr  Ti Br  (d) 

TiI group of TiI  Ti I  (a) 
TiI group of 2TiI  Ti I  (b) 

TiI group of 3TiI  Ti I  (c) 

TiI group of 4TiI  Ti I  (d) 

TiO group of TiO  Ti O  (a) 
TiO group of 2TiO  Ti O  (b) 
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VANADIUM FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of vanadium is   2 34 3Ar s d  having the corresponding term 4

3/ 2F .  The total energy of the state is 

given by the sum over the five electrons.  The sum  ,3 4TE V d s  of experimental energies [1] of V , V  , 2V  , 3V  , and 4V   is 

    ,3 4 65.2817 46.709 29.311 14.618 6.74619 162.66589 TE V d s eV eV eV eV eV eV         (23.72) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4V d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 222

3 4 0
18 0 0

( ) 15
1.25464

8 162.66589 8 162.66589 d s
n

Z n e e
r a

e eV e eV 


    (23.73) 

where 23Z   for vanadium.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE V d s  of the outer electron of the 3 4V d s  

shell is: 

  
2 2

0 3 4 0 0

,3 4 10.844393 
8 8 1.25464Coulomb

d s

e e
E V d s eV

r a 
 

     (23.74) 

During hybridization, the spin-paired 4s  electrons are promoted to the 3 4V d s  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 4s  electrons.  From Eq. (10.102) with 23Z   
and 23n  , the radius 23r  of  the 4V s  shell is: 

 23 02.01681r a  (23.75) 

Using Eqs. (15.15) and (23.74), the unpairing energy is: 

 
   

2 2 2
0 0

3 32
23 0

2 8
( ) 0.01395 

2.01681
B

e

e
E magnetic eV

m r a

  
  


 (23.76) 

Using Eqs. (23.73) and (23.75), the energy  ,3 4E V d s  of the outer electron of the 3 4V d s  shell is: 

  
 

2 22
0

32
0 3 4 23

2
,3 4 10.844393 0.01395 10.83045 

8 d s e

ee
E V d s eV eV eV

r m r





      


 (23.77) 

Next, consider the formation of the V L -bond MO wherein each vanadium atom has a 3 4V d s  electron with an energy 
given by Eq. (23.76).  The total energy of the state of each vanadium atom is given by the sum over the five electrons.  The sum 

 3 4T V LE V d s  of energies of 3 4V d s  (Eq. (23.76)), V  , 2V  , 3V  , and 4V   is: 

 
   

65.2817 46.709 29.311 65.2817 46.709 29.311 
3 4

14.618 ,3 4 14.618 10.83045

166.75015 

T V L

eV eV eV eV eV eV
E V d s

eV E V d s eV

eV



     
           
 

 (23.78) 

where  ,3 4E V d s  is the sum of the energy of V , 6.74619 eV , and the hybridization energy. 

The vanadium HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4V d s  shell calculated 

from the Coulombic energy is: 

 
   

2 222

3 4 0
18 0 0

14
( ) 1 1.14232

8 166.75015 8 166.75015 V L d s
n

e e
r Z n a

e eV e eV 


      
 
  (23.79) 

Using Eqs. (15.19) and (23.78), the Coulombic energy  ,3 4Coulomb V LE V d s  of the outer electron of the 3 4V d s  shell is 

  
2 2

0 3 4 0 0

,3 4 11.91072 
8 8 1.14232Coulomb V L

V L d s

e e
E V d s eV

r a 


 
     (23.80) 

The only magnetic energy term is that for the unpairing of the 4s  electrons given by Eq. (23.75).  Using Eqs. (23.32), (23.73), 
and (23.79), the energy  ,3 4V LE V d s  of the outer electron of the 3 4V d s  shell is: 

  
 

2 22
0

32
0 3 4 23

2
,3 4 11.91072 0.01446 11.89678 

8V L
V L d s e

ee
E V d s eV eV eV

r m r







      


 (23.81) 

Thus,  ,3 4TE V L d s , the energy change of each 3 4V d s  shell with the formation of the V L -bond MO is given by the 

difference between Eq. (23.80) and Eq. (23.76): 
        ,3 4 ,3 4 ,3 4 11.89678 10.83045 1.06633 T V LE V L d s E V d s E V d s eV eV eV          (23.82) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
V L -bond MO of nVL  is given in Table 23.19 with the force-equation parameters 23Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell.  The semimajor axis a  of carbonyl and organometallic 
compounds are solved using Eq. (15.51). 

For the V L  functional groups, hybridization of the 4s  and 3d  AOs of V  to form a single 3 4d s  shell forms an energy 
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minimum, and the sharing of electrons between the 3 4V d s  HO and L  AO to form a MO permits each participating orbital to 
decrease in radius and energy.  The F  AO has an energy of   17.42282 E F eV  , the Cl  AO has an energy of 

  12.96764 E Cl eV  , the 32arylC sp  HO has an energy of  3, 2 15.76868 arylE C sp eV   (Eq. (14.246)), the 32C sp  HO has 

an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), the N  AO has an energy of   14.53414 E N eV  , the O  AO has an 

energy of   13.61805 E O eV  , and the 3 4V d s  HO has an energy of  ,3 4 10.84439 CoulombE V d s eV   (Eq. (23.75)) and 

 ,3 4 10.83045 E V d s eV   (Eq. (23.76)).  To meet the equipotential condition of the union of the V L  2H -type-ellipsoidal-

MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the V L -bond MO given by Eq. 

(15.77) is: 

    
 2

,3 4 10.83045 
  3 4 0.62162

17.42282 

E V d s eV
C FAO to V d sHO

E FAO eV


  


 (23.83) 

    
 2

,3 4 10.83045 
  3 4 0.83519

12.96764 

E V d s eV
C ClAO to V d sHO

E ClAO eV


  


 (23.84) 

    
     3 3

2 23

,3 4 10.84439 
2   3 4 2 0.91771 0.68002

14.63489 , 2
CoulombE V d s eV

C C sp HO to V d sHO c C sp HO
eVE C sp


  


 (23.85) 

      
 

3 3
2 2 3

,3 4 10.84439 
2   3 4 2   3 4 0.68772

15.76868 , 2
Coulomb

aryl aryl

aryl

E V d s eV
c C sp HO to V d sHO C C sp HO to V d sHO

eVE C sp


   


 (23.86) 

      
 2 2

,3 4 10.83045 
  3 4   3 4 0.74517

14.53414 

E V d s eV
c NAO to V d sHO C NAO to V d sHO

E NAO eV


   


 (23.87) 

    
 2

,3 4 10.83045 
  3 4 0.79530

13.61805 

E V d s eV
c O to V d sHO

E O eV


  


 (23.88) 

where Eqs. (15.76), (15.79), and (13.430) were used in Eq. (23.84).  Since the energy of the MO is matched to that of the 3 4V d s  
HO of coordinate compounds,  /E AO HO  in Eq. (15.61) is  ,3 4E V d s  given by Eq. (23.76) and twice this value for double 

bonds.  For carbonyls and organometallics, the energy of the MO is matched to that of the Coulomb energy of the 3 4V d s  HO 

such that  /E AO HO  in Eq. (15.61) is  ,3 4CoulombE V d s  given by Eq. (23.73).   3, .TE atom atom msp AO  of the V L -bond 

MO is determined by considering that the bond involves an electron transfer from the vanadium atom to the ligand atom to form 
partial ionic character in the bond as in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.  For 

coordinate compounds,  3, .TE atom atom msp AO  is 2.53109 eV , two times the energy of Eq. (23.81).  For carbonyl and 

organometallic compounds,  3, .TE atom atom msp AO  is 1.65376 eV  and 2.26759 eV , respectively.   The former is based 

on the energy match between the 3 4V d s  HO and the 32C sp  HO of a carbonyl group and is given by the linear combination of 
0.72457 eV  (Eq. (14.151)) and 0.92918 eV  (Eq. (14.513)), respectively.  The latter is equivalent to that of ethylene and the 

aryl group, 2.26759 eV , given by Eq. (14.247).  The C O  functional group of carbonyls is equivalent to that of formic acid 
given in the Carboxylic Acids section except that KvibE  corresponds to that of a metal carbonyl and  /TE AO HO  of Eq. (15.47) 

is: 
      

2
/ /  14.63489 3.58557 18.22046 T H MOE AO HO E AO HO eV eV eV        (23.89) 

wherein the additional  /  14.63489 E AO HO eV   (Eq. (15.25)) component corresponds to the donation of both unpaired 

electrons of the 32C sp  HO of the carbonyl group to the metal-carbonyl bond.  The benzene groups of organometallic, 6 6 2( )V C H  

are equivalent to those given in the Aromatic and Heterocyclic Compounds section. 
The symbols of the functional groups of vanadium coordinate compounds are given in Table 23.18.  The geometrical 

(Eqs. (15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of vanadium coordinate compounds are given in Tables 23.19, 23.20, and 23.21, respectively.  The total energy of 
each vanadium coordinate compound given in Table 23.22 was calculated as the sum over the integer multiple of each  GroupDE  

of Table 23.21 corresponding to functional-group composition of the compound.  The bond angle parameters of vanadium 

coordinate compounds determined using Eqs. (15.88-15.117) are given in Table 23.23.  The  3, .TE atom atom msp AO  term 

for 3VOCl  was calculated using Eqs. (23.30-23.33) with 1s   for the energies of  ,3 4E V d s  given by Eqs. (23.78-23.81).  The 

charge-densities of exemplary vanadium carbonyl and organometallic compounds, vanadium hexacarbonyl (  6
V CO ) and 

dibenzene vanadium ( 6 6 2( )V C H ), respectively, comprising the concentric shells of atoms with the outer shell bridged by one or 

more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 23.4A and B. 
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Figure 23.4.  (A) Vanadium Hexacarbonyl. Color scale, translucent view of the charge-density of  6
V CO  showing the orbitals 

of the V , C , and O  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond, and the nuclei (red, not to scale).  (B) Dibenzene Vanadium. 
Color scale, translucent view of the charge-density of 6 6 2( )V C H  showing the orbitals of the V  and C  atoms at their radii, the 

ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atoms 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
 
Table 23.18.  The symbols of the functional groups of vanadium coordinate compounds. 

Functional Group Group Symbol
VF group of 5VF  V F  

VCl group of 4VCl  V Cl  
VN group of VN  V N  
VO group of VO  and 2VO  V O  

VCO group of  6
V CO  V CO  

C=O C O  
VCaryl group of 6 6 2( )V C H  6 6V C H  

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  

 
Table 23.19.  The geometrical bond parameters of vanadium coordinate compounds and experimental values. 

Parameter V F  
Group 

V Cl  
Group 

V N  
Group 

V O  
Group 

V CO  
Group 

C O  
Group 

6 6
V C H  

Group 

3e

C C  
Group

CH  
Group 

e
n  2 3 1 2      

L  
3

2
4

 2 
3

4 8
4

  
3

3
4

      

 0
 a a  2.07531 2.58696 1.97514 2.11296 2.34957 1.184842 2.21181 1.47348 1.60061 

 0
'  c a  1.49187 2.03222 1.62806 1.62997 1.85880 1.08850 2.07080 1.31468 1.03299 

Bond 
Length 

 2 '  c Å  
1.57893 2.15081 1.72306 1.72509 1.96727 1.15202 2.19164 1.39140 1.09327 

Exp. Bond 
Length 

 Å  

1.71 [18] 

(
5

VF ) 

2.138 [18] 

(
4

VCl ) 
1.612 [24] 

(VN ) 

1.890 [25]
 

1.5893 [18] 
(VO ) 

2.015 [18] 

(  
6

V CO ) 

1.138[18] 

(  
6

V CO ) 

2.17 [26] 

(  6 6 2
V C H ) 

1.399 [3] 
(benzene) 

1.101 [3] 
(benzene) 

 0
,  b c a  1.44264 1.60075 1.11830 1.34454 1.43713 0.46798 0.77710 0.66540 1.22265 

 0.71887 0.78556 0.82428 0.77142 0.79112 0.91869 0.93625 0.89223 0.64537
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Table 23.21.   The energy parameters (eV) of functional groups of vanadium coordinate compounds.  
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CHROMIUM FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of chromium is   1 54 3Ar s d  having the corresponding term 7

3S .  The total energy of the state is given 

by the sum over the six electrons.  The sum  ,3 4TE Cr d s  of experimental energies [1] of Cr , Cr , 2Cr  , 3Cr  , 4Cr  , and 
5Cr   is 

  
90.6349 69.46 49.16 

,3 4 263.46711 
30.96 16.4857 6.76651 T

eV eV eV
E Cr d s eV

eV eV eV

  
       

 (23.90) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Cr d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 223

3 4 0
18 0 0

( ) 21
1.08447

8 263.46711 8 263.46711 d s
n

Z n e e
r a

e eV e eV 


    (23.91) 

where 24Z   for chromium.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Cr d s  of the outer electron of the 3 4Cr d s  

shell is: 

  
2 2

0 3 4 0 0

,3 4 12.546053 
8 8 1.08447Coulomb

d s

e e
E Cr d s eV

r a 
 

     (23.92) 

Next, consider the formation of the Cr L -bond MO wherein each chromium atom has a 3 4Cr d s  electron with an 
energy given by Eq. (23.91).  The total energy of the state of each chromium atom is given by the sum over the six electrons.  
The sum  3 4T Cr LE Cr d s  of energies of 3 4Cr d s  (Eq. (23.91)), Cr , 2Cr  , 3Cr  , 4Cr  , and 5Cr   is: 

 

   
90.6349 69.46 49.16 

3 4
30.96 16.4857 ,3 4

90.6349 69.46 49.16 
                        269.24665 

30.96 16.4857 12.546053 

T Cr L
Coulomb

eV eV eV
E Cr d s

eV eV E Cr d s

eV eV eV
eV

eV eV eV



  
     

  
       

 (23.93) 

where  ,3 4E Cr d s  is the sum of the energy of Cr , 6.76651 eV , and the hybridization energy. 

The chromium HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4Cr d s  shell calculated 

from the Coulombic energy is: 

 
   

2 223

3 4 0
18 0 0

20
( ) 1 1.01066

8 269.24665 8 269.24665 Cr L d s
n

e e
r Z n a

e eV e eV 


      
 
  (23.94) 

Using Eqs. (15.19) and (23.93), the Coulombic energy  ,3 4Coulomb Cr LE Cr d s  of the outer electron of the 3 4Cr d s  shell is 

  
2 2

0 3 4 0 0

,3 4 13.46233 
8 8 1.01066Coulomb Cr L

Cr L d s

e e
E Cr d s eV

r a 


 
     (23.95) 

Thus,  ,3 4TE Cr L d s , the energy change of each 3 4Cr d s  shell with the formation of the Cr L -bond MO is given by the 

difference between Eq. (23.94) and Eq. (23.91): 
        ,3 4 ,3 4 ,3 4 13.46233 12.546053 0.91628 T Cr LE Cr L d s E Cr d s E Cr d s eV eV eV          (23.96) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Cr L -bond MO of nCrL  is given in Table 23.25 with the force-equation parameters 24Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell.  The semimajor axis a  of carbonyl and organometallic 
compounds are solved using Eq. (15.51). 

For the Cr L  functional groups, hybridization of the 4s  and 3d  AOs of Cr  to form a single 3 4d s  shell forms an 
energy minimum, and the sharing of electrons between the 3 4Cr d s  HO and L  AO to form a MO permits each participating 
orbital to decrease in radius and energy.  The F  AO has an energy of   17.42282 E F eV  , the Cl  AO has an energy of 

  12.96764 E Cl eV  , the 32arylC sp  HO has an energy of  3, 2 15.76868 arylE C sp eV   (Eq. (14.246)), the 32C sp  HO has 

an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), the O  AO has an energy of   13.61805 E O eV  , and the 3 4Cr d s  

HO has an energy of  ,3 4 12.54605 CoulombE Cr d s eV   (Eq. (23.91)).  To meet the equipotential condition of the union of the 

Cr L  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the 

Cr L -bond MO given by Eq. (15.77) is: 

      
 2 2

,3 4 12.54605 
  3 4   3 4 0.72009

17.42282 
CoulombE Cr d s eV

c FAO to Cr d sHO C FAO to Cr d sHO
E FAO eV


   


 (23.97) 

      
 2 2

,3 4 12.54605 
  3 4   3 4 0.96749

12.96764 
CoulombE Cr d s eV

c ClAO to Cr d sHO C ClAO to Cr d sHO
E ClAO eV


   


 (23.98) 



Chapter 23 1364

      
 

3 3
2 2 3

,3 4 12.54605 
2   3 4 2   3 4 0.85727

14.63489 , 2
CoulombE Cr d s eV

c C sp HO to Cr d sHO C C sp HO to Cr d sHO
eVE C sp


   


 (23.99) 

    
 

3
2 3

,3 4 12.54605 
2   3 4 0.79563

15.76868 , 2
Coulomb

aryl

aryl

E Cr d s eV
C C sp HO to Cr d sHO

eVE C sp


  


 (23.100) 

      
 2 2

,3 4 12.54605 
  3 4   3 4 0.92128

13.61805 
CoulombE Cr d s eV

c O to Cr d sHO C O to Cr d sHO
E O eV


   


 (23.101) 

Since the energy of the MO is matched to that of the 3 4CoulombCr d s  HO,  /E AO HO  in Eq. (15.61) is  ,3 4CoulombE Cr d s  given 

by Eq. (23.91) and twice this value for double bonds.   3, .TE atom atom msp AO  of the Cr L -bond MO is determined by 

considering that the bond involves an electron transfer from the chromium atom to the ligand atom to form partial ionic character 
in the bond as in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.  For coordinate compounds, 

 3, .TE atom atom msp AO  is 1.83256 eV , two times the energy of Eq. (23.95).  For carbonyl and organometallic compounds, 

 3, .TE atom atom msp AO  is 1.44915 eV  (Eq. (14.151)), and the C O  functional group of carbonyls is equivalent to that of 

vanadium carbonyls.  The benzene and substituted benzene groups of organometallics are equivalent to those given in the 
Aromatic and Heterocyclic Compounds section. 

The symbols of the functional groups of chromium coordinate compounds are given in Table 23.24. The corresponding 
designation of the structure of the  3 6 33

CH C H  group of  3 6 3 23
( )Cr CH C H  is equivalent to that of toluene shown in Figure 

23.5B.  The geometrical (Eqs. (15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. 
(15.61) and (23.28-23.33)) parameters of chromium coordinate compounds are given in Tables 23.25, 23.26, and 23.27, 
respectively.  The total energy of each chromium coordinate compound given in Table 23.28 was calculated as the sum over the 
integer multiple of each  GroupDE  of Table 23.27 corresponding to functional-group composition of the compound.  The bond 

angle parameters of chromium coordinate compounds determined using Eqs. (15.88-15.117) are given in Table 23.29.  The 

 3, .TE atom atom msp AO  term for 3CrOCl  was calculated using Eqs. (23.30-23.33) with 1s   for the energies of 

 ,3 4CoulombE Cr d s  given by Eqs. (23.93-23.95).  The charge-densities of exemplary chromium carbonyl and organometallic 

compounds, chromium hexacarbonyl (  6
Cr CO ) and di-(1,2,4-trimethylbenzene)  chromium (  3 6 3 23

( )Cr CH C H ), respectively, 

comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with 

one or more hydrogen MOs are shown in Figures 23.5A and C. 
 
Figure 23.5.   (A) Chromium Hexacarbonyl. Color scale, translucent view of the charge-density of  6

Cr CO  showing the 

orbitals of the Cr , C , and O  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond, and the nuclei (red, not to scale).  (B) Toluene.  (C) Di-(1,2,4-
trimethylbenzene) Chromium. Color scale, opaque view of the charge-density of  3 6 3 23

( )Cr CH C H  showing the orbitals of the 

Cr  and C  atoms at their radii and the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond. 
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Table 23.24.   The symbols of the functional groups of chromium coordinate compounds. 
 
 

 
Table 23.25.   The geometrical bond parameters of chromium coordinate compounds and experimental values. 
 

 

Functional Group Group Symbol
CrF group of 2CrF  Cr F  

CrCl group of 2CrCl  Cr Cl  

CrO group of CrO  Cr O  (a) 
CrO group of 2CrO  Cr O  (b) 

CrO group of 3CrO  Cr O  (c) 

CrCO group of  6
Cr CO  Cr CO  

C=O C O  
CrCaryl group of 6 6 2( )Cr C H  and 

 3 6 3 23
( )Cr CH C H  6 6Cr C H  

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  

a bC C  ( 3CH  to aromatic bond) C C  

CH3 group  3 C H CH  
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MANGANESE FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of manganese is   2 54 3Ar s d  having the corresponding term 6

5/ 2S .  The total energy of the state is 

given by the sum over the seven electrons.  The sum  ,3 4TE Mn d s  of experimental energies [1] of Mn , Mn , 2Mn  , 3Mn  , 
4Mn  , 5Mn  , and 6Mn   is: 

  
119.203 95.6 72.4 51.2 

,3 4 401.93233 
33.668 15.6400 14.22133 T

eV eV eV eV
E Mn d s eV

eV eV eV

   
       

 (23.102) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Mn d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 224

3 4 0
18 0 0

( ) 28
0.96411

8 395.14502 8 395.14502 d s
n

Z n e e
r a

e eV e eV 


    (23.103) 

where 25Z   for manganese.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Mn d s  of the outer electron of the 

3 4Mn d s  shell is: 

  
2 2

0 3 4 0 0

,3 4 14.112322 
8 8 0.96411Coulomb

d s

e e
E Mn d s eV

r a 
 

     (23.104) 

During hybridization, the spin-paired 4s  electrons are promoted to the 3 4Mn d s  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 4s  electrons.  From Eq. (10.102) with 25Z   
and 25n  , the radius 25r  of the 4Mn s  shell is: 

 25 01.83021r a  (23.105) 

Using Eqs. (15.15) and (23.104), the unpairing energy is: 

 
   

2 2 2
0 0

4 3 32
25 0

2 8
( ) 0.01866 

1.83021
B

s

e

e
E magnetic eV

m r a

  
  


 (23.106) 

The electrons from the 4s  and 3d  shells successively fill unoccupied HOs until the HO shell is filled with unpaired electrons, 
then the electrons pair per HO.  In the case of the 3 4Mn d s  shell having seven electrons and six orbitals, one set of electrons is 
paired.  Using Eqs. (15.15) and (23.102), the pairing energy is given by: 

 
   

2 2 2
0 0

3 4 3 32
3 4 0

2 8
( ) 0.12767 

0.96411
B

d s

e d s

e
E magnetic eV

m r a

  
     


 (23.107) 

Thus, after Eq. (23.28), the energy  ,3 4E Mn d s  of the outer electron of the 3 4Mn d s  shell is given by adding the magnetic 

energy of unpairing the 4s electrons (Eq. (23.105)) and pairing of one set of 3 4Mn d s  electrons (Eq. (23.106)) to 

 ,3 4CoulombE Mn d s  (Eq. (23.103)). 

 
 

2 2 2 2 2 22
0 0 0
2 3 2 3 2 3

3   0 3 4 4 3 3 4

2 2 2
,3 4

8

14.112322 0.01866 0.12767 14.22133 

d pairs HO pairsd s e s e d e d s

e e ee
E Mn d s

r m r m r m r

eV eV eV eV

  



   

     

   
 (23.108) 

Next, consider the formation of the Mn L -bond MO wherein each manganese atom has a 3 4Mn d s  electron with an 
energy given by Eq. (23.107).  The total energy of the state of each manganese atom is given by the sum over the seven 
electrons.  The sum  3 4T Mn LE Mn d s  of energies of 3 4Mn d s  (Eq. (23.107)), Mn , 2Mn  , 3Mn  , 4Mn  , 5Mn  , and 6Mn   is: 

 

   
119.203 95.6 72.4 51.2 

3 4
33.668 15.6400 ,3 4

119.203 95.6 72.4 51.2 
                        

33.668 15.6400 14.22133 

                 

T Mn L

eV eV eV eV
E Mn d s

eV eV E Mn d s

eV eV eV eV

eV eV eV



   
     

   
     

       401.93233 eV 

 (23.109) 

where  ,3 4E Mn d s  is the sum of the energy of Mn , 7.43402 eV , and the hybridization energy. 

The manganese HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4Mn d s  shell calculated 

from the Coulombic energy is: 

 
   

2 224

3 4 0
18 0 0

27
( ) 1 0.91398

8 401.93233 8 401.93233 Mn L d s
n

e e
r Z n a

e eV e eV 


      
 
  (23.110) 

Using Eqs. (15.19) and (23.109), the Coulombic energy  ,3 4Coulomb Mn LE Mn d s  of the outer electron of the 3 4Mn d s  shell is: 

  
2 2

0 3 4 0 0

,3 4 14.88638 
8 8 0.91398Coulomb Mn L

Mn L d s

e e
E Mn d s eV

r a 


 
     (23.111) 
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The magnetic energy terms are those for the unpairing of the 4s  electrons (Eq. (23.105)) and pairing one set of 3 4Mn d s  
electrons (Eq. (23.106)).  Using Eqs. (23.32), (23.105), (23.106), and (23.110), the energy  ,3 4Mn LE Mn d s  of the outer 

electron of the 3 4Mn d s  shell is: 

 
 

   

2 2 2 22
0 0

3 32 2
0 3 4 25 3 4

2 2
,3 4

8

                         14.88638 0.01866 0.12767 14.99539 

Mn L
Mn L d s e e d s

e ee
E Mn d s

r m r m r

eV eV eV eV

 





  

     

 
 (23.112) 

Thus,  ,3 4TE Mn L d s , the energy change of each 3 4Mn d s  shell with the formation of the Mn L -bond MO is given by the 

difference between Eq. (23.111) and Eq. (23.107): 

 
     

 
,3 4 ,3 4 ,3 4

                         14.99539 14.22133 0.77406 

T Mn LE Mn L d s E Mn d s E Mn d s

eV eV eV

  

     
 (23.113) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Mn L -bond MO of nMnL  is given in Table 23.31 with the force-equation parameters 25Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell.  The semimajor axis a  of carbonyl and organometallic 
compounds are solved using Eq. (15.51). 

For the Mn L  functional groups, hybridization of the 4s  and 3d  AOs of Mn  to form a single 3 4d s  shell forms an 
energy minimum, and the sharing of electrons between the 3 4Mn d s  HO and L  AO to form a MO permits each participating 
orbital to decrease in radius and energy.  The F  AO has an energy of   17.42282 E F eV  , the Cl  AO has an energy of 

  12.96764 E Cl eV  , the 32C sp  HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), the Coulomb energy of 

3 4Mn d s  HO is  ,3 4 14.11232 CoulombE Mn d s eV   (Eq. (23.103)), the 3 4Mn d s  HO has an energy of 

 ,3 4 14.22133 E Mn d s eV   (Eq. (23.107)), and 13.605804 eV  is the magnitude of the Coulombic energy between the 

electron and proton of H  (Eq. (1.264)).  To meet the equipotential condition of the union of the Mn L  2H -type-ellipsoidal-

MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the Mn L -bond MO given by 

Eq. (15.77) is: 

    
 2

,3 4 14.22133 
  3 4 0.81625

17.42282 

E Mn d s eV
C FAO to Mn d sHO

E FAO eV


  


 (23.114) 

    
 2

12.96764 
  3 4 0.91184

,3 4 14.22133 

E ClAO eV
C ClAO to Mn d sHO

E Mn d s eV


  


 (23.115) 

    
     3 3

2 23

,3 4 14.11232 
2   3 4 2 0.91771 0.88495

14.63489 , 2
CoulombE Mn d s eV

c C sp HO to Mn d sHO c C sp HO
eVE C sp


  


 (23.116) 

    
 2

13.605804 
3 4   3 4 0.96411

,3 4 14.11232 Coulomb

E H eV
C Mn d sHO to Mn d sHO

E Mn d s eV


  


 (23.117) 

where Eqs. (15.76), (15.79), and (13.430) were used in Eq. (23.115) and Eq. (15.71) was used in Eq. (23.116).  Since the energy 
of the MO is matched to that of the 3 4Mn d s  HO in coordinate compounds,  /E AO HO  in Eq. (15.61) is  ,3 4E Mn d s  given 

by Eq. (23.107) and  /E AO HO  in Eq. (15.61) of carbonyl compounds is  ,3 4CoulombE Mn d s  given by Eq. (23.103).  

 3, .TE atom atom msp AO  of the Mn L -bond MO is determined by considering that the bond involves an electron transfer 

from the manganese atom to the ligand atom to form partial ionic character in the bond as in the case of the zwitterions such as 

2H B F   given in the Halido Boranes section.  For the coordinate compounds,  3, .TE atom atom msp AO  is 1.54812 eV , 

two times the energy of Eq. (23.112).  For the Mn CO  bonds of carbonyl compounds,  3, .TE atom atom msp AO  is 

1.44915 eV  (Eq. (14.151)), and the C O  functional group of carbonyls is equivalent to that of vanadium carbonyls. 
The symbols of the functional groups of manganese coordinate compounds are given in Table 23.30.  The geometrical 

(Eqs. (15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of manganese coordinate compounds are given in Tables 23.31, 23.32, and 23.33, respectively.  The total energy of 
each manganese coordinate compound given in Table 23.34 was calculated as the sum over the integer multiple of each  GroupDE  

of Table 23.33 corresponding to functional-group composition of the compound.  The charge-densities of exemplary manganese 
carbonyl compound, dimanganese decacarbonyl (  2 10

Mn CO ) comprising the concentric shells of atoms with the outer shell 

bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 23.6. 
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Figure 23.6.   Diamanganese decacarbonyl. Color scale, opaque view of the charge-density of  2 10
Mn CO  showing the 

orbitals of the Mn , C , and O  atoms at their radii and the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to 

the corresponding outer shell of the atoms participating in each bond. 

 
 
Table 23.30.   The symbols of the functional groups of manganese coordinate compounds. 
 

Functional Group Group Symbol
MnF group of MnF  Mn F  
MnCl group of MnCl  Mn Cl  

MnCO group of  2 10
Mn CO  Mn CO  

MnMn group of  2 10
Mn CO  Mn Mn  

C=O C O  
 
 
Table 23.31.   The geometrical bond parameters of manganese coordinate compounds and experimental values. 
 

 
Parameter Mn F  

Group 
Mn Cl  
Group

Mn CO  
Group

Mn Mn  
Group 

C O  
Group

en  2 3  5  

L  
3

2 4
4

  
3

4 6
4

   
3

3
4

  

 0 a a  2.21856 2.86785 2.23676 3.60392 1.184842 

 0'  c a  1.64864 2.04780 1.72695 2.73426 1.08850 

Bond Length  2 '  c Å  1.74484 2.16729 1.82772 2.89382 1.15202 

Exp. Bond Length 

 Å  
1.729 [45] 
( 2MnF ) 

2.202 [15] 
( 2MnCl ) 

1.830 [46] 
(  2 10

Mn CO ) 
2.923 [46] 

(  2 10
Mn CO ) 

1.151 [29, 46] 
(  2 10

Mn CO ) 

 0,  b c a  1.48459 2.00775 1.42153 2.34778 0.46798 

e  0.74311 0.71405 0.77208 0.75869 0.91869
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Table 23.33.   The energy parameters (eV) of functional groups of manganese coordinate compounds.  
 

 
 
Table 23.34.   The total bond energies of gaseous-state manganese coordinate compounds calculated using the functional 
group composition and the energies of Table 23.33 compared to the gaseous-state experimental values.  
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IRON FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of iron is   2 64 3Ar s d  having the corresponding term 5

4D .  The total energy of the state is given by 

the sum over the eight electrons.  The sum  ,3 4TE Fe d s  of experimental energies [1] of Fe , Fe , 2Fe  , 3Fe  , 4Fe  , 5Fe  , 
6Fe  , and 7Fe   is: 

  
151.06 124.98 99.1 75.0 

,3 4 559.68210 
54.8 30.652 16.1877 7.9024 T

eV eV eV eV
E Fe d s eV

eV eV eV eV

   
        

 (23.118) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Fe d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 225

3 4 0
18 0 0

( ) 36
0.87516

8 559.68210 8 559.68210 d s
n

Z n e e
r a

e eV e eV 


    (23.119) 

where 26Z   for iron.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Fe d s  of the outer electron of the 3 4Fe d s  shell is 

  
2 2

0 3 4 0 0

,3 4 15.546725 
8 8 0.87516Coulomb

d s

e e
E Fe d s eV

r a 
 

     (23.120) 

During hybridization, the spin-paired 4s  electrons and the one. set of paired 3d  electrons are promoted to the 3 4Fe d s  shell as 
initially unpaired electrons.  The energies for the promotions are given by Eq. (15.15) at the initial radii of the 4s  and 3d  
electrons.  From Eq. (10.102) with 26Z   and 26n  , the radius 26r  of the 4Fe s  shell is 

 26 01.72173r a  (23.121) 

and with 26Z   and 24n  , the radius 24r  of the 3Fe d  shell is: 

 24 01.33164r a  (23.122) 

Using Eqs. (15.15), (23.120), and (23.121), the unpairing energies are: 

 
   

2 2 2
0 0

4 3 32
26 0

2 8
( ) 0.02242 

1.72173
B

s

e

e
E magnetic eV

m r a

  
  


 (23.123) 

 
   

2 2 2
0 0

3 3 32
24 0

2 8
( ) 0.04845 

1.33164
B

d

e

e
E magnetic eV

m r a

  
  


 (23.124) 

The electrons from the 4s and 3d shells successively fill unoccupied HOs until the HO shell is filled with unpaired electrons, 
then the electrons pair per HO.  In the case of the Fe3d4s shell having eight electrons and six orbitals, two sets of electrons are 
paired.  Using Eqs. (15.15) and (23.118), the pairing energy is given by: 

 
   

2 2 2
0 0

3 4 3 32
3 4 0

2 8
( ) 0.17069 

0.87516
B

d s

e d s

e
E magnetic eV

m r a

  
     


 (23.125) 

Thus, after Eq. (23.28), the energy  ,3 4E Fe d s  of the outer electron of the 3 4Fe d s  shell is given by adding the magnetic 

energies of unpairing the 4s  (Eq. (23.122)) and 3d  electrons (Eq. (23.123)) and pairing of two sets of 3 4Fe d s  electrons (Eq. 
(23.124)) to  ,3 4CoulombE Fe d s  (Eq. (23.119)). 

 
 

 

2 2 2 2 2 22
0 0 0
2 3 2 3 2 3

3   0 3 4 4 3 3 4

2 2 2
,3 4

8

15.546725 0.02242 0.04845 2 0.17069 15.81724 

d pairs HO pairsd s e s e d e d s

e e ee
E Fe d s

r m r m r m r

eV eV eV eV eV

  



   

      

   
 (23.126) 

Next, consider the formation of the Fe L -bond MO wherein each iron atom has an 3 4Fe d s  electron with an energy 
given by Eq. (23.125).  The total energy of the state of each iron atom is given by the sum over the eight electrons.  The sum 

 3 4T Fe LE Fe d s  of energies of 3 4Fe d s  (Eq. (23.125)), Fe , 2Fe  , 3Fe  , 4Fe  , 5Fe  , 6Fe  , and 7Fe   is: 

 

   
151.06 124.98 99.1 75.0 

3 4
54.8 30.652 16.1877 ,3 4

151.06 124.98 99.1 75.0 
                        

54.8 30.652 16.1877 15.81724 

T Fe L

eV eV eV eV
E Fe d s

eV eV eV E Fe d s

eV eV eV eV

eV eV eV eV



   
      

   
     

567.59694 eV 

 (23.127) 

where E(Fe, 3d 4s) is the sum of the energy of Fe, –7.9024 eV, and the hybridization energy. 
The iron HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4Fe d s  shell calculated from 

the Coulombic energy is: 

 
   

2 225

3 4 0
18 0 0

35
( ) 1 0.83898

8 567.59694 8 567.59694 Fe L d s
n

e e
r Z n a

e eV e eV 


      
 
  (23.128) 

Using Eqs. (15.19) and (23.127), the Coulombic energy  ,3 4Coulomb Fe LE Fe d s  of the outer electron of the 3 4Fe d s  shell is 
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2 2

0 3 4 0 0

,3 4 16.21706 
8 8 0.83898Coulomb Fe L

Fe L d s

e e
E Fe d s eV

r a 


 
     (23.129) 

The magnetic energy terms are those for the unpairing of the 4s  and 3d  electrons (Eqs. (23.122) and (23.123), respectively) and 
paring two sets of 3 4Fe d s  electrons (Eq. (23.124)).  Using Eqs. (23.32), (23.128) and (23.122-23.124), the energy 

 ,3 4Fe LE Fe d s  of the outer electron of the 3 4Fe d s  shell is: 

 
 

     
 

2 2 2 2 2 22
0 0 0

3 3 32 2 2
0 3 4 26 24 3 4

2 2 2
,3 4 2

8

                         16.21706 0.02242 0.04845 2 0.17069 16.48757 

Fe L
Fe L d s e e e d s

e e ee
E Fe d s

r m r m r m r

eV eV eV eV eV

  





   

      

  
 (23.130) 

Thus,  ,3 4TE Fe L d s , the energy change of each 3 4Fe d s  shell with the formation of the Fe L -bond MO is given by the 

difference between Eq. (23.129) and Eq. (23.125): 
        ,3 4 ,3 4 ,3 4 16.48757 15.81724 0.67033 T Fe LE Fe L d s E Fe d s E Fe d s eV eV eV          (23.131) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Fe L -bond MO of nFeL  is given in Table 23.36 with the force-equation parameters 26Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell.  The semimajor axis a  of carbonyl and organometallic 
compounds are solved using Eq. (15.51). 

For the Fe L  functional groups, hybridization of the 4s  and 3d  AOs of Fe  to form a single 3 4d s  shell forms an 
energy minimum, and the sharing of electrons between the 3 4Fe d s  HO and L  AO to form a MO permits each participating 
orbital to decrease in radius and energy.  The F  AO has an energy of   17.42282 E F eV  , the Cl  AO has an energy of 

  12.96764 E Cl eV  , the 32arylC sp  HO has an energy of  3, 2 15.76868 arylE C sp eV   (Eq. (14.246)), the 32C sp  HO has 

an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), the O  AO has an energy of   13.61805 E O eV  , the Coulomb 

energy of 3 4Fe d s  HO is  ,3 4 15.546725 CoulombE Fe d s eV   (Eq. (23.119)), and the 3 4Fe d s  HO has an energy of 

 ,3 4 15.81724 E Fe d s eV   (Eq. (23.125)).  To meet the equipotential condition of the union of the Fe L  2H -type-

ellipsoidal-MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the Fe L -bond MO 

given by Eq. (15.77) is: 

      
 2 2

,3 4 15.81724 
  3 4   3 4 0.90785

17.42282 

E Fe d s eV
c FAO to Fe d sHO C FAO to Fe d sHO

E FAO eV


   


 (23.132) 

      
 2 2

12.96764 
  3 4   3 4 0.81984

,3 4 15.81724 

E ClAO eV
c ClAO to Fe d sHO C ClAO to Fe d sHO

E Fe d s eV


   


 (23.133) 

    
     

3

3 3
2 2

, 2 14.63489 
2   3 4 2 0.91771 0.86389

,3 4 15.54673 Coulomb

E C sp eV
c C sp HO to Fe d sHO c C sp HO

E Fe d s eV


  


 (23.134) 

 

   
 
     

3 3
2 2

3

3
2

2   3 4 2   3 4

,2 14.63489 
2 0.85252 0.80252

,3 4 15.54673 

aryl aryl

aryl
Coulomb

c C sp HO to Fe d sHO C C sp HO to Fe d sHO

E C sp eV
c C sp HO

E Fe d s eV




  



 (23.135) 

      
 2 2

13.61805 
  3 4   3 4 0.86096

,3 4 15.81724 

E O eV
c O to Fe d sHO C O to Fe d sHO

E Fe d s eV


   


 (23.136) 

where Eqs. (15.76), (15.79), and (13.430) were used in Eq. (23.133) and Eqs. (15.76), (15.79), and (14.417) were used in Eq. 
(23.134).  Since the energy of the MO is matched to that of the 3 4Fe d s  HO in coordinate compounds,  /E AO HO  in Eq. 

(15.61) is  ,3 4E Fe d s  given by Eq. (23.125) and  /E AO HO  in Eq. (15.61) of carbonyl and organometallic compounds is 

 ,3 4CoulombE Fe d s  given by Eq. (23.119).   3, .TE atom atom msp AO  of the Fe L -bond MO is determined by considering 

that the bond involves an electron transfer from the iron atom to the ligand atom to form partial ionic character in the bond as in 
the case of the zwitterions such as 2H B F   given in the Halido Boranes section.  For the coordinate compounds, 

 3, .TE atom atom msp AO  is 1.34066 eV , two times the energy of Eq. (23.130).  For the Fe C  bonds of carbonyl and 

organometallic compounds,  3, .TE atom atom msp AO  is 1.44915 eV  (Eq. (14.151)), and the C O  functional group of 

carbonyls is equivalent to that of vanadium carbonyls.  The aromatic cyclopentadienyl moieties of organometallic  5 5 2
Fe C H  

comprise 
3e

C C  and CH  functional groups that are equivalent to those given in the Aromatic and Heterocyclic Compounds 
section. 



Chapter 23 1376

The symbols of the functional groups of iron coordinate compounds are given in Table 23.35.  The geometrical (Eqs. 
(15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of iron coordinate compounds are given in Tables 23.36, 23.37, and 23.38, respectively.  The total energy of each 
iron coordinate compound given in Table 23.39 was calculated as the sum over the integer multiple of each  GroupDE  of Table 

23.38 corresponding to functional-group composition of the compound.  The charge-densities of exemplary iron carbonyl and 
organometallic compounds, iron pentacarbonyl (  5

Fe CO ) and bis-cylopentadienyl iron or ferrocene (  5 5 2
Fe C H ) comprising 

the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs are shown in Figures 23.7 and 23.8, respectively. 

 

 
 
 
Table 23.35.   The symbols of the functional groups of iron coordinate compounds. 
 

Functional Group Group Symbol
FeF group of FeF  Fe F  (a) 
FeF2 group of 2FeF  Fe F  (b) 

FeF3 group of 3FeF  Fe F  (c) 

FeCl group of FeCl  Fe Cl  (a) 
FeCl2 group of 2FeCl  Fe Cl  (b) 

FeCl3 group of 3FeCl  Fe Cl  (c) 

FeO group of FeO  Fe O  

FeCO group of  5
Fe CO  Fe CO  

C=O C O  
FeCaryl group of 5 5 2( )Fe C H  5 5Fe C H  

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  

Figure 23.7.   Iron Pentacarbonyl. Color scale, translucent 
view of the charge-density of  5

Fe CO  showing the orbitals 

of the Fe , C , and O  atoms at their radii, the ellipsoidal 
surface of each 2H -type ellipsoidal MO that transitions to 

the corresponding outer shell of the atoms participating in 
each bond, and the nuclei (red, not to scale). 

Figure 23.8.   Bis-cylopentadienyl Iron. Color scale, 
opaque view of the charge-density of  5 5 2

Fe C H  showing 

the orbitals of the Fe  and C  atoms at their radii and the 
ellipsoidal surface of each H  or 2H -type ellipsoidal MO 

that transitions to the corresponding outer shell of the atoms 
participating in each bond.
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COBALT FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of cobalt is   2 74 3Ar s d  having the corresponding term 4

9/ 2F .  The total energy of the state is given 

by the sum over the nine electrons.  The sum  ,3 4TE Co d s  of experimental energies [1] of Co , Co , 2Co  , 3Co  , 4Co  , 5Co  , 
6Co  , 7Co  , and 8Co   is: 

  
186.13 157.8 128.9 102.0 79.5 

,3 4 764.09501 
51.3 33.50 17.084 7.88101 T

eV eV eV eV eV
E Co d s eV

eV eV eV eV

    
        

 (23.137) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Co d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 226

3 4 0
18 0 0

( ) 45
0.80129

8 764.09501 8 764.09501 d s
n

Z n e e
r a

e eV e eV 


    (23.138) 

where 27Z   for cobalt.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Co d s  of the outer electron of the 3 4Co d s  shell 

is 

  
2 2

0 3 4 0 0

,3 4 16.979889 
8 8 0.80129Coulomb

d s

e e
E Co d s eV

r a 
 

     (23.139) 

During hybridization, the spin-paired 4s  electrons and the two sets of paired 3d  electrons are promoted to the 3 4Co d s  shell as 
initially unpaired electrons.  The energies for the promotions are given by Eq. (15.15) at the initial radii of the 4s  and 3d  
electrons.  From Eq. (10.102) with 27Z   and 27n  , the radius 27r  of the 4Co s  shell is: 

 27 01.72640r a  (23.140) 

and with 27Z   and 25n  , the radius 25r  of the 3Co d  shell is: 

 25 01.21843r a  (23.141) 

Using Eqs. (15.15), (23.139), and (23.140), the unpairing energies are: 

 
   

2 2 2
0 0

4 3 32
27 0

2 8
( ) 0.02224 

1.72640
B

s

e

e
E magnetic eV

m r a

  
  


 (23.142) 

 
   

2 2 2
0 0

3 3 32
25 0

2 8
( ) 0.06325 

1.21843
B

d

e

e
E magnetic eV

m r a

  
  


 (23.143) 

The electrons from the 4s  and 3d  shells successively fill unoccupied HOs until the HO shell is filled with unpaired electrons, 
then the electrons pair per HO.  In the case of the 3 4Co d s  shell having nine electrons and six orbitals, three sets of electrons are 
paired.  Using Eqs. (15.15) and (23.137), the pairing energy is given by:  

 
   

2 2 2
0 0

3 4 3 32
3 4 0

2 8
( ) 0.22238 

0.80129
B

d s

e d s

e
E magnetic eV

m r a

  
     


 (23.144) 

Thus, after Eq. (23.28), the energy  ,3 4E Co d s  of the outer electron of the 3 4Co d s  shell is given by adding the magnetic 

energies of unpairing the 4s  (Eq. (23.141)) and 3d  electrons (Eq. (23.142)) and pairing of three sets of 3 4Co d s  electrons (Eq. 
(23.143)) to  ,3 4CoulombE Co d s  (Eq. (23.138)). 

 
 

   

2 2 2 2 2 22
0 0 0
2 3 2 3 2 3

3   0 3 4 4 3 3 4

2 2 2
,3 4

8

16.979889 0.02224 2 0.06325 3 0.22238 17.49830 

d pairs HO pairsd s e s e d e d s

e e ee
E Co d s

r m r m r m r

eV eV eV eV eV

  



   

      

   
 (23.145) 

Next, consider the formation of the Co L -bond MO wherein each cobalt atom has an 3 4Co d s  electron with an energy 
given by Eq. (23.144).  The total energy of the state of each cobalt atom is given by the sum over the nine electrons.  The sum 

 3 4T Co LE Co d s  of energies of 3 4Co d s  (Eq. (23.144)), Co , 2Co  , 3Co  , 4Co  , 5Co  , 6Co  , 7Co  , and 8Co   is: 

 

   
186.13 157.8 128.9 102.0 79.5 

3 4
51.3 33.50 17.084 ,3 4

186.13 157.8 128.9 102.0 79.5 
                        

51.3 33.50 17.084 17

T Co L

eV eV eV eV eV
E Co d s

eV eV eV E Co d s

eV eV eV eV eV

eV eV eV



    
      

   
 

   
773.71230 

.49830 
eV

eV

 
  

 

 (23.146) 

where  ,3 4E Co d s  is the sum of the energy of Co , 7.88101 eV , and the hybridization energy. 

The cobalt HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4Co d s  shell calculated from 

the Coulombic energy is: 

 
   

2 226

3 4 0
18 0 0

44
( ) 1 0.77374

8 773.71230 8 773.71230 Co L d s
n

e e
r Z n a

e eV e eV 


      
 
  (23.147) 
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Using Eqs. (15.19) and (23.146), the Coulombic energy  ,3 4Coulomb Co LE Co d s  of the outer electron of the 3 4Co d s  shell is: 

  
2 2

0 3 4 0 0

,3 4 17.58437 
8 8 0.77374Coulomb Co L

Co L d s

e e
E Co d s eV

r a 


 
     (23.148) 

The magnetic energy terms are those for the unpairing of the 4s  and 3d  electrons (Eqs. (23.141) and (23.142), respectively) and 
paring three sets of 3 4Co d s  electrons (Eq. (23.143)).  Using Eqs. (23.32), (23.148) and (23.141-23.143), the energy 

 ,3 4Co LE Co d s  of the outer electron of the 3 4Co d s  shell is: 

 
 

     
   

2 2 2 2 2 22
0 0 0

3 3 32 2 2
0 3 4 27 25 3 4

2 2 2
,3 4 3

8

                         17.58437 0.02224 2 0.06325 3 0.22238 18.10278 

Co L
Fe L d s e e e d s

e e ee
E Co d s

r m r m r m r

eV eV eV eV eV

  





   

      

  
 (23.149) 

Thus,  ,3 4TE Co L d s , the energy change of each 3 4Co d s  shell with the formation of the Co L -bond MO is given by the 

difference between Eq. (23.148) and Eq. (23.144): 
        ,3 4 ,3 4 ,3 4 18.10278 17.49830 0.60448 T Co LE Co L d s E Co d s E Co d s eV eV eV          (23.150) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Co L -bond MO of nCoL  is given in Table 23.41 with the force-equation parameters 27Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell.  The semimajor axis a  of carbonyl and organometallic 
compounds are solved using Eq. (15.51). 

For the Co L  functional groups, hybridization of the 4s  and 3d  AOs of Co  to form a single 3 4d s  shell forms an 
energy minimum, and the sharing of electrons between the 3 4Co d s  HO and L  AO to form a MO permits each participating 
orbital to decrease in radius and energy.  The F  AO has an energy of   17.42282 E F eV  , the Cl  AO has an energy of 

  12.96764 E Cl eV  , the 32C sp  HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), the Coulomb energy of 

3 4Co d s  HO is  ,3 4 16.979889 CoulombE Co d s eV   (Eq. (23.138)), 13.605804 eV  is the magnitude of the Coulombic energy 

between the electron and proton of H  (Eq. (1.264)), and the 3 4Co d s  HO has an energy of  ,3 4 17.49830 E Co d s eV   (Eq. 

(23.144)).  To meet the equipotential condition of the union of the Co L  2H -type-ellipsoidal-MO with these orbitals, the 

hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the Co L -bond MO given by Eq. (15.77) is: 

    
 2

17.42282 
  3 4 0.99569

,3 4 17.49830 

E FAO eV
c FAO to Co d sHO

E Co d s eV


  


 (23.151) 

    
 2

12.96764 
  3 4 0.74108

,3 4 17.49830 

E ClAO eV
C ClAO to Co d sHO

E Co d s eV


  


 (23.152) 

    
     

3

3 3
2 2

, 2 14.63489 
2   3 4 2 0.91771 0.79097

,3 4 16.97989 Coulomb

E C sp eV
c C sp HO to Co d sHO c C sp HO

E Co d s eV


  


 (23.153) 

      
 2 2

13.605804 
  3 4   3 4 0.80129

,3 4 16.97989 Coulomb

E H eV
c HAO to Co d sHO C HAO to Co d sHO

E Co d s eV


   


 (23.154) 

where Eqs. (15.76), (15.79), and (13.430) were used in Eq. (23.152) and Eq. (15.71) was used in Eq. (23.153).  Since the energy 
of the MO is matched to that of the 3 4Co d s  HO in coordinate compounds,  /E AO HO  in Eq. (15.61) is  ,3 4E Co d s  given 

by Eq. (23.144) and  /E AO HO  in Eq. (15.61) of carbonyl compounds is  ,3 4CoulombE Co d s  given by Eq. (23.138).  

 3, .TE atom atom msp AO  of the Co L -bond MO is determined by considering that the bond involves an electron transfer 

from the cobalt atom to the ligand atom to form partial ionic character in the bond as in the case of the zwitterions such as 

2H B F   given in the Halido Boranes section.  For the coordinate compounds,  3, .TE atom atom msp AO  is 1.20896 eV , 

two times the energy of Eq. (23.149).  For the Co C  bonds of carbonyl compounds,  3, .TE atom atom msp AO  is 

1.13379 eV  (Eq. (14.247)), and the C O  functional group of carbonyls is equivalent to that of vanadium carbonyls. 
The symbols of the functional groups of cobalt coordinate compounds are given in Table 23.40.  The geometrical (Eqs. 

(15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of cobalt coordinate compounds are given in Tables 23.41, 23.42, and 23.43, respectively.  The total energy of each 
cobalt coordinate compound given in Table 23.44 was calculated as the sum over the integer multiple of each  GroupDE  of Table 

23.43 corresponding to functional-group composition of the compound.  The charge-densities of exemplary cobalt carbonyl 
compound, cobalt tetracarbonyl hydride (  4

CoH CO ) comprising the concentric shells of atoms with the outer shell bridged by 

one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 23.9. 
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Figure 23.9.   Cobalt Tetracarbonyl Hydride. Color scale, translucent view of the charge-density of  4

CoH CO  showing the 

orbitals of the Co , C , and O  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions 

to the corresponding outer shell of the atoms participating in each bond, and the nuclei (red, not to scale). 
 

 
 
Table 23.40.   The symbols of the functional groups of cobalt coordinate compounds. 
 

Functional Group Group Symbol
CoF2 group of 2CoF  Co F  

CoCl group of CoCl  Co Cl  (a) 
CoCl2 group of 2CoCl  Co Cl  (b) 

CoCl3 group of 3CoCl  Co Cl  (c) 

CoH group of  4
CoH CO  Co H  

CoCO group of  4
CoH CO  Co CO  

C=O C O  
 
Table 23.41.   The geometrical bond parameters of cobalt coordinate compounds and experimental values. 
 

Parameter Co F  
Group 

Co Cl  (a) 
Group 

Co Cl  (b) 
Group

Co Cl  (c) 
Group

Co H  
Group 

Co CO  
Group 

C O  
Group 

en  2 3 3 3 1   

L  
3

7
4

 
3

4 3
4

  
3

2 4
4

  
3

6 2
4

  
3

5
4

   

 0 a a  2.22453 2.74437 2.70237 2.78637 1.66038 2.25172 1.184842 

 0'  c a  1.72222 1.92437 1.90959 1.93904 1.43949 1.73271 1.08850 

Bond Length 

 2 '  c Å  1.82272 2.03667 2.02102 2.05219 1.52349 1.83382 1.15202 

Exp. Bond 
Length 

 Å  

1.72 [54] 
( 2CoF ) 

2.09 [15] 
(CoCl ) 

2.09 [15] 
( CoCl ) 

2.09 [15] 
( CoCl ) 

1.542 [3] 
(CoH ) 

1.82 [55] 
(  4

Ni CO ) 
1.145 [29] 
(  5

Fe CO ) 

 0,  b c a  1.40801 1.95662 1.91214 2.00100 0.82748 1.43804 0.46798 

e  0.77420 0.70121 0.70663 0.69590 0.86697 0.76951 0.91869 

 



Chapter 23 1382

 
T

a
b

le
 2

3
.4

2
.  

T
he

 M
O

 to
 H

O
 in

te
rc

ep
t g

eo
m

et
ri

ca
l b

on
d 

pa
ra

m
et

er
s 

of
 c

ob
al

t c
oo

rd
in

at
e 

co
m

po
un

ds
.  

E
T
 is

 E
T
 (

at
om

–a
to

m
,H

O
.A

O
).

 



Organometallic and Coordinate Functional Groups and Molecules  1383

Table 23.43. The energy parameters (eV) of functional groups of cobalt coordinate compounds.  
 

Parameters Co F  
Group 

Co Cl  
(a) 

Group

Co Cl  
(b) 

Group

Co Cl  
(c) 

Group

Co H  
Group 

Co CO  
Group 

C O  
Group 

1f  1 1 1 1 1 1 1 

1n  1 1 1 1 1 1 2 

2n  0 0 0 0 0 0 0 

3n  0 0 0 0 0 0 0 

1C  0.375 0.5 0.5 0.5 0.5 0.375 0.5 

2C  1 0.74108 0.74108 0.74108 0.80129 1 1 

1c  1 1 1 1 0.75 1 1 

2c  0.99569 1 1 1 0.80129 0.79097 0.85395 

3c  0 0 0 0 0 0 2 

4c  1 1 1 1 1 2 4 

5c  1 1 1 1 1 0 0 

1oC  0.375 0.5 0.5 0.5 0.5 0.375 0.5 

2oC  1 0.74108 0.74108 0.74108 0.80129 1 1 

 ( )eV eV  -32.43083 -24.59516 -25.09218 -24.11830 -30.00832 -25.31882 -134.96850

 ( )pV eV  7.90017 7.07026 7.12499 7.01677 9.45183 7.85231 24.99908 

 ( )T eV  7.28938 4.48102 4.64262 4.32790 9.03661 5.62211 56.95634 
 ( )mV eV  -3.64469 -2.24051 -2.32131 -2.16395 -4.51831 -2.81105 -28.47817 
 /  ( )AO HOE eV  -17.49830 -17.49830 -17.49830 -17.49830 -16.97989 -16.97989 0 

 
2

/  ( )AO HOH MOE eV  0 0 0 0 0 0 -18.22046 

 /  ( )AO HOTE eV  -17.49830 -17.49830 -17.49830 -17.49830 -16.97989 -16.97989 18.22046 

 2  ( )H MOTE eV  -38.38427 -32.78269 -33.14419 -32.43588 -33.01808 -31.63534 -63.27080 

 3, .  ( )TE atom atom msp AO eV  -1.20896 -1.20896 -1.20896 -1.20896 0 -1.13379 -3.58557 

   ( )MOTE eV  -39.59324 -33.99165 -34.35315 -33.64484 -33.01808 -32.76916 -66.85630 

 15 10  /rad s  15.1528 9.19478 5.66480 5.41058 12.2308 7.49254 22.6662 

 ( )KE eV  9.97387 6.05217 3.72867 3.56134 8.05053 4.93172 14.91930 

 ( )DE eV  -0.24738 -0.16544 -0.13123 -0.12561 -0.18534 -0.14397 -0.25544 

 ( )KvibE eV  0.09448 
[54] 

0.05222 
[56] 

0.05222 
[56] 

0.05222 
[56] 

0.23887 
[57] 

0.07181 
[58] 

0.24962 
[29] 

 ( )oscE eV  -0.20014 -0.13933 -0.10512 -0.09950 -0.06590 -0.10806 -0.13063 

 ( )magE eV  0.22238 0.22238 0.22238 0.22238 0.22238 0.14803 0.11441 

   ( )GroupTE eV  -39.79337 -34.13098 -34.45827 -33.74434 -33.08398 -32.87722 -67.11757 

 4  /  ( )c AO HOinitialE eV   -17.49830 -17.49830 -17.49830 -17.49830 -16.97989 -14.63489 -14.63489 

 5  /  ( )c AO HOinitialE eV  -17.42282 -12.96764 -12.96764 -12.96764 -13.59844 0 0 

   ( )GroupDE eV  4.87226 3.66504 3.99233 3.27840 2.50565 3.60744 8.34918 
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NICKEL FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of nickel is   2 84 3Ar s d  having the corresponding term 3

4F .  The total energy of the state is given by 

the sum over the ten electrons.  The sum  ,3 4TE Ni d s  of experimental energies [1] of Ni , Ni , 2Ni  , 3Ni  , 4Ni  , 5Ni  , 6Ni  , 
7Ni  , 8Ni  , and 9Ni   is: 

  
224.6 193 162 133 108 76.06 

,3 4 1012.55864 
54.9 35.19 18.16884 7.6398 T

eV eV eV eV eV eV
E Ni d s eV

eV eV eV eV

     
        

 (23.155) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Ni d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 227

3 4 0
18 0 0

( ) 55
0.73904

8 1012.55864 8 1012.55864 d s
n

Z n e e
r a

e eV e eV 


    (23.156) 

where 28Z   for nickel.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Ni d s  of the outer electron of the 3 4Ni d s  shell 

is: 

  
2 2

0 3 4 0 0

,3 4 18.410157 
8 8 0.73904Coulomb

d s

e e
E Ni d s eV

r a 
 

     (23.157) 

During hybridization, the spin-paired 4s  electrons and the three sets of paired 3d  electrons are promoted to the 3 4Ni d s  shell as 
initially unpaired electrons.  The energies for the promotions are given by Eq. (15.15) at the initial radii of the 4s  and 3d  
electrons.  From Eq. (10.102) with 28Z   and 28n  , the radius 28r  of the 4Ni s  shell is 

 28 01.78091r a  (23.158) 

and with 28Z   and 26n  , the radius 26r  of the 3Ni d  shell is: 

 26 01.15992r a  (23.159) 

Using Eqs. (15.15), (23.157), and (23.158), the unpairing energies are: 

 
   

2 2 2
0 0

4 3 32
28 0

2 8
( ) 0.02026 

1.78091
B

s

e

e
E magnetic eV

m r a

  
  


 (23.160) 

 
   

2 2 2
0 0

3 3 32
26 0

2 8
( ) 0.07331 

1.15992
B

d

e

e
E magnetic eV

m r a

  
  


 (23.161) 

The electrons from the 4s  and 3d  shells successively fill unoccupied HOs until the HO shell is filled with unpaired electrons, 
then the electrons pair per HO.  In the case of the 3 4Ni d s  shell having ten electrons and six orbitals, four sets of electrons are 
paired.  Using Eqs. (15.15) and (23.155), the pairing energy is given by: 
 

 
   

2 2 2
0 0

3 4 3 32
3 4 0

2 8
( ) 0.28344 

0.73904
B

d s

e d s

e
E magnetic eV

m r a

  
     


 (23.162) 

 

Thus, after Eq. (23.28), the energy  ,3 4E Ni d s  of the outer electron of the 3 4Ni d s  shell is given by adding the magnetic 

energies of unpairing the 4s  (Eq. (23.159)) and 3d  electrons (Eq. (23.160)) and pairing of four sets of 3 4Ni d s  electrons (Eq. 
(23.161)) to  ,3 4CoulombE Ni d s  (Eq. (23.156)). 
 

 
 

   

2 2 2 2 2 22
0 0 0
2 3 2 3 2 3

3   0 3 4 4 3 3 4

2 2 2
,3 4

8

18.410157 0.02026 3 0.07331 4 0.28344 19.30374 

d pairs HO pairsd s e s e d e d s

e e ee
E Ni d s

r m r m r m r

eV eV eV eV eV

  



   

      

   
 (23.163) 

 

Next, consider the formation of the Ni L -bond MO wherein each nickel atom has a 3 4Ni d s  electron with an energy 
given by Eq. (23.162).  The total energy of the state of each nickel atom is given by the sum over the ten electrons.  The sum 

 3 4T Ni LE Ni d s  of energies of 3 4Ni d s  (Eq. (23.162)), Ni , 2Ni  , 3Ni  , 4Ni  , 5Ni  , 6Ni  , 7Ni  , 8Ni  , and 9Ni   is: 

 

   
224.6 193 162 133 108 76.06 

3 4
54.9 35.19 18.16884 ,3 4

224.6 193 162 133 108 76.06 
                        

54.9 35.19 18.16884

T Ni L

eV eV eV eV eV eV
E Ni d s

eV eV eV E Ni d s

eV eV eV eV eV eV

eV eV



     
      

    
 

  
1024.22258 

 19.30374 
eV

eV eV

 
   

 (23.164) 

 

where  ,3 4E Ni d s  is the sum of the energy of Ni , 7.6398 eV , and the hybridization energy. 

The nickel HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4Ni d s  shell calculated from 

the Coulombic energy is: 



Chapter 23 1386

 
   

2 227

3 4 0
18 0 0

54
( ) 1 0.71734

8 1024.22258 8 1024.22258 Ni L d s
n

e e
r Z n a

e eV e eV 


 
     
 
  (23.165) 

Using Eqs. (15.19) and (23.164), the Coulombic energy  ,3 4Coulomb Ni LE Ni d s  of the outer electron of the 3 4Ni d s  shell is 

  
2 2

0 3 4 0 0

,3 4 18.96708 
8 8 0.71734Coulomb Ni L

Ni L d s

e e
E Ni d s eV

r a 


 
     (23.166) 

The magnetic energy terms are those for the unpairing of the 4s  and 3d  electrons (Eqs. (23.159) and (23.160), respectively) and 
paring four sets of 3 4Ni d s  electrons (Eq. (23.161)).  Using Eqs. (23.32), (23.165) and (23.159-23.161), the energy 

 ,3 4Ni LE Ni d s  of the outer electron of the 3 4Ni d s  shell is: 

 
 

     
   

2 2 2 2 2 22
0 0 0

3 3 32 2 2
0 3 4 28 26 3 4

2 2 2
,3 4 3 4

8

                         18.96708 0.02026 3 0.07331 4 0.28344 19.86066 

Ni L
Ni L d s e e e d s

e e ee
E Ni d s

r m r m r m r

eV eV eV eV eV

  





   

      

  
 (23.167) 

Thus,  ,3 4TE Ni L d s , the energy change of each 3 4Ni d s  shell with the formation of the Ni L -bond MO is given by the 

difference between Eq. (23.166) and Eq. (23.162): 
        ,3 4 ,3 4 ,3 4 19.86066 19.30374 0.55693 T Ni LE Ni L d s E Ni d s E Ni d s eV eV eV          (23.168) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Ni L -bond MO of nNiL  is given in Table 23.46 with the force-equation parameters 28Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell.  The semimajor axis a  of carbonyl and organometallic 
compounds are solved using Eq. (15.51). 

For the Ni L  functional groups, hybridization of the 4s  and 3d  AOs of Ni  to form a single 3 4d s  shell forms an 
energy minimum, and the sharing of electrons between the 3 4Ni d s  HO and L  AO to form a MO permits each participating 
orbital to decrease in radius and energy.  The Cl  AO has an energy of   12.96764 E Cl eV  , the 32arylC sp  HO has an energy 

of  3, 2 15.76868 arylE C sp eV   (Eq. (14.246)), the 32C sp  HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), 

the Coulomb energy of 3 4Ni d s  HO is  ,3 4 18.41016 CoulombE Ni d s eV   (Eq. (23.156)), and the 3 4Ni d s  HO has an energy of 

 ,3 4 19.30374 E Ni d s eV   (Eq. (23.162)).  To meet the equipotential condition of the union of the Ni L  2H -type-

ellipsoidal-MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the Ni L -bond MO 

given by Eq. (15.77) is: 

    
 2

12.96764 
  3 4 0.67177

,3 4 19.30374 

E ClAO eV
C ClAO to Ni d sHO

E Ni d s eV


  


 (23.169) 

    
     

3

3 3
2 2

, 2 14.63489 
2   3 4 2 0.91771 0.72952

,3 4 18.41016 Coulomb

E C sp eV
c C sp HO to Ni d sHO c C sp HO

E Ni d s eV


  


 (23.170) 

    
     

3

3 3
2 2

, 2 14.63489 
2   3 4 2 0.85252 0.67770

,3 4 18.41016 aryl aryl
Coulomb

E C sp eV
C C sp HO to Ni d sHO c C sp HO

E Ni d s eV


  


 (23.171) 

where Eqs. (15.76), (15.79), and (13.430) were used in Eq. (23.169) and Eqs. (15.76), (15.79), and (14.417) were used in Eq. 
(23.170).  Since the energy of the MO is matched to that of the 3 4Ni d s  HO in coordinate compounds,  /E AO HO  in Eq. 

(15.61) is  ,3 4E Ni d s  given by Eq. (23.162) and  /E AO HO  in Eq. (15.61) of carbonyl compounds and organometallics is 

 ,3 4CoulombE Ni d s  given by Eq. (23.156).   3, .TE atom atom msp AO  of the Ni L -bond MO is determined by considering 

that the bond involves an electron transfer from the nickel atom to the ligand atom to form partial ionic character in the bond as 
in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.  For the coordinate compounds, 

 3, .TE atom atom msp AO  is 1.11386 eV , two times the energy of Eq. (23.167).  For the Ni C  bonds of carbonyl 

compound,  4
Ni CO  and organometallic, nickelocene,  3, .TE atom atom msp AO  is 1.85837 eV  (two times Eq. (14.513)) 

and 0.92918 eV  (Eq. (14.513)), respectively.  The C O  functional group of  4
Ni CO  is equivalent to that of vanadium 

carbonyls.  The aromatic cyclopentadienyl moieties of organometallic  5 5 2
Ni C H  comprise 

3e

C C  and CH  functional groups 

that are equivalent to those given in the Aromatic and Heterocyclic Compounds section. 
The symbols of the functional groups of nickel coordinate compounds are given in Table 23.45.  The geometrical (Eqs. 

(15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of nickel coordinate compounds are given in Tables 23.46, 23.47, and 23.48, respectively.  The total energy of each 
nickel coordinate compound given in Table 23.49 was calculated as the sum over the integer multiple of each  GroupDE  of Table 
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23.48 corresponding to functional-group composition of the compound.  The charge-densities of exemplary nickel carbonyl and 
organometallic compounds, nickel tetracarbonyl (  4

Ni CO ) and bis-cylopentadienyl nickel or nickelocene (  5 5 2
Ni C H ) 

comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with 

one or more hydrogen MOs are shown in Figure 23.10A and B, respectively. 
 

 Figure 23.10.   (A) Nickel Tetracarbonyl. Color scale, translucent view of the charge-density of  4
Ni CO  showing the 

orbitals of the Ni , C , and O  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond, and the nuclei (red, not to scale).  (B) Nickelocene. Color 
scale, opaque view of the charge-density of  5 5 2

Ni C H  showing the orbitals of the Ni  and C  atoms at their radii and the 

ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atoms 

participating in each bond. 

 
 

Table 23.45.   The symbols of the functional groups of nickel coordinate compounds. 

Functional Group Group Symbol 
NiCl group of NiCl  Ni Cl  (a) 
NiCl2 group of 2NiCl  Ni Cl  (b) 

NiCO group of  4
Ni CO  Ni CO  

C=O C O  
NiCaryl group of 5 5 2( )Ni C H  5 5Ni C H  

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  

 

Table 23.46.   The geometrical bond parameters of nickel coordinate compounds and experimental values. 

Parameter Ni Cl  (a) 
Group 

Ni Cl  (b) 
Group 

Ni CO  
Group 

C O  
Group 

5 5Ni C H  

Group 

3e

C C  
Group 

CH  
Group 

en  3 3      

L  
3

5 5
4

  
3

4 6
4

       

 0 a a  2.83322 2.82843 2.22132 1.184842 3.00077 1.47348 1.60061 

 0'  c a  2.05367 2.05193 1.72098 1.08850 2.10426 1.31468 1.03299 

Bond 
Length 

 2 '  c Å  
2.17351 2.17167 1.82140 1.15202 2.22705 1.39140 1.09327 

Exp. Bond 
Length 

 Å  

2.137 [15, 59] 
( NiCl ) 

2.09 [15, 59] 
( 2NiCl ) 

2.137 [15, 59] 
( NiCl ) 

2.09 [15, 59] 
( 2NiCl ) 

1.82 [55] 
(  4

Ni CO ) 
1.15 [55] 

(  4
Ni CO ) 

2.185 [60] 
(  5 5 2

Ni C H ) 
1.399 [3] 
(benzene) 

1.101 [3] 
(benzene) 

 0,  b c a  1.95181 1.94669 1.40446 0.46798 2.13933 0.66540 1.22265 

e  0.72485 0.72547 0.77475 0.91869 0.70124 0.89223 0.64537
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Table 23.48.   The energy parameters (eV) of functional groups of nickel coordinate compounds.  
 
Parameters Ni Cl  

(a) 
Group 

Ni Cl  
(b) 

Group

Ni CO  
Group 

C O  
Group 

5 5Ni C H  

Group 

3e

C C  
Group 

CH  
Group 

1f  1 1 1 1 1 0.75 1 

1n  1 1 1 2 1 2 1 

2n  0 0 0 0 0 0 0 

3n  0 0 0 0 0 0 0 

1C  0.5 0.5 0.375 0.5 0.5 0.5 0.75 

2C  0.67177 0.67177 1 1 0.67770 0.85252 1 

1c  1 1 1 1 1 1 1 

2c  1 1 0.72952 0.85395 1 0.85252 0.91771 

3c  0 0 0 2 0 0 1 

4c  1 1 2 4 2 3 1 

5c  1 1 0 0 0 0 1 

1oC  0.5 0.5 0.375 0.5 0.5 0.5 0.75 

2oC  0.67177 0.67177 1 1 0.67770 0.85252 1 

 ( )eV eV  -24.32206 -24.37691 -23.81088 -134.96850 -22.49426 -101.12679 -37.10024 

 ( )pV eV  6.62512 6.63072 7.90586 24.99908 6.46585 20.69825 13.17125 

 ( )T eV  4.29230 4.30926 5.35963 56.95634 3.74808 34.31559 11.58941 
 ( )mV eV  -2.14615 -2.15463 -2.67981 -28.47817 -1.87404 -17.15779 -5.79470 
 /  ( )AO HOE eV  -19.30374 -19.30374 -18.41016 0 -18.41016 0 -14.63489 

 
2

/  ( )AO HOH MOE eV  0 0 0 -18.22046 -0.92918 0 -1.13379 

 /  ( )AO HOTE eV  -19.30374 -19.30374 -18.41016 18.22046 -17.48097 0 -13.50110 

 2  ( )H MOTE eV  -34.85452 -34.89529 -31.63537 -63.27080 -31.63535 -63.27075 -31.63539 

 3, .  ( )TE atom atom msp AO eV  -1.11386 -1.11386 -1.85837 -3.58557 -0.92918 -2.26759 -0.56690 

   ( )MOTE eV  -35.96838 -36.00914 -33.49374 -66.85630 -32.56455 -65.53833 -32.20226 

 15 10  /rad s  8.78663 8.82133 7.64687 22.6662 7.69080 49.7272 26.4826 

 ( )KE eV  5.78351 5.80635 5.03330 14.91930 5.06222 32.73133 17.43132 

 ( )DE eV  -0.17113 -0.17166 -0.14866 -0.25544 -0.14495 -0.35806 -0.26130 

 ( )KvibE eV  0.05257 
[59] 

0.05257 
[59] 

0.04711 
[55] 

0.24962 
[29] 

0.04711 
[55] 

0.19649 
[30] 

0.35532 
Eq. 

(13.458)
 ( )oscE eV  -0.14484 -0.14537 -0.12510 -0.13063 -0.12139 -0.25982 -0.08364 

 ( )magE eV  0.28344 0.28344 0.14803 0.11441 0.14803 0.14803 0.14803 

   ( )GroupTE eV  -36.11322 -36.15452 -33.61884 -67.11757 -32.68594 -49.54347 -32.28590 

 4  /  ( )c AO HOinitialE eV   -19.30374 -19.30374 -14.63489 -14.63489 -14.63489 -14.63489 -14.63489 

 5  /  ( )c AO HOinitialE eV  -12.96764 -12.96764 0 0 0 0 -13.59844 

   ( )GroupDE eV  3.84184 3.88314 4.34906 8.34918 1.14858 5.63881 3.90454 
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COPPER FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of copper is   1 104 3Ar s d  having the corresponding term 2

1/ 2S .  The single outer 4s  [61] electron 

having an energy of 7.72638 eV  [1] forms a single bond to give an electron configuration with filled 3d  and 4s  shells. 
Additional bonding of copper is possible involving a double bond or two single bonds by the hybridization of the 3d  and 4s  
shells to form a 3 4Cu d s  shell and the donation of an electron per bond.  The total energy of the copper 2

1/ 2S  state is given by 

the sum over the eleven electrons.  The sum  ,3 4TE Cu d s  of experimental energies [1] of Cu , Cu , 2Cu  , 3Cu  , 4Cu  , 5Cu  , 
6Cu  , 7Cu  , 8Cu  , 9Cu  , and 10Cu   is 

  
265.3 232 199 166 139 103 79.8 

,3 4 1306.33978 
57.38 36.841 20.2924 7.72638 T

eV eV eV eV eV eV eV
E Cu d s eV

eV eV eV eV

      
        

 (23.172) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Cu d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 228

3 4 0
18 0 0

( ) 66
0.68740

8 1306.33978 8 1306.33978 d s
n

Z n e e
r a

e eV e eV 


    (23.173) 

where 29Z   for copper.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Cu d s  of the outer electron of the 3 4Cu d s  

shell is: 

  
2 2

0 3 4 0 0

,3 4 19.793027 
8 8 0.68740Coulomb

d s

e e
E Cu d s eV

r a 
 

     (23.174) 

During hybridization, the unpaired 4s  electron and five sets of spin-paired 3d  electrons are promoted to the 3 4Cu d s  shell as 
initially unpaired electrons.  The energies for the promotions of the initially paired electrons are given by Eq. (15.15) at the 
initial radius of the 3d  electrons.  From Eq. (10.102) with 29Z   and 28n  , the radius 28r  of the 3Cu d  shell is: 

 28 01.34098r a  (23.175) 

Using Eqs. (15.15), and (23.174), the unpairing energy is: 

 
   

2 2 2
0 0

3 3 32
28 0

2 8
( ) 0.04745 

1.34098
B

d

e

e
E magnetic eV

m r a

  
  


 (23.176) 

The electrons from the 4s  and 3d  shells successively fill unoccupied HOs until the HO shell is filled with unpaired electrons, 
then the electrons pair per HO.  In the case of the 3 4Cu d s  shell having eleven electrons and six orbitals, five sets of electrons 
are paired.  Using Eqs. (15.15) and (23.172), the pairing energy is given by:  

 
   

2 2 2
0 0

3 4 3 32
3 4 0

2 8
( ) 0.35223 

0.68740
B

d s

e d s

e
E magnetic eV

m r a

  
     


 (23.177) 

Thus, after Eq. (23.28), the energy  ,3 4E Cu d s  of the outer electron of the 3 4Cu d s  shell is given by adding the magnetic 

energies of unpairing five sets of 3d  electrons (Eq. (23.175)) and pairing of five sets of 3 4Cu d s  electrons (Eq. (23.176)) to 

 ,3 4CoulombE Cu d s  (Eq. (23.173)). 

 
 

   

2 2 2 2 2 22
0 0 0
2 3 2 3 2 3

3   0 3 4 4 3 3 4

2 2 2
,3 4

8

19.793027 0 5 0.04745 5 0.35223 21.31697 

d pairs HO pairsd s e s e d e d s

e e ee
E Cu d s

r m r m r m r

eV eV eV eV eV

  



   

      

   
 (23.178) 

Next, consider the formation of the Cu L -bond MO wherein each copper atom has a 3 4Cu d s  electron with an energy 
given by Eq. (23.178).  The total energy of the state of each copper atom is given by the sum over the eleven electrons.  The sum 

 3 4T Cu LE Cu d s  of energies of 3 4Cu d s  (Eq. (23.178)), Cu , 2Cu  , 3Cu  , 4Cu  , 5Cu  , 6Cu  , 7Cu  , 8Cu  , 9Cu  , and 10Cu   

is: 

 

 
 

265.3 232 199 166 

3 4 139 103 79.8 57.38 

36.841 20.2924 ,3 4

265.3 232 199 166 

                        139 103 79.8 57.38 

T Cu L

eV eV eV eV

E Cu d s eV eV eV eV

eV eV E Cu d s

eV eV eV eV

eV eV eV eV



   
 

      
    

  
      1319.93037 

36.841 20.2924 21.31697 

eV

eV eV eV

 
    
    

 (23.179) 

where  ,3 4E Cu d s  is the sum of the energy of Cu , 7.72638 eV , and the hybridization energy. 

The copper HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4Cu d s  shell calculated from 

the Coulombic energy is: 
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2 228

3 4 0
18 0 0

65
( ) 1 0.67002

8 1319.93037 8 1319.93037 Cu L d s
n

e e
r Z n a

e eV e eV 


 
     
 
  (23.180) 

Using Eqs. (15.19) and (23.179), the Coulombic energy  ,3 4Coulomb Cu LE Cu d s  of the outer electron of the 3 4Cu d s  shell is: 

  
2 2

0 3 4 0 0

,3 4 20.30662 
8 8 0.67002Coulomb Cu L

Cu L d s

e e
E Cu d s eV

r a 


 
     (23.181) 

The magnetic energy terms are those for the unpairing of the five sets of 3d  electrons (Eq. (23.175)) and pairing of five sets of 
3 4Cu d s  electrons (Eq. (23.176)).  Using Eqs. (23.32), (23.180), and (23.175-23.176), the energy  ,3 4Cu LE Cu d s  of the outer 

electron of the 3 4Cu d s  shell is: 

 
 

     
   

2 2 2 2 2 22
0 0 0

3 3 32 2 2
0 3 4 29 28 3 4

2 2 2
,3 4 0 5 5

8

                         20.30662 0 5 0.04745 5 0.35223 21.83056 

Cu L
Cu L d s e e e d s

e e ee
E Cu d s

r m r m r m r

eV eV eV eV eV

  





   

      

  
 (23.182) 

Thus,  ,3 4TE Cu L d s , the energy change of each 3 4Cu d s  shell with the formation of the Cu L -bond MO is given by the 

difference between Eq. (23.181) and Eq. (23.177). 
        ,3 4 ,3 4 ,3 4 21.83056 21.31697 0.51359 T Cu LE Cu L d s E Cu d s E Cu d s eV eV eV          (23.183) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Cu L -bond MO of nCuL  is given in Table 23.51 with the force-equation parameters 29Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell. 
For the Cu L  functional groups, hybridization of the 4s  and 3d  AOs of Cu  to form a single 3 4d s  shell forms an 

energy minimum, and the sharing of electrons between the 3 4Cu d s  HO and L  AO to form a MO permits each participating 
orbital to decrease in radius and energy.  The F  AO has an energy of   17.42282 E F eV  , the Cl  AO has an energy of 

  12.96764 E Cl eV  , the O  AO has an energy of   13.61805 E O eV  , the Cu  AO has an energy of 

  7.72638 E Cu eV  , and the 3 4Cu d s  HO has an energy of  ,3 4 21.31697 E Cu d s eV   (Eq. (23.177)).  To meet the 

equipotential condition of the union of the Cu L  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor(s), at 

least one of 2c  and 2C  of Eq. (15.61) for the Cu L -bond MO given by Eq. (15.77) is: 

    
 2

7.72638 
  0.44346

17.42282 

E CuAO eV
C FAO to CuAO

E FAO eV


  


 (23.184) 

      
 2 2

7.72638 
    0.59582

12.96764 

E CuAO eV
c ClAO to CuAO C ClAO to CuAO

E ClAO eV


   


 (23.185) 

    
 2

17.42282 
  3 4 0.81732

,3 4 21.31697 

E FAO eV
C FAO to Cu d sHO

E Cu d s eV


  


 (23.186) 

    
 2

13.61805 
  3 4 0.63884

,3 4 21.31697 

E O eV
c O to Cu d sHO

E Cu d s eV


  


 (23.187) 

Since the energy of the MO is matched to that of the 3 4Cu d s  HO in coordinate compounds,  /E AO HO  in Eq. (15.61) is 

 ,3 4E Cu d s  given by Eq. (23.177) and twice this value for double bonds.   3, .TE atom atom msp AO  of the Cu L -bond MO 

is determined by considering that the bond involves an electron transfer from the copper atom to the ligand atom to form partial 
ionic character in the bond as in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.  For the two-

bond coordinate compounds,  3, .TE atom atom msp AO  is 1.02719 eV , two times the energy of Eq. (23.182). 

The symbols of the functional groups of copper coordinate compounds are given in Table 23.50.  The geometrical (Eqs. 
(15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of copper coordinate compounds are given in Tables 23.51, 23.52, and 23.53, respectively.  The total energy of each 
copper coordinate compound given in Table 23.54 was calculated as the sum over the integer multiple of each  GroupDE  of Table 

23.53 corresponding to functional-group composition of the compound.  The charge-densities of exemplary copper coordinate 
compounds, copper chloride (CuCl ) and copper dichloride ( 2CuCl ) comprising the concentric shells of atoms with the outer 

shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 23.11A 

and B, respectively. 
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Figure 23.11.   (A) Copper Chloride.  Color scale, translucent view of the charge-density of CuCl  showing the orbitals of 
the Cu  and Cl  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the corresponding 

outer shell of the atoms participating in each bond, and the nuclei (red, not to scale).  (B) Copper Dichloride.  Color scale, 
translucent view of the charge-density of 2CuCl  showing the orbitals of the Cu  and Cl  atoms at their radii, the ellipsoidal 

surface of each 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atoms participating in each bond, 

and the nuclei (red, not to scale). 
 

 
 
 
Table 23.50.   The symbols of the functional groups of copper coordinate compounds. 
 

Functional Group Group Symbol
CuF group of CuF  Cu F  (a) 
CuF2 group of 2CuF  Cu F  (b) 

CuCl group of CuCl  Cu Cl  
CuO group of CuO  Cu O  

 
Table 23.51.  The geometrical bond parameters of copper coordinate compounds and experimental values. 
 

 
Parameter Cu F  (a) 

Group
Cu F  (b) 

Group
Cu Cl  
Group 

Cu O  
Group 

en  1 2 2 1 

L  
3

10 2
4

  
3

2 4
4

  0 
3

3 10
4

  

 0 a a  1.90455 2.18842 2.00000 1.90208 

 0'  c a  1.69208 1.63632 1.83213 1.59251 

Bond Length 

 2 '  c Å  1.79083 1.73181 1.93905 1.68544 

Exp. Bond Length 

 Å  
1.7449 [3] 

(CuF ) 
1.7449 [3] 

( CuF ) 
2.051 [15] 
(CuCl ) 

1.724 [15] 
( CuO ) 

 0,  b c a  0.87417 1.45314 0.80205 1.04009 

e  0.88844 0.74772 0.91607 0.83725 
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Table 23.53.  The energy parameters (eV) of functional groups of copper coordinate compounds.  

Parameters Cu F  (a) 
Group

Cu F  (b) 
Group

Cu Cl  
Group 

Cu O  
Group 

1n  1 1 1 2 

2n  0 0 0 0 

3n  0 0 0 0 

1C  0.75 0.5 0.5 0.375 

2C  0.44346 0.81732 0.59582 1 

1c  0.75 1 1 1 

2c  1 1 0.59582 0.63884 

3c  0 0 0 0 

4c  1 1 1 2 

5c  1 1 1 2 

1oC  0.75 0.5 0.5 0.375 

2oC  0.44346 0.81732 0.59582 1 

 ( )eV eV  -34.12088 -32.18726 -27.68094 -52.91628 

 ( )pV eV  8.04085 8.31487 7.42620 17.08719 

 ( )T eV  8.95771 7.35401 6.92024 13.91013 
 ( )mV eV  -4.47886 -3.67700 -3.46012 -6.95506 
 /  ( )AO HOE eV  -7.72638 -21.31697 -7.72638 -42.633933 

 
2

/  ( )AO HOH MOE eV  0 0 0 0 

 /  ( )AO HOTE eV  -7.72638 -21.31697 -7.72638 -42.633933 

 2  ( )H MOTE eV  -29.32755 -41.51235 -24.52100 -68.46008 

 3, .  ( )TE atom atom msp AO eV  0 -1.02719 0 -1.02719 

   ( )MOTE eV  -29.32755 -42.53954 -24.52100 -69.48726 

 15 10  /rad s  29.1710 8.16340 7.97779 9.65069 

 ( )KE eV  19.20083 5.37329 5.25112 6.35225 

 ( )DE eV  -0.25424 -0.19508 -0.11116 -0.17324 

 ( )KvibE eV  0.07721 
[62] 

0.07721 
[62] 

0.05149 
[62] 

0.07937 
[62] 

 ( )oscE eV  -0.21563 -0.15648 -0.08542 -0.13355 

 ( )magE eV  0 0.35223 0 0.35223 

   ( )GroupTE eV  -29.54319 -42.69602 -24.60642 -69.75437 

 4  /  ( )c AO HOinitialE eV   -7.72638 -21.31697 -7.72638 -21.31697 

 5  /  ( )c AO HOinitialE eV  -17.42282 -17.42282 -12.96764 -13.61806 

   ( )GroupDE eV  4.39399 3.95623 3.91240 2.93219 
 
 
Table 23.54.   The total bond energies of gaseous-state copper coordinate compounds calculated using the functional group 
composition and the energies of Table 23.53 compared to the gaseous-state experimental values.  

Formula Name Cu F  (a) 
Group 

Cu F  (b) 
Group 

Cu Cl  
Group 

Cu O  
Group 

Calculated 
Total Bond 
Energy (eV) 

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

CuF Copper fluoride 1 0 0 0 4.39399 4.44620 [63] 0.01174
CuF2 Copper difluoride 0 2 0 0 7.91246 7.89040 [63] -0.00280
CuCl Copper chloride 0 0 1 0 3.91240 3.80870 [15] -0.02723
CuO Copper oxide 0 0 0 1 2.93219 2.90931 [63] -0.00787
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ZINC FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of zinc is   2 104 3Ar s d  having the corresponding term 1

0S .  The two outer 4s  [61] electrons having 

energies of 9.394199 eV  and 17.96439 eV  [1] hybridize to form a single shell comprising two HOs.  Each HO donates an 
electron to any single bond that participates in bonding with the HO such that two single bonds with ligands are possible to 
achieve a filled, spin-paired outer electron shell.  Then, the total energy of the 1

0S  state of the bonding zinc atom is given by the 

sum over the two electrons.  The sum  , 4TE Zn sHO  of experimental energies [1] of Zn , and Zn , is: 

    , 4 17.96439 9.394199 27.35859 TE Zn sHO eV eV eV      (23.188) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 4sHOr  of the 

4Zn s  HO shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 229

4 0
28 0 0

( ) 3
1.49194

8 27.35859 8 27.35859 sHO
n

Z n e e
r a

e eV e eV 


    (23.189) 

where 30Z   for zinc.  Using Eq. (15.14), the Coulombic energy  , 4CoulombE Zn sHO  of the outer electron of the 4Zn s  shell is 

  
2 2

0 4 0 0

, 4 9.119530 
8 8 1.49194Coulomb

sHO

e e
E Zn sHO eV

r a 
 

     (23.190) 

During hybridization, the spin-paired 4s  AO electrons are promoted to the 4Zn s  HO shell as unpaired electrons.  The energy 
for the promotion is given by Eq. (15.15) at the initial radius of the 4s  electrons.  From Eq. (10.102) with 30Z   and 30n  , 
the radius 30r  of the 4Zn s  AO shell is: 

 30 01.44832r a  (23.191) 

Using Eqs. (15.15) and (23.190), the unpairing energy is: 

 
   

2 2 2
0

4 3 32
30 0

2 8
( ) 0.03766 

1.44832
o B

s

e

e
E magnetic eV

m r a

  
  


 (23.192) 

Using Eqs. (23.189) and (23.191), the energy  , 4E Zn sHO  of the outer electron of the 4Zn s  HO shell is: 

  
 

2 22
0

32
0 4 30

2
, 4 9.119530 0.03766 9.08187 

8 sHO e

ee
E Zn sHO eV eV eV

r m r





      


 (23.193) 

Next, consider the formation of the Zn L -bond MO wherein each zinc atom has a 4Zn sHO  electron with an energy 
given by Eq. (23.192).  The total energy of the state of each zinc atom is given by the sum over the two electrons.  The sum 

 4T Zn LE Zn sHO  of energies of 4Zn sHO  (Eq. (23.192)) and Zn  is: 

       4 17.96439 , 4 17.96439 9.08187 27.04626 T Zn LE Zn sHO eV E Zn sHO eV eV eV          (23.194) 

where  , 4E Zn sHO  is the sum of the energy of Zn , 9.394199  eV eV , and the hybridization energy. 

The zinc HO donates an electron to each MO.  Using Eq. (23.30), the radius 4sHOr  of the 4Zn sHO  shell calculated from 

the Coulombic energy is: 

 
   

2 229

4 0
28 0 0

2
( ) 1 1.00611

8 27.04626 8 27.04626 Zn L sHO
n

e e
r Z n a

e eV e eV 


      
 
  (23.195) 

Using Eqs. (15.19) and (23.194), the Coulombic energy  , 4Coulomb Zn LE Zn sHO  of the outer electron of the 4Zn sHO  shell is: 

  
2 2

0 4 0 0

, 4 13.52313 
8 8 1.00611Coulomb Zn L

Zn L sHO

e e
E Zn sHO eV

r a 


 
     (23.196) 

During hybridization, the spin-paired 2s  electrons are promoted to the 4Zn sHO  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (23.191).  Using Eqs. (23.195) and (23.191), the energy  , 4Zn LE Zn sHO  of the 

outer electron of the 4Zn s HO  shell is: 

  
 

2 22
0

32
0 4 30

2
, 4 13.52313 0.03766 13.48547 

8Zn L
Zn L sHO e

ee
E Zn sHO eV eV eV

r m r







      


 (23.197) 

Thus,  , 4TE Zn L sHO , the energy change of each 4Zn sHO  shell with the formation of the Zn L -bond MO is given by the 

difference between Eq. (23.196) and Eq. (23.192): 
        , 4 , 4 , 4 13.48547 9.08187 4.40360 T Zn LE Zn L sHO E Zn sHO E Zn sHO eV eV eV          (23.198) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Zn L -bond MO of nZnL  is given in Table 23.56 with the force-equation parameters 30Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 4s  HO shell.  The semimajor axis a  of organometallic compounds are solved 
using Eq. (15.51). 
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For the Zn L  functional groups, hybridization of the 4s  AOs of Zn  to form a single 4s  HO shell forms an energy 
minimum, and the sharing of electrons between the 4Zn s  HO and L  AO to form a MO permits each participating orbital to 
decrease in radius and energy.  The Cl  AO has an energy of   12.96764 E Cl eV  , the 32C sp  HO has an energy of 

 3, 2 14.63489 E C sp eV   (Eq. (15.25)), the Coulomb energy of the 4Zn s  HO is  , 4 9.119530 CoulombE Zn sHO eV   (Eq. 

(23.189)), and the 4Zn s  HO has an energy of  , 4 9.08187 E Zn sHO eV   (Eq. (23.192)).  To meet the equipotential condition 

of the union of the Zn L  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of 

Eq. (15.61) for the Zn L -bond MO given by Eq. (15.77) is: 

    
 2

,34 9.08187 
  4 0.70035

12.96764 

E Zn sHO eV
C ClAO to Zn sHO

E ClAO eV


  


 (23.199) 

 

   
 

     

3 3
2 2

3
23

2   4 2   4

, 4 9.11953 
2 0.91771 0.57186

14.63489 , 2
Coulomb

c C sp HO to Zn sHO C C sp HO to Zn sHO

E Zn sHO eV
c C sp HO

eVE C sp




  



 (23.200) 

where Eqs. (15.76), (15.79), and (13.430) were used in Eq. (23.199).  Since the energy of the MO is matched to that of the 
4Zn sHO  in coordinate compounds,  /E AO HO  in Eq. (15.61) is  , 4E Zn sHO  given by Eq. (23.192) and  , 4E Zn sHO  for 

organometallics is  , 4CoulombE Zn sHO  given by Eq. (23.189).   3, .TE atom atom msp AO  of the Zn L -bond MO is 

determined by considering that the bond involves an electron transfer from the zinc atom to the ligand atom to form partial ionic 
character in the bond as in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.  For the 

coordinate compounds,  3, .TE atom atom msp AO  is 8.80720 eV , two times the energy of Eq. (23.197). 

The symbols of the functional groups of zinc coordinate compounds are given in Table 23.55.  The geometrical (Eqs. 
(15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of zinc coordinate compounds are given in Tables 23.56, 23.57, and 23.58, respectively.  The total energy of each 
zinc coordinate compound given in Table 22.59 was calculated as the sum over the integer multiple of each  GroupDE  of Table 

23.58 corresponding to functional-group composition of the compound.  The charge-densities of exemplary zinc coordinate and 
organometallic compounds, zinc chloride ( ZnCl ) and di-n-butylzinc (  4 9 2

Zn C H ) comprising the concentric shells of atoms 

with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in 

Figures 23.12A and B, respectively. 
 
Figure 23.12 .   (A) Zinc Chloride. Color scale, translucent view of the charge-density of ZnCl  showing the orbitals of the 
Zn  and Cl  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the corresponding 

outer shell of the atoms participating in each bond, and the nuclei (red, not to scale).  (B) Di-n-butylzinc.  Color scale, translucent 
view of the charge-density of  4 9 2

Zn C H  showing the orbitals of the Zn  and C  atoms at their radii, the ellipsoidal surface of 

each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atoms participating in each bond, and 

the nuclei (red, not to scale). 
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Table 23.55.   The symbols of the functional groups of zinc coordinate compounds. 
 

Functional Group Group Symbol
ZnCl group of ZnCl  Zn Cl  (a) 
ZnCl2 group of 2ZnCl  Zn Cl  (b) 

ZnCalkyl group of 'RZnR  Zn C  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CC bond (n-C) C C  
 
Table 23.56.   The geometrical bond parameters of zinc coordinate compounds and experimental values.  
 

Parameter Zn Cl  (a) 
Group 

Zn Cl  (b) 
Group 

Zn C  
Group 

 3 C H CH  

Group

 2 C H CH  

Group 

C C  
Group 

en  6 5     

L  
3

4
4

 10     

 0 a a  4.11547 3.83333 1.87715 1.64920 1.67122 2.12499 

 0'  c a  1.97928 1.91023 1.81177 1.04856 1.05553 1.45744 

Bond 
Length 

 2 '  c Å  
2.09478 2.02170 1.91750 1.10974 1.11713 1.54280 

Exp. Bond 
Length 

 Å  

2.05 [15] 
( 2ZnCl ) 

2.05 [15] 
( 2ZnCl ) 

1.930 [15] 
( 3 3CH ZnCH ) 

1.113 [3] 
(trimethylaluminum) 

1.107 [3] 
(C H  propane) 

1.117 [3] 
(C H  butane) 

1.107 [3] 
( C H  propane) 

1.117 [3] 
(C H  butane) 

1.532 [3] 
(propane) 
1.531 [3] 
(butane) 

 0,  b c a  3.60826 3.32347 0.49108 1.27295 1.29569 1.54616 

e  0.48094 0.49832 0.96517 0.63580 0.63159 0.68600
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Table 23.58.  The energy parameters (eV) of functional groups of zinc coordinate compounds.  

Parameters Zn Cl  (a) 
Group 

Zn Cl  (b) 
Group 

Zn C  
Group 

3CH  

Group
2CH  

Group 

C C  
Group 

1n  1 1 1 3 2 1 

2n  0 0 0 2 1 0 

3n  0 0 0 0 0 0 

1C  0.75 0.75 0.5 0.75 0.75 0.5 

2C  0.70035 0.70035 0.57186 1 1 1 

1c  1 1 1 1 1 1 

2c  1 1 0.57186 0.91771 0.91771 0.91771 

3c  0 0 2 0 1 0 

4c  1 1 2 1 1 2 

5c  1 1 0 3 2 0 

1oC  0.75 0.75 0.5 0.75 0.75 0.5 

2oC  0.70035 0.70035 0.57186 1 1 1 

 ( )eV eV  -14.41370 -15.58624 -34.63883 -107.32728 -70.41425 -28.79214 

 ( )pV eV  6.87412 7.12260 7.50965 38.92728 25.78002 9.33352 

 ( )T eV  1.75116 2.03299 9.22644 32.53914 21.06675 6.77464 
 ( )mV eV  -0.87558 -1.01649 -4.61322 -16.26957 -10.53337 -3.38732 
 /  ( )AO HOE eV  -9.08187 -9.08187 -9.11953 -15.56407 -15.56407 -15.56407 

 
2

/  ( )AO HOH MOE eV  0 0 0 0 0 0 

 /  ( )AO HOTE eV  -9.08187 -9.08187 -9.11953 -15.56407 -15.56407 -15.56407 

 2  ( )H MOTE eV  -15.74587 -16.52901 -31.63548 -67.69451 -49.66493 -31.63537 

 3, .  ( )TE atom atom msp AO eV  -8.80720 -8.80720 0 0 0 -1.85836 

   ( )MOTE eV  -24.55307 -25.33621 -31.63537 -67.69450 -49.66493 -33.49373 

 15 10  /rad s  4.37145 3.99216 8.59541 24.9286 24.2751 9.43699 

 ( )KE eV  2.87737 2.62771 5.65765 16.40846 15.97831 6.21159 

 ( )DE eV  -0.08240 -0.08125 -0.14887 -0.25352 -0.25017 -0.16515 

 ( )KvibE eV  0.04842 
[14] 

0.04842 
[14] 

0.06236 
[64] 

0.35532 
(Eq. 

(13.458))

0.35532 
(Eq. 

(13.458)) 

0.12312 
[6] 

 ( )oscE eV  -0.05819 -0.05704 -0.11768 -0.22757 -0.14502 -0.10359 

 ( )magE eV  0.03445 0.03445 0.14803 0.14803 0.14803 0.14803 

   ( )GroupTE eV  -24.61126 -25.39325 -31.75305 -67.92207 -49.80996 -33.59732 

 4  /  ( )c AO HOinitialE eV   -9.08187 -9.08187 -14.63489 -14.63489 -14.63489 -14.63489 

 5  /  ( )c AO HOinitialE eV  -12.96764 -12.96764 0 -13.59844 -13.59844 0 

   ( )GroupDE eV  2.56175 3.34374 2.18721 12.49186 7.83016 4.32754 
 
Table 23.59.  The total bond energies of gaseous-state zinc coordinate compounds calculated using the functional group 
composition and the energies of Table 23.58 compared to the gaseous-state experimental values. 
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GERMANIUM ORGANOMETALLIC FUNCTIONAL GROUPS AND MOLECULES 
The branched-chain alkyl germanium molecules, 2 2n nGeC H  , comprise at least one Ge  bound by a carbon-germanium single 

bond comprising a C Ge  group, and the digermanium molecules further comprise a Ge Ge  functional group.  Both comprise 
at least a terminal methyl group ( 3CH ) and may comprise methylene ( 2CH ), methylyne (CH ), and C C  functional groups.  

The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be 
identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl 
(  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  

bonds comprise functional groups.   
As in the cases of carbon, silicon, and tin, the bonding in the germanium atom involves four 3sp  hybridized orbitals.  For 

germanium, they are formed from the 4 p  and 4s  electrons of the outer shells.  Ge C  bonds form between a 34Ge sp  HO and a 
33C sp  HO, and Ge Ge  bonds form between between 34Ge sp  HOs to yield germanes and digermanes, respectively.  The 

geometrical parameters of each Ge C  and Ge Ge  functional group is solved using Eq. (15.51) and the relationships between 
the prolate spheroidal axes.  Then, the sum of the energies of the 2H -type ellipsoidal MOs is matched to that of the 34Ge sp  shell 

as in the case of the corresponding carbon, silicon, and tin molecules.  As in the case of the transition metals, the energy of each 
functional group is determined for the effect of the electron density donation from each participating 33C sp  HO and 34Ge sp  
HO to the corresponding MO that maximizes the bond energy. 

The Ge  electron configuration is 2 10 2[ ]4 3 4Ar s d p , and the orbital arrangement is: 

 

       4p state

                

  1        0       -1

   (23.201) 

corresponding to the ground state 3
0P .  The energy of the germanium 4 p  shell is the negative of the ionization energy of the 

germanium atom [1] given by 
  , 4  ( ;  ) 7.89943 E Ge p shell E ionization Ge eV     (23.202) 

The energy of germanium is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264), but the 
atomic orbital may hybridize in order to achieve a bond at an energy minimum.  After Eq. (13.422), the 4Ge s  atomic orbital 
(AO) combines with the 4Ge p  AOs to form a single 34Ge sp  hybridized orbital (HO) with the orbital arrangement: 

 

3             4sp  state

                       

 0,0      1,-1      1,0       1,1

     (23.203) 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the four 

electrons.  The sum  3, 4TE Ge sp  of experimental energies [1] of Ge , Ge , 2Ge  , and 3Ge   is: 

  3, 4 45.7131 34.2241 15.93461 7.89943 =103.77124 TE Ge sp eV eV eV eV eV     (23.204) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 34sp
r  of the 

34Ge sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 
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    (23.205) 

where 32Z   for germanium.  Using Eq. (15.14), the Coulombic energy  3, 4CoulombE Ge sp  of the outer electron of the 34Ge sp  

shell is: 
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, 4 10.37712 
8 8 1.31113Coulomb

sp

e e
E Ge sp eV

r a 
 

     (23.206) 

During hybridization, the spin-paired 4s  electrons are promoted to the 34Ge sp  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 4s  electrons.  From Eq. (10.102) with 32Z   
and 30n  , the radius 30r  of the 4Ge s  shell is: 

 30 01.19265r a  (23.207) 

Using Eqs. (15.15) and (23.207), the unpairing energy is: 
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 (23.208) 

Using Eqs. (23.206) and (23.208), the energy  3, 4E Ge sp  of the outer electron of the 34Ge sp  shell is: 
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 (23.209) 

Next, consider the formation of the Ge L -bond MO of gernmanium compounds wherein L  is a ligand including 
germanium and carbon and each gemanium atom has a 34Ge sp  electron with an energy given by Eq. (23.209).  The total energy 

of the state of each germanium atom is given by the sum over the four electrons.  The sum  3, 4T Ge LE Ge sp  of energies of 
34Ge sp  (Eq. (23.209)), Ge , 2Ge  , and 3Ge   is: 

 

    
 

3 3, 4 45.7131 34.2241 15.93461 , 4

                        45.7131 34.2241 15.93461 10.30968 

                        106.18149 

T Ge LE Ge sp eV eV eV E Ge sp

eV eV eV eV

eV

     

    

 

 (23.210) 

where  3, 4E Ge sp  is the sum of the energy of Ge , 7.89943 eV , and the hybridization energy. 

A minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the 
Hydroxyl Radical (OH ) section with the donation of electron density from the participating 34Ge sp  HO to each Ge L -bond 

MO.  Consider the case wherein each 34Ge sp  HO donates an excess of 25% of its electron density to the Ge L -bond MO to 
form an energy minimum.  By considering this electron redistribution in the germanium molecule as well as the fact that the 
central field decreases by an integer for each successive electron of the shell, in general terms, the radius 34Ge L sp

r


 of the 34Ge sp  

shell may be calculated from the Coulombic energy using Eq. (15.18). 
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  (23.211) 

Using Eqs. (15.19) and (23.211), the Coulombic energy  3, 4Coulomb Ge LE Ge sp  of the outer electron of the 34Ge sp  shell is: 
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     (23.212) 

During hybridization, the spin-paired 4s  electrons are promoted to the 34Ge sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (23.208).  Using Eqs. (23.208) and (23.212), the energy  3, 4Ge LE Ge sp  of the 

outer electron of the 34Ge sp  shell is: 
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 (23.213) 

Thus,  3, 4TE Ge L sp , the energy change of each 34Ge sp  shell with the formation of the Ge L -bond MO is given by the 

difference between Eq. (23.213) and Eq. (23.209): 
        3 3 3, 4 , 4 ,4 10.82297 10.30968 0.51329 T Ge LE Ge L sp E Ge sp E Ge sp eV eV eV          (23.214) 

Now, consider the formation of the Ge L -bond MO of gernmanium compounds wherein L  is a ligand including 
germanium and carbon.  For the Ge L  functional groups, hybridization of the 4 p  and 4s  AOs of Ge  to form a single 34Ge sp  

HO shell forms an energy minimum, and the sharing of electrons between the 34Ge sp  HO and L  HO to form a MO permits 

each participating orbital to decrease in radius and energy.  The 32C sp  HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. 

(15.25)) and the 34Ge sp  HO has an energy of  3, 4 10.30968 E Ge sp eV   (Eq. (23.209)).  To meet the equipotential condition 

of the union of the Ge L  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor 2C  of Eq. (15.61) for the 

Ge L -bond MO given by Eq. (15.77) is: 
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E Ge sp HO eV
C Ge sp HO to Ge sp HO C C sp HO to Ge sp HO

eVE C sp


   


 (23.215) 
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Since the energy of the MO is matched to that of the 34Ge sp  HO,  /E AO HO  in Eq. (15.61) is  3, 4E Ge sp HO  given by Eq. 

(23.209).  In order to match the energies of the HOs within the molecule,  3, .TE atom atom msp AO  of the Ge L -bond MO 

for the ligands carbon or germanium is 
0.72457

2


 (Eq. (14.151)). 

The symbols of the functional groups of germanium compounds are given in Table 23.60.  The geometrical (Eqs. (15.1-
15.5)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) parameters of germanium 
compounds are given in Tables 23.61, 23.62, and 23.63, respectively.  The total energy of each germanium compounds given in 
Table 22.64 was calculated as the sum over the integer multiple of each  GroupDE  of Table 23.63 corresponding to functional-

group composition of the compound.  The bond angle parameters of germanium compounds determined using Eqs. (15.88-
15.117) are given in Table 23.65.  The charge-densities of exemplary germanium and digermanium compounds, 
tetraethylgermanium (  2 3 4

Ge CH CH ) and hexaethyldigermanium (    2 5 2 53 3
C H GeGe C H ) comprising atoms with the outer 

shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 23.13A 

and B, respectively. 
 
Figure 23.13.  (A) Color scale, charge-density of  2 3 4

Ge CH CH  showing the orbitals of the Ge  and C  atoms at their radii, 

the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atoms 

participating in each bond, and the hydrogen nuclei.  (B) Color scale, charge-density of    2 5 2 53 3
C H GeGe C H  showing the 

orbitals of the Ge  and C  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei. 
 

 
 
 
Table 23.60.  The symbols of functional groups of germanium compounds. 
 

Functional Group Group Symbol
GeC group Ge C  
GeGe group Ge Ge  

CH3 group  3 C H CH  

CH2 alkyl group  2 C H CH  

CH alkyl C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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TIN FUNCTIONAL GROUPS AND MOLECULES 
As in the cases of carbon, silicon and germanium, the bonding in the tin atom involves four 3sp  hybridized orbitals formed from 

the 5p  and 5s  electrons of the outer shells.  Sn X  ,X halide oxide , Sn H , and Sn Sn  bonds form between 35Sn sp  HOs 

and between a halide or oxide AO, a 1H s  AO, and a 35Sn sp  HO, respectively to yield tin halides and oxides, stannanes, and 
distannanes, respectively.  The geometrical parameters of each Sn X  ,X halide oxide , Sn H , and Sn Sn  functional group 
is solved from the force balance equation of the electrons of the corresponding  -MO and the relationships between the prolate 
spheroidal axes.  Then, the sum of the energies of the 2H -type ellipsoidal MOs is matched to that of the 35Sn sp  shell as in the 

case of the corresponding carbon and tin molecules.  As in the case of the transition metals, the energy of each functional group 
is determined for the effect of the electron density donation from each participating 35Sn sp  HO and AO to the corresponding 
MO that maximizes the bond energy. 

The branched-chain alkyl stannanes and distannanes,  2 2m n m nSn C H   , comprise at least a terminal methyl group ( 3CH ) 

and at least one Sn  bound by a carbon-tin single bond comprising a C Sn  group, and may comprise methylene ( 2CH ), 

methylyne (CH ), C C , 1,2,3nSnH  , and Sn Sn  functional groups.  The methyl and methylene functional groups are 

equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same 
as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups 

and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups. 
The Sn  electron configuration is 2 10 2[ ]5 4 5Kr s d p , and the orbital arrangement is: 
 

 

       5p state

                

  1        0       -1

   (23.216) 

corresponding to the ground state 3
0P .  The energy of the carbon 5p  shell is the negative of the ionization energy of the tin atom 

[1] given by: 
  ,5  ( ;  ) 7.34392 E Sn p shell E ionization Sn eV     (23.217) 

The energy of tin is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264), but the atomic 
orbital may hybridize in order to achieve a bond at an energy minimum.  After Eq. (13.422), the 5Sn s  atomic orbital (AO) 
combines with the 5Sn p  AOs to form a single 35Sn sp  hybridized orbital (HO) with the orbital arrangement is: 
 

 

3              5sp  state

                       

 0,0       1,-1      1,0        1,1

     (23.218) 

 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the four 

electrons.  The sum  3, 4TE Sn sp  of experimental energies [1] of Sn , Sn , 2Sn  , and 3Sn   is: 

  3,5 40.73502 30.50260 14.6322 7.34392 = 93.21374 TE Sn sp eV eV eV eV eV     (23.219) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 35sp
r  of the 

35Sn sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 
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    (23.220) 

where 50Z   for tin.  Using Eq. (15.14), the Coulombic energy  3,5CoulombE Sn sp  of the outer electron of the 35Sn sp  shell is: 
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     (23.221) 

During hybridization, the spin-paired 5s  electrons are promoted to the 35Sn sp  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 5s  electrons.  From Eq. (10.255) with 50Z  , 
the radius 48r  of the 5Sn s  shell is: 

 48 01.33816r a  (23.222) 

Using Eqs. (15.15) and (23.206), the unpairing energy is: 
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Using Eqs. (23.203) and (23.207), the energy  3,5E Sn sp  of the outer electron of the 35Sn sp  shell is: 
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 (23.224) 

Next, consider the formation of the Sn L -bond MO of tin compounds wherein L  is a ligand including tin and each tin 
atom has a 35Sn sp  electron with an energy given by Eq. (23.224).  The total energy of the state of each tin atom is given by the 

sum over the four electrons.  The sum  3,5T Sn LE Sn sp  of energies of 35Sn sp  (Eq. (23.224)), Sn , 2Sn  , and 3Sn   is: 

 
    

 

3 3,5 40.73502 30.50260 14.6322 ,5

                        40.73502 30.50260 14.6322 9.27363 95.14345 

T Sn LE Sn sp eV eV eV E Sn sp

eV eV eV eV eV

     

      
 (23.225) 

where  3,5E Sn sp  is the sum of the energy of Sn , 7.34392 eV , and the hybridization energy. 

A minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the 
Hydroxyl Radical (OH ) section with the donation of electron density from the participating 35Sn sp  HO to each Sn L -bond 
MO.  As in the case of acetylene given in the Acetylene Molecule section, the energy of each Sn L  functional group is 
determined for the effect of the charge donation.  For example, as in the case of the Si Si -bond MO given in the Alkyl Silanes 
and Disilanes section, the sharing of electrons between two 35Sn sp  HOs to form a Sn Sn -bond MO permits each participating 
orbital to decrease in size and energy.  In order to further satisfy the potential, kinetic, and orbital energy relationships, each 

35Sn sp  HO donates an excess of 25% of its electron density to the Sn Sn -bond MO to form an energy minimum.  By 
considering this electron redistribution in the distannane molecule as well as the fact that the central field decreases by an integer 
for each successive electron of the shell, in general terms, the radius 35Sn L sp

r


 of the 35Sn sp  shell may be calculated from the 

Coulombic energy using Eq. (15.18). 
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  (23.226) 

Using Eqs. (15.19) and (23.210), the Coulombic energy  3,5Coulomb Sn LE Sn sp  of the outer electron of the 35Sn sp  shell is: 
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     (23.227) 

During hybridization, the spin-paired 5s  electrons are promoted to the 35Sn sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (23.223).  Using Eqs. (23.223) and (23.227), the energy  3,5Sn LE Sn sp  of the 

outer electron of the 35Sn sp  shell is: 
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 (23.228) 

Thus,  3,5TE Sn L sp , the energy change of each 35Sn sp  shell with the formation of the Sn L -bond MO is given by the 

difference between Eq. (23.228) and Eq. (23.224). 
      3 3 3,5 ,5 ,5 0.43693 T Sn LE Sn L sp E Sn sp E Sn sp eV      (23.229) 

Next, consider the formation of the Sn L -bond MO of additional functional groups wherein each tin atom contributes a 
35Sn sp  electron having the sum  3,5T Sn LE Sn sp  of energies of 35Sn sp  (Eq. (23.224)), Sn , 2Sn  , and 3Sn   given by Eq. 

(23.209).  Each Sn L -bond MO of each functional group Sn L  forms with the sharing of electrons between a 35Sn sp  HO 

and a AO or HO of L , and the donation of electron density from the 35Sn sp  HO to the Sn L -bond MO permits the 
participating orbitals to decrease in size and energy.  In order to further satisfy the potential, kinetic, and orbital energy 
relationships while forming an energy minimum, the permitted values of the excess fractional charge of its electron density that 
the 35Sn sp  HO donates to the Sn L -bond MO given by Eq. (15.18) is  0.25 ;     1, 2,3, 4s s   and linear combinations thereof.  

By considering this electron redistribution in the tin molecule as well as the fact that the central field decreases by an integer for 
each successive electron of the shell, the radius 35Sn L sp

r


 of the 35Sn sp  shell may be calculated from the Coulombic energy using 

Eq. (15.18). 
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  (23.230) 

Using Eqs. (15.19) and (23.230), the Coulombic energy  3,5Coulomb Sn LE Sn sp  of the outer electron of the 35Sn sp  shell is 
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 (23.231) 

During hybridization, the spin-paired 5s  electrons are promoted to the 35Sn sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (23.223).  Using Eqs. (23.223) and (23.231), the energy  3,5Sn LE Sn sp  of the 

outer electron of the 35Sn sp  shell is: 
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 (23.232) 

Thus,  3,5TE Sn L sp , the energy change of each 35Sn sp  shell with the formation of the Sn L -bond MO is given by the 

difference between Eq. (23.232) and Eq. (23.224). 

           3 3 3 95.14345
,5 ,5 ,5  0.04775  9.27363 

10 0.25T Sn LE Sn L sp E Sn sp E Sn sp eV eV eV
s       


 (23.233) 

Using Eq. (15.28) for the case that the energy matching and energy minimum conditions of the MOs in the tin molecule are met 
by a linear combination of values of s  ( 1s  and 2s ) in Eqs. (23.230-23.233), the energy  3,5Sn LE Sn sp  of the outer electron of 

the 35Sn sp  shell is: 
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Using Eqs. (15.13) and (23.234), the radius corresponding to Eq. (23.234) is: 
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 3,5TE Sn L sp , the energy change of each 35Sn sp  shell with the formation of the Sn L -bond MO is given by the difference 

between Eq. (23.235) and Eq. (23.224). 
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 (23.236) 

 3,5TE Sn L sp  is also given by Eq. (15.29).  Bonding parameters for the Sn L -bond MO of tin functional groups due to 

charge donation from the HO to the MO are given in Table 23.66. 
 
Table 23.66.   The values of 35Sn sp

r ,  3,5Coulomb Sn LE Sn sp , and  3,5Sn LE Sn sp  and the resulting  3,5TE Sn L sp  of the MO 

due to charge donation from the HO to the MO. 
 

MO 
Bond 
Type 

s  1 s  2  3 05Sn sp
r a  

Final 
 

 3,5Coulomb Sn LE Sn sp  

(eV) 
Final

 3,5Sn LE Sn sp  

(eV) 
Final

 3,5TE Sn L sp  

(eV) 

0 0 0 1.45964 -9.321374 -9.27363 0 
I 1 0 1.39428 -9.75830 -9.71056 -0.43693 
II 2 0 1.35853 -10.01510 -9.96735 -0.69373 
III 3 0 1.32278 -10.28578 -10.23803 -0.96440 
IV 4 0 1.28703 -10.57149 -10.52375 -1.25012 

I+II 1 2 1.37617 -9.88670 -9.83895 -0.56533 
II+III 2 3 1.34042 -10.15044 -10.10269 -0.82906 
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The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Sn L -bond MO of nSnL  is given in Table 23.68 with the force-equation parameters 50Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 4s  HO shell.  The semimajor axis a  of organometallic compounds, stannanes 
and distannanes, are solved using Eq. (15.51). 

For the Sn L  functional groups, hybridization of the 5p  and 5s  AOs of Sn  to form a single 35Sn sp  HO shell forms an 

energy minimum, and the sharing of electrons between the 35Sn sp  HO and L  AO to form a MO permits each participating 

orbital to decrease in radius and energy.  The Cl  AO has an energy of   12.96764 E Cl eV  , the Br  AO has an energy of 

  11.8138 E Br eV  , the I  AO has an energy of   10.45126 E I eV  , the O  AO has an energy of   13.61805 E O eV  , 

the 32C sp  HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), 13.605804 eV  is the magnitude of the Coulombic 

energy between the electron and proton of H  (Eq. (1.264)), the Coulomb energy of the 35Sn sp  HO is 

 3,5 9.32137 CoulombE Sn sp HO eV   (Eq. (23.205)), and the 35Sn sp  HO has an energy of  3,5 9.27363 E Sn sp HO eV   (Eq. 

(23.208)).  To meet the equipotential condition of the union of the Sn L  2H -type-ellipsoidal-MO with these orbitals, the 

hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the Sn L -bond MO given by Eq. (15.77) is: 

      
 

3

3 3
2 2

,5 9.27363 
  5   5 0.71514

12.96764 

E Sn sp eV
c ClAO to Sn sp HO C ClAO to Sn sp HO

E ClAO eV


   


 (23.237) 

    
 

3

3
2

,5 9.27363 
  5 0.78498

11.8138 

E Sn sp eV
C BrAO to Sn sp HO

E BrAO eV


  


 (23.238) 

    
 

3

3
2

, 5 9.27363 
  5 0.88732

10.45126 

E Sn Sn sp eV
c IAO to Sn sp HO

E IAO eV


  


 (23.239) 

      
 

3

3 3
2 2

,5 9.27363 
  5   5 0.68098

13.61805 

E Sn sp eV
c O to Sn sp HO C O to Sn sp HO

E O eV


   


 (23.240) 

    
 

3

3
2

,5 9.32137 
  5 0.68510

13.605804 
CoulombE Sn sp eV

c HAO to Sn sp HO
E H eV


  


 (23.241) 

    
     

3

3 3 3
2 23

,5 9.27363 
2   S 5 2 0.91771 0.58152

14.63489 , 2

E Sn sp HO eV
C C sp HO to n sp HO c C sp HO

eVE C sp


  


 (23.242) 

    
 

3

3 3
2

,5 9.32137 
5   5 0.68510

13.605804 
CoulombE Sn sp eV

c Sn sp HO to Sn sp HO
E H eV


  


 (23.243) 

where Eq. (15.71) was used in Eqs. (23.241) and (23.243) and Eqs. (15.76), (15.79), and (13.430) were used in Eq. (23.242).  

Since the energy of the MO is matched to that of the 35Sn sp  HO,  /E AO HO  in Eq. (15.61) is  3,5E Sn sp HO  given by Eq. 

(23.224) for single bonds and twice this value for double bonds.   3, .TE atom atom msp AO  of the Sn L -bond MO is 

determined by considering that the bond involves up to an electron transfer from the tin atom to the ligand atom to form partial 
ionic character in the bond as in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.  For the tin 

compounds,  3, .TE atom atom msp AO  is that which forms an energy minimum for the hybridization and other bond 

parameter.   The general values of Table 23.66 are given by Eqs. (23.233) and (23.226), and the specific values for the tin 
functional groups are given in Table 23. 70. 

The symbols of the functional groups of tin compounds are given in Table 23.67.  The geometrical (Eqs. (15.1-15.5) and 
(23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) parameters of tin 
compounds are given in Tables 23.68, 23.69, and 23.70, respectively.  The total energy of each tin compound given in Table 
22.71 was calculated as the sum over the integer multiple of each  GroupDE  of Table 23.70 corresponding to functional-group 

composition of the compound.  The bond angle parameters of tin compounds determined using Eqs. (15.88-15.117) are given in 
Table 23.72.  The  3, .TE atom atom msp AO  term for 4SnCl  was calculated using Eqs. (23.230-23.277) with 1s   for the 

energies of  3,5E Sn sp .  The charge-densities of exemplary tin coordinate and organometallic compounds, tin tetrachloride 

( 4SnCl ) and hexaphenyldistannane (    6 5 6 53 3
C H SnSn C H ) comprising the concentric shells of atoms with the outer shell 

bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 23.14 and 

23.15, respectively. 
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Figure 23.14.   Tin Tetrachloride.  Color scale, translucent view of the charge-density of 4SnCl  showing the orbitals of the 

Sn  and Cl  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the corresponding outer 

shell of the atoms participating in each bond, and the nuclei (red, not to scale). 
 

 
 
Figure 23.15.   (A) and (B) Hexaphenyldistannane.  Color scale, opaque view of the charge-density of (C6H5)3SnSn(C6H5)3 
showing the orbitals of the Sn and C atoms at their radii and the ellipsoidal surface of each H or H2-type ellipsoidal MO that 
transitions to the corresponding outer shell of the atoms participating in each bond. 
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Table 23.67.  The symbols of functional groups of tin compounds. 
 

Functional Group Group Symbol
SnCl group Sn Cl  
SnBr group Sn Br  
SnI group Sn I  
SnO group Sn O  
SnH group Sn H  
SnC group Sn C  
SnSn group Sn Sn  

CH3 group  3 C H CH  

CH2 alkyl group  2 C H CH  (i) 

CH alkyl C H  (i) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
CC double bond C C  
C vinyl single bond to -C(C)=C C C  (i) 
C vinyl single bond to -C(H)=C C C  (ii) 
C vinyl single bond to -C(C)=CH2 C C  (iii) 

CH2 alkenyl group  2 C H CH  (ii) 

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  (ii) 

a bC C  ( 3CH  to aromatic bond) C C  (iv) 

C-C(O) ( )C C O  

C=O (aryl carboxylic acid) C O  
(O)C-O C O  
OH group OH  
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LEAD ORGANOMETALLIC FUNCTIONAL GROUPS AND MOLECULES 
The branched-chain alkyl lead molecules, 2 2n nPbC H  , comprise at least one Pb  bound by a carbon-lead single bond comprising 

a C Pb  group, at least a terminal methyl group ( 3CH ), and may comprise methylene ( 2CH ), methylyne (CH ), and C C  

functional groups.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of 
C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  
bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-

butyl to t-butyl C C  bonds comprise functional groups.   
As in the cases of carbon, silicon, tin, and germanium, the bonding in the lead atom involves four 3sp  hybridized 

orbitals.  For lead, they are formed from the 6 p  and 6s  electrons of the outer shells.  Pb C  bonds form between a 36Pb sp  

HO and a 33C sp  HO to yield alkyl leads.  The geometrical parameters of the Pb C functional group are solved using Eq. 

(15.51) and the relationships between the prolate spheroidal axes.  Then, the sum of the energies of the 2H -type ellipsoidal MOs 

is matched to that of the 36Pb sp  shell as in the case of the corresponding carbon, silicon, tin, germanium molecules.  As in the 
case of the transition metals, the energy of each functional group is determined for the effect of the electron density donation 
from each participating 33C sp  HO and 36Pb sp  HO to the corresponding MO that maximizes the bond energy. 

The Pb  electron configuration is 2 14 10 2[ ]6 4 5 6Xe s f d p , and the orbital arrangement is: 

 

      6p state

                

  1        0       -1

   (23.244) 

corresponding to the ground state 3
0P .  The energy of the lead 6 p  shell is the negative of the ionization energy of the lead atom 

[1] given by: 
  , 6  ( ;  ) 7.41663 E Pb p shell E ionization Pb eV     (23.245) 

The energy of lead is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264), but the atomic 
orbital may hybridize in order to achieve a bond at an energy minimum.  After Eq. (13.422), the 6Pb s  atomic orbital (AO) 
combines with the 6Pb p  AOs to form a single 36Pb sp  hybridized orbital (HO) with the orbital arrangement 

 

3             6sp  state

                       

 0,0      1,-1      1,0       1,1

     (23.246) 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the four 

electrons.  The sum  3,6TE Pb sp  of experimental energies [1] of Pb , Pb , 2Pb  , and 3Pb   is: 

  3,6 42.32 31.9373 15.03248 7.41663 =96.70641 TE Pb sp eV eV eV eV eV     (23.247) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 36sp
r  of the 

36Pb sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 281

06
78 0 0

( ) 10
1.40692

8 96.70641 8 96.70641 sp
n

Z n e e
r a

e eV e eV 


    (23.248) 

where 82Z   for lead.  Using Eq. (15.14), the Coulombic energy  3,6CoulombE Pb sp  of the outer electron of the 36Pb sp  shell is 

  
3

2 2
3

0 0 06

,6 9.67064 
8 8 1.40692Coulomb

sp

e e
E Pb sp eV

r a 
 

     (23.249) 

During hybridization, the spin-paired 6s  electrons are promoted to the 36Pb sp  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 6s  electrons.  From Eq. (10.102) with 82Z   
and 80n  , the radius 80r  of the 6Pb s  shell is: 

 80 01.27805r a  (23.250) 

Using Eqs. (15.15) and (23.250), the unpairing energy is: 

 
   

2 2 2
0

3 32
80 0

2 8
( ) 0.05481 

1.27805
o B

e

e
E magnetic eV

m r a

  
  


 (23.251) 

Using Eqs. (23.249) and (23.251), the energy  3,6E Pb sp  of the outer electron of the 36Pb sp  shell is: 
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 3

2 22
3 0

32
0 806

2
,6 9.67064 0.05481 9.61584 

8
esp

ee
E Pb sp eV eV eV

r m r





      


 (23.252) 

Next, consider the formation of the Pb L -bond MO of lead compounds wherein L  is a ligand including carbon and 
each lead atom has a 36Pb sp  electron with an energy given by Eq. (23.252).  The total energy of the state of each lead atom is 

given by the sum over the four electrons.  The sum  3,6T Pb LE Pb sp  of energies of 36Pb sp  (Eq. (23.252)), Pb , 2Pb  , and 
3Pb   is: 

 
    

 

3 3,6 42.32 31.9373 15.03248 ,6

                        42.32 31.9373 15.03248 9.61584 98.90562 

T Pb LE Pb sp eV eV eV E Pb sp

eV eV eV eV eV

     

      
 (23.253) 

where  3,6E Pb sp  is the sum of the energy of Pb , 7.41663 eV , and the hybridization energy. 

A minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the 
Hydroxyl Radical ( OH ) section with the donation of electron density from the participating 36Pb sp  HO to each Pb L -bond 

MO.  Consider the case wherein each 36Pb sp  HO donates an excess of 25% of its electron density to the Pb L -bond MO to 
form an energy minimum.  By considering this electron redistribution in the lead molecule as well as the fact that the central 
field decreases by an integer for each successive electron of the shell, in general terms, the radius 36Pb L sp

r


 of the 36Pb sp  shell 

may be calculated from the Coulombic energy using Eq. (15.18). 

 
   3

2 281

06
78 0 0

9.75
( ) 0.25 1.34124

8 98.90562 8 98.90562 Pb L sp
n

e e
r Z n a

e eV e eV 


      
 
  (23.254) 

Using Eqs. (15.19) and (23.254), the Coulombic energy  3,6Coulomb Pb LE Pb sp  of the outer electron of the 36Pb sp  shell is: 

  
3

2 2
3

0 0 06

,6 10.14417 
8 8 1.34124Coulomb Pb L

Pb L sp

e e
E Pb sp eV

r a 



 
     (23.255) 

During hybridization, the spin-paired 6s  electrons are promoted to the 36Pb sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (23.251).  Using Eqs. (23.251) and (23.255), the energy  3,6Pb LE Pb sp  of the 

outer electron of the 36Pb sp  shell is: 

  
 3

2 22
3 0

32
0 806

2
,6 10.14417 0.05481 10.08936 

8Pb L

ePb L sp

ee
E Pb sp eV eV eV

r m r







      


 (23.256) 

Thus,  3,6TE Pb L sp , the energy change of each 36Pb sp  shell with the formation of the Pb L -bond MO is given by the 

difference between Eq. (23.256) and Eq. (23.252). 

        3 3 3,6 ,6 ,6 10.08936 9.61584 0.47352 T Pb LE Pb L sp E Pb sp E Pb sp eV eV eV          (23.257) 

Next, consider the formation of the Pb C -bond MO by bonding with a carbon having a 32C sp electron with an energy 

given by Eq. (14.146).  The total energy of the state is given by the sum over the four electrons.  The sum  3, 2T ethaneE C sp  of 

calculated energies of 32C sp , C , 2C  , and 3C   from Eqs. (10.123), (10.113-10.114), (10.68), and (10.48), respectively, is: 

 
    

 

3 3, 2 64.3921 48.3125 24.2762 , 2

                        64.3921 48.3125 24.2762 14.63489 151.61569 

T ethaneE C sp eV eV eV E C sp

eV eV eV eV eV

    

      
 (23.258) 

where  3, 2E C sp  is the sum of the energy of C , 11.27671 eV , and the hybridization energy.  

The sharing of electrons between the 36Pb sp  HO and 32C sp  HOs to form a Pb C -bond MO permits each 
participating hybridized orbital to decrease in radius and energy.  A minimum energy is achieved while satisfying the potential, 
kinetic, and orbital energy relationships, when the 36Pb sp  HO donates, and the 32C sp  HO receives, excess electron density 
equivalent to an electron within the Pb C -bond MO.  By considering this electron redistribution in the alkyl lead molecule as 
well as the fact that the central field decreases by an integer for each successive electron of the shell, the radius 32Pb C sp

r


 of the 

32C sp  shell of the Pb C -bond MO may be calculated from the Coulombic energy using Eqs. (15.18) and (23.258). 
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e e
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  (23.259) 

Using Eqs. (15.19) and (23.259), the Coulombic energy  3, 2Coulomb Pb CE C sp  of the outer electron of the 32C sp  shell is 
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, 2 13.78324 
8 8 0.98713Coulomb Pb C
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e e
E C sp eV
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     (23.260) 

During hybridization, the spin-paired 2s  electrons are promoted to the 32C sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (14.145).  Using Eqs. (14.145) and (23.260), the energy  3, 2Pb CE C sp  of the 

outer electron of the 32C sp  shell is: 

  
 3

2 22
3 0

32
0 32

2
, 2 13.78324 0.19086 13.59238 

8Pb C

ePb C sp

ee
E C sp eV eV eV

r m r







      


 (23.261) 

Thus,  3, 2TE Pb C sp , the energy change of each 32C sp  shell with the formation of the Pb C -bond MO is given by the 

difference between Eq. (23.261) and Eq. (14.146). 

        3 3 3, 2 , 2 , 2 13.59238 14.63489 1.04251 T Pb CE Pb C sp E C sp E C sp eV eV eV         (23.262) 

Now, consider the formation of the Pb L -bond MO of lead compounds wherein L  is a ligand including carbon.  For 
the Pb L  functional groups, hybridization of the 6 p  and 6s  AOs of Pb  to form a single 36Pb sp  HO shell forms an energy 

minimum, and the sharing of electrons between the 36Pb sp  HO and L  HO to form a MO permits each participating orbital to 

decrease in radius and energy.  The 32C sp  HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)) and the 36Pb sp  HO 

has an energy of  3,6 9.61584 E Pb sp eV   (Eq. (23.252)).  To meet the equipotential condition of the union of the Pb L  

2H -type-ellipsoidal-MO with these orbitals, the hybridization factors 2c  and 2C  of Eq. (15.61) for the Pb L -bond MO given 

by Eq. (15.77) are: 

      
 

3

3 3 3 3
2 2 3

,6 9.61584 
2   6 2   6 0.65705

14.63489 , 2

E Pb sp HO eV
c C sp HO to Pb sp HO C C sp HO to Pb sp HO

eVE C sp


   


 (23.263) 

Since the energy of the MO is matched to that of the 36Pb sp  HO,  /E AO HO  in Eq. (15.61) is  3,6E Pb sp HO  given by Eq. 

(23.252).  In order to match the energies of the carbon and lead HOs within the molecule,  3, .TE atom atom msp AO  of the 

Pb L -bond MO for the ligand carbon is one half  3, 2TE Pb C sp  (Eq. (23.262)). 

The symbols of the functional groups of lead compounds are given in Table 23.73.  The geometrical (Eqs. (15.1-15.5)), 
intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) parameters of lead compounds are 
given in Tables 23.74, 23.75, and 23.76, respectively.  The total energy of each lead compound given in Table 22.77 was 
calculated as the sum over the integer multiple of each  GroupDE  of Table 23.76 corresponding to functional-group composition 

of the compound.  The bond angle parameters of lead compounds determined using Eqs. (15.88-15.117) are given in Table 
23.78.  The charge-densities of exemplary lead compound, tetraethyl lead (  2 3 4

Pb CH CH ) comprising atoms with the outer 

shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figure 23.16. 
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Figure 23.16.   Color scale, charge-density of  2 3 4
Pb CH CH  showing the orbitals of the Pb  and C  atoms at their radii, the 

ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atoms 

participating in each bond, and the hydrogen nuclei. 

 
 
Table 23.73.  The symbols of functional groups of lead compounds. 
 

Functional Group Group Symbol
PbC group Pb C  

CH3 group  3 C H CH  

CH2 alkyl group  2 C H CH  

CH alkyl C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 

 
Table 23.74.   The geometrical bond parameters of lead compounds and experimental values [3]. 
 
 
Parameter Pb C  

Group 
 3

 C H CH
 

Group 

 2
 C H CH
 

Group 

C H  
Group 

C C  (a) 
Group 

C C  (b) 
Group 

C C  
(c) 

Group 

C C  
(d) 

Group 

C C  
(e) 

Group 

C C  (f) 
Group 

 0
 a a  2.21873 1.64920 1.67122 1.67465 2.12499 2.12499 2.10725 2.12499 2.10725 2.10725 

 0
'  c a  2.12189 1.04856 1.05553 1.05661 1.45744 1.45744 1.45164 1.45744 1.45164 1.45164 

Bond 
Length 

 2 '  c Å  
2.24571 1.10974 1.11713 1.11827 1.54280 1.54280 1.53635 1.54280 1.53635 1.53635 

Exp. 
Bond 

Length 

 Å  

2.238 

(  
3 4

CH Pb ) 

1.107 
( C H  
propane) 

1.117 
( C H  
butane) 

1.107 
( C H  
propane) 

1.117 
( C H  
butane) 

1.122 
(isobutane) 

1.532 
(propane) 

1.531 
(butane) 

1.532 
(propane) 

1.531 
(butane) 

1.532 
(propane) 

1.531 
(butane) 

1.532 
(propane) 

1.531 
(butane) 

1.532 
(propane) 

1.531 
(butane) 

1.532 
(propane) 

1.531 
(butane) 

 0
,  b c a  0.64834 1.27295 1.29569 1.29924 1.54616 1.54616 1.52750 1.54616 1.52750 1.52750 

e  0.95635 0.63580 0.63159 0.63095 0.68600 0.68600 0.68888 0.68600 0.68888 0.68888
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ALKYL ARSINES ( 2 1 3
,   1,2,3,4,5...n nC H As n  ) 

The alkyl arsines,  2 1 3n nC H As , comprise a As C  functional group.  The alkyl portion of the alkyl arsine may comprise at 

least two terminal methyl groups ( 3CH ) at each end of each chain, and may comprise methylene ( 2CH ), and methylyne ( CH ) 

functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional groups are 
equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same 
as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups 

and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  The 
branched-chain-alkane groups in alkyl arsines are equivalent to those in branched-chain alkanes.  The As C  group may further 
join the 34As sp  HO to an aryl HO. 

As in the case of phosphorous, the bonding in the arsenic atom involves 3sp  hybridized orbitals formed, in this case, 

from the 4 p  and 4s  electrons of the outer shells.  The As C  bond forms between 34As sp  and 32C sp  HOs to yield arsines.  
The semimajor axis a  of the As C  functional group is solved using Eq. (15.51).  Using the semimajor axis and the 
relationships between the prolate spheroidal axes, the geometric and energy parameters of the MO are calculated using Eqs. 
(15.1-15.117) in the same manner as the organic functional groups given in the Organic Molecular Functional Groups and 
Molecules section.  

The energy of arsenic is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  A 
minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the Hydroxyl 
Radical (OH ) section with hybridization of the arsenic atom such that in Eqs. (15.51) and (15.61), the sum of the energies of the 

2H -type ellipsoidal MOs is matched to that of the 34As sp  shell as in the case of the corresponding phosphine molecules.   

The As  electron configuration is 2 10 3[ ]4 3 4Ar s d p  corresponding to the ground state 4
3/2S , and the 34sp  hybridized 

orbital arrangement after Eq. (13.422) is: 
 

 

3               4sp  state

                       

  0,0      1,-1      1,0       1,1

     (23.264) 

 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the five 

electrons.  The sum  3, 4TE As sp  of experimental energies [1] of As , As , 2As  , 3As  , and 4As   is: 

  3, 4 62.63 50.13 28.351 18.5892 9.7886 169.48880 TE As sp eV eV eV eV eV eV       (23.265) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 34sp
r  of the 

34As sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 
 

 
   3

2 232

04
28 0 0

( ) 15
1.20413

8 169.48880 8 169.48880 sp
n

Z n e e
r a

e eV e eV 


    (23.266) 

 

where 33Z   for arsenic.  Using Eq. (15.14), the Coulombic energy  3, 4CoulombE As sp  of the outer electron of the 34As sp  shell 

is: 

  
3

2 2
3

0 0 04

, 4 11.29925 
8 8 1.20413Coulomb

sp

e e
E As sp eV

r a 
 

     (23.267) 

During hybridization, the spin-paired 4s  electrons are promoted to the 34As sp  shell as paired electrons at the radius 34sp
r  of the 

34As sp  shell.  The energy for the promotion is the difference in the magnetic energy given by Eq. (15.15) at the initial radius of 

the 4s  electrons and the final radius of the 34As sp  electrons.  From Eq. (10.102) with 33Z   and 30n  , the radius 30r  of the 

4As s  shell is: 
 30 01.08564r a  (23.268) 

Using Eqs. (15.15) and (23.268), the unpairing energy is: 

 
       

3

2 2
20

3 3 3 32

30 0 0
4

2 1 1 1 1
( ) 8 0.02388 

1.08564 1.20413
o B

e
sp

e
E magnetic eV

m r a ar

  
              


 (23.269) 

Using Eqs. (23.267) and (23.269), the energy  3, 4E As sp  of the outer electron of the 34As sp  shell is: 
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   3

3

2 22
3 0

3 32
0 304

4

2 1 1
,4 11.29925 0.02388 11.27537 

8 esp
sp

ee
E As sp eV eV eV

r m r r




 
          

 
 


 (23.270) 

For the As C  functional group, hybridization of the 2s  and 2 p  AOs of each C  and the 4s  and 4 p  AOs of each As  

to form single 32sp  and 34sp  shells, respectively, forms an energy minimum, and the sharing of electrons between the 32C sp  

and 34As sp  HOs to form a MO permits each participating orbital to decrease in radius and energy.  In branched-chain alkyl 
arsines, the energy of arsenic is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  
Thus, 2c  in Eq. (15.61) is one, and the energy matching condition is determined by the 2C  parameter.  Then, the 32C sp  HO has 

an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the 34As sp  HO has an energy of  3, 4 11.27537 E As sp eV   

(Eq. (23.270)).  To meet the equipotential condition of the union of the As C  2H -type-ellipsoidal-MO with these orbitals, the 

hybridization factor 2C  of Eq. (15.61) for the As C -bond MO given by Eqs. (15.77), (15.79), and (13.430) is: 

    
     

3

3 3 3
2 23

, 4 11.27537 
2   4 2 0.91771 0.70705

14.63489 , 2

E As sp eV
C C sp HO to As sp HO c C sp HO

eVE C sp


  


 (23.271) 

The energy of the As C -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in Eq. (15.51) 

with    3/ , 4E AO HO E As sp  given by Eq. (23.270), and  3, .TE atom atom msp AO  is zero in order to match the energies 

of the carbon and arsenic HOs. 
The symbols of the functional groups of branched-chain alkyl arsines are given in Table 23.79.  The geometrical (Eqs. 

(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
arsines are given in Tables 23.80, 23.81, and 23.82, respectively.  The total energy of each alkyl arsine given in Table 23.83 was 
calculated as the sum over the integer multiple of each  GroupDE  of Table 23.82 corresponding to functional-group composition 

of the molecule.  The bond angle parameters of alkyl arsines determined using Eqs. (15.88-15.117) are given in Table 23.84.  
The color scale, charge-density of exemplary alkyl arsine, triphenylarsine, comprising atoms with the outer shell bridged by one 
or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 23.17. 

 
Figure 23.17.   Color scale, charge-density of triphenylarsine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei. 
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Table 23.79.   The symbols of functional groups of alkyl arsines. 
 

Functional Group Group Symbol
As-C As C  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  (i) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 

CC (aromatic bond) 
3e

C C  
CH (aromatic) CH  (ii) 
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ALKYL STIBINES ( 2 1 3
,   1,2,3,4,5...n nC H Sb n  ) 

The alkyl stibines,  2 1 3n nC H Sb , comprise a Sb C  functional group.  The alkyl portion of the alkyl stibine may comprise at 

least two terminal methyl groups ( 3CH ) at each end of each chain, and may comprise methylene ( 2CH ), and methylyne ( CH ) 

functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional groups are 
equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same 
as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups 

and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  The 
branched-chain-alkane groups in alkyl stibines are equivalent to those in branched-chain alkanes.  The Sb C  group may further 
join the 35Sb sp  HO to an aryl HO. 

As in the case of phosphorous, the bonding in the antimony atom involves 3sp  hybridized orbitals formed, in this case, 

from the 5p  and 5s  electrons of the outer shells.  The Sb C  bond forms between 35Sb sp  and 32C sp  HOs to yield stibines.  
The semimajor axis a  of the Sb C  functional group is solved using Eq. (15.51).  Using the semimajor axis and the 
relationships between the prolate spheroidal axes, the geometric and energy parameters of the MO are calculated using Eqs. 
(15.1-15.117) in the same manner as the organic functional groups given in the Organic Molecular Functional Groups and 
Molecules section.  

The energy of antimony is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  
A minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the Hydroxyl 
Radical (OH ) section with hybridization of the antimony atom such that in Eqs. (15.51) and (15.61), the sum of the energies of 
the 2H -type ellipsoidal MOs is matched to that of the 35Sb sp  shell as in the case of the corresponding phosphine and arsine 

molecules. 
The Sb  electron configuration is 2 10 3[ ]5 4 5Kr s d p  corresponding to the ground state 4

3/2S , and the 35sp  hybridized 

orbital arrangement after Eq. (13.422) is: 

 

3              5sp  state

                       

 0,0       1,-1      1,0        1,1

     (23.272) 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the five 

electrons.  The sum  3,5TE Sb sp  of experimental energies [1] of Sb , Sb , 2Sb  , 3Sb  , and 4Sb   is: 

  3,5 56.0 44.2 25.3 16.63 8.60839 150.73839TE Sb sp eV eV eV eV eV eV       (23.273) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 35sp
r  of the 

35Sb sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 250

05
46 0 0

( ) 15
1.35392

8 150.73839 8 150.73839 sp
n

Z n e e
r a

e eV e eV 


    (23.274) 

where 51Z   for antimony.  Using Eq. (15.14), the Coulombic energy  3,5CoulombE Sb sp  of the outer electron of the 35Sb sp  

shell is: 

  
3

2 2
3

0 0 05

,5 10.04923 
8 8 1.35392Coulomb

sp

e e
E Sb sp eV

r a 
 

     (23.275) 

During hybridization, the spin-paired 5s  electrons are promoted to the 35Sb sp  shell as paired electrons at the radius 35sp
r  of the 

35Sb sp  shell.  The energy for the promotion is the difference in the magnetic energy given by Eq. (15.15) at the initial radius of 

the 5s  electrons and the final radius of the 35Sb sp  electrons.  From Eq. (10.102) with 51Z   and 48n  ,  the radius 48r  of the 

5Sb s  shell is: 
 48 01.23129r a  (23.276) 

Using Eqs. (15.15) and (23.276), the unpairing energy is: 

 
       

3

2 2
20

03 3 3 32

48 0 0
5

2 1 1 1 1
( ) 8 0.01519 

1.23129 1.35392
B

e
sp

e
E magnetic eV

m r a ar

  
                


 (23.277) 

Using Eqs. (23.275) and (23.277), the energy  3,5E Sb sp  of the outer electron of the 35Sb sp  shell is: 
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 (23.278) 

For the Sb C  functional group, hybridization of the 2s  and 2 p  AOs of each C  and the 5s  and 5p  AOs of each Sb  to 

form single 32sp  and 35sp  shells, respectively, forms an energy minimum, and the sharing of electrons between the 32C sp  and 
35Sb sp  HOs to form a MO permits each participating orbital to decrease in radius and energy.  In branched-chain alkyl stibines, 

the energy of antimony is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  Thus, 2c  

in Eq. (15.61) is one, and the energy matching condition is determined by the 2C  parameter.  Then, the 32C sp  HO has an energy 

of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the 35Sb sp  HO has an energy of  3,5 10.03404 E Sb sp eV   (Eq. (23.278)).  

To meet the equipotential condition of the union of the Sb C  2H -type-ellipsoidal-MO with these orbitals, the hybridization 

factor 2C  of Eq. (15.61) for the Sb C -bond MO given by Eqs. (15.77), (15.79), and (13.430) is: 

    
     

3

3 3 3
2 23

,5 10.03404 
2   5 2 0.91771 0.62921

14.63489 , 2

E Sb sp eV
C C sp HO to Sb sp HO c C sp HO

eVE C sp


  


 (23.279) 

The energy of the Sb C -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in Eq. (15.51) 

with    3/ ,5E AO HO E Sb sp  given by Eq. (23.278), and  3, .TE atom atom msp AO  is zero in order to match the energies 

of the carbon and antimony HOs. 
The symbols of the functional groups of branched-chain alkyl stibines are given in Table 123.85.  The geometrical (Eqs. 

(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
stibines are given in Tables 23.86, 23.87, and 23.88, respectively.  The total energy of each alkyl stibine given in Table 23.89 
was calculated as the sum over the integer multiple of each  GroupDE  of Table 23.88 corresponding to functional-group 

composition of the molecule.  The bond angle parameters of alkyl stibines determined using Eqs. (15.88-15.117) are given in 
Table 23.90.  The color scale, charge-density of exemplary alkyl stibine, triphenylstibine, comprising atoms with the outer shell 
bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 23.18. 

 
Figure 23.18.   Color scale, charge-density of triphenylstibine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei. 
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Table 23.85.   The symbols of functional groups of alkyl stibines. 

 
Functional Group Group Symbol

Sb-C Sb C  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  (i) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 

CC (aromatic bond) 
3e

C C  
CH (aromatic) CH  (ii) 
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ALKYL BISMUTHS ( 2 1 3
,   1,2,3,4,5...n nC H Bi n  ) 

The alkyl bismuths,  2 1 3n nC H Bi , comprise a Bi C  functional group.  The alkyl portion of the alkyl bismuth may comprise at 

least two terminal methyl groups ( 3CH ) at each end of each chain, and may comprise methylene ( 2CH ), and methylyne ( CH ) 

functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional groups are 
equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same 
as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups 

and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  The 
branched-chain-alkane groups in alkyl bismuths are equivalent to those in branched-chain alkanes.  The Bi C  group may 
further join the 36Bi sp  HO to an aryl HO. 

As in the case of phosphorous, arsenic, and antimony, the bonding in the bismuth atom involves 3sp  hybridized orbitals 

formed, in this case, from the 6 p  and 6s  electrons of the outer shells.  The Bi C  bond forms between 36Bi sp  and 32C sp  HOs 
to yield bismuths.  The semimajor axis a  of the Bi C  functional group is solved using Eq. (15.51).  Using the semimajor axis 
and the relationships between the prolate spheroidal axes, the geometric and energy parameters of the MO are calculated using 
Eqs. (15.1-15.117) in the same manner as the organic functional groups given in the Organic Molecular Functional Groups and 
Molecules section.  

The energy of bismuth is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  A 
minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the Hydroxyl 
Radical (OH ) section with hybridization of the bismuth atom such that in Eqs. (15.51) and (15.61), the sum of the energies of 
the 2H -type ellipsoidal MOs is matched to that of the 36Bi sp  shell as in the case of the corresponding phosphines, arsines, and 

stibines. 
The Bi  electron configuration is 2 14 10 3[ ]6 4 5 6Xe s f d p  corresponding to the ground state 4

3/2S , and the 36sp  hybridized 

orbital arrangement after Eq. (13.422) is: 
 

 

3               6sp  state

                       

  0,0       1,-1      1,0       1,1

     (23.280) 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the five 

electrons.  The sum  3,6TE Bi sp  of experimental energies [1] of Bi , Bi , 2Bi  , 3Bi  , and 4Bi   is: 

  3,6 56.0 45.3 25.56 16.703 7.2855 150.84850 TE Bi sp eV eV eV eV eV eV       (23.281) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 36sp
r  of the 

36Bi sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 282

06
78 0 0

( ) 15
1.35293

8 150.84850 8 150.84850 sp
n

Z n e e
r a

e eV e eV 


    (23.282) 

where 83Z   for bismuth.  Using Eq. (15.14), the Coulombic energy  3,6CoulombE Bi sp  of the outer electron of the 36Bi sp  shell 

is: 

  
3

2 2
3

0 0 06

,6 10.05657 
8 8 1.35293Coulomb

sp

e e
E Bi sp eV

r a 
 

     (23.283) 

During hybridization, the spin-paired 6s  electrons are promoted to the 36Bi sp  shell as paired electrons at the radius 36sp
r  of the 

36Bi sp  shell.  The energy for the promotion is the difference in the magnetic energy given by Eq. (15.15) at the initial radius of 

the 6s  electrons and the final radius of the 36Bi sp  electrons.  From Eq. (10.102) with 83Z   and 80n  , the radius 80r  of the 

6Bi s  shell is: 
 80 01.20140r a  (23.284) 

Using Eqs. (15.15) and (23.284), the unpairing energy is: 

 
       

3

2 2
20

3 3 3 32

80 0 0
6

2 1 1 1 1
( ) 8 0.01978 

1.20140 1.35293
o B

e
sp

e
E magnetic eV

m r a ar

  
                


 (23.285) 

Using Eqs. (23.283) and (23.285), the energy  3,6E Bi sp  of the outer electron of the 36Bi sp  shell is: 
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 (23.286) 

Next, consider the formation of the Bi L -bond MO of bismuth compounds wherein L  is a very stable ligand and each 
bismuth atom has a 36Bi sp  electron with an energy given by Eq. (23.286).  The total energy of the state of each bismuth atom is 

given by the sum over the five electrons.  The sum  3,6T Bi LE Bi sp  of energies of 36Bi sp  (Eq. (23.286)), Bi , 2Bi  , 3Bi  , and 
4Bi   is: 

 
    

 

3 3,6 56.0 45.3 25.56 16.703 ,6

                        56.0 45.3 25.56 16.703 10.03679 153.59979 

T Bi LE Bi sp eV eV eV eV E Bi sp

eV eV eV eV eV eV

      

       
 (23.287) 

where  3,6E Bi sp  is the sum of the energy of Bi , 7.2855 eV , and the hybridization energy. 

A minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the 
Hydroxyl Radical (OH ) section with the donation of electron density from the participating 36Bi sp  HO to each Bi L -bond 

MO.  Consider the case wherein each 36Bi sp  HO donates an excess of 25% of its electron density to the Bi L -bond MO to 
form an energy minimum.  By considering this electron redistribution in the bismuth molecule as well as the fact that the central 
field decreases by an integer for each successive electron of the shell, in general terms, the radius 36Bi L sp

r


 of the 36Bi sp  shell 

may be calculated from the Coulombic energy using Eq. (15.18). 
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  (23.288) 

Using Eqs. (15.19) and (23.288), the Coulombic energy  3,6Coulomb Bi LE Bi sp  of the outer electron of the 36Bi sp  shell is: 
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During hybridization, the spin-paired 6s  electrons are promoted to the 36Bi sp  shell as paired electrons at the radius 36sp
r  of the 

36Bi sp  shell.  The energy for the promotion is the difference in the magnetic energy given by Eq. (15.15) at the initial radius of 

the 6s  electrons and the final radius of the 36Bi sp  electrons.  Using Eqs. (23.285) and (23.289), the energy  3,6Bi LE Bi sp  of 

the outer electron of the 36Bi sp  shell is: 
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ee
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 (23.290) 

Thus,  3,6TE Bi L sp , the energy change of each 36Bi sp  shell with the formation of the Bi L -bond MO is given by the 

difference between Eq. (23.290) and Eq. (23.286). 
        3 3 3,6 ,6 ,6 10.39377 10.03679 0.35698 T Bi LE Bi L sp E Bi sp E Bi sp eV eV eV          (23.291) 

Next, consider the formation of the Bi C -bond MO by bonding with a carbon having a 32C sp electron with an energy 

given by Eq. (14.146).  The total energy of the state is given by the sum over the five electrons.  The sum  3, 2T ethaneE C sp  of 

calculated energies of 32C sp , C , 2C  , and 3C   from Eqs. (10.123), (10.113-10.114), (10.68), and (10.48), respectively, is: 

 
    

 

3 3, 2 64.3921 48.3125 24.2762 , 2

                        64.3921 48.3125 24.2762 14.63489 151.61569 

T ethaneE C sp eV eV eV E C sp

eV eV eV eV eV

    

      
 (23.292) 

where  3, 2E C sp  is the sum of the energy of C , 11.27671 eV , and the hybridization energy.  

The sharing of electrons between the 36Bi sp HO and 32C sp  HOs to form a Bi C -bond MO permits each participating 
hybridized orbital to decrease in radius and energy.  A minimum energy is achieved while satisfying the potential, kinetic, and 
orbital energy relationships, when the 36Bi sp  HO donates, and the 32C sp  HO receives, excess electron density equivalent to an 
electron within the Bi C -bond MO.  By considering this electron redistribution in the alkyl bismuth molecule as well as the 
fact that the central field decreases by an integer for each successive electron of the shell, the radius 32Bi C sp

r


 of the 32C sp  shell 

of the Bi C -bond MO may be calculated from the Coulombic energy using Eqs. (15.18) and (23.292): 
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  (23.293) 

Using Eqs. (15.19) and (23.293), the Coulombic energy  3, 2Coulomb Bi CE C sp  of the outer electron of the 32C sp  shell is: 
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, 2 13.78324 
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e e
E C sp eV

r a 



 
     (23.294) 

During hybridization, the spin-paired 2s  electrons are promoted to the 32C sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (14.145).  Using Eqs. (14.145) and (23.294), the energy  3, 2Bi CE C sp  of the 

outer electron of the 32C sp  shell is: 

  
 3

2 22
3 0

32
0 32

2
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8Bi C

eBi C sp

ee
E C sp eV eV eV

r m r







      


 (23.295) 

Thus,  3, 2TE Bi C sp , the energy change of each 32C sp  shell with the formation of the Bi C -bond MO is given by the 

difference between Eq. (23.295) and Eq. (14.146). 
        3 3 3, 2 , 2 , 2 13.59238 14.63489 1.04251 T Bi CE Bi C sp E C sp E C sp eV eV eV         (23.296) 

Now, consider the formation of the Bi L -bond MO of bismuth compounds wherein L  is a ligand including carbon.  
For the Bi C  functional group, hybridization of the 2s  and 2 p  AOs of each C  and the 6s  and 6 p  AOs of each Bi  to form 

single 32sp  and 36sp  shells, respectively, forms an energy minimum, and the sharing of electrons between the 32C sp  and 
36Bi sp  HOs to form a MO permits each participating orbital to decrease in radius and energy.  In branched-chain alkyl 

bismuths, the energy of bismuth is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  
Thus, the energy matching condition is determined by the 2c  and 2C  parameters in Eq. (15.61).  Then, the 32C sp  HO has an 

energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the 36Bi sp  HO has an energy of  3,6 10.03679 E Bi sp eV   (Eq. 

(23.286)).  To meet the equipotential condition of the union of the Bi C  2H -type-ellipsoidal-MO with these orbitals, the 

hybridization factors 2c  and 2C  of Eq. (15.61) for the Bi C -bond MO given by Eqs. (15.77) are: 

      
 

3

3 3 3 3
2 2 3

,6 10.03679 
2   6 2   6 0.68581

14.63489 , 2

E Bi sp eV
c C sp HO to Bi sp HO C C sp HO to Bi sp HO

eVE C sp


   


 (23.297) 

The energy of the Bi C -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in Eq. (15.51) 

with    3/ ,6E AO HO E Bi sp  given by Eq. (23.286), and  3, .TE atom atom msp AO  is  3, 2TE Bi C sp  (Eq. (23.296)) in 

order to match the energies of the carbon and bismuth HOs. 
The symbols of the functional groups of branched-chain alkyl bismuths are given in Table 23.91.  The geometrical (Eqs. 

(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
bismuths are given in Tables 23.92, 23.93, and 23.94, respectively.  The total energy of each alkyl bismuth given in Table 23.95 
was calculated as the sum over the integer multiple of each  GroupDE  of Table 23.94 corresponding to functional-group 

composition of the molecule.  The bond angle parameters of alkyl bismuths determined using Eqs. (15.88-15.117) are given in 
Table 23.96.  The color scale, charge-density of exemplary alkyl bismuth, triphenylbismuth, comprising atoms with the outer 
shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 23.19. 
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Figure 23.19.  Color scale, charge-density of triphenylbismuth showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei. 
 

 
 

Table 23.91.  The symbols of functional groups of alkyl bismuths. 
 

Functional Group Group Symbol
Bi-C Bi C  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  (i) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 

CC (aromatic bond) 
3e

C C  
CH (aromatic) CH  (ii) 
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SUMMARY TABLES OF ORGANOMETALLIC AND COORDINATE MOLECULES 
The bond energies, calculated using closed-form equations having integers and fundamental constants only for classes of 
molecules whose designation is based on the main functional group, are given in the following tables with the experimental 
values. 
 
Table 23.97.1.   Summary results of organoaluminum compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative 
Error 

C2H7Al dimethylaluminum hydride 34.31171 34.37797a [11] 0.00193
C3H9Al trimethyl aluminum 47.10960 46.95319 [10] -0.00333
C4H11Al diethylaluminum hydride 58.62711 60.10948b [10] 0.02466
C6H15Al triethylaluminum hydride 83.58270 83.58176 [10] -0.00001
C6H15Al di-n-propylaluminum hydride 82.94251 84.40566b [10] 0.01733
C9H21Al tri-n-propyl aluminum 120.05580 121.06458b [10] 0.00833
C8H19Al di-n-butylaluminum hydride 107.25791 108.71051b [10] 0.01336
C8H19Al di-isobutylaluminum hydride 107.40303 108.77556b [10] 0.01262
C12H27Al tri-n-butyl aluminum 156.52890 157.42429b [10] 0.00569
C12H27Al tri-isobutyl aluminum 156.74658 157.58908b [10] 0.00535

 

a Estimated. 
b Crystal 

 
Table 23.97.2.   Summary results of scandium coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative Error

ScF scandium fluoride 6.34474 6.16925 [15] -0.02845
ScF2 scandium difluoride 12.11937 12.19556 [15] 0.00625
ScF3 scandium trifluoride 19.28412 19.27994 [15] -0.00022
ScCl scandium chloride 4.05515 4.00192 [15] -0.01330
ScO scandium oxide 7.03426 7.08349 [15] 0.00695

 

 
Table 23.97.3.   Summary results of titanium coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative Error

TiF titanium fluoride 6.44997 6.41871 [21] -0.00487
TiF2 titanium difluoride 13.77532 13.66390 [21] -0.00815
TiF3 titanium trifluoride 19.63961 19.64671 [21] 0.00036
TiF4 titanium tetrafluoride 24.66085 24.23470 [21] -0.01758
TiCl titanium chloride 4.56209 4.56198 [22] -0.00003
TiCl2 titanium dichloride 10.02025 9.87408 [22] -0.01517
TiCl3 titanium trichloride 14.28674 14.22984 [22] -0.00400
TiCl4 titanium tetrachloride 17.94949 17.82402 [22] -0.00704
TiBr titanium bromide 3.77936 3.78466 [19] 0.00140
TiBr2 titanium dibromide 8.91650 8.93012 [19] 0.00153
TiBr3 titanium tribromide 12.07765 12.02246 [19] -0.00459
TiBr4 titanium tetrabromide 14.90122 14.93239 [19] 0.00209
TiI titanium iodide 3.16446 3.15504 [20] -0.00299
TiI2 titanium diiodide 7.35550 7.29291 [20] -0.00858
TiI3 titanium triiodide 9.74119 9.71935 [20] -0.00225
TiI4 titanium tetraiodide 12.10014 12.14569 [20] 0.00375
TiO titanium oxide 7.02729 7.00341 [23] -0.00341
TiO2 titanium dioxide 13.23528 13.21050 [23] -0.00188
TiOF titanium fluoride oxide 12.78285 12.77353 [23] -0.00073
TiOF2 titanium difluoride oxide 18.94807 18.66983 [23] -0.01490
TiOCl titanium chloride oxide 11.10501 11.25669 [23] 0.01347
TiOCl2 titanium dichloride oxide 15.59238 15.54295 [23] -0.00318

 



Chapter 23 1448

Table 23.97.4.   Summary results of vanadium coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

VF5 vanadium pentafluoride 24.06031 24.24139 [15] 0.00747
VCl4 vanadium tetrachloride 15.84635 15.80570 [15] -0.00257
VN vanadium nitride 4.85655 4.81931 [24] -0.00775
VO vanadium oxide 6.37803 6.60264 [15] 0.03402
VO2 vanadium dioxide 12.75606 12.89729 [34] 0.01095
VOCl3 vanadium trichloride oxide 18.26279 18.87469 [15] 0.03242
V(CO)6 vanadium hexacarbonyl 75.26791 75.63369 [32] 0.00484
V(C6H6))2 dibenzene vanadium 119.80633 121.20193a [33] 0.01151

a Liquid. 
 
Table 23.97.5.   Summary results of chromium coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

CrF2 chromium difluoride 10.91988 10.92685 [15] 0.00064
CrCl2 chromium dichloride 7.98449 7.96513 [15] -0.00243
CrO chromium oxide 4.73854 4.75515 [37] 0.00349
CrO2 chromium dioxide 10.02583 10.04924 [37] 0.00233
CrO3 chromium trioxide 14.83000 14.85404 [37] 0.00162
CrO2Cl2 chromium dichloride dioxide 17.46158 17.30608 [15] -0.00899
Cr(CO)6 chromium hexacarbonyl 74.22588 74.61872 [44] 0.00526
Cr(C6H6)2 dibenzene chromium 117.93345 117.97971 [44] 0.00039

Cr((CH3)3C6H3)2 
di-(1,2,4-trimethylbenzene) 
chromium 191.27849 192.42933a [44] 0.00598

a Liquid. 
 
Table 23.97.6.   Summary results of manganese coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

MnF manganese fluoride 4.03858 3.97567 [15] -0.01582
MnCl manganese chloride 3.74528 3.73801 [15] -0.00194
Mn2(CO)10 dimanganese decacarbonyl 123.78299 122.70895 [49] -0.00875

 
Table 23.97.7.   Summary results of iron coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

FeF iron fluoride 4.65726 4.63464 [15] -0.00488
FeF2 iron difluoride 10.03188 9.98015 [15] -0.00518
FeF3 iron trifluoride 15.31508 15.25194 [15] -0.00414
FeCl iron chloride 2.96772 2.97466 [15] 0.00233
FeCl2 iron dichloride 8.07880 8.28632 [15] 0.02504
FeCl3 iron trichloride 10.82348 10.70065 [50] -0.01148
FeO iron oxide 4.09983 4.20895 [15] 0.02593
Fe(CO)5 iron pentacarbonyl 61.75623 61.91846 [29] 0.00262

Fe(C5H5)2 
bis-cyclopentadienyl iron 
(ferrocene) 98.90760 98.95272 [53] 0.00046
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Table 23.97.8.   Summary results of cobalt coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

CoF2 cobalt difluoride 9.45115 9.75552 [54] 0.03120
CoCl cobalt chloride 3.66504 3.68049 [15] 0.00420
Col2 cobalt dichloride 7.98467 7.92106 [15] -0.00803
CoCl3 cobalt trichloride 9.83521 9.87205 [15] 0.00373
CoH(CO)4 cobalt tetracarbonyl hydride 50.33217 50.36087 [53] 0.00057

 
Table 23.97.9.   Summary results of nickel coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

NiCl nickel chloride 3.84184 3.82934 [59] -0.00327
NiCl2 nickel dichloride 7.76628 7.74066 [59] -0.00331
Ni(CO)4 nickel tetracarbonyl 50.79297 50.77632 [55] -0.00033

Ni(C5H5)2 
bis-cyclopentadienyl nickel 
(nickelocene) 

97.73062 97.84649 [53] 0.00118 

 
Table 23.97.10.   Summary results of copper coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

CuF copper fluoride 4.39399 4.44620 [63] 0.01174
CuF2 copper difluoride 7.91246 7.89040 [63] -0.00280
CuCl copper chloride 3.91240 3.80870 [15] -0.02723
CuO copper oxide 2.93219 2.90931 [63] -0.00787

 
Table 23.97.11.   Summary results of zinc coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

ZnCl zinc chloride 2.56175 2.56529 [15] 0.00138
ZnCl2 zinc dichloride 6.68749 6.63675 [15] -0.00764
Zn(CH3)2 dimethylzinc 29.35815 29.21367 [15] -0.00495
(CH3CH2)2Zn  diethylzinc 53.67355 53.00987 [65] -0.01252
(CH3CH2CH2)2Zn di-n-propylzinc 77.98895 77.67464 [65] -0.00405
(CH3CH2CH2CH2)2Zn  di-n-butylzinc 102.30435 101.95782 [65] -0.00340

 
Table 23.97.12.   Summary results of germanium compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

C8H20Ge tetraethylgermanium 109.99686 110.18166 [67] 0.00168
C12H28Ge tetra-n-propylgermanium 158.62766 158.63092 [67] 0.00002
C12H30Ge2 hexaethyldigermanium 167.88982 167.89836 [67] 0.00005
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Table 23.97.13.   Summary results of tin compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

SnCl4 tin tetrachloride 12.95756 13.03704 [82] 0.00610
CH3Cl3Sn methyltin trichloride 24.69530 25.69118a [83] 0.03876 
C2H6Cl2Sn dimethyltin dichloride 36.43304 37.12369 [84] 0.01860
C3H9ClSn trimethyltin chloride 48.17077 49.00689 [84] 0.01706
SnBr4 tin tetrabromide 10.98655 11.01994 [82] 0.00303
C3H9BrSn trimethyltin bromide 47.67802 48.35363 [84] 0.01397
C12H10Br2Sn diphenyltin dibromide 117.17489 117.36647a [83] 0.00163 
C12H27BrSn tri-n-butyltin bromide 157.09732 157.26555a [83] 0.00107 
C18H15BrSn triphenyltin bromide 170.26905 169.91511a [83] -0.00208 
SnI4 tin tetraiodide 9.71697 9.73306 [85] 0.00165
C3H9ISn trimethyltin iodide 47.36062 47.69852 [84] 0.00708
C18H15SnI triphenyltin iodide 169.95165 167.87948a [84] -0.01234 
SnO tin oxide 5.61858 5.54770 [82] -0.01278
SnH4 stannane 10.54137 10.47181 [82] -0.00664
C2H8Sn dimethylstannane 35.22494 35.14201 [84] -0.00236
C3H10Sn trimethylstannane 47.56673 47.77353 [84] 0.00433
C4H12Sn diethylstannane 59.54034 59.50337 [84] -0.00062
C4H12Sn tetramethyltin 59.90851 60.13973 [82] 0.00384
C5H12Sn trimethylvinyltin 66.08296 66.43260 [84] 0.00526
C5H14Sn trimethylethyltin 72.06621 72.19922 [83] 0.00184
C6H16Sn trimethylisopropyltin 84.32480 84.32346 [83] -0.00002
C8H12Sn tetravinyltin 84.64438 86.53803a [83] 0.02188 
C6H18Sn2 hexamethyldistannane 91.96311 91.75569 [83] -0.00226
C7H18Sn trimethyl-t-butyltin 96.81417 96.47805 [82] -0.00348
C9H14Sn trimethylphenyltin 100.77219 100.42716 [83] -0.00344
C8H18Sn triethylvinyltin 102.56558 102.83906a [83] 0.00266 
C8H20Sn tetraethyltin 108.53931 108.43751 [83] -0.00094
C10H16Sn trimethylbenzyltin 112.23920 112.61211 [83] 0.00331
C10H14O2Sn trimethyltin benzoate 117.28149 119.31199a [83] 0.01702 
C10H20Sn tetra-allyltin 133.53558 139.20655a [83] 0.04074 
C12H28Sn tetra-n-propyltin 157.17011 157.01253 [83] -0.00100
C12H28Sn tetraisopropyltin 157.57367 156.9952 [83] -0.00366
C12H30Sn2 hexaethyldistannane 164.90931 164.76131a [83] -0.00090 
C19H18Sn triphenylmethyltin 182.49954 180.97881a [84] -0.00840 
C20H20Sn triphenylethyltin 194.65724 192.92526a [84] -0.00898 
C16H36Sn tetra-n-butyltin 205.80091 205.60055 [83] -0.00097
C16H36Sn tetraisobutyltin 206.09115 206.73234 [83] 0.00310
C21H24Sn2 triphenyl-trimethyldistannane 214.55414 212.72973a [84] -0.00858 
C24H20Sn tetraphenyltin 223.36322 221.61425 [83] -0.00789
C24H44Sn tetracyclohexyltin 283.70927 284.57603 [83] 0.00305
C36H30Sn2 hexaphenyldistannane 337.14517 333.27041 [83] -0.01163

a Crystal. 
 
Table 23.97.14.   Summary results of lead compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

C4H12Pb tetramethyl-lead 57.55366 57.43264 [86] -0.00211
C8H20Pb tetraethyl-lead 106.18446 105.49164 [86] -0.00657

 



Organometallic Molecular Functional Groups and Molecules  1451

Table 23.97.15.   Summary results of alkyl arsines. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

C3H9As trimethylarsine 44.73978 45.63114 [87] 0.01953
C6H15As triethylarsine 81.21288 81.01084 [87] -0.00249
C18H15As triphenylarsine 167.33081 166.49257 [87] -0.00503

 
Table 23.97.16.   Summary results of alkyl stibines. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

C3H9Sb trimethylstibine 44.73078 45.02378 [88] 0.00651
C6H15Sb triethylstibine 81.20388 80.69402 [88] -0.00632
C18H15Sb triphenylstibine 167.32181 165.81583 [88] -0.00908

 
Table 23.97.17.   Summary results of alkyl bismuths. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

C3H9Bi trimethylbismuth 42.07387 42.79068 [88] 0.01675
C6H15Bi triethylbismuth 78.54697 78.39153 [88] -0.00198
C18H15Bi triphenylbismuth 164.66490 163.75184 [88] -0.00558
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Dr. Mills has replaced the field generally known as Quantum Mechanics which postulates that classical
physical laws do not apply at the atomic scale by deriving a new atomic theory of from those first
principles, which unifies Maxwell’s Equations, Newton’s Laws, and General and Special Relativity. The
central feature is that physical laws hold over all scales, from the scale of subatomic particles to that of
the cosmos.

Quantum Mechanics has remained mysterious to all who have encountered it. Schrödinger postulated a
boundary condition Ψ → 0 as r → ∞ of a wavelike positional probability for a singularity that is
everywhere at once until measurement. The result was a purely algorithmic mathematical model of the
hydrogen atom. In contrast, Mills solved the exact structure of matter and energy and related
phenomena from known classical physics, (e.g. Maxwell's Equations wherein under special conditions,
an extended distribution of charge may accelerate without radiating energy). This leads to a physical
model of subatomic particles, atoms, and molecules. The closed-form solutions containing fundamental
constants only agree with experimental observations demonstrating that the fundamental quantum
mechanical postulate, “classical physical laws do not apply to the atomic scale”, was erroneous.

“Mills’ theory explains the answers to some very old scientific questions, such as ‘what happens to a
photon upon absorption’ and some very modern ones, such as ‘what is dark matter.’ ...Lastly, Mills
has made an extremely important contribution to the philosophy of science. He has reestablished
cause and effect as the basic principle of science.” - Dr. John J. Farrell, former Chair of the Dept. of
Chemistry, Franklin & Marshall College

“Mills’ ingenious way of thinking creates in different physical areas astonishing results with fascinating
mathematical simplicity and harmony. And his theory is strongly supported by the fact that nearly all
these results are in comfortable accordance with experimental findings, sometimes with breathtaking
accuracy.” - Dr Günther Landvogt, Retired Scientist, Philips Research Lab

“Dr. Mills has apparently completed Einstein’s quest for a unified field theory… without largesse from
the US Government, and without the benediction of the US scientific priesthood.” - Shelby T. Brewer,
former Assistant Secretary of Energy, former CEO of ABB Combustion Engineering, MS/Ph.D. MIT - Nuclear Engineering.

“Mills proposes such a basic approach to quantum theory that it deserves considerably more
attention from the general scientific community than it has received so far. The new theory appears to
be a realization of Einstein's vision and a fitting closure of the "Quantum Century" that started in
1900...” - Dr. Reinhart Engelmann, Professor of Electrical Engineering, Oregon Graduate Institute of Science and
Technology

Dr. Randell Mills holds a Doctor of Medicine degree from Harvard, a BA degree in Chemistry from
Franklin and Marshall College, and studied Electrical Engineering at MIT. He is President, Chairman
and CEO of Brilliant Light Power, Inc.

From two basic equations, the key building blocks
of organic chemistry have been solved, allowing
the true physical structure and parameters of an
infinite number of organic molecules up to infinite
length and complexity to be obtained. These
equations were also applied to bulk forms of
matter, such as the allotropes of carbon, the solid
bond of silicon and the semiconductor bond; as
well as fundamental forms of matter such as the
ionic bond and the metallic bond; and major fields
of chemistry such as that of silicon, tin, aluminum,
boron, and coordinate compounds.

Further, the Schwarzschild Metric is derived by
applying Maxwell’s Equations to electromagnetic
and gravitational fields at particle production. This

modifies General Relativity to include the conservation of spacetime and gives the origin of gravity,
the families and masses of fundamental particles, the acceleration of the expansion of the universe
(predicted by Dr. Mills in 1995 and since confirmed experimentally), and overturns the Big Bang
model of the origin of the universe.
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