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PREFACE 
  
 
 
 
 
Typically freshman students are introduced to classical laws that they apply to physical problems that can be understood 
intuitively and solved in closed form.  As they advance to the second year, they are introduced to a contradictory view—that the 
atomic-scale world is nonphysical, counterintuitive, and incapable of being understood in physical, intuitive terms.  In addition, 
they are asked to take for granted many fantastical concepts such as electrons being probability waves having an infinite number 
of energies and positions simultaneously, until measured, spooky actions at a distance, and virtual particles which occupy every 
point in space but can not be detected.  With the introduction of quantum mechanics, which is not a theory of physical reality, 
students are taught to abandon all that they initially learned for laboratory scale systems and to accept that these laws do not 
apply to atomic systems; even though, they learned by direct experimental observation that these laws worked perfectly well and 
that laboratory scale objects are made up of atoms. 

This non-physical treatment of atomic electrons is propagated into molecular theory.  Repulsion between opposite 
charges is an undeniable reality; yet quantum theoreticians teach the opposite: chemical bonding is due to negative charges 
overlapping wherein the more negative charges occupying the same space, the stronger the bond; except that the electrons are 
also simultaneously repulsive requiring the addition of quantum mechanical wave function electron-electron repulsion terms.  
Even regions of empty space devoid of nuclei and electrons together with many other ad hoc, inconsistent, often nonphysical, 
and non-unique terms further comprise the quantum mechanical treatment of the nature of the chemical bond. 

Many paradoxes and internal inconsistencies arise in quantum mechanics such as the requirement that two or more 
contradictory results exist simultaneously, the existence of infinities, non-locality, and violation of causality, to mention a few.  
Unlike the solutions learned in the freshman year, none of the solutions are unique—algorithms to remove infinities and to add 
fantastical corrections are totally discretionary [1-17].  One exception is the one-electron atom, but the Schrödinger equation is 
not a directly experimentally testable relationship.  Rather, it is postulated.  The solutions make no physical sense.  Electron spin 
is missed completely.  And, in many cases, the solutions contradict experimental observations [1-17]. 

To add to this confusion, Newton’s Laws of mechanics are presented as invalid.  With the assumption of Galilean 
transformations, they fail to remain invariant at high speed.  Special relativity is introduced as an independent mechanics theory 
based on the constant maximum of the speed of light, which was demonstrated by the Michelson-Morley experiment.  But, this 
experiment addressed light propagation and not mechanics, except for disproving the ether and a universal reference frame in the 
sense of the speed of light.  Maxwell’s equations, which govern light propagation, remain since they are consistent with special 
relativity and predict c  based on universal properties of spacetime.  No connection to mass or mechanics is given despite the 
result of the equivalence of mass and electromagnetic energy from special relativity.  There is no connection to particle masses 
and atomic theory.  And, the infinite sea of virtual particles of atomic theory is paradoxically an ether which was abandoned with 
special relativity.   

Furthermore, it is taught that the validity of Maxwell’s equations is restricted only to the macro-scale and that they do not 
apply to the atomic scale.  This is inconsistent with the application of special relativity to the mechanics of atomic particles at 
high speed and the radiation of accelerating atomic particles wherein, paradoxically, Maxwell’s equations give the 
electromagnetic wave equation that governs the emitted radiation.  Yet, when the particle motion is thought of as a current, 
Maxwell’s equations predict the radiation of atomic particles as well.  Then, contradictory, postulated quantum mechanical rules 
apply to the radiation or stability of electrons in atoms, which should be treated electrodynamically.  Neither a special relativistic 
or Maxwellian approach to the radiation is deemed to apply even though the Maxwellian Coulomb potential and special 
relativistic corrections to the electron mass are invoked.  Even more disconcerting is that supposedly special relativity is the basis 
of electron spin in the Dirac equation.  But, the solution requires an infinite sea of virtual particles that is equivalent to the ether.  
This constitutes a glaring internal inconsistency because the absence of both an ether and an absolute frame is the basis of special 
relativity in the first place.  In addition, considering the simplest atom, hydrogen, no physical mechanism for the existence of 
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discrete radiative energy levels or the stability of the n  1 state exists—only circular reasoning between the empirical data and a 
postulated wave equation with an infinite number of solutions that was parameterized to match the Rydberg lines [1-17]. 

Furthermore, the elimination of absolute frame by special relativity results in the elimination of inertial mass and 
Newton’s Second law, foundations of mechanics, and gives rise to the twin paradox and an infinite number of energy inventories 
of the universe based on the completely arbitrary definition of the observer’s frame of reference.  Newton’s Law of gravitation is 
also to be unlearned.  It is replaced by a postulated tensor relationship that only applies to massive gravitating objects.  The 
replacement theory is explained in terms of warping of spacetime without any connection to the physical laws learned as a 
freshman or any connection to atoms that make up the massive gravitating bodies.  General relativity predicts singularities and a 
deceleration cosmology—the opposite of that which is observed [18-19].  It is to be accepted with quantum mechanics as the 
correct atomic theory even though these theories are mutually incompatible.  It is further disconcerting that the Uncertainty 
Principle of quantum mechanics—one of its fundamental tenets—predicts a continuum of particle masses and gives no 
mechanism for the existence of atomic particles of precise inertial and gravitational mass in the first place.  And, the infinite sea 
of virtual particles and vacuum energy fluctuations throughout the entire universe requires an infinite cosmological constant that 
is obviously not observed [20]. 

This confused approach to physics is not due to nature, and it can be avoided.  Physics can become transparent and 
intuitive on all scales and understood conceptually at all levels of specialization.  The same is true for chemistry wherein the 
multitudes of ad hoc, nonphysical, inconsistent, nonunique, adjustable atomic and molecular modeling algorithms of quantum 
theory are replaced by exact physical solutions comprising fundamental constants only [3-7].  The fundamental laws of physics 
and chemistry of Maxwell’s equations and Newton’s Laws of mechanics and gravitation were developed after direct 
experimental observation of phenomena such as electricity and magnetism, mechanics, and gravity.  Electricity and magnetism 
were unified with the prediction and later confirmation of electromagnetic waves.  These laws, developed in the mid 1800’s, 
with the extension to the atomic scale and taking into account the appropriate spacetime metric are sufficient for describing all 
phenomena in the universe.  For objects moving with speeds approaching the speed of light, Newton’s Laws must include the 
limiting maximum speed that is inherent in Maxwell’s equations and determined by the permeability and permittivity of 
spacetime.  In mechanics, the metric is Minkowskian wherein the speed relative to light speed must be invoked and Galilean 
transformations become Lorentzian.  Similarly, when a photon transforms to a particle, any signal capable of transporting energy 
with a limiting velocity must propagate as a light wave front, and the limiting velocity is the speed of light.  Thus, for particle 
production, the electromagnetic front of the photon and the gravitational front due to the particle must have a limiting speed c , 
the speed of light.  As a consequence, the metric is required to be the Schwarzschild metric rather than Minkowskian.  
Specifically, fundamental particle production occurs when the energy of the particle given by the Planck equation, Maxwell’s 
Equations, and Special Relativity is equal to   mc2 , and the proper time is equal to the coordinate time according to Schwarzschild 
metric.  The gravitational equations with the equivalence of the particle production energies permit the equivalence of mass-
energy and the absolute spacetime wherein a “clock” is defined which measures “clicks” on an observable in one aspect, and in 
another, it is the ruler of spacetime of the universe with the implicit dependence of spacetime on matter-energy conversion.  The 
masses of the leptons, the bosons, the quarks, and nucleons are derived from this metric of spacetime.  Then, the gravitational 
equations with the equivalence of the particle production energies require the conservation relationship of mass-energy, 

  E  mc2 , and spacetime, 
  

c3

4G
 3.22 X  1034

 
kg

sec
.  Spacetime expands as mass is released as energy which provides the basis of 

absolute space and the atomic, thermodynamic, and cosmological arrows of time.  The observations of the acceleration of the 
cosmic expansion, the absence of time dilation in redshifted quasars, and the absence of a Big Bang origin of the universe 
confirm the absolute nature of spacetime.  

With the conditions of the metric being Minkowskian for Newtonian mechanics and the Schwarzschild metric for 
Newtonian gravity, all of the fundamental laws of nature are directly derived from experiments.  The universe is not 
mathematical; it is physical.  A separate theory for near light speed mechanics, special relativity as it now exists, is unnecessary 
and incomplete.  For example, in addition to the problems raised previously, the famous equation   E  mc2  does not predict 
fundamental particle masses, inertial or gravitational or why they are equivalent.  Furthermore, separate theories of atomic 
physics such as quantum mechanics and quantum electrodynamics, separate nuclear theories such as quantum chromodynamics, 
a separate theory for particles such as the standard model, a separate theory for gravity, general relativity as it now exists, and 
separate theories for cosmology such as the Big Bang, inflation, and dark energy are artificial, internally inconsistent, incorrect, 
incomplete, and not based on physical laws.  The correct basis of the spacetime relationships of special relativity and general 
relativity are inherent in the classical laws that further predict all natural phenomena of physics and chemistry and compositions 
of matter and energy of any complexity from the scale of quarks to the cosmos in terms of the fundamental constants of nature 
only. 
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INTRODUCTION 
  
 
 
 
 
GENERAL CONSIDERATIONS 
Toward the end of the 19th century, many physicists believed that all of the principles of physics had been discovered.  The 
accepted principles, now called classical physics, included laws relating to Newton’s mechanics, Gibbs’ thermodynamics, 
LaGrange’s and Hamilton’s elasticity and hydrodynamics, Maxwell-Boltzmann molecular statistics, and Maxwell’s equations.  
However, the discovery that the intensity of blackbody radiation goes to zero, rather than infinity as predicted by the prevailing 
laws, provided an opportunity for new principles to be discovered.  In 1900, Planck made the revolutionary assumption that 
energy levels were quantized, and that atoms of the blackbody could emit light energy only in amounts given by h , where   is 
the radiation’s frequency and h  is a proportionality constant (now called Planck’s constant).  This assumption also led to our 
understanding of the photoelectric effect and ultimately to the concept of light as a particle called a photon.  A similar course 
arose in the development of the model of the electron.  In 1923, de Broglie suggested that the motion of an electron has a wave 

aspect where the wavelength,  , is inversely proportional to the electron’s momentum, p , as 
h

p
  .  This concept seemed 

unlikely according to the familiar properties of electrons such as charge, mass and adherence to the laws of particle mechanics.  
But the wave nature of the electron was confirmed by Davisson and Germer in 1927, by observing diffraction effects when 
electrons were reflected from metals. 

Experiments by the early part of the 20th century had revealed that both light and electrons behave as waves in certain 
instances and as particles in others.  This was unanticipated from preconceptions about the nature of light and the electron.  Early 
20th century theoreticians proclaimed that light and atomic particles have a “wave-particle duality” that was unlike anything in 
our common-day experience.  The wave-particle duality is the central mystery of the presently accepted atomic model, quantum 
mechanics (QM), the one to which all other mysteries could ultimately be reduced.  The central equation, the Schrödinger 
equation, and its associated postulates, are now the basis of quantum mechanics, and it is the basis for the world view that the 
atomic realm including the electron and photon cannot be described in terms of “pure” wave and “pure” particle but in terms of a 
wave-particle duality.  The wave-particle duality based on the fundamental principle that physics on an atomic scale is very 
different from physics on a macroscopic scale is central to present day atomic theory [1].  Further founding assumptions 
maintained from the earlier theories of Bohr and Schrödinger to what is dubbed “modern quantum mechanics” are that 
phenomena such as stability, quantization, and spin are intrinsic aspects of matter at the atomic scale and the electron is a 
probability wave requiring that the electron have infinite numbers of positions and energies including negative and infinite 
energies simultaneously.  It is inherent that physical laws such as Maxwell’s equations, Newton’s laws, conservation of energy 
and angular momentum are not exactly obeyed.  The exactness and determinism of classical physics are replaced by the 
Heisenberg Uncertainty Principle, an inequality defining the limitations of the existence of physical reality that has recently been 
tested for the first time and experimentally disproved [2].  Recently a new measuring technique that exploits superposition (i.e. 
interference) of two short pulses of light with different wavelengths circumvented the limitation formulated by the father of 
quantum physics, Werner Heisenberg, in 1927.  According to Heisenberg's uncertainty principle (HUP), it is not possible to 
determine the position and the speed of an electron at the same instant.  However, Isinger et al. [3] have shown definitively that it 
can be done and thereby experimentally disproving the HUP.  Since the HUP is an inherent consequence of the theory of 
quantum mechanics (QM), QM is proven wrong as well. 

The Schrödinger equation was originally postulated in 1926 as having a solution of the one-electron atom.  It gives the 
principal energy levels of the hydrogen atom as eigenvalues of eigenfunction solutions of the Laguerre differential equation.  
But, as the principal quantum number n>>1, the eigenfunctions become nonsensical.  Despite its wide acceptance, on deeper 
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inspection, the Schrödinger solution is plagued with many failings as well as difficulties in terms of physical interpretations that 
have caused it to remain controversial since its inception.  Only the one-electron atom may be solved without approximations, 
but it fails to predict electron spin, leads to models with nonsensical consequences such as negative energy states of the vacuum, 
infinities, and negative kinetic energy, and it fails to predict the stability of the atomic hydrogen 1n   state except for an 
arbitrary definition1 [4-15].  In addition to many predictions that simply do not agree with observations even regarding the one-
electron atom [4-20], the Schrödinger equation predicts noncausality, nonlocality, spooky actions at a distance or quantum 
telepathy, perpetual motion, and many internal inconsistencies where contradicting statements have to be taken true 
simultaneously.  The behavior of free electrons in superfluid helium is but one example of a phenomenon that forces the issue of 
the meaning of the wavefunction.  Electrons form bubbles in superfluid helium, which reveal that the electron is real and that a 
physical interpretation of the wavefunction is necessary.  Furthermore, when irradiated with light of energy of about a 0.5 to 
several eV [21], the electrons carry current at different rates as if they exist with different sizes.  It has been proposed that the 
behavior of free electrons in superfluid helium can be explained in terms of the electron breaking into pieces at superfluid helium 
temperatures [21].  Yet, the electron has proven to be indivisible even under particle accelerator collisions at 90 GeV (LEPII).  
The nature of the wavefunction must now be addressed.  It is time for the physical rather than the mathematical nature of the 
wavefunction to be determined.  

A new approach has been developed to explain the seemingly mysterious physics of the atomic scale.  The theory of 
classical physics (CP) now applied correctly to solving the structure of the electron is based on the foundation that laws of 
physics valid in the macroworld do hold true in the microworld of the atom.  In the present case, the predictions, which arise 
from the equations of light and atomic particles are completely consistent with observation, including the wave-particle duality 
of light and atomic particles.  Furthermore, it is shown herein that the quantization of atomic energy levels arises classically 
without invoking new physics.  Continuous motion such as electronic transitions between quantized states and translational 
motion restores continuity and causality with the continuous nature of spacetime itself restored consistent with first principles 
and observation.  Using Maxwell’s equations, the structure of the electron is derived as a boundary-value problem wherein the 
electron comprises the source current of time-varying electromagnetic fields during transitions with the constraint that the 
bound n  1  state electron cannot radiate energy.  The postulates and mathematical constructs of quantum mechanics are 
erroneous.  Physical laws are shown to apply to the atomic scale in refutation to QM.  This issue of treating the wavefunction 
physically is even more imperative given that classical physics predicts hydrogen atomic transitions below the inalienable 
quantum “ground state” and these predictions are experimentally confirmed [22-42] with the further result that the corresponding 
fractional principal quantum states match the observations of free electrons in superfluid helium [14].  (See Free Electrons in 
Superfluid Helium are Real in the Absence of Measurement Requiring a Connection of   to Physical Reality section.) 

QM has never dealt with the nature of fundamental particles.  Rather, it postulates the impossible situation that they 
occupy no volume; yet are everywhere at once.  In contrast, CP solves the structure of the electron using the constraint of 
nonradiation based on Maxwell’s equations.  CP gives closed-form physical solutions for the electron in atoms, the free electron, 
and excited states that match the observations.  With these solutions, conjugate parameters can be solved for the first time, and 
atomic theory is at last made predictive and intuitive.  Application of Maxwell’s equations precisely predicts hundreds of 
fundamental spectral observations and atomic and molecular solutions in exact equations with no adjustable parameters 
(fundamental constants only).  Moreover, unification of atomic and large-scale physics, the ultimate objective of natural theory, 
is enabled.  The result gives a natural relationship between Maxwell’s equations, special relativity, and general relativity.  CP 
holds over a scale of spacetime of 85 orders of magnitude—it correctly predicts the nature of the universe from the scale of the 
quarks to that of the cosmos. 

The Maxwellian approach allows the solution of previously intractable problems such as the equations of the masses of 
fundamental particles.  Exemplary relations between fundamental particles are shown in Table I.1. 
 

 
1 The Schrödinger equation can only yield integer eigenvalue solutions by selection or definition from an infinite number of possibilities since the solution 
is over all space with no boundary (i.e. 0 to  ).  In contrast, wave equation solutions with integers are common for boundary-constrained systems such as 
waveguides and resonators. 
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Table I.1.   The relations between the lepton masses and neutron to electron mass ratio are given in terms of the dimensionless 
fine structure constant   only. 
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a Experimental according to the 1998 CODATA and the Particle Data Group [43-44]. 
 
CP successfully predicted the mass of the top quark before it was reported and correctly predicted the acceleration of the 
expansion of the universe before it was observed [45].  It correctly predicts the behavior of free electrons in superfluid helium 
and further predicts the existence of new states of hydrogen that are lower in energy than the 1n   state that represents a new 
energy source and a new field of chemistry that has far reaching technological implications in power generation, materials, 
lighting, and lasers.  The existence of such states has been confirmed by the data presented in over 100 published journal articles 
and over 50 independent test reports and articles [22]. 
 

CP APPROACH TO THE SOLUTION OF THE BOUND ELECTRON 
CP solves the electron by a different approach than that used to solve the Schrödinger wave equation.  Rather than using a 
postulated wave equation with time eliminated in terms of the energy of the electron in a Coulomb field and solving the charge 
wave (Schrödinger interpretation) or the probability wave (Born interpretation), the solution for the scalar (charge) and vector 
potential (current) functions of the electron are sought based on first principles.  Since the hydrogen atom is stable and 
nonradiative, the electron has constant energy.  Furthermore, it is time dynamic with a corresponding current that serves as a 
source of electromagnetic radiation during transitions.  The wave equation solutions of the radiation fields permit the source 
currents to be determined as a boundary-value problem.  These source currents match the field solutions of the wave equation for 
two dimensions plus time when the nonradiation condition is applied.  Then, the mechanics of the electron can be solved from 
the two-dimensional wave equation plus time in the form of an energy equation wherein it provides for conservation of energy 
and angular momentum, as given in the Electron Mechanics and the Corresponding Classical Wave Equation for the Derivation 
of the Rotational Parameters of the Electron section. 

Specifically, CP first assumes that the functions that physically describe the mass and charge of the electron in space and 
time comprise time-harmonic multipole source currents of time-varying electromagnetic fields between transitions.  Rather than 
use the postulated Schrödinger boundary condition: “ 0  as r  ,” which leads to a purely mathematical model of the 
electron, the constraint is based on the experimental observation that the moving charge must not radiate in the 1n   state of 
hydrogen.  The condition for nonradiation based on Maxwell’s equations after Haus [46] is that its spacetime Fourier transform 
does not possess components that are synchronous with waves traveling at the speed of light.  Jackson [47] gives a generalized 
expansion in vector spherical waves that are convenient for electromagnetic boundary-value problems possessing spherical 
symmetry properties and for analyzing multipole radiation from a localized source distribution.  The special case of nonradiation 
determines that the current functions are confined to two-spatial dimensions plus time and match the electromagnetic wave-
equation solutions for these dimensions.  The boundary-value solutions for the current-density functions comprise spherical 
harmonic functions and time harmonic functions confined to two dimensions (  and  ) plus time.  In order for the current to be 
positive definite, a constant function corresponding to the electron spin function is added to each of the spherical harmonic 
functions corresponding to orbital angular momentum to give the charge (mass)-density functions of the bound electron as a 
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function of time called an electron atomic orbital.  The integral of the constant function over the atomic orbital is the total charge 
(mass) of the electron.  The integral of a spherical harmonic function over the atomic orbital is zero; thus, it modulates the spin 
function.  These functions comprise the well-known s, p, d, f, etc. electrons or orbitals.  In the case that such an electron state 
arises as an excited state by photon absorption, it is radiative due to a radial dipole term in its current-density function since it 
possesses spacetime Fourier components synchronous with waves traveling at the speed of light, as shown in the Instability of 
the Excited States section. 

The excited states involving the corresponding multipole photon radiation are solved including the radii of the atomic 
orbitals using Maxwell’s equations with the traditional source current boundary constraints at the electron.  Quantization arises 
from the equation of the photon and the electron—not from the solution of the electron alone.  After all, each solution models an 
excited state created by the absorption of a photon.  The solutions are analogous to those of excited resonator modes except that 
the cavity is dynamic.  The photon field is described by a Dirac delta function at the radius of the electron,  nr r  , and due to 

relativistic effects the field is radially local at the electron.  The field lines from the proton superimpose with those of the photon 
at the electron and end on the current-density function of the electron such that the electric field is zero for nr r , where nr  is the 

radius of the electron.  The trapped photons are solutions of Maxwell’s equations.  The electrodynamic field of the photon is a 
constant function plus a time and spherical harmonic function that is in phase with source currents at the electron, which is given 
by a constant plus a time and spherical harmonic function.  Only particular solutions are possible as resonant photons of the 
electron, which is a dynamic resonator cavity.  The results are in agreement with first principle physics and experimental 
observations of the hydrogen atom, excited states, free electron, and free space photon including the wave particle duality 
aspects. 
 
SPIN AND ORBITAL PARAMETERS ARISE FROM FIRST PRINCIPLES ONLY IN THE 
CASE OF CP 
An electron is a two-dimensional spherical surface, called an electron atomic orbital, that can exist in a bound state only at 
specific radii nr  from the nucleus.  (See Figures I.1 and I.2 for a pictorial representation of an atomic orbital.)  The result for the 

1n   state of hydrogen is that the charge-density function remains constant with each point on the surface moving at the same 
angular and linear velocity.  The constant function corresponds to the spin function that has a corresponding spin angular 
momentum that may be calculated from r p  applied directly to the current-density function that describes the electron.  The 
radius of the nonradiative ( 1n  ) state is solved using the electromagnetic force equations of Maxwell relating the charge and 
mass-density functions wherein the angular momentum of the electron is   (Eq. (1.253)).  The reduced mass arises naturally 
from an electrodynamic interaction between the electron and the proton, rather than from a point mass revolving around a point 
nucleus in the case of Schrödinger wave equation solutions, which presents an internal inconsistency since the wave functions 
are spherically symmetrical. 

CP gives closed form solutions for the resonant photons and excited state electron functions.  The free space photon also 

comprises a radial Dirac delta function, and the angular momentum of the photon given by   41
Re ( )

8
dx

c
   m r E B*   in 

the Photon section is conserved for the solutions for the resonant photons and excited state electron functions.  It can be 
demonstrated that the resonance condition between these frequencies is to be satisfied in order to have a net change of the energy 
field [48].  In the present case, the correspondence principle holds.  That is the change in angular frequency of the electron is 
equal to the angular frequency of the resonant photon that excites the resonator cavity mode corresponding to the transition, and 
the energy is given by Planck’s equation.  The predicted energies, Lamb shift, fine structure splitting, hyperfine structure, 
resonant line shape, line width, selection rules, etc., are in agreement with observation.   

The radii of excited states are solved using the electromagnetic force equations of Maxwell relating the field from the 
charge of the proton, the electric field of the photon, and charge and mass-density functions of the electron wherein the angular 
momentum of the electron is   (Eq. (1.253)). 

For excited states of the hydrogen atom, the constant function corresponds to the spin function.  Each spherical harmonic 
function modulates the constant spin function and corresponds to an orbital function of a specific excited state with a 
corresponding phase-matched trapped photon and orbital angular momentum.  Thus, the spherical harmonic function behaves as 
a charge-density wave, which travels time harmonically on the surface of the atomic orbital about a specific axis.  (See Figure 
1.2 for a pictorial representation for several   values.)  The amplitude of the corresponding orbital energy may be calculated 
from Maxwell’s equations.  Since the constant function is modulated harmonically, the time average of the orbital energy is zero 
except in the presence of a magnetic field.  Nondegeneracy of energy levels arises from spin, orbital, and spin-orbit coupling 
interactions with the applied field.  The electrodynamic interaction with the magnetic field gives rise to the observed hyperfine 
splitting of the hydrogen spectrum. 

Many inconsistencies arise in the case of the corresponding solutions of the Schrödinger wave equation.  For example, 
where is the photon in excited states given by the Schrödinger equation?  A paradox also arises for the change in angular 
momentum due to photon absorption.  The Schrödinger equation solutions for the kinetic energy of rotation rotK  is given by Eq. 

(10) of Ref. [14] and the value of the electron angular momentum L  for the state  ,lmY    is given by Eq. (11) of Ref. [14].  

They predict that the excited state rotational energy levels are nondegenerate as a function of the   quantum number even in the 
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absence of an applied magnetic field, and the predicted energy is over six orders of magnitude of the observed nondegenerate 
energy in the presence of a magnetic field.  In the absence of a magnetic field, no preferred direction exists.  In this case, the   
quantum number is a function of the orientation of the atom with respect to an arbitrary coordinate system.  Therefore, the 
nondegeneracy is nonsensical and violates conservation of angular momentum of the photon.   

In quantum mechanics, the spin angular momentum of the electron is called the “intrinsic angular momentum” since no 
physical interpretation exists.  The Schrödinger equation is not Lorentz invariant in violation of special relativity.  It fails to 
predict the results of the Stern-Gerlach experiment that indicates the need for an additional quantum number.  Quantum 
Electrodynamics (QED) was proposed by Dirac in 1926 to provide a generalization of quantum mechanics for high energies in 
conformity with the theory of special relativity and to provide a consistent treatment of the interaction of matter with radiation.  
It is fatally flawed.  From Weisskopf [16], “Dirac’s quantum electrodynamics gave a more consistent derivation of the results of 
the correspondence principle, but it also brought about a number of new and serious difficulties.”  Quantum electrodynamics: (i) 
does not explain nonradiation of bound electrons; (ii) contains an internal inconsistency with special relativity regarding the 
classical electron radius—the electron mass corresponding to its electric energy is infinite (the Schrödinger equation fails to 
predict the classical electron radius); (iii) it admits solutions of negative rest mass and negative kinetic energy; (iv) the 
interaction of the electron with the predicted zero-point field fluctuations leads to infinite kinetic energy and infinite electron 
mass;  (v) Dirac used the unacceptable states of negative mass for the description of the vacuum; yet, infinities still arise.  
Dirac’s equation, which was postulated to explain spin, relies on the unfounded notions of negative energy states of the vacuum, 
virtual particles, and gamma factors.  All of these features are untenable or are inconsistent with observation.  These problems 
regarding spin and orbital angular momentum and energies and the classical electron radius are nonexistent with CP solutions. 

From the time of its inception, quantum mechanics (QM) has been controversial because its foundations are in conflict 
with physical laws and are internally inconsistent.  Interpretations of quantum mechanics such as hidden variables, multiple 
worlds, consistency rules, and spontaneous collapse have been put forward in an attempt to base the theory in reality.  
Unfortunately, many theoreticians ignore the requirement that the wave function must be real and physical in order for it to be 
considered a valid description of reality.  These issues and other such flawed philosophies and interpretations of experiments that 
arise from quantum mechanics are discussed in the Retrospect section and Ref. [10, 12, 14].  Reanalysis of old experiments and 
many new experiments including electrons in superfluid helium and data confirming the existence of hydrinos challenge the 
Schrödinger equation predictions.  Many noted physicists rejected quantum mechanics, even those whose work undermined 
classical laws.  Feynman attempted to use first principles including Maxwell’s Equations to discover new physics to replace 
quantum mechanics [49] and Einstein searched to the end.  “Einstein [...] insisted [...] that a more detailed, wholly deterministic 
theory must underlie the vagaries of quantum mechanics [50].”  He believed scientists were misinterpreting the data.  Examples 
of quantum mechanical misinterpretations of experiments are given in Box I.1.  (See the following sections: The One-Electron 
Atom, Electron in Free Space, Classical Photon and Electron Scattering, Three- Through Twenty-Electron Atoms, 
Superconductivity, Gravity, Wave-Particle Duality, and Refs. [9, 10, 12].) 
 
  
BOX I.1 MISINTERPRETATIONS OF OBSERVATIONS AS WEIRDNESS 
OF QUANTUM MECHANICS IS REVEALED TO BE DUE TO ATOMIC-
SCALE CLASSICAL PHYSICS  
 
QM:  The rise in current of free electrons in superfluid helium when irradiated with low-energy light and the formation of an 

unexpected plethora of exotic negative charge carriers in superfluid helium with mobilities greater than that of the normal 
electron are due to the electron breaking into fractional pieces. 

 

CP:  Fractional principal quantum energy states of the electron in liquid helium match the photoconductivity and mobility 
observations without requiring that the electron is divisible. 

 
QM:  Virtual particles surround the electron, and as the electron’s center is approached, they shield the electron’s charge less 

effectively. 
 

CP:  The electron is an extended particle, rather than a point, and the charge density is greatest in the center. 
 
QM:  Spooky actions at a distance are predicted. 
 

CP:  Photon momentum is conserved on a photon-by-photon basis rather than statistically as predicted by quantum mechanics 
which predicts photon coincidence counts at separated detectors (Aspect experiment). 

 
QM:  The purely postulated Hund’s Rule and the Pauli Exclusion Principle of the assignment of unique quantum numbers to all 

electrons are “weird spooky action” phenomena unique to quantum mechanics that require all electrons in the universe to 
have instantaneous communication and coordination with no basis in physical laws such as Maxwell’s equations. 
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CP: The observations that all electrons have unique quantum numbers and that the electron configuration of atoms follows a 
pattern based on solutions of Laplace’s equation are phenomenological consequences of physical laws such as Maxwell’s 
equations. 

 
QM:  Since fundamental particles are probability waves and their position and energy are uncertain according to the 

Uncertainty Principle, they can “magically” appear on the other side of a supposedly insurmountable energy barrier based 
on their energy on the initial side of the barrier; thus, they defy physical laws and tunnel through the barrier. 

 

CP:  Fundamental particles such as an electron are real, extended particles each of size equal to its de Broglie wavelength, 
rather than a point-particle-probability-wave.  Potential energy is gained as the particle traverses the barrier that is 
cleared; even though its initial kinetic energy was less than the barrier height.  Energy conservation is obeyed at all times.  
Tunneling arises from physical laws. 

 

QM:  A 
9 Be

 ion may be in two separate locations at once. 
 

CP:  The fluorescence emission spectrum of a Penning trapped 9Be  ion shows interference peaks due to coupling between 
oscillator modes and a Stern Gerlach transition. 

 
QM:  Supercurrent may go in both directions at once. 
 

CP:  The energy difference of a superconducting loop observed by Friedman et al. [1] matches the energy corresponding to the 
flux linkage of the magnetic flux quantum by the ensemble of superconducting electrons in their entirety with a reversal 
of the corresponding macroscopic current. 

 
QM:  O’Connell et al. [2] claimed to have achieved a quantum state of motion for a mechanical object by causing a Josephson 

junction qbit to be entangled with a macroscopic mechanical resonator and thereby extending, in their opinion, the weird 
rules of quantum mechanics such as zero-order vibration and entanglement to the macroworld. 

 

CP:  In reality, the device that O’Connell’s team fabricated and tested is no more than a variant of a SQUID, a known classical 
(Chp. 42) macrodevice, except that it uniquely exploits piezoelectricity to form the weak link of a superconducting loop 
to enable the device.  It demonstrates quantized excitation independently of the qbit and cannot exhibit zero-order 
vibration due to the nature of the SQUID; moreover, zero-order vibration is experimentally shown to be nonexistent in 
measurements with the qbit. 

 
QM:  Perpetual motion is predicted. 
 

CP:  Perpetual motion is not permitted nor observed. 
 
QM:  A weak force is observed between the two precision-machined plates with minuscule separation because the plates serve 

to limit the number of virtual particle modes between the plates, as opposed to those outside the plates, and the resulting 
imbalance in pressure between two infinite quantities gives rise to the feeble force known as the Casimir effect. 

 

CP:  The Casimir effect is predicted by Maxwell’s equations wherein the attractive force is due only to the interactions of the 
material bodies themselves.  Charge and current fluctuations in a material body with a general susceptibility serve as 
source terms for Maxwell’s equations, i.e. classical fields, subject to the boundary conditions presented by the body 
surfaces.  In the limiting case of rarefied media, the van der Waals force of interaction between individual atoms is 
obtained [3-4]. 

 

QM:  The postulated Quantum Electrodynamics (QED) theory of 
2

g
 is based on the determination of the terms of a postulated 

power series in /   where each postulated virtual particle is a source of postulated vacuum polarization that gives rise 
to a postulated term.  The algorithm involves scores of postulated Feynman diagrams corresponding to thousands of 
matrices with thousands of integrations per matrix requiring decades to reach a consensus on the “appropriate” postulated 
algorithm to remove the intrinsic infinities. 

 

CP:  The remarkable agreement between Eqs. (1.236) and (1.237) of the Electron g Factor section demonstrates that 
2

g
 may 

be derived in closed form from Maxwell’s equations in a simple straight forward manner that yields a result with eleven-
figure agreement with experiments—the limit of the experimental capability is the measurement of the fundamental 
constants that determine  . 

 
QM:  The muon g  factor g

 is required to be different from the electron g  factor in the standard model due to the mass 

dependent interaction of each lepton with vacuum polarizations due to virtual particles.  The BNL Muon (g-2) 
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Collaboration used a “magic” 29.3   which satisfied the BMT equation identically for the theoretical value of 
2

g  with 

assumption that 
2 2

e
g g   and obtained a measured result that was internally consistent. 

 

CP:  Rather than indicating an expanded plethora of postulated super-symmetry virtual particles, which make contributions 
such as smuon-neutralino and sneutrino-chargino loops, the muon, like the electron, is a lepton with   of angular 
momentum, and the muon and electron g  factors are predicted by classical physics to be identical.  Using the 

experimental “magic” 29.3   and 
2 2

e
g g   in the BMT equation, the predicted measurement exactly matched 

2

g  

measured by the BNL Muon (g-2) Collaboration proving that their assumption that the 29.3   condition eliminated the 

effect of the electrostatic field on 
a

  was flawed and showed the equivalence of the muon and electron g  factors. 

 
QM:  The expansion of the universe is accelerating due to the presence of “dark energy” throughout all space. 
 

CP:  The constant maximum speed c  for the propagation of light and gravity results in the conservation relationship of mass-

energy, 2E mc  and spacetime, 
3

34
 3.22  10

4 sec

c kg
X

G
 .  Spacetime expands as mass is converted to energy, and the 

predictions match the observed Hubble constant and the acceleration of the expansion. 
 
QM:  In the double-slit experiment, single electrons break into pieces, go through both slits at once, and interfere with 

themselves over all space. 
 

CP:  Electrons are not divisible and comprise an extended current distribution with   of angular momentum that is conserved 
with the electrodynamic interaction of the charged propagating electron with the conducting electrons of the material of 
the slits such that an angular momentum vector change corresponds to a translational displacement.  In the far-field, the 
transverse momentum pattern is given by the Fourier transform of the slit aperture pattern, and the characteristic 
interference pattern is observed even with single electrons over time. 

 
QM:  In photon diffraction through slits, light-wave crests and troughs superimpose to cancel to give dark spots; whereas, 

superposition of crest with crest and trough with trough reinforces the intensity and gives bright spots. 
 

CP:  Photons are not destroyed by other photons.  They interact with the electrons of the slit material, and the electrodynamic 
currents reradiate the light to give the characteristic interference pattern as by the Fourier transform of the slit aperture 
pattern.  

 
QM:  According to Nesvizhevsky et al. [5], a step in the transmission of falling neutrons through a variable-height channel 

comprising a mirror on the bottom and an absorber at the top occurred at a height of 13 m  because neutrons fell in 
quantized jumps. 

 

CP:  The de Broglie wavelength in the vertical direction corresponding to the scattering of a falling neutron from the mirror to 

the absorber was given by  
2 / 3

1/ 3

1

1
12.6 

2
n

h
z g m

m
 
  

 
 
 

 where h  is Planck’s constant, 
n

m  is the mass of the neutron, 

and g  is the acceleration due to gravity.  For absorber heights greater than 13 m , the height was greater than the de 
Broglie wavelength; thus, a step in the transmission of falling neutrons occurred at 13 m .  The observed transmission 
matched identically that predicted by Newton’s Law of Gravitation; no quantum gravity effect was observed. 

 
QM:  The nature of the chemical bond is based on a nonphysical “exchange integral,” a “strictly quantum mechanical 

phenomena,” that is a consequence of a postulated linear combination of product wavefunctions wherein it is implicit that 
each point electron with infinite self-electric-and-magnetic-field energies must exist as a “probability-wave cloud” and be 
in two places at the same time (i.e. centered on two nuclei simultaneously).  

 

CP:  The nature of the chemical bond solved using first principles including stability to radiation requires that the electron 
charge of the molecular orbital is a prolate spheroid, a solution of the Laplacian as an equipotential minimum energy 
surface in the natural ellipsoidal coordinates compared to spheroidal in the atomic case, and the current is time harmonic 
and obeys Newton’s laws of mechanics in the central field of the nuclei at the foci of the spheroid. 

 
QM:  The electron clouds mutually shield the nuclear charge to provide an adjustable parameter, “effective nuclear charge”; 

yet, neither has any self-shielding effect; even though the clouds are mutually indistinguishable and must classically 
result in a self-interaction force equivalent to 1/2 the central attractive force.  Furthermore, the electron–electron 
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repulsion term in the Hamiltonian can be infinite in atoms and molecules; yet, electron overlap is the basis of bonding in 
molecules.  

 

CP:  Electrons are concentric spherical shells in atoms and two-dimensional prolate spheroids in molecules such that there is 
no electron-electron repulsion, and bonding is due to the attraction between the oppositely charged electrons and nuclei at 
the origin and foci of the spheroids, respectively. 

 
QM:  The lowest energy vibrational state of any molecule is not zero rather, in violation of the second law of thermodynamics 

and experimental observation such as the formation of a Bose-Einstein condensate of molecules, it is the zero order 

vibration of 
1 1

2 2

k
h


  that is equivalent to zero point energy.  Moreover, the basis of zero order vibration, the 

Heisenberg Uncertainty Principle, has been experimentally disproved [6]. 
 

CP:  The lowest energy vibrational state of any molecule is zero as its lowest vibrational and rotational energies, and the 
molecules can be solved using first principles in closed form equations in agreement with experimental observations 
including the difference in bond energies and vibrational energies with isotope substitution. 

 
QM:  Since flux is linked by a superconducting loop with a weak link in quantized units of the magnetic flux quantum, 

2

h

e


  , the basis of superconductivity is interpreted as arising from the formation of electron pairs corresponding to the 

2e  term in the denominator; the so-called Cooper pairs form even though electrons repel each other, the electron 
repulsion should increase the resistance to electron flow, and such pairs cannot form at the critical temperature of high 

c
T  

superconductors. 
 

CP:  To conserve the electron’s invariant angular momentum of  , flux is linked by each electron in quantized units of the 

magnetic flux quantum, 
2

h

e


  , and the basis of superconductivity is a correlated flow of an ensemble of individual 

electrons such that no energy is dissipated (i.e. superconductivity arises when the lattice is a band-pass for the magnetic 
field of an array of magnetic dipoles; therefore, no energy is dissipated with current flow). 

 
QM:  In a realization of Wheeler’s delayed-choice gedanken experiment, modulated output is observed at two orthogonal 

detectors that has a trigonometric dependence on the phase angle with a relative phase angle of   between the outputs 
when an electro-optical modulator (EOM) is active because the absence of knowledge determines that each single photon 
must travel back in time, change history, travel along two paths simultaneously, and interfere with itself. 

 

CP:  An EOM is not a time machine.  The interference results are predicted in terms of the classical nature of each linearly 
polarized single photon being comprised of two oppositely circular polarized components that conserve angular 

momentum when each interacts with the EOM at a tilt angle 
4

  relative to the axis of linear polarization.  The orthogonal 

circular polarizations input to the EOM each rotate in opposite directions by 
4

 , and the action of the EOM on the 

opposite circular polarized component vectors is antisymmetrical about the axes with the interchange of initial direction 
of the linear polarization from yE  to xE  to cause the appearance of interference at the outputs. 
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THREE ATOMIC THEORIES 
It is possible to arrive at the Rydberg formula using the wrong physics.  The statement “the results justify the means” is a 
fundamental argument for the validity of quantum mechanics no matter how strained the explanations or the consequences.  
Consider that in fact, the mathematics of the three theories of Bohr, Schrödinger, and presently CP converge to Eq. (I.1) as the 
principal energy levels of the hydrogen atom. 

   
2

2 2
0

13.598 

8n
H

e eV
E

n a n
     (I.1) 

 1,2,3,...n   (I.2)  

where Ha  is the Bohr radius for the hydrogen atom (52.947 pm), e  is the magnitude of the charge of the electron, and o  is the 

vacuum permittivity.  The theories of Bohr and Schrödinger depend on specific postulates to yield Eq. (I.1).  A mathematical 
relationship exists between the theories of Bohr and Schrödinger with respect to CP that involves these postulates.  CP solves the 
source currents of spherical multipole radiation fields.  The current-density functions are the same as the spherical-harmonic and 
time-harmonic functions of the spherical electromagnetic waves, but are confined to a two-dimensional sphere of fixed radius 
except between transitions involving emission or absorption of the corresponding multipole radiation.  Then, the currents match 
the wave equation solutions for two dimensions, the angular and time-dependent solutions of the wave equation.  The Fourier 
transform of the current-density function is a solution of the three-dimensional wave equation in frequency  ,k   space.  

Whereas, the Schrödinger-equation solutions are three dimensional in spacetime.  The energy is given by:  

 2* H dv E dv  
 

 
  ; (I.3) 

 2 1dv



  (I.4) 

Thus, 

 * H dv E 



  (I.5) 

In the case that the potential energy of the Hamiltonian, H , is a constant times the wavenumber, the Schrödinger equation 
becomes the well-known Bessel equation.  Then, with one of the solutions for  , Eq. (I.5) is equivalent to an inverse Fourier 
transform.  According to the duality and scale change properties of Fourier transforms, the energy equation of CP and that of 
quantum mechanics are identical, the energy of a radial Dirac delta function of radius equal to an integer multiple of the radius of 
the hydrogen atom (Eq. (I.1)).  Bohr obtained the same energy formula by postulating nonradiative states with angular 
momentum 
 zL m   (I.6) 

and solving the energy equation classically.   
The mathematics of all three theories result in Eq. (I.1).  However, the physics is quite different.  CP is derived from first 

principles and holds over a scale of spacetime of 85 orders of magnitude—it correctly predicts the nature of the universe from 
the scale of quarks to that of the cosmos.  The two other theories are more or less mathematical curve fits to the Rydberg formula 
with inherent physical and mathematical flaws.  

Specifically, the Bohr theory has inherent physical shortcomings such as failing to predict the spectrum of hydrogen in a 
magnetic field and the inability to solve helium and other multi-electron atoms and the nature of the chemical bond as well as the 
prediction of infinite angular momentum according to Eq. (I.6).  Its success can be attributed to the rigging of the angular 
momentum to give rise to the Rydberg formula with the dismissal of the radiative stability problem. 

The electron in the Schrödinger model is a singularity that exists over all space simultaneously at each instantaneous time 
point that is physically impossible and violates all first principles including stability to radiation.  It is not relativistically 
invariant and fails to predict electron spin, the electron’s magnetic moment, the g factor, the Stern-Gerlach experimental results, 
the Lamb shift, the fine structure, and the hyperfine structure.  Furthermore, the Schrödinger equation is mathematically 
inconsistent in the excited state quantum numbers and does not give the proper quantization of the one-electron atom energy 
states. 

In contrast, the stable electron current at the 1n   state and the quantized excited states and their lifetimes can be solved 
precisely in closed-form equations containing fundamental constants only using physical laws that do not miss the Lamb shift, 
fine structure, hyperfine structure, magnetic moment, Stern Gerlach experimental results, g factor, and relativistic invariance as 
the Schrödinger equation does.  Eq. (I.100) is also the de Broglie matter wave condition used heuristically in the Bohr model to 
give the Rydberg formula, but in this case, the standing wave involves the photon.  Furthermore, the quantization involves 
excitation of discrete resonator modes imposed by the spherical cavity.  In quantum mechanics, quantization is purely 
mathematical, but similarly dependent on the integer spherical periodicity of the spherical harmonics, and the principal quantum 
is defined in a manner to give integer angular quantum numbers of complete harmonic wavelengths as well as fit the Rydberg 
formula.  However, the result is not even mathematically consistent.  The principal quantum number is defined as the integer 
radial quantum number minus the integer angular quantum number.  But, experimentally the angular or orbital quantum number 
is multi-valued for any principal quantum number causing the internal inconsistency that the radial quantum number must be 
multi-valued for a given principal quantum number [51].  In contrast, as shown by Eq. (I.103), Eq. (I.100) gives the angular 
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harmonic solutions and the corresponding integer radial and angular quantum numbers for physical states. 
Specifically, there is an inescapable inconsistency in the mathematics of quantum mechanics identified in Section 11.3 of 

Margenau and Murphy [51] regarding the definition of the quantum numbers in the solutions of the Schrödinger equation.  With 
the mathematical constraints of normalization and power series termination, the hydrogen atomic energy levels given by 
Margenau and Murphy are: 

 
 

4
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1

2 *

me
W
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 (I.7) 

wherein *n  is the quantum number of the solution of separable radial function and l  is the independent quantum number of the 
solution of the separable angular  function.  The quantity  *n l  is then denoted by n  and called the total quantum number such 

that the energy states of the hydrogen atom may be written as: 
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Now, let’s say that the hydrogen atom is in the 5n   state.  If the angular quantum number is 0l  , then the radial quantum 
number must be * 5n  , but if the mathematically independent angular quantum number is 1l  , then the radial quantum number 
must be * 6n  .  Thus, an internal inconsistency arises due to the mathematics of the separable functions and independent 
quantum numbers of the corresponding solutions such as the requirement that the radial quantum number be both * 5n   and 

* 6n   for the state 5n  .  Indeed as n  , each principal quantum state has the possibility of an infinite number of radial 
functions corresponding to the degenerate energy level of that state which is impossible.  Specifically, it is impossible for the 
different radial wave functions having different expectation values for the radius of a given energy state to be both physical and 
energy degenerate for an electron in an inverse-squared Coulomb field. 

Other problems exist with QM.  QM makes inescapable predictions that do not match observations.  For example, at page 
365, Margenau and Murphy [51] state: 
 

 but with the term   2

2

1

2mr

  
 added to the normal potential energy.  What is the meaning of that term?  In classical 

mechanics, the energy of a particle moving in three dimensions differs from that of a one-dimensional particle by the 

kinetic energy of rotation, 2 21

2
mr  .  This is precisely the quantity   2

2

1

2mr

  
, for we have seen that   21    is the certain 

value of the square of the angular momentum for the state Y , in classical language  22mr   which is divided by 22mr , 

gives exactly the kinetic energy of rotation. 
 
From these equations, zero rotational energy and zero angular momentum are predicted for the 1n   state, but these conditions 
are impossible since the electron is bound in a Coulomb field and must have nonzero instantaneous motion.  Thus, the 
Schrödinger equation solutions further predict that the ionized electron may have infinite angular momentum.  The Schrödinger 
equation solutions also predict that the excited state rotational energy levels are nondegenerate as a function of the   quantum 
number even in the absence of an applied magnetic field, and the predicted energy is over six orders of magnitude greater than 
the typically observed nondegenerate energy in the presence of a magnetic field.  In the absence of a magnetic field, no preferred 
direction exists.  In this case, the   quantum number is a function of the orientation of the atom with respect to an arbitrary 
coordinate system.  Therefore, the nondegeneracy is nonsensical and violates conservation of angular momentum of the photon.  
Furthermore, as the principal quantum number and therefore   go to infinity, the rotational energy and angular momentum 
become infinite while the wavefunction becomes sinusoidal over all space and is not normalizable [51].  In the latter case, a strict 
mathematical constraint of the founding postulates is violated.  Thus, the theory is not mathematically consistent besides being 
physically impossible.  It does not properly give rise to the observed quantized states of the hydrogen atom. 

Moreover, only CP predicts reciprocal integers as “allowed” in the Rydberg energy equation.  Explicitly, CP gives Eq. 
(I.1) as the energy-level equation for atomic hydrogen, but the restriction on “ n ,” Eq. (I.2), should be replaced by Eq. (I.9). 

 
1 1 1

1,2,3,...,  ,  , , ,...
2 3 4

n and n   (I.9) 

Experimental observations lead to the conclusion that atomic hydrogen can exist in fractional quantum states that are at lower 
energies than the traditional “ground” ( 1n  ) state [22-42], and the observation of 54.4 eV  and 122.4 eV  short-wavelength-
cutoff continuum radiation from hydrogen alone [23-29, 31] confirms CP in the prediction of hydrinos and directly disproves 
atomic theories such as the Bohr theory and the Schrödinger and Dirac equations based on the definition of 1n   as the ground 
state, the defined state below which it is impossible to go.  Thus, postulates were established to give the correct formula for the 
principal energies of the excited states of atomic hydrogen, but being devoid of the correct physics, the resulting mathematical 
models failed to predict unanticipated results and are disproved experimentally. 
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MATHEMATICAL RELATIONSHIP BETWEEN THE THEORIES OF BOHR AND 
SCHRÖDINGER WITH RESPECT TO CLASSICAL ATOMIC THEORY 
The mathematical relationship whereby the Schrödinger equation may be transformed into a form consistent with first principles 
is shown infra.  In the case that the potential energy of the Hamiltonian, H , is a constant times the wavenumber, the Schrödinger 
equation is the well-known Bessel equation.  Then, one of the solutions for the wavefunction   (a current-density function 
rather than a probability wave) is equivalent to an inverse Fourier transform.  According to the duality and scale change 
properties of Fourier transforms, the energy equation of CP and that of quantum mechanics are identical, the energy of a radial 
Dirac delta function of radius equal to an integer multiple of the radius of the hydrogen atom. 

Historically, J. J. Balmer showed, in 1885, that the frequencies for some of the lines observed in the emission spectrum of 
atomic hydrogen could be expressed with a completely empirical relationship.  This approach was later extended by J. R. 
Rydberg who showed that all of the spectral lines of atomic hydrogen were given by the equation: 
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f i

R
n n


 

   
 

 (I.10) 

where 110,967,758 R m , 1, 2,3,...fn  , 2,3,4,...in  , and i fn n .  In 1911, Rutherford proposed a planetary model for the 

atom where the electrons revolve about the nucleus (which contained the protons) in various orbits.  There was, however, a 
fundamental conflict with this model and the prevailing classical physics.  According to classical electromagnetic theory, an 
accelerated particle radiates energy as electromagnetic waves.  Thus, an electron in a Rutherford orbit, circulating at constant 
speed but with a continually changing direction of its velocity vector is being accelerated whereby the electron should constantly 
lose energy by radiating and spiral into the nucleus. 

An explanation was provided by Bohr in 1913 when he assumed that the energy levels were quantized and the electron 
was constrained to move in only one of a number of allowed states.  Niels Bohr’s theory for atomic hydrogen was based on an 
unprecedented postulate of stable circular orbits that do not radiate.  Although no explanation was offered for the existence of 
stability for these orbits, the results gave energy levels in agreement with Rydberg’s equation.  Bohr’s theory was a 
straightforward application of Newton’s laws of motion and Coulomb’s law of electric force.  According to Bohr’s model, the 
point particle electron was held to a circular orbit around the relatively massive point particle nucleus by the balance between the 
Coulomb force of attraction between the proton and the electron and centrifugal force of the electron. 
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Bohr postulated the existence of stable orbits in defiance of classical physics (Maxwell’s equations), but he applied classical 
physics according to Eq. (I.11).  Bohr then realized that the energy formula Eq. (I.1) was given by postulating nonradiative states 
with angular momentum 
 1,2,3...z eL m vr n n    (I.12) 

and by solving the energy equation classically.  The Bohr radius is given by substituting the solution of Eq. (I.12) for v  into Eq. 
(I.11). 
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The total energy is the sum of the potential energy and the kinetic energy.  In the present case of an inverse squared central field, 
the total energy (which is the negative of the binding energy) is one half the potential energy [52].  The potential energy,   r , 

is given by Poisson’s equation 
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For a point charge at a distance r  from the nucleus the potential is: 

  
2

04

e
r

r



   (I.15) 

Thus, the total energy is given by: 
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Substitution of Eq. (I.13) into Eq. (I.16) with the replacement of the electron mass by the reduced electron mass gives Eq. (I.1). 
Bohr’s model was in agreement with the observed hydrogen spectrum, but it failed with the helium spectrum, and it 

could not account for chemical bonds in molecules.  The prevailing wisdom was that the Bohr model failed because it was based 
on the application of Newtonian mechanics for discrete particles.  Its limited applicability was attributed to the unwarranted 
assumption that the energy levels are quantized. 

In 1923, de Broglie suggested that the motion of an electron has a wave aspect— 
h

p
  .  This was confirmed by 

Davisson and Germer in 1927 by observing diffraction effects when electrons were reflected from metals.  Schrödinger reasoned 
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that if electrons have wave properties, there must be a wave equation that governs their motion.  In 1926, he proposed the 
Schrödinger equation 
 H E    (I.17) 
where   is the wave function, H  is the wave operator, and E  is the energy of the wave.  To give the sought three quantum 
numbers, the Schrödinger equation solutions are three-dimensional in space and four-dimensional in spacetime. 
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 (I.18) 

where ( , , , )r t   according to quantum theory is the probability-density function of the electron, as described below.  When 
the time harmonic function is eliminated [53-54], the result is 

      
2 2

2
2 2 2 2 2

, ,

1 1 1
sin , , , ,

2 sin sinr r

r U r r E r
r r r r r 

        
       

                  
       


 (I.19) 

where  U r  is the classical Coulomb potential energy which in MKS units is: 
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e
U r

r
   (I.20) 

The Schrödinger equation (Eq. (I.19)) can be transformed into a sum comprising a part that depends only on the radius and a part 
that is a function of angle only obtained by separation of variables and linear superposition in spherical coordinates.  The general 
form of the solutions for  , ,r    is: 

      
,

, , ,lm lm
l m

r f r Y      (I.21) 

where l  and m  are separation constants.  The solutions for the full angular part of Eq. (I.19),  ,lmY   , are the spherical 

harmonics. 
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In general, the Schrödinger equation has an infinite number of solutions.  To arrive at the solution, which represents the 
electron, a suitable boundary condition must be imposed.  Schrödinger postulated the boundary condition: “ 0  as r  ,” 
which leads to a purely mathematical model of the electron.  In addition, to arrive at the Rydberg series for the principal energy 
levels, further definitions of constants in the corresponding Laguerre differential equation are required [14-15].  The historical 
solution [54] may be approached differently to arrive at a solution that is based in physics.  The angular part of Eq. (I.19) is the 
generalized Legendre equation which is derived from the Laplace equation by Jackson ([55] at Eq. (3.9)).  For the case that the 
potential energy is a constant times the wavenumber of the electron, k  (a constant times the inverse of the de Broglie 

wavelength of the electron—
2

;   
h

k
p

 


  ), the radial part of Eq. (I.19) is just the Bessel equation, Eq. (3.75) of Jackson [55] 

with 
1

2
l   .  (In the present case of an inverse squared central field, the magnitude of each of the binding energy and the 

kinetic energy is one half the potential energy [52], and the de Broglie wavelength requires that the kinetic energy, 
2

2 e

p

m
, is a 

constant times the wavenumber squared.)  Thus, the solution for  lmf r  is: 

      1/ 2 1/ 21/ 2 1/ 2
lm lm

lm l l

A B
f r J kr N kr

r r    (I.23) 

It is customary to define the spherical Bessel, Neumann, and Hankel functions, denoted by        1,2,  ,  ,l l lj x n x h x  as follows: 
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 (I.24) 

For 0l   the explicit forms are: 
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Eq. (I.19) has the general form: 
 H E   (I.26) 
The energy is given by:  

 2H dv E dv  
 

 

  ; (I.27) 

Typically, the solutions are normalized. 

 2 1dv




  (I.28) 

thus, 

 H dv E 




  (I.29) 

A physical interpretation of Eq. (I.26) is sought.  Schrödinger interpreted *( ) ( )e x x   as the charge density or the amount of 
charge between x  and x dx  ( *  is the complex conjugate of  ).  Presumably, then, he pictured the electron to be spread 
over large regions of space.  Three years after Schrödinger’s interpretation, Max Born, who was working with scattering theory, 
found that this interpretation led to logical difficulties, and he replaced the Schrödinger interpretation with the probability of 
finding the electron between x  and x dx  as: 

 ( ) *( )x x dx   (I.30) 

Born’s interpretation is generally accepted.  Nonetheless, interpretation of the wave function is a never-ending source of 
confusion and conflict.  Many scientists have solved this problem by conveniently adopting the Schrödinger interpretation for 
some problems and the Born interpretation for others.  This duality allows the electron to be everywhere at one time—yet to 
have no volume.  Alternatively, the electron can be viewed as a discrete particle that moves here and there (from 0r   to 
r   ), and *  gives the time average of this motion.  According to the Copenhagen interpretation, every observable exists 
in a state of superposition of possible states, and observation or the potential for knowledge causes the wavefunction 
corresponding to the possibilities to collapse into a definite state.  The postulate of quantum measurement asserts that the process 
of measuring an observable forces the state vector of the system into an eigenvector of that observable, and the value measured 
will be the eigenvalue of that eigenvector.  Thus, Eq. (I.26) corresponds to collapsing the wave function, and E  is the eigenvalue 
of the eigenvector. 

However, an alternative interpretation of Eq. (I.26) and the corresponding solutions for   exists.  In this case,   is a 
function given by Eqs. (I.23-I.25), and Eq. (I.19) is equivalent to an inverse Fourier transform.  The spacetime inverse Fourier 
transform in three dimensions in spherical coordinates is given [56-57], as follows: 

 

2
2( , ) ( , , ) exp( 2 [cos cos sin sin cos( )]) sinM s r i sr r drd d

 

         


  

          (I.31) 

With circular symmetry [56]: 
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       (I.32) 

With spherical symmetry [56], 

   2 2sin 2
( ) 4 ( )sinc 2 4 ( )

2
   

 

 

  
sr

M s r sr r dr r r dr
sr

 (I.33) 

By substitution of the eigenvalues corresponding to the angular part [54] of Eq. (I.21), the Schrödinger equation becomes the 
radial equation,  R r , given by: 
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 (I.34) 

Consider the case that   = 0, that the potential energy is a constant times the wavenumber, and that the radial function is a 

spherical Bessel function as given by Eqs. (I.23-I.25).  In this case, multiplication of both sides of Eq. (I.34) by 
2

sin 2
4

2

sr

sr
  
 
 

 

followed by integration with respect to the radius over its limits (0 to  ) gives 
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 (I.35) 

Eq. (I.33) is the Fourier transform integral in spherical coordinates with spherical symmetry.  The left hand side (LHS) of Eq. 
(I.35) is equivalent to the LHS of Eq. (I.29) wherein   is given by Eq. (I.25).  Then the LHS of Eq. (I.35) is the Fourier 

transform integral of H  wherein the kernel is 2 sin 2

2

sr
r

sr
.  The integral of Eq. (I.29) gives E  which is a constant.  The energy 

E  of Eq. (I.26) is a constant such as b .  Thus, H  according to Eq. (I.26) is a constant times  . 
 H b   (I.36) 
Since b  is an arbitrary constant, consider the following case wherein b  is the Rydberg quantized energy formula: 
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Z e
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Then the energy of Eq. (I.29) is that given by Eq. (I.1).  However, the Schrödinger equation can be solved to give the energy 
corresponding to the radial function given by Eq. (I.59) of CP.  The radial function used to calculate the energy is a delta 
function that corresponds to an inverse Fourier transform of the solution for  .  

   ( )ns s s    (I.38) 

With a change of variable, Eq. (I.38) becomes Eq. (I.59).  Eq. (I.35) can be expressed, as follows: 
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It follows from Eq. (I.33) that the right side integral is the Fourier transform of a radial Dirac delta function: 
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Substitution of Eq. (I.36) into Eq. (I.39) gives: 
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Substitution of Eq. (I.40) and Eq. (I.41) into Eq. (I.39) gives: 
    n nb s s E s s     (I.42) 

Consider the case where b  is given by: 
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 (I.43) 

and ns  is given by: 

 n Hs na  (I.44) 
where n Hr na .  According to the duality and change of scale properties of Fourier transforms [58], the energy equation of CP 

and that of QM are identical, the energy of a radial Dirac delta function of a radius that’s equal to an integer multiple of the 
radius of the hydrogen atom.  The total energy of the electron is given by Gauss’ law for the potential and the relationship that 
the total energy is one half the potential energy in the case of an inverse squared central force [52]: 
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           (I.45) 

Thus, the mathematical relationship of CP and QM is based on the Fourier transform of the radial function.  CP requires 
that the electron is real and physically confined to a two-dimensional surface comprising source currents that match the wave 
equation solutions for spherical waves in two dimensions (angular) and time.  The corresponding Fourier transform is a wave 
over all space that is a solution of the three-dimensional wave equation (e.g. the Schrödinger equation).  In essence, QM may be 
considered as a theory dealing with the Fourier transform of an electron, rather than the physical electron.  By Parseval’s 
theorem, the energies may be equivalent, but the quantum mechanical case is nonphysical—only mathematical.  It may 
mathematically produce numbers that agree with experimental energies as eigenvalues, but the mechanisms lack internal 
consistency and conformity with physical laws.  If these are the criteria for a valid solution of physical problems, then QM has 
never successfully solved any problem.  The theory of Bohr similarly failed. 
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SHORTCOMINGS OF QUANTUM THEORY AND REASONS FOR A COMPLETE 
REVISION OF ATOMIC THEORY 
In general, QM has proved to be a deadend towards unification of the fundamental forces including gravity and further failed to 
give the basis of the inertial and gravitational masses, the equivalence of these masses, predicting the masses of fundamental 
particles, and the acceleration behavior of the cosmos.  Fundamentally, quantum mechanics based on the Schrödinger equation 
and modifications of the Schrödinger equation has encountered several obstacles that have proved insurmountable even from the 
beginning with the hydrogen atom, as was the case with the Bohr theory (See the Retrospect section, and Mills’ publications [4-
15]).  The Schrödinger equation mathematically gives the Rydberg equation as a set eigenvalues.  On this basis alone, it is 
justified despite its inconsistency with physical laws and numerous experimental observations such as: 
 

• The appropriate eigenvalue must be postulated and the variables of the Laguerre differential equation must be defined 
as integers in order to obtain the Rydberg formula. 

 
• The Schrödinger equation is not Lorentz invariant. 
 
• The Schrödinger equation violates first principles, including special relativity and Maxwell’s equations [4-20, 59]. 
 
• The Schrödinger equation gives no basis why excited states are radiative and the 13.6 eV state is stable.  Mathematics 

does not determine physics; it only models physics. 
 
• The Schrödinger equation solutions, Eq. (36) and Eq. (37) of Ref. [15], predict that the ground state electron has zero 

angular energy and zero angular momentum, respectively. 
 
• The Schrödinger equation solution, Eq. (37) of Ref. [15], predicts that the ionized electron may have infinite angular 

momentum. 
 
• The Schrödinger equation solutions, Eq. (36) and Eq. (37) of Ref. [15], predict that the excited state rotational energy 

levels are nondegenerate as a function of the   quantum number even in the absence of an applied magnetic field, and 
the predicted energy is over six orders of magnitude of the observed nondegenerate energy in the presence of a 
magnetic field.  In the absence of a magnetic field, no preferred direction exists.  In this case, the   quantum number is 
a function of the orientation of the atom with respect to an arbitrary coordinate system.  Therefore, the nondegeneracy 
is nonsensical and violates conservation of angular momentum of the photon. 

 
• The Schrödinger equation predicts that each of the functions that corresponds to a highly excited state electron is not 

integrable and cannot be normalized; thus, each is infinite. 
 
• The Schrödinger equation predicts that the ionized electron is sinusoidal over all space and cannot be normalized; thus, 

it is infinite. 
 
• The Heisenberg Uncertainty Principle arises as the standard deviation in the electron probability wave, but 

experimentally it is not the basis of wave-particle duality [12, 60]. 
 
• The correspondence principle does not hold experimentally. 
 
• The Schrödinger equation does not predict the electron magnetic moment and misses the spin quantum number 

altogether. 
 
• The Schrödinger equation provides no rational basis for the phenomenon of spin, the Pauli exclusion principle, or 

Hund’s rules.  Instantaneous exchange of information between particles is required, which violates special relativity.  
 
• The Schrödinger equation is not a wave equation since it gives the velocity squared proportional to the frequency. 
 
• The Schrödinger equation is not consistent with conservation of energy in an inverse potential field wherein the binding 

energy is equal to the kinetic energy and the sum of the binding energy and the kinetic energy is equal to the potential 
energy. 

 
• The Schrödinger equation permits the electron to exist in the nucleus, a state that is physically nonsensical with infinite 

potential energy and infinite negative kinetic energy. 
 
• The Schrödinger equation interpreted as a probability wave of a point particle cannot explain neutral scattering of 

electrons from hydrogen. 
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• The Schrödinger equation interpreted as a probability wave of a point particle gives rise to infinite magnetic and electric 

energy in the corresponding fields of the electron.  For example, the electron must spin in one dimension and give rise 

to a Bohr magneton; yet, classically the energy of a magnetic moment is 
2

3r


 which in the present case is infinity (by 

substitution of 0r   for the model that the electron is a point particle), not the required 2mc .  This interpretation is in 
violation of Special Relativity [61]. 

 

• A modification of the Schrödinger equation was developed by Dirac to explain spin.2  The postulated QED theory of 
2

g
 

is based on the determination of the terms of a postulated power series in /   where each postulated virtual particle is 
a source of postulated vacuum polarization that gives rise to a postulated term.  The algorithm involves scores of 
postulated Feynman diagrams corresponding to thousands of matrices with thousands of integrations per matrix 
requiring decades to reach a consensus on the “appropriate” postulated algorithm to remove the intrinsic infinities.3 

 
These failures of QM are attributed to the unwarranted assumption that atomic-size particles obey different physical laws 

than macroscopic objects.  Specifically, QM is incorrect in its basis that first principles such as Maxwell’s Equations do not 
apply to the electron and the notion that the electron is described by a probability distribution function of a point particle.  
Quantum mechanics is based on engendering the electron with a wave nature, as suggested by the Davisson-Germer experiment 
and fabricating a set of associated postulates and mathematical rules for wave operators.  QM is in violation of Maxwell’s 
equations, as shown through application of the Haus condition to the Schrödinger wave functions (See Schrödinger 
Wavefunction in Violation of Maxwell’s Equation section).  Nonradiation based on Maxwell’s equations is a necessary 
boundary constraint, since nonradiation is observed experimentally.  The shortcomings of QM regarding violation of Maxwell’s 
equations and other first principles are further discussed in the Retrospect section and Mills’ publications [4-15].  These issues 
indicate that QM atomic theory requires revision. 
 

CLASSICAL ATOMIC THEORY 
The physics of numerous phenomena in electricity and magnetism, optics, celestial and orbital mechanics, heat, hydrodynamics, 
aerodynamics, elasticity, and others obey equations containing the Laplacian: 
 
 2 0   is Laplace’s equation (I.46) 
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2
2 2
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a t

 


   is the wave equation (I.47) 

 

 2
2
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a t




   is the diffusion or heat-conduction equation (I.48) 

 
The wave equation is useful to describe electric and magnetic fields and orbiting bodies, as well as in the form of an energy 
equation wherein it can provide for conservation of energy and angular momentum.  Thus, it is the logical choice to solve for the 
nature of the bound electron as a boundary-value problem.  In contrast, the time-dependent Schrödinger equation has the form of 
Eq. (I.48) and is not a true wave equation.  The current QM theory based on the time dependent and time independent 
Schrödinger equation has many problems, is not based on physical laws, and is not predictive, as discussed previously [4-20].  
QM has never dealt with the nature or structure of fundamental particles.  They are treated as zero-dimensional points that 
occupy no volume and are everywhere at once.  This view is impossible since occupying no volume would preclude their 
existence; the inherent infinities are not observed nor are they possible, and the possibility of a particle being everywhere at once 
violates all physical laws including conservation of energy and causality.  Now, a physical approach is followed based on the 
classical wave equation and the condition for nonradiation from Maxwell’s equations.   
 

 
2 In the old quantum theory the spin angular momentum of the electron is called the “intrinsic angular momentum.”  This term arises because it is difficult 
to provide a physical interpretation for the electron's spin angular momentum.  Dirac's Quantum Electrodynamics (QED) attempts a physical interpretation 
by proposing that the “vacuum” contains fluctuating electric and magnetic fields called “zero point energy,” negative energy states of the vacuum, virtual 
particles and their corresponding “polarization” of vacuum space, and arbitrarily disregarding infinities that even Dirac opposed.  These aspects render 
QED fatally flawed in terms of predicting a corresponding inescapable infinite cosmological constant and the unobserved requirement of particle emission 
by blackholes called Hawking radiation.  (See the Wave-Particle Duality section and prior publications [4-15], especially Ref. [10].) 
3 In the Electron g Factor section and Ref. [10], the closed-form Maxwellian result (eleven figure agreement with experiment—the limit of the 
experimental capability of the measurement of the fundamental constants that determine  ) is contrasted with the QED algorithm of invoking virtual 
particles, zero point fluctuations of the vacuum, and negative energy states of the vacuum. 
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ONE-ELECTRON ATOMS 
NONRADIATION CONDITION 
One-electron atoms include the hydrogen atom, He , 2Li  , 3Be  , and so on.  In each case, the nucleus contains Z  protons and 
the atom has a net positive charge of ( 1)Z e .  To arrive at the solution that represents the electron, a suitable boundary 
condition must be imposed.  It is well known from experiments that the single atomic electron of hydrogen radiates to the same 
stable state.  Thus, CP uses the physical boundary condition of nonradiation of the bound electron to be imposed on the solution 
for the charge- and current-density functions of the electron.  The condition for radiation by a moving point charge given by 
Haus [46] is that its spacetime Fourier transform possesses components that are synchronous with waves traveling at the speed of 
light.  Conversely, it is proposed that the condition for nonradiation by an ensemble of moving charge that comprises a current-
density function is  
 

For non-radiative states, the current-density function must not possess spacetime Fourier  
components that are synchronous with waves traveling at the speed of light. 

 
The Haus derivation and the condition for nonradiation are given in Appendix I: Nonradiation Condition wherein the 
nonradiative condition is also derived directly by the determination of the electrodynamic fields with the electron current-density 
function as the source current.  Given the infinite number of possible current-density functions, it is fortuitous that the spherical 
radiation corresponding to the symmetry and the conditions for emission and absorption of such radiation provide the additional 
boundary conditions to determine the current-density functions. 
 
ELECTRON SOURCE CURRENT 
Since the hydrogen atom is stable and nonradiative, the electron has constant energy.  Furthermore, it is time dynamic with a 
corresponding current that serves as a source of electromagnetic radiation during transitions.  The wave equation solutions of the 
radiation fields permit the source currents to be determined as a boundary-value problem.  These source currents match the field 
solutions of the wave equation for two dimensions plus time and the nonradiative 1n   state when the nonradiation condition 
is applied.  Then, the mechanics of the electron can be solved from the two-dimensional wave equation plus time in the form of 
an energy equation wherein it provides for conservation of energy and angular momentum, as given in the Electron Mechanics 
and the Corresponding Classical Wave Equation for the Derivation of the Rotational Parameters of the Electron section.  Once 
the nature of the electron is solved, all problems involving electrons can be solved in principle.  Thus, in the case of one-electron 
atoms, the electron radius, binding energy, and other parameters are solved after solving for the nature of the bound electron. 

As shown in Appendix I, for time-varying spherical electromagnetic fields, Jackson [47] gives a generalized expansion in 
vector spherical waves that are convenient for electromagnetic boundary-value problems possessing spherical symmetry 
properties and for analyzing multipole radiation from a localized source distribution.  The Green function  ,G x' x  which is 

appropriate to the inhomogeneous Helmholtz equation  

      2 2 ,k G     x' x x' x  (I.49) 

in the infinite domain with the spherical wave expansion for the outgoing wave Green function is: 
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Jackson [47] further gives the general multipole field solution to Maxwell’s equations in a source-free region of empty space 
with the assumption of a time dependence i te : 
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 (I.51) 

where the cgs units used by Jackson are retained in this section.  The radial functions  f kr  and  g kr  are of the form: 

          1 1 2 2g kr A h A h       (I.52) 

,mX  is the vector spherical harmonic defined by: 
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 (I.53) 

where 

  1

i
 L r  (I.54) 
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The coefficients  ,Ea m  and  ,Ma m  of Eq. (I.51) specify the amounts of electric  ,m  multipole and magnetic  ,m  

multipole fields, and are determined by sources and boundary conditions as are the relative proportions in Eq. (I.52).  Jackson 
gives the result of the electric and magnetic coefficients from the sources as 
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and 
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respectively, where the distribution of charge  , t x , current  , tJ x , and intrinsic magnetization  , txM  are harmonically 

varying sources:    i tex ,   i teJ x , and   i texM . 

The electron current-density function can be solved as a boundary value problem regarding the time varying 
corresponding source current   i teJ x  that gives rise to the time-varying spherical electromagnetic fields during transitions 

between states with the further constraint that the electron is nonradiative in a state defined as the 1n   state.  The potential 
energy,  V r , is an inverse-radius-squared relationship given by Gauss’ law, which for a point charge or a two-dimensional 

spherical shell at a distance r  from the nucleus the potential is: 

  
2

04

e
V r

r
   (I.57) 

Thus, consideration of conservation of energy would require that the electron radius must be fixed.  Additional constraints 
requiring a two-dimensional source current of fixed radius are matching the delta function of Eq. (I.49) with no singularity, no 
time dependence and consequently no radiation, absence of self-interaction (See Appendix II: Stability and Absence of Self 
Interaction and Self Energy), and exact electroneutrality of the hydrogen atom wherein the electric field is given by 

  1 2
0

s


  n E E  (I.58) 

where n  is the normal unit vector, 1E  and 2E  are the electric field vectors that are discontinuous at the opposite surfaces, s  is 

the discontinuous two-dimensional surface charge density, and 2 0E .  Then, the solution for the radial electron function that 

satisfies the boundary conditions is a delta function in spherical coordinates—a spherical shell [62]: 

 
2

1
( ) ( )nf r r r

r
   (I.59) 

where nr  is an allowed radius.  This function defines the charge density on a spherical shell of a fixed radius (See Figure I.1), not 

yet determined, with the charge motion confined to the two-dimensional spherical surface.  The integer subscript n  here and in 
Eqs. (I.60-I.62) is determined during photon absorption as given in the Excited States of the One-Electron Atom (Quantization) 
section.  It is shown in this section that the force balance between the electric fields of the electron and proton plus any 
resonantly absorbed photons gives the result that 1nr nr  wherein n  is an integer in an excited state.  In general, leptons such as 

the electron are indivisible, perfectly conducting, and possess an inalienable   of intrinsic angular momentum such that any 
inelastic perturbation involves the entire particle wherein the intrinsic angular momentum remains unchanged.  Bound state 
transitions are allowed involving the exchange of photons between states, each having   of angular momentum in their fields. 
 



 Introduction 19 

Figure I.1.  A bound electron is a constant two-dimensional spherical surface of charge (zero thickness, total charge of e , 
and total mass of em ), called an electron atomic orbital.  The corresponding uniform current-density function having intrinsic 

angular momentum components of 
4xy L


 and 
2z L


 following Larmor excitation in a magnetic field give rise to the 

phenomenon of electron spin. 
 

 
 

Given time harmonic motion and a radial delta function, the relationship between an allowed radius and the electron wavelength 
is given by: 
 2 n nr   (I.60) 

Based on conservation of the electron’s angular momentum of  , the magnitude of the velocity and the angular frequency for 
every point on the surface of the bound electron are: 
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To further match the required multipole electromagnetic fields between transitions of states, the trial nonradiative source current 
functions are time and spherical harmonics, each having an exact radius and an exact energy.  Then, each allowed electron 

charge-density (mass-density) function is the product of a radial delta function 
2

1
( ( ) ( ))nf r r r

r
  , two angular functions 

(spherical harmonic functions ( , ) (cos )m m imY P e     ), and a time-harmonic function nim te .  The spherical harmonic 
0

0 ( , ) 1Y     is also an allowed solution that is in fact required in order for the electron charge and mass densities to be positive 

definite and to give rise to the phenomena of electron spin.  The real parts of the spherical harmonics vary between 1  and 1.  
However, the mass of the electron cannot be negative; and the charge cannot be positive.  Thus, to insure that the function is 
positive definite, the form of the angular solution must be a superposition: 
 0

0 ( , ) ( , )mY Y      (I.63) 

The current is constant at every point on the surface for the s orbital corresponding to 0
0 ( , )Y   .  The quantum numbers of the 

spherical harmonic currents can be related to the observed electron orbital angular momentum states.  The currents 
corresponding to s, p, d, f, etc. orbitals are:  
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where  ,mY    are the spherical harmonic functions that spin about the z-axis with angular frequency n  with  0
0 ,Y    the 
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constant function.        Re , cos cos      
ni tm m

nY e P m m t  to keep the form of the spherical harmonic of quantum 

number m  as a traveling wave about the z-axis at angular frequency n .  

The Fourier transform of the electron charge-density function is a solution of the four-dimensional wave equation in 
frequency space (k,  -space).  Then, the corresponding Fourier transform of the current-density function ( , , )mK s 

  is 

given by multiplying it by the constant angular frequency n  given by Eq. (1.36) corresponding to a potentially emitted photon. 
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    (I.66) 

wherein ( , )mG s 
  and ( , , )mH s  

  are the spherical-coordinate Fourier transforms of  , cosm
mN P    and ime  , respectively.  

The motion on the atomic orbital is angular; however, a radial correction exists due to Special Relativistic effects.  Consider the 
wave vector of the sinc function.  When the velocity is c  corresponding to a potentially emitted photon. 

 n n n n   s v s c  (I.67) 

the relativistically corrected wavelength given by Eq. (1.279) is: 

 n nr    (I.68) 

Substitution of Eq. (I.68) into the sinc function results in the vanishing of the entire Fourier transform of the current-density 

function.  Thus, spacetime harmonics of n k
c


  or 

0

n k
c

 


 , for which the Fourier transform of the current-density function 

is nonzero, do not exist.  Radiation due to charge motion does not occur in any medium when this boundary condition is met.  
There is acceleration without radiation.  (Also see Abbott and Griffiths and Goedecke [63-64]).  Nonradiation is also shown 
directly using Maxwell’s equations in Appendix I: Nonradiation Based on the Electromagnetic Fields and the Poynting Power 
Vector.  However, in the case that such a state arises as an excited state by photon absorption, it is radiative due to a radial dipole 
term in its current-density function since it possesses spacetime Fourier transform components synchronous with waves traveling 
at the speed of light, as shown in the Instability of Excited States section.  The radiation emitted or absorbed during electron 
transitions is the multipole radiation given by Eq. (I.50) as given in the Excited States of the One-Electron Atom (Quantization) 
section and the Equation of the Photon section wherein Eqs. (4.18-4.23) give a macro-spherical wave in the far-field. 

Thus, a bound electron is a constant two-dimensional spherical surface of charge (zero thickness and total charge of e ) 
called an electron atomic orbital that can exist in a bound state at only specified distances from the nucleus determined by an 
energy minimum for the 1n   state and integer multiples of this radius due to the action of resonant photons as shown in the 
Determination of Atomic Orbital Radii section and Excited States of the One-Electron Atom (Quantization) section, 
respectively.  The bound electron is not a point, but it is point-like (behaves like a point at the origin).  The free electron is 
continuous with the bound electron as it is ionized and is also point-like, as shown in the Electron in Free Space section.  The 
total function that describes the spinning motion of each electron atomic orbital is composed of two functions.  One function, the 
spin function (see Figure I.1 for the charge function and Figure I.2 for the current function), is spatially uniform over the atomic 
orbital, where each point moves on the surface with the same quantized angular and linear velocity, and gives rise to spin angular 
momentum.  It corresponds to the nonradiative 1n  ,   = 0 state of atomic hydrogen, which is well known as an s state or 
orbital.  The other function, the modulation function, can be spatially uniform—in which case there is no orbital angular 
momentum and the magnetic moment of the electron atomic orbital is one Bohr magneton—or not spatially uniform—in which 
case there is orbital angular momentum.  The modulation function rotates with a quantized angular velocity about a specific (by 
convention) z-axis.  The constant spin function that is modulated by a time and spherical harmonic function as given by Eq. 
(I.65) is shown in Figure 1.2 for several   values.  The modulation or traveling charge-density wave that corresponds to an 
orbital angular momentum in addition to a spin angular momentum are typically referred to as p, d, f, etc. orbitals and 
correspond to an   quantum number not equal to zero. 

 
MOMENT OF INERTIA AND SPIN AND ROTATIONAL ENERGIES 
In the derivation of the rotational energy and related parameters, first consider that the electron atomic orbital experiences a 
constant potential energy because it is fixed at nr r .  The boundary condition is that the modulation of the charge density by a 

traveling wave is not dissipative corresponding to absence of radiation and further has a time average of zero kinetic energy.  
The mechanics of motion is such that there is a time and spatially harmonic redistribution of matter and kinetic energy that flows 
on the surface such that the total of either is unchanged.  Wave motion has such behavior and the corresponding equation is a 
wave equation that is solved with energy degeneracy and a time average of zero for the charge and energy flow as the boundary 
constraints.  In this case, the energy degeneracy is only lifted due to the electrodynamic interaction with an applied field 
consistent with experimental observations, as given in the Orbital and Spin Splitting section. 

The moments of inertia and the rotational energies as a function of the   quantum number for the solutions of the time-
dependent electron charge-density functions (Eqs. (I.64-I.65)) are solved using the classical wave equation.  With rotation about 
the designated z-axis, the velocity of the spherical shell depends on the angular position on the surface and consequently is a 
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function of 0
0 ( , )Y   .  By expressing the wave equation in the energy form, the angular dependent velocity may be eliminated, 

and this equation can be solved using the boundary constraints.  The corresponding equation is the well known rigid rotor 
equation [65]: 
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The resulting parameters for the spin and orbital angular momentum given in the Rotational Parameters of the Electron (Angular 
Momentum, Rotational Energy, Moment of Inertia) section are: 
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    z total z spin z orbitalL L L   (I.77) 

  0z orbitalL   (I.78) 

   0rotational orbitalE   (I.79) 

The orbital rotational energy arises from a spin function (spin angular momentum) modulated by a spherical harmonic angular 
function (orbital angular momentum).  The time-averaged mechanical angular momentum and rotational energy associated with 
the wave-equation solution comprising a traveling charge-density wave on the atomic orbital is zero as given in Eqs. (I.78) and 
(I.79), respectively.  Thus, the principal levels are degenerate except when a magnetic field is applied.  In the case of an excited 
state, the angular momentum of   is carried by the fields of the trapped photon.  The amplitudes that couple to external magnetic 
and electromagnetic fields are given by Eq. (I.76) and (I.77), respectively.  The rotational energy due to spin is given by Eq. 
(I.72), and the total kinetic energy is given by Eq. (I.73).   
 

SPIN FUNCTION 
It is known from the Stern-Gerlach experiment that a beam of silver atoms is split into two components when passed through an 
inhomogeneous magnetic field.  This implies that the electron is a spin 1/2 particle or fermion with an intrinsic angular 

momentum of 
2




 that can only exist parallel or antiparallel to the direction of the applied field (spin axis), and the magnitude of 

the angular momentum vector, which precesses about the spin axis is 
4

 .  Furthermore, the magnitude of the splitting implies 

a magnetic moment of B , a full Bohr magneton, given by Eq. (1.131) corresponding to   of total angular momentum on the 

axis of the applied field, implying an impossibility of being classically reconciled with the 
2




 electron angular momentum.  

Yet, the extraordinary aspects of the magnetic properties and behavior of the electron are the basis to solve its structure that gives 
rise to these observations.  In general, the Maxwell’s-equations solution for the source of any magnetic field is unique.  Thus, the 
electron field requires a corresponding unique current according to Maxwell's equations that matches the boundary condition 
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imposed by the results of the Stern-Gerlach experiment.  The solution is given in the Atomic Orbital Equation of Motion For   = 
0 Based on the Current Vector Field (CVF) section. 

The current density function 0
0 ( , ) Y  (Eqs. (I.64-I.65)) that gives rise to the magnetostatic spin of the electron comprises 

a constant charge (current) density function with moving charge confined to a two-dimensional spherical shell and comprises a 
uniform complete coverage.  It is generated as a continuum of correlated orthogonal great-circle current loops wherein each 
point charge(current)-density element moves time harmonically with constant angular velocity, n , given by Eq. (I.62) and 

velocity, nv , in the direction of the current given by Eq. (I.61).  Orthogonal great-circle current-density elements (one 

dimensional “current loops”) serve as basis elements to form two distributions of an infinite number of great circles wherein 
each covers one-half of a two-dimensional spherical shell and is defined as a basis element current vector field (“BECVF”) and 
an atomic orbital current-vector field (“OCVF”).  Then, the continuous uniform electron current density function 0

0 ( , ) Y  (part 

of Eqs. (I.64-I.65)) that covers the entire spherical surface as a distribution of an infinite number of great circles is generated 
using the CVFs. 

First, the generation of the BECVF is achieved by rotation of two great circle basis elements, one in the x’z’-plane and 
the other in the y’z’-plane, about the  , , 0 x y zi i i  axis by an infinite set of infinitesimal increments of the rotational angle over a 

span of   wherein the current direction is such that the resultant angular momentum vector of the basis elements of 
2 2


 is 

stationary on this axis.   
 

GENERATION OF THE BECVF 
Consider two infinitesimal charge(mass)-density elements at two separate positions or points, one and two, of the first pair of 
orthogonal great-circle current loops that serve as the basis set for generation of the BECVF as shown in Figure 1.4.  The 
rotating Cartesian coordinates, x',y',z', in which the basis element great circles are fixed is designated the basis-set reference 
frame.  In this frame at time zero, element one is at ' 0x , '  ny r , and ' 0z , and element two is at '  nx r , ' 0y , and ' 0z .  

Let element one move on a great circle clockwise toward the -z'-axis, and let element two move counter clockwise on a great 
circle toward the -z'-axis, as shown in Figure 1.4.  .  The equations of motion, in the basis-set reference frame with 0t  defined 
at the points (0,1,0) and (1,0,0), respectively, are given by 
 
point one:   

 1
' 0x  

1

' cos( ) n ny r t  1
' sin( )  n nz r t  (I.80) 

 
point two:   

 2
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' sin( )  n nz r t  (I.81) 

 
The great circle basis elements and rotational matrix of the BECVF are given by: 
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GENERATION OF THE OCVF 
The generation of the OCVF is achieved by rotation of two great circle basis elements, one in the x’y’-plane and the other in the 

plane that bisects the x'y'-quadrant and is parallel to the z'-axis, about the 
1 1

, ,
2 2

  
 

x y zi i i -axis by an infinite set of 

infinitesimal increments of the rotational angle over a span of   wherein the current direction is such that the resultant angular 

momentum vector of the basis elements of 
2


 having components of 

2 2
xy L


 and 

2 2
z L


 is stationary on this axis.  For 

the generation of the OCVF, consider two charge(mass)-density elements, point one and two, in the basis-set reference frame at 
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time zero.  Element one is at '
2

 nrx , '
2

 nry , and ' 0z , and element two is at '  nx r , ' 0y , and ' 0z .  Let element one 

move clockwise on a great circle toward the -z'-axis, and let element two move counter clockwise on a great circle toward the y'-
axis as shown in Figure 1.8.  The equations of motion, in the basis-set reference frame are given by: 
 
point one:   

 1
' sin cos( )
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n nx r t  1
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n ny r t  1
' sin( )  n nz r t  (I.83) 

 
point two:   

 2
' cos( ) n nx r t  2

' sin( ) n ny r t  2
' 0z  (I.84) 

 
The great circle basis elements and rotational matrix of the OCVF are given by: 
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GENERATION OF 0
0 ( , ) Y  

Then, the uniform great-circle distribution 0
0 ( , ) Y  is exactly generated from the CVFs.  The BECVF is convolved with the 

OCVF over a 2  span that results in the placement of a BECVF at each great circle of the OCVF.  Since the angular momentum 
vector of the BECVF is matched to twice that of one of the OCVF great circle basis elements and the span is over a 2 , the 
resultant angular momentum of the distribution is the same as that of the OCVF, except that coverage of the spherical surface is 
complete.  This current vector distribution is normalized by scaling the constant current of each great circle element resulting in 
the exact uniformity of the distribution independent of time since 0 K  along each great circle.  There is no alteration of the 
angular momentum with normalization since it only affects the density parallel to the angular momentum axis of the distribution, 

the 
1 1

, ,
2 2

  
 

x y zi i i -axis.  Then, the boundary conditions of 0
0 ( , ) Y  having the desired angular momentum components, 

coverage, element motion, and uniformity are shown to have been achieved by designating the 
1 1

, ,
2 2

  
 

x y zi i i -axis as the z-

axis.  Specifically, this uniform spherical shell of current (Figure I.2) meets the boundary conditions of having an angular 

velocity magnitude at each point on the surface given by Eq. (I.62), and angular momentum projections of /
4xy   L


 
and 

2



zL  (Eqs. (1.127-1.128) and Figure 1.23)4 that give rise to the Stern Gerlach experiment and the phenomenon corresponding 

to the spin quantum number as shown in the Magnetic Parameters of the Electron (Bohr Magneton) section, and in the Electron g 
Factor section. 

 

 
4 /   designates both the positive and negative vector directions along an axis in the xy-plane. 
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Figure I.2.   The bound electron exists as a spherical two-dimensional supercurrent (electron atomic orbital), an extended 
distribution of charge and current completely surrounding the nucleus.  Unlike a spinning sphere, there is a complex pattern of 
motion on its surface (indicated by vectors) that generates two orthogonal components of angular momentum (Figure I.1) that 

give rise to the phenomenon of electron spin.  A representation of the 
1 1

, ,
2 2

  
 

x y zi i i -axis view of the total uniform 

supercurrent-density pattern of the 0
0 ( , ) Y  atomic orbital with 144 vectors overlaid on the continuous bound-electron current 

density giving the direction of the current of each great circle element (nucleus not to scale) is shown. 
 

 
 

As shown in the Atomic Orbital Equation of Motion for  = 0 Based on the Current Vector Field (CVF) section, the 
application of a magnetic field to the atomic orbital gives rise to a precessing angular momentum vector S  directed from the 

origin of the atomic orbital at an angle of 
3

   relative to the applied magnetic field.  The precession of S  with an angular 

momentum of   forms a cone in the nonrotating laboratory frame to give a perpendicular projection of 
3

4  S   (Eq. (1.129)) 

and a projection onto the axis of the applied magnetic field of 
2

 ||S


 (Eq. (1.130)).  The superposition of the 
2


 z-axis 

component of the atomic orbital angular momentum and the 
2


 z-axis component of S  gives   corresponding to the observed 

magnetostatic electron magnetic moment of a Bohr magneton.  The   of angular momentum along S  has a corresponding 
precessing magnetic moment of 1 Bohr magneton.   The magnetostatic dipole magnetic field corresponding to B  is shown in 

Figure I.3. 
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Figure I.3.   The three-dimensional cut-away representation of the magnetic field of an electron atomic orbital showing the 
nucleus (not to scale).  The field is a dipole outside the atomic orbital. 
 

 
In contrast to the QM and QED cases (See Ref [10]), the fourth quantum number arises naturally in CP as derived in the 

Electron g Factor section.  The Stern-Gerlach experiment implies a magnetic moment of one Bohr magneton and an associated 
angular momentum quantum number of 1/2.  Historically, this quantum number is called the spin quantum number, s 

(
1 1

;  
2 2ss m   ).  Conservation of angular momentum of the atomic orbital permits a discrete change of its “kinetic angular 

momentum” ( )mr v  with respect to the field of 
2


, and concomitantly the “potential angular momentum” ( )er A  must 

change by 
2




.  The flux change,  , of the atomic orbital for nr r  is determined as follows: 
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In order that the change of angular momentum, L , equals zero,   must be 
2

h

e  , the magnetic flux quantum.  Thus, to 

conserve angular momentum in the presence of an applied magnetic field, the atomic orbital magnetic moment can be parallel or 
antiparallel to an applied field as observed with the Stern-Gerlach experiment, and the flip between orientations is accompanied 
by the “capture” of the magnetic flux quantum by the atomic orbital.  During the spin-flip transition, power must be conserved.  
Power flow is governed by the Poynting power theorem, 

 0 0
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Eq. (I.90) derived in the Electron g Factor section gives the total energy of the flip transition, which is the sum of the energy of 
reorientation of the magnetic moment (1st term), the magnetic energy (2nd term), the electric energy (3rd term), and the 
dissipated energy of a fluxon treading the atomic orbital (4th term), respectively. 
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The spin-flip transition can be considered as involving a magnetic moment of g  times that of a Bohr magneton.  The g  factor is 

now designated the fluxon g  factor as opposed to the unwarranted historical anomalous g  factor.  The calculated value of 
2

g
 is 

1.001  159  652  137 .  The experimental value [66] of 
2

g
 is 1.001  159  652  188(4) . 

 

FORCE BALANCE EQUATION 
The radius of the nonradiative ( 1n  ) state is solved using the electromagnetic force equations of Maxwell relating the charge 
and mass density functions wherein the angular momentum of the electron is given by  .  The reduced mass arises naturally 
from an electrodynamic interaction between the electron and the proton of mass pm . 
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where Ha  is the radius of the hydrogen atom and the electron velocity is given by Eq. (I.61). 

 

ENERGY CALCULATIONS 
From Maxwell’s equations, the potential energy V , kinetic energy T , electric energy or binding energy eleE  are: 
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The calculated Rydberg constant is 110,967,758 m , and the experimental Rydberg constant is 110,967,758 m .  For increasing 
Z , the velocity becomes a significant fraction of the speed of light; thus, special relativistic corrections were included in the 
calculation of the ionization energies of one-electron atoms that are given by 
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THE NATURE OF THE PHOTON IS THE BASIS OF QUANTIZATION AND 
EXISTENCE OF EXCITED AND HYDRINO STATES OF ATOMIC HYDROGEN 
It is well known that resonator cavities can trap electromagnetic radiation of discrete resonant frequencies.  The atomic orbital is 
a resonator cavity that traps photons of discrete frequencies.  The radius of an atomic orbital increases with the absorption of 
electromagnetic energy.  The solutions to Maxwell’s equations for modes that can be excited in the atomic orbital resonator 
cavity give rise to four quantum numbers, and the energies of the modes are the experimentally known hydrogen spectrum 
including the Lamb shift, fine structure, and hyperfine structure. 

The excited states involving the corresponding multipole photon radiation are solved including the radii of the atomic 
orbitals using Maxwell’s equations with the traditional source current boundary constraints at the electron.  The “trapped 
photon” is a “standing electromagnetic wave” which actually is a circulating wave that propagates along the current density of 
the atomic orbital.  The time-function factor, ( )k t , for the “standing wave” is identical to the time-function factor of the atomic 
orbital in order to satisfy the boundary (phase) condition at the atomic orbital surface.  Thus, the angular frequency of the 
“trapped photon” has to be identical to the angular frequency of the electron atomic orbital, n .  Furthermore, the phase 

condition requires that the angular functions of the “trapped photon” have to be identical to the spherical harmonic angular 
functions of the electron atomic orbital.  Combining ( )k t  with the  -function factor of the spherical harmonic gives    ni m m te  
for both the electron and the “trapped photon” functions.  The photon can be considered a solution of Laplace’s equation in 
spherical coordinates that is “glued” to the inner atomic orbital surface corresponding to a radial Dirac delta function at the 
electron radius,  nr r  , and due to relativistic effects the field is radially local at the electron.  The field lines from the proton 

superimpose with those of the photon at the electron and end on the current-density function of the electron such that the electric 
field is zero for nr r , where nr  is the radius of the electron.  The corresponding photon source current given by Gauss’ law in 
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two dimensions determines the stability condition. 
The instability of excited states, as well as the stability of the 1n   state arises naturally in CP.  The central field of the 

proton corresponds to an integer charge of one.  Excited states comprise an electron with a trapped photon.  In all energy states 
of hydrogen, the photon has an electric field that superposes with the field of the proton.  In the 1n   state, the sum is one, and 
the sum is zero in the ionized state.  In an excited state, the sum is a fraction of one (i.e. between zero and one), specifically, 

1

integer
.  The relationship between the electric field function and the “trapped photon” source charge-density function is given 

by Gauss’ law in two dimensions, Eq. (I.102) where n  is the radial normal unit vector, 1 0E  ( 1E  is the electric field outside of 

the atomic orbital), 2E  is given by the total electric field at n Hr na , and s  is the equivalent surface charge density.  The 

electric field of an excited state is fractional; therefore, the source charge function is fractional corresponding to a radiative 
current-density function.  Thus, an excited electron is unstable and decays to the first nonradiative state corresponding to an 
integer field, 1n   (i.e. a field of integer one times the central field of the proton).  

Equally valid from first principles are electronic states where the magnitude of the sum of the electric field of the photon 
and the proton central field are an integer times the central field of the proton.  These states are nonradiative.  A catalyst can 
effect a transition between these states via a nonradiative energy transfer to form hydrinos, stable hydrogen atoms having energy 

levels below the ground state and corresponding to principal quantum numbers 
1 1 1 1

1, , , ,...,
2 3 4

n
p

 ; 137p   replaces the well 

known parameter integern   in the Rydberg equation for hydrogen excited states.  Hydrinos and the corresponding hydrino 
hydride ions and molecular hydrinos have been confirmed experimentally as shown in the Data section.  Until now, this 
predicted discovery was missed entirely due to the erroneous concept of the hydrogen atom “ground state” based on its definition 
regarding the Schrödinger equation since the Schrödinger equation does not physically explain the observation that spontaneous 
emission of radiation does not occur for the state having a binding energy of 13.6 eV.  Nor, does the Schrödinger equation 
provide a physical basis for the existence of the integern   excited states or absorption or emission of radiation.  (See 
Schrödinger Wavefunction in Violation of Maxwell’s Equation section, the Retrospect section, and papers by Mills’ [4-15]). 
 

EXCITED STATES 
CP gives closed form solutions for the resonant photons and excited state electron functions.  The angular momentum of the 
photon given by  

   41
Re ( )

8
dx

c
   m r E B*    (I.99) 

is conserved [67].  The change in angular velocity of the electron is equal to the angular frequency of the resonant photon.  The 
energy is given by Planck’s equation.  The predicted energies, Lamb shift, hyperfine structure, resonant line shape, line width, 
selection rules, etc. are in agreement with observation. 

The discretization of the angular momentum of the electron and the photon gives rise to quantized electron radii and 
energy levels.  Transitions occur in integer units of the electron’s inalienable intrinsic angular momentum of   (Appendix II) 
such that the exciting photons carry an integer multiple of  .  Thus, for e em r v p  to be constant, the radius increases by a 

factor of the integer and the electron velocity decreases by the factor of the integer.  This quantization condition is equivalent to 
that of Bohr except that the electron angular momentum is  , the angular momentum of one or more photons that give rise to an 
excited state is n , and the photon field changes the central force balance.  Also, the standing wave regards the photon field and 
not the electron that comprises an extended current and is not a wave function.  Thus, the quantization condition can also be 
considered as arising from the discretization of the photon standing wave including the integer spherical periodicity of the 
spherical harmonics of the excited state of the bound electron as a spherical cavity. 

The atomic orbital is a dynamic spherical resonator cavity which traps photons of discrete frequencies.  The relationship 
between an allowed radius and the “photon standing wave” wavelength is 
 2 r n   (I.100) 
where n  is an integer.  The relationship between an allowed radius and the electron wavelength is:  
 1 12 ( ) 2 n nnr r n       (I.101) 

where 1,2,3,4,...n  .  The radius of an atomic orbital increases with the absorption of electromagnetic energy due to a 
corresponding decrease in the central field.  The radii of excited states are solved using the electromagnetic force equations of 
Maxwell relating the field from the charge of the proton, the electric field of the photon, and charge and mass density functions 
of the electron wherein the angular momentum of the electron is given by   (Eq. (1.37)).  The solutions to Maxwell’s equations 
for modes that can be excited in the atomic orbital resonator cavity give rise to four quantum numbers, and the energies of the 
modes are the experimentally known hydrogen spectrum.  The relationship between the electric field equation and the “trapped 
photon” source charge-density function is given by Maxwell’s equation in two dimensions. 

  1 2
0




  n E E  (I.102) 

The photon standing electromagnetic wave is phase matched with the electron 
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For Hr na  and 0m  , the total radial electric field is: 
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When an electron in the 1n   state absorbs a photon of energy sufficient to take it to a new resonant state, 2,3, 4,...,n   
force balance must be maintained with the reduction of the central field caused by the superposition of the electric field of the 
proton and the photon trapped in the atomic orbital, a spherical resonator cavity.  According to Eq. (I.105), the central field is 

equivalent to that of a central charge of 
e

n
, and the excited-state force balance equation is  
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where 1r  is the 1n   state radius of the electron, nr  is the nth excited state radius of the electron, and the electron velocity is 

given by Eq. (I.61).  The radius of the nth excited state given by Eq. (I.106) is  
 n Hr na  (I.107) 

The energy of the photon that excites a mode in the electron spherical resonator cavity from radius Ha  to radius Hna  is 
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The change in angular velocity of the atomic orbital for an excitation from 1n   to n n  is:  
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The kinetic energy change of the transition is 
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The change in angular velocity of the electron atomic orbital is identical to the angular velocity of the photon necessary for the 
excitation,  photon .  The correspondence principle holds.  It can be demonstrated that the resonance condition between these 

frequencies is to be satisfied in order to have a net change of the energy field [48].   
 
INSTABILITY OF EXCITED STATES 
For the excited energy states of the hydrogen atom,  photon , the two-dimensional surface charge due to the “trapped photons” at 

the electron atomic orbital, given by Eq. (I.102) and Eq. (I.103) is: 

       0 0
0 02

1
, , Re , ( )

4 ( )
       


        


nim tm

photon n
n

e
Y Y Y e r r

r n
 (I.111) 

where n  2,3,4,.. .,.  Whereas, electron , the two dimensional surface charge of the electron atomic orbital given by Eq. (I.65) is 
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The superposition of  photon  (Eq. (I.111)) and electron  (Eq. (I.112)) is equivalent to the sum of a radial electric dipole represented 

by a doublet function and a radial electric monopole represented by a delta function: 
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where 2,3,4,...,n  .  Due to the radial doublet, excited states are radiative since spacetime harmonics of 
n

c
 k  or 

0

n k
c

 


  

do exist for which the spacetime Fourier transform of the current density function is nonzero.  An excited state is meta-stable 
because it is the sum of nonradiative (stable) and radiative (unstable) components and de-excites with a transition probability 
given by the ratio of the power to the energy of the transition [68].  There is motion in the radial direction only when the energy 
of the system is changing, and the radiation emitted or absorbed during electron transitions is the multipole radiation given by 
Eq. (I.50) as given in the Excited States of the One-Electron Atom (Quantization) section and the Equation of the Photon section.  
The discontinuous harmonic radial current in Eq. (I.55) that connects the initial and final states of the transition is: 
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where   is the lifetime of the transition given by Eq. (2.107) and 't  is time during the transition as given in the Excited States of 
the One-Electron Atom (Quantization) section.  The vector potential of the current that connects the initial and final states of a 
transition, each having currents of the form given by Eq. (1.12), is: 
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The magnetic and electric fields are derived from the vector potential and are used in the Poynting power vector to give the 
power.  The transition probability or Einstein coefficient kiA

 

for initial state in  and final state fn  of atomic hydrogen given by 

the power divided by the energy of the transition is: 
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which matches the NIST values for all transitions extremely well as shown in Excited States of the One-Electron Atom 
(Quantization) section. 
 

HYDRINO STATES 

EXTENSION OF THE RYDBERG STATES TO LOWER LEVELS 
For a spherical resonator cavity, the nonradiative boundary condition and the relationship between the electron and the photon 
give the hydrogen energy states that are quantized as a function of the parameter n .  That is the nonradiative boundary condition 
and the relationship between an allowed radius and the photon standing wave wavelength (Eq. (I.100)) gives rise to Eq. (I.101), 
the boundary condition for allowed radii and allowed electron wavelengths as a function of the parameter n .  Each value of n  
corresponds to an allowed transition effected by a resonant photon that excites the transition in the atomic orbital resonator 

cavity.  In addition to the traditional integer values (1, 2, 3,...,) of n , values of 
1

integer
  are allowed by Eq. (I.101) which 

correspond to transitions with an increase in the central field and decrease in the radius of the atomic orbital.  This occurs, for 
example, when the electron couples to another electronic transition or electron transfer reaction that can absorb energy—an 
energy sink.  This transition reaction of the electron of hydrogen to a lower energy state occurs by the absorption of an energy 
hole by the hydrogen atom.  The absorption of an energy hole destroys the balance between the centrifugal force and the 
resulting increased central electric force.  Consequently, the electron undergoes a transition to a lower energy nonradiative state. 

From energy conservation, the energy hole of a hydrogen atom that excites resonator modes of radial dimensions 
aH

m 1
 

is 

 m  27.2 eV , (I.117) 

where m  is an integer.  After resonant absorption of the energy hole, the radius of the atomic orbital, aH , shrinks to 
aH

m 1
 and 

after t  cycles of transition, the radius is 
aH

mt  1
.  In other words, the radial ground state field can be considered as the 

superposition of Fourier components.  The removal of negative Fourier components of energy m  27.2 eV , where m  is an 
integer increases the positive electric field inside the spherical shell by m  times the charge of a proton.  The resultant electric 
field is a time harmonic solution of Laplace’s Equations in spherical coordinates.  In this case, the radius at which force balance 

and nonradiation are achieved is 
aH

m 1
 where m  is an integer.  In decaying to this radius from the 1n   state, a total energy of 

2 2[( 1) 1 ] 13.6 m eV    is released.  The process involving the transition reaction is hereafter referred to as the BlackLight 
Process.  The source of energy holes may not be consumed in the transition reaction; therefore they serve as a hydrogen catalyst. 
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 The increased-binding-energy hydrogen atom is called a hydrino atom having a binding energy of:  
  

 Binding Energy 
13.6 eV

n2  (I.118) 

where  

  n 
1

2
,
1

3
,
1

4
,...,

1

p
 (I.119) 

and p  is an integer greater than 1.  Hydrino atoms designated as  1/H p  have a radius of /Ha p , the hydrogen atom divided by 

an integer.  The potential energy diagram of the hydrogen atom is extended to lower Rydberg states, as given in Figure I.4. 
 
Figure I.4.  Potential energy well of a hydrogen atom. 
 

 
 
The size of the electron atomic orbital as a function of potential energy is given in Figure I.5.  
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Figure I.5.  Quantized sizes of hydrogen atoms where n  is an integer for excited states and n  1
p  for hydrino states where 

p  is an integer. 
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PHOTONIC EQUATION 
As shown previously, the hydrino photonic equation must be a solution of Laplace’s equation in spherical coordinates.  The 
“trapped photon” field comprises an electric field that provides force balance and a nonradiative state.  Following the 
Maxwellian approach given for excited states in the Excited States section (Eq. (I.103)), the solution to this boundary value 
problem of the radial photon electric field is: 
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The quantum numbers of the electron are p ,  , m , and sm  as given in the Electron Source Current section and the Excited 

States section wherein the principal quantum number of excited states is replaced by 1/n p .  (Also, see Hydrino Theory—
BlackLight Process section.) 
 
STABILITY OF THE “GROUND” AND HYDRINO STATES 
For the below “ground” (fractional quantum number) energy states of the hydrogen atom,  photon , the two-dimensional surface 

charge due to the “trapped photon” at the electron atomic orbital, is given by Eqs. (I.120) and (I.102).   
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And, electron , the two-dimensional surface charge of the electron atomic orbital is: 
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The superposition of  photon  (Eq. (I.121)) and electron  , (Eq. (I.122)) where the spherical harmonic functions satisfy the 

conditions given in the Electron Source Current section is a radial electric monopole represented by a delta function. 
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As given in the Spacetime Fourier Transform of the Electron Function section, the radial delta function does not possess 
spacetime Fourier components synchronous with waves traveling at the speed of light (Eqs. (I.66-I.68)).  Thus, the below 
“ground” (fractional quantum) energy states of the hydrogen atom are stable.  The “ground” ( 1n   quantum) energy state is just 
the first of the nonradiative states of the hydrogen atom; thus, it is the state to which excited states decay. 
 
CATALYTIC LOWER-ENERGY HYDROGEN ELECTRONIC TRANSITIONS 
Classical physics gives closed-form solutions of the hydrogen atom, the hydride ion, the hydrogen molecular ion, and the 
hydrogen molecule and predicts corresponding species having fractional principal quantum numbers.  The nonradiative state of 
atomic hydrogen, which is historically called the “ground state” forms the basis of the boundary condition of CP to solve the 
bound electron.  The solutions for electron states having principal energy levels with quantum numbers that are integers and 

those where 
1

integer
n   each reveal the corresponding mechanism of the transitions.  In the case of excited states, the 

superposition given by Eq. (I.113) involves the sum of a delta function with a fractional charge (radial monopole term) and two 
delta functions of charge plus one and minus one that is a doublet function (radial dipole term).  The radial dipole is radiative.  
Whereas, in the case of lower-energy states, the superposition given by Eq. (I.123) involves integer charge (equivalent) only.  As 

given in Appendix I these states having a radial delta function are nonradiative since spacetime harmonics of 
n

c
 k  or 

0

n k
c

 


  for which the Fourier transform of the current-density function is nonzero do not exist.   

Therefore, for the excited-energy states of atomic hydrogen given by Eq. (I.1) with 1n  , the 1n   state is the “ground” 
state for spontaneous pure photon transitions, and conversely, the 1n   state can absorb a photon and go to an excited electronic 
state.  However, the 1n   state cannot directly release a photon and go to a lower-energy electronic state.  An electron transition 
from the 1n   state to a lower-energy state is only possible by a nonradiative energy transfer such as multipole coupling or a 

resonant collision mechanism to form the lower-energy states have fractional quantum numbers, n 
1

integer
. 
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Processes such as the transition reaction that occur without photons and that require collisions or nonradiative energy 
transfer are common.  For example, the exothermic chemical reaction of H H  to form H2  does not occur with the emission of 
a photon.  Rather, the reaction requires a collision with a third body, M , to remove the bond energy- H  H  M  H2  M * 
[69].  The third body distributes the energy from the exothermic reaction, and the end result is the H2  molecule and an increase 
in the temperature of the system.  Some commercial phosphors are based on nonradiative energy transfer involving multipole 
coupling.  For example, the strong absorption strength of Sb3  ions along with the efficient nonradiative transfer of excitation 
from Sb3  to Mn2 , are responsible for the strong manganese luminescence from phosphors containing these ions [70]. 

Thus, it is well known that the electric field of an absorbed photon superimposes that of the proton such that the electron 
of H  moves to a higher-energy excited state at a radius that is greater than that of the 1n   state.  Similarly, in order to conserve 
energy, a resonant nonradiative energy transfer from H  to a catalyst (source of an energy hole) of m  27.2 eV  results in an 
increased interaction between the electron and the central field that is equivalent to 1m   times that of a proton.  The increased 
interaction then causes the radius to decrease with the further release of energy such that a total energy of 2 2[( 1) 1 ] 13.6 m eV    
is released. 
 
CATALYST REACTION MECHANISM AND PRODUCTS 
Classical physics (CP) gives closed-form solutions of the hydrogen atom, the hydride ion, the hydrogen molecular ion, and the 
hydrogen molecule and predicts corresponding species having fractional principal quantum numbers.  The nonradiative state of 
atomic hydrogen, which is historically called the ”ground state“ forms the basis of the boundary condition of CP to solve the 
bound electron.  CP predicts a reaction involving a resonant, nonradiative energy transfer from otherwise stable atomic hydrogen 
to a catalyst capable of accepting the energy to form hydrogen in lower-energy states than previously thought possible called a 

hydrino atom designated as Ha
H

p

 
 
 

 where Ha  is the radius of the hydrogen atom.  Specifically, CP predicts that atomic 

hydrogen may undergo a catalytic reaction with certain atoms, excimers, ions, and diatomic hydrides which provide a reaction 
with a net enthalpy of an integer multiple of the potential energy of atomic hydrogen, 27.2 hE eV  where hE  is one Hartree.  

Specific species (e.g. He , Ar , Sr , K , Li , HCl , NaH , and 2H O ) identifiable on the basis of their known electron energy 

levels are required to be present with atomic hydrogen to catalyze the process.  The reaction involves a nonradiative energy 
transfer of an integer multiple of 27.2 eV  from atomic hydrogen to the catalyst followed by 13.6 q eV  continuum emission or 

13.6 q eV  transfer to another H  to form extraordinarily hot, excited-state H  and a hydrogen atom that is lower in energy than 
unreacted atomic hydrogen that corresponds to a fractional principal quantum number.  That is, in the formula for the principal 
energy levels of the hydrogen atom: 
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     (I.124) 

 1, 2,3,...n   (I.125)  

where Ha  is the Bohr radius for the hydrogen atom (52.947 pm), e  is the magnitude of the charge of the electron, and o  is the 

vacuum permittivity, fractional quantum numbers: 

 
1 1 1 1

 1, , , ,...,
2 3 4

n
p

 ;   137p   is an integer (I.126) 

replace the well known parameter integern   in the Rydberg equation for hydrogen excited states.  Then, similar to an excited 

state having the analytical solution of Maxwell’s equations given by Eq. (2.15), a hydrino atom also comprises an electron, a 

proton, and a photon as given by Eq. (5.27).  However, the electric field of the latter increases the binding corresponding to 

desorption of energy rather than decreasing the central field with the absorption of energy as in an excited state, and the resultant 

photon-electron interaction of the hydrino is stable rather than radiative. 

The 1n   state of hydrogen and the 
1

integer
n   states of hydrogen are nonradiative, but a transition between two 

nonradiative states, say 1n   to 1/ 2n  , is possible via a nonradiative energy transfer.  Hydrogen is a special case of the stable 

states given by Eqs. (I.124) and (I.126) wherein the corresponding radius of the hydrogen or hydrino atom is given by: 

 Ha
r

p
 , (I.127) 

where 1, 2,3,...p  .  In order to conserve energy, energy must be transferred from the hydrogen atom to the catalyst in units of  

 27.2 m eV , 1, 2,3, 4,....m   (I.128) 
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and the radius transitions to Ha

m p
. The catalyst reactions involve two steps of energy release: a nonradiative energy transfer to 

the catalyst followed by additional energy release as the radius decreases to the corresponding stable final state.  Thus, the 

general reaction is given by: 

 27.2 * 27.2 
( )

q rq H Ha a
m eV Cat H Cat re H m eV

p m p
     

             
 (I.129) 

 2 2* [( ) ] 13.6 27.2 
( ) ( )

H Ha a
H H p m p eV m eV

m p m p

   
             

 (I.130) 

   27.2 q r qCat re Cat m eV        (I.131) 

And, the overall reaction is: 

 2 2[( ) ] 13.6 
( )

H Ha a
H H p m p eV

p m p

   
          

 (I.132) 

q , r , m , and p  are integers.  
 

* Ha
H

m p

 
  

 has the radius of the hydrogen atom (corresponding to 1 in the denominator) and a 

central field equivalent to  m p  times that of a proton, and 
 

Ha
H

m p

 
  

 is the corresponding stable state with the radius of 

 
1

m p
 that of H .  As the electron undergoes radial acceleration from the radius of the hydrogen atom to a radius of 

 
1

m p
 

this distance, energy is released as characteristic light emission or as third-body kinetic energy.  The emission may be in the form 

of an extreme-ultraviolet continuum radiation having an edge at 2 2[( ) 2 ] 13.6 p m p m eV     or 
2 2

91.2

[( ) 2 ]
nm

p m p m  
 and 

extending to longer wavelengths.  In addition to radiation, a resonant kinetic energy transfer to form fast H  may occur (See the 
Dipole-Dipole Coupling section).  Subsequent excitation of these fast  1H n   atoms by collisions with the background 2H  

followed by emission of the corresponding  3H n   fast atoms gives rise to broadened Balmer   emission.  Alternatively, fast 

H is a direct product of H or hydrino serving as the catalyst or source of energy holes as given by Eqs. (5.60), (5.65), (5.70), and 

(5.83) wherein the acceptance of the resonant energy transfer regards the potential energy rather than the ionization energy.  

Conservation of energy gives a proton of the kinetic energy corresponding to one half the potential energy in the former case and 

a catalyst ion at essentially rest in the latter case.  The H recombination radiation of the fast protons gives rise to broadened 

Balmer   emission that is disproportionate to the inventory of hot hydrogen consistent with the excess power balance [22-42]. 
As given in Disproportionation of Energy States section, hydrogen atoms  1/   1, 2,3,...137H p p   can undergo further 

transitions to lower-energy states given by Eqs. (I.124) and (I.126) wherein the transition of one atom is catalyzed by a second 

that resonantly and nonradiatively accepts 27.2 m eV  with a concomitant opposite change in its potential energy.  The overall 
general equation for the transition of  1/H p  to   1/H p m  induced by a resonance transfer of 27.2 m eV  to  1/ 'H p  

given by Eq. (5.87) is represented by: 
       2 21/ ' 1/ 1/ ( ) 2 ' 1 13.6 H p H p H H p m pm m p eV            (I.133) 

Hydrogen atoms may serve as a catalyst wherein 1m  , 2m  , and 3m   for one, two, and three atoms, respectively, acting as 

a catalyst for another.  The rate for the two-atom-catalyst, 2H , may be high when extraordinarily fast H as reported previously 

[22-42] collides with a molecule to form the 2H  wherein two atoms resonantly and nonradiatively accept 54.4 eV  from a third 
hydrogen atom of the collision partners.  By the same mechanism, the collision of two hot 2H  provide 3 H  to serve as a catalyst 

of 3 27.2 eV  for the fourth.  The EUV continua at 22.8 nm and 10.1 nm and extraordinary (>100 eV) Balmer   line 

broadening are observed consistent with predictions [22-42].  
The catalyst product,  1/H p , may also react with an electron to form a hydrino hydride ion  1/H p , or two 

 1/H p  may react to form the corresponding molecular hydrino  2 1/H p .  Specifically, the catalyst product,  1/H p , may 

also react with an electron to form a novel hydride ion  1/H p  with a binding energy BE  (Eq. (7.74)) derived in the Hydrino 

Hydride Ion section: 
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where integer 1p   , 1 / 2s  ,   is Planck's constant bar, o  is the permeability of vacuum, em  is the mass of the electron, e  

is the reduced electron mass given by 

3
4

e p
e

e
p

m m

m
m

 


 where pm  is the mass of the proton, oa  is the Bohr radius, and the ionic 

radius is   0
1 1 1

a
r s s

p
    (Eq. (7.73)).  From Eq. (I.134), the calculated ionization energy of the hydride ion is 

0.75418 eV , and the experimental value given by Lykke [71] is 16082.99 0.15 cm  (0.75418 eV). 

Upfield-shifted NMR peaks are direct evidence of the existence of lower-energy state hydrogen with a reduced radius 

relative to ordinary hydride ion and having an increase in diamagnetic shielding of the proton.  The shift is given by the sum of 
the contributions of the diamagnetism of the two electrons and the trapped photon field of magnitude p  (Eq. (7.87)): 
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where the first term applies to H   with 1p   and integer >1p   for  1/H p  and   is the fine structure constant.   

  1/H p  may react with a proton and two  1/H p  may react to form  2 1/H p

 and  2 1/H p , respectively.  The 

hydrogen molecular ion and molecular charge and current density functions, bond distances, and energies were solved in the 

Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section from the Laplacian in ellipsoidal 

coordinates with the constraint of nonradiation.  

 ( ( ) ( ( ) ( ( ) 0R R R R R R     
          
     

          (I.136) 

The total energy TE  of the hydrogen molecular ion having a central field of pe  at each focus of the prolate spheroid molecular 

orbital is (Eqs. (11.192-11.193)) 
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where p  is an integer, c  is the speed of light in vacuum, and   is the reduced nuclear mass.  The total energy of the hydrogen 

molecule having a central field of pe  at each focus of the prolate spheroid molecular orbital is (Eqs. (11.240-11.241)). 



36 Introduction 

 

2

3
0

2

2
0

2
2 2

3 3

0
0

2

4
2

2 2 1
2 2 2 ln 2 1

8 2 2 1

1
8 1

28
1

2

    31.677 

o

e

o e

T

o

o

e
a

me

a m c

E p
pe pe

a
a

p
p

p eV










   
   
   
   
   

 
 
 

  
  
  
                         
 
    

  
  
 

 





 (I.138) 

 The bond dissociation energy, DE , of the hydrogen molecule  2 1/H p  is the difference between the total energy of the 

corresponding hydrogen atoms and TE  

  (2 1/ )D TE E H p E   (I.139) 

where [72] 
   2(2 1/ ) 27.20 E H p p eV   (I.140) 

DE  is given by Eqs. (I.139-I.140) and (I.138): 
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The NMR of catalysis-product gas provides a definitive test of the theoretically predicted chemical shift of  2 1/H p .  In 

general, the 1H  NMR resonance of  2 1/H p  is predicted to be upfield from that of 2H  due to the fractional radius in elliptic 

coordinates wherein the electrons are significantly closer to the nuclei.  The predicted shift, TB

B


, for  2 1/H p  is given by the 

sum of the contributions of the diamagnetism of the two electrons and the trapped photon field of magnitude p  (Eqs. (11.415-

11.416)). 
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  2 328.01 1.49  10TB
p p X ppm

B


    (I.143) 

where the first term applies to 2H  with 1p   and integer >1p   for  2 1/H p .  The experimental absolute 2H  gas-phase 

resonance shift of -28.0 ppm [73-76] is in excellent agreement with the predicted absolute gas-phase shift of -28.01 ppm (Eq. 

(I.143)). 
 The vibrational energies, vibE , for the 0   to 1   transition of hydrogen-type molecules  2 1/H p  are (Eq. (11.223)) 

 2 0.515902 vibE p eV  (I.144) 

where p  is an integer and the experimental vibrational energy for the 0   to 1   transition of 2H ,  2 0 1HE     , is given by 

Beutler [77] and Herzberg [78]. 
 The rotational energies, rotE , for the J  to 1J   transition of hydrogen-type molecules  2 1/H p  are (Eq. (12.74)). 
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where p  is an integer, I  is the moment of inertia, and the experimental rotational energy for the 0J   to 1J   transition of 2H  

is given by Atkins [79].  Ro-vibrational emission of  2 1/ 4H  was observed on e-beam excited molecules in gases and trapped 

in solid matrix [31, 35] and by Raman spectroscopy [23, 31-35]. 
 The 2p  dependence of the rotational energies results from an inverse p  dependence of the internuclear distance and the 

corresponding impact on the moment of inertia I .  The predicted internuclear distance 2 'c  for  2 1/H p  is: 
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2

2 oa
c

p
   (I.146) 

The calculated and experimental parameters of 2H , 2D , 2H  , and 2D  from the Chemical Bond of Hydrogen-Type Molecules 

section are given in Table I.2. 
 
Table I.2.   The Maxwellian closed form calculated and experimental parameters of 2H , 2D , 2H   and 2D . 

 
Parameter Calculated Experimental Eqs. Ref. for Exp.

2
H  Bond Energy 4.478 eV 4.478 eV 11.300 24 

2
D  Bond Energy 4.556 eV 4.556 eV 11.302 24 

2
H   Bond Energy 2.654 eV 2.651 eV 11.269 24 

2
D  Bond Energy 2.696 eV 2.691 eV 11.271 25 

2
H  Total Energy 31.677 eV 31.675 eV 11.296 24, 30, 19a 

2
D  Total Energy 31.760 eV 31.760 eV 11.297 20, 25b 

2
H  Ionization Energy 15.425 eV 15.426 eV 11.298 30 

2
D  Ionization Energy 15.463 eV 15.466 eV 11.299 25 

2
H   Ionization Energy 16.253 eV 16.250 eV 11.267 24, 19c  

2
D  Ionization Energy 16.299 eV 16.294 eV 11.268 20, 25d 

2
H   Spin Magnetic Moment 0.5

B
  0.5

B
  12.24 31 

Absolute 
2

H  Gas-Phase NMR Shift 
-28.0 ppm -28.0 ppm 11.416 32-33 

2
H  Quadrupole Moment 

0.4764 X 10-16 cm2 0.38 0.15 X 10-16 cm2 11.430-11.431 46 

2
H  Internuclear Distance 0.7411 Å 0.741 Å 12.75 34 

2
D   Internuclear Distance 0.7411 Å 0.741 Å 12.75 34 

2
H   Internuclear Distance 1.0577 Å 1.06 Å 12.81 24 

2
D  Internuclear Distance 1.0577 Å 1.0559 Å 12.81 25 

2
H  Vibrational Energy 0.517 eV 0.516 eV 11.308 27, 28 

2
D  Vibrational Energy 0.371 eV 0.371 eV 11.313 14, 20 

2
H  e e

x  120.4 1cm  121.33 1cm  11.310 25 

2
D  e e

x  60.93 1cm  61.82 1cm  11.314 20 

2
H   Vibrational Energy 0.270 eV 0.271 eV 11.277 14, 20 

2
D  Vibrational Energy 0.193 eV 0.196 eV 11.281 20 

2
H  J=1 to J=0 Rotational Energy 0.01511 eV 0.01509 eV 12.77 24 

2
D  J=1 to J=0 Rotational Energy 0.007557 eV 0.00755 eV 12.78 24 

2
H   J=1 to J=0 Rotational Energy 0.00742 eV 0.00739 eV 12.83 24 

2
D  J=1 to J=0 Rotational Energy 0.0037095 eV 0.003723 eV 12.84 25 
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CATALYSTS 
He , Ar , Sr , Li , K ,  NaH , and 2H O  are predicted to serve as catalysts since they meet the catalyst criterion—a chemical 

or physical process with an enthalpy change equal to an integer multiple of the potential energy of atomic hydrogen, 27.2 eV , or 

have a potential energy of m  27.2 eV .  Specifically, an exemplary catalytic system is provided by the ionization of t  electrons 

from an atom each to a continuum energy level such that the sum of the ionization energies of the t  electrons is approximately 

27.2 m eV  where m  is an integer.  One such catalytic system involves lithium atoms.  The first and second ionization energies 

of lithium are 5.39172 eV  and 75.64018 eV , respectively [72].  The double ionization ( 2t  ) reaction of Li  to 2Li   then, has a 

net enthalpy of reaction of 81.0319 eV , which is equivalent to 3 27.2 eV . 

 
  2 2 281.0319 2 [( 3) ] 13.6 

( 3)
H Ha a

eV Li m H Li e H p p eV
p p

    
              

 (I.147) 

  2 2 81.0319 Li e Li m eV     (I.148) 

And, the overall reaction is: 

 2 2[( 3) ] 13.6 
( 3)

H Ha a
H H p p eV

p p

   
          

 (I.149) 

 
where 3m   in Eq. (I.128).  The energy given off during catalysis is much greater than the energy lost to the catalyst.  The 
energy released is large compared to conventional chemical reactions.  For example, when hydrogen and oxygen gases undergo 

combustion to form water (   2 2 2

1
( ) ( )  ( )

2
H g O g H O l  ) the known enthalpy of formation of water is 286 /fH kJ mole    or 

1.48  eV per hydrogen atom.  By contrast, each ( 1n  ) ordinary hydrogen atom undergoing a catalysis step to 
1

2
n   releases a 

net of 40.8 eV .  Moreover, further catalytic transitions may occur: 
1 1 1 1 1 1

,  ,  ,
2 3 3 4 4 5

n      and so on.  Once catalysis 

begins, hydrinos autocatalyze further in a process called disproportionation discussed in the Disproportionation of Energy States 
section.   

Certain molecules may also serve to affect transitions of H to form hydrinos.  In general, a compound comprising 

hydrogen such as MH , where M is an element other than hydrogen, serves as a source of hydrogen and a source of catalyst.  A 

catalytic reaction is provided by the breakage of the M H  bond plus the ionization of t  electrons from the atom M  each to a 

continuum energy level such that the sum of the bond energy and ionization energies of the t  electrons is approximately 
  27.2 m eV , where m  is an integer.  One such catalytic system involves sodium hydride.  The bond energy of NaH  is 

1.9245 eV  [80], and the first and second ionization energies of Na  are 5.13908 eV  and 47.2864 eV , respectively [72].  Based 

on these energies NaH  molecule can serve as a catalyst and H  source, since the bond energy of NaH  plus the double 

ionization ( 2t  ) of Na  to 2Na   is 54.35 eV  ( 2 27.2 eV ).  The concerted catalyst reactions are given by 

 

2 2 254.35 2 [3 1 ] 13.6 
3
Ha

eV NaH Na e H eV           
 (I.150) 

 2 2 54.35 Na e H NaH eV      (I.151) 

And, the overall reaction is: 

 2 2[3 1 ] 13.6 
3
Ha

H H eV
      

 (I.152) 

With 2m  , the product of catalyst NaH is  1/ 3H  that may further rapidly react to form  1/ 4H , then molecular hydrino, 

 2 1/ 4H .  Specifically, in the case of a high hydrogen atom concentration, the further transition given by Eq. (I.133) of 

 1/ 3H  ( 3p  ) to  1/ 4H  ( 4p m  ) with H  as the catalyst ( ' 1p  ; 1m  ) can be fast: 

    1/ 3 1/ 4 95.2 HH H eV   (I.153) 

A molecule that accepts   27.2 m eV  from atomic H with a decrease in the magnitude of the potential energy of the 

molecule by the same energy may serve as a catalyst.  For example, the potential energy of H2O given by Eq. (13.201) is 

 
2 2 2

2 2 2 2
0

3 2
ln 81.8715 

2 8
e

e a a b
V eV

a b a a b
      

    
 (I.154) 

The catalysis reaction  3m   is: 
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  281.6 2 3 * 81.6 
4
H

H

a
eV H O H a H O e H eV            

 (I.155) 

 * 122.4 
4 4
H Ha a

H H eV
          

 (I.156) 

 22 3 81.6 H O e H O eV        (I.157) 

And, the overall reaction is: 

   81.6 122.4 
4
H

H

a
H a H eV eV

     
 (I.158) 

wherein *
4
Ha

H
 
  

 has the radius of the hydrogen atom and a central field equivalent to 4 times that of a proton and 
4
Ha

H
 
  

 is 

the corresponding stable state with the radius of 1/4 that of H. 

Hydrogen and hydrinos may serves as catalysts.  As given in the Disproportionation of Energy States section hydrogen 
atoms  1/   1, 2,3,...137H p p   can undergo transitions to lower-energy states given by Eqs. (I.124) and (I.126) wherein the 

transition of one atom is catalyzed by a second that resonantly and nonradiatively accepts 27.2 m eV  with a concomitant 
opposite change in its potential energy.  The overall general equation for the transition of  1/H p  to   1/H m p  induced by 

a resonance transfer of 27.2 m eV  to  1/ 'H p  is represented by Eq. (I.133).  Thus, hydrogen atoms may serve as a catalyst 

wherein 1m  , 2m  , and 3m   for one, two, and three atoms, respectively, acting as a catalyst for another.  The rate for the 

two- or three-atom-catalyst case would be appreciable only when the H  density is high.  But, high H densities are not 

uncommon.  A high hydrogen atom concentration permissive of 2H or 3H serving as the energy acceptor for a third or fourth 

may be achieved under several circumstances such as on the surface of the Sun and stars due to the temperature and gravity 

driven density, on metal surfaces that support multiple monolayers, and in highly dissociated plasmas, especially pinch hydrogen 

plasmas.  Additionally, a three-body H interaction is easily achieved when two H  atoms arise with the collision of a hot H  with 

2H .  This event can commonly occur in plasmas having a large population of extraordinarily fast H as reported previously [36-

42].  This is evidenced by the unusual intensity of atomic H emission.  In such cases, energy transfer can occur from a hydrogen 

atom to two others within sufficient proximity, being typically a few angstroms as given in the Dipole-Dipole Coupling section.  

Then, the reaction between three hydrogen atoms whereby two atoms resonantly and nonradiatively accept 54.4 eV  from the 

third hydrogen atom such that 2H  serves as the catalyst is given by: 

 54.4 2 2 2 * 54.4 
3
H

fast

a
eV H H H e H eV          

 (I.159) 

 * 54.4 
3 3
H Ha a

H H eV
          

 (I.160) 

 2 2 2 54.4 fastH e H eV     (I.161) 

And, the overall reaction is: 

 2 2[3 1 ] 13.6 
3
Ha

H H eV
      

 (I.162) 

Characteristic continuum emission starting at 22.8 nm (54.4 eV ) and continuing to longer wavelengths was observed as 

predicted for this transition reaction as the energetic hydrino intermediate *
3
Ha

H
 
  

 decays [23-29, 31].  Alternatively, fast H is 

producted by the mechanism of Eq. (I.161) or a resonant kinetic energy transfer to form fast H  may occur consistent with the 
observation of extraordinary Balmer   line broadening corresponding to high-kinetic energy H [31, 36-42]. 

In another H -atom catalyst reaction involving a direct transition to 
4
Ha 

  
 state, two hot 2H  molecules collide and 

dissociate such that three H  atoms serve as a catalyst of 3 27.2 eV  for the fourth.  Then, the reaction between four hydrogen 

atoms whereby three atoms resonantly and nonradiatively accept 81.6 eV  from the fourth hydrogen atom such that 3H  serves 

as the catalyst is given by: 

 81.6 3 3 3 * 81.6 
4
H

fast

a
eV H H H e H eV          

 (I.163) 



40 Introduction 

 * 122.4 
4 4
H Ha a

H H eV
          

 (I.164) 

 3 3 3 81.6 fastH e H eV     (I.165) 

And, the overall reaction is: 

 2 2[4 1 ] 13.6 
4
Ha

H H eV
      

 (I.166) 

The extreme-ultraviolet continuum radiation band due to the *
4
Ha

H
 
  

 intermediate of Eq. (I.163) is predicted to have short 

wavelength cutoff at 122.4 eV  (10.1 nm) and extend to longer wavelengths.  This continuum band was confirmed 

experimentally [23-29, 31].  In general, the transition of H  to 
1

Ha
H

p m

 
   

 due by the acceptance of 27.2 m eV  gives a 

continuum band with a short wavelength cutoff and energy 
1

Ha
H H

p m

E  
      

 given by: 

 2

1

13.6 
Ha

H H
p m

E m eV  
      

   (I.167) 

 
2

1

91.2
 

 Ha
H H

p m

nm
m

  
      

  (I.168) 

and extending to longer wavelengths than the corresponding cutoff.  Considering the 91.2 nm continuum shown in Figures 17 

and 31 of Ref. [81] and the results shown in Figures 3-8 of Ref. [26], hydrogen may emit the series of 10.1 nm, 22.8 nm, and 

91.2 nm continua. 
 
OUTLINE OF THE RESULTS OF THE UNIFIED THEORY DERIVED FROM 
FIRST PRINCIPLES  
To overcome the limitations of quantum mechanics (QM), physical laws that are exact on all scales are sought.  Rather than 
engendering the electron with a wave nature, as suggested by the Davisson-Germer experiment and fabricating a set of 
associated postulates and mathematical rules for wave operators, a new theory is derived from first principles. 
 

FOUNDATIONS 
• Start with first principles 

– Conservation of mass-energy 
– Conservation of linear and angular momentum 
– Maxwell’s Equations 
– Newton’s Laws 
– Lorentz transforms of Special Relativity 
 

• Highly predictive– application of Maxwell’s equations precisely predicts hundreds of fundamental spectral observations in 
exact equations with no adjustable parameters (fundamental constants only).  

 
• In addition to first principles, the only assumptions needed to predict the Universe over 85 orders of magnitude of scale 

(Quarks to Cosmos): 
– Four-dimensional spacetime 
– The fundamental constants that comprise the fine structure constant 
– Fundamental particles including the photon have   of angular momentum 
– The Newtonian gravitational constant G 
– The spin of the electron neutrino  

 
Classical Physics (CP) now comprises the unified Maxwell’s Equations, Newton’s Laws, and General and Special 

Relativity.  The closed form calculations of a broad spectrum of fundamental phenomena containing fundamental constants only 
are given in subsequent sections.  CP gives closed form solutions for the atom that give four quantum numbers, the Rydberg 
constant, the stability of the 1n   state and the instability of the excited states, relativistic invariance of the wave equation, the 
equations of the photon and electron in excited states, the equations of the free electron, and photon which predict the wave 
particle duality behavior of particles and light.  The current and charge-density functions of the electron may be directly 
physically interpreted.  For example, spin angular momentum results from the motion of negatively charged mass moving 
systematically, and the equation for angular momentum,  r p  , can be applied directly to the wave function (a current-density 
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function) that describes the electron.  The following observables are derived in closed-form equations based on Maxwell’s 
equations: the magnetic moment of a Bohr magneton, Stern Gerlach experiment, electron and muon g factors, fine structure 
splitting, Lamb shift, hyperfine structure, muonium hyperfine structure interval, resonant line width and shape, selection rules, 
correspondence principle, wave particle duality, excited states, reduced mass, rotational energies and momenta, spin-orbit 
coupling, Knight shift and spin-nuclear coupling, closed form solutions for multielectron atoms, excited states of the helium 
atom, elastic electron scattering from helium atoms, proton scattering from atomic hydrogen, the nature of the chemical bond, 
bond energies, vibrational energies, rotational energies, and bond distances of hydrogen-type molecules and molecular ions, the 
solutions for all major functional groups that give the exact solutions of an infinite number of molecules, solutions to the 
bonding in the major classes of materials, Davisson Germer experiment, Aspect experiment, Durr experiment on the Heisenberg 
Uncertainty Principle, Penning trap experiments on single ions, hyperfine structure interval of positronium, magnetic moments 
of the nucleons, beta decay energy of the neutron, the binding energy of deuterium, and alpha decay.  The theory of collective 
phenomena including statistical mechanics, superconductivity and Josephson junction experiments, integral and fractional 
quantum Hall effects, and the Aharonov-Bohm effect, is given.  The calculations agree with experimental observations. 

From the closed form solution of the helium atom, the predicted electron scattering intensity is derived.  The closed form 
scattering equation matches the experimental data; whereas, calculations based on the Born model of the atom utterly fail at 
small scattering angles.  The implications for the invalidity of the Schrödinger and Born models of the atom and the dependent 
Heisenberg Uncertainty Principle are discussed. 

For any kind of wave advancing with limiting velocity and capable of transmitting signals, the equation of front 
propagation is the same as the equation for the front of a light wave.  By applying this condition to electromagnetic and 
gravitational fields at particle production, the Schwarzschild metric (SM) is derived from the classical wave equation, which 
modifies general relativity to include conservation of spacetime, in addition to momentum and matter/energy and identifies 
absolute space.  The result gives a natural relationship between Maxwell’s equations, special relativity, and general relativity.  It 
gives gravitation from the atom to the cosmos.  The gravitational equations with the equivalence of the particle production 
energies permit the equivalence of mass-energy and the spacetime that determine the nature of absolute space wherein a “clock” 
is defined that measures “clicks” on an observable in one aspect, and in another, it is the ruler of spacetime of the universe with 
the implicit dependence of spacetime on matter-energy conversion.  The masses of the leptons, the quarks, and nucleons are 
derived from this metric of spacetime that gives the equivalence of the gravitational and inertial masses.  The universe is time 
harmonically oscillatory in matter, energy, and spacetime expansion and contraction with a minimum radius that is the 
gravitational radius.  In closed form equations with fundamental constants only, CP gives the basis of the atomic, 
thermodynamic, and cosmological arrows of time, the deflection of light by stars, the precession of the perihelion of Mercury, 
the Hubble constant, the age of the universe, the observed acceleration of the expansion, the power of the universe, the power 
spectrum of the universe, the microwave background temperature, the primary uniformity of the microwave background 
radiation, the polarization and microkelvin temperature spatial variation of the microwave background radiation, the observed 
violation of the GZK cutoff, the mass density of the universe, the large scale structure of the universe, and the identity of dark 
matter which matches the criteria for the structure of galaxies and emission from interstellar medium and the Sun which have 
been observed in the laboratory [23-29, 31].  In a special case wherein the gravitational potential energy density of a blackhole 
equals that of the Planck mass, matter converts to energy and spacetime expands with the release of a gamma ray burst.  The 
singularity in the SM is eliminated.  The basis of the antigravitational force is presented with supporting experimental evidence.   

In addition to the above known phenomena and characteristics of fundamental particles and forces, the theory predicts the 
existence of a previously unknown form of matter—hydrogen atoms and molecules having electrons of lower energy than the 
conventional “ground” state called hydrinos and molecular hydrinos, respectively, where each energy level corresponds to a 
fractional quantum number.  The existence of hydrinos has been confirmed experimentally proving GUT-CP, and this identity 
additionally resolves many celestial mysteries [23-29, 31].  It provides resolution to many otherwise inexplicable celestial 
observations with (a) the identity of dark matter being hydrinos, (b) the hydrino-transition radiation being the radiation source 
heating the warm-hot interstellar medium (WHIM) and behind the observation that diffuse H  emission is ubiquitous 
throughout the Galaxy requiring widespread sources of flux shortward of 912 Å , and (c) the energy and radiation from the 
hydrino transitions being the source of extraordinary temperatures and power regarding the solar corona problem, the cause of 
sunspots and other solar activity, and why the Sun emits X-rays [23-29, 31]. 
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PHYSICAL CONCEPTS THAT ARISE FROM CP DERIVATIONS ON THE SCALE 
RANGE OF 85 ORDERS OF MAGNITUDE 
Starting from the simple observation that the bound electron of the hydrogen atom is experimentally observed to be stable to 
radiation, the classical electromagnetic wave equation is used to solve the electron source current by matching it to emitted 
electromagnetic waves with the constraint that a bound electron in the 1n   state cannot radiate energy.  The solution is based 
on Maxwell’s equations and other experimentally confirmed physical laws.  The resulting CP gives predictions that are 
unprecedented in success, achieving highly accurate agreement with observations over 85 orders of magnitude from the scale of 
fundamental particles to that of the cosmos.  A summary of some of the salient features of the theory derived in subsequent 
sections follows: 
 

• Bound electrons are described by a charge-density (mass-density) function which is the product of a radial delta 
function ( ( ) ( )nf r r r  ), angular functions, and a time function.  The latter comprise a constant angular function, a 

time and spherically harmonic function, and linear combinations of these functions.  Thus, a bound electron is a 
constant two-dimensional spherical surface of charge (zero thickness and total charge of e ), called an electron atomic 
orbital that can exist in a bound state at only specified distances from the nucleus determined by the force balance 
between the electric fields of the electron and proton plus any resonantly absorbed photons. 

 

• The uniform current density function 0
0 ( , ) Y  (Eqs. (I.63-I.65)) that gives rise to the spin of the electron is generated 

from two current-vector fields (CVFs).  Each CVF comprises a continuum of correlated orthogonal great circle 
current-density elements (one dimensional "current loops").  The current pattern comprising each CVF is generated 
over a half-sphere surface by a set of rotations of two orthogonal great circle current loops that serve as basis elements 

about each of the  , , 0 x y zi i i  and 
1 1

, ,
2 2

  
 

x y zi i i -axis; the span being   radians.  Then, the two CVFs are 

convoluted, and the result is normalized to exactly generate the continuous uniform electron current density function 
0

0 ( , ) Y  covering a spherical shell and having the three angular momentum components of /
4xy   L


 and 
2




zL . 

 

• Then, the total function that describes the spinning motion of each electron atomic orbital is composed of two 
functions.  One function, the spin function, is spatially uniform over the atomic orbital, where each point moves on the 
surface with the same quantized angular and linear velocity, and gives rise to spin angular momentum.  The other 
function, the modulation function, can be spatially uniform—in which case there is no orbital angular momentum and 
the magnetic moment of the electron atomic orbital is one Bohr magneton—or not spatially uniform—in which case 
there is orbital angular momentum.  The modulation function moves harmonically on the surface as a charge-density 
wave with a quantized angular velocity about a specific (by convention) z-axis.  Numerical values for the angular 
velocity, radii of allowed atomic orbitals, energies, and associated quantities are calculated. 

 

• Atomic orbital radii are calculated by setting the centripetal force equal to the electric and magnetic forces. 
 

• The atomic orbital is a resonator cavity which traps photons of discrete frequencies.  The radius of an atomic orbital 
increases with the absorption of electromagnetic energy.  The solutions to Maxwell’s equations for modes that can be 
excited in the atomic orbital resonator cavity give rise to four quantum numbers, and the energies of the modes are the 
experimentally known hydrogen spectrum.  The spectrum of helium is the solution of Maxwell’s equations for the 
energies of modes of this resonator cavity with a contribution from electron-electron spin and orbital interactions. 

 

• Excited states are unstable because the charge-density function of the electron plus photon have a radial doublet 
function component which corresponds to an electric dipole.  The doublet possesses spacetime Fourier components 
synchronous with waves traveling at the speed of light; thus it is radiative.  The charge-density function of the electron 

plus photon for the 1n   principal quantum state of the hydrogen atom as well as for each of the 
1

integer
n   states 

mathematically is purely a radial delta function.  The delta function does not possess spacetime Fourier components 
synchronous with waves traveling at the speed of light; thus, each is nonradiative. 

 

• The spectroscopic line-width arises from the classical rise-time band-width relationship, and the Lamb Shift is due to 
conservation of energy and linear momentum and arises from the radiation reaction force between the electron and the 
photon. 

 

• The photon is an atomic orbital with electric and magnetic field lines along orthogonal great circles. 
 

• Upon ionization, the atomic orbital radius goes to infinity and the electron becomes a plane wave (consistent with 
double-slit experiments) with the de Broglie wavelength, /h p  .  

 

• The energy of atoms is stored in their electric and magnetic fields.  Chemical bonding occurs when the total energy of 
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the participant atoms can be lowered with the formation of two-dimensional equipotential energy surfaces (molecular 
orbitals (MO)) where the current motion in the case of 2H  is along orbits, each comprising an elliptic plane cross 

section of a spheroidal MO through the foci, and a general form of the nonradiative boundary condition is met.  
 

• Certain atoms and ions serve as catalysts to release energy from hydrogen to produce an increased binding energy 

hydrogen atom having a binding energy of 2

13.6 

1

eV

p

 
 
 

 where p  is an integer greater than 1, designated as Ha
H

p
 
  

 

where Ha  is the radius of the hydrogen atom.  Increased binding energy hydrogen atoms called hydrinos are predicted 

to form by reacting an ordinary hydrogen atom with a catalyst having a net enthalpy of reaction of about the potential 
energy of hydrogen in its first nonradiative state, 27.2 m eV , where m  is an integer, or have a potential energy of 
m  27.2 eV .  This catalysis releases energy from the hydrogen atom with a commensurate decrease in size of the 
hydrogen atom, n Hr na .  For example, the catalysis of ( 1)H n   to ( 1/ 2)H n   releases 40.8 eV , and the hydrogen 

radius decreases from Ha  to 
1

2 Ha .  One such atomic catalytic system involves H itself.  The potential energy of H is 

27.2 eV ; thus, one or more ( m ) H atoms may accept an integer m  times 27.2 eV  from another that undergoes a 
transition to a corresponding hydrino state   1/ 1H m  .  The process is hereafter referred to as the BlackLight 

Process. 
 

• The existence of hydrinos as the product of the BlackLight Process—a new energy source—has been confirmed 
experimentally. 

 

• For any kind of wave advancing with limiting velocity and capable of transmitting signals, the equation of front 
propagation is the same as the equation for the front of a light wave.  By applying the condition to electromagnetic and 
gravitational fields at particle production, the Schwarzschild metric (SM) is derived from the classical wave equation, 
which modifies general relativity to include conservation of spacetime, in addition to momentum and matter/energy.  
The result gives a natural relationship between Maxwell’s equations, special relativity, and general relativity, and 
defines absolute space that rescues Newton’s Second law, resolves the twin paradox, and preserves the energy 
inventory of the universe.  It gives gravitation from the atom to the cosmos. 

 

• The Schwarzschild metric gives the relationship whereby matter causes relativistic corrections to spacetime that 
determines the curvature of spacetime and is the origin of gravity.  The correction is based on the boundary conditions 
that no signal can travel faster than the speed of light including the gravitational field that propagates following particle 
production from a photon wherein the particle has a finite gravitational velocity given by Newton’s Law of Gravitation.   

 

• The limiting velocity c  results in the contraction of spacetime due to particle production.  The contraction is given by 
2 gr  where gr  is the gravitational radius of the particle.  This has implications for the expansion of spacetime when 

matter converts to energy. 
 

• The spacetime contraction during particle production is analogous to Lorentz length contraction and time dilation of an 
object in one inertial frame relative to another moving at constant relative velocity.  In the former case, the 
corresponding correction is a function of the square of the ratio of the gravitational velocity to the speed of light.  In the 
latter case, the corresponding correction is a function of the square of the ratio of the relative velocity of two inertial 
frames to the speed of light. 

 

• Fundamental particle production occurs when the energy of the particle given by the Planck equation, Maxwell’s 
Equations, and Special Relativity is equal to 2mc , and the proper time is equal to the coordinate time according to the 
Schwarzschild metric.  The gravitational equations with the equivalence of the particle production energies permit the 
equivalence of mass-energy and the absolute spacetime wherein a “clock” is defined which measures “clicks” on an 
observable in one aspect, and in another, it is the ruler of spacetime of the universe with the implicit dependence of 
spacetime on matter-energy conversion.  The masses of the leptons, the quarks, and nucleons are derived from this 
metric of spacetime. 

 

• The gravitational equations with the equivalence of the particle production energies require the conservation 

relationship of mass-energy, 2E mc , and spacetime, 
3

34
 3.22  10

4 sec

c kg
X

G
 .  Spacetime expands as mass is released 

as energy which provides the basis of absolute space and the atomic, thermodynamic, and cosmological arrows of time.  
Entropy and the expansion of the universe are large scale consequences.  The universe is closed independently of the 
total mass of the universe, and different regions of space are isothermal even though they are separated by greater 
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distances than that over which light could travel during the time of the expansion of the universe.  The universe is 
oscillatory in matter/energy and spacetime with a finite minimum radius, the gravitational radius; thus, the gravitational 
force causes celestial structures to evolve on a time scale corresponding to the period of oscillation.  The equation of 

the radius of the universe,  , is  3 32

3

2 2
cos

2

4 4

U U U

U

Gm cm cm t
Gmc cc
cG G




 

        
   

  

 which predicts the observed acceleration 

of the expansion.  The calculated Hubble constant is 0 78.5 
sec

km
H

Mpc



.  Presently, stars and large-scale structures 

exist that are older than the elapsed time of the present expansion, as stellar and celestial evolution occurred during the 
contraction phase.  The maximum energy release of the universe that occurs at the beginning of the expansion phase 

is:
5

51
 2.88  10

4U

c
P X W

G
  . 

 

• The relationship between inertial and gravitational mass is based on the result that only fundamental particles having an 
equivalence of the inertial and gravitational masses at particle production are permitted to exist since only in these 
cases are Maxwell’s equations and the conditions inherent in the Schwarzschild metric of spacetime satisfied 
simultaneously wherein space must be absolute.  The equivalence is maintained for any velocity thereafter due to the 
absolute nature of space and the absolute speed of light.  The invariant speed, c , is set by the permittivity and 
permeability of absolute space, which determines the relativity principle based on propagation of fields and signals as 
light-wave fronts. 

 

• In addition to the propagation velocity, the intrinsic velocity of the particle and the geometry of this 2-dimensional 
velocity surface with respect to the limiting speed of light determine that the particle such as an electron may have 
gravitational mass different from its inertial mass.  A constant velocity confined to a spherical surface corresponds to a 
positive gravitational mass equal to the inertial mass (e.g. particle production or a bound electron).  A constant angular 
velocity function confined to a flat surface corresponds to a gravitational mass less than the inertial mass, which is zero 
in the limit of an absolutely unbound particle (e.g. absolutely free electron).  A hyperbolic velocity function confined to 
a spherical surface corresponds to a negative gravitational mass (e.g. hyperbolic electron). 

 

• Superconductivity arises when electron plane waves extend throughout the lattice, and the lattice is a band-pass for the 
magnetic field of an array of magnetic dipoles; so, no energy is dissipated with current flow. 

 

• The Quantum Hall Effect arises when the forces of crossed electric and magnetic fields balance, and the lattice is a 
band-pass for the magnetic field of an array of magnetic dipoles. 

 

• The vector potential component of the electron’s angular momentum gives rise to the Aharonov-Bohm Effect. 
 

• Alpha decay occurs as a transmission of a plane wave through a potential barrier. 
 

• The proton and neutron functions each comprise a linear combination of a constant function and three orthogonal 
spherical harmonic functions resulting in three quark/gluon functions per nucleon.  The nucleons are locally two-
dimensional.   

 
 
SUMMARY OF FOUNDATIONS AND PHYSICAL PHENOMENA SOLVED BY 
CLASSICAL PHYSICS 
The electron current-density functions are solved to match time-harmonic multipole source currents of time-varying 
electromagnetic fields during transitions with the constraint that a bound electron in the 1n   state cannot radiate energy.  The 
mathematical formulation for zero radiation based on Maxwell’s equations follows from a derivation by Haus [46].  The function 
that describes the motion of the electron corresponding to a potentially emitted photon must not possess spacetime Fourier 
components that are synchronous with waves traveling at the speed of light.  Classical physics gives closed form solutions for 
the atom including the stability of the 1n   state and the instability of the excited states, relativistic invariance of the wave 
equation, the equations of the photon and electron in excited states, and the equations of the free electron and photon which also 
predict the wave-particle duality behavior of particles and light.  The current and charge-density functions of the electron may be 
directly physically interpreted.  For example, spin angular momentum results from the motion of negatively charged mass 
moving systematically, and the equation for angular momentum,  r p  , can be applied directly to the wave function (a 
current-density function) that describes the electron.  A partial listing of well-known and documented phenomena, which are 
derivable in closed form from classical physics, especially Maxwell’s equations are given in Table I.3.  The calculations agree 
with experimental observations. 
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Table I.3.   Partial List of Physical Phenomena Solved by Classical Physics. 
 
 
• Stability of the atom to radiation  
• Magnetic moment of a Bohr magneton and relativistic 

invariance of each of 
e

e
m

 of the electron, the electron 

angular momentum of  , and the electron magnetic 
moment of B  from the spin angular momentum 

• De Broglie relationship 
• Stern Gerlach experiment 
• Electron and muon g factors 
• Rotational energies and momenta 
• Reduced electron mass 
• Ionization energies of multi-electron atoms 
• Special relativistic effects 
• Excited states 
• Resonant line width and shape 
• Selection rules 
• State Lifetimes and line intensities 
• Correspondence principle 
• Orbital and spin splitting 
• Stark effect 
• Lamb Shift 
• Knight shift 
• Spin-orbit coupling (fine structure) 
• Spin-nuclear coupling (hyperfine structure) 
• Hyperfine structure interval of muonium 
• Nature of the free electron 
• Nature of the photon 
• Photoelectric effect 
• Compton effect 
• Wave-particle duality 
• Double-slit experiment for photons and electrons 

• Davisson Germer experiment 
• Elastic electron scattering from helium atoms 
• Ionization energies of multielectron atoms 
• Hydride ion binding energy and absolute NMR shift 
• Hydride lattice parameters and energies 
• Excited states of the helium atom with singlet and triplet 

vector diagrams 
• Proton scattering from atomic hydrogen 
• Nature of the chemical bond 
• Bond energies, vibrational energies, rotational energies, 

bond distances, magnetic moment and fields of hydrogen-
type molecules and molecular ions, absolute NMR shift 
of 2H  

• Molecular Ion and Molecular Excited States 
• Parameters of polyatomic molecules 
• Superconductivity and Josephson junction experiments 
• Integral and fractional quantum Hall effects 
• Aharonov-Bohm effect 
• Aspect experiment 
• Durr experiment on the Heisenberg Uncertainty Principle 
• Penning trap experiments on single ions 
• Mobility of free electrons in superfluid helium 
• Gravitational behavior of neutrons 
• Hyperfine structure interval of positronium 
• Structure of nucleons 
• Magnetic moments of the nucleons 
• Beta decay energy of the neutron 
• Binding energy of deuterium 
• Alpha decay 
• Nature of neutrinos 
• Proton radius puzzle 
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For the first time in history, the key building blocks of organic chemistry have been solved from two basic equations.  
Now, the true physical structure and parameters of an infinite number of organic molecules up to infinite length and complexity 
can be obtained to permit the engineering of new pharmaceuticals and materials at the molecular level.  The solutions of the 
basic functional groups of organic chemistry were obtained by using generalized forms of a geometrical and an energy equation 
for the nature of the H-H bond.  The geometrical parameters and total bond energies of about 800 exemplary organic molecules 
were calculated using the functional group composition [4].  The results obtained essentially instantaneously match the 
experimental values typically to the limit of measurement.  The solved functional groups are given in Table I.4. 
 
Table I.4.   Partial List of Organic Functional Groups Solved by Classical Physics. 
 

Continuous-Chain Alkanes 
Branched Alkanes 
Alkenes 
Branched Alkenes 
Alkynes 
Alkyl Fluorides 
Alkyl Chlorides 
Alkyl Bromides 
Alkyl Iodides 
Alkenyl Halides 
Aryl Halides 
Alcohols 
Ethers 
Primary Amines 
Secondary Amines 
Tertiary Amines 
Aldehydes 
Ketones 
Carboxylic Acids 
Carboxylic Acid Esters 
Amides 
N-alkyl Amides 

N,N-dialkyl Amides 
Urea  
Carboxylic Acid Halides 
Carboxylic Acid Anhydrides 
Nitriles 
Thiols 
Sulfides 
Disulfides 
Sulfoxides 
Sulfones 
Sulfites 
Sulfates 
Nitroalkanes 
Alkyl Nitrates 
Alkyl Nitrites 
Conjugated Alkenes 
Conjugated Polyenes 
Aromatics 
Naphthalene 
Toluene 
Chlorobenzene 
Phenol

Aniline 
Aryl Nitro Compounds 
Benzoic Acid Compounds 
Anisole  
Pyrrole 
Furan 
Thiophene 
Imidizole 
Pyridine 
Pyrimidine 
Pyrazine 
Quinoline 
Isoquinoline 
Indole 
Adenine 
Fullerene (C60) 
Graphite 
Phosphines 
Phosphine Oxides 
Phosphites 
Phosphates 
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The two basic equations, one for geometrical parameters and the other for energy parameters that solves organic 
molecules were applied to bulk forms of matter containing trillions of trillions of electrons.  For example, using the same alkane- 
and alkene-bond solutions as elements in an infinite network, the nature of the solid molecular bond for all known allotropes of 
carbon (graphite, diamond, C60, and their combinations) were solved.  By further extension of this modular approach, the solid 
molecular bond of silicon and the nature of the semiconductor bond were solved.  The nature of other fundamental forms of 
matter such as the nature of the ionic bond, the metallic bond, and additional major fields of chemistry such as that of silicon, 
organometallics, and boron were solved exactly such that the position and energy of each and every electron is precisely 
specified.  These results agree with observations to the limit of measurement.  The implication of these results is that it is 
possible using physical laws to solve the structure of all types of matter.  Some of the solved forms of matter of infinite extent, as 
well as additional major fields of chemistry, are given in Table I.5. 
 
Table I.5.   Partial List of Additional Molecules and Compositions of Matter Solved by Classical Physics. 
 

Solid Molecular Bond of the Three Allotropes 
of Carbon 

Diamond  
Graphite 
Fullerene (C60) 

Dipole-Dipole Bonding 
Hydrogen Bonding 
Van der Waals Bonding 

Solid Ionic Bond of Alkali-Hydrides 
Alkali-Hydride Crystal Structures 

Lithium Hydride 
Sodium Hydride 
Potassium Hydride 
Rubidium & Cesium Hydride 
Potassium Hydrino Hydride 

Solid Metallic Bond of Alkali Metals 
Alkali Metal Crystal Structures 

Lithium Metal 
Sodium Metal  
Potassium Metal 
Rubidium & Cesium Metals 

Alkyl Aluminum Hydrides 
Silicon Groups and Molecules 

Silanes 
 Alkyl Silanes and Disilanes 
Solid Semiconductor Bond of Silicon 

Insulator-Type Semiconductor Bond 
Conductor-Type Semiconductor Bond 

Boron Molecules 
Boranes 

Bridging Bonds of Boranes 
Alkoxy Boranes 

Alkyl Boranes  

Alkyl Borinic Acids 
Tertiary Aminoboranes 
Quaternary Aminoboranes 
Borane Amines 

 Halido Boranes  
Organometallic Molecular Functional Groups 
and Molecules 

Alkyl Aluminum Hydrides 
Bridging Bonds of 
Organoaluminum Hydrides 

Organogermanium and Digermanium 
Organolead 
Organoarsenic  
Organoantimony 
Organobismuth 

Organic Ions 
1° Amino 
2° Amino 
Carboxylate 
Phosphate 
Nitrate 
Sulfate 
Silicate 

Proteins 
Amino Acids 
Peptide Bonds 

DNA 
Bases 
2-deoxyribose 
Ribose 
Phosphate Backbone  

Water 
Condensed Noble Gases
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For any kind of wave advancing with limiting velocity and capable of transmitting signals, the equation of front 

propagation is the same as the equation for the front of a light wave.  By applying this condition to electromagnetic and 
gravitational fields at particle production, the Schwarzschild metric (SM) is derived from the classical wave equation, which 
modifies general relativity to include conservation of spacetime in addition to momentum and mass-energy.  The result gives a 
natural relationship between Maxwell’s equations, special relativity, and general relativity and identifies absolute space to give 
the basis and the equivalence of the inertial and gravitational masses.  It gives gravitation from the atom to the cosmos.  The 
universe is time harmonically oscillatory in matter, energy, and spacetime expansion and contraction with a minimum radius that 
is the gravitational radius.  A partial listing of the particle and cosmological phenomena derivable from classical physics in 
closed form equations with fundamental constants only is given in Table I.6. 
 
Table I.6.   Partial List of Particle and Cosmological Phenomena Solved by Classical Physics. 
 

• Equivalence of the inertial and gravitational masses 
• Newton’s second law 
• Deflection of light by stars 
• Precession of the perihelion of Mercury 
• Lepton masses 
• Quark masses 
• Boson masses 
• Hubble constant 
• Age of the universe 
• Observed acceleration of the expansion 
•Absence of antimatter 
• Absence of a Big Bang origin of the Universe 
• Identity of dark matter 
• Identity of UV crisis/Cosmic EUV continuum emission 

• Identity of the Diffuse Interstellar Bands (DIBs) 
• Origin of hot interstellar medium 
• Solar corona temperature problem 
• Power of the universe  
• Power spectrum of the universe 
• Microwave background temperature 
• Uniformity of the microwave background radiation 
• Microkelvin spatial variation of the cosmic microwave 

background radiation (CMBR) 
• Polarization of the CMBR data 
• Observed violation of the GZK cutoff 
• Mass density of the universe 
• Web-like, large scale structure of the universe 
 

 
Classical physics further gives the identity of dark matter, which matches the criteria for the structure of galaxies and spectral 
emission from interstellar medium and the Sun that have been observed in the laboratory [23-29, 31].  In a special case wherein 
the gravitational potential energy density of a blackhole equals that of the Planck mass, matter converts to energy and spacetime 
expands with the release of a gamma ray burst.  The singularity in the SM is eliminated.  The predictions of classical physics are 
unprecedented in that agreement with observations is achieved over 85 orders of magnitude from the scale of fundamental 
particles to that of the cosmos.  

From the success at predicting the vast scope of known phenomena, it can be appreciated that CP is anticipated to predict 
new, previously unknown phenomena, as well as now solve previously unsolvable mysteries for which old theories were 
incapable.  In this book, the structure of the bound electron is solved using classical laws and from there a unification theory is 
developed based on those laws called the Grand Unified Theory of Classical Physics (GUTCP) with results that match 
observations for the basic phenomena of physics and chemistry from the scale of the quarks to the cosmos.  In addition to the 
observables on the hydrogen atom that are known, it further predicts that atomic hydrogen may undergo a catalytic reaction with 
certain atomized elements and ions which singly or multiply ionize at integer multiples of the potential energy of atomic 
hydrogen, m  27.2 eV  wherein m  is an integer or have a potential energy of m  27.2 eV .  Recently, there has been the 
announcement of some unexpected astrophysical results that support the existence of hydrinos.  In the 1995 Edition of the 
GUTCP, the prediction [45] that the expansion of the universe was accelerating was made from the same equations that correctly 
predicted the mass of the top quark before it was measured.  To the astonishment of cosmologists, this was confirmed by 2000.  
Another prediction about the nature of dark matter based on GUTCP may be close to being confirmed.  Based on recent 
evidence, Bournaud et al. [82-83] suggest that dark matter is hydrogen in dense molecular form that somehow behaves 
differently in terms of being unobservable except by its gravitational effects.  Theoretical models predict that dwarfs formed 
from collisional debris of massive galaxies should be free of nonbaryonic dark matter.  So, their gravity should tally with the 
stars and gas within them.  By analyzing the observed gas kinematics of such recycled galaxies, Bournaud et al. [82-83] have 
measured the gravitational masses of a series of dwarf galaxies lying in a ring around a massive galaxy that has recently 
experienced a collision.  Contrary to the predictions of Cold-Dark-Matter (CDM) theories, their results demonstrate that they 
contain a massive dark component amounting to about twice the visible matter.  This baryonic dark matter is argued to be cold 
molecular hydrogen, but it is distinguished from ordinary molecular hydrogen in that it is not traced at all by traditional methods, 
such as emission of CO lines.  These results match the predictions of the dark matter being molecular hydrino.  Additionally, 
astronomers Jee at al. [84] using data from NASA’s Hubble Telescope have mapped the distribution of dark matter, galaxies, and 
hot gas in the core of the merging galaxy cluster Abell 520 formed from a violent collision of massive galaxy clusters and have 
determined that the dark matter had collected in a dark core containing far fewer galaxies than would be expected if dark matter 
was collisionless with dark matter and galaxies anchored together.  The collisional debris left behind by the galaxies departing 
the impact zone behaved as hydrogen did, another indication that the identity of dark matter is molecular hydrino. 
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The best evidence yet for the existence of dark matter is its direct observation as a source of massive gravitational mass 
evidenced by gravitational lensing of background galaxies that does not emit or absorb light as shown in Figure I.6 [85].  
Hydrogen transitions to hydrinos that comprise the dark matter can be observed celestially and in the laboratory.  Characteristic 

EUV continua of hydrino transitions following radiationless energy transfer with cutoffs at 
HH

aH

pm1



















91.2

m2  
 nm  are 

observed from hydrogen plasmas in the laboratory that match significant celestial observations and further confirm hydrino as 
the identity of dark matter [23-29, 31].  Hydrinos have been isolated in the laboratory and confirmed by a number of analytical 
techniques [22-42]. 

The continua spectra directly and indirectly match significant celestial observations.  Hydrogen self-catalysis and 

disproportionation may be reactions occurring ubiquitously in celestial objects and interstellar medium comprising atomic 

hydrogen.  Stars are sources of atomic hydrogen and hydrinos as stellar wind for interstellar reactions wherein very dense stellar 

atomic hydrogen and singly ionized helium, He , serve as catalysts in stars.  Hydrogen continua from transitions to form 

hydrinos matches the emission from white dwarfs, provides a possible mechanism of linking the temperature and density 

conditions of the different discrete layers of the coronal/chromospheric sources, and provides a source of the diffuse ubiquitous 

EUV cosmic background with a 10.1 nm continuum matching the observed intense 11.0-16.0 nm band in addition to resolving 

the identity of the radiation source behind the observation that diffuse H  emission is ubiquitous throughout the Galaxy and 

widespread sources of flux shortward of 912 Å  are required.  Moreover, the product hydrinos provides resolution to the identity 

of dark matter [23-29, 31]. 
 

 
Figure I.6.   Dark matter ring in galaxy cluster.  This Hubble Space Telescope composite image shows a ghostly "ring" of dark 
matter in the galaxy cluster Cl 0024+17.  The ring is one of the strongest pieces of evidence to date for the existence of dark 
matter, a prior unknown substance that pervades the universe.  Courtesy of NASA/ESA, M.J. Jee and H. Ford (Johns Hopkins 
University), Nov. 2004. 
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The recent experimental confirmation of the predictions for transitions of atomic hydrogen to form hydrinos, such as 
power production and characterization of hydrino reaction products [22-42], as well as pumped catalyst states, fast H, 
characteristic continuum radiation, and the hydrino product have profound implications theoretically, scientifically, and 
technologically in that they (1) confirm GUTCP in the prediction of hydrinos, (2) directly disprove atomic theories such as the 
Schrödinger and Dirac equation theories based on the definition of 1n   as the ground state, the defined state below which it is 
impossible to go, as expected based on many physical failings and preexisting mathematical inconsistencies [4-20], (3) offer 
resolution to many otherwise inexplicable celestial observations with (a) the identity of dark matter being hydrinos, (b) the 
hydrino-transition radiation being the radiation source heating the WHIM and behind the observation that diffuse H  emission 
is ubiquitous throughout the Galaxy requiring widespread sources of flux shortward of 912 Å , and (c) the energy and radiation 
from the hydrino transitions being the source of extraordinary temperatures and power regarding the solar corona problem, the 
cause of sunspots and other solar activity, and why the Sun emits X-rays [23-29, 31], and (4) directly demonstrate a new field of 
hydrogen chemistry and a powerful new energy source. 

The purpose of a physpcal theory is to not only explain obsservations but predict novel ones such as the acceleration of 
the expansion of the universe, the absence of a Big Bang origin of the Universe, and the mass of the top quark [45].  Our entire 
modern technological society was created and depends on engineering using classical physical laws.  For example, 
electromagnetic waves were predicted by Maxwell’s equations before they were discovered as a transformational technology.  A 
partial listing of new disruptive technologiues invented using classical physics is given in Table I.7. 
 
Table I.7.   Partial List of New Disruptive Technologies Invented Using Classical Physics. 
 

• Hydrino power 
• Energetic materials and propellants 
• Magnetic materials 
• Photonic computer 
• Single-molecule super conducting quantum interference devices (SQUIDs) 
• Molecular SQUID magnetometer, detectors, switches, gates, logic elements 
• Photon torpedoes 
• Space drive 
• Neutrino communications 
• Molecular laser (visible to X-ray wavelength regions) 
• Infrared to X-ray light sources 
• Hydrino catalyzed fusion tritium production 
• Laser wavelength doubler 
• High temperature superconductors 
• Millsian molecular modeling 
• Alternative intelligence 
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Chapter 1 
  
THE ONE-ELECTRON ATOM 
  
 
 
 
 
One-electron atoms include the hydrogen atom, He , 2Li  , 3Be  , and so on.  In each case, the nucleus contains Z  protons and 
the atom has a net positive charge of ( 1)Z e .  The mass-energy and angular momentum of the electron are constant and the 
flow of current must be conservative and without radiation.  A point charge undergoing periodic motion accelerates and as a 
consequence radiates power according to the Larmor formula.  The condition for radiation by a moving point charge derived 
from Maxwell’s equations by Haus [1] is that its spacetime Fourier transform does possess components that are synchronous 
with waves traveling at the speed of light.  The Haus derivation applies to a moving charge-density function as well because 
charge obeys superposition.  Thus, the general condition extended beyond one-dimension is that to radiate, the spacetime Fourier 
transform of the current-density function must possess components synchronous with waves traveling at the speed of light [1].  
Although an accelerated point particle radiates, an extended distribution modeled as a continuous superposition of accelerating 
charges does not have to radiate [1-2].  Then, conversely, the nonradiative condition is 

 
For non-radiative states, the current-density function must not possess spacetime Fourier  

components that are synchronous with waves traveling at the speed of light. 
 
The Haus derivation and the condition for nonradiation are given in Appendix I: Nonradiation Condition wherein the 
nonradiative condition is also derived directly by the determination of the electrodynamic fields with the electron current-density 
function as the source current during electron transitions.  Given the infinite number of possible current-density functions, it is 
fortuitous that the spherical radiation corresponding to the symmetry and the conditions for emission and absorption of such 
radiation provide the additional boundary conditions to determine the current-density functions. 
 

ELECTRON SOURCE CURRENT 
Leptons such as the electron (Leptons section) are indivisible, perfectly conducting, and possess an inalienable   of intrinsic 
angular momentum such that any inelastic perturbation involves the entire particle wherein the intrinsic angular momentum 
remains unchanged.  Bound state transitions are allowed involving the exchange of photons between states, each having   of 
angular momentum in their fields (Appendix II: Stability and Absence of Self Interaction and Self Energy).  A physical approach 
to solving the structure of the bound electron is followed based on the principles of radiation and the corresponding electron 
energy state change: 
 
Using Maxwell’s equations, the structure of the electron is derived as a boundary-value problem wherein the electron comprises 

the source current of time-varying electromagnetic fields during transitions with the constraint that the bound 1n   state 
electron cannot radiate energy. 

 
Since the hydrogen atom is stable and nonradiative, the electron has constant energy.  Furthermore, it is time dynamic with a 
corresponding current that serves as a source of electromagnetic radiation during transitions.  The wave equation solutions of the 
radiation fields permit the source currents to be determined as a boundary-value problem.  These source currents match the field 
solutions of the wave equation for two dimensions plus time and the nonradiative 1n   state when the nonradiation condition 
is applied.  Then, the mechanics of the electron can be solved from the two-dimensional wave equation plus time in the form of 
an energy equation, wherein it provides for conservation of energy and angular momentum as given in the Electron Mechanics 
and the Corresponding Classical Wave Equation for the Derivation of the Rotational Parameters of the Electron section.  Once 
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the nature of the electron is solved, all problems involving electrons can be solved in principle.  Thus, in the case of one-electron 
atoms, the electron radius, binding energy, and other parameters are solved after solving for the nature of the bound electron. 

As shown in Appendix I: Nonradiation Condition, for time-varying spherical electromagnetic fields, Jackson [3] gives a 
generalized expansion in vector spherical waves that are convenient for electromagnetic boundary-value problems possessing 
spherical symmetry properties and for analyzing multipole radiation from a localized source distribution.  The Green function 
 ,G x' x  that is appropriate to the inhomogenous Helmholtz equation  

      2 2 ,k G     x' x x' x  (1.1) 

in the infinite domain with the spherical wave expansion for the outgoing wave Green function is: 
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Jackson [3] further gives the general multipole field solution to Maxwell’s equations in a source-free region of empty space with 
the assumption of time dependence i te : 
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where the cgs units used by Jackson are retained in this section.  The radial functions  f kr  and  g kr  are of the form: 

          1 1 2 2g kr A h A h       (1.4) 

,mX  is the vector spherical harmonic defined by: 

  
 

 , ,

1
, ,

1
m mY   


X L 

 
 (1.5) 

where 
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The coefficients  ,Ea m  and  ,Ma m  of Eq. (1.3) specify the amounts of electric  , m  multipole and magnetic  , m  

multipole fields, and are determined by sources and boundary conditions as are the relative proportions in Eq. (1.4).  Jackson 
gives the result of the electric and magnetic coefficients from the sources as 
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respectively, where the distribution of charge  , t x , current  , tJ x , and intrinsic magnetization  , txM  are harmonically 

varying sources:    i tex ,   i teJ x , and   i texM . 

The electron current-density function can be solved as a boundary value problem regarding the time varying 
corresponding source current   i teJ x  that gives rise to the time-varying spherical electromagnetic fields during transitions 

between states with the further constraint that the electron is nonradiative in a state defined as the 1n   state.  The potential 
energy,  V r , is an inverse-radius-squared relationship given by Gauss’ law, which for a point charge or a two-dimensional 

spherical shell at a distance r  from the nucleus, the potential is: 

  
2

04

e
V r

r
   (1.9) 

Thus, consideration of conservation of energy would require that the electron radius must be fixed.  Additional constraints 
requiring a two-dimensional source current of fixed radius are matching the delta function of Eq. (1.1) with no singularity, no 



The One-Electron Atom 

 

55

time dependence and consequently no radiation, absence of self-interaction (See Appendix II: Stability and Absence of Self 
Interaction and Self Energy), and exact electroneutrality of the hydrogen atom wherein the electric field is given by: 

  1 2
0

s


  n E E  (1.10) 

where n  is the normal unit vector, 1E  and 2E  are the electric field vectors that are discontinuous at the opposite surfaces, s  is 

the discontinuous two-dimensional surface charge density, and 2 0E .  Then, the solution for the radial electron function, which 

satisfies the boundary conditions, is a delta function in spherical coordinates—a perfect spherical shell [4] 

 
2

1
( ) ( )nf r r r

r
   (1.11) 

where nr  is an allowed radius.  The perfect spherical nature of a bound electron has been confirmed experimentally by a zero 

electric dipole moment ed  to an upper limit of 3010.5 10  ed X e m  [5].  The function of Eq. (1.11) defines the charge density 

on a spherical shell of a fixed radius, not yet determined where the integer subscript n  is determined during photon absorption, 
as given in the Excited States of the One-Electron Atom (Quantization) section.  It is shown in this section that the force balance 
between the electric fields of the electron and proton plus any resonantly absorbed photons gives the result that 1nr nr  wherein 

n  is an integer in an excited state.  To further match the required multipole electromagnetic fields between transitions of states, 
the trial nonradiative source current functions are time and spherical harmonics, each having an exact radius and an exact energy.  

Then, each allowed electron charge-density (mass-density) function is the product of a radial delta function 
2

1
( ( ) ( ))nf r r r

r
  , 

two angular functions (spherical harmonic functions), and a time-harmonic function.  The corresponding currents J  are 
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where N  and 'N  are normalization constants.  The vectors are defined as: 
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 “^” denotes the unit vectors û 
u

u
, non-unit vectors are designated in bold, and the current function is normalized.   

The Fourier transform of the radial Dirac delta function is a sinc function as shown in Appendix I.  Given time harmonic 
motion with angular velocity n  corresponding to a potentially emitted photon, and a radial delta function, the relationship 

between an allowed radius and the electron wavelength is given by 
 2 n nr   (1.15) 

Consider the sinc function when the velocity is c  corresponding to a potentially emitted photon where Eq. (1.15) applies.  In this 
case, the relativistically corrected wavelength (Eq. (1.279)) is 
 n nr   (1.16) 

Substitution of Eq. (1.16) into the sinc function results in the vanishing of the entire Fourier transform of the current-density 

function.  Thus, spacetime harmonics of n k
c


  or 

0

n k
c

 


  do not exist for which the Fourier transform of the current-

density function is nonzero.  Radiation due to charge motion does not occur in any medium when this boundary condition is met.  
(Note that in contrast the purely mathematical boundary condition for the solution of the radial function of the hydrogen atom 
with the Schrödinger equation is 0  as r   wherein the electron exists everywhere at once and has the maximum of the 
squared wavefunction at the origin inside of the nucleus.) 

In addition to satisfaction of the Haus’ condition given, the electron currents given by Eq. (1.12) are shown to be 
nonradiative with the same condition as that of Eq. (1.16) applied to the vector potential based on the electromagnetic fields and 
the Poynting power vector as shown in Appendix I: Nonradiation Condition.  From Eq. (1.12), the charge and intrinsic 
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magnetization terms are zero.  Also, the current  , tJ x  is in the ̂  direction; thus, the  ,Ea m  coefficient given by Eq. (1.7) is 

zero since 0 r J .  Substitution of Eq. (1.12) into Eq. (1.8) gives the magnetic multipole coefficient  ,Ma m : 
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For the electron source current given by Eq. (1.12), each comprising a multipole of order  ,m  with a time dependence i te , the 

far-field solutions to Maxwell’s equations given by Eq. (1.3) are: 
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and the time-averaged power radiated per solid angle 
 ,dP m

d


 is: 
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where  ,Ma m  is given by Eq. (1.17).  In the case that k  is the lightlike 0k , then /nk c  regarding an emitted photon, in Eq. 

(1.17), and Eqs. (1.18-1.19) vanishes for: 

 n n ns vT R r      (1.20) 

There is no radiation.   
There is no radiation due to the azimuthal charge density wave even in an excited state.  However, for excited states there 

exists a radial dipole that is unstable to radiation as shown in the Instability of Excited States section, and this instability gives 
rise to a radial electric dipole current.  In a nonradiative state, there is no emission or absorption of radiation corresponding to the 
absence of radial motion wherein Eq. (1.7) is zero since 0 r J .  Conversely, there is motion in the radial direction only when 
the energy of the system is changing, and the radiation emitted or absorbed during electron transitions is the multipole radiation 
given by Eq. (1.2) as given in the Excited States of the One-Electron Atom (Quantization) section and the Equation of the Photon 
section wherein Eqs. (4.18-4.23) give a macro-spherical wave in the far-field.  Thus, radial motion corresponds to the emission 
or absorption of photons.  The form of the radial solution during a transition is then the corresponding electron source current 
comprising a time-dependent radial Dirac delta function that connects the initial and final states as boundary conditions.  The 
photon carries fields and corresponding angular momentum.  The physical characteristics of the photon and the electron are the 
basis of physically solving for excited states according to Maxwell’s equations.  The discontinuous harmonic radial current in 
Eq. (1.7) that connects the initial and final states of the transition is: 
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where   is the lifetime of the transition given by Eq. (2.107) and 't  is time during the transition as given in the Excited States of 
the One-Electron Atom (Quantization) section.  The vector potential of the current that connects the initial and final states of a 
transition, each having currents of the form given by Eq. (1.12), is: 
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The magnetic and electric fields are derived from the vector potential and are used in the Poynting power vector to give the 
power.  The transition probability or Einstein coefficient kiA

 

for initial state in  and final state fn  of atomic hydrogen given by 

the power divided by the energy of the transition is: 
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which matches the NIST values for all transitions extremely well as shown in Excited States of the One-Electron Atom 
(Quantization) section.   

THE BOUND ELECTRON “ATOMIC ORBITAL” 
From Eqs. (1.27-1.29), the electron angular functions are the spherical harmonics, ( , ) (cos )    

m m imY P e .  The spherical 

harmonic 0
0 ( , ) 1  Y  is also an allowed solution that is in fact required in order for the electron charge and mass densities to be 
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positive definite and to give rise to the phenomena of electron spin.  The real parts of the spherical harmonics vary between 1  
and 1.  But, the mass of the electron cannot be negative, and the charge cannot be positive.  Thus, to insure that the function is 
positive definite, the form of the angular solution must be a superposition: 

 0
0 ( , ) ( , )    

mY Y  (1.24) 

(Note that ( , ) (cos )    
m m imY P e  are not normalized here as given by Eq. (3.53) of Jackson [6]; however, it is implicit that the 

magnitude is made to satisfy the boundary condition that the function is positive definite and Eq. (1.26) is satisfied.)  0
0 ( , ) Y  is 

called the angular spin function corresponding to the quantum numbers s

1 1
s ;  m

2 2
    as given in the Atomic Orbital Equation 

of Motion For   = 0 Based on the Current Vector Field (CVF) section.  Thus, bound electrons are described by a charge-density 
(mass-density) function that is the product of a radial delta function, Eq. (1.11), two angular functions (spherical harmonic 
functions), and a time harmonic function.  This radial function implies that allowed states are two-dimensional spherical shells 
(zero thickness 1) of charge density (and mass density) at specific radii nr .  Thus, a bound electron is a constant two-dimensional 

spherical surface of charge (zero thickness, total charge of e , and total mass of em ), called an electron atomic orbital shown in 

Figure 1.1, that can exist in a bound state at only specified distances from the nucleus determined by an energy minimum for the 
n=1 state and integer multiples of this radius due to the action of resonant photons as shown in the Determination of Atomic 
Orbital Radii section and the Equation of the Electric Field Inside the Atomic Orbital section, respectively. 
 
Figure 1.1.  A bound electron is a constant two-dimensional spherical surface of charge (zero thickness, total charge of e , 
and total mass of em ), called an electron atomic orbital.  For the 1n  state of the hydrogen atom, the atomic orbital has the 

Bohr radius of the hydrogen atom,  Hr a .  It is a nonradiative, minimum-energy surface, that is absolutely stable except for 

quantized state changes with the corresponding balanced forces in the n  1  state providing a pressure equivalent of twenty 
million atmospheres. 
 

 
 

The equipotential, uniform or constant charge-density function (Eq. (1.27)) further comprises a current pattern given in the 
Atomic Orbital Equation of Motion For   = 0 Based on the Current Vector Field (CVF) section and corresponds to the spin 
function of the electron.  It also corresponds to the nonradiative 1n ,   = 0 state of atomic hydrogen.  The uniform current 
density function 0

0 ( , ) Y  (Eqs. (1.27-1.29)) that gives rise to the spin of the electron is generated from two current-vector fields 

(CVFs).  Each CVF comprises a continuum of correlated orthogonal great circle current-density elements (one dimensional 
“current loops”).  The current pattern comprising each CVF is generated over a half-sphere surface by a set of rotations of two 

 
1 The atomic orbital has zero thickness, but in order that the speed of light is a constant maximum in any frame including that of the gravitational field that 
propagates out as a light-wave front at particle production, it gives rise to a spacetime dilation equal to 2  times the Newtonian gravitational or 

Schwarzschild radius 
  
r

g


2Gm
e

c2
 1.3525 X  1057  m  according to Eqs. (32.36) and (32.140b) and the discussion at the footnote after Eq. (32.40).  This 

corresponds to a spacetime dilation of   8.4980 X  1057  m  or 2.8346 X  1065  s .  Although the atomic orbital does not occupy space in the third spatial 
dimension, its mass discontinuity effectively “displaces” spacetime wherein the spacetime dilation can be considered a “thickness” associated with its 
gravitational field.  The inertial frame of the orbital motion of the bound electron and the atom in motion is with respect to absolute space of the electron 
and proton as given in the Equivalence of Inertial and Gravitational Masses due Absolute Space and Absolute Light Velocity.  
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orthogonal great circle current loops that serve as basis elements about each of the  , ,0 x y zi i i  and 
1 1

, ,
2 2

  
 

x y zi i i -axis; 

the span being   radians.  Then, the two CVFs are convoluted, and the result is normalized to exactly generate the continuous 
uniform electron current density function 0

0 ( , ) Y  covering a spherical shell and having the three angular momentum 

components of /
4xy   L


 and 
2




zL  (Figure 1.23)2.  There is acceleration without radiation, in this case, centripetal 

acceleration.  A static charge distribution exists even though there is acceleration along a great circle at each point on the surface.  
Haus' condition predicts no radiation for the entire ensemble. 

In cases of orbitals of heavier elements and excited states of one-electron atoms and atoms or ions of heavier elements 
which are not constant as given by Eq. (1.29), the constant spin function is modulated by a time and spherical harmonic function.  
The modulation or traveling charge-density wave corresponds to an orbital angular momentum, in addition to a spin angular 
momentum.  These states are typically referred to as p, d, f, etc. orbitals and correspond to an   quantum number not equal to 
zero.  Haus’ condition also predicts nonradiation for a constant spin function modulated by a time and spherically harmonic 
orbital function.  However, in the case that such a state arises as an excited state by photon absorption, it is radiative due to a 
radial dipole term in its current-density function since it possesses spacetime Fourier transform components synchronous with 
waves traveling at the speed of light, as given in the Instability of Excited States section. 

In the case of an excited state, the charge-density function of the electron atomic orbital can be modulated by the 
corresponding “trapped” photon to give rise to orbital angular momentum about the z-axis.  The “trapped photon” is a “standing 
electromagnetic wave” which actually is a circulating wave that propagates around the z-axis.  Its source current superimposes 
with the current-density of the atomic orbital at its radius corresponding to a radial Dirac delta function at the electron radius, 
 nr r  , and due to relativistic effects the field is radially local at the electron.  In order to satisfy the boundary (phase) 

condition at the atomic orbital surface, the angular and time functions of the photon must match those of its source current which 
modulates the atomic orbital charge-density function as given in the Equation of the Electric Field Inside the Atomic Orbital 
section.  The time-function factor, k(t), for the photon “standing wave” is identical to the time-function factor of the atomic 
orbital.  Thus, the angular frequency of the “trapped photon” has to be identical to the angular frequency of the electron atomic 
orbital, n  given by Eq. (1.36).  However, the linear velocity of the multipole modulation component is not given by Eq. 

(1.35)—the orbital angular frequency is with respect to the z-axis; thus, the distance from the z-axis, sinnr  , must be 

substituted for the atomic orbital radius of Eq. (1.35).   
( , ) 

mY  is called the angular orbital function corresponding to the quantum numbers 

0, 1, 2, 3, 4,...;  m  - , -  + 1, ..., 0, ..., +     .  ( , ) 
mY  can be thought of as a modulation function.  The charge density of the 

entire atomic orbital is the total charge divided by the total area, 
24



n

e

r
.  The fraction of the charge of an electron in any area 

element is given by: 

 0 2
0 ( , ) ( , ) sin ,        

m
nN Y Y r d d  (1.25) 

where N  is the normalization constant.  Therefore, the normalization constant is given by: 
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For   = 0, 
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.  For   ≠ 0, 
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r
.  The quantum numbers of the spherical harmonic currents can be related to the 

observed electron orbital angular momentum states.  The current is constant at every point on the surface for the s orbital 
corresponding to 0

0 ( , ) Y .  The charge-density functions including the time-function factor corresponding to s, p, d, f, etc. 

orbitals are 
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2 /   designates both the positive and negative vector directions along an axis in the xy-plane. 
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where to keep the form of the spherical harmonic as a traveling wave about the z-axis   zR  is the representation of the 

rotational matrix about the z-axis zR  (Eq. (1.82)) in the space of functions       , ,        
m m

z n nR t Y Y m t  and 

      Re , cos cos      
nim tm m

nY e P m m t 3.  Each of the Eqs. (1.28-1.29) represents a traveling charge-density wave that 

moves on the surface of the atomic orbital about the z-axis with frequency n  and modulates the atomic orbital corresponding to 

 = 0.  The latter gives rise to spin angular momentum as given in the Spin Angular Momentum of the Atomic Orbital 0
0 ( , ) Y  

with   = 0 section.  The spin and orbital angular momentum may couple as given in the Orbital and Spin Splitting section.  In 
the cases that 0  and 0m , the charge is moving or rotating about the z-axis with frequency n , but the charge density is not 

time dependent.  The photon equations that correspond to the atomic orbital states, Eqs. (1.27-1.29), are given in the Excited 
States of the One-Electron Atom (Quantization) section. It is shown in Appendix I: Nonradiation Condition that in addition to 
Haus' condition, the atomic orbital states given by Eqs. (1.27-1.29) are nonradiative with the same relationships given by Eqs. 
(1.15-1.16) applied to the vector potential. 

For n = 1, and   = 0, m = 0, and s = 1/2, the charge (and mass) distribution is spherically symmetric and 
2

1,0,0,1/2 4.553  M Cm  everywhere on the atomic orbital.  Similarly, for 2n ,   = 0, 0m , and 1/ 2s , the charge 

distribution everywhere on the sphere is 2
2,0,0,1/2 1.138  M Cm .  For n = 2,   = 1, m = 0, and s = 1/2, the charge distribution 

varies with  .  0
1 ( , ) Y  is a maximum at 0    and the charge density is also a maximum at this point, 

2
2,1,0,1/2 ( 0 ) 2.276     M Cm .  The charge density decreases as   increases; a minimum in the charge density is reached at 

2
2,1,0,1/2180 ,  ( 180 ) 0       M Cm . 

For   = 1 and 1 m , the spherical harmonics are complex, and the angular functions comprise linear combinations of 

 1, sin cos xY  (1.30) 

 1, sin sin yY  (1.31) 

Each of 1,xY  and 1, yY  is the component factor part of a phasor.  They are not components of a vector; however, the x  and y  

designation corresponds, respectively, to the historical xp  and yp  probability-density functions of quantum mechanics.  1,xY  is a 

maximum at 90    and 0   ; 2
2,1,x,1/2 (90 ,0 ) 1.138    M Cm .  Figure 1.2 gives pictorial representations of how the 

modulation function changes the electron density on the atomic orbital for several   values4.  Figure 1.3 gives a pictorial 
representation of the charge-density wave of a p orbital that modulates the constant spin function and rotates around the z-axis.  
A single time point is shown for   = 1 and 1 m  in Eqs. (1.28-1.29). 
 

 
3 In Eq. (1.28), 

  
Y

0

0  , , a constant function, is added to a spherical harmonic function wherein each term      Re ,   
m

z nR t Y  and 

  Re ,  
nim tmY e  represents a modulation function rotated in time.  The latter is defined as a phasor corresponding to the modulation function 

spinning about the z-axis.  This is equivalent to the constant function (first term) modulated by the spherical harmonic function (second term) that spins 
around the z-axis and comprises a traveling modulation wave.  One rotation of the spherical harmonic function occurs in one period. 
4 When the electron charge appears throughout this text in a function involving a linear combination of the spin and orbital functions, it is implicit that the 
charge is normalized.  The integral of the constant mass-density function corresponding to spin over the atomic orbital is the mass of the electron.  The 
integral of any spherical harmonic modulation function corresponding to orbital angular momentum over the atomic orbital is zero.  The modulated mass-
density function has a lower limit of zero due to the trapped photon that is phase-locked to the modulation function.  And, the mass density cannot be 
negative.  Thus, the maximum magnitude of the unnormalized spherical harmonic function over all angles must be one.  The summation of the constant 
function and the orbital function is normalized. 
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Figure 1.2. The orbital function modulates the constant (spin) function, (shown for t = 0; three-dimensional view). 
 

 
 

Figure 1.3.  A pictorial representation of the charge-density wave of a p orbital that modulates the constant spin function 
and travels on the surface of the atomic orbital around the z-axis.  A single time point is shown for    = 1 and 1m    in Eq. 
(1.36).  The charge density increases from red to violet.  The z-axis is the vertical axis. 
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CLASSICAL PHYSICS OF THE DE BROGLIE RELATION 
Consider the constant function 0

0 ( , )Y    of Eqs. (1.27-1.29). The angular velocity must be constant (at a given n ) because r  is 

constant and the energy and angular momentum are constant.  Given time-harmonic motion and a radial delta function, the 
relationship between an allowed radius and the electron wavelength is given by Eq. (1.15).  The allowed angular frequencies are 
related to the allowed frequencies by: 

 2n n   (1.32) 

The allowed velocities are related to allowed frequencies and wavelengths by: 

 n n nv    (1.33) 

The allowed velocities and angular frequencies are related to nr  by: 

 2n n n n nv r r     (1.34) 

such that magnitude of the velocity and the angular frequency for every point on the surface of the bound electron and their 
relationships with the wavelengths and nr  are: 
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where the velocity (Eq. (1.35)) and angular frequency (Eq. (1.36)) are determined by the boundary conditions that the angular 
momentum density at each point on the surface is constant and the magnitude of the total angular momentum of the atomic 
orbital L  must also be constant.  The constant total is   given by the integral: 
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 (1.37) 

Special relativity requires that the mathematical equations expressing the laws of nature must be covariant, invariant in form, 
under the transformations of the Lorentz group [7].  The integral of the magnitude of the angular momentum of the electron is 
always   for any state and is relativistically invariant since as shown by Eq. (1.37) the angular momentum is invariant of radius 
or velocity.  It is a Lorentz scalar L   with respect to the radius of the state.  The vector projections of the atomic orbital spin 
angular momentum relative to the Cartesian coordinates arrived at by summation of the contributions from the electron current 
elements are given in the Spin Angular Momentum of the Atomic Orbital 0

0 ( , ) Y  with   = 0 section.  The same relationship 

applies to the photon as well as given by Eq. (4.1).  Eq. (1.35) also gives the de Broglie relationship: 

 n
n e n

h h

p m v
    (1.38) 

 The free electron is equivalent to a continuum-excited state with conservation of the parameters of the bound electron.  
Thus, the de Broglie relationship applied to the free electron is again due to conservation of the electron’s angular momentum of 
 .  Specifically, it is shown in the Free Electron section that the free electron is a two-dimension lamina of charge with an 
azimuthal current with a corresponding angular momentum of  .  The linear velocity of the free electron can be considered to be 
due to absorption of photons that excite surface currents corresponding to a decreased electron de Broglie wavelength: 

 02o
e z

h

m v
    (1.39) 

The relationship between the electron wavelength, its radius, 0 , and its linear velocity is: 

 1
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e z z
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 (1.40) 

In this case, the angular frequency z  is given by: 

 
2
0

z
em







 (1.41) 

which conserves the photon’s angular momentum of   with that of the electron. 
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 It is further shown (Eq. (3.51)) that the total energy TE , is given by the sum of the change in the free-electron 

translational kinetic energy, T , the rotational energy of the azimuthal current, rotE , and the corresponding magnetic potential 

energy, magE : 

 2 2 2 2

2 2 2 2
0 0 0 0

1 5 5 1
     

2 4 4 2

T rot mag

e e e e

E T E E

m m m m   

  

   
     (1.42) 

Thus, the total energy, TE , of the excitation of a free-electron transitional state by a photon having   of angular momentum and 

an energy given by Planck’s equation of   is: 
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      (1.43) 

where   is the de Broglie wavelength.  The angular momentum of the free electron of   is unchanged.  The energies in the 
currents in the plane lamina are balanced so that the total energy is unchanged.  The radius 0  decreases to match the de Broglie 

wavelength and frequency at an increased velocity.  At this velocity, the kinetic energy matches the energy provided by the 
photon wherein the de Broglie frequency matches the photon frequency and both the electron-kinetic energy and the photon 
energy are given by Planck’s equation. 

The correspondence principle is the basis of the de Broglie wavelength relationship.  The de Broglie relationship is not an 
independent fundamental property of matter in conflict with physical laws as formalized in the wave-particle-duality-related 
postulates of quantum mechanics and the corresponding Schrödinger wave equation.  The Stern-Gerlach experimental results 
and the double-slit interference pattern of electrons are also predicted classically as given in the Physics of Classical Electron 
Diffraction Resolves the Wave-Particle Duality Mystery of Quantum Mechanics section. 
 

ROTATIONAL PARAMETERS OF THE ELECTRON (ANGULAR 
MOMENTUM, ROTATIONAL ENERGY, AND MOMENT OF INERTIA) 
The spin function corresponds to 0 .  The electron atomic orbital experiences a constant potential energy because it is fixed at 

nr r .  In general, the kinetic energy for an inverse squared electric force is half the potential energy.  It is the rotation of the 

atomic orbital, projections of the uniform current density, that causes spin angular momentum.  The rotational energy of a 
rotating body, rotE , is 
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21 1

2 2rot

v
E I I

r
     

 
 (1.44) 

where I is the moment of inertia and   is the angular velocity.  The angular momentum is given by: 

 zIL i  (1.45) 

The angular velocity must be constant (at a given n ) because r  is constant and the energy and angular momentum are constant.  
The total kinetic energy, T , of the atomic orbital spin function 0

0 ( , )Y    is: 

 21

2 e nT m v  (1.46) 

Substitution of Eq. (1.35) gives: 
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 (1.47) 

One result of the correlated motion along great circles is that some of the kinetic energy is not counted in the rotational energy 
(i.e. for any spin axis, there will be an infinite number of great circles with planes passing through that axis with   angles other 
than 90 ).  All points on any one of these great circles will be moving, but not all of that motion will be part of the rotational 
energy; only that motion perpendicular to the spin axis will be part of the rotational energy.  Thus, the rotational kinetic energy 
will always be less than the total kinetic energy.  Furthermore, the following relationships must hold. 

 2 21 1

2 2rotational eE I T m v    (1.48) 

 I L     (1.49) 
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 2
eI m r  (1.50) 

Additionally, it is known from the Stern-Gerlach experiment that a beam of silver atoms splits into two components when passed 
through an inhomogeneous magnetic field.  This experiment implies a magnetic moment of one Bohr magneton and an 
associated angular momentum quantum number of 1/2.  Historically, this quantum number is called the spin quantum number, 
and that designation will be retained.  The angular momentum can be thought of as arising from a spin component or 
equivalently from an orbital component of the spin.  The z-axis projection of the spin angular momentum was derived in the 
Atomic Orbital Equation of Motion For   = 0 Based on the Current Vector Field (CVF) section and is: 

 
2z zI  L i


 (1.51) 

where  is given by Eq. (1.36); so, for   = 0 
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Thus, 
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From Eq. (1.44), 
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From Eqs. (1.36) and (1.53), 
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 (1.55) 

 

ELECTRON MECHANICS AND THE CORRESPONDING CLASSICAL WAVE 
EQUATION FOR THE DERIVATION OF THE ROTATIONAL PARAMETERS OF THE 
ELECTRON 
When   ≠ 0, the spherical harmonic is not a constant and the charge-density function is not uniform over the atomic orbital.  
Thus, the angular momentum can be thought of arising from a spin component and an orbital component.  The charge, mass, 
energy, and angular momentum of the electron are constant, and the flow of current must be conservative and without radiation.  
The corresponding dynamic charge and mass-density functions are time and spherically harmonic and are interchangeable by the 
conversion factor of the corresponding ratio /em e .  In order to match the source current condition of Maxwell’s equations, the 

multipole of the current density must be constant.  Then, the spatial and time motion obeys a classical wave equation.  The 
boundary conditions on conservation of kinetic energy and angular momentum, for azimuthal current flow about a defined axis 
at the angular frequency n  given by Eq. (1.36), require classical wave behavior, as well, and the corresponding rotational 

energy equation is given by the rigid rotor equation [8].   
In the derivation of the rotational energy and related parameters, first consider that the electron atomic orbital experiences 

a constant potential energy because it is fixed at nr r .  The boundary condition is that the modulation of the charge density by a 

traveling wave is not dissipative corresponding to absence of radiation and further has a time average of zero kinetic energy.  
The mechanics of motion is such that there is a time and spatially harmonic redistribution of matter and kinetic energy that flows 
on the surface such that the total of either is unchanged.  Wave motion has such behavior and the corresponding equation is a 
wave equation that is solved with energy degeneracy and a time average of zero for the charge and energy flow as the boundary 
constraints.  In this case, the energy degeneracy is only lifted due to the electrodynamic interaction with an applied field 
consistent with experiential observations, as given in the Orbital and Spin Splitting section. 

The general form of the classical wave equation5 applies to the mechanics of the bound electron 
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 (1.56) 

where ( , , , )r t    is the function of the electron in time and space.  Here, the current densities of ( , , , )r t    comprise time 

 
5 This is not to be confused with the Schrödinger equation that is not a proper wave equation; rather, it is a diffusion equation. 
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harmonics and the spherical harmonics on a two-dimensional spherical surface (Eqs. (1.28-1.29)) for the temporal and spatial 
functions.  Thus, the mechanics equation is given by 
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Since the rotation is defined to be about the z-axis, the velocity v  in Eq. (1.57) is not constant, but has the same angular 
dependence as the corresponding spherical harmonic  ,mY    where the motion is azimuthal to the radius.  In general, the 

spherical harmonic charge density functions satisfy the equation [3]: 
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     (1.58) 

which may be written in the form: 

      2
, ,, 1 ,m mL Y Y    
     (1.59) 

The charge/mass flow corresponding to Eq. (1.12) and Eqs. (1.28-1.29) time averages to zero and corresponds to modulation of 
the constant spin function.  Similarly, the current densities are eigenfunctions such that kinetic energy flow time averages to zero 
and corresponds to the modulation of the constant kinetic energy of the spin function.  The amplitude of the orbital rotational 
energy can be solved from the mechanics equation (Eq. (1.57)) operating on   Re ,  

nim tmY e .  Since the motion of the atomic 

orbital is transverse to the radius, the motion constitutes an inertial frame that is relativistically invariant, as given in the Special 
Relativistic Effect on the Electron Radius and the Relativistic Ionization Energies section.  The total spin angular momentum of 
the electron is an invariant Lorentz scalar L   [7], as given in the Atomic Orbital Equation of Motion For   = 0 Based on the 
Current Vector Field (CVF) section, and the time-averaged orbital angular momentum is zero that is also a Lorentz scalar 0L .  
By expressing the wave equation in the energy form, the angular dependent velocity may be eliminated, and this equation can be 
solved using the boundary constraints.  The time and angular functions are separable. 
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where 
2

1
( , , , ) ( ) ( , , ) ( ) ( , , )  ( , , ) ( , ) ( )nr t f r A t r r A t and A t Y k t

r
               .  The mass of an electron is superimposable 

with its charge.  That is, the angular mass-density function, ( , , )A t  , is also the angular charge-density function.  Elimination of 
the separable time function of Eq. (1.60) gives: 
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Eq. (1.61) can be expressed in terms of the wavenumber and wavelength: 

  2 2 , 0mk Y         (1.62) 
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  (1.63) 

Using Eq. (1.44) and the de Broglie relationship (Eq. (1.38)) based on conservation of angular momentum gives the 
relationships: 
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Substitution of Eq. (1.64) into Eq. (1.63) gives the well-known rigid rotor equation [8]: 
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The energies corresponding to Eq. (1.65) are given by [8]: 
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and the solution of Eq. (1.65) for L , the orbital angular momentum defined to be about the z-axis, is 

 ( 1) z L i    (1.67) 

where the moment of inertia, I , assumed by McQuarrie [8] is that of a point particle, 2
nmr .  It is demonstrated by Eq. (1.37) that 

the total integrated magnitude of the angular momentum density over the surface of the electron atomic orbital is  ; therefore, 
the magnitude of the angular momentum of an electron atomic orbital about the z-axis must be less than  , and the 
corresponding moment of inertia must be less than that given by 2

e nm r .  For example, the moment of inertia of the uniform 

spherical shell, RSI ,  

is [9]: 

 22

3RS nI mr  (1.68) 

The current density of the electron is a two-dimensional shell with a constant or a constant plus a spherical harmonic angular 
dependence.  In this case, the relationships given by Eqs. (1.48-1.50) must hold.  Eq. (1.65) can be expressed in terms of the 
variable x  that is substituted for cos .  The resulting function ( )P x  is called Legendre’s equation and is a well-known equation 
in classical physics.  It occurs in a variety of problems that are formulated in spherical coordinates.  When the power series 
method of solution is applied to ( )P x , the series must be truncated in order that the solutions be finite at 1x   .  The solution to 

Legendre’s equation given by Eq. (1.66) is the maximum term of a series of solutions corresponding to the m  and   values [8, 

10].  The rotational energy must be normalized by the total number of states—each corresponding to a set of quantum numbers 
of the power series solution.  As demonstrated in the Excited States of the One-Electron Atom (Quantization) section, the 
quantum numbers of the excited states are: 
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 (1.69) 

In the case of an atomic orbital excited state, each rotational state solution of Eq. (1.65) (Legendre’s equation) corresponds to a 
multipole moment of the charge-density function (Eqs. (1.28-1.29)).  The orbital rotational energy  rotational orbitalE  is given by 

normalizing rotE  (Eq. (1.66)) using ,sN , the total number of multipole moments where each corresponds to an   and m  

quantum number of an energy level corresponding to a principal quantum number of n : 
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     (1.70) 

Multiplication of Eq. (1.66) by the normalization factor 1
,sN 
  given by Eq. (1.70) and substitution of the angular velocity given 

by Eq. (1.36) results in: 
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Multiplication of Eq. (1.67) by the normalization factor 1
,sN 
  given by Eq. (1.70) and using Eq. (1.36) gives the corresponding 

orbital angular momentum, orbitalL , and moment of inertia , orbitalI , of the atomic orbital where   ≠ 0: 
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where 
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 (1.74) 

consistent with Eq. (1.50). 
In the case of the excited states with 0 , the atomic orbital charge-density functions are given by Eqs. (1.28-1.29), and 

the total angular momentum is the sum of two functions of equal magnitude.  ztotalL  is given by the sum of the spin and orbital 

angular momentum.  The principal energy levels of the excited states are split when a magnetic field is applied.  The energy 
shifts due to spin and orbital angular momentum are given in the Orbital and Spin Splitting section. 
    z total z spin z orbitalL L L   (1.75) 

Similarly, the orbital rotational energy arises from a spin function (spin angular momentum) modulated by a spherical harmonic 
angular function (orbital angular momentum).  The time-averaged mechanical angular momentum and rotational energy 
associated with the traveling charge-density wave on the atomic orbital is zero: 
  0z orbitalL   (1.76) 
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   0rotational orbitalE   (1.77) 

In the case of an excited state, the angular momentum comprising a Lorentz scalar L   is carried by the fields of the trapped 
photon.  The energy and angular momentum amplitudes that couple to external magnetic and electromagnetic fields are given by 
Eq. (1.71) and (1.72), respectively.  The rotational energy due to spin is given by Eq. (1.55), and the total kinetic energy is given 
by Eq. (1.47).   
 

THE ATOMIC ORBITAL EQUATION OF MOTION FOR   = 0 BASED ON 
THE CURRENT VECTOR FIELD (CVF) 
 

STERN-GERLACH-EXPERIMENT BOUNDARY CONDITIONS 
It is known from the Stern-Gerlach experiment that a beam of silver atoms is split into two components when passed through an 
inhomogeneous magnetic field.  This implies that the electron is a spin 1/2 particle or fermion with an intrinsic angular 

momentum of 
2




 that can only exist parallel or antiparallel to the direction of the applied field (spin axis), and the magnitude of 

the angular momentum vector, which precesses about the spin axis, is 
4

 .  Furthermore, the magnitude of the splitting implies 

a magnetic moment of B , a full Bohr magneton, given by Eq. (1.131) corresponding to   of total angular momentum on the 

axis, implying an impossibility of being classically reconciled with the 
2




 electron angular momentum.  Yet, the extraordinary 

aspects of the magnetic properties and behavior of the electron are the basis to solve its structure that gives rise to these 
observations. 

Experimentally, the electron has a measured magnetic field and corresponding magnetic moment of a Bohr magneton 

that can only exist parallel or antiparallel to the direction of the applied magnetic field and behaves as if it possesses only 
2


 of 

intrinsic angular momentum.  For any magnetic field, the Maxwell's-equations solution for the corresponding source current is 
unique.  Thus, the electron field requires a corresponding unique current according to Maxwell's equations.  Several boundary 
conditions must be satisfied, and the atomic orbital equation of motion for   = 0 is solved as a boundary value problem.  The 
boundary conditions are: 
 

(1) to maintain electroneutrality, force balance, absence of a magnetic or electric multipole, and give the proper 
Lorentz invariant angular momentum, each point position on the atomic orbital surface designates a charge(mass)-
density element, and each point element must have the same magnitude of linear and angular velocity given by Eqs. 
(1.35) and (1.36), respectively; 
 
(2) according to condition 1, every such infinitesimal point element must move along a great circle and the current-
density distribution must be uniform; 
 
(3) the electron magnetic moment must align completely parallel or antiparallel with an applied magnetic field in 
agreement with the Stern-Gerlach experiment; 
 
(4) it is shown infra that according to condition #3, the projection of the intrinsic angular momentum of the atomic 

orbital onto the z-axis must be 
2




, and the projection into the transverse plane must be 
4




 to achieve the spin 1/2 

aspect; 
 
(5) it is further shown that the Larmor excitation of the electron in the applied magnetic field must give rise to a 
component of electron spin angular momentum that precesses about the applied magnetic field such that the 

contribution along the z-axis is 
2




 and the projection onto the orthogonal axis which precesses about the z-axis must 

be 
3

4
  ; 

 
(6) due to conditions #4 and #5, the angular momentum components corresponding to the current of the atomic 
orbital and that due to the Larmor precession give rise to a total angular momentum on the applied-field axis of  ; 
 
(7) due to condition #6, the precessing electron has a magnetic moment of a Bohr magneton, and 
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(8) the energy of the transition of the alignment of the magnetic moment with an applied magnetic field must be given 
by Eqs. (1.226-1.227) wherein the g factor and Bohr magneton factors are due to the extended-nature of the electron 
such that it links flux in units of the magnetic flux quantum and has a total angular momentum on the applied-field 
axis of  . 

 
The algorithm to generate the spin function designated as 0

0 ( , ) Y  (part of Eqs. (1.27-1.29)) and called the electron 

atomic orbital is developed in this section.  It was shown in the Classical Physics of the De Broglie Relationship section that the 
integral of the magnitude of the angular momentum over the atomic orbital must be constant.  The constant is   as given by Eq. 

(1.37).  It is shown in this section that the projection of the intrinsic atomic orbital angular momentum onto the spin axis is 
2




, 

and the projection onto S, the axis that precesses about the spin axis, is   with a precessing component in the perpendicular 

plane of 
4

  and a component on the spin axis of 
2




.  Thus, the mystery of an intrinsic angular momentum of 
2




 and a total 

angular momentum in a resonant RF experiment of  zL  is resolved since the sum of the intrinsic component and the spin-axis 

projection of the precessing component is  .  The Stern-Gerlach experiment implies a magnetic moment of one Bohr magneton 
and an associated angular momentum quantum number of 1/2.  Historically, this quantum number is called the spin quantum 

number, s (
1 1

;  
2 2

  ss m ), and that designation is maintained.  

Consider the derivation of Eq. (1.65).  The moment of inertia of a point particle orbiting an axis is 2mr , and that of a 

globe spinning about some axis is 22

3
I mr .  For   = 0, the electron mass and charge are uniformly distributed over the atomic 

orbital, a two-dimensional spherical shell, but the atomic orbital is not analogous to a globe.  The velocity of a point mass on a 
spinning globe is a function of  , but the magnitude of the velocity at each point of the atomic orbital is not a function of  .  To 
picture the distinction, it is a useful concept to consider that the continuous current density of the atomic orbital is comprised of 
an infinite number of point elements that move on the spherical surface.  Then, each point on the sphere with mass im  has the 

same angular velocity, n , the same magnitude of linear velocity, nv , and the same moment of inertia, 2
i nm r .  The motion at each 

point of the atomic orbital is along a great circle, and the motion along each great circle is correlated with the motion on all other 
great circles such that the sum of all the contributions of the corresponding angular momentum is different from that of an 
orbiting point or a globe spinning about an axis.  The atomic orbital angular momentum is directed along two orthogonal axes 

having three angular momentum components of /
4xy   L


 and 
2




zL . 

The atomic orbital spin function comprises a constant uniform charge (current) density with moving charge confined to a 
two-dimensional spherical shell.  The current-density is continuous, but it may be modeled as a current pattern comprising a 
superposition of an infinite series of correlated orthogonal great-circle current loops.  The equation of motion for each charge-
density element (and correspondingly for each mass-density element) corresponds to that of a current on a one-dimensional great 
circle wherein each point charge(current)-density element moves time harmonically with constant angular velocity, n , given by 

Eq. (1.36) and has the corresponding velocity, nv , on the surface in the direction of the current given by Eq. (1.35).  The 

distribution of the great circles is such that all of the boundary conditions are satisfied.   
The uniform, equipotential charge-density function of the atomic orbital having only a radial discontinuous field at the 

surface according to Eq. (1.10) is constant in time due to the motion of the current along great circles.  The current flowing into 
any given point of the atomic orbital equals the current flowing out to satisfy the current continuity condition, 0 J  as in the 
case of any macrocurrent carried by an ensemble of electrons.  There are many crossings amongst great circle elements at single, 
zero-dimensional points on the two-dimensional surface of the electron embedded in a three-dimensional space.  Thus, the 
velocity direction is multivalued at each point.  But, there is nothing in Maxwell’s equations in two dimensions that precludes 
this result, since these laws only regard fields external to the two-dimensional charge density and current density sources.  As in 
the macro-case, the continuous two-dimensional atomic orbital current density distribution constitutes a uniform, constant two-
dimensional supercurrent (See Figure 1.22 for the vector supercurrent pattern) wherein the crossings have no effect on the 
current pattern.  Each one-dimensional element is independent of the others, and its contribution to the angular momentum and 
magnetic field independently superimposes with that of the others.   

The aspect of no interaction at local zero-dimensional crossings of a two-dimensional fundamental particle has the same 
properties as the superposition properties of the electric and magnetic fields of a photon from which the electron forms.  Field 
lines of photons traveling at the speed of light also superimpose with the field- and velocity-direction vectors multivalued at each 
point that they cross.  Indeed, the photon field pattern of a single photon shown in the Equation of the Photon section is very 
similar to the great-circle pattern of the atomic orbital shown infra.  As shown in the Excited States of the One-Electron Atom 
(Quantization), the Creation of Matter from Energy, Pair Production, and the Leptons sections, the angular momentum in the 
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electric and magnetic fields is conserved in excited states and in the creation of an electron from a photon in agreement with 
Maxwell's equations.  Thus, it is useful to regard an electron as a special-state photon. 

Thus, the electron as an indivisible fundamental particle is related to the concepts of current and momentum elements, 
but the great-circle-current-loop basis elements used to generate and represent the bound electron current corresponding to spin 
should be considered more fundamentally in terms of sources of electric and magnetic field and sources of momentum that in 
aggregate gives the corresponding properties of the electron as a whole.  In fact, as shown in the Gravity section, all physical 
observables including the laws of nature and the fundamental constants can ultimately only be related to others and have no 
independent meaning.  Then, the basis elements of an electron are understood in terms of what they do when added in aggregate 
to constitute an electron.  The nomenclature used to describe the elements reflects the analogous macroscopic sources and is 
adopted for convenience. 
 

GENERATION OF THE ATOMIC ORBITAL CVFS 
The atomic orbital spin function comprises a constant charge(current)-density function with moving charge confined to a two-
dimensional spherical shell and comprises a uniform complete coverage.  The uniform magnetostatic current-density function 

0
0 ( , ) Y  of the atomic orbital spin function comprises a continuum of correlated orthogonal great-circle current loops wherein 

each point charge(current)-density element moves time harmonically with constant angular velocity, n , given by Eq. (1.36) and 

velocity, nv , in the direction of the current given by Eq. (1.35).  The current-density function of the atomic orbital is generated 

from orthogonal great-circle current-density elements (one dimensional “current loops”) that serve as basis elements to form 
two distributions of an infinite number of great circles wherein each covers one-half of a two-dimensional spherical shell and is 
defined as a basis element current vector field (“BECVF”) and an atomic orbital current-vector field (“OCVF”).  Then, the 
continuous uniform electron current density function 0

0 ( , ) Y  (part of Eqs. (1.27-1.29)) that covers the entire spherical surface 

as a distribution of an infinite number of great circles is generated using the CVFs. 
First, the generation of the BECVF is achieved by rotation of two great circle basis elements, one in the x’z’-plane and 

the other in the y’z’-plane, about the  , ,0 x y zi i i  axis by an infinite set of infinitesimal increments of the rotational angle 

wherein the current direction is such that the resultant angular momentum vector of the basis elements of 
2 2


 is stationary on 

this axis.  The generation of the OCVF is achieved by rotation of two great circle basis elements, one in the x’y’-plane and the 

other in the plane that bisects the x'y'-quadrant and is parallel to the z'-axis, about the 
1 1

, ,
2 2

  
 

x y zi i i  axis by an infinite set 

of infinitesimal increments of the rotational angle wherein the current direction is such that the resultant angular momentum 

vector of the basis elements of 
2


 having components of 

2 2
xy L


 and 

2 2
z L


 is stationary on this axis.  The operator to 

form each CVF comprises a convolution of the rotational matrix of great circles basis elements with an infinite series of delta 
functions of argument of the infinitesimal angular increment.  Then, the uniform great-circle distribution 0

0 ( , ) Y  is exactly 

generated from the CVFs.  The BECVF is convolved with the OCVF over a 2  span that results in the placement of a BECVF 
at each great circle of the OCVF.  Since the angular momentum vector of the BECVF is matched to twice that of one of the 
OCVF great circle basis elements and the span is over 2 , the resultant angular momentum of the distribution is the same as 
that of the OCVF, except that coverage of the spherical surface is complete.  This current vector distribution is normalized by 
scaling the constant current of each great circle element resulting in the exact uniformity of the distribution independent of time 
since 0 K  along each great circle.  There is no alteration of the angular momentum by normalization since it only affects 

the density parallel to the angular momentum axis of the distribution, the 
1 1

, ,
2 2

  
 

x y zi i i -axis.  Then, the boundary 

conditions of 0
0 ( , ) Y  having the desired angular momentum components, coverage, element motion, and uniformity are shown 

to have been achieved by designating the 
1 1

, ,
2 2

  
 

x y zi i i -axis as the z-axis.  The resulting exact uniform current distribution 

(Figure 1.22) has the angular momentum components of /
4xy   L


 and 
2




zL  (Eqs. (1.127-1.128) and Figure 1.23). 

The z-projection of the angular momentum of a photon given by its orthogonal electric and magnetic fields is 

  41
Re ( )

8
    dx

c
m r E B*  (Eq. (4.1)).  When an electron is formed from a photon as given in the Leptons section, the 

angular momentum is conserved in the projections of the orthogonal great circle current loops that serve as the basis elements of 
the atomic orbital.  Special relativity requires that the mathematical equations expressing the laws of nature must be covariant, 
that is, invariant in form, under the transformations of the Lorentz group.  As shown by Eq. (1.37) the angular momentum is 
invariant of radius or velocity.  It is a Lorentz scalar L   [7] with respect to the radius of the state.  The vector projections of 
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the atomic orbital spin angular momentum relative to the Cartesian coordinates arrived at by summation of the contributions 
from the electron current elements of the current distribution are given in the Spin Angular Momentum of the Atomic Orbital 

0
0 ( , ) Y  with   = 0 section.  The time-independent current pattern is obtained by defining a basis set for generating the current 

distribution over the surface of a spherical shell of zero thickness. 
As such a basis set, consider that the electron current is distributed within the basis elements and then distributed evenly 

amongst all great circles such that the final distribution 0
0 ( , ) Y  possesses   of angular momentum before and after 

normalization.  First, the basis element BECVF is generated from two orthogonally linked great-circle current loops having 
4


 

apiece and a resultant angular momentum of 
2 2


.  The OCVF is generated from two orthogonally linked great-circle current 

loops having an angular momentum of 
2 2


 apiece and a resultant angular momentum of 

2


.  The current pattern of each CVF 

is generated over the surface by a corresponding infinite set of infinitesimal rotations of the two orthogonal great-circle current 

loops that serve as basis elements by   radians about the  , ,0 x y zi i i -axis for the BECVF and 
1 1

, ,
2 2

  
 

x y zi i i -axis for the 

OCVF.  The BECVF is convolved with the OCVF resulting in the BECVF of matched angular momentum substituting for the 
great circle basis elements of the OCVF over its great-circle distribution, and the resulting current vector pattern is normalized 
numerically by individually scaling the current density of each great circle element as given in the Uniformity of 0

0 ( , ) Y  

section.  In the generation of 0
0 ( , )Y   , the rotations of the basis elements comprising the convolutions are about the resultant 

angular momentum axis of the basis elements that leaves the resultant vector unchanged, and the angular momentum is 

unaffected by normalization.  Then, after reorienting the resultant angular momentum vector from along the 
1 1

, ,
2 2

  
 

x y zi i i -

axis to along the z-axis, it is trivial to confirm that the boundary-condition components of having components of /
4xy   L


 

and 
4




zL  is met while further achieving the condition that the magnitude of the velocity at any point on the surface is given by 

Eq. (1.35).  Since the final distribution is uniform, the electron charge, current, mass, and angular momentum density can be 
obtained by equating the surface area integral to e ,  ne , em , and  , respectively.  Then, the physical properties are derived 

in the Spin Angular Momentum of the Atomic Orbital 0
0 ( , ) Y  with   = 0 section and are shown to match the boundary 

conditions.  The derivation of the matrix mechanics to generate the electron spin current distribution called the electron atomic 
orbital 0

0 ( , ) Y  and its uniform charge and current resulting from normalization are considered first and then utilized herein. 

 

GENERATION OF THE BECVF 
Next, consider two infinitesimal charge(mass)-density elements at two separate positions or points, one and two, of the first pair 
of orthogonal great-circle current loops that serve as the basis set for generation of the BECVF as shown in Figure 1.4.  The 
rotating Cartesian coordinates, x',y',z', in which the basis element great circles are fixed is designated the basis-set reference 
frame.  In this frame at time zero, element one is at ' 0x , '  ny r , and ' 0z , and element two is at '  nx r , ' 0y , and ' 0z .  

Let element one move on a great circle clockwise toward the -z'-axis, and let element two move counter clockwise on a great 
circle toward the -z'-axis, as shown in Figure 1.4.  The equations of motion, in the basis-set reference frame with 0t  defined at 
the points (0,1,0) and (1,0,0), respectively, are given by: 
 
point one:   

 1
' 0x  

1

' cos( ) n ny r t  1
' sin( )  n nz r t  (1.78) 

 
point two:   

 2
' cos( ) n nx r t  2

' 0y  2
' sin( )  n nz r t  (1.79) 
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Figure 1.4.   The BECVF is generated from two orthogonal great-circle current loops that serve as basis elements.  The current 
on the great circle in the y'z'-plane moves clockwise and the current on the great circle in the x'z'-plane moves counter clockwise 
as indicated by arrows.  Each point or coordinate position on the continuous two-dimensional BECVF defines an infinitesimal 
charge (mass)-density element, which moves along a geodesic orbit comprising a great circle.  Two such infinitesimal charges 
(masses) are shown at point one, moving clockwise on the great circle in the y'z'-plane, and at point two moving counter 
clockwise on the great circle in the x'z'-plane.  The xyz-system is the laboratory frame, and the orthogonal-current-loop basis set 

is rigid with respect to the x'y'z'-system that rotates about the  , ,0 x y zi i i -axis by   radians to generate the elements of the 

BECVF.  The resultant angular momentum vector of the orthogonal great-circle current loops that is stationary in the xy-plane 

that is evenly distributed over the half-surface is 
2 2


 in the direction of  , ,0 x y zi i i . 

 
 

The orthogonal great circle basis set to generate the BECVF is shown in Figure 1.4.  It is generated by the rotation of the 
two orthogonal great circles about the  , ,0 x y zi i i -axis by an infinite set of infinitesimal increments of the rotational angle 

totaling a span of  .  As shown in Figure 1.4, the current direction is such that the resultant angular momentum vector of the 

basis elements of magnitude 
2 2


 is stationary on this axis wherein one basis-element great circle is initially in the yz-plane 

having angular momentum 
4x  L


 and the other is initially in the xz-plane having angular momentum 
4y L


.  The operator 

to form the BECVF comprises a convolution [11] of the rotational matrix of great circles basis elements with an infinite series of 
delta functions of argument of the infinitesimal angular increment.   

The principal rotations in Cartesian coordinates are around each of the orthogonal axes, x, y, and z.  Rotations about other 
axes can be obtained as a noncommutative combination of rotations that rotates one of the principal axes to align on the desired 
rotational axis relative to the Cartesian coordinates, the principal-axis rotation is applied, and then the matrices to rotate the 
principal axis to its Cartesian original coordinates are applied.  A nonprincipal axis of rotation can be further rotated to a desired 
position.  This can be achieved by rotating the axis about a principal axis relative to the Cartesian coordinates that is unchanged 
in the process.  Principal rotational matrices with a clockwise rotation defined as a positive angle are given in Fowles [12].  The 
rotational matrix about the x-axis by  ,  xR , is given by: 

      

   

   1         0              0

    0    cos       sin

   

   0   sin    cos  

  

 

 
 
 
 
 
 
  

xR  (1.80) 

The rotational matrix about the y-axis by  ,  yR , is given by: 

  

   

   

cos    0   sin

      0        1          0

sin     0     cos

 



 

 
 
 
 
 
 
 
 

yR  (1.81) 
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The rotational matrix about the z-axis by  ,  zR , is given by: 

  

   

   

cos    sin     0

 sin   cos    0

 

      0          0         1

 

  

 
 
 
  
 
 
 
 

zR  (1.82) 

The rotational matrix about the  , ,0 x y zi i i -axis by  ,    
, ,0




R
x y zi i i

, is given by: 

      
, ,0 4 4

  


       
   

z x zR R R R
x y zi i i

 (1.83) 

Then, using Eqs. (1.78-1.80, 1.82-1.83), the great circle basis elements and rotational matrix are given by: 
 
BECVF MATRICES (    

, ,0



R

x y zi i i
)

 

 

1 cos 1 cos sin
       

2 2 2 2 2 cos' 0
1 cos 1 cos sin

'            cos 0
2 2 2 2 2

' sinsin
sin sin

                            cos
2 2

  


   


  

     
       
                     
              

  

n

n

nn

rx

y r

z rr 
 (1.84)

 
Using Eq. (1.84), the BECVF matrix representation of the convolution is given by: 

            
, ,0 0 , , ,0 ,

0 1

   lim

m

basis basis
M

m

BECVF R GC GC m





   







  

       
x y z x y z x y zi i i i i i i i i

 (1.85) 

wherein    
, ,0




R
x y zi i i

 is the rotational matrix about the  , ,0 x y zi i i -axis,  0 , ,

basisGC
x y zi i i

 and  ,0 ,

basisGC
x y zi i i

 are the great circle basis 

elements initially in the yz and xz planes, respectively, and   designates the convolution with the delta function of the 
infinitesimal incremental angle  Mm .  The integral form of the convolution is 

            
, ,0 0 , , ,0 ,

0 10

  lim

m

basis basis
M

m

BECVF R GC GC m d


 


    







  

    x y z x y z x y zi i i i i i i i i
 (1.86) 

The integration gives the infinite sum of great circles that constitute the BECVF: 

          , ,0 0 , , ,0 ,
0 1

 lim

m

basis basis
M

m

BECVF R m GC GC













  

     
x y z x y z x y zi i i i i i i i i

 (1.87) 

The BECVF given by Eqs. (1.84-1.87) can also be generated by each of rotating a great circle basis element initially in 
the yz or the xz-planes about the  , ,0 x y zi i i -axis over the range of 0 to 2  as shown in Figures 1.5 and 1.6, respectively.  The 

BECVF of Figure 1.6 with vectors overlaid giving the direction of the current of each great circle element is shown in Figure 
1.7.  The current pattern of the BECVF generated by the rotations of the orthogonal great-circle current loops is a continuous 
half coverage of the spherical surface, but it is shown as visual representations using 6 degree increments of   for Eqs. (1.84) 
and (1.87) in Figures 1.5-1.7 wherein the incremental angle becomes discrete rather than the actual continuous distribution in the 
limit that the incremental angle approaches zero.  The same applies to the case of the representations of the OCVF and 0

0 ( , )Y    

given infra. 



Chapter 1 

 

72

 

 
Figure 1.5.  The current pattern of the BECVF given 
by Eqs. (1.84) and (1.87) shown with 6 degree increments 
of   from the perspective of looking along the z-axis.  The 
yz-plane great circle current loop that served as a basis 
element that was initially in the yz-plane is shown as red.   

 

 
 
Figure 1.7.   A representation of the z-axis perspective view of the BECVF shown in Figure 1.6 with 30 vectors overlaid 
giving the direction of the current of each great circle element. 
 

 

Figure 1.6.   The current pattern of the BECVF shown with 
6 degree increments of   from the perspective of looking 
along the z-axis.  The great-circle current loop that served as 
a basis element that was initially in the xz-plane is shown as 
red. 
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GENERATION OF THE OCVF 
For the generation of the OCVF, consider two charge(mass)-density elements, point one and two, in the basis-set reference frame 

at time zero.  Element one is at '
2

 nrx , '
2

 nry , and ' 0z , and element two is at '  nx r , ' 0y , and ' 0z .  Let element 

one move clockwise on a great circle toward the -z'-axis, and let element two move counter clockwise on a great circle toward 
the y'-axis as shown in Figure 1.8.  The equations of motion, in the basis-set reference frame are given by 
 
point one:   

 1
' sin cos( )

4

    
 

n nx r t  1
' cos cos( )

4

    
 

n ny r t  1
' sin( )  n nz r t  (1.88) 

 
point two:   

 2
' cos( ) n nx r t  2

' sin( ) n ny r t  2
' 0z  (1.89) 

 
Figure 1.8.   In the generation of the OCVF, the current on the great circle in the plane that bisects the x'y'-quadrant and is 
parallel to the z'-axis moves clockwise, and the current on the great circle in the x'y'-plane moves counter clockwise.  Rotation of 

the great circles about the 
1 1

, ,
2 2

  
 

x y zi i i -axis by   radians generates the elements of the OCVF.  The stationary resultant 

angular momentum vector of the orthogonal great-circle current loops along the 
1 1

, ,
2 2

  
 

x y zi i i -axis is 
2


 corresponding to 

each of the z and -xy-components of magnitude 
2 2


. 

 
 
The orthogonal great-circle basis set for the OCVF is shown in Figure 1.8.  It is generated by the rotation of the two orthogonal 

basis-element great circles about the 
1 1

, ,
2 2

  
 

x y zi i i -axis by an infinite set of infinitesimal increments of the rotational angle 

totaling a span of  .  As shown in Figure 1.8, the current direction is such that the resultant angular momentum vector of the 

basis elements of magnitude 
2


 is stationary on this axis wherein one basis-element great circle is initially in the plane that 

bisects the xy-quadrant and is parallel to the z-axis having angular momentum in the xy plane of 
2 2

xy L


 and the other is 

initially in the xy-plane having angular momentum 
2 2

z L


.  The operator to form the OCVF comprises a convolution [11] of 

the rotational matrix of great circles basis elements with an infinite series of delta functions of argument of the infinitesimal 
angular increment.   

An equivalent distribution to that of the OCVF may be generated by the rotation of a great circle in the yz-plane about the 

 ,0 , x y zi i i -axis by 2  followed by a rotation about the z-axis by 
4


.  The coordinates of the great circle in the yz-plane are 

given by the matrix: 
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    T T
', ', ' 0, cos , sin  n nx y z r r  (1.90) 

The rotational matrix about the  ,0 , x y zi i i -axis by  ,    
,0 ,




R
x y zi i i

, followed by a rotation about the z-axis by 
4


,  zR , is 

given by: 

      
,0 ,4 4 4 4

    


              
       

z z y z yR R R R R R
x y zi i i

 (1.91) 

In this case, the angular momentum vector of the great circle basis element over a 2  span is not equivalent to a stationary 

vector on the 
1 1

, ,
2 2

  
 

x y zi i i -axis.  In order to achieve this result, the OCVF is generated by a  1 1
, ,

2 2

  
 

R
x y zi i i

 rotation of 

the great circle basis-element that bisects the xy-quadrant and is parallel to the z-axis over a 2  span.  The coordinates of the 

great circle are given by the matrix that rotates a great circle in the yz-plane about the z-axis by 
4


: 

    
T

T Tcos cos
', ', ' , , sin 0, cos , sin

42 2

    
           

n n
n z n n

r r
x y z r R r r  (1.92) 

Since the OCVF is given by the 2 ,    
,0 ,4

 


 
 
 

zR R
x y zi i i

 rotation of the yz-plane basis-element great circle (Eqs. (1.90-1.91)), 

the equivalent result may be obtained by first rotating the great circle given by Eq. (1.90) about the z-axis by 
4


 , 

4

  
 

zR , 

then applying Eq. (1.91).  This combination is equivalent to a rotation about the 
1 1

, ,
2 2

  
 

x y zi i i -axis by  , 

 1 1
, ,

2 2

  
 

R
x y zi i i

, and is given by:  

        1 1 ,0 ,, ,
2 2

4 4 4 4 4 4

          
 

                         
           

z y z y z z zR R R R R R R R R
x y z

x y z
i i ii i i

 (1.93) 

Then, the great circle basis-element that bisects the xy-quadrant and is parallel to the z-axis given by Eq. (1.92) is input to the 
rotational matrix given by Eq. (1.93) to give the desired stationary rotation about the great circle angular momentum axis, the 

1 1
, ,

2 2

  
 

x y zi i i -axis.  The equivalent OCVF is also generated by the rotation of a great circle in the xy-plane about the 

1 1
, ,

2 2

  
 

x y zi i i -axis by 2  wherein the great circle is given by: 

    T T
', ', ' cos , sin ,0  n nx y z r r  (1.94) 

Then, using Eqs. (1.92-1.94) and Eqs. (1.81-1.82), the great circle basis elements and rotational matrix are given by: 
 
OCVF MATRICES (  1 1

, ,
2 2

  
 

R
x y zi i i

) 

 

     

     

 

1 1 1
1 3cos                      1 cos 2 2 sin   2 2cos 2 sin

4 4 4'
1 1 1

' 1 cos 2 2 sin   1 3cos                     2 2cos 2 sin
4 4 4

'
1 1 cos 1

sin         2 2cos 2 sin                
2 42

    

    


  

      

      

 
  

 
 
 
   

 
 

x

y

z
2

cos

2 cos
cos

 sin
2

0
sin

cos
2








 

 



    
    
     
     
     

      
         

n

n
n

n

n

r

r
r

r

r

 (1.95) 

Using Eq. (1.95), the OCVF matrix representation of the convolution is given by: 

 

     1 1 1 1 , ,0, , , ,0 1 2 2 2 2

  lim

m

basis basis
M

m

OCVF R GC GC m





   




            

   
       

      


x y z
x y z x y z

i i ii i i i i i
 (1.96) 

wherein  1 1
, ,

2 2

  
 

R
x y zi i i

 is the rotational matrix about the 
1 1

, ,
2 2

  
 

x y zi i i -axis, 
1 1

, ,
2 2

 
 
 

basisGC
x y zi i i

 and  , ,0

basisGC
x y zi i i

 are the great 

circle basis elements initially in the plane that bisects the xy-quadrant and is parallel to the z-axis and xy-plane, respectively, and 
  designates the convolution with the delta function of the infinitesimal incremental angle  Mm .  The integral form of the 

convolution is: 
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      1 1 1 1 , ,0, , , , 0 10 2 2 2 2

 lim

m

basis basis
M

m

OCVF R GC GC m d


 


    




            

  
     

    
 x y z

x y z x y z
i i ii i i i i i

 (1.97) 

The integration gives the infinite sum of great circles that constitute the OCVF: 

    1 1 1 1 , ,0, , , ,0 1 2 2 2 2

  lim
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The OCVF given by Eq. (1.95) can also be generated by each of rotating a great circle basis element initially in the plane 

that bisects the xy-quadrant and is parallel to the z-axis or in the xy-plane about the 
1 1

, ,
2 2

  
 

x y zi i i -axis over the range of 0 

to 2  as shown in Figures 1.9 and 1.10, respectively.  The OCVF of Figure 1.10 with vectors overlaid giving the direction of the 
current of each great circle element is shown in Figure 1.11. 
 
Figure 1.9.   The current pattern of the OCVF given by 
Eqs. (1.95) and (1.98) shown with 6 degree increments of 
  from the perspective of looking along the z-axis.  The 
great-circle current loop that served as a basis element that 
was initially in the plane that bisects the xy-quadrant and 
was parallel to the z-axis is shown as red.   
 

   
 
Figure 1.11.   A representation of the z-axis perspective view of the OCVF shown in Figure 1.10 with 30 vectors overlaid 
giving the direction of the current of each great circle element. 
 

 
 

The CVFs, BECVF and OCVF, are used to generate 0
0 ( , )Y   .  Each CVF involves a unique combination of the initial 

and final directions of the primed coordinates and orientations of the angular momentum vectors due to the rotation of the basis-
element great circles as summarized in Table 1.1.  The angular momentum vector of the BECVF is stationary along its rotational 

Figure 1.10.   The current pattern of the OCVF shown with 
6 degree increments of   from the perspective of looking 
along the z-axis.  The great-circle current loop that served as a 
basis element that was initially in the xy-plane is shown as 
red.   
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axis, the  , ,0 x y zi i i -axis, and the angular momentum vector of the OCVF is stationary along its rotational axis, the 

1 1
, ,

2 2

  
 

x y zi i i -axis.   

 

Table 1.1.   Summary of the results of the matrix rotations of the two sets of two orthogonal current loops to generate the 
CVFs. 
 

 
CVF 

Initial Direction of Angular 
Momentum Components 

( ˆˆr K )a 

Final Direction of Angular 
Momentum Components 

( ˆˆr K )a

Initial to Final Axis Transformation  

xyL  
 

zL  

BECVF 
1 1

, ,0
2 2

  
 

x y zi i i  
1 1

, ,0
2 2

  
 

x y zi i i  

'

'

'


 
 

x y

y x

z z

 
2 2


 0 

  

OCVF 
1 1

, ,
2 2

  
 

x y zi i i  
1 1

, ,
2 2

  
 

x y zi i i  

1 1 1
' , ,

2 2 2

1 1 1
' , ,

2 2 2

1 1
' , ,0

2 2

     
 
    
 
   
 

x

y

z

 
2 2


 

2 2



a K is the current density, r is the polar vector of the great circle, and “^” denotes the unit vectors ˆ u
u

u
. 

 

GENERATION OF 0
0 ( , )Y    

The further constraint that the current density is uniform such that the charge density is uniform, corresponding to an 
equipotential, minimum energy surface is satisfied by using the CVFs to generate the uniform great-circle distribution 0

0 ( , )Y    

by the convolution of the BECVF with the OCVF followed by normalization.  Consider that the BECVF (Eq. (1.84)) for the 

OCVF convolution can also be generated by rotating a great circle basis element initially in the yz-plane about the  , ,0 x y zi i i -

axis by 2  radians as shown in Figure 1.5.  Similarly, the OCVF (Eq. (1.95)) can also be generated by rotating a great circle 

basis element initially in the plane that bisects the xy-quadrant and is parallel to the z-axis about the 
1 1

, ,
2 2

  
 

x y zi i i -axis 

over the range of 0 to 2  as shown in Figure 1.9.  The convolution operator treats each CVF independently and results in the 
placement of a BECVF at each great circle of the OCVF such that the resultant angular momentum of the distribution is the same 
as that of the OCVF.  This is achieved by rotating the orientation, phase6, and vector-matched basis-element, the BECVF, about 
the same axis as that which generated the OCVF.  Thus, the BECVF replaces one great circle basis element, in this case, the one 
initially in the plane that bisects the xy-quadrant and is parallel to the z-axis.  To match to the resultant angular momentum of 

both great circle basis elements, the angular momentum of the BECVF is 
2

xy L


 (Figure 1.8) along the  , ,0 x y zi i i -axis.  

Then, 0
0 ( , )Y    is generated by rotation of the BECVF, about the 

1 1
, ,

2 2

  
 

x y zi i i -axis by an infinite set of infinitesimal 

increments of the rotational angle.  The current direction is such that the resultant angular momentum vector of the BECVF basis 

element rotated over the 2  span is equivalent to that of both of the OCVF great circle basis elements, 
2


 having components of 

 
6 The resultant angular momentum vector,  LR

, is along i
x
,i

y
,0i

z ; thus, the angular momentum is constant for any rotation about this axis which 

establishes it as a  C -axis relative to the angular momentum.  However, rotation about this axis does change the phase (coordinate position relative to the 

starting position) of the BECVF.  For example, a rotation by    about the i
x
,i

y
,0i

z -axis using Eqs. (1.83) and (1.84) causes the BECVF basis-

element great circle to rotate by 
 


2

 about the z-axis such that its position changes between the xz and yz-planes. 
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2 2
xy L


 and 

2 2
z L


 that is stationary on the 

1 1
, ,

2 2

  
 

x y zi i i -axis.  Since the resultant angular momentum vector of 

the BECVF over the 2  span matches that of the replaced great circle basis elements and is stationary on the rotational axis as 
in the case of the OCVF, the resultant angular momentum of the distribution is the same as that of the OCVF, except that 
coverage of the spherical surface is complete.  The resulting uniformity of the distribution is achieved by normalization as shown 
in the Uniformity of 0

0 ( , )Y    section. 

The operator to form 0
0 ( , )Y    comprises the BECVF convolution [11] of the rotational matrix of great circles basis 

element about the  , ,0 x y zi i i -axis with an infinite series of delta functions of argument of the infinitesimal angular increment 

that is further convolved with the OCVF convolution of the rotational matrix of great circles basis element about the 
1 1

, ,
2 2

  
 

x y zi i i -axis with an infinite series of delta functions of argument of the infinitesimal angular increment.  Using the 

BECVF matrix representation of its convolution operation (Eq. (1.85)) and the OCVF matrix representation of its convolution 
operation (Eq. (1.96)), the 0

0 ( , )Y    matrix representation of the convolution is given by: 
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 (1.99) 

where the commutative property of convolutions [11] allows for the interchange of the order of CVFs, but the rotational matrices 
are noncommutative [12].  The integral form of the convolution is 
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  (1.101) 
The integration gives the infinite double sum of great circles that constitute 0

0 ( , )Y   : 

        

2 2

0
0 1 1 , ,0 0 , ,, ,0 01 12 2
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 (1.102) 

Using Eq. (1.102), a discrete representation of the current distribution 0
0 ( , )Y    that shows a finite number of current 

elements can be generated by showing the BECVF as a finite sum of the convolved great circle elements using Eqs. (1.84) and 
(1.87) and by showing the continuous convolution of the BECVF with the OCVF as a superposition of discrete incremental 
rotations of the position of the BECVF rotated according to Eqs. (1.95) and (1.98) corresponding to the matrix which generated 
the OCVF.  In the case that the discrete representation of the BECVF comprises N  great circles and the number of convolved 
BECVF elements is M , the representation of the current density function showing current loops is given by Eq. (1.103) and 

shown in Figure 1.12.  The 
1 1

, ,
2 2

  
 

x y zi i i -axis view of this representation with 144 vectors overlaid giving the direction of 

the current of each great circle element is shown in Figure 1.13.  The corresponding mass(momentum) density is also 
represented by Figures 1.12 and 1.13 wherein the charge and mass are interchangeable by the conversion factor /em e . 
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 (1.103) 

 
Figure 1.12.   A representation of the z-axis view of the 
current pattern of 0

0 ( , )Y    shown with 30 degree 

increments ( 12 N M  in Eq. (1.103)) of the angle to 
generate the BECVF corresponding to Eqs. (1.84) and (1.87) 
and 30 degree increments of the rotation of this basis 

element about the 
1 1

, ,
2 2

  
 

x y zi i i -axis corresponding to 

Eqs. (1.95) and (1.98). 
 

   
 
 
 

 

Figure 1.13.   A representation of the 
1 1

, ,
2 2

  
 

x y zi i i -

axis view of 0
0 ( , )Y    shown in Figure 1.12 with 144 vectors 

overlaid giving the direction of the current of each great 
circle element. 
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A BECVF can also be generated to replace the great circle basis element of the OCVF that lies in the xy-plane.  In the 
case that the current is counter clockwise with the angular momentum in the direction of the z-axis, the equivalent rotational 
transformations that maintain the resultant angular momentum stationary on the z-axis over a 2  rotation is the combination of 

a 
4


  rotation about the y-axis followed by a 2  rotation of the tilted great circle about the z-axis.  The angular-momentum-

and-orientation-matched distribution shown in Figure 1.14 is generated by: 

      T T
', ', '   cos , sin ,0

4

  
   

 
z y n nx y z R R r r  (1.104) 

In order to match phase with the OCVF rotational axis, 
1 1

, ,
2 2

  
 

x y zi i i -axis, Eq. (1.104) must be rotated about the z-axis by 

4


 using 

4

 
 
 

zR  using Eq. (1.82).  In this case, the BECVF is aligned on the xy-plane and the resultant angular momentum 

vector, RL , is also along the z-axis.  The final phase-matched distribution shown in Figure 1.15 is given by: 

      T T
', ', '   cos , sin ,0

4 4

   
       

   
z z y n nx y z R R R r r  (1.105) 

 
Figure 1.14.   The current pattern given by Eq. (1.104) 
shown with 6 degree increments of   from the perspective of 
looking along the z-axis.  The great circle current loop that 
served as a basis element that was initially in the xy-plane is 
shown as red.   
 

 
   
 
Then, using Eq. (1.105) and Eqs. (1.81-1.82), the great circle basis elements and rotational matrix are given by: 
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Using the procedure of Eqs. (1.85-1.87) on Eq. (1.106), the infinite sum of great circles that constitute the BECVF is: 

      

2

, ,0
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  lim 4 4






  





  

                 


m
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z z y M

m
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 (1.107) 

 
Using Eqs. (1.99-1.102), and (1.107), the corresponding infinite double sum of great circles that constitute 0

0 ( , )Y    is given by: 

Figure 1.15.   The current pattern given by Eq. (1.105) 
shown with 6 degree increments of   from the perspective of 
looking along the z-axis.  The great circle current loop that 
served as a basis element that was initially in the xy-plane is 
shown as red. 
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Using Eq. (1.108), a discrete representation of the current distribution 0
0 ( , )Y    that shows a finite number of current 

elements can be generated by showing the BECVF as a finite sum of the convolved great circle elements using Eqs. (1.106-
1.107) and by showing the continuous convolution of the BECVF with the OCVF as a superposition of discrete incremental 
rotations of the position of the BECVF rotated according to Eqs. (1.95) and (1.98) corresponding to the matrix which generated 
the OCVF.  In the case that the discrete representation of the BECVF comprises N  great circles and the number of convolved 
BECVF elements is M , the representation of the current density function showing current loops is given by Eq. (1.109) and 

shown in Figure 1.16.  The 
1 1

, ,
2 2

  
 

x y zi i i -axis view of this representation with 144 vectors overlaid giving the direction of 

the current of each great circle element is shown in Figure 1.17.  The corresponding mass(momentum) density is also 
represented by Figures 1.16 and 1.17 wherein the charge and mass are interchangeable by the conversion factor /em e . 
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Figure 1.16.  A representation of the z-axis view of the 
current pattern of the 0

0 ( , )Y    shown with 30 degree 

increments ( 12 N M  in Eq. (1.109)) of the angle to 
generate the BECVF corresponding to Eqs. (1.106) and 
(1.107) and 30 degree increments of the rotation of this basis 

element about the 
1 1

, ,
2 2

  
 

x y zi i i -axis corresponding to 

Eqs. (1.95) and (1.98).  The great circle current loop that 
served as a basis element of the BECVF is shown as red. 
 

    
 

UNIFORMITY OF 0
0 ( , )Y    

By using the rotational matrices to generate 0
0 ( , )Y   , it is shown to be uniform about the angular momentum axis that is 

permissive of normalization such that the spherical uniformity and angular momentum boundary conditions are met.  Consider 
the 0

0 ( , )Y    convolution in summation form given by Eqs. (1.99) and (1.102).  The BECVF is periodic in   with a period of   

wherein the basis elements interchange.  Thus, only one basis need be considered with the range increased to 2 : 
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wherein 
1 1

, ,
2 2

 
 
 

basisBECVF
x y zi i i

 is the distribution that replaced the great circle basis element of the OCVF distribution in the 

convolution given by Eqs. (1.87), (1.92), (1.98), and (1.99), respectively.  Consider the rotation of both sides of Eq. (1.110) 

about the  , ,0x y zi i i -axis, the orthogonal axis to that which generated the BECVF, by
4
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The rotation of a sum is the same as the sum of the rotations 
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 (1.112) 

Figure 1.17.   A representation of the 
1 1

, ,
2 2

  
 

x y zi i i -axis view of 0
0 ( , )Y    shown in Figure 

1.16 with 144 vectors overlaid giving the direction of the 
current of each great circle element. 
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When the distribution given by Eq. (1.98) having its C -axis along the 
1 1

, ,
2 2

  
 

x y zi i i -axis is rotated about the  , ,0x y zi i i -

axis by 
4


, the resulting distribution having the C -axis along the  , ,0 x y zi i i -axis is equivalent to the distribution given by 

Eq. (1.87) of matching C -axis.  Substitution of Eq. (1.87) into Eq. (1.112) gives: 
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Substitution of Eq. (1.87) for BECVF and using the   periodicity property of the great circle basis elements gives: 
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Using the distributive property of the double sum gives: 

            

2 2

  
, ,0 , ,0 , ,0 0 , ,

0 01 1

'

' =  lim lim4

'

 
 

 

  
 
 

 
 

    

 
 
       

   
 
  

 
m n

basis
M N

m n

x

R y R m R n GC

z

x y z x y z x y z x y zi i i i i i i i i i i i
 (1.115) 

Rotation of the BECVF about its C -axis, the  , ,0x y zi i i -axis, leaves the BECVF distribution unchanged. 
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Eq. (1.116) represents the properties of the distribution perpendicular to the 
1 1

, ,
2 2

  
 

x y zi i i -axis since the distribution was 

rotated about the  , ,0x y zi i i -axis to align the 
1 1

, ,
2 2

  
 

x y zi i i -axis with the  , ,0 x y zi i i -axis.  This result confirms that the 

distribution is uniform about the 
1 1

, ,
2 2

  
 

x y zi i i -axis since the 
1 1

, ,
2 2

 
 
 

basisBECVF
x y zi i i

 that served to generate the distribution of 

0
0 ( , )Y    is azimuthally uniform.  This is an important result since the spherically uniform distribution can be obtained by 

normalizing the distribution given by Eq. (1.102).  Since any density normalization is along the 
1 1

, ,
2 2

  
 

x y zi i i -axis, there is 

no change in the angular momentum since the distribution was formed by rotation of the basis elements about the angular 

momentum axis, the 
1 1

, ,
2 2

  
 

x y zi i i -axis.  Furthermore, the motion on the great circles maintains the uniform distribution 

since the normalization only scales the constant current on each to achieve uniformity. 
Consider the color-scale rendering of the BECVF current density distribution shown in Figure 1.18.  It was determined 

using a computer algorithm [13] that assigns a given number of points to a great circle basis element of Eqs. (1.84) and (1.87), 
generates the BECVF distribution of points along the great circles using a designated number of rotations about the 

 , ,0 x y zi i i -axis over a span of 2  radians, and for each point on the half-sphere, it calculates the number of points in a unit 

circular region in the neighborhood of each point.  The radius of each point’s neighborhood was taken to be 100 times smaller 
than the radius of the half-spherical distribution.   
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Figure 1.20.   The z-axis view of the numerically 
determined unnormalized current density of 0

0 ( , )Y    

wherein the density distribution is displayed as a 
distance and a color scale, and the view is rotated by 
180 relative to Figure 1.19. 

Figure 1.18.   The numerically determined current density of the BECVF given by Eqs. (1.84) and (1.87) shown with 500 
points on the great circle basis element and 0.72 degree increments of   from the perspective of looking along the z-axis. 
 

 
 
As shown in Figures 1.5 and 1.18 the great circle number of the BECVF is conserved, and the perimeter on the half sphere 
through which each great circle traverses can be defined by a bisecting plane that is parallel to the  v plane and 2C  axis.  At the 

center of the distribution, the circles traverse a perimeter having a circumference of 2 nr .  The corresponding circumference at 

an angle sc  from the center of the distribution is 2 cos n scr  wherein sc  is the spherical coordinate and not the rotational angle 

  of the CVFs.  This gives rise to a cossc  dependency of the loop density for 0
4sc

  .  In addition, the great circles 

converge as the perimeter becomes smaller.  Since the distribution of 0
0 ( , )Y    is given by the superposition of the current 

density of the BECVF as a function of the rotation of the BECVF about the 
1 1

, ,
2 2

  
 

x y zi i i -axis, the 0
0 ( , )Y    current 

density is given by the azimuthal integral of the current density of the BECVF.  This superposition is difficult to integrate, but a 
convenient method of determining the density is by numerical integration.  The unnormalized 0

0 ( , )Y    current density was 

determined using the computer algorithm that assigns a given number of points to each great circle basis element, generates the 
distribution given by Eq. (1.103), and calculates the number of points in a unit circular neighborhood of each point on the 
surface.  The numerically determined density is shown in color scale on the sphere in Figure 1.19.  The density distribution is 
displayed as a distance and a color scale in Figure 1.20. 
 
Figure 1.19.   The z-axis view of the numerically determined 
unnormalized current density of 0

0 ( , )Y    shown with 100 points per 

great circle basis element, 3.6 degree increments ( 100 N M  in 
Eq. (1.103)) of the angle to generate the BECVF corresponding to 
Eqs. (1.84) and (1.87), and 3.6 degree increments of the rotation of 

this basis element about the 
1 1

, ,
2 2

  
 

x y zi i i -axis corresponding 

to Eqs. (1.95) and (1.98). 
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The normalization of the 0
0 ( , )Y    current pattern given by Eqs. (1.102) and (1.103) was performed using the numerical 

procedure developed by Bujnak and Hlucha [13].  It is based on forming a uniform great-circle normal-vector distribution.  This 
is equivalent to a uniform great-circle current distribution due to the one-to-one map on the sphere between the former and latter.  
For a total of GCN  great circles distributed over the sphere, the algorithm treats the normal vector of each great circle as 

coincident with the corresponding angular momentum axis as given by the right hand rule and assigns a dot of integer index i  to 
the intersection of this vector and the spherical shell.  For each dot i , the number of other dots iD  within a local neighborhood 

of dot i  are counted, and the corresponding normalization factor factor
iN  is given by 

 

1factor
i iN D  (1.117) 

Then, the linear current density on the great circle iGC  corresponding to the dot of index i  is normalized by factor
iN .  The 

program treats the linear current density as a series of evenly spaced mass(current)-density elements (“points”) with the initial 
condition that the total number of points on each great circle is the constant initialP .  Thus, the normalization scales the linear 

density, and in the discrete case, this is achieved by scaling the mass of each of the points on the great circle by the factor given 
by Eq. (1.117).  This is repeated over all great circles.  Since 0

0 ( , )Y    is given by the superposition of all points, using Eq. 

(1.117), the final total effective or weighted number of points on the surface 
0

0 ( , )
final
YP    is given by the normalized sum: 

 

0
0 ( , )

final initial
1

GCN
Y factor

i
i

P N P 



   (1.118) 

Eq. (1.118) is representative of the total mass and current on the surface.  The normalization is confirmed by determining the 
existence of a constant current density at multiple random positions on the sphere.  Here, for any point that defines a position on 
the sphere of integer index k , the factor factor

jN  of the other points of integer index j  within a local neighborhood of fixed area 

of position k  are counted, and uniformity is confirmed when the following condition is met over many cases: 

 

constantfactor
j

j

N   (1.119) 

where j  runs through the points in the small circular neighborhood. 
The angular momentum components corresponding to the unnormalized and normalized distributions were calculated 

numerically.  According to the numerical algorithm, the total magnitude of the angular momentum over all of the great circles is 
set equal to   with the initial direction due to the great circle basis element in the y’z’-plane along the  1,0,0 -axis.  Then, in 

the unnormalized case, the magnitude of the contribution from each great circle is given by: 

 

1
1GCi N

GCj

L
N



 

 

 (1.120) 

Since the direction of the angular momentum of the other great circles of the distribution are given by  ,BECVF OCVF
i iR   , the 

rotation by the two angles ,BECVF OCVF
i i   corresponding to the convolution of the respective CVFs, the total angular momentum 

TotalL  is given by: 

 

   , 1,0,0
GC GCN N

BECVF OCVF
Total i i i

i i GC

L L R
N

     
 (1.121) 

In the normalized case, the magnitude of the contribution from each great circle is given by: 

 

1

GC

factor
i

i N factor
jj

N
L

N






 (1.122) 

Then, the total angular momentum TotalL  is given by: 

 

   
1

, 1,0,0
GC GC

GC

N N factor
BECVF OCVFi

Total i i iN factor
i i jj

N
L L R

N
 



   



 (1.123) 

In both cases, the calculated results are given as follows: 
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4

0.248
4
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2 2
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 (1.124) 
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     2 2 2
0.495

2
total total total

Total x y zL L L L  
    (1.126) 

These results confirm that the normalization does not affect the angular momentum.  The numerically normalized 0
0 ( , )Y    

(Figure 1.21) gives the desired spherical uniformity and is permissive of demonstrating the motion of the current in time over the 
entire surface according to the great circle pattern having constant current per loop each weighted by the normalization 
algorithm.  An ideal representation overlaid with the great-circle pattern showing the vector direction of the current is shown in 
Figure 1.22. 
 
Figure 1.21.   The z-axis view of the numerically 
normalized current density of 0

0 ( , )Y    shown with 100 

points per great circle basis element, 3.6 degree increments 
( 100 N M  in Eq. (1.103)) of the angle to generate the 
BECVF corresponding to Eqs. (1.84) and (1.87), and 3.6 
degree increments of the rotation of this basis element about 

the 
1 1

, ,
2 2

  
 

x y zi i i -axis corresponding to Eqs. (1.95) 

and (1.98).  As the number of points increased and the size of 
the local neighborhood decreased, the exact uniformity was 
numerically approached. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The electron current shown in Figure 1.22 is consistent with Maxwell’s equations, other first principles, and the boundary 
conditions implied by the Stern Gerlach experiment.  The crossings reveal an intrinsic property regarding self-interactions of 
fundamental particles having angular momentum, mass, and an extended nature.  Extrinsic fundamental particle scattering 
interactions depend on the cross section for momentum or energy transfer.  These cross sections can vary over an enormous 
range.  Neutrinos and neutrons, for example, have negligible cross sections with condensed matter compared to charged 
particles.  The cross section for interaction amongst photons or field lines within a single photon is zero.  The electron is an 
indivisible special state of a 510 keV photon, and the cross section for momentum transfer amongst current elements of the 
electron is likewise experimentally zero.  This is consistent with the original boundary condition that momentum transfer among 
fundamental particles having   of angular momentum occurs in quantized units of   requiring that electron momentum transfer 
must involve its intrinsic angular momentum in its entirety as discussed in Appendix II7.  Computer modeling of the analytical 
equations to generate the atomic orbital current vector field and the uniform current (charge) density function  0

0 , Y  is 

available on the web [13-14].  Also, the precession motion of the free electron over time in the presence of an applied magnetic 
field generates the equivalent current pattern and the angular momentum of 0

0 ( , ) Y  of the bound electron as shown in the 

Electron in Free Space section and Appendix IV.  Given the angular momentum projections of the bound electron shown in 
Figure 1.23 and that the free electron has   of angular momentum on the z-axis due to in-plane current loops, the free-electron 

 

7 The angular momentum of neutrinos are 
2


 which accounts for their negligible interaction cross section as discussed in the Neutrinos section. 

Figure 1.22.   An ideal representation of the uniform 
current pattern of 0

0 ( , )Y    comprising the superposition of 

an infinite number of great circle elements generated by 
normalizing the distribution of Eqs. (1.102) and (1.103).  
The constant uniform current density is overlaid with 144 
vectors giving the direction of the current of each great 
circle element for 30 degree increments ( 12 N M  in Eq. 
(1.103)) of the angle to generate the BECVF corresponding 
to Eqs. (1.84) and (1.87) and 30 degree increments of the 

rotation of this basis element about the 
1 1

, ,
2 2

  
 

x y zi i i -

axis corresponding to Eqs. (1.95) and (1.98).  The 

perspective is along the 
1 1

, ,
2 2

  
 

x y zi i i -axis. 
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angular momentum can be considered to partition into two orthogonal, equal magnitude components of 
2 2


 and the current, 

carried on great circle elements, to rescale to form a uniform density due to binding to the central field. 
 
 

SPIN ANGULAR MOMENTUM OF THE ATOMIC ORBITAL  0
0 ,Y    WITH   

= 0 
Consider the vector current directions shown in Figure 1.8.  The orthogonal great-circle basis set is rotated about the 

1 1
, ,

2 2

  
 

x y zi i i -axis.  The resultant angular momentum vector is along this axis.  Thus, the resultant angular momentum 

vector of magnitude 
2


 is stationary throughout the rotations that transform the axes as given in Table 1.1.  The convolution 

operation of the BECVF with the OCVF is also about the resultant angular momentum axis, the 
1 1

, ,
2 2

  
 

x y zi i i -axis.  Here, 

the resultant angular momentum vector of the one BECVF of 
2


 in the direction of the  , ,0 x y zi i i -axis over a 2  span is 

matched to and replaces that of the basis element great circles.  Thus, the resultant angular momentum of 
2


 having components 

of 
2 2

xy L


 and 
2 2

z L


 is stationary on this axis for all rotations.  There is no alteration of the angular momentum with 

normalization since it only affects the density parallel to the angular momentum axis of the distribution, the 
1 1

, ,
2 2

  
 

x y zi i i -

axis.  This was proven by numerical integration of the normalized distribution.   
Next, it is shown that the properties of 0

0 ( , ) Y  match the boundary conditions of having the desired angular momentum 

components, coverage, element motion, and uniformity by designating the 
1 1

, ,
2 2

  
 

x y zi i i -axis as the z-axis.  The resulting 

reoriented initial angular momentum component vectors and their new projections relative to the laboratory Cartesian 
coordinates are shown in Figure 1.23.   
 
Figure 1.23.   With the application of a magnetic field the magnetic moment corresponding to the intrinsic angular momentum 

of the electron of 
2


 aligns with the applied field direction designated the z-axis.  Thus, the resultant angular momentum initially 

along the 
1 1

, ,
2 2

  
 

x y zi i i -axis aligns with the z-axis.  The new projections relative to the Cartesian coordinates are shown. 
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Referring to the new coordinates, the new angular momentum components are 
2


 along the z-axis, 

2 2


 along the 

1 1
, ,

2 2

  
 

x y zi i i  and 
1 1

, ,
2 2

  
 

x y zi i i -axes, and the xy-plane projections of the latter of /
4

 


 along the  , ,0x y zi i i -

axis.  (Note that the crossed vectors in Figure 1.22 are the source of the orthogonal components of 
2 2


.)  Then, the Zeeman-

splitting-active vector projections of the angular momentum that give rise to the Stern Gerlach phenomenon and other aspects of 
spin are those components that are onto the xy-plane and the z-axis. 
 
Zeeman L Components 

 /
4xy   L


 (1.127) 

 
2z L


 (1.128) 

where /   designates both the positive and negative vector directions along an axis in the xy-plane such as the  , , 0x y zi i i -

axis.  Consider the behavior of the electron in the presence of an applied magnetic field wherein the Zeeman-active angular 

momentum of 0
0 ( , ) Y  (Figure 1.24) for a right-handed circularly polarized photon is 

4



xyL  and 
2




zL  (Eqs. (1.127-1.128)).  

As shown in the Resonant Precession of the Spin-1/2-Current-Density Function Gives Rise to the Bohr Magneton section, the 
electron undergoes resonant Larmor-precession excitation.  The angular momentum of the photon of the Larmor excited state 
electrodynamically interacts with one component of xyL  depending on its handedness to establish a torque balance that results in 

the orientation of the   of angular momentum of the photon such that its vector projections are 
3

4xy L   in a Larmor rotating 

frame and 
2z L


 such that the total angular momentum onto the z-axis, sum of the photon and electron contributions, is  .  

These results meet the boundary condition for the unique current having an angular velocity magnitude at each point on the 
surface given by Eq. (1.36) and give rise to the result of the Stern Gerlach experiment as shown infra, in the Magnetic 
Parameters of the Electron (Bohr Magneton) section, and in the Electron g Factor section.   
 
Figure 1.24.   The atomic orbital is a two dimensional spherical shell of zero thickness with the Bohr radius of the hydrogen 

atom,  Hr a , having intrinsic angular momentum components of 
4




xyL  and 
2




zL  following Larmor excitation in a 

magnetic field. 
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RESONANT PRECESSION OF THE SPIN-1/2-CURRENT-DENSITY 
FUNCTION GIVES RISE TO THE BOHR MAGNETON 
The Stern Gerlach experiment described below demonstrates that the magnetic moment of the electron can only be parallel or 
antiparallel to an applied magnetic field.  In spherical coordinates, this implies a spin quantum number of 1/2 corresponding to 

an angular momentum on the z-axis of 
2


.  However, the Zeeman splitting energy corresponds to a magnetic moment of B  and 

implies an electron angular momentum on the z-axis of —twice that given by Eq. (1.128).  Consider the case of a magnetic 
field applied to the atomic orbital.  As shown in Figure 1.23, the atomic orbital comprises an angular momentum component of 

2


 along the z-axis and two 

4


 angular momentum components in opposite directions in the xy-plane.  The magnetic moment 

corresponding to the angular momentum along the z-axis results in the alignment of the z-axis of the atomic orbital with the 

magnetic field while one of the 
4


 vectors in the xy-plane causes precession about the applied field.  The precession arises from 

a Larmor excitation by a corresponding resonant photon that couples to one of the 
4


 angular momentum components to 

conserve the angular momentum of the photon such that the precession direction matches the handedness of the Larmor photon.  
An example given in Figure 1.25 regards a right-hand polarized photon that excites the right-handed Larmor precession by 

coupling to the corresponding 
4


 angular momentum component as shown.  The precession frequency is the Larmor frequency 

given by the product of the gyromagnetic ratio of the electron, 
2

e

m
, and the magnetic flux B  [15].  The energy of the precessing 

electron corresponds to Zeeman splitting—energy levels corresponding to the parallel or antiparallel alignment of the electron 
magnetic moment with the magnetic field and the excitation of transitions between these states by flipping the orientation along 
the field by a further resonant photon of the Larmor frequency.  Thus, the energy of the transition between these states is that of 

the resonant photon.  The angular momentum of the precessing atomic orbital comprises the initial 
2


 projection on the z-axis 

and the initial 
4


 vector component in the xy-plane that then precesses about the z-axis with the Larmor photon.  As shown in the 

Excited States of the One-Electron Atom (Quantization) section, conservation of the angular momentum of the photon of   

gives rise to   of electron angular momentum that gives rise to a 
2


 contribution to the angular momentum along the magnetic-

field or z-axis.  The parameters of the photon standing wave for the Zeeman effect are given in the Magnetic Parameters of the 
Electron (Bohr Magneton) section and Box 1.1. 

The angular momentum of the atomic orbital in a magnetic field comprises the static 
2


 projection on the z-axis (Eq. 

(1.128)) and the 
4


 vector component in the xy-plane (Eq. (1.127)) that precesses about the z-axis at the Larmor frequency.  The 

precession at the Larmor frequency as well as the excitation of a spin-flip transition is equivalent to the excitation of an excited 
state as given in the Excited States of the One-Electron Atom (Quantization) section.  Consider the first resonant process.  A 
resonant excitation of the Larmor precession frequency gives rise to a trapped photon with   of angular momentum along a 
precessing S -axis.  In the coordinate system rotating at the Larmor frequency (denoted by the axes labeled RX , RY , and RZ  in 

Figure 1.25), the RX -component of magnitude 
4


 and S  of magnitude   are stationary.  The 

4


 angular momentum along RX  

with a corresponding magnetic moment of 
4

B  (Eq. (28) of Box 1.1) causes S  to rotate in the RY RZ -plane to an angle of 
3

   

such that the torques due to the RZ -component of 
2


 and the orthogonal RX -component of 

4


 are balanced.  Then the RZ -

component due to S  is cos
3 2


  

 .  The reduction of the magnitude of S  along RZ  from   to 
2


 corresponds to the ratio of 
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the RX -component and the static RZ -component of 
14
2

2






8 .  Since the RX -component is 

4


, the RZ -component of S  is 

2


 

which adds to the initial 
2


 component to give a total RZ -component of  . 

 
8 The torque balance can be appreciated by considering that S is aligned with Z

R

 if the X
R

-component is zero, and the three vectors are mutually 

orthogonal if the  X R
-component is 

2


.  The balance can be shown by considering the magnetic energies resulting from the corresponding torques when 

they are balanced.  Using Eqs. (23) and (25) of Box 1.1, the potential energy E
V

 due to the projection of S's angular momentum of   along Z
R

 having 
2


 

of angular momentum is 

 
1 1

cos cos cos
2 2B BV B B

E B B           (1) 

where 
 
B


B

 is the flux due to a magnetic moment of a Bohr magneton and 


B

 is the corresponding gyromagnetic frequency.  The application of a 

magnetic moment along the  X R
-axis causes S to precess about the Z

R
 and X

R
-axes.  In the X

R
Y

R
Z

R
-frame rotating at 


B

, S precesses about the X
R

-

axis.  The corresponding precession energy 
 
E

X
R

 of S about the X
R

-component of 
4


 is the corresponding Larmor energy 

 
1

4R BX
E     (2) 

The energy 
 
E

Z
R

 of the magnetic moment corresponding to S rotating about Z
R

 having 
2


 of angular momentum is the corresponding Larmor energy:  

 
1

2R BZ
E    (3) 

At torque balance, the potential energy is equal to the sum of the Larmor energies:  

 

1
1 1 141 cos

12 4 2 2

2

R R B B BZ X
E E           

 
  

      
 


   (4) 

Balance occurs when 
 
 



3
.  Thus, the intrinsic torques are balanced.  Furthermore, energy is conserved relative to the external field as well as to the 

intrinsic, Z
R

 and X
R

-components of the atomic orbital, and the Larmor relationships for both the gyromagnetic ratio and the potential energy of the 

resultant magnetic moment are satisfied as shown in Box 1.1.  
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Figure 1.25.   The angular momentum components of the atomic orbital and S  in the rotating coordinate system RX , RY , and 

RZ  that precesses at the Larmor frequency about RZ  such that the vectors are stationary. 
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In summary, since the vector S  that precesses about the z-axis is at an angle of 
3

   with respect to this axis, has an 

RX RY -plane projection at an angle of 
2

   with respect to xyL  given by Eq. (1.127), and has a magnitude of  , the S  

projections in the RX RY -plane and along the RZ -axis are: 

 
3

sin  
3 4


     

RYS i  (1.129) 

 || cos  
3 2 RZ


   S i

  (1.130) 

The plus or minus sign of Eqs. (1.129) and (1.130) corresponds to the two possible vector orientations which are observed with 
the Stern-Gerlach experiment described below.  The sum of the torques in the external magnetic field is balanced unless an RF 
field is applied to cause a Stern-Gerlach transition as discussed in Box 1.1.   
 
Figure 1.26.   The angular momentum components of the atomic orbital and S  in the stationary coordinate system.  S  and the 
components in the xy-plane precess at the Larmor frequency about the z-axis.   
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Figure 1.27.   The orientation of the atomic orbital and S  that has the angular momentum components shown in Figure 1.26.  
The applied magnetic field is in the z-axis direction.  The dipole-current spins about the S -axis at angular velocity n  given by 

Eq. (1.36) and the atomic orbital and S  precess at the Larmor frequency about the z-axis. 
 

 
 

As shown in Figures 1.26 and 1.27, S forms a cone in time in the nonrotating laboratory frame with an angular 
momentum of   that is the source of the known magnetic moment of a Bohr magneton (Eq. (28) of 1.1) as shown in the 

Magnetic Parameters of the Electron (Bohr Magneton) section.  The projection of this angular momentum onto the z-axis of 
2


 

adds to the z-axis component before the magnetic field was applied to give a total of  .  Thus, in the absence of a resonant 

precession, the z-component of the angular momentum is 
2


, but the excitation of the precessing S  component gives —twice 

the angular momentum on the z-axis.  In addition, rather than a continuum of orientations with corresponding energies, the 
orientation of the magnetic moment must be only parallel or antiparallel to the magnetic field.  This arises from conservation of 
angular momentum between the “static” and “dynamic” z-axis projections of the angular momentum with the additional 
constraint that the angular momentum has a “kinetic” as well as a “potential” or vector potential component.  To conserve 

angular momentum, flux linkage by the electron is quantized in units of the magnetic flux quantum, 
2

h

e  , as shown in Box 

1.1 and in the Electron g Factor section.  Thus, the spin quantum number is
1 1

;  
2 2ss m   , but the observed Zeeman splitting 

corresponds to a full Bohr magneton due to   of angular momentum.  This aspect was historically felt to be inexplicable in 
terms of classical physics and merely postulated in the past. 

The demonstration that the boundary conditions of the electron in a magnetic field are met appears in Box 1.1.  The 

observed electron parameters are explained physically.  Classical laws give (1) a gyromagnetic ratio of 
2

e

m
, (2) a Larmor 

precession frequency of 
2

e

m

B
, (3) the Stern-Gerlach experimental result of quantization of the angular momentum that implies a 

spin quantum number of 1/2 corresponding to an angular momentum of 
2


 on the z-axis, and (4) the observed Zeeman splitting 

due to a magnetic moment of a Bohr magneton 
2B

e

e

m
 


 corresponding to an angular momentum of   on the z-axis.  

Furthermore, the solution is relativistically invariant as shown in the Special Relativistic Effect on the Electron Radius and the 
Relativistic Ionization Energies section.  Dirac originally attempted to solve the bound electron physically with stability with 
respect to radiation according to Maxwell’s equations with the further constraints that it was relativistically invariant and thus 
gave rise to electron spin [16].  He was unsuccessful and resorted to the current mathematical probability-wave model that has 
many problems as discussed in Refs. [17-18]. 
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MAGNETIC PARAMETERS OF THE ELECTRON (BOHR MAGNETON) 

THE MAGNETIC FIELD OF AN ATOMIC ORBITAL FROM SPIN 
The atomic orbital with  = 0 is a shell of negative charge current comprising correlated charge motion along great circles.  The 

superposition of the vector projection of the atomic orbital angular momentum on the z-axis is 
2


 with an orthogonal component 

of 
4


.  As shown in the Atomic Orbital Equation of Motion For   = 0 Based on the Current Vector Field (CVF) section, the 

application of a magnetic field to the atomic orbital gives rise to a precessing angular momentum vector S  directed from the 

origin of the atomic orbital at an angle of 
3

   relative to the applied magnetic field.  The precession of S  with an angular 

momentum of   forms a cone in the nonrotating laboratory frame to give a perpendicular projection of 
3

4  S   (Eq. 

(1.129)) and a projection onto the axis of the applied magnetic field of 
2

 ||S


 (Eq. (1.130)).  The superposition of the 
2


 z-

axis component of the atomic orbital angular momentum and the 
2


 z-axis component of S  gives   corresponding to the 

observed magnetostatic electron magnetic moment of one Bohr magneton.  The   of angular momentum along S  has a 
corresponding precessing magnetic moment of 1 Bohr magneton [19]: 

 24 1
 9.274  10

2B
e

e
X JT

m
   


 (1.131) 

The rotating magnetic field of S  is discussed in Box 1.1.  The magnetostatic magnetic field corresponding to B  derived below 

is given by 

 
3

( cos sin )r
e n

e

m r   H i i


 for nr r  (1.132) 

 

 
3

( 2cos sin )
2 r

e

e

m r   H i i


 for nr r  (1.133) 

It follows from Eq. (1.131), the relationship for the Bohr magneton, and relationship between the magnetic dipole field and the 
magnetic moment m  [20] that Eqs. (1.132) and (1.133) are the equations for the magnetic field due to a magnetic moment of a 
Bohr magneton, B zm i  where cos sin  z ri i i .  Note that the magnetic field is a constant for nr r .  See Figures 1.28 

and 1.29.  It is shown in the Magnetic Parameters of the Electron (Bohr Magneton) section that the energy stored in the magnetic 
field of the electron atomic orbital is 
 

 
2 2

0
, 2 3

1
mag total

e

e
E

m r





 (1.134) 

 
Figure 1.28.  The two-dimensional cut-away 
representation of the magnetic field of an electron atomic 
orbital.  The field is a dipole outside the atomic orbital and 
uniform inside the atomic orbital. 

 

Figure 1.29.  The three-dimensional cut-away representation
of the magnetic field of an electron atomic orbital.  The field is
a dipole outside the atomic orbital and uniform inside the
atomic orbital. 
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DERIVATION OF THE MAGNETIC FIELD 
For convenience the angular momentum vector with a magnitude in the stationary frame of   will be defined as the z-axis as 
shown in Figures 1.28 and 1.299 .  The magnetic field must satisfy the following relationships: 

 
 H 0   in free space   (1.135) 
 
   ( )a bX  n H H K  (1.136) 

 
 ( ) 0a b  n H H  (1.137) 

 
  H  (1.138) 
 
Since the field is magnetostatic, the current is equivalent to that of current loops extending along the z-axis with the current 
direction perpendicular to the z-axis.  Then, the component of the current about the z-axis, i , for a current loop of total charge, 

e , oriented at an angle   with respect to the z-axis, is given by the product of the charge, the angular velocity given by Eq. 
(1.36), and sin  since the projection of the current of the atomic orbital perpendicular to the z-axis which carries the 
incremental current, i , is a function of sin . 

 
2

ˆsin
e n

e
i

m r i


 (1.139) 

where î  is the unit vector.  The angular function of the current density of the atomic orbital is normalized by the geometrical 

factor N  [9] given by: 
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 (1.140) 

corresponding to the angular momentum of  .  (Eq. (1.140) can also be expressed in spherical coordinates for the density of a 

uniform shell divided by the integral in   and   of that of a spherical dipole squared [8].  The integration gives 
8

3


 which 

normalized by the uniform mass-density factor of 4  gives the geometrical factor of 
1

2

3


 
 
 

.)  The current density îK  along the 

z-axis having a vector orientation perpendicular to the angular momentum vector is given by dividing the magnitude of i  (Eq. 

(1.139)) by the length nr .  The current density of the atomic orbital in the incremental length dz  is: 

 
3 3

3ˆ ˆ ˆ( , , )
2e n e n

e e
z i i N i

m r m r     K
 

 (1.141) 

Because 
 cosz r   (1.142) 
the differential length is given by: 
 sin ndz r d    (1.143) 

and so the current density in the differential length nr d  as measured along the periphery of the atomic orbital is a function of 

sin  as given in Eq. (1.139).  From Eq. (1.141), the surface current-density function of the atomic orbital about the z-axis (S -
axis) is given by: 

 
3

3ˆ ˆ( , , ) sin
2 e n

e
r i i

m r   K


 (1.144) 

Substitution of Eq. (1.144) into Eq. (1.136) gives:  

 
3

3
sin

2
a b

e n

e
H H

m r   


 (1.145) 

 
9 As shown in Box 1.1, the angular momentum of   on the S-axis is due to a photon standing wave that is phase-matched to a spherical harmonic source 

current, a spherical harmonic dipole   Yl

m  ,  sin  with respect to the S-axis.  The dipole spins about the S-axis at the angular velocity given by Eq. 

(1.36).  Since the field is magnetostatic in the RF rotating frame, the current is equivalent to current loops along the S-axis.  Thus, the derivation of the 
corresponding magnetic field is the same as that of the stationary field given in this section. 
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To obtain H , the derivative of   with respect to   must be taken, and this suggests that the   dependence of   be taken as 

cos .  The field is finite at the origin and is zero at infinity; so, solutions of Laplace’s equation in spherical coordinates are 
selected because they are consistent with these conditions [21]. 
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The negative gradients of these potentials are  
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where ri  and i  are unit vectors.  The continuity conditions of Eqs. (1.136), (1.137), (1.144), and (1.145) are applied to obtain 

the following relationships among the variables: 
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Solving the variables algebraically gives the magnetic fields of an electron: 
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The field is that of a Bohr magneton which matches the observed boundary conditions given in the Atomic Orbital Equation of 
Motion For   = 0 Based on the Current Vector Field (CVF) section including the required spherical symmetry.  The 
demonstration that the boundary conditions of the electron in a magnetic field are met appears in Box 1.1. 
 

DERIVATION OF THE ENERGY 
The energy stored in the magnetic field of the electron is: 
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BOX 1.1  BOUNDARY CONDITIONS OF THE ELECTRON IN A MAGNETIC FIELD 
ARE MET 
As shown in the Electron g Factor section, when a magnetic field with flux B is applied to an electron in a central field which 
comprises current loops, the orbital radius of each does not change due to the Lorentz force provided by B, but the velocity 
changes as follows [1]: 

 
2 e

erB
v

m
   (1) 

corresponding to a precession frequency of 

 
2 e

e

v eB
B

r m
 
    (2) 

where e  is the electron gyromagnetic ratio and   is the Larmor frequency.  Eq. (1) applies to the current perpendicular to the 

magnetic flux.  Since the atomic orbital is a uniformly-charged spherical shell, the magnetically induced current according to 
Lenz’ law gives rise to a corresponding moment of inertia I  [2], due to circulation about the z-axis of: 

 2
1

2

3 eI m r  (3) 

From Eqs. (2) and (3), the corresponding angular momentum L  and rotational energy rotE  are: 
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2

3 e eL I m r B    (4) 

and 
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2 3rot e eE I m r B    (5) 

respectively.  The change in the magnetic moment corresponding to Eq. (1) is [1]: 
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Using Eqs. (2-6), in the case of a very strong magnetic flux of 10 T applied to atomic hydrogen: 
 11 18.794  10  secX rad    (7) 
 51 21.701  10  I X kg m   (8) 

 391.496  10  L X J s   (9) 
 28 96.576  10 4.104  10  rotE X J X eV    (10) 

and 
 28 11.315  10m X J T     (11) 
where the radius is given by Eq. (1.260) and 2 / 3 , the geometrical factor of a uniformly charged spherical shell [2], was used in 
the case of Eq. (11).  Thus, these effects of the magnetic field are very small when they are compared to the intrinsic angular 
momentum of the electron of  
 341.055  10  L X J s    (12) 
The electronic angular frequency of hydrogen given by Eqs. (1.36) and (1.260) 

 16 1
1 2

1

4.134  10  sec
e

X rad
m r

   


 (13) 

the total kinetic energy given by Eq. (1.262) 
  13.606 T eV  (14) 
and the magnetic moment of a Bohr magneton given by Eq. (1.131) 

 24 1
 9.274  10

2B
e

e
X JT

m
   


 (15) 

rotE  is the energy that arises due to the application of the external flux B.  Thus, the external work required to apply the field is 

also given by Eq. (10).  Since the atomic orbital is uniformly charged and is superconducting, this energy is conserved when the 
field is removed.  It is also independent of the direction of the magnetic moment due to the intrinsic angular momentum of the 
atomic orbital of  .  The corresponding magnetic moment given by Eq. (6) does not change when the intrinsic magnetic moment 
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of the electron changes orientation.  Thus, it does not contribute to the energy of a spin-flip transition observed by the Stern 
Gerlach experiment.  It always opposes the applied field and gives rise to the phenomenon of the diamagnetic susceptibility of 
materials which Eq. (6) predicts with very good agreement with observations [1].  Eq. (6) also predicts the absolute chemical 
shifts of hydride ions that match experimental observations as shown in the Hydrino Hydride Ion Nuclear Magnetic Resonance 
Shift section.  

As shown in the Spin Angular Momentum of the Atomic Orbital 0
0 ( , ) Y  with   = 0 section, the angular momentum of 

the atomic orbital in a magnetic field comprises the initial 
2


 projection on the z-axis and the initial 

4


 vector component in the 

xy-plane that precesses about the z-axis.  A resonant excitation of the Larmor precession frequency gives rise to an additional 
component of angular momentum, which is consistent with Maxwell’s equations.  As shown in the Excited States of the One-
Electron Atom (Quantization) section, conservation of the   of angular momentum of a trapped photon can give rise to   of 
electron angular momentum along the S-axis.  The photon standing waves of excited states are spherical harmonic functions 
which satisfy Laplace’s equation in spherical coordinates and provide the force balance for the corresponding charge (mass)-
density waves.  Consider the photon in the case of the precessing electron with a Bohr magneton of magnetic moment along the 
S-axis.  The radius of the atomic orbital is unchanged, and the photon gives rise to current on the surface that satisfies the 
condition 
 0J   (16) 
corresponding to a rotating spherical harmonic dipole [3] that phase-matches the current (mass) density of Eq. (1.144).  Thus, the 
electrostatic energy is constant, and only the magnetic energy need be considered as given by Eqs. (23-25). The corresponding 
central field at the atomic orbital surface given by the superposition of the central field of the proton and that of the photon 
follows from Eqs. (2.10-2.17): 

       0
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Y Y e r r
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where the spherical harmonic dipole  , sinmY     is with respect to the S -axis.  Force balance according to Eq. (1.253) is 

maintained by the equivalence of the harmonic modulation of the charge and the mass where / ee m  is invariant as given in the 

Special Relativistic Effect on the Electron Radius and the Relativistic Ionization Energies section.  The dipole spins about the S -
axis at the angular velocity given by Eq. (1.36).  In the frame rotating about the S -axis, the electric field of the dipole is 
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The resulting current is nonradiative as shown in Appendix I: Nonradiation Condition.  Thus, the field in the RF rotating frame is 
magnetostatic as shown in Figures 1.28 and 1.29 but directed along the S -axis.  The time-averaged angular momentum and 
rotational energy due to the charge density wave are zero as given by Eqs. (1.76) and (1.77).  However, the corresponding time-
dependent surface charge density   that gives rise to the dipole current of Eq. (1.144) as shown by Haus [4] is equivalent to 

the current due to a uniformly charged sphere rotating about the S -axis at the constant angular velocity given by Eq. (1.36).  The 
charge density is given by Gauss’ law at the two-dimensional surface: 
 

1 10 0| |r r r r        n n E  (20) 

From Eq. (19),   is 
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  (21) 

and the current (Eq. (1.144)) is given by the product of Eq. (21) and the constant angular frequency (Eq. (1.36)).  The precession 
of the magnetostatic dipole results in magnetic dipole radiation or absorption during a Stern-Gerlach transition.  The application 
of a magnetic field causes alignment of the intrinsic electron magnetic moment of atoms of a material such that the population of 
electrons parallel versus antiparallel is a Boltzmann distribution, which depends on the temperature of the material.  Following 
the removal of the field, the original random-orientation distribution is restored as is the original temperature.  The distribution 
may be altered by the application of an RF pulse at the Larmor frequency. 

The application of a magnetic field with a resonant Larmor excitation gives rise to a precessing angular momentum 

vector S of magnitude   directed from the origin of the atomic orbital at an angle of 
3

   relative to the applied magnetic 

field.  S rotates about the axis of the applied field at the Larmor frequency.  The magnitude of the components of S  that are 

parallel and orthogonal to the applied field (Eqs. (1.129-1.130)) are 
2


 and 

3

4
 , respectively.  Since both the RF field and the 

orthogonal components shown in Figure 1.25 rotate at the Larmor frequency, the RF field that causes a Stern Gerlach transition 
produces a stationary magnetic field with respect to these components as described by Patz [5]. 
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The component of Eq. (1.130) adds to the initial 
2


 parallel component to give a total of   in the stationary frame 

corresponding to a Bohr magneton, B , of magnetic moment.  Eqs. (2) and (6) also hold in the case of the Stern Gerlach 

experiment.  Superposition holds for Maxwell’s equations, and only the angular momentum given by Eqs. (1.127-1.128) and the 
source current corresponding to Eq. (17) need be considered.  Since it does not change, the diamagnetic component given from 
Eq. (1) does not contribute to the spin-flip transition as discussed supra.  The potential energy of a magnetic moment m in the 
presence of flux B [6] is: 
 E  m B  (22) 
The angular momentum of the electron gives rise to a magnetic moment of B .  Thus, the energy spin

magE  to switch from parallel 

to antiparallel to the field is given by Eq. (1.168) 
  2 2 cos 2spin

mag B BE B B      B zi B  (23) 

 
In the case of an applied flux of 10 T, Eq. (23) gives: 
 22 31.855  10 1.158  10spin

magE X J X eV     (24) 
spin
magE  is also given by Planck’s equation.  It can be shown from conservation of angular momentum considerations (Eqs. (26-

32)) that the Zeeman splitting is given by Planck’s equation and the Larmor frequency based on the gyromagnetic ratio (Eq. (2)).  
The electron’s magnetic moment may only be parallel or antiparallel to the magnetic field rather than at a continuum of angles 
including perpendicular according to Eq. (22).  No continuum of energies predicted by Eq. (22) for a pure magnetic dipole are 
possible.  The energy difference for the magnetic moment to flip from parallel to antiparallel to the applied field is: 
 22 32 1.855  10 1.158  10spin

magE X J X eV       (25) 

corresponding to magnetic dipole radiation.   
As demonstrated in the Atomic Orbital Equation of Motion For   = 0 Based on the Current Vector Field (CVF) section, 

2


 of the atomic orbital angular momentum designated the static component is initially parallel to the field.  An additional 

2


 

parallel component designated the dynamic component comes from the   of angular momentum along S.  The angular 
momentum in the presence of an applied magnetic field is [7] 
 ( )em e  L r v A  (26) 

where A is the vector potential evaluated at the location of the atomic orbital.  The circular integral of A is the flux linked by the 
electron.  During a Stern-Gerlach transition a resonant RF photon is absorbed or emitted, and the   component along S reverses 
direction.  It is shown by Eqs. (29-32) that the dynamic parallel component of angular momentum corresponding to the vector 

potential due to the lightlike transition is equal to the “kinetic angular momentum” ( )mr v  of 
2


.  Conservation of angular 

momentum of the atomic orbital requires that the static angular momentum component concomitantly flips.  The static 
component of angular momentum undergoes a spin flip, and concomitantly the “potential angular momentum” ( )er A  of the 

dynamic component must change by 
2




 due to the linkage of flux by the electron such that the total angular momentum is 

conserved.   
In spherical coordinates, the relationship between the vector potential A and the flux B is 

 22 rA r B   (27) 
Eq. (27) can be substituted into Eq. (26) since the magnetic moment m  is given [6] as: 
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and the corresponding energy is consistent with Eqs. (23) and (25) in this case as follows: 
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The boundary condition that the angular momentum is conserved is shown by Eqs. (1.165-1.167).  It can be shown that 
Eq. (29) is also consistent with the vector potential along the axis of the applied field [8] given by: 
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Substitution of Eq. (30) into Eq. (29) gives: 
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with the geometrical factor of 2 / 3  [2] and the current given by Eq. (1.144).  Since k  is the lightlike 0k , then /nk c  

corresponding to the RF photon field.  The relativistic corrections of Eq. (31) are given by Eqs. (1.250) and (1.251) and the 
relativistic radius cr    given by Eq. (1.249).  The relativistically corrected Eq. (31) is: 
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1 0
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1
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B
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e e

e e
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m i


 (32) 

The magnetic flux of the electron is given by: 
  A B  (33) 
Substitution of Eq. (30) into Eq. (33) gives 1/2 the flux of Eq. (1.153). 

From Eq. (28), the 
2


 of angular momentum before and after the field is applied corresponds to an initial magnetic 

moment on the applied-field-axis of 
2

B .  After the field is applied, the contribution of 
2

B  from Eq. (29) with Eq. (27) gives a 

total magnetic moment along the applied-field-axis of B , a Bohr magneton, wherein the additional contribution (Eq. (28)) 

arises from the angular momentum of   on the S -axis.  Thus, even though the magnitude of the vector projection of the angular 

momentum of the electron in the direction of the magnetic field is 
2


, the magnetic moment corresponds to   due to the 

2


 

contribution from the dynamic component, and the quantized transition is due to the requirement of angular momentum 
conservation as given by Eq. (28). 

Eq. (22) implies a continuum of energies; whereas, Eq. (29) shows that the static-kinetic and dynamic vector potential 

components of the angular momentum are quantized at 
2


.  Consequently, as shown in the Electron g Factor section, the flux 

linked during a spin transition is quantized as the magnetic flux quantum:  

 
2

h

e   (34) 

Only the states corresponding to: 

 
1

2sm    (35) 

are possible due to conservation of angular momentum.  It is further shown using the Poynting power vector with the 
requirement that flux is linked in units of the magnetic flux quantum, that the factor 2 of Eqs. (23) and (25) is replaced by the 
electron g factor.   
 Thus, in terms of flux linkage, the electron behaves as a superconductor with a weak link [9] as described in the 
Josephson Junction, Weak Link section and the Superconducting Quantum Interference Device (SQUID) section.  Consider the 
case of a current loop with a weak link comprising a large number of superconducting electrons (e.g. 1010 ).  As the applied field 
increases, the Meissner current increases.  In equilibrium, a dissipationless supercurrent can flow around the loop driven by the 
difference between the flux   that threads the loop and the external flux x  applied to the loop.  Based on the physics of the 

electrons carrying the supercurrent, when the current reaches the critical current, the kinetic angular momentum change of 
2


 

equals the magnitude of the potential angular momentum change corresponding to the vector potential according to Eqs. (26) and 
(31).  As a consequence, the flux is linked in units of the magnetic flux quantum as shown in the Electron g Factor section. 
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ELECTRON G FACTOR 
As demonstrated by Purcell [15], when a magnetic field is applied to an electron in a central field which comprises a current 
loop, the orbital radius does not change, but the velocity changes as follows: 

 
2 e

erB
v

m
   (1.163) 

This corresponds to diamagnetism and gives rise to precession with a corresponding resonance as shown in Box 1.1.  The 
angular momentum in the presence of an applied magnetic field is [15]: 
 ( )em e  L r v A  (1.164) 

where A is the vector potential evaluated at the location of the atomic orbital.  Conservation of angular momentum of the atomic 

orbital permits a discrete change of its “kinetic angular momentum” ( )mr v  with respect to the field of 
2


, and concomitantly 

the “potential angular momentum” ( )er A  must change by 
2




.  The flux change,  , of the atomic orbital for nr r  is 

determined as follows [15]: 
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In order that the change in angular momentum, L , equals zero,   must be 
2

h

e  , the magnetic flux quantum.  Thus, to 

conserve angular momentum in the presence of an applied magnetic field, the atomic orbital magnetic moment can be parallel or 
antiparallel to an applied field as observed with the Stern-Gerlach experiment, and the flip between orientations is accompanied 
by the “capture” of the magnetic flux quantum by the atomic orbital “coils” comprising infinitesimal loops of charge moving 
along geodesics (great circles).  A superconducting loop with a weak link also demonstrates this effect [22]. 

The energy to flip the orientation of the atomic orbital due to its magnetic moment of a Bohr magneton, B , is: 

  2spin moment
mag BE B   (1.168) 

where 
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 (1.169) 

During the spin-flip transition, power must be conserved.  Power flow is governed by the Poynting power theorem, 
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STORED MAGNETIC ENERGY 
Energy superimposes; thus, the calculation of the spin-flip energy is determined as a sum of contributions.  The energy change 
corresponding to the “capture” of the magnetic flux quantum is derived below.  From Eq. (1.161) for one electron, 
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is the energy stored in the magnetic field of the electron.  The atomic orbital is equivalent to a Josephson junction which can trap 

integer numbers of fluxons where the quantum of magnetic flux is 
2

h

e  .  Consider Eq. (1.171).  During the flip transition a 

fluxon treads the atomic orbital at the speed of light; therefore, the radius of the atomic orbital in the lab frame is 2  times the 
relativistic radius in the fluxon frame as shown in the Special Relativistic Effect on the Electron Radius and the Relativistic 
Ionization Energies section.  Thus, the energy of the transition corresponding to the “capture” of a fluxon by the atomic orbital, 

fluxon
magE , is: 
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where A  is the area and   is the magnetic flux quantum. 
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where the nth fluxon treading through the area of the atomic orbital is equivalent to the applied magnetic flux.  Furthermore, the 
term in brackets can be expressed in terms of the fine structure constant,  , as follows: 
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Substitution of Eq. (1.35) gives: 
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Substitution of 
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and 
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gives  
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The fluxon treads the atomic orbital at v c  ( k  is the lightlike 0k , then /nk c ).  Thus, 
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  (1.181) 

 

STORED ELECTRIC ENERGY 
The superposition of the vector projection of the atomic orbital angular momentum on the z-axis is 

2


 with an orthogonal 

component of 
4


.  Excitation of a resonant Larmor precession gives rise to   on an axis S that precesses about the spin axis at an 

angle of 
3

  .  S rotates about the z-axis at the Larmor frequency.  S , the transverse projection, is 
3

4
   (Eq. (1.129)), and 

||S , the projection onto the axis of the applied magnetic field, is 
2




 (Eq. (1.130)).  As shown in the Spin Angular Momentum of 

the Atomic Orbital 0
0 ( , ) Y  with   = 0 section, the superposition of the 

2


 z-axis component of the atomic orbital angular 

momentum and the 
2


 z-axis component of S  gives   corresponding to the observed electron magnetic moment of a Bohr 

magneton, B .  The reorientation of S and the atomic orbital angular momentum from parallel to antiparallel due to the magnetic 

field applied along the z-axis gives rise to a current.  The current is acted on by the flux corresponding to  , the magnetic flux 

quantum, linked by the electron during the transition which gives rise to a Hall voltage.  The electric field corresponding to the 

Hall voltage corresponds to the electric power term, 0

1

2t

 


   
E E , of the Poynting power theorem (Eq. (1.170)).  

Consider a conductor in a uniform magnetic field and assume that it carries a current driven by an electric field 
perpendicular to the magnetic field.  The current in this case is not parallel to the electric field, but is deflected at an angle to it 
by the magnetic field.  This is the Hall Effect, and it occurs in most conductors.  A spin-flip transition is analogous to the 
Quantum Hall Effect given in the corresponding section wherein the applied magnetic field quantizes the Hall conductance.  The 
current is then precisely perpendicular to the magnetic field, so that no dissipation (that is, no ohmic loss) occurs.  This is seen in 
two-dimensional systems, at cryogenic temperatures, in quite high magnetic fields.  Furthermore, the ratio of the total electric 
potential drop to the total current, the Hall resistance, HR , is precisely equal to: 
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The factor n  is an integer in the case of the Integral Quantum Hall Effect, and n  is a small rational fraction in the case of the 
Fractional Quantum Hall Effect.  In an experimental plot [23] as the function of the magnetic field, the Hall resistance exhibits 
flat steps precisely at these quantized resistance values; whereas, the regular resistance vanishes (or is very small) at these Hall 
steps.  Thus, the quantized Hall resistance steps occur for a transverse superconducting state. 

Consider the case that an external magnetic field is applied along the x-axis to a two dimensional superconductor in the 
yz-plane which exhibits the Integral Quantum Hall Effect.  (See Figure 1.30.)  Conduction electrons align with the applied field 
in the x direction as the field permeates the material.  The normal current carrying electrons experience a Lorentz force, LF , due 

to the magnetic flux.  The y-directed Lorentz force on an electron having a velocity v  in the z direction by an x-directed applied 
flux, B, is: 
 L e F v B  (1.183) 

The electron motion is a cycloid where the center of mass experiences an E B  drift [24].  Consequently, the normal Hall Effect 
occurs.  Conduction electron energy states are altered by the applied field and by the electric field corresponding to the Hall 
Effect.  The electric force, HF , due to the Hall electric field, yE , is: 

 H yeF E  (1.184) 

When these two forces are equal and opposite, conduction electrons propagate in the z direction alone.  For this special case, it is 
demonstrated in Jackson [24] that the ratio of the corresponding Hall electric field HE  and the applied magnetic flux is: 
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(1.185) 

where v  is the electron velocity.  And, it is demonstrated in the Integral Quantum Hall Effect section that the Hall resistance, 

HR , in the superconducting state is given by: 
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where n  is an integer. 
 
Figure 1.30.   Coordinate system of crossed electric field, yE , 

corresponding to the Hall voltage, magnetic flux, xB , due to 

applied field, and superconducting current zi . 
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Consider the case of the spin-flip transition of the electron.  In the case of an exact balance between the Lorentz force 
(Eq. (1.183)) and the electric force corresponding to the Hall voltage (Eq. (1.184)), each superconducting point mass-density 
element of the electron propagates along a great circle where  
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(1.187) 

where v  is given by Eq. (1.35).  Substitution of Eq. (1.35) into Eq. (1.187) gives: 
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(1.188) 

Eq. (1.185) is the condition for superconductivity in the presence of crossed electric and magnetic fields.  The electric field 
corresponding to the Hall voltage corresponds to the electric energy term, eleE , of the Poynting power theorem (Eq. (1.170)). 
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       E E  (1.189) 

The electric term for this superconducting state is derived as follows using the coordinate system shown in Figure 1.31. 
The current is perpendicular to rE , thus there is no dissipation.  This occurs when: 

 e e E v B   (1.190) 
or 
 E B v  (1.191) 
The electric field corresponding to the Hall voltage is: 
  E v B   (1.192) 
Substitution of Eq. (1.192) into Eq. (1.189) gives: 

Figure 1.31.   Coordinate system of crossed electric 
field, rE , corresponding to the Hall voltage, magnetic 

flux, B , due to applied field, and superconducting 

current i . 
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        (1.193) 

The spin flip transition may be induced by the absorption of a resonant photon.  The velocity is determined from the distance 
traversed by each point element and the time of the transition due to capture of a photon resonant with the spin-flip transition 
energy.  The current i  corresponding to the Hall voltage and rE  is given by the product of the electron charge and the 

frequency f  of the photon where the correspondence principle holds as given in the Photon Absorption section. 
 i ef  (1.194) 
The resistance of free space for the propagation of a photon is the radiation resistance of free space,  . 

 0

0




  (1.195) 

The power rP  of the electron current induced by the photon as it transitions from free space to being captured by the electron is 

given by the product of the corresponding current and the resistance R  which is given by Eq. (1.195). 
 2

rP i R  (1.196) 

Substitution of Eq. (1.194) and Eq. (1.195) gives 

 2 2 0

0
rP e f




  (1.197) 

It follows from the Poynting power theorem (Eq. (1.170)) with spherical radiation that the transition time   is given by the ratio 
of the energy and the power of the transition [25].   

 
energy

power
   (1.198) 

The energy of the transition, which is equal to the energy of the resonant photon, is given by Planck’s equation. 
 E hf   (1.199) 
Substitution of Eq. (1.197) and Eq. (1.199) into Eq. (1.198) gives: 
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hf

e f





  (1.200) 

The distance   traversed by the electron with a kinetic angular momentum change of 
2


 is: 

 
2

2 2

r 
   (1.201) 

where the wavelength is given by Eq. (1.15).  The velocity is given by the distance traversed divided by the transition time.  Eq. 
(1.200) and Eq. (1.201) gives: 
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    (1.202) 

The relationship for a photon in free space is: 
 c f  (1.203) 
As shown in the Unification of Spacetime, the Forces, Matter, and Energy section, the fine structure constant given by Eq. 
(1.179) is the dimensionless factor that corresponds to the relativistic invariance of charge. 
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 (1.204) 

It is equivalent to one half the ratio of the radiation resistance of free space, 0

0




, and the Hall resistance, 
2

h

e
.  The radiation 

resistance of free space is equal to the ratio of the electric field and the magnetic field of the photon (Eq. (4.10)).  Substitution of 
Eq. (1.203) and Eq. (1.204) into Eq. (1.202) gives: 
 v c  (1.205) 
Substitution of Eq. (1.205) into Eq. (1.193) gives: 
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          (1.206) 

where 
 0B H  (1.207) 

The relationship between the speed of light, c , and the permittivity of free space, 0 , and the permeability of free space, 0 , is 

 
0 0

1
c

 
  (1.208) 

Thus, Eq. (1.206) may be written as: 

 
12

2 2 2
0

0 0 0

1
sin

2

r

eleE H r drd d
 

         (1.209) 

Substitution of Eq. (1.157) gives 

 
2 2

2 0
2 3

1

2

3ele
e

e
E

m r

 
 (1.210) 

The magnetic flux, B , is quantized in terms of the Bohr magneton because the electron links flux in units of the magnetic flux 
quantum, 

 0 2

h

e
   (1.211) 

Substitution of Eqs. (1.171-1.181) gives: 

 22
2

3 2ele BE B
 


   
 

 (1.212) 

 

DISSIPATED ENERGY 
The J E  energy over time is derived from the electron current corresponding to the Larmor excitation and the electric field 
given by Faraday’s law due to the linkage of the magnetic flux of the fluxon during the spin-flip.  Consider the electron current 
due to the external field.  The application of a magnetic field with a resonant Larmor excitation gives rise to a precessing angular 

momentum vector S of magnitude   directed from the origin of the atomic orbital at an angle of 
3

   relative to the applied 

magnetic field.  As given in the Spin Angular Momentum of the Atomic Orbital 0
0 ( , ) Y  with   = 0 section, S rotates about the 

axis of the applied field at the Larmor frequency.  The magnitude of the components of S that are parallel and orthogonal to the 

applied field (Eqs (1.129-1.130)) are 
2


 and 

3

4
 , respectively.  Since both the RF field and the orthogonal components shown 

in Figure 1.25 rotate at the Larmor frequency, the RF field that causes a Stern Gerlach transition produces a stationary magnetic 
field with respect to these components as described in Box 1.1.  The corresponding central field at the atomic orbital surface 
given by the superposition of the central field of the proton and that of the photon follows from Eqs. (2.10-2.17) and Eq. (17) of 
Box 1.1: 

       0
0 12

, Re ,
4

    


    
nim tm

o

e
Y Y e r r

r r yE i i  (1.213) 

where the spherical harmonic dipole  , sinmY     is with respect to the S-axis.  The dipole spins about the S-axis at the 

angular velocity given by Eq. (1.36).  The resulting current is nonradiative as shown in Appendix I: Nonradiation Condition.  
Thus, the field in the RF rotating frame is magnetostatic as shown in Figures 1.28 and 1.29 but directed along the S-axis.  Thus, 
the corresponding current given by Eq. (1.144) is 
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e
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 (1.214) 

Next consider Faraday’s equation for the electric field  

 0

C S

d
d d

dt
    E s H a  (1.215) 

As demonstrated by Purcell [15], the velocity of the electron changes according to Lenz’s law, but the change in centrifugal 
force is balanced by the change in the central field due to the applied field.  The magnetic flux of the electron given by Eq. 
(1.152) is 



Chapter 1 

 

104

 

 0
0 3

1

( cos sin )r
e

e

m r 
    B H i i


      for nr r  (1.216) 

From Eq. (1.181), the magnetic flux B J E  of the fluxon is: 
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 (1.217) 

The electric field E  is constant about the line integral of the atomic orbital.  Using Eq. (1.215) with the change in flux in units of 
fluxons along the z-axis given by Eq. (1.217) gives: 
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Substitution of Eq. (1.217) into Eq. (1.219) gives: 
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Thus, 
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 (1.222) 

The dissipative power density E J  can be expressed in terms of the surface current density K as: 

    
V S

tdv tda     E J E K  (1.223) 

Using the electric field from Eq. (1.222) and the current density from Eq. (1.214) gives: 
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 (1.224) 

Substitution of Eqs. (1.171-1.181) into Eq. (1.224) gives: 
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   E J  (1.225) 

 

TOTAL ENERGY OF SPIN-FLIP TRANSITION 
The principal energy of the transition corresponding to a reorientation of the atomic orbital is given by Eq. (1.168).  And, the 
total energy of the flip transition is the sum of Eq. (1.168), and Eqs. (1.181), (1.212), and (1.225) corresponding to the magnetic 
energy, the electric energy, and the dissipated energy of a fluxon treading the atomic orbital, respectively.  
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 (1.226) 

 spin
mag BE g B   (1.227) 

where the stored magnetic energy corresponding to the 0

1

2t

 


   
H H  term increases, the stored electric energy corresponding 

to the 0

1

2t

 


   
E E  term increases, and the J E  term is dissipative.  The magnetic moment of Eq. (1.168) is twice that from 

the gyromagnetic ratio as given by Eq. (28) of Box 1.1.  The magnetic moment of the electron is the sum of the component 
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corresponding to the kinetic angular momentum, 
2


, and the component corresponding to the vector potential angular 

momentum, 
2


, (Eq. (1.164)).  The spin-flip transition can be considered as involving a magnetic moment of g  times that of a 

Bohr magneton.  The g  factor is redesignated the fluxon g  factor as opposed to the anomalous g  factor, and it is given by Eq. 
(1.226). 
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22 4
1

2 2 3 2 3 2

g   
  

         
   

 (1.228) 

For 1 137.03604(11)    [26]  

 1.001  159  652  120
2

g
  (1.229) 

The experimental value [27] is:  

 1.001  159  652  188(4)
2

g
  (1.230) 

The calculated and experimental values are within the propagated error of the fine structure constant.  Different values of the fine 
structure constant have been recorded from different experimental techniques, and 1   depends on a circular argument between 
theory and experiment [28].  One measurement of the fine structure constant based on the electron g  factor is 

1 137.036006(20)
eg
   [29].  This value can be contrasted with equally precise measurements employing solid state techniques 

such as those based on the Josephson effect [30] ( 1 137.035963(15)J
  ) or the quantized Hall effect [31] 

( 1 137.035300(400)H
  ).  A method of the determination of 1   that depends on the circular methodology between theory and 

experiment to a lesser extent is the substitution of the independently measured fundamental constants 0 , e , c , and h  into Eq. 

(1.204).  The following values of the fundamental constants are given by Weast [26]: 

 7 1
0 4   10X Hm     (1.231) 

 191.6021892(46)  10e X C  (1.232) 

 8 12.99792458(12)  10c X ms  (1.233) 

 34 16.626176(36)  10h X JHz   (1.234) 

For these constants,  

 1 137.03603(82)   (1.235) 

Substitution of the 1   from Eq. (1.235) into Eq. (1.228) gives 

 1.001  159  652  137
2

g
  (1.236) 

The experimental value [27] is  

 1.001  159  652  188(4)
2

g
  (1.237) 

Conversely, the fine structure calculated for the experimental 
2

g
 and Eq. (1.228) is 1 137.036 032 081  . 

The postulated QED theory of 
2

g
 is based on the determination of the terms of a postulated power series in /   where 

each postulated virtual particle is a source of postulated vacuum polarization that gives rise to a postulated term.  The algorithm 
involves scores of postulated Feynman diagrams corresponding to thousands of matrices with thousands of integrations per 
matrix requiring decades to reach a consensus on the “appropriate” postulated algorithm to remove the intrinsic infinities.  The 
solution so obtained using the perturbation series further requires a postulated truncation since the series diverges.  The 

remarkable agreement between Eqs. (1.236) and (1.237) demonstrates that 
2

g
 may be derived in closed form from Maxwell’s 

equations in a simple straightforward manner that yields a result with eleven figure agreement with experiment—the limit of the 
experimental capability of the measurement of the fundamental constants that determine  .  In Ref. [17], the Maxwellian result 
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is contrasted with the QED algorithm of invoking virtual particles, zero point fluctuations of the vacuum, and negative energy 
states of the vacuum.  Rather than an infinity of radically different QED models, an essential feature is that Maxwellian solutions 
are unique.   

The muon, like the electron, is a lepton with   of angular momentum.  The magnetic moment of the muon is given by 
Eq. (1.169) with the electron mass replaced by the muon mass.  It is twice that predicted using the gyromagnetic ratio (given in 
Eq. (2) of Box 1.1) in Eq. (2.65) of the Orbital and Spin Splitting section wherein the intrinsic angular momentum for the spin 

1/2 fermion is 
2


.  As is the case with the electron, the magnetic moment of the muon is the sum of the component 

corresponding to the kinetic angular momentum, 
2


, and the component corresponding to the vector potential angular 

momentum, 
2


, (Eq. (1.164)).  The spin-flip transition can be considered as involving a magnetic moment of g times that of a 

Bohr magneton of the muon.  The g factor is equivalent to that of the electron given by Eq. (1.228). 
The muon anomalous magnetic moment has been measured in a new experiment at Brookhaven National Laboratory 

(BNL) [32].  Polarized muons were stored in a superferric ring, and the angular frequency difference a  between the spin 

precession and orbital frequencies was determined by measuring the time distribution of high-energy decay positrons.  The 
dependence of a  on the magnetic and electric fields is given by the BMT equation which is the relativistic equation of motion 

for spin in uniform or slowly varying external fields [33].  The dependence on the electric field is eliminated by storing muons 
with the “magic” 29.3  , which corresponds to a muon momentum 3.09 /p GeV c .  Hence measurement of a  and of B 

determines the anomalous magnetic moment. 
The “magic”   wherein the contribution to the change of the longitudinal polarization by the electric quadrupole 

focusing fields are eliminated occurs when  

 
1

0
2

g


   (1.238) 

where g  is the muon g factor which is required to be different from the electron g  factor in the standard model due to the 

dependence of the mass dependent interaction of each lepton with vacuum polarizations due to virtual particles.  For example, 
the muon is much heavier than the electron, and so high energy (short distance) effects due to strong and weak interactions are 
more important here [29].  The BNL Muon (g-2) Collaboration [32] used a “magic” 29.3   which satisfied Eq. (1.238) 

identically for 
2

g ; however, their assumption that this condition eliminated the effect of the electrostatic field on a  is flawed 

as shown in Appendix III: Muon g Factor.  Internal consistency was achieved during the determination of 
2

g  using the BMT 

equation with the flawed assumption that 
2 2

e
g g  .  The parameter measured by Carey et al. [32] corresponding to 

2

g  was the 

sum of a finite electric term as well as a magnetic term.  The calculated result based on the equivalence of the muon and electron 
g factors: 

 1.001 165 923
2

g   (1.239) 

is in agreement with the result of Carey et al. [32]: 

  1.001 165 925 15
2

g   (1.240) 

Rather than indicating an expanded plethora of postulated super-symmetry virtual particles which make contributions 
such as smuon-neutralino and sneutrino-chargino loops as suggested by Brown et al. [34], the deviation of the experimental 

value of 
2

g  from that of the standard model prediction simply indicates that the muon g factor is equivalent to the electron g 

factor. 
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DETERMINATION OF ATOMIC ORBITAL RADII 
The one-electron atomic orbital is a spherical shell of negative charge (total charge = e ) of zero thickness at a distance nr  from 

the nucleus of charge Ze .  It is well known that the field of a spherical shell of charge is zero inside the shell and that of a point 
charge at the origin outside the shell [35].  See Figure 1.32. 
 
Figure 1.32.   The point-like electric fields of a proton, a bound electron, and their superposition as the hydrogen atom 
corresponding to a minimum energy and no electron self interaction.  The electron’s field is normal and finite only radially 
distant from its surface, being zero inside of the electron shell according to Gauss’ and Faraday’s laws which is also consistent 
with experiments showing zero self field inside of a charged perfect conductor.  Thus, only the proton’s central field at the 
electron determines the force balance which causes the flat 2-D geometry of a free electron to transition to the 2-D bubble-like 
geometry of the atomic orbital. 
 

 
 
Thus, for a nucleus of charge Z, the force balance equation for the electron atomic orbital is obtained by equating the forces on 
the mass and charge densities.  For the ground state, 1n  , the centrifugal force of the electron is given by: 
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e
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r r


v
F  (1.241) 

where 
2

14
em

r
 is the mass density of the atomic orbital.  The centripetal force is the electric force, eleF , between the electron and 

the nucleus. 

 
2 2

1 0 14 4ele

e Ze

r r 
F  (1.242) 

where 0  is the permittivity of free-space.   

The second centripetal force is an electrodynamic force or radiation reaction force, a force dependent on the second 
derivative of charge position, with respect to time, which arises between the electron and the nucleus.  This force given in 
Sections 6.6, 12.10, and 17.3 of Jackson [36] achieves the condition that the sum of the mechanical momentum and 
electromagnetic momentum is conserved.  The motion of each point in the magnetic field of the nucleus will cause a relativistic 
central force, magF , which acts on each point mass.  The magnetic central force is derived as follows from the Lorentz force, 

which is relativistically corrected.  Each infinitesimal point of the atomic orbital moves on a great circle, and the charge density 

at each point is 
24 n

e

r
.   As given in the Proton and Neutron section, the proton is comprised of a linear combination of three 

constant functions and three orthogonal spherical harmonic quark/gluon functions.  The magnetic field front due to the motion of 
the electron propagates at the speed of light.  From the photon inertial reference frame at the radius of each infinitesimal point of 
the electron atomic orbital, the proton charge distribution is given as the product of the quark and gluon functions, which gives 
rise to a uniform distribution.  The magnetic flux of the proton in the v c  inertial frame at the electron radius follows from 
McQuarrie [19]:  

 0
32 p n

e

m r


B


 (1.243) 
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And, the magnetic flux due to a nucleus of charge Z and mass m is: 

 0
32 n

Ze

mr


B


 (1.244) 

The motion of each point will cause a relativistic central force,  i magF , which acts on each point mass.  The magnetic central force 

is derived as follows from the Lorentz force which is relativistically corrected. The Lorentz force density on each point moving 
at velocity v  is: 

 
24mag

n

e

r
 F v B  (1.245) 

For the hydrogen atom with 1Z   and pm m , substitution of Eq. (1.35) for v and Eq. (1.244) for B gives:  
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 (1.246) 

The term in brackets can be expressed in terms the fine structure constant   wherein the radius of the electron relative to the 
v c  frame ( k  is the lightlike 0k , then /nk c  regarding a potentially emitted photon), *r , is the corresponding relativistic 

radius.  From Eq. (1.15), the relationship between the radius and the electron wavelength is: 

 2 r   (1.247) 

Using the de Broglie Eq. (1.38) with v c  

 
h h

mv mc
    (1.248) 

With substitution of Eq. (1.248) into Eq. (1.247) 

 *
0cr a

mc   
   (1.249) 

The radius of the electron atomic orbital in the v c  frame is C , where v c  corresponds to the magnetic field front 

propagation velocity which is the same in all inertial frames, independent of the electron velocity as shown by the velocity 
addition formula of special relativity [37].  From Eqs. (1.179) and (1.249), 

 
2

0 2
2 e n

e

m r

   (1.250) 

where C  is the Compton wavelength bar substituted for nr , and oa  is the Bohr radius.   

From Lorentz transformations with the electron’s invariant angular momentum of   (Eq. (1.37)), it can be shown that the 
relativistic correction to Eq. (1.246) is the reciprocal of Eq. (1.250).  Consider an inertial frame following a great circle of radius 

nr  with v c  (Here, constant angular velocity as well as constant velocity constitutes an inertial frame for relativistic effects in a 

general sense, as shown in Chp. 34).  The motion is tangential to the radius; thus, nr  is Lorentz invariant.  But, as shown in the 

Special Relativistic Correction to the Ionization Energies section, the tangential distance along a great circle is 2 nr  in the 

laboratory frame and nr  in the v c  frame ( k  is the lightlike 0k , then /nk c ).  In addition, the corresponding radius is 

reduced by   for the light speed radial field.  Thus, the term in brackets in Eq. (1.246) is the inverse of the relativistic correction 
'  for the electrodynamic central force. 

The electron’s magnetic moment of a Bohr magneton B  given by Eq. (1.131) is also invariant as well as its angular 

momentum of  .  The electron is nonradiative due to its angular motion as shown in Appendix I: Nonradiation Condition and 
the Stability of Atoms and Hydrinos section.  Furthermore, the angular momentum of the photon given in the Equation of the 

Photon section is   41
Re ( )

8
dx

c
   m r E B*  .  It is conserved for the solutions for the resonant photons and excited state 

electron functions given in the Excited States of the One-Electron Atom (Quantization) section and the Equation of the Photon 
section.  Thus, the electrodynamic angular momentum and the inertial angular momentum are matched such that the 

correspondence principle holds.  It follows from the principle of conservation of angular momentum that 
e

e

m
 of Eq. (1.131) is 

invariant.  The same applies for the intrinsic magnetic moment B  and angular momentum   of the free electron since it is 

given by the projection of the bound electron into a plane as shown in the Electron in Free Space section.  However, special 
relativity must be applied to physics relative to the electron’s center of mass due to the invariance of charge and the invariant 
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four momentum as given by Purcell [37]. 
The correction to the term in brackets of Eq. (1.246) also follows from the Lorentz transformation of the electron’s 

invariant magnetic moment as well as its invariant angular momentum of  .  Consider a great circle of the electron atomic 
orbital.  As shown in the Special Relativistic Effect on the Electron Radius and the Relativistic Ionization Energies section, the 
tangential distance along a great circle is 2 nr  in the laboratory frame and nr  in the v c  frame.  The corresponding relativistic 

electron mass density regarding the invariant angular momentum increases by a factor of 2  (Eq. (1.281)).  Furthermore, due to 
invariance of charge under Gauss’ Integral Law, with the radius given by (1.209), the charge corresponding to the source current 
of the magnetic field must be corrected by 1 .  Thus, from the perspective of the invariance of B , the term in brackets in Eq. 

(1.246) is the inverse of the relativistic correction for the electrodynamic central force. 
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 (1.251) 

Therefore, the force is given by: 
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The force balance equation is given by equating the centrifugal and centripetal force densities: 
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 (1.253) 

where 1Z   and pm m  for the hydrogen atom and the velocity is given by Eq. (1.35).  (Since the surface-area factor cancels in 

all cases, this factor will be left out in subsequent force calculations throughout this book).  From the force balance equation: 
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 (1.254) 

where the reduced electron mass, e , is: 

 e
e

e

m m

m m
 


 (1.255) 

The Bohr radius is: 
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 (1.256) 

And, the radius given by force balance between the centrifugal force and central electrostatic force alone is: 
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 (1.257) 

And, for hydrogen, m  of Eq. (1.255) is: 

 pm m  (1.258) 

Substitution of the reduced electron mass for the electron mass gives, Ha , the Bohr radius of the hydrogen atom. 
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e
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 (1.259) 

Thus, Eq. (1.254) becomes 

 1
Ha

r
Z

  (1.260) 

where 1Z   for the hydrogen atom.  The results can also be arrived at by the familiar minimization of the energy. 
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ENERGY CALCULATIONS 
The potential energy V between the electron and the nucleus separated by the radial distance radius 1r  considering the force 

balance between the centrifugal force and central electrostatic force alone is 

 
2 2 2

2 18 2
 

0 1 0 0

4.3598  10 27.212 
4 4

Ze Z e
V Z X J Z eV

r a 
 

         (1.261) 

Because this is a central force problem, the kinetic energy, T , is 
1

2
V . 

 
2 2

2

0 0

13.606 
8

Z e
T Z eV

a
    (1.262) 

The same result can be obtained from 2
1

1

2 eT m v  and Eq. (1.35).  Alternatively, the kinetic energy T and the binding energy BE , 

which are each equal to the change in stored electric energy, eleE , can be calculated from  

 2
0

1

2

r

eleT E Z dv




    E  where 
2

04

e

r
  rE i  (1.263) 

Thus, as the atomic orbital shrinks from 1  to r , 
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8 8B

Ze Z e
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r a 
           (1.264) 

The calculated Rydberg constant R  using Eq. (1.259) in Eqs. (1.261-1.264) which includes the relativistic correction 
corresponding to the magnetic force given by Eq. (1.252) is 110,967,758 m .  The experimental Rydberg constant is 

110,967,758 m .  Furthermore, a host of parameters can be calculated for the hydrogen atom, as shown in Table 1.2. 
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Table 1.2.    Some calculated parameters for the hydrogen atom ( 1n  ). 
 

 
 

radius 1 Hr a  11
 5.294654  10X m  

potential energy 
2

04 H

e
V

a


  27.196 eV  

kinetic energy 
2

08 H

e
T

a
  13.598 eV  

angular velocity (spin) 1 2
1em r

 


 16 1
 4.1296  10  X rad s  

linear velocity 1 1 1v r  6 1
 2.1865  10X ms  

wavelength 1 12 r   10
 3.325  10X m  

spin quantum number 
1

2
s   

1

2
 

moment of Inertia 
2

1

2
em r

I   51 21.277  10  X kgm  

angular kinetic energy 2
1

1

2angularE I  6.795 eV  

magnitude of the  
angular momentum 
 

  34
 1.0545  10X Js  

projection of the  
angular momentum  
onto the transverse-axis  
 

4


 35

 2.636  10X Js  

projection of the  
angular momentum 
onto the z-axis 2zS 


 35

 5.273  10X Js  

mass density 2
14

em

r
 11 2

 2.589  10X kgm   

charge density 2
14

e

r
 24.553 Cm  
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Table 1.3 gives the radii and energies for some one-electron atoms.  In addition to the energies, the wavelength, angular 
frequency, and the linear velocity can be calculated for any one-electron atom from Eqs. (1.38), (1.36), and (1.35).  Values are 
given in Table 1.4. 
 
Table 1.3.   Calculated energies (non-relativistic) and calculated ionization energies for some one-electron atoms. 
 

 
 
a from Equation (1.257) 

b from Equation (1.262) 
c from Equation (1.261) 
d from Equation (1.264)  
e experimental  
 
It is noteworthy that the potential energy is a constant (at a given n) because the electron is at a fixed distance, nr , from the 

nucleus.  And, the kinetic energy and velocity squared are constant because the atom does not radiate at nr  and the potential 

energy is constant. 
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Table 1.4.  Calculated radii, angular frequencies, linear velocities, and wavelengths for the n=1 state of some one-electron 
atoms (non-relativistic). 
 

 
 
It should be noted that the linear velocity is an appreciable percentage of the velocity of light for some of the atoms in Table 
1.4—5.9% for 7O   for example.  Relativistic corrections must be applied before a comparison between the total energy and 
ionization energy (Table 1.3) is made. 
 

SPECIAL RELATIVISTIC EFFECT ON THE ELECTRON RADIUS AND THE 
RELATIVISTIC IONIZATION ENERGIES 
The electron current constitutes an orbit relative to the laboratory frame.  Muons and electrons are both leptons.  The increase in 
the lifetime of muonic decay due to relativistic motion in a cyclotron orbit relative to a stationary laboratory frame provides 

strong confirmation of time dilation and confirms that the electron’s frame is an inertial frame [38].  
e

eB

m
 bunching of electrons in 

a gyrotron [39] occurs because the cyclotron frequency is inversely proportional to the relativistic electron mass.  This further 
demonstrates that the electron frame is an inertial frame and that relativistic electron mass increase and time dilation occur 
relative to the laboratory frame.  The special relativistic relationship in polar coordinates is derived.  The result of the treatment 
of the electron motion relative to the laboratory frame is in excellent agreement with numerous experimental observables such as 
the electron g factor, the invariance of the electron magnetic moment of B  and angular momentum of  , the fine structure of 

the hydrogen atom, and the relativistic ionization energies of one and two electron atoms found infra and in the Excited States of 
the One-Electron Atom (Quantization) and the Two-Electron Atoms sections. 

Following the same derivation as given by Beiser [40], it can be shown that the consequences of maintaining a constant 
maximum speed of light with preservation of physical laws independent of inertial frames of reference for the bound electron 
requires that the coordinate transformations are Lorentzian.  First, the consequences for the electron in its frame are considered.  
The motion at each infinitesimal point of the atomic orbital is on a great circle as shown in the Atomic Orbital Equation of 
Motion For   = 0 Based on the Current Vector Field (CVF) section.  The electron motion is tangential to the radius; thus, r

n
 for 

the electron-frame is Lorentz invariant.  A further consequence of the electron’s motion always being perpendicular to its radius 
is that the electron’s angular momentum of   is invariant as shown by Eq. (1.37).  The electron’s magnetic moment of a Bohr 
magneton  B

 given by Eq. (1.131) is also invariant as well as its angular momentum of  .   

Further using the required Lorentz transforms, the special relativistic effects for the laboratory frame are determined on 
the bound electron by considering lightlike events where there is a decrease in the electron wavelength and period due to 
relativistic length contraction and time dilation of the electron motion in the laboratory inertial frame relative to the lightlike 
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frame as shown infra10.  A lightlight event regards the nature of an electron, excited state since only excited states of the bound 
electron can emit radiation.  The nature of excited states depends on the properties of photons as well as the bound electron.  The 
angular momentum of the electric and magnetic fields of the photon given in the Equation of the Photon section is  .  It is 
conserved for the solutions for the resonant photons and excited state electron functions given in the Excited States of the One-
Electron Atom (Quantization) section and the Equation of the Photon section.  The photons emitted during the formation of each 
one-electron atom are its excited state photons.  Thus, the electrodynamic angular momentum and the inertial angular 
momentum are matched such that the correspondence principle holds.  It follows from the principle of conservation of angular 

momentum of   that 
 

e

m
e

 of Eq. (1.131) is invariant (See the Determination of Atomic Orbital Radii section). Since charge is 

invariant according to special relativity, the electron mass of the atomic orbital must also be invariant.  But, as shown infra, the 

electron radius in the laboratory frame goes to a factor of 
1

2
 of that in the lightlike ( v  c ) frame.  Thus, the effect of special 

relativity is to increase the mass and charge densities identically such that 
e

m
e

 is a constant invariant.  In the present case, the 

electron mass density increases by factor of  2  relative to that in the lightlike frame.  The remarkable agreement between the 
calculated and observed value of the fine structure of the hydrogen atom which depends on the conditions of the invariance of 

the electron’s charge and charge-to-mass ratio 
 

e

m
e

 as given in the Spin-Orbit Coupling section further confirms the validity of 

this result.  A further consequence of the decrease of the radius of the atomic orbital by a factor of  2  relative to that in the 
lightlike frame is that the bound electron is nonradiative due to its angular motion even in the case that   0 .  This is shown by 
using the relativistic wavelength to radius relationship given by Eq. (1.279) in Appendix I: Nonradiation Condition and in the 
Stability of Atoms and Hydrinos section.  The radiative instability of excited states is due to a radial dipole term in the function 
representative of the excited state due to the interaction of the photon and the excited state electron as shown in the Instability of 
Excited States section. 

Specifically, to derive the relativistic relationships consider that the electron is in constant angular velocity and is an 
inertial frame of reference relative to absolute space as given in the Equivalence of Inertial and Gravitational Masses Due to 
Absolute Space and Absolute Light Velocity section.  This can be defined as the laboratory frame of the electron’s motion upon 
which the spatial and temporal Lorentzian transforms may be applied.  The motion of a possible photon is also relative to 
absolute space.  The nature of an exited state as shown in the Excited States of the One-Electron Atom (Quantization) section is 
a superposition of an electron and a photon comprising two-dimensional shells of current and field lines, respectively, at the 
same radius defined by  r  r

n .  Due to the further nature of the photon possessing light-speed angular motion, the electron 

motion and corresponding spatial and temporal parameters may be considered relative to light speed for the laboratory frame of 
the electron’s constant angular velocity.  The derivation of Eqs. (1.279) and (1.280) regards the use of Lorentz spatial and 
temporal transforms for the case of constant angular velocity along a path on a great-circle element.  Such transforms are 
unconventional from the standard transforms on rectilinear motion, but they are perfectly physical as shown in the Newton’s 
Absolute Space Was Abandoned by Special Relativity Because Its Nature Was Unknown section. 

The equation of a photon is given in the Equation of the Photon section.  An emitted free-space photon comprises a field-
line pattern called a photon electric and magnetic vector field (e&mvf) similar to the atomic orbital wherein the former is 
generated from two orthogonal great circle field lines rather than two great circle current loops as in the case of the electron spin 
function.  The motion along each field line is at light speed.  The angular momentum, m, of the electric and magnetic fields of 

the emitted photon given by Eq. (4.1) is   41
Re ( )

8
dx

c
   m r E B*  .  The equation of the photon of an exited state is 

given by Eq. (2.15).  The absorption or emission of a photon regards an excited state given in the Excited States of the One-
Electron Atom (Quantization) section.  The excited state comprises a two-dimension field surface of great-circle field lines at the 
inner surface of the electron atomic orbital that has a slow component of motion phase-locked with and propagating the electron 
modulation wave ( 0 ) that travels about the z-axis with angular frequency n .  The corresponding change in electron angular 
frequency between states matches the frequency of the photon that excited the transition, and the angular momentum of the fields 
(Eq. (4.1)) is conserved in the excited state.  In addition, the motion along each great-circle field line is at velocity c ; so, the 

 
10 Many problems arise in the case of applying special relativity to standard quantum mechanical solutions for one-electron atoms as discussed in the 
Quantum Theory Past and Future section, the Shortcomings of Quantum Theory section, and Refs. [16-17].  Spin was missed entirely by the Schrödinger 
equation, and it was forced by spin matrices in the Dirac equation.  It does not arise from first principles, and it results in nonsensical consequences such as 
infinities and “a sea of virtual particles.”  These are not consistent with observation and paradoxically the virtual particles constitute an ether, the 
elimination of which was the basis of special relativity and is the supposed basis of the Dirac equation.  In addition, the electron motion in the Schrödinger 
and Dirac equations is in all directions; consequently, the relativistic increase in electron mass results in an instability since the electron radius is inversely 
proportional to the electron mass.  Since the electron mass in special relativity is not invariant, but the charge is, the electron magnetic moment of a Bohr 
magneton 

B
 as well as its angular momentum of   cannot be invariant in contradiction with experimental observations known to 14-figure accuracy [26].  
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relative electron to absorbed-photon velocity is c .  This is also the velocity that must be considered for the emission of a photon 
by the bound electron since this state must form in order for emission to occur.  The corresponding source current follows from 

  
n  E

1
 E

2  


0

 (Eq. (2.11)), and the relativistically corrected wavelength given by Eq. (1.279) is n  rn .  This is Eq. (41) of 

the Appendix I that determines the nonradiative property of the atomic orbital and its time and spherically harmonic angular 
functions as given by Eqs. (38) and (70) and (73) of Appendix I9.  Emission or absorption corresponds to an energy-state 
transition.  The corresponding change in electron radius with emission or absorption of a photon is the source current for a free-
space photon as given in the State Lifetimes and Line Intensities section. 

Consider that the motion at each infinitesimal point on the atomic orbital is on a great circle, and that each point-charge 

element has the charge density 
24 n

e

r
 and mass density 

24
e

n

m

r
 as shown in the Atomic Orbital Equation of Motion For   = 0 

Based on the Current Vector Field (CVF) section.  Next, consider a charge-density element (and correspondingly a mass-density 
element) of a great-circle current loop of the electron atomic orbital in the y'z'-plane as shown in Figure 1.4.  The distance on a 
great circle is given by: 

 
2

2

0
0

2n n nr d r r


     (1.265) 

Due to relative motion, the distance along the great circle must contract and the time must dilate due to special relativity.  The 
special relativistic length contraction relationship observed for a laboratory frame relative to an inertial frame moving at constant 
velocity v  is: 

 
2

1o

v
l l

c
    
 

 (1.266) 

Consider a point initially at (0,0,1) moving clockwise on a great circle in the Cartesian y’z’-plane.  The relationship between 
polar and Cartesian coordinates used for special relativity11 is given by: 

 1
' 0x   1

' sin( ) n ny r t  1
' cos( )n nz r t  (1.267) 

where n  is given by Eq. (1.36), nr  is from Eq. (1.257), and 

 nt   (1.268) 

Due to relativity, a contracted wavelength arises.  The distance on the great circle undergoes length contraction only in the ̂  
direction as v c .  Thus, as v c  the distance on a great circle approaches its radius which is the relativistically contracted 
electron wavelength since the relationship between the radius and the wavelength given by Eq. (1.15) is 

 2 n nr   (1.269) 

With v c ,  

 *r   (1.270) 

where * indicates the relativistically corrected parameter.  Thus, 

  *
2

nrr


  (1.271) 

The relativistically corrected mass *m  follows from Eq. (1.271) with maintenance of the invariance of the electron angular 
momentum of   given by Eqs. (1.35) and (1.37). 

 e
e

m m r
m r

 r v


 (1.272) 

 
 
 
 
 
 

 
11 The Cartesian coordinate system as compared to general coordinates is special with regard to a fundamental aspect of Lorentz transforms on Cartesian 
coordinates discussed in the Relativity section. 
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With Eq. (1.271), the relativistically corrected mass *m  corresponding to an increase in its density only is12 

 * 2 em m  (1.273) 

The effect of the relativistic contraction of the distance along a great circle loop is to change the angle of constant motion 
in Eq. (1.267) with a corresponding decrease in the electron wavelength.  For the point initially at (0,0,1) moving clockwise on a 
great circle in the Cartesian y’z’-plane as shown in Figure 1.4, the relativistically corrected wavelength that follows from Eqs. 
(1.265-1.269) is given by the sum of the relativistic electron motion along the great circle (y' direction) and that projected along 
the radial axis (z' direction): 

 
*
, '2

* * *
, '

0 0

sin cos
n zr

n n yr d dr


       (1.274) 

where the * indices correspond to the relativistically corrected parameters in the y' and z' directions.  The length contraction is 
only in the direction of motion that is orthogonal to the radius and constant as a function of angle.  Thus, Eq. (1.268) is given by 

 
2

' * ' *2 1 sin cosn n n

v
r r

c
       

 
 (1.275) 

The projection of the angular motion onto the radial axis is determined by determining the relativistic angle *  corresponding to 
a decrease in the electron wavelength and period due to relativistic length contraction and time dilation of the electron motion in 
the laboratory inertial frame.  Substitution of Eq. (1.36) into Eq. (1.268) gives: 

 
2n

e n

t t
m r

  


 (1.276) 

The correction for the time dilation and length contraction due to electron motion gives the relativistic angle *  as: 

 

3/22 2
*

2 2

2

1 1

1

n
e nn

e

v v
t t t

c m r cr
m

v
c

 
 
 
 
 
 
 
  
 

                 

   
 

 
 (1.277) 

 
12 The magnitude of the total angular momentum of the atomic orbital L  must be constant.  The constant total is   given by the integral 

   4
2

1

4 e n e n
e n

m r r dx m r
m rr




    m r v
   (1) 

where the corresponding velocity is given by Eq. (1.35).  The integral of the magnitude of the angular momentum of the electron is   in any inertial frame 
and is relativistically invariant. 

According to special relativity, the electron's relative motion with respect to the laboratory frame causes the distance along the great circle to 
contract and the time to dilate such that a contracted radius arises as given by Eq. (1.280).  As v  c  the relativistically corrected radius in the laboratory 
frame    r *  is given by 

 
  
 r* 

r
n

2
 (2) 

where  rn
 is the radius in the electron frame.  Eq. (1.271) applies for both the mass and charge densities that are interchangeable by the ratio 

e

m
e

.  Thus, 

the ratio is invariant. 
However, a relativistically corrected mass   m *  can be defined from Eq. (1.271) with maintenance of the invariance of the electron angular 

momentum of   given by Eqs. (1.35) and (1.37).  Due to spherical symmetry, the correction is the same along each great circle of the atomic orbital.  
Thus, the motion of the mass density of the electron along a great circle may be considered.  Then, 

 
e

e

m m r
m r

 r v


 (3) 

With Eq. (1.271), the relativistically corrected mass   m *  corresponding to an increase in its density only is 

   m*  2m
e  (4) 

In other words, the correction of the radius gives an effective relativistic mass as follows: 

 * * *2
2 2 2

2

e e

e e
e

r r r
m m m m m r v

r m r m r
m


  



     r v
  

  (5) 

where v is the electron velocity in its frame given by Eq. (1.35).   
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The period for a wavelength due to electron motion is: 

 
2

T
v

 


   (1.278) 

Only the elements of the second y'z'-quadrant need be considered due to symmetry and continuity of the motion.  Thus, using 
Eqs. (1.276-1.277) for a quarter period of time, Eq. (1.275) becomes: 

 

3/2 3/22 2 2
' '2 1 sin 1 cos 1

2 2n n n

v v v
r r

c c c

  
                                           

 (1.279) 

Using a phase matching condition, the wavelengths of the electron (Eq. (1.269)) and laboratory (Eq. (1.279)) inertial frames are 
equated, and the corrected radius is given by: 

 

3/2 3/22 2 2
' 1

1 sin 1 cos 1
2 2 2n n

v v v
r r

c c c

 


                                               

  (1.280) 

which gives a relativistic factor *  of: 

 *

3/2 3/22 2 2

2

2 1 sin 1 cos 1
2 2

v v v
c c c


 


                                          

 (1.281) 

where the velocity is given by Eq. (1.35) with the radius given by Eq. (1.254).  Plots of ratio of the radii from Eq. (1.280) and *  
(Eq. (1.281)) as a function of the electron velocity v  relative to the speed of light c  are given in Figures 1.33 and 1.34, 
respectively. 

As the electron velocity goes to the speed of light ( v c ) corresponding to any real or potentially emitted phase-locked 

photon, the electron radius in the laboratory frame goes to a factor of 
1

2
 of that in the lightlike electron frame (

'

1

2
n

n

r

r 
 ).  

Thus, with v c , due to symmetry the electron motion corresponds to an atomic orbital of radius 
1

2
 that of the radius in the 

lightlike frame.  In the case where the velocity is the speed of light, the relativistic behavior predicts that the production masses 
of leptons are each the rest mass times the speed of light squared calculated from each of the Planck-equation, electric, and 
magnetic energies in the Leptons section.  The radius correction given by Eq. (1.280) and shown in Figure 1.33 also correctly 
predicts the nonradiation condition, the force corresponding to the reduced electron mass in the radius of the hydrogen atom, 
spin-orbit coupling, the electron pairing force, and other relativistic observables given in this and subsequent chapters. 
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Figure 1.33.   The normalized radius as a function of /v c  due to relativistic contraction. 
 

 
 
Figure 1.34.   The relativistic factor *  as a function of /v c . 
 

 
 

Next, a convenient way to determine the relativistic ionization energies is to use the relativistic total energy equation 
[41].  Consider the motion of the electron in its frame of reference.  Since its motion is perpendicular to the radius, the radius 
(Eq. (1.260)) is invariant to length contraction, the charge is invariant, and only the dependency of the radius on the relativistic 
mass needs to be considered.  The force balance equation (Eq. (1.253)) given by equating the centrifugal and centripetal force 
densities applies in the relativistic case as well where  e em m v  is the relativistic electron mass, Z  is the nuclear charge, 

pm Am  is the nuclear mass with A  being the atomic mass number, and the velocity given by Eq. (1.35) is due to conservation 

of angular momentum which must be obeyed in the relativistic case as well as the nonrelativistic one.  From the force balance 
equation: 

 
2

0 0 0 0
2

0

4
1o e e e e

e e p e p

m m a m m
r

Ze m m m A Z m m A

    
         

   


 (1.282) 
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Using the relativistic velocity (Eq. (1.35) with  e em m v ) and the radius from the force balance equation, the relativistic 

parameter   is: 

 
0 0 0

01 1
e e e e

e e
e p p

v

c m cr a m m a m
m c m c

Z m m A Z m A

    
   
       

   

    (1.283) 

Eqs. (1.178) and (1.179) give a relationship between the fine structure constant and the constants of Eq. (1.283): 

 
2 22 2

0 0 0
2

0 0 0 0 0 0 0

4

4 4 4 e e

e c ae e

c a ca e m m ca

 
  

   
 

  
 (1.284) 

Then, from Eqs. (1.283) and (1.284), the relativistic parameter   simplifies to: 

 

1 e

p

v Z

c m

m A

  
 
  

 

 (1.285) 

The relativistic mass is given by the Lorentz transformation: 

   0 0

2 2

2

1
1

e e
e e

m m
m v m

v
c


  




 (1.286) 

Next, a relationship for the velocity in the relativistic correction for the electron mass is determined from the boundary 
constraints.  In the nonrelativistic limit, Eq. (1.282) reduces to Eq. (1.259) even in the case that Eq. (1.286) is substituted into Eq. 
(1.285); however, at any finite velocity the spin-nuclear interaction becomes velocity dependent according to Eqs. (1.285-1.286).  
Since the interaction arises from the invariant magnetic moments corresponding to the invariant angular momentum of the 
electron and proton, the  e em m v  parameter in Eq. (1.285) must be the fixed constant of 0em .  The corresponding relativistic 

invariant magnetic moment of the nucleus is the nuclear magneton N given by 

 
2N

p

e

m
 


 (1.287) 

such that the relativistic mass ratio for the spin-nuclear interaction is 0

2
e

p

m

m
.  Thus, Eq. (1.285) is given by: 
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2
e
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v Z

c m
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 (1.288) 

Thus, from Eqs. (1.282), (1.286), and (1.288), the relativistic radius of the bound electron is given by: 
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 (1.289) 

The ionization energy or ionization potential IP  is given by the negative of the sum of the potential V  and kinetic 
energies T : 

  IP V T    (1.290) 

The potential energy is given by Eq. (1.261), and the relativistic kinetic energy from Eq. (34.17) is [41]: 

 2
0 2

1
1

1

eT m c
v
c

   
       

 (1.291) 

Thus, IP is given by: 
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Substitution of Eqs. (1.288-1.289) into Eq. (1.292) gives: 
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 (1.293) 

where Eqs. (28.8-28.9) were used.  In the case that the electron spin-nuclear interaction is negligible, Eq. (1.293) reduces to: 

   22
0 1 1eIP m c Z    (1.294) 

In the special case where the velocity is the speed of light and 1Z  , the relativistic behavior predicts that the production 
masses of fundamental particles are the same in both the particle and laboratory frames as given in the Leptons and Quarks 
sections.  The energies given by Eq. (1.293) are plotted in Figure 1.35 and are given in Table 1.5.  The agreement between the 
experimental and calculated values is excellent.  The small deviation is anticipated to be due to the Lamb shift [42] and 
experimental error. 
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Figure 1.35.   The relativistic one-electron-atom ionization energies as a function of the nuclear charge Z.   
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Table 1.5.   Relativistic ionization energies for some one-electron atoms. 
 

One e 
Atom 

Z   
(Eq. (1.288)) 

 

Theoretical 
Ionization 
Energies 

(eV)  

(Eq. (1.293)) 

Experimental 
Ionization 
Energies 

(eV) a 

Relative 
Difference 
between 

Experimental and 
Calculated b 

 
H  1 0.00730 13.59847 13.59844 -0.000002 

He  2 0.01459 54.41826 54.41778 -0.000009 
2Li   3 0.02189 122.45637 122.45429 -0.000017 
3Be   4 0.02919 217.72427 217.71865 -0.000026 

4B   5 0.03649 340.23871 340.2258 -0.000038 
5C   6 0.04378 490.01759 489.99334 -0.000049 
6N   7 0.05108 667.08834 667.046 -0.000063 
7O   8 0.05838 871.47768 871.4101 -0.000078 
8F   9 0.06568 1103.220 1103.1176 -0.000093 
9Ne   10 0.07297 1362.348 1362.1995 -0.000109 
10Na   11 0.08027 1648.910 1648.702 -0.000126 
11Mg   12 0.08757 1962.945 1962.665 -0.000143 

12Al   13 0.09486 2304.512 2304.141 -0.000161 
13Si   14 0.10216 2673.658 2673.182 -0.000178 
14P   15 0.10946 3070.451 3069.842 -0.000198 
15S   16 0.11676 3494.949 3494.1892 -0.000217 
16Cl   17 0.12405 3947.228 3946.296 -0.000236 
17Ar   18 0.13135 4427.363 4426.2296 -0.000256 
18K   19 0.13865 4935.419 4934.046 -0.000278 
19Ca   20 0.14595 5471.494 5469.864 -0.000298 
20Sc   21 0.15324 6035.681 6033.712 -0.000326 
21Ti   22 0.16054 6628.064 6625.82 -0.000339 
22V   23 0.16784 7248.745 7246.12 -0.000362 
23Cr   24 0.17514 7897.827 7894.81 -0.000382 
24Mn   25 0.18243 8575.426 8571.94 -0.000407 
25Fe   26 0.18973 9281.650 9277.69 -0.000427 
26Co   27 0.19703 10016.63 10012.12 -0.000450 
27Ni   28 0.20432 10780.48 10775.4 -0.000471 
28Cu   29 0.21162 11573.34 11567.617 -0.000495 
29Zn   30 0.21892 12395.35 12388.93 -0.000518 
30Ga   31 0.22622 13246.66 13239.49 -0.000542 
31Ge   32 0.23351 14127.41 14119.43 -0.000565 
32As   33 0.24081 15037.75 15028.62 -0.000608 
33Se   34 0.24811 15977.86 15967.68 -0.000638 
35Kr   36 0.26270 17948.05 17936.21 -0.000660 
36Rb   37 0.27000 18978.49 18964.99 -0.000712 
41Mo   42 0.30649 24592.04 24572.22 -0.000807 

53Xe   54 0.39406 41346.76 41299.7 -0.001140 
91U   92 0.67136 132279.32 131848.5 -0.003268 

a From theoretical calculations, interpolation of H isoelectronic and Rydberg series, and experimental data [42-45]. 
b (Experimental-theoretical)/experimental. 
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The electron possesses an invariant angular momentum and magnetic moment of   and a Bohr magneton, respectively.  
This invariance feature provides for the stability of multielectron atoms and the existence of excited states wherein electrons 
magnetically interact as shown in the Two-Electron Atoms section, the Three- Through Twenty-Electron Atoms section, and the 
Excited States of Helium section.  The electron’s motion corresponds to a current which gives rise to a magnetic field with a 
field strength that is inversely proportional to its radius cubed wherein the magnetic field is a relativistic effect of the electric 
field as shown by Jackson [46].  As there is no electrostatic self-energy as shown in the Determination of Atomic Orbital Radii 
section and Appendix II, there is also no magnetic self-energy for the bound electron since the magnetic moment is invariant for 
all states and the surface current is the source of the discontinuous field that does not exist inside of the electron as given by Eq. 
(1.136),   ( )a bX  n H H K .  No energy term is associated with the magnetic field unless another source of magnetic field is 

present.  In general, the corresponding relativistic correction can be calculated from the effect of the electron’s magnetic field on 
the force balance and energies of other electrons and the nucleus, which also produce magnetic fields.  In the case of one-
electron atoms, the nuclear-electron magnetic interaction is the only factor.  Thus, for example, the effect of the proton was 
included in the derivation of Eq. (1.260) for the hydrogen atom. 
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Chapter 2 
  
EXCITED STATES OF THE ONE-ELECTRON ATOM 
(QUANTIZATION) 
  
 
 
 
 
EQUATION OF THE ELECTRIC FIELD INSIDE THE ATOMIC ORBITAL 
It is well known that resonator cavities can trap electromagnetic radiation of discrete resonant frequencies.  The atomic orbital is 
a resonator cavity that traps single photons of discrete frequencies.  Thus, photon absorption occurs as an excitation of a 
resonator mode.  The “trapped photon” is a “standing electromagnetic wave” which actually is a circulating wave that propagates 
around the z-axis, and its source current superimposes with each great circle current loop of the atomic orbital.  The time-
function factor, ( )k t , for the “standing wave” is identical to the time-function factor of the atomic orbital in order to satisfy the 
boundary (phase) condition at the atomic orbital surface.  Thus, the angular frequency of the “trapped photon” has to be identical 
to the angular frequency of the electron atomic orbital, n , given by Eq. (1.36).  Furthermore, the phase condition requires that 

the angular functions of the “trapped photon” have to be identical to the spherical harmonic angular functions of the electron 
atomic orbital.  Combining ( )k t  with the  -function factor of the spherical harmonic gives    ni m m te  for both the electron and 
the “trapped photon” function.   

Consider the hydrogen atom.  The atom and the “trapped photon” caused by a transition to a resonant state other than the 
1n   state have neutral charge.  As shown infra, the photon’s electric field superposes that of the proton such that the radial 

electric field has a magnitude proportional to /Z n  at the electron where 1, 2,3,...n   for excited states and 
1 1 1 1

 , , ,...,
2 3 4 137

n   

for lower energy states given in the Hydrino Theory—BlackLight Process section.  This causes the charge density of the electron 
to correspondingly decrease and the radius to increase for states higher than 13.6 eV and the charge density of the electron to 
correspondingly increase and the radius to decrease for states lower than 13.6 eV as shown in Figure 5.2.  Thus, the field lines of 
the proton always end on the electron.  A way to conceptualize the effect of the photon “standing wave” in an electronic state 
other than 1n   is to consider a solution of Laplace’s equation in spherical coordinates with source currents “glued” to the 
electron and to the nucleus and phase-locked to the rotating electron current density with a radial electric field that only exists at 
the electron.  Or, alternatively to a source current at the nucleus, a Poisson equation solution may comprise a delta function 
inhomogeneity at the origin [1].  Thus, the “trapped photon” is analogous to a gluon described in the Proton and Neutron section 
and a photon in free space as described in the Equation of the Photon section.  However, the true nature of the photon field does 
not change the nature of the electrostatic field of the nucleus or its energy except at the position of the electron.  The photon 
“standing wave” function further comprises a radial Dirac delta function that “samples” the Laplacian equation solution only at 
the position infinitesimally inside of the electron current-density function and superimposes with the proton field to give a field 
of radial magnitude proportional to /Z n , and the Fourier transform of the photon “standing wave” of the electronic states other 

than the 1n   state is continuous over all frequencies in rs -space and is given by 
sin r

r

s r

s r
.  The free space photon also comprises 

a radial Dirac delta function, and the angular momentum of the photon given by   41
Re ( )

8
dx

c
   m r E B*   in the Photon 

section is conserved [2] for the solutions for the resonant photons and excited state electron functions given infra.  It can be 
demonstrated that the resonance condition between these frequencies is to be satisfied in order to have a net change of the 
electromagnetic energy field [3].  In the present case, the correspondence principle holds.  That is the change in angular 
frequency of the electron is equal to the angular frequency of the resonant photon that excites the resonator cavity mode 
corresponding to the transition, and the energy is given by Planck’s equation.  The predicted energies, Lamb shift, fine structure, 
hyperfine structure, resonant line shape, line width, selection rules, etc. are in agreement with observation as shown infra. 
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The discretization of the angular momentum of the electron and the photon gives rise to quantized electron radii and 
energy levels.  Transitions occur in integer units of the electron’s inalienable intrinsic angular momentum of   (Appendix II) 
wherein the exciting photons carry an integer multiple of  .  Thus, for e em r v p  to be constant, the velocity of the electron 

source current decreases by a factor of the integer, and the radius increases by the factor of the integer.  Concomitantly, the 
photon field superimposes that of the proton causing a resultant central field of a reciprocal integer that establishes the force 
balance at the excited state radius.  This quantization condition is equivalent to that of Bohr except that the electron angular 
momentum is  , the angular momentum of one or more photons that give to an excited state is n , and the photon field changes 
the central force balance.  Also, the standing wave regards the photon field and not the electron that comprises an extended 
current and is not a wave function.  Thus, the quantization condition can also be considered as arising from the discretization of 
the photon standing wave including the integer spherical periodicity of the spherical harmonics of the excited state of the bound 
electron as a spherical cavity. 

For a spherical resonator cavity, the relationship between an allowed radius and the “photon standing wave” wavelength 
is  

 2 nr n    (2.1) 

where n  is an integer.  Now, the question arises: given that this is a resonator cavity, which resonant states are possible where 
the transition is effected by a “trapped photon?”  For the electron atomic orbital, a spherical resonator cavity, the relationship 
between an allowed radius and the electron wavelength is: 

 1 12 ( ) 2 n nnr r n       (2.2) 

where  
 1, 2,3,4,...n  , and 

 
1 1 1

, , ,...
2 3 4

n   

 1  is the allowed wavelength for 1n   

 1r  is the allowed radius for 1n   

(The mechanism for transitions to the reciprocal integer states involves coupling with another resonator called a catalyst as given 
in the Hydrino Theory—BlackLight Process section.)  An electron in the ground state, 1n  , is in force balance including the 
electrodynamic force which is included by using the reduced electron mass as given by Eqs. (1.254), (1.259), and (1.260). 

 
2 2
1

2
1 0 14

em v Ze

r r
  (2.3) 

When an electron in the ground state absorbs a photon of sufficient energy to take it to a new resonant state, 2,3,4,...,n   force 

balance must be maintained.  This is possible only if the central field is equivalent to that of a central charge of 
Ze

n
, and the 

excited state force balance equation is:  

 
2 2

2
0

1

4
e n

n n

m v Ze

r n r
  (2.4) 

where 1r  is the “ground” state radius of the electron, and nr  is the nth excited state radius of the electron.  The radius of the nth 

excited state follows from Eq. (1.260) and Eq. (2.4).  

 n Hr na  (2.5) 

The reduction of the effective charge from Ze  to 
Ze

n
 is caused by trapping a photon in the atomic orbital, a spherical resonator 

cavity.  (This condition for excited states is also determined by considering the boundary condition for the multipole expansion 
of the excited states as solutions of Maxwell’s equations wherein the angular momentum and energy of each resonant photon are 
quantized as   and  , respectively, as given in the Excited States of Helium section.)  The photon’s electric field creates a 

“standing wave” in the cavity with an effective charge of 
1

1  (  )nZe at r
n

    
.  The total charge experienced by the electron is the 

sum of the proton and “trapped photon” charge components.  The equation for these “trapped photons” can be solved as a 
boundary value problem of Laplace’s equation.  For the hydrogen atom, the boundary conditions are that the electric field is in 
phase with the atomic orbital and that the radial function for the electric field of the “trapped photon” at nr  is:  

 
  2

0

1
1

4
r photon

n

e

n r
     

E     2,3, 4,...,n   (2.6) 

The general form of the solution to Laplace’s equation in spherical coordinates is: 
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All ,mA  are zero because the electric field given by the potential must be inversely proportional to the radius to obtain force 

balance.  The electric field is the gradient of the potential: 

  E  (2.8) 

 

ˆ 

1 ˆ 

1 ˆ 
sin

r rir

i
r

i
r

 

 







 


 


 


 

E

E

E

 (2.9) 

Thus, 
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Given that 
2

04proton
n

e

r


E , and that the electric fields of the proton and “trapped photon” must superimpose to yield a field 

equivalent to a central point charge of 
Ze

n


, the “trapped photon” electric field for each mode is determined as follows.  The 

time-function factor and the angular-function factor of the charge-density function of the atomic orbital (Eqs. (1.27) and (1.28-
1.29)) at force balance must be in phase with the electric field of the “trapped photon.”  The relationship between the electric 
field equation and the “trapped photon” source charge-density function is given by Maxwell’s equation in two dimensions. 

  1 2
0




  n E E  (2.11) 

where n  is the radial normal unit vector, 1 0E  ( 1E  is the electric field outside of the atomic orbital), 2E  is given by the total 

electric field at n Hr na , and   is the surface charge-density.  Thus, 
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 1, 2,3,4,...n   
  0,1,2,..., 1n   
 m    , –  1,...,0,...,    

rtotalE  is the sum of the “trapped photon” and proton electric fields, 
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For Hr na  and 0m  , the total radial electric field is: 

 
 2

0

1

4
r total

H

e

n na
E  (2.17) 
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Photons carry electric field, and the direction of field lines change with relative motion as required by special relativity.  
They increase in the direction perpendicular to the propagation direction.  As shown by Eq. (4.9), the linear velocity of each 
point along a great circle of the photon atomic orbital is c .  And, as shown in the Special Relativistic Correction to the Ionization 
Energies section and by Eq. (1.280), when the velocity along a great circle is light speed, the motion relative to the non-light 
speed frame is purely radial.  In the case of the electric field lines of a trapped resonant photon of an excited state, the relativistic 
electric field is radial1.  It is given by Eq. (2.15), and it exists only at  nr r  .  Thus, the photon only changes the radius and 

energy of the electron directly.  Since the electric field of the photon at the electron superimposes that of the nucleus, the excited-
state-energy levels are given by Eq. (2.18), and the hydrogen atom, for example, remains neutral. 

The spherical harmonic function has a velocity less than light speed given by Eq. (1.35) and is phase-matched with the 
electron such that angular momentum is conserved during the excited state transition.  This radial field can be considered a 
corresponding surface charge density as given in the Instability of Excited States section and the Stability of Atoms and 
Hydrinos section.  All boundary conditions are met for the electric fields and the wavelengths of the “trapped photon” and the 
electron.  Thus, Eq. (2.16) is the solution for the excited modes of the atomic orbital, a spherical resonator cavity.  And, the 
quantum numbers of the electron are n ,  , m , and sm  (Described in the Stern-Gerlach Experiment section).  A xp  or yp  

atomic-hydrogen excited state is shown in Figure 2.1. 
 
Figure 2.1.   The electron atomic orbital is a resonator cavity wherein the radii of the excited states are related by integers.  
The electronic charge-density function of a xp  or yp  atomic-hydrogen excited state is shown with positive and negative charge-

density proportional to red intensity and blue intensity, respectively.  The function corresponds to a charge density wave on the 
two-dimensional spherical surface of radius 0na  that travels time harmonically about the z-axis at the angular frequency given 

by Eq. (1.36).  It is comprised of a linear combination of a constant function modulated by time and spherically harmonic 
functions.  The centrifugal force is balanced by the electric field of its photon that is phase-locked to the spinning electron.  The 
brightness corresponds to the intensity of the two-dimensional radial photon field. 
 

 
 
In the limit, the electric field of a photon cancels that of the proton ( n   in Eq. (2.17)), and the electron ionizes.  The radius 
of the spherical shell (electron atomic orbital) goes to infinity as in the case of a spherical wavefront of light emitted from a 
symmetrical source, but it does not achieve an infinite radius.  Rather it becomes ionized as shown in Figure 2.2 with the free 
electron propagating as a plane wave with linear velocity, zv , and the size of the electron is the de Broglie wavelength, /h p  , 

as given in the Electron in Free Space section. 
In general, the mechanism of photon absorption to form an excited state is given in the Transitions section wherein 

ionization is a special case.  The extrema excited state photon is annihilated as the electron is ionized.  The ionized electron gains 
kinetic energy with free electron radiation reaction field cancellation of the remnant extrema photon field.  Specifically, as the 
electron radius goes to infinity, the photon field intensity goes to zero, but an infinite radius electron is not physical without 
interaction.  So, the extrema comprising the  n    state is a limiting state that cannot be achieved.  Instead, the electron is 
ionized with finite kinetic energy whereby there is a radiation reaction during the corresponding electron acceleration to gain the 
kinetic energy, and the remnant extrema photon field is annihilated.  The field equations follow the superposition of excited 
states into free states.   

 
1 A positive electric field is given by a trapped photon of an excited state if the velocity of the field lines is in the direction of the field line, and a negative 
central field is given if they are in opposite directions.  The “trapped” photon can be considered the superposition of two free space photons given in the 
Photon section generated according to Eqs. (4.4-4.7) with the magnetic and electric fields interchanged such that when the two are superposed the great 
circle electric field lines add and the great circle magnetic field lines cancel. 

Photons can transition into particles at rest through a transition state.  A transition state atomic orbital of particle production is very similar to a 
trapped photon of an excited state as given in the Particle Production section, the Lepton section, and the Quarks section. 
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Figure 2.2.   Time-lapsed image of electron ionization.  With the absorption of a photon of energy in excess of the binding 
energy, the bound electron’s radius increases and the electron ionizes as a plane-wave with the de Broglie wavelength.  Similar 
to the mechanism of the propagation of a current in a classical conductor, ionization of an inner shell electron proceeds by 
successive displacement of contiguous outer shell electrons until the most outer shell electron ionizes. 

 
 
PHOTON ABSORPTION 
The energy of the photon, which excites a mode in a stationary spherical resonator cavity from radius Ha  to radius Hna  is 
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After multiplying Eq. (2.18) by 
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, where Ha  is given by Eq. (1.259), photon  is:  
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In the case of an electron atomic orbital, the resonator possesses kinetic energy before and after the excitation.  The kinetic 
energy is always one-half of the potential energy because the centripetal force is an inverse squared central force.  As a result, 
the energy and angular frequency to excite an electron atomic orbital are only one-half of the values above, Eqs. (2.18) and 
(2.19).  From Eq. (1.36), the angular velocity of an electron atomic orbital of radius Hna  is 

 
 2n

e Hm na
 


 (2.20) 

The change in angular velocity of the atomic orbital for an excitation from 1n   to 1n   is:  
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The kinetic energy change of the transition is 

 
2 2

2
2 2

0 0

1 1 1 1 1
( ) 1 1

2 2 4 8 2e
H H

e e
E m v

a n a n


 
               

  (2.22) 

wherein Eq. (2.22) is also the equation for the ionization energy.  The change in angular velocity of the electron atomic orbital, 
Eq. (2.21), is identical to the angular velocity of the photon necessary for the excitation, photon  (Eq. (2.19)).  The energy of the 

photon necessary to excite the equivalent transition in an electron atomic orbital is one-half of the excitation energy of the 
stationary cavity because the change in kinetic energy of the electron atomic orbital supplies one-half of the necessary energy.  
The change in the angular frequency of the atomic orbital during a transition and the angular frequency of the photon 
corresponding to the superposition of the free space photon and the photon corresponding to the kinetic energy change of the 
atomic orbital during a transition are equivalent.  The correspondence principle holds.  It can be demonstrated that the resonance 
condition between these frequencies is to be satisfied in order to have a net change of the energy field [3].  Similarly photons are 
emitted when an electron is bound.  Relations between the free space photon wavelength, radius, and velocity to the 
corresponding parameters of a free electron as it is bound are given in the Equation of the Photon section. 

The excited states of hydrogen are given in Table 2.1. 
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Table 2.1.  Calculated energies (non-relativistic; no spin-orbit interaction; no electronic spin/nuclear spin interaction) and 
ionization energies for the hydrogen atom in the ground state and some excited states. 
 

 
 
a from Eq. (2.5) 

b from 
1

2
T V   

c from Eq. (1.261) 
d from Eq. (2.22) 
e experimental 
 

INSTABILITY OF EXCITED STATES  
Satisfaction of the Haus condition [4] of the presence of spacetime Fourier components of the current density synchronous with 

those traveling at the speed of light, k
c


 , gives rise to radiation.  For the excited (integer quantum number) energy states of 

the hydrogen atom,  photon , the two-dimensional surface charge due to the “trapped photons” at the atomic orbital, is given by 

Eqs. (2.6) and (2.11). 
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Whereas, electron , the two-dimensional surface charge of the electron atomic orbital is 

     0
02

, Re , ( )
4 ( )

     

     

nim tm
electron n

n

e
Y Y e r r

r
 (2.24) 

The superposition of  photon  (Eq. (2.23)) and electron  (Eq. (2.24)) where the spherical harmonic functions satisfy the conditions 

given in the Bound Electron “Atomic Orbital” section is equivalent to the sum of a radial electric dipole represented by a doublet 
function and an radial electric monopole represented by a delta function. 
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 2,3,4,...,n    
where  

  ( ) ( ) ( )n n nr r r r r r  


       (2.26) 

is the Dirac doublet function [5] which is defined by the property 
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or equivalently by the property 

      0x t t dt x
  



   (2.28) 

The Dirac doublet is the impulse response of an ideal differentiator and corresponds to the radial electrostatic dipole.                  
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The symbol  t


 is appropriate since operationally the doublet is the derivative of the impulse. 

The doublet does possess spacetime Fourier components synchronous with waves traveling at the speed of light.  
Whereas, the radial delta function does not.  The Spacetime Fourier Transform of the atomic orbital comprising a radial Dirac 
delta function is given in Appendix I: Nonradiation Condition:   
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wherein ( , )mG s 
  and ( , , )mH s  

 are the spherical-coordinate Fourier transforms of  , cosm
mN P    and ime  , respectively.  

The radial doublet function is the derivative of the radial Dirac delta function; thus, the Fourier transform of the doublet function 
can be obtained from the Fourier transform of the Dirac delta function, Eq. (2.29), and the differentiation property of Fourier 
transforms [6]. 
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From Eq. (2.29) and Eq. (2.30), the spacetime Fourier transform of Eq. (2.25), the superposition of  photon  (Eq. (2.23)) and 

electron   (Eq. (2.24)) is 
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In the case of time harmonic motion, the current-density function is given by the time derivative of the charge-density function.  
Thus, the current-density function is given by the product of the constant angular velocity and the charge-density function.  The 
Fourier transform of the current-density function of the excited-state atomic orbital is given by the product of the constant 
angular velocity and Eq. (2.32): 
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Consider the wave vector of the cosine function of Eq. (2.33).  When the velocity is c  corresponding to a potentially emitted 
photon 
 n n n n   s v s c  (2.34) 

the relativistically corrected wavelength (Eq. (1.280)) is: 
 n nr   (2.35) 

Substitution of Eq. (2.35) into the cosine function does not result in the vanishing of the Fourier transform of the current-density 

function.  Thus, spacetime harmonics of n k
c


  or 

0

n k
c

 


  do exist for which the Fourier transform of the current-density 

function is nonzero.  An excited state is metastable because it is the sum of nonradiative (stable) and radiative (unstable) 
components and de-excites with a transition probability given by the ratio of the power to the energy of the transition [7].  
Alternatively, the radiative fields may be considered directly.  In the case of the nonradiative currents of nonexcited states, the 
corresponding far fields have a vanishing Poynting power vector as shown in Appendix I.  In contrast, regarding the dipole, the 
vector -/+ can flip to +/- and radiate the well known current dipole radiation having a finite Poynting power vector in the far field 
[8]. 
 

SOURCE CURRENT OF EXCITED STATES 
As shown in Appendix I, for time-varying electromagnetic fields, Jackson [2] gives a generalized expansion in vector spherical 
waves that are convenient for electromagnetic boundary-value problems possessing spherical symmetry properties and for 
analyzing multipole radiation from a localized source distribution.  The Green function  ,G x' x  which is appropriate to the 

equation:  

      2 2 ,k G     x' x x' x  (2.36) 

in the infinite domain with the spherical wave expansion for the outgoing wave Green function is: 

            1 *
, ,

0

, ', ' ,
4

ik

m m
m

e
G ik j kr h kr Y Y   



  

 
 

 
  

x x'

x' x
x x'



   
 

 (2.37) 

Jackson [2] further gives the general multipole field solution to Maxwell’s equations in a source-free region of empty space with 
the assumption of a time dependence ni te  : 
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where the cgs units used by Jackson are retained in this section.  The radial functions  f kr  and  g kr  are of the form: 

          1 1 2 2g kr A h A h       (2.39) 

,mX  is the vector spherical harmonic defined by: 
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where 
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i
 L r  (2.41) 

The coefficients  ,Ea m  and  ,Ma m  of Eq. (2.38) specify the amounts of electric  ,m  multipole and magnetic  ,m  

multipole fields, and are determined by sources and boundary conditions as are the relative proportions in Eq. (2.39).  Jackson 
gives the result of the electric and magnetic coefficients from the sources as: 
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and 
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respectively, where the distribution of charge  , t x , current  , tJ x , and intrinsic magnetization  , txM  are harmonically 

varying sources:    i tex ,   i teJ x , and   i texM .  The currents corresponding to Eq. (1.27) and the first term of Eqs. 

(1.28-1.29) are static.  Thus, they are trivially nonradiative.  The current due to the time dependent term of Eq. (1.29) 
corresponding to p, d, f, etc. orbitals is: 
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where N  and 'N   are normalization constants.  J  corresponds to a spherical harmonic traveling charge-density wave of 
quantum number m  that moves on the surface of the atomic orbital, spins about the z-axis at angular frequency n , and 

modulates the constant atomic orbital at frequency nm .  The vectors are defined as: 
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 ˆ ˆ r̂    (2.46) 

 “^” denotes the unit vectors û 
u

u
, non-unit vectors are designed in bold, and the current function is normalized.  From Eq. 

(2.44), the charge and intrinsic magnetization terms are zero.  Also, the current  , tJ x  is in the ̂  direction; thus, the  ,Ea m  

coefficient given by Eq. (2.42) is zero since 0 r J .  Substitution of Eq. (2.44) into Eq. (2.43) gives the magnetic multipole 
coefficient  ,Ma m : 
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For the electron source current given by Eq. (2.44), each comprising a multipole of order  ,m  with a time dependence i te , the 

far-field solutions to Maxwell’s equations given by Eq. (2.38) are: 
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and the time-averaged power radiated per solid angle 
 ,dP m

d


 is: 
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where  ,Ma m  is given by Eq. (2.47).  In the case that k  is the lightlike 0k , then /nk c  regarding a potentially emitted 

photon, in Eq. (2.47), and Eqs. (2.48-2.49) vanishes for: 

 n n ns vT R r      (2.50) 

There is no radiation.  Thus, there is no radiation due to the azimuthal charge density wave even in an excited state.  However, 
for excited states there exists a radial dipole that is unstable to radiation as shown in the Instability of Excited States section.  
This instability gives rise to a radial electric dipole current considered next. 

In a nonradiative state, there is no emission or absorption of radiation corresponding to the absence of radial motion 
wherein Eq. (2.42) is zero since 0 r J ; conversely, there is motion in the radial direction only when the energy of the system is 
changing.  The same physical consequence can also be easily shown with a matter-wave dispersion relationship.  Thus, radial 
motion corresponds to the emission or absorption of photons.  The form of the radial solution during a transition is then the 
corresponding electron source current comprising a time-dependent radial Dirac delta function that connects the initial and final 
states as boundary conditions.  The photon carries fields and corresponding angular momentum.  This aspect is ignored in 
standard quantum mechanics as shown in the Schrödinger Wavefunction in Violation of Maxwell’s Equations section and Refs. 
[9-17] where the radii of excited states are purely mathematical probability-wave eigenfunctions and are not square integrable, 
but are infinite in highly-excited states and have many discrepancies with observations as discussed previously [18].  In contrast, 
the physical characteristics of the photon and the electron are the basis of physically solving for excited states according to 
Maxwell’s equations.  The discontinuous harmonic radial current in Eq. (2.42) that connects the initial and final states of the 
transition is: 
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Where   is the lifetime of the transition given by Eq. (2.107) and 't  is time during the transition. 
 
SELECTION RULES  
The multipole fields of a radiating source can be used to calculate the energy and angular momentum carried off by the radiation 
[19].  For definiteness we consider a linear superposition of electric (  , m) multipoles with different m values, but all having the 
same  , and following Eq. (16.46) of Jackson [19], write the fields as: 
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For harmonically varying fields, the time-averaged energy density is: 
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In the radiation zone, the two terms are equal.  Consequently, the energy in a spherical shell between r  and ( )r dr  
(  1)for kr   is: 
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where the asymptotic form (Eq. (16.13) of Jackson [19]) of the spherical Hankel function has been used.  With the orthogonality 
integral (Eq. (16.44) of Jackson [19]) this becomes: 
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independent of the radius.  For a general superposition of electric and magnetic multipoles, the sum over m becomes a sum over 

  and m and 
2

Ea  becomes 
2 2

E Ma a .  The total energy in a spherical shell in the radiation zone is thus an incoherent sum 
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over all multipoles. 
The time-averaged angular-momentum density is: 
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The triple cross product can be expanded, and the electric field substituted to yield, for a superposition of electric multipoles, 
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Then the angular momentum in a spherical shell between r  and ( r dr ) in the radiation zone is: 
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With the explicit form (Eq. (16.43) of Jackson [19]) for lmX , Eq. (2.58) can be written 
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From the properties of mLY  listed in Eq. (16.28) of Jackson [19] and the orthogonality of the spherical harmonics, we obtain the 

following expressions for the Cartesian components of 
dM

dr  
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These equations show that for a general  th order electric multipole that consists of a superposition of different m values, only 
the z component of the angular momentum is relatively simple. 

For a multipole with a single m value, xM  and yM  vanish, while a comparison of Eq. (2.62) and Eq. (2.55) shows that 

 zdM m dU

dr dr


 
 (2.63) 

Independent of r  [19].  Experimentally, the photon can carry   units of angular momentum.  Thus, during excitation the spin, 
orbital, or total angular momentum of the atomic orbital can change by zero or    .  The electron transition rules arise from 
conservation of angular momentum.  The selection rules for multipole transitions between quantum states arise from 
conservation of total angular momentum and component angular momentum where the photon carries   of angular momentum. 
 

ORBITAL AND SPIN SPLITTING 
The ratio of the square of the angular momentum, 2M , to the square of the energy, 2U , for a pure (  ,m) multipole follows from 
Eqs. (2.54-2.55) and Eqs. (2.60-2.62) [19] 
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The magnetic moment is defined [20] as: 

  
charge x angular momentum

2 x mass
   (2.65) 

The radiation of a multipole of order (  , m) carries m  units of the z component of angular momentum comprised of   per 
photon of energy  .  Thus, the z component of the angular momentum of the corresponding excited state electron atomic 
orbital is: 

 zL m   (2.66)  

Therefore, 
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where B  is the Bohr magneton.  The presence of a magnetic field causes the principal excited state energy levels of the 

hydrogen atom (Eq. (2.22)) to split by the energy orb
magE  corresponding to the interaction of the magnetic flux with the magnetic 
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moment given by Eq. (2.67).  This energy is called orbital splitting. 

 orb
mag BE m B  (2.68) 

As is the case with spin splitting given by one half the energy of Eq. (1.227) which corresponds to the transition between spin 
states, the energy of the electron is increased in the case that the magnetic flux is antiparallel to the magnetic moment, or the 
energy of the electron is decreased in the case that the magnetic flux is parallel to the magnetic moment.  The spin and orbital 
splitting energies superimpose; thus, the principal excited state energy levels of the hydrogen atom (Eq. (2.22)) are split by the 
energy /spin orb

magE  
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where it follows from Eq. (2.15) that 

 

1, 2,3,4,...

0,1,2,..., 1

, 1,...,0,...,

1/ 2s

n

n

m

m


 
    
 




  

 (2.70) 

Based on the vector multipolarity of the corresponding source currents and the quantization of the angular momentum of photons 
in terms of  , the selection rules for the electric dipole transition after Jackson [19] are: 
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 (2.71) 

Splitting of the energy levels in addition to that given by Eq. (2.69) occurs due to a relativistic effect described in the Spin-Orbit 
Coupling (Fine Structure) section.  Also, a very small shift that is observable by radio-frequency spectroscopy is due to the 
radiation reaction force between the electron and the photon and conservation of energy and linear momentum involving recoil 
during emission.  This so-called Lamb shift is described in the Resonant Line Shape, and Hydrogen and Muonic Hydrogen Lamb 
Shift sections. 

Decaying spherical harmonic currents on the surface of the atomic orbital give rise to spherical harmonic radiation fields 
during emission; conversely, absorbed spherical harmonic radiation fields produce spherical harmonic currents on the surface of 
the atomic orbital to effect a transition.  Excited states are radiative according to Maxwell’s equations as given in the Instability 
of Excited States section, and the transition probabilities or A  coefficients are shown to be a function of the initial and final radii 
in the State Lifetime and Line Intensities section.  The distribution of multipole radiation and the multipole moments of the 
atomic orbital for absorption and emission are derived by Jackson [7].  Some of the simpler angular distributions are listed in 
Table 2.2. 

 
Table 2.2.  Some of the simpler angular distributions of multipole radiation and the multipole moments of the atomic orbital 
for absorption and emission. 
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STARK EFFECT 
Similarly to the splitting of the energy levels due to an external applied magnetic field, an applied electric field lifts the 
degeneracy of the principal energy levels of the one-electron atom to give rise to a splitting called the Stark Effect.  Since the 
magnetic field is a relativistic effect of the electric field as shown by Jackson [21] and the electron’s charge, e , charge-to-mass 

ratio, 
e

e

m
, angular momentum of  , and the magnetic moment of B  are relativistically invariant, it is not surprising as shown 

in this section that the energy, StarkE , of a one-electron atom in an electric field follows from Eqs. (2.68-2.69) with the magnetic 

dipole moment replaced by the electric dipole moment and the magnetic flux replaced by the electric field appliedE .  Considering 

only an electric dipole zp  and the direct influence of the external field, the energy is: 

 Stark appliedE  zp E  (2.72) 

The bound electron has a field equivalent to that of a point charge at the origin for a radius greater than that of the atomic 
orbital as given in the Determination of Atomic Orbital Radii section.  The electric field of the nucleus is also equivalent to that 
of a point particle at the origin.  This condition also holds for the spherically and time harmonic excited-state charge-density 
waves on the surface of the atomic orbital given in the Excited States of the One-Electron Atom (Quantization) section.  In these 
cases, the dipole moment over the angular integrals is zero, but excited-state Stark splittings with the equivalent of the 
corresponding electric dipole moments given by Eq. (2.72) exist due to the interaction of the applied electric field and the 
angular momentum of the excited-state photon field.  

As further shown in the Excited States of the One-Electron Atom (Quantization) section, quantization is trivial given that 
the bound electron forms a cavity and the photon has quantized energy and angular momentum corresponding to the 
multipolarity of the excited-state photon.  According to Eq. (2.64), the angular momentum of the excited-state-photon field of 
energy   carries m  units of angular momentum to excite the orbital having the quantum number m .  Then, the transition 

with 1m    of Eq. (2.71) gives the result of Eq. (4.1), and the superposition principle of photons gives the general case 

corresponding to Eq. (2.64). 
The photon-field is phase-locked to the electron charge-density wave of matching multipole moment, and both rotate 

about the z-axis at the angular velocity given by Eq. (2.20).  The rotation is without dissipation; thus, it is a supercurrent.  It can 
be shown that the maintenance of the supercurrent condition and the quantization of the photon-field in terms of m  quantizes 

the electric dipole moment of Eq. (2.72) in terms of the quantum number m .  According to Eq. (2.69), the energy of the excited 

state due to the orbital angular momentum caused by the excited-state photon in the presence of a magnetic flux B  is: 
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where the velocity, nv , is given by Eq. (1.35), the geometric factor of 
3

sin
2



 

is given by Eq. (1.144), and the radii of the excited 

states are given by Eq. (2.5).   
It is shown in the Stored Electric Energy section that during a Stern-Gerlach transition, the applied flux gives rise to a 

Lorentz force on the atomic orbital current resulting in a crossed electric field corresponding to a Hall voltage.  With an exact 
balance between the Lorentz force (Eq. (1.183)) and the electric force corresponding to the Hall voltage (Eq. (1.184)), each 
superconducting charge-density element of the electron propagates along a great circle according to Eq. (1.187) which is the 
condition for superconductivity in the presence of crossed electric and magnetic fields.  Consider the case of a Stark-split 
transition of the electron wherein the applied electric field causes a current that gives rise to a magnetic flux xB .  In this case, the 

superconductor condition for the vectors shown in Figure 2.3 is 

 
/ sinnE B v 

 
(2.74) 

Figure 2.3.   Coordinate system of crossed electric field, zE , corresponding to the applied field, magnetic flux, xB , due to 

photon field, and superconducting current yi . 

 
 
The magnetic field xB  that is crossed with the applied electric field arises when the electron flips by 180° which doubles the 

energy of Eq. (2.73).  Then, the energies due to an applied electric field are given by the substitution of Eq. (2.74) into Eq. (2.73) 
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and the multiplication of the result by 2: 
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From Eqs. (2.72) and (2.75), the eccentric dipole zp  is: 
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wherein m  is given by Eq. (2.70). 

There is no Stark effect unless the charge density is time-dependent modulated by the photon-field.  Since the degeneracy 
is lifted by the external electric field by the induction of an effective electric dipole moment in the atom, transitions between all 
m  levels are allowed corresponding to the maximum value of the quantum number   of each level.  In this case, the 

superconductor condition is met since the amplitude of the rotational energy of the charge-density wave given by Eq. (1.71): 
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 (2.77) 

is that corresponding to the photon as given by Eqs. (2.16) and (2.23), and the corresponding supercurrent component of the 
photon is given by the frequency (Eqs. (1.32) and (1.36)) times the charge e .  Thus, the allowed quantum numbers for the state 
with principal quantum number n  having an effective electric dipole that is a function of principal quantum number n  are: 
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    (2.78) 

The splitting of the energy level with principal quantum number n  into  2 1n   equidistant sub-levels determined by the 

quantum number m  for the 1n   to 6n   levels is given in Table 2.3.  The predictions given by Eq. (2.75) for hydrogen match 

those given in Ryde [22]2. 

 

 
2 The theory of the Stark Effect according to quantum mechanics does not arise naturally, rather it must be forced by simultaneously using internally 
inconsistent spherical and parabolic quantum numbers.  The theory also requires the “mutual perturbation” of orbitals involving a single electron in the 
absence of a transition which is nonphysical [22-23].  Hund’s-Rule and Pauli-Exclusion-Principle-type violations are encountered by this “mutual 
perturbation” as well as by the existence of more than one set of quantum numbers for the same state.  Moreover, lines corresponding to the redundant, 
nonunique quantum numbers are predicted that are not observed. 

The agreement between the predictions of Eq. (2.75) and observations also confirms that the radius of the atomic-hydrogen-excited states is given 

by   na
0
 rather than   n

2a
0
 as incorrectly given by the Bohr, Schrödinger, and Dirac equations.  These theories are further internally inconsistent because the 

one-electron-atom wave functions cannot give rise to the electric dipole moments given by Eq. (2.76).  In fact, except for the directional orbitals such as 

 np
z
, there are no electric dipole moments possible, and the requirement of the localization of the entire charge of the electron along the z-axis violates the 

Uncertainty Principle as well as all physical laws for a charge bound in a Coulombic central field.  Furthermore, mixing of orbitals to give an electric 

dipole of   nea
0
 requires the hydrogen atom to have positive and negative poles separated by na

0
 in contradiction to the experimental observation that its 

symmetric neutrality does not change in an electric field.   

The argument that such an enormous electric dipole of nea
0
 exists only in an excited state does not save the quantum-mechanical basis of the 

Stark effect.  The dielectric susceptibility of any atom is a function of any induced electric dipole moment.  Hydrogen has a dielectric constant different 
from vacuum in the ground state.  The physics for the dipole moment of any excited state must also apply to the ground state.  Since the experimentally 
observed susceptibility and thus the induced moment is many orders of magnitude less than that predicted for hydrogen, the quantum mechanical basis for 
the Stark Effect of electric polarization is disproved.  The need to reject the quantum mechanical premise is further easily appreciated by considering the 
enormous predicted, but unobserved, change in reactivity of hydrogen due to the application of even a very weak electric field. 
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Table 2.3.   The splitting of the energy level with principal quantum number n  into  2 1n   equidistant sub-levels determined 

by the quantum number m  for the 1n   to 6n   levels. 

 
 

n     m  
 

E a

1 0 0 0 
 
2 1 

1
0 
-1 

2a
0 

-2a 
 
 
3 

 
2 

2
1 
0 
-1 
-2 

6a
3a 
0 

-3a 
-6a 
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3
2 
1 
0 
-1 
-2 
-3 

12a
8a 
4a 
0 

-4a 
-8a 
-12a 
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4 

4
3 
2 
1 
0 
-1 
-2 
-3 
-4 

20a
15a 
10a 
5a 
0 

-5a 
-10a 
-15a 
-20a 

 
 
 
 
 
6 

 
 
 
 
5 

5
4 
3 
2 
1 
0 
-1 
-2 
-3 
-4 
-5

30a
24a 
18a 
12a 
6a 
0 

-6a 
-12a 
-18a 
-24a 
-30a

a Eq. (2.75) with 
0

3

2
applied

ea E  defined as a. 

 
Here, as shown in the Instability of Excited States section, the excited states are radiative due to a radial electric dipole term.  
The spectral line emitted as a transition between energy levels in  and fn  of the hydrogen atom consists of numerous 

components.  The selection rules for electric dipole transitions in the presence of an applied electric field are given by:  

 
   

       
1 1

0,1,2.... 1 1 0,1,2.... 2
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 (2.79) 

where the subscripts i  and f  denote the initial and final states, respectively.  Due to the vector multipolarity of the 
corresponding source currents and the quantization of the angular momentum of photons in terms of  , these components are 
either linearly polarized parallel to the vector of the external field, E, or circularly polarized in the plane perpendicular to E.  The 
polarization is determined by the parity of the sum of the change in the   and m  quantum numbers after Jackson [19]; so, that 

 
 
 

even integers    -components

odd integers     -components  

m

m





    

    







 (2.80) 

The zero components are forbidden except for the  -component when   is odd such that the state change conserves the 
angular momentum of the photon.  The intensities of the lines are determined by Eq. (2.107) where the multipolarity of the 
photon is a z-oriented dipole. 

From Table 2.3 and Eq. (2.80), L  (  =1215 Å) is split into a triplet comprising a central 0E  ,  -component and 
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two external 2E a   ,  -components.  L  (  =1025 Å) is split up into two inner 3E a   ,  -components and two 

6E a   ,  -components having twice the displacement.  L  (  =972 Å) comprises 4  - and three  -components.  The 

middle undisplaced line being a  -component and the other alternating  - and  -components.  In general, the number of 
Lyman lines is equal to the number of sublevels of the initial emitting state  2 1n  .  The lines comprise n   -components and 

1n    -components except that the zero component is absent when it is a  -component.  In this case, 2 2n   lines are observed 
comprising each of 1n    - and  -components.  The predicted splitting of the Lyman lines and their corresponding 
polarizations and energies match those observed experimentally [22]. 

The three sublevels of L  form the final states in the emission of Balmer lines.  Theoretically, the number of components 

into which the Balmer lines are split is 3 1n    -components and 3 2n    -components except that the zero component is 
absent when it is a  -component.  For H  (  =6562 Å), there are eight  -components with 2 ,  3 ,  4 ,  and 8E a a a a      , 

and seven  -components with 0,  1 ,  5 ,  and 6E a a a     .  Again, the predictions match the experimental data [22]. 

For H ( =4861Å), ten  -components with 2 ,  6 ,  8 ,  10 ,  and 14E a a a a a       , and ten  -components with 

2 ,  4 ,  6 ,  10 , and 12E a a a a a        are predicted.  All of these lines have been recorded except the faintest ones, the 

outermost  -components with 14E a    [22].  For H  (  =4340 Å), the energy shifts of the predicted  - and  -

components are 2 ,  5 ,  8 ,  12 ,  15 ,  18 ,  and 22E a a a a a a a          and 0,  3 ,E a    

7 ,  10 ,  13 ,  17 ,  and 20a a a a a     , respectively.  For H  (  =4101 Å), the energy shifts of the predicted  - and  -

components are 4 ,  8 ,  12 ,  16 ,  20 ,  24 ,E a a a a a a         28 ,  and 32a a   and 

2 ,  6 ,  10 ,  14 ,  18 ,  22 ,  26 ,  and 30E a a a a a a a a          , respectively.  All of the theoretically predicted H  and H  

lines have been observed by Stark and others [22-24].  For Balmer lines having odd n , no  - and  -components coincide, but 
this does not apply for some components of lines with even n .  Such components are consequently partially polarized.  
Furthermore, zero components only appear in  -polarization when n  is odd (i.e. for H , H , ...H ) corresponding to the case 

where   is odd.  This confirms the basis of the selection and polarization rules as the conservation of angular momentum 
between the initial and final states and the emitted multipole radiation. 
 

STATE LIFETIMES AND LINE INTENSITIES 
The power radiated from an excited state can be calculated from the oscillating current corresponding to the motion of the 
electron from the initial to the final radius.  It is evident from Maxwell’s equations that oscillating currents are required in order 
to generate electromagnetic radiation: 
 X i  E H  (2.81) 
 X i  H J E  (2.82) 
From the electron-transition current J, the electric and magnetic fields can be solved through an auxiliary function to Eqs. (2.81-
2.82) called the vector potential A: 
 X B A  (2.83) 
Using Eqs. (2.81-2.83) the inhomogeneous wave equation is derived [25]: 
 2 2     A A J  (2.84) 
which has the solution 
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 (2.85) 

where k   , r  is the vector-potential position, r' is the position vector of the sources, and r r'  is the distance between 

the observation point r and the source point r'. 
The radial current for an electric dipole transition is only finite during the movement of the electron from a state with 

quantum numbers , , ,i sn m m  and radius 
inr  to another state with quantum numbers , 1, ,f sn m m   and radius 

fnr .  As shown by 

Eq. (2.66), the photon carries quantized units of m  of angular momentum along the z-axis.  Consequently, for an electric dipole 
transition, the selection rule on the   quantum number that conserves the angular momentum of the electron and emitted photon 
given by Eq. (2.71) is  
 1    (2.86) 

In this case, the multipolarity of the radiation and that of the source current correspond to spherical harmonics that are 
related by Eq. (2.42).  The radial and azimuthal transition currents over the transition lifetime   are: 
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and 
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respectively, where the lifetime  of the transition is given by Eq. (2.107), f i      is the final angular frequency minus the 

initial, n f ir r r  

 

is the final discrete radius minus the initial, t' is time during the transition, and t is the continuous time 

variable independent of the transition. 
As shown in the Photon section, the photon-field equation gives rise to a Green function given by Eqs. (4.18-4.23) with 

the superposition of many photons.  The spherical-wave radiation that propagates in the radial direction has the same form as the 
source radial current.  Due to the spherical symmetry and the time harmonic nature of the electron transition current, the vector 
potential corresponds to a current dipole at the origin and is a solution of Eq. (2.84).  The Green function solution (Eq. (2.85)) 
matches a spherical radiation wave comprised of photons (Eq. (4.23)) wherein the quantized electron transition current and 
photon field are basis elements for the macroscopic (continuous) Maxwellian solutions for source current and the corresponding 
radiation fields. 

The vector potential and power can be solved using the constraints of conservation of power and linear and angular 
momentum between the outgoing discrete (quantized) photon field with the change of the current densities between the initial 
and final discrete (quantized) states for an electric dipole transition.  The electric dipole selection rule is given by Eq. (2.86).  In 
order to conserve the photon’s quantized angular momentum along the z-axis, the   quantum number corresponding to the 
angular momentum of the excited electronic state must change by 1  corresponding to the transition from initial quantum states 

, , ,i sn m m  and radius 
inr  to the final state with quantum numbers , 1, ,f sn m m   and radius 

fnr .  The angular dependence of the 

current which connects the initial and final states is conserved in the photon field.  Since there is no special preparation of the 
states, the radiation pattern is isotropic, and the power and concomitantly, the intensity of each electric dipole transition 
connecting states with the same initial and final principal quantum numbers are the same.  However, the multiplicity of a given 
  state does change the relative intensities based on statistical population distributions as discussed infra. 

During an electronic transition, the current-density comprises a radially propagating constant spherical shell of current 
that is modulated by a traveling charge density wave.  The angular integral of the vector potential is given by  
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 (2.89) 

The radial electric dipole current for the selection-rule condition of Eq. (2.86) is: 

 zJ 
r

J i
r

 (2.90) 

In order to achieve conservation of energy and power flow as well as angular momentum: 
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 (2.91) 

where Eqs. (1.36) and (1.35) were used for the angular and linear velocity, respectively.  The current that gives rise to quantized 
radiation comprises two terms.  One corresponds to the quantized angular frequency change that matches the angular frequency 
of the corresponding emitted photon, and the other corresponds to the quantized wavenumber change with the transition from the 
initial to final radius.  Using Eq. (1.280), the relationship between the electron radius and wavelength in the lightlike frame is 
given by Eq. (1.16).  The radial current from the initial to final radius must be one wavelength in order to be phase-matched with 
the photon wavelength.  Thus, the electron wavenumber corresponding to the propagating photon traveling at v c  is given by  
the difference in the lightlike electron wavelength in going from the initial to final radius: 
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From Eqs. (2.89-2.92), the quantized current changes in the radial integral of the vector potential are:  
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where the current is a function of 
i fn nr r  in order to conserve the electron and photon angular momentum as in the case of Eq. 

(1.37).  Due to spherical symmetry, the electric dipole current is equivalent to that of a dipole at the origin.  With ' 0r   in the 
Green function,  rA  is: 
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 (2.94) 

Applying Eq. (2.83) to  rA  given by Eq. (2.94) gives the magnetic field H: 
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 (2.95) 

where 
 cos sinz r   i i i  (2.96) 

Outside the dipole source, the corresponding electric field E of the radiation with angular frequency   is given by Ampere’s 
law: 
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wherein a further phase match between the electron and photon wavelengths gives the replacement of   by rk c  corresponding 

to the Haus condition [4] k
c


  given in the Instability of Excited States section.  The photon and the electron wave 

relationships are given in the Equation of the Photon section.  For the initial conditions of an unbound electron at rest, the ratio 
of the linear velocity of the subsequently bound electron to the emitted free-space photon given by (Eq. (4.5)) is: 
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2
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n n n

photonphoton photon photon
photon

v r

c r

  
 



    (2.98) 

where the n  subscripts refer to atomic orbital.  The relations between the free space photon wavelength, radius, and velocity and 
the corresponding parameters of a free electron as it is bound are: 

(1) ,n photonr , the radius of the photon electric and magnetic vector field (photon-e&mvf), is equal to n H
n n

c c
r na

v v
  , the 

electron atomic orbital radius given by Eqs. (2.2) and (2.5) times the product of   and the ratio of the speed of light 
c  and nv , the velocity of the atomic orbital given by Eq. (1.35): 

 ,n photon n H
n n

c c
r r na

v v
   (2.99) 

(2) photon , the photon wavelength, is equal to n
n

c

v
 , where n  is the atomic orbital de Broglie wavelength: 

 photon n
n

c

v
   (2.100) 

(3) 
2

photon

c


 , the photon angular velocity, is equal to n , the atomic orbital angular velocity given by Eq. (1.36): 
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In the far field, the photon radiation is that of a spherical wave as given in the Equation of the Photon section.  In this 

case 1rk r  , and the terms having powers of   1

rk r


 vanish.  The corresponding radiation fields are: 
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The time-averaged power density in the radiation zone is given by 
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The total radiated power P  is given by integrating the Poynting power density (Eq. (2.104)) over the surface of a sphere at 
radius r : 
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 (2.105) 

Eq. (2.105) is the form of the Maxwellian result for continuous fields and the corresponding source current.  As shown in the 
Equation of the Photon section, atomic transitions are quantized and the continuous-field result of Eq. (2.105) is given by the 
superposition of many photons as the number goes to infinity. 

The discrete or quantized power must further include the conservation of linear momentum of the radiating electron with 
that of the photon.  Since power is the energy divided by the lifetime, the correction to the power is the same as that of the 
energy.  The application of the correction for linear momentum conservation given by Eq. (2.153) gives the power of the 
quantized transition of energy   as: 
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The transition probability 
1


 or kiA  coefficient  is given by Jackson [7]: 
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Substitution of Eqs. (2.106) and (2.148) into Eq. (2.107) gives the electric dipole electronic transition probability from initial 
quantum states , , ,i sn m m  and radius 

inr  to the final state with quantum numbers , 1, ,f sn m m   and radius 
fnr :   
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 (2.108) 

where Eq. (2.5) was used for the radii and   is defined as 
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The reciprocal of Eq. (2.108) gives the mean state lifetime3: 

 

2

22

2 2 10 1
2
0

1 1
2

3 1 24 1 1 1
2 3.735  10  

4 2 4
f i

i f

n n

e e
e n n e i f f i

r r e e
m c m c X s

m r r m a n n n n




   





 

 
 
                 

 
 (2.110) 

where Eq. (2.5) was used for the radii.  Using Eqs. (2.108-2.2110), the parameters of representative hydrogen emission series of 
lines are given in Tables 2.4-2.16. 

Since there is no special preparation of the states, the radiation pattern is isotropic, and the power and concomitantly the 
intensity of each electric dipole transition connecting states with the same initial and final principal quantum numbers are the 
same.  However, the multiplicity of a given   state does change the relative intensities based on the statistical population of 
states of the same principal quantum number n , but different   quantum numbers.  As given in Jackson, the “sum rule” for the 
squares of the ,mY ’s is 
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 (2.111) 

Furthermore, the total number of states N  for a given principal quantum number n  is given by (Eq. (1.70)): 
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  (2.112) 

 
3 A mean lifetime arises due to the superposition of transitions over an ensemble of individual atoms.  Each atom has an exact lifetime due to an exact 
transition involving specific initial, final, and any intermediate  , m states and the corresponding exact photon in space relative to the states.  The mean 
lifetime arises from the mean current given by Eq. (2.87) and the spherical radiation field due to the superposition of emitted photons.  Similarly, 
Maxwell’s equations apply to macroscopic fields that are in actuality the superposition of quantized photons.  Thus, deterministic physics arises as the 
aggregate behavior of entities that also in turn obey deterministic physics. 
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where each state corresponds to an   and m  quantum number of an energy level corresponding to the principal quantum 

number n .  Consequently, a source comprised of a set of multipoles of order  , independent of m  gives rise to an isotropic 
radiation distribution when the multipoles superimpose incoherently.  This is the typical case in atomic and nuclear radiative 
transitions unless the initial state has been prepared in a special way.  In the case that the   states can be distinguished, the 
relative intensities are given statistically by the ratios of the multiplicity of each state divided by the total number of states.  
Thus, the relative intensity of state   is given by 

 
2

2 1

n


 (2.113) 

Using Eq. (2.113), the relative line intensities for the transitions 2 0 2
3/2 1/2P S  and 2 2 0

5/2 3/2D P  wherein are 1  and 2  are 

3:5 which closely matches the NIST observed relative intensities of 120:180 [26].   
 
Table 2.4.   The parameters of the Lyman series of emission lines. 
 

in  
f

n   a 1 2 1/
in     1/ b  c 

2 1 2.50E-01 1.00 6.70E+08 1.49E-09 
3 1 1.11E-01 0.44 2.98E+08 3.36E-09 
4 1 6.25E-02 0.25 1.67E+08 5.97E-09 
5 1 4.00E-02 0.16 1.07E+08 9.34E-09 
6 1 2.78E-02 0.11 7.44E+07 1.34E-08 
7 1 2.04E-02 0.08 5.47E+07 1.83E-08 
8 1 1.56E-02 0.06 4.18E+07 2.39E-08 
9 1 1.23E-02 0.05 3.31E+07 3.02E-08 

10 1 1.00E-02 0.04 2.68E+07 3.73E-08 
11 1 8.26E-03 0.03 2.21E+07 4.52E-08 
12 1 6.94E-03 0.03 1.86E+07 5.38E-08 
13 1 5.92E-03 0.02 1.58E+07 6.31E-08 
14 1 5.10E-03 0.02 1.37E+07 7.32E-08 
15 1 4.44E-03 0.02 1.19E+07 8.40E-08 
16 1 3.91E-03 0.02 1.05E+07 9.56E-08 
17 1 3.46E-03 0.01 9.27E+06 1.08E-07 
18 1 3.09E-03 0.01 8.27E+06 1.21E-07 
19 1 2.77E-03 0.01 7.42E+06 1.35E-07 
20 1 2.50E-03 0.01 6.70E+06 1.49E-07 

 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
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Table 2.5.   The parameters of the Balmer series of emission lines. 

in  
f

n   a 2 3 2/
in     1 / b  c 

3 2 2.78E-02 1.00 7.44E+07 1.34E-08 
4 2 1.56E-02 0.56 4.18E+07 2.39E-08 
5 2 1.00E-02 0.36 2.68E+07 3.73E-08 
6 2 6.94E-03 0.25 1.86E+07 5.38E-08 
7 2 5.10E-03 0.18 1.37E+07 7.32E-08 
8 2 3.91E-03 0.14 1.05E+07 9.56E-08 
9 2 3.09E-03 0.11 8.27E+06 1.21E-07 

10 2 2.50E-03 0.09 6.70E+06 1.49E-07 
11 2 2.07E-03 0.07 5.53E+06 1.81E-07 
12 2 1.74E-03 0.06 4.65E+06 2.15E-07 
13 2 1.48E-03 0.05 3.96E+06 2.52E-07 
14 2 1.28E-03 0.05 3.42E+06 2.93E-07 
15 2 1.11E-03 0.04 2.98E+06 3.36E-07 
16 2 9.77E-04 0.04 2.62E+06 3.82E-07 
17 2 8.65E-04 0.03 2.32E+06 4.32E-07 
18 2 7.72E-04 0.03 2.07E+06 4.84E-07 
19 2 6.93E-04 0.02 1.85E+06 5.39E-07 
20 2 6.25E-04 0.02 1.67E+06 5.97E-07 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 

 
Table 2.6.   The parameters of the Paschen series of emission lines. 

in  
f

n   a 3 4 3/
in     1/ b  c 

4 3 6.94E-03 1.00 1.86E+07 5.38E-08 
5 3 4.44E-03 0.64 1.19E+07 8.40E-08 
6 3 3.09E-03 0.44 8.27E+06 1.21E-07 
7 3 2.27E-03 0.33 6.07E+06 1.65E-07 
8 3 1.74E-03 0.25 4.65E+06 2.15E-07 
9 3 1.37E-03 0.20 3.67E+06 2.72E-07 

10 3 1.11E-03 0.16 2.98E+06 3.36E-07 
11 3 9.18E-04 0.13 2.46E+06 4.07E-07 
12 3 7.72E-04 0.11 2.07E+06 4.84E-07 
13 3 6.57E-04 0.09 1.76E+06 5.68E-07 
14 3 5.67E-04 0.08 1.52E+06 6.59E-07 
15 3 4.94E-04 0.07 1.32E+06 7.56E-07 
16 3 4.34E-04 0.06 1.16E+06 8.60E-07 
17 3 3.84E-04 0.06 1.03E+06 9.71E-07 
18 3 3.43E-04 0.05 9.18E+05 1.09E-06 
19 3 3.08E-04 0.04 8.24E+05 1.21E-06 
20 3 2.78E-04 0.04 7.44E+05 1.34E-06 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
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Table 2.7.   The parameters of the Brackett series of emission lines. 

in  
f

n   a 4 5 4/
in     1/ b  c 

5 4 2.50E-03 1.00 6.70E+06 1.49E-07 
6 4 1.74E-03 0.69 4.65E+06 2.15E-07 
7 4 1.28E-03 0.51 3.42E+06 2.93E-07 
8 4 9.77E-04 0.39 2.62E+06 3.82E-07 
9 4 7.72E-04 0.31 2.07E+06 4.84E-07 

10 4 6.25E-04 0.25 1.67E+06 5.97E-07 
11 4 5.17E-04 0.21 1.38E+06 7.23E-07 
12 4 4.34E-04 0.17 1.16E+06 8.60E-07 
13 4 3.70E-04 0.15 9.90E+05 1.01E-06 
14 4 3.19E-04 0.13 8.54E+05 1.17E-06 
15 4 2.78E-04 0.11 7.44E+05 1.34E-06 
16 4 2.44E-04 0.10 6.54E+05 1.53E-06 
17 4 2.16E-04 0.09 5.79E+05 1.73E-06 
18 4 1.93E-04 0.08 5.17E+05 1.94E-06 
19 4 1.73E-04 0.07 4.64E+05 2.16E-06 
20 4 1.56E-04 0.06 4.18E+05 2.39E-06 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 

 
Table 2.8.   The parameters of the Pfund series of emission lines. 

in  
f

n   a 5 6 5/
in     1/ b  c 

6 5 1.11E-03 1.00 2.98E+06 3.36E-07 
7 5 8.16E-04 0.73 2.19E+06 4.57E-07 
8 5 6.25E-04 0.56 1.67E+06 5.97E-07 
9 5 4.94E-04 0.44 1.32E+06 7.56E-07 

10 5 4.00E-04 0.36 1.07E+06 9.34E-07 
11 5 3.31E-04 0.30 8.85E+05 1.13E-06 
12 5 2.78E-04 0.25 7.44E+05 1.34E-06 
13 5 2.37E-04 0.21 6.34E+05 1.58E-06 
14 5 2.04E-04 0.18 5.47E+05 1.83E-06 
15 5 1.78E-04 0.16 4.76E+05 2.10E-06 
16 5 1.56E-04 0.14 4.18E+05 2.39E-06 
17 5 1.38E-04 0.12 3.71E+05 2.70E-06 
18 5 1.23E-04 0.11 3.31E+05 3.02E-06 
19 5 1.11E-04 0.10 2.97E+05 3.37E-06 
20 5 1.00E-04 0.09 2.68E+05 3.73E-06 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
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Table 2.9.   The parameters of the 6in   to 6fn   series of emission lines. 

in  
f

n   a 6 7 6/
in     1/ b  c 

7 6 5.67E-04 1.00 1.52E+06 6.59E-07 
8 6 4.34E-04 0.77 1.16E+06 8.60E-07 
9 6 3.43E-04 0.60 9.18E+05 1.09E-06 

10 6 2.78E-04 0.49 7.44E+05 1.34E-06 
11 6 2.30E-04 0.40 6.15E+05 1.63E-06 
12 6 1.93E-04 0.34 5.17E+05 1.94E-06 
13 6 1.64E-04 0.29 4.40E+05 2.27E-06 
14 6 1.42E-04 0.25 3.80E+05 2.63E-06 
15 6 1.23E-04 0.22 3.31E+05 3.02E-06 
16 6 1.09E-04 0.19 2.91E+05 3.44E-06 
17 6 9.61E-05 0.17 2.57E+05 3.88E-06 
18 6 8.57E-05 0.15 2.30E+05 4.36E-06 
19 6 7.69E-05 0.14 2.06E+05 4.85E-06 
20 6 6.94E-05 0.12 1.86E+05 5.38E-06 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 

 
Table 2.10.   The parameters of the 7in   to 7fn   series of emission lines. 

in  
f

n   a 7 8 7/
in     1/ b  c 

8 7 3.19E-04 1.00 8.54E+05 1.17E-06 
9 7 2.52E-04 0.79 6.75E+05 1.48E-06 

10 7 2.04E-04 0.64 5.47E+05 1.83E-06 
11 7 1.69E-04 0.53 4.52E+05 2.21E-06 
12 7 1.42E-04 0.44 3.80E+05 2.63E-06 
13 7 1.21E-04 0.38 3.23E+05 3.09E-06 
14 7 1.04E-04 0.33 2.79E+05 3.59E-06 
15 7 9.07E-05 0.28 2.43E+05 4.12E-06 
16 7 7.97E-05 0.25 2.13E+05 4.68E-06 
17 7 7.06E-05 0.22 1.89E+05 5.29E-06 
18 7 6.30E-05 0.20 1.69E+05 5.93E-06 
19 7 5.65E-05 0.18 1.51E+05 6.61E-06 
20 7 5.10E-05 0.16 1.37E+05 7.32E-06 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 

 
Table 2.11.   The parameters of the 8in   to 8fn   series of emission lines. 

in  
f

n   a 8 9 8/
in     1/ b  c 

9 8 1.93E-04 1.00 5.17E+05 1.94E-06 
10 8 1.56E-04 0.81 4.18E+05 2.39E-06 
11 8 1.29E-04 0.67 3.46E+05 2.89E-06 
12 8 1.09E-04 0.56 2.91E+05 3.44E-06 
13 8 9.25E-05 0.48 2.48E+05 4.04E-06 
14 8 7.97E-05 0.41 2.13E+05 4.68E-06 
15 8 6.94E-05 0.36 1.86E+05 5.38E-06 
16 8 6.10E-05 0.32 1.63E+05 6.12E-06 
17 8 5.41E-05 0.28 1.45E+05 6.91E-06 
18 8 4.82E-05 0.25 1.29E+05 7.74E-06 
19 8 4.33E-05 0.22 1.16E+05 8.63E-06 
20 8 3.91E-05 0.20 1.05E+05 9.56E-06 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
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Table 2.12.   The parameters of the 100in   to 1fn   series of emission lines. 

in  
f

n   a 1 101 1/
in     1/ b  c 

101 1 9.80E-05 1.00 2.63E+05 3.81E-06 
102 1 9.61E-05 0.98 2.57E+05 3.88E-06 
103 1 9.43E-05 0.96 2.52E+05 3.96E-06 
104 1 9.25E-05 0.94 2.48E+05 4.04E-06 
105 1 9.07E-05 0.93 2.43E+05 4.12E-06 
106 1 8.90E-05 0.91 2.38E+05 4.20E-06 
107 1 8.73E-05 0.89 2.34E+05 4.28E-06 
108 1 8.57E-05 0.87 2.30E+05 4.36E-06 
109 1 8.42E-05 0.86 2.25E+05 4.44E-06 
110 1 8.26E-05 0.84 2.21E+05 4.52E-06 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
 

Table 2.13.   The parameters of the 100in   to 100fn   series of emission lines. 

in  
f

n   a 100 101 100/
in     1/ b  c 

101 100 9.80E-09 1.00 2.63E+01 3.81E-02 
102 100 9.61E-09 0.98 2.57E+01 3.88E-02 
103 100 9.43E-09 0.96 2.52E+01 3.96E-02 
104 100 9.25E-09 0.94 2.48E+01 4.04E-02 
105 100 9.07E-09 0.93 2.43E+01 4.12E-02 
106 100 8.90E-09 0.91 2.38E+01 4.20E-02 
107 100 8.73E-09 0.89 2.34E+01 4.28E-02 
108 100 8.57E-09 0.87 2.30E+01 4.36E-02 
109 100 8.42E-09 0.86 2.25E+01 4.44E-02 
110 100 8.26E-09 0.84 2.21E+01 4.52E-02 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
 

Table 2.14.   The parameters of the 500in   to 1fn   series of emission lines. 

in  
f

n   a 1 501 1/
in     1/ b  c 

501 1 3.98E-06 1.00 1.07E+04 9.37E-05 
502 1 3.97E-06 1.00 1.06E+04 9.41E-05 
503 1 3.95E-06 0.99 1.06E+04 9.45E-05 
504 1 3.94E-06 0.99 1.05E+04 9.49E-05 
505 1 3.92E-06 0.98 1.05E+04 9.52E-05 
506 1 3.91E-06 0.98 1.05E+04 9.56E-05 
507 1 3.89E-06 0.98 1.04E+04 9.60E-05 
508 1 3.88E-06 0.97 1.04E+04 9.64E-05 
509 1 3.86E-06 0.97 1.03E+04 9.67E-05 
510 1 3.84E-06 0.97 1.03E+04 9.71E-05 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
 

Table 2.15.   The parameters of the 500in   to 100fn   series of emission lines. 

in  
f

n   a 100 501 100/
in     1/ b  c 

501 100 3.98E-10 1.00 1.07E-00 9.37E-01 
502 100 3.97E-10 1.00 1.06E-00 9.41E-01 
503 100 3.95E-10 0.99 1.06E-00 9.45E-01 
504 100 3.94E-10 0.99 1.05E-00 9.49E-01 
505 100 3.92E-10 0.98 1.05E-00 9.52E-01 
506 100 3.91E-10 0.98 1.05E-00 9.56E-01 
507 100 3.89E-10 0.98 1.04E-00 9.60E-01 
508 100 3.88E-10 0.97 1.04E-00 9.64E-01 
509 100 3.86E-10 0.97 1.03E-00 9.67E-01 
510 100 3.84E-10 0.97 1.03E-00 9.71E-01 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
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Table 2.16.   The parameters of the 500in   to 500fn   series of emission lines. 

in  
f

n   a 500 501 500/
in     1/ b  c 

501 500 1.59E-11 1.00 4.27E-02 2.34E+01 
502 500 1.59E-11 1.00 4.25E-02 2.35E+01 
503 500 1.58E-11 0.99 4.23E-02 2.36E+01 
504 500 1.57E-11 0.99 4.22E-02 2.37E+01 
505 500 1.57E-11 0.98 4.20E-02 2.38E+01 
506 500 1.56E-11 0.98 4.18E-02 2.39E+01 
507 500 1.56E-11 0.98 4.17E-02 2.40E+01 
508 500 1.55E-11 0.97 4.15E-02 2.41E+01 
509 500 1.54E-11 0.97 4.13E-02 2.42E+01 
510 500 1.54E-11 0.97 4.12E-02 2.43E+01 

a Eq. (2.109). 
b Eq. (2.108). 
c Eq. (2.110). 
 

The lifetime of the Balmer   transition of 81.34  10  X s  given in Table 2.5 is in good agreement with the experimental 
upper limit of 81.5  10  X s  [26-27].  The relative line intensities are dependent on the electron temperature which causes a 
Boltzmann-distribution skewing [28] of the predominantly lifetime-determined state populations..  However, states that are close 
in energy are expected to be close to the theoretical limit with greater deviations as the energy differences become larger.  The 
experimental Balmer-series line intensities are given with the calculated intensities in Table 2.17.  As expected the predicted and 
experimental intensities match well for the lowest levels and deviate at the higher levels. 
 

Table 2.17.   The parameters of the Balmer series of emission lines. 

in  
f

n   a 2 3 2/
in     2 3 2/

in    X 300 NIST [26] Balmer 
Line Intensities 

3 2 2.78E-02 1.00 300 300 
4 2 1.56E-02 0.56 169 160 
5 2 1.00E-02 0.36 108 60 
6 2 6.94E-03 0.25 75 30 
7 2 5.10E-03 0.18 55 8 
8 2 3.91E-03 0.14 42 6 
9 2 3.09E-03 0.11 33 5 

a Eq. (2.109). 
 

Ornstein and Burger [29-30] studied the relative emission intensities of Balmer and Paschen lines having the same initial 
states in order to eliminate the uncertainty of the number of atoms in each initial state.  The results of the relative intensities from 
each state having the same initial number of atoms is given in Table 2.18.  The calculated and experimental results agree very 
well.  In contrast, standard quantum mechanics has many shortcomings in this result as well as in general4. 
 

Table 2.18.   The parameter   and the calculated and experimental intensity ratios of selected Balmer and Paschen emission 
lines. 

in  
f

n   a , ,/
i iPaschen n Balmer n   Experimental 

Intensity Ratio [29-30] ,

,
i

i

Paschen n

Balmer n
 

4 2 1.56E-02    / 4 2 : 4 3H P        2.25 2.6 

4 3 6.94E-03

5 2 1.00E-02    / 5 2 : 5 3H P        2.25 2.5 

5 3 4.44E-03

6 2 6.94E-03    / 6 2 : 6 3H P        2.25 2 

6 3 3.09E-03

a Eq. (2.109). 
 

 
The radii of all one-electron atoms are given by Eq. (1.260).  For He , 

 
4 The quantum mechanical calculation of the line intensities is also based on classical electrodynamics [32], but there are many internally inconsistent 
features that arise due to the intrinsic nonphysical aspects peculiar to quantum mechanics.  The possibility that l  1  is not treated.  The A coefficients 

are not symmetrical with respect to excitation and de-excitation as they must be.  The  sini


 dependence of the current dipole is ignored.  The 

calculation of the current multipole based on integration of the products of wavefunctions over all space is not physical.  The electron can not be 
“everywhere at once,” and even the frequency times the average radial displacement during a transition results in an electron velocity that exceeds the 
speed of light.  The calculations are extraordinarily complicated involving hypergeometric series, and the results contain products of terms raised to 
enormously high and low powers (e.g. power of ~  20 for even the Balmer lines).  The results do not match the experimental results by significant factors. 
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 0
1 2

a
r   (2.114) 

Substitution of Eq. (2.114) into Eqs. (2.108) and (2.110) gives the electric dipole electronic transition probability from initial 
quantum states , , ,i sn m m  and radius 

inr  to the final state with quantum numbers , 1, ,f sn m m   and radius 
fnr and the 

corresponding state lifetime, respectively:   
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 (2.116) 

where   is given by Eq. (2.109).  The predicted lifetimes for He  are 1/16 those of atomic hydrogen.  The equations for the 
excited-state lifetimes and line intensities can be condensed as given in Box 2.1. 
 
 

BOX 2.1  CONDENSED FORMULA FOR THE EXCITED-STATE LIFETIMES AND 
LINE INTENSITIES 
Using 
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such that the equations for the excited-state lifetimes and line intensities can be condensed [31].  Eq. (2.108) can be written as 
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This can be transformed to 
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and the corresponding Eq. (2.110) becomes: 
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The result confirms that:  
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Alternatively, Eq. (2.110) in condensed form is: 
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And, Eq. (2.116) becomes 

    2 25 11
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 (9) 

 
Maxwell made an absolute measurement of the lifetime of excited states of He  formed by narrow-beam, electron-

impact excitation [30, 33].  The excited He  ions were spread by a transverse electric field which did not appreciably affect the 
ionizing electron beam because a controlling longitudinal magnetic field was applied.  The time-of-flight to radiating was 
recorded as the distance-of-flight and gave the probability distribution of the lifetimes of the excited states.  By studying the 
spatial distribution of the light intensity, Maxwell inferred the mean lifetimes of the excited-state ions.  For the 6n   states of 
He , an average lifetime of   81.1 0.2   10  X s  was observed.  From Tables 2.4-2.8, the average life time of the 6n   state of 

H  is 71.48  10  X s , and from Eq. (2.116), the corresponding average lifetime of He  is 99.3  10  X s .  The lifetimes of states of 
He  were found to be 1/16 those of H .  The agreement between the experimental and calculated results is excellent. 

In addition to the electron electric dipole transitions, Eq. (2.107) can be applied to transitions with a multipole 
distribution in the radial direction such as in the case of nuclear decay given in the Nuclear and X-ray Multipole Radiation 
section.  The transition probability in the case of the electric multipole moment given by Jackson [7] as: 
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 (2.118) 

Eq. (2.118) gives very predictive results as shown by Jackson [7]. 
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RESONANT LINE SHAPE 
The spectroscopic linewidth arises from the classical rise-time band-width relationship, and the Lamb shift is due to the radiation 
reaction force between the electron and the photon and conservation of energy and linear momentum involving recoil during 
emission.  It follows from the Poynting Power Theorem (Eq. (7.43)) with spherical radiation that the transition probabilities are 
given by the ratio of power and the energy of the transition [7].  The lifetime   for an electric dipole transition is derived in the 
State Lifetime and Line Intensities section.  This rise-time gives rise to  , the spectroscopic line-width.  The relationship 
between the rise-time and the band-width is given by Siebert [34]. 
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By application of the Schwartz inequality, the relationship between the rise-time and the band-width is5: 
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From Eq. (2.118), the line-width is proportional to the ratio of the Quantum Hall resistance, 
2

h

e
, and,  , the radiation resistance 

of free space. 
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  (2.122) 

And, the Quantum Hall resistance given in the Quantum Hall Effect section was derived using the Poynting Power Theorem.  
Also, from Eq. (2.118), the line-width is proportional to the fine structure constant,  , 
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During a transition, the total energy of the system decays exponentially.  Applying Eqs. (2.119) and (2.120) to the case of 
exponential decay,  
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where the rise-time,  , is the time required for ( )h t  of Eq. (2.124) to decay to 1/ e  of its initial value and where the band-width, 
 , is the half-power bandwidth, the distance between points at which:  

    0

2

H
H f   (2.126) 

From Eq. (2.119) [34], 
 T   (2.127) 
From Eq. (2.120) [34], 

 
1

T
   (2.128) 

 
5 Eq. (2.121) is erroneously interpreted as a physical law of the indeterminate nature of conjugate parameters of atomic particles, such as position and 
momentum or energy and time.  This so called Heisenberg Uncertainty Principle is not a physical law; rather it is a misinterpretation of applying the 
Schwartz Inequality to a probability-wave model of a particle [35].  The mathematical consequence is that a particle, such as an electron, can have a 
continuum of momenta and positions with a continuum of energies simultaneously, which cannot be physical.  This result is independent of error or 
limitations introduced by measurement.  Jean B. Fourier was the first to discover the relationship between time and frequency compositions of physical 
measurables.  Eq. (2.121) expresses the limitation of measuring these quantities since an impulse contains an infinity of frequencies, and no instrument has 
such bandwidth.  Similarly, an exact frequency requires an infinite measurement time, and all measurements must be finite in length.  Thus, Eq. (2.121) is 
a statement about the limitations of measurement in time and frequency.  It is further a conservation statement of energy of a signal in the time and 
frequency domains.  Werner Heisenberg’s substitution of momentum and position for a single particle, probability-wave into this relationship says nothing 
about conjugate parameters of a particle in the absence of their measurement or the validity of the probability-wave model.  In fact, this approach was 
shown to be flawed experimentally (See Wave-Particle Duality section and Refs. [8-11]). 
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From Eq. (2.127) and Eq. (2.128), the relationship between the rise-time and the band-width for exponential decay is: 

 
1


   (2.129) 

Bosons obey Bose-Einstein statistics as given in the Statistical Mechanics section.  The emitted radiation, the summation 
of an ensemble of emitted photons each of an exact frequency and energy given by Eq. (4.8), appears as a wave train with 
effective length /c  .  Such a finite pulse of radiation is not exactly monochromatic but has a frequency spectrum covering an 
interval of the order  .  The exact shape of the frequency spectrum is given by the square of the Fourier transform of the electric 
field.  Thus, the amplitude spectrum is proportional to 
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The coefficient t  corresponds to the spectroscopic linewidth and also to a shift in frequency that arises from the radiation 

reaction force between the electron and the photon.  The energy radiated per unit frequency interval is therefore: 
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 (2.131) 

where 
0

I  is the total energy radiated.  The spectral distribution is called a resonant line shape.  The width of the distribution at 
half-maximum intensity is called the half-width or line-breadth and is equal to  .  Shown in Figure 2.4 is such a spectral line.  
Because of the reactive effects of radiation the line is shifted in frequency.  The small radiative shift of the energy levels of 
atoms was first observed by Lamb in 1947 [36] and is called the Lamb shift in his honor. 
 
Figure 2.4.   Broadening of the spectral line due to the rise-time and shifting of the spectral line due to the radiative reaction.  
The resonant line shape has width  .  The level shift is  . 
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HYDROGEN LAMB SHIFT 
The Lamb shift corresponding to the transition energy from the 2

1/2P  state to the 2
1/2S  state of the hydrogen atom having the 

quantum numbers 2,  1,  0n m    and 2,  0,  0n m   , respectively, is calculated from the radiation reaction force and 

the atom recoil energy due to photon emission.  For a transition between initial and final states having quantum numbers in  and 

fn , respectively, the time-averaged power density in the radiation zone is given by Eq. (2.104).  The total radiated power P  

given by integrating the Poynting power density (Eq. (2.104)) over the surface of a sphere at radius r  is given by Eq. (2.105).  
The corresponding radiation reaction force is derived from the relativistically corrected fields of the radiated power.  Consider 

that the power is proportional to E H  and then 
2

H  (Eq. (2.104)).  A radiation reaction force due to current flow to form the 

trigonometric current distribution of the 1/22P  state from the uniform 1/22S  state given in Sections 6.6, 12.10, and 17.3 of Jackson 
[37] achieves the condition that the sum of the mechanical momentum and electromagnetic momentum is conserved.  Since the 
change in angular momentum between the initial and final atomic states is conserved by the photon's angular momentum, the 
angular momentum, m, of the emitted photon follows from the time-averaged angular-momentum density given by Eq. (24.61) 
of Jackson [2] in cgs units: 

   41
Re ( )

8
dx

c
   m r E B*   (2.132) 

The corresponding energy, E, is given from the Poynting power density [38]: 
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 4Re( )
4

c
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  E× H*   (2.133) 

As shown by Eqs. (1.280-1.281) and Eq. (29.9), each of the magnetic and electric field is corrected by the product of the factors 
2 and  , respectively.  Also, the field in excited states scales as 1 / n  due to the corresponding central field from the 
superposition of the excited-state photon’s and proton’s fields (Eqs. (2.17)).  Thus, using each relativistic and central field 
correction given by 2  and 1/ 2 , respectively, and using the limit of 

i fn nr r r   with the radiation reaction perturbation with 

respect to r , the radiation reaction power PRR  given by Eq. (2.105) is 
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The radiation reaction force RRF  is given by the power (Eq. (2.108)) divided by the electron velocity v  (Eq. (1.35)): 
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 (2.135) 

The radius of the hydrogen atom given by Eqs. (2.4-2.5) and Eq. (1.253), with 2n  , is 2 Hr a .  The radiation reaction force 

perturbs the force balance and consequently the radius between the electron and proton relative to the condition in its absence.  

The outward centrifugal force on the electron is balanced by the electric force and the magnetic force (Eqs. (1.253) and (2.4)), 
and the radiation reaction force (Eq. (2.135)) corresponding to the current flow to achieve the current distribution of the 1/22P  

state: 
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 1.99999744 Hr a  (2.138) 

where Eq. (1.35) was used for the velocity and Ha  is the radius of the hydrogen atom given by Eq. (1.259). 
 

ENERGY CALCULATIONS 
The change in the electric energy of the electron  H Lamb

eleE  due to the slight shift of the radius of the atom is given by the 

difference between the electric energies associated with the unperturbed and radiation-reaction-force-perturbed radius.  Each 
electric energy is given by the substitution of the corresponding radius given by Eq. (2.138) into Eqs. (1.264) and (2.4): 
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wherein the unperturbed radius given by Eq. (2.5) is 0 2 Hr a . 

In addition, the change in the magnetic energy  H Lamb
magE  of the electron is given by Eqs. (1.161-1.162) with the 

substitution of the corresponding radii:  
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where B  is the Bohr magneton. 

The 2n   state comprises an electron, a photon, and a proton having the analytical solution of Maxwell’s equations 
given by Eq. (2.15).  The recoil energy of this photon gives rise to an energy contribution to the Lamb shift that is calculated by 
applying conservation of energy and linear momentum to the emitted photon and atom.  The photon emitted by an excited state 
atom carries away energy, linear momentum, and angular momentum.  The initial and final values of the energies and 
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momentum must be conserved between the atom, the electron, and the photon6.  Consider an isolated atom of mass M having an 
electron in an excited state level at an energy E.  The atom is moving with velocity V along the direction in which the excited-
state photon is to be emitted (the components of motion perpendicular to this direction remain unaffected by the emission and 
may be ignored).  The energy above the “ground” state at rest is 

 21

2
E M

  
 

V  (2.141) 

When a photon of energy hE   is emitted, the atom and/or electron recoils and has a new velocity 

 V v  (2.142) 
(which is a vector sum in that V and v may be opposed), and a total energy of: 
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2
M V v  (2.143) 

By conservation of energy, 

  221 1

2 2hE M E M   V V v  (2.144) 

so, that the actual energy of the photon emitted is given by: 
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 (2.145) 

The photon is thus deficient in energy by a recoil kinetic energy 

 21

2RE M v  (2.146) 

which is independent of the initial velocity V, and by a thermal or Doppler energy 
 DE M vV  (2.147) 

which depends on V; therefore, it can be positive or negative. 
Momentum must also be conserved in the emission process.  The energy, E, of the photon is given by Eq. (4.8) 
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From special relativity, 
 2E mc   (2.149) 
Thus, p, the momentum of the photon is: 

 hE
mc

c
 p  (2.150) 

where c is the velocity of light, so that: 

   hE
M M

c
  V V v  (2.151) 

And, the recoil momentum is: 

 hE
M

c
 v  (2.152) 

Thus, the recoil energy is given by: 
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  (2.153) 

and depends on the mass of the atom and the energy of the photon.  The Doppler energy, DE , is dependent on the thermal 

motion of the atom, and will have a distribution of values which is temperature dependent.  A mean value, DE , can be defined 

which is related to KE , the mean kinetic energy per translational degree of freedom [39-40]: 
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2DE kT  (2.154) 

by 
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where k is Boltzmann’s constant and T is the absolute temperature7.  As a result, the statistical distribution in energy of the 
emitted photons is displaced from the true excited-state energy by RE  and broadened by DE  into a Gaussian distribution of 

width 2 DE .  The distribution for absorption has the same shape but is displaced by RE . 

 
6 Conservation of angular momentum is used to derive the photon’s equation in the Equation of the Photon section. 
7 This relationship may also apply to an electron undergoing bonding as given in the Doppler Energy Term of Hydrogen-Type Molecular Ions section. 
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For the photon of the hydrogen atom, the linear momentum of the emitted photon is balanced by the recoil momentum of 
the entire atom of mass Hm , and the corresponding recoil energy adds to the energy due to the radiation reaction force.  The 

recoil energy  H Lamb
recoilE  for the electron in the 2n   and the corresponding frequency shift  H Lamb

recoilf of the hydrogen atom is given 

by Eq. (2.153): 
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where hE   corresponds to the recoil energy (Eqs. (2.153) and (2.22)) is 
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 (2.158) 

wherein 2n  8.  
Then, the total energy of the hydrogen Lamb shift is given by the sum of Eqs. (2.139-2.140) and (2.156): 
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The Planck relationship (Eq. (2.148)) gives  H Lamb
totalf , the Lamb shift energy expressed in terms of frequency: 
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    (2.160) 

The experimental Lamb shift is [42] 
   experimental 1057.845 H Lamb

totalf MHz   (2.161) 

There is good agreement between the theoretical and experimental values given the 100 MHz natural linewidth of the 2P  state.  
The 0.07% relative difference is within the propagated errors in the fundamental constants of the equations.  In addition to the 
Lamb shift, the spectral lines of hydrogen are Zeeman split by spin-orbit coupling and electron-nuclear magnetic interactions 
given in the Fine Structure and Hyperfine Structure sections, respectively. 
 

MUONIC HYDROGEN LAMB SHIFT 
The Lamb shift corresponding to the transition energy from the 2

1/2P  state to the 2
1/2S  state of the muonic hydrogen atom having 

the quantum numbers 2,  1,  0n m    and 2,  0,  0n m   , respectively, is also calculated from the radiation reaction 

force and the atom recoil energy due to photon emission.  The radiation reaction force RRF  of muonic hydrogen comprises three 

terms that follow from Eq. (2.135) and arise from lepton-photon-momentum transfer during the 2 2
1/2 1/2P S  transition wherein 

the photon couples with the three possible states of the electron mass corresponding to the three possible leptons.  The electron, 

muon, and tau masses are based on the relativistic corrections of the Planck, electric, and magnetic energies, respectively, as 

given in Eq. (32.48).  The masses of the heavier leptons, the muon and tau are dependent on the first lepton’s mass, the electron 

mass, and each can be considered a relativistic effect of the electron mass.  Specifically, the muon is a resonant state of an 

electron given by a relativistic effect of the electron mass as given by Eqs. (36.5-36.6), wherein the muon decays to the electron: 
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Likewise, the tau mass having a dependency on the electron mass is given by Eqs. (36.7-36.8): 
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8 As a further example, conservation of linear momentum of the photon is central to the Mössbauer phenomenon.  See Mills patent [41]. 
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Thus, the radiation reaction force of relativistic origin is determined by the action on the electron mass with each mass hierarchy 
requiring an additional relativistic correction factor of 2 .  Then, using Eqs. (2.135) and (32.48), the first radiation reaction 

term  2
2  regards the photon coupling to the electron whose mass is based on the Planck equation.  The second term  3

2  

regards the relativistically corrected electric energy whereby the photon couples to the electron via the muon, and the third term 

 4
2  regards the magnetic energy which is a relativistic correction to the electric energy whereby the photon couples to the 

electron via a possible tau state.  The first and second radiation reaction terms are negative since the mass-energy of the electron 
and muon are less than or equal to the mass-energy of the bound particle in muonic H with the lower energy state being relative 
to the energy of the state involving an electron.  The third term is positive since it is a loss term for a possible, but not obtained 
mass-energy state.  The second and third terms involve lepton couplings between two and three leptons, respectively. 

Since the magnetic force between the muon and proton magnetic moment given by Eqs. (1.243-1.252) is also a 

relativistic electrodynamic force involving the lepton mass, it must be corrected by the ratio of the electron to muon mass.  The 

radiation reaction force in the muonic hydrogen atom also perturbs the force balance between the muon and proton relative to the 

condition in its absence.  The outward centrifugal force on the muon is balanced by the electric force and the mass-ratio-

corrected magnetic force (Eqs. (1.253) and (2.4)), and the three-term-expanded radiation reaction force (Eq. (2.135)) 
corresponding to the current flow to achieve the current distribution of the 1/22S  from the 1/22P  state: 
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 32.0005735 9.6755983  10p Hr a X a
   (2.169) 

where Eq. (1.35) was used for the velocity, Ha  is the radius of the hydrogen atom given by Eq. (1.259), and pa  is defined as 

e
H

m
a

m

.  The radius in the absence of the radiation reaction force is 3
0 2 9.6728246  10p Hr a X a

  . 

 

ENERGY CALCULATIONS 
The change in the electric energy of the muon  p Lamb

eleE  due to the slight shift of the radius of the atom is given by the difference 

between the electric energies associated with the unperturbed and radiation-reaction-force-perturbed radius.  Each electric energy 
is given by the substitution of the corresponding radius given by Eq. (2.167) into Eqs. (1.264) and (2.4): 
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wherein the unperturbed radius given by Eq. (2.5) and Eqs. (1.253-1.259) is 0 2 pr a . 

In addition, the change in the magnetic energy  p Lamb
magE  of the muon is given by Eqs. (1.161-1.162) with the substitution 

of the corresponding radii  
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 (2.171) 

where B
  is the muon Bohr magneton.   

 For the photon of the muonic hydrogen atom, the linear momentum of the emitted photon is balanced by the recoil 
momentum of the entire atom of mass pm , and the corresponding recoil energy adds to the energy due to the radiation reaction 

force.  The recoil energy  p Lamb
recoilE  for the muon in the 2n   state and the corresponding frequency shift  p Lamb

recoilf  of the muonic 
hydrogen atom is given by Eqs. (2.153): 
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where hE   corresponds to the recoil energy (Eqs. (2.153) and (2.22)) for muonic H is: 
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wherein 2n  . 
Then, the total energy of the muonic hydrogen Lamb shift corresponding to the transition 2 2

1/2 1/2P S  is given by the 

sum of Eqs. (2.170-2.172): 
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The Planck relationship (Eq. (2.148)) gives  p Lamb
totalf  , the magnitude of the muonic hydrogen Lamb shift energy corresponding 

to the transition 2 2
1/2 1/2P S  expressed in terms of frequency: 
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The literature energies for 2
3/2 1/22 2FP P

E  
, the 2 2

3/2
FP   level shift with respect to the unperturbed 2

1/2P  level, and, 1
1/22 FS

E  , the 

2 1
1/2
FS   level shift with respect to the unperturbed 2

1/2S  level, are [43]: 
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Then, using Eqs. (2.175) and (2.177-2.178), the total energy of the muonic hydrogen Lamb shift corresponding to the transition 
2 2

3/2 1/2 2  1P F S F    is: 
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The Planck relationship (Eq. (2.148)) gives 
2 2

3/2 1/2 2  1p Lamb P F S F
totalf     , the magnitude of the muonic hydrogen Lamb shift energy 

expressed in terms of frequency: 
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The magnitude of the experimental muonic hydrogen Lamb shift matching the 2
1/2S  state lower than the 2

1/2P  and states 2
3/2P  is 

[43]: 

  2 2
3/2 1/2  2  1 experimental 49,881.88 p Lamb P F S F

totalf GHz      (2.181) 

There is good agreement between the theoretical and experimental values given the 18.6 GHz natural linewidth of the 2P  state.  
The 0.0058% relative difference is within the measurement error and propagated errors in the fundamental constants of the 
equations.  For example, the relative difference is 0.0025% using the 2002 CODATA constants [44].  These results solve the 
proton radius puzzle wherein QED erroneously invokes the proton radius in computation of the muonic hydrogen Lamb shift. 
 

HYDROGEN SPIN-ORBIT COUPLING (FINE STRUCTURE) 
For the 2P  level, the possible quantum numbers are 2,  1,  0n m    and 2,  1,  1n m     corresponding to the states 
2

1/2P  and 2
3/2P , respectively.  Thus, for 1 , the electron may or may not possess orbital angular momentum in addition to spin 

angular momentum corresponding to 1m    and 0m  , respectively.  As a consequence, the energy of the 2P  level is split by 

a relativistic interaction between the spin and orbital angular momentum as well as the corresponding radiation reaction force.  
The corresponding energy for the transition 2 2

1/2 3/2P P  is known as the hydrogen fine structure. 

The electron’s motion in the hydrogen atom is always perpendicular to its radius; consequently, as shown by Eq. (1.37), 
the electron’s angular momentum of   is invariant.  Furthermore, the electron is nonradiative due to its angular motion as shown 
in Appendix I and the Stability of Atoms and Hydrinos section.  The radiative instability of excited states is due to a radial dipole 
term in the function representative of the excited state due to the interaction of the photon and the excited-state electron as shown 
in the Instability of Excited States section.  The angular momentum of the photon given in the Equation of the Photon section is 
given by Eqs. (2.132) and (4.1).  It is conserved for the solutions for the resonant photons and excited-state electron functions 
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given in the Excited States of the One-Electron Atom (Quantization) section and the Equation of the Photon section.  Thus, the 
electrodynamic angular momentum and the inertial angular momentum are matched such that the correspondence principle 

holds.  It follows from the principle of conservation of angular momentum that 
e

e

m
 of Eq. (1.131) is invariant (See the 

Determination of Atomic Orbital Radii section).   
A magnetic field is a relativistic effect of the electrical field as shown by Jackson [21].  No energy term is associated with 

the magnetic field of the electron of the hydrogen atom unless another source of magnetic field is present.  In the case of spin-
orbit coupling, the invariant   of spin angular momentum and orbital angular momentum each give rise to a corresponding 
invariant magnetic moment of a Bohr magneton, and their corresponding energies superimpose as given in the Orbital and Spin 
Splitting section.  The interaction of the two magnetic moments gives rise to a relativistic spin-orbit coupling energy.  The vector 
orientations of the momentum must be considered as well as the condition that flux must be linked by the electron in units of the 
magnetic flux quantum in order to conserve the invariant electron angular momentum of  .  The energy may be calculated with 

the additional conditions of the invariance of the electron’s charge and charge-to-mass ratio 
e

e

m
.   

As shown in the Electron g Factor section (Eq. (1.181)), flux must be linked by the electron atomic orbital in units of the 
magnetic flux quantum that treads the atomic orbital at v c  with a corresponding energy of: 
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  (2.182) 

As shown in the Atomic Orbital Equation of Motion for  = 0 Based on the Current Vector Field (CVF) section, the Two-
Electron Atoms section, and Appendix VI, the maximum projection of the rotating spin angular momentum of the electron onto 

an axis is 
3

4
 .  From Eq. (2.65), the magnetic flux due to the spin angular momentum of the electron is [20]: 
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where   is the magnetic moment.  The maximum projection of the orbital angular momentum onto an axis is   as shown in the 

Orbital and Spin Splitting section with a corresponding magnetic moment of a Bohr magneton B .  Substitution of the magnetic 

moment of B  corresponding to the orbital angular momentum and Eq. (2.183) for the magnetic flux corresponding to the spin 

angular momentum into Eq. (2.182) gives the spin-orbit coupling energy /s oE . 
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The Bohr magneton corresponding to the orbital angular momentum is invariant and the corresponding invariant electron charge 
e  is common with that which gives rise to the magnetic field due to the spin angular momentum.  The condition that the 
magnetic flux quantum treads the atomic orbital at v c  with the maintenance of the invariance of the electron’s charge-to-mass 

ratio 
e

e

m
 and electron angular momentum of   requires that the radius and the electron mass of the magnetic field term of Eq. 

(2.184) be relativistically corrected.  As shown by Eq. (1.280) and in Appendix I and the Determination of Atomic Orbital Radii 
sections, the relativistically corrected radius *r  follows from the relationship between the electron wavelength and the radius. 
 2 r   (2.185) 
The phase matching condition requires that the electron wavelength be the same for orbital and spin angular momentum.  Using 
Eq. (1.280) with v c : 
 *r   (2.186) 
Thus, 
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r
r


  (2.187) 

The relativistically corrected mass *m  follows from Eq. (2.187) with maintenance of the invariance of the electron angular 
momentum of   given by Eqs. (1.35) and (1.37). 
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With Eq. (2.187), the relativistically corrected mass *m  is: 
 * 2 em m  (2.189) 
With the substitution of Eq. (2.187) and Eq. (2.189) into Eq. (2.184), the spin-orbit coupling energy /s oE  is given by 
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(The magnetic field in this case is equivalent to that of a point electron at the origin with 
3

4
  of angular momentum.)   

In the case that 2n  , the radius given by Eq. (2.5) is 02r a .  The predicted energy difference between the 2
1/2P  and 

2
3/2P  levels of the hydrogen atom, /s oE , given by Eq. (2.190) is:  
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wherein 1  and both levels are equivalently Lamb shifted.   

/s oE  may be expressed in terms of the mass energy of the electron.  The energy stored in the magnetic field of the 

electron atomic orbital (Eq. (1.183)) is:  
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As shown in the Pair Production section with the v c  condition, the result of the substitution of o Ca    for nr , the relativistic 

mass, 2 em , for em , and multiplication by the relativistic correction,  , which arises from Gauss’ law surface integral and the 

relativistic invariance of charge is: 
 2

mag eE m c  (2.193) 

Thus, Eq. (2.191) can be expressed as: 
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Using the Planck equation, the corresponding frequency, /s of , is: 

 / 10,927.02 s of MHz   (2.195) 

As in the case of the 2 2
1/2 1/2P S  transition, an additional term arises in the fine structure interval from the radiation 

reaction force involving electron-photon-momentum transfer during the 2 2
1/2 3/2P P  transition corresponding to the rotating 

orbital dipole that couples with the spin angular momentum.  The radiation reaction force RRF  is given by Eq. (2.135) having the 

additional relativistic correction factor of 2  with an additional geometrical correction factor of 
3

4
 matching the rotating 

projection of the spin angular momentum: 
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The outward centrifugal force on the electron is balanced by the electric force and the magnetic force (Eqs. (1.253) and (2.4)), 

and the radiation reaction force (Eq. (2.196)): 
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 1.99999990 Hr a  (2.199) 

where Eq. (1.35) was used for the velocity and Ha  is the radius of the hydrogen atom given by Eq. (1.259). 

 

ENERGY CALCULATIONS 
The change in the electric energy of the electron H FS

eleE  due to the slight shift of the radius of the atom is given by the difference 

between the electric energies associated with the unperturbed and radiation-reaction-force-perturbed radius.  Each electric energy 
is given by the substitution of the corresponding radius given by Eq. (2.199) into Eqs. (1.264) and (2.4): 
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wherein the unperturbed radius given by Eq. (2.5) is 0 2 Hr a . 

In addition, the change in the magnetic energy H FS
magE  of the electron is given by Eqs. (1.161-1.162) with the substitution 

of the corresponding radii:  
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 (2.201) 

where B  is the Bohr magneton. 

Then, the total radiation reaction energy of the hydrogen fine structure  H FS
RRtotalE  is given by the sum of Eqs. (2.200-

2.201): 
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The Planck relationship (Eq. (2.148)) gives  H FS
RRtotalf , the radiation reaction energy contribution expressed in terms of frequency: 
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Then, the total energy of the hydrogen fine structure H FS
totalE  is given by the sum of Eqs. (2.194) and (2.202): 
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The Planck relationship (Eq. (2.148)) gives  H FS
totalf , the fine structure energy expressed in terms of frequency: 
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    (2.205) 

The experimental hydrogen fine structure is [42] 
   experimental 10,969.05 H FS

totalf MHz   (2.206) 

The large natural widths of the hydrogen 2P  levels limits the experimental accuracy [45]; yet, given this limitation, the 
agreement between the theoretical and experimental fine structure (0.005% relative difference) is excellent and within the cited 
and propagated errors.  
 

HYDROGEN KNIGHT SHIFT 
In an external magnetic field, the unpaired electron of the hydrogen atom gives rise to a uniform magnetic field contribution at 
the nucleus which is given by Eq. (1.152). 
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 (2.207) 

Multiplication of Eq. (2.207) by the permeability of free space, 0 , and substitution of the Bohr radius of the hydrogen atom, 

Ha , given by Eq. (1.259) for nr  of Eq. (2.207) gives the magnetic flux, sB , at the nucleus due to electron spin. 
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 (2.208) 

The shift of the NMR frequency of a nucleus by an unpaired electron is called the Knight Shift.  The Knight Shift of the 
hydrogen atom is given by the magnetic flux (Eq. (2.208)) times the proton gyromagnetic ratio of 142.5775 MHzT  .  The 
experimental value is unknown; however, magnetic hyperfine structure shifts of Mössbauer spectra corresponding to magnetic 
fluxes of 100 T or more due to unpaired electrons are common. 
 

SPIN - NUCLEAR COUPLING (HYPERFINE STRUCTURE) 
The radius of the hydrogen atom is increased or decreased very slightly due to the Lorentz force on the electron due to the 
magnetic field of the proton and its orientation relative to the electron’s angular momentum vector.  The additional small 
centripetal magnetic force is the relativistic corrected Lorentz force, magF , as also given in the Two-Electron Atoms section and 

the Three- Through Twenty-Electron Atoms section.   
The atomic orbital with  = 0 is a shell of negative charge current comprising correlated charge motion along great 

circles.  The superposition of the vector projection of the atomic orbital angular momentum on the z-axis is 
2z L


 (Eq. (1.128)) 
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with an orthogonal component of 
4xy L


 (Eq. (1.127)).  The magnetic field of the electron at the nucleus due to zL  after 

McQuarrie [20] is 

 0
32 e

e

m r


B


 (2.209) 

where 0  is the permeability of free-space ( 7 2
 4   10 /X N A  ).  An electrodynamic force or radiation reaction force, a force 

dependent on the second derivative of the charge’s position with respect to time, arises between the electron and the proton.  
This force given in Sections 6.6, 12.10, and 17.3 of Jackson [37] achieves the condition that the sum of the mechanical 
momentum and electromagnetic momentum is conserved. 

The magnetic moment of the proton,  P , aligns in the direction of zL , but experiences a torque due to the orthogonal 

component xyL .  As shown in the Atomic Orbital Equation of Motion for = 0 Based on the Current Vector Field (CVF) 

section, the magnetic field of the atomic orbital gives rise to the precession of the magnetic moment vector of the proton directed 

from the origin of the atomic orbital at an angle of 
3

   relative to the z-axis.  The precession of  P  forms a cone in the 

nonrotating laboratory frame to give a perpendicular projection of: 

 
3

4P P     (2.210) 

after Eq. (1.129) and a projection onto the z-axis of: 

 
2

P
P

  ||  (2.211) 

after Eq. (1.130).  At torque balance, xyL  also precesses about the z-axis at 90° with respect to P || .  Using Eq. (2.209), the 

magnitude of the force magF  between the antiparallel field of the electron and P  is:  
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B 
 (2.212) 

The radiation reaction force corresponding to photon emission or absorption is radial as given in the Equation of the Electric 
Field inside the Atomic Orbital section.  The reaction force on the electron due to the force of the electron’s field on the 
magnetic moment of the proton is the corresponding relativistic central force, magF , which acts uniformly on each charge (mass)-

density element of the electron.  The magnetic central force is derived as follows from the Lorentz force which is relativistically 
corrected.  The Lorentz force at each point of the electron moving at velocity v  due to a magnetic flux B is: 
 mag e F v B  (2.213) 

Eqs. (2.212) and (2.213) may be expressed in terms of the electron velocity given by Eq. (1.35): 
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 (2.214) 

where B is the magnetic flux of the proton at the electron.  (The magnetic moment m of the proton is given by Eq. (37.29), and 
the magnetic field of the proton follows from the relationship between the magnetic dipole field and the magnetic moment m as 
given by Jackson [46] where P zm i .)  In the lightlike frame, the velocity v is the speed of light, and B corresponds to the 

time-dependent component of the proton magnetic moment given by Eq. (2.210).  Thus, the central force is:  

 0
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e c
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  F  (2.215) 

where the relativistic factor from Eq. (1.249) is   (Eq. (1.205) also gives the velocity as c ), the plus sign corresponds to 
antiparallel alignment of the magnetic moments of the electron and proton, and the minus sign corresponds to parallel alignment.  
The outward centrifugal force (Eq. (1.241)) on the electron is balanced by the electric force (Eq. (1.242)) and the magnetic forces 
given by Eqs. (1.252) and (2.215): 
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Using Eq. (1.35), 
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where e  is the reduced electron mass given by Eq. (1.255), Ha  is the Bohr radius of the hydrogen atom given by Eq. (1.259), 

the plus sign corresponds to parallel alignment of the magnetic moments of the electron and proton, and the minus sign 
corresponds to antiparallel alignment. 
 

ENERGY CALCULATIONS 
The magnetic energy to flip the orientation of the proton’s magnetic moment, P , from antiparallel to parallel to the direction of 

the magnetic flux sB  of the electron (180° rotation of the magnetic moment vector) given by Eqs. (1.168), (2.209), and (2.210) 

is: 
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where the Bohr magneton, B , is given by Eq. (1.131). 

The change in the electric energy of the electron due to the slight shift of the radius of the electron is given by the 
difference between the electric energies associated with the two possible orientations of the magnetic moment of the electron 
with respect to the magnetic moment of the proton, parallel versus antiparallel.  Each electric energy is given by the substitution 
of the corresponding radius given by Eq. (2.221) into Eq. (1.264).  The change in electric energy for the flip from antiparallel to 
parallel alignment, /S N

eleE , is:  
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In addition, the interaction of the magnetic moments of the electron and proton increases the magnetic energy, magE , of 

the electron given by Eqs. (1.161-1.162).  The term of magE  for the hyperfine structure of the hydrogen atom is similar to that of 

muonium given by Eq. (2.244) in the Muonium Hyperfine Structure Interval section: 
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 (2.224) 

where the contribution corresponding to electron spin gives the first term, 1, and the second term, 
2

2

3
 
 
 

, corresponds to the 

rotation of the electron about the z-axis corresponding to the precession of xyL .  The geometrical factor of 
2

3
 for the rotation is 

given in the Derivation of the Magnetic Field section in Chapter One (Eq. (1.140)) and by Eq. (11.391), and the energy is 
proportional to the magnetic field strength squared according to Eq. (1.154).  The relativistic factor from Eq. (1.249) and Eqs. 

(1.161) and (2.190) is   times 
2

cos
3

 
 
 

 where the latter term is due to the nuclear magnetic moment oriented 
3

   relative to 

the z-axis.  The energy is proportional to the magnetic field strength squared according to Eq. (1.154). 
The total energy of the transition from antiparallel to parallel alignment, /S N

totalE , is given as the sum of Eqs. (2.222-

2.224): 
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The energy is expressed in terms of wavelength using the Planck relationship, Eq. (2.148): 
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 (2.226) 

The experimental value from the hydrogen maser is [47]: 

 / 21.10611 S N
total cm   (2.227) 

The 21 cm line is important in astronomy for the determination of the presence of hydrogen.  There is remarkable agreement 
between the calculated and experimental values of the hyperfine structure that is only limited by the accuracy of the fundamental 
constants in Eqs. (2.221-2.224). 
 

MUONIUM HYPERFINE STRUCTURE INTERVAL 
Muonium ( ,  e M  ) is the hydrogenlike bound state of a positive muon and an electron.  The solution of the ground state 

( 2
1/21 S ) hyperfine structure interval of muonium, Mu , is similar to that of the hydrogen atom.  The electron binds to the muon 

as both form concentric atomic orbitals with a minimization of energy.  The outward centrifugal force (Eq. (1.241)) on the outer 
electron is balanced by the electric force (Eq. (1.242)) and the magnetic forces due to the inner positive muon given by Eqs. 
(1.252) and (2.215).  The resulting force balance equation is the same as that for the hydrogen atom given by Eq. (2.216) with 
the muon mass, m , replacing the proton mass, m , and the muon magnetic moment,  , replacing the proton magnetic moment, 

P .  The radius of the electron, 2r , is given by: 
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Using Eq. (1.35), 
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where ,e   is the reduced muonium-electron mass given by Eq. (1.255) with the mass of the proton replaced by the mass of the 

muon, a  is the Bohr radius of the muonium atom given by Eq. (1.259) with the reduced electron mass, e  (Eq. (1.255)), 

replaced by ,e  .  The plus sign corresponds to parallel alignment of the magnetic moments of the electron and muon, and the 

minus sign corresponds to antiparallel alignment. 
The radii of the muon, 1r , in different spin states can be determined from 2r , the radii of the electron (Eqs. (2.232-

2.233)), and the opposing forces on the muon due to the bound electron.  The outward centrifugal force (Eq. (1.241)) on the 
muon is balanced by the reaction forces given by Eq. (2.228): 
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Using Eq. (1.35),  
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Using Eqs. (2.232-2.233) for 2r , 
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where the plus sign corresponds to parallel alignment of the magnetic moments of the electron and muon and the minus sign 
corresponds to antiparallel alignment. 
 

ENERGY CALCULATIONS 
The magnetic energy,  spin

mag MuE   , to flip the orientation of the muon’s magnetic moment,  , from antiparallel to parallel to 

the direction of the magnetic flux sB  of the electron (180° rotation of the magnetic moment vector) given by Eq. (2.222) is: 
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wherein the muon magnetic moment replaces the proton magnetic moment and the electron Bohr magneton, B , is given by Eq. 

(1.131). 
An electric field equivalent to that of a point charge of magnitude e  at the origin only exists for 1 2r r r  .  Thus, the 

change in the electric energy of the electron due to the slight shift of the radius of the electron is given by the difference between 
the electric energies associated with the two possible orientations of the magnetic moment of the electron with respect to the 
magnetic moment of the muon, parallel versus antiparallel.  Each electric energy is given by the substitution of the 
corresponding radius given by Eq. (2.231) into Eq. (1.264) or Eq. (2.223).  The change in electric energy for the flip from 
antiparallel to parallel alignment,  ele MuE   , is:  
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For each lepton, the application of a magnetic field with a resonant Larmor excitation gives rise to a precessing angular 

momentum vector S of magnitude   directed from the origin of the atomic orbital at an angle of 
3

   relative to the applied 

magnetic field.  As given in the Spin Angular Momentum of the Atomic Orbital 0
0 ( , )Y    with  = 0 section, S rotates about the 

axis of the applied field at the Larmor frequency.  The magnitude of the components of S that are parallel and orthogonal to the 

applied field (Eqs. (1.129-1.130)) are 
2


 and 

3

4
 , respectively.  Since both the RF field and the orthogonal components shown 

in Figure 1.25 rotate at the Larmor frequency, the RF field that causes a Stern Gerlach transition produces a stationary magnetic 
field with respect to these components as described by Patz [48].  The corresponding central field at the atomic orbital surface 
given by the superposition of the central field of the lepton and that of the photon follows from Eqs. (2.10-2.17) and Eq. (17) of 
Box 1.1: 
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where the spherical harmonic dipole  , sinmY     is with respect to the S-axis.  The dipole spins about the S -axis at the 

angular velocity given by Eq. (1.36).  The resulting current is nonradiative as shown in Appendix I: Nonradiation Condition.  
Thus, the field in the RF rotating frame is magnetostatic as shown in Figures 1.28 and 1.29 but directed along the S-axis.   

The interaction of the magnetic moments of the leptons increases their magnetic energies given by Eqs. (1.161-1.162) 
with the mass of the corresponding lepton: 
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where (1) the radii of the electron and muon are given by Eq. (2.232-2.233) and Eqs. (2.239-2.240)), respectively, (2) ,B   is the 

muon Bohr magneton given by Eq. (1.131) with the electron mass replaced by the muon mass, (3) the first term is due to lepton 

spin, (4) the second term, 
2

2
cos

3 3

 
 
 

 is due to S, oriented 
3

   relative to the z-axis, wherein the geometrical factor of 
2

3
 

corresponds to the source current of the dipole field (Eq. (2.243)) given in the Derivation of the Magnetic Field section (Eq. 
(1.140)) and by Eq. (11.391), and the energy is proportional to the magnetic field strength squared according to Eq. (1.154), and 
(5) the relativistic factor from Eq. (1.249) and Eqs. (1.161) and (2.190) is  . 

The energy of the ground state ( 2
1/21 S ) hyperfine structure interval of muonium,  MuE   , is given by the sum of Eqs. 

(2.241-2.242) and (2.244-2.245): 
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Using Planck’s equation (Eq. (2.148)), the interval frequency, Mu , and wavelength, Mu , are: 

  4.46330328 Mu GHz   (2.247) 

  6.71682919 cmMu   (2.248) 

The experimental hyperfine structure interval of muonium [49] is: 
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 (2.249) 

There is remarkable (7 to 8 significant figure-) agreement between the calculated and experimental values of Mu  that is only 

limited by the accuracy of the fundamental constants in Eqs. (2.239-2.240), (2.241-2.242), and (2.244-2.245) as shown by using 
different CODATA values [50-51]. 
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Chapter 3 
  
ELECTRON IN FREE SPACE 
  
 
 
 
 
CHARGE-DENSITY FUNCTION 
The radius of a spherical wavefront of light goes to infinity as it propagates from a spherically-symmetrical source such that its 
propagation in the far-field is given by the plane-wave equation: 
 0

zik zE eE  (3.1) 

Light and electrons display identical propagation and diffraction behavior.  (This is expected because an electron is created from 
a photon as derived in the Pair Production section).  Electrons behave as two-dimensional wavefronts with the de Broglie 
wavelength, /h p  , in double-slit experiments (Davisson-Germer experiment) [1].  The plane wave nature of free electrons is 
demonstrated in the Electron Scattering by Helium section1.  The results of the double-slit experiment are derived classically in 
the Two-Slit Interference (Wave-Particle Duality) section.  Analogous to the behavior of light, the radius of the spherically-
symmetrical electron atomic orbital increases with the absorption of electromagnetic energy [2].   

Consider an idealized hypothetical state.  With the absorption of exactly the ionization energy, the atomic radius r goes to 
infinity, the electron momentum goes to zero, and the de Broglie relationship given by Eq. (1.15) predicts that the electron 
wavelength concomitantly goes to infinity corresponding to an infinitely large electron.  The interaction radius of an infinitely 
large atom goes to infinity also.  Such a state is not physical; so, let’s consider the case observed.  In order for the atom to 
become ionized to form a free electron, the atom must absorb energy greater than its ionization energy.  The radius of the 
spherical shell (electron atomic orbital) goes to infinity as in the case of a spherical wavefront of light emitted from a 
symmetrical source, but it does not achieve an infinite radius.  Rather it becomes ionized with the free electron propagating with 
linear velocity, zv , and the de Broglie wavelength is finite as shown in Figure 3.1.  The ionized electron is a plane wave that 

propagates as a wavefront with the de Broglie wavelength where the size of the electron is the de Broglie wavelength, /h p  , 
as shown below. 
 
Figure 3.1.   Time-lapsed image of spherical to plane-wave front continuity that determines the boundary conditions for 
atomic electron ionization.  With the absorption of a photon of energy in excess of the binding energy, the bound electron’s 
radius increases, and the electron ionizes as a plane-wave. 

 
 

1 Particles such as the proton and neutron also demonstrate interference patterns during diffraction.  The observed far-field position distribution is a picture 

of the particles’ transverse momentum distribution after the interaction.  The momentum transfer is given by k  where 
2

k



  is the wave number.  The 

wavelength   is the de Broglie wavelength associated with the momentum of the particles which is transferred through interactions.  An example is the 
interference pattern for rubidium atoms given in the Wave-Particle Duality is Not Due to the Uncertainty Principle Section. 
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The ionized electron traveling at constant velocity, zv , is nonradiative and is a two-dimensional surface having a total 

charge of e and a total mass of em .  The spacetime charge-density function of the ionized electron is solved as a boundary value 

problem as described previously for the bound electron in the One Electron-Atom section.  The de Broglie wavelength 
relationship given by Eq. (1.38) must hold independent of the radius of the electron.  The relationship between the electron 
atomic orbital radius and its wavelength, is given by Eq. (1.15).  The integral of the magnitude of the angular momentum density 
is   (Eq. (1.37)) independent of the electron radius; thus, for both the bound electron and the free electron, the total magnitude 
of the angular momentum is  .  The spacetime plane-wave charge-density function of the free electron is a solution of the 
classical wave equation (Eq. (1.56)).  The current-density function possesses no spacetime Fourier components synchronous 
with waves traveling at the speed of light; thus it is nonradiative.  As shown below, the solution of the boundary value problem 
of the free electron is given by the projection of the atomic orbital into a plane that linearly propagates along an axis 
perpendicular to the plane.  The velocity of the plane and the atomic orbital is given by Eq. (1.35) where the radius of the atomic 
orbital in spherical coordinates is equal to the radius of the free electron in cylindrical coordinates. 

Consider an electron atomic orbital of radius 0r .  The boundary condition that the de Broglie wavelength holds and the 

angular momentum is conserved as shown infra for any electron radius requires that the ionized electron is the projection of the 
atomic orbital into ( )z , the Cartesian xy-plane that propagates linearly along the z-axis with the same linear velocity as the 

electron atomic orbital.  The mass-density function,  , ,m z   , of the electron with linear velocity along the z-axis of zv  in the 

inertial frame of the proton2 given by Eq. (1.35): 

 
0 0

z
e n e em r m r m 

  v
  

 (3.2) 

is given by the projection into the xy-plane of the convolution,  , of the xy-plane, ( )z , with an atomic orbital of radius 0r .  

The convolution is  

 2 2 2 2
0 0 0( ) ( ) ( )z r r r z r r z         (3.3) 

where the atomic orbital function is given in spherical coordinates.  The equation of the free electron is given as the projection of 
Eq. (3.3) into the xy-plane which in cylindrical coordinates is: 
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 (3.4) 

where N  is the normalization factor for the charge and mass plane-wave defined by 
02




  
 
 

 which represents a two-

dimensional disc or plane-lamina disc of radius 0 .  In spherical coordinates, Eq. (3.4) is given by sin , the projection of the 

charge density of a spherical shell into a plane.  The total mass is em .  Thus, the normalization factor N  in Eq. (3.4) is given by: 
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        (3.5) 
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  (3.6) 

The mass-density function of a free electron is a two-dimensional disc (essentially zero thickness equal to its Schwarzschild 

radius 57
2

2
1.3525  10  e

g

Gm
r X m

c
   according to Eqs. (32.36) and (32.140b)).  The mass-density distribution,  , ,m z   , and 

charge-density distribution,  , ,e z   , in the xy-plane at  z  are: 

 
2 The universe is electrically neutral and contains no antimatter according to the particle production equation (Eq. (32.172)) of the contracting phase of the 
oscillatory universe.  Particle production proceeds through a neutron pathway that gives the number of electrons of the universe equal to the number of 
protons.  The wavelength and the radius of the electron must depend on the velocity relative to the proton’s inertial frame in order that relativistic 
invariance of charge holds and the universe is electrically neutral.  In the case of an observer in an inertial frame with constant relative motion with respect 
to the direction perpendicular to the two-dimensional plane containing the free-electron, the de Broglie wavelength of the electron in both the proton frame 
(the special frame of origin of the free electron) and the second inertial frame are the same.  The radius of the electron is also the same in both frames and 
is given by  

 
0

 
z

p


 (1) 

where 
z

p  is the electron momentum in the z-direction relative to the proton.  There is no Lorentz contraction in the second frame since the electron is 

oriented perpendicular to the direction of relative motion.  Eq. (1) further satisfies the conditions that the moving electron acquires velocity by acceleration 
with concomitant photon emission in quantized units of   and that the electric field of the moving electron is no longer that of the electron at rest.  
Conservation of angular momentum and energy gives rise to the de Broglie relationship as given in the Classical Physics of the de Broglie Relationship 
section. 
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and 
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respectively, where 
2
0

em


 is the average mass density and 

2
0

e


 is the average charge density of the free electron.  The magnitude 

of each distribution is shown in Figure 3.2.  The charge-density distribution of the free electron given by Eq. (3.8) and shown 
in Figure 3.2 has recently been confirmed experimentally [3,4].  Researchers working at the Japanese National Laboratory for 
High Energy Physics (KEK) demonstrated that the charge of the free electron increases toward the particle’s core and is 
symmetrical as a function of  . 
 
Figure 3.2A.   The angular-momentum-axis view of the magnitude of the continuous mass(charge)-density function in the xy-
plane of a polarized free electron propagating along the z-axis and the side view of this electron.  For the polarized electron, the 
angular momentum axis is aligned along the direction of propagation, the z-axis. 
 

 
 



Chapter 3 172

Figure 3.2B.   The magnitude plotted along the z-axis of the mass(charge)-density function of the free electron traveling at 
510  /m s  relative to the observer.  From Eq. (3.29), the radius of the xy-plane-lamina disc is 91.16  10  X m , and from Eqs. (3.7) 

and (3.8), the maximum mass density and charge density at 0   are 13 23.25  10  /X kg m  and 20.0571 C/m , respectively. 
 

 
 

This surface has an electric field equivalent to a point charge at the origin along the z-axis as shown in the Electric Field of a 
Free Electron section.   
 

ELECTRIC FIELD OF A FREE ELECTRON 
The electrical neutrality of the universe must be maintained.  A free electron is a continuum excited state of a state bound in an 
inverse r-squared positive electric field as given in the Excited States of the One-Electron Atom (Quantization).  A free electron 
is tethered to photon electromagnetic field that created the free electron state away from the proton field and changed its radius 
  and velocity zv  according to Eq. (3.45).  Specifically, the photon that excites the state is glued to the linearly traveling 

electron and maintains its radius  , charge density function, angular momentum, and velocity as shown in the Force Balance 
Based on the Radiation-Reaction Force section and the Classical Physics of the de Broglie Relation section.  (The only exception 
to this configuration is when all fields have been cancelled to form a free electron with no gravitational mass as given in the 
Positive, Zero, and Negative Gravitational Mass section.)  As given in the Force Balance Based on the Radiation-Reaction Force 
section, the current density of the free electron can be modeled as a continuum of circular current elements having the same 
rotational frequency.  The photon field lines propagate along these current elements.  The photon field lines and the free electron 
charge density only exist at the position of the two-dimensional plane of the free electron and superimpose only at that plane.  
Considering electrodynamic interactions (Eqs. (3.30-3.52)), the charge and current densities are determined to be absent any in-
plane forces; thus, the charge density comprises an equipotential such that the electric field lines at the surface of the free 
electron are normal to the surface.  The relationship between the electric field and the source charge density is given by Gauss’ 
law and Faraday’s law equation in two dimensions [5-7]: 

  1 2
0




  n E E  (3.9) 

where n  is the radial normal unit vector, 1E  is the electric field on one side of the free electron, 2E  is the electric field on the 

other side of the free electron, and   is the surface charge density distribution of the free electron given by Eq. (3.8).  Based on 
symmetry, the condition that the free electron comprises an equipotential surface requiring the absence of an in-plane electric 
field component at  z , and by using the substitution of 0 sin    in Eqs. (3.8) and (3.9), the electric field at each surface is 

given by: 
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The charge distribution and z-axis field is the spherical harmonic  1
0 ,Y   , an allowed spherical harmonic solution of an excited 

state, which is required for the selection rules based on conservation of electron and photon angular momentum and continuity of 
excited states though the continuum series. 

Since the photon field only exists in the two-dimensional plane, the electric potential of a free electron for 0z   is given 
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by Poisson’s Equation for a charge-density function, ( ', ', ')x y z  given by Eq. (3.8): 
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 (3.11) 

For 2 2 2
0r x y z     , the magnitude of the integral over the charge density is e , and  

 
0
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4

e
r

r
    (3.12) 

Eq. (3.12) is equivalent to the potential of a point charge at the origin.  The electric field, E , is the gradient of the electric 
potential given by Eqs. (3.11-3.12): 
  E  (3.13) 
A numerical plot of the electric field out of plane is shown in Figure 3.3 wherein the plot is discontinuous at the plane wherein 
the normal direct field at  z is given by Eq. (3.10) corresponding to an equipotential membrane due to the superposition of the 

photon field with the electron charge only at the plane of the free electron.  
 
Figures 3.3A-B.   The electric potential and electric field of the free electron.  A.  Three-dimensional cutaway view of the 
electric potential of a free electron that approaches that of a point charge at the center-of-mass in the far field.  B.  The two-
dimensional cross section of the electric field lines of a free electron.  The electric field is symmetrical about the z-axis and 
approaches that of a point charge at the center-of-mass in the far-field. 

 
 

(A) 
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(B) 

 

CURRENT-DENSITY FUNCTION 
In general, the current-density function is the product of the charge-density function times the angular velocity function.  If the 
intrinsic electron current was variable over time, then radiation would result, and the electron would be unstable.  A current that 
changes over time is also inconsistent with the Lorentz invariant electron magnetic moment of one Bohr magneton.  Thus, in 
order for the current to be stable over time, the current must be constant as a function of the radial distance and given by the 
product of  , the free-electron charge density (Eq. (3.8)) and a constant angular velocity.  The magnitude of the angular velocity 
of the atomic orbital is given by Eq. (1.36):  

 
2

em r
 


 (3.14) 

Rather than being confined to a spherical shell, the free electron possesses time harmonic charge motion in the xy-plane at a 
constant angular frequency.  That is, at each point on the free electron, the current moves along a flat current loop time 
harmonically.  This holds for all points such that the current confined to a plane is constant.  Since the charge density is 
determined, the boundary condition on the angular velocity is applied next to solve the current density function of the free 
electron.  Consider the boundary condition that arises during the ionization of a bound electron to form a free electron.  During 
ionization of the electron, the scalar sum of the magnitude of the angular momentum,  , must be conserved.  The current-
density function of a free electron propagating with velocity zv  along the z-axis in the inertial frame of the proton is given by 

the product of the charge density and the constant angular velocity.  Since the mass to charge ratio of the electron is invariant, 
the corresponding boundary condition is that the angular momentum of   is conserved.  The projection of the constant angular 
velocity of the atomic orbital into the plane of the free electron gives the angular velocity of the form 

 
2
0e

N
m





 (3.15) 

where N  is the normalization constant that gives   of angular momentum.  The angular momentum, L , is given by: 

 2
z em  Li  (3.16) 

Consider the case that 
5

2
N   such that: 
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Substitution of the mass density, m , given by Eq. (3.7) and the angular frequency,  , given by Eq. (3.17) into Eq. (3.16) gives 

the angular momentum-density function L  which is shown in Figures 3.4A and 3.4B. 
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Figure 3.4A.   The plot as a function of   of the angular momentum density in the plane of a free electron having 

100 /z m sv . 

 
 
Figure 3.4B.   The cut-away, relief view of the angular momentum density in the plane of a free electron having 

100 /z m sv . 

 
 
The total angular momentum of the free electron is given by integration over the two-dimensional disc having the angular-
momentum density given by Eq. (3.18).  Using integral #211 of Lide [8] gives: 
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 z Li   (3.20) 

Thus, the constant angular velocity at each point on the two-dimensional lamina is given by Eq. (3.17). 
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The intrinsic current-density function of the free electron is given by the product of the angular velocity   and the 
charge-density function given by Eqs. (3.17) and (3.8), respectively.  The total current density ( , , , )z t J  additionally 
comprises the component due to translational motion.  The total current-density function is given by: 
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 (3.21) 

The intrinsic current is shown in Figure 3.5. 
 
Figure 3.5.   The magnitude plotted along the z-axis of the current-density function, J , of the free electron traveling at 

5 110  ms  relative to the observer.  From Eq. (3.29), the radius of the xy-plane-lamina disc is 91.16 10  X m , and from Eq. (3.21), 
the maximum current density at 0   is 13 21.23  10X Am . 
 

 
 
The spacetime Fourier transform of Eq. (3.21) is [9,10]: 
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where s  is the wavenumber 
0

2


.  The condition for nonradiation of a moving charge-density function is that the spacetime 

Fourier transform of the current-density function must not possess components synchronous with waves traveling at the speed of 

light, that is synchronous with 

c

 or synchronous with 
0

 
c

 where   is the dielectric constant of the medium.  The Fourier 

transform of the current-density function of the free electron is given by Eq. (3.22).  Consider the radial part of, J , the Fourier 

transform of the current-density function where the z spatial dimensional transform is not zero:   
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For time harmonic motion corresponding to the electron parameters 0  and 0s , Eq. (1.15),  

 0 02   (3.24) 

The charge motion of the free electron is angular, and consequently the radius undergoes Lorentz contraction as shown in the 
Special Relativistic Correction to the Ionization Energies section.  Consider the wave vector of the sinc function. When the 
velocity is c  corresponding to a potentially emitted photon, s  is the lightlike 0s  wherein 
 0   s v s c  (3.25) 

The relativistically corrected wavelength given by Eq. (1.280) is: 
 0 0   (3.26) 

as also shown in Appendix I: Nonradiation Based on the Electromagnetic Fields and the Poynting Power Vector.  Substitution of 
Eq. (3.26) into the sinc function results in the vanishing of the entire Fourier transform of the current-density function.  Thus, 

spacetime harmonics of 
0

  k or k
c c

  


   do not exist.  Radiation due to charge motion does not occur in any medium when 
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this boundary condition is met.  Furthermore, consider the z spatial dimensional transform of, J , the Fourier transform of the 

current-density function: 
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The only nonzero Fourier components are for: 
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where   is the angle between zk  and zv .  Thus, no Fourier components that are synchronous with light velocity with the 

propagation constant z c


k  exist.  Radiation due to charge motion does not occur when this boundary condition is met.  It 

follows from Eq. (3.2) and Eq. (3.24) that the wavelength of the free electron is: 

 0 02
e z

h

m v
    (3.29) 

which is the de Broglie wavelength.   
 

FORCE BALANCE BASED ON THE RADIATION-REACTION FORCE  
Consideration must be made of the free electron as a continuum excited electronic state caused by absorption of a photon.  The 
physics of excited states is continuous with the free electron or continuum excited states.  For excited states given in the 
Equation of the Electric Field inside the Atomic Orbital section, the vector direction of the photon electric field was determined 
directly by considering the relativistic effect of its motion relative to the electron.  In the case of the free electron, the 
electrodynamic field may be treated as a magnetic field since a magnetic field is a relativistic effect of the corresponding electric 
field.  The free electron is a two-dimensional disc with a charge distribution given by Eq. (3.8) having a radius 0  given by Eq. 

(3.29) and an in-plane electric field given by Eqs. (3.8 and (3.9).  This distribution is a minimum energy, two-dimensional 

surface3.  An attractive magnetic force exists between current circles in the xy-plane, and the force balance equation is given by 
equating the centrifugal and the centripetal forces.  

The centripetal force, magF , between the current loops is the electrodynamic or radiation-reaction magnetic force as given 

in the One Electron Atom—Determination of Atomic Orbital Radii section and the Two-Electron Atoms section.  Here, each 
infinitesimal point (mass or charge-density element) of the free electron moves azimuthally about the angular-momentum axis 
on a circle at the same angular velocity given by Eq. (3.17) at a radius 00    , and each point has the mass density and 

charge density given by Eqs. (3.7) and (3.8), respectively.  Due to the relative motion of the charge-density elements of each 
electron current loop, a radiation reaction force arises between each loop.  This force given in Sections 6.6, 12.10, and 17.3 of 
Jackson [11] achieves the condition that the sum of the mechanical momentum and electromagnetic momentum is conserved.  
The magnetic central force is derived from the Lorentz force, which is relativistically corrected.  The magnetic field at the 

 
3 This relation shows that only a 2-D geometry meets the criterion for a fundamental particle.  This is the nonsingularity geometry that is no longer 
divisible.  It is the dimension from which it is not possible to lower dimensionality.  In this case, there is no electrostatic self-interaction since the 
corresponding potential is continuous across the surface according to Faraday’s law in the electrostatic limit, and the field is discontinuous and normal to 
the charge according to Gauss’ law [8-10].  Thus, only the continuous current density function need be considered.   

It was shown in the Electron g Factor section that as a requirement of the conservation of angular momentum, the magnetic moment of the 
electron can only be parallel or antiparallel to an applied magnetic field.  Similarly, in order to conserve angular momentum, any internal change in the 
bound-electron current distribution and its corresponding angular momentum requires emission of a photon that carries angular momentum in its electric 
and magnetic fields only in discrete units of   as given in the Equation of the Photon section.  Conservation of angular momentum also requires that this 
condition be met for the free electron.  Self interaction of the current of the free electron having the angular momentum distribution given in the Current-
Density Function section and the Stern-Gerlach Experiment section requires the emission of a photon having an angular momentum that is a fraction of   
which is not possible according to Maxwell’s equations as given in the Excited States of the One-Electron Atom (Quantization) section.  Thus, any self 

interaction is a radiation-reaction type wherein k is also the lightlike k 0  such that k  
n

/ c .  Any such light-like interaction can only be central.  Since 

the velocity of each point of the electron for a given   is the same, the current of the atomic orbital is confined to a circle in the  v  c  frame as well as 

the lab frame as given by Eq. (1.280).  Since the current is orthogonal to the central vector at the same   for each circular current-density element, there is 

no self interaction, but there is an interaction between circular current-density elements for different values of   that balances the centrifugal force as 

given by Eq. (3.30) and Eqs. (3.37-3.38) to maintain the free electron as an equipotential 2-D surface.. 
As given by Eq. (3.15), the total angular momentum confined to the plane of the free electron is  .  The radiation reaction force requires 

conservation of the reaction photon’s angular momentum of  .  Thus, this force is only present for the free electron as opposed to the bound electron 
since the radial direction in the bound case is perpendicular to the surface and a photon of   of angular momentum may only be emitted through a release 
of energy due to the central field. 

Furthermore, since fundamental particles such as the electron are superconducting, nonresonant collisions cannot change the intrinsic angular 
momentum.  Such collisions involve the entire particle.  And, the intrinsic angular momentum remains unchanged, except when a resonant photon is 
emitted or absorbed according to the Maxwellian-based conservation rules given in the Excited States section and the Equation of the Photon section. 

Similar to the case of the electric field, a discontinuity in surface mass density gives rise to a discontinuity in the curvature of spacetime 
originating at the two-dimensional surface.  Thus, in addition to the absence of electric self-interaction (Appendix II), the Virial theorem does not apply 
regarding gravitational self-interaction.  The derivation of the gravitational field is given in the Gravity section. 
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electron current loop at position 0   due to the electron current loop at position 0  follows from Eq. (1.130) after McQuarrie 

[12]:  
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 (3.30) 

wherein the intrinsic angular momentum during photon interaction is the same as that of a bound electron as shown in the Stern-

Gerlach Experiment section and 0  is the permeability of free-space ( 7 2
 4   10 /X N A  ).  The motion at each position of the 

electron loop at radius 0   in the presence of the magnetic field of the current loop at position 0  gives rise to a central force 

which acts at each charge density element of the former.  The Lorentz force at each element moving at velocity v  is 
 mag e e   F v B B  (3.31) 

Substitution of Eq. (3.17) for   and Eq. (3.30) for B based on the angular momentum of the free electron of   gives:  
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Furthermore, the term in brackets can be expressed in terms of the fine structure constant  .  The radius of the electron loop in 
the light-like frame is C .  From Eq. (1.250) 
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Based on the relativistic invariance of 
e

e

m
 corresponding to the invariance of B  given by Eq. (1.131) as well as its invariant 

angular momentum of  , it can be shown that the relativistic correction to Eq. (3.32) is the reciprocal of Eq. (3.33).  
Specifically, as shown previously in the One Electron Atom—Determination of Atomic Orbital Radii section and the Two-
Electron Atoms section, the relativistic correction '  due to the light speed electrodynamic central force is:  

   1
' 2    (3.34) 

Thus, Eq. (3.32) becomes:  
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 (3.35) 

Eq. (3.35) gives the force as a function of the radius  .   
The centrifugal force due to each charge density element on each current loop about the angular-momentum axis is 

balanced by the centripetal force magF .  During the radiation reaction event, the centrifugal force,  i centrifugalF , at each point of the 

free electron of mass im  is given by: 
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 F i i  (3.36) 

(An equation for magF  that is also proportional to the angular frequency squared that parallels that of Eq. (3.41) is given by 

expressing the magnetic flux in terms of the current given by the charge times the angular frequency [13].)  The velocity v  at 
each point follows from the angular velocity (Eq. (3.17)) and is given by: 
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where   is the radius of the point.  Substitution of Eq. (3.37) into Eq. (3.36) gives: 
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 (3.38) 

The integral over the density gives the total force centrifugalF .  As in the case of magF , centrifugalF  for the radiation reaction event is 

linear in   such that the force per unit area is equal over the two-dimensional lamina to maintain the constraints that the electron 

is an equipotential, minimum-energy surface and the corresponding energy is proportional to   of a photon.  Thus, centrifugalF , 

the linear factor for centrifugalF  is given by multiplication of Eq. (3.38) by 
0




, substitution of the mass density (Eq. (3.7)) for im , 

and integration over the plane lamina: 
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 (3.39) 

centrifugalF  is also the magnitude of the total centrifugal force of the ensemble of current loops that is equally distributed 

throughout the plane lamina.  It is also given by using Eq. (3.36) in another form: 

 2
 i centrifugal im 

 


F i  (3.40) 

Substitution of the total angular momentum given by Eqs. (3.18-3.20), the angular velocity given by Eq. (3.17), and the total 
radius 0  into Eq. (3.40) gives centrifugalF : 

 
2 2
0

3
0 0

5
2 5

2


 

 


 e

centrifugal
e

m
F

m
 (3.41) 

Using Eq. (3.39) or Eq. (3.41), centrifugalF  is given by: 
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centrifugalF  is further given by the derivative of rotE : 
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 (3.43) 

where rotE  is given by Eq. (3.50).  From Eqs. (3.42-3.43) and (3.35), the outward centrifugal force, centrifugalF , due to each 

element on each current loop about the angular-momentum axis is balanced by the centripetal force magF  due to the magnetic 

interactions between the current loops. 
Furthermore, the free electron possesses a total charge e , a total mass em , and an angular momentum of  .  The 

magnetic moment is given by Eq. (2.65); thus, 
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 (3.44) 

which is the Bohr magneton.  Conservation of angular momentum with the linking of flux in discrete increments of the magnetic 
flux quantum gives rise to the spin quantum number, sm , and the g  factor which is the same as given previously in the Electron 

g Factor section.  The behavior of the free electron in a magnetic field is given in the Stern-Gerlach Experiment section.  It is 
shown next that the intrinsic angular momentum of   is unchanged as the electron acquires linear velocity with a concomitant 
change in its de Broglie wavelength. 
 

CLASSICAL PHYSICS OF THE DE BROGLIE RELATIONSHIP 
As shown in Appendix IV, the plane-lamina of the free electron generates a spherical current-density pattern over time during 
the interaction with photons designated 0

0 ( , ) Y .  The angular momentum of the photon given by 

  41
Re ( )

8
dx

c
   m r E B*   in the Photon section is conserved [14] for the solutions for the resonant photons and excited 

state electron functions given in the Excited States of the One-Electron Atom (Quantization) section.  It can be demonstrated that 
the resonance condition between these frequencies is to be satisfied in order to have a net change of the energy field [15].  In this 
case, the correspondence principle holds.  That is the change in angular frequency of the electron is equal to the angular 
frequency of the resonant photon that excites the resonator cavity mode corresponding to the transition, and the energy is given 
by Planck’s equation.  The same conditions apply to the free electron, and the correspondence between the principles of the 
bound and free electrons further hold in the case of the Stern-Gerlach experiment as given in the Stern-Gerlach Experiment 
section. 

The linear velocity of the free electron can be considered to be due to absorption of photons that excite surface currents 
corresponding to a decreased de Broglie wavelength where the free electron is equivalent to a continuum excited state with 
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conservation of the parameters of the bound electron discussed supra.  The relationship between the electron wavelength and the 
linear velocity is  

 1
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 (3.45) 

In this case, the angular frequency z  is given by: 
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which conserves the photon’s angular momentum of   with that of the electron relative to its center of mass.  The angular 
momentum conservation relationship of   is the same as that of the bound electron given by Eq. (1.37) where the velocity is zv  

given by Eq. (3.2) and the radius is 0  given by Eq. (3.29).  In addition, the electron kinetic energy T  is given by 
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The potential energy, magE , corresponding to magF  is given by the integral over the radius: 
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The rotational kinetic energy, rotE , of the free electron corresponding to the angular momentum given by Eqs. (3.18-3.20) is: 

 2 21 1 1

2 2 2rot eE L I m v     (3.49) 

Using Eqs. (3.17), (3.20), and (3.49) gives: 
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Similarly to Eq. (3.48), rotE  is also given by the integral of the corresponding force, centrifugalF , given by Eq. (3.43). 

The total energy, TE , is given by the sum of the change in the free-electron translational kinetic energy, T , the rotational 

energy, rotE , corresponding to the current of the loops, and the potential energy, magE , due to the radiation reaction force magF , 

the magnetic attractive force between the current loops due to the relative rotational or current motion: 
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Thus, the total energy, TE , of the excitation of a free-electron transitional state by a photon having   of angular momentum and 

an energy given by Planck’s equation of   is:  
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      (3.52) 

where   is de Broglie wavelength.  The angular momentum of the free electron of   is unchanged, the energies in the currents 
in the plane lamina are balanced so that the total energy is unchanged, and the radius 0  changes to match the de Broglie 

wavelength and frequency at an increased velocity.  At this velocity, the kinetic energy matches the energy provided by the 
photon wherein the de Broglie frequency matches the photon frequency and both the electron-kinetic energy and the photon 
energy are given by Planck’s equation. 

Eq. (3.52) is identical to Eq. (2.22) that gives the relationship between the energy and frequency of a photon that causes a 
bound excited state and the corresponding change in the electron's kinetic energy.  A photon of the same energy as Eq. (3.52) is 
emitted due to acceleration of the free electron by an applied electric field to acquire the velocity zv  in agreement with the 

Abraham-Lorentz equation of motion [16].  This relationship is identical to that of the binding energy and kinetic energy of the 
bound electron in the central field of the proton given in the Photon Absorption section.  The exception is that the photon-bound-
electron interaction results in a trapped photon with the electron in a different orbit with a maintained eccentricity of zero and a 
decreased angular and linear velocity; whereas, the eccentricity of the orbit for the photon-free-electron interaction goes to 
infinity corresponding to a hyperbolic orbit that approaches rectilinear motion with an increased linear velocity.  The angular 
distribution of radiation emitted by an accelerated charge and the distribution in frequency and angle of energy radiated by 
accelerated charges is also given classically in Sections 14.3 and 14.5 of Jackson [17,18]. 

The correspondence principle is the basis of the de Broglie wavelength relationship.  Stated in other words, the de 
Broglie relationship is not an independent fundamental property of matter in conflict with physical laws as formalized in the 
wave-particle-duality-related postulates of quantum mechanics and the corresponding Schrödinger wave equation.  Nothing is 
waving including probability.  The relationship arises from the correspondence principle that is based on Maxwell's equations 
and conservation of angular momentum and energy.  The other fundamental misconceptions of quantum mechanics that serve as 
its foundations are the impossibility of explaining the Stern-Gerlach experimental results and the double-slit interference pattern 
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of electrons classically.  In contradiction to widely accepted beliefs, these phenomena are also shown to be exactly predicted 
from first principles (Stern-Gerlach Experiment section and in the Two-Slit Interference (Wave-Particle Duality) section).  
 

STERN-GERLACH EXPERIMENT 
The Stern Gerlach experiment demonstrates that the magnetic moment of the electron can only be parallel or antiparallel to an 

applied magnetic field.  This implies a spin quantum number of 1/2 corresponding to an angular momentum on the z-axis of 
2


.  

However, the Zeeman splitting energy corresponds to a magnetic moment of a Bohr magneton B  and implies an electron 

angular momentum on the z-axis of —twice that expected.  This in turn implies that the gyromagnetic ratio is twice that 
expected for a classical magnetic moment generated by a current loop.  Historically, this dilemma was felt to be inexplicable and 
could only be resolved by purely mathematical approaches rather than physics.  It is shown infra that this is not the case.  The 
Stern-Gerlach results are completely predictable from first principles, and the results are intuitive. 

The free electron arises during pair production and ionization.  In both cases, the production photon or the ionizing 
photon carries   of angular momentum.  The derivations of the parameters of the free electron given supra were made with the 
conservation of the photon angular momentum implicit.  The vector and scalar parameters of the bound electron in a magnetic 
field given in the Atomic Orbital Equation of Motion for   = 0 Based on the Current Vector Field (CVF) section and the 
Magnetic Parameters of the Electron (Bohr Magneton) Stern-Gerlach Experiment section are also conserved in the case of a free 
electron in a magnetic field. 

Consider the case of a magnetic field applied to the free electron.  The direction of the electron's intrinsic angular 
momentum of   and the corresponding magnetic moment of B  can change orientation with the application of a magnetic field 

or an electric field.  It is also reoriented by interaction with photons.  Randomly-directed fields and random photon interactions 
give rise to random orientations.  Thus, in the absence of an applied orienting field or a specific procedure to produce a polarized 
state, the free electron is unpolarized.  The Bohr magneton of magnetic moment of the free electron corresponding to its   of 
angular momentum is initially in a random direction relative to the z-axis, the axis of an applied magnetic field.  The center of 
mass of the electron propagates at the original constant velocity zv  in Eq. (3.2).   

Then, a small diamagnetic azimuthal current in the plane of the lamina opposes an applied field according to Lenz's law 
as given for the bound electron in Box 1.1.  Furthermore, the application of the magnetic field causes a resonant excitation of the 
Larmor precession as in the case of the bound electron wherein the energy arises from that stored in the applied magnetic field.  
The excitation can be described in terms of photons in the same manner as in the case of photon emission or absorption due to an 
applied electric field that causes the free electron to accelerate.  The Larmor precession frequency is given by the product of the 

gyromagnetic ratio of the electron, 
2

e

m
, and the magnetic flux B [19].  As in the case of the bound electron, the precessing free 

electron is a spin-1/2 particle (
2




zL ), but the stationary resultant angular momentum projection that is either parallel or 

antiparallel to the applied-field axis is   corresponding to a full Bohr magneton of magnetic moment.  Here, each of the resonant 
photons which excites the Larmor precession and the intrinsic angular momentum of the free electron (Eq. (3.20)) contribute 
equally to the resultant z-axis projection.  As shown in the Excited States of the One-Electron Atom (Quantization) section, 
conservation of the angular momentum of the photon of   gives rise to   of electron angular momentum in the excited state.  
The photon having the Larmor frequency corresponding to the energy given by Eq. (1.227) and   of angular momentum initially 
along an axis in the transverse (xy)-plane causes the electron and the photon to precess about both the z-axis and the transverse-
axis.  Then, as a time average the angular momentum of the precessing electron contributes one-half of its intrinsic angular 

momentum of   to the projection on the z-axis, and the photon angular momentum also contributes 
2


 to the z-projection. 

As shown in Appendix IV, with the electron current in the counter clockwise direction, the Larmor precession of the 
angular momentum vector of the free electron is about two axes simultaneously, the  ,0 ,x y zi i i -axis and the laboratory-frame z-

axis defined by the direction of the applied magnetic field.  The precessions are about the opposite axes with the current in the 
opposite direction.  The motion generates CVFs equivalent to those of the bound electron given in the Atomic Orbital Equation 
of Motion for   = 0 Based on the Current Vector Field (CVF) section.  Over one time period, the first motion sweeps out the 
equivalent of a BECVF, and the rotation about the z-axis sweeps out the equivalent of an OCVF.  The combined motions sweep 
out the equivalent of the convolution of the BECVF with the OCVF, an angular-momentum distribution equivalent to 0

0 ( , ) Y  

of the bound electron.  The Larmor excited precessing electron can further interact with another resonant photon that gives rise 
to Zeeman splitting—energy levels corresponding to flipping of the parallel or antiparallel alignment of the electron magnetic 
moment of a Bohr magneton with the magnetic field.  

The parameters of the photon standing wave for the Larmor precession and the Zeeman effect of the free electron follow 
from those of the bound electron given in the Magnetic Parameters of the Electron (Bohr Magneton) section and Box 1.1.  To 
cause the Larmor excitation and the spin-flip transition, the corresponding photon gives rise to surface currents in the plane of 
the free electron that are equivalent to the projection of the time- and spherically-harmonic dipole Larmor currents of the bound 
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electron into the free-electron plane.  The currents cause a precession of the disc to form a time-averaged bi-conical cavity that is 
azimuthally symmetrical about the  ,0 ,x y zi i i -axis (Figure 3.8).  The time-averaged angular momentum and rotational energy of 

the currents that are phase-locked to the photon field is zero as given by Eqs. (1.76-1.77), but the photon's angular momentum is 
  corresponding to a magnetic moment of one Bohr magneton B  as shown for the case of the Larmor resonant excitation of a 

bound electron in Box 1.1. 
The   of angular momentum of the photon that excites the Larmor precession is initially along an axis in the transverse 

(xy)-plane.  This causes a torque on the z-axis-directed   of angular momentum of the electron and causes it to rotate into the 
xy-plane.  This in turn causes a torque on the angular momentum of the photon.  As a result the electron and the photon undergo 
mutual precession about both the  ,0 ,x y zi i i -axis and the z-axis.  The motion is more easily analyzed by first considering a 

coordinate system that rotates about the z-axis.  In the coordinate system rotating at the Larmor frequency (denoted by the axes 
labeled RX , RY , and RZ  in Figure 3.6), the positive RX -component of magnitude   corresponding to the photon and a negative 

RX -component of magnitude 
2


 (Eq. (3.65)), corresponding to the current generated by the rotation of the free electron about 

the RX -axis, are stationary.  The angular momentum vector of the free electron of magnitude   corresponding to a magnetic 

moment of one Bohr magneton B  is designated by zS .  The photon's positive   of angular momentum along RX  with a 

corresponding magnetic moment of B  (Eq. (28) of Box 1.1) causes the zS  to rotate about RX .  As the RZ -axis precesses about 

the RX -axis, it causes a reactive torque such that the RX -axis also rotates about the RZ -axis.  Consequently, the two vectors 

shown in Figure 3.6 precess about both the  ,0 ,x y zi i i -axis and the z-axis.   

 
Figure 3.6.   The initial angular momentum components of the free electron and positive and negative RX  components in the 

rotating coordinate system ( RX , RY , RZ ) that precesses at the Larmor frequency about RZ  such that the vectors are stationary.  

The electron is initially in the RX RY -plane. 
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For further convenience, a second primed Cartesian coordinate system refers to the axes that rotate with the  ,0 ,x y zi i i -

axis about the z-axis at the Larmor frequency wherein the x'y'-plane of the plane-lamina disc of the free electron aligns with the 
xy-plane time harmonically at this frequency.  Then, each of the RX -, RY , and RZ -axis is designated the x'-, y', and z'-axis, 

respectively.  The initial corresponding precession of the plane lamina in the x'y'-plane about each of the z- and x-axes results in 
a precession about the  ,0 ,x y zi i i -axis as shown in Figure 3.7.  The electron precession motion about the  ,0 ,x y zi i i -axis which 

is stationary in the rotating frame generates a BECVF as given in Appendix IV which is a solid version of the BECVF for the 
case of the bound electron.  The rotation of the BECVF in the laboratory frame generates the 0

0 ( , ) Y  distribution. 
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Figure 3.7.   In the Larmor-frequency rotating ( RX , RY , RZ ) frame, the plane-lamina disc of the free electron rotates about the 

 ,0 ,x y zi i i -axis.  The resultant angular momentum vector of 2  (red vector) having projections onto each of the RZ -axis 

(green vector) and the RX -axis (blue vector) of   is stationary on the rotating  ,0 ,x y zi i i -axis.  The electron precession motion 

about the  ,0 ,x y zi i i -axis generates the free electron BECVF.  The green and blue vectors can be assigned to the intrinsic 

electron and photon angular momentum at 0t , respectively.  These components rotate about the  ,0 ,x y zi i i -axis and 

harmonically interchange at each one-half period of rotation.  Thus, z-axis component of   comprises a time-averaged 

contribution of 
2


 from each of the electron and the photon. 
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The Larmor excitation comprises a double precession.  The z-axis angular momentum projection before and after the 
excitation of the Larmor precession is  , and the energy of the photon to cause the precession of the  ,0 ,x y zi i i -axis about the 

z-axis at the Larmor frequency is given by Eq. (25) of Box 1.1.  Therefore, only the torque balance of the precession of the 
electron about the  ,0 ,x y zi i i -axis in the Larmor-frequency rotating ( RX , RY , RZ ) frame (Figure 3.7) needs to be considered.  

The derivation of the corresponding current density about the x'-axis follows that for the bound electron given in the Magnetic 
Parameters of the Electron (Bohr Magneton) section.  The magnetic moment (angular momentum) can be determined from the 
current (mass)-density function.  The magnetic moment of a current loop of area 2' y  due to a point charge element of charge ie  

that has an angular velocity of  x' x'i  is given by 

 2'  
2

x
ie y


 '

x' x'm i  (3.53) 

The angular momentum of a point mass element of mass im  at a distance 'y  from the rotation axis with an angular velocity of 

 x ' x'i  is given by 

 2'     i x x xm y Ix' ' x' ' x'L i i  (3.54) 

where xI  is the moment of inertia.  If the free electron simply rotated as a rigid plane-lamina disc with the mass density 

maintained in the plane as given by Eq. (3.7) and as shown in Figure 3.2, then the moment of inertia xI  corresponding to a 

rotation of the disc about the x'-axis would be given by  
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Using the integral with respect to 'y  given by #210 of Lide [20], Eq. (3.55) becomes 
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Evaluation at the integration limits gives 
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The multiplication and integration of each term followed by evaluation at the limits gives 
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which is 1/2 the moment of inertia of a uniform disc as shown by Fowles [21]. 
The angular momentum x'L  follows from Eq. (3.54) as Eq. (3.58) times the constant angular velocity x' x'i .  It is shown 

infra that the torque due to the photon's angular momentum of   initially along the x'-axis does cause zS  to rotate such that the 

mass-density function and the magnitude of the angular momentum-density function about the x'-axis are the same as those 
about the z-axis given by Eqs. (3.7) and (3.17), respectively.   

By the perpendicular-axis theorem [21], the corresponding angular momentum about the x'-axis is 1/2 that about the z-
axis.  This is easily shown since Eq. (3.19) can be expanded as 
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Then the angular momentum about the x'-axis is 
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which is 1/2 that of Eq. (3.59) since the number of symmetrical axes of integration was reduced to 1/2.  This result can also be 
shown directly.  Then, the angular momentum along the x'-axis corresponding to a rotation of the mass of the electron about this 
axis during a Larmor excitation is given by  
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with the mass density and  x'  equivalent to that of Eq. (3.19) but directed around the x'-axis and   d d  was replaced by 

' 'dy dx .  Using the integral with respect to 'y  given by # 210 of Lide [20], Eq. (3.61) becomes 
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The integration of each term with respect to 'x  followed by evaluation at the limits gives: 
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which is 1/2 the angular momentum of the free electron given by Eqs. (3.19-3.20).  
The torque N in rotating coordinates is given by [22] 

   
x'N L i L  (3.65) 

The electron's angular momentum of   is conserved.  Thus, the torque pN  on the electron's angular momentum of   due to the 

photon's angular momentum of   and corresponding magnetic moment of B  is 

   xp 'N i  (3.66) 

The torque cN  corresponding to the centrifugal force cF  for a rotating system is given by: 

 2 2 2
'         xr mr Ic c x' x' x' x'N F i i L i  (3.67) 

Substitution of Eq. (3.64) into Eq. (3.67) gives 

 
2
 


c x'N i  (3.68) 

The rotating mass/charge density gives rise to an angular momentum of 
2


 (Eq. (3.64)) and a corresponding magnetic moment of 

2

B  (Eq. (28) of Box 1.1) that opposes the magnetic moment of the photon.  The corresponding torque is: 

 ' 2
    


x x' x' x'N L i i  (3.69) 

The required torque balance is: 

 ' 0
2 2

        
 

 c x xp 'N N N i  (3.70) 

The result of Eq. (3.70) confirms the match of the mass-density function and magnitude of the angular frequency function of 
Eqs. (3.59-3.64) with those of Eq. (3.19). 

Thus, the application of a magnetic field causes a resonant excitation of the Larmor precession.  The   of angular 
momentum on the z'-axis and the   of angular momentum on the x'-axis gives a resultant stationary projection of 2  onto the 

 ,0 ,x y zi i i -axis.  The static projection of the resultant onto the z-axis is  .  The precessing electron can further interact with a 

resonant photon directed along the x-axis that rotates the z-axis-directed static projection of the resultant of   such that it flips it 
to the opposite direction.  Thus, absorption of an RF photon gives rise to a Zeeman transition corresponding to flipping of the 
parallel or antiparallel alignment of the electron magnetic moment of a Bohr magneton with respect to the magnetic field 
wherein the energy of the transition between Zeeman states is that of the resonant photon given by Eq. (1.227). 

The parameters of the photon standing wave for the Zeeman effect of the free electron follow from those of the bound 
electron given in the Magnetic Parameters of the Electron (Bohr Magneton) section and Box 1.1.  The charge density of the free 
electron is given by the projection of the atomic orbital into a plane as given in the Charge-Density Function section.  To cause 
the Larmor excitation and the spin-flip transition, the corresponding photon gives rise to surface currents in the plane of the free 
electron that are also equivalent to the projection of the time- and spherically-harmonic dipole Larmor currents of the bound 
electron into the free-electron plane.  Specifically, the photon gives rise to a current on the surface of the disc that corresponds to 
a rotating time- and polar-harmonic dipole that phase-matches the mass (charge) density of Eqs. (3.7-3.8). 

The current of the free electron is initially azimuthally symmetrical about the z-axis.  The resonant Larmor photon 
induces transient currents in the xy-plane to give rise to   of angular momentum initially along the x-axis.  The corresponding 
torque causes the electron to precess about the x- and z-axes giving rise to Larmor precession about the  ,0 ,x y zi i i -axis and the 

z-axis at steady state depending on the initial direction of the free-electron magnetic moment relative to the applied magnetic-
field direction.  Thus, the currents cause a precession of the disc to form a time-averaged bi-conical cavity shown in Figure 3.8 

that is azimuthally symmetrical about the  ,0 ,x y zi i i -axis, and this distribution further precesses about the z-axis to generate the 
0

0 ( , ) Y  distribution. 

The photon-induced surface current satisfies the condition 
 0 J  (3.71) 
And, the radius, 0 , of the free electron is unchanged.  The time-averaged angular momentum and rotational energy of the 

currents that are phase-locked to the photon field are zero as given by Eqs. (1.76-1.77), but the photon's angular momentum is   
corresponding to a magnetic moment of one Bohr magneton B  as shown for the case of the Larmor resonant excitation of a 

bound electron in Box 1.1.  Thus, the electrostatic energy is constant, and only the magnetic energy need be considered as given 
by Eqs. (23-25) of Box 1.1.  



Chapter 3 186

The photon-field is central according to special relativity as given in the Equation of the Electric Field inside the Atomic 
Orbital section.  The corresponding central field at the free-electron surface follows from Eq. (17) of Box 1.1 and the force 
balance condition between the centrifugal force and the electric-field force: 

       2 2
03

0 0

3
Re , '

2


       
 

  
m i t

n n

e
Y e zE i  (3.72) 

where the spherical harmonic dipole  , sin  
mY  is with respect to the xy-plane of the free electron and gives the magnitude 

at position n  in the plane, the centrifugal force is given by Eq. (3.67), and   is given by Eq. (3.17).  The mass density given by 

Eq. (3.7) may be given in terms of spherical coordinates as follows: 
Let  

 0 cos    (3.73) 

Then 
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Force balance is maintained by the equivalence of the harmonic modulation of the charge and the mass where / ee m  is invariant. 

The in-plane time- and polar-harmonic dipole further spins about the z-axis at the Larmor frequency, L .  By 

considering the Larmor frequency component and the motion at the frequency given by Eq. (3.17), the free-electron motion in a 
magnetic field parallels that of the bound electron that also has two components of motion.  The angular frequency about the 
rotation axis of the bound electron is given by Eq. (1.36), and the resulting dipole current rotates about the z-axis at the Larmor 
frequency.  The parallels continue.  In the free-electron frame rotating about the z-axis, the electric field of the dipole is 

      2 2
03

0 0

3
sin sin '

2         
 

   n n

e
t zE i  (3.75) 

corresponding to Eq. (18) of Box 1.1.  From Eqs. (20) and (21), the corresponding photon surface current is equivalent to the 
projection of the charge of a uniformly-charged spherical shell rotating at constant angular velocity of   about the z-axis into 
the free-electron plane.  Given that the charge moving azimuthally and time-harmonically at the constant frequency is equivalent 
to the planar projection of a spherical dipole, the resulting current is nonradiative as shown for this condition in Appendix I.  The 

z-axis directed field in the laboratory frame and the field in frames rotating about the  ,0 ,x y zi i i -axis are magnetostatic as 

shown in Figures 1.32 and 1.33 but directed along the respective axis.  The precession of the magnetostatic dipole results in 
magnetic dipole radiation or absorption during a Stern-Gerlach transition.   

Consider next the physics of the free-electron Zeeman splitting based on the electron structure and corresponding 
behavior in magnetic and photon fields based on Maxwell’s equations.  The free electron is a two-dimensional plane lamina 
comprised of a series of concentric circular current loops in the xy-plane (  -plane) that circulate about the z-axis as given in the 
Current-Density Function section.  Each current loop can be considered a great-circle basis element analogous to those given in 
the Atomic Orbital Equation of Motion for   = 0 Based on the Current Vector Field (CVF) section.  The rotation of each such 

great circle about the  ,0 ,x y zi i i - axis by 2  during a period generates the equivalent of the current pattern of a BECVF.  

Furthermore, the rotation of the free-electron disc having a continuous progression of larger current loops along   forms two 

conical surfaces over a period that join at the origin and face in the opposite directions along the  ,0 ,x y zi i i -axis, the axis of 

rotation, as shown in Figure 3.8.  At each position of 0  , there exists a BECVF of that radius that is concentric to the one of 

infinitesimally larger radius to the limit at 0  .  The BECVFs at each position   generated over a period by the precession 

about the  ,0 ,x y zi i i -axis by 2  is given in Appendix IV.   

Over one time period, the first motion about the  ,0 ,x y zi i i -axis by 2 sweeps out the equivalent of a BECVF, and the 

rotation about the z-axis sweeps out the equivalent of an OCVF.  The combined motions sweep out the equivalent of the 
convolution of the BECVF with the OCVF, an angular-momentum distribution equivalent to 0

0 ( , ) Y  of the bound electron.  A 

discrete representation from Appendix IV as a series of great circle current loops is shown in Figure 3.9 
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Figure 3.8.   A view of one of the two conical surfaces 
formed by rotation of the plane-lamina disc comprised of 

concentric great circles about the  ,0 ,x y zi i i -axis that join at 

the origin and face in the opposite directions along the axis of 
rotation, the  ,0 ,x y zi i i -axis. 

    

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Now, consider the dynamics when the precessing electron further interacts with a resonant photon that gives rise to 

Zeeman splitting.  As shown in Appendix IV, the combined rotations about the  ,0 ,x y zi i i -axis and the z-axis generates a 

distribution over a period of motion that is equivalent to the current pattern and angular momentum of 0
0 ( , ) Y  of the bound 

electron.  The absorbed Larmor-frequency-resonant photon provides   of angular momentum along the x-axis that causes the 
0

0 ( , ) Y  distribution to rotate about the x-axis by   to flip the magnetic moment in the opposite direction while maintaining the 

distribution with the currents reversed.  
Since the Larmor precession sweeps out the form of the 0

0 ( , ) Y  distribution for each position of   and the current of 

each concentric shell along   obeys superposition, the free electron in aggregate behaves as a shell of charge, current, and 

angular-momentum density of the free-electron radius 0  having a total magnitude of angular momentum of   and the 

projection 
2




zL .  Then, the resulting time-averaged azimuthally uniform spherical momentum density interacts with the 

external applied magnetic field in a manner that is equivalent to that of the atomic orbital equation of motion, 0
0 ( , ) Y , of the 

bound electron of radius 0nr .  Note the parallels between the bound and free electrons wherein the free electron angular 

momentum was considered as the plane projection of the constant angular momentum density of a bound electron confined to a 

spherical shell of radius 0  having a total magnitude of angular momentum of   and the projection 
2




zL  (Eqs. (3.2-3.4) and 

(3.19-3.20)).   

Figure 3.9.   A representation of the uniform current 
pattern of the 0

0 ( , ) Y  free electron motion over a period of 

both precessional motions shown with 30 degree increments 
of the angle to generate the free electron BECVF and 30 
degree increments of the rotation of this basis element about 
the z-axis.  The perspective is along the x-axis.  The great 
circle current loop that served as a basis element that was 
initially in the xy-plane of each free electron BECVF is 
shown as red. 
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FREE-ELECTRON g FACTOR 
Since the projection of the time-averaged intrinsic free electron angular momentum and that of the resonant photon that excites 

the Larmor precession onto the z-axis are both 
2


, and the angular motion distribution of the free electron is spherically 

symmetric, the Larmor-excited free electron behaves equivalently to the bound electron in a magnetic field during a spin flip 

transition.  Flux must be linked in the same manner in units of the magnetic flux quantum, 0 2
 

h

e
.  Consequently, the g factor 

for the free electron is the same as that of the bound electron, and the energy of the transition between these states is that of the 
resonant photon given by Eq. (1.227). 
 

Consider the bound electron.  As demonstrated in the Atomic Orbital Equation of Motion for   = 0 Based on the Current 

Vector Field (CVF) section, 
2


 of the atomic orbital angular momentum designated the static component is initially parallel to 

the field.  An additional 
2


 parallel component designated the dynamic component comes from the   of angular momentum 

along S .  The angular momentum in the presence of an applied magnetic field is [23]: 
 ( )  em eL r v A  (3.76) 

where A  is the vector potential evaluated at the location of the atomic orbital.  The circular integral of A  is the flux linked by 
the atomic orbital.  During a Stern-Gerlach transition a resonant RF photon is absorbed or emitted, and the   component along 
S  reverses direction.  Referring to Box 1.1, it is shown by Eqs. (29-32) that the dynamic parallel component of angular 
momentum corresponding to the vector potential due to the lightlike transition is equal to the “kinetic angular momentum” 

( )mr v  of 
2


.  Conservation of angular momentum of the electron requires that the static angular momentum component 

concomitantly flips.  The static component of angular momentum undergoes a spin flip, and concomitantly the “potential angular 

momentum” ( )er A  of the dynamic component must change by 
2




 due to the linkage of flux by the electron such that the 

total angular momentum is conserved.   
In the case of the free electron, the application of a further   component along the x'-axis with the absorption of a 

resonant photon causes the 0
0 ( , ) Y  distribution to flip about the x-axis to reverse the magnetic moment with respect to the 

applied magnetic field.  The photon having   of angular momentum along the positive x’-axis of the free electron has an energy 
that is equivalent to that of the spin-flip transition given by Eq. (1.227).  Here also, the dynamic parallel component of angular 
momentum corresponding to the vector potential due to the lightlike transition is equal to the "kinetic angular momentum" 

( )mr v  of 
2


.  Conservation of angular momentum of the 0

0 ( , ) Y  distribution requires that the static angular momentum 

component concomitantly flips.  The static component of angular momentum undergoes a spin flip, and concomitantly the 

“potential angular momentum” ( )er A  of the dynamic component must change by 
2




 due to the linkage of flux by the 

electron such that the total angular momentum is conserved. 

From Eq. (28) of Box 1.1, the 
2


 of intrinsic angular momentum after the field is applied corresponds to a magnetic 

moment on the applied-field-axis of 
2

B  in the case of the free electron as well as the atomic orbital.  The resonant Larmor-

precession-angular-momentum contribution of 
2


 corresponds to another 

2

B  of magnetic moment that gives a total magnetic 

moment along the applied-field-axis of B , a Bohr magneton.  The additional contribution (Eq. (28)) arises from the angular 

momentum of   on the S -axis and the x'-axis for the atomic orbital and free electron, respectively.  Thus, even though the 

magnitude of the vector projection of the angular momentum of the electron in the direction of the magnetic field is 
2


, the 

magnetic moment corresponds to   due to the 
2


 contribution from the dynamic component, and the quantized transition is due 

to the requirement of angular momentum conservation as given by Eq. (28) of Box 1.1. 
Eq. (22) of Box 1.1 implies a continuum of energies; whereas, Eq. (29) of Box 1.1 shows that the static-kinetic and 

dynamic vector potential components of the angular momentum are quantized at 
2


.  Consequently, as shown in the Electron g 

Factor section, the flux linked during a spin transition is quantized as the magnetic flux quantum:  
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2 
h

e
 (3.77) 

Only the states corresponding to:  

 
1

2
 sm  (3.78) 

are possible due to conservation of angular momentum.  It is further shown using the Poynting power vector with the 
requirement that flux is linked in units of the magnetic flux quantum, that the factor 2 of Eqs. (23) and (25) of Box 1.1 is 
replaced by the electron g factor.   

In summary, since the corresponding properties of the free electron are equivalent to those of the bound electron, 
conservation of angular momentum of the electron permits a discrete change of its “kinetic angular momentum” ( )mr v  with 

respect to the field of 
2


, and concomitantly the “potential angular momentum” ( )er A  must change by 

2



 (Eqs. (1.171-

1.174)).  Consequently, flux linkage by the electron is quantized in units of the magnetic flux quantum, 
2 
h

e
, and the 

electron magnetic moment can be parallel or antiparallel to an applied field as observed with the Stern-Gerlach experiment (See 
Box 1.1 and in the Electron g Factor section).  Rather than a continuum of orientations with corresponding energies, the energy, 

 spin
magE , of the spin flip transition corresponding to the 

1

2
 sm  quantum number is given by Eq. (1.227): 

  spin
mag BE g B  (3.79) 

The Stern-Gerlach experiment implies a magnetic moment of one Bohr magneton and an associated angular momentum 
quantum number of 1/2.  Historically, this quantum number is called the spin quantum number, sm , and that designation is 

maintained. 
The Stern Gerlach experiment was historically felt to be inexplicable in terms of classical physics.  Past explanations 

based on associated postulates were purely mathematical.  However, the observed electron parameters are explained physically.  

Classical laws give (1) a gyromagnetic ratio of 
2

e

m
, (2) a Larmor precession frequency of 

2

e

m

B
, (3) the Stern-Gerlach 

experimental result of quantization of the angular momentum that implies a spin quantum number of 1/2 corresponding to an 

angular momentum of 
2


 on the z-axis, and (4) the observed Zeeman splitting due to a magnetic moment of a Bohr magneton 

2
 


B

e

e

m
 corresponding to an angular momentum of   on the z-axis.  Furthermore, the solution is relativistically invariant as 

shown in the Special Relativistic Correction to the Ionization Energies section.  Dirac originally attempted to solve the bound 
electron physically with stability with respect to radiation according to Maxwell's equations with the further constraints that it 
was relativistically invariant and gave rise to electron spin [24].  He was unsuccessful and resorted to the current mathematical-
probability-wave model that has many problems as discussed in Refs. [25-26].  

 

FREE-ELECTRON BINDING 
The free electron comprises a planar disc wherein the azimuthal charge density increases towards the origin of the disc according 
to Eq. (3.8).  When an electron undergoes binding by a nucleus, the opposite of the reversible and time-symmetrical process of 
electron ionization, any linear kinetic energy is lost as radiation such that the initial de Broglie wavelength and radius 0  are 

large according to Eq. (3.2).  During binding in the nuclear central field, the electron current pattern over time is equivalent to 
the pattern traced out over time by the planar great circle of radius 0  of a free electron undergoing a precession in a magnetic 

field during a spin flip transition.  In the binding case, as the free electron undergoes a wobble rotational motion, the concentric 
planar great circles of current shown in Figure 3.2A flow from the disc origin to the perimeter edge at 0  and successively 

spread the electron charge density over a BECVF such as that shown in Figures 1.5-1.7.  Next, a wobble rotational motion of the 
BECVF spreads the charge over a spherical shell as a uniform density to comprise the bound electron atomic orbital 0

0 ( , )Y    of 

spherical radius R  as shown in Figures 1.12, 1.13, 1.16, 1.17, and 1.22. 
Specifically, consider the rotation of the angular momentum vector of the free electron current about two axes, the 

 ,0 ,x y zi i i -axis in a first step and the laboratory-frame z-axis in a second step as shown in Appendix IV.  The corresponding 

motion of the perimeter great circle current loop at 0  in the plane perpendicular to the angular momentum vector generates 

CVFs equivalent to those of the bound electron given in the Atomic Orbital Equation of Motion for  = 0 Based on the Current 
Vector Field (CVF) section.  Specifically, the first rotation sweeps out the equivalent of a BECVF (Figure IV.1), wherein the 
concentric planar great circle current loops shown in Figure 3.2A flow from the disc origin to the perimeter edge at 0  during 

the rotation to successively spread the charge density over the BECVF.  The second rotation of the BECVF sweeps out the 
equivalent of the convolution of the BECVF with the OCVF given in Figure IV.5.  The result is a charge and current density 
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distribution equivalent to 0
0 ( , )Y    of the bound electron wherein charge density of the bound electron has the same angular 

frequency and linear velocity everywhere on the surface.  During binding, the radii of the great circles of the BECVF and 
0

0 ( , )Y    may change with the emssion of the equivalent of at least one excited state photon.  However, due to the indivisiblity of 

the electron and conservation of energy in an inverse squared Coulomb nuclear field, the time average radius of the BECVF or 
0

0 ( , )Y   must change as an ensemble wherein the time average of the kinetic energy, T  , for any circular or elliptical motion 

in an inverse-squared field is 1/ 2  that of the time average of the magnitude of the potential energy, V  .  1/ 2T V     

[27].  The common radial current of a bound electon during an excited state transition and the corresponding lifetime is given in 
the State Lifetimes and Line Intensities section.  The reversible and time-symetric mechanism of the emission or absorption of 
photons by the bound electron is given in the Transitions section.  The uninform charge density is proportional to the spherical 
coordinate term 0 sin   relative to the z-axis which follows from Eq. (3.8) with the substitution of 0 cos    as given by Eq. 

(3.74).  Additionally, the bound electron may comprise time and spherical harmonic modulation functions given by Eq. (1.28) 
depending on the electron configuration.  The opposite process to binding described herein occurs during electron ionization. 

Specifically, consider the free electron traveling along the z-axis with plane of the electron disc in the xz-plane as it 
approaches the proton at the origin.  The bonding proceeds by the rotation of the angular momentum vector of the free electron 
current about two axes, the  ,0 ,x y zi i i -axis in a first step and the laboratory-frame z-axis in a second step as shown in Appendix 

IV.  The corresponding motion of the perimeter great circle current loop at 0  in the plane perpendicular to the angular 

momentum vector generates CVFs equivalent to those of the bound electron given in the Atomic Orbital Equation of Motion for 
ℓ  = 0 Based on the Current Vector Field (CVF) section.  Specifically, the first rotation sweeps out the equivalent of a BECVF 
(Figure IV.1), wherein the concentric planar great circle current loops shown in Figure 3.2A flow from the disc origin to the 
perimeter edge at 0  during the rotation to successively spread the charge density over the BECVF as the disc converters into an 

annulus with the inner radius increasing to 
0
 at the step completing the BECVF.  The second rotation of the BECVF sweeps 

out the equivalent of the convolution of the BECVF with the OCVF given in Figure IV.5 to form the uniform charge, mass, 
current density, and momentum-density function Y0

0  , .   
Electron binding is a continuous process with continuous current flow.  An equation providing visualization in discrete 

steps that generates the angular momentum vectors of the bound electron follows from Eq. (18) of Appendix IV.   
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Consider that the free electron translates along the z-axis towards the proton at the origin.  To maintain an equipotential, the N 
rotations of the free electron disc (Eq. (3.80)) commences at a distance from the proton equal to the outer radius of the disc 

0
.  

The current within the disc flows towards the outer radius 
0
 to form a set of time-delayed concentric great circles.  At each step 

of the rotation to transfer a great circle current element from the free electron current density to that of the forming BECVF 
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according to Eq. (Eq. (3.80)), as a great circle of radius 
0
 is transferred to the forming BECVF a next great circle replaces it 

such that the remaining electron disc current density forms an annulus with a constant outer radius   
0
 and an increasing 

inner radius 
  
 

n

N


0 .  The center of mass of the forming BECVF/annulus translates a distance of 
  

0

N
 along the z-axis towards 

the proton for each  n  rotation step such that the proton is in the coordinate origin of the BECVF at the end of the N rotations.  
Next, the M rotations of the BECVF form the spherical shell with the proton at the center.  During the formation of the BECVF, 
each point of the forming BECVF surface and the disc are equipotential relative to the Coulomb field between the proton and 
electron.  Computer modeling of the analytical equations to generate the free electron current vector field, the current vector 
fields during electron binding, and the azimuthally uniform momentum-density function  0

0 , Y  is available on the web [28].  

Excerpts of the animation of the continuous electron binding process are shown in Figure 3.10.  The discrete representation of 
the current distribution 0

0 ( , ) Y  that shows a finite number of current elements wherein the BECVF comprises N  great circles 

and the number of convolved BECVF elements is M is shown in Figures 3.11 and 3.12.   
 
Figure 3.10.   Representations of stages of the bound electron current pattern of the 0

0 ( , ) Y  formed by free electron binding 

to a proton (Eq. (3.80)) wherein the current density of the free electron disc is converted into great circles covering a two-
dimensional spherical shell. 
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Figures 3.11 and 3.12.   Representations of the current pattern of the 0
0 ( , ) Y  formed by electron binding with 30 degree 

increments ( 12 N M  in Eq. (3.80)) of the angle to generate the free electron binding BECVF and 30 degree increments of 
the rotation of this BECVF about the z-axis to form the bound electron current vector field.  The free electron disc that served as 
the source of great circle basis element current loops that was initially in the xy-plane is shown as red 
 
Figure 3.11.  The perspective is along the z-axis. Figure 3.12.  The perspective is along the x-axis. 
 

   
The z-axis view of this representation with 144 vectors overlaid giving the direction of the current of each great circle element is 
shown in Figure 3.13.  The corresponding mass (momentum) density is also represented by Figures 3.11 and 3.12 wherein the 
charge and mass are interchangeable by the conversion factor /em e . 

 
Figure 3.13.   An ideal representation of the uniform current pattern of 0

0 ( , )Y    comprising the superposition of an infinite 

number of great circle elements generated by normalizing the distribution of Eq. (3.80).  The constant uniform current density is 
overlaid with 144 vectors giving the direction of the current of each great circle element for 30 degree increments ( 12 N M  
in Eq. (3.80)) of the angle to generate the BECVF and 30 degree increments of the rotation of this basis element about the z-axis.  
The perspective is along the z-axis.  The corresponding uniform current-density function having intrinsic angular momentum 

components of  and  following Larmor excitation in a magnetic field give rise to the phenomenon of electron 

spin. 

 
 
 
The result is a charge and current density distribution equivalent to 0

0 ( , )Y    of the bound electron wherein charge 

density of the bound electron has the same angular frequency and linear velocity everywhere on the surface.  During binding, the 
radii of the great circles of the BECVF and 0

0 ( , )Y    may change with the emssion of the equivalent of at least one excited state 

photon.  However, due to the indivisiblity of the electron and conservation of energy in an inverse squared Coulomb nuclear 
field, the time average radius of the BECVF or 0

0 ( , )Y   must change as an ensemble wherein the time average of the kinetic 

energy, T  , for any circular or elliptical motion in an inverse-squared field is 1/ 2  that of the time average of the magnitude 
of the potential energy, V  .  1/ 2T V     [27].  The common radial current of a bound electon during an excited state 
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transition and the corresponding lifetime is given in the State Lifetimes and Line Intensities section.  The reversible and time-
symetric mechanism of the emission or absorption of photons by the bound electron is given in the Transitions section.  The 
uninform charge density is proportional to the spherical coordinate term 0 sin   relative to the z-axis which follows from Eq. 

(3.8) with the substitution of 0 cos    as given by Eq. (3.74).  Additionally, the bound electron may comprise time and 

spherical harmonic modulation functions given by Eq. (1.28) depending on the electron configuration.  The opposite process to 
binding described herein occurs during electron ionization. 
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Chapter 4 
  
EQUATION OF THE PHOTON 
  
 
 
 
 
RIGHT AND LEFT HAND CIRCULAR AND ELLIPTICALLY POLARIZED PHOTONS 
The equation of the photon in free space is derived as a boundary value problem involving the transition from the ground state to 
an excited state of the hydrogen atom.  The “ground” state function of the hydrogen atom is an atomic orbital given in the 
Atomic Orbital Equation of Motion 0  Based on the Current Vector Field (CVF) section, and the excited-state function 
comprising the atomic orbital and a resonant trapped photon is given in the Excited States of the One-Electron Atom 
(Quantization) section.  The atomic orbital CVF equations are given by Eqs. (1.78-1.98), and the CVFs are shown in Figures 1.4-
1.11.  The “trapped photon” of an excited state is given by Eq. (2.15).  The latter gives rise to a corresponding phase-matched 
source current given by Eq. (2.11).  During the transition from the excited state to the ground state, the excited-atomic-state 
angular momentum given by Eq. (2.66) and the emitted-photon angular momentum are quantized in unit of   such that Eq. (9.2) 
is obeyed.  Since the change in angular momentum between the initial and final atomic states is conserved by the photon’s 
angular momentum, the angular momentum, m, of the emitted photon follows from the time-averaged angular-momentum 
density given by Eq. (16.61) of Jackson [1]:  

   41
Re ( )

8
dx

c
   m r E B*   (4.1) 

Thus, the photon equation is given by the superposition of two atomic orbital-type current-vector fields at the same radius—one 
with electric field lines, which follow great circles and one with magnetic field lines, which follow great circles.  The magnetic 

current-vector field is rotated 
2


 relative to the electric current-vector field; thus, the magnetic field lines are orthogonal to the 

electric field lines 
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where the magnitude of the electric and magnetic fields are give by Eq. (4.1) with the boundary condition that photon angular 
momentum is  . 

A photon comprising a field-line pattern called a photon electric and magnetic vector field (e&mvf) similar to the atomic 
orbital is generated from two orthogonal great circle field lines shown in Figure 4.1 rather than two great circle current loops as 
in the case of the electron spin function.  Consider the fields of the photon to be generated from two orthogonal great circles field 
lines, one for E and one for B.  The Cartesian coordinate system wherein a first great circle magnetic field line lies in the x'z'-
plane, and a second great circle electric field line lies in the y'z'-plane is designated the basis-set reference frame, and the xyz 
Cartesian-coordinate frame is the laboratory frame as given in the Atomic Orbital Equation of Motion 0  Based on the 
Current Vector Field (CVF) section.   
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Figure 4.1.   The stationary Cartesian coordinate system xyz wherein the first great circle magnetic field line lies initially in 
the xz-plane, and the second great circle electric field line lies initially in the yz-plane.  The rotated coordinates are primed.  
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Consider a point on each of the two orthogonal great-circle field lines, one and two, in the basis-set reference frame at 
time zero wherein initially the first loop lies in the xz-plane, and the second loop lies in the yz-plane.  Point one is at ' nx r , 

' 0y  , and ' 0z   and point two is at ' 0x  , ' 0y  , and ' nz r .  Let point one move clockwise on the great circle in the x'z'-
plane toward the positive z'-axis, and let point two move counterclockwise on the great circle in the y'z'-plane toward the 
negative y'-axis, as shown in Figure 4.1.  The equations of motion, in the sub-basis-set reference frame are given by: 
 
point one (H FIELD):   

 2
' cos( )n nx r t  2

' 0y   2
' sin( )n nz r t  (4.4) 

point two (E FIELD):   

 1
' 0x   1

' sin( )n ny r t   1
' cos( )n nz r t  (4.5) 

The right-handed-circularly-polarized photon electric and magnetic vector field (RHCP photon-e&mvf) and the left-
handed-circularly-polarized photon electric and magnetic vector field (LHCP photon-e&mvf) are generated by rotating the great 

circles about the  , ,0x y zi i i -axis or the  , ,0x y zi i i -axis by 
2


, respectively.  The corresponding primed Cartesian coordinate 

system refers to the axes that rotate with the great circles relative to the xyz-system and determines the basis-element reference 
frame.  The fields are continuous on the spherical surface, but they can be visualized by a discrete-element representation 

wherein each element of the field-line density function is obtained with each incremental rotation of a series over the span of 
2


.  

Thus, the two points, one and two, are on the first member pair of the orthogonal great circles of an infinite series that comprises 
a representation of a photon. 

The right-handed-circularly-polarized photon electric and magnetic vector field (RHCP photon-e&mvf) shown in Figure 
4.2 is generated by the rotation of the basis elements comprising the great circle magnetic field line in the xz-plane and the great 

circle electric field line in the yz-plane about the  , ,0x y zi i i -axis by 
2


 corresponding to the output of the matrix given by Eq. 

(4.6). 
 
RHCP PHOTON E FIELD and H FIELD: 
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The left-handed-circularly-polarized photon electric and magnetic vector field (LHCP photon-e&mvf) is generated by the 
rotation of the basis elements comprising the great circle magnetic field line in the xz-plane and the great circle electric field line 

in the yz-plane about the  , ,0x y zi i i -axis by 
2


 corresponding to the output of the matrix given by Eq. (4.7).  The mirror image 

of the RHCP photon-e&mvf, the left-handed circularly polarized photon-e&mvf, is shown with three orthogonal views in Figure 
4.3.  
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LHCP PHOTON E FIELD and H FIELD: 
 

 Red

1 cos 1 cos sin
       

2 2 2 2 2 cos' 0

1 cos 1 cos sin
'           cos 0

2 2 2 2 2

' sinsin
sin sin

                   cos
2 2

n

n

nn

rx

y r

z rr

  



   


  

    
      
     
     
           
     
     
           
  
 

Blue

 
 
 
 
 
 
 
 

 (4.7) 

 
Figure 4.2.   The field-line pattern given by Eq. (4.6) from three orthogonal perspectives of a RHCP photon-e&mvf 
corresponding to the first great circle magnetic field line and the second great circle electric field line shown with 6 degree 
increments of the angle  .  (Electric field lines red; Magnetic field lines blue). 
 

 
 
Figure 4.3.   The field-line pattern given by Eq. (4.7) from three orthogonal perspectives of a left-handed circularly polarized 
photon-e&mvf corresponding to the first great circle magnetic field line, and the second great circle electric field line shown 
with 6 degree increments of the angle  .  (Electric field lines red; Magnetic field lines blue). 
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FIELDS BASED ON INVARIANCE UNDER GAUSS’ INTEGRAL LAW 
The angular velocity of the photon-e&mvf is equal to the change in angular velocity of the electron atomic orbital for a de-
excitation from the energy level with principal quantum number in n  to fn n , where i fn n , given by Eq. (2.21) for 1fn  .  

From Eq. (2.22), the photon is an electromagnetic wave that carries energy, E , given by: 
 E    (4.8) 

Given the relationships, Eqs. (4.2) and (4.3) for the electric and magnetic fields, the solution of the classical wave 
equation Eq. (I.45) requires that the linear velocity at each point along a great circle of the photon-e&mvf is c ,  

 
0 0

1
c

 
  (4.9) 

and, that the velocity of the photon in the lab frame is c .  Therefore, with the velocity addition property of special relativity, the 
velocity in all frames of reference is c  including the rest frame.  Thus, the zero rest mass concept of the photon can be discarded.  
The “mass” of the photon in any frame is actually momentum contained in its electric and magnetic fields as given by Eqs. 
(2.150) and (4.1).  An additional consequence of the light speed in all frames is that the radius of the photon is invariant.  The 
field lines in the lab frame follow from the relativistic invariance of charge as given by Purcell [2].  The relationship between the 
relativistic velocity and the electric field of a moving charge is shown schematically in Figure 4.4A and 4.4B. 
 
Figure 4.4A.   The electric field of a moving point charge 

(
1

3
v c ). 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
The field invariance under Gauss’ Integral Law also applies to the fields of the photon-e&mvf.  From Eqs. (4.4-4.7) and 

as shown in Appendix V, the electric and magnetic fields are harmonic in space and time wherein 
2

c



  is satisfied which is 

a solution of the wave equation for an electromagnetic wave, and the fields are orthogonal such that Faraday’s and Ampere’s 
Laws are satisfied.  The photon equation in the lab frame (shown in Figures 4.5 and 4.6) of a right-handed circularly polarized 
photon-e&mvf is: 
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with a wavelength of: 

 2
c 


  (4.11) 

The relationship between the photon-e&mvf radius and wavelength is:  
 2 photonr   (4.12) 

The wavelength (radius) changes for moving observers according to the Doppler formula of Lorentz transforms.  In terms of 
Eqs. (4.4-4.7), 0E  of the photon is given by the boundary condition that the angular momentum given by Eq. (4.1) is  ; thus, the 

energy is given by Planck’s equation (Eq. (2.18)) as shown by Eqs. (2.56-2.64).  The relationship between Planck’s equation and 
Maxwell’s equations is also consistent with regard to the energies of excited states as given by Eqs. (2.18-2.22). 
 

Figure 4.4B.   The electric field of a moving point charge 

(
4

5
v c ). 
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Figure 4.5.  The direction of rotation of the electric field 
lines of a right-handed circularly polarized photon-e&mvf as 
seen along the axis of propagation in the lab inertial reference 
frame as it passes a fixed point. 
 

 
 
 

 
 
 
 
 
 
 
 
The cross-sectional area,  , transverse to the propagation direction of the photon is 

 
2

2

      
 (4.13) 

The geometric cross section (Eq. (4.13)) is consistent with the Rayleigh scattering formula, which is derived from Maxwell’s 
equations [3]. 

The photon-e&mvf may comprise basis element magnetic and electric field lines that are constant in magnitude as a 
function of angle over the surface, or the magnitude of the fields of the basis elements may vary as a function of angular position 
( , )   on the photon-e&mvf.  The general photon equation for the electric field in its frame is:  

     0
, 02
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1
1 , Re ,
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nim tm
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e
Y Y e r

r n


 
    

 
               

E    (4.14) 

where photonr  is the radius of the photon-e&mvf and 
2

n

c


  is the photon angular velocity which is equal to  , the change 

in atomic orbital angular velocity given by Eq. (2.21) and the light speed changes the direction of the field lines to the transverse 
direction.   

Similarly photons are emitted when an electron is bound.  Using Eq. (1.34) for the photon and the electron wave 
relationships for the initial conditions of an unbound electron at rest, the ratio of the linear velocity of the subsequently bound 
electron to the emitted free-space photon is given by: 

 2

2

n
n

n n n

photonphoton photon photon
photon

v r

c r

  
 



    (4.15) 

where the n  subscripts refer to atomic orbital quantities and the far-right-hand-side relationship follows from Eq. (2.2) and Eq. 
(4.12).  From Eq. (4.15), the relations between the free space photon wavelength, radius, and velocity and the corresponding 
parameters of a free electron as it is bound are: 

(1) photonr , the radius of the photon-e&mvf, is equal to n H
n n

c c
r na

v v
  , the electron atomic orbital radius given by Eqs. 

(2.2) and (2.5) times the product of   and the ratio of the speed of light c  and nv , the velocity of the atomic orbital given by Eq. 

(1.35),  

(2) photon , the photon wavelength, is equal to n
n

c

v
 , where n  is the atomic orbital de Broglie wavelength, and  

(3) 
2

photon

c


 , the photon angular velocity, is equal to n , the atomic orbital angular velocity given by Eq. (1.36).   

The magnetic field photon-e&mvf is given by Eqs. (4.14) and (4.2).  In the case of  , 0mY     in Eq. (4.14), a right-

handed and a left-handed circularly polarized photon-e&mvf are superimposed to comprise a linearly polarized photon-e&mvf.  
A right-handed or left-handed circularly polarized photon is obtained by attenuating the oppositely polarized component.  For 
Eq. (4.14), the power density per unit area, S, is:  

  S E B*  (4.16) 
 

Figure 4.6.   The electric field rotation as a function of z  
of a right-handed circularly polarized photon-e&mvf as seen 
transverse to the z-axis, axis of propagation, in the lab 
inertial reference frame at a fixed time wherein 2 photonr   
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LINEAR POLARIZED PHOTONS 
The linearly polarized photon is given by the superposition of the right-handed circularly polarized photon-e&mvf shown in 
Figure 4.2 and its mirror image, the left-handed circularly polarized photon-e&mvf, shown in Figure 4.3.  The field-line pattern 
of a linearly polarized (LP) photon-e&mvf shown from the perspective of looking along the z-axis is shown in Figure 4.7.  Thus, 
the LP photon-e&mvf is obtained by rotation of the basis-element-great-circle electric and magnetic fields lines about each of the 

 , , 0x y zi i i - and  , , 0x y zi i i -axes by 
2


.  The analytical functions and matrices to generate the RHCP, LHCP, and LP photon-

e&mvfs are given in Appendix V, and the RHCP, LHCP, and LP photon-e&mvfs are visually demonstrated by computer 
simulations [4].  The conditions whereby a photon becomes an electron and a positron are given in the Pair Production and the 
Leptons sections. 
 
Figure 4.7.   The field-line pattern of a linearly polarized photon-e&mvf shown with 6 degree increments of the angle   from 
the perspective of looking along the z-axis.  (Electric field lines red; Magnetic field lines blue). 
 

 
 

The linearly polarized photon-e&mvf equation in the lab frame is 
 0

zjk z j tE e e  E  (4.17) 

In the case of ( , ) 0mY     in Eq. (4.14), a right-handed and a left-handed elliptically polarized photon-e&mvf are superimposed 

to comprise a linearly polarized photon-e&mvf with the plane of polarization rotated relative to the case of ( , ) 0mY    .  A 
right-handed or left-handed elliptically polarized photon is obtained by attenuating the oppositely polarized component. 
 

SPHERICAL WAVE 
Photons superimpose and the amplitude due to N  photons is: 

  
'

1

( , )
4 | ' |

rikN

total
n

e
f  



 





r r

E
r r

 (4.18) 

When the observation point is very far from the source as shown in Figure 4.8, the distance in Eq. (4.18) becomes: 
 ˆ' 'r   r r r r  (4.19) 

where r̂  is the radial unit vector.  Substitution of Eq. (4.19) into Eq. (4.18) gives:  
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where we neglect ˆ 'r r  in the denominator, and  
 ˆkk r  (4.21) 
For an assembly of incoherent emitters  
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 k r  (4.22) 

Thus, in the far field, the emitted wave is a spherical wave  

 0

ikr
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e
E
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E  (4.23) 

which is shown by Bonham to be required in order to insure continuity of power flow for wavelets from a single source [5].  
Also, as a conservation law at the photon level, the density of photons decreases as the number of photons divided by the area of 
the outgoing spherical wave front.  The Green Function, (Eq. (6.62) of Jackson [1]) is given as the solution of the wave equation 
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(Eq. (6.58) of Jackson [1]).  Thus, the superposition of photons gives the classical result.  As r  goes to infinity, the spherical 
wave given by Eq. (4.23) becomes a plane wave.  The double slit interference pattern is derived in Eqs. (8.15-8.23).  From the 
equation of a photon (Eqs. (4.4-4.7), the wave-particle duality arises naturally.  The energy is always given by Planck’s equation; 
yet, an interference pattern is observed when photons add over time or space. 
 
Figure 4.8.   Far field approximation. 

 

 
 

The photon spin angular momentum corresponding to the first term of Eq. (4.14) and the orbital angular momentum 
corresponding to the second term of Eq. (4.14) are conserved during electronic excitation as described in the Excited States of 
the One-Electron Atom (Quantization) section.  And, the spin and orbital angular momentum of photons superimpose to give the 
classical result.  For example, second harmonic generation has been obtained by Dholakia et al. [6] by use of Laguerre-Gaussian 
beams in a variety of mode orders.  Each mode becomes doubled in frequency and transformed to a higher order, which is shown 
to be a consequence of the phase-matching conditions.  The experiment is consistent with the interpretation that the orbital 
angular momentum of the Laguerre-Gaussian mode is directly proportional to the azimuthal mode index   where each photon 
possesses orbital angular momentum of   in addition to any spin angular momentum due to its state of polarization. 

The macroscopic Maxwell’s equations for reflection and refraction arise from the superposition of individual photon 
behavior at a bulk material surface.  A totally internally reflected photon incident at an angle greater than the critical angle giving 
rise to a surface wave and an evanescent field arises from charge separation in the reflecting matter.  Free or polarization current 
and charge produce the corresponding purely decaying electric and magnetic fields.   
 

PHOTON TORPEDOES 
Recent evidence suggests that energy packets like photon torpedoes are creeping toward reality [7].  The possibility of solutions 
of the scalar wave equation and Maxwell’s equations that describe localized, slowly decaying transmission of energy in 
spacetime has been suggested by several groups in recent years.  These include exact pulse solutions such as focus wave modes 
[8-9], electromagnetic directed energy pulse trains [10], splash modes [11], transient beams [12], continuous-wave modes 
(Bessel beams) [13], and asymptotic fields (electromagnetic missiles [14], electromagnetic bullets [15], Gaussian wave packets 
[16]). 

A macroscopic surface current having a distribution given as an atomic orbital transition comprises a means to emit 
electromagnetic energy having electric and magnetic field lines which comprise a photon-e&mvf.  In this case, energy is not 
diminished in intensity as the electromagnetic wave propagates through space.  Thus, “photon torpedoes” can be realized.  High 
power densities can be achieved by increasing the magnitude of the electric and magnetic fields of the photon where the energy 
is given by Eq. (1.263) and Eq. (1.154).  Also, neutrino-type photons described in the Weak Nuclear Force: Beta Decay of the 
Neutron section represent a means to transfer energy without scattering or attenuation between matched emitters and receivers.  
Applications in both cases include power transfer, communications, and weapons.  An example of a device that produces photon 
torpedoes is a mode-locked femtosecond laser. 
 

PHOTOELECTRIC EFFECT 
Electrons are ejected, and a photocurrent is observed when a clean surface of a metal such as sodium is irradiated with ultraviolet 
light in the wavelength range 2000–400 Å in an evacuated vessel.  The photoelectric current, which is the amount of charge 
arriving at a collection plate per unit time, is proportional to the rate of liberation of electrons from the metal surface; that is, if 

en  is the number of free electrons produced in the time interval t  and i is the current, 

 en i

t e





 (4.24) 
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To determine the velocity with which the photoelectrons travel, a potential is applied to a grid mounted between the 
metal surface and the collection plate.  The potential creates an electric field, which decelerates the photoelectrons.  As the 
potential difference between the grid and the emitting metal is increased, a stopping voltage sV  is observed, the value above 

which the electrons are stopped before they reach the plate and the current ceases to flow.  At the stopping voltage, the initial 
kinetic energy of the photoelectrons liberated from the metal by the light has all been converted to potential energy; thus 

 21

2 smv eV  (4.25) 

The number of electrons produced per second and their maximum kinetic energy as functions of the intensity I and frequency   
of the incident light is determined by measuring i and sV . 

Physicists of the early 20th century had a misconception regarding classical wave theory and the photoelectric effect that 
has been promulgated to the present.  They erroneously predicted that the energy of the radiation should be continuously 
absorbed by the electrons in the metal.  After an electron has absorbed an amount of energy in excess of its binding energy 0eV , 

it may be ejected from the surface.  The adjustable potential sV  is used to stop electrons whose energy exceeds 0eV  by seV  or 

less.  Since the intensity I of the light is the rate at which energy is propagated by the radiation waves, an increase in intensity 
should increase the average kinetic energy of ejected electrons which implies that the stopping voltage sV  is proportional to I. 

It is experimentally observed that sV  is proportional to the frequency of the light and independent of the intensity. As 

shown in Figure 4.9, if the frequency   is below a certain threshold value 0 , no photoelectric current is produced.  At 

frequencies greater than 0 , the empirical equation for the stopping voltage is:  

  0–sV k    (4.26) 

where k  is a constant independent of the metal used, but 0  varies from one metal to another.  Although there is no relation 

between sV  and the light intensity, it is found that the photoelectric current, and therefore the number of electrons liberated per 

second, is proportional to I . 
 
Figure 4.9.   The stopping voltage sV  of photoelectrons as a function of the frequency   of the incident light. 

 

 
 

These results are not in disagreement with expectations from the classical wave theory based on the equations of a photon 
(Eqs. (4.4-4.7)).  The electric and magnetic fields of a photon carry   of angular momentum as given by Eq. (4.1), and the 
corresponding energy is given by Planck’s equation (Eq. (4.8)).  As shown in the Excited States of the One-Electron Atom 
(Quantization) section, the angular momentum of the photon is conserved [1] for the solutions for the resonant photons and 
excited state electron functions.  It can be demonstrated that the resonance condition between these corresponding frequencies is 
to be satisfied in order to have a net change of the energy field [17].  Thus, the correspondence principle holds.  That is the 
change in angular frequency of the electron is equal to the angular frequency of the resonant photon that excites the resonator 
cavity mode corresponding to the transition, and the energy is given by Planck’s equation.  In the case of photoelectrons, the 
resonant transition is from a bound state in the metal to a continuum level.  Thus, a photon of energy h  strikes a bound 
electron, which may absorb the photon energy.  If h  is greater than the binding energy (or work function) 0eV , the electron is 

liberated.  Thus, the threshold frequency 0  is given by: 

 0
0

eV

h
   (4.27) 

Since 0V  is a characteristic of the particular metal, which is used in the experiment, 0  depends upon the metal, in accordance 

with the experimentally observed result. 
For a photon of energy h , the total energy of the excited electron is h , with the excess over the potential energy 0eV  

required to escape from the metal appearing as kinetic energy.  Conservation of energy requires that the kinetic energy is the 
difference between the energy of the absorbed photon and the work function of the metal, which is the binding energy.  The 
relationship is: 
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 2
0

1
–

2 smv h eV eV   (4.28) 

which is identical to Eq. (4.26), with /k h e .  The photoelectric effect provides another means to determine Planck’s constant 
h  originally used by Planck for blackbody radiation and by Bohr for the hydrogen spectrum. 

Furthermore, since the energy of each photon is h , the intensity of the radiation is not related to the energy of each 
photon, but instead determines the number of photons striking the metal surface per second.  The rate of electron ejection is 
expected to be proportional to the rate at which the photons impinge upon the metal surface; thus, an increase in light intensity is 
predicted to increase the photoelectric current, as observed.  Because the amount of energy absorbed by an electron is h  
regardless of the rate at which photons impinge on the surface, the kinetic energy of the ejected electrons should be independent 
of the intensity of the light.  Thus, all of the predictions of the photon mechanism for the photoelectric effect are in agreement 
with the experimental results. 
 

COMPTON EFFECT 
An experiment that is related to the photoelectric effect is the Compton effect.  This experiment, which provides more detailed 
information about the interaction of radiation and matter was performed in the early 1920’s and analyzed by Compton in 1923.  
The experiment comprises the irradiation of a sample of material such as a paraffin hydrocarbon with X-rays or  -rays, high-
frequency radiation.  The photons are scattered from bound electrons, which are ionized.  The wavelength of the scattered 
radiation and the energy of the emitted electron are determined as a function of angle, relative to the incident beam.  It is found 
that the radiation scattered from the material contains not only wavelengths equal to that of the incident radiation  , but also 
wavelengths of the order of a few hundredths of an Angstrom longer than  .  The dependence of the scattered wavelength   
upon the angle   between the primary and scattered beams is found to be:  

 2 sin
2

k
       
 

 (4.29) 

where k  is a constant. 
Physicists of the early 20th century had a misconception regarding classical wave theory and the Compton effect that has 

been promulgated to the present. They erroneously predicted that the wavelength of the radiation would increase based on the 
Doppler effect since an electron in the sample would be accelerated by the impinging radiation and would therefore emit waves 
with longer wavelengths. The Doppler effect does not correctly explain the observations, however, since (a) the Doppler shift is 
proportional to the wavelength of the primary radiation and (b) the Doppler shift increases with the electron velocity and 
therefore should increase with time, since the electrons are accelerated continuously while they absorb energy during the 
irradiation. Neither of these predictions is corroborated by the experimental results, not as a consequence of the failure of 
classical theory, but because of an erroneous misconception about the nature of the photon and its interaction with matter. As 
was the case for the photoelectric effect, the observations can be explained quantitatively by the photon theory of radiation given 
supra and the laws of conservation of energy and momentum for particles including photons and electrons. 

According to Eqs. (2.148-2.150), the incident photon with wavelength   and frequency /v c   has a momentum 
/h c .  Correspondingly, the scattered photon, which has a longer wavelength  , and therefore a lower frequency /c    , 

has a lower momentum /h c  .  Since   is in the X-ray region  ~ 1–10 Å , the energy  ~ 1000 eVh  is so much greater 

than the binding energy of the electrons  10 eV  that to a first approximation the latter be neglected.  Thus, the electron is 

ejected in the direction   with a momentum mv , which is calculable from an energy and momentum balance for the process as 
shown in Figure 4.10.  The classical equations of conservation of energy and of the two components of the linear momentum are: 

 21

2 eh h m v     (energy) (4.30) 

  cos  cos e

h h
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Figure 4.10.  The Compton effect based on conservation of energy and momentum of a scattered photon and an electron. 
 

 
 

 
Eliminating v  and   from these equations, introducing   by the definition /c  , and making the approximation that 

2   , gives:  

 2– 2  sin
2e

h

m c

        
 

 (4.33) 

in agreement with Eq. (4.29).  For   in Angstroms, Eq. (4.33) gives: 

 20.0485 sin
2

     
 

 (4.34) 

If the ejected electron is treated relativistically with its total energy given by Eq. (34.17): 

  
2

1/22 4 2 2 2 1 e
e e e

v
E m c p c m c

c
      
 

 (4.35) 

and the kinetic energy is obtained by subtracting the rest energy 2
em c , Eq. (4.33) can be derived without using the approximation 

that    .  The maximum shift is seen to occur for   , where   = 0.0485 Å. 
The photon mechanism was tested by using  -rays of energy 610  eV , and the scattered photon and the Compton 

electron were recorded by means of scintillation counters.  Cross and Ramsey [18] found that the angles   and   for an electron 

and a photon which were simultaneously detected were within 1   of those required by the conservation laws (Eqs. 4.30-4.32)). 
The analysis of the photoelectric and Compton effects shows that the particle viewpoint and Newtonian mechanics lead 

to a simple and quantitatively correct interpretation of these experiments, and that predictions based upon the classical wave 
theory are not wrong, but must be understood from the nature of the photon given by Eqs. (4.4-4.7).  Individual photons behave 
as particles with energy given by Planck’s equation (Eq. (4.8)).  As shown by Eqs. (4.18-4.23), photons superimpose to give a 
spherical wave which gives rise to certain other phenomena such as diffraction and interference which are typically ascribed to 
wave theory with waves as an independent aspect of photons.  The character exhibited by radiation, whether wave-like or 
particle-like, depends upon the type of experiment that is done.  If the interaction of radiation with matter produces a measurable 
change in the matter, such as the ejection of an electron, the phenomenon appears to require the photon theory for its 
interpretation.  If the interaction produces a measurable change in the spatial distribution of the radiation, such as diffraction at a 
slit, but produces no measurable change in the matter, invoking the wave theory seems appropriate as shown in the Classical 
Scattering of Electromagnetic Radiation section.  Superficially, these results suggest that a synthesis of the two points of view is 
required which takes into account the nature of the experiment being analyzed; that is, the measuring process itself must be 
included in the theory.  In actuality, both particle and wave aspects arise naturally from the particle-like photons which 
superimpose in time or space to form a wave which accounts precisely for the wave-particle duality of light. 

 

TRANSITIONS 
Other interactions involving electromagnetic radiation and matter are given classically wherein the photon carries   of 

angular momentum in its electric and magnetic fields as given by Eq. (4.1) with a corresponding energy given by Planck’s 
equation (Eq. (4.8)).  Bremsstrahlung radiation is given classically as radiation due to acceleration of charged particles by 
Jackson [19].  Cherenkov radiation occurs when charges moving at constant velocity in a medium different from vacuum 
possess spacetime Fourier components of the current that are synchronous with a wave traveling at the speed of light as given by 

a radiative condition derived from Maxwell’s equations by Haus [20].  That is spacetime harmonics of 
0

n k
c

 


  do exist for 

which the Fourier transform of the current-density function is nonzero [20].   
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Although Einstein did not anticipate the physics of the lifetimes of excited states as given in the State Lifetimes and Line 
Intensities section, lasing, or laser devices, the concept of stimulated emission originated in 1917, ten years before the 
Schrödinger equation was postulated, when Einstein proposed that Planck’s formula for blackbody radiation could better curve 
fit the data if an ensemble of atoms with quantized energy levels underwent stimulated as well as spontaneous emission [21].  
Stimulated emission can occur for an inverted population in a suitable resonator cavity to such an extent that amplification or 
lasing occurs.  The maser and its extension to shorter wavelengths, the laser, are predicted by Maxwell’s equations1 as shown by 
Lamb [23] and Townes [24], respectively.  From this approach, Townes invented first the maser, and he latter extended his work 
to optical wavelengths with the invention of the laser.  The kiB  coefficient for lasing can be calculated from the kiA  coefficient 

using Eq. (6) of Carmichael [25].  The kiA  coefficient given by Eq. (2.108) is calculated from the excited-state electron source 

current in the State Lifetimes and Line Intensities section. 
Photons possess both wave and particle characteristics.  The physical basis of the wave behavior is given in the Spherical 

Wave section, and particle behavior is observed during the photoelectron and Compton effects given in the corresponding 
sections.  Another manifestation of particle behavior is the absorption and emission of indivisible photons each having an 
irreducible quantized angular momentum of  (Eq. (4.1)).  Electrons and photons both have conserved angular momentum of  
such that the inalienability of the quantization is intrinsic to the transition partners and the conservative physical laws.  Except 
for the case of particle production, the radius of two-dimensional sphere of the photon comprising the photon-e&mvf and being 
proportional to the photon wavelength is typically orders of magnitude larger than the dimensions of the photon-absorbing 
electron (Eqs. (2.98-2.101)).  The photon travels at light speed and a collision with an electron can only initially involve a small 
fraction of the photon-e&mvf; yet, the entire photon is either elastically scattered or entirely absorbed.  Consider the relationship 
between the radius and wavelength of an electron and a photon of the resonant frequency that excites an electronic transition of 
the electron to form an electronic excited state given by Eq. (4.15) wherein the photon angular frequency and energy match the 
change in energy and angular frequency of the electron that is excited by the photon (Eqs. (2.18-2.22)).  When the photon 
collides with the electron, the photon excites a resonator mode of the spherical superconducting electron resonator cavity such 
that the photon wavelength decreases to match the dimensions of the electron absorbing the photon akin to the process of total 
internal reflection wherein the two-dimensional ensemble of field lines propagates along the inner surface of the electron 
membrane.  In the case of a macrocavity excitation, the field comprises the superposition of many photons with fields ending on 
time-dependent surface source charges and currents.  In contrast, each electric field line of the quantum excitation by a single 
photon is closed onto itself.  Moreover, uniquely the energy in the electric and magnetic fields of a free-space photon are equal, 
and the magnetic field is dependent on the electric field with both propagating at light speed.  Consequently, as the photon 
initially traveling in free space at the speed of light is trapped by the atomic, ionic, or molecular electron undergoing excitation, 
the photon magnetic field lines transition to electric field lines.  The result is a corresponding transition-state-evf (TS-evf) 

comprising only the electric field lines of the free space photon with the intensity increased by a factor or 2  corresponding an 
increase in the electric energy by a factor of 2 according to Eq. (1.189).  For example, consider the left-handed-circularly-
polarized photon electric and magnetic vector field (LHCP photon-e&mvf) given by the output of the matrix of Eq. (4.7) and 
shown in Figure 4.3.  With the transition of the magnetic field to electric field according to Faraday’s law (Eq. (4.2)), the 
corresponding left-handed-transition-state electric vector field (LHTS-evf) is generated by the rotation of a basis element 

comprising a great circle electric field line in the yz-plane about the i
x
,i

y
,0i

z  -axis by 

2

 wherein the radius r
n
 is equal to the 

spherical radius of the excited state atomic or ionic electron or the ellipsoidal radius 
n
 of the excited state molecular orbital, 

respectively.   
 

 
1 The development of the laser was impeded by quantum mechanics since its existence disproves the Heisenberg Uncertainty Principle as discussed by 

Carver Meade [22]: 
As late as 1956, Bohr and Von Neumann, the paragons of quantum theory, arrived at the Columbia laboratories of Charles Townes, who was in the 
process of describing his invention.  With the transistor, the laser is one of the most important inventions of the twentieth century.  Designed into 
every CD player and long-distance telephone connection, lasers today are manufactured by the billions.  At the heart of laser action is perfect 
alignment of the crests and troughs of myriad waves of light.  Their location and momentum must be theoretically knowable.  But this violates the 
holiest canon of Copenhagen theory: Heisenberg Uncertainty.  Bohr and Von Neumann proved to be true believers in Heisenberg’s rule.  Both denied 
that the laser was possible.  When Townes showed them one in operation, they retreated artfully. 
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Free space photons, transition states, and excited state photons carry electric field as given by Eqs. (4.6), (4.7), (4.36), 
and (2.15).  The directions of field lines change with relative motion as required by special relativity.  They increase in the 
direction perpendicular to the propagation direction.  As shown by Eq. (4.9), the linear velocity of each point along a great circle 
of the photon atomic orbital is c .  The same applies to the transition state.  And, as shown in the Special Relativistic Correction 
to the Ionization Energies section and by Eq. (1.280), when the velocity along a great circle is light speed, the motion relative to 
the non-light speed frame is purely radial.  In the case of the electric field lines of a trapped resonant photon of an excited state, 
the relativistic electric field is radial.  It is given by Eq. (2.15), and it exists only at  nr r   wherein r

n
 is the radius of the 

excited electron.   
The bound electron is an equipotential, equi-energy surface comprising the uniform current density function Y

0
0  , .  

The radial field of the TS-evf only covers 1/4th of the inner surface of the electron membrane.  Thus, the imbalance in central 

force on the spherical surface gives rise to a rotation over the range of 

2

 to 2  about the axis that forms the TS-evf.  In the case 

of excitation by a RHCP photon, the rotation is about the i
x
,i

y
,0i

z -axis to form the corresponding right-handed transition state 

basis element electric vector field (RHTSBE-evf).  In turn, the RHTSBE-evf undergoes a transition that distributes the field lines 
uniformly over the surface of a spherical electric field vector membrane corresponding to a convolution operator acting on the 

RHTSBE-evf about the 
1

2
i

x
,

1

2
i

y
,i

z







 -axis.  In the case of excitation by a LHCP photon the rotation is about the 

i
x
,i

y
,0i

z  -axis to form the corresponding left-handed transition state basis element electric vector field (LHTSBE-evf).  

Likewise, the LHTSBE-evf is transitioned to the uniform field distribution by the convolution operator acting on the LHTSBE-

evf about the 
1

2
i

x
,

1

2
i

y
,i

z







-axis.  Both are convolved over the range 0 to 2  to form the uniform excited state electric 

vector field (ES-evf) that matches the uniform current density distribution of the electron wherein each convolution is 
normalized to produce a central field given by Eq. (2.15).   

The uniform distribution current density function Y
0
0  ,  corresponds to electron’s spin that is matched by the ES-evf 

corresponds to electron spin (Eq. (1.27-1.28)).  Consider the exemplary case to generate the ES-evf using the same the matrices 
as those used to generate the electron spin current density function given in the Generation of the Atomic Orbital CVFS section.  
Two current loops, one in the yz-plane and one in the xz-plane, serve as great circle basis elements for the electron current 
density pattern called the basis element current vector field (BECVF) that is formed by the rotation of the basis elements about 

the i
x
,i

y
,0i

z  -axis as given by Eqs. (1.84) and (1.87).  The LHCP photon and corresponding LHTS-evf and LHTSBE-evf may 

also be generated by rotation of the electric and magnetic field basis elements and the electric field basis element, respectively, 

about the i
x
,i

y
,0i

z  -axis wherein the current loop in the yz-plane is replaced with an electric field great circle, the current loop 

in the xz-plane is replaced with a magnetic field great circle, and   of the  , ,0x y zi i i -axis rotation (Eqs. (1.84) and (1.87)) is 

replaced by  .  With 0E  given by Eq. (29) of Appendix V and 0
0

E
H


  according to Eq. (19) of Appendix V, the LHCP 

photon-e&mvf is given by Eq. (4.37) for 1 21;  1a a  , 0   to   

2

; the LHTS-evf given by Eq. (4.37) for 1 22;  0a a  , 

0   to 
2

   , and the LHTSBE-evf is given by Eq. (4.37) for 1 22;  0a a  , 0   to 2   .  The LHTSBE-evf is 

shown in Figure 4.11. 
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Figure 4.11.  The photon electric field pattern of the LHTSBE-evf corresponding to the electron BECVF shown with 6-
degree increments of   from the perspective of looking along the z-axis.  The yz-plane great circle electric field loop that served 
as a basis element that was initially in the yz-plane is shown as red. 

 
 
The exemplary transition of the LHTSBE-evf to the uniform distribution that matches the equipotential, equi-energy condition of 
the atomic orbital is given by the convolution of the output of Eq. (4.37) with the matrix given by Eq. (1.95) corresponding to a 

convolution about the   
1

2
i

x
,

1

2
i

y
,i

z







-axis wherein the output of the matrix of Eq. (1.95) called the orbital current vector 

field (OCVF) used to generate the uniform electron current distribution corresponding to electron spin.  Due to symmetry over a 
range of 2 , the LHTSBE-evf is also given for   positive in Eq. (4.37).  Using (1.103), a discrete representation of the electric 

field distribution Y
0

0( ,) is generated.  The continuous convolution of the LHTSBE-evf about the 
1

2
i

x
,

1

2
i

y
,i

z







-axis to 

form the ES-evf is shown as a superposition of discrete incremental rotations of the position of the LHTSBE-evf rotated 
according to Eqs. (1.95) and (1.98) corresponding to the matrix which generated the OCVF of the electron spin current function.  
In the case that the discrete representation of the LHTSBE-evf comprises N  great circle electric field element and the number of 
convolved RHTSBE-evf elements is M , the representation of the ES-evf function showing electric field loops is given by Eq. 

(4.38) with E
0
 given by Eq. (2.15), and the 

1

2
i

x
,

1

2
i

y
,i

z







-axis view with 144 vectors overlaid giving the initial free-

photon-frame direction of each great circle electric field element is shown in Figure 4.12.   
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Figure 4.12.   A representation of the 
1

2
i

x
,

1

2
i

y
,i

z







-axis view of ES-evf comprising the Y
0

0( ,) distribution matching 

the electron spin function shown with 144 vectors overlaid giving the initial free-photon-frame direction of the electric field of 
each great circle basis element. 

 
 

As shown by Eq. (2.11) and (2.15) the ES-evf obeys some of the properties of electrostatic charge.  In addition to 
matching the spin function of the excited electron, the  angular momentum in the electric and magnetic fields of the excitation 
photon given by Eq. (4.1) must be conserved as electron angular momentum.  Thus, the ES-evf must possess a spherical 
harmonic modulation component that matches an allowed spherical harmonic electron current distribution given by Eqs. (1.27-
1.29) wherein the ES-evf obeys the corresponding properties of rotating electrostatic charge.  The spherical harmonic function 
has a velocity less than light speed given by Eq. (1.35) and is phase-matched with the electron such that angular momentum is 
conserved during the excited state transition.  The multipole of the photon is conserved in the spherical harmonic of the excited 
state having the corresponding orbital angular momentum given by Eq. (1.72).  Moreover, the radial field can be considered a 
corresponding surface charge density according to Eq. (2.11)).  The effect of the nature of this photon charge-equivalent on the 
stability and lifetime of excited states is given in the Instability of Excited States section, the State Lifetimes and Line Intensities 
section, and the Stability of Atoms and Hydrinos section.  All boundary conditions are met for the electric fields and the 
wavelengths of the “trapped photon” and the electron.  Eq. (2.16) is the solution for the excited modes of the atomic orbital, a 
spherical resonator cavity.  And, the quantum numbers of the electron are n , ℓ , mℓ , and m

s  (Described in the Stern-Gerlach 
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Experiment section).  A p
x
 or p

y
 atomic-hydrogen excited state is shown in Figure 4.13. 

 
Figure 4.13.   The electron atomic orbital is a resonator cavity wherein the radii of the excited states are related by integers.  
The electronic charge-density function of a p

x
 or p

y
 atomic-hydrogen excited state is shown with positive and negative charge-

density proportional to red intensity and blue intensity, respectively.  The function corresponds to a charge density wave on the 
two-dimensional spherical surface of radius na

0
 that travels time harmonically about the z-axis at the angular frequency given by 

Eq. (1.36).  It is comprised of a linear combination of a constant function modulated by time and spherically harmonic functions.  
The centrifugal force is balanced by the electric field of its photon that is phase-locked to the rotating electron.  The brightness 
corresponds to the intensity of the two-dimensional radial photon field. 
 

 
 

Regarding the energy balance of the transition to an excited state, the effect of the deceleration of the electron during the 
transition and the consequence for the ES-evf must be considered.  Upon collision of a photon with an electron, the photon 
electric fields induce a decelerating current component along impacted great circle basis elements of the current vector field 
(CVF) of the electron given in the Generation of Y

0
0( ,) section.  Decelerating current results in radiation.  Given the 

indivisibility of the electron, the deceleration current produces a field along every great circle current element of the electron.  
The photon scatters elastically except in the case that the correspondence principle holds whereby the frequency of the photon 
matches the allowed frequency change of the electron as given in the Photon Absorption section.  In the latter resonance case, 
the photon e&mvfs transition to the ES-evf, and the superposition of the field energy of the photon and the equivalent radiation 
field energy from the decrease in kinetic energy due to resonant electron current deceleration gives rise to the central photonic 
field along every great circle.  The lifetime   of this process is very small based on the time for a resonant photon to transverse 
the dimensions of a bound electron at lightspeed (e.g. 3 X 1019 s  for a 1 Å diameter electron).  In superposition, the photon 
field reduces central nuclear field at the position of the electron only.  In case of the hydrogen atom, the excitation photon 
decreases the central spherical field to that of a reciprocal integer of the fundamental charge at the central nucleus, wherein ½ of 
the excitation energy is contributed by the resonant photon and ½ of the energy is contributed by the decrease in kinetic energy 
due to electron deceleration during the transition as shown by Eqs. (2.18-2.22).  Consequently, the radius of the electron 
increases to give rise to a radial current.  The energy and angular momentum of the photon given by Eqs. (4.1) and (4.8), 
respectively, are conserved in the corresponding excited electronic state.  The multipole of the photon is conserved in the 
spherical harmonic of the excited state having the corresponding orbital angular momentum given by Eq. (1.72).  The transition 
probability and state lifetime are given by the ratio of the power and energy of the transition determined by the radial and angular 
source currents of photon absorption and emission events as given in the State Lifetimes and Line Intensities section.  
Absorption and emission of a photon are reversible, time-symmetrical processes wherein the opposite process to a that described 
herein occurs during photon emission.  Computer modeling of the analytical equations of the mechanism of photon absorption 
and corresponding emission by time reversal is available on the web [26]. 
 

FREE ELECTRON PHOTON ABSORPTION 
Consider next the physics of the free-electron photon absorption based on the free electron structure and corresponding 

behavior in the electric and magnetic photon fields based on Maxwell’s equations.  The free electron is a two-dimensional plane 
lamina comprised of a series of concentric circular current loops in the xy-plane (  -plane) that circulate about the z-axis as 
given in the Current-Density Function section.  The circulation corresponds to rotational kinetic energy, and additionally the free 
electron center of mass may undergo linear translation corresponding to linear kinetic energy wherein the sum of these two 
components comprises the total energy of the free electron.  With conservation of photon energy, the rotational and linear kinetic 
energies of a free electron can be arbitrarily large starting from a bound electron by absorption of a single high energy photon or 
starting from a bound electron that is ionized to form a low-energy free electron that then absorbs a series of photons.  In either 



Chapter 4 210 

case, the ionization of a bound electron to produce a free electron of any final total energy may proceed through a series of 
excited state levels each having a principal, orbital, and spin quantum number wherein the orbital quantum number   may 
comprise a superposition of   quantum numbers.  The superposition may comprise a Fourier series of corresponding spherical 
harmonics wherein the orbital quantum number   may approach infinity as the principal quantum number approaches infinity.  
In general, the physics of photon emission and absorption obeys time-reversal symmetry and superposition of states akin to 
Hess’s law on a macroscopic scale.  Consider the physics of the bound-electron absorption of a photon having energy excess of 
the ionization energy to form a free electron.  The energy excess of the ionization energy is conserved in the free electron 
rotational energy, corresponding to the plane-lamina circular current with   of angular momentum, and the linear kinetic energy, 
corresponding to a linear velocity that derive from Eqs. (3.29) and (3.52).  From a bound electronic state, free electron total 
energies each comprising a given set of rotational and linear kinetic energy states of arbitrary high energies can be achieved by 
absorption of a photon equal to the sum of the bound electron ionization energy and the total energy of the free electron.  
Alternatively, a free electron may absorb a plurality of photons with a concomitant increase in its rotational and linear kinetic 
energies to any final total energy that may be achieved starting from a bound state wherein the summation of the photon energies 
is conserved.   

As shown by Eqs. (3.29) and (3.52), the radius 0  decreases and the linear velocity increases to match the conservation 

condition that the change in the disc radius 0  is given by Eq. (3.29), and the velocity increase corresponds to a kinetic energy 

increase that is exactly ½ the energy of the photon (Eq. (3.52)).  The resulting energy balance is given by Eqs. (3.51) and (3.52).  
Specifically, using Eqs. (3.29) and (3.52), the absorption of a photon of frequency photon  by a free electron with an initial 

velocity along the z-axis of zv  gives rise to the radius decrease 0  and the linear velocity increase zv  of 
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wherein based on the kinetic energy increase (Eq. 3.52)) for velocities v
z
 c: 
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Substitution of Eq. (4.40) into Eq. (4.39) gives 
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To obey time time-reversal symmetry and superposition of states, the mechanism of absorption or emission of a photon 
by a free electron with a change in the free electron rotational and linear kinetic energies involves the formation of a transient, 
free-electron excited state.  The spherically symmetric electronic state comprises a photon that provides the binding radial 
electric field force; whereafter the state decays as the photon applies equal average magnitude radial and linear forces on the 
excited state electron.  The electric field of an exited state photon given in the Equation of the Electric Field inside the Atomic 
Orbital section comprises electric field great circles that are matched to each great circle of the bound electron and further 
circulate at light speed along each electron great circle wherein additionally the photon field intensity is modulated by time and 
spherical harmonics that are phase matched to any modulation of the electron current.  Consequentially, the relativistic direction 
of the photon electric field lines is radial.  To match the boundary conditions on nature of electron excited states and the required 
direction of the photon-electric-field-sourced radial and linear electronic forces, the excited electronic state electron comprises a 
charge and current density distribution equivalent to 0

0 ( , )Y    of the bound electron that is modulated by a Fourier series of time 

and spherically harmonic functions.  The 0
0 ( , )Y    current density of the bound electron has the same angular frequency and 

linear velocity everywhere on the surface corresponding to electron spin, and the time and spherically harmonic modulation 
current densities correspond to orbital angular momentum.  The photon modulated current density function that provides the 
required forces can be determined by considering the corresponding modulation of each great circle current of the free electron 
excited state.  The modulated current density that matches the boundary conditions of the resultant photon force fields can be 
generated from an initial free electron great circle basis element with cylindrical radius 0   comprising a constant function 

modulated by a time-constant trigonometric function that undergoes the series of BECVF and OCVF rotations to generate the 
free electron excited state.  With the conversion of energy of the photon field to angular and linear kinetic energies as the 
electron ionizes to a new free state, each electron great circle transitions to a smaller radius, and the free electron is linearly 
accelerated in the direction perpendicular to the plane of the initial free electron basis element reference frame.  

Specifically, consider the incidence of a linearly polarized photon having   of angular momentum aligned on the x-axis 
and propagating along the x-axis with a free electron in the xy-plane having   of angular momentum aligned on the z-axis and 
propagating along the z-axis.  The photon angular momentum of the free electron creates a torque to cause the rotation of the 
angular momentum vector of the free electron current about two axes, the  ,0 ,x y zi i i -axis in a first step and the laboratory-frame 

z-axis in a second step.  The corresponding motion of the perimeter great circle current loop at 0  in the plane perpendicular to 
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the angular momentum vector generates CVFs equivalent to those of the bound electron given in the Atomic Orbital Equation of 
Motion for  = 0 Based on the Current Vector Field (CVF) section.  Specifically, as given by Eq. (3.80) and shown in Figure 
3.10 the first rotation sweeps out the equivalent of a BECVF, wherein the concentric planar great circle current loops shown in 
Figure 3.2A flow from the disc origin to the perimeter edge at 0 .  The remaining electron disc current density at each rotational 

angle forms an annulus with a constant outer radius 0   and an increasing inner radius during the rotation to successively 

spread the charge density over the BECVF.  The second rotation of the BECVF sweeps out the equivalent of the convolution of 
the BECVF with the OCVF.  The result is a charge and current density distribution equivalent to 0

0 ( , )Y    of the bound electron 

wherein charge density of the bound electron has the same angular frequency and linear velocity everywhere on the surface. 
The field of a bound photon replaces the proton as the source of central field to create equivalent event as the binding of 

the electron to a proton as given Eq. (3.80) and shown in Figure 3.10 wherein the equations of a free linearly polarized and 
bound photon are given by Eqs. (4.6-4.7) and (4.38), and Figures 4.7 and 4.12, respectively.  In the absence of the central field of 
a nucleus, the trapped photon field from Eq. (2.16) has the form: 

       0
0Re , , nim tm

r nY Y e r r      E   (4.42) 

except that the trapped photon of a free electron comprises a Fourier series of spherical harmonics that result in a central force 
and a linear force along the z-axis wherein the orthogonal components are equal on average.  The photon field of the free 
electron excited state comprises a Fourier series of time harmonic and spherically harmonic functions that can be constructed 
from a great circle electric field basis element having a time-constant trigonometrically modulated photon intensity along the 
great circle current basis element.  The corresponding time-constant, relativistic radial electrical field of the photon field basis 
element that is phase matched to the great circle current basis element is given by: 

    01 cos      E  (4.43) 

wherein for when   , the vector i  is in the direction of the positive x-axis of the original free electron reference frame 

before excitation by the incident photon.  The electron great circle current density is spatially modulated in phase with the 
electric field modulation wherein the spatial modulation is constant in time.  Electron ionization of the free electron excited state 
is a continuous process with continuous current flow.  An equation providing visualization in discrete steps that generates the 
angular momentum vectors of the bound electron is given by Eq. (3.80), but time reversed with the spherical and cylindrical radii 
scaled sequentially according to the average of the forces acting of the electron current during each step of the event.  The 
visualization of the ionization event is given by the reverse sequence shown in Figure 3.10 with the excited state photon 
substituting for the proton and with a scaling factor applied.  The scaling factor S  of the spatial dimensions that multiples the 
output of the reverse sequence of Eq. (3.80) corresponding the indices in the direction m = M to m = 1 and n= N to n = 1 is given 
by 

 0
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1
1 1

n
S

N




       
  

 (4.44) 

Considering the translational acceleration over the ionization event, the linear velocity concomitantly incrementally increases by 
the factor S ': 

 S '  1
n1

N

v
z

vz







 (4.45) 

The absorbed photon must form a spherical bound state in the moving reference frame of the free electron to result in an 
inelastic event.  Time reversal symmetry resulting in ionization favors the photon kinetic energy contribution to add positively to 
the initial velocity of the free electron.  Additionally, conservation of energy for a single absorption event favors the absorbed 
photon contributing the positive addition to the initial velocity.  Consider the magnitude of the increase in electron linear 
momentum due to photon absorption compared to the linear momentum of the absorbed photon of angular frequency   given 
by 

 p
c





 (4.46) 

The relativistic three vector momentum for rectilinear motion along the z-axis (Eq. (34.12)) is 

 0

2

1

em
p v

v
c


   
 

 (4.47) 

wherein v  is the three velocities.  Considering that ½ of the energy of an absorbed photon is converted to electron linear kinetic 
energy, the increase in electron linear kinetic energy T  corresponding to an increase in linear velocity v  from rest in the 
electron’s absolute frame given by Eqs. (1.291) and (3.52) is 
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Using Eq. (4.48), the increase in linear velocity is given by 
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Using Eq. (4.47), the relativistic three vector momentum for rectilinear motion along the z-axis is 
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 (4.50) 

Consider the case of a microwave photon of frequency f  of 5 GHz ( 243.3  10X J ).  The corresponding photon linear 

momentum (Eq. (4.50)) is 32 11.1  10X kgms   and the corresponding increase in electron linear momentum is 27 11.73  10X kgms   
which is five orders of magnitude greater. 

A free space photon having   in its electric and magnetic fields is not divisible, and the electric field of a photon cannot 
be translated by an external action due to the properties of spacetime.  Photon propagation in free space at an exact velocity of 

0 0

1
c

 
  is based on the permittivity 0  and permeability 0  of free space.  The relationship between the energies of a photon 

as it converts to mass due to angular frequency, electric field, magnetic field, gravitational energy, and space time contraction are 
given by Eqs. (32.48a-32.48b) wherein the relationship between spacetime contraction and expansion due to energy to matter 
conversion and vice versa is given by Eqs. (32.140a-32.140b).  Kinetic energy contributes to the inertial mass of an electron 
according to Eq. (1.291).  Photons and free electrons each have zero gravitational mass; consequently, there is no violation of 
particle production laws by the absorption of a photon by an electron to increase its kinetic mass/energy.   

In effect spacetime of the photon field-free electron interaction serves as the body that conserves momentum from the 
free-electron photon absorption event wherein the photon angular momentum is partially converted to linear momentum.  This 
phenomenon is enabling of a novel propulsion device that drives against spacetime called space drive. 

The mechanisms of technologies almost without exception are also observed in Nature.  This is also the case with space-
drive phenomenon as the mechanism of the formation of sprites formed during lightning storms.  Specifically, electrons are 
accelerated to relativistic energies in the direction away from the Earth during atmospheric discharges called red sprites and blue 
jets (Figure 4.14).  These comprise large-scale vertically ascending pillars of emission from electrons accelerated from the tops 
of thunderclouds out into space that are associated with gamma ray bursts during lightning events.  The Italian Space Agency’s 
AGILE observatory found that the energy spectrum of terrestrial gamma-ray flashes extends up to 100 MeV.  These otherwise 
inexplicable observations can be resolved as being due to the space drive mechanism.  The high voltage within clouds or 
between clouds and Earth directionally accelerates electrons during a lightening discharge.  The high current of lightning causes 
a strong vector magnetic field.  The directional relativistic electron flow directly and the flow in the presence of the directional 
magnetic field results in the emission of microwaves that are absorbed by an upward (downward) flow of plasma causing the 
electrons to accelerate selectively in the upward (downward) direction by the space-drive effect.  Ions such as H

3
  are dragged 

by the directionally accelerated electrons.  Predominantly collisional air molecular excitation as well as recombination of upward 
ion and electron flow in the high-altitude atmosphere emit the high-altitude light emission of a sprite.  In addition to the 
traditional colliding counter flowing ice particles mechanism, the upward space drive current may serve to further positively 
charge clouds to achieve run-away relativistic electron energies of greater than 100 MeV to give rise to the extraordinarily 100 
MeV gamma ray flashes. 
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Figure 4.14.   Upward jet of electrons accelerated away from the Earth at near light speed associated with gamma ray bursts 
during lightning events. 

 
 
The same mechanism may be the source of the gamma rays of extraordinary energies of over 1 TeV emitted by the Sun [27], 
beyond those anticipated from magnetic field acceleration of electrons [28]. 
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Chapter 5 
  
HYDRINO THEORY – BLACKLIGHT PROCESS 
  
 
 
 
 
 
BLACKLIGHT PROCESS 
Classical physics (CP) gives closed-form solutions of the hydrogen atom, the hydride ion, the hydrogen molecular ion, and the 
hydrogen molecule and predicts corresponding species having fractional principal quantum numbers.  The nonradiative state of 
atomic hydrogen, which is historically called the “ground state” forms the basis of the boundary condition of CP to solve the 
bound electron.  CP predicts a reaction involving a resonant, nonradiative energy transfer from otherwise stable atomic hydrogen 
to a catalyst capable of accepting the energy to form hydrogen in lower-energy states than previously thought possible called a 

hydrino atom designated as Ha
H

p

 
 
 

 where Ha  is the radius of the hydrogen atom.  Specifically, CP predicts that atomic 

hydrogen may undergo a catalytic reaction with certain atoms, excimers, ions, and diatomic hydrides which provide a reaction 
with a net enthalpy of an integer multiple of the potential energy of atomic hydrogen, 27.2 hE eV  where hE  is one Hartree.  

Specific species (e.g. He , Ar , Sr , K , Li , HCl , NaH , and 2H O ) identifiable on the basis of their known electron energy 

levels are required to be present with atomic hydrogen to catalyze the process.  The reaction involves a nonradiative energy 
transfer of an integer multiple of 27.2 eV  from atomic hydrogen to the catalyst followed by 13.6 q eV  continuum emission or 

13.6 q eV  transfer to another H  to form extraordinarily hot, excited-state H  and a hydrogen atom that is lower in energy than 
unreacted atomic hydrogen that corresponds to a fractional principal quantum number.  That is, in the formula for the principal 
energy levels of the hydrogen atom: 

   
2

2 2

13.598 

8n
o H

e eV
E

n a n
     (5.1) 

 1,2,3,...n   (5.2)  

where Ha  is the Bohr radius for the hydrogen atom (52.947 pm), e  is the magnitude of the charge of the electron, and o  is the 

vacuum permittivity, fractional quantum numbers: 

 
1 1 1 1

 1, , , ,...,
2 3 4

n
p

 ;   137p   is an integer (5.3) 

replace the well known parameter integern   in the Rydberg equation for hydrogen excited states.  Then, similar to an excited 

state having the analytical solution of Maxwell’s equations given by Eq. (2.15), a hydrino atom also comprises an electron, a 

proton, and a photon as given by Eq. (5.27).  However, the electric field of the latter increases the binding corresponding to 

desorption of energy rather than decreasing the central field with the absorption of energy as in an excited state, and the resultant 

photon-electron interaction of the hydrino is stable rather than radiative. 

The 1n   state of hydrogen and the 
1

integer
n   states of hydrogen are nonradiative, but a transition between two 

nonradiative states, say 1n   to 1/ 2n  , is possible via a nonradiative energy transfer.  Hydrogen is a special case of the stable 

states given by Eqs. (5.1) and (5.3) wherein the corresponding radius of the hydrogen or hydrino atom is given by: 
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 Ha
r

p
 , (5.4) 

where 1,2,3,...p  .  In order to conserve energy, energy must be transferred from the hydrogen atom to the catalyst in units of  

 27.2 m eV , 1,2,3,4,....m   (5.5) 

and the radius transitions to Ha

m p
. The catalyst reactions involve two steps of energy release: a nonradiative energy transfer to 

the catalyst followed by additional energy release as the radius decreases to the corresponding stable final state.  Thus, the 

general reaction is given by: 

 27.2 * 27.2 
( )

q rq H H
fast

a a
m eV Cat H Cat re H m eV

p m p
     

             
 (5.6) 

 2 2* [( ) ] 13.6 27.2 
( ) ( )

H Ha a
H H p m p eV m eV

m p m p

   
             

 (5.7) 

   27.2 q r q
fastCat re Cat m eV        (5.8) 

And, the overall reaction is: 

 2 2[( ) ] 13.6 
( )

H Ha a
H H p m p eV

p m p

   
          

 (5.9) 

q , r , m , and p  are integers.  
 

* Ha
H

m p

 
  

 has the radius of the hydrogen atom (corresponding to 1p  ) and a central field 

equivalent to  m p  times that of a proton, and 
 

Ha
H

m p

 
  

 is the corresponding stable state with the radius of 
 

1

m p
 that 

of H .  As the electron undergoes radial acceleration from the radius of the hydrogen atom to a radius of 
 

1

m p
 this distance, 

energy is released as characteristic light emission or as third-body kinetic energy.  The emission may be in the form of an 

extreme-ultraviolet continuum radiation having an edge at 2 2[( ) 2 ] 13.6 p m p m eV     or 
2 2

91.2

[( ) 2 ]
nm

p m p m  
 and 

extending to longer wavelengths.  In addition to radiation, a resonant kinetic energy transfer to form fast H  may occur.  
Subsequent excitation of these fast  1H n   atoms by collisions with the background 2H  followed by emission of the 

corresponding  3H n   fast atoms gives rise to broadened Balmer   emission. 

As given in Disproportionation of Energy States section, hydrogen atoms  1/   1, 2,3,...137H p p   can undergo further 

transitions to lower-energy states given by Eqs. (5.1) and (5.3) wherein the transition of one atom is catalyzed by a second that 

resonantly and nonradiatively accepts 27.2 m eV  with a concomitant opposite change in its potential energy.  The overall 
general equation for the transition of  1/H p  to   1/H p m  induced by a resonance transfer of 27.2 m eV  to  1/ 'H p  

given by Eq. (5.75) is represented by: 
       2 21/ ' 1/ 1/ ( ) 2 ' 1 13.6 H p H p H H p m pm m p eV            (5.10) 

Hydrogen atoms may serve as a catalyst wherein 1m  , 2m  , and 3m   for one, two, and three atoms, respectively, acting as 

a catalyst for another.  The rate for the two-atom-catalyst, 2H , may be high when extraordinarily fast H as reported previously 

[1-7] collides with a molecule to form the 2H  wherein two atoms resonantly and nonradiatively accept 54.4 eV  from a third 
hydrogen atom of the collision partners.  By the same mechanism, the collision of two hot 2H  provide 3 H  to serve as a catalyst 

of 3 27.2 eV  for the fourth.  The EUV continua at 22.8 nm and 10.1 nm and extraordinary (>100 eV) Balmer   line 

broadening are observed consistent with predictions [1-9].  
The catalyst product,  1/H p , may also react with an electron to form a hydrino hydride ion  1/H p , or two 

 1/H p  may react to form the corresponding molecular hydrino  2 1 /H p .  Specifically, the catalyst product,  1/H p , may 

also react with an electron to form a novel hydride ion  1/H p  with a binding energy BE  (Eq. (7.74)) derived in the Hydrino 

Hydride Ion section: 
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 (5.11) 

where integer 1p   , 1/ 2s  ,   is Planck's constant bar, o  is the permeability of vacuum, em  is the mass of the electron, e  

is the reduced electron mass given by 

3
4

e p
e

e
p

m m

m
m

 


 where pm  is the mass of the proton, oa  is the Bohr radius, and the ionic 

radius is   0
1 1 1

a
r s s

p
    (Eq. (7.73)).  From Eq. (5.11), the calculated ionization energy of the hydride ion is 0.75418 eV , 

and the experimental value given by Lykke [10] is 16082.99 0.15 cm  (0.75418 eV).   

Upfield-shifted NMR peaks are direct evidence of the existence of lower-energy state hydrogen with a reduced radius 

relative to ordinary hydride ion and having an increase in diamagnetic shielding of the proton.  The shift is given by the sum of 
the contributions of the diamagnetism of the two electrons and the trapped photon field of magnitude p  (Eq. (7.87)): 
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B m a s s
  

     
 

 (5.12) 

where the first term applies to H   with 1p   and integer >1p   for  1/H p  and   is the fine structure constant. 

  1/H p  may react with a proton and two  1/H p  may react to form  2 1/H p

 and  2 1 /H p , respectively.  The 

hydrogen molecular ion and molecular charge and current density functions, bond distances, and energies were solved in the 

Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section from the Laplacian in ellipsoidal 

coordinates with the constraint of nonradiation.  

 ( ( ) ( ( ) ( ( ) 0R R R R R R     
          
     

          (5.13) 

The total energy TE  of the hydrogen molecular ion having a central field of pe  at each focus of the prolate spheroid molecular 

orbital is (Eqs. (11.192-11.193)) 
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 (5.14) 

where p  is an integer, c  is the speed of light in vacuum, and   is the reduced nuclear mass.  The total energy of the hydrogen 

molecule having a central field of pe  at each focus of the prolate spheroid molecular orbital is (Eqs. (11.240-11.241)) 
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 (5.15) 

 The bond dissociation energy, DE , of the hydrogen molecule  2 1 /H p  is the difference between the total energy of the 

corresponding hydrogen atoms and TE  

  (2 1/ )D TE E H p E   (5.16) 

where [11] 
   2(2 1/ ) 27.20 E H p p eV   (5.17) 

DE  is given by Eqs. (5.16-5.17) and (5.15): 
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 (5.18) 

The calculated and experimental parameters of 2H , 2D , 2H  , and 2D  are given in Table 11.1. 

The NMR of catalysis-product gas provides a definitive test of the theoretically predicted chemical shift of  2 1 /H p .  In 

general, the 1H  NMR resonance of  2 1 /H p  is predicted to be upfield from that of 2H  due to the fractional radius in elliptic 

coordinates wherein the electrons are significantly closer to the nuclei.  The predicted shift, TB

B


, for  2 1 /H p  is given by the 

sum of the contributions of the diamagnetism of the two electrons and the trapped photon field of magnitude p  (Eqs. (11.415-

11.416)): 
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  2 328.01 1.49  10TB
p p X ppm

B


    (5.20) 

where the first term applies to 2H  with 1p   and integer >1p   for  2 1 /H p .  The experimental absolute 2H  gas-phase 

resonance shift of -28.0 ppm [12-15] is in excellent agreement with the predicted absolute gas-phase shift of -28.01 ppm (Eq. 

(5.20)). 
 The vibrational energies, vibE , for the 0   to 1   transition of hydrogen-type molecules  2 1 /H p  are (Eq. (11.223)) 

 2 0.515902 vibE p eV  (5.21) 

where p  is an integer and the experimental vibrational energy for the 0   to 1   transition of 2H ,  2 0 1HE     , is given by 

Beutler [16] and Herzberg [17]. 
 The rotational energies, rotE , for the J  to 1J   transition of hydrogen-type molecules  2 1 /H p  are (Eq. (12.74)) 

    
2

2
1 1 1 0.01509 rot J JE E E J p J eV

I     


 (5.22) 

where p  is an integer, I  is the moment of inertia, and the experimental rotational energy for the 0J   to 1J   transition of 

2H  is given by Atkins [18]. 

 The 2p  dependence of the rotational energies results from an inverse p  dependence of the internuclear distance and the 

corresponding impact on the moment of inertia I .  The predicted internuclear distance 2 'c  for  2 1 /H p  is: 



Hydrino Theory—BlackLight Process 

 

219

 
2

2 oa
c

p
   (5.23) 

The data from a broad spectrum of investigational techniques strongly and consistently indicates that hydrogen can exist 

in lower-energy states than previously thought possible and support the existence of these states called hydrino, for “small 

hydrogen”, and the corresponding hydride ions and molecular hydrino.  Some of these prior related studies supporting the 

possibility of a novel reaction of atomic hydrogen, which produces hydrogen in fractional quantum states that are at lower 

energies than the traditional “ground” ( 1n  ) state, include extreme ultraviolet (EUV) spectroscopy, characteristic emission 

from catalysts and the hydride ion products, lower-energy hydrogen emission, chemically-formed plasmas, Balmer   line 

broadening, population inversion of H  lines, elevated electron temperature, anomalous plasma afterglow duration, power 

generation, and analysis of novel chemical compounds. 
 

ENERGY TRANSFER MECHANISM 
Consider the excited energy states of atomic hydrogen given by Eq. (5.1) with 2,3,4,...n   (Eq. (5.2)).  The 1n   state is the 
“ground” state for “pure” photon transitions (the 1n   state can absorb a photon and go to an excited electronic state, but it 
cannot release a photon and go to a lower-energy electronic state).  However, an electron transition from the 1n   state to a 
lower-energy state hydrino state is possible by a nonradiative energy transfer such as multipole coupling or a resonant collision 
mechanism.  Processes that occur without photons and that require collisions are common.  For example, the exothermic 
chemical reaction of H H  to form 2H  does not occur with the emission of a photon.  Rather, the reaction requires a collision 

with a third body, M , to remove the bond energy: 2 *H H M H M     [19].  The third body distributes the energy from the 

exothermic reaction, and the end result is the 2H  molecule and an increase in the temperature of the system.  Further exemplary 

of an inelastic collision with resonant energy transfer is the Franck-Hertz experiment wherein an excited state atom [20] is 
formed.  Additionally, some commercial phosphors are based on nonradiative energy transfer involving multipole coupling.  For 
example, the strong absorption strength of 3Sb   ions along with the efficient nonradiative transfer of excitation from 3Sb   to 

2Mn   are responsible for the strong manganese luminescence from phosphors containing these ions [21]1.  Another example of 
resonant, nonradiative energy transfer involves atomic hydrogen wherein resonant energy transfer from excited *

2Ne  excimer 

formed in high pressure microhollow cathode discharges to hydrogen atoms in the ground state occurs with high efficiency to 
give predominantly Lyman   and Lyman   emission [22-24] in the absence of excimer emission observed with pure neon 
plasmas.  Thus, the normal emission is consequently quenched as H emits.   

Similarly, the 1n   state of hydrogen and the 
1

integer
n   states of hydrogen are nonradiative, but a transition between 

two nonradiative states is possible via a nonradiative energy transfer, say 1n   to 1/ 4n  .  In these cases, during the transition 
the H electron couples to another electron transition, electron transfer reaction, or inelastic scattering reaction that can absorb the 

 
1 An example of nonradiative energy transfer is the basis of commercial fluorescent lamps.  Consider 2Mn   which when excited sometimes 

emits yellow luminescence.  The absorption transitions of 2Mn   are spin-forbidden.  Thus, the absorption bands are weak, and the 2Mn   ions cannot be 

efficiently raised to excited states by direct optical pumping.  Nevertheless, 2Mn   is one of the most important luminescence centers in commercial 

phosphors.  For example, the double-doped phosphor   3 2

5 4 3
: ,Ca PO F Sb Mn   is used in commercial fluorescent lamps where it converts mainly 

ultraviolet light from a mercury discharge into visible radiation.  When 2536 Å mercury radiation falls on this material, the radiation is absorbed by the 
3Sb   ions rather than the 2Mn   ions.  Some excited 3Sb   ions emit their characteristic blue luminescence, while other excited 3Sb   ions transfer their 

energy to 
2Mn 

 ions.  These excited 
2Mn 

 ions emit their characteristic yellow luminescence.  The efficiency of transfer of ultraviolet photons through 

the 3Sb   ions to the 2Mn   ions can be as high as 80%.  The strong absorption strength of 3Sb   ions along with the efficient transfer of excitation from 
3Sb 

 to 
2Mn 

 are responsible for the strong manganese luminescence from this material.   
This type of nonradiative energy transfer is common.  The ion which emits the light and which is the active element in the material is called the 

activator; and the ion that helps to excite the activator and makes the material more sensitive to pumping light is called the sensitizer.  Thus, the sensitizer 
ion absorbs the radiation and becomes excited.  Because of a coupling between sensitizer and activator ions, the sensitizer transmits its excitation to the 
activator, which becomes excited, and the activator may release the energy as its own characteristic radiation.  The sensitizer to activator transfer is not a 
radiative emission and absorption process, rather a nonradiative transfer.  The nonradiative transfer may be by electric or magnetic multipole interactions.  
In the transfer of energy between dissimilar ions, the levels will, in general, not be in resonance, and some of the energy is released as a phonon or 
phonons.  In the case of similar ions the levels should be in resonance, and phonons are not needed to conserve energy. 

Sometimes the host material itself may absorb (usually in the ultraviolet) and the energy can be transferred nonradiatively to dopant ions.  For 

example, in 3

4
:YVO Eu  , the vanadate group of the host material absorbs ultraviolet light, then transfers its energy to the 3Eu   ions which emit 

characteristic 3Eu   luminescence. 
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exact amount of energy that must be removed from the hydrogen atom to initiate the transition.  These reactions comprise a 
resonant energy sink generally referred to as an energy hole.  Thus, a catalyst is a source of an energy hole because it provides a 
net positive enthalpy of reaction of 27.2 m eV  (i.e. it absorbs or provides an energy sink of 27.2 m eV ).  The reaction of 
hydrogen-type atoms to lower-energy states may also be referred to as a transition reaction.  The certain atoms or ions that serve 
as transition reaction catalysts resonantly accept energy from hydrogen atoms and release the energy to the surroundings to 
effect electronic transitions to hydrino states comprising energy levels corresponding to fractional quantum numbers in the 
Rydberg formula.  The catalysis of hydrogen involves the nonradiative transfer of energy from atomic hydrogen to a catalyst to 
form an intermediate (Eq. (5.7)) that may then release the additional energy by radiative and nonradiative mechanisms.  Thus, as 
a consequence of the nonradiative energy transfer, the hydrogen atom becomes unstable and emits further energy until it 
achieves a lower-energy nonradiative state having a principal energy level given by Eqs. (5.1) and (5.3).  Characteristic 
continuum radiation and extraordinary (>100 eV) Balmer   line broadening corresponding to fast H observed from mixed 
hydrogen plasmas containing a hydrino catalyst [1-9] are signatures of the reaction to form hydrinos.  The latter release may 
occur via a collisional or nonradiative energy transfer from the corresponding formed metastable intermediate to yield the fast 

 1H n  .  The mechanism of energy release may be akin to a quenching reaction [25-26] that is selection rule dependent. 

 
ENERGY HOLE CONCEPT 
For a spherical resonator cavity, the nonradiative boundary condition and the relationship between the electron and the photon 
give the “allowed” hydrogen energy states that are quantized as a function of the parameter n .  That is, the nonradiative 
boundary condition and the relationship between an allowed radius and the photon standing wave wavelength (Eq. (2.1)) give 
rise to Eq. (2.2), the boundary condition for allowed radii and allowed electron wavelengths as a function of the parameter n .  
Each value of n  corresponds to an allowed transition caused by a resonant photon, which excites the transition in the atomic 
orbital resonator cavity from the initial to the final state.  In addition to the traditional integer values (1, 2, 3,...) of n , fractional 
values are allowed by Eq. (2.2) which correspond to transitions between energy states with an increase in the central field 
(effective charge) and decrease in the radius of the atomic orbital.  This occurs, for example, when the atomic orbital couples to 
another resonator cavity, which can absorb energy.  This is the absorption of an energy hole by the hydrogen-type atom.  The 
absorption of an energy hole destroys the balance between the centrifugal force and the increased central electric force.  
Consequently, the electron undergoes a transition to a stable lower energy state.  Thus, the corresponding reaction from an initial 
energy state to a lower energy state requiring an energy hole is called a transition reaction and the resonant energy acceptor 
including a catalyst that is unchanged in the over all reaction to form hydrinos can generally be considered a source of energy 
holes. 

From energy conservation, the energy hole of a hydrogen atom, which excites resonator modes of radial dimensions 

1
Ha

m 
 is: 

 27.2 m eV , (5.24) 
 where 1,2,3,4,....m   

After resonant absorption of the energy hole, the radius of the atomic orbital, Ha , shrinks to 
1

Ha

m 
 and after t  cycles of 

transition, the radius is 
1

Ha

mt 
.  In other words, the radial ground state field can be considered as the superposition of Fourier 

components.  The removal of negative Fourier components of energy 27.2 m eV , where m  is an integer, increases the positive 
electric field inside the spherical shell by m  times that of a proton charge.  The resultant electric field is a time harmonic 
solution of Laplace’s Equations in spherical coordinates.  In this case, the radius at which force balance and nonradiation are 

achieved is 
1

Ha

m 
 where m  is an integer.  In decaying to this radius from the “ground” state, a total energy of 

2 2[( 1) 1 ] 13.6 m eV    is released.  The process is called the Atomic BlackLight Process. 

For the hydrogen atom, the radius of the ground state atomic orbital is Ha .  This atomic orbital contains no photonic 

waves and the centrifugal force and the electric force balance including the electrodynamic force, which is included by using the 
reduced electron mass as given by Eqs. (1.254), (1.259), and (1.260) is: 

 
2 2
1

2
04

e

H H

m v e

a a
  (5.25) 

where 1v  is the velocity in the “ground” state.  It was shown in the Excited States of the One-Electron Atom (Quantization) 

section that the electron atomic orbital is a resonator cavity, which can trap electromagnetic radiation of discrete frequencies.  
The photon electric field functions are solutions of Laplace’s equation.  The “trapped photons” decrease the effective nuclear 
charge or nuclear charge factor effZ  to 1/ n  and increase the radius of the atomic orbital to Hna .  The new configuration is also 

in force balance. 
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 (5.26) 

Similarly a transition to a hydrino state occurs because the effective nuclear charge increases by an integer, m , when 
Eqs. (5.26-5.28) are satisfied by the introduction of an energy hole.  The source of energy holes may not be consumed in the 
transition reaction; therefore it serves as a catalyst.  The catalyst provides energy holes and causes the transition from the initial 

radius Ha

p
 and an effective nuclear charge of p  to the second radius Ha

p m
 and an effective nuclear charge of p m .  Energy 

conservation and the boundary condition that “trapped photons” must be a solution to Laplace’s equation determine that the 
energy hole to cause a transition is given by Eq. (5.24).  As a result of coupling, the hydrogen atom nonradiatively transfers 

27.2 m eV  to the catalyst.   
Stated another way, the hydrogen atom absorbs an energy hole of 27.2 m eV .  The energy hole absorption causes a 

standing electromagnetic wave (“photon”) to be trapped in the hydrogen atom electron atomic orbital having the same form of 
Maxwellian solution of electromagnetic radiation of discrete energy trapped in a resonator cavity as for excited states given in 
the Excited States of the One-Electron Atom (Quantization) section.  As shown previously, the photonic equation must be a 
solution of Laplace’s equation in spherical coordinates.  The “trapped photon” field comprises an electric field, which provides 
force balance and a nonradiative electron current.  Following that given for excited states (Eq. (2.15)), the solution to this 
boundary value problem of the radial photon electric field is given by:  
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  (5.27) 

 
1

n
p

  

 2 137p   

   0,1,2,..., 1p   

 m  -  , -  1,...,0,...,    

 
1

2sm    

The quantum numbers of the electron are p ,  , m , and sm  as described in the Excited States of the One-Electron Atom 

(Quantization) section wherein the principal quantum number of excited states is replaced by 
1

n
p

 .  It is apparent from this 

equation that given an initial radius of Ha

p
 and a final radius of Ha

p m
, the central field is increased by m  with the absorption of 

an energy hole of 27.2 m eV .  The potential energy decreases by this energy; thus, energy is conserved.  However, the force 
balance equation is not initially satisfied as the effective nuclear charge increases by m .  Further energy is emitted as force 
balance is achieved at the final radius.  By replacing the initial radius with the final radius, and by increasing the charge by m  in 
Eq. (5.26).  

     2
23

3 2
0

[ ]
4e H H

p m e e
p m p m

m a a


  


 (5.28) 

Force balance is achieved and the electron is non-radiative.  The energy balance for 1m   is as follows.  An initial energy of 
27.2 eV  is transferred as the energy hole absorption event.  This increases the nuclear charge (effective nuclear charge factor) 
by one elementary charge unit and decreases the potential by 27.2 eV .  More energy is emitted until the total energy released is 

2 2[( 1) ] 13.6 p p eV   .  The potential energy diagram of the electron is given in Figure 5.1. 
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Figure 5.1.   Potential Energy well of a Hydrogen Atom. 
 

 
 

The energy hole ( 27.2 m eV ) required to cause a hydrogen atom to undergo a transition reaction to form a given hydrino atom 

(
1

Ha
H

m
 
  

) as well as the corresponding radius (
( 1)

Ha

m 
), effective nuclear charge factor ( 1effZ m  ) and energy parameters 

of several states of atomic hydrogen are given in Table 5.1. 
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Table 5.1.  Principal quantum number, radius, potential energy, kinetic energy, effective nuclear charge factor, energy hole 
required to form the hydrino from atomic hydrogen (n=1), and hydrino binding energy, respectively, for several states of 
hydrogen.  
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The size of the electron atomic orbital as a function of potential energy is given in Figure 5.2.  
 

Figure 5.2.   Quantized sizes of hydrogen atoms where n  is an integer for excited states and 1n p . for hydrino states where 

p  is an integer. 
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CATALYSTS 
A source of energy holes that is not consumed in the reaction serves as a catalyst that provides a net positive enthalpy of reaction 

of 27.2 m eV  (i.e. it resonantly accepts the nonradiative energy transfer from hydrogen atoms and releases the energy to the 

surroundings to affect electronic transitions to fractional quantum energy levels).  K , He , Ar , Sr , Li , K , NaH , and 

2H O , for example, are predicted to serve as catalysts since they meet the catalyst criterion—a chemical or physical process with 

an enthalpy change equal to an integer multiple of the potential energy of atomic hydrogen, 27.2 eV , or have a potential energy 

of 27.2 m eV .  Specifically, an exemplary catalytic system is provided by the ionization of t  electrons from an atom each to a 

continuum energy level such that the sum of the ionization energies of the t  electrons is approximately 27.2 m eV  where m  is 

an integer.  One such catalytic system involves potassium atoms. K  can serve as a catalyst since the ionization of K  to 3K   is 

about 81.6 eV  ( 3 27.2 eV ).  As a consequence of the nonradiative energy transfer, the hydrogen atom becomes unstable and 

emits further energy until it achieves a lower-energy nonradiative state having a principal energy level given by Eqs. (5.1) and 

(5.3).  Thus, the catalysis releases energy from the hydrogen atom with a commensurate decrease in size of the hydrogen atom, 

n Hr na  where n  is given by Eq. (5.3).  For example, the catalysis of ( 1)H n   to ( 1/ 4)H n   releases 204 eV , and the 

hydrogen radius decreases from Ha  to 
1

4 Ha .  Specifically, the first, second, and third ionization energies of potassium are 

4.34066 eV , 31.63 eV , 45.806 eV , respectively [11].  The triple ionization ( 3t  ) reaction of K  to 3K  , then, has a net 

enthalpy of reaction of 81.7767 eV , which is equivalent to 3m   in Eq. (5.24). 

   3 2 281.7767 3 [( 3) ] 13.6 
( 3)

H Ha a
eV K m H K e H p p eV

p p
    

              
 (5.29) 

  3 3 81.7767 K e K m eV     (5.30) 

And, the overall reaction is 

 2 2[( 3) ] 13.6 
( 3)

H Ha a
H H p p eV

p p

   
          

 (5.31) 

The potassium-atom catalyst ( K ) and the 3  ion ( 3K  ) that arises from the resonant energy transfer are solved in the Three-
Through Twenty-Electron Atoms section and are shown in Figure 5.3. 
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Figure 5.3.  Cross Section of Charge-Density Functions of K and 3K   Shown in Color Scale.  The electrons of 
multielectron atoms exist as concentric atomic orbitals (“bubble-like” charge-density functions) of discrete radii, which are given 
by nr  of the radial Dirac delta function, ( )nr r   and serve as resonator cavities during the resonant nonradiative energy transfer 

that gives rise to ionization.  Each s orbital is a constant current-density function which gives rise to spin, and the charge-density 
of each p orbital is a superposition of a constant and a spherical and time harmonic function.  The corresponding charge-density 
wave on the surface gives rise to electron orbital angular momentum that superimposes the spin angular momentum.  The insert 
on the right shows the atom and ions at a lower magnification to view the outer 4s electron of K . 
 

 
 

The energy given off during catalysis is much greater than the energy lost to the catalyst.  The energy released is large as 

compared to conventional chemical reactions.  For example, when hydrogen and oxygen gases undergo combustion to form 

water (   2 2 2

1
( ) ( )  ( )

2
H g O g H O l  ) the known enthalpy of formation of water is 286 /fH kJ mole    or 1.48  eV per 

hydrogen atom.  By contrast, each ( 1n  ) ordinary hydrogen atom undergoing a catalysis step to 
1

2
n   releases a net of 

40.8 eV .  Moreover, further catalytic transitions may occur: 
1 1 1 1 1 1

,  ,  ,
2 3 3 4 4 5

n      and so on.  Once catalysis begins, 

hydrinos autocatalyze further in a process called disproportionation discussed in the Disproportionation of Energy States section.   
Helium ions can serve as a catalyst because the second ionization energy of helium is 54.417 eV , which is equivalent to 

2 27.2 eV .  In this case, 54.417 eV  is transferred nonradiatively from atomic hydrogen to He  which is resonantly ionized.  
The electron decays to the 1/ 3n   state with the further release of 54.417 eV  as given in Eq. (5.7).  The full catalysis reaction 
invoving an energetic intermediate formed by the energy transfer to the catalyst is: 

   254.417 * 54.4 
3
H

H

a
eV He H a He e H eV           

 (5.32) 

 * 54.4 
3 3
H Ha a

H H eV
          

 (5.33) 

 2 54.417 He e He eV       (5.34) 
And, the overall reaction is: 

   54.4 54.4 
3
H

H

a
H a H eV eV

     
 (5.35) 

wherein *
3
Ha

H
 
  

 has the radius of the hydrogen atom and a central field equivalent to 3 times that of a proton and 
3
Ha

H
 
  

 is 

the corresponding stable state with the radius of 1/3 that of H.  As the electron undergoes radial acceleration from the radius of 
the hydrogen atom to a radius of 1/3 this distance, energy is released as characteristic light emission or as third-body kinetic 
energy. 

Hydrogen catalysts capable of providing a net enthalpy of reaction of approximately 27.2 m eV  where m  is an integer 
to produce a hydrino (whereby t  electrons are ionized from an atom or ion) are given in Table 5.2.  The atoms or ions given in 
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the first column are ionized to provide the net enthalpy of reaction of 27.2 m eV  given in the tenth column where m  is given in 
the eleventh column.  The electrons that participate in ionization are given with the ionization potential (also called ionization 
energy or binding energy).  The ionization potential of the n th electron of the atom or ion is designated by nIP  and is given by 

the CRC [11].  That is for example, 5.39172 Li eV Li e     and 275.6402 Li eV Li e     .  The first ionization 
potential, 1 5.39172 IP eV , and the second ionization potential, 2 75.6402 IP eV , are given in the second and third columns, 

respectively.  The net enthalpy of reaction for the double ionization of Li  is 81.0319 eV  as given in the tenth column, and 
3m   in Eq. (5.24) as given in the eleventh column. 

 
Table 5.2.  Hydrogen Catalysts. 
 

Catalyst IP1 IP2 IP3 IP4 IP5 IP6 IP7 IP8 Enthalpy  m
Li 5.39172 75.6402  81.032 3 
Be 9.32263 18.2112  27.534 1 
K 4.34066 31.63 45.806 81.777 3 
Ca 6.11316 11.8717 50.9131 67.27 136.17 5 
Ti 6.8282 13.5755 27.4917 43.267 99.3 190.46 7 
V 6.7463 14.66 29.311 46.709 65.2817 162.71 6 
Cr 6.76664 16.4857 30.96 54.212 2 
Mn 7.43402 15.64 33.668 51.2 107.94 4 
Fe 7.9024 16.1878 30.652 54.742 2 
Fe 7.9024 16.1878 30.652 54.8 109.54 4 
Co 7.881 17.083 33.5 51.3 109.76 4 
Co 7.881 17.083 33.5 51.3 79.5 189.26 7 
Ni 7.6398 18.1688 35.19 54.9 76.06 191.96 7 
Ni 7.6398 18.1688 35.19 54.9 76.06 108 299.96 11
Cu 7.72638 20.2924  28.019 1 
Zn 9.39405 17.9644  27.358 1 
Zn 9.39405 17.9644 39.723 59.4 82.6 108 134 174 625.08 23
As 9.8152 18.633 28.351 50.13 62.63 127.6 297.16 11
Se 9.75238 21.19 30.8204 42.945 68.3 81.7 155.4 410.11 15
Kr 13.9996 24.3599 36.95 52.5 64.7 78.5 271.01 10
Kr 13.9996 24.3599 36.95 52.5 64.7 78.5 111 382.01 14
Rb 4.17713 27.285 40 52.6 71 84.4 99.2 378.66 14
Rb 4.17713 27.285 40 52.6 71 84.4 99.2 136 514.66 19
Sr 5.69484 11.0301 42.89 57 71.6 188.21 7 
Nb 6.75885 14.32 25.04 38.3 50.55 134.97 5 
Mo 7.09243 16.16 27.13 46.4 54.49 68.8276 220.10 8 
Mo 7.09243 16.16 27.13 46.4 54.49 68.8276 125.664 143.6 489.36 18
Pd 8.3369 19.43  27.767 1 
Sn 7.34381 14.6323 30.5026 40.735 72.28 165.49 6 
Te 9.0096 18.6  27.61 1 
Te 9.0096 18.6 27.96 55.57 2 
Cs 3.8939 23.1575  27.051 1 
Ce 5.5387 10.85 20.198 36.758 65.55 138.89 5 
Ce 5.5387 10.85 20.198 36.758 65.55 77.6 216.49 8 
Pr 5.464 10.55 21.624 38.98 57.53 134.15 5 
Sm 5.6437 11.07 23.4 41.4 81.514 3 
Gd 6.15 12.09 20.63 44 82.87 3 
Dy 5.9389 11.67 22.8 41.47 81.879 3 
Pb 7.41666 15.0322 31.9373 54.386 2 
Pt 8.9587 18.563  27.522 1 
He+  54.4178  54.418 2 
Na+  47.2864 71.6200 98.91 217.816 8 
Rb+  27.285  27.285 1 
Fe3+    54.8 54.8 2 
Mo2+   27.13 27.13 1 
Mo4+    54.49 54.49 2 
In3+    54 54 2 
Ar+  27.62  27.62 1 
Sr+  11.03 42.89 53.92 2 
2K+ to K 

and K2+ 
4.34 31.63  27.28 1 

2Ba2+ to Ba+  
and  Ba3+ 

5.21 10 37.3 27.3 1 

 

Certain molecules may also serve to affect transitions of H to form hydrinos.  In general, a compound comprising 

hydrogen such as MH , where M is an element other than hydrogen, serves as a source of hydrogen and a source of catalyst.  A 

catalytic reaction is provided by the breakage of the M H  bond plus the ionization of t  electrons from the atom M  each to a 

continuum energy level such that the sum of the bond energy and ionization energies of the t  electrons is approximately 
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  27.2 m eV , where m  is an integer.  One such catalytic system involves sodium hydride.  The bond energy of NaH  is 

1.9245 eV  [27], and the first and second ionization energies of Na  are 5.13908 eV  and 47.2864 eV , respectively [11].  Based 

on these energies NaH  molecule can serve as a catalyst and H  source, since the bond energy of NaH  plus the double 

ionization ( 2t  ) of Na  to 2Na   is 54.35 eV  ( 2 27.2 eV ).  The concerted catalyst reactions are given by: 

 

2 2 254.35 2 [3 1 ] 13.6 
3
Ha

eV NaH Na e H eV           
 (5.36) 

 2 2 54.35 Na e H NaH eV      (5.37) 

And, the overall reaction is: 

 2 2[3 1 ] 13.6 
3
Ha

H H eV
      

 (5.38) 

A molecule that accepts   27.2 m eV  from atomic H with a decrease in the magnitude of the potential energy of the 

molecule by the same energy may serve as a catalyst.  For example, the potential energy of H2O given by Eq. (13.201) is: 

 
2 2 2

2 2 2 2
0

3 2
ln 81.8715 

2 8
e

e a a b
V eV

a b a a b
      

    
 (5.39) 

The full catalysis reaction  3m   is: 

  281.6 2 3 * 81.6 
4
H

H fast

a
eV H O H a H O e H eV            

 (5.40) 

 * 122.4 
4 4
H Ha a

H H eV
          

 (5.41) 

 22 3 81.6 fastH O e H O eV        (5.42) 

And, the overall reaction is: 

   81.6 122.4 
4
H

H

a
H a H eV eV

     
 (5.43) 

wherein *
4
Ha

H
 
  

 has the radius of the hydrogen atom and a central field equivalent to 4 times that of a proton and 
4
Ha

H
 
  

 is 

the corresponding stable state with the radius of 1/4 that of H. 
 
ENERGY HOLE AS A MULTIPOLE EXPANSION 
The potential energy (Eq. (1.261)) of the hydrino states of radius Ha

p
 having a central field of magnitude p  is:  

 2 27.2 p eV   (5.44) 

where p  is an integer.  The potential energy is given as the superposition of   energy-degenerate quantum states corresponding 
to a multipole expansion of the central electromagnetic field.  Based on the selection rules given in the Excited States of the One-
Electron Atom (Quantization) section that are enabled by multipole coupling, one multipole moment of all those possible, need 
be excited to stimulate the below “ground” state transition.  The total number, N , of multipole moments where each 
corresponds to an   and m  quantum number of an energy level corresponding to a principal quantum number of p  is:  

 
1 1

2

0 0

1 2 1
p n

m

N p
  

  

     




  
  (5.45) 

Thus, the energy hole to stimulate a transition of a hydrogen atom from radius Ha

p
 to radius 

1
Ha

p 
 with an increase in the 

central field from p  to 1p   where p  is an integer is: 

 2
2

1
( 1) 27.2 27.2 

( 1)
p eV

p
   


 (5.46) 

Eq. (5.46) obeys superposition such that the energy hole for the excitation of m  multipoles is 27.2 m eV .  Energy conservation 
occurs during the absorption of an energy hole.  For a hydrogen atom with a principal quantum number of p  having a radius of 

Ha

p
, the absorption of an energy hole of 27.2 m eV  instantaneously decreases the potential energy by 27.2 m eV .  The 

calculation of the instantaneous electric field of the photon standing wave corresponding to the absorbed energy hole is 
determined by the conservation of the potential energy change due to the absorption of the energy hole of equal but opposite 
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energy.  It is given by the summation over all possible multipoles of the integral of the product of the electric field of the photon 
standing wave and the multipoles of the electron charge-density function.  The multipole of the photon standing wave and each 
multipole of the electron charge-density function correspond to an   and m  quantum number. 

 

DISPROPORTIONATION OF ENERGY STATES 
Hydrogen and hydrinos may serves as catalysts.  As given infra hydrogen atoms  1/   1, 2,3,...137H p p   can undergo 

transitions to lower-energy states given by Eqs. (5.1) and (5.3) wherein the transition of one atom is catalyzed by a second that 

resonantly and nonradiatively accepts 27.2 m eV  with a concomitant opposite change in its potential energy.  The overall 
general equation for the transition of  1/H p  to   1/H m p  induced by a resonance transfer of 27.2 m eV  to  1/ 'H p  is 

represented by (Eq. (5.75)) 
       2 21/ ' 1/ 1/ ( ) 2 ' 1 13.6 H p H p H H m p pm m p eV            (5.47) 

Thus, hydrogen atoms may serve as a catalyst wherein 1m  , 2m  , and 3m   for one, two, and three atoms, respectively, 

acting as a catalyst for another.  The rate for the two- or three-atom-catalyst case would be appreciable only when the H  density 

is high.  But, high H densities are not uncommon.  A high hydrogen atom concentration permissive of 2H or 3H serving as the 

energy acceptor for a third may be achieved under several circumstances such as on the surface of the Sun and stars due to the 

temperature and gravity driven density, on metal surfaces that support multiple monolayers, and in highly dissociated plasmas, 

especially pinched hydrogen plasmas.  Additionally, a three-body H interaction is easily achieved when two H  atoms arise with 
the collision of a hot H  with 2H .  This event can commonly occur in plasmas having a large population of extraordinarily fast 

H as reported previously [1-7].  This is evidenced by the unusual intensity of atomic H emission.  In such cases, energy transfer 

can occur from a hydrogen atom to two others within sufficient proximity, being typically a few angstroms as given in the 

Dipole-Dipole Coupling section.  Then, the reaction between three hydrogen atoms whereby two atoms resonantly and 

nonradiatively accept 54.4 eV  from the third hydrogen atom such that 2H  serves as the catalyst is given by: 

 54.4 2 2 2 * 54.4 
3
H

fast

a
eV H H H e H eV          

 (5.48) 

 * 54.4 
3 3
H Ha a

H H eV          
 (5.49) 

 2 2 2 54.4 fastH e H eV     (5.50) 

And, the overall reaction is: 

 2 2[3 1 ] 13.6 
3
Ha

H H eV
      

 (5.51) 

*
2 1

Ha
H

 
  

 has the radius of the hydrogen atom (corresponding to the 1 in the denominator) and a central field equivalent to 3 

times that of a proton, and 
3
Ha

H
 
  

 is the corresponding stable state with the radius of 1/3 that of H.  As the electron undergoes 

radial acceleration from the radius of the hydrogen atom to a radius of 1/3 this distance, energy is released as characteristic light 

emission or as third-body kinetic energy.  The emission may be in the form of an extreme-ultraviolet continuum radiation having 

an edge at 54.4 eV  (22.8 nm) and extending to longer wavelengths.  Alternatively, H is the lightest atom; thus, it is the most 

probable fast species in collisional energy exchange from the H intermediate (e.g. *
2 1

Ha
H

 
  

).  Additionally, H is unique with 

regard to the energetic transition state intermediate (generally represented by * Ha
H

m p

 
  

) in that all these species are energy 

states of hydrogen with corresponding harmonic frequencies.  Thus, the cross section for H excitation by a nonradiative energy 

transfer to form fast H is predicted to be large since it is a resonant process.  Efficient energy transfer can occur by common 

through-space mechanisms such as dipole-dipole interactions as described by Förster's theory infra.  Consequently, in addition to 

radiation, a resonant kinetic energy transfer to form fast H may occur.  Alternatively, fast H is a direct product of H or hydrino 

serving as the catalyst or source of energy holes as given by Eqs. (5.48), (5.53), (5.58), and (5.71) wherein the acceptance of the 

resonant energy transfer regards the potential energy rather than the ionization energy.  Conservation of energy gives a proton of 
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the kinetic energy corresponding to one half the potential energy in the former case and a catalyst ion at essentially rest in the 

latter case.  The H recombination radiation of the fast protons gives rise to broadened Balmer   emission that is 

disproportionate to the inventory of hot hydrogen consistent with the excess power balance.  Conservation of momentum in the 
formation of fast protons also gives rise to hot hydrinos that heat H.  Subsequent excitation of these fast  1H n   atoms by 

collisions with the background 2H  followed by emission of the corresponding  3H n   fast atoms gives rise to broadened 

Balmer   emission but of less intensity than directly formed hot protons that emit by recombination.  With increasingly lower-

energy states formed over time as the reaction progresses, very large kinetic energies are predicted throughout the cell.  Only 

isotropic non-directional broadening of hydrogen atomic lines is predicted with an increase in fast H with time.  These features 

have been confirmed experimentally [1-7], especially regarding closed hydrogen plasmas or water vapor plasmas that become 

predominantly H plasmas in time [1-3].  Overall, the EUV continuum radiation and fast H were observed with hydrogen plasmas 

wherein 2H served as the catalyst [8-9].  Astrophysical soft X-ray continuum radiation bands are observed at 10.1 nm, 22.8 nm, 

and 91.2 nm as predicted for mH  catalyst, 1m  , 2m  , and 3m  , respectively [8].  Soft X-ray continuum radiation having a 

10.1 nm cutoff was also observed in the laboratory as predicted for H2O catalyst [8].  Thus, the predictions corresponding to 

transitions of atomic hydrogen to form hydrinos were experimentally confirmed.   
The predicted product of 2H (Eqs. (5.48-5.51)) catalyst reaction is  1/ 3H .  In the case of a high hydrogen atom 

concentration, the further transition given by Eq. (5.47) of  1/ 3H  ( 3p  ) to  1/ 4H  ( 4m p  ) with H  as the catalyst 

( ' 1p  ; 1m  ) can be fast: 

    1/ 3 1/ 4 95.2 HH H eV   (5.52) 

In another H -atom catalyst reaction involving a direct transition to 
4
Ha 

  
 state, two hot 2H  molecules collide and 

dissociate such that three H  atoms serve as a catalyst of 3 27.2 eV  for the fourth.  Then, the reaction between four hydrogen 

atoms whereby three atoms resonantly and nonradiatively accept 81.6 eV  from the fourth hydrogen atom such that 3H  serves 

as the catalyst is given by: 

 81.6 3 3 3 * 81.6 
4
H

fast

a
eV H H H e H eV          

 (5.53) 

 * 122.4 
4 4
H Ha a

H H eV
          

 (5.54) 

 3 3 3 81.6 fastH e H eV     (5.55) 

And, the overall reaction is 

 2 2[4 1 ] 13.6 
4
Ha

H H eV
      

 (5.56) 

The extreme-ultraviolet continuum radiation band due to the *
3 1

Ha
H

 
  

 intermediate of Eq. (5.53) is predicted to have short 

wavelength cutoff at 122.4 eV  (10.1 nm) and extend to longer wavelengths.  This continuum band also formed by H2O catalyst 

was confirmed experimentally [8].  In general, the transition of H  to 
1

Ha
H

p m

 
   

 due by the acceptance of 27.2 m eV  gives 

a continuum band with a short wavelength cutoff and energy 
1

Ha
H H

p m

E  
      

 given by: 

 

2

1

2

1

13.6 

91.2
 

 

H

H

a
H H

p m

a
H H

p m

E m eV

nm
m



  
      

  
      

 


 (5.57) 

and extending to longer wavelengths than the corresponding cutoff.  The radiation band is in the region from zero to the cutoff 

wavelength with a Bremsstrahlung profile that is predominantly in the high-energy region. 

Consistent with Eq. (5.57) with 1m  , a 91.2 nm continuum in argon plasma with trace hydrogen was observed where 

the catalyst reaction Ar  to 2Ar   has a net enthalpy of reaction of 27.63 eV  [28].  Two hydrogen atoms may react to give the 
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same continuum band by a reaction similar to those given by Eqs. (5.48-5.51).  The reaction whereby one H resonantly and 

nonradiatively accepts 27.2 eV  from the other hydrogen atom such that it serves as the catalyst is given by: 

 27.2 * 27.2 
2
H

fast

a
eV H H H e H eV          

 (5.58) 

 * 13.6 
2 2
H Ha a

H H eV
          

 (5.59) 

 27.2 fastH e H eV     (5.60) 

And, the overall reaction is: 

 2 2[2 1 ] 13.6 
2
Ha

H H eV
      

 (5.61) 

The emission from Eq. (5.59) may be in the form of an extreme-ultraviolet continuum radiation having an edge at 13.6 eV  (91.2 

nm) and extending to longer wavelengths.  This band was also observed in pulsed pure hydrogen plasmas using the normal 

incidence spectrometer, but temporal studies are required in order to eliminate the background hydrogen molecular band.  These 

bands were eliminated previously in the argon plasma with trace hydrogen [28] wherein H is highly dissociated.  Hydrogen may 

emit the series of 10.1 nm, 22.8 nm, and 91.2 nm continua as shown in Ref. [8].   
Since the products of the catalysis reactions (e.g. Eqs. (5.48-5.51)) have binding energies of 27.2 m eV , they may 

further serve as catalysts.  Thus, further catalytic transitions may occur: 
1 1 1 1

,  ,
3 4 4 5

n     and so on.  Thus, lower-energy 

hydrogen atoms, hydrinos, can act as catalysts by resonantly and nonradiatively accepting energy of 27.2 m eV  from another H 
or hydrino atom (Eq. (5.24)).  The process can occur by several mechanisms: metastable excitation, resonance excitation, and 
ionization energy of a hydrino atom is 27.2 m eV  (Eq. (5.24)).  The transition reaction mechanism of a first hydrino atom 
affected by a second hydrino atom involves the resonant coupling between the atoms of m  degenerate multipoles each having 
27.2 eV  of potential energy.  (See the Energy Hole as a Multipole Expansion section).   

The energy transfer of 27.2 m eV  from the first hydrino atom to the second hydrino atom causes the central field of the 

first to increase by m  and the electron of the first to drop m  levels lower from a radius of Ha

p
 to a radius of Ha

p m
.  The second 

lower-energy hydrogen is excited to a metastable state, excited to a resonance state, or ionized by the resonant energy transfer.  
The resonant transfer may occur in multiple stages.  For example, a nonradiative transfer by multipole coupling may occur 

wherein the central field of the first increases by m , then the electron of the first drops m  levels lower from a radius of Ha

p
 to a 

radius of Ha

p m
 with further resonant energy transfer.  The energy transferred by multipole coupling may occur by a mechanism 

that is analogous to photon absorption involving an excitation to a virtual level.  Or, the energy transferred by multipole coupling 
during the electron transition of the first hydrino atom may occur by a mechanism that is analogous to two-photon absorption 
involving a first excitation to a virtual level and a second excitation to a resonant or continuum level [29-31].  Similarly to the 
case with H as the catalyst, the transition energy greater than the energy transferred to the second hydrino atom may appear as a 
characteristic light emission in a vacuum medium or extraordinary fast H.   

The transition of the hydrino intermediate from its radius to the corresponding hydrino radius gives rise to continuum 
radiation.  By time reversal symmetry, the hydrino can serve as a catalyst to accept the energy difference between its state and a 
corresponding intermediate state at the radius of the intermediate wherein the decay to the hydrino radius releases the transferred 
energy.  The release may be as continuum radiation or fast H. 

For example, 
'

Ha
H

p

 
 
 

 may serve as a source of energy holes for Ha
H

p

 
 
 

.  In general, the transition of Ha
H

p

 
 
 

 to 

Ha
H

p m

 
  

 induced by a resonance transfer of 27.2 m eV  (Eq. (5.24)) with a metastable state excited in 
'

Ha
H

p

 
 
 

 is represented 

by: 

 27.2 * *  27.2  
' '

H H H Ha a a a
m eV H H H H m eV

p p p p m

       
                    

 (5.62) 

 * 27.2 
' '

H Ha a
H H m eV

p p

   
     

   
 (5.63) 

  2 2* 13.6 27.2 H Ha a
H H p m p eV m eV

p m p m

                    
 (5.64) 
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where p , 'p , and m  are integers and the asterisk represents an excited metastable state.  And, the overall reaction is: 

 2 2 [( ) ]  13.6  H Ha a
H H p m p eV

p p m

   
          

 (5.65) 

The short-wavelength cutoff energy of the continuum radiation given by Eq. (5.57) is the maximum energy release of the 

hydrino intermediate as it decays.  For example, both the reaction of H with 
'

Ha
H

p

 
 
 

 as the source of an energy hole of 

3 27.2 eV  to form 
4
Ha

H
 
  

 and the reaction of 
5
Ha

H
 
  

 with 
'

Ha
H

p

 
 
 

 as the source of an energy hole of 27.2 eV  to form 

6
Ha

H
 
  

 gives rise to a cutoff of 10.1 nm (122.4 eV ) wherein the magnitude of the potential energy of 
'

Ha
H

p

 
 
 

 is greater than 

27.2 m eV  for each case. 

In another mechanism, the transition of Ha
H

p

 
 
 

 to Ha
H

p m

 
  

 induced by a multipole resonance transfer of 27.2 m eV  

(Eq. (5.24)) and a transfer of  22[( ') ' ' ]  13.6 27.2 p p m eV m eV      with a resonance state of 
' '

Ha
H

p m

 
  

 excited in 

'
Ha

H
p

 
 
 

 is represented by: 

     22 2 2[ ( ) ' ' ' ]  13.6 
' ' '

H H H Ha a a a
H H H H p m p p p m eV

p p p m p m

       
                        

 (5.66) 

where p , 'p , m , and 'm  are integers. 

In two other mechanisms, the hydrino atom that serves as the source of the energy hole may be ionized by the resonant 

energy transfer.  Consider the transition cascade for the pth cycle of the hydrogen-type atom, Ha
H

p

 
 
 

, with the hydrogen-type 

atom, 
'

Ha
H

p

 
 
 

, that is ionized as the source of energy holes that causes the transition.  The equation for the absorption of an 

energy hole of 27.2 m eV  (Eq. (5.24)) equivalent to the binding energy of 
'

Ha
H

p

 
 
 

, is represented by: 

 27.2 *  27.2  
'

H H Ha a a
m eV H H H e H m eV

p p p m
      

                 
 (5.67) 

 

  2 2* 13.6 27.2 H Ha a
H H p m p eV m eV

p m p m

                    
 (5.68) 

 13.6 
1
Ha

H e H eV        
 (5.69) 

And, the overall reaction is: 

 2 22 ' 1 13.6 
' 1 ( )

H H H Ha a a a
H H H H pm m p eV

p p p m

                              
 (5.70) 

wherein 227.2 ' 13.6 m eV p eV   . 

Alternatively, the energy transfer may affect the potential energy of the acceptor rather than the total energy.  The energy 

transfer from a first hydrogen-type atom Ha
H

p

 
 
 

 to a second acceptor hydrogen-type atom 
'

Ha
H

p

 
 
 

 serving as a catalyst causes 

the electric potential energy of the acceptor hydrogen-type atom to become zero, and the energy conservation gives rise to a hot 

proton with the ionization of the energy acceptor hydrogen-type atom.  The transition reaction equation for the pth cycle 

transition cascade of the hydrogen-type atom, Ha
H

p

 
 
 

, with the hydrogen-type atom, 
'

Ha
H

p

 
 
 

, that is ionized with the 

absorption of an energy hole of 27.2 m eV  (Eq. (5.24)) equivalent to its potential energy, is represented by: 
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 27.2 *  27.2  
'

H H H
fast

a a a
m eV H H H e H m eV

p p p m
      

                 
 (5.71) 

  2 2* 13.6 27.2 H Ha a
H H p m p eV m eV

p m p m

                    
 (5.72) 

  1 13.6 
1
H

fast

a
H e H m eV         

 (5.73) 

And, the overall reaction is: 

 22 1 13.6 
' 1 ( )

H H H Ha a a a
H H H H pm m m eV

p p p m

                              
 (5.74) 

wherein 227.2 ' 27.2 m eV p eV   .  Consider all stable states of hydrogen and their ability to serve as a source of energy holes 

regarding a general reaction involving a transition of hydrogen to a lower-energy state caused by another hydrogen or hydrino.  

In the case that H is the source of energy hole involving either mechanism (Eq (5.70) or Eq. (5.74)), the reaction is given by 
       2 21/ ' 1/ 1/ ( ) 2 ' 1 13.6 H p H p H H m p pm m p eV            (5.75) 

where p , 'p , and m  are integers with ' 1m p  . 

The laboratory results of the formation of hydrinos with emission of continuum radiation has celestial implications.  

Hydrogen self-catalysis and disproportionation may be reactions occurring ubiquitously in celestial objects and interstellar 

medium comprising atomic hydrogen.  Stars are sources of atomic hydrogen and hydrinos as stellar wind for interstellar 

reactions wherein very dense stellar atomic hydrogen and singly ionized helium, He , serve as catalysts in stars.  H2O catalyst 

may also be active in interstellar medium.  Hydrogen continua from transitions to form hydrinos matches the emission from 

white dwarfs, provides a possible mechanism of linking the temperature and density conditions of the different discrete layers of 

the coronal/chromospheric sources, and provides a source of the diffuse ubiquitous EUV cosmic background with a 10.1 nm 

continuum matching the observed intense 11.0-16.0 nm band in addition to resolving the identity of the radiation source behind 
the observation that diffuse H  emission is ubiquitous throughout the Galaxy and widespread sources of flux shortward of 912Å 

are required.  Moreover, the product hydrinos provides resolution to the identity of dark matter [8-9].   

Disproportionation reactions of hydrinos are predicted to given rise to features in the X-ray region.  As shown by Eqs. 

(5.40-5.43) the reaction product of HOH catalyst is 
4
Ha

H  
  

.  Consider a likely transition reaction in hydrogen clouds containing 

H2O gas wherein the first hydrogen-type atom Ha
H

p

 
 
 

 is an H atom and the second acceptor hydrogen-type atom 
'

Ha
H

p

 
 
 

 

serving as a catalyst is 
4
Ha

H  
  

.  Since the potential energy of 
4
Ha

H  
  

 is 24 27.2 16 27.2 435.2 eV eV eV    , the transition 

reaction is represented by: 

 16 27.2 *  16 27.2  
4 1 17
H H H

fast

a a a
eV H H H e H eV                       

 (5.76) 

 H *
a

H

17









 H

a
H

17









  3481.6 eV  (5.77) 

 H
fast
  e  H

a
H

1









  231.2 eV  (5.78) 

And, the overall reaction is: 

 H
a

H

4









  H

a
H

1









 H

a
H

1









  H

a
H

17









  3712.8 eV  (5.79) 

The extreme-ultraviolet continuum radiation band due to the H *
a

H

p m









  intermediate (e.g. Eq. (5.72) and Eq. (5.7) is predicted 

to have a short wavelength cutoff and energy E
HH

aH

pm





















 given by: 
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2 2

2 2

13.6 27.2 

91.2
 

2  

H

H

a
H H

p m

a
H H

p m

E p m p eV m eV

nm
p m p m



  
     

  
     

       


    

 (5.80) 

and extending to longer wavelengths than the corresponding cutoff.  Here the extreme-ultraviolet continuum radiation band due 

to the decay of the H *
a

H

17









  intermediate is predicted to have a short wavelength cutoff at E  3481.6 eV ;  0.35625 nm  and 

extending to longer wavelengths.  A broad X-ray peak with a 3.48 keV cutoff was recently observed in the Perseus Cluster by 

NASA’s Chandra X-ray Observatory and by the XMM-Newton [32-34] that has no match to any known atomic transition.  The 

3.48 keV feature assigned to dark matter of unknown identity by BulBul et al. [32, 34] matches the 

4 1 17
H H Ha a a

H H H                
 transition and further confirms hydrinos as the identity of dark matter. 

 

DIPOLE-DIPOLE COUPLING 
The process referred to as the Atomic BlackLight Process described in the Hydrino Theory—BlackLight Process section 
comprises the transition of ordinarily stable hydrogen atoms with 1n   in Eq. (5.1) to lower-energy stable states via an initial 
resonant nonradiative energy transfer to an acceptor comprising a source of an energy hole.  Comparing the implications of the 
source-current-to-stability relationship (Eqs. (2.23-2.25) and (6.7-6.9)) of Rydberg transitions to excited 1,2,3,...n   states as 

opposed to the transitions to hydrino states having 
1 1 1 1

1, , , ,...,
2 3 4

n
p

 , it can be appreciated that the former transitions directly 

involve photons; whereas, the latter do not.  Transitions are symmetric with respect to time.  Current-density functions, which 
give rise to photons are created by photons by the reverse process.  Excited energy states correspond to this case.  And, current-
density functions, which do not directly give rise to photons are not created by photons by the reverse process.  Hydrino energy 
states correspond to this case.  But, radiationless processes generally classified as atomic collisions involving an energy hole can 
cause a stable H state to undergo a transition to a lower-energy stable state.  Examples of radiationless energy transfer 
mechanisms are given in the Energy Transfer Mechanism section. 

Since the initial state in each case is not a radiative multipole as described in the Excited States of the One-Electron Atom 
(Quantization) section, the transitions to lower energy states of hydrogen are forbidden.  However, forbidden transitions can 
become allowed by coupling.  For example, forbidden electronic transitions in transition metal complexes couple to vibrational 
transitions with a dramatic increase in the absorption cross section that results in absorption.  This is well known as vibronic 
coupling [35].  In addition to direct physical collision, several interactions can be generally classified as “collisions” that perturb 
the current density function of a hydrogen atom.  Catalyst ions can electrostatically polarize the current density of the hydrogen 
atom.  Similarly induced polarization may occur by the same mechanism that gives rise to van der Waals forces.  In addition, all 
hydrogen atoms and hydrinos have a single unpaired electron that can interact through a magnetic dipole interaction.  Once the 
current density function is altered energy transfer may occur between the hydrogen atom or hydrino and the catalyst. 

In an otherwise radiative system containing two fluorescent species such that the emission spectrum of one (the “donor”) 
overlaps the absorption spectrum of the other (the “acceptor”), the excitation energy of the donor atoms may be transferred by a 
resonance Coulombic electromagnetic interaction mechanism over relatively large distances to the acceptor species (energy 
hole) rather than the donors radiating into free space.  The total Coulombic interaction may be taken as the sum of terms 
including dipole-dipole, dipole-quadrupole, and terms involving higher order multipoles.  Multipole-multipole resonance such as 
dipole-dipole resonance initially occurs in the electro and magnetostatic limit rather than involving transverse fields as in the 
case of pure radiation coupling.  The Förster theory [36-40] is general to dipole-dipole energy transfer, which is often 
predominant.  A modification of Förster theory applies to the case of transitions to or between hydrino states.  The mechanism 
for the coupling between the 1/n p  ( 1,2,3,...p  )-state electron of the hydrogen atom and the catalyst may involve direct 
coupling between existing multipoles, or the catalyst may induce a multipole in the reactant H or hydrino atom.  Mechanisms for 
the catalyst to induce a multipole in the electron current include collisional perturbations and polarizations by electric or 
magnetic field interactions. 

The hydrogen-type electron atomic orbital is a spherical shell of negative charge (total charge = e ) of zero thickness at 
a distance nr  from the nucleus (charge = Ze ).  It is well known that the field of a spherical shell of charge is zero inside the 

shell and that of a point charge at the origin outside the shell [41].  The electric field of the proton is that of a point charge at the 
origin.  And, the superposition, E , of the electric fields of the electron and the proton is that of a point charge inside the shell 
and zero outside. 

 
2

04

e

r
E  for nr r  (5.81) 
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 0E  for nr r  (5.82) 

The magnetic field of the electron, H , is derived in the Derivation of the Magnetic Field section: 
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     for nr r  (5.83) 
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 for nr r  (5.84) 

Power flow is governed by the Poynting power theorem, 

 0 0

1 1
( )

2 2t t

  
 

                  
E H H H E E J E  (5.85) 

It follows from Eqs. (5.81-5.85) that ( ) E H  is zero until an interaction occurs between a hydrogen-type atom and a catalyst.  
Here, a nonradiative transition can couple to one that is radiative.  As given in Jackson [42], each current distribution can be 
written as a multipole expansion.  A catalytic interaction or collision gives rise to radiative terms including a dipole term.  (There 
is at least current in the radial direction until force balance is achieved again at the next nonradiative level).  Förster’s theory [36] 
gives the following equation for  n R , the nonradiative transfer rate constant: 

        
2

5 4 6 4
0

9000 ln10
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D A
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d
n R f

n N R

   
  


   (5.86) 

where  A   is the molar decadic extinction coefficient of the acceptor (at wave-number  ),  Df   is the spectral distribution 

of the fluorescence of the donor (measured in quanta and normalized to unity on a wave-number scale), AN  is Avogadro’s 

number, D  is the mean lifetime of the excited state, D  is the quantum yield of the fluorescence of the donor, n  is the 

refractive index , R  is the distance between the donor and acceptor, and   is an orientation factor which for a random 

distribution equals 

1

22

3
 
 
 

. 

Adaptation of Förster’s theory gives the transfer rate constant.  In this case, the form of the equation is the same except 
that  A   is the molar decadic energy acceptor cross section (at wave-number  ),  Df   is the spectral distribution of the 

transferred energy of the donor (measured in quanta and normalized to unity on a wave-number scale), D  is the mean lifetime 

of the transition, and   is a factor dependent on the mutual orientation of the donor and acceptor transition moments which for a 

random distribution equals 

1

22

3
 
 
 

.  D  is the transition probability of the donor that is dependent on establishing a radiative state 

in both the acceptor and donor via the nonradiative resonant energy transfer.  D  is analogous to the excitation probability to a 

doubly excited state. 
The collision of two hydrino atoms will result in an elastic collision, an inelastic collision with a hydrogen-type 

molecular reaction, or an inelastic collision with a disproportionation reaction as described in the Disproportionation of Energy 
States section.  An estimate of the transition probability for electric multipoles is given by Eq. (16.104) of Jackson [43].  For an 
electric dipole 1 , and Eq. (16.104) of Jackson is: 
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 (5.87) 

where a  is the radius of the hydrogen-type atom, and k  is the wave-number of the transition.  Substitution of: 

 k
c


  (5.88) 

into Eq. (5.87) gives: 
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 (5.89) 

From Eq. (5.89), the transition probability is proportional to the frequency cubed.  Thus, the disproportionation reaction of 
hydrinos is favored over molecular bond formation because it is the most energetic transition for the donor hydrino atom, and 
bond formation further requires a third body to remove the bond energy. 

In one example wherein nonradiative energy transfer occurs between two hydrino atoms, the mean lifetime of the 
transition of Eq. (5.86), D , is taken as the vibrational period of the corresponding dihydrino molecule that serves as a model of 

the transition state.  The lifetime follows from Eq. (11.223) and Planck’s Equation (Eq. (2.148)).  The distance between the 
donor and acceptor, R , is given by the internuclear distance which is twice 'c  of Eq. (11.203), and the orientation factor,  , 
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equals one because of the spherical symmetry of the hydrino atoms.  Electronic transitions of hydrino atoms occur only by an 
initial nonradiative energy transfer, and the transition probability based on a physical collision approaches one in the limit.  
Thus, D , is set equal to one.  Ideally, in free space, the overlap integral between the frequency-dependent energy acceptor 

cross-section and the transferred energy of the donor (energy of 27.2 m eV  given by Eq. (5.24)) is also one.   
Consider the following disproportionate reaction where the additional energy release for the transition given by 1m  , 

' 2m   and 2p   in Eqs. (5.67-5.70) involving the absorption of an energy hole of 27.21 eV , 1m   in Eq. (5.24), is 13.6 eV . 

 2

2 3

Ha
H

H Ha a
H H

 
           

 (5.90) 

The transfer rate constant,  n R , for Eq. (5.90) using Eq. (5.86) is: 
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According to the adaptation of Förster’s theory [40], the efficiency E  of such nonradiative energy transfer given by the product 
of the transfer rate constant and the mean lifetime of the transition may be expressed by: 
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where r  is the distance between the donor and the acceptor, J  is the overlap integral between the frequency-dependent energy 
acceptor cross section and the transferred energy of the donor, and   is the dielectric constant.  In the case that the radius of Eq. 
(5.91) is a fraction of the Bohr radius, the efficiency of energy transfer may be high and approaches one in the limit. 

The reaction rate of oxygen with carbon and hydrocarbons is very low at room temperature; however, once the material 
is ignited, the oxidation reaction can be very fast.  This is due to the formation of free radicals that cause a chain reaction known 
as pyrolysis, which dominates the reaction rate.  The formation of hydrinos by a first catalyst such as He , Li , K , nH , or 

2H O  gives rise to subsequent disproportionation reactions to additional lower energy states.  Analogously, the latter reactions 

may dominate the power released if a substantial concentration of hydrinos may be maintained as shown in the Power Density of 
Gaseous Reactions section. 
 

INTERSTELLAR DISPROPORTIONATION RATE 
Disproportionation may be the predominant mechanism of hydrogen electronic transitions to lower energy levels of interstellar 
hydrogen and hydrinos.  The reaction rate is dependent on the collision rate between the reactants and the coupling factor for 
resonant energy transfer.  The collision rate can be calculated by determining the collision frequency.  The collision frequency, 
f , and the mean free path,  , for a gas containing un  spherical particles per unit volume, each with radius r  and velocity v  is 

given by Bueche [44]. 
 24 2 uf n r v  (5.93) 
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The average velocity, avgv , can be calculated from the temperature, T , [44]. 

 21 3

2 2H avgm v kT  (5.95) 

where k  is Boltzmann’s constant.  Substitution of Eq. (5.95) into Eq. (5.93) gives the collision rate, 
Ha

H
p

f  
 
 

, in terms of the 

temperature, T , the number of hydrogen or hydrino atoms per unit volume, Hn , and the radius of each hydrogen atom or 

hydrino, Ha

p
. 

 
2

3
4 2

H

H
Ha

H
Hp

a kT
f n

p m
 

 
 

 
  

 
 (5.96) 

The rate constant of the disproportionation reaction, , ',m m pk , to the transition reaction, Eqs. (5.67-5.70), is given by the product of 

the collision rate per atom, Eq. (5.96), and the coupling factor for resonant energy transfer, , ',m m pg . 
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Using an upper limit of the coupling factor , ',m m pg  for resonant energy transfer consistent with the efficiencies of dipole-dipole 

resonant energy transfers [36-40], an estimate of the rate constant of the disproportionation reaction, , ',m m pk , to cause the 

transition reaction, Eqs. (5.67-5.70), is given by substitution of , ', 1m m pg   into Eq. (5.97). 
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The rate of the disproportionation reaction, , ',m m pr , to cause the transition reaction, Eqs. (5.67-5.70), is given by the product of 

the rate constant, , ',m m pk  given by Eq. (5.98), and the total number of hydrogen or hydrino atoms, HN . 
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The factor of one half in Eq. (5.99) corrects for double counting of collisions [45].  The power, , ',m m pP , is given by the product of 

the rate of the transition, Eq. (5.99), and the energy of the transition, Eq. (5.70). 
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where V  is the volume. 
 

POWER DENSITY OF GASEOUS REACTIONS 
The reaction of atomic hydrogen or hydrinos to lower-energy states releases energy intermediate that of typical chemical 
reactions and nuclear reactions.  However, in order to be consequential as a power source celestially in processes such as heating 
the corona of the Sun [9] or terrestrially as an alternative to conventional sources such as combustion or nuclear power, the rate 
of the reaction must be nontrivial.  A hydrino is formed by reaction of atomic hydrogen with a source of energy holes, and 
hydrinos may subsequently undergo transitions to successively lower states in reactions involving the initial source of energy 
holes or by disproportionation.  Once it starts, the latter process has the potential to be a predominant source of power depending 
on the maintenance of a substantial concentration of hydrinos in steady state.  The power contribution can be conservatively 
calculated considering only a single relative low-energy transition. 

The disproportionation reaction rate, , ',m m pr , Eqs. (5.67-5.70), is dependent on the collision rate between the reactants and 

the efficiency of resonant energy transfer.  It is given by the product of the rate constant, , ',m m pk ,(Eq. (5.98)), the total number of 

hydrogen or hydrino atoms, HN , and the efficiency, E , of the transfer of the energy from the donor hydrino atom to the energy 

hole provided by the acceptor hydrino atom given by Eq. (5.93).  Thus, the rate of the disproportionation reaction, , ',m m pr , to 

cause a transition reaction is 
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The factor of one half in Eq. (5.101) corrects for double counting of collisions [45].  The power, , ',m m pP , is given by the product 

of the rate of the transition, Eq. (5.101), and the energy of the disproportionation reaction (Eq. (5.70)). 
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where V  is the volume.  For a disproportionation reaction in the gas phase with D  and the overlap integral both equal to one, 

the energy transfer efficiency is one as given by Eq. (5.92).  The power given by substitution of 

 3 191,  2,  1,  ' 2,  1 ,  3  10 ,  675 E p m p V m N X T K         (5.103) 

into Eq. (5.102) is: 

 , ', 100 m m pP kW  (5.104) 

corresponding to 3100 /mW cm . 
Next, the power due to a reaction involving a catalyst such as an atom to form hydrinos is considered.  In the case that the 

reaction of hydrogen to lower-energy states occurs by the reaction of a catalytic source of energy holes with hydrogen or hydrino 
atoms, the reaction rate is dependent on the collision rate between the reactants and the efficiency of resonant energy transfer.  
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The hydrogen-or-hydrino-atom/catalyst-atom collision rate per unit volume, 
  Catalyst

aHH
p

Z  
 
  

, for a gas containing Hn  hydrogen or 

hydrino atoms per unit volume, each with radius Ha

p
 and velocity Hv  and Cn  catalyst atoms per unit volume, each with radius 

 Catalystr  and velocity Cv  is given by the general equation of Levine [45] for the collision rate per unit volume between atoms of 

two dissimilar gases. 

 
  

2
1/22 2

Catalyst
Catalyst

H
H C H CaHH

p

a
Z r v v n n

p
 

 
  

         
 (5.105) 

The average velocity, avgv , can be calculated from the temperature, T , [46]. 

 21 3

2 2H avgm v kT  (5.106) 

where k  is Boltzmann’s constant.  Substitution of Eq. (5.106) into Eq. (5.105) gives the collision rate per unit volume, 
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, in terms of the temperature, T . 
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The rate of the catalytic reaction, ,m pr , to cause a transition reaction is given by the product of the collision rate per unit volume, 
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aHH
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, the volume, V , and the efficiency, E , of resonant energy transfer given by Eq. (5.92). 
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The power, ,m pP , is given by the product of the rate of the transition, Eq. (5.108), and the energy of the transition, Eq. (5.9). 
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In the exemplary case that the efficiency is 410E  , the power for the Li  catalyst reaction given by Eqs. (5.32-5.34) with the 
substitution of 
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into Eq. (5.109) is: 

 , 144  m pP kW  (5.111) 

corresponding to 3144 /mW cm . 
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HYDRINO CATALYZED FUSION (HCF) 
Fusion reaction rates are extraordinarily small [47].  In fact, fusion is virtually impossible in the laboratory.  A high relative 
kinetic energy corresponding to extraordinary temperatures of the participating nuclei must be sufficient to overcome their 
repulsive potential energy.  The recent NIF experimental results confirm that so called “ignition” requires 250,000,000°C and a 
deuterium-tritium density of ten times that of lead to achieve about 0.2% fusion power over that input to the NIF lasers.  In this 
case, the lasers consumed 500 trillion watts of power, 33 times the peak power of the entire world!1   

Cold fusion regarding hydrogen loading, excess hydrogen absorbed in a metal lattice, to force nuclei together is not 
possible since the Coulombic energy barrier is 0.1 MeV [47].  Whereas the vibrational energies within crystals are much less, 
about 0.01 eV.  Coulombic screening is also not plausible based on the known crystalline structure of metal hydrides.  Given the 
relationship between temperature and energy, 11,600 K/eV, the disparity in temperature in both cases is 1.16 X 107 versus 116 
K, a factor of one hundred thousand.   

Albeit, it is still high-energy physics involving colliders, muonic catalyzed fusion may propagate at a high rate at more 
conventional plasma temperatures.  Rather than directly using high temperature and density conditions, fusion occurs by a 
muonic catalyzed mechanism involving forming muons in a high-energy accelerator that transiently replace electrons in atoms 
and molecules (time scale of the muon half-life of 2.2 s).  In muon catalyzed fusion [48-49], the internuclear separation of 

muonic H
2
 is reduced by a factor of 207 that of electron H

2
 (the muon to electron mass ratio), and the fusion rate increases by 

about 80 orders of magnitude.  A few hundred fusion events can occur per muon (vanishingly small compared to Avogadro’s 

number of 6.022 X1023).  To be permissive of even this miniscule rate of fusion, the muonic molecules provide the same 
conditions as those at high energies.  Correspondingly, the vibrational energies regarding the movement of the nuclei towards 
each other in an oscillating linear manner can be very large in the muonic hydrogen case, E

vib
207 X  0.517 eV 107 eV  

wherein   is the vibrational quantum number.  During the close approach of the vibrational compression phase, the nuclei can 
assume an orientation that allows the mutual electric fields to induce multipoles in the quarks and gluons to trigger a transition to 
a fusion product.  The highest vibrational energy states such as the state   9 with E

vib
107 eV  9X107 eV  963 eV  are at 

the bond dissociation limit.  Given the extraordinary confinement time in a bound state, these muonic molecules have 
sufficiently large kinetic energy to overcome the Coulombic barrier for fusion of the heavy hydrogen isotopes of tritium with 
deuterium at just detectable rates.  

Fusion in the Sun occurs due to extreme gravitational compression and thermal temperatures that provide sufficient 
confinement time, enormous reactant densities, and incredible energies.  But even here, the Sun considered as a fusion machine 
of 301.412 X10  liter  outputting 263.846 10  X W  corresponds to a feeble 272 /W liter .  Fusion bombs (e.g. Tsar Bomba) 

require ignition by a fission bomb that produces power density on the order of   
15

12

-3 7

240 10  
  8.8 10  /

10  2.7 10  

X J
X W liter

s X liters
 , 

16 3.2 10X  times the average power density of the Sun.2   
Next, consider the feasibility of hydrino catalyzed fusion (HCF) based on a similar mechanism to that of muonic 

catalyzed fusion.  Once a deuterium or tritium hydrino atom is formed by a catalyst, further catalytic transitions 

n 
1

2


1

3
, 

1

3


1

4
,  

1

4


1

5
,  and so on may occur to a limited extent in competition with molecular hydrino formation that 

terminates this cascade.  The hydrino atom radius can be reduced to 1 p  that of the n 1 state atom.  Analogous to muonic 

catalyzed fusion, the internuclear separation in the corresponding hydrino molecules is 1 p  that of ordinary molecular hydrogen 
as given in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section (Eq. (11.204)).  As the 
internuclear separation decreases due to high p  states, fusion is more probable.  As p  becomes large, relativistic effects 
become appreciable for the energy transferred from a hydrino atom and accepted by the catalyst that provides the corresponding 
energy hole.  As in the nonrelativistic case, the energy transferred is the potential energy of the hydrogen-type atom H 1/ p   
that transitions to a lower energy state, divided by p2, the total number of multipole modes of the state according to Eq. (5.45).  
Due to similar relativistic effects in hydrino atoms of similar p  states, hydrino atoms may serve as the catalyst by 
disproportionation reactions such as ones given by Eqs. (5.62-5.80).  Disproportionation reactions may propagate or cascade to 
very low hydrino energy states of corresponding very high p  values.  The corresponding hydrino molecules have vastly shorter 

 
1 It is also remarkable that the NIF device cost $3.5B, and the fusion pellet cost $1M for a single shot that requires months to 
repeat.  The product was less than one cents worth of radioactive thermal as an explosive shock wave. 
2 Arc current detonation of hydrated silver shots and other conductive solid fuels comprising a source of hydrogen and a source 
of HOH catalyst yielded power densities comparable to those of nuclear weapons [50-54].  
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internuclear distances (Eq. (11.204)) such that finite rates of nuclear reactions may occur in the case of heavy hydrogen isotopes, 
deuterium and tritium.   

In the case that the electron spin-nuclear interaction is negligible, using Eq. (1.292), the relativistic potential energy of a 
hydrino atom H 1/ p   of a given state p  is 
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wherein the radius given by Eq. (1.289) is 

  20 1
a

r p
p

   (5.113) 

and Eqs. (28.8-28.9) were used.  Thus, the energy hole according to Eqs. (5.112), (5.5), and (5.45) is  

 m
 2m

e0
c2

1  p 2
 (5.114) 

which in the low-speed limit is 27.2 m eV  given by Eq. (5.5).  Using Eq. (1.294) and Eqs. (5.6-5.9), the energy released from a 
hydrino state p  during the transition involving an energy hole of quanta m  is given by the difference in ionization energies 
between the initial and final energy states wherein the final p

f
 state is p

f
 p  m: 

 E  m
e0

c2 1  p 2
 1  p  m  2





 (5.115) 

In the low-speed-limit the energy released is given by Eq. (5.9).  Note as given previously, p 137  is the highest value of p  

physically possible corresponding to a minimum radius of 0.022926a
0
 8.853X1015 m  8.853 fm, 8.9 times times the radius of 

a proton of 1 fm, and one thirtieth the radius of the muonic atom. 
The non-relativistic vibrational energies are given by Eq. (11.223) as E

vib
 p20.517 eV , and the relativistic atomic radii 

are given by Eq. (5.113).  A sufficiently high p  can provide vibrational energies and close approach of nuclei of corresponding 

molecules sufficient for fusion to ensue.  Considering the 2p  dependency of the vibrational energies of H2 1/ p , and excitation 

of highest vibrational energy state at the bond dissociation limit (e.g.   9), the state p 15 can achieve comparable vibrational 
energies as muonic molecules; yet, the 15p   hydrino atomic radius (Eq. (5.113) and corresponding molecular hydrino 
internuclear distance are about 14 times greater than those of the muonic species.  The p  state that achieves comparable 
dimensions to those of muonic atoms and molecules is 115p   (Eq. (5.113)) which has a corresponding nonrelativistic 
vibrational energy of 6840 eV.  Only the lowest energy vibrational state would likely be populated with the energy from bond 

formation p2 4.478eV  (Eq. 11.252)) since the temperature required to excite 7 keV vibrational modes is on the order of 108 K, 
compared to an ordinary plasma temperature of about 1000 K.  Considering that each muon catalyzes hundreds of fusion events, 
the cross section to populate the molecule hydrino vibration state is essential to match fusion rates comparable to muonic 
catalyzed fusion of tritium with deuterium since hydrino catalyzed fusion occurs as single events. 

Consider the limit of the highest p value for a hydrino state H 1/ p  .  Using Eq. (5.115), the energy for the cascade of 

two hydrogen atoms, each to the final state of H 1/137  results in an energy release of 61 10  X eV .  In comparison, the fusion 

equation for deuterium and tritium is 

    2 3 414.1 3.5H H n MeV He MeV    (5.116) 

Nuclear fusion (i) requires accelerator-produced, radioactive tritium, (ii) it is a highly radioactive dangerous process, and (iii) it 
requires a steam cycle involving massive scale and a water-body coolant source such as a river as well as an electrical 
distribution grid.  Production of chemical power as light and supersonic plasma flow enabling compact photovoltaic and 
magnetohydrodynamic conversion, respectively, that is devoid of any fuels or distribution infrastructure is much more practical 
and economically competitive as a commercial power technology.   

Fusion has other utility such as production of (i) neutrons (D + T and D + D fusion), and (ii) 3He , tritium, and high 
energy protons (D + D fusion) which have industrial applications.  In the case of extraordinarily high p states approaching p = 
137, bonding with inner shell electrons may result in fusion of heavier elements than hydrogen isotopes.  Energetic fusion 
products may also initiate subsequent nuclear reactions.  Using heavy hydrogen, trace production of tritium by HCF may be 
competitive with atomic accelerators and hot fusion reactors.  According to a study by Kovari [55], D-D tritium breeding might 
cost $2 billion per kilogram produced.  Tritium stockpiles are projected to be depleted near term wherein Savannah River’s 
tritium facilities are the United States' only source of tritium, an essential component in nuclear weapons. 
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Fusion requires a hydrino transition reaction cascade such as one propagated by disproportionation reactions to hydrino 
states of high p.  The cascade is favored by (i) massive kinetics, (ii) hydrino and plasma confinement, and (iii) increasing 
duration of the hydrino reaction.  One exemplary system to cause massive kinetics and hydrino and plasma confinement is 
detonation of hydrino reactant solid fuels under arc current conditions [50-54].  Hydrino confinement is achieved by using as a 
component of the hydrino reactant mixture at least one of (i) a solid material to absorb hydrino atoms such as a metal surface or 
bulk such as one that also absorbs H atoms (e.g. Ni, Ti, Pd, Pt, Nb, or Ta) [54], (ii) a magnetic material such as FeOOH or Fe2O3, 
that favors magnetic bonding of hydrinos [54], and (iii) an oxide such as a metal oxide such as GaOOH or Ga2O3 that binds 
hydrinos [56]. 
 

MOLECULAR BLACKLIGHT PROCESS 
BELOW “GROUND” STATE TRANSITIONS OF HYDROGEN-TYPE MOLECULES AND 
MOLECULAR IONS 
As is the case with the hydrogen atom, higher and lower molecular energy states are equally valid wherein the central field of 
molecular hydrogen ions and molecules can also be a reciprocal integer or an integer value of that of the ordinary states 
corresponding to molecular excited states and molecular hydrino states as given in the Diatomic Molecular Energy States section 
and the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section, respectively.  The photon 
changes the effective charge at the MO surface where the central field is ellipsoidal and arises from the protons at the foci and 
the “trapped photon” as effectively at the foci of the MO.  Force balance is achieved at a series of two-dimensional ellipsoidal 
equipotential surfaces.  The “trapped photons” are solutions of the Laplacian in ellipsoidal coordinates, Eq. (11.27).  Thus, each 
molecular state comprises two electrons, two protons, and a photon, but the excited states are radiative; whereas, the hydrino 
states are stable.  Excited and hydrino electronic states are created when photons of discrete frequencies are trapped in the 
ellipsoidal resonator cavity of the MO by resonant photon absorption and resonant nonradiative energy transfer, respectively. 
 

ENERGY HOLES 
From Eqs. (11.207) and (11.208), the magnitude of the elliptic field corresponding to a below “ground state” transition of the 
hydrogen molecule is an integer.  The potential energy equations of hydrogen-type molecules are: 

 
2 2 2

2 2 2 2
0

2
ln

8
e

p e a a b
V

a b a a b
  


  

 (5.117) 

 
2

2 2
08

p

pe
V

a b



 (5.118) 

where  
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and where p is an integer.  The quantum number p is a scaling parameter of the molecular dimensions and energies.  In the latter 
case it corresponds to the effective nuclear charge factor.  Using the convention defined in the Energy Hole Concept section, this 

factor effectiveZ is given by 1
neffectiveZ p   where the principal quantum number 1n p .  From energy conservation, the 

resonance energy hole of a hydrogen-type molecule which causes the transition 
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2 2

2 2
2 ' 2 '

a a
H c H c

p p m

   
        

 (5.122) 

is  
 2

  48.6 mp X eV  (5.123) 
where m and p are integers.  During the transition, the elliptic field is increased from magnitude p to magnitude p + m.  The 
corresponding potential energy change equals the energy absorbed by the energy hole. 
 2

   48.6 e pEnergy hole V V mp X eV     (5.124) 

Further energy is released by the hydrogen-type molecule as the internuclear distance “shrinks.”  The total energy, TE , released 

during the transition is:  
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 (5.125) 

A schematic drawing of the total energy well of hydrogen-type molecules and molecular ions is given in Figure 5.4.  The 
exothermic reaction involving transitions from one potential energy level to a lower level is also hereafter referred to as the 
Molecular BlackLight Process. 

 
Figure 5.4.   The total energy well of hydrogen-type molecules and molecular ions. 
 

 
 

A hydrogen-type molecule with its electrons in a lower than “ground state” energy level corresponding to a fractional 
quantum number is hereafter referred to as a dihydrino molecule.  The designation for a dihydrino molecule of internuclear 

distance, 02
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p
 , where p  is an integer, is 0
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.  A schematic drawing of the size of hydrogen-type molecules 

as a function of total energy is given in Figure 5.5. 
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Figure 5.5.   The size of hydrogen-type molecules as a function of total energy where 1n p  for dihydrino states, p  is an 

integer, and 2c’ is the internuclear distance. 
 

 
 
 

The magnitude of the elliptic field corresponding to the first below “ground state” transition of the hydrogen molecule is 
2  times the magnitude of a reference field defined by two elementary charges e  at a distance of 2 'c  from each other.  From 
energy conservation, the resonance energy hole of a hydrogen molecule, which excites the transition of the hydrogen molecule 

with internuclear distance 2 ' 2 oc a  to the first below “ground state” with internuclear distance 0

1
2 '

2
c a  is given by Eqs. 

(5.112-5.116) where the elliptic field is increased from magnitude one to magnitude two: 
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  48.6 e pEnergy hole V V eV     (5.128) 

In other words, the elliptic “ground state” field of the hydrogen molecule can be considered as the superposition of 
Fourier components.  The removal of negative Fourier components of energy  
   48.6 m X eV  (5.129) 
where m  is an integer, increases the positive electric field inside the ellipsoidal shell by m  times the charge of a proton at each 
focus.  The resultant electric field is a time harmonic solution of the Laplacian in ellipsoidal coordinates.  The corresponding 
potential energy change equals the energy absorbed by the energy hole. 
    48.6 e pEnergy hole V V m X eV     (5.130) 

Further energy is released by the hydrogen molecule as the internuclear distance “shrinks.”  The hydrogen molecule with 
internuclear distance 2 ' 2 oc a  is caused to undergo a transition to the below “ground state” level, and the internuclear distance 

for which force balance and nonradiation are achieved is 02
2 '

1

a
c

m



.  In decaying to this internuclear distance from the “ground 

state,” a total energy of:  
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is released. 
 

CATALYTIC ENERGY HOLES FOR HYDROGEN-TYPE MOLECULES 
An efficient catalytic system that hinges on the coupling of three resonator cavities involves iron and lithium.  For example, the 
fourth ionization energy of iron is 54.8 eV .  This energy hole is obviously too high for resonant absorption.  However, Li  
releases 5.392 eV  when it is reduced to Li .  The combination of 3Fe   to 4Fe   and Li  to Li , then, has a net energy change of 
49.4 eV . 
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 4 3 49.4 Li Fe Li Fe eV       (5.133) 
And, the overall reaction is: 
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Note that the energy given off as the molecule shrinks is much greater than the energy lost to the energy hole.  And, the energy 
released is large compared to conventional chemical reactions. 

An efficient catalytic system that hinges on the coupling of three resonator cavities involves scandium.  For example, the 
fourth ionization energy of scandium is 73.47 eV .  This energy hole is obviously too high for resonant absorption.  However, 

3Sc   releases 24.76 eV  when it is reduced to 2Sc  .  The combination of  3Sc   to 4Sc   and 3Sc   to 2Sc  , then, has a net energy 
change of 48.7 eV . 

 3 3 4 2 0
2 0 2

2
48.7 2 ' 2 2 ' 94.9 

2

a
eV Sc Sc H c a Sc Sc H c eV     

           
 

 (5.135) 

 2 4 3 3 48.7 Sc Sc Sc Sc eV        (5.136) 
And, the overall reaction is: 

 0
2 0 2

2
2 ' 2 2 ' 94.9 

2

a
H c a H c eV

 
      

 
 (5.137) 

An efficient catalytic system that hinges on the coupling of three resonator cavities involves gallium and lead.  For 
example, the fourth ionization energy of gallium is 64.00 eV .  This energy hole is obviously too high for resonant absorption.  
However, 2Pb   releases 15.03 eV  when it is reduced to Pb .  The combination of 3Ga   to 4Ga   and 2Pb   to Pb , then, has a 
net energy change of 48.97 eV . 

 3 2 4 0
2 0 2

2
48.97 2 ' 2 2 ' 94.9 

2

a
eV Ga Pb H c a Ga Pb H c eV     

           
 

 (5.138) 

 4 3 2 48.97 Ga Pb Ga Pb eV        (5.139) 
And, the overall reaction is: 

  0
2 0 2

2
2 ' 2 2 ' 94.9 

2

a
H c a H c eV

 
      

 
 (5.140) 

The rate of an electronic transition of a molecule is a function of the change in internuclear distance during the transition.  
Transitions between electronic states that have equivalent internuclear distances at some point during their vibrational cycles 
have much greater rates than transitions that require the energy level of the electrons to change as well as the internuclear 
distance to change simultaneously.  As shown in Figure 5.4, the transition from the 1n   state to the 1/ 2n   state of molecular 
hydrogen is not favored for this reason.  A more likely transition pathway is a vibrational excitation of molecular hydrogen 
( 1n  ) that breaks the bond, followed by a transition reaction of each of the hydrogen atoms via a 27.2 eV  energy hole catalyst 
as given in the Hydrino Theory—BlackLight Process section, followed by reaction of the two hydrino atoms ( 1/ 2n  ) to form a 
dihydrino molecule ( 1/ 2n  ). 
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Chapter 6 
  
STABILITY OF ATOMS AND HYDRINOS 
  
 
 
 
 
The central field of the proton corresponds to integer one charge.  Excited states comprise an electron with a trapped photon.  In 
all energy states of hydrogen, the photon has an electric field that superposes with the field of the proton.  In the 1n   state, the 
sum is one, and the sum is zero in the ionized state.  In an excited state, the sum is a fraction of one (i.e. between zero and one).  
Derivations from first principles given in the Excited States of the One-Electron Atom section demonstrate that each “allowed” 

fraction corresponding to an excited state is 
1

integer
.  Following the derivation given in the Excited States of the One-Electron 

Atom (Quantization) section, the relationship between the electric field equation and the “trapped photon” source charge-density 
function is given by Maxwell’s equation in two-dimensions. 

  1 2
0




  n E E  (6.1) 

where n  is the radial normal unit vector, 1 0E  ( 1E  is the electric field outside of the atomic orbital), 2E  is given by the total 

electric field at n Hr na , and   is the surface charge-density.  The electric field of an excited state is fractional; therefore, the 

source charge function is fractional.  It is well known that fractional charge is not “allowed.”  The reason given in the Instability 
of Excited States section is that fractional charge typically corresponds to a radiative current-density function.  The excited states 
of the hydrogen atom are examples.  They are radiative; consequently, they are not stable.  Thus, an excited electron decays to 
the first nonradiative state corresponding to an integer field, 1n   (i.e. a field of integer one times the central field of the proton).  
Specifically, the superposition of  photon  (Eq. (2.23)) and electron  (Eq. (2.24)) is equivalent to the sum of a radial electric dipole 

represented by a doublet function and a radial electric monopole represented by a delta function given in Eq. (2.25).  Due to the 

radial doublet, excited states are radiative since spacetime harmonics of n k
c


  or 

0

n k
c

 


  do exist for which the spacetime 

Fourier transform of the current density function is nonzero.  
Equally valid from first principles are electronic states where the magnitude of the sum of the electric field of the photon 

and the proton central field are an integer greater than one times the central field of the proton.  These states are nonradiative.  A 
catalyst can effect a transition between these states as described in the Hydrino Theory—BlackLight Process section. 

The condition for radiation by a moving charge is derived from Maxwell’s equations.  To radiate, the spacetime Fourier 
transform of the current-density function must possess components synchronous with waves traveling at the speed of light [1].  
Alternatively,  

For non-radiative states, the current-density function must not possess spacetime Fourier components that are 
synchronous with waves traveling at the speed of light. 

As given in the One-Electron Atom section, the relationship between the radius and the wavelength of the electron is: 
 n n nv f  (6.2) 

 2n n n n nv r f f    (6.3) 

 2 n nr   (6.4) 

Consider the wave vector of the sinc function of Eq. (38) of Appendix I, the Spacetime Fourier Transform of the Electron 
Function.  When the velocity is c  corresponding to a potentially emitted photon 
 n n n n   s v s c  (6.5) 

the relativistically corrected wavelength (Eq. (1.280)) is given by: 
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 n nr   (6.6) 

Substitution of Eq. (6.6) into the sinc function results in the vanishing of the entire Fourier transform of the current-density 

function.  Thus, spacetime harmonics of n k
c


  or 

0

n k
c

 


  do not exist for which the Fourier transform of the current-

density function is nonzero. 
In the case of below “ground” (fractional quantum number) energy states, the sum of the source current corresponding to 

the photon and the electron current results in a radial Dirac delta function as shown in the Stability of Atoms and Hydrinos 
section.  Whereas, in the case of above “ground” or excited (integer quantum number) energy states, the sum of the source 
current corresponding to the photon and the electron current results in a radial doublet function which has Fourier components of 

n k
c


 .  Thus, excited states are radiative as shown in the Instability of Excited States section. 

 

STABILITY OF “GROUND” AND HYDRINO STATES 
For the below “ground” (fractional quantum number) energy states of the hydrogen atom,  photon , the two-dimensional surface 

charge due to the “trapped photon” at the electron atomic orbital, is given by Eqs. (5.27) and (2.11). 
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nim tm

photon n
n

e
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And,  electron , the two-dimensional surface charge of the electron atomic orbital is: 
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, Re , ( )
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nim tm
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n

e
Y Y e r r

r
 (6.8) 

The superposition of  photon  (Eq. (6.7)) and electron , (Eq. (6.8)) where the spherical harmonic functions satisfy the conditions 

given in the Bound Electron “Atomic Orbital”section is a radial electric monopole represented by a delta function. 
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In the case of lower-energy states or hydrino states, the superposition given by Eq. (6.9) involves integer charge only.  Whereas, 
in the case of excited states, the superposition given by Eq. (2.25) involves the sum of a delta function with a fractional charge 
(radial monopole term) and two delta functions of charge plus one and minus one which is a doublet function (radial dipole 
term).  As given in the Spacetime Fourier Transform of the Electron Function section, the radial delta function does not possess 
spacetime Fourier components synchronous with waves traveling at the speed of light.  Thus, the below “ground” (fractional 
quantum number) energy states of the hydrogen atom are stable.  The “ground” ( 1n   quantum number) energy state is just the 
first of the nonradiative states of the hydrogen atom; thus, it is the state to which excited states decay based on the nature of 
photon and corresponding electron source current of excited as opposed to the hydrino states as given in the Excited States of the 
One-Electron Atom (Quantization) section and Hydrino Theory—BlackLight Process section, respectively.  The stability is also 
shown using the Poynting power theorem applied to the electric and magnetic fields from the electron source current as shown in 
Appendix I. 
 

NEW “GROUND” STATE 
Hydrogen atoms can undergo transitions to energy states below the 1n   state until the potential energy of the proton is 
converted to kinetic energy and total energy (the negative of the binding energy), and a state is formed, which is stable to both 
radiation and nonradiative energy transfer.  The potential energy V  of the electron and the proton separated by the radial 
distance radius 1r  is: 

 
2

0 14

e
V

r


  (6.10) 

where the radius 1r  is the proton radius given by Eq. (29.1) 

 15
 1.3  10pr X m  (6.11) 

Substitution of Eq. (6.11) into Eq. (6.10) gives the total potential energy V  of the electron and the proton 
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e
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   (6.12) 

In the present case of an inverse squared central field, the binding energy and the kinetic energy are each equal to one half the 
potential energy [2] in the electron frame, and the lab-frame relativistic correction is given by correcting the radius as given in 
the Special Relativistic Correction to the Ionization Energies section.  The relativistic invariance of the magnetic moment B  

and angular momentum   of the electron may be used to characterize the limiting v c  case as shown in the One-Electron 
Atom—Determination of Atomic Orbital Radii section.  Considering the consequences of special relativity, the size of a 
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hydrogen atom in the true ground state is limited not to be less than  , the electron Compton wavelength bar, 

 ' '
0

e

r a
m c

  
  (6.13) 
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  (6.14) 

since the tangential electron velocity (Eq. (1.35)) is the speed of light at this radius.  Eq. (1.35) and Eq. (1.254) gives the 
relationship between the electron speed and the speed of light, which gives the limit on the quantum state p  as: 

 1, 2,3...
v

pZ p
c

   (6.15) 

With 1Z  , 137p   due to the limiting speed of light.  In Eq. (6.13) '  is the radius in the electron frame, and   in Eq. (6.14) 
is the radius in the laboratory frame according to Eq. (1.280).  From Eq. (6.14), the proton radius given by Eq. (6.11) cannot be 
reached.  As given previously in the Hydrino Catalyzed Fusion (HCF) section, 137p   is the highest value of p  physically 

possible corresponding to a minimum radius of 0.022926a
0
 8.853X1015 m  8.853 fm, 8.9 times the radius of a proton of 1 

fm, and one thirtieth the radius of the muonic atom. 
As shown in the Spacetime Fourier Transform of the Electron Function section and the Special Relativistic Correction to 

the Ionization Energies section, there can be no radiation from the electron at light speed in the laboratory inertial frame.  
Nonradiative energy transfer is also forbidden since this requires the impossible formation of a photon standing wave at light 

speed relative to the electron at light speed.  Electronic transitions below the 
1

Ha
H



 
  

 state are not possible since no energy 

transfer mechanism is possible.   
However, for this electronic state, it may be possible for the proton to decay to gamma rays with the capture of the 

electron.  With electron capture, the electron atomic orbital superimposes that of the proton, and a neutral particle is formed that 
is energy deficient with respect to the neutron.  To conserve spin, electron capture requires the concurrent capture of an electron 
antineutrino with decay to a photon and an electron neutrino as given in the Gravity section.  Disproportionation reactions to the 
lowest-energy states of hydrogen followed by electron capture with gamma ray emission may be a source of nonthermal  -ray 

bursts from interstellar regions [3].  A branch of the decay path may also be similar to that of the 0  meson.  Gamma and pair 
production decay would result in characteristic 511 keV annihilation energy emission.  This emission has been recently been 
identified with dark matter [4-5].  Alternatively, the diffuse 511 keV radiation by interstellar medium is consistent with the role 
of hydrino as dark matter in pair production from incident cosmic radiation [6-8]. 

Hydrinos present in neutron stars may facilitate HCF.  This may be the mechanism of gamma emission by neutron stars.  
With sufficient energy/mass release, a chain reaction of neutron decay to release electron antineutrinos, which react with 
hydrinos according to Eq. (24.173) may be the cause of  -ray bursts.  Another more likely mechanism based on a particle of the 
Planck Mass is given in the Gravity section. 

 

SPIN-NUCLEAR AND ORBITAL-NUCLEAR COUPLING OF HYDRINOS 
The “trapped photon” given by Eq. (5.27) is a “standing electromagnetic wave” which actually is a circulating wave that 
propagates along each great circle current loop of the atomic orbital.  The time-function factor, ( )k t , for the “standing wave” is 
identical to the time-function factor of the atomic orbital in order to satisfy the boundary (phase) condition at the atomic orbital 
surface.  Thus, the angular frequency of the “trapped photon” has to be identical to the angular frequency of the electron atomic 
orbital, n .  Furthermore, the phase condition requires that the angular functions of the “trapped photon” have to be identical to 

the spherical harmonic angular functions of the electron atomic orbital. 
Photons obey Maxwell’s equations.  At the two-dimensional surface of the atomic orbital containing a “trapped photon,” 

the relationship between the photon’s electric field and its two-dimensional charge density at the atomic orbital is: 

  1 2
0




  n E E  (6.16) 

Thus, the photon’s electric field acts as surface charge.  According to Eq. (6.16), the “photon standing wave” in the electron 
atomic orbital resonator cavity gives rise to a two-dimensional surface charge at the atomic orbital two dimensional surface.  The 
surface charge is given by Eq. (6.16) for a central field strength equal in magnitude to that of a central charge pe .  This surface 
charge possesses the same angular velocity as the atomic orbital; thus, it is a current with a corresponding magnetic field.  The 
rotational parameters of the surface current of the “photon standing wave” are given in the Rotational Parameters of the Electron 
(Angular Momentum, Rotational Energy, Moment of Inertia) section.  The solution to Legendre’s equation given by Eq. (1.66) is 
the maximum term of a series of solutions corresponding to the m  and   values [9-10].  From Eq. (1.72), L , the amplitude of 
the orbital angular momentum along the z-axis is 

 
1

 
 zL i



 (6.17) 
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Therefore, from Eq. (2.65), the corresponding magnetic moment is: 

 
2 1 1B

e

e

m
    

 z zi i
  

 
 (6.18) 

where B  is the Bohr magneton.  The magnetic moment gives rise to a magnetic field at the nucleus, which superimposes that 

due to spin.  Thus, from Eqs. (2.215) and (6.18), the central force after the derivations in the Spin-Nuclear Coupling (Hyperfine 
Structure) section is:  

 0
3

3 1
 

4 2 1mag Pe c
r

 
 

     
F


  (6.19) 

where the plus corresponds to antiparallel alignment of the magnetic moments of the electron and proton, and the minus 
corresponds to parallel alignment.  The outward centrifugal force (Eq. (1.241)) on the electron is balanced by the electric force 
(Eq. (1.242)) and the magnetic force given by Eq. (6.19) 
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where the central field of the hydrino atom has a magnitude that is equivalent to p  times that of the “ground” state ( 1n p  ) 

hydrogen atom and Pm  is the mass of the proton.  Using Eq. (1.35), 
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where Ha  is the radius of the hydrogen atom and the plus corresponds to parallel alignment of the magnetic moments of the 

electron and proton, and the minus corresponds to antiparallel alignment. 
 

ENERGY CALCULATIONS 
The magnetic energy magdipoleE  to flip the orientation of the proton’s magnetic moment, P , from parallel to antiparallel to the 

direction of the magnetic flux sB  due to electron spin and the magnetic flux oB  due to the orbital angular momentum of the 

electron (180° rotation of the magnet moment vector) given by Eqs. (1.168), (2.222), (2.210), and (6.18) is: 

 0
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 (6.23) 

where the Bohr magneton, B , is given by Eq. (1.131), the radius of the hydrino atom is Ha

p
, and the central field of the hydrino 

atom has a magnitude that is equivalent to p  times that of the “ground” state ( 1n p  ) hydrogen atom. 
The change in the electric energy of the electron due to the slight shift of the radius of the electron due to spin-nuclear 

and orbital-nuclear interactions is given by the difference between the electric energies associated with the two possible 
orientations of the magnetic moment of the electron with respect to the magnetic moment of the proton, parallel versus 
antiparallel.  The electric energy is given by the substitution of the corresponding radius given by Eq. (6.22) into Eq. (1.264) 
where Z p .  The change in electric energy for the flip from antiparallel to parallel alignment, /  /S N O N

eleE , is:  
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In addition, the interaction of the magnetic moments of the electron and proton increases the magnetic energy of the 
electron given by Eq. (2.224).  The change in the magnetic energy of the electron /  /S N O N

magE  due to the slight shift of the radius 

of the electron due to spin-nuclear and orbital-nuclear interactions is: 
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 (6.25) 
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The orbital rotational energy arises from a spin function (spin angular momentum) modulated by a spherical harmonic angular 
function (orbital angular momentum).  The amplitude of the orbital rotational energy   orbitalrotationalE  is: 

 
2

  22 1rotational orbital
e n

E
m r

    
 


 (6.26) 

However, the time-averaged mechanical angular momentum and rotational energy associated with the traveling charge-density 
wave on the atomic orbital is zero: 
  0z orbitalL   (6.27) 

    0rotational orbitalE   (6.28) 

Thus, a term corresponding to Eq. (6.26) was not added to Eq. (6.25).  Only the coupling of the dynamic angular momentum to 
the radiative reaction need be considered as given in Eqs. (6.19) and (6.23). 

The total energy of the transition from antiparallel to parallel alignment due to spin-nuclear and orbital-nuclear 
interactions, /  /S N O N

totalE , is given as the sum of Eqs. (6.23-6.25): 

 /  / /  / /  /S N O N S N O N S N O N
total magdipole ele magE E E E        (6.29) 
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 (6.30) 

For the case that 0 , the hydrino hyperfine structure radius and energy /S N
totalE  given by Eqs. (2.221) and (2.225) respectively, 

are the same as those of ordinary hydrogen with 1p   in Eqs. (6.22) and (6.31): 
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 (6.31) 

The frequency, f , can be determined from the energy using the Planck relationship, Eq. (2.148). 

 
S/N O/N
totalE

f
h


  (6.32) 

From Eqs. (6.22), (6.30), (6.31), and the Planck relationship, Eq. (2.148), the energy, the wavelength, and the frequency 
corresponding to the spin-nuclear and orbital-nuclear coupling energy of the hydrino atom with the lower energy state quantum 

numbers p  and   and with the radius Ha

p
 are given in Table 6.1. 

 
Table 6.1.   The spin-nuclear and orbital-nuclear coupling energies of the hydrino atom with the lower energy state quantum 

numbers p  and   and with the radius Ha

p
. 

 

p    Energy 

( 23  10J X ) 

Wavelength  
( cm ) 

Wave Number  

( 1cm ) 

Frequency  
( GHz ) 

1 0 0.094117 21.106 0.047380 1.4204 
2 0 2.2736 0.87369 1.1446 34.314 
2 1 5.4890 0.36189 2.7633 82.840 
3 0 12.806 0.15512 6.4466 193.27 
3 1 30.916 0.064253 15.564 466.58 
3 2 33.718 0.058914 16.974 508.87 
4 0 42.520 0.046718 21.405 641.71 
4 1 102.65 0.019351 51.677 1549.2 
4 2 111.96 0.017743 56.360 1689.6 
4 3 116.17 0.017100 58.480 1753.2 
5 0 106.81 0.018598 53.769 1611.9 
5 1 257.86 0.0077036 129.81 3891.6 
5 2 281.23 0.0070635 141.57 4244.2 
5 3 291.81 0.0068074 146.90 4403.9 
5 4 297.87 0.0066688 149.95 4495.5 
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A COEFFICIENT 
An estimate of the transition probability for magnetic multipoles is given by Eq. (16.105) of Jackson [11].  For a magnetic dipole 

1 , and Eq. (16.105) of Jackson is: 
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 (6.33) 

where M  is the mean life of the magnetic multipole.  Substitution of: 

 k
c


  (6.34) 

into Eq. (6.33) gives 
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 (6.35) 

From Eq. (6.35), the transition probability is proportional to the frequency cubed.  The experimental A coefficient for hydrogen 
 1H n   [12] is 

 15 1
 2.87  10 secA X    (6.36) 

The frequencies for the spin/nuclear hyperfine transition of hydrogen  1H n   and hydrino  1/ 2H n   are given in Table 6.1.  

The A coefficient for hydrino  1/ 2H n   is given by Eq. (6.35) and Eq. (6.36) and the frequencies of Table 6.1. 
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INTENSITY OF SPIN-NUCLEAR AND ORBITAL-NUCLEAR COUPLING 
TRANSITIONS OF HYDRINOS 
The intensity, I , of spin-nuclear and orbital-nuclear coupling transitions of hydrinos can be calculated from the column density 
of hydrino atoms, ( )N H , and the A coefficient, ulA .  The column density is given by the product of the number of hydrino 

atoms per unit volume, Hn , and the path length,  , which is calculated in steradians from its integral.  

 
1 1

( )
4 4ul ul HI A N H A n
 

    (6.38) 

wherein ulA  is given by Eq. (6.37).  The number of hydrino atoms per unit volume, Hn , can be estimated from the experimental 

results of the integrated continuum emission for a selected transition from a celestial source.  The number of electronic 
transitions per atom per second, 1k  (Eq. (5.105)), estimated to be equivalent to the number of photons per atom per second ( ulA  

(Eq. (6.38)) for the hydrino transition).  Equating intensities of integrated photon flux (Eq. (6.38)) and the rate of the 
disproportionation reaction, , ',m m pr  Eq. (5.106), gives: 
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 (6.39) 

where ( ) HN H n   is the column density and , 1m pg   (the result is equivalent to Förster’s theory for the efficiencies of dipole-

dipole resonant energy transfers).  ( )N H , the column density of hydrino atoms, Ha
H

p
 
 
 

, can be calculated along the selected 

sight-line and substituted into Eq. (6.38) to give the intensity of the spin-nuclear and orbital-nuclear coupling transitions of 
hydrinos as a function of the path length,  , which is calculated in steradians from its integral. 
 
 
 
 
 
 
 
 
 
 
 
 
 



253 
Stability of Atoms and Hydrinos 

REFERENCES 
1. H. A. Haus, “On the radiation from point charges,” Am. J. Phys., 54, (1986), pp. 1126-1129. 
2. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 154-156. 
3. K. Hurley, et. al., Nature, 372, (1994), pp. 652-654. 
4. M. Chown, “Astronomers claim dark matter breakthrough,” NewScientist.com, Oct. 3, (2003). 

5. C. Boehm, D. Hooper, J. Silk, M. Casse, J. Paul, “MeV dark matter: Has it been detected,” Phys. Rev. Lett., Vol. 92, (2004), 

p. 101301. 

6. G. H. Share, “Recent results on celestial gamma radiation from SMM”, Advances in Space Research, Vol.11, Issue 8, (1991), 

pp. 85-94. 

7. G. H. Share, R. L. Kinzer, D. C. Messina, W. R. Purcell, E. L. Chupp, D. J. Forrest, E. Rieger, “Observations of galactic 

gamma-radiation with the SMM spectrometer”, Advances in Space Research, Vol. 6, Issue 4, (1986), pp. 145-148. 

8. B. Kozlovsky, R. E. Lingenfelter, R. Ramaty, “Positrons from accelerated particle interactions,” The Astrophysical Journal, 

Vol. 316, (1987), pp. 801-818. 
9. D. A. McQuarrie, Quantum Chemistry, University Science Books, Mill Valley, CA, (1983), pp. 206-221. 
10. L. Pauling, E. Wilson, Introduction to Quantum Mechanics with Applications to Chemistry, McGraw-Hill Book Company, 

New York, (1935), pp. 118-121. 
11. J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley & Sons, New York, (1975), pp. 758-760. 
12. C. W. Allen, Astrophysical Quantities, 3rd Edition, (1973), University of London, The Athlone Press, p. 79. 
 



Chapter 6 254

 



 255

 
Chapter 7 
  
TWO-ELECTRON ATOMS 
  
 
 
 
 
As is the case for one-electron atoms shown in the corresponding section, two-electron atoms can also be solved exactly.  Two-
electron atoms comprise two indistinguishable electrons bound to a nucleus of Z .  Each electron experiences a centrifugal 
force, and the balancing centripetal force (on each electron) is produced by the electric force between the electron and the 
nucleus and the magnetic force between the two electrons causing the electrons to pair.  
 
DETERMINATION OF ATOMIC ORBITAL RADII 
As shown in the One-Electron Atom section, bound electrons are described by a charge-density (mass-density) function, which 
is the product of a radial delta function ( ( ) ( )nf r r r  ), two angular functions (spherical harmonic functions), and a time 

harmonic function.  Thus, an electron is a two-dimensional spherical current-density surface that can exist in a bound state at 
only specified distances from the nucleus.  More explicitly, the uniform current-density function 0

0 ( , )Y    (Eqs. (1.27-1.29)) 

called the electron atomic orbital (shown in Figure 1.22) that gives rise to the spin of the electron is generated from two current-
vector fields (CVFs).  Each CVF comprises a continuum of correlated orthogonal great circle current-density elements (one 
dimensional "current loops").  The current pattern comprising each CVF is generated over a half-sphere surface by a set of 

rotations of two orthogonal great circle current loops that serve as basis elements about each of the  , ,0 x y zi i i  and 

1 1
, ,

2 2

  
 

x y zi i i -axis; the span being   radians.  Then, the two CVFs are convoluted, and the result is normalized to exactly 

generate the continuous uniform electron current density function 0
0 ( , ) Y  covering a spherical shell and having the three 

angular momentum components of /
4xy   L


 and 
2




zL  (Figure 1.23)1.   

Each one-electron atomic orbital is a static two-dimensional spherical shell of moving negative charge 
( total charge e  ) of zero thickness at a distance nr  from the nucleus ( charge Ze  ).  It is well known that the field of a 

spherical shell of charge is zero inside the shell and that of a point charge at the origin outside the shell [1] (See Figure 1.32).  
Thus, for a nucleus of charge Z , the force balance equation for the electron atomic orbital is obtained by equating the forces on 
the mass and charge densities.  The centrifugal force of each electron is given by2   

 
2

24
e n

centrifugal
n n

m

r r


v
F  (7.1) 

where nr  is the radius of electron n  which has velocity nv .  In order to be nonradiative, the velocity for every point on the 

atomic orbital is given by Eq. (1.35). 

 n
e nm r

v
  (7.2) 

Helium can be formed by the binding of two electrons simultaneously to 2He  .  It can also be formed by the binding of 
an electron to He .  The same boundary condition, that helium has no spin, applies in both cases.  The forces must be consistent 
with the binding of both electrons at the same radius such that their currents corresponding to spin are identical mirror images 

 
1 /   designates both the positive and negative vector directions along an axis in the xy-plane. 
2 In this section,   n  1 or  2  for electron one and electron two, respectively, not to be confused with the previous use of  n  as the principal quantum 
number. 
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and consequently identically cancel.  This implies that the forces at balance are equivalent for the two electrons.  As an approach 

to the helium solution using these constraints, now consider electron 1 initially at 0
1

a
r r

Z
   (the radius of the one-electron atom 

of charge Z  given in the One-Electron Atom section where 
2

0
0 2

4

e

a
e m





 and the spin-nuclear interaction corresponding to the 

electron reduced mass (Eq. (1.255)) is not used here since the electrons have no field at the nucleus upon pairing) and electron 2 

initially at nr   .  Each electron can be treated as e  charge at the nucleus with 
2

04

e

r


E  for nr r  and 0E  for nr r  

where nr  is the radius of the electron atomic orbital.  The centripetal force is the electric force, eleF , between the electron and the 

nucleus.  Thus, the electric force between electron 2 and the nucleus is: 

 
2

(  2) 2
0 2

( 1)

4ele electron

Z e

r


F  (7.3) 

where 0  is the permittivity of free-space.  The second centripetal force, magF , on the electron 2 (initially at infinity) from 

electron 1 (at 1r ) is the magnetic force.  Each infinitesimal point (mass or charge-density element) of each atomic orbital moves 

on a great circle, and each point has the charge density 
24 n

e

r
.  Due to the relative motion of the charge-density elements of each 

electron, a radiation reaction force arises between the two electrons.  This force given in Sections 6.6, 12.10, and 17.3 of Jackson 
[2] achieves the condition that the sum of the mechanical momentum and electromagnetic momentum is conserved3.  The 
magnetic central force is derived from the Lorentz force that is relativistically corrected. 

The magnetic force is derived by first determining the interaction of the two electrons due to the field of the outer 
electron 2 acting on the magnetic moments of electron 1 and vice versa.  Insight to the behavior is given by considering the 
physics of a single bound electron in an externally applied uniform magnetic field.  As shown in the Resonant Precession of the 
Spin-1/2-Current-Density Function Gives Rise to the Bohr Magneton section, the angular momentum of the atomic orbital in the 

magnetic field of an external applied field zBi  comprises the static 
2


 projection on the z-axis (Eq. (1.128)) and the 

4


 vector 

component in the xy-plane (Eq. (1.127)) that precesses about the z-axis at the Larmor frequency, L .  A resonant excitation of 

the Larmor precession frequency gives rise to a trapped photon with   of angular momentum along the precessing S -axis.  As 
shown in Box 1.1, the photon standing wave is phase-matched to a spherical harmonic source current, a spherical harmonic 
dipole  , sinmY     with respect to the S -axis.  The dipole spins about the S -axis at the angular velocity given by Eq. 

(1.36).   
In the coordinate system rotating at the Larmor frequency (denoted by the axes labeled RX , RY , and RZ  in Figure 7.1), 

the RX -component of magnitude 
4


 and S  of magnitude   are stationary.  The 

4


 angular momentum along RX  with a 

corresponding magnetic moment of 
4

B  (Eq. (28) of Box 1.1) causes S  to rotate in the RY RZ -plane to an angle of 
3

   such 

that the torques due to the RZ -component of 
2


 and the orthogonal RX -component of 

4


 are balanced.  Then the RZ -component 

due to S  is cos
3 2


  

 , and the RY -component of S  is 
3

sin
3 4


    . 

 

 
3 The angular momentum of the two electrons cancels with pairing, and the conserved angular momentum is carried with the   of angular momentum of 
the photon corresponding to the radiation reaction force and energy.  The energy of the Coulombic field is also conserved with the emission of photons of 
quantized energy wherein the radial acceleration during binding gives rise to the radiation as given in the Excited States of the One-Electron Atom 
(Quantization) section.  
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Figure 7.1.   The angular momentum components of the atomic orbital and S  in the rotating coordinate system RX , RY , and 

RZ  that precesses at the Larmor frequency about RZ  such that the vectors are stationary. 
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As shown in Figure 7.2, S  forms a cone in time in the nonrotating laboratory frame with an angular momentum of   that 
is the source of the known magnetic moment of a Bohr magneton (Eq. (2.65)) as shown in the Magnetic Parameters of the 

Electron (Bohr Magneton) section.  The projection of this angular momentum onto the z-axis of 
2


 adds to the z-axis component 

before the magnetic field was applied to give a total of  .  Thus, in the absence of a resonant precession, the z-component of the 

angular momentum is 
2


, but the excitation of the precessing S  component gives —twice the angular momentum on the z-

axis. 
 

Figure 7.2.   The angular momentum components of the atomic orbital and S  in the stationary coordinate system.  S  and the 
components in the xy-plane precess at the Larmor frequency about the z-axis.   
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In summary, since the vector S  that precesses about the z-axis at an angle of 
3

   and an angle of 
2

   with respect 

to xyL  given by Eq. (1.127) and has a magnitude of  , the S  projections in the RX RY -plane and along the RZ -axis (Eqs. (1.129-

1.130)) are 
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3

sin  
3 4 RY


   S i   (7.4) 

 || cos  
3 2 RZ


   S i

  (7.5) 

The plus or minus sign of Eqs. (7.4) and (7.5) corresponds to the two possible vector orientations. 
Consider the case that the external field is due to electron 2 on the moments of electron 1 and vice versa.  In the limit, the 

magnetic moments of electrons 1 and 2 will cancel as they spin pair to form an energy minimum.  In this case, the radii will be 
equal (i.e. 1 2r r ).  Cases other than the bound case correspond to excited states, which are solved for helium in the Excited 

States of Helium section.  These states correspond to the atom having trapped photons.  The central magnetic force to determine 
the bound state with 1 2r r  is derived by first determining the magnetic moments and fields of the interacting electrons from the 

corresponding angular momenta due to the trapped photons.   
Unlike the external-applied-field case, each of the two interacting electrons have two orthogonal components of angular 

momentum.  Each has 
2


 along the principal-axis (Eq. (1.128)) and 

4


 along an axis in the transverse-plane (Eq. (1.127)).  For 

each electron, torque balance is also achieved when a photon standing wave is phase-matched to a spherical harmonic source 
current, a spherical harmonic dipole  , sinmY     with respect to the S -axis.  The dipole spins about the S -axis at the 

angular velocity given by Eq. (1.36) as in the external-applied-field case, but the orientations are as shown in Figures 7.3A and 
7.3B rather than that shown in Figures 7.1 and 7.2.   

In the stationary coordinate system of electron 2 (denoted by the axes labeled X , Y , and Z  in Figure 7.3A), the 
4


 of 

intrinsic angular momentum is along X , the 
2


 of intrinsic angular momentum is along Y , and the photon angular momentum 

vector 2S  of magnitude   is in the XZ -plane at an angle of 
6

   relative to the Z -axis.  The Z -axis projection of 2S  is 

3

4
 , and the X -axis projection of 2S  is 

2



. 

In the stationary coordinate system of electron 1 (denoted by the axes labeled 'X , 'Y , and 'Z  in Figure 7.3B), the 
4


 of 

intrinsic angular momentum is along 'X , the 
2


 of intrinsic angular momentum is along 'Y , and the photon angular momentum 

vector 1S  of magnitude   is in the ' 'Y Z -plane at an angle of 
3

   relative to the 'Y -axis.  The 'Z -axis projection of 1S  is 

3

4
 , and the 'Y -axis projection of 1S  is 

2


. 

The torques from the corresponding magnetic moments given by Eq. (2.65) are balanced in the absence of Larmor 
precession for the angular momentum projections of electron 2 shown in Figure 7.3A relative to those of electron 1 shown in 

Figure 7.3B.  The photonic 
2




X -axis projection of 2S  with a corresponding magnetic moment of 
2

B  cancels the 

superposition of the 
4


 of intrinsic angular momentum of electrons 1 and 2 along 'X  and X , respectively, each with a 

corresponding magnetic moment of 
4

B  (Eq. (2.65)).  The 
2


 of intrinsic angular momentum of electron 2 along Y  gives rise to 

a magnetic field corresponding to 
2

B  in the direction of the 
3

4
  'Z -axis projection of 1S  of electron 1.  The 

2


 of intrinsic 

angular momentum of electron 1 along 'Y  and the 'Y -axis projection of 1S  of 
2


 gives rise to a magnetic field corresponding to 

B  in the direction of the 
3

4
  Z -axis projection of 2S  of electron 2. 
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Figure 7.3.   The relative angular momentum components of electron 1 and electron 2 to determine the magnetic interactions 
and the central magnetic force.  (A) The atomic orbital and 

2
S  of electron 2 in the stationary coordinate system X,Y,Z that is 

designated the unprimed spherical coordinate system relative to the Z-axis as shown.  The photon angular momentum vector 
2

S  

of magnitude   is in the XZ-plane at an angle of 
6


   relative to the Z-axis.  (B) The angular momentum components of the 

atomic orbital and 
1

S  of electron 1 in the stationary coordinate system X',Y',Z' that is designated the primed spherical coordinate 

system relative to the Z'-axis as shown.  The photon angular momentum vector 
1

S  of magnitude   is in the Y'Z'-plane at an angle 

of 
3


   relative to the Y'-axis. 
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When the electrons pair, the photon is emitted as the corresponding excited state decays and the orientation of the 
magnetic moments of electron 1 relative to those of electron 2 rotate as shown in Figure 7.4 compared to Figures 7.3A and 7.3B.  
In the paired orientation, the angular momenta and the corresponding magnetic fields identically cancel. 
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Figure 7.4.   The angular momentum components of the superimposed atomic orbitals of electron 1 and 2 in the stationary 
coordinate system X,Y,Z when binding occurs and the magnetic moments cancel. 
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The magnetic central force is due to the interaction of the magnetic field of the electron 2 and the current dipole of the 

photon at the radius of electron 1 and vice versa.  Considering the angular momentum vectors given in Figures 7.3A and 7.3B, 

the magnetostatic magnetic flux of electron 2 and electron 1 corresponding to 
2

B  and B , respectively, follow from Eqs. 

(1.132) and (1.133) and after McQuarrie [3]: 
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e
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  (7.7) 

where 0  is the permeability of free-space ( 7 2
 4   10 /X N A  ) and the coordinates of the magnetic field due to electron 2 acting 

on the magnetic moments of electron 1 is designated as the primed system and the magnetic field of electron 1 acting on the 
magnetic moments of electron 2 is designated as the unprimed system.  It follows from Eq. (1.131), the relationship for the Bohr 
magneton, and relationship between the magnetic dipole field and the magnetic moment m  [4] that Eqs. (1.132) and (1.137) are 

the equations for the magnetic field due to a magnetic moment of one half a Bohr magneton, 
2

B zm i  and one Bohr magneton, 

B zm i , respectively, where cos sin  z ri i i .  In each case, the spherical harmonic dipole  , sinmY     spins about 

the S-axis at the angular velocity given by Eq. (1.36).  Thus, angular velocity ̂  and linear velocity v  projections onto each 
( ')Z Z -axis are: 

 , '2
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3
ˆ

4 Z Z
em r
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 (7.8) 

 , '
1

3
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 (7.9) 

The Lorentz force density at each point moving at velocity v  given by Eq. (7.9) is 

 
2

24mag

e

r
 F v B  (7.10) 

Substitution of Eq. (7.9) and Eqs. (7.6-7.7) into Eq. (7.10) while maintaining the designation of the coordinates of the magnetic 
field of electron 2 acting on the magnetic moments of electron 1 as the primed system and the coordinates of the magnetic field 
of electron 1 acting on the magnetic moments of electron 2 as the unprimed system gives: 
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Two-Electron Atoms 261

As shown in Eqs. (7.16-7.24), the relativistic form of Eq. (7.11) results in the equivalence of the velocity at the two radii; thus, 1r  

may be substituted for 2r  in the velocity factor of the second term to give: 
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The 'ri  unit vector is transformed to ri  by substituting   with 
2

   in the second term of Eq. (7.12): 
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The magF i  and 'magF i  average to zero over the surface for 0    .  The relativistic correction given infra. is based on 

quantized-angular-momentum conservation with the emission of a photon.  The relativistic correction for the lightlike frame 
causes the circumferential distances on the surface to dilate to the radial dimension alone as given infra. and in the Special 
Relativistic Correction to the Ionization Energies section.  This causes the angular force to vanish since it averages to zero such 
that only the radial force remains.  Since there is no net angular force on the electron, only the resultant radial force need be 
considered: 
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Eq. (7.14) may be written in the form 
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where 1/ 2s   and 
3

( 1)
4

s s    is the historical designation of the spin-angular momentum magnitude factor. 

Furthermore, the term in brackets can be expressed in terms of the fine structure constant  .  The radius of the electron 
atomic orbital in the v c  frame4 is C , where v c  corresponds to the magnetic field front propagation velocity which is the 

same in all inertial frames, independent of the electron velocity as shown by the velocity addition formula of special relativity 
[5].  From Eq. (1.35) and Eqs. (1.179-1.180) 
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where v c .  Based on the relativistic invariance of the electron’s magnetic moment of a Bohr magneton B  given by Eq. 

(1.131) as well as its invariant angular momentum of  , it can be shown that the relativistic correction to Eq. (7.15) is 
1

Z
 times 

the reciprocal of Eq. (7.16).  As shown previously in the One-Electron Atom—Determination of Atomic Orbital Radii section, 
the radius term in the brackets of Eq. (7.15) is relativistically corrected due to invariance of charge under Gauss’ Integral Law 
[6].  The radius of the electron relative to the v c  frame, *r , is relativistically corrected as follows.  The wave equation 

relationship is: 
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v



  (7.17) 

 
 
 

 
4 For the radiation-reaction force, v in Eq. (7.10) is not the electron velocity relative to the laboratory frame. 
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It can be demonstrated that the velocity of the electron atomic orbital satisfies the relationship for the velocity of a wave by 
substitution of Eqs. (1.15) and (1.36) into Eq. (7.17), which gives Eq. (1.35).  The result of the substitution into Eq. (7.17) of c  
for nv , n  given by Eq. (2.2): 

 1 12 ( ) 2 n nnr r n       (7.18) 

 
with 1r  given by Eq. (1.260): 
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for  , and of n  given by Eq. (1.36)  
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where *  is the relativistic factor corresponding to the radius, c is given by Eq. (1.178), and   is given by Eq. (2.123).  It 

follows from Eq. (7.22) that the radius 1r  of Eq. (7.15) must be corrected by the factor   1
Z 

. 

Due to relativistic invariance of 
e

e

m
 corresponding to the invariance of B , the correction of the electron mass of the 

bracketed term of Eq. (7.15) is 2  as given in the One-Electron Atom—Determination of Atomic Orbital Radii section (Eq. 
(1.273)).  By correcting the radius and the mass, the relativistic correction '  due to the light speed electrodynamic central force 
is  
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where v c 5.  Thus, 
1

Z
 is substituted for the term in brackets in Eq. (7.15).  Thus, Eq. (7.15) becomes: 
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The radiation-reaction force between the two electrons that achieves the condition that the sum of the mechanical 
momentum and electromagnetic momentum is conserved can also be derived from the relativistically invariant relationship 
between momentum and energy.  As shown in the Excited States of the One-Electron Atom (Quantization) section and the 
Excited States of Helium section, in general, for a macroscopic multipole with a single m  value, a comparison of Eq. (2.62) and 
Eq. (2.55) shows that the relationship between the angular momentum zM , energy U , and angular frequency   is given by Eq. 

(2.63): 

 zdM m dU

dr dr
  (7.25) 

independent of r  where m  is an integer.  Furthermore, the ratio of the square of the angular momentum, 2M , to the square of 
the energy, 2U , for a pure (  , m ) multipole follows from Eq. (2.55) and Eqs. (2.60-2.62) as given by Eq. (2.64): 
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From Jackson [7], the quantum mechanical interpretation is that the radiation from such a multipole of order (  , m ) carries off 
m  units of the z component of angular momentum per photon of energy  .  However, the photon and the electron can each 
possess only   of angular momentum which requires that Eqs. (7.25-7.26) correspond to a state of the radiation field containing 
m  photons.  Then, the magnetic energy due to the interaction of the magnetic moment of each electron and the magnetic field of 
the opposite member of the pair is quantized in terms of the magnetic field as well as the magnetic moment as opposed to being a 
continuous function of magnetic flux B in the case of the energy due to an applied field.  In the applied-field case, the energy 

magE  of interaction of a magnetic moment m and flux B is given by Eq. (1.168) 

 
5 The same relativistic correction is obtained by consideration of the kinetic and vector potential components of the angular momentum in the light-like 
frame as shown in Box 1.1. 
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 cosmagE mB   m B  (7.27) 

In the case of the interaction of the magnetic moments of two electrons of two-electron atoms, Eq. (7.27) does not apply due to 
the result of Eq. (7.26). 

The quantized energy for an electron spin
magE  to switch from parallel to antiparallel to an applied field B  is given by Eq. 

(1.168) 
  2 2 cos 2 2spin

mag B B LE B B        B zi B   (7.28) 

where L  is the Larmor frequency given by Eq. (2) of Box 1.1.  In the case of the interaction between the two electrons, the 

frequency must satisfy Eq. (7.26).  From Eq. (7.8), the angular velocity ˆL  is: 
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Energy is conserved between the electric and magnetic energies of the helium atom as shown by Eq. (7.42).  Since charge is 
relativistically invariant under Gauss’ Integral Law, the relationships between the parameters of Eqs. (7.25) and (7.26) due to 
quantization of angular momentum   and energy    requires the normalization of the energy U  by the central field Z  such 
that the magnetic-force dependence on the nuclear charge is the reciprocal of that of the electric force.  Then, the radial electric 

field has a magnitude proportional to Z  and the magnetic interaction has a magnitude of 
1

Z
 such that the corresponding 

magnetic energy U  is decreased by the factor of 
2

1

Z
 corresponding to the electric energy given by Eqs. (1.263-1.264).  Using 

Eqs. (7.26) and (7.29) with 2m   for the magnetic dipole interaction and the invariance of charge gives 
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The corresponding magnetic force is given as the gradient of the energy: 
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The outward centrifugal force on electron 2 (Eqs. (7.1-7.2)) is balanced by the electric force (Eq. (7.3)) and the magnetic 
force (on electron 2) (Eqs. (7.24) and (7.31)): 
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From Eq. (1.35) and Eq. (7.2) 
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Then, 
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Solving for 2r ,  

 
 
 2 1 0

11 1
;  

1 1 2

s s
r r a s

Z Z Z

 
    
   

 (7.35) 

That is, the final radius of electron 2, 2r , is given by Eq. (7.35); this is also the final radius of electron 1.  The energies and radii 

of several two-electron atoms are given in Table 7.1. 

(Since the density factor always cancels, it will not be used in subsequent force balance equations). 
 
ENERGY CALCULATIONS 
The electric work to bring electron 2 to 2 1r r  is given by the integral of the electric force from infinity to 1r , 
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And, the electric energy is the negative of the electric work, 
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The potential energy of each electron at 1r r , is given as:  
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The kinetic energy is 21

2 em v , where v  is given by Eq. (1.35). 
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The magnetic work is the integral of the magnetic force from infinity to 1r , 
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CONSERVATION OF ENERGY  
Energy is conserved.  Thus, the potential energy (electron 2 at 1r ) with the nucleus plus the magnetic work (electron 2 going 

from infinity to 1r ) must equal the sum of the negative of the electric work (electron 2 going from infinity to 1r ) and the kinetic 

energy (electron 2 at 1r ).  This is shown below with Eq. (7.41) and Eq. (7.42). 
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 and using 1r  from Eq. (7.35), 
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This is also the potential energy of electron 1 where their potential energies are indistinguishable when 1 2r r , but once one is 

excited they are distinguishable 6. 

 
6 The decrease in the central force of electron 1 from that corresponding to Z  to that corresponding to Z 1  as given by Eq. (7.42) allows the potential 
energies of the two electrons to match upon pairing.  This is possible according to Maxwell’s equations by the relationship between the two-dimensional 
surface charge density of each binding electron and the field: 

 

  
n  E

1
 E

2  


0

 (1) 

Whenever there is a potential energy difference in any perfect conductor, current will flow to redistribute the charge and, thus, the field lines, until an 
equipotential is achieved.  This is true even in the case of the two-dimensional layer of charge of paired electrons.  However, in this case, the orientation of 
the field lines changes since current flow in the radial direction is not possible.  Reverse-directed field lines partially cancel the central field of the nucleus 
at the shell such that the equipotential condition is met for the shell. 

In the case of helium for example, the two spin-paired electrons comprise a single two-dimensional shell (zero thickness) at radius 0.566987a
0
.  

They satisfy Maxwell’s source charge equation (Eq. (1)) and Gauss’ law (Eq. (33.6)) while achieving a minimum energy, equipotential surface with one 
half of the combined field lines directed radial inward and one half directed radial outward from the surface of the shell.  The inward-directed lines are 
cancelled by those of the 2e  charged nucleus.  The result is that each electron of the superposition of the two comprising the shell of 2e  total charge 
experiences a central field of e .  The minimum energy is achieved by spin pairing with a significant reduction in the radius of the initial electron 2 due to 
the spin pairing force (Eq. (7.24)) in Eq. (7.34) relative to the pure Lorentz force (Eq. (7.15)).  Using r

1
 0.5a

0
 from Eq. (1.260) as a first-order 

approximation of the multibody unpaired-electron problem, the corresponding radius without spin pairing is 0.999a
0
.  Using Eq. (7.37), the corresponding 

binding energy of electron 2 is 13.61 eV  compared to the case with spin pairing of 24.58750 eV .  Thus, spin pairing lowers the total energy of the system 
of interacting electrons by 10.98 eV  even though the electrons become indistinguishable upon pairing. 

As a consequence of the spin-pairing interaction and associated stabilization, it is not possible to assign an independent energy to any single 
electron of He .  Rather, the total system must be considered.  Only for a one-electron atom is the electron's energy equal to the total energy.  Specifically, 

the electrons of He  in the ground state are paired in the same shell and are indistinguishable. That does not mean that the ionization of He  to He2  is 
twice 24.58750 eV .  Both electrons cannot be ionized from the position r1  r2  0.566987a

0
 to a continuum level without becoming unpaired since 

paired free electrons at the same position is energetically unobtainable.  In excited states, the electrons are distinguishable; yet, dependent in terms of their 
positions and energies.  With photon absorption, one electron moves to a greater radius and the other moves closer to the nucleus.  It is a sequential 
quantized process as shown in the Excited States of Helium section.  In the limit, the total energy of the photon required for one of the initially 

indistinguishable electrons to be ionized with the other moving to the radius of 0.5a
0
 is 24.58750 eV  (Eqs. (7.44-7.46)).  The corresponding He ion has 

an ionization energy of 54.423 eV (Eqs. (1.260) and (1.264))).  Thus, the total binding energy of He  in the ground state is 24.58750 eV  54.423 eV . 

An energy balance can be assigned to the two electrons.  From Eq. (1.264), the binding energy of He  is 

   EB
He

   54.423 eV  (2) 

The spin pairing of the two electrons with the binding of an electron 2 to He  with an electron 1 causes an energy change corresponding to the central 
field at electron 1 to decrease by an integer such that both electrons are bound with the same force and are equivalent.  The binding or ionization energy 
change given by Eq. (1.264) is 
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 30.42654 eV  (3) 

where the radius of He  (Eq. (1.260)) is 0.5a
0

 and the radius of He  is 0.566987a
0
 (Eq. (7.35)).  From Eq. (7.45), the electric energy of either of the 

equivalent electrons at r
1
 r

2
 0.566987a

0
 is 

 

  
E(electric)  

e2

8
0
0.566987a

0

 23.996467 eV  (4) 

With the contribution of the magnetic energy (Eqs. (7.44) and (7.46))), the binding energy of either of the equivalent electrons of helium (Eqs. (7.44-
7.46)) is  

   EB
He  24.58741 eV  (5) 

With the ionization of either electron 1 or electron 2, the central field of the unionized electron, say electron 1, increases by one.  The electric and magnetic 

fields are conservative, and the energy E
B

e
1

  of the unionized electron is given by the negative of the sum of Eqs. (3) and (4): 

 
  
E

B
e

1
   E

B
 E(electric)   30.42654 eV  23.996467 eV  54.423 eV  (6) 

which matches Eq. (2).  Thus, the total ionization energy of helium EBT He   given by the sum of the first and second ionization energies is 

 
  
E

BT
He  IP

1
 IP

2
 54.423 eV  24.58741 eV  79.011 eV  (7) 

where IP  is the ionization potential. 
The central field lines of the nucleus of two-electron atoms end equally on each electron.  Thus, the difference in energy of electron 1 before and 

after pairing given by Eq. (3) can be considered the energy of pairing that is conserved upon unpairing of the electrons such that the binding energy is 
increased by the negative of Eq. (3).  In general, the matched potential of the binding electrons is that which achieves a minimum energy of the atom, ion, 
molecular ion, or molecule and obeys Maxwell’s source charge equation (Eq. (1)) and Gauss’ law (Eq. (33.6)) for the total charge and total fields across 
the shell comprised of two or more electrons bound by at least one of spin- and orbital- interactions.  Further examples of the application of the equal 
potential condition for the binding of multi-electrons per shell are the cases of the hydride ion, three- through twenty-electron atoms, and molecules given 
in the corresponding sections. 
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IONIZATION ENERGIES 
During ionization, power must be conserved.  Power flow is governed by the Poynting power theorem, 

 0 0

1 1
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2 2t t

  
 

                  
E H H H E E J E  (7.43) 

Energy is superposable; thus, the calculation of the ionization energy is determined as a sum of the electric and magnetic 
contributions.  Energy must be supplied to overcome the electric force of the nucleus, and this energy contribution is the negative 
of the electric work given by Eq. (7.37).  Additionally, the electrons are initially spin-paired at 1 2 00.566987r r a   producing no 

magnetic fields; whereas, following ionization, the electrons possess magnetic fields and corresponding energies.  For helium, 
the contribution to the ionization energy is given as the energy stored in the magnetic fields of the two electrons at the initial 
radius where they become spin-unpaired.  Part of this energy and the corresponding relativistic term corresponds to the 
precession of the outer electron about the z-axis due to the spin angular momentum of the inner electron.  These terms are the 
same as those of the corresponding terms of the hyperfine structure interval of muonium as given in the Muonium Hyperfine 
Structure Interval section.  Thus, for helium, which has no electric field beyond 1r  the ionization energy is given by the general 

formula: 
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where, 
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Eq. (7.46) is derived for each of the two electrons as Eq. (1.161) of the Magnetic Parameters of the Electron (Bohr Magneton) 
section with the radius given by Eq. (7.35).  By substituting the radius given by Eq. (7.35) into Eq. (1.35), the velocity v  is given 
by: 
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 (7.47) 

with 1Z   where Eqs. (1.204) and (1.208) were used.  For increasing Z, the velocity becomes a significant fraction of the speed 
of light; thus, special relativistic corrections were included in the calculation of the ionization energies of two-electron atoms 
given in Table 7.1.  The relativistic corrections follow from those given in the Special Relativistic Correction to the Ionization 
Energies section wherein the nuclear-electron magnetic interactions as well as the electron-electron interactions of two-electron 
atoms must be included to be precise. 

For a nuclear charge Z  greater than two, a central electric field equal to that of an elementary charge quanta of 2Z   
exists outside of the atomic orbital of the unionized atom.  During ionization, the energy contribution of the expansion of the 
atomic orbital of the ionized electron (electron 2) from 1r  to infinity in the presence of the electric fields present inside and 

outside of the atomic orbital is calculated as the J E  term of the Poynting theorem.  This energy contribution can be 
determined by designing an energy cycle and considering the individual contributions of each electron (electron 1 and electron 2) 
in going from the initial unionized to the final ionized state.  Consider two paired atomic orbitals.  Expansion of an atomic orbital 
in the presence of an electric field which is positive in the outward radial direction requires energy, and contraction of an atomic 
orbital in this field releases energy.  Thus, the contribution of the J E  term to ionization is the difference in the energy required 
to expand one atomic orbital (electron 2) from 1r  to infinity and to contract one atomic orbital (electron 1) from infinity to 1r .  

The energy contribution for the expanding atomic orbital follows the derivation of Eq. (1.225) of the Electron g Factor section as 
follows (the vector direction is taken to give a positive dissipated energy). 
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DISSIPATED ENERGY 
The J E  energy over time is derived from the central electric field from the nucleus against which electron 2 expands and the 
current of the expanding electron 2 wherein the latter is dependent on the magnetic field of the inner electron 1.  The magnetic 
field of electron 1 gives rise to a Lorentz force on electron 2, and the dissipative current density of electron 2 depends on this 
force wherein the superconducting condition given by Eq. (1.187) is maintained with the electric field of electron 1.  The 
magnitude of the magnetic flux at electron 2 due to electron 1 is given by that of the Bohr magneton at the origin that follows 
from McQuarrie [3]: 
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The magnetic force on electron 2 due to the magnetic field of electron 1 is the Lorentz force given by Eq. (1.183).  Substitution 
of Eq. (1.35) for v  and Eq. (7.48) for the magnetic flux into Eq. (1.183) gives 
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Furthermore, the velocity of electron 1 is proportional to the nuclear charge as given by Eqs. (1.35) and (1.257).  Thus, in order 
to maintain the superconducting condition given by Eq. (1.187), the magnetic force corresponding to B  must be given by 
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The expansion of the atomic orbital of electron 2 produces a current.  The current over time t J  is:  
  ft t  J E  (7.51) 

where J  is the current density, t  is the time interval,   is the conductivity, and fE  is the effective electric field defined as 

follows:  
  , fq  F E  (7.52) 

where F  is the magnetic force given by Eq. (7.50), and  ,q    is the angular charge density given as follows: 
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  (7.53) 

The orbit expands in free space; thus, the relation for the conductivity is: 
 0t    (7.54) 

The electric field provided by the nucleus for the expanding atomic orbital is: 
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where 0  is the permittivity of free space ( 12 2 2
 8.854  10 /X C N m  ).  Using Eqs. (7.50-7.55), the J E  energy density over 

time for the expansion of electron 2 with the contraction of electron 1 is: 
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The J E  energy over time is the volume integral of the energy density over time 
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The J E  energy over time involving the electric field external to the atomic orbital of electron 2 is 
 2Z

Z


 times the 

magnetic energy stored in the space external to the atomic orbital as given by Eq. (1.170).  The left and right sides of the 
Poynting theorem must balance.  Given the form of the J E  energy over time involving the electric field external to the atomic 
orbital of electron 2 and given that the electric field inside of the atomic orbital is 1Z   times the electric field of a point charge, 

the J E  energy over time involving the electric field internal to the atomic orbital of electron 2 is 
 1Z

Z


 times the magnetic 

energy stored inside of the atomic orbital as given by Eq. (1.159).  This energy is  
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Thus, the total J E  energy over time of electron 2 is the sum of Eqs. (7.58) and (7.59).   
The J E  energy over time of electron 1 during contraction from infinity to 1r  is negative, and the equations for the 

external and internal contributions are of the same form as Eqs. (7.58) and (7.59) where the appropriate effective charge is 
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substituted.  The J E  energy over time involving the electric field external to the atomic orbital of electron 1 is 
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And, the J E  energy over time involving the electric field internal to the atomic orbital of electron 1 is: 
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The difference,  , between the J E  energy over time for expanding electron 2 from 1r  to infinity and contracting electron 1 

from infinity to 1r  is 
1

Z
  times the stored magnetic energy given by Eq. (7.46). 
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Thus, the ionization energies are given by 

 
1

   Ionization Energy Electric Energy Magnetic Energy
Z

    (7.63) 

The energies of several two-electron atoms are given in Table 7.1.  The relativistic factor *  involving the spin pairing between 
the two electrons is derived in the Special Relativistic Effect on the Electron Radius and the Relativistic Ionization Energies 
section. 
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Table 7.1.  Relativistically corrected ionization energies for some two-electron atoms. 
 

2 e 
Atom 

Z 
1r  

( oa ) a 

Electric 

Energy b 
(eV) 

Magnetic 

Energy c 
(eV) 

Velocity 

(m/s) d 

*  e 

 

Theoretical 
Ionization 

Energies f 
(eV)

Experimental 
Ionization 

Energies g 
(eV) 

Relative 

Error h 

He  2 0.566987 23.996467 0.590536 3.85845E+06 1.000021 24.58750 24.58741 -0.000004

Li  3 0.35566 76.509 2.543 6.15103E+06 1.00005 75.665 75.64018 -0.0003 

2Be   4 0.26116 156.289 6.423 8.37668E+06 1.00010 154.699 153.89661 -0.0052 

3B   5 0.20670 263.295 12.956 1.05840E+07 1.00016 260.746 259.37521 -0.0053 
4C   6 0.17113 397.519 22.828 1.27836E+07 1.00024 393.809 392.087 -0.0044 

5N   7 0.14605 558.958 36.728 1.49794E+07 1.00033 553.896 552.0718 -0.0033 

6O   8 0.12739 747.610 55.340 1.71729E+07 1.00044 741.023 739.29 -0.0023 

7F   9 0.11297 963.475 79.352 1.93649E+07 1.00057 955.211 953.9112 -0.0014 
8Ne   10 0.10149 1206.551 109.451 2.15560E+07 1.00073 1196.483 1195.8286 -0.0005 

9Na   11 0.09213 1476.840 146.322 2.37465E+07 1.00090 1464.871 1465.121 0.0002 

10Mg   12 0.08435 1774.341 190.652 2.59364E+07 1.00110 1760.411 1761.805 0.0008 

11Al   13 0.07778 2099.05 243.13 2.81260E+07 1.00133 2083.15 2085.98 0.0014 

12Si   14 0.07216 2450.98 304.44 3.03153E+07 1.00159 2433.13 2437.63 0.0018 

13P   15 0.06730 2830.11 375.26 3.25043E+07 1.00188 2810.42 2816.91 0.0023 
14S   16 0.06306 3236.46 456.30 3.46932E+07 1.00221 3215.09 3223.78 0.0027 

15Cl   17 0.05932 3670.02 548.22 3.68819E+07 1.00258 3647.22 3658.521 0.0031 

16Ar   18 0.05599 4130.79 651.72 3.90705E+07 1.00298 4106.91 4120.8857 0.0034 
17K   19 0.05302 4618.77 767.49 4.12590E+07 1.00344 4594.25 4610.8 0.0036 
18Ca   20 0.05035 5133.96 896.20 4.34475E+07 1.00394 5109.38 5128.8 0.0038 

19Sc   21 0.04794 5676.37 1038.56 4.56358E+07 1.00450 5652.43 5674.8 0.0039 

20Ti   22 0.04574 6245.98 1195.24 4.78241E+07 1.00511 6223.55 6249 0.0041 

21V   23 0.04374 6842.81 1366.92 5.00123E+07 1.00578 6822.93 6851.3 0.0041 

22Cr   24 0.04191 7466.85 1554.31 5.22005E+07 1.00652 7450.76 7481.7 0.0041 

23Mn   25 0.04022 8118.10 1758.08 5.43887E+07 1.00733 8107.25 8140.6 0.0041 

24Fe   26 0.03867 8796.56 1978.92 5.65768E+07 1.00821 8792.66 8828 0.0040 

25Co   27 0.03723 9502.23 2217.51 5.87649E+07 1.00917 9507.25 9544.1 0.0039 

26Ni   28 0.03589 10235.12 2474.55 6.09529E+07 1.01022 10251.33 10288.8 0.0036 

27Cu   29 0.03465 10995.21 2750.72 6.31409E+07 1.01136 11025.21 11062.38 0.0034 

a From Eq. (7.35). 
b From Eq. (7.45). 
c From Eq. (7.46), except Eq. (7.44) for neutral He . 
d From Eq. (7.47). 
e From Eq. (1.281) with the velocity given by Eq. (7.47). 
f From Eq. (7.44) for neutral atom helium, and ions from Eq. (7.63) with  E electric  of Eq. (7.45) relativistically corrected by 

*
  according to Eq. (1.281). 

g From theoretical calculations for ions 
8

Ne


 to 
27

Cu


 [8-9]. 
h (Experimental-theoretical)/experimental. 

 
The agreement between the experimental and calculated values of Table 7.1 is within the experimental capability of the 

spectroscopic determinations at large Z, which relies on X-ray spectroscopy.  In this case, the experimental capability is three to 
four significant figures, which is consistent with the last column.  The helium atom isoelectronic series is given in Table 7.1 [8-
9] to much higher precision than the capability of X-ray spectroscopy, but these values are based on theoretical and interpolation 
techniques rather than data alone.  Ionization energies are difficult to determine since the cut-off of the Rydberg series of lines at 
the ionization energy is often not observed, and the ionization energy must be determined from theoretical calculations, 
interpolation of He isoelectronic and Rydberg series, as well as direct experimental data.   

The theoretical values for low Z can be improved by calculating the spin-nuclear relativistic factor, which corresponds to 
the reduced mass for one-electron atoms given in the Determination of Atomic Orbital Radii section. 
 
HYDRIDE ION 
The hydride ion comprises two indistinguishable electrons bound to a proton of 1Z   .  Each electron experiences a centrifugal 
force, and the balancing centripetal force (on each electron) is produced by the electric force between the electron and the 
nucleus.  In addition, a magnetic force exists between the two electrons causing the electrons to pair. 
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DETERMINATION OF THE ATOMIC ORBITAL RADIUS, RN 
Consider the binding of a second electron to a hydrogen atom to form a hydride ion.  The second electron experiences no central 
electric force because the electric field is zero outside of the radius of the first electron.  However, the second electron 
experiences a magnetic force due to electron 1 causing it to pair with electron 1.  Thus, electron 1 experiences the reaction force 
of electron 2 which acts as a centrifugal force.  The force balance equation can be determined by equating the total forces acting 
on the two bound electrons taken together.  The force balance equation for the paired electron atomic orbital is obtained by 
equating the forces on the mass and charge densities.  The centrifugal force of both electrons is given by Eq. (7.1) and Eq. (7.2) 
where the mass is 2 em .  Electric field lines end on charge.  Since both electrons are paired at the same radius, the number of 

field lines ending on the charge density of electron 1 equals the number that end on the charge density of electron 2.  The electric 
force is proportional to the number of field lines; thus, the centripetal electric force, eleF , between the electrons and the nucleus is  
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where 0  is the permittivity of free space.  The outward magnetic force on the two paired electrons is given by the negative of 

Eq. (7.24) where the mass is 2 em .  The outward centrifugal force and magnetic forces on electrons 1 and 2 are balanced by the 

electric force 
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where 1Z  .  Solving for 2r ,  

   2 1 0

1
1 1 ;  

2
r r a s s s      (7.66) 

where 0a  is given by Eq. (1.256).  That is, the final radius of electron 2, 2r , is given by Eq. (7.66); this is also the final radius of 

electron 1. 
 
IONIZATION ENERGY 
Since the hydrogen atom is neutral, the ionization energy of the hydride ion is determined from the magnetic energy balance.  
During ionization, electron 2 is moved to infinity.  By the selection rules for absorption of electromagnetic radiation dictated by 
conservation of angular momentum, absorption of a photon causes the spin axes of the antiparallel spin-paired electrons to 
become parallel.  The unpairing energy, ( )unpairingE magnetic , is given by Eq. (7.46) and Eq. (7.66) multiplied by two because the 

magnetic energy is proportional to the square of the magnetic field as derived in Eqs. (1.154-1.161).  The magnetic energy of 
electron 1 following ionization of the hydride ion,  1 ( )electron finalE magnetic , is given by Eq. (1.161) and Eq. (1.260). 

In addition, a third ionization energy term arises from the interaction of the two electrons during ionization.  A magnetic 
force exists on the electron to be ionized due to the spin-spin interaction.  The energy to move electron 2 to a radius which is 
infinitesimally greater than that of electron 1 is zero.  In this case, the only force acting on electron 2 is the magnetic force.  Due 
to conservation of energy, the potential energy change to move electron 2 to infinity to ionize the hydride ion can be calculated 
from the magnetic force of Eq. (7.65).  The magnetic work, magworkE , is the negative integral of the magnetic force (the second 

term on the right side of Eq. (7.65)) from 2r  to infinity, 
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where 2r  is given by Eq. (7.66).  The result of the integration is: 

 
2

2
2
0

( 1)

4 1 ( 1)
magwork

e

s s
E

m a s s
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where 
1

2
s  .  By moving electron 2 to infinity, electron 1 moves to the radius 1 Hr a , and the corresponding magnetic energy, 

 1 ( )electron finalE magnetic , is given by Eq. (7.46).  In the present case of an inverse squared central field corresponding to the 

reaction force on electron 1, the magnitude of the binding energy is one half the magnitude of the potential energy [10], which is 
equivalent to that of Eq. (7.68).  Thus, the ionization energy is given by subtracting the two magnetic energy terms from one half 

the magnetic work (Eq. (7.68)) wherein em  is the electron reduced mass 
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 due to the electrodynamic magnetic 
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energy that arises from the force between the unpaired electrons and the nucleus which follows from Eqs. (1.253-1.255) and Eq. 
(7.67)7.  The electrodynamic force goes to zero as the two electrons pair due to the cancellation of the electron currents and 
magnetic fields.  Thus, the corresponding reduced mass only appears in the magworkE  term and in the magnetic energy of the free 

hydrogen atom term,  1 ( )electron finalE magnetic .  Thus, the ionization energy of the hydride ion is given by: 
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 (7.69) 

 
From Eq. (7.69), the calculated ionization energy of the hydride ion is 0.75418 eV.   

 
The experimental value given by Lykke [11] is 16082.99 0.15 cm   (0.75418 eV).   

 
Without deriving the details of the nuclear structure of the deuterium nucleus and its magnetic moment, the 

electrodynamic magnetic energy term of the deuterium hydride ion due to the corresponding force between the interacting 
electrons and the nucleus with two nucleons may be taken as twice that of hydrogen, which has only one nucleon.  From Eqs. 

(1.253-1.255) and Eq. (7.68), the corresponding reduced electron mass in Eq. (7.69) is 
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.   

From Eq. (7.69), the calculated ionization energy of the deuterium hydride ion is 0.75471 eV.   
 

The experimental value given by Lykke [11] is 16086.2 0.6 cm  (0.75457 eV). 
 

 
7The electrodynamic force between the unpaired electrons and the nucleus which follows from Eqs. (1.253-1.255) goes to zero as the two electrons pair 
due to the cancellation of the electron currents and magnetic fields.  During ionization, the corresponding energy due to the unpaired electrons is given by 
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where the mass in Eq. (1.246) is   2m
e
.  Eq. (7.67) with the inclusion of the electrodynamic energy given by Eq. (1) is 
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Thus, Eq. (7.68) with the electrodynamic energy is given by 
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where the reduced electron mass is 
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HYDRINO HYDRIDE ION 
The hydrino atom  1/ 2H  can form a stable hydride ion.  The central field is twice that of the hydrogen atom, and it follows 

from Eq. (7.65) that the radius of the hydrino hydride ion  1/ 2H n   is one half that of atomic hydrogen hydride,  1H n  , 

given by Eq. (7.66). 

   0
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1
1 1 ;  

2 2

a
r r s s s      (7.70) 

The energy follows from Eq. (7.69) and Eq. (7.70) where due to the invariance of /e m  and   for lower-energy states as well as 
excited states as shown in the Spin-Orbit Coupling section, the relativistic correction to the binding of the electron to a hydrogen 
atom or hydrino atom is the energy stored in the magnetic field of the hydrogen atom. 
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 (7.71) 

From Eq. (7.71), the calculated ionization energy of the hydrino hydride ion  1/ 2H n   is 3.047 eV  which corresponds to a 

wavelength of 407 nm  . 
In general, the central field of hydrino atom  1/ ;  integerH n p p   is p  times that of the hydrogen atom.  Thus, the 

force balance equation is: 
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where 1Z   because the field is zero for 1r r .  Solving for 2r ,  
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From Eq. (7.73), the radius of the hydrino hydride ion  1/ ;  integerH n p p    is 
1

p
 that of atomic hydrogen hydride, 

 1H n  , given by Eq. (7.66).  The energy follows from Eq. (7.69) and Eq. (7.73). 
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 (7.74) 

From Eq. (7.74), the calculated ionization energy of the hydrino hydride ion  1/H n p   as a function of p  is given in Table 

7.2. 
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Table 7.2.   The ionization energy of the hydrino hydride ion  1/H n p   as a function of p. 

 

 
a from Eq. (7.73). 
b, c from Eq. (7.74). 
 
HYDRINO HYDRIDE ION NUCLEAR MAGNETIC RESONANCE SHIFT 
The proton gyromagnetic ratio, / 2p  , is  

 1/ 2 42.57602  P MHz T    (7.75) 

The NMR frequency, f , is the product of the proton gyromagnetic ratio given by Eq. (7.75) and the magnetic flux, B . 

 1/ 2 42.57602  Pf MHz T   B B  (7.76) 

A typical radio frequency (RF) is 400 MHz .  According to Eq. (7.76) this corresponds to a flux of 9.39496 T  provided by a 
superconducting NMR magnet.  With a constant magnetic field, the frequency is scanned to yield the spectrum where the 
frequency scan is typically achieved using a Fourier transform on the free induction decay signal following a radio frequency 

pulse.  Historically, the radiofrequency was held constant, the applied magnetic field, 0H  ( 0
0

B
H


 ), was varied over a small 

range, and the frequency of energy absorption was recorded at the various values for 0H .  By convention based on this historic 

mode of operation, the radiofrequency spectrum is converted into the corresponding applied magnetic field, 0H  ( 0
0

B
H


 ), of 

energy absorption and displayed as a function of increasing 0H .  The protons that would absorb energy at a lower 0H  give rise 
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to a downfield absorption peak; whereas, the protons that would absorb energy at a higher 0H  give rise to an upfield absorption 

peak.  The electrons of the compound of a sample influence the field at the nucleus such that it deviates slightly from the applied 
value.  For the case that the chemical environment has no NMR effect, the value of 0H  at resonance with the radiofrequency 

held constant at 400 MHz  is 

 
  

01
0 0

2 400 2

42.57602  P

MHzf
H

MHz T


      (7.77) 

In the case that the chemical environment has a NMR effect, a different value of 0H  is required for resonance.  This chemical 

shift is proportional to the electronic magnetic flux change at the nucleus due to the applied field that in the case of each hydrino 
hydride ion is a function of its radius. 

The change in the magnetic moment, m , of each electron of the hydride ion due to an applied magnetic flux B  is [12] 
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The two electrons are spin-paired and the velocities are mirror opposites.  Thus, the change in velocity of each electron treated 
individually (Eq. (10.3)) due to the applied field would be equal and opposite.  However, as shown in the Three Electron Atom 
section, the two paired electrons may be treated as one with twice the mass where em  is replaced by 2 em  in Eq. (7.78).  In this 

case, the paired electrons spin together about the applied field axis, the z-axis, to cause a reduction in the applied field according 
to Lenz’s law.  Then, the radius in Eq. (7.78) corresponds to the coordinate   in cylindrical coordinates since it is perpendicular 
to the direction of the applied field along the z-axis.  The integral over the entire flux linked by the hydride ion atomic orbital is 
given by 
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where 1r  is the radius of the hydride ion [13].  The change in magnetic flux B  at the nucleus due to the change in magnetic 

moment, m , given by Eq. (7.79) follows from Eq. (1.132). 
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where 0  is the permeability of vacuum.  Substitution of Eq. (7.79) into Eq. (7.80) gives the absolute upfield chemical shift 
B

B


 

of  1/H p  relative to a bare proton: 
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where p  is an integer. 
It follows from Eqs. (7.73) and (7.81) that the diamagnetic flux (flux opposite to the applied field) at the nucleus is 

inversely proportional to the radius,   0
1 1 1

a
r s s

p
   .  For resonance to occur, 0H , the change in applied field from that 

given by Eq. (7.77), must compensate by an equal and opposite amount as the field due to the electrons of the hydrino hydride 
ion.  According to Eq. (7.73), the ratio of the radius of the hydrino hydride ion  1/H p  to that of the ordinary hydride ion H   

is the reciprocal of an integer p .  It follows from Eqs. (7.75-7.81) that compared to a proton with no chemical shift, the ratio of 

0H  for resonance of the proton of the hydrino hydride ion  1/H p  to that of the ordinary hydride ion H   is a positive 

integer.  That is, if only the size is considered, the absolute absorption peak of the hydrino hydride ion (i.e. relative to a proton 
with no shift) occurs at a value of 0H  that is a multiple of p  times the value that is resonant for H  .  However, the source 

current of the state must be considered in addition to the reduced radius. 
As shown in the Stability of “Ground” and Hydrino States section, for the below “ground” (fractional quantum number) 

energy states of the hydrogen atom,  photon , the two-dimensional surface charge due to the “trapped photon” at the electron 

atomic orbital and phase-locked with the electron atomic orbital current, is given by Eqs. (6.7) and (6.8) wherein the principal 

quantum number of excited states is replaced by 
1

n
p
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And,  electron , the two-dimensional surface charge of the electron atomic orbital is 
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The superposition of  photon  (Eq. (7.82)) and electron , (Eq. (7.83)) where the spherical harmonic functions satisfy the conditions 

given in the Bound Electron “Atomic Orbital” section is: 
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The ratio of the total charge distributed over the surface at the radius of the hydride ion of the hydrino hydride ion  1/H p  to 

that of the ordinary hydride ion H   is an integer p , and the corresponding total source current of the hydrino hydride ion is 
equivalent to an integer p  times that of an electron.  The “trapped photon” obeys the phase-matching condition given in Excited 
States of the One-Electron Atom (Quantization) section, and the source current of the state must be considered in addition to the 
reduced radius. 

In the case that the photons and corresponding source current spin in opposite directions for the two electrons, the orbital 
magnetic moments cancel.  However, as given in the Pair Production section, a photon having an energy equivalent to that of the 
mass energy of the electron may undergo particle production to form an electron. To maintain continuity, the photon surface 
current of a hydrino hydride state must behave as the charge equivalent to its energy during the interaction of the electrons and 
the phased locked photon-field surface current with the external magnetic field such that the photon component gives rise to a 
proportional diamagnetic effect as well.  The photon diamagnetic component is given by Eqs. (29.10-29.11) as the charge 
equivalent to its energy that superimposes with the diamagnetism of the two electrons.  The relativistic term after Eq. (29.10) and 
the central field magnitude term for the hydrino hydride state having principle quantum number p  are 2  and p , respectively.  

The photon contribution to the change in flux SRB  for hydrino hydride  1/H p  given by applying the corresponding 

relativistic factor of 2
SR   to Eq. (7.80) is 
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Thus, using Eqs. (7.81) and (7.86), the upfield chemical shift SRB

B


 due to the photon contribution of the ion  1/H p  

corresponding to the lower-energy state with principal quantum energy state p  is given by: 
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The total shift TB

B


 for  1/H p  is given by the sum of that of the two electrons given by Eq. (7.81) and that of the photon 

given by Eq. (7.86): 
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where the first term applies to H   with 1p   and integer >1p   for  1/H p .  The experimental absolute resonance shift of 

TMS is -31.5 ppm relative to the proton’s gyromagnetic frequency [14-15].  Thus, the theoretical shift of  1/H p  relative to 

TMS standard is given by the difference of Eq. (7.87) and -31.5 ppm. 



Chapter 7 276

Hydrino Hydride Ion Hyperfine Lines 
For the ordinary hydride ion H  , a continuum is observed at shorter wavelengths of the ionization or binding energy referred to 
as the bound-free continuum.  For typical conditions in the photosphere, Figure 4.5 of Stix [16] shows the continuous absorption 

coefficient 
C
   of the Sun.  In the visible and infrared spectrum, the hydride ion H   is the dominant absorber.  Its free-free 

continuum starts at   1.645 m, corresponding to the ionization energy of 0.745 eV  for H   with strongly increasing 
absorption towards the far infrared.  The ordinary hydride spectrum recorded on the Sun is representative of the hydride 
spectrum in a very hot plasma. 

The reaction of a hydrogen atom with a second electron to form ordinary hydride ion comprising two paired electrons in 
a single shell releases continuum radiation to longer wavelengths with a cutoff of the binding energy of the second electron of 
the hydride ion as shown by Stix [16].  However, hydrino hydride ion and the corresponding emission of a hydrino atom binding 
a second electron are unique.  Hydrino hydride ion comprises an unpaired electron which results the emission of the binding 
energy of the second electron being released with additional quantized units of energy based on linkage of flux increments of the 

fluxon or magnet flux quantum 
h

2e
.  Specifically, hydrino H  1/ p comprises (i) two electrons bound in a minimum energy, 

equipotential, spherical, two-dimensional current membrane wherein the electrons of H  1/ p  are unpaired in the same shell at 

the same position r  and (ii) a photon that increases the central field by an integer of the fundamental charge at the nucleus 
centered on the origin of the sphere.  The interaction of the hydrino state photon electric field with each electron gives rise to a 
nonradiative radial monopole such that the state is stable.  The combination of two electrons into a single atomic orbital (AO) 
while maintaining the radiationless integer photonic central field gives rise to the special case of a doublet AO state in hydrino 
hydride ion rather than a singlet state as in the case of ordinary hydride ion.  The singlet state is nonmagnetic; whereas, the 
doublet state has a net magnetic moment of a Bohr magneton 

B
. 

Specifically, the basis element of the current of the atomic orbital is a great circle as shown in the Generation of the 
Atomic Orbital-CVFS section.  As shown in the Equation of the Electric Field inside the Atomic Orbital section, (i) photons 
carry electric field and comprise closed field line loops, (ii) a hydrino atom comprises a trapped photon wherein the photon field-
line loops each travel along a mated great circle current loop basis element in the same vector direction, (iii) the direction of each 
field line increases in the direction perpendicular to the propagation direction with relative motion as required by special 
relativity, and (iv) since the linear velocity of each point along a field line loop of a trapped photon is light speed c, the electric 
field direction relative to the laboratory frame is purely perpendicular to its mated current loop and it exists only at  nr r  .  

The paired electrons of the H   atomic orbital comprise a singlet state having no net magnetic moment.  However, the photon 
field lines of a hydrino hydride ion can only propagate in one direction to avoid cancellation and give rise to a central field to 
provide force balance between the centrifugal and central forces (Eq. (7.72)).  This special case gives rise to a doublet state in 
hydrino hydride ion.   

The hydrino hydride AO may be treated as a linear combination of the great circles that comprise the current density 
function of each electron as given in the Generation of the Orbitsphere-CVFS section.  To meet the boundary conditions that the 
photon is matched in direction with the electron current and that the electron angular momentum is  are satisfied, one half of 
electron 1 and one half of electron 2 may be spin up and matched with the photon, and the other half of electron 1 may be spin 
up and the other half of electron 2 may be spin down such that one half of the currents are paired and one half of the currents are 
unpaired.  Given the indivisibility of each electron and the condition that the AO comprises two identical electrons, the force of 
the photon is transferred to the totality of the electron AO comprising a linear combination of the two identical electrons to 
satisfy Eq. (7.72).  The resulting angular momentum and magnetic moment of the unpaired current density are  and a Bohr 
magneton 

B
, respectively.  As given in the Electron g Factor section, flux is linked by an unpaired electron in quantized units 

of the fluxon or magnetic flux quantum 
  

h

2e
.   

Hydride ions formed by the reaction of hydrogen or hydrino atoms with free electrons with a kinetic energy distribution 
give rise to the bound-free emission band to shorter wavelengths than the ionization or binding energy due to the release of the 
electron kinetic energy and the hydride ion binding energy.  As shown by Eq. (7.74) compared to Eq. (7.71), the energies for the 
formation of hydrino hydride ions are much greater, and with sufficient spectroscopic resolution, it may be possible to resolve 
the unique hyperfine structure in the corresponding bound-free band due to interactions of the free and bound electrons during 
the formation of hydrino hydride ion.  The derivation of the hyperfine lines of the unique doublet state follows. 

Consider a free electron binding to a hydrino atom to form a hydrino hydride ion.  The total angular momentum of an 
electron is  .  During binding of the free electron, the bound electron produces a magnetic field at the free electron given by Eq. 
(1.133).  Thus, for radial distances greater than the radius of the hydride ion, the magnetic field is equivalent to that of a 
magnetic dipole of a Bohr magneton at the origin.  The energy of interaction of a magnetic dipole with the magnetic field of the 
bound electron ssE , the spin-spin energy, is given by Eq. (1.227)—the product of the electron g factor given by Eq. (1.226), the 

magnetic moment of the free electron, a Bohr magneton given by Eq. (1.131), and the magnetic flux which follows from Eq. 
(1.133). 
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 (7.88) 

where 0  is the permeability of free space, r  is the radius of the hydride ion  1/H p  given by Eq. (7.73), and p  is an integer.  

ssE  for  1/ 2H   is given by 

 0.011223 ssE eV  (7.89) 
where the radius given by Eq. (7.73) for 2p   is:  

 1 00.93301r a  (7.90) 

From Eqs. (7.74) and (7.73), the binding energy BE  of  1/ 2H   is: 

 3.0471 BE eV  ( 4069.0 Å) (7. 91) 

When a free electron binds to the hydrino atom  1/ 2H  to form a hydride ion  1/ 2H  , a photon is emitted with a minimum 

energy equal to the binding energy ( 3.0471 BE eV ).  Any kinetic energy that the free electron possesses must increase the 

energy of the emitted photon.  The interaction of the two electrons quantizes this emission by the same mechanism as that 
observed in the Stern Gerlach experiment—quantization of flux linkage.  Superconducting Quantum Interference Devices 
(SQUIDs) or wire loops linked to SQUIDs also show quantization of flux and the corresponding energies as shown in the 
Schrödinger Fat Cats—Another Flawed Interpretation section. 

In the Stern-Gerlach experiment, a magnetic field is applied along the z-axis called the spin axis.  The superposition of 

the vector projection of the atomic orbital angular momentum on the z-axis is 
2


 with an orthogonal component of 

4


.  

Excitation of a resonant Larmor precession gives rise to   on an axis S  that precesses about the spin axis at an angle of 
3

  .  

S  rotates about the z-axis at the Larmor frequency.  S , the transverse projection ( RY -axis of Figure 1.25), is 
3

4
  , and ||S , the 

projection onto the axis of the applied magnetic field (z-axis), is 
2




.  As shown in the Spin Angular Momentum of the Atomic 

Orbital 0
0 ( , )Y    section, the superposition of the 

2


 z-axis component of the atomic orbital angular momentum and the 

2


 z-axis 

component of S  gives   corresponding to the observed electron magnetic moment of a Bohr magneton, B .  As given in the 

Electron g Factor section, the electron links flux in units of the magnetic flux quantum 
2

h

e   during a Stern-Gerlach 

transition, which conserves the angular momentum of the electron of  .  Due to the field of the bound electron, the free electron 
possessing kinetic energy will precess about the z-axis as it orbits the bound electron giving an additional component of angular 
momentum.  A resonance exists when the transverse precessional angular momentum along the RY -axis of Figure 1.25 is an 

integer number of 
 1s s 


 such that its projection onto the S -axis is  .  In order to conserve angular momentum of both 

electrons as the bound electron links an integer number of fluxons due to the free electron, the corresponding fluxon energy E  

due the free electron’s RY -axis component of 
 1

j
s s 


 follows from Eq. (1.226) wherein the angular momentum 

corresponding to the Bohr magneton,  , is replaced by 
 1

j
s s 


, and the magnetic flux density B  is given by the ratio of the 

flux to the area. 
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 (7.92) 

where j  is an integer, 1/ 2s  , and A  is the area linked by the integer number of fluxons as given in the Electron g Factor 
section.  The additional angular momentum due to the kinetic energy of the binding free electron is conserved in rotational 
energy of the resulting hydride ion.  The flux linkage energy applies to each of the two electrons; thus, a factor of two in Eq. 
(7.92) is required.  This is analogous to mutual induction.  The electrons flip in opposite directions and conserve angular 
momentum by linking flux in integer units of the magnetic flux quantum, which corresponds to the term  2g  .  With the 
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radius given by Eq. (7.73), the fluxon energy E  of  1/ 2H   for both electrons is given by 

  
 

2 2 50
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 (7.93) 

The energies of the hyperfine lines HFE , are given by the sum of the binding energy (Eqs. (7.74) and (7.91)), the spin-spin 

energy (Eqs. (7.88) and (7.89)), and the fluxon energy (Eqs. (7.92) and (7.93)). 
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 ( j  is an integer) (7.94) 

The observation of bound-free hyperfine peaks requires an electron-binding threshold with a large cross section.  
Ordinary hydride ion does not have a fine structure transition; thus, it shows only a hydride binding energy continuum [17].  The 
existence of fine structure transitions in  1/ 2H  provides a mechanism to observe a peak corresponding to the formation of a 

free hydride ion by the binding of an electron.  The predicted energy difference between the 1/21/ 2P , 1/21/ 2S  and 3/21/ 2P  levels 

of the hydrogen atom, the fine structure splitting given by Eq. (2.194), is:  

  25 2 -3
/

3
8 2 2.8922  10  

4s o eE m c X eV    (7.95) 

From Eq. (2.69) and the Spin-Nuclear Coupling section, the spin-orbit coupling is proportional to the applied flux due to spin 
and orbital angular momentum.  With the requirement of the quantization of flux in integer units of the magnetic flux quantum 
during binding as shown in the Electron g Factor section, the corresponding emission is at a longer wavelength having an energy 
of the binding energy minus an integer times the fine structure energy.  The peak due to the binding energy (Eqs. (7.91)) with 
excitation of the fine structure splitting (Eq. (7.95)) is given by: 

 -3
/ / 3.0471 2.8922  10  3.0442 Bs o B s oE E E eV X eV eV      ( 4071.7 air  Å) (7.96) 

The 3/21/ 2P , 1/21/ 2P , and 1/21/ 2S  levels are also split by spin-nuclear and orbital-nuclear coupling.  1/21/ 2S — 3/21/ 2P  and 

1/21/ 2P — 3/21/ 2P  transitions occur between hyperfine levels; thus, the transition energy is the sum of the fine structure and the 

corresponding hyperfine energy.  The hyperfine splitting of  1/ 2H  given in the Spin-Nuclear Coupling section are 
-41.4191  10  X eV  and -43.426  10  X eV  for 0  and 1 , respectively.  In addition to a continuum, the binding of an electron 

to  1/ 2H  has a resonance emission with excitation of transitions between hyperfine levels of the fine structure levels.   

The ionization of Rb  and an electron transfer between two K   ions (Eqs. (5.6-5.9)) provide a reaction with a net 
enthalpy of an integer multiple of the potential energy of atomic hydrogen, 27.2 eV .  The corresponding Group I nitrates 
provide these reactants as volatilized ions directly or as atoms by undergoing decomposition or reduction to the corresponding 
metals that are ionized in a plasma.  The presence of each of the reactants identified as providing an enthalpy of 27.2 eV  formed 
a low-applied temperature, extremely-low-voltage plasma in atomic hydrogen called a resonant transfer or rt-plasma having 

strong vacuum ultraviolet (VUV) emission [18-20].  The catalyst product of Rb  and two K  , H 1/ 2 , was predicted to be a 

highly reactive intermediate which further reacts to form a hydrino hydride ion H  1/ 2  .   
H  1/ 2   ions form by the reaction of H 1/ 2  atoms with free electrons that have a kinetic energy distribution.  The 

release of the electron kinetic energies and the hydrino hydride ion binding energy gives rise to the bound-free emission band to 
shorter wavelengths than the ionization or binding energy of the corresponding hydride ion.  Due to the requirement that flux is 

linked by H 1/ 2  in integer units of the magnetic flux quantum, the energy is quantized, and the emission due to H  1/ 2   
formation comprises a series of hyperfine lines in the corresponding bound-free band.  From the electron g factor and using the 

observed binding energy peak E
B
* , the bound-free hyperfine structure lines due to interactions of the free and bound electrons 

have predicted energies E
HF

 given by the sum of the fluxon energy E
, the spin-spin energy E

ss
, and the observed binding 

energy peak E
B
* : 

  (7.97) 
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where j = integer.  This is compared to E
HF

 j23.00213 X  105  3.0583   eV  with the unperturbed E
B
 given by Eqs. (7.73) 

and (7.74).  The predicted spectrum is an inverse Rydberg-type series that converges at increasing wavelengths and terminates at 
3.0563 eV, the hydride binding energy with the fine structure plus the spin-pairing energies.  The high-resolution visible plasma 
emission spectra in the region of 4000 Å to 4060 Å shown in FIGURE 62 matched the predicted emission lines to 1 part in 105.  

Specifically, the predicted 3.0471 eV  binding energy of H  1/ 2   was observed as a continuum threshold at 3.047 eV 

(
air
 4068 Å).  The experimental H  1/ 2   peak E

B
* at 4070.6 Å (air wavelength) was used to calculate the peak positions of 

the bound-free hyperfine lines by substitution of the corresponding energy of 3.0451 eV into Eq. (7.97) for E
B

 to give the 

bound-free hyperfine structure lines of H  1/ 2  .  The high resolution visible plasma emission lines in the region of 3995 Å to 

4060 Å, comprising an inverse Rydberg-type series from 3.0563 eV to 3.1012 eV matched the predicted hyperfine splitting 
emission energies E

HF
 given by Eq. (7.97) for j  1 to j  39 with the series edge at 3996.3 Å up to 1 part in 105 [18-20].  The 

flat intensity profile matches that of Josephson junctions such as ones of superconducting quantum interference devices 

(SQUIDs) that also link magnetic flux in quantized units of the magnetic flux quantum 
h

2e
. 
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Chapter 8 
  
CLASSICAL PHOTON AND ELECTRON SCATTERING 
  
 
 
 
 
CLASSICAL SCATTERING OF ELECTROMAGNETIC RADIATION 
Light is an electromagnetic disturbance that is propagated by vector wave equations that are readily derived from Maxwell’s 
equations.  The Helmholtz wave equation results from Maxwell’s equations.  The Helmholtz equation is linear; thus, 
superposition of solutions is allowed.  Huygens’ principle is that a point source of light will give rise to a spherical wave 
emanating equally in all directions.  Superposition of this particular solution of the Helmholtz equation permits the construction 
of a general solution.  An arbitrary wave shape may be considered as a collection of point sources whose strength is given by the 
amplitude of the wave at that point.  The field, at any point in space, is simply a sum of spherical waves.  Applying Huygens’ 
principle to a disturbance across a plane aperture gives the amplitude of the far field as the Fourier transform of the aperture 
distribution, i.e., apart from constant factors, 

 , ( ) exp ( x y)
ik

x y A d d
f

      
 

       
 

 (8.1) 

Here ( )A    describes the amplitude and phase distribution across the aperture and ,x y    describes the far field [1] where f  
is the focal length. 
 

DELTA FUNCTION 
In many diffraction and interference problems, it proves convenient to make use of the Dirac delta function.  This function is 
defined by the following property: let ( )f   be any function (satisfying some very weak convergence conditions which need not 
concern us here) and let ( ')    be a delta function centered at the point ' ; then: 

 ( ) ( ') ( ') ( ' );  0 
b

a

f d f a b otherwise           (8.2) 

We note, therefore, that: 

 ( ') 1d   




   (8.3) 

the Fourier transform of the delta function is given by: 

 
x

( ') exp
ik

x d
f

    
 

      
 

 (8.4) 

which by definition of the delta function becomes: 

 
x '

exp
ik

x
f


 

    
 

 (8.5) 

The amplitude is constant and the phase function 
x 'ik

f

 
 
 

 depends on the origin. 
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THE ARRAY THEOREM 
A large number of interference problems involve the mixing of similar diffraction patterns.  That is, they arise in the study of the 
combined diffraction patterns of an array of similar diffracting apertures.  This entire class of interference effects can be 
described by a single equation, the array theorem.  This unifying theorem is easily developed as follows: Let ( )   represent the 
amplitude and phase distribution across one aperture centered in the diffraction plane, and let the total diffracting aperture 
consist of a collection of these elemental apertures at different locations n .  We require first a method of representing such an 

array.  The appropriate representation is obtained readily by means of the delta function.  Thus, if an elemental aperture is 
positioned such that its center is at the point n , the appropriate distribution function is ( )n   .  The combining property of 

the delta function allows us to represent this distribution as follows: 
 ( ) ( )n n d                 (8.6) 

The integral in Eq. (8.6) is termed a “convolution” integral and plays an important role in Fourier analysis.  Thus, if we wish to 
represent a large number N  of such apertures with different locations, we could write the total aperture distribution ( )  as a 
sum, i.e., 

 
1

N

n
n

   


       (8.7) 

Or in terms of the delta function we could write, combining the features of Eqs. (8.6) and (8.7), 

 
1

( ) ( )
N

n
n

d       


       (8.8) 

Eq. (8.8) may be put in a more compact form by introducing the notation 

 
1

( )
N

n
n

A    


     (8.9) 

thus, Eq. (8.8) becomes: 
 ( ) ( )A d           (8.10) 
which is physically pleasing in the sense that ( )A   characterizes the array itself.  That is, ( )A   describes the location of the 
apertures and ( )   describes the distribution across a single aperture.  We are in a position to calculate the far field or 
Fraunhofer diffraction pattern associated with the array.  We have the theorem that the Fraunhofer pattern is the Fourier 
transform of the aperture distribution.  Thus, the Fraunhofer pattern (x)  of the distribution ( )  is given by 

     2
x exp

f

i
d

  


      
 

x  (8.11) 

substituting from Eq. (8.10) gives: 

   2
x ( ) ( ) exp

f

i
A d d

      


          
x  (8.12) 

A very important theorem of Fourier analysis states that the Fourier transform of a convolution is the product of the individual 
Fourier transforms [1].  Thus, Eq. (8.12) may be written as: 

 (x) (x) (x)A     (8.13) 

where (x)  and (x)A  are the Fourier transforms of ( )   and ( )A  .  Eq. (8.13) is the array theorem and states that the 
diffraction pattern of an array of similar apertures is given by the product of the elemental pattern (x)  and the pattern that 

would be obtained by a similar array of point sources, (x)A .  Thus, the separation that first arose in Eq. (8.10) is retained.  To 
analyze the complicated patterns that arise in interference problems of this sort, one may analyze separately the effects of the 
array and the effects of the individual apertures. 
 
APPLICATIONS OF THE ARRAY THEOREM 
TWO-SLIT INTERFERENCE (WAVE-PARTICLE DUALITY) 
Photons superimpose such that in the far field, the emitted wave is a spherical wave where the total electric field is given by Eq. 
(4.23): 

 0

ikr

total

e
E

r



E  (8.14) 

which is shown by Bonham to be required in order to insure continuity of power flow for wavelets from a single source [2].  The 
Green Function, (Eq. (6.62) of Jackson [3]) is given as the solution of the wave equation (Eq. (6.58) of Jackson [3]).  Thus, the 
superposition of photons gives the classical result.  As r  goes to infinity, the spherical wave given by Eq. (8.14) or Eq. (4.23) 
becomes a plane wave.  The double slit interference pattern is derived in Eqs. (8.15-8.23).  From the equations of a photon given 
in the Equation of the Photon section, the wave-particle duality arises naturally.  The energy is always given by Planck’s 
equation as also shown in the Equation of the Photon section; yet, an interference pattern is observed when photons add over 
time or space. 

Similarly, rather than a point, the electron is an extended particle which may impinge on a double slit one electron at a 
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time.  As shown in the Electron in Free Space section, the ionized electron is a plane-lamina disc of charge (mass)-density given 
by Eqs. (3.7-3.8) and current (momentum)-density given by Eqs. (3.19) and (3.20) with a radius 0  such that 0 02   wherein 

0  is the de Broglie wavelength.  In the case that the electron de Broglie wavelength (Eq. (3.24)) and therefore the size of the 

electron is comparable to the slit size and/or separation, the resulting intensity pattern of electrons striking a detector beyond the 
slits is equivalent to a wave interference pattern.  This result arises even though the electrons are not physically interacting with 
each other.  Nothing is actually interfering.  As in the case of the photon, the wave-particle duality nature of the electron arises 
classically. 

The electron-slit interaction is mediated by photons, each of which have quantized angular momentum in units of  .  
This angular momentum and the   of angular momentum of the electron is conserved during the interaction such that the de 
Broglie relationship holds as given in the Classical Physics of the de Broglie Relationship section.  For photon diffraction, the   
of angular momentum of the photon is conserved during an interaction directly.  In each case, the pattern in the far-field is a map 
of the conserved momentum density of the particles incident on the slit or slits. 

We use Eq. (8.13) to describe the simplest of interference experiments, Young’s double-slit experiment in one dimension.  
The individual aperture will be described by 
 (   | | ; 0  | | ) ( | )C a a rec a          (8.15) 
Here C is a constant representing the amplitude transmission of the apertures.  This is essentially a one-dimensional problem and 
the diffraction integral may be written as 

    x exp exp
f f

a

a

ik ik
d C d

   


            
    

x x  (8.16) 

The integral in Eq. (8.16) is readily evaluated to give: 
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  (8.17)  

The notation 
sin

sinc



  is frequently used and in terms of this function (x)  may be written as: 
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  (8.18) 

Thus, the result is that the elemental distribution in the Fraunhofer plane is Eq. (8.18).  The array in this case is simply two delta 
functions; thus, 
 ( ) ( )A b b           (8.19) 
The array pattern is, therefore,  

   2
(x) ( ) ( ) exp

f

i
A b b d

     


       
 

x  (8.20) 

Eq. (8.20) is readily evaluated by using the combining property of the delta function, thus, 
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Finally, the diffraction pattern of the array of two slits is: 
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  (8.22) 

The intensity is 

 2 2 2 22 x 2 x
(x) 16 sinc cos
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 (8.23) 

From Eq. (8.23), it is clear that the resulting pattern has the appearance of cosine-squared fringes of period /f b  with an 

envelope  2sinc 2 x /a f  .  

In the case of photon diffraction, the far field interference pattern given by Eqs. (8.22-8.23) is due to conservation of 
angular momentum of the photon interaction with the slits.  The pattern is not due to constructive and destructive interference of 
photon electric fields.  Photons cannot be created or destroyed by superimposing.  If this were true, it would be possible to cool a 
room or to cloak an object by illumination.  Constructive and destructive interference violates the first and second laws of 
thermodynamics1.  The correct physics is based on conservation of the   of photon angular momentum and   of photon 
energy. 

The incident photons have a size comparable to their wavelength as given in the Equation of the Photon section.  A 
 

1 Similarly, the constructive and destructive interference of probability waves makes no sense.  Nor does negative probability or probability that is based 
on noncausality.  The interference pattern is a map of the momentum density.  This physical basis applies to photon and particle diffraction as given infra. 
wherein the particle, photon, and consequently the slit interaction is quantized in units of  .  The double-slit experiment is predicted by classical laws that 
dispel the belief that quantum weirdness must be invoked to explain the double-slit experiment. 
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diffraction pattern is observed when the slit dimensions are comparable to the photon wavelength.  The physical basis of the 
mechanism is that each photon interacts with the slit apparatus to give rise to an electron or polarization current.  Each photon is 
reemitted, and the regions of high and low intensity due to more or less photons impinging at locations of the detector are 
generated, as the number of photons diffracted grows large.  The pattern is based on conservation of the momentum of the slit-
source currents and re-emitted photon distribution.  Here, in the case of each incident and diffracted photon, the transverse 
displacement is related to the change in the transverse component of the angular momentum of the photon.  The corresponding 
pattern is representative of the aggregate momentum distribution of slit-apparatus current induced by many photon interactions.  
The same physics of momentum conservation in the electric and magnetic radiation fields determines the radiation pattern of a 
multipole source as given in the Excited States of the One-Electron Atom (Quantization) section.  Photon diffraction is shown 
schematically in Figure 8.1. 
 
Figure 8.1.   (A) The incident photon is emitted from a source and travels to the slit apparatus in the distance.  The photon’s 
electric and magnetic fields are confined on its two-dimensional surface.  (B) The photon contacts the double slit apparatus.  (C) 
The photon’s electric and magnetic fields give rise to electron or polarization currents at both slits (blue).  As in the case with the 
application of a voltage to an object, there is an effect at a distance.  The transition of the photon’s fields from incident to 
transmitted is shown translucently.  (D) The slit’s currents cause reemission of a photon in the direction of the detector in the far 
field.  (E) The transverse displacement of the reemitted photon conserves the angular momentum of the source current.  The 
superposition of reemitted photons from the interaction of many incident photons over time forms a photon field characteristic of 
the slits as their source.  The source is equivalent to a uniform-electric-field silhouette of the slits given by Eqs. (8.15) and 
(8.19).  (F) In the far field, the distribution of photons corresponding to the intensity pattern is the Fourier transform of the slit 
pattern. 
 

 
 

Eq. (8.22) also applies to two-slit diffraction of other particles as well as photons wherein the amplitude reflects the 
transverse momentum density of the particles.  The proton and neutron as well as photons and electrons demonstrate interference 
patterns during diffraction.  An example is the interference pattern for rubidium atoms given in the Wave-Particle Duality is Not 
Due to the Uncertainty Principle Section.  Particle-particle interactions may be involved, and in other cases the interference 
pattern arises without fundamental-particle-particle interaction.  In these cases, the pattern-generating interaction can be 
attributed to that between the particle and the diffraction apparatus with conservation of the angular momentum of the particle 
and any photons involved in mediating the interaction wherein even neutral particles such as neutrons comprise charged sub-
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particles such as quarks and also possess magnetic moments that can give rise to induced electrodynamic currents and fields of a 
scatterer during interaction. 

Conservation of the photon’s angular momentum of   gives rise to the de Broglie relationship of the electron as given in 
the Classical Physics of the de Broglie Relationship section.  This result also applies to other fundamental particles.  Since all 
particle-slit interactions are mediated by photons, and the angular momentum change must be conserved in the far-field, the 
corresponding amplitude function that arises from the electron-aperture function is equivalent to that of a corresponding photon-
front aperture function.  Both amplitude functions are given by Eq. (8.22). 

In Michelson interferometry, photons interact with the optical elements wherein the velocity is slower than free space.  
There is dispersion in velocity based on phase such that photons speed up and slow down relative to each other and are bunched 
to create a pattern of concentration or compression and rarefaction of photon spatial density over each period of the incident 
electromagnetic wave.  The redistribution is observed as dark and light bands that repeat every photon wavelength based on the 
periodicity of the light wave comprising an ensemble of photons. The distribution pattern observed with diffracting electrons is 
equivalent to that for diffracting light.  Note that Eq. (8.16) represents a plane wave.  In the case of the Davison-Germer 
experiment, the intensity is given by Eq. (8.13) as the product of the Fourier transforms of the elemental pattern corresponding to 
a plane wave of wavelength /h p   and the array pattern of the nickel crystal. 

In general, the observed far-field position distribution is a picture of the particle transverse momentum distribution after 
the interaction.  As shown in the Classical Wave Theory of Electron Scattering section, the phase of the amplitude of the 
angular-momentum-distribution function contains the term ( )i s l k k r , where i sk k  is proportional to the momentum change 

of the incident particle upon scattering, since ik  is the initial momentum and sk  is the final momentum of the scattered 

particle such as an electron.  The wavelength,  , is the de Broglie wavelength associated with the momentum of the particle 

which is transferred through interactions corresponding to the wavenumber 
2

k



 .  Since the two-slit aperture pattern is the 

convolution of the single-slit pattern with two delta functions, the intensity of the two-slit experiment is given as cosine squared 
fringes of the single-slit pattern as given by Eq. (8.23) wherein the extended particle interacts with both slits with conservation of 
momentum to give the modulation of the single-slit momentum pattern.   

The energy is proportional to the square of the momentum.  The conservation of power flow requires that the intensity 
distribution representing the number of particles incident on the detector at a given position is given by the amplitude of the 
momentum-distribution function squared. 

During electron diffraction, the initially unpolarized electron becomes polarized to minimize the energy of interaction 
with the slit such that the angular momentum of the polarized free electron is parallel or antiparallel to the direction of 
propagation.  If the forward momentum is unchanged, then the electron is detected at x 0  in the far field.  However, the 
interaction with the slit can cause momentum transfer to the transverse direction that can be mediated by photons having   of 
angular momentum.  Each photon provides a torque to change the direction of the angular momentum vector; concomitantly, the 
linear momentum is redirected to have a transverse component.  The momentum transfer from the z-axis to the transverse or x-
axis in the far field depends on the strength and the time duration of a photon-generated torque as given in the Stern-Gerlach 
Experiment subsection of the Free Electron section.  The spatial distribution of the electron positions is determined by the 
conservation of momentum.  With sufficient application of torque the angular momentum vector is reversed.  The interaction of 
the free electron with the slit to reverse the angular momentum corresponds to a sign change of the amplitude, and periodic 
reversals of the angular momentum gives rise to maximum and minima of the amplitude.  Since the magnitude of the angular 
momentum change depends on the strength and duration of the torque, which has a finite half-life, the amplitude decreases 
steeply as a function of transverse momentum. 
 

CLASSICAL WAVE THEORY OF ELECTRON SCATTERING 
The following mathematical development of scattering is adapted from Bonham [4] with the exception that the CP model is a 
Fourier optics derivation for an exact elemental pattern, a plane wave, and an exact array pattern, an atomic orbital.  In contrast, 
Bonham derives similar scattering equations for an incident plane wave via an averaged probability density function description 
of the electron, the Born model. 

In scattering experiments in which Fraunhofer diffraction is the most important mode for scattering, measurements are 
made in momentum or reciprocal space.  The data is then transformed in terms of real space, where the structure of the scatterer 
is expressed in terms of distances from its center of mass.  There are, fortunately, well known mathematical techniques for 
making this transformation.  If we are given a model of the scattering system, we can, in general, uniquely calculate the results to 
be expected in reciprocal space for scattering from the model.  Unfortunately, the converse—deducing the nature of the scatterer 
uniquely by transforming the experimental results obtained in reciprocal space—is not always possible.  But, as we will see, 
certain possibilities can be eliminated because they violate fundamental physical laws such as Special Relativity. 

In classical optics, a diffraction pattern results whenever light is scattered by a slit system whose dimensions are small 
compared to the wavelength of light.  In order to develop a mathematical model for diffraction scattering, let us represent the 
amplitude of an incident plane wave traveling from left to right as ( )i te  k r , where the absolute magnitude of the wave vector k  

is 
2


k .  The quantity   is the wavelength of the incident radiation and k  is the momentum p .  The vector r  represents 

the position in real space at which the amplitude is evaluated, and   and t  are the angular frequency and time, respectively.  A 
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plane wave traveling in the opposite direction is ( )i te   k r  where the sign of k r  changes, but not the sign of t .  That is, we may 
reflect a wave from a mirror and reverse its direction, but we cannot change the sign of the time since that would indicate a 
return to the past.  The intensity of a classical wave is the square magnitude of the amplitude, and thus the intensity of a plane 
wave is constant in space and time.  If a plane wave is reflected back on itself by a perfectly reflecting mirror, then the resultant 
amplitude is ( ) ( ) 2cosi t i t i te e e         k r k r k r , and the intensity is 24cos i t i tI e e  k r  which is independent of time and 
given as 24cos k r  which clearly exhibits maxima and minima dictated by the wavelength of the radiation and the position in 
space at which intensity is measured. 
In an experiment, we measure the intensity of scattered particles, which is related to plane waves in a simple fashion.  To see 
this, consider a collimated plane-wave source, whose width is small compared to the scattering angle region where the scattering 
is to be investigated, incident upon a diffraction grating.  If we integrate the incident intensity over a time interval t , we obtain 
a number proportional to the energy content of the incident wave.  We may safely assume in most cases that the scattering power 
of the diffraction image does not change with time, so that a constant fraction of the incident radiation and hence constant energy 
will be transferred into the scattered wave.  We further assume that the effect of the diffraction grating on the incident radiation 
occurs only in a region very close to the grating in comparison to its distance from the detection point.  For elastic scattering (no 
energy transfer to the grating), once the scattered portion of the wave has left the field of influence of the scatterer, all parts of 
the scattered amplitude at the same radial distance from the scatterer must travel at the velocity of the incident wave.  For 
simplicity, we neglect resonance effects, which can introduce significant time delays in the scattering process even if the waves 
are scattered elastically.  The effects of resonance states on the scattering at high energies, is usually negligible and hence will 
not be discussed here.  In the case of inelastic scattering, in which waves are scattered with various velocities, we can focus our 
attention successively on parts of the outgoing scattered radiation that have velocities falling within a certain narrow band, and 
the following argument will hold for each such velocity segment.  The result of the integration of a constant-velocity segment of 
the scattered intensity over the volume element, 
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    (8.24) 

is proportional to the energy content in that portion of the scattered wave, and the result must be independent of R .  This 
restriction, which is a direct consequence of conservation of energy, then demands that the outgoing scattered waves have in 
polar coordinates the form: 

  ( , , ) ,
ikR

sc

e
R f

R
      (8.25) 

where the term 1/ R  is a dilution effect to guarantee energy on an ever-spreading wave. 

sc  only describes the scattered amplitude after the scattered wave has left the field of influence of the scatterer and is 

thus an asymptotic form.  The function ( )f    is called the scattered amplitude and depends on the nature of the scatterer.  The 
classical theory tells us that the scattered intensity is proportional to the square magnitude of the scattered amplitude; so, the 

intensity will be directly proportional to 
2

2

f

R

    
. 

Let us next consider the expression for the scattering of a plane wave by a number of disturbances in some fixed 
arrangement in space.  Consider the scatterers comprising a nucleus and electrons; this would correspond to a plane wave 
scattered by an atom. 

We shall choose the center of mass of the scatterer as our origin and shall for the most part consider dilute-gas electron 
scattering in the keV energy range, where the electron wavelength   lies in the range 0.03 Å 0.1 Å  .  The scattering 
experimental conditions are such that to a high degree of approximation, at least within 0.1% or better, we can consider the 
scattering as a single electron scattered by a single atom.  Note also that no laboratory to center-of-mass coordinate system 
transformation is required because the ratio of the electron mass to the mass of the target will be on the order of 310  or smaller. 

Let us consider an ensemble of scattering centers as shown in Figure 8.2. 
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Figure 8.2.   An ensemble of scattering centers. 

 
 
We may write the total scattered amplitude in the first approximation as a sum of amplitudes, each of which is produced by 
scattering from one of the single scattering centers.  In this view, we generally neglect multiple scattering, the re-scattering of 
portions of the primary scattered amplitudes whenever they come in contact with other centers, except in the case of elastic 
scattering in the heavier atoms.  Clearly a whole hierarchy of multiple-scattering processes may result.  The incident wave  may 
experience a primary scattering from one center, a portion of the scattered amplitude may re-scatter from a second center, and 
part of this amplitude may in turn be scattered by a third center (which can even be the first center), and so on. 

An incident plane wave will obviously travel a distance along the incident direction before scattering from a particular 
center, depending on the instantaneous location of that center.  To keep proper account of the exact amplitude and phase of the 
incident wave at the instant it scatters from a particular center, we select our origin, as mentioned previously, to lie at the center 
of mass.  The phase of the scattered wave depends on the total distance traveled from the center of mass to the detector.  We can 
now write the scattered amplitude as:  
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where l lz  R r  is the distance traveled from a plane perpendicular to the incident direction and passing through the center of 

mass and  ,lf    is the scattered amplitude characteristic of the l th  scattering center.  It should be clear at this point that the 

term  
exp

,l
l

l

ik
f  

       

R r

R r
 is made up of a plane wave in the scattered direction with the dilution factor 

1

lR r
 to account 

for energy conservation and with allowances made through  ,lf    for any special influence that the scatterer may have on the 

scattering because of the detailed structure of the scatterer.  The additional term 1ikze  enters whenever two or more scattering 
centers are encountered and accounts for the fact that the instantaneous location of our scattering centers may not coincide with 
planes of equal amplitude of the incident plane wave.  That is, in a  two-center case, the first particle may scatter a plane wave of 
amplitude +1 while at the same time a second scatterer may encounter an amplitude of -1.  The amplitudes of the incident plane 
wave which the various particles encounter depend on their separation from each other along the z-axis and on the wavelength of 
the incident radiation.  By adding to the phase, the projections of the various lr  vectors onto the incident direction, referenced to 

the same origin, this problem is automatically corrected.  As long as our composite scatterer is on the order of atomic 
dimensions, the magnitude of R  will be enormously larger than either lz  or lr .  This allows us to expand lR r  in a binomial 

expansion through first-order terms as lR
 

   
 

R
r

R
.  In the denominator, the first-order correction term R  can be neglected but 

not in the phase. 

To see this, suppose that R  is 6  10X  and l
R

r
R

 is / 2 .  Clearly / 2  would seem negligible compared to 6 10X , 

but look what a difference the value of a sine or cosine function has if / 2  is retained or omitted from the sum of the two terms.  
The product lkz  may be rewritten as lik r , where the subscript i on k  denotes the fact that ik  is a vector parallel to the incident 
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direction magnitude 
2

k



 .  Similarly, since 
R

R
 is a unit vector whose sense is essentially in the direction of the scattered 

electron, we may write lk 
R

r
R

 as s lk r  where sk  is a wave vector in the scattering direction.  The phase of Eq. (8.26) now 

contains the term ( )i s l k k r , where i sk k  must be proportional to the momentum change of the incident particle on 

scattering, since ik  is the initial momentum and sk  is the final momentum of the scattered electron.  This vector difference is 

labeled by the symbol s .  The asymptotic total amplitude is now expressible as: 
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   s r  (8.27) 

 
CLASSICAL WAVE THEORY APPLIED TO SCATTERING FROM ATOMS AND MOLECULES 
Let us first apply Eq. (8.27) to scattering from atoms.  We will consider the theoretical side of high-energy electron scattering 
and X-ray scattering from gaseous targets as well.  In the X-ray case, the intensity for an X-ray scattered by an electron is found 
experimentally to be a constant, usually denoted by clI , which varies inversely as the square of the mass of the scatterer where 

clI  is the Thompson X-ray scattering constant.  This means that X-rays are virtually un-scattered by the nucleus, since the ratio 

of electron to nuclear scattering will be greater than 
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, where pm  is the proton rest mass and em  is the 

electron rest mass.  The total amplitude for X-ray scattering by an atom can then be written as: 
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where cl  is a phase factor introduced because of a possibility that the X-ray scattered amplitude may be complex.  The intensity 

can be written as: 

  ( )l k

N N
ixr

total cl
l k l k

I I N e


 
  s r

 (8.29) 

where lk l k r r r  is an inter-electron distance.  Both expressions, Eqs. (8.28) and (8.29), correspond to a fixed arrangement of 

electrons in space.  For electrons, the intensity of scattering by another charged particle proceeds according to the Rutherford 

experimental law 
2

4
eI Z

I
s

 , where Z  is the charge of the scatterer and eI  is a characteristic constant.  Note that both clI  and eI  

include the 
2

1

R
 dilution factor and depend on the incident X-ray or electron beam flux 0I  and on the number 0N  of target 

particles per cubic centimeter in the path of the incident beam as the product 0 0I N .  We may take 

   2, expel
Z

f I i Z
s

         
,where  Z  is again an unknown phase shift introduced because of the possibility that the 

amplitude may be complex.  In the X-ray case for scattering by an atom, the intensity is independent of the phase cl , and we 

need not investigate it further.  In electron scattering, this term is different for electrons and nuclei since they contain charges of 
opposite sign and usually different magnitude.  The amplitude for this case is: 
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which for an atom simplifies further, since the nuclear position vector nr  is zero because the nucleus lies at the center of mass.  

The term  Z  is the nuclear phase and  1   is the phase for scattering by an individual electron.  The notation 1  signifies a 

unit negative charge on each electron as opposed to Z  on the nucleus, where Z  is the atomic number.  The intensity with 
0n r  becomes: 
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Note that the last two terms on the right in Eq. (8.31) are identical to those in Eq. (8.29).  

According to Huygens’ principle, the function 
i=1

i

N
ie  s r  of Eq. (8.30) represents the sum over each spherical wave source 

arising from the scattering of an incident plane wave from each point of the electron function where the wavelength of the 
incident plane wave is given by the de Broglie equation /h p  .  The sum is replaced by the integral over   and   of the 
single point element aperture distribution function.  The single point element aperture distribution function, ( , , )a z  , for the 
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scattering of an incident plane wave by an atom is given by the convolution of a plane wave function with the electron atomic 
orbital function.  The convolution is  0( , , ) ( ) [ ( )] ,ma z z r r Y         where ( , , )a z   is given in cylindrical coordinates, 

( )z , the xy-plane wave is given in Cartesian coordinates with the propagation direction along the z-axis, and the atomic 

orbital function,  0[ ( )] ,mr r Y    , is given in spherical coordinates.  Using cylindrical coordinates, 
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The general Fourier transform integral is given in reference [5]. 
For an aperture distribution with circular symmetry, ( )F s , the Fourier transform of the aperture array distribution 

function, ( )A z , is [5]: 
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 ( )F s  (8.35) 

The same derivation applies for the two-point term i j
N N

i

i j i j

e


 
 s r

 of Eq. (8.31).  The sum is replaced by the integral over   and 

 of the single point element autocorrelation function, ( , , )z r , of the single point element aperture distribution function.  For 
circular symmetry [5] : 
 ( , , ) ( , , ) ( , , )z a z a z      r  (8.36) 
and 
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and  
 ( ) ( ) ( )R z A z A z  (8.39) 

For closed shell atoms in single states such as rare gases, ( )Y   , the spherical harmonic angular function of the electron 
function is a constant, and only two expressions are possible from all orders of averaging over all possible orientations in space.  
For the X-ray case the scattered intensities are: 
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and 
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while for electrons, the scattered intensities are: 
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           (8.43) 

where the subscript 1 denotes an amplitude derivation and 2 an intensity derivation.  The aperture function of the nucleus is a 
delta function of magnitude Z , the nuclear charge.  The Fourier transform is a constant of magnitude Z  as appears in Eqs. 
(8.42) and (8.43).  Note that the Fourier convolution theorem proves the equivalence of Eq. (8.40) and Eq. (8.41) and the 
equivalence of Eq. (8.42) and Eq. (8.43). 

The aperture array distribution function,  A z , Eq. (8.34), corresponds to the electron radial distribution function of 

Bonham, and the aperture array autocorrelation function  R z , Eq. (8.38), corresponds to the electron pair correlation function 

of Bonham [4]. 
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ELECTRON SCATTERING EQUATION FOR THE HELIUM ATOM BASED ON THE 
ATOMIC ORBITAL MODEL 
The closed form solution of all two electron atoms is given in the Two Electron Atom section.  In the helium ground state, both 
electrons atomic orbitals are at a radius where: 
 1 00.567r a  (8.44) 

The helium atom comprises a central nucleus of charge 2e  which is at the center of an infinitely thin spherical shell comprising 
two bound electrons of 2e .  Thus, the helium atom is neutrally charged, and the electric field of the atom is zero for 

00.567r a .  The Rutherford scattering equation for isolated charged particles does not apply.  The appropriate scattering 
equation for helium in the ground state can be derived as a Fourier optics problem as given in the Classical Scattering of 
Electromagnetic Radiation section.  The incident plane-wave free electron given in the Electron in Free Space section scatters 
from the helium atom by time-symmetrically deforming onto and from the surface of the helium atom as shown in Figure 8.3 
such that the far field intensity pattern of many electrons is modeled by Huygens’s Principle. 
 
Figure 8.3.   The time-symmetrical elastic scattering behavior of a free electron from a helium atom. 
 

 
 

The aperture distribution function, ( , , )a z  , for the scattering of an incident plane wave by the He atom is given by the 

convolution of the plane wave function with the two electron atomic orbital Dirac delta function of 00.567radius a  and 

charge/mass density of 
2

0

2

4 0.567 )a 
.  For radial units in terms of 0a  
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where ( , , )a z   is given in cylindrical coordinates, ( )z , the xy-plane wave is given in Cartesian coordinates with the 

propagation direction along the z-axis, and the He atom atomic orbital function, 02
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, is given in 

spherical coordinates. 
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For circular symmetry [5], 
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Eq. (8.47) may be expressed as: 
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Substitute 
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Substitution of the recurrence relationship, 
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into Eq. (8.49),  and, using the general integral of Apelblat [6] : 
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with 0a z w  and 0b z s  gives: 
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The magnitude of the single point element autocorrelation function, | ( , , ) |z r , is given by the convolution of the magnitude of 
the single point element aperture distribution function, ( , , )a z  , with itself. 
 | ( , , ) | | ( , , ) | | ( , , ) |z a z a z      r  (8.53) 
The Fourier convolution theorem permits Eq. (8.53) to be determined by Fourier transformation. 
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where C  is an integration constant for which ( )R   equals zero at 1.134 or a  
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 0 0 00 2 ;  0.567z z z a     

Eq. (8.56) was derived from a similar transform by Bateman [7].  The electron elastic scattering intensity is given by a constant 
times the square of the amplitude given by Eq. (8.52).   
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RESULTS 
The magnitude of the single point element aperture distribution function, ( , , )a z  , convolved with the function 0( 0.567 )z a   

is shown graphically in Figure 8.4 in units of 0a .  The function was normalized to 2. 

The magnitude of the single point element autocorrelation function, ( , , )z r , convolved with the function 

0( 1.134 )z a   is shown graphically in Figure 8.5 in units of 0a .  The function was normalized to 2 and the constant of 

0.352183 was added to meet the boundary condition for the convolution integral. 
The experimental setup for the measuring the intensity of elastically scattered 500 eV electrons from an atomic beam of 

helium is shown in Figure 8.6. 
The experimental results of Bromberg [8], the extrapolated experimental data of Hughes [8], the small angle data of 

Geiger [9], and the semi-experimental results of Lassettre [8] for the elastic differential cross section for the elastic scattering of 
electrons by helium atoms are shown graphically in Figure 8.7.  The elastic differential cross section as a function of angle 
numerically calculated by Khare [8] using the first Born approximation and first-order exchange approximation also appear in 
Figure 8.7. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 8.6.   The incident electron and electron beams intersect and the scattered free electrons are detected in the far field. 
 

 

Figure 8.5.   The magnitude of the single point element 
autocorrelation function, ( , , )z r , convolved with the 

function 0( 1.134 )z a   is shown graphically in units of 0a .  

Figure 8.4.   The magnitude of the single point element 
aperture distribution function, ( , , )a z  , convolved with the 

function 0( 0.567 )z a   in units of 0a . 
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Figure 8.7. The experimental results of Bromberg [8], the extrapolated experimental data of Hughes [8], the small angle 
data of Geiger [9], and the semi-experimental results of Lassettre [8] for the elastic differential cross section for the elastic 
scattering of electrons by helium atoms and the elastic differential cross section as a function of angle numerically calculated by 
Khare [8] using the first Born approximation and first-order exchange approximation.   

 
These results, which are based on a quantum mechanical model, are compared with experimentation [8, 9].  The closed-form 
function (Eqs. (8.57) and (8.58)) for the elastic differential cross section for the elastic scattering of electrons by helium atoms is 
shown graphically in Figure 8.8.  The scattering amplitude function, ( )F s  (Eq. (8.52)), is shown as an insert. 
 
Figure 8.8.   The closed form function (Eqs. (8.57) and (8.58)) for the elastic differential cross section for the elastic scattering 
of electrons by helium atoms.  The scattering amplitude function, ( )F s  (Eq. (8.52)), is shown as an insert. 
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DISCUSSION 
The magnitude of the single point element autocorrelation function, ( , , )z r , convolved with the function 0( 1.134 )z a   

(Figure 8.5) and the electron pair correlation function, ( )P r , of Bonham [10] are similar.  According to Bonham [10], the 
electron radial distribution function, ( )D r , calculated from properly correlated CI wave functions for He is similar in shape to 
the ( )P r  function but its maximum occurs at a value of r  almost exactly half of that for ( )P r .  Thus, the function ( )D r  is 
similar to the magnitude of the single point element aperture distribution function, ( , , )a r z , (Figure 8.4).  ( )D r  and ( )P r  lead 
to a most probable structure for the He atom in which the electrons and the nucleus are collinear with the nucleus lying between 
the two electrons [4].  This is an average picture that is an ad hoc modification of the true model involving a three-point-body 
atom and a point-particle incident electron for which it is impossible to get neutral scattering, let alone the observed pattern 
shown in Figure 8.7.  Furthermore, even with this unjustified modification, it is apparent from Figure 8.7 that the modified 
quantum mechanical calculations fail completely at predicting the experimental results at small scattering angles; whereas, Eq. 
(8.57) predicts the correct scattering intensity as a function of angle.  Another problem for the quantum mechanical model is that 
the helium wave equation used to calculate the scattering is not the solution of the Schrödinger equation for the helium atom that 
gives the correct ionization energy.  Since it involves three bodies, the exact solution is impossible to be obtained.  Many 
solutions have been obtained with great effort using various perturbation and adjustable-parameter methods as given by 
McQuarrie [11].  Such solutions are very dubious in that they are non-unique, not based on physical laws, and are better 
classified as curve fitting techniques in that they use up to 1000 adjustable parameters to obtain the ionization energy [11]. 

In the far field, the solution of the Schrödinger equation for the amplitude of the scattered plane wave incident on a three 
dimensional static potential field ( )U r  is identical to Eq. (8.26) only if one assumes a continuous distribution of individual 

scattering points and replaces the sum over   in Eq. (8.26) with an integral over the scattering power lf  of point   replaced by 
the instantaneous value of the potential at the same point.  This result is the basis of the failures of Schrödinger’s interpretation 
that ( )x  is the amplitude of the electron over three-dimensional space in some sense since the entire electron must correspond 
to each point   and the superseding interpretation of Born that ( )x  represents a probability function of a point electron.  The 
Born interpretation can only be valid if the speed of the electron is equal to infinity.  (The electron must be in all positions 
weighted by the probability density function during the time of the scattering event).  The correct aperture function for the Born 
interpretation is a Dirac delta function, ( )r , having a Fourier transform of a constant divided by 2s  which is equivalent to the 
case of the point nucleus (Rutherford Equation).  The Born interpretation must be rejected because the electron velocity cannot 
exceed c  without violating special relativity.   

Solutions to the Schrödinger equation involve the set of Laguerre functions, spherical Bessel functions, and Newmann 
functions.  From the infinite set of solutions to real problems, a linear combination of functions and the amplitude and phases of 
these functions are sought which gives results that are consistent with scattering experiments.  The Schrödinger equation is a 
statistical model representing an approximation to the actual nature of the bound electron.  Statistical models are good at 
predicting averages as exemplified by the reasonable agreement between the calculated and experimental scattering results at 
large angles.  However, in the limit of zero scattering angle, the results calculated via the Schrödinger equation are not in 
agreement with experimentation.  In the limit, the “blurred” representation cannot be averaged, and only the exact description of 
the electron will yield scattering predictions which are consistent with the experimental results. 

Also, a contradiction arises in the quantum mechanical scattering calculation.  For hydrogen electron orbitals, the n    
orbital is equivalent to an ionized electron.  According to the quantum mechanical scattering model, the incident ionized electron 
is a plane wave.  However, substitution of n    into the solution of the Schrödinger equation yields a radial function that has an 
infinite number of nodes and exists over all space.  The hydrogen-like radial functions have 1n    nodes between 0r   and 
r   .  In fact, as n   the Schrödinger equation becomes the equation of a linear harmonic oscillator [12].  The wavefunction 
shows sinusoidal behavior; thus, the wavefunction for the free electron can not be normalized and is infinite.  In addition, the 
angular momentum of the free electron is infinite since it is given by   21    where  .  The results of the Davison-

Germer experiment confirm that the ionized electron is a plane wave.  In contrast, for the present atomic orbital model, as n  
goes to infinity the electron is a plane wave with wavelength /h p   as shown in the Electron in Free Space section. 

Although there are parallels in the mathematical derivations wherein the Schwartz inequality is invoked, the physics of 
the Heisenberg Uncertainty Principle is quite distinct from the physics of the rise-time/band-width relationship of classical 
mechanics [13] as given in the Resonant Line Shape and Lamb Shift section.  The Heisenberg Uncertainty Principle is derived 
from the probability model of the electron by applying the Schwartz inequality [14] to obtain the “indefiniteness” in the 
conjugate electron position and momentum in the absence of measurement; whereas, the physical rise-time/band-width 
relationship of classical mechanics is an energy conservation statement according to Parseval’s Theorem.  The Born model of the 
electron violates Special Relativity.  The failure of the Born and Schrödinger model of the electron to provide a consistent 
representation of the states of the electron from a bound state to an ionized state to a scattered state also represents a failure of 
the dependent Heisenberg Uncertainty Principle. 

In contrast, the Maxwellian, exact atomic orbital model provides a continuous representation of all states of the electron 
including the ionized state as a plane wave having the de Broglie wavelength as given in the Electron in Free Space section.  
Using the exact, unique solution of the helium atom given in the Two-Electron Atom section, in a closed-form solution, the 
Maxwellian model predicts the experimental results of the electron scattering from helium for all angles.  The solution of the 
helium atom is further proven to be correct since it is used to solve up through twenty-electron atoms in the Three- Through 



Classical Photon and Electron Scattering 295

Twenty-Electron Atoms section and 100 excited-state energy levels in the Excited States of Helium section.  In the former case, 
the physical approach was applied to multielectron atoms that were solved exactly disproving the deep-seated view that such 
exact solutions cannot exist according to quantum mechanics.  The predictions from general solutions for one through twenty-
electron atoms are in remarkable agreement with the experimental values known for 400 atoms and ions.  In the latter case, the 
results given for any given n  and   quantum number in the equations agree remarkably well—up to 6 significant figures where 
the data is obtainable to that accuracy.  These consistent results and the failure of the true quantum mechanical model as well as 
the unphysical Born approximation disprove the nature of the electron as a point particle which further disproves the primary 
assumption of quantum mechanics.  The results directly prove that the electron is an extended particle and specifically show, in 
the case of the helium atom, that the electron function comprises two paired, electron atomic orbitals at a radius given by Eq. 
(8.44) as derived in the Two-Electron Atom section.  Furthermore, the deep-seated notion that probability waves are required to 
explain the nature of the double-slit experiment is dispelled by classical predictions using the correct nature of the electron 
considered next. 
 
PHYSICS OF CLASSICAL ELECTRON DIFFRACTION RESOLVES THE WAVE-
PARTICLE DUALITY MYSTERY OF QUANTUM MECHANICS 
The beginning of the Wave-Particle Duality section describes how early 20th century theoreticians proclaimed that light and 
atomic particles have a wave-particle duality that was unlike anything in our common everyday experience.  The wave-particle 
duality is the central mystery of quantum mechanics—the one to which all others could ultimately be reduced.  The current 
mental picture of the two-slit experiment is shown in Figures 42.1-42.4.  The classical depiction of the two-slit-experiment 
shown in Figures 8.9-8.11 is very similar to the depiction of the quantum notion of the wave-particle duality shown in Figure 
42.4.  In fact, the mathematics of the quantum mechanical and classical pictures is essentially identical including the relationship 
between the transverse momentum and position given by Eqs. (8.60) and (8.61).  However, what is very different is the physics.  
Consider the quantum conundrum due to the nature of the photon and electron being point particles.  If each electron passes 
individually through one slit, with what does it “interfere?”  Although each electron arrives at the target at a single place and a 
single time, it seems that each has passed through—or somehow felt the presence of both slits at once.  Thus, the electron is 
understood in terms of a wave-particle duality as represented in Figure 42.4. 

Here, the point electron or photon is everywhere at once—rather than being local to the slits of nanometer dimensions it 
exits as a probability wave of equal amplitude from positive to negative infinity, simultaneously!  It is incident to and transmitted 
through both slits simultaneously, “guided” by the probability wave over all space with a phase that depends on the Heisenberg 
Uncertainty Principle: 

 
2

x  p


 (8.59) 

The phase contains the term ( )i s l k k r , where i sp  k k  is interpreted as the contribution to the uncertainty in the 

momentum of the incident particle on scattering, since ik  is the initial momentum and sk  is the final momentum of the 

scattered particle such as an electron.  In the classical picture, the phase also contains the term ( )i s l k k r , where i sk k  is the 

physical momentum change of the incident particle on scattering, since ik  is the initial momentum and sk  is the final 

momentum of the scattered particle.  In both cases, x  corresponds to the transverse displacement of the particle due to 
diffraction. 

Furthermore, each electron only goes through one slit classically, but it is imprinted with the wave character of the 
photon that it creates across both slits due to its interaction with the slit.  An electromagnetic wave exits.  Quantum mechanics 
reproduces the mathematics that corresponds to this physical electromagnetic wave by invoking a nonsensical waving 
probability.  Thus, it is stuck with the unfortunate result that the “wave-particle duality is unlike anything in our common 
everyday experience.”  Physics can now be reinstated over mysticism for this simple experiment based on an understanding of 
the physical nature of fundamental particles.  An outline of the classical explanation of the observations made on the double-slit 
experiment is shown in Figures 8.9A-F, 8.10, and 8.11. 
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Figure 8.9.   The electron-slit interaction is mediated by electron-induced radiation of photons from the split aperture that 
causes transverse electron displacements with the photon-momentum distribution imprinted onto that of the diffracting electrons 
such that the transverse momentum distribution in the far-field is a result of this interaction and is characteristic of the slit 
pattern.  (A) The approaching charged electron interacts with both slits by inducing slit mirror currents (blue).  (B) The slit’s 
electron mirror currents that mediate its interaction with the approaching charged electron cause emission of photons.  (C) The 
superposition of the photons forms a photon field characteristic of the slits as its source.  (D) The electron angular momentum 
vector precesses about that of an absorbed photon from the slit photon field.  (E) The photon is readmitted and the electron 
gained transverse momentum depending on the strength and duration of the electron’s interaction with the photon field wherein 
the photon’s angular momentum is conserved according to the change in the electron’s de Broglie wavelength.  (F) Rather than 

uncertainty in position and momentum according to the Uncertainty Principle: 2x  p
 , p  is the physical momentum change 

of the incident electron and x  is the physical distance change from the incident direction such that the electron distribution in 
the far field is the Fourier transform of the slit pattern. 
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Consider a beam of electrons propagating in the z-axis direction.  The electron is a plane-wave with momentum zk   

initially along the z-axis only.  The   of angular momentum of the free electron is perpendicular to the plane lamina and is 
initially in a random orientation relative to the z-axis.  To minimize the energy of interaction, the slit polarizes the electron such 
that its angular momentum becomes aligned parallel or antiparallel to the z-axis (Figure 8.9A).  The slit is comprised of matter 
having electrons that can provide image charges due to the electric field of the incident electron (Figure 8.9A).  The slit’s 
electron-mirror currents that mediate its interaction with the approaching charged electron cause emission of photons (Figure 
8.9B).  When one interacts with the electron (Figure 8.9C), the electron angular-frequency change corresponding to the elctron-
de-Broglie-wavelength change matches the frequency of the photon as given in the Classical Physics of the de Broglie 
Relationship section.  The result of this interaction over time is the reorientation and transverse displacement of the electron’s 
angular elastic diffraction, the energies are low, and the photons are large, encompassing and emanating from both slits.  Each 
photon has a quantized angular momentum of  .  The   of angular momentum of the electron precesses about the   of angular 
momentum vector of the absorbed photon to cause a momentum transfer from the z-axis to the transverse axis.  The photon is 
reemitted (Figure 8.9E), and the electron gained transverse momentum depending on the strength and duration of the electron’s 
interaction with the photon field wherein the photon’s angular momentum is conserved according to the change in the electron’s 
de Broglie wavelength. 

Over time, the electron beam statistically produces a uniform distribution across the slits.  (Here, the statistics are 
deterministic and local/causal unlike the quantum mechanical case.)  The photon pattern is also uniform across the slit.  Since the 
electron and each photon that mediates the slit-electron interaction have quantized angular momentum in units of  , the photon 
far-field pattern is imprinted on the electron beam pattern over time.  The resulting transverse-momentum map is given by the 
Fourier transform of the two-slit aperture which arises classically from a consideration of conservation of power flow.  The 
amplitude is periodically positive and negative corresponding to the cyclical reversal of the electron angular momentum as 
shown in Figure 8.10.  The amplitude decreases from the center line due to the requirement of an increasing momentum transfer 
along the transverse axis from the center line with a decreasing probability for a long-duration photon-electron interaction or 
coupling with multiple photons to achieve increasing transverse momentum transfer. 
 
Figure 8.10.   The amplitude of the transverse electron momentum is a sinc function due to the decreasing probability of 
photon interactions causing a periodic reversal of the electron’s angular momentum vector with an increasing transverse 
momentum transfer. 
 

 
 

Since the number of electrons hitting a given position over time goes as the electron kinetic energy, the intensity pattern is given 
by the square of the amplitude.  The predicted result shown in Figure 8.11 is the observed classical double slit interference 
pattern. 
 
Figure 8.11.   The classically predicted far-field electron distribution of the two-slit experiment matches that observed. 
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EQUATIONS OF CLASSICAL DIFFRACTION 
Consider the double-slit electron diffraction experiment shown in Figure 8.9.  The interaction with the slit can cause momentum 
transfer to the transverse direction that can be mediated by photons having   of angular momentum.  If the forward momentum 
is unchanged, then the electron is detected at x 0  in the far field.  However, momentum transfer from the z-axis to along the x-
axis in the far field may occur depending on the strength and the time duration of a photon-generated torque as given in the 
Stern-Gerlach Experiment subsection of the Free Electron section.  Also see Patz [15] and Slichter [16].  The spatial distribution 
of the electron position is determined by the conservation of momentum.  Thus, the electron source at the aperture is analogous 
to an antenna, and the spatial electron-density pattern has as a parallel to the radiation pattern of the antenna as given by Kong 
[17].  If each point on the electron across a diffraction slit can act as a point source of a spherical wave according to Huygens’ 
Principle, then the momentum pattern in the far field is given as the Fourier transform of the momentum-aperture function, and 
the electron density is given as the square of the amplitude of the Fourier transform.   

Thus, the result of the double-slit experiment given by Eq. (8.23) can be interpreted as the positions of the electrons due 
to conservation of momentum following a semi-elastic interaction with the slit apparatus.  The interaction is a time-dynamic 
equipotential and the forces statistically2 cause the electrons over time to propagate as spherical waves from each point of a 
Laplacian surface according to Huygens’ Principle.  The incident pattern over time is determined by the superposition of the 
position and momenta of the incident individual electrons.  The Fourier transform result given by Eq. (8.23) can be shown to 
arise by considering the diffraction of each electron individually. 

The free electron is unpolarized, but the minimum energy constraint with slit-interrelations causes the polarization of the 
incident electrons.  The angular momentum of the polarized electron may be parallel or antiparallel (negative direction) with 
respect to the z-axis.  As shown in the Electron in Free Space section, there is a correspondence between the properties of the 
states of the free electron based on interactions with photons and those of bound-excited-state electrons.  The time- and spherical 
harmonic current-density functions of bound and free-electron states comprise source currents for electromagnetic fields that are 
solutions of the wave equation as given in the Electron Source Current section.  As shown in the Selection Rules section, 
multipole fields of an electron follow the same Maxwellian physics as that of a macroscopic radiating source.  The radiation of a 
multipole of order (  , m ) carries m  units of the z component of angular momentum comprised of   per photon of energy 

 . 
The distribution as a function of the position of the detector must conserve the angular momentum of the electron having 

an intrinsic angular momentum of   and an induced multipole of order (  , m ).  The asymptotic electron-momentum total 

amplitude in the far field due to the scattering interactions of N  electrons with the slit mediated by photons with   of angular 
momentum follows from Eq. (8.27) given in the Classical Wave Theory of Electron Scattering section and Eq. (8.32) in the 
Classical Wave Theory Applied to Scattering from Atoms and Molecules section.  Consider the assembly of N  coherently 
scattered electrons.  The slit-electron interaction is an energy minimum or equipotential.  The angular terms of Eq. (8.27) sum to 

unity.  According to Huygens’ principle, the function 
i=1

i

N
ie  s r  of Eq. (8.32) represents the sum over each spherical wave source 

arising from the scattering of an incident plane wave from each point of the slit where the wavelength of the incident plane wave 
is given by the de Broglie equation /h p  .  (The Green Function of Eqs. (8.25-8.27), is also given by Eq. (6.62) of Jackson 
[3] as the solution of the wave equation (Eq. (6.58) of Jackson [3]) as given in the Spherical Wave subsection of the Equation of 
the Photon section.)  The sum is replaced by the integral over   of the single point element aperture distribution function.  For 
the case of a single slit, the aperture function is given by Eq. (8.15).  Then, the amplitude of the scattering in the far field given 
by Eqs. (8.16) and (8.32) is: 
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wherein the phase contains the term ( )i s l k k r , where i sk k  is proportional to the momentum change of the incident particle 

on scattering, since ik  is the initial momentum and sk  is the final momentum of the scattered electron.  This vector difference 
labeled by the symbol s  is given by: 
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The single-slit-momentum-amplitude pattern is then given by Eq. (8.22).  The intensity of electrons is proportional to their 
kinetic energy which carry the electrons to the analyzer where it was shown by Bonham to be required in order to insure 
continuity of power flow for wavelets from a single source [4] and was used as the basis of Eqs. (8.27) and (8.32).  The intensity 
pattern of electrons is then given as the square of the amplitude and, thus, the square of the momentum which is proportional to 
the electron energy.  It follows that the single-slit pattern is given as the square of Eq. (8.18) and the double-slit pattern is given 

 
2 Here, the underlying physics is deterministic.  Quantum mechanics postulates that the electron is a point-particle-probability wave wherein its sampling 
or measurement creates the statistics corresponding to a stochastic reality.  In general, the theory of statistics is based on deterministic but unknown 
information.  The concepts of quantum mechanics of an underlying distribution in a state of indeterminism as well as negative probability are nonsensical 
and are not a part of this classical result. 
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by Eq. (8.23). 
The double-slit experiment may be modeled physically, and a computer simulation outlined in the Computer Simulation 

of Classical Electron Diffraction section is posted on the web [18].  The interaction of each incoming electron with the slit or 
slits causes a redistribution of the incident momentum that is shown visually as a corresponding trajectory from the aperture to 
the detector. 

 
The algorithm uses N  electrons that statistically form a uniform distribution at the aperture.  To get the points of 

impact, the momentum-distribution pattern is calculated using Eq. (8.22) that arise from classical statistics.
 
 For diffraction at a 

single slit, the transverse-momentum-density map is given by: 

  2aCsin k x  (8.62) 

which is spatially diluted according to k x  and scaled according to the far field factor of 
a

f
.  The sine dependence of Eq. (8.62) 

is equivalent to that of the dot product of the plane lamina of the free electron with the z-axis.  Each incident electron that is 
initially polarized by the slit interaction precesses due to the photon mediated, interaction-generated torque to reorient the plane 
lamina wherein the cross section of the interaction is proportional to this dot product.  The sine dependence can easily be 
appreciated by considering that the interaction is concentrated at one end of the plane-lamina free electron when it is oriented 
perpendicularly to the slit; whereas, it is evenly distributed throughout the plane lamina when it is parallel to the slit. 

The intensity of the one-slit pattern is then given as the square of the amplitude.  Since the two-slit aperture pattern is the 
convolution of the single-slit pattern with two delta functions, the intensity of the two-slit experiment is given as cosine squared 
fringes of the single-slit pattern as given by Eq. (8.23) wherein the extended electron interacts with both slits with conservation 
of momentum to give the modulation of the single-slit momentum pattern.  Thus, the superposition of electrons gives the 
classical result.  The double-slit interference pattern associated with the wave-particle duality arises naturally whether electrons 
add over time or space. 

CP predicts that the angular momentum of electrons or photons periodically reverses direction as a function of the 
transverse distance in the far field of the one-, two- or n-slit diffraction experiment.  The pattern is not due to constructive 
interference of electron- or photon-probability waves; rather it is a map of the transverse momentum.  The intensity is given by 
the amplitude squared, since energy and, thus, the number of electrons or photons is proportional to the amplitude of the 
momentum squared.  The amplitude varies from a maximum to a minimum at which point the angular momentum of the photon 
or electron reverses direction, then it goes to a maximum again over a periodic cycle.  The amplitude decreases away from the 
longitudinal axis of the slit in the transverse direction since the probability of multiple reversals is low.  The amplitude also 
decreases when there is a large change in the angular momentum that is redirected to a transverse momentum component 
corresponding to a large torque or a long interaction time. 

This can be tested with electrons by polarizing a beam using a Stern-Gerlach analyzer before the slit to select only 
electrons polarized parallel or antiparallel to the z-axis (the propagation direction of the beam).  These electrons are then 
analyzed in the far field with a second Stern-Gerlach-type analyzer, which determines the polarization as a function of position 
in the transverse plane or along a transverse axis.  Alternate polarization as a function of transverse distance confirms this 
mechanism of the n-slit pattern.   

Recently, it was shown that the induction of surface currents on a metal sheet parallel to the propagation direction of the 
electron beam of a double-slit experiment interfered with the pattern as expected [19-20].  Furthermore, the double slit 
experiment has been demonstrated on a macroscopic scale using droplets bouncing on a vertically vibrated bath [21].  Here the 
localized droplets are coupled to surface waves generated in the bath and random transverse deviations imposed by restrictions 
of two slits results in a double slit pattern over many flights of droplets to a detector analogous to the transverse deviations of 
localized electrons or photons during flight due to interactions with the slits and corresponding currents and electromagnetic 
waves described here.  In other recent experiments, the classical mechanism of the double slit experiment has been directly 
confirmed for photons.  The results of Kocsis et al. [22] are consistent with the interpretation that photons have a determined 
position and momentum, and with an appropriately sensitive measurement apparatus, the causal transverse momentum and 
position change imparted by close double slits over an ensemble of photons that individually travel through a slit of the pair can 
be determined wherein the far-field pattern of the superposition of the transverse displacements imparted by the slit interaction 
over the ensemble is an interference pattern.  The old view of constructive and destructive interference of waves is disproved.  
Photons cannot be created or destroyed by constructive or destructive interference, respectively.  The pattern is merely due to 
photon trajectories corresponding to conservation of momentum altered by photons propagating through close slits.  The 
uncertainty principle as the mechanism of the double-slit interference pattern is similarly disproved by the experiments of Durr et 
al. [23] as shown in the Wave-Particle Duality is Not Due to the Uncertainty Principle section.  Again, the appearance and 
cancellation of the interference pattern, which in this case involves 85Rb  atoms diffracted from standing light waves as the 
atomic states are manipulated, is predicted classically as a transverse position density pattern corresponding to the transverse 
momentum distribution caused by the interaction of the manipulated states in the atoms with the standing light waves. 
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Chapter 9 
 
EXCITED STATES OF HELIUM 
  
 
 
 
 
Bound electrons are described by a charge-density (mass-density) function that is the product of a radial delta function 
( ( ) ( )nf r r r  ), two angular functions (spherical harmonic functions), and a time harmonic function.  Thus, a bound electron 

is a dynamic “bubble-like” charge and current-density function.  The two-dimensional spherical surface can exist in a bound 
state at only specified distances from the nucleus.  More explicitly, the uniform current-density function 0

0 ( , )Y    (Eqs. (1.27-

1.29)) called the electron atomic orbital that gives rise to the spin of the electron is generated from two current-vector fields 
(CVFs).  Each CVF comprises a continuum of correlated orthogonal great circle current-density elements (one dimensional 
"current loops").  The current pattern comprising each CVF is generated over a half-sphere surface by a set of rotations of two 

orthogonal great circle current loops that serve as basis elements about each of the  , ,0 x y zi i i  and 
1 1

, ,
2 2

  
 

x y zi i i -axis; 

the span being   radians.  Then, the two CVFs are convoluted, and the result is normalized to exactly generate the continuous 
uniform electron current density function 0

0 ( , ) Y  covering a spherical shell and having the three angular momentum 

components of /
4xy   L


 and 
2




zL  (Figure 1.23)1.   

The spin function of the electron corresponds to the nonradiative 1n  ,   = 0 state which is well known as an s state or 
orbital.  (See Figure 1.1 for the charge function and Figure 1.22 for the current function.)  In cases of orbitals of excited states 
with the   quantum number not equal to zero and which are not constant as given by Eq. (1.27), the constant spin function is 
modulated by a time and spherical harmonic function as given by Eq. (1.29) and shown in Figure 1.2.  The modulation or 
traveling charge-density wave corresponds to an orbital angular momentum in addition to a spin angular momentum.  These 
states are typically referred to as p, d, f, etc. orbitals. 

Each atomic orbital is a spherical shell of negative charge ( total charge e  ) of zero thickness at a distance nr  from the 

nucleus ( charge Ze  ).  It is well known that the field of a spherical shell of charge is zero inside the shell and that of a point 
charge at the origin outside the shell [1] (See Figure 1.32).  The field of each electron can be treated as that corresponding to a 

e  charge at the origin with 
2

04

e

r


E  for nr r  and 0E  for nr r  where nr  is the radius of the electron atomic orbital.  

Thus, as shown in the Two-Electron Atoms section, the central electric fields due to the helium nucleus are 
2

0

2

4

e

r
E  and 

2
04

e

r
E  for 1r r  and 1 2r r r  , respectively.  In the ground state of the helium atom, both electrons are at 1 2 00.567r r a  .  

When a photon is absorbed, one of the initially indistinguishable electrons called electron 1 moves to a smaller radius, and the 
other called electron 2 moves to a greater radius.  In the limiting case of the absorption of an ionizing photon, electron 1 moves 
to the radius of the helium ion, 1 00.5r a , and electron 2 moves to a continuum radius, 2r   .  When a photon is absorbed by 

the ground state helium atom it generates an effective charge, P effZ  , within the second atomic orbital such that the electrons 

move in opposite radial directions while conserving energy and angular momentum.  We can determine P effZ   of the “trapped 

photon” electric field by requiring that the resonance condition is met for photons of discrete energy, frequency, and wavelength 
for electron excitation in an electromagnetic potential energy well. 

 
1 /   designates both the positive and negative vector directions along an axis in the xy-plane. 
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It is well known that resonator cavities can trap electromagnetic radiation of discrete resonant frequencies.  The atomic 
orbital is a resonator cavity that traps single photons of discrete frequencies.  Thus, photon absorption occurs as an excitation of 
a resonator mode.  The free space photon also comprises a radial Dirac delta function, and the angular momentum of the photon 

given by   41
Re ( )

8
dx

c
   m r E B*   in the Photon section is conserved [2] for the solutions for the resonant photons and 

excited state electron functions as shown for one-electron atoms in the Excited States of the One-Electron Atom (Quantization) 
section.  The correspondence principle holds.  That is the change in angular frequency of the electron is equal to the angular 
frequency of the resonant photon that excites the resonator cavity mode corresponding to the transition, and the energy is given 
by Planck’s equation.  It can be demonstrated that the resonance condition between these frequencies is to be satisfied in order to 
have a net change of the energy field [3].   

In general, for a macroscopic multipole with a single m  value, a comparison of Eq. (2.62) and Eq. (2.55) shows that the 
relationship between the angular momentum zM , energy U , and angular frequency   is given by Eq. (2.63): 

 zdM m dU

dr dr
  (9.1) 

independent of r  where m  is an integer.  Furthermore, the ratio of the square of the angular momentum, 2M , to the square of 
the energy, 2U , for a pure (  , m ) multipole follows from Eq. (2.55) and Eqs. (2.60-2.62) as given by Eq. (2.64): 

 
2 2

2 2

M m

U 
  (9.2) 

From Jackson [4], the quantum mechanical interpretation is that the radiation from such a multipole of order (  , m ) carries off 
m  units of the z component of angular momentum per photon of energy  .  However, the photon and the electron can each 
possess only   of angular momentum which requires that Eqs. (9.1-9.2) correspond to a state of the radiation field containing m  
photons.   

As shown in the Excited States of the One-Electron Atom (Quantization) section during excitation the spin, orbital, or 
total angular momentum of the atomic orbital can change by zero or    .  The selection rules for multipole transitions between 
quantum states arise from conservation of the photon’s multipole moment and angular momentum of  .  In an excited state, the 
time-averaged mechanical angular momentum and rotational energy associated with the traveling charge-density wave on the 
atomic orbital is zero (Eqs. (1.76-1.77)), and the angular momentum of   of the photon that excites the electronic state is carried 
by the fields of the trapped photon.  The amplitudes of the rotational energy, angular momentum, and moment of inertia that 
couple to external magnetic and electromagnetic fields are given by Eqs. (1.71), (1.72), and (1.73), respectively.  Furthermore, 
the electron charge-density waves are nonradiative due to the angular motion as shown in the Appendix I: Nonradiation 
Condition.  But, excited states are radiative due to a radial dipole that arises from the presence of the trapped photon as shown in 
the Instability of Excited States section corresponding to 1m   in Eqs. (9.1-9.2). 

Then, as shown in the Excited States of the One-Electron Atom (Quantization) section and the Electron Mechanics and 
the Corresponding Classical Wave Equation for the Derivation of the Rotational Parameters of the Electron section, the total 
number of multipoles, ,sN , of an energy level corresponding to a principal quantum number n  where each multipole 

corresponds to an   and m  quantum number is:  

  
1 1

2 2 2
,

0 0

1 2 1 1 2 1
n n

s
m

N n
  

  

          





  

     (9.3) 

Any given state may be due to a direct transition or due to the sum of transitions between all intermediate states wherein the 
multiplicity of possible multipoles increases with higher states.  Then, the relationships between the parameters of Eqs. (9.1) and 
(9.2) due to transitions of quantized angular momentum  , energy  , and radiative via a radial dipole are given by substitution 
of 1m   and normalization of the energy U  by the total number of degenerate multipoles, 2n .  This requires that the photon’s 
electric field superposes that of the nucleus for 1 2r r r   such that the radial electric field has a magnitude proportional to /e n  

at the electron 2 where 2,3,4,...n   for excited states such that U  is decreased by the factor of 21/ n . 
Energy is conserved between the electric and magnetic energies of the helium atom as shown by Eq. (7.42).  The helium 

atom and the “trapped photon” corresponding to a transition to a resonant excited state have neutral charge and obey Maxwell’s 
equations.  Since charge is relativistically invariant, the energies in the electric and magnetic fields of the electrons of the helium 
atom must be conserved as photons are emitted or absorbed.  The corresponding forces are determined from the requirement that 
the radial excited-state electric field has a magnitude proportional to /e n  at electron 2. 

The “trapped photon” is a “standing electromagnetic wave” which actually is a traveling wave that propagates on the 
surface around the z-axis, and its source current is only at the atomic orbital.  The time-function factor, ( )k t , for the “standing 
wave” is identical to the time-function factor of the atomic orbital in order to satisfy the boundary (phase) condition at the atomic 
orbital surface.  Thus, the angular frequency of the “trapped photon” has to be identical to the angular frequency of the electron 
atomic orbital, n , given by Eq. (1.36).  Furthermore, the phase condition requires that the angular functions of the “trapped 

photon” have to be identical to the spherical harmonic angular functions of the electron atomic orbital.  Combining ( )k t  with the 

 -function factor of the spherical harmonic gives  ni m te    for both the electron and the “trapped photon” function. 
The photon “standing wave” in an excited electronic state is a solution of Laplace’s equation in spherical coordinates 
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with source currents given by Eq. (2.11) “glued” to the electron and phase-locked to the electron current density wave that travel 
on the surface with a radial electric field.  As given in the Excited States of the One-Electron Atom (Quantization) section, the 
photon field is purely radial since the field is traveling azimuthally at the speed of light even though the spherical harmonic 
function has a velocity less than light speed given by Eq. (1.35).  The photon field does not change the nature of the electrostatic 
field of the nucleus or its energy except at the position of the electron.  The photon “standing wave” function comprises a radial 
Dirac delta function that “samples” the Laplace equation solution only at the position infinitesimally inside of the electron 
current-density function and superimposes with the proton field to give a field of radial magnitude corresponding to a charge of 

/e n  where 2,3, 4,...n  .   

The electric field of the nucleus for 1 2r r r   is: 

 
2

04nucleus

e

r
E  (9.4) 

From Eq. (2.15), the equation of the electric field of the “trapped photon” for 2r r  where 2r  is the radius of electron 2, is:  

       
2

0
  , , | 02

0 2

1
1 , Re ,

4
    



         
nim tm

r photon n l m nr r

e
Y Y e r r

r n
E  (9.5) 

The total central field for 2r r  is given by the sum of the electric field of the nucleus and the electric field of the “trapped 
photon.” 
 total nucleus photon E E E  (9.6) 

Substitution of Eqs. (9.4) and (9.5) into Eq. (9.6) gives for 2r r , 
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 (9.7) 

For 2r r  and 0m  , the total radial electric field is: 

 
2

0

1

4r total

e

n r
E  (9.8) 

The result is equivalent to Eq. (2.17) of the Excited States of the One-Electron Atom (Quantization) section. 
In contrast to shortcomings of quantum-mechanical equations, with classical physics (CP), all excited states of the helium 

atom can be exactly solved in closed form.  The radii of electron 2 are determined from the force balance of the electric, 
magnetic, and centrifugal forces that corresponds to the minimum of energy of the system.  The excited-state energies are then 
given by the electric energies at these radii.  All singlet and triplet states with 0  or 0  are solved exactly except for small 
terms corresponding to the magnetostatic energies in the magnetic fields of excited-state electrons, spin-nuclear interactions, and 
the very small term due to spin-orbit coupling.  Spin-nuclear interactions resulted in the use of Hea  calculated from Eq. (1.259) 

using the reduced electron mass (Eqs. (1.252-1.255)) rather than 0a  given by Eq. (1.255).  Furthermore, a table of the spin-orbit 

energies was calculated for 1  to compare to the effect of different   quantum numbers.  For over 100 states, the agreement 
between the predicted and experimental results is remarkable. 
 
SINGLET EXCITED STATES WITH 0  ( 12 11 1s s ns  

  ) 
With 0 , the electron source current in the excited state is a constant function given by Eq. (1.27) that spins as a globe about 
the z-axis: 

    0
02

( , , , ) [ ( )] , ,
8

m
n

e
r t r r Y Y

r
       


      (9.9) 

As given in the Derivation of the Magnetic Field section in Chapter One and by Eq. (11.391), the current is a function of sin  
which gives rise to a correction of 2/3 to the field given by Eq. (7.6) and, correspondingly, the magnetic force of two-electron 
atoms given by Eq. (7.24).  The vector orientations of the electrons and the derivation of the magnetic force is given in Appendix 
VI.  The balance between the centrifugal and electric and magnetic forces follows from Eq. (7.32): 

 
2 2 2 2

3 2 3
2 2 0 2 2

1 2 1
( 1)

4 3 2
e

e e

m v e
s s

r m r n r n m r
   
 

 (9.10) 

with the exceptions that the electric and magnetic forces are reduced by a factor of 
1

n
 since the corresponding charge from Eq. 

(9.8) is 
e

n
 and the magnetic force is further corrected by the factor of 2/3.  With 

1

2
s  , 

 2

3
4

3 Her n a

 
 
  
 

        2,3, 4,...n   (9.11) 
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The excited-state energy is the energy stored in the electric field, eleE , given by Eqs. (1.263), (1.264), and (10.102) which 
is the energy of electron 2 relative to the ionized electron at rest having zero energy: 

 
2

0 2

1

8ele

e
E

n r
   (9.12) 

where 2r  is given by Eq. (9.11) and from Eq. (9.8), 1/Z n  in Eq. (1.264).  The energies of the various singlet excited states of 

helium with 0  appear in Table 9.1. 
As shown in the Special Relativistic Correction to the Ionization Energies section the electron possesses an invariant 

charge-to-mass ratio (
e

e

m
) angular momentum of  , and magnetic moment of a Bohr magneton ( B ).  This invariance feature 

provides for the stability of multielectron atoms as shown in the Two-Electron Atoms section and the Three- Through Twenty-
Electron Atoms section.  This feature also permits the existence of excited states wherein electrons magnetically interact.  The 
electron’s motion corresponds to a current which gives rise to a magnetic field with a field strength that is inversely proportional 
to its radius cubed as given in Eq. (9.10) wherein the magnetic field is a relativistic effect of the electric field as shown by 
Jackson [5].  Since the forces on electron 2 due to the nucleus and electron 1 (Eq. (9.10)) are radial/central, invariant of 1r , and 

independent of 1r  with the condition that 1 2r r , 2r  can be determined without knowledge of 1r .  But, once 2r  is determined, 1r  

can be solved using the equal and opposite magnetic force of electron 2 on electron 1 and the central Coulombic force 
corresponding to the nuclear charge of 2e .  Using Eq. (9.10), the force balance between the centrifugal and electric and 
magnetic forces is 
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 (9.13) 

With 
1

2
s  , 

 3 3 3
1 2 1 2

12 6
0

3 3

n n
r r r r    

 
        2,3,4,...n   (9.14) 

where 2r  is given by Eq. (9.11) and 1r  and 2r  are in units of Hea .  To obtain the solution of cubic Eq. (9.14) [6], let 

 3
2

6

3

n
g r              2,3,4,...n   (9.15) 

Then, Eq. (9.14) becomes: 
 3

1 12 0r gr g    (9.16) 
and the roots are: 
 11r A B   (9.17) 

 12 3
2 2

A B A B
r i

 
    (9.18) 

 13 3
2 2

A B A B
r i

 
    (9.19) 

where 

 
2 3

33 3
8

2 4 27 2

g g g g
A z      (9.20) 

and 

 
2 3

33 3
8

2 4 27 2

g g g g
B z      (9.21) 

The complex number z  is defined by 

  32
1 1 cos sin

27
iz i g re r i          (9.22) 

where the modulus, r , and argument,  , are 

 
32

27
r g  (9.23) 

and 

  1sin 1/
2

r
    (9.24) 

respectively.  The cube roots are: 
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 /33 3 3 cos sin
3 3

iz re r i      
 

 (9.25) 

 /33 3 3 cos sin
3 3

iz re r i       
 

 (9.26) 

so, 

 3 cos sin
2 3 3

g
A r i

    
 

 (9.27) 

and 

 3 cos sin
2 3 3

g
B r i

    
 

 (9.28) 

The physical root 1r  is from the roots that are real and distinct: 

 
1/6 1/6 1/6

11 12 13

8 8 8
2 cos ; cos 3 sin ; cos 3 sin

27 3 27 3 3 27 3 3
r g r g r g

                                   
 (9.29) 

 

Table 9.1.  Calculated and experimental energies of He I singlet excited states with 0  (  12 11 1s s ns ). 

 
n  

 

1r  

( Hea ) 
a
  

 

2r  

( Hea ) 
b
  

 
Term  

Symbol 

 

eleE  

 
CP  

He I Energy Levels 
c
 

(eV)

 
NIST  

He I Energy 
Levels 

d
 

(eV) 

 
Difference 
CP-NIST 

(eV) 

 
Relative 

Difference 
e 

 
(CP-NIST) 

2 0.501820 1.71132 1s2s 1S -3.97465 -3.97161 -0.00304 0.00077 

3 0.500302 2.71132 1s3s 1S -1.67247 -1.66707 -0.00540 0.00324 

4 0.500088 3.71132 1s4s 1S -0.91637 -0.91381 -0.00256 0.00281 

5 0.500035 4.71132 1s5s 1S -0.57750 -0.57617 -0.00133 0.00230 

6 0.500016 5.71132 1s6s 1S -0.39698 -0.39622 -0.00076 0.00193 

7 0.500009 6.71132 1s7s 1S -0.28957 -0.2891 -0.00047 0.00163 

8 0.500005 7.71132 1s8s 1S -0.22052 -0.2202 -0.00032 0.00144 

9 0.500003 8.71132 1s9s 1S -0.17351 -0.1733 -0.00021 0.00124 

10 0.500002 9.71132 1s10s 1S -0.14008 -0.13992 -0.00016 0.00116 

11 0.500001 10.71132 1s11s 1S -0.11546 -0.11534 -0.00012 0.00103 

   Avg. -0.00144 0.00175
a Radius of the inner electron 1 from Eq. (9.29). 
b Radius of the outer electron 2 from Eq. (9.11). 
c Classical physics (CP) calculated energy levels given by the electric energy (Eq. (9.12)). 
d Experimental NIST levels [7] with the ionization potential defined as zero. 
e (Theoretical-Experimental)/Experimental. 
 

TRIPLET EXCITED STATES WITH 0  ( 12 11 1   
 s s ns ) 

For the 0  singlet state, the time-averaged spin angular momentum of electron 2 is zero as given in Appendix VI.  A triplet 
state requires the further excitation to unpair the spin states of the two electrons.  The angular momentum corresponding to the 
excited state is   and the angular momentum change corresponding to the spin-flip is also   as given in the Magnetic 
Parameters of the Electron (Bohr Magneton) section.  Then, the triplet state comprises spin interaction terms between the two 
electrons plus a contribution from the unpairing photon.  As shown in the Resonant Precession of the Spin-1/2-Current-Density 
Function Gives Rise to the Bohr Magneton section, the electron spin angular momentum gives rise to a trapped photon with   of 
angular momentum along an S -axis.  Then, the spin state of each of electron 1 and 2 comprises a photon standing wave that is 
phase-matched to a spherical harmonic source current, a spherical harmonic dipole  , sinmY     with respect to the S -axis.  

The dipole spins about the S -axis at the angular velocity given by Eq. (1.36) with   of angular momentum.  To conserve 
angular momentum, electron 2 rotates in the opposite direction about S , the axis of the photon angular momentum due to the 

spin, and this rotation corresponds to 
2

3
   of angular momentum relative to S .  The corresponding angular momentum 

components of electron 2 due to spin, unpairing, and rotation are: 
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S i i     (9.30a) 
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S i i
   

 (9.30b) 

The corresponding angular momentum components of electron 1 are   and 
3

4
 , respectively.  The magnetic interaction of 

each electron is equivalent to the magnetic field corresponding to a magnetic moment of B  interacting with an aligned 

magnetic momentum of 
4 3

3 4 B .  Since the triplet electron-electron interactions are twice those of the singlet case, the triplet 

magnetic force for electron 2 is twice that of the singlet states as shown in Appendix VI:  
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With 
1

2
s  , 

 2

3
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        2,3, 4,...n   (9.32) 

The excited-state energy is the energy stored in the electric field, eleE , given by Eq. (9.12) where 2r  is given by Eq. (9.32).  The 

energies of the various triplet excited states of helium with 0  appear in Table 9.2. 
Using 2r  (Eq. (9.32)), 1r  can be solved using the equal and opposite magnetic force of electron 2 on electron 1 and the 

central Coulombic force corresponding to the nuclear charge of 2e .  Using Eq. (9.31), the force balance between the centrifugal 
and electric and magnetic forces is: 
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With 
1

2
s  , 

 3 3 3
1 2 1 2
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0
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        2,3, 4,...n   (9.34) 

where 2r  is given by Eq. (9.32) and 1r  and 2r  are in units of Hea .  To obtain the solution of cubic Eq. (9.34), let 

 3
2

3

3

n
g r              2,3, 4,...n   (9.35) 

Then, Eq. (9.34) becomes: 
 3

1 12 0r gr g    (9.36) 

Using Eqs. (9.16-9.29), the physical root 1r  is from the roots that are real and distinct: 
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Table 9.2.   Calculated and experimental energies of He I triplet excited states with 0  (  12 11 1s s ns ). 

 
n  

 

1r  

( Hea ) 
a
  

 

2r  

( Hea ) 
b
  

 
Term 

Symbol 

 

eleE  

 
CP  

He I Energy Levels 
c
 

(eV)

 
NIST  

He I Energy 
Levels 

d
 

(eV) 

 
Difference 
CP-NIST 

(eV) 

 
Relative 

Difference 
e 

 
(CP-NIST) 

2 0.506514 1.42265 1s2s 3S -4.78116 -4.76777 -0.01339 0.00281 

3 0.500850 2.42265 1s3s 3S -1.87176 -1.86892 -0.00284 0.00152 

4 0.500225 3.42265 1s4s 3S -0.99366 -0.99342 -0.00024 0.00024 

5 0.500083 4.42265 1s5s 3S -0.61519 -0.61541 0.00022 -0.00036 

6 0.500038 5.42265 1s6s 3S -0.41812 -0.41838 0.00026 -0.00063 

7 0.500019 6.42265 1s7s 3S -0.30259 -0.30282 0.00023 -0.00077 

8 0.500011 7.42265 1s8s 3S -0.22909 -0.22928 0.00019 -0.00081 

9 0.500007 8.42265 1s9s 3S -0.17946 -0.17961 0.00015 -0.00083 

10 0.500004 9.42265 1s10s 3S -0.14437 -0.1445 0.00013 -0.00087 

11 0.500003 10.42265 1s11s 3S -0.11866 -0.11876 0.00010 -0.00087 

    Avg. -0.00152 -0.00006
a Radius of the inner electron 1 from Eq. (9.37). 
b Radius of the outer electron 2 from Eq. (9.32). 
c Classical physics (CP) calculated energy levels given by the electric energy (Eq. (9.12)). 
d Experimental NIST levels [7] with the ionization potential defined as zero. 
e (Theoretical-Experimental)/Experimental. 
 
SINGLET EXCITED STATES WITH 0  
With 0 , the electron source current in the excited state is the sum of constant and time-dependent functions where the latter, 
given by Eq. (1.29), travels about the z-axis.  The current due to the time dependent term of Eq. (1.29) corresponding to p, d, f, 
etc. orbitals is: 
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 (9.38) 

where to keep the form of the spherical harmonic as a traveling wave about the z-axis, '
n nm   and N  and 'N  are 

normalization constants.  The vectors are defined as: 
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 (9.39) 

 ˆ ˆ r̂    (9.40) 

“^” denotes the unit vectors û 
u

u
, non-unit vectors are designated in bold, and the current function is normalized. 

Jackson [8] gives the general multipole field solution to Maxwell’s equations in a source-free region of empty space with 
the assumption of a time dependence ni te  : 
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 (9.41) 

where the cgs units used by Jackson are retained in this section.  The radial functions  f kr  and  g kr  are of the form: 

          1 1 2 2g kr A h A h       (9.42) 

,mX  is the vector spherical harmonic defined by: 
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where 

  1

i
 L r  (9.44) 

The coefficients  ,Ea m  and  ,Ma m  of Eq. (9.41) specify the amounts of electric  , m  multipole and magnetic  , m  

multipole fields, and are determined by sources and boundary conditions as are the relative proportions in Eq. (9.42).  Jackson 
gives the result of the electric and magnetic coefficients from the sources as 
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and 
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respectively, where the distribution of charge  , t x , current  , tJ x , and intrinsic magnetization  , txM  are harmonically 

varying sources:   nte  x ,   nte J x , and   nte xM .  From Eq. (9.38), the charge and intrinsic magnetization terms are zero.  

Since the source dimensions are very small compared to a wavelength ( max 1kr  ), the small argument limit can be used to give 

the magnetic multipole coefficient  ,Ma m  as: 
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where              2 1 !
2 1 !! 2 1 2 1 2 3 5 3 1
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 and the magnetic multipole moments are: 
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From Eq. (1.140), the geometrical factor of the surface current-density function of the atomic orbital about the z-axis is 
1

2

3


 
 
 

.  

Using the geometrical factor, Eqs. (9.47-9.48), and Eqs. (24.101) and (24.102) of Jackson [9], the multipole coefficient 

 ,Maga m  of the magnetic force of Eq. (7.24) is: 

    

1/2
3

1 12,
2 1 !! 2Maga m

      


  
 (9.49) 

For singlet states with 0 , a minimum energy is achieved with conservation of the photon’s angular momentum of   when 
the magnetic moments of the corresponding angular momenta relative to the electron velocity (and corresponding Lorentz forces 
given by Eq. (7.10)) superimpose negatively such that the spin component is radial ( ri -direction) and the orbital component is 

central ( ri -direction).  The amplitude of the orbital angular momentum   rotational orbitalL , given by Eq. (1.76) is: 
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 (9.50) 

Thus, using Eqs. (7.24), (9.8), (9.49-9.50), and Eq. (36) of Appendix VI, the magnetic force between the two electrons is: 
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 (9.51) 

and the force balance equation from Eq. (7.32) which achieves the condition that the sum of the mechanical momentum and 
electromagnetic momentum is conserved as given in Sections 6.6, 12.10, and 17.3 of Jackson [10] is: 
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with 
1

2
s  , 
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        2,3, 4,...n   (9.53) 

The excited-state energy is the energy stored in the electric field, eleE , given by Eq. (9.12) where 2r  is given by Eq. (9.53).  The 

energies of the various singlet excited states of helium with 0  appear in Table 9.3. 
Using 2r  (Eq. (9.53)), 1r  can be solved using the equal and opposite magnetic force of electron 2 on electron 1 and the 

central Coulombic force corresponding to the nuclear charge of 2e .  Using Eq. (9.52), the force balance between the centrifugal 
and electric and magnetic forces is: 
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 (9.54) 

with 
1
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 2,3, 4,...n   

where 2r  is given by Eq. (9.53) and 1r  and 2r  are in units of Hea .  To obtain the solution of cubic Eq. (9.55), let 
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             2,3, 4,...n   (9.56) 

Then, Eq. (9.55) becomes: 

 3
1 12 0r gr g    (9.57) 

Three distinct cases arise depending on the value of  .  For 1  or 2 , g  of Eq. (9.56) is negative and A  and B  of Eqs. 
(9.20) and (9.21), respectively, are real:  

 33
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2 27
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and 
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The only real root is: 
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g
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 (9.60) 

while 12r  and 13r  are complex conjugates.  When 3  the magnetic force term (2nd term on RHS) of Eq. (9.52) is zero, and the 

force balance trivially gives: 

 1 0.5 Her a  (9.61) 

When 4,5,6... , g  (Eq. (9.56)) is positive; so, all three roots are real, but, the physical root is 13r .  In this case, note that 5n  , 

4 ; so, the factor g  of Eq. (9.56) is large ( 810 ).  Expanding 13r  (Eq. (9.29)) for large values of g  gives: 
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 (9.62) 
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Table 9.3.   Calculated and experimental energies of He I singlet excited states with 0 . 

 
n  

 
  

 

1r  

( Hea ) 
a  

 

2r  

( Hea ) 
b
  

 
Term 

Symbol 

 

eleE  

 
CP  

He I Energy Levels 
c

(eV)

 
NIST  
He I 

Energy 
Levels 

d
 

(eV) 

 
Difference 
CP-NIST 

(eV) 

 
Relative 

Difference 
e 

 
(CP-NIST) 

2 1 0.499929 2.01873 1s2p 1P0 -3.36941 -3.36936 -0.0000477 0.0000141 

3 2 0.499999 3.00076 1s3d 1D -1.51116 -1.51331  0.0021542 -0.0014235 

3 1 0.499986 3.01873 1s3p 1P0 -1.50216 -1.50036 -0.0017999 0.0011997 

4 2 0.500000 4.00076 1s4d 1D -0.85008 -0.85105  0.0009711 -0.0011411 

4 3 0.500000 4.00000 1s4f 1F0 -0.85024 -0.85037  0.0001300 -0.0001529 

4 1 0.499995 4.01873 1s4p 1P0 -0.84628 -0.84531    -0.0009676 0.0011446 

5 2 0.500000 5.00076 1s5d 1D -0.54407 -0.54458  0.0005089 -0.0009345 

5 3 0.500000 5.00000 1s5f 1F0 -0.54415 -0.54423 0.0000764 -0.0001404 

5 4 0.500000 5.00000 1s5g 1G -0.54415 -0.54417 0.0000159 -0.0000293 

5 1 0.499998 5.01873 1s5p 1P0 -0.54212 -0.54158    -0.0005429 0.0010025 

6 2 0.500000 6.00076 1s6d 1D -0.37784 -0.37813 0.0002933 -0.0007757 

6 3 0.500000 6.00000 1s6f 1F0 -0.37788 -0.37793 0.0000456 -0.0001205 

6 4 0.500000 6.00000 1s6g 1G -0.37788 -0.37789 0.0000053 -0.0000140 

6 5 0.500000 6.00000 1s6h 1H0 -0.37788 -0.37788    -0.0000045 0.0000119 

6 1 0.499999 6.01873 1s6p 1P0 -0.37671 -0.37638    -0.0003286 0.0008730 

7 2 0.500000 7.00076 1s7d 1D -0.27760 -0.27779 0.0001907 -0.0006864 

7 3 0.500000 7.00000 1s7f 1F0 -0.27763 -0.27766 0.0000306 -0.0001102 

7 4 0.500000 7.00000 1s7g 1G -0.27763 -0.27763 0.0000004 -0.0000016 

7 5 0.500000 7.00000 1s7h 1H0 -0.27763 -0.27763 0.0000006 -0.0000021 

7 6 0.500000 7.00000 1s7i 1I -0.27763 -0.27762    -0.0000094 0.0000338 

7 1 0.500000 7.01873 1s7p 1P0 -0.27689 -0.27667    -0.0002186 0.0007900 

    Avg. 0.0000240 -0.0000220
a Radius of the inner electron 1 from Eq. (9.60) for 1  or 2 , Eq. (9.61) for 3 , and Eq. (9.62) for 4,5,6... . 
b Radius of the outer electron 2 from Eq. (9.53). 
c Classical physics (CP) calculated energy levels given by the electric energy (Eq. (9.12)). 
d Experimental NIST levels [7] with the ionization potential defined as zero. 
e (Theoretical-Experimental)/Experimental. 
 
TRIPLET EXCITED STATES WITH 0   
For triplet states with 0 , a minimum energy is achieved with conservation of the photon’s angular momentum of   when the 
magnetic moments of the corresponding angular momenta superimpose negatively such that the spin component is central and 
the orbital component is radial.  Furthermore, as given for the triplet states with 0 , the spin component in Eqs. (9.51) and 
(9.52) is doubled.  Thus, the force balance equation derived in Appendix VI is given by: 
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         (9.64) 

 2,3, 4,...n   

The excited-state energy is the energy stored in the electric field, eleE , given by Eq. (9.12) where 2r  is given by Eq. (9.64).  The 

energies of the various triplet excited states of helium with 0  appear in Table 9.4. 
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Using 2r  (Eq. (9.64)), 1r  can be solved using the equal and opposite magnetic force of electron 2 on electron 1 and the 

central Coulombic force corresponding to the nuclear charge of 2e .  Using Eq. (9.63), the force balance between the centrifugal 
and electric and magnetic forces is: 
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1
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 2,3, 4,...n   

where 2r  is given by Eq. (9.64) and 1r  and 2r  are in units of Hea .  To obtain the solution of cubic Eq. (9.66), let: 
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             2,3, 4,...n   (9.67) 

Then, Eq. (9.66) becomes: 

 3
1 12 0r gr g    (9.68) 

Using Eqs. (9.16-9.29), g  (Eq. (9.67)) is positive, and the physical root 1r  is from the roots that are real and distinct: 

 
1/6 1/6 1/6

11 12 13

8 8 8
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Table 9.4.   Calculated and experimental energies of He I triplet excited states with 0 . 

n    1r  

( Hea ) 
a
  

2r  

( Hea ) 
b
  

Term 
Symbol 

eleE  

 
CP  

He I Energy Levels 
c
 

(eV)

NIST  
He I Energy

Levels 
d
 

(eV) 

Difference 
CP-NIST 

(eV) 

Relative 
Difference 

e 
 

(CP-NIST) 

2 1 0.500571 1.87921 1s2p 3P0
2

-3.61957 -3.6233 0.0037349 -0.0010308 

2 1 0.500571 1.87921 1s2p 3P0
1

-3.61957 -3.62329 0.0037249 -0.0010280 

2 1 0.500571 1.87921 1s2p 3P0
0

-3.61957 -3.62317 0.0036049 -0.0009949 

3 1 0.500105 2.87921 1s3p 3P0
2

-1.57495 -1.58031 0.0053590 -0.0033911 

3 1 0.500105 2.87921 1s3p 3P0
1 -1.57495 -1.58031 0.0053590 -0.0033911 

3 1 0.500105 2.87921 1s3p 3P0
0 -1.57495 -1.58027 0.0053190 -0.0033659 

3 2 0.500011 2.98598 1s3d 3D3
-1.51863 -1.51373 -0.0049031 0.0032391 

3 2 0.500011 2.98598 1s3d 3D2
-1.51863 -1.51373 -0.0049031 0.0032391 

3 2 0.500011 2.98598 1s3d 3D1
-1.51863 -1.51373 -0.0049031 0.0032391 

4 1 0.500032 3.87921 1s4p 3P0
2

-0.87671 -0.87949 0.0027752 -0.0031555 

4 1 0.500032 3.87921 1s4p 3P0
1

-0.87671 -0.87949 0.0027752 -0.0031555 

4 1 0.500032 3.87921 1s4p 3P0
0

-0.87671 -0.87948 0.0027652 -0.0031442 

4 2 0.500003 3.98598 1s4d 3D3
-0.85323 -0.85129 -0.0019398 0.0022787 

4 2 0.500003 3.98598 1s4d 3D2
-0.85323 -0.85129 -0.0019398 0.0022787 
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n    1r  

( Hea ) 
a
  

2r  

( Hea ) 
b
  

Term 
Symbol 

eleE  

 
CP  

He I Energy Levels 
c
 

(eV)

NIST  
He I Energy

Levels 
d
 

(eV) 

Difference 
CP-NIST 

(eV) 

Relative 
Difference 

e 
 

(CP-NIST) 

4 2 0.500003 3.98598 1s4d 3D1
-0.85323 -0.85129 -0.0019398 0.0022787 

4 3 0.500000 3.99857 1s4f 3F0
3

-0.85054 -0.85038 -0.0001638 0.0001926 

4 3 0.500000 3.99857 1s4f 3F0
4

-0.85054 -0.85038 -0.0001638 0.0001926 

4 3 0.500000 3.99857 1s4f 3F0
2

-0.85054 -0.85038 -0.0001638 0.0001926 

5 1 0.500013 4.87921 1s5p 3P0
2

-0.55762 -0.55916 0.0015352 -0.0027456 

5 1 0.500013 4.87921 1s5p 3P0
1

-0.55762 -0.55916 0.0015352 -0.0027456 

5 1 0.500013 4.87921 1s5p 3P0
0

-0.55762 -0.55915 0.0015252 -0.0027277 

5 2 0.500001 4.98598 1s5d 3D3
-0.54568 -0.54472 -0.0009633 0.0017685 

5 2 0.500001 4.98598 1s5d 3D2
-0.54568 -0.54472 -0.0009633 0.0017685 

5 2 0.500001 4.98598 1s5d 3D1
-0.54568 -0.54472 -0.0009633 0.0017685 

5 3 0.500000 4.99857 1s5f 3F0
3

-0.54431 -0.54423 -0.0000791 0.0001454 

5 3 0.500000 4.99857 1s5f 3F0
4

-0.54431 -0.54423 -0.0000791 0.0001454 

5 3 0.500000 4.99857 1s5f 3F0
2

-0.54431 -0.54423 -0.0000791 0.0001454 

5 4 0.500000 4.99988 1s5g 3G4
-0.54417 -0.54417 0.0000029 -0.0000054 

5 4 0.500000 4.99988 1s5g 3G5
-0.54417 -0.54417 0.0000029 -0.0000054 

5 4 0.500000 4.99988 1s5g 3G3
-0.54417 -0.54417 0.0000029 -0.0000054 

6 1 0.500006 5.87921 1s6p 3P0
2

-0.38565 -0.38657 0.0009218 -0.0023845 

6 1 0.500006 5.87921 1s6p 3P0
1

-0.38565 -0.38657 0.0009218 -0.0023845 

6 1 0.500006 5.87921 1s6p 3P0
0

-0.38565 -0.38657 0.0009218 -0.0023845 

6 2 0.500001 5.98598 1s6d 3D3
-0.37877 -0.37822 -0.0005493 0.0014523 

6 2 0.500001 5.98598 1s6d 3D2
-0.37877 -0.37822 -0.0005493 0.0014523 

6 2 0.500001 5.98598 1s6d 3D1
-0.37877 -0.37822 -0.0005493 0.0014523 

6 3 0.500000 5.99857 1s6f 3F0
3

-0.37797 -0.37793 -0.0000444 0.0001176 

6 3 0.500000 5.99857 1s6f 3F0
4

-0.37797 -0.37793 -0.0000444 0.0001176 

6 3 0.500000 5.99857 1s6f 3F0
2

-0.37797 -0.37793 -0.0000444 0.0001176 

6 4 0.500000 5.99988 1s6g 3G4
-0.37789 -0.37789 -0.0000023 0.0000060 

6 4 0.500000 5.99988 1s6g 3G5
-0.37789 -0.37789 -0.0000023 0.0000060 

6 4 0.500000 5.99988 1s6g 3G3
-0.37789 -0.37789 -0.0000023 0.0000060 

6 5 0.500000 5.99999 1s6h 3H0
4

-0.37789 -0.37788 -0.0000050 0.0000133 

6 5 0.500000 5.99999 1s6h 3H0
5

-0.37789 -0.37788 -0.0000050 0.0000133 

6 5 0.500000 5.99999 1s6h 3H0
6

-0.37789 -0.37788 -0.0000050 0.0000133 

7 1 0.500003 6.87921 1s7p 3P0
2

-0.28250 -0.28309 0.0005858 -0.0020692 

7 1 0.500003 6.87921 1s7p 3P0
1

-0.28250 -0.28309 0.0005858 -0.0020692 

7 1 0.500003 6.87921 1s7p 3P0
0

-0.28250 -0.28309 0.0005858 -0.0020692 

7 2 0.500000 6.98598 1s7d 3D3
-0.27819 -0.27784 -0.0003464 0.0012468 

7 2 0.500000 6.98598 1s7d 3D2
-0.27819 -0.27784 -0.0003464 0.0012468 

7 2 0.500000 6.98598 1s7d 3D1
-0.27819 -0.27784 -0.0003464 0.0012468 

7 3 0.500000 6.99857 1s7f 3F0
3

-0.27769 -0.27766 -0.0000261 0.0000939 

7 3 0.500000 6.99857 1s7f 3F0
4

-0.27769 -0.27766 -0.0000261 0.0000939 

7 3 0.500000 6.99857 1s7f 3F0
2

-0.27769 -0.27766 -0.0000261 0.0000939 
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n    1r  

( Hea ) 
a
  

2r  

( Hea ) 
b
  

Term 
Symbol 

eleE  

 
CP  

He I Energy Levels 
c
 

(eV)

NIST  
He I Energy

Levels 
d
 

(eV) 

Difference 
CP-NIST 

(eV) 

Relative 
Difference 

e 
 

(CP-NIST) 

7 4 0.500000 6.99988 1s7g 3G4
-0.27763 -0.27763 -0.0000043 0.0000155 

7 4 0.500000 6.99988 1s7g 3G5
-0.27763 -0.27763 -0.0000043 0.0000155 

7 4 0.500000 6.99988 1s7g 3G3
-0.27763 -0.27763 -0.0000043 0.0000155 

7 5 0.500000 6.99999 1s7h 3H0
5

-0.27763 -0.27763 0.0000002 -0.0000009 

7 5 0.500000 6.99999 1s7h 3H0
6

-0.27763 -0.27763 0.0000002 -0.0000009 

7 5 0.500000 6.99999 1s7h 3H0
4

-0.27763 -0.27763 0.0000002 -0.0000009 

7 6 0.500000 7.00000 1s7 i3I5 -0.27763 -0.27762 -0.0000094 0.0000339 

7 6 0.500000 7.00000 1s7i 3I6 -0.27763 -0.27762 -0.0000094 0.0000339 

7 6 0.500000 7.00000 1s7i 3I7 -0.27763 -0.27762 -0.0000094 0.0000339 

      Avg. 0.0002768 -0.0001975
a Radius of the inner electron 1 from Eq. (9.69). 
b Radius of the outer electron 2 from Eq. (9.64). 
c Classical physics (CP) calculated energy levels given by the electric energy (Eq. (9.12)). 
d Experimental NIST levels [7] with the ionization potential defined as zero. 
e (Theoretical-Experimental)/Experimental. 
 
ALL EXCITED HE I STATES 

The combined energies of the various states of helium appear in Table 9.5.  A plot of the predicted and experimental 
energies of levels assigned by NIST [7] appears in Figure 9.1.   
 
Figure 9.1.  A plot of the predicted and experimental energies of levels assigned by NIST [7]. 

 
 

For over 100 states, the r-squared value is 0.999994, and the typical average relative difference is about 5 significant figures, 
which is within the error of the experimental data.  The agreement is remarkable. The color scale, translucent views of the charge 
densities of exemplary spherical harmonics that modulate the time-independent spin function are shown in Figure 9.2.  For 

0 , the modulation functions propagate about the z-axis as spatially and temporally harmonic charge-density waves. 
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Figure 9.2.   Exemplary color scale, translucent views of the charge-densities of the inner and outer electrons of helium 
excited states.  The outer-electron orbital function modulates the time-constant (spin) function, (shown for t = 0; three-
dimensional view).  The inner electron is essentially that of He  (nuclei red, not to scale). 
 
 

The hydrino states given in the Hydrino Theory—
BlackLight Process section are strongly supported by the 
calculation of the helium excited states as well as the hydrogen 
excited states given in the Excited States of the One-
Electron Atom (Quantization) section since the electron-photon 
model is the same in both the excited states and in the lower-
energy states of hydrogen except that the photon provides a 

the hydrino case and 1/ n  in the central field of magnitude n  in 
excited-state case. 
 
Table 9.5.   Calculated and experimental energies of states 
of helium. 

n    1r  

( Hea ) 
a
  

2r  

( Hea ) 
b
  

Term 
Symbol 

eleE  
 

CP 
He I EnergyLevels 

c

(eV)

NIST  
He I Energy

Levels 
d
 

(eV) 

Difference 
CP-NIST 

(eV) 

Relative 
Difference 

e 
 

(CP-NIST) 

1 0 0.56699 0.566987 1s2 1S -24.58750 -24.58741 -0.000092 0.0000038 

2 0 0.506514 1.42265 1s2s 3S -4.78116 -4.76777 -0.0133929 0.0028090 

2 0 0.501820 1.71132 1s2s 1S -3.97465 -3.97161 -0.0030416 0.0007658 

2 1 0.500571 1.87921 1s2p 3P0
2

-3.61957 -3.6233 0.0037349 -0.0010308 

2 1 0.500571 1.87921 1s2p 3P0
1

-3.61957 -3.62329 0.0037249 -0.0010280 

2 1 0.500571 1.87921 1s2p 3P0
0

-3.61957 -3.62317 0.0036049 -0.0009949 

2 1 0.499929 2.01873 1s2p 1P0 -3.36941 -3.36936 -0.0000477 0.0000141 

3 0 0.500850 2.42265 1s3s 3S -1.87176 -1.86892 -0.0028377 0.0015184 

3 0 0.500302 2.71132 1s3s 1S -1.67247 -1.66707 -0.0054014 0.0032401 

3 1 0.500105 2.87921 1s3p 3P0
2

-1.57495 -1.58031 0.0053590 -0.0033911 

3 1 0.500105 2.87921 1s3p 3P0
1  -1.57495 -1.58031 0.0053590 -0.0033911 

3 1 0.500105 2.87921 1s3p 3P0
0  -1.57495 -1.58027 0.0053190 -0.0033659 

3 2 0.500011 2.98598 1s3d 3D3
-1.51863 -1.51373 -0.0049031 0.0032391 

3 2 0.500011 2.98598 1s3d 3D2
-1.51863 -1.51373 -0.0049031 0.0032391 

3 2 0.500011 2.98598 1s3d 3D1
-1.51863 -1.51373 -0.0049031 0.0032391 

3 2 0.499999 3.00076 1s3d 1D -1.51116 -1.51331 0.0021542 -0.0014235 

3 1 0.499986 3.01873 1s3p 1P0 -1.50216 -1.50036 -0.0017999 0.0011997 

4 0 0.500225 3.42265 1s4s 3S -0.99366 -0.99342 -0.0002429 0.0002445 

4 0 0.500088 3.71132 1s4s 1S -0.91637 -0.91381 -0.0025636 0.0028054 

He 1s2s 1S 1s3s 1S 1s4s 1S

 1s2p 1P0 1s3p 1P0 1s4p 1P0

  1s3d 1D 1s4d 1D
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n    1r  

( Hea ) 
a
  

2r  

( Hea ) 
b
  

Term 
Symbol 

eleE  
 

CP 
He I EnergyLevels 

c

(eV)

NIST  
He I Energy

Levels 
d
 

(eV) 

Difference 
CP-NIST 

(eV) 

Relative 
Difference 

e 
 

(CP-NIST) 

4 1 0.500032 3.87921 1s4p 3P0
2

-0.87671 -0.87949 0.0027752 -0.0031555 

4 1 0.500032 3.87921 1s4p 3P0
1

-0.87671 -0.87949 0.0027752 -0.0031555 

4 1 0.500032 3.87921 1s4p 3P0
0

-0.87671 -0.87948 0.0027652 -0.0031442 

4 2 0.500003 3.98598 1s4d 3D3
-0.85323 -0.85129 -0.0019398 0.0022787 

4 2 0.500003 3.98598 1s4d 3D2
-0.85323 -0.85129 -0.0019398 0.0022787 

4 2 0.500003 3.98598 1s4d 3D1
-0.85323 -0.85129 -0.0019398 0.0022787 

4 2 0.500000 4.00076 1s4d 1D -0.85008 -0.85105 0.0009711 -0.0011411 

4 3 0.500000 3.99857 1s4f 3F0
3

-0.85054 -0.85038 -0.0001638 0.0001926 

4 3 0.500000 3.99857 1s4f 3F0
4

-0.85054 -0.85038 -0.0001638 0.0001926 

4 3 0.500000 3.99857 1s4f 3F0
2

-0.85054 -0.85038 -0.0001638 0.0001926 

4 3 0.500000 4.00000 1s4f 1F0 -0.85024 -0.85037 0.0001300 -0.0001529 

4 1 0.499995 4.01873 1s4p 1P0 -0.84628 -0.84531 -0.0009676 0.0011446 

5 0 0.500083 4.42265 1s5s 3S -0.61519 -0.61541 0.0002204 -0.0003582 

5 0 0.500035 4.71132 1s5s 1S -0.57750 -0.57617 -0.0013253 0.0023002 

5 1 0.500013 4.87921 1s5p 3P0
2

-0.55762 -0.55916 0.0015352 -0.0027456 

5 1 0.500013 4.87921 1s5p 3P0
1

-0.55762 -0.55916 0.0015352 -0.0027456 

5 1 0.500013 4.87921 1s5p 3P0
0

-0.55762 -0.55915 0.0015252 -0.0027277 

5 2 0.500001 4.98598 1s5d 3D3
-0.54568 -0.54472 -0.0009633 0.0017685 

5 2 0.500001 4.98598 1s5d 3D2
-0.54568 -0.54472 -0.0009633 0.0017685 

5 2 0.500001 4.98598 1s5d 3D1
-0.54568 -0.54472 -0.0009633 0.0017685 

5 2 0.500000 5.00076 1s5d 1D -0.54407 -0.54458 0.0005089 -0.0009345 

5 3 0.500000 4.99857 1s5f 3F0
3

-0.54431 -0.54423 -0.0000791 0.0001454 

5 3 0.500000 4.99857 1s5f 3F0
4

-0.54431 -0.54423 -0.0000791 0.0001454 

5 3 0.500000 4.99857 1s5f 3F0
2

-0.54431 -0.54423 -0.0000791 0.0001454 

5 3 0.500000 5.00000 1s5f 1F0 -0.54415 -0.54423 0.0000764 -0.0001404 

5 4 0.500000 4.99988 1s5g 3G4
-0.54417 -0.54417 0.0000029 -0.0000054 

5 4 0.500000 4.99988 1s5g 3G5
-0.54417 -0.54417 0.0000029 -0.0000054 

5 4 0.500000 4.99988 1s5g 3G3
-0.54417 -0.54417 0.0000029 -0.0000054 

5 4 0.500000 5.00000 1s5g 1G -0.54415 -0.54417 0.0000159 -0.0000293 

5 1 0.499998 5.01873 1s5p 1P0 -0.54212 -0.54158 -0.0005429 0.0010025 

6 0 0.500038 5.42265 1s6s 3S -0.41812 -0.41838 0.0002621 -0.0006266 

6 0 0.500016 5.71132 1s6s 1S -0.39698 -0.39622 -0.0007644 0.0019291 

6 1 0.500006 5.87921 1s6p 3P0
2

-0.38565 -0.38657 0.0009218 -0.0023845 

6 1 0.500006 5.87921 1s6p 3P0
1

-0.38565 -0.38657 0.0009218 -0.0023845 

6 1 0.500006 5.87921 1s6p 3P0
0

-0.38565 -0.38657 0.0009218 -0.0023845 

6 2 0.500001 5.98598 1s6d 3D3
-0.37877 -0.37822 -0.0005493 0.0014523 

6 2 0.500001 5.98598 1s6d 3D2
-0.37877 -0.37822 -0.0005493 0.0014523 

6 2 0.500001 5.98598 1s6d 3D1
-0.37877 -0.37822 -0.0005493 0.0014523 

6 2 0.500000 6.00076 1s6d 1D -0.37784 -0.37813 0.0002933 -0.0007757 

6 3 0.500000 5.99857 1s6f 3F0
3

-0.37797 -0.37793 -0.0000444 0.0001176 

6 3 0.500000 5.99857 1s6f 3F0
4

-0.37797 -0.37793 -0.0000444 0.0001176 
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n    1r  

( Hea ) 
a
  

2r  

( Hea ) 
b
  

Term 
Symbol 

eleE  
 

CP 
He I EnergyLevels 

c

(eV)

NIST  
He I Energy

Levels 
d
 

(eV) 

Difference 
CP-NIST 

(eV) 

Relative 
Difference 

e 
 

(CP-NIST) 

6 3 0.500000 5.99857 1s6f 3F0
2

-0.37797 -0.37793 -0.0000444 0.0001176 

6 3 0.500000 6.00000 1s6f 1F0 -0.37788 -0.37793 0.0000456 -0.0001205 

6 4 0.500000 5.99988 1s6g 3G4
-0.37789 -0.37789 -0.0000023 0.0000060 

6 4 0.500000 5.99988 1s6g 3G5
-0.37789 -0.37789 -0.0000023 0.0000060 

6 4 0.500000 5.99988 1s6g 3G3
-0.37789 -0.37789 -0.0000023 0.0000060 

6 4 0.500000 6.00000 1s6g 1G -0.37788 -0.37789 0.0000053 -0.0000140 

6 5 0.500000 5.99999 1s6h 3H0
4

-0.37789 -0.37788 -0.0000050 0.0000133 

6 5 0.500000 5.99999 1s6h 3H0
5

-0.37789 -0.37788 -0.0000050 0.0000133 

6 5 0.500000 5.99999 1s6h 3H0
6

-0.37789 -0.37788 -0.0000050 0.0000133 

6 5 0.500000 6.00000 1s6h 1H0 -0.37788 -0.37788 -0.0000045 0.0000119 

6 1 0.499999 6.01873 1s6p 1P0 -0.37671 -0.37638 -0.0003286 0.0008730 

7 0 0.500019 6.42265 1s7s 3S -0.30259 -0.30282 0.0002337 -0.0007718 

7 0 0.500009 6.71132 1s7s 1S -0.28957 -0.2891 -0.0004711 0.0016295 

7 1 0.500003 6.87921 1s7p 3P0
2

-0.28250 -0.28309 0.0005858 -0.0020692 

7 1 0.500003 6.87921 1s7p 3P0
1

-0.28250 -0.28309 0.0005858 -0.0020692 

7 1 0.500003 6.87921 1s7p 3P0
0

-0.28250 -0.28309 0.0005858 -0.0020692 

7 2 0.500000 6.98598 1s7d 3D3
-0.27819 -0.27784 -0.0003464 0.0012468 

7 2 0.500000 6.98598 1s7d 3D2
-0.27819 -0.27784 -0.0003464 0.0012468 

7 2 0.500000 6.98598 1s7d 3D1
-0.27819 -0.27784 -0.0003464 0.0012468 

7 2 0.500000 7.00076 1s7d 1D -0.27760 -0.27779 0.0001907 -0.0006864 

7 3 0.500000 6.99857 1s7f 3F0
3

-0.27769 -0.27766 -0.0000261 0.0000939 

7 3 0.500000 6.99857 1s7f 3F0
4

-0.27769 -0.27766 -0.0000261 0.0000939 

7 3 0.500000 6.99857 1s7f 3F0
2

-0.27769 -0.27766 -0.0000261 0.0000939 

7 3 0.500000 7.00000 1s7f 1F0 -0.27763 -0.27766 0.0000306 -0.0001102 

7 4 0.500000 6.99988 1s7g 3G4
-0.27763 -0.27763 -0.0000043 0.0000155 

7 4 0.500000 6.99988 1s7g 3G5
-0.27763 -0.27763 -0.0000043 0.0000155 

7 4 0.500000 6.99988 1s7g 3G3
-0.27763 -0.27763 -0.0000043 0.0000155 

7 4 0.500000 7.00000 1s7g 1G -0.27763 -0.27763 0.0000004 -0.0000016 

7 5 0.500000 6.99999 1s7h 3H0
5

-0.27763 -0.27763 0.0000002 -0.0000009 

7 5 0.500000 6.99999 1s7h 3H0
6

-0.27763 -0.27763 0.0000002 -0.0000009 

7 5 0.500000 6.99999 1s7h 3H0
4

-0.27763 -0.27763 0.0000002 -0.0000009 

7 5 0.500000 7.00000 1s7h 1H0 -0.27763 -0.27763 0.0000006 -0.0000021 

7 6 0.500000 7.00000 1s7 i3I5
-0.27763 -0.27762 -0.0000094 0.0000339 

7 6 0.500000 7.00000 1s7i 3I6 -0.27763 -0.27762 -0.0000094 0.0000339 

7 6 0.500000 7.00000 1s7i 3I7
-0.27763 -0.27762 -0.0000094 0.0000339 

7 6 0.500000 7.00000 1s7i 1I -0.27763 -0.27762 -0.0000094 0.0000338 

7 1 0.500000 7.01873 1s7p 1P0 -0.27689 -0.27667 -0.0002186 0.0007900 

8 0 0.500011 7.42265 1s8s 3S -0.22909 -0.22928 0.0001866 -0.0008139 

8 0 0.500005 7.71132 1s8s 1S -0.22052 -0.2202 -0.0003172 0.0014407 

9 0 0.500007 8.42265 1s9s 3S -0.17946 -0.17961 0.0001489 -0.0008291 

9 0 0.500003 8.71132 1s9s 1S -0.17351 -0.1733 -0.0002141 0.0012355 
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n    1r  

( Hea ) 
a
  

2r  

( Hea ) 
b
  

Term 
Symbol 

eleE  
 

CP 
He I EnergyLevels 

c

(eV)

NIST  
He I Energy

Levels 
d
 

(eV) 

Difference 
CP-NIST 

(eV) 

Relative 
Difference 

e 
 

(CP-NIST) 

10 0 0.500004 9.42265 1s10s 3S -0.14437 -0.1445 0.0001262 -0.0008732 

10 0 0.500002 9.71132 1s10s 1S -0.14008 -0.13992 -0.0001622 0.0011594 

11 0 0.500003 10.42265 1s11s 3S -0.11866 -0.11876 0.0001037 -0.0008734 

11 0 0.500001 10.71132 1s11s 1S -0.11546 -0.11534 -0.0001184 0.0010268 

     Avg. -0.000112 0.0000386
a Radius of the inner electron 1 of singlet excited states with 0  from Eq. (9.29); triplet excited states with 0  from Eq. (9.37); singlet excited states 

with 0  from Eq. (9.60) for 1  or 2  and Eq. (9.61) for 3 , and Eq. (9.62) for 4, 5, 6... ; triplet excited states with 0  from Eq. (9.69), 

and 1s2 1S from Eq. (7.35). 
b Radius of the outer electron 2 of singlet excited states with 0  from Eq. (9.11); triplet excited states with 0  from Eq. (9.32); singlet excited states 

with 0  from Eq. (9.53); triplet excited states with 0  from Eq. (9.64), and 1s2 1S from Eq. (7.35). 
c Classical physics (CP) calculated excited-state energy levels given by the electric energy (Eq. (9.12)) and the energy level of 1s2 1

S is given by Eqs. 
(7.44-7.46). 

d Experimental NIST levels [7] with the ionization potential defined as zero. 
e (Theoretical-Experimental)/Experimental. 
 
SPIN-ORBIT COUPLING OF EXCITED STATES WITH   ≠ 0 
The energy of the 2P  level is split by a relativistic interaction between the spin and orbital angular momentum as well as the 
corresponding radiation reaction force.  The corresponding energy H FS

totalE  and frequency H FS
totalf  for the transition 2 2

1/2 3/2P P  

is known as the hydrogen fine structure and is given by the sum of the spin-orbital coupling energy (Eq. (2.194)): 

 
 25

2 24
/

2 3
7.24043  10  

8 4s o eE m c X J
     (9.70) 

 
and the radiation reaction force that shifts the H radius from 0 2 Hr a  to: 

  3 3
2 2 1.99999990

6 4H H
e

r a a
m c

  


 (9.71) 

given by Eqs. (2.198-2.199).  The radiation reaction energy of the hydrogen fine structure  H FS
RRtotalE  is given as the sum of the 

electric and magnetic energy changes (Eqs. (2.200-2.202)): 

 

2
 2 26 28

0 3 3
0 0 0

26

0.5 1 1 1 1
4 2.76347  10  1.74098  10

8

 2.74606  10  

H FS
RRtotal B

e
E X J X J

r r r r

X J

 


 

 



   
        

   


 (9.72) 

Then, the total energy of the hydrogen fine structure H FS
totalE  is given by the sum (Eq. (2.204)): 

   24 26 24
/ 7.24043  10  2.74606  10  7.26789  10  H FS H FS

total s o RRtotalE E E X J X J X J          (9.73) 
The fine structure energy expressed in terms of frequency (Eq. (2.205)) is 
  10,968.46 H FS

totalf MHz   (9.74) 
The experimental hydrogen fine structure (Eq. (2.206)) is: 
   experimental 10,969.05 H FS

totalf MHz   (9.75) 
Given the large natural linewidth of the 2P  state, the 0.005% relative difference is within the measurement error and propagated 
errors in the fundamental constants of the equations.  Using 2r  given by Eq. (9.53), the spin-orbital energies were calculated for 

1  using Eq. (9.70) to compare to the effect of different   quantum numbers.  There is agreement between the magnitude of 
the predicted results given in Table 9.6 and the experimental dependence on the   quantum number as given in Table 9.5. 
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Table 9.6.   Calculated spin-orbital energies of He I singlet excited states with 1  as a function of the radius of the outer 
electron. 

 
n  

 

2r  

( Hea ) 
a
  

Term Symbol 
/s oE  

spin-orbit 
coupling 

b
 

(eV)
2 2.01873 1s2p 1P0 0.0000439 

3 3.01873 1s3p 1P0 0.0000131 

4 4.01873 1s4p 1P0 0.0000056 

5 5.01873 1s5p 1P0 0.0000029 

6 6.01873 1s6p 1P0 0.0000017 

7 7.01873 1s7p 1P0 0.0000010 
a Radius of the outer electron 2 from Eq. (9.53). 
b The spin-orbit coupling energy of electron 2 from Eq. (9.70) using 2r  from Eq. (9.53). 
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Chapter 10 
  
THREE- THROUGH TWENTY-ELECTRON ATOMS 
  
 
 
 
 
Three- through twenty-electron atoms are solved in this section with supporting material on the magnetic forces given in the 
Two-Electron Atoms section and Appendix VI.  The charge-density functions of one- through twenty-electron atoms and their 
corresponding positive ions are shown in Figures 10.1 and 10.2, respectively.  The electrons of multielectron atoms and ions 
exist as concentric atomic orbitals (“bubble-like” charge-density functions) of discrete radii that are given by nr  of the radial 

Dirac delta function, ( )nr r   as shown by the exemplary sectional view of the potassium atom in Figure 10.3.  

 
THREE-ELECTRON ATOMS 
As is the case for one and two-electron atoms shown in the corresponding sections, three through ten-electron atoms can also be 
solved exactly using the results of the solutions of the preceding atoms.  For example, three-electron atoms can be solved exactly 
using the results of the solutions of the one and two-electron atoms. 
 
THE LITHIUM ATOM 
For Li , there are two spin-paired electrons in an atomic orbital with: 

 1 2 0

3
1 4
2 6

r r a

 
 
   
 

 (10.1) 

as given by Eq. (7.35) where nr  is the radius of electron n  which has velocity nv .  The next electron is added to a new atomic 

orbital because of the repulsive diamagnetic force between the two spin-paired electrons and the spin-unpaired electron.  This 
repulsive diamagnetic force is due to the interaction of the magnetic field of the outer spin-unpaired electron on the electron 
current of the two spin-paired electrons of the inner shell.  The diamagnetic force on the outer electron is determined by first 
considering the central force on each electron of the inner shell due to the magnetic flux B  of the outer electron that follows 
from Purcell [1]: 

 
2 e nm v v

r


 rF i  (10.2) 

where ri  is defined as the radial vector in the direction of the central electric field of the nucleus and 

 
2 e

v eB

r m


  (10.3) 
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Figure 10.3.   A sectional view of the potassium atom showing the radii of the paired 1s, paired 2s, three sets of paired 2p, 
paired 3s, and three sets of paired 3p inner electrons and the unpaired 4s outer electron. 
 

 
 
The velocity nv  is given by the boundary condition for no radiation as follows: 

 1
1e

v
m r




 (10.4) 

where 1r  is the radius of the first atomic orbital; therefore, the force on each of the inner electrons is given as follows: 
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eB

m r
 rF i


 (10.5) 

The change in magnetic moment, m , of each electron of the inner shell due to the magnetic flux B  of the outer electron is [1]: 
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e r B
m

m
    (10.6) 

The diamagnetic force on the outer electron due to the two inner shell electrons is in the opposite direction of the force given by 
Eq. (10.5), and this diamagnetic force on the outer electron is proportional to the sum of the changes in magnetic moments of the 
two inner electrons due to the magnetic flux B  of the outer electron.  The two electrons are spin-paired and the velocities are 
mirror opposites.  Thus, the change in velocity of each electron treated individually (Eq. (10.3)) due to the magnetic flux B  
would be equal and opposite.  However, the two paired electrons may be treated as one with twice the mass where em  is replaced 

by 2 em  in Eq. (10.6).  In this case, the paired electrons spin together about the field axis to cause a reduction in the flux 

according to Lenz’s law.  It is then apparent that the force given by Eq. (10.5) is proportional to the flux B  of the outer electron; 
whereas, the total of the change in magnetic moments of the inner shell electrons given by Eq. (10.6) applied to the combination 
of the inner electrons is proportional to one eighth of the flux, B .  Thus, the force on the outer electron due to the reaction of the 
inner shell to the flux of the outer electron is given as follows: 
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 (10.7) 

where 1r  is the radial distance of the first atomic orbital from the nucleus.  The magnetic flux, B , is supplied by the constant 

field inside the atomic orbital of the outer electron at radius 3r  and is given by the product of 0  times Eq. (1.152). 
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The result of substitution of Eq. (10.8) into Eq. (10.7) is: 
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The term in brackets can be expressed in terms of the fine structure constant,  .  From Eqs. (1.176-1.180) 
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   (10.10) 

It is demonstrated in the Two-Electron Atoms section that the relativistic correction to Eq. (10.9) is 
1

Z
 times the reciprocal of 

Eq. (10.10).  Z  for electron three is one; thus, one is substituted for the term in brackets in Eq. (10.9). 

The force must be corrected for the   3
1

4
s s    vector projection of the velocity onto the z-axis as given in the Two-

Electron Atoms section and Appendix VI.  Thus, Eq. (10.9) becomes:  
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 (10.11) 

 

THE RADIUS OF THE OUTER ELECTRON OF THE LITHIUM ATOM 
The radius for the outer electron is calculated by equating the outward centrifugal force to the sum of the electric and 
diamagnetic forces as follows: 
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 (Eq. (1.35)), 1 0
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 (Eq. (7.35)), and 
1

2
s  , we solve for 3r . 
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 3 02.5559 r a  

 

THE IONIZATION ENERGY OF LITHIUM 
From Eq. (1.264), the magnitude of the energy stored in the electric field is: 
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The magnetic field of the outer electron changes the angular velocities of the inner electrons.  However, the magnetic field of the 
outer electron provides a central Lorentz force that exactly balances the change in centrifugal force because of the change in 
angular velocity [1].  Thus, the electric energy of the inner atomic orbital is unchanged upon ionization.  The magnetic field of 
the outer electron, however, also changes the magnetic moment, m , of each of the inner atomic orbital electrons.  From Eq. 
(10.6), the change in magnetic moment, m , (per electron) is:  
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where B  is the magnetic flux of the outer electron given by the product of o  times Eq. (1.152).  
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Substitution of Eq. (10.16) and 2 em  for em  (because there are two electrons) into Eq. (10.15) gives: 
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Furthermore, we know from Eqs. (10.9) and (10.11) that the term in brackets is replaced by ( 1)s s  . 
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Substitution of Eq. (10.1) for 1r , Eq. (10.13) for 3r , and given that the magnetic moment of an electron is one Bohr magneton 

according to Eq. (1.131), 
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the fractional change in magnetic moment of an inner shell electron, fm , is given as follows: 
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With 1r  given by Eq. (10.1), 3r  given by Eq. (10.13), and 
1

2
s  , the fractional change in magnetic moment of the two inner shell 

electrons is: 
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 (10.22) 

 0.016767fm   

We add one (corresponding to fm ) to fm  which is the fractional change in the magnetic moment.  The energy stored in the 

magnetic field is proportional to the magnetic field strength squared as given by Eq. (1.144); thus, the sum is squared 
 2(1.016767) 1.033815  (10.23) 

Thus, the change in magnetic energy of the inner atomic orbital is 3.382 % , so that the corresponding energy magE  is 

   0.033815 2.543 0.08599 magE eV eV    (10.24) 

where the magnetic energy of the inner electrons given in Table 7.1 is 2.543 eV .  Then the ionization energy of the lithium atom 
is given by Eqs. (10.13-10.14) and (10.24): 
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The experimental ionization energy of lithium is 5.392 eV  [2-3]. 
 

THREE ELECTRON ATOMS WITH A NUCLEAR CHARGE Z>3 
Three-electron atoms having 3Z   possess an electric field of: 
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for 3r r .  For three-electron atoms having 3Z  , the diamagnetic force given by Eq. (10.11) is unchanged.  However, for 

three-electron atoms having 3Z  , an electric field exists for 3r r .  This electric field gives rise to an additional diamagnetic 

force term which adds to Eq. (10.11).  The additional diamagnetic force is derived as follows.  The diamagnetic force repels the 
third (outer) electron, and the electric force attracts the third electron.  Consider the reverse of ionization where the third electron 
is at infinity and the two spin-paired electrons are at 1 2r r  given by Eq. (7.35). 

Power must be conserved as the net force of the diamagnetic and electric forces cause the third electron to move from 
infinity to its final radius.  Power flow is given by the Poynting Power Theorem: 
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During binding, the radius of electron three decreases.  The electric force where: 
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increases the stored electric energy which corresponds to the power term, 0

1

2t

 


    
E E , of Eq. (10.27).  The diamagnetic 
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force given by Eq. (10.7) changes the stored magnetic energy which corresponds to the power term, 0

1

2t

 


    
H H , of Eq. 

(10.27).  An additional diamagnetic force arises when 3 0Z   .  This diamagnetic force corresponds to that given by Purcell [1] 
for a charge moving in a central field having an imposed magnetic field perpendicular to the plane of motion.  The second 
diamagnetic force  2diamagneticF  is given by  
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where v  is derived from Eq. (10.3).  The result of substitution of v  into Eq. (10.29) is: 
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The magnetic flux, B , at electron three for 3r r  is given by the product of o  times Eq. (1.152).  The result of the substitution 

of the flux into Eq. (10.30) is:  

 
22 2

0 1
 2 4

3 3

2
2diamagnetic

e e

e r

m r m r

 
   

 
rF i


 (10.31) 

The term in brackets can be expressed in terms of the fine structure constant,  .  From Eqs. (1.176-1.181) 
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It is demonstrated in the Two-Electron Atoms section that the relativistic correction to Eq. (10.31) is 
1

Z
 times the reciprocal of 

Eq. (10.32).  Consider the case wherein 1Z  of Eq. (10.32) is different from 2Z Z  of Eq. (7.22) in order to maintain relativistic 

invariance of the electron angular momentum and magnetic moment.  The relativistic correction to Eq. (10.31) can be considered 
the product of two corrections—a correction of electron three relative to electron one and two, and electron one and two relative 
to electron three.  In the former case, 1Z  and 2 1Z   which corresponds to electron three.  In the latter case, 1 3Z Z  , and 

2 2Z Z   which corresponds to 3r
 , infinitesimally greater than the radius of the outer atomic orbital and 3r

 , infinitesimally 

less than the radius of the outer atomic orbital, respectively, where Z  is the nuclear charge.  Thus, 
3

2

Z

Z




 is substituted for the 

term in brackets in Eq. (10.31). The force must be corrected for the   3
1

4
s s    vector projection of the velocity onto the z-

axis as given in the Two-Electron Atoms section and Appendix VI.  Thus, Eq. (10.31) becomes:  
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As given previously in the Two Electron section, this force corresponds to the dissipation term of Eq. (10.27), J E .  The 
current J  is proportional to the sum of one for the outer electron and two times two—the number of spin-paired electrons.  For 
the inner electrons, the factor of two arises because they possess mutual inductance which doubles their contribution to J .  
(Recall the general relationship that the current is equal to the flux divided by the inductance.)  Thus, the second diamagnetic 
force is:  
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THE RADIUS OF THE OUTER ELECTRON OF THREE-ELECTRON ATOMS WITH A 
NUCLEAR CHARGE Z>3 
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric and diamagnetic 
forces as follows: 
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With 3
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 (Eq. (1.35)), 
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s  , we solve for 3r  using the quadratic formula or 

reiteratively. 
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The quadratic equation corresponding to Eq. (10.37) is: 
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The solution of Eq. (10.38) using the quadratic formula is: 
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The positive root of Eq. (10.42) must be taken in order that 3 0r  . 
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THE IONIZATION ENERGIES OF THREE-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>3 
The energy stored in the electric field, ( )E electric , is:  
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   (10.43) 

where 3r  is given by Eq. (10.42).  The magnetic field of the outer electron changes the velocities of the inner electrons.  

However, the magnetic field of the outer electron provides a central Lorentz field which balances the change in centrifugal force 
because of the change in velocity.  Thus, the electric energy of the inner atomic orbital is unchanged upon ionization.  The 
change in the velocities of the inner electrons upon ionization gives rise to a change in kinetic energies of the inner electrons.  
The change in velocity, v , is given by Eq. (10.3) 
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Substitution of the flux, B , given by the product of 0  and Eq. (1.152), into Eq. (10.44) is: 
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It is demonstrated in the One-Electron Atom section and the Two-Electrons Atom section (at Eq. (7.23)) that the relativistic 

correction to Eq. (10.45) is 
1

Z
 times the reciprocal of the term in brackets.  In this case, Z  corresponding to electron three is 

one; thus, one is substituted for the term in brackets in Eq. (10.45).  Thus, Eq. (10.45) becomes, 
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wherein 1r  given by Eq. (7.35), and 3r  is given by Eq. (10.42).  The change in kinetic energy, TE , of the two inner shell 

electrons is given by: 

 21
2

2T eE m v    (10.47) 

The ionization energy is the sum of the electric energy, Eq. (10.43), and the change in the kinetic energy, Eq. (10.47), of the 
inner electrons. 
 ( ) ( ) TE Ionization E Electric E   (10.48) 

The relativistic correction to Eq. (10.48) is given by (1) relativistically correcting the radius of the inner paired electrons 1r , (2) 

using the relativistically corrected 1r  to determine 3r  which is then relativistically corrected.  The relativistically corrected 1r  is 

given by dividing the radius given Eq. (7.35) by *  of Eq. (1.281) 
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where the velocity is given by Eq. (1.35) with the radius given by Eq. (7.35).  Similarly, the relativistically corrected 3r  is given 

by dividing the radius given Eq. (10.41) by *  of Eq. (1.281) 
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 (10.50) 

where 1r  is given by Eq. (10.49) and the velocity is given by Eq. (1.35) with the radius given by Eq. (10.42).  The ionization 

energies are given by Eq. (10.48) wherein the relativistically corrected radii given by Eqs. (10.49-10.50) are used in the sum of 
the electric energy, Eq. (10.43), and the change in the kinetic energy, Eq. (10.47), of the inner electrons.  The ionization energies 
for several three-electron atoms are given in Table 10.1. 
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Table 10.1.   Ionization energies for some three-electron atoms. 

3 e 
Atom 

Z 
1r  

( 0a ) 
a
 

3r  

( 0a ) 
b
 

Electric 
Energy 

c
 

(eV) 

v  
d
 

(m/s) 
TE e 

(eV) 
 

Theoretical 
Ionization 
Energies 

f
 

(eV)

Experimental 
Ionization 
Energies 

g
 

(eV) 

Relative 
Error 

h
 

Li  3 0.35566 2.55606 5.3230 1.6571E+04 1.5613E-03 5.40390 5.39172 -0.00226
Be  4 0.26116 1.49849 18.1594 4.4346E+04 1.1181E-02 18.1706 18.21116 0.00223

2B   5 0.20670 1.07873 37.8383 7.4460E+04 3.1523E-02 37.8701 37.93064 0.00160
3C   6 0.17113 0.84603 64.3278 1.0580E+05 6.3646E-02 64.3921 64.4939 0.00158
4N   7 0.14605 0.69697 97.6067 1.3782E+05 1.0800E-01 97.7160 97.8902 0.00178
5O   8 0.12739 0.59299 137.6655 1.7026E+05 1.6483E-01 137.8330 138.1197 0.00208
6F   9 0.11297 0.51621 184.5001 2.0298E+05 2.3425E-01 184.7390 185.186 0.00241
7Ne   10 0.10149 0.45713 238.1085 2.3589E+05 3.1636E-01 238.4325 239.0989 0.00279
8Na   11 0.09213 0.41024 298.4906 2.6894E+05 4.1123E-01 298.9137 299.864 0.00317
9Mg   12 0.08435 0.37210 365.6469 3.0210E+05 5.1890E-01 366.1836 367.5 0.00358

10Al   13 0.07778 0.34047 439.5790 3.3535E+05 6.3942E-01 440.2439 442 0.00397
11Si   14 0.07216 0.31381 520.2888 3.6868E+05 7.7284E-01 521.0973 523.42 0.00444
12P   15 0.06730 0.29102 607.7792 4.0208E+05 9.1919E-01 608.7469 611.74 0.00489
13S   16 0.06306 0.27132 702.0535 4.3554E+05 1.0785E+00 703.1966 707.01 0.00539
14Cl   17 0.05932 0.25412 803.1158 4.6905E+05 1.2509E+00 804.4511 809.4 0.00611
15Ar   18 0.05599 0.23897 910.9708 5.0262E+05 1.4364E+00 912.5157 918.03 0.00601

16K   19 0.05302 0.22552 1025.6241 5.3625E+05 1.6350E+00 1027.3967 1033.4 0.00581
17Ca   20 0.05035 0.21350 1147.0819 5.6993E+05 1.8468E+00 1149.1010 1157.8 0.00751
18Sc   21 0.04794 0.20270 1275.3516 6.0367E+05 2.0720E+00 1277.6367 1287.97 0.00802
19Ti   22 0.04574 0.19293 1410.4414 6.3748E+05 2.3106E+00 1413.0129 1425.4 0.00869
20V   23 0.04374 0.18406 1552.3606 6.7135E+05 2.5626E+00 1555.2398 1569.6 0.00915
21Cr   24 0.04191 0.17596 1701.1197 7.0530E+05 2.8283E+00 1704.3288 1721.4 0.00992
22Mn   25 0.04022 0.16854 1856.7301 7.3932E+05 3.1077E+00 1860.2926 1879.9 0.01043
23Fe   26 0.03867 0.16172 2019.2050 7.7342E+05 3.4011E+00 2023.1451 2023 -0.00007
24Co   27 0.03723 0.15542 2188.5585 8.0762E+05 3.7084E+00 2192.9020 2219 0.01176
25Ni   28 0.03589 0.14959 2364.8065 8.4191E+05 4.0300E+00 2369.5803 2399.2 0.01235
26Cu   29 0.03465 0.14418 2547.9664 8.7630E+05 4.3661E+00 2553.1987 2587.5 0.01326

a Radius of the paired inner electrons of three-electron atoms from Eq. (10.49). 
b Radius of the unpaired outer electron of three-electron atoms from Eq. (10.50). 
c Electric energy of the outer electron of three-electron atoms from Eq. (10.43). 
d Change in the velocity of the paired inner electrons due to the unpaired outer electron of three-electron atoms from Eq. (10.46). 
e Change in the kinetic energy of the paired inner electrons due to the unpaired outer electron of three-electron atoms from Eq. (10.47). 
f Calculated ionization energies of three-electron atoms from Eq. (10.48) for 3Z   and Eq. (10.25) for Li. 
g From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
h (Experimental-theoretical)/experimental. 

 
The agreement between the experimental and calculated values of Table 10.1 is well within the experimental capability 

of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures, which is consistent with the last column.  The lithium atom 
isoelectronic series is given in Table 10.1 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of Li isoelectronic and Rydberg series, as well as direct experimental 
data.   
 The ionization energies of four- through twenty-electron atoms are calculated next using the electric energy at the radius 
of the force balance between the outward centrifugal force and the sum of the Coulombic force and any magnetic forces to the 
order r3 .  The agreement between the experimental and calculated values is excellent, but could even be improved, especially 
for lower Z ions, by considering higher order magnetic terms involving the interaction between the outer electron and any lower-
lying inner shell electrons. 
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FOUR-ELECTRON ATOMS 
Four-electron atoms can be solved exactly using the results of the solutions of one, two, and three-electron atoms. 
 

RADII OF THE OUTER ELECTRONS OF FOUR-ELECTRON ATOMS 
For each three-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35): 
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 (10.51) 

and an unpaired electron with a radius 3r  given by Eq. (10.42).  For 4Z  , the next electron which binds to form the 

corresponding four-electron atom becomes spin-paired with the outer electron such that they become indistinguishable with the 
same radius 3 4r r .  The corresponding spin-pairing force magF  is given by Eq. (7.24): 
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The central forces given by Eq. (10.36) and Eq. (10.52) act on the outer electron to cause it to bind wherein the electric 
force on the outer-most electron due to the nucleus and the inner three electrons is given by Eq. (10.28) with the appropriate 
charge and radius: 
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for 3r r .  

In addition to the paramagnetic spin-pairing force between the third electron initially at radius 3r , the pairing causes the 

diamagnetic interaction between the outer electrons and the inner electrons given by Eq. (10.11) to vanish, except for an 
electrodynamic effect for 4Z   described in the Two-Electron Atoms section, since upon pairing the magnetic field of the outer 
electrons becomes zero.  Therefore, the corresponding force 2magF  is in the same direction as the spin-pairing force and is given 

by substitution of Eq. (7.6) with the radius 4r  into Eq. (10.5): 
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Then, from Eqs. (10.54) and (7.6-7.24), the paramagnetic force is given by: 
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The outward centrifugal force on electron 4 is balanced by the electric force and the magnetic forces (on electron 4).  The radius 
of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.53)), diamagnetic 
(Eqs. (10.11) and (10.35) for 4r ), and paramagnetic (Eqs. (10.52) and (10.55)) forces as follows: 
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Substitution of 4
4e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.56) gives: 
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The quadratic equation corresponding to Eq. (10.58) is 
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The solution of Eq. (10.61) using the quadratic formula is: 
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where 1r  is given by Eq. (10.51) and also Eq. (7.35).  The positive root of Eq. (10.62) must be taken in order that 4 0r  .  The 

final radius of electron 4, 4r , is given by Eq. (10.62); this is also the final radius of electron 3.  The radii of several four-electron 

atoms are given in Table 10.2. 
 

ENERGIES OF THE BERYLLIUM ATOM 
The energy stored in the electric field, ( )E electric , is given by Eq. (10.43) with the appropriate charge and radius:  
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The ionization energy is given by the sum of the electric energy and the diamagnetic and paramagnetic energy terms.  The 
magnetic energy, ( )E magnetic , for an electron corresponding to a radius nr  given by Eq. (7.46) is: 
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Since there is no source of dissipative power, J E  of Eq. (10.27), to compensate for any potential change in the magnetic 
moments, m , of the inner electrons due to the ionization of an outer electron of the beryllium atom, there is a diamagnetic 
energy term in the ionization energy for this atom that follows from the corresponding term for the lithium atom.  This term is 
given by Eqs. (10.15-10.24) wherein 1r  is given by Eq. (10.51) with 4Z   and 3 4r r  is given by Eq. (10.62).  Thus, the change 

in magnetic energy of the inner atomic orbital is 5.144 % , so that the corresponding energy magE  is: 

 0.05144  6.42291 0.33040 magE X eV eV    (10.65) 

where the magnetic energy of the inner electrons is 6.42291 eV .  In addition, there is a paramagnetic energy term ( )E magnetic  
corresponding to the ionization of a spin-paired electron from a neutral atom with a closed s-shell.  The energy follows from that 
given for helium by Eqs. (7.44) and (7.46) wherein the electron radius for helium is replaced by the radius 4r  of Eq. (10.62).  

Then, the ionization energy of the beryllium atom is given by Eqs. (7.44), (7.46), (10.25), and (10.62-10.65): 
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The experimental ionization energy of beryllium is 9.32263 eV  [3]. 
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THE IONIZATION ENERGIES OF FOUR-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>4 
The ionization energies for the four-electron atoms with 4Z   are given by the sum of the electric energy, ( )E electric , given by 
Eq. (10.63) and the magnetic energies.  The paramagnetic energy term corresponding to the ionization of a spin-paired electron 
from an atom with an external electric field is given by Eqs. (7.46) and (7.63) wherein the electron radius for helium is replaced 
by the radius 4r  of Eq. (10.62): 
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    (10.67) 

Once the outer electrons of four-electron atoms with 4Z   become spin unpaired during ionization, the corresponding 
magnetic field changes the velocities of the inner electrons in the same manner as shown for the case of the outer electron of 
three-electron atoms with 3Z  .  The magnetic effect is calculated for the remaining electron 3 at the radius 4r  corresponding to 

condition of the derivation of Eq. (10.67) that follows from Eqs. (7.46) and (7.63).  Thus, change in velocity, v , in the four-
electron-atom case is that of three-electron atoms given by Eq. (10.46) wherein the electron radius 3r  is replaced by the radius 4r  

of Eq. (10.62). 
Since the velocities of electrons one and two decrease during ionization in the case of four-electron atoms rather than 

increase as in the case of three-electron atoms, the corresponding kinetic energy decreases and the kinetic energy term given by 
Eq. (10.47) is the opposite sign in Eq. (10.48).  Thus, the ionization energies of four-electron atoms with 4Z   given by Eqs. 
(10.48) and (10.67) with the electric energy (Eq. (10.63)), the magnetic energy (Eq. (10.64)), and the change in the kinetic 
energy of the inner electrons (Eq. (10.47)) are 
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The ionization energies for several four-electron atoms are given in Table 10.2. Since the radii, 4r , are greater than 10% of 0a  

corresponding to a velocity of less than 71.5 10  /m s , the relativistic corrections are negligible and are not included in Table 
10.2. 
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Table 10.2.  Ionization energies for some four-electron atoms.  
 

4 e 
Atom 

Z 
1r  

( 0a ) 
a
 

3r  

( 0a ) 
b
 

Electric 
Energy 
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(eV) 
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v  
e
 

(m/s X 5
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 ) 
TE f 

(eV) 
 

Theoretical 
Ionization 
Energies 

g
 

(eV)

Experimental 
Ionization 
Energies 

h
 

(eV) 

Relative 
Error 

i
 

Be  4 0.26116 1.52503 8.9178 0.03226 0.4207 0.0101 9.28430 9.32263 0.0041 
B  5 0.20670 1.07930 25.2016 0.0910 0.7434 0.0314 25.1627 25.15484 -0.0003 

2C   6 0.17113 0.84317 48.3886 0.1909 1.0688 0.0650 48.3125 47.8878 -0.0089 
3N   7 0.14605 0.69385 78.4029 0.3425 1.3969 0.1109 78.2765 77.4735 -0.0104 
4O   8 0.12739 0.59020 115.2148 0.5565 1.7269 0.1696 115.0249 113.899 -0.0099 
5F   9 0.11297 0.51382 158.8102 0.8434 2.0582 0.2409 158.5434 157.1651 -0.0088 
6Ne   10 0.10149 0.45511 209.1813 1.2138 2.3904 0.3249 208.8243 207.2759 -0.0075 
7Na   11 0.09213 0.40853 266.3233 1.6781 2.7233 0.4217 265.8628 264.25 -0.0061 
8Mg   12 0.08435 0.37065 330.2335 2.2469 3.0567 0.5312 329.6559 328.06 -0.0049 

9Al   13 0.07778 0.33923 400.9097 2.9309 3.3905 0.6536 400.2017 398.75 -0.0036 
10Si   14 0.07216 0.31274 478.3507 3.7404 3.7246 0.7888 477.4989 476.36 -0.0024 
11P   15 0.06730 0.29010 562.5555 4.6861 4.0589 0.9367 561.5464 560.8 -0.0013 
12S   16 0.06306 0.27053 653.5233 5.7784 4.3935 1.0975 652.3436 652.2 -0.0002 
13Cl   17 0.05932 0.25344 751.2537 7.0280 4.7281 1.2710 749.8899 749.76 -0.0002 
14Ar   18 0.05599 0.23839 855.7463 8.4454 5.0630 1.4574 854.1849 854.77 0.0007 

15K   19 0.05302 0.22503 967.0007 10.0410 5.3979 1.6566 965.2283 968 0.0029 
16Ca   20 0.05035 0.21308 1085.0167 11.8255 5.7329 1.8687 1083.0198 1087 0.0037 
17Sc   21 0.04794 0.20235 1209.7940 13.8094 6.0680 2.0935 1207.5592 1213 0.0045 
18Ti   22 0.04574 0.19264 1341.3326 16.0032 6.4032 2.3312 1338.8465 1346 0.0053 
19V   23 0.04374 0.18383 1479.6323 18.4174 6.7384 2.5817 1476.8813 1486 0.0061 
20Cr   24 0.04191 0.17579 1624.6929 21.0627 7.0737 2.8450 1621.6637 1634 0.0075 
21Mn   25 0.04022 0.16842 1776.5144 23.9495 7.4091 3.1211 1773.1935 1788 0.0083 

22Fe   26 0.03867 0.16165 1935.0968 27.0883 7.7444 3.4101 1931.4707 1950 0.0095 
23Co   27 0.03723 0.15540 2100.4398 30.4898 8.0798 3.7118 2096.4952 2119 0.0106 
24Ni   28 0.03589 0.14961 2272.5436 34.1644 8.4153 4.0264 2268.2669 2295 0.0116 
25Cu   29 0.03465 0.14424 2451.4080 38.1228 8.7508 4.3539 2446.7858 2478 0.0126 

a Radius of the paired inner electrons of four-electron atoms from Eq. (10.51). 
b Radius of the paired outer electrons of four-electron atoms from Eq. (10.62). 
c Electric energy of the outer electrons of four-electron atoms from Eq. (10.63). 
d Magnetic energy of the outer electrons of four-electron atoms upon unpairing from Eq. (7.46) and Eq. (10.64). 
e Change in the velocity of the paired inner electrons due to the unpaired outer electron of four-electron atoms during ionization from Eq. (10.46). 
f Change in the kinetic energy of the paired inner electrons due to the unpaired outer electron of four-electron atoms during ionization from Eq. (10.47). 
g Calculated ionization energies of four-electron atoms from Eq. (10.68) for 4Z   and Eq. (10.66) for Be. 
h From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
 i (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.2 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The beryllium atom 
isoelectronic series is given in Table 10.2 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of Be isoelectronic and Rydberg series, as well as direct experimental 
data. 
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2P-ORBITAL ELECTRONS BASED ON AN ENERGY MINIMUM 
For each four-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)) and two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62).  For 5Z  , the next electron which binds to form 
the corresponding five-electron atom is attracted by the central Coulomb field and is repelled by diamagnetic force due to the 
spin-paired inner electrons such that it forms an unpaired atomic orbital at radius 5r . 

The central Coulomb force, eleF , acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner four electrons is given by Eq. (10.28) with the appropriate charge and radius: 

 
2

2
0 5

( 4)

4ele

Z e

r


 rF i  (10.69) 

for 4r r .  The same form of force equation also applies to six through ten-electron atoms as well as five-electron atoms: 
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for 1nr r   where n  corresponds to the number of electrons of the atom and Z  is its atomic number.  In each case, the magnetic 

field of the binding outer electron changes the angular velocities of the inner electrons.  However, in each case, the magnetic 
field of the outer electron provides a central Lorentz force which exactly balances the change in centrifugal force because of the 
change in angular velocity [1].  The inner electrons remain at their initial radii, but cause a diamagnetic force according to 
Lenz’s law.   

The diamagnetic force, diamagneticF , for the formation of an s orbital given by Eq. (10.11) with the appropriate radii is: 
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However, with the formation of a third shell, a nonuniform distribution of charge is possible that achieves an energy 
minimum.  Minimum energy configurations are given by solutions to Laplace’s Equation.  The general form of the solution (Eq. 
(10.449)) is: 
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As shown in the Excited States of the One-Electron Atom (Quantization) section, this general solution in the form of a 
source matching the wave-equation gives the functions of the resonant photons of excited states.  From Eqs. (2.15-2.16): 
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 1, 2,3,4,...n   
  1,2,..., 1n   
 m    , –  1,...,0,...,    

rtotalE  is the sum of the “trapped photon” and proton electric fields, 
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As shown in the Bound Electron “Atomic Orbital” section and the Instability of Excited States section, the angular part of the 
charge-density functions are eigenfunctions of Eq. (1.59), match the angular functions of the inhomogeneous Helmholtz 
equation, and include the time-harmonic function factor (Eqs. (1.27-1.29)) that comprises the electron source current of the 
corresponding electromagnetic waves.  The latter are solutions of the wave-equation (Eqs. (1.1)) and arise with a change in 
electron radius: 
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where to keep the form of the spherical harmonic as a traveling wave about the z-axis   zR  is the representation of the 

rotational matrix about the z-axis zR  (Eq. (1.82)) in the space of functions       , ,        
m m

z n nR t Y Y m t  and 
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      Re , cos cos      
nim tm m

nY e P m m t .  In the cases that 0m  , Eq. (10.77) is a traveling charge-density wave that 

moves on the surface of the atomic orbital about the z-axis with frequency n  and modulates the atomic orbital corresponding to 

  = 0 at nm .  These functions comprise the well known s, p, d, f, etc. orbitals wherein the constant function  0
0 ,Y    

corresponds to the spin function having spin angular momentum and the modulation function   Re ,  
nim tmY e  corresponds to 

the orbital function having orbital angular momentum as given in the Bound Electron “Atomic Orbital” section and the 
Rotational Parameters of the Electron (Angular Momentum, Rotational Energy, Moment of Inertia) section. 

Similar to the phenomenon observed for spherical conductors [4-5], spherical harmonic charge-density waves may be 
induced in the inner electron atomic orbitals with the addition of one or more outer electrons, each having an orbital quantum 
number 0  as given by Eq. (10.77).  With 5Z  , an energy minimum is achieved when the fifth through tenth electrons of 
each five through ten-electron atom fills a p orbital with the formation of orthogonal complementary charge-density waves in the 
inner shell electrons.  To maintain the symmetry of the central charge and the energy minimum condition given by solutions to 
Laplace’s equation (Eq. (10.72)), the charge-density waves on electron atomic orbitals at 1r  and 3r  complement those of the 

outer orbitals when the outer p orbitals are not all occupied by at least one electron, and the complementary charge-density 
waves are provided by electrons at 3r  when this condition is met.  Since the angular harmonic charge-density waves are 
nonradiative as shown in Appendix I: Nonradiation Condition, the time-averaged central field is inverse r -squared even though 
the central field is modulated by the concentric charge-density waves.  The modulated central field maintains the spherical 
harmonic orbitals that maintain the spherical-harmonic phase according to Eq. (10.72).  For 1  and 1m   , the spherical 
harmonics  ,mY    given by Eqs. (1.30-1.31) are: 

 1, sin cosxY    (10.78) 

 1, sin sinyY    (10.79) 

wherein the x  and y  designation corresponds, respectively, to the historical xp  and yp  probability-density functions of 

quantum mechanics.  The xp  and yp  charge-density waves rotate in the same direction such that their individual contributions to 

the diamagnetic force add, or they rotate in opposite directions such that their contributions cancel.  In addition, for 1  and 
0m  , the spherical harmonic  ,mY    is: 

 1, coszY   (10.80) 

wherein the z  designation corresponds to the historical zp  probability-density function of quantum mechanics. 
As shown by Eq. (10.9), the diamagnetic force is dependent on the integral of the charge-density squared over the surface 

of the atomic orbital with the further constant of the invariance of charge under Gauss’s integral law.  The correction to the force 
due to a time and spatially-dependent spherical harmonic current-density wave is given by the normalization term for spherical 
harmonics given by Eq. (3.53) of Jackson [6] and Eq. (6-76) of McQuarrie [7]: 
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Since the spin function is constant and the orbital function is a traveling wave, only the latter contributes to the diamagnetic and 
paramagnetic-force contributions of an unpaired electron.  Substitution of Eq. (10.81) into Eq. (10.11) gives the contribution of 
each orbital to the diamagnetic force, diamagneticF , which is summed over the orbitals: 
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where the contributions from orbitals having 1m   add positively or negatively. 

For each five-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-
paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and an unpaired electron in an atomic orbital at 5r  

given by Eq. (10.113).  For 6Z  , the next electron which binds to form the corresponding six-electron atom is attracted by the 
central Coulomb field and is repelled by diamagnetic force due to the spin-paired inner electrons.  A paramagnetic spin-pairing 
force to form a filled s orbital is also possible, but the force due to the spin-pairing of the electrons (Eq. (7.24) with the radius 6r ) 
reduces the energy of the atom less than that due to the alternative forces on two unpaired p electrons in an atomic orbital at the 
same radius 6r . 

In general, a nonuniform distribution of charge achieves an energy minimum with the formation of a third shell due to the 
dependence of the magnetic forces on the nuclear charge and orbital energy (Eqs. (10.52), (10.55), and (10.93)).  The outer 
electrons of atoms and ions that are isoelectronic with the series boron through neon half-fill a 2p level with unpaired electrons at 
nitrogen, then fill the level with paired electrons at neon.  Thus, it is found that the purely postulated Hund’s Rule and the Pauli 
Exclusion Principle of the assignment of unique quantum numbers to all electrons are not “weird spooky action” phenomena 
unique to quantum mechanics that require all electrons in the universe to have instantaneous communication and coordination 
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with no basis in physical laws such as Maxwell’s equations.  Rather they are phenomenological consequences of those laws.   
Each outer 2p electron contributes spin as well as orbital angular momentum.  The former gives rise to spin pairing to 

another 2p electron when an energy minimum is achieved.  The corresponding force, 2magF , given by Eq. (10.52) is: 
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The orbital angular momenta of spin-paired electrons may add to double the spin-pairing force of each individual p electron such 
that the resultant force is four times that of Eq. (10.83) in agreement with the energy (and force) relationship of magnetic fields 
(Eq. (1.154)): 
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Or, the orbital angular momenta of spin-paired electrons may add negatively to cancel such that  2magF  due to the contribution 

from spin-pairing alone is equivalent to that given by Eq. (10.83). 
The electron velocity given by Eq. (1.35) is: 
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The velocity (Eq. (1.35)) and angular frequency (Eq. (1.36)) are determined by the boundary conditions that the angular 
momentum density at each point on the surface is constant and the magnitude of the total angular momentum of the atomic 
orbital L  must also be constant.  The constant total is   given by the integral: 
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The integral of the magnitude of the angular momentum of the electron is   in any inertial frame and is relativistically invariant 
as a Lorentz scalar L  .  The vector projections of the atomic orbital spin angular momentum relative to the Cartesian 
coordinates are given in the Spin Angular Momentum of the Atomic Orbital 0

0 ( , ) Y  with  = 0 section.  The orbital and spin 

angular momentum of excited states is also quantized in units of   as shown in the Orbital and Spin Splitting section.  The 
orbital moment of inertia, orbitalI , corresponding to orbital quantum number   (Eq. (1.147)) is: 
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The spin and orbital angular momentum can superimpose positively or negatively: 
    z total z spin z orbitalL L L   (10.88) 

Thus, the contribution of the orbital angular momentum to the paramagnetic force is also that given by Eq. (10.83). 
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And, the total force is given as the sum over the orbital and spin angular momenta that may add positively or negatively to 
achieve an energy minimum while maintaining the conservation of angular momentum.  

The amplitude of the corresponding rotational energy,  orbitalrotationalE , given by Eq. (1.71) is: 
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 (10.90) 

Since the orbital rotational energy arises from a spin function (spin angular momentum) modulated by a spherical harmonic 
angular function (orbital angular momentum), the time-averaged orbital rotational energy having an amplitude given by Eq. 
(1.71) (Eq. (10.90)) is zero:  
   orbital 0rotationalE   (10.91) 

However, the orbital energy is nonzero in the presence of a magnetic field. 
N-electron atoms having Z n  possess an electric field of: 
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 rE i  (10.92) 

for nr r .  Since there is a source of dissipative power, J E  of Eq. (10.27), the magnetic moments of the inner electrons may 

change due to the outer electron such that the energy of the n-electron atom is lowered.  The diamagnetic force, 2diamagneticF , due 

to a relativistic effect with an electric field for nr r  (Eq. (10.35)) is dependent on the amplitude of the orbital energy.  Using the 

orbital energy with 1  (Eq. (10.90)), the energy 2
em v  of Eq. (10.29) is reduced by the factor of 

2
1

2

 
  

 
 due to the 

contribution of the charge-density wave of the inner electrons at 3r .  Thus, 2diamagneticF  is given by: 
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 (10.93) 

Using the forces given by Eqs. (10.70), (10.82-10.84), (10.89), (10.93), and the radii 3r  given by Eq. (10.62), the radii of 
the 2p electrons of all five through ten-electron atoms may be solved exactly.  The electric energy given by Eq. (10.102) gives 
the corresponding exact ionization energies.  eleF  and 2diamagneticF  given by Eqs. (10.70) and (10.93), respectively, are of the same 

form for all atoms with the appropriate nuclear charges and atomic radii.  diamagneticF  given by Eq. (10.82) and 2magF  given by 

Eqs. (10.83-10.84) and (10.89) are of the same form with the appropriate factors that depend on the minimum-energy electron 
configuration.  The general equation and the summary of the parameters that determine the exact radii and ionization energies of 
all five through ten-electron atoms are given the General Equation For The Ionization Energies of Five Through Ten-Electron 
Atoms section and in Table 10.9. 
 

FIVE-ELECTRON ATOMS 
Five-electron atoms can be solved exactly using the results of the solutions of one, two, three, and four-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE BORON 
ATOM 
For each four-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)) and two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62).  For 5Z  , the next electron which binds to form 
the corresponding five-electron atom is attracted by the central Coulomb field and is repelled by diamagnetic force due to the 
spin-paired inner electrons such that it forms an unpaired atomic orbital at radius 5r .  The resulting electron configuration is 

2 2 11 2 2s s p , and the orbital arrangement is: 

 

     2p state

                    

   1       0     -1

  (10.94) 

corresponding to the ground state 2 0
1/2P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner four electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 4r r . 

The single p orbital of the boron atom produces a diamagnetic force equivalent to that of the formation of an s orbital due 
to the induction of complementary and spherically symmetrical charge-density waves on electron atomic orbitals at 1r  and 3r  in 

order to achieve a solution of Laplace’s equation (Eq. (10.72)).  The inner electrons remain at their initial radii, but cause a 
diamagnetic force according to Lenz’s law that is two times that of Eqs. (10.11) and (10.71) since the two electrons at 1 2r r  act 

on the two electrons at 3 4r r  which in turn act of the outer electron.  diamagneticF  is also given by Eq. (10.82) with 0  and the 

appropriate radii when the contributions from the three orthogonal spherical harmonics are summed over including those 
induced: 
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 (10.96) 

The charge induction forms complementary mirror charge-density waves which must have opposing angular momenta 
such that momentum is conserved.  In this case, 2magF  given by Eq. (10.89) is zero: 

  2 0mag F  (10.97) 

The outward centrifugal force on electron 5 is balanced by the electric force and the magnetic force (on electron 5).  The 
radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.95)) and 
diamagnetic (Eq. (10.96)) forces as follows: 
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Substitution of 5
5e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.98) gives: 
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Substitution of 3

0

1.07930
r

a
  (Eq. (10.62) with 5Z  ) into Eq. (10.100) gives: 

 5 01.67000351r a  (10.101) 

In general, the energy stored in the electric field, ( )E electric , is given by Eq. (10.43) with the appropriate charge and 
radius:  
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   (10.102) 

where n  corresponds to the number of electrons of the atom and Z  is its atomic number.  The ionization energy is given by the 
sum of the electric energy and the energy corresponding to the change in magnetic-moments of the inner shell electrons.  Since 
there is no source of dissipative power, J E  of Eq. (10.27), to compensate for any potential change in the magnetic moments, 

m , of the inner electrons due to the ionization of the outer electron of the boron atom, there is a diamagnetic energy term in the 
ionization energy for this atom that follows from the corresponding term for the lithium atom.  Since the diamagnetic force for 
the boron atom (Eq. (10.96)) is twice that of the corresponding force (Eq. (10.11)) of the lithium atom, this term is given by 
twice that of Eqs. (10.15-10.24), with 5Z  , 3r  given by Eq. (10.62), and 5r  given by Eq. (10.101).  Thus, the change in 

magnetic energy of the inner atomic orbital at 3r  is 85.429321 % , so that the corresponding energy magE  is: 

  2 0.85429321  0.09100214 0.15548501 magE X eV eV    (10.103) 

where the magnetic energy of the inner electrons is 0.09100214 eV  (Eqs. (10.64) and (10.101)).  Then, the ionization energy of 
the boron atom is given by Eqs. (10.101-10.102) and (10.103): 
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The experimental ionization energy of the boron atom is 8.29803 eV  [3]. 
 
THE IONIZATION ENERGIES OF FIVE-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>5 
Five-electron atoms having 5Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  From Eq. (10.82), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the xp , yp , and 

zp  orbitals corresponding to m  = 1, -1, and 0, respectively: 
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 (10.105) 

With 5Z  , the charge induction forms complementary mirror charge-density waves such that the angular momenta do not 
cancel.  From Eq. (10.89),  2magF  corresponding to the orbital angular momentum of the single xp  electron is 
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 (10.106) 

The second diamagnetic force,  2diamagneticF , due to the binding of the p-orbital electron having an electric field outside of its 

radius is given by Eq. (10.93): 
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In the case that 5Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.95)) and diamagnetic (Eqs. (10.105) and (10.107)), and paramagnetic (Eq. (10.106)) forces as follows: 
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Substitution of 5
5e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.108) gives: 
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The quadratic equation corresponding to Eq. (10.109) is: 
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 (10.111) 

 
The solution of Eq. (10.111) using the quadratic formula is: 
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    (10.113) 

 
where 3r  is given by Eq. (10.62).  The positive root of Eq. (10.113) must be taken in order that 5 0r  .  The radii of several five-

electron atoms are given in Table 10.3. 
The ionization energies for the five-electron atoms with 5Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, 5r , given by Eq. (10.113)): 
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    (10.114) 

Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured five-electron 
atoms are given in Table 10.3. 
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Table 10.3.   Ionization energies for some five-electron atoms. 

5 e 
Atom 

Z 
1r  

( oa ) a 
3r  

( oa ) b 
5r  

( oa ) c 

Theoretical 
Ionization 
Energies d 

(eV)

Experimental 
Ionization 
Energies e

 
(eV)

Relative 
Error f 

B  5 0.20670 1.07930 1.67000 8.30266 8.29803 -0.00056 
C  6 0.17113 0.84317 1.12092 24.2762 24.38332 0.0044 

2N   7 0.14605 0.69385 0.87858 46.4585 47.44924 0.0209 
3O   8 0.12739 0.59020 0.71784 75.8154 77.41353 0.0206 
4F   9 0.11297 0.51382 0.60636 112.1922 114.2428 0.0179 
5Ne   10 0.10149 0.45511 0.52486 155.5373 157.93 0.0152 
6Na   11 0.09213 0.40853 0.46272 205.8266 208.5 0.0128 
7Mg   12 0.08435 0.37065 0.41379 263.0469 265.96 0.0110 

8Al   13 0.07778 0.33923 0.37425 327.1901 330.13 0.0089 
9Si   14 0.07216 0.31274 0.34164 398.2509 401.37 0.0078 

10P   15 0.06730 0.29010 0.31427 476.2258 479.46 0.0067 
11S   16 0.06306 0.27053 0.29097 561.1123 564.44 0.0059 
12Cl   17 0.05932 0.25344 0.27090 652.9086 656.71 0.0058 
13Ar   18 0.05599 0.23839 0.25343 751.6132 755.74 0.0055 

14K   19 0.05302 0.22503 0.23808 857.2251 861.1 0.0045 
15Ca   20 0.05035 0.21308 0.22448 969.7435 974 0.0044 
16Sc   21 0.04794 0.20235 0.21236 1089.1678 1094 0.0044 
17Ti   22 0.04574 0.19264 0.20148 1215.4975 1221 0.0045 
18V   23 0.04374 0.18383 0.19167 1348.7321 1355 0.0046 
19Cr   24 0.04191 0.17579 0.18277 1488.8713 1496 0.0048 
20Mn   25 0.04022 0.16842 0.17466 1635.9148 1644 0.0049 
21Fe   26 0.03867 0.16165 0.16724 1789.8624 1799 0.0051 
22Co   27 0.03723 0.15540 0.16042 1950.7139 1962 0.0058 
23Ni   28 0.03589 0.14961 0.15414 2118.4690 2131 0.0059 
24Cu   29 0.03465 0.14424 0.14833 2293.1278 2308 0.0064 

a Radius of the first set of paired inner electrons of five-electron atoms from Eq. (10.51). 
b Radius of the second set of paired inner electrons of five-electron atoms from Eq. (10.62). 
c Radius of the outer electron of five-electron atoms from Eq. (10.113) for 5Z   and Eq. (10.101) for B. 
d Calculated ionization energies of five-electron atoms given by the electric energy (Eq. (10.114)) for 5Z   and Eq. (10.104) for B. 
e From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
f (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.3 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The boron atom isoelectronic 
series is given in Table 10.3 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these values are based 
on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine since the cut-off 
of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be determined from 
theoretical calculations, interpolation of B isoelectronic and Rydberg series, as well as direct experimental data. 
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SIX-ELECTRON ATOMS 
Six-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, and five-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE CARBON 
ATOM 
For each five-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and an unpaired electron in an atomic orbital at 5r  

given by Eq. (10.113).  For 6Z  , the next electron which binds to form the corresponding six-electron atom is attracted by the 
central Coulomb field and is repelled by diamagnetic force due to the spin-paired inner electrons.  A paramagnetic spin-pairing 
force to form a filled s orbital is also possible, but the force due to the spin-pairing of the electrons (Eq. (7.24) with the radius 6r ) 

reduces the energy of the atom less than that due to the alternative forces on two unpaired p electrons in an atomic orbital at the 
same radius 6r .  The resulting electron configuration is 2 2 21 2 2s s p , and the orbital arrangement is: 

 

     2p state

                

   1        0     -1

   (10.115) 

corresponding to the ground state 3
0P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner five electrons is given by Eq. (10.70) with the appropriate charge and radius: 

 
2

2
0 6

( 5)

4ele

Z e

r


 rF i  (10.116) 

for 5r r . 

The two orthogonal electrons form charge-density waves such that the total angular momentum of the two outer electrons 
is conserved which determines the diamagnetic force according to Eq. (10.82).  diamagneticF  is: 
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 (10.117) 

corresponding to 1m  . 
The charge induction forms complementary mirror charge-density waves which must have opposing angular momenta 

such that momentum is conserved.  In this case, 2magF  given by Eq. (10.89) is zero: 

  2 0mag F  (10.118) 

The outward centrifugal force on electron 6 is balanced by the electric force and the magnetic forces (on electron 6).  The 
radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.116)) and 
diamagnetic (Eq. (10.117)) forces as follows: 
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Substitution of 6
6e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.119) gives: 
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Substitution of 3

0

0.84317
r

a
  (Eq. (10.62) with 6Z  ) into Eq. (10.121) gives: 

 6 01.20654r a  (10.122) 

The ionization energy of the carbon atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 6r , 

given by Eq. (10.122)): 
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     (10.123) 

where 6 01.20654r a  (Eq. (10.122)) and 6Z  .  The experimental ionization energy of the carbon atom is 11.2603 eV  [3]. 
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THE IONIZATION ENERGIES OF SIX-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>6 
Six-electron atoms having 6Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  From Eq. (10.82), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the xp , yp , and 

zp  orbitals corresponding to 1,  1,  and 0,m    respectively: 
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 (10.124) 

With 6Z  , the charge induction forms complementary mirror charge-density waves such that the angular momenta do 
not cancel.  From Eq. (10.89),  2magF  corresponding to the orbital angular momentum of the two p electrons in addition to 

complementary charge-density waves is: 
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 (10.125) 

The second diamagnetic force,  2diamagneticF , due to the binding of the p-orbital electron having an electric field outside of 

its radius, is given by Eq. (10.93): 
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In the case that 6Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.116)), diamagnetic (Eqs. (10.124) and (10.126)), and paramagnetic (Eq. (10.125)) forces as follows: 
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Substitution of 6
6e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.127) gives: 
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The quadratic equation corresponding to Eq. (10.128) is: 
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The solution of Eq. (10.130) using the quadratic formula is: 
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where 3r  is given by Eq. (10.62).  The positive root of Eq. (10.132) must be taken in order that 6 0r  .  The final radius of 

electron 6, 6r , is given by Eq. (10.132); this is also the final radius of electron 5.  The radii of several six-electron atoms are 

given in Table 10.4. 
The ionization energies for the six-electron atoms with 6Z   are given by the electric energy, ( )E electric , (Eq. (10.102) 

with the radii 6r , given by Eq. (10.132)): 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured six-electron 
atoms are given in Table 10.4. 
 
Table 10.4.   Ionization energies for some six-electron atoms. 
 

6 e 
Atom 

Z 
1r  

( 0a ) a 
3r  

( 0a ) b 
6r  

( 0a ) c 

Theoretical 
Ionization 
Energies d 

(eV)

Experimental 
Ionization 
Energies e 

(eV)

Relative 
Error f 

C  6 0.17113 0.84317 1.20654 11.27671 11.2603 -0.0015 
N   7 0.14605 0.69385 0.90119 30.1950 29.6013 -0.0201 

2O   8 0.12739 0.59020 0.74776 54.5863 54.9355 0.0064 
3F   9 0.11297 0.51382 0.63032 86.3423 87.1398 0.0092 
4Ne   10 0.10149 0.45511 0.54337 125.1986 126.21 0.0080 
5Na   11 0.09213 0.40853 0.47720 171.0695 172.18 0.0064 
6Mg   12 0.08435 0.37065 0.42534 223.9147 225.02 0.0049 

7Al   13 0.07778 0.33923 0.38365 283.7121 284.66 0.0033 
8Si   14 0.07216 0.31274 0.34942 350.4480 351.12 0.0019 
9P   15 0.06730 0.29010 0.32081 424.1135 424.4 0.0007 

10S   16 0.06306 0.27053 0.29654 504.7024 504.8 0.0002 
11Cl   17 0.05932 0.25344 0.27570 592.2103 591.99 -0.0004 
12Ar   18 0.05599 0.23839 0.25760 686.6340 686.1 -0.0008 

13K   19 0.05302 0.22503 0.24174 787.9710 786.6 -0.0017 
14Ca   20 0.05035 0.21308 0.22772 896.2196 894.5 -0.0019 
15Sc   21 0.04794 0.20235 0.21524 1011.3782 1009 -0.0024 
16Ti   22 0.04574 0.19264 0.20407 1133.4456 1131 -0.0022 
17V   23 0.04374 0.18383 0.19400 1262.4210 1260 -0.0019 
18Cr   24 0.04191 0.17579 0.18487 1398.3036 1396 -0.0017 
19Mn   25 0.04022 0.16842 0.17657 1541.0927 1539 -0.0014 
20Fe   26 0.03867 0.16165 0.16899 1690.7878 1689 -0.0011 
21Co   27 0.03723 0.15540 0.16203 1847.3885 1846 -0.0008 
22Ni   28 0.03589 0.14961 0.15562 2010.8944 2011 0.0001 
23Cu   29 0.03465 0.14424 0.14970 2181.3053 2182 0.0003 

a Radius of the first set of paired inner electrons of six-electron atoms from Eq. (10.51). 
b Radius of the second set of paired inner electrons of six-electron atoms from Eq. (10.62). 
c Radius of the two unpaired outer electrons of six-electron atoms from Eq. (10.132) for 6Z   and Eq. (10.122) for C. 
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d Calculated ionization energies of six-electron atoms given by the electric energy (Eq. (10.133)). 
e From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
f (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.4 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The carbon atom 
isoelectronic series is given in Table 10.4 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of C isoelectronic and Rydberg series, as well as direct experimental data.   
 

SEVEN-ELECTRON ATOMS 
Seven-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, and six-electron 
atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
NITROGEN ATOM 
For each six-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and two unpaired electrons in an atomic orbital at 

6r  given by Eq. (10.132).  For 7Z  , the next electron which binds to form the corresponding seven-electron atom is attracted 

by the central Coulomb field and is repelled by diamagnetic force due to the spin-paired inner electrons.  A paramagnetic spin-
pairing force is also possible, but the force due to the spin-pairing of the electrons (Eq. (7.24) with the radius 7r ) reduces the 

energy of the atom less than that due to the alternative forces on three unpaired p electrons in an atomic orbital at the same radius 

7r .  The resulting electron configuration is 2 2 31 2 2s s p , and the orbital arrangement is: 

 

     2p state

            

   1        0     -1

    (10.134) 

corresponding to the ground state 4 0
3/2S . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner six electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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4ele

Z e

r


 rF i  (10.135) 

for 6r r . 

The energy is minimized with conservation of angular momentum when the angular momenta of the two orthogonal xp  

and yp  electrons cancel such that the diamagnetic force (Eq. (10.82)), diamagneticF , is: 
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 (10.136) 

corresponding to 0m  . 
From Eq. (10.89),  2magF  corresponding to the orbital angular momentum of the zp  electron is: 
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 (10.137) 

The outward centrifugal force on electron 7 is balanced by the electric force and the magnetic forces (on electron 7).  The 
radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.135)), 
diamagnetic (Eq. (10.136)), and paramagnetic (Eq. (10.137)) forces as follows: 

 
2 2 2 2
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 (10.138) 

Substitution of 7
7e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.138) gives: 
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 (10.141) 

Substitution of 3

0

0.69385
r

a
  (Eq. (10.62) with 7Z  ) into Eq. (10.141) gives: 

 7 00.93084r a  (10.142) 

The ionization energy of the nitrogen atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 7r , 

given by Eq. (10.142)): 

 
2

0 7

( 6)
( ;  )  14.61664 

8

Z e
E ionization N Electric Energy eV

r


     (10.143) 

where 7 00.93084r a  (Eq. (10.142)) and 7Z  .  The experimental ionization energy of the nitrogen atom is 14.53414 eV  [3]. 

 
THE IONIZATION ENERGIES OF SEVEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>7 
Seven-electron atoms having 7Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  From Eq. (10.82), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the xp , yp , and 

zp  orbitals corresponding to m  = 1, -1, and 0, respectively: 
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 (10.144) 

With 6Z  , the charge induction forms complementary mirror charge-density waves such that the angular momenta do 
not cancel.  From Eq. (10.89),  2magF  corresponding to the orbital angular momentum of the three p electrons in addition 

complementary charge-density waves is 
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e
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 (10.145) 

The second diamagnetic force,  2diamagneticF , due to the binding of the p-orbital electron having an electric field outside of 

its radius is given by Eq. (10.93): 
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 (10.146) 

In the case that 7Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.135)), diamagnetic (Eqs. (10.10.144) and (10.146)), and paramagnetic (Eq. (10.145)) forces as follows: 
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Substitution of 7
7e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.147) gives: 
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The quadratic equation corresponding to Eq. (10.148) is 
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The solution of Eq. (10.150) using the quadratic formula is: 
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    (10.152) 

 
where 3r  is given by Eq. (10.62).  The positive root of Eq. (10.152) must be taken in order that 7 0r  .  The final radius of 

electron 7, 7r , is given by Eq. (10.152); this is also the final radius of electrons 5 and 6.  The radii of several seven-electron 

atoms are given in Table 10.5. 
The ionization energies for the seven-electron atoms with 7Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, 7r , given by Eq. (10.152)): 
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    (10.153) 

Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured seven-electron 
atoms are given in Table 10.5. 
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Table 10.5.   Ionization energies for some seven-electron atoms. 
 

7 e 
Atom 

Z 
1r  

( 0a ) a 
3r  

( 0a ) b 
7r  

( 0a ) c 

Theoretical 
Ionization 
Energies d 

(eV)

Experimental 
Ionization 
Energies e 

(eV)

Relative 
Error f 

N  7 0.14605 0.69385 0.93084 14.61664 14.53414 -0.0057 
O  8 0.12739 0.59020 0.78489 34.6694 35.1173 0.0128 

2F   9 0.11297 0.51382 0.67084 60.8448 62.7084 0.0297 
3Ne   10 0.10149 0.45511 0.57574 94.5279 97.12 0.0267 
4Na   11 0.09213 0.40853 0.50250 135.3798 138.4 0.0218 
5Mg   12 0.08435 0.37065 0.44539 183.2888 186.76 0.0186 

6Al   13 0.07778 0.33923 0.39983 238.2017 241.76 0.0147 
7Si   14 0.07216 0.31274 0.36271 300.0883 303.54 0.0114 
8P   15 0.06730 0.29010 0.33191 368.9298 372.13 0.0086 
9S   16 0.06306 0.27053 0.30595 444.7137 447.5 0.0062 
10Cl   17 0.05932 0.25344 0.28376 527.4312 529.28 0.0035 
11Ar   18 0.05599 0.23839 0.26459 617.0761 618.26 0.0019 

12K   19 0.05302 0.22503 0.24785 713.6436 714.6 0.0013 
13Ca   20 0.05035 0.21308 0.23311 817.1303 817.6 0.0006 
14Sc   21 0.04794 0.20235 0.22003 927.5333 927.5 0.0000 
15Ti   22 0.04574 0.19264 0.20835 1044.8504 1044 -0.0008 
16V   23 0.04374 0.18383 0.19785 1169.0800 1168 -0.0009 
17Cr   24 0.04191 0.17579 0.18836 1300.2206 1299 -0.0009 
18Mn   25 0.04022 0.16842 0.17974 1438.2710 1437 -0.0009 
19Fe   26 0.03867 0.16165 0.17187 1583.2303 1582 -0.0008 
20Co   27 0.03723 0.15540 0.16467 1735.0978 1735 -0.0001 
21Ni   28 0.03589 0.14961 0.15805 1893.8726 1894 0.0001 
22Cu   29 0.03465 0.14424 0.15194 2059.5543 2060 0.0002 

a Radius of the first set of paired inner electrons of seven-electron atoms from Eq. (10.51). 
b Radius of the second set of paired inner electrons of seven-electron atoms from Eq. (10.62). 
c Radius of the three unpaired paired outer electrons of seven-electron atoms from Eq. (10.152) for 7Z   and Eq. (10.142) for N. 
d Calculated ionization energies of seven-electron atoms given by the electric energy (Eq. (10.153)). 
e From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
f (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.5 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The nitrogen atom 
isoelectronic series is given in Table 10.5 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of N isoelectronic and Rydberg series, as well as direct experimental data.   
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EIGHT-ELECTRON ATOMS 
Eight-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, and seven-electron 
atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE OXYGEN 
ATOM 
For each seven-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and three unpaired electrons in an atomic orbital at 

7r  given by Eq. (10.152).  For 8Z  , the next electron which binds to form the corresponding eight-electron atom is attracted by 

the central Coulomb field and is repelled by diamagnetic force due to the spin-paired inner electrons.  A paramagnetic spin-
pairing force that results in the formation of a filled s orbital is also possible, but the force due to the spin-pairing of the electrons 
(Eq. (7.24) with the radius 8r ) reduces the energy of the atom less than that due to the alternative forces on two paired electrons 

in a xp  orbital and two unpaired electrons in yp  and zp  orbitals of an atomic orbital at the same radius 8r .  The resulting 

electron configuration is 2 2 41 2 2s s p , and the orbital arrangement is: 

 

     2p state

           

   1        0     -1

     (10.154) 

corresponding to the ground state 3
2P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner seven electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 7r r . 

The energy is minimized with conservation of angular momentum by the cancellation of the orbital angular momentum 
of a xp  electron by that of the yp  electron with the pairing of electron eight to fill the xp  orbital.  Then, the diamagnetic force is 

that of N  given by Eq. (10.136) corresponding to the zp -orbital electron (Eq. (10.82) with 0m  ) as the source of 

diamagnetism with an additional contribution from the uncanceled xp  electron (Eq. (10.82) with 1m  ).  diamagneticF  for the 

oxygen atom is: 
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From Eqs. (10.83) and (10.89),  2magF  is 
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 (10.157) 

corresponding to the spin-angular-momentum contribution alone of the xp  electron and the orbital angular momentum of the zp  

electron, respectively. 
The outward centrifugal force on electron 8 is balanced by the electric force and the magnetic forces (on electron 8).  The 

radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.155)), 
diamagnetic (Eq. (10.156)), and paramagnetic (Eq. (10.157)) forces as follows: 
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Substitution of 8
8e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.158) gives: 
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Substitution of 3

0

0.59020
r

a
  (Eq. (10.62) with 8Z  ) into Eq. (10.161) gives: 

 8 0r a  (10.162) 

The ionization energy of the oxygen atom is given by the negative of ( )E electric  given by Eq. (10.102) with the 
appropriate charge and radius: 
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     (10.163) 

where 8 0r a  (Eq. (10.162)) and 8Z  .  The experimental ionization energy of the oxygen atom is 13.6181 eV  [3]. 

 
THE IONIZATION ENERGIES OF EIGHT-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>8 
Eight-electron atoms having 8Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  From Eq. (10.82), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the xp , yp , and 

zp  orbitals corresponding to m  = 1, -1, and 0, respectively: 
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The filled p orbitals with the maintenance of symmetry according to Eq. (10.72) requires that the diamagnetic force is 
only due to the electrons at 3r .  From Eqs. (10.84) and (10.89), 2magF  is: 
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corresponding to the spin and orbital angular momenta of the paired xp  electrons and the orbital angular momentum of each of 

the yp  and zp  electrons, respectively. 

The second diamagnetic force,  2diamagneticF , due to the binding of the p-orbital electron having an electric field outside of 

its radius is given by Eq. (10.93). 
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In the case that 8Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.155)), diamagnetic (Eqs. (10.164) and (10.166)), and paramagnetic (Eq. (10.165)) forces as follows: 
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Substitution of 8
8e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.167) gives: 
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The quadratic equation corresponding to Eq. (10.168) is 

 
22 2 2

2 3
8 8

0 3

( 7) 5 6 3 8 2 3
1 10 0

4 12 4 7 2 4e e e

rZ e Z
r r

Z m r m Z m
                           

 
 (10.169) 

 

22

3

2
8 82 2 2 2

0 3 0 3

8 2 3
1 10

7 2 4
0

( 7) 5 6 3 ( 7) 5 6 3
4 12 4 4 12 4

ee

e e

Z
r

m Zm
r r

Z e Z e
Z m r Z m r 

          
                

      



 
 (10.170) 

The solution of Eq. (10.170) using the quadratic formula is: 
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    (10.172) 

where 3r  is given by Eq. (10.62).  The positive root of Eq. (10.172) must be taken in order that 8 0r  .  The final radius of 

electron 8, 8r , is given by Eq. (10.172); this is also the final radius of electrons 5, 6, and 7.  The radii of several eight-electron 

atoms are given in Table 10.6. 
The ionization energies for the eight-electron atoms with 8Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, 8r , given by Eq. (10.172)): 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured eight-electron 
atoms are given in Table 10.6. 
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Table 10.6.   Ionization energies for some eight-electron atoms. 

8 e 
Atom 

Z 
1r  

( 0a ) a 
3r  

( 0a ) b 
8r  

( 0a ) c 

Theoretical 
Ionization 
Energies d 

(eV)

Experimental 
Ionization 
Energies e 

(eV)

Relative 
Error f 

O  8 0.12739 0.59020 1.00000 13.60580 13.6181 0.0009 
F   9 0.11297 0.51382 0.7649 35.5773 34.9708 -0.0173 

2Ne   10 0.10149 0.45511 0.6514 62.6611 63.45 0.0124 
3Na   11 0.09213 0.40853 0.5592 97.3147 98.91 0.0161 
4Mg   12 0.08435 0.37065 0.4887 139.1911 141.27 0.0147 

5Al   13 0.07778 0.33923 0.4338 188.1652 190.49 0.0122 
6Si   14 0.07216 0.31274 0.3901 244.1735 246.5 0.0094 
7P   15 0.06730 0.29010 0.3543 307.1791 309.6 0.0078 
8S   16 0.06306 0.27053 0.3247 377.1579 379.55 0.0063 
9Cl   17 0.05932 0.25344 0.2996 454.0940 455.63 0.0034 
10Ar   18 0.05599 0.23839 0.2782 537.9756 538.96 0.0018 

11K   19 0.05302 0.22503 0.2597 628.7944 629.4 0.0010 
12Ca   20 0.05035 0.21308 0.2434 726.5442 726.6 0.0001 
13Sc   21 0.04794 0.20235 0.2292 831.2199 830.8 -0.0005 
14Ti   22 0.04574 0.19264 0.2165 942.8179 941.9 -0.0010 
15V   23 0.04374 0.18383 0.2051 1061.3351 1060 -0.0013 
16Cr   24 0.04191 0.17579 0.1949 1186.7691 1185 -0.0015 
17Mn   25 0.04022 0.16842 0.1857 1319.1179 1317 -0.0016 
18Fe   26 0.03867 0.16165 0.1773 1458.3799 1456 -0.0016 
19Co   27 0.03723 0.15540 0.1696 1604.5538 1603 -0.0010 
20Ni   28 0.03589 0.14961 0.1626 1757.6383 1756 -0.0009 
21Cu   29 0.03465 0.14424 0.1561 1917.6326 1916 -0.0009 

a Radius of the first set of paired inner electrons of eight-electron atoms from Eq. (10.51). 
b Radius of the second set of paired inner electrons of eight-electron atoms from Eq. (10.62). 
c Radius of the two paired and two unpaired outer electrons of eight-electron atoms from Eq. (10.172) for 8Z   and Eq. (10.162) for O. 
d Calculated ionization energies of eight-electron atoms given by the electric energy (Eq. (10.173)). 
e From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
f (Experimental-theoretical)/experimental. 

 
The agreement between the experimental and calculated values of Table 10.6 is well within the experimental capability 

of the spectroscopic determinations including the values at large Z that relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The oxygen atom 
isoelectronic series is given in Table 10.6 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of O isoelectronic and Rydberg series, as well as direct experimental data.   
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NINE-ELECTRON ATOMS 
Nine-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, and eight-
electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
FLUORINE ATOM 
For each eight-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and two paired and unpaired electrons in an atomic 

orbital at 8r  given by Eq. (10.172).  For 9Z  , the next electron which binds to form the corresponding nine-electron atom is 

attracted by the central Coulomb field and is repelled by diamagnetic force due to the spin-paired inner electrons.  A 
paramagnetic spin-pairing force that results in the formation of a filled s orbital is also possible, but the force due to the spin-
pairing of the electrons (Eq. (7.24) with the radius 9r ) reduces the energy of the atom less than that due to the alternative forces 

on an unpaired electron in a yp  orbital and two pairs of electrons of opposite spin in xp  and zp  orbitals of an atomic orbital at 

the same radius 9r .  The resulting electron configuration is 2 2 51 2 2s s p , and the orbital arrangement is: 

 

      2p state

           

   1         0       -1

      (10.174) 

corresponding to the ground state 2 0
3/2P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner eight electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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2
0 9

( 8)

4ele

Z e

r


 rF i  (10.175) 

for 8r r . 

The energy is minimized and the angular momentum is conserved with the pairing of electron nine to fill the zp  orbital 

when the orbital angular momenta of each set of xp  and zp  spin-paired electrons adds negatively to cancel.  Then, the 

diamagnetic force (Eq. (10.82)), diamagneticF , is: 
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9 3
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3 4diamagnetic
e
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 (10.176) 

corresponding to 1m    for the unpaired yp  electron. 

From Eqs. (10.83) and (10.89),  2magF  is: 

  
2 2

 2 2 2
9 3 9 3

1 1 3
1 1 1 ( 1) ( 1)mag

e e

s s s s
Z m r r Z m r r

     r rF i i
 

 (10.177) 

corresponding to the spin-angular-momentum contribution alone from each of the xp  and zp  orbitals and the orbital-angular-

momentum contribution of the yp  electron, respectively. 

The outward centrifugal force on electron 9 is balanced by the electric force and the magnetic forces (on electron 9).  The 
radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.175)), 
diamagnetic (Eq. (10.176)), and paramagnetic (Eq. (10.177)) forces as follows: 
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 (10.178) 

Substitution of 9
9e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.178) gives: 
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3

,     
3

1 3 4( 8)
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a
r r in units of a

Z
Z r



    
 

 (10.181) 

Substitution of 3

0

0.51382
r

a
  (Eq. (10.62) with 9Z  ) into Eq. (10.181) gives: 

 9 00.78069r a  (10.182) 

The ionization energy of the fluorine atom is given by the negative of ( )E electric  given by Eq. (10.102) with the 
appropriate charge and radius: 

 
2

0 9

( 8)
( ;  )  17.42782 

8

Z e
E ionization F Electric Energy eV

r


     (10.183) 

where 9 00.78069r a  (Eq. (10.183)) and 9Z  .  The experimental ionization energy of the fluorine atom is 17.42282 eV  [3]. 

 
THE IONIZATION ENERGIES OF NINE-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>9 
Nine-electron atoms having 9Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  From Eq. (10.82), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the xp , yp , and 

zp  orbitals corresponding to  = 1, 1, and 0,m   respectively: 

 
2 2

2 2
9 3 9 3

2 2 1 5
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 (10.184) 

The filled p orbitals with the maintenance of symmetry according to Eq. (10.72) requires that the diamagnetic force is 
only due to the electrons at 3r .  From Eqs. (10.84) and (10.89), 2magF  is: 
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 (10.185) 

corresponding to the spin and orbital angular momenta of the paired xp  and zp  electrons and the orbital angular momentum of 

the unpaired yp  electron, respectively. 

The second diamagnetic force,  2diamagneticF , due to the binding of the p-orbital electron having an electric field outside of 

its radius is given by Eq. (10.93): 
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 (10.186) 

In the case that 9Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.175)), diamagnetic (Eqs. (10.184) and (10.186)), and paramagnetic (Eq. (10.185)) forces as follows: 
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Substitution of 9
9e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.187) gives: 
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The quadratic equation corresponding to Eq. (10.188) is 
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The solution of Eq. (10.190) using the quadratic formula is: 
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    (10.192) 

where 3r  is given by Eq. (10.62).  The positive root of Eq. (10.192) must be taken in order that 9 0r  .  The final radius of 

electron 9, 9r , is given by Eq. (10.192); this is also the final radius of electrons 5, 6,7, and 8.  The radii of several nine-electron 

atoms are given in Table 10.7. 
The ionization energies for the nine-electron atoms with 9Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, 9r , given by Eq. (10.192)): 
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    (10.193) 

Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured nine-electron 
atoms are given in Table 10.7. 
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Table 10.7.  Ionization energies for some nine-electron atoms. 
 

9 e 
Atom 

Z 
1r  

( 0a ) a 
3r  

( 0a ) b 
9r  

( 0a ) c 

Theoretical 
Ionization 
Energies d 

(eV)

Experimental 
Ionization 
Energies e 

(eV)

Relative 
Error f 

F  9 0.11297 0.51382 0.78069 17.42782 17.42282 -0.0003 
Ne  10 0.10149 0.45511 0.64771 42.0121 40.96328 -0.0256 

2Na   11 0.09213 0.40853 0.57282 71.2573 71.62 0.0051 
3Mg   12 0.08435 0.37065 0.50274 108.2522 109.2655 0.0093 

4Al   13 0.07778 0.33923 0.44595 152.5469 153.825 0.0083 
5Si   14 0.07216 0.31274 0.40020 203.9865 205.27 0.0063 
6P   15 0.06730 0.29010 0.36283 262.4940 263.57 0.0041 
7S   16 0.06306 0.27053 0.33182 328.0238 328.75 0.0022 
8Cl   17 0.05932 0.25344 0.30571 400.5466 400.06 -0.0012 
9Ar   18 0.05599 0.23839 0.28343 480.0424 478.69 -0.0028 

10K   19 0.05302 0.22503 0.26419 566.4968 564.7 -0.0032 
11Ca   20 0.05035 0.21308 0.24742 659.8992 657.2 -0.0041 

12Sc   21 0.04794 0.20235 0.23266 760.2415 756.7 -0.0047 
13Ti   22 0.04574 0.19264 0.21957 867.5176 863.1 -0.0051 
14V   23 0.04374 0.18383 0.20789 981.7224 976 -0.0059 
15Cr   24 0.04191 0.17579 0.19739 1102.8523 1097 -0.0053 
16Mn   25 0.04022 0.16842 0.18791 1230.9038 1224 -0.0056 
17Fe   26 0.03867 0.16165 0.17930 1365.8746 1358 -0.0058 
18Co   27 0.03723 0.15540 0.17145 1507.7624 1504.6 -0.0021 
19Ni   28 0.03589 0.14961 0.16427 1656.5654 1648 -0.0052 
20Cu   29 0.03465 0.14424 0.15766 1812.2821 1804 -0.0046 

a Radius of the first set of paired inner electrons of nine-electron atoms from Equation (10.51). 
b Radius of the second set of paired inner electrons of nine-electron atoms from Equation (10.62). 
c Radius of the one unpaired and two sets of paired outer electrons of nine-electron atoms from Eq. (10.192) for 9Z   and Eq. (10.182) for F. 
d Calculated ionization energies of nine-electron atoms given by the electric energy (Eq. (10.193)). 
e From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
f (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.7 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The fluorine atom 
isoelectronic series is given in Table 10.7 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of F isoelectronic and Rydberg series, as well as direct experimental data.   
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TEN-ELECTRON ATOMS 
Ten-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, and 
nine-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE NEON 
ATOM 
For each nine-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and two sets of paired and an unpaired electron in 

an atomic orbital at 9r  given by Eq. (10.192).  For 10Z  , the next electron which binds to form the corresponding ten-electron 

atom is attracted by the central Coulomb field and is repelled by diamagnetic force due to the spin-paired inner electrons.  A 
paramagnetic spin-pairing force that results in the formation of a filled s orbital is also possible, but the force due to the spin-
pairing of the electrons (Eq. (7.24) with the radius 10r ) reduces the energy of the atom less than that due to the alternative forces 

on three pairs of electrons of opposite spin in xp , yp , and zp  orbitals of an atomic orbital at the same radius 10r .  The resulting 

electron configuration is 2 2 61 2 2s s p , and the orbital arrangement is: 

 

       2p state

          

   1         0       -1

       (10.194) 

corresponding to the ground state 1
0S . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner nine electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 9r r . 

The energy is minimized and the angular momentum is conserved with the pairing of electron ten to fill the yp  orbital 

when the orbital angular momenta of each set of the xp , yp , and zp  spin-paired electrons add negatively to cancel.  Then, the 

diamagnetic force (Eq. (10.82)), diamagneticF , is zero: 

 0diamagnetic F  (10.196) 

 From Eq. (10.83),  2magF  is 

  
2 2

 2 2 2
10 3 10 3

1 1 3
1 1 1 ( 1) ( 1)mag

e e

s s s s
Z m r r Z m r r

     r rF i i
 

 (10.197) 

corresponding to the spin-angular-momentum contribution alone from each of the xp , yp , and zp  orbitals. 

The outward centrifugal force on electron 10 is balanced by the electric force and the magnetic forces (on electron 10).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.195)), 
diamagnetic (Eq. (10.196)), and paramagnetic (Eq. (10.197)) forces as follows: 
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Substitution of 10
10e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.198) gives: 
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Substitution of 3

0

0.45511
r

a
  (Eq. (10.62) with 10Z  ) into Eq. (10.201) gives: 

 10 00.63659r a  (10.202) 

The ionization energy of the neon atom is given by the negative of ( )E electric  given by Eq. (10.102) with the 
appropriate charge and radius: 
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     (10.203) 

where 10 00.63659r a  (Eq. (10.202)) and 10Z  .  The experimental ionization energy of the neon atom is 21.56454 eV  [3]. 

 
THE IONIZATION ENERGIES OF TEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>10 
Ten-electron atoms having 10Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  From Eq. (10.82), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the xp , yp , and 

zp  orbitals corresponding to m  = 1, -1, and 0, respectively: 
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 (10.204) 

The filled p orbitals with the maintenance of symmetry according to Eq. (10.72) requires that the diamagnetic force is 
only due to the electrons at 3r .  From Eq. (10.84), 2magF  is 
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 (10.205) 

corresponding to the spin and orbital angular momenta of the paired xp , yp , and zp  electrons. 

The second diamagnetic force,  2diamagneticF , due to the binding of the p-orbital electron having an electric field outside of 

its radius is given by Eq. (10.93): 
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In the case that 10Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.195)), diamagnetic (Eqs. (10.204) and (10.206)), and paramagnetic (Eq. (10.205)) forces as follows: 
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Substitution of 10
10e

v
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 (Eq. (1.35)) and 
1

2
s   into Eq. (10.207) gives: 
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The quadratic equation corresponding to Eq. (10.208) is 
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The solution of Eq. (10.210) using the quadratic formula is: 
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    (10.212) 

where 3r  is given by Eq. (10.62).  The positive root of Eq. (10.212) must be taken in order that 10 0r  .  The final radius of 

electron 10, 10r , is given by Eq. (10.62); this is also the final radius of electrons 5, 6, 7, 8, and 9.  The radii of several ten-electron 

atoms are given in Table 10.8. 
The ionization energies for the ten-electron atoms with 10Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, 10r , given by Eq. (10.212)): 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured ten-electron 
atoms are given in Table 10.8. 
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Table 10.8.  Ionization energies for some ten-electron atoms. 
 

10 e 
Atom 

Z 
1r  

( 0a ) a 
3r  

( 0a ) b 
10r  

( 0a ) c 

Theoretical 
Ionization 
Energies d 

(eV)

Experimental 
Ionization 
Energies e 

(eV)

Relative 
Error f 

Ne  10 0.10149 0.45511 0.63659 21.37296 21.56454 0.00888 
Na  11 0.09213 0.40853 0.560945 48.5103 47.2864 -0.0259 

2Mg   12 0.08435 0.37065 0.510568 79.9451 80.1437 0.0025 
3Al   13 0.07778 0.33923 0.456203 119.2960 119.992 0.0058 
4Si   14 0.07216 0.31274 0.409776 166.0150 166.767 0.0045 
5P   15 0.06730 0.29010 0.371201 219.9211 220.421 0.0023 
6S   16 0.06306 0.27053 0.339025 280.9252 280.948 0.0001 
7Cl   17 0.05932 0.25344 0.311903 348.9750 348.28 -0.0020 
8Ar   18 0.05599 0.23839 0.288778 424.0365 422.45 -0.0038 

9K   19 0.05302 0.22503 0.268844 506.0861 503.8 -0.0045 
10Ca   20 0.05035 0.21308 0.251491 595.1070 591.9 -0.0054 
11Sc   21 0.04794 0.20235 0.236251 691.0866 687.36 -0.0054 
12Ti   22 0.04574 0.19264 0.222761 794.0151 787.84 -0.0078 
13V   23 0.04374 0.18383 0.210736 903.8853 896 -0.0088 
14Cr   24 0.04191 0.17579 0.19995 1020.6910 1010.6 -0.0100 
15Mn   25 0.04022 0.16842 0.19022 1144.4276 1134.7 -0.0086 
16Fe   26 0.03867 0.16165 0.181398 1275.0911 1266 -0.0072 
17Co   27 0.03723 0.15540 0.173362 1412.6783 1397.2 -0.0111 
18Ni   28 0.03589 0.14961 0.166011 1557.1867 1541 -0.0105 
19Cu   29 0.03465 0.14424 0.159261 1708.6139 1697 -0.0068 
20Zn   30 0.03349 0.13925 0.153041 1866.9581 1856 -0.0059 

a Radius of the first set of paired inner electrons of ten-electron atoms from Equation (10.51). 
b Radius of the second set of paired inner electrons of ten-electron atoms from Equation (10.62). 
c Radius of three sets of paired outer electrons of ten-electron atoms from Eq. (10.212) for 10Z   and Eq. (10.202) for Ne. 
d Calculated ionization energies of ten-electron atoms given by the electric energy (Eq. (10.213)). 
e From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
f (Experimental-theoretical)/experimental. 

 

The agreement between the experimental and calculated values of Table 10.8 is well within the experimental capability 
of the spectroscopic determinations, including the values at large Z, which rely on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures, which is consistent with the last column.  The neon atom isoelectronic 
series is given in Table 10.8 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these values are based 
on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine since the cut-off 
of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be determined from 
theoretical calculations, interpolation of Ne isoelectronic and Rydberg series, as well as direct experimental data.   
 
GENERAL EQUATION FOR THE IONIZATION ENERGIES OF FIVE THROUGH 
TEN-ELECTRON ATOMS 
Using the forces given by Eqs. (10.70), (10.82-10.84), (10.89), (10.93), and the radii 3r  given by Eq. (10.62), the radii of the 2p 

electrons of all five through ten-electron atoms may be solved exactly.  The electric energy given by Eq. (10.102) gives the 
corresponding exact ionization energies.  A summary of the parameters of the equations that determine the exact radii and 
ionization energies of all five through ten-electron atoms is given in Table 10.9. 

eleF  and  2diamagneticF  given by Eqs. (10.70) and (10.93), respectively, are of the same form for all atoms with the 

appropriate nuclear charges and atomic radii.  diamagneticF  given by Eq. (10.82) and 2magF  given by Eqs. (10.83-10.84) and (10.89) 

are of the same form with the appropriate factors that depend on the electron configuration wherein the electron configuration 
must be a minimum of energy. 

For each n-electron atom having a central charge of Z  times that of the proton and an electron configuration 
2 2 41 2 2 ns s p  , there are two indistinguishable spin-paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eqs. 

(7.35) and (10.51): 
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two indistinguishable spin-paired electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62): 
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where 1r  is given by Eq. (10.214), and 4n   electrons in an atomic orbital with radius nr  given by: 
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    (10.216) 

where 3r  is given by Eq. (10.215), the parameter A  given in Table 10.9 corresponds to the diamagnetic force, diamagneticF , (Eq. 

(10.82)), and the parameter B  given in Table 10.9 corresponds to the paramagnetic force,  2magF  (Eqs. (10.83-10.84) and 

(10.89)).  The positive root of Eq. (10.216) must be taken in order that 0nr  .  The radii of several n-electron atoms are given in 

Tables 10.3-10.8. 
The ionization energy for the boron atom is given by Eq. (10.104).  The ionization energies for the n-electron atoms are 

given by the negative of the electric energy, ( )E electric , (Eq. (10.102) with the radii, nr , given by Eq. (10.216)). 
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    (10.217) 

Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured n-electron atoms 
are given by Eqs. (10.217) and (10.216) in Tables 10.3-10.8. 
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Table 10.9.   Summary of the parameters of five through ten-electron atoms. 
 

Atom Type Electron 
Configuration

Ground
State 

Term 
a

Orbital 
Arrangement 

of  2p Electrons 
(2p state) 

Diamagnetic 
Force 
Factor 

A b

 

Paramagnetic
Force 
Factor 

B c 

Neutral 5 e Atom 
B  

2 2 11 2 2s s p  2 0
1/2P                     

  1       0     -1


 

 
2  

 
0 

Neutral 6 e Atom 
C  

2 2 21 2 2s s p  3
0P                 

  1        0     -1

 
 

2

3
 

 
0 

Neutral 7 e Atom 
N  

2 2 31 2 2s s p  4 0
3/2S             

  1        0     -1

  
 

1

3
 

 
1 

Neutral 8 e Atom 
O  

2 2 41 2 2s s p  3
2P            

  1        0     -1

   
 

 
1 

 
2 

Neutral 9 e Atom 
F  

2 2 51 2 2s s p  2 0
3/2P            

  1         0       -1

    
 

2

3
 

 
3 

Neutral 10 e Atom 
Ne  

2 2 61 2 2s s p  1
0S           

  1         0       -1

     
 

 
0  

 
3 

5 e Ion 2 2 11 2 2s s p  2 0
1/2P                     

  1       0     -1


 

5

3
 

 
1 

6 e Ion 2 2 21 2 2s s p  3
0P                 

  1        0     -1

 
 

5

3
 

 
4 

7 e Ion 2 2 31 2 2s s p  4 0
3/2S             

  1        0     -1

  
 

5

3
 

 
6 

8 e Ion 2 2 41 2 2s s p  3
2P            

  1        0     -1

   
 

5

3
 

 
6 

9 e Ion 2 2 51 2 2s s p  2 0
3/2P            

  1         0       -1

    
 

5

3
 

 
9 

10 e Ion 2 2 61 2 2s s p  1
0S           

  1         0       -1

     
 

5

3
 

 
12 

a The theoretical ground state terms match those given by NIST [8]. 

b Eq. (10.82). 
c Eqs. (10.83-10.84) and (10.89). 
 

ELEVEN-ELECTRON ATOMS 
Eleven-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, and ten-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE SODIUM 
ATOM 
For each ten-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and three sets of paired electrons in an atomic 

orbital at 10r  given by Eq. (10.212).  For 11Z  , the next electron which binds to form the corresponding eleven-electron atom is 

attracted by the central Coulomb field and is repelled by diamagnetic forces due to the 3 sets of spin-paired inner electrons such 
that it forms an unpaired atomic orbital at radius 11r . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner ten electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 10r r . 
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The spherically symmetrical closed 2p shell of eleven-electron atoms produces a diamagnetic force, diamagneticF , that is 

equivalent to that of a closed s shell given by Eq. (10.11) with the appropriate radii.  The inner electrons remain at their initial 
radii, but cause a diamagnetic force according to Lenz’s law that is 
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 (10.219) 

In addition to the spin-spin interaction between electron pairs, the three sets of 2p electrons are orbitally paired.  The 
single s orbital of the sodium atom produces a magnetic field at the position of the three sets of spin-paired 2p electrons.  In 
order for the electrons to remain spin and orbitally paired, a corresponding diamagnetic force,  3diamagneticF , on electron eleven 

from the three sets of spin-paired electrons is given by: 
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 (10.220) 

corresponding to the xp  and yp  electrons with no interaction from the orthogonal zp  electrons (Eq. (10.84)).  As demonstrated 

by Eqs. (7.15-7.23), the maintenance of the invariance of the electron’s angular momentum of  , mass to charge ratio, 
e

e

m
, and 

corresponding magnetic moment of a Bohr magneton, B , requires that the term in brackets is be replaced by 
1

Z
 corresponding 

to the relativistic correction given by Eq. (7.23).  Thus, 3diamagneticF  is given by: 
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 (10.221) 

where the vector projection of the spin interaction of   3
1

4
s s    is given in the Two-Electron Atoms section and Appendix 

VI. 
The outward centrifugal force on electron 11 is balanced by the electric force and the magnetic forces (on electron 11).  

The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.218)) 
and diamagnetic (Eqs. (10.219) and (10.221)) forces as follows: 
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Substitution of 11
11e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.222) gives: 
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Substitution of 10

0

0.56094
r

a
  (Eq. (10.212) with 11Z  ) into Eq. (10.225) gives: 

 11 02.65432r a  (10.226) 

The ionization energy of the sodium atom is given by the negative of ( )E electric  given by Eq. (10.102) with the 
appropriate charge and radius: 
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     (10.227) 

where 11 02.65432r a  (Eq. (10.226)) and 11Z  .  The experimental ionization energy of the sodium atom is 5.13908 eV  [3]. 
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THE IONIZATION ENERGIES OF ELEVEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>11 
Eleven-electron atoms having 11Z   possess an external electric field given by Eq. (10.92).  Since there is a source of 
dissipative power, J E  of Eq. (10.27), the magnetic moments of the inner electrons may change due to the outer electron such 
that the energy of the eleven-electron atom is lowered.  The orbital angular momenta of the paired xp  and yp  electrons give rise 

to the paramagnetic force given by Eq. (10.89), which is also equivalent to that given by Eq. (10.55): 
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The diamagnetic force,  2diamagneticF , due to a relativistic effect with an electric field for nr r  (Eq. (10.35)) may be 

determined by considering the corresponding force due to the binding of a 2p electron.  It was shown in the Five-Electron Atom 
section, that  2diamagneticF  for five through ten-electron atoms, is dependent on the amplitude of the orbital energy.  Using the 

orbital energy with 1  (Eq. (10.90)), the energy 2
em v  of Eq. (10.29) is reduced by the factor of 

2
1

2

 
  

 
 due to the 

contribution of the charge-density wave of the inner electrons at 3r .  Thus, 2diamagneticF  is given by Eq. (10.93).  Conversely, the 

binding of a 3s electron increases the energy 2
em v  of Eq. (10.29) by the factor of 

2
1

2

 
  

 
 such that  2diamagneticF  becomes 
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In the case that 11Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.218)), diamagnetic (Eq. (10.229)), and paramagnetic (Eq. (10.228)) forces as follows: 
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Substitution of 11
11e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.230) gives: 
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The quadratic equation corresponding to Eq. (10.231) is 
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The solution of Eq. (10.233) using the quadratic formula is: 
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where 10r  is given by Eq. (10.212).  The positive root of Eq. (10.235) must be taken in order that 11 0r  .  The radii of several 

eleven-electron atoms are given in Table 10.10. 
The ionization energies for the eleven-electron atoms with 11Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, 11r , given by Eq. (10.235)): 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured eleven-electron 
atoms are given in Table 10.10. 
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Table 10.10.   Ionization energies for some eleven-electron atoms. 
 

11 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

11r  

( oa ) 
d
 

Theoretical 
Ionization 
Energies 

e
 

(eV)

Experimental 
Ionization 
Energies 

f
 

(eV)

Relative 
Error 

g
 

Na  11 0.09213 0.40853 0.560945 2.65432 5.12592 5.13908 0.0026 
Mg  12 0.08435 0.37065 0.510568 1.74604 15.5848 15.03528 -0.0365 

2Al   13 0.07778 0.33923 0.456203 1.47399 27.6918 28.44765 0.0266 
3Si   14 0.07216 0.31274 0.409776 1.25508 43.3624 45.14181 0.0394 
4P   15 0.06730 0.29010 0.371201 1.08969 62.4299 65.0251 0.0399 
5S   16 0.06306 0.27053 0.339025 0.96226 84.8362 88.0530 0.0365 
6Cl   17 0.05932 0.25344 0.311903 0.86151 110.5514 114.1958 0.0319 
7Ar   18 0.05599 0.23839 0.288778 0.77994 139.5577 143.460 0.0272 
8K   19 0.05302 0.22503 0.268844 0.71258 171.8433 175.8174 0.0226 
9Ca   20 0.05035 0.21308 0.251491 0.65602 207.3998 211.275 0.0183 

10Sc   21 0.04794 0.20235 0.236251 0.60784 246.2213 249.798 0.0143 
11Ti   22 0.04574 0.19264 0.222761 0.56631 288.3032 291.500 0.0110 
12V   23 0.04374 0.18383 0.210736 0.53014 333.6420 336.277 0.0078 
13Cr   24 0.04191 0.17579 0.19995 0.49834 382.2350 384.168 0.0050 
14Mn   25 0.04022 0.16842 0.19022 0.47016 434.0801 435.163 0.0025 
15Fe   26 0.03867 0.16165 0.181398 0.44502 489.1753 489.256 0.0002 
16Co   27 0.03723 0.15540 0.173362 0.42245 547.5194 546.58 -0.0017 
17Ni   28 0.03589 0.14961 0.166011 0.40207 609.1111 607.06 -0.0034 
18Cu   29 0.03465 0.14424 0.159261 0.38358 673.9495 670.588 -0.0050 
19Zn   30 0.03349 0.13925 0.153041 0.36672 742.0336 738 -0.0055 

a Radius of the first set of paired inner electrons of eleven-electron atoms from Eq. (10.51). 
b Radius of the second set of paired inner electrons of eleven-electron atoms from Eq. (10.62). 
c Radius of three sets of paired inner electrons of eleven-electron atoms from Eq. (10.212). 
d Radius of unpaired outer electron of eleven-electron atoms from Eq. (10.235) for 11Z   and Eq. (10.226) for Na. 
e Calculated ionization energies of eleven-electron atoms given by the electric energy (Eq. (10.236)). 
f From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
g (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.10 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z, which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures, which is consistent with the last column.  The sodium atom 
isoelectronic series is given in Table 10.10 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of Na isoelectronic and Rydberg series, as well as direct experimental 
data.   

 
TWELVE-ELECTRON ATOMS 
Twelve-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, and eleven-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
MAGNESIUM ATOM 
For each eleven-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), and an unpaired electron in an atomic orbital at 11r .  For 12Z  , the next electron which binds to form 

the corresponding twelve-electron atom is attracted by the central Coulomb field and the spin-pairing force with the unpaired 3s 
inner electron and is repelled by diamagnetic forces due to the 3 sets of spin-paired inner electrons such that it forms an unpaired 
atomic orbital at radius 12r . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner eleven electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 11r r . 

The outer electron which binds to form the corresponding twelve-electron atom becomes spin-paired with the unpaired 
inner electron such that they become indistinguishable with the same radius 11 12r r  corresponding to a filled 3s shell.  The 

corresponding spin-pairing force magF  is given by Eq. (7.24). 

 
2

3
12

1
( 1)mag

e

s s
Z m r

  rF i


 (10.238) 

The spherically symmetrical closed 2p shell of twelve-electron atoms produces a diamagnetic force, diamagneticF , that is 

equivalent to that of a closed s shell given by Eq. (10.11) with the appropriate radii.  The inner electrons remain at their initial 
radii, but cause a diamagnetic force according to Lenz’s law that is: 
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In addition to the paramagnetic spin-pairing force between the eleventh electron initially at radius 11r , the pairing causes 

the diamagnetic interaction between the outer electrons and the inner electrons given by Eq. (10.11) to vanish, except for an 
electrodynamic effect for 12Z   described in the Two-Electron Atoms section, since upon pairing the magnetic field of the 
outer electrons becomes zero.  Using Eq. (10.55), 2magF  due to the three 2p orbitals is given by: 
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In addition to the spin-spin interactions between electron pairs, the three sets of 2p electrons are orbitally paired.  The s 
electrons of the magnesium atom produce a magnetic field at the position of the three sets of spin-paired 2p electrons.  In order 
for the electrons to remain spin and orbitally paired, the corresponding diamagnetic force,  3diamagneticF  (Eq. (10.221)), on electron 

twelve from the three sets of spin-paired electrons is given by: 
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corresponding to the xp , yp , and zp  electrons. 

The outward centrifugal force on electron 12 is balanced by the electric force and the magnetic forces (on electron 12).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.237)), 
diamagnetic (Eqs. (10.239) and (10.241)) and paramagnetic (Eqs. (10.238) and (10.240)) forces as follows: 
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Substitution of 12
12e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.242) gives: 
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Substitution of 10

0

0.51057
r

a
  (Eq. (10.212) with 12Z  ) into Eq. (10.245) gives: 

 12 01.79386r a  (10.246) 

The ionization energy of the magnesium atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 

12r , given by Eq. (10.246)). 
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where 12 01.79386r a  (Eq. (10.246)) and 12Z  .  The experimental ionization energy of the magnesium atom is 7.64624 eV  

[3]. 
 
THE IONIZATION ENERGIES OF TWELVE-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>12 
Twelve-electron atoms having 12Z   possess an external electric field given by Eq. (10.92).  Since there is a source of 
dissipative power, J E  of Eq. (10.27), the magnetic moments of the inner electrons may change due to the outer electron such 
that the energy of the twelve-electron atom is lowered with conservation of angular momentum.  Of the possible forces based on 
Maxwell’s equations, those that give rise to an energy minimum are used to calculate the atomic radii and energies.  With this 
constraint, the only paramagnetic force is that given by Eq. (10.89) due to the spin angular momenta of the paired 2 xp , yp , and 

zp  electrons interacting equivalently with each of the 3s electrons.  This force, which is also equivalent to that given by Eq. 

(10.145), is: 
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From Eq. (10.229), the diamagnetic force, 2diamagneticF , due to a relativistic effect with an electric field for 12r r  (Eq. 

(10.35)) is:  
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In the case that 12Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.237)), diamagnetic (Eq. (10.249)), and paramagnetic (Eq. (10.248)) forces as follows: 
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Substitution of 12
12e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.250) gives: 
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The quadratic equation corresponding to Eq. (10.251) is 
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The solution of Eq. (10.253) using the quadratic formula is: 
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where 10r  is given by Eq. (10.212).  The positive root of Eq. (10.255) must be taken in order that 12 0r  .  The radii of several 

twelve-electron atoms are given in Table 10.11. 
 The ionization energies for the twelve-electron atoms with 12Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, 12r , given by Eq. (10.255)). 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured twelve-electron 
atoms are given in Table 10.11. 
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Table 10.11.   Ionization energies for some twelve-electron atoms. 
 

12 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

Theoretical 
Ionization 
Energies 

e
 

(eV)

Experimental 
Ionization 
Energies 

f
 

(eV) 

Relative 
Error 

g
 

Mg  12 0.08435 0.37065 0.51057 1.79386 7.58467 7.64624 0.0081 

Al  13 0.07778 0.33923 0.45620 1.41133 19.2808 18.82856 -0.0240 
2Si   14 0.07216 0.31274 0.40978 1.25155 32.6134 33.49302 0.0263 
3P   15 0.06730 0.29010 0.37120 1.09443 49.7274 51.4439 0.0334 
4S   16 0.06306 0.27053 0.33902 0.96729 70.3296 72.5945 0.0312 
5Cl   17 0.05932 0.25344 0.31190 0.86545 94.3266 97.03 0.0279 
6Ar   18 0.05599 0.23839 0.28878 0.78276 121.6724 124.323 0.0213 

7K   19 0.05302 0.22503 0.26884 0.71450 152.3396 154.88 0.0164 
8Ca   20 0.05035 0.21308 0.25149 0.65725 186.3102 188.54 0.0118 
9Sc   21 0.04794 0.20235 0.23625 0.60857 223.5713 225.18 0.0071 

10Ti   22 0.04574 0.19264 0.22276 0.56666 264.1138 265.07 0.0036 
11V   23 0.04374 0.18383 0.21074 0.53022 307.9304 308.1 0.0006 
12Cr   24 0.04191 0.17579 0.19995 0.49822 355.0157 354.8 -0.0006 
13Mn   25 0.04022 0.16842 0.19022 0.46990 405.3653 403.0 -0.0059 
14Fe   26 0.03867 0.16165 0.18140 0.44466 458.9758 457 -0.0043 
15Co   27 0.03723 0.15540 0.17336 0.42201 515.8442 511.96 -0.0076 
16Ni   28 0.03589 0.14961 0.16601 0.40158 575.9683 571.08 -0.0086 
17Cu   29 0.03465 0.14424 0.15926 0.38305 639.3460 633 -0.0100 
18Zn   30 0.03349 0.13925 0.15304 0.36617 705.9758 698 -0.0114 

a Radius of the first set of paired inner electrons of twelve-electron atoms from Eq. (10.51). 
b Radius of the second set of paired inner electrons of twelve-electron atoms from Eq. (10.62). 
c Radius of three sets of paired inner electrons of twelve-electron atoms from Eq. (10.212). 
d Radius of paired outer electrons of twelve-electron atoms from Eq. (10.255) for 12Z   and Eq. (10.246) for Mg. 
e Calculated ionization energies of twelve-electron atoms given by the electric energy (Eq. (10.256)). 
f From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
g (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.11 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures, which is consistent with the last column.  The magnesium atom 
isoelectronic series is given in Table 10.11 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of Mg isoelectronic and Rydberg series, as well as direct experimental 
data.   

 

3P-ORBITAL ELECTRONS BASED ON AN ENERGY MINIMUM 
For each thirteen through eighteen-electron atom having a central charge of Z  times that of the proton, there are two 
indistinguishable spin-paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two 

indistinguishable spin-paired electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired 

electrons in an atomic orbital at 10r  given by Eq. (10.212), and two indistinguishable spin-paired electrons in an atomic orbital 

with radii 11r  and 12r  both given by Eq. (10.255).  For 12Z  , the next electron which binds to form the corresponding n-

electron atom (13 18n  ) is attracted by the central Coulomb field and is repelled by diamagnetic forces and attracted by 
paramagnetic forces due to the 3 sets of spin-paired inner 2p electrons and two spin-paired inner 3s electrons such that it forms 
an atomic orbital comprising all of the 3p electrons at radius nr .  The resulting electron configuration is 2 2 6 2 121 2 2 3 3 ns s p s p  . 

The central Coulomb force, eleF , acts on the outer electron to cause it to bind wherein this electric force on the outer-most 

electron due to the nucleus and the inner 1n   electrons is given by Eq. (10.70). 
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for 1nr r   where n  corresponds to the number of electrons of the atom and Z  is its atomic number.  In each case, the magnetic 

field of the binding outer electron changes the angular velocities of the inner electrons.  However, in each case, the magnetic 
field of the outer electron provides a central Lorentz force which exactly balances the change in centrifugal force because of the 
change in angular velocity [1].  The inner electrons remain at their initial radii, but cause a diamagnetic force according to 
Lenz’s law.   

As shown in the 2P-Orbital Electrons Based on an Energy Minimum section the quantum numbers 1  1m    and 
1  0m   correspond to spherical harmonics solutions,  ,mY   , of Laplace’s equation designated the 2 xp , 2 yp , and 2 zp  

orbitals, respectively.  Similarly, for 13 18n  , the energy may be lowered by filling 3p orbitals in the same manner to achieve 
an energy minimum relative to other configurations and arrangements.  In general, a nonuniform distribution of charge achieves 
an energy minimum with the formation of a fifth shell due to the dependence of the magnetic forces on the nuclear charge and 
orbital energy (Eqs. (10.70), (10.258-10.264), and (10.268)).  The outer electrons of atoms and ions that are isoelectronic with 
the series aluminum through argon half-fill a 3p level with unpaired electrons at phosphorous, then fill the level with paired 
electrons at argon. 

Similarly to the case of the 2p orbitals, spherical harmonic charge-density waves may be induced in the inner electron 
atomic orbitals with the addition of one or more outer electrons to the 3p orbitals.  An energy minimum is achieved when the 
thirteenth through eighteenth electrons of each thirteen through eighteen-electron atom fills a 3p orbital with the formation of 
orthogonal complementary charge-density waves in the inner shell 2p and 3s electrons.  To maintain the symmetry of the central 
charge and the energy minimum condition given by solutions to Laplace’s equation (Eq. (10.72)), the charge-density waves on 
electron atomic orbitals at 10r  and 12r  complement those of the outer orbitals when the outer 3p orbitals are not all occupied by at 

least one electron, and the complementary charge-density waves are provided by electrons at 12r  when this condition is met.  In 

the case of the 3p electrons, an exception to the trends in 2p orbital forces arises due to the interaction between the 2p, 3s, and 3p 
electrons due to magnetic fields independent of induced complementary charge-density waves.  The spin and angular momenta 
of the 2p electrons give rise to corresponding magnetic fields that interact with the two 3s electrons.  The filled 2p orbitals with 
the maintenance of symmetry according to Laplace’s equation (Eq. (10.72)) requires that the 2p as well as the 3s electrons 
contribute forces to the 3p electrons due to the electrons at 10r  acting on the electrons at 12r  which complies with the reactive 

force,  2diamagneticF , having the factor 
2

1
2

 
 

 
 and given by Eq. (10.229). 

The total orbital contribution to the diamagnetic force, diamagneticF , given by Eq. (10.82) is: 
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where the contributions from orbitals having 1m   add positively or negatively.  From Eq. (10.204), the diamagnetic force, 

diamagneticF , contribution from the 2p electrons is given by the sum of the contributions from the xp , yp , and zp  orbitals 

corresponding to m  = 1, -1, and 0, respectively: 
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where 12r  is given by Eq. (10.255).  Due to the 2p-3s-3p interaction, the 3s electrons provide spin or orbital angular momentum 

in order conserve angular momentum of the interacting orbitals.  In the case that an energy minimum is achieved with 3s orbital 
angular momentum, the diamagnetic force, diamagneticF , contribution is given by Eqs. (10.82) and (10.258) where m  = 1, -1, or 0 

corresponding to induced charge-density waves.  The contribution from the 3s orbital is added to the contributions from the 3p 
and the 2p orbitals until the 3p orbitals are at least half filled.  Then the diamagnetic force is only due to 3p and 3s electrons 
since the induced charge-density waves only involve the inner-most shell, the 3s orbital. 

As given by Eq. (10.89), the contribution of the orbital angular momentum of an unpaired 3p electron to the 
paramagnetic force,  2magF , is: 
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Each outer 3p electron contributes spin as well as orbital angular momentum.  The former gives rise to spin pairing to another 3p 
electron when an energy minimum is achieved.  In the case that the orbital angular momenta of paired 3p electrons cancel, the 
contribution to  2magF  due to spin alone given by Eq. (10.83) is equivalent to that due to orbital angular momentum alone (Eq. 

(10.260)).  Due to the 2p-3s-3p interaction, the 3s electrons can also provide a paramagnetic force,  2magF , contribution given by 

Eqs. (10.82) and (10.260) due to spin angular momentum corresponding to induced charge-density waves. 
N-electron atoms having Z n  possess an electric field given by Eq. (10.92) for nr r .  Since there is a source of 

dissipative power, J E  of Eq. (10.27), the magnetic moments of the inner electrons may change due to the outer electron such 
that the energy of the n-electron atom is lowered.  diamagneticF , is given by Eqs. (10.82) and (10.258).  Due to the 2p-3s-3p 

interaction, the 2p level contributes to the forces even when the filling of the 3p level is half or greater, and the 3s electrons may 
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provide orbital angular momentum in order conserve angular momentum of the interacting orbitals.  In the case that an energy 
minimum is achieved with 3s orbital angular momentum, the diamagnetic force, diamagneticF , contribution is given by Eqs. (10.82) 

and (10.258) where m  = 1, -1, or 0 corresponding to induced charge-density waves.  The contribution from the 3s orbital is 
added to the contributions from the 3p and the 2p orbitals. 

Due to the 2p-3s-3p interaction with Z n , 2magF  has a contribution from the 2p, 3s, and 3p orbitals.  The filled 2p 

orbitals with the maintenance of symmetry according to Eq. (10.72) requires that the diamagnetic force,  2magF , contribution is: 
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corresponding to the spin and orbital angular momenta of the paired 2 xp , yp , and zp  electrons (Eq. (10.205)).  The 3s electrons 

can provide a  2magF  contribution of: 
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corresponding to coupling to the spin and induced orbital angular momentum wherein the orbitals interact such that this 
contribution superimposes negatively or positively to the contributions from the 2p and 3p orbitals.  Each outer 3p electron 
contributes spin as well as orbital angular momentum.  Each unpaired 3p electron can spin and orbitally pair with a 2p orbital.  
The corresponding force,  2magF , contribution given by Eq. (10.84) is: 

 
2

 2 2
12

1 4
( 1)mag

e n

s s
Z m r r

  rF i


 (10.263) 

The 3p electrons spin-pair upon further filling of the 3p orbital.  Two spin-paired 3p electrons interacting with two spin-paired 
2p orbital electrons double the corresponding force, 2magF , contribution: 
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The sum of the magnitude of the angular momentum of the electron is   in any inertial frame and is relativistically 
invariant.  The vector projections of the atomic orbital spin angular momentum relative to the Cartesian coordinates are given in 
the Spin Angular Momentum of the Atomic Orbital 0

0 ( , ) Y  with   = 0 section.  The magnitude of the z-axis projection of the 

spin angular momentum, zL , the moment of inertia about the z-axis, zI , and the rotational energy about the z-axis,    rotational spinE , 

given by Eqs. (1.51-1.55) are: 
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N-electron atoms having Z n  possess an electric field given by Eq. (10.92) for nr r .  Since there is a source of 

dissipative power, J E  of Eq. (10.27), the magnetic moments of the inner electrons may change due to the outer electron such 
that the energy of the n-electron atom is lowered.  As shown in the P-Orbital Electrons Based on an Energy Minimum section for 

 2diamagneticF  given by Eq. (10.93), the corresponding diamagnetic force for 2p electrons,  2diamagneticF , due to a relativistic effect 

with an electric field for nr r  (Eq. (10.35)) is dependent on the amplitude of the orbital energy.  Using the orbital energy with 

1  (Eq. (10.90)), the energy 2
em v  of Eq. (10.29) is reduced by the factor of 

2
1

2

 
 

 
 due to the contribution of the charge-

density wave of the inner electrons at 12r .  In addition, the two 3s electrons contribute an energy factor based on Eq. (1.55) since 

the filled 2p orbitals with the maintenance of symmetry according to Eq. (10.72) requires that the diamagnetic force is due to the 
electrons at 10r  acting on the electrons at 12r  which complies with the reactive force, 2diamagneticF , given by Eq. (10.229).  Thus, 

 2diamagneticF  for 3p electrons with Z n  is given by: 
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The total diamagnetic and paramagnetic forces are given as the sum over the orbital and spin angular momenta that may 
add positively or negatively while maintaining the conservation of angular momentum.  Of the possible forces based on 
Maxwell’s equations, those which give rise to an energy minimum are used to calculated the atomic radii and energies.  In 
general, an energy minimum is achieved by minimizing diamagneticF  while maximizing 2magF  with conservation of angular 
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momentum. 
Using the forces given by Eqs. (10.257-10.264), (10.268), and the radii 12r  given by Eq. (10.255), the radii of the 3p 

electrons of all thirteen through eighteen-electron atoms may be solved exactly.  The electric energy given by Eq. (10.102) gives 
the corresponding exact ionization energies.  eleF  and 2diamagneticF  given by Eqs. (10.257) and (10.268), respectively, are of the 

same form for all atoms with the appropriate nuclear charges and atomic radii.  diamagneticF  given by Eq. (10.258) and 2magF  given 

by Eqs. (10.260-10.264) are of the same form with the appropriate factors that depend on the minimum-energy electron 
configuration.  The general equation and the summary of the parameters that determine the exact radii and ionization energies of 
all thirteen through eighteen-electron atoms are given the General Equation For The Ionization Energies of Thirteen Through 
Eighteen-Electron Atoms section and in Table 10.18. 
 

THIRTEEN-ELECTRON ATOMS 
Thirteen-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, and twelve-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
ALUMINUM ATOM 
For each twelve-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), and two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given 

by Eq. (10.255).  For 13Z  , the next electron which binds to form the corresponding thirteen-electron atom is attracted by the 
central Coulomb field and is repelled by diamagnetic forces due to the 3 sets of spin-paired inner 2p electrons and two spin-
paired inner 3s electrons such that it forms an unpaired atomic orbital at radius 13r .  The resulting electron configuration is 

2 2 6 2 11 2 2 3 3s s p s p , and the orbital arrangement is: 

 

     3p state

                    

   1       0     -1

  (10.269) 

corresponding to the ground state 2 0
1/2P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner twelve electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 12r r . 

As in the case of the boron atom given in the Five-Electron Atom section, the single p orbital of the aluminum atom 
produces a diamagnetic force equivalent to that of the formation of an s orbital due to the induction of complementary and 
spherically symmetrical charge-density waves on electron atomic orbitals at 10r  and 12r  in order to achieve a solution of 

Laplace’s equation (Eq. (10.72)).  The inner electrons remain at their initial radii, but cause a diamagnetic force according to 
Lenz’s law that is given by Eq. (10.96) with the appropriate radii.  In addition, the contribution of the diamagnetic force, 

diamagneticF , due to the 2p electrons is given by Eqs. (10.105) and (10.259) as the sum of the contributions from the xp , yp , and 

zp  orbitals corresponding to m  = 1, -1, and 0, respectively.  Thus, diamagneticF  is given by: 
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The charge induction forms complementary mirror charge-density waves which must have opposing angular momenta 
such that momentum is conserved.  In this case, 2magF  given by Eq. (10.260) is zero: 

  2 0mag F  (10.272) 

The outward centrifugal force on electron 13 is balanced by the electric force and the magnetic force (on electron 13).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.270)) 
and diamagnetic (Eq. (10.271)) forces as follows: 
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Substitution of 13
13e
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 (Eq. (1.35)) and 
1

2
s   into Eq. (10.273) gives: 
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Substitution of 12

0

1.41133
r

a
  (Eq. (10.255) with 13Z  ) into Eq. (10.275) gives: 

 13 02.28565r a  (10.276) 

The energy stored in the electric field of the aluminum atom, ( )E electric , is given by Eq. (10.102) with the appropriate 

with the radius, 13r , given by Eq. (10.276)): 
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where 13 02.28565r a  (Eq. (10.276)) and 13Z  .  The ionization energy is given by the sum of the electric energy and the 

energy corresponding to the change in magnetic-moments of the inner shell electrons.  Since there is no source of dissipative 
power, J E  of Eq. (10.27), to compensate for any potential change in the magnetic moments, m , of the inner electrons due to 
the ionization of the outer electron of the aluminum atom, there is a diamagnetic energy term in the ionization energy for this 
atom that follows from the corresponding term for the lithium atom given by Eqs. (10.15-10.24), with 13Z  , 12r  given by Eq. 

(10.255), and 13r  given by Eq. (10.276).  Thus, the change in magnetic energy of the inner atomic orbital at 12r  is 76.94147 % , 

so that the corresponding energy magE  is 

 0.7694147  0.04069938 0.0313147 magE X eV eV    (10.278) 

where the magnetic energy of the inner electrons is 0.04069938 eV  (Eqs. (10.64) and (10.276)).  Then, the ionization energy of 
the aluminum atom is given by Eqs. (10.276-10.278): 
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       (10.279) 

The experimental ionization energy of the boron atom is 5.98577 eV  [3]. 
 
THE IONIZATION ENERGIES OF THIRTEEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>13 
Thirteen-electron atoms having 13Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum 
is achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 

 2magF  is maximized.  From Eq. (10.258), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the 

2 xp , yp , and zp  orbitals corresponding to m  = 1, -1, and 0, respectively: 
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wherein the contribution due to the 3 xp  ( m  = 1) is canceled by the mirror charge-density wave with m  = -1 induced in the 3s 

orbital according to Eq. (10.258). 
With 13Z  , the charge induction forms complementary mirror charge-density waves such that the angular momenta do 

not cancel.  The filled 2p orbitals with the maintenance of symmetry according to Eq. (10.72) requires that the diamagnetic force 
is due to the electrons at 10r  acting on the electrons at 12r  which complies with the reactive force,  2diamagneticF , given by Eq. 

(10.249).  From Eq. (10.261),  2magF  is: 
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 (10.281) 

corresponding to the spin and orbital angular momenta of the paired 2 xp , yp , and zp  electrons wherein the contribution due to 

the 3 xp  ( m  = 1) is canceled by the mirror charge-density wave with = 1m   induced in the 3s orbital according to Eq. (10.262). 

The diamagnetic force,  2diamagneticF , due to the binding of the 3p-orbital electron having an electric field outside of its 

radius is given by Eq. (10.268): 
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In the case that 13Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
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of the electric (Eq. (10.270)) and diamagnetic (Eqs. (10.280) and (10.282)), and paramagnetic (Eq. (10.281)) forces as follows: 
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Substitution of 13
13e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.283) gives: 
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The quadratic equation corresponding to Eq. (10.284) is: 
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The solution of Eq. (10.286) using the quadratic formula is: 
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where 12r  is given by Eq. (10.255).  The positive root of Eq. (10.288) must be taken in order that 13 0r  .  The radii of several 

thirteen-electron atoms are given in Table 10.12. 
The ionization energies for the thirteen-electron atoms with 13Z   are given by the electric energy, ( )E electric , (Eq. (10.102) 

with the radii, 13r , given by Eq. (10.288)). 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured thirteen-electron 
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atoms are given in Table 10.12. 
 
Table 10.12.   Ionization energies for some thirteen-electron atoms. 
 

13 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) d 

13r  

( oa ) 
e
 

Theoretical 
Ionization 
Energies 

f
 

(eV)

Experimental 
Ionization 
Energies 

g
 

(eV) 

Relative 
Error 

h
 

Al  13 0.07778 0.33923 0.45620 1.41133 2.28565 5.98402 5.98577 0.0003 
Si  14 0.07216 0.31274 0.40978 1.25155 1.5995 17.0127 16.34585 -0.0408 

2P   15 0.06730 0.29010 0.37120 1.09443 1.3922 29.3195 30.2027 0.0292 
3S   16 0.06306 0.27053 0.33902 0.96729 1.1991 45.3861 47.222 0.0389 
4Cl   17 0.05932 0.25344 0.31190 0.86545 1.0473 64.9574 67.8 0.0419 
5Ar   18 0.05599 0.23839 0.28878 0.78276 0.9282 87.9522 91.009 0.0336 

6K   19 0.05302 0.22503 0.26884 0.71450 0.8330 114.3301 117.56 0.0275 
7Ca   20 0.05035 0.21308 0.25149 0.65725 0.7555 144.0664 147.24 0.0216 
8Sc   21 0.04794 0.20235 0.23625 0.60857 0.6913 177.1443 180.03 0.0160 
9Ti   22 0.04574 0.19264 0.22276 0.56666 0.6371 213.5521 215.92 0.0110 

10V   23 0.04374 0.18383 0.21074 0.53022 0.5909 253.2806 255.7 0.0095 
11Cr   24 0.04191 0.17579 0.19995 0.49822 0.5510 296.3231 298.0 0.0056 
12Mn   25 0.04022 0.16842 0.19022 0.46990 0.5162 342.6741 343.6 0.0027 
13Fe   26 0.03867 0.16165 0.18140 0.44466 0.4855 392.3293 392.2 -0.0003 
14Co   27 0.03723 0.15540 0.17336 0.42201 0.4583 445.2849 444 -0.0029 
15Ni   28 0.03589 0.14961 0.16601 0.40158 0.4341 501.5382 499 -0.0051 
16Cu   29 0.03465 0.14424 0.15926 0.38305 0.4122 561.0867 557 -0.0073 
17Zn   30 0.03349 0.13925 0.15304 0.36617 0.3925 623.9282 619 -0.0080 

a Radius of the paired 1s inner electrons of thirteen-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of thirteen-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of thirteen-electron atoms from Eq. (10.212). 
d Radius of the paired 3s inner electrons of thirteen-electron atoms from Eq. (10.255). 
e Radius of the unpaired 3p outer electron of thirteen-electron atoms from Eq. (10.288) for 13Z   and Eq. (10.276) for Al. 
f Calculated ionization energies of thirteen-electron atoms given by the electric energy (Eq. (10.289)) for 13Z   and Eq. (10.279) for Al. 
g From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
h (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.12 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z, which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures, which is consistent with the last column.  The aluminum atom 
isoelectronic series is given in Table 10.12 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of Al isoelectronic and Rydberg series, as well as direct experimental 
data. 
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FOURTEEN-ELECTRON ATOMS 
Fourteen-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, twelve, and thirteen-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE SILICON 
ATOM 
For each thirteen-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given by 

Eq. (10.255), and an unpaired electron in an atomic orbital with radius 13r  given by Eq. (10.288).  For 14Z  , the next electron 

which binds to form the corresponding fourteen-electron atom is attracted by the central Coulomb field and is repelled by 
diamagnetic forces due to the 3 sets of spin-paired inner 2p electrons and two spin-paired inner 3s electrons.  A paramagnetic 
spin-pairing force to form a filled s orbital is also possible, but the force due to the spin-pairing of the electrons (Eq. (7.24) with 
the radius 14r ) reduces the energy of the atom less than that due to the alternative forces on two unpaired 3p electrons in an 

atomic orbital at the same radius 14r .  The resulting electron configuration is 2 2 6 2 21 2 2 3 3s s p s p , and the orbital arrangement is: 

 

     3p state

                

   1        0     -1

   (10.290) 

corresponding to the ground state 3
0P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner thirteen electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 13r r . 

As in the case of the carbon atom given in the Six-Electron Atom section, the two orthogonal 3p electrons form charge-
density waves such that the total angular momentum of the two outer electrons is conserved which determines the diamagnetic 
force according to Eq. (10.82) (Eq. (10.258)).  The contribution is given by Eq. (10.117) corresponding to 1m  .  In addition, the 
contribution of the diamagnetic force, diamagneticF , due to the 2p electrons is given by Eq. (10.105) (Eq. (10.259)) as the sum of the 

contributions from the 2 xp , yp , and zp  orbitals corresponding to m  = 1, -1, and 0, respectively.  Thus, diamagneticF  is given by: 
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The charge induction forms complementary mirror charge-density waves which must have opposing angular momenta 
such that momentum is conserved.  In this case, 2magF  given by Eq. (10.89) (Eq. (10.260)) is zero: 

  2 0mag F  (10.293) 

The outward centrifugal force on electron 14 is balanced by the electric force and the magnetic forces (on electron 14).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.291)) 
and diamagnetic (Eq. (10.292)) forces as follows: 

 
2 2 2
14

2 2
14 0 14 14 12

( 13) 7
( 1)

4 12
e

e

m v Z e
s s

r r m r r


  


 (10.294) 

Substitution of 14
14e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.294) gives: 
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Substitution of 12

0

1.25155
r

a
  (Eq. (10.255) with 14Z  ) into Eq. (10.296) gives: 

 14 01.67685r a  (10.297) 
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The ionization energy of the silicon atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 14r , 

given by Eq. (10.297)): 
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     (10.298) 

where 14 01.67685r a  (Eq. (10.297)) and 14Z  .  The experimental ionization energy of the silicon atom is 8.15169 eV  [3]. 

 
THE IONIZATION ENERGIES OF FOURTEEN-ELECTRON ATOMS WITH A 
NUCLEAR CHARGE Z>14 
Fourteen-electron atoms having 14Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum 
is achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 

 2magF  is maximized.  With a half-filled 3p shell, the diamagnetic force due to the orbital angular momenta of the 3p electrons 

cancels that of the 2p electrons.  Thus, diamagneticF  is minimized by the formation of a charge-density wave in the 3s orbital 

corresponding to  = 1m   in Eq. (10.258) to form the equivalent of a half-filled 3p shell such that the contribution due to the 2p 
shell is canceled.  From Eq. (10.258), the diamagnetic force, diamagneticF , is given by the sum of the contributions from the 3 xp  

and zp  orbitals corresponding to m  = 1 and 0, respectively, and the negative contribution due to the charge-density wave with 

m  = -1 induced in the 3s orbital according to Eq. (10.258): 
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From Eq. (10.261),  2magF  corresponding to the spin and orbital angular momenta of the paired 2 xp , yp , and zp  
electrons is: 
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and the contribution from the 3p shell is 
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corresponding to the 3 xp  and zp  electrons wherein the contribution due to the 3 xp  ( m  = 1) electron is canceled by the mirror 

charge-density wave with  = 1m   induced in the 3s orbital (Eq. (10.262)).  Thus, the total of  2magF  is 
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The diamagnetic force,  2diamagneticF , due to the binding of the 3p-orbital electron having an electric field outside of its 

radius is given by Eq. (10.268): 
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In the case that 14Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.291)), diamagnetic (Eqs. (10.299) and (10.303)), and paramagnetic (Eq. (10.302)) forces as follows: 
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Substitution of 14
14e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.304) gives: 
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The quadratic equation corresponding to Eq. (10.305) is 
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The solution of Eq. (10.307) using the quadratic formula is: 
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where 12r  is given by Eq. (10.255).  The positive root of Eq. (10.309) must be taken in order that 14 0r  .  The final radius of 

electron 14, 14r , is given by Eq. (10.309); this is also the final radius of electron 13.  The radii of several fourteen-electron atoms 

are given in Table 10.13. 
The ionization energies for the fourteen-electron atoms with 14Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii 14r , given by Eq. (10.309)). 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured fourteen-
electron atoms are given in Table 10.13. 
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Table 10.13.   Ionization energies for some fourteen-electron atoms. 
 

14 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

14r  

( oa ) 
e
 

Theoretical 
Ionization 
Energies 

f
 

(eV)

Experimental 
Ionization 
Energies 

g
 

(eV) 

Relative 
Error 

h
 

Si  14 0.07216 0.31274 0.40978 1.25155 1.67685 8.11391 8.15169 0.0046 
P  15 0.06730 0.29010 0.37120 1.09443 1.35682 20.0555 19.7694 -0.0145 

2S   16 0.06306 0.27053 0.33902 0.96729 1.21534 33.5852 34.790 0.0346 
3Cl   17 0.05932 0.25344 0.31190 0.86545 1.06623 51.0426 53.4652 0.0453 
4Ar   18 0.05599 0.23839 0.28878 0.78276 0.94341 72.1094 75.020 0.0388 
5K   19 0.05302 0.22503 0.26884 0.71450 0.84432 96.6876 99.4 0.0273 
6Ca   20 0.05035 0.21308 0.25149 0.65725 0.76358 124.7293 127.2 0.0194 
7Sc   21 0.04794 0.20235 0.23625 0.60857 0.69682 156.2056 158.1 0.0120 
8Ti   22 0.04574 0.19264 0.22276 0.56666 0.64078 191.0973 192.10 0.0052 
9V   23 0.04374 0.18383 0.21074 0.53022 0.59313 229.3905 230.5 0.0048 
10Cr   24 0.04191 0.17579 0.19995 0.49822 0.55211 271.0748 270.8 -0.0010 
11Mn   25 0.04022 0.16842 0.19022 0.46990 0.51644 316.1422 314.4 -0.0055 
12Fe   26 0.03867 0.16165 0.18140 0.44466 0.48514 364.5863 361 -0.0099 
13Co   27 0.03723 0.15540 0.17336 0.42201 0.45745 416.4021 411 -0.0131 
14Ni   28 0.03589 0.14961 0.16601 0.40158 0.43277 471.5854 464 -0.0163 
15Cu   29 0.03465 0.14424 0.15926 0.38305 0.41064 530.1326 520 -0.0195 
16Zn   30 0.03349 0.13925 0.15304 0.36617 0.39068 592.0410 579 -0.0225 

a Radius of the paired 1s inner electrons of fourteen-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of fourteen-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of fourteen-electron atoms from Eq. (10.212). 
d Radius of the paired 3s inner electrons of fourteen-electron atoms from Eq. (10.255). 
e Radius of the two unpaired 3p outer electrons of fourteen-electron atoms from Eq. (10.309) for 14Z   and Eq. (10.297) for Si. 
f Calculated ionization energies of fourteen-electron atoms given by the electric energy (Eq. (10.310)). 
g From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
h (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.13 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The silicon atom 
isoelectronic series is given in Table 10.13 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of Si isoelectronic and Rydberg series, as well as direct experimental 
data.   
 

FIFTEEN-ELECTRON ATOMS 
Fifteen-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, twelve, thirteen and fourteen-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
PHOSPHOROUS ATOM 
For each fourteen-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-
paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given by 

Eq. (10.255), and two unpaired electrons in an atomic orbital with radius 14r  given by Eq. (10.288).  For 15Z  , the next 

electron which binds to form the corresponding fifteen-electron atom is attracted by the central Coulomb field and is repelled by 
diamagnetic forces due to the 3 sets of spin-paired inner 2p electrons and two spin-paired inner 3s electrons.  A paramagnetic 
spin-pairing force to form a filled s orbital is also possible, but the force due to the spin-pairing of the electrons (Eq. (7.24) with 
the radius 15r ) reduces the energy of the atom less than that due to the alternative forces on three unpaired 3p electrons in an 

atomic orbital at the same radius 15r .  The resulting electron configuration is 2 2 6 2 31 2 2 3 3s s p s p , and the orbital arrangement is 
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     3p state

            

   1        0     -1

    (10.311) 

corresponding to the ground state 4 0
3/2S . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner fourteen electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 14r r . 

The diamagnetic force, diamagneticF , is only due to 3p and 3s electrons when the 3p shell is at least half filled since the 

induced charge-density waves only involve the inner-most shell, the 3s orbital.  Thus, diamagneticF , is given by Eq. (10.259) as the 

sum of the contributions from the 3 xp , yp , and zp  orbitals corresponding to m  = 1, -1, and 0, respectively: 
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The energy is minimized with conservation of angular momentum when the spin angular momentum of the 3s orbital 
superimposes negatively with the orbital angular momentum of the 3p orbitals.  From Eq. (10.260),  2magF  corresponding to the 

orbital angular momentum of the 3 xp , yp , and zp  orbitals minus the contribution from the 3s orbital is 
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 (10.314) 

The outward centrifugal force on electron 15 is balanced by the electric force and the magnetic forces (on electron 15).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.312)), 
diamagnetic (Eq. (10.313)), and paramagnetic (Eq. (10.314)) forces as follows: 
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Substitution of 15
15e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.315) gives: 
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Substitution of 12

0

1.09443
r

a
  (Eq. (10.255) with 15Z  ) into Eq. (10.318) gives: 

 15 01.28900r a  (10.319) 

The ionization energy of the phosphorous atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 

15r , given by Eq. (10.319)): 
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     (10.320) 

where 15 01.28900r a  (Eq. (10.319)) and 15Z  .  The experimental ionization energy of the phosphorous atom is 10.48669 eV  

[3]. 
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THE IONIZATION ENERGIES OF FIFTEEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>15 
Fifteen-electron atoms having 15Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  With a half-filled 3p shell, the diamagnetic force due to the orbital angular momenta of the 3p electrons cancels 
that of the 2p electrons.  Thus, the diamagnetic force (Eq. (10.258)), diamagneticF , is zero: 

 0diamagnetic F  (10.321) 

From Eqs. (10.205) and (10.261),  2magF  corresponding to the spin and orbital angular momenta of the paired 2 xp , yp , 

and zp  electrons is: 
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and the contribution from the 3p level is: 
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corresponding to the 3 xp , yp , and zp  electrons.  Thus, the total of 2magF  is: 
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The diamagnetic force,  2diamagneticF , due to the binding of the 3p-orbital electron having an electric field outside of its 

radius is given by Eq. (10.268): 
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In the case that 15Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.312)), diamagnetic (Eqs. (10.321) and (10.325)), and paramagnetic (Eq. (10.324)) forces as follows: 
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Substitution of 15
15e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.326) gives: 

 
22 2 2

12
3 2 2 4

15 0 15 15 12 15

( 14) 24 3 15 2 1 3
1 10

4 4 14 2 2 4e e e

rZ e Z

m r r Zm r r Z m r
              

 
 (10.327) 

The quadratic equation corresponding to Eq. (10.327) is: 
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The solution of Eq. (10.329) using the quadratic formula is: 
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   (10.331) 

where 12r  is given by Eq. (10.255).  The positive root of Eq. (10.331) must be taken in order that 15 0r  .  The final radius of 

electron 15, 15r , is given by Eq. (10.331); this is also the final radius of electrons 13 and 14.  The radii of several fifteen-electron 

atoms are given in Table 10.14. 
The ionization energies for the fifteen-electron atoms with 15Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii 15r , given by Eq. (10.331)): 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured fifteen-electron 
atoms are given in Table 10.14. 
 
Table 10.14.   Ionization energies for some fifteen-electron atoms. 
 

15 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

15r  

( oa ) 
e
 

Theoretical 
Ionization 
Energies 

f
 

(eV)

Experimental 
Ionization 
Energies 

g
 

(eV) 

Relative 
Error 

h
 

P  15 0.06730 0.29010 0.37120 1.09443 1.28900 10.55536 10.48669 -0.0065
S   16 0.06306 0.27053 0.33902 0.96729 1.15744 23.5102 23.3379 -0.0074 

2Cl   17 0.05932 0.25344 0.31190 0.86545 1.06759 38.2331 39.61 0.0348 
3Ar   18 0.05599 0.23839 0.28878 0.78276 0.95423 57.0335 59.81 0.0464 

4K   19 0.05302 0.22503 0.26884 0.71450 0.85555 79.5147 82.66 0.0381 
5Ca   20 0.05035 0.21308 0.25149 0.65725 0.77337 105.5576 108.78 0.0296 
6Sc   21 0.04794 0.20235 0.23625 0.60857 0.70494 135.1046 138.0 0.0210 
7Ti   22 0.04574 0.19264 0.22276 0.56666 0.64743 168.1215 170.4 0.0134 
8V   23 0.04374 0.18383 0.21074 0.53022 0.59854 204.5855 205.8 0.0059 
9Cr   24 0.04191 0.17579 0.19995 0.49822 0.55652 244.4799 244.4 -0.0003 
10Mn   25 0.04022 0.16842 0.19022 0.46990 0.52004 287.7926 286.0 -0.0063 
11Fe   26 0.03867 0.16165 0.18140 0.44466 0.48808 334.5138 330.8 -0.0112 
12Co   27 0.03723 0.15540 0.17336 0.42201 0.45985 384.6359 379 -0.0149 
13Ni   28 0.03589 0.14961 0.16601 0.40158 0.43474 438.1529 430 -0.0190 
14Cu   29 0.03465 0.14424 0.15926 0.38305 0.41225 495.0596 484 -0.0229 
15Zn   30 0.03349 0.13925 0.15304 0.36617 0.39199 555.3519 542 -0.0246 

a Radius of the paired 1s inner electrons of fifteen-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of fifteen-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of fifteen-electron atoms from Eq. (10.212). 
d Radius of the paired 3s inner electrons of fifteen-electron atoms from Eq. (10.255). 
e Radius of the three unpaired 3p outer electrons of fifteen-electron atoms from Eq. (10.331) for 15Z   and Eq. (10.319) for P. 
f Calculated ionization energies of fifteen-electron atoms given by the electric energy (Eq. (10.332)). 
g From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
h (Experimental-theoretical)/experimental. 
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The agreement between the experimental and calculated values of Table 10.14 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The phosphorous atom 
isoelectronic series is given in Table 10.14 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these 
values are based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine 
since the cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be 
determined from theoretical calculations, interpolation of P isoelectronic and Rydberg series, as well as direct experimental data.   
 

SIXTEEN-ELECTRON ATOMS 
Sixteen-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, twelve, thirteen, fourteen, and fifteen-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE SULFUR 
ATOM 
For each fifteen-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given by 

Eq. (10.255), and three unpaired electrons in an atomic orbital with radius 15r  given by Eq. (10.331).  For 16Z  , the next 

electron which binds to form the corresponding sixteen-electron atom is attracted by the central Coulomb field and is repelled by 
diamagnetic forces due to the 3 sets of spin-paired inner 2p electrons and two spin-paired inner 3s electrons.  A paramagnetic 
spin-pairing force to form a filled s orbital is also possible, but the force due to the spin-pairing of the electrons (Eq. (7.24) with 
the radius 16r ) reduces the energy of the atom less than that due to the alternative forces on a set of paired and two unpaired 3p 

electrons in an atomic orbital at the same radius 16r .  The resulting electron configuration is 2 2 6 2 41 2 2 3 3s s p s p , and the orbital 

arrangement is: 

 

     3p state

           

   1        0     -1

     (10.333) 

corresponding to the ground state 3
2P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner fifteen electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 15r r . 

The diamagnetic force, diamagneticF , is only due to 3p and 3s electrons when the 3p shell is at least half filled since the 

induced charge-density waves only involve the inner-most shell, the 3s orbital.  The energy is minimized with conservation of 
angular momentum when the induced orbital angular momentum of the 3s orbital superimposes positively with the orbital 
angular momenta of the other 3 xp  and the 3 zp -orbital electrons and the orbital angular momentum of one of the spin-paired 

3 xp  electrons is canceled by the 3 yp  electron.  Thus, diamagneticF , is given by Eq. (10.258) as the sum of the contributions from 

the 3 xp  and zp  orbitals corresponding to m  = 1 and 0, respectively, and the induced contribution from the 3s orbital 

corresponding to m  = 0: 
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The energy is minimized with conservation of angular momentum when the spin angular momentum the 3s orbital 
superimposes negatively with the spin angular momentum of the 3 xp  orbital-electron and the orbital angular momentum of the 

3 zp -orbital electron.  From Eq. (10.260),  2magF  corresponding to the orbital angular momentum of the 3 xp , yp , and zp  orbitals 

minus the contribution from the 3s orbital is: 
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 (10.336) 

The outward centrifugal force on electron 16 is balanced by the electric force and the magnetic forces (on electron 16).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.334)), 
diamagnetic (Eq. (10.335)), and paramagnetic (Eq. (10.336)) forces as follows: 
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Substitution of 16
16e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.337) gives: 
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Substitution of 12

0

0.96729
r

a
  (Eq. (10.255) with 16Z  ) into Eq. (10.340) gives: 

 16 01.32010r a  (10.341) 

The ionization energy of the sulfur atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 16r , 
given by Eq. (10.341)). 
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     (10.342) 

where 16 01.32010r a  (Eq. (10.341)) and 16Z  .  The experimental ionization energy of the sulfur atom is 10.36001 eV  [3]. 

 
THE IONIZATION ENERGIES OF SIXTEEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>16 
Sixteen-electron atoms having 16Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum is 
achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 2magF  

is maximized.  With a half-filled 3p shell, the diamagnetic force due to the orbital angular momenta of the 3p electrons cancels 
that of the 2p electrons.  Thus, diamagneticF  is minimized by the formation of a charge-density wave in the 3s orbital corresponding 

to  = 1m  in Eq. (10.258) that cancels the orbital angular momentum of one of the 3 xp  electrons to form the equivalent of a half-

filled 3p shell.  Then, the contribution due to the 2p level is canceled.  From Eq. (10.82), the diamagnetic force, diamagneticF , is 

given by the sum of the contributions from the 3 yp  and zp  orbitals corresponding to = 1,  and 0,m   respectively, and the 

negative contribution due to the charge-density wave with m  = 1 induced in the 3s orbital (Eq. (10.258)). 

 
2 2

2 2
16 12 16 12

2 1 2 1
( 1) ( 1)

3 3 3 4 3 4diamagnetic
e e

s s s s
m r r m r r

             
   

r rF i i
 

 (10.343) 

From Eq. (10.261),  2magF  corresponding to the spin and orbital angular momenta of the paired 2 xp , yp , and zp  
electrons is 
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and the contribution from the 3p level is: 
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corresponding to the 3 xp  (Eq. (10.264)) and zp  (Eq. (10.263)) electrons wherein the contribution due to the 3 xp  ( m  = 1) 
electron is canceled by the mirror charge-density wave with m  = 1 induced in the 3s orbital (Eq. (10.262)).  Thus, the total of 

 2magF  is 
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The diamagnetic force,  2diamagneticF , due to the binding of the 3p-orbital electron having an electric field outside of its 

radius is given by Eq. (10.268): 
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In the case that 16Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.334)), diamagnetic (Eqs. (10.343) and (10.347)), and paramagnetic (Eq. (10.346)) forces as follows: 
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Substitution of 16
16e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.348) gives: 
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The quadratic equation corresponding to Eq. (10.349) is 
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The solution of Eq. (10.351) using the quadratic formula is: 
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where 12r  is given by Eq. (10.255).  The positive root of Eq. (10.353) must be taken in order that 16 0r  .  The final radius of 

electron 16, 16r , is given by Eq. (10.353); this is also the final radius of electrons 13, 14, and 15.  The radii of several sixteen-

electron atoms are given in Table 10.15. 
 The ionization energies for the sixteen-electron atoms with 16Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii 16r , given by Eq. (10.353)). 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured sixteen-electron 
atoms are given in Table 10.15. 
 
Table 10.15.   Ionization energies for some sixteen-electron atoms. 
 

16 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

16r  

( oa ) 
e
 

Theoretical 
Ionization 
Energies 

f
 

(eV)

Experimental 
Ionization 
Energies 

g
 

(eV) 

Relative 
Error 

h
 

S  16 0.06306 0.27053 0.33902 0.96729 1.32010 10.30666 10.36001 0.0051 
Cl  17 0.05932 0.25344 0.31190 0.86545 1.10676 24.5868 23.814 -0.0324 

2Ar   18 0.05599 0.23839 0.28878 0.78276 1.02543 39.8051 40.74 0.0229 
3K   19 0.05302 0.22503 0.26884 0.71450 0.92041 59.1294 60.91 0.0292 
4Ca   20 0.05035 0.21308 0.25149 0.65725 0.82819 82.1422 84.50 0.0279 
5Sc   21 0.04794 0.20235 0.23625 0.60857 0.75090 108.7161 110.68 0.0177 
6Ti   22 0.04574 0.19264 0.22276 0.56666 0.68622 138.7896 140.8 0.0143 
7V   23 0.04374 0.18383 0.21074 0.53022 0.63163 172.3256 173.4 0.0062 
8Cr   24 0.04191 0.17579 0.19995 0.49822 0.58506 209.2996 209.3 0.0000 
9Mn   25 0.04022 0.16842 0.19022 0.46990 0.54490 249.6938 248.3 -0.0056 

10Fe   26 0.03867 0.16165 0.18140 0.44466 0.50994 293.4952 290.2 -0.0114 
11Co   27 0.03723 0.15540 0.17336 0.42201 0.47923 340.6933 336 -0.0140 
12Ni   28 0.03589 0.14961 0.16601 0.40158 0.45204 391.2802 384 -0.0190 
13Cu   29 0.03465 0.14424 0.15926 0.38305 0.42781 445.2492 435 -0.0236 
14Zn   30 0.03349 0.13925 0.15304 0.36617 0.40607 502.5950 490 -0.0257 

a Radius of the paired 1s inner electrons of sixteen-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of sixteen-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of sixteen-electron atoms from Eq. (10.212). 
d Radius of the paired 3s inner electrons of sixteen-electron atoms from Eq. (10.255). 
e Radius of the two paired and two unpaired 3p outer electrons of sixteen-electron atoms from Eq. (10.353) for 16Z   and Eq. (10.341) for S. 
f Calculated ionization energies of sixteen-electron atoms given by the electric energy (Eq. (10.354)). 
g From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
h (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.15 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is three to four significant figures which is consistent with the last column.  The sulfur atom isoelectronic 
series is given in Table 10.15 [2-3] to much higher precision than the capability of X-ray spectroscopy, but these values are 
based on theoretical and interpolation techniques rather than data alone.  Ionization energies are difficult to determine since the 
cut-off of the Rydberg series of lines at the ionization energy is often not observed, and the ionization energy must be determined 
from theoretical calculations, interpolation of S isoelectronic and Rydberg series, as well as direct experimental data.   
 
SEVENTEEN-ELECTRON ATOMS 
Seventeen-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, twelve, thirteen, fourteen, fifteen, and sixteen-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
CHLORINE ATOM 
For each sixteen-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-paired 
electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given by 

Eq. (10.255), and two paired and two unpaired electrons in an atomic orbital with radius 16r  given by Eq. (10.353).  For 17Z  , 

the next electron which binds to form the corresponding seventeen-electron atom is attracted by the central Coulomb field and is 
repelled by diamagnetic forces due to the 3 sets of spin-paired inner 2p electrons and two spin-paired inner 3s electrons.  A 
paramagnetic spin-pairing force to form a filled s orbital is also possible, but the force due to the spin-pairing of the electrons 
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(Eq. (7.24) with the radius 17r ) reduces the energy of the atom less than that due to the alternative forces on two sets of paired 

electrons and an unpaired 3p electron in an atomic orbital at the same radius 17r .  The resulting electron configuration is 
2 2 6 2 51 2 2 3 3s s p s p , and the orbital arrangement is: 

 

      3p state

           

   1         0       -1

      (10.355) 

corresponding to the ground state 2 0
3/2P . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner sixteen electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 16r r . 

The diamagnetic force, diamagneticF , is only due to 3p and 3s electrons when the 3p shell is at least half filled since the 

induced charge-density waves only involve the inner-most shell, the 3s orbital.  Thus, diamagneticF , is given by Eq. (10.258) as the 

contribution from the 3 yp  orbital corresponding to = 1m   with the cancellation of the orbital angular momenta of the spin-

paired 3 xp  and zp  electrons: 
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 (10.357) 

The energy is minimized with conservation of angular momentum when the spin angular momentum of the 3s orbital 
superimposes negatively with the angular momenta of the 3p orbitals.  From Eq. (10.260), 2magF  corresponding to the sum of the 

spin angular momenta of the 3 xp  and 3 zp  orbitals and the orbital angular momentum of the 3 yp  orbital, minus the contribution 

from the 3s orbital is: 
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The outward centrifugal force on electron 17 is balanced by the electric force and the magnetic forces (on electron 17).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.356)), 
diamagnetic (Eq. (10.357)), and paramagnetic (Eq. (10.358))  forces as follows: 
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Substitution of 17
17e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.359) gives: 
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Substitution of 12

0

0.86545
r

a
  (Eq. (10.255) with 17Z  ) into Eq. (10.362) gives: 

 17 01.05158r a  (10.363) 

The ionization energy of the chlorine atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 17r , 
given by Eq. (10.363)): 
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     (10.364) 

where 17 01.05158r a  (Eq. (10.363)) and 17Z  .  The experimental ionization energy of the chlorine atom is 12.96764 eV  [3]. 
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THE IONIZATION ENERGIES OF SEVENTEEN-ELECTRON ATOMS WITH A 
NUCLEAR CHARGE Z>17 
Seventeen-electron atoms having 17Z   possess an external electric field given by Eq. (10.92).  In this case, an energy 
minimum is achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized 

while  2magF  is maximized.  With a filled 3p shell, the diamagnetic force due to the orbital angular momenta of the 3p electrons 

cancels that of the 2p electrons.  Thus, diamagneticF  is minimized by the formation of a charge-density wave in the 3s orbital 

corresponding to two electrons with m  = -1 in Eq. (10.258) to form the equivalent of a filled 3p level such that the contribution 
due to the 2p level is canceled.  From Eq. (10.82), the diamagnetic force, diamagneticF , is given by the contribution due to the 

charge-density wave with m  = -1 induced in the 3s orbital according to Eq. (10.258). 
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 (10.365) 

From Eqs. (10.205) and (10.261),  2magF  corresponding to the spin and orbital angular momenta of the paired 2 xp , yp , 

and zp  electrons is 
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and the contribution from the paired 3 xp , yp , and zp  electrons given by Eq. (10.264) is 
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wherein the contribution due to the charge-density wave with m  = -1 induced in the 3s orbital (Eq. (10.262)) provides the 
equivalent of a filled 3 yp  orbital and adds a negative contribution of: 
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Thus, the total of  2magF  is: 
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The diamagnetic force,  2diamagneticF , due to the binding of the 3p-orbital electron having an electric field outside of its 

radius is given by Eq. (10.268): 
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In the case that 17Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.356)), diamagnetic (Eqs. (10.365) and (10.370)), and paramagnetic (Eq. (10.369)) forces as follows: 
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Substitution of 17
17e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.371) gives: 
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The quadratic equation corresponding to Eq. (10.372) is 
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The solution of Eq. (10.374) using the quadratic formula is: 
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    (10.376) 

where 12r  is given by Eq. (10.255).  The positive root of Eq. (10.376) must be taken in order that 17 0r  .  The final radius of 

electron 17, 17r , is given by Eq. (10.376); this is also the final radius of electrons 13, 14, 15, and 16.  The radii of several 
seventeen-electron atoms are given in Table 10.16. 

The ionization energies for the seventeen-electron atoms with 17Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii 17r , given by Eq. (10.376)). 

 
2

0 17

( 16)
( )  

8

Z e
E Ionization Electric Energy

r
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured seventeen-
electron atoms are given in Table 10.16. 
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Table 10.16.   Ionization energies for some seventeen-electron atoms. 
 

17 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

17r  

( oa ) 
e
 

Theoretical 
Ionization 
Energies 

f
 

(eV)

Experimental 
Ionization 
Energies 

g
 

(eV) 

Relative 
Error 

h
 

Cl  17 0.05932 0.25344 0.31190 0.86545 1.05158 12.93841 12.96764 0.0023 
Ar  18 0.05599 0.23839 0.28878 0.78276 0.98541 27.6146 27.62967 0.0005 

2K   19 0.05302 0.22503 0.26884 0.71450 0.93190 43.8001 45.806 0.0438 
3Ca   20 0.05035 0.21308 0.25149 0.65725 0.84781 64.1927 67.27 0.0457 
4Sc   21 0.04794 0.20235 0.23625 0.60857 0.77036 88.3080 91.65 0.0365 
5Ti   22 0.04574 0.19264 0.22276 0.56666 0.70374 116.0008 119.53 0.0295 
6V   23 0.04374 0.18383 0.21074 0.53022 0.64701 147.2011 150.6 0.0226 
7Cr   24 0.04191 0.17579 0.19995 0.49822 0.59849 181.8674 184.7 0.0153 
8Mn   25 0.04022 0.16842 0.19022 0.46990 0.55667 219.9718 221.8 0.0082 
9Fe   26 0.03867 0.16165 0.18140 0.44466 0.52031 261.4942 262.1 0.0023 

10Co   27 0.03723 0.15540 0.17336 0.42201 0.48843 306.4195 305 -0.0047 
11Ni   28 0.03589 0.14961 0.16601 0.40158 0.46026 354.7360 352 -0.0078 
12Cu   29 0.03465 0.14424 0.15926 0.38305 0.43519 406.4345 401 -0.0136 
13Zn   30 0.03349 0.13925 0.15304 0.36617 0.41274 461.5074 454 -0.0165 

a Radius of the paired 1s inner electrons of seventeen-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of seventeen-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of seventeen-electron atoms from Eq. (10.212). 
d Radius of the paired 3s inner electrons of seventeen-electron atoms from Eq. (10.255). 
e Radius of the two sets of paired and an unpaired 3p outer electron of seventeen-electron atoms from Eq. (10.376) for 17Z   and Eq. (10.363) for Cl. 
f Calculated ionization energies of seventeen-electron atoms given by the electric energy (Eq. (10.377)). 
g From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
h (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.16 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is about two to four significant figures which is consistent with the last column.  Ionization energies are 
difficult to determine since the cut-off of the Rydberg series of lines at the ionization energy is often not observed.  Thus, the 
chlorine atom isoelectronic series given in Table 10.16 [2-3] relies on theoretical calculations and interpolation of the Cl 
isoelectronic and Rydberg series as well as direct experimental data to extend the precision beyond the capability of X-ray 
spectroscopy.  But, no assurances can be given that these techniques are correct, and they may not improve the results.  The error 
given in the last column is very reasonable given the quality of the data. 
 

EIGHTEEN-ELECTRON ATOMS 
Eighteen-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, and seventeen-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE ARGON 
ATOM 
For each seventeen-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-
paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given by 

Eq. (10.255), and two sets of paired and an unpaired electron in an atomic orbital with radius 17r  given by Eq. (10.376).  For 

18Z  , the next electron which binds to form the corresponding eighteen-electron atom is attracted by the central Coulomb field 
and is repelled by diamagnetic forces due to the 3 sets of spin-paired inner 2p electrons and two spin-paired inner 3s electrons.  
A paramagnetic spin-pairing force to form a filled s orbital is also possible, but the force due to the spin-pairing of the electrons 
(Eq. (7.24) with the radius 18r ) reduces the energy of the atom less than that due to the alternative forces on three sets of paired 

3p electrons in an atomic orbital at the same radius 18r .  The resulting electron configuration is 2 2 6 2 61 2 2 3 3s s p s p , and the orbital 
arrangement is: 
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       3p state

          

   1         0       -1

       (10.378) 

corresponding to the ground state 1
0S . 

The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner seventeen electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 17r r . 
As in the case on the neon atom, the energy of the argon atom is minimized and the angular momentum is conserved with 

the pairing of electron eighteen to fill the 3 yp  orbital when the orbital angular momenta of each set of the 3 xp , yp , and zp  spin-

paired electrons adds negatively to cancel.  Then, the diamagnetic force (Eq. (10.258)), diamagneticF , is given by the induced orbital 

angular momentum of the 3s orbital alone which conserves angular momentum. 
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 (10.380) 

From Eq. (10.260),  2magF  is: 
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 (10.381) 

corresponding to the spin-angular-momentum contribution alone from each of the 3 xp , yp , and zp  orbitals and the spin angular 

momentum of the 3s orbital. 
The outward centrifugal force on electron 18 is balanced by the electric force and the magnetic forces (on electron 18).  

The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.379)), 
diamagnetic (Eq. (10.380)), and paramagnetic (Eq. (10.381)) forces as follows: 
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Substitution of 18
18e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.382) gives: 
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Substitution of 12

0

0.78276
r

a
  (Eq. (10.255) with 18Z  ) into Eq. (10.385) gives: 

 18 00.86680r a  (10.386) 

The ionization energy of the argon atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 18r , 
given by Eq. (10.386)). 
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     (10.387) 

where 18 00.86680r a  (Eq. (10.386)) and 18Z  .  The experimental ionization energy of the argon atom is 15.75962 eV  [3]. 
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THE IONIZATION ENERGIES OF EIGHTEEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>18 
Eighteen-electron atoms having 18Z   possess an external electric field given by Eq. (10.92).  In this case, an energy minimum 
is achieved with conservation of momentum when the orbital angular momentum is such that diamagneticF  is minimized while 

 2magF  is maximized.  With a filled 3p shell, the diamagnetic force due to the orbital angular momenta of the 3p electrons cancels 

that of the 2p electrons.  Thus, the diamagnetic force (Eq. (10.258)), diamagneticF , is zero: 

 0diamagnetic F  (10.388) 

From Eqs. (10.205) and (10.261),  2magF  corresponding to the spin and orbital angular momenta of the paired 2 xp , yp , 

and zp  electrons is: 

  
2 2

 2 2 2
18 12 18 12

1 1 12
4 4 4 ( 1) ( 1)mag

e e

s s s s
Z m r r Z m r r

     r rF i i
 

 (10.389) 

the contribution from the 3p level (Eq. (10.264)) is: 
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and the contribution due to the spin and induced orbital angular momentum of the 3s orbital that achieves conservation of 
angular momentum given by Eq. (10.262) is: 
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Thus, the total of  2magF  is 
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The diamagnetic force,  2diamagneticF , due to the binding of the 3p-orbital electron having an electric field outside of its 

radius is given by Eq. (10.268). 
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In the case that 18Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.379)), diamagnetic (Eqs. (10.388) and (10.393)), and paramagnetic (Eq. (10.392)) forces as follows: 
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Substitution of 18
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v
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 (Eq. (1.35)) and 
1

2
s   into Eq. (10.394) gives: 
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The quadratic equation corresponding to Eq. (10.395) is: 
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The solution of Eq. (10.397) using the quadratic formula is: 
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   (10.399) 

where 12r  is given by Eq. (10.255).  The positive root of Eq. (10.399) must be taken in order that 18 0r  .  The final radius of 

electron 18, 18r , is given by Eq. (10.399); this is also the final radius of electrons 13, 14, 15, 16, and 17.  The radii of several 
eighteen-electron atoms are given in Table 10.17. 

The ionization energies for the eighteen-electron atoms with 18Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii 18r , given by Eq. (10.399)). 
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    (10.400) 

Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured eighteen-
electron atoms are given in Table 10.17. 
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Table 10.17.   Ionization energies for some eighteen-electron atoms. 
18 e 

Atom 
Z 

1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

18r  

( oa ) 
e
 

Theoretical 
Ionization 
Energies 

f
 

(eV)

Experimental 
Ionization 
Energies 

g
 

(eV) 

Relative 
Error 

h
 

Ar  18 0.05599 0.23839 0.28878 0.78276 0.86680 15.69651 15.75962 0.0040
K   19 0.05302 0.22503 0.26884 0.71450 0.85215 31.9330 31.63 -0.0096 

2Ca   20 0.05035 0.21308 0.25149 0.65725 0.82478 49.4886 50.9131 0.0280 
3Sc   21 0.04794 0.20235 0.23625 0.60857 0.76196 71.4251 73.4894 0.0281 
4Ti   22 0.04574 0.19264 0.22276 0.56666 0.70013 97.1660 99.30 0.0215 
5V   23 0.04374 0.18383 0.21074 0.53022 0.64511 126.5449 128.13 0.0124 
6Cr   24 0.04191 0.17579 0.19995 0.49822 0.59718 159.4836 160.18 0.0043 
7Mn   25 0.04022 0.16842 0.19022 0.46990 0.55552 195.9359 194.5 -0.0074 

8Fe   26 0.03867 0.16165 0.18140 0.44466 0.51915 235.8711 233.6 -0.0097 
9Co   27 0.03723 0.15540 0.17336 0.42201 0.48720 279.2670 275.4 -0.0140 

10Ni   28 0.03589 0.14961 0.16601 0.40158 0.45894 326.1070 321.0 -0.0159 
11Cu   29 0.03465 0.14424 0.15926 0.38305 0.43379 376.3783 369 -0.0200 
12Zn   30 0.03349 0.13925 0.15304 0.36617 0.41127 430.0704 419.7 -0.0247 

a Radius of the paired 1s inner electrons of eighteen-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of eighteen-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of eighteen-electron atoms from Eq. (10.212). 
d Radius of the paired 3s inner electrons of eighteen-electron atoms from Eq. (10.255). 
e Radius of the three sets of paired 3p outer electrons of eighteen-electron atoms from Eq. (10.399) for 18Z   and Eq. (10.386) for Ar . 
f Calculated ionization energies of eighteen-electron atoms given by the electric energy (Eq. (10.400)). 
g From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
h (Experimental-theoretical)/experimental. 

 
The agreement between the experimental and calculated values of Table 10.17 is well within the experimental capability 

of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is about two to four significant figures which is consistent with the last column.  Ionization energies are 
difficult to determine since the cut-off of the Rydberg series of lines at the ionization energy is often not observed.  Thus, the 
argon atom isoelectronic series given in Table 10.17 [2-3] relies on theoretical calculations and interpolation of the Ar 
isoelectronic and Rydberg series as well as direct experimental data to extend the precision beyond the capability of X-ray 
spectroscopy.  But, no assurances can be given that these techniques are correct, and they may not improve the results.  The error 
given in the last column is very reasonable given the quality of the data. 

 
GENERAL EQUATION FOR THE IONIZATION ENERGIES OF THIRTEEN 
THROUGH EIGHTEEN-ELECTRON ATOMS 
Using the forces given by Eqs. (10.257-10.264), (10.268), and the radii 12r  given by Eq. (10.255), the radii of the 3p electrons of 
all thirteen through eighteen-electron atoms may be solved exactly.  The electric energy given by Eq. (10.102) gives the 
corresponding exact ionization energies.  A summary of the parameters of the equations that determine the exact radii and 
ionization energies of all thirteen through eighteen-electron atoms is given in Table 10.18. 

eleF  and  2diamagneticF  given by Eqs. (10.257) and (10.268), respectively, are of the same form for all atoms with the 

appropriate nuclear charges and atomic radii.  diamagneticF  given by Eq. (10.258) and 2magF  given by Eqs. (10.259-10.264) are of 

the same form with the appropriate factors that depend on the electron configuration wherein the electron configuration must be 
a minimum of energy. 

For each n-electron atom having a central charge of Z  times that of the proton and an electron configuration 
2 2 6 2 121 2 2 3 3 ns s p s p  , there are two indistinguishable spin-paired electrons in an atomic orbital with radii 1r  and 2r  both given by 

Eq. (7.35) and (10.51). 

 
 1 2 0

3
1 4

1 1
r r a

Z Z Z

 
 
   

   
 (10.401) 

two indistinguishable spin-paired electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62): 
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  1 0   r in units of a  

where 1r  is given by Eqs. (10.51) and (10.401), three sets of paired indistinguishable electrons in an atomic orbital with radius 

10r  given by Eq. (10.212). 
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    (10.403) 

where 3r  is given by Eqs. (10.62) and (10.402), two indistinguishable spin-paired electrons in an atomic orbital with radius 12r  
given by Eq. (10.255). 
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where 10r  is given by Eq. (10.212), and 12n   electrons in a 3p atomic orbital with radius nr  given by: 
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    (10.405) 

where 12r  is given by Eqs. (10.255) and (10.404), the parameter A  given in Table 10.18 corresponds to the diamagnetic force, 

diamagneticF , (Eq. (10.258)), and the parameter B  given in Table 10.18 corresponds to the paramagnetic force, 2magF  (Eqs. 

(10.260-10.264)).  The positive root of Eq. (10.405) must be taken in order that 0nr  .  The radii of several n-electron 3p atoms 
are given in Tables 10.10-10.17. 

The ionization energy for the aluminum atom is given by Eq. (10.227).  The ionization energies for the n-electron 3p 
atoms are given by the negative of the electric energy, ( )E electric , (Eq. (10.102) with the radii, nr , given by Eq. (10.405)): 
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    (10.406) 

Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured n-electron 3p 
atoms are given by Eqs. (10.405) and (10.406) in Tables 10.10-10.17. 
 
Table 10.18.   Summary of the parameters of thirteen through eighteen-electron atoms. 
 

Atom Type Electron 
Configuration 

Ground
State 

Term 
a
 

Orbital 
Arrangement 

of 3p Electrons 
(3p state) 

Diamagnetic 
Force 
Factor 

A
b
 

Paramagnetic 
Force 
Factor 

B  c 

Neutral 
13 e Atom Al  

2 2 6 2 11 2 2 3 3s s p s p 2 0
1/2P                     

 1        0       -1


 

11

3
 

 
0  

Neutral 
14 e Atom Si  

2 2 6 2 21 2 2 3 3s s p s p 3
0P                 

 1        0       -1

 
 

7

3
 

 
0  

Neutral 
15 e Atom P  

2 2 6 2 31 2 2 3 3s s p s p 4 0
3/2S             

 1        0       -1

  
 

5

3
 

 
2  

Neutral 
16 e Atom S  

2 2 6 2 41 2 2 3 3s s p s p 3
2P            

  1        0       -1

   
 

4

3
 

 
1 

Neutral 
17 e Atom Cl  

2 2 6 2 51 2 2 3 3s s p s p 2 0
3/2P            

  1         0        -1

    
 

2

3
 

 
2  

Neutral 
18 e Atom Ar  

2 2 6 2 61 2 2 3 3s s p s p 1
0S           

  1         0         -1

     
 

1

3
 

 
4  

13 e Ion 2 2 6 2 11 2 2 3 3s s p s p 2 0
1/2P                     

 1        0       -1


 

5

3
 

 
12  

14 e Ion 2 2 6 2 21 2 2 3 3s s p s p 3
0P                 

 1        0       -1

 
 

1

3
 

 
16  

15 e Ion 2 2 6 2 31 2 2 3 3s s p s p 4 0
3/2S             

 1        0       -1

  
 

 
0  

 
24  

16 e Ion 2 2 6 2 41 2 2 3 3s s p s p 3
2P            

  1        0       -1

   
 

1

3
 

 
24  

17 e Ion 2 2 6 2 51 2 2 3 3s s p s p 2 0
3/2P            

  1         0        -1

    
 

2

3
 

 
32  

18 e Ion 2 2 6 2 61 2 2 3 3s s p s p 1
0S           

  1         0         -1

     
 

 
0  

 
40  

a The theoretical ground state terms match those given by NIST [8]. 
b Eq. (10.258). 
c Eqs. (10.260-10.264). 
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NINETEEN-ELECTRON ATOMS 
Nineteen-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, and eighteen-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
POTASSIUM ATOM 
For each eighteen-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-
paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given by 

Eq. (10.255), and three sets of paired electrons in an atomic orbital with radius 18r  given by Eq. (10.399).  For 19Z  , the next 

electron which binds to form the corresponding nineteen-electron atom is attracted by the central Coulomb field and is repelled 
by diamagnetic forces due to the 3 sets of spin-paired inner 3p electrons such that it forms an unpaired atomic orbital at radius 

19r . 
The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 

electron due to the nucleus and the inner eighteen electrons is given by Eq. (10.70) with the appropriate charge and radius: 

 
2

2
0 19

( 18)

4ele

Z e

r


 rF i  (10.407) 

for 18r r . 

The spherically symmetrical closed 3p shell of nineteen-electron atoms produces a diamagnetic force, diamagneticF , that is 

equivalent to that of a closed s shell given by Eq. (10.11) with the appropriate radii except that the force is doubled due to the 
interaction of the 4s and 3p electrons as given by Eq. (10.96).  The inner electrons remain at their initial radii, but cause a 
diamagnetic force according to Lenz’s law that is: 
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 (10.408) 

In addition to the spin-spin interaction between electron pairs, the three sets of 3p electrons are orbitally paired.  As in the 
case of the sodium atom with the corresponding radii, the single 4s orbital of the potassium atom produces a magnetic field at the 
position of the three sets of spin-paired 3p electrons.  In order for the electrons to remain spin and orbitally paired, a 
corresponding diamagnetic force,  3diamagneticF , on electron nineteen from the three sets of spin-paired electrons that follows from 

the deviation given in the Eleven-Electron Atom section (Eq. (10.221)) is:  

  
2

 3 3
19

1 12
1diamagnetic

e

s s
Z m r

   rF i


 (10.409) 

corresponding to the 3 xp , yp , and zp  electrons. 

The outward centrifugal force on electron 19 is balanced by the electric force and the magnetic forces (on electron 19).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.407)) 
and diamagnetic (Eqs. (10.408) and (10.409)) forces as follows: 

 
2 2 2 2
19

2 2 3
19 0 19 19 18 19

( 18) 2 12
( 1) ( 1)

4 4
e

e e

m v Z e
s s s s

r r m r r Zm r


    
 

 (10.410) 

Substitution of 19
19e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.410) gives: 
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Substitution of 18

0

0.85215
r

a
  (Eq. (10.399) with 19Z  ) into Eq. (10.413) gives: 

 19 03.14515r a  (10.414) 

The ionization energy of the potassium atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 

19r , given by Eq. (10.414)). 

 
2
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( 18)
( ;  )  4.32596 
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Z e
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     (10.415) 

where 19 03.14515r a  (Eq. (10.414)) and 19Z  .  The experimental ionization energy of the potassium atom is 4.34066 eV  [3]. 

 
THE IONIZATION ENERGIES OF NINETEEN-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>19 
Nineteen-electron atoms having 19Z   possess an external electric field given by Eq. (10.92).  Since there is a source of 
dissipative power, J E  of Eq. (10.27), the magnetic moments of the inner electrons may change due to the outer electron such 
that the energy of the nineteen-electron atom is lowered.  The spherically symmetrical closed 3p shell of nineteen-electron atoms 
produces a diamagnetic force, diamagneticF , that is equivalent to that of a closed s shell given by Eq. (10.11) with the appropriate 

radii except that the force is tripled due to the interaction of the 2p, 3s, and 3p electrons as discussed in the 3P-Orbital Electrons 
Based on an Energy Minimum section.  The inner electrons remain at their initial radii, but cause a diamagnetic force according 
to Lenz’s law that is: 
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In addition to the spin-spin interaction between electron pairs, the six sets of 2p and 3p electrons are orbitally paired.  As 
in given in the Eleven-Electron Atom section, the single 4s orbital of each nineteen-electron atoms having 19Z   produces a 
magnetic field at the position of the six sets of spin-paired 2p and 3p electrons.  In order for the electrons to remain spin and 
orbitally paired, a corresponding diamagnetic force, 3diamagneticF , on electron nineteen from the six sets of spin-paired electrons 

that follows from the deviation given in the Eleven-Electron Atom section (Eq. (10.221)) is: 
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corresponding to the 2 and 3 xp , yp , and zp  electrons. 

As shown in the P-Orbital Electrons Based on an Energy Minimum section for  2diamagneticF  given by Eq. (10.93), the 

corresponding diamagnetic force for 2p electrons due to a relativistic effect with an electric field for nr r  (Eq. (10.35)) is 

dependent on the amplitude of the orbital energy.  Using the orbital energy with 1  (Eq. (10.90)), the energy 2
em v  of Eq. 

(10.29) is reduced by the factor of 
2

1
2

 
 

 
 due to the contribution of the charge-density wave of the inner electrons at 3r .  In 

addition, it was shown in the 3P-Orbital Electrons Based on an Energy Minimum section that the two 3s electrons contribute an 
energy factor based on Eq. (1.55) since the filled 2p orbitals with the maintenance of symmetry according to Eq. (10.72) requires 
that the diamagnetic force is due to the electrons at 10r  acting on the electrons at 12r  which complies with the reactive force, 

 2diamagneticF , given by Eq. (10.229).  Thus, 2diamagneticF  for the factor from 3p electrons with Z n  is reduced by the factor of 

2 1
1

2 2

 
  

 
.  Similarly, the factor for 4s electrons due to the inner 2p, 3s, and 3p electrons is cumulative.  Thus, 2diamagneticF  for 

4s electrons with Z n  is: 
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For 19n  ,  2diamagneticF  is 
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In the case that 19Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.407)) and diamagnetic (Eqs. (10.416), (10.417), and (10.419)) forces as follows: 
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Substitution of 19
19e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.420) gives: 
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The quadratic equation corresponding to Eq. (10.421) is 
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The solution of Eq. (10.423) using the quadratic formula is: 
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where 18r  is given by Eq. (10.399).  The positive root of Eq. (10.425) must be taken in order that 19 0r  .  The radii of several 

nineteen-electron atoms are given in Table 10.19. 
The ionization energies for the nineteen-electron atoms with 19Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii 19r , given by Eq. (10.425)): 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured nineteen-
electron atoms are given in Table 10.19. 
 
Table 10.19.   Ionization energies for some nineteen-electron atoms. 
 

19 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

18r  

( oa ) 
e
 

19r  

( oa ) 
f
 

Theoretical 
Ionization 
Energies 

g

(eV)

Experimental 
Ionization 
Energies 

h
 

(eV) 

Relative
Error 

i
 

K  19 0.05302 0.22503 0.26884 0.71450 0.85215 3.14515 4.32596 4.34066 0.0034
Ca  20 0.05035 0.21308 0.25149 0.65725 0.82478 2.40060 11.3354 11.87172 0.0452

2Sc   21 0.04794 0.20235 0.23625 0.60857 0.76196 1.65261 24.6988 24.75666 0.0023
3Ti   22 0.04574 0.19264 0.22276 0.56666 0.70013 1.29998 41.8647 43.2672 0.0324
4V   23 0.04374 0.18383 0.21074 0.53022 0.64511 1.08245 62.8474 65.2817 0.0373
5Cr   24 0.04191 0.17579 0.19995 0.49822 0.59718 0.93156 87.6329 90.6349 0.0331
6Mn   25 0.04022 0.16842 0.19022 0.46990 0.55552 0.81957 116.2076 119.203 0.0251
7Fe   26 0.03867 0.16165 0.18140 0.44466 0.51915 0.73267 148.5612 151.06 0.0165
8Co   27 0.03723 0.15540 0.17336 0.42201 0.48720 0.66303 184.6863 186.13 0.0078
9Ni   28 0.03589 0.14961 0.16601 0.40158 0.45894 0.60584 224.5772 224.6 0.0001
10Cu   29 0.03465 0.14424 0.15926 0.38305 0.43379 0.55797 268.2300 265.3 -0.0110
11Zn   30 0.03349 0.13925 0.15304 0.36617 0.41127 0.51726 315.6418 310.8 -0.0156

a Radius of the paired 1s inner electrons of nineteen-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of nineteen-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of nineteen-electron atoms from Eq. (10.212). 
d Radius of the paired 3s inner electrons of nineteen-electron atoms from Eq. (10.255). 
e Radius of the three sets of paired 3p inner electrons of nineteen-electron atoms from Eq. (10.399). 
f Radius of the unpaired 4s outer electron of nineteen-electron atoms from Eq. (10.425) for 19Z   and Eq. (10.414) for K. 
g Calculated ionization energies of nineteen-electron atoms given by the electric energy (Eq. (10.426)). 
h From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
i (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.19 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is about three to four significant figures which is consistent with the last column.  Ionization energies are 
difficult to determine since the cut-off of the Rydberg series of lines at the ionization energy is often not observed.  Thus, the 
potassium atom isoelectronic series given in Table 10.19 [2-3] relies on theoretical calculations and interpolation of the K 
isoelectronic and Rydberg series as well as direct experimental data to extend the precision beyond the capability of X-ray 
spectroscopy.  But, no assurances can be given that these techniques are correct, and they may not improve the results.  The error 
given in the last column is very reasonable given the quality of the data. 
 

TWENTY-ELECTRON ATOMS 
Twenty-electron atoms can be solved exactly using the results of the solutions of one, two, three, four, five, six, seven, eight, 
nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, and nineteen-electron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE CALCIUM 
ATOM 
For each nineteen-electron atom having a central charge of Z  times that of the proton, there are two indistinguishable spin-
paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two indistinguishable spin-paired 

electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired electrons in an atomic orbital at 

10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with radii 11r  and 12r  both given by 

Eq. (10.255), three sets of paired electrons in an atomic orbital with radius 18r  given by Eq. (10.399), and an unpaired electron in 

an atomic orbital with radius 19r  given by Eq. (10.425).  For 20Z  , the next electron which binds to form the corresponding 

twenty-electron atom is attracted by the central Coulomb field and the spin-pairing force with the unpaired 4s inner electron and 
is repelled by diamagnetic forces due to the 3 sets of spin-paired inner 3p electrons such that it forms an unpaired atomic orbital 
at radius 20r . 
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The central Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most 
electron due to the nucleus and the inner nineteen electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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4ele

Z e

r


 rF i  (10.427) 

for 19r r . 

The forces for the calcium atom follow from those of the magnesium atom given in the Twelve-Electron Atom section.  
The outer electron which binds to form the corresponding twenty-electron atom becomes spin-paired with the unpaired inner 
electron such that they become indistinguishable with the same radius 19 20r r  corresponding to a filled 4s shell.  The 

corresponding spin-pairing force magF  is given by Eqs. (7.24) and (10.239). 
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The spherically symmetrical closed 3p shell of twenty-electron atoms produces a diamagnetic force, diamagneticF , that is 

equivalent to that of a closed s shell given by Eq. (10.11) with the appropriate radii.  The inner electrons remain at their initial 
radii, but cause a diamagnetic force according to Lenz’s law that is 
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 (10.429) 

In addition to the paramagnetic spin-pairing force between the nineteenth electron initially at radius 19r , the pairing 

causes the diamagnetic interaction between the outer electrons and the inner electrons given by Eq. (10.11) to vanish, except for 
an electrodynamic effect for 20Z   described in the Two-Electron Atoms section, since upon pairing the magnetic field of the 
outer electrons becomes zero.  Using Eqs. (10.55) and (10.240), 2magF  due to the three 3p orbitals is given by: 
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In addition to the spin-spin interactions between electron pairs, the three sets of 2p and 3p electrons are orbitally paired.  
The 4s electrons of the calcium atom produce a magnetic field at the position of the six sets of spin-paired 2p and 3p electrons 
which interact as described in the P-Orbital Electrons Based on an Energy Minimum section.  In order for the electrons to remain 
spin and orbitally paired, the corresponding diamagnetic force, 3diamagneticF , on electron twenty from the six sets of spin-paired 

electrons that follows from the deviation given in the Eleven-Electron Atom section (Eq. (10.221)) is:  
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 (10.431) 

corresponding to the 2 and 3 xp , yp , and zp  electrons. 

The outward centrifugal force on electron 20 is balanced by the electric force and the magnetic forces (on electron 20).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (10.427)), 
diamagnetic (Eq. (10.428-10.429) and (10.431)), and paramagnetic (Eq. (10.430)) forces as follows: 
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 (10.432) 

Substitution of 20
20e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.432) gives: 
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 (10.435) 

Substitution of 18

0

0.82478
r

a
  (Eq. (10.399) with 20Z  ) into Eq. (10.435) gives: 

 20 02.23009r a  (10.436) 

The ionization energy of the calcium atom is given by the electric energy, ( )E electric , (Eq. (10.102) with the radius, 20r , 

given by Eq. (10.435)). 

 
2

0 20

( 19)
( ;  )  6.10101 

8

Z e
E ionization Ca Electric Energy eV

r


     (10.437) 

where 20 02.23009r a  (Eq. (10.435)) and 20Z  .  The experimental ionization energy of the calcium atom is 6.11316 eV  [3]. 

 
THE IONIZATION ENERGIES OF TWENTY-ELECTRON ATOMS WITH A NUCLEAR 
CHARGE Z>20 
Nineteen-electron atoms having 20Z   possess an external electric field given by Eq. (10.92).  Since there is a source of 
dissipative power, J E  of Eq. (10.27), the magnetic moments of the inner electrons may change due to the outer electron such 
that the energy of the nineteen-electron atom is lowered.  The spherically symmetrical closed 3p shell of twenty-electron atoms 
produces a diamagnetic force, diamagneticF , that is equivalent to that of a closed s shell given by Eq. (10.11) with the appropriate 

radii except that the force is doubled (Eq. (10.96)) due to the interaction of the 2p, 3s, and 3p electrons as discussed in the 3P-
Orbital Electrons Based on an Energy Minimum section with the cancellation of the contribution of the 3s orbital by the 4s 
orbital.  The inner electrons remain at their initial radii, but cause a diamagnetic force according to Lenz’s law that is: 
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In addition to the spin-spin interaction between electron pairs, the six sets of 2p and 3p electrons are orbitally paired.  As 
in given in the Eleven-Electron Atom section, the single 4s orbital of each twenty-electron atoms having 20Z   produces a 
magnetic field at the position of the six sets of spin-paired 2p and 3p electrons.  In order for the electrons to remain spin and 
orbitally paired, the corresponding diamagnetic force, 3diamagneticF , on electron twenty from the six sets of spin-paired electrons 

given by Eq. (10.221) is:  
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corresponding to the 2 and 3 xp , yp , and zp  electrons. 

From Eq. (10.418), the diamagnetic force, 2diamagneticF , due to a relativistic effect with an electric field for 20r r  (Eq. 

(10.35)) is:  
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In the case that 20Z  , the radius of the outer electron is calculated by equating the outward centrifugal force to the sum 
of the electric (Eq. (10.427)) and diamagnetic (Eqs. (10.438-10.440)) forces as follows: 
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Substitution of 20
20e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (10.441) gives: 
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The quadratic equation corresponding to Eq. (10.442) is: 
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The solution of Eq. (10.443) using the quadratic formula is: 
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where 18r  is given by Eq. (10.399).  The positive root of Eq. (10.445) must be taken in order that 20 0r  .  The final radius of 

electron 20, 20r , is given by Eq. (10.445); this is also the final radius of electron 19.  The radii of several twenty-electron atoms 

are given in Table 10.20.  The general equation for the ionization energies of atoms having an outer s-shell is given in the 
General Equation for the Ionization Energies of Atoms Having an Outer S-Shell section. 

The ionization energies for the twenty-electron atoms with 20Z   are given by the electric energy, ( )E electric , (Eq. 

(10.102) with the radii 20r , given by Eq. (10.445)). 
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Since the relativistic corrections were small, the nonrelativistic ionization energies for experimentally measured twenty-electron 
atoms are given in Table 10.20. 
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Table 10.20.   Ionization energies for some twenty-electron atoms. 
 

20 e 
Atom 

Z 
1r  

( oa ) 
a
 

3r  

( oa ) 
b
 

10r  

( oa ) 
c
 

12r  

( oa ) 
d
 

18r  

( oa ) 
e
 

20r  

( oa ) 
f
 

Theoretical 
Ionization 
Energies 

g

(eV)

Experimental 
Ionization 
Energies 

h
 

(eV) 

Relative
Error 

i
 

Ca  20 0.05035 0.21308 0.25149 0.65725 0.82478 2.23009 6.10101 6.11316 0.0020
Sc  21 0.04794 0.20235 0.23625 0.60857 0.76196 2.04869 13.2824 12.79967 -0.0377

2Ti   22 0.04574 0.19264 0.22276 0.56666 0.70013 1.48579 27.4719 27.4917 0.0007
3V   23 0.04374 0.18383 0.21074 0.53022 0.64511 1.19100 45.6956 46.709 0.0217
4Cr   24 0.04191 0.17579 0.19995 0.49822 0.59718 1.00220 67.8794 69.46 0.0228
5Mn   25 0.04022 0.16842 0.19022 0.46990 0.55552 0.86867 93.9766 95.6 0.0170
6Fe   26 0.03867 0.16165 0.18140 0.44466 0.51915 0.76834 123.9571 124.98 0.0082
7Co   27 0.03723 0.15540 0.17336 0.42201 0.48720 0.68977 157.8012 157.8 0.0000
8Ni   28 0.03589 0.14961 0.16601 0.40158 0.45894 0.62637 195.4954 193 -0.0129
9Cu   29 0.03465 0.14424 0.15926 0.38305 0.43379 0.57401 237.0301 232 -0.0217

10Zn   30 0.03349 0.13925 0.15304 0.36617 0.41127 0.52997 282.3982 274 -0.0307
a Radius of the paired 1s inner electrons of twenty-electron atoms from Eq. (10.51). 
b Radius of the paired 2s inner electrons of twenty-electron atoms from Eq. (10.62). 
c Radius of the three sets of paired 2p inner electrons of twenty-electron atoms from Eq. (10.212)). 
d Radius of the paired 3s inner electrons of twenty-electron atoms from Eq. (10.255)). 
e Radius of the three sets of paired 3p inner electrons of twenty-electron atoms from Eq. (10.399). 
f Radius of the paired 4s outer electrons of twenty-electron atoms from Eq. (10.445) for 20Z   and Eq. (10.436) for Ca. 
g Calculated ionization energies of twenty-electron atoms given by the electric energy (Eq. (10.446)). 
h From theoretical calculations, interpolation of isoelectronic and spectral series, and experimental data [2-3]. 
i (Experimental-theoretical)/experimental. 
 

The agreement between the experimental and calculated values of Table 10.20 is well within the experimental capability 
of the spectroscopic determinations including the values at large Z which relies on X-ray spectroscopy.  In this case, the 
experimental capability is about three to four significant figures which are consistent with the last column.  Ionization energies 
are difficult to determine since the cut-off of the Rydberg series of lines at the ionization energy is often not observed.  Thus, the 
calcium atom isoelectronic series given in Table 10.20 [2-3] relies on theoretical calculations and interpolation of the Ca 
isoelectronic and Rydberg series as well as direct experimental data to extend the precision beyond the capability of X-ray 
spectroscopy.  But, no assurances can be given that these techniques are correct, and they may not improve the results.  The error 
given in the last column is very reasonable given the quality of the data. 
 
GENERAL EQUATION FOR THE IONIZATION ENERGIES OF ATOMS 
HAVING AN OUTER S-SHELL 
The derivation of the radii and energies of the 1s, 2s, 3s, and 4s electrons is given in the One-Electron Atoms, the Two-Electron 
Atoms, the Three-Electron Atoms, the Four-Electron Atoms, the Eleven-Electron Atoms, the Twelve-Electron Atoms, the 
Nineteen-Electron Atoms, and the Twenty-Electron Atoms sections.  Similarly, to Eqs. (10.216) and (10.405), the general  
equation for the radii of s electrons is given by 
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 (10.447) 

where Z  is the nuclear charge, n  is the number of electrons, mr  is the radius of the preceding filled shell, the parameter A  given 
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in Table 10.21 corresponds to the diamagnetic force, diamagneticF , (Eq. (10.11)), the parameter B  given in Table 10.21 corresponds 

to the paramagnetic force,  2magF  (Eq. (10.55)), the parameter C  given in Table 10.21 corresponds to the diamagnetic force, 

 3diamagneticF , (Eq. (10.221)), the parameter D  given in Table 10.21 corresponds to the paramagnetic force, magF , (Eq. (7.24)), and 

the parameter E  given in Table 10.21 corresponds to the diamagnetic force, 2diamagneticF , (Eqs. (10.35), (10.229), and (10.418)).  

The positive root of Eq. (10.447) must be taken in order that 0nr  .  The radii of several n-electron atoms having an outer s shell 

are given in Tables 1.3, 1.5, 7.1, 10.1, 10.2, 10.10, 10.11, 10.19, and 10.20. 
The ionization energy for atoms having an outer s-shell are given by the negative of the electric energy, ( )E electric , (Eq. 

(10.102) with the radii, nr , given by Eq. (10.447)). 
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except that minor corrections due to the magnetic energy must be included in cases wherein the s electron does not couple to p 
electrons as given in Eqs. (7.44), (7.63), (10.25), (10.48), (10.66), and (10.68).  Since the relativistic corrections were small 
except for one, two, and three-electron atoms, the nonrelativistic ionization energies for experimentally measured n-electron, s-
filling atoms are given in most cases by Eqs. (10.447) and (10.448).  The ionization energies of several n-electron atoms having 
an outer s shell are given in Tables 1.3, 1.5, 7.1, 10.1, 10.2, 10.10, 10.11, 10.19, and 10.20. 
 
Table 10.21.   Summary of the parameters of atoms filling the 1s, 2s, 3s, and 4s orbitals. 
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Atom Type Electron 
Configuration 

Ground
State 

Term 
a

Orbital 
Arrangement

of  
s Electrons 

(s state) 

Diamag.
Force 
Factor 

Ab 
 

Paramag.
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2 2

 
a The theoretical ground state terms match those given by NIST [8]. 

b Eq. (10.11). 
c Eq. (10.55). 
d Eq. (10.221). 
e Eq. (7.24). 
f Eqs. (10.35), (10.229), and (10.418). 
 
 The physical approach was applied to multielectron atoms that were solved exactly disproving the deep-seated view that 
such exact solutions cannot exist according to quantum mechanics.  The predictions of the ionization energies for one through 
twenty-electron atoms are in remarkable agreement with the experimental values known for 400 atoms and ions.  The trends of 
the radii also generally agree with those published [9], but the radii cannot be taken as the contact radii based on nuclear 
separation in molecules and solids.  If the outer most electron of the negative ion was at the location of that of the positive ion, 
then the potential energies would be the same.  Since the ionization energies of positive ions are much greater than the electron 
affinities of negative ions, the positive ions must have smaller radii.  Furthermore the size taken as the contact distance can not 
be correct since the electron-electron repulsion energies would be dominant. 
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THE ELECTRON CONFIGURATION OF ATOMS 
The electrons of multielectron atoms all exist as atomic orbitals of discrete radii which are given by nr  of the radial Dirac delta 

function, ( )nr r  .  These electron atomic orbitals may be paired or unpaired depending on the force balance that applies to each 

electron.  Ultimately, the electron configuration must be a minimum of energy.  Minimum energy configurations are given by 
solutions to Laplace’s Equation.  The general form of the solution is: 
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r B r Y   


 

 

  



 

 
 (10.449) 

As demonstrated previously, this general solution gives the functions of the resonant photons.  As shown in the One-Electron 
Atom section, the Two-Electron Atom section, and the Three- Through Twenty-Electron Atoms section, the electron 
configuration of an atom essentially parallels that of the excited modes of the helium atom: 
1 2 2 3 3 4 3 4 5 4s s p s p s d p s d         . (See Excited States of Helium section.) 

In general, electrons of an atom with the same principal and   quantum numbers align parallel until each of the m  levels 

are occupied, and then pairing occurs until each of the m  levels contain paired electrons.  Exceptions occur due to the relative 

importance of spin and orbital interactions and paramagnetic, diamagnetic, and electric forces for a given atom or ion.   
The predictions of the ionization energies of one through twenty-electron atoms using Maxwell’s equations are given in 

the One-Electron Atom section, the Two-Electron Atom section, and the Three- Through Twenty-Electron Atoms section.  The 
agreement between the experimental ionization energies and the classical predictions based on concentric dynamical atomic 
orbitals (“bubble-like” charge-density functions) wherein the charge-density waves on the surface are time and spherically 
harmonic is remarkable.  The classical shell model of atomic electrons is also being confirmed by studying electron dynamics 
using coherent short-pulse laser excitation [10-12]. 
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Chapter 11 
  
THE NATURE OF THE CHEMICAL BOND OF HYDROGEN-
TYPE MOLECULES AND MOLECULAR IONS 
  
 
 
 
 
With regard to the Hydrino Theory—BlackLight Process section, the possibility of states with 1/n p  is also predicted in the 

case of hydrogen molecular species wherein  1/H p  reacts with a proton or two  1/H p  atoms react to form  2 1/H p  and 

 2 1/H p , respectively.  The natural molecular-hydrogen coordinate system based on symmetry is ellipsoidal coordinates.  The 

magnitude of the central field in the derivations of molecular hydrogen species is taken as the general parameter p  wherein p  
may be an integer which may be predictive of new possibilities.  Thus, p  replaces the effective nuclear charge of quantum 
mechanics and corresponds to the physical field of a resonant photon superimposed with the field of the proton.  The case with 

1p   is evaluated and compared with the experimental results for hydrogen species in Table 11.1, and the consequences that 
integerp   are considered in the Nuclear Magnetic Resonance Shift section. 

Two hydrogen atoms react to form a diatomic molecule, the hydrogen molecule. 
   2 02 2 ' 2HH a H c a     (11.1) 

where 2 'c  is the internuclear distance.  Also, two hydrino atoms react to form a diatomic molecule, a dihydrino molecule. 

 0
2

2
2 2 'H aa

H H c
p p

  
   

   
 (11.2) 

where p  is an integer. 
Hydrogen molecules form hydrogen molecular ions when they are singly ionized. 

  2 0 2 02 ' 2 2 ' 2H c a H c a e
        (11.3) 

Also, dihydrino molecules form dihydrino molecular ions when they are singly ionized. 

 0 0
2 2

2 2
2 ' 2 '

a a
H c H c e

p p

   
       

  
 (11.4) 

 

HYDROGEN-TYPE MOLECULAR IONS 
Each hydrogen-type molecular ion comprises two protons and an electron where the equation of motion of the electron is 
determined by the central field that is p  times that of a proton at each focus ( p  is one for the hydrogen molecular ion, and p  is 

an integer greater than one for each  2 1/H p , called a dihydrino molecular ion).  The differential equations of motion in the 

case of a central field are [1] 
 2( ) ( )m r r f r   (11.5) 

 (2 ) 0m r r     (11.6) 
The second or transverse equation, Eq. (11.6), gives the result that the angular momentum is constant. 
 2 constant /r L m    (11.7) 
where L  is the angular momentum (   in the case of the electron).  The central force equations can be transformed into an 

orbital equation by the substitution, 
1

u
r

 .  The differential equation of the orbit of a particle moving under a central force is 
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Because the angular momentum is constant, motion in only one plane need be considered; thus, the orbital equation is given in 
polar coordinates.  The solution of Eq. (11.8) for an inverse-squared force 
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where e  is the eccentricity of the ellipse and A  is a constant.  The equation of motion due to a central force can also be 
expressed in terms of the energies of the orbit.  The square of the speed in polar coordinates is 
 2 2 2 2( )v r r     (11.13) 
Since a central force is conservative, the total energy, E , is equal to the sum of the kinetic, T , and the potential, V , and is 
constant.  The total energy is: 

 2 2 21
( ) ( )  constant

2
m r r V r E     (11.14) 

Substitution of the variable 
1

u
r

  and Eq. (11.7) into Eq. (11.14) gives the orbital energy equation. 
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Because the potential energy function ( )V r  for an inverse-squared force field is: 
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V r ku
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the energy equation of the orbit, Eq. (11.15), 
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which has the solution 
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where the eccentricity, e , is:  
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Eq. (11.19) permits the classification of the orbits according to the total energy, E , as follows: 
 0, 1E e    closed orbits (ellipse or circle) 

 0, 1E e    parabolic orbit 

 0, 1E e    hyperbolic orbit 
Since E T V   and is constant, the closed orbits are those for which | |T V , and the open orbits are those for which | |T V .  
It can be shown that the time average of the kinetic energy, T  , for elliptical motion in an inverse-squared field is 1/ 2  that of 
the time average of the magnitude of the potential energy, V  .  1/ 2T V     [1]. 

As demonstrated in the One-Electron Atom section, the electric inverse-squared force is conservative; thus, the angular 
momentum of the electron,  , and the energy of atomic atomic orbitals are constant.  In addition, the atomic orbitals are 
nonradiative when the boundary condition is met. 

The central force equation, Eq. (11.14), has orbital solutions, which are circular, elliptical, parabolic, or hyperbolic.  The 
former two types of solutions are associated with atomic and molecular orbitals.  These solutions are nonradiative.  The 
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boundary condition for nonradiation given in the One-Electron Atom section, is the absence of components of the spacetime 
Fourier transform of the current-density function synchronous with waves traveling at the speed of light.  The boundary 
condition is met when the velocity for the charge density at every coordinate position on the atomic orbital is: 

 n
e n

v
m r


  (11.20) 

The allowed velocities and angular frequencies are related to nr  by: 

 n n nv r  (11.21) 
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  (11.22) 

As demonstrated in the One-Electron Atom section and by Eq. (11.22), this condition is met for the product function of a radial 
Dirac delta function and a time harmonic function where the angular frequency,  , is constant and given by Eq. (11.22). 
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where L  is the angular momentum and A  is the area of the closed orbit.  Consider the solution of the central force equation 
comprising the product of a two-dimensional ellipsoid and a time harmonic function.  The spatial part of the product function is 
the convolution of a radial Dirac delta function with the equation of an ellipsoid.  The Fourier transform of the convolution of 
two functions is the product of the individual Fourier transforms of the functions; thus, the boundary condition is met for an 
ellipsoidal-time harmonic function when, 

 n
e em A m ab

  
 

 (11.24) 

where the area of an ellipse is 
 A ab  (11.25) 
where b  and 2b  are the lengths of the semiminor and minor axes, respectively, and a  and 2a  are the lengths of the semimajor 
and major axes, respectively.  The geometry of molecular hydrogen is ellipsoidal with the internuclear axis as the principal axis; 
thus, the electron orbital is a two-dimensional ellipsoidal-time harmonic function.  The mass follows an elliptical path, time 
harmonically as determined by the central field of the protons at the foci.  Rotational symmetry about the internuclear axis 
further determines that the orbital is a prolate spheroid.  In general, ellipsoidal orbits of molecular bonding, hereafter referred to 
as ellipsoidal molecular orbitals (MOs), have the general equation: 

 
2 2 2

2 2 2
1

x y z

a b c
    (11.26) 

The semiprincipal axes of the ellipsoid are ,  ,  a b c . 
In ellipsoidal coordinates the Laplacian is: 

 ( ( ) ( ( ) ( ( ) 0R R R R R R     
          
     

          (11.27) 

An ellipsoidal MO is equivalent to a charged perfect conductor (i.e. no dissipation to current flow) whose surface is given by Eq. 
(11.26).  It is a two-dimensional equipotential membrane where each MO is supported by the outward centrifugal force due to 
the corresponding angular velocity, which conserves its angular momentum of  .  It satisfies the boundary conditions for a 
discontinuity of charge in Maxwell’s equations, Eq. (11.48).  It carries a total charge q e  , and it’s potential is a solution of the 
Laplacian in ellipsoidal coordinates, Eq. (11.27). 

Excited states of atomic orbitals are discussed in the Excited States of the One-Electron Atom (Quantization) section.  In 
the case of ellipsoidal MOs, excited electronic states are created when photons of discrete frequencies are trapped in the 
ellipsoidal resonator cavity of the MO.  The photon changes the effective charge at the MO surface where the central field is 
ellipsoidal and arises from the protons and the effective charge of the “trapped photon” at the foci of the MO.  Force balance is 
achieved at a series of ellipsoidal equipotential two-dimensional surfaces confocal with the ground state ellipsoid.  The “trapped 
photons” are solutions of the Laplacian in ellipsoidal coordinates, Eq. (11.27). 

As is the case with the atomic orbital, higher and lower energy states are equally valid.  The photon standing wave in 
both cases is a solution of the Laplacian in ellipsoidal coordinates.  For an ellipsoidal resonator cavity, the relationship between 
an allowed circumference, 4aE , and the photon standing wavelength,  , is: 
 4aE n  (11.28) 
where n  is an integer and where the elliptic integral E  of Eq. (11.28) is given by: 
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Applying Eqs. (11.28) and (11.29-11.30), the relationship between an allowed angular frequency given by Eq. (11.24) and the 
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photon standing wave angular frequency,  , is:  

 12
1 1

1
n

e e e n nm A m na nb m a b n

     
  

 (11.31)  

where 1,2,3,4,...n  (
1 1 1

, , ,...
2 3 4

n   for molecular hydrino states); 1  is the allowed angular frequency for 1n   

1a  and 1b  are the allowed semimajor and semiminor axes for 1n  .  Using the boundary conditions, the excited states are solved 

in the Excited States of the Hydrogen Molecular Ion and Excited States of the Hydrogen Molecule sections.  
The potential,  , and distribution of charge,  , over the conducting surface of an ellipsoidal MO are sought given the 

conditions: 1.) the potential is equivalent to that of a charged ellipsoidal conductor whose surface is given by Eq. (11.26), 2.) it 
carries a total charge q e  , and 3.) initially there is no external applied field.  To solve this problem, a potential function must 
be found which satisfies Eq. (11.27), which is regular at infinity, and which is constant over the given ellipsoid.  The solution is 
well known and is given after Stratton [2].  Consider that the Laplacian is solved in ellipsoidal coordinates wherein   is the 
parameter of a family of ellipsoids all confocal with the standard surface 0   whose axes have the specified values ,  ,  a b c .  
The variables   and   are the parameters of confocal hyperboloids and as such serve to measure position on any ellipsoid 

constant  .  On the surface 0  ; therefore,   must be independent of   and  .  Due to the uniqueness property of solutions 
of the Laplacian, a function which satisfies Eq. (11.27), behaves properly at infinity, and depends only on  , can be adjusted to 
represent the potential correctly at any point outside the ellipsoid 0  . 

Thus, it is assumed that ( )   .  Then, the Laplacian reduces to: 

 2 2 2( ) 0 ( )( )( )R R a b c 
    
 

      (11.32) 

which on integration leads to: 

 1( ) C
R 

 


    (11.33) 

where 1C  is an arbitrary constant.  The upper limit is selected to ensure the proper behavior at infinity.  When   becomes very 

large, R  approaches    and, 
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Furthermore, the equation of an ellipsoid can be written in the form: 
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If 2 2 2 2r x y z    is the distance from the origin to any point on the ellipsoid  , it is apparent that as   becomes very large 
2r  .  Thus, at great distances from the origin, the potential becomes that of a point charge at the origin: 

 12
~

C

r
  (11.36) 

The solution Eq. (11.33) is, therefore, regular at infinity, and the constant 1C  is then determined.  It has been shown by Stratton 

[2] that whatever the distribution, the dominant term of the expansion at remote points is the potential of a point charge at the 

origin equal to the total charge of the distribution—in this case q .  Hence 1 8 o

q
C


 , and the potential at any point is: 
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The equipotential surfaces are the ellipsoids constant  .  Eq. (11.37) is an elliptic integral and its values have been tabulated 
[3]. 

Since the distance along a curvilinear coordinate 1u  is measured not by 1du  but by 1
1h du , the normal derivative in 

ellipsoidal coordinates is given by: 
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where 
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h
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  (11.39) 

The density of charge,  , over the surface 0   is: 
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 (11.40) 

Defining ,  ,  x y z  in terms of        we put 0  , it may be easily verified that, 
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Consequently, the charge density in rectangular coordinates is: 
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(The mass-density function of an MO is equivalent to its charge-density function where m  replaces q  of Eq. (11.42)).  The 

equation of the plane tangent to the ellipsoid at the point 0 0 0,  ,  x y z  is: 

 0 0 0
2 2 2

1
x y z

X Y Z
a b c

    (11.43) 

where ,  ,  X Y Z  are running coordinates in the plane.  After dividing through by the square root of the sum of the squares of the 
coefficients of ,  ,X Y  and Z , the right member is the distance D  from the origin to the tangent plane.  That is, 
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so that for an electron MO: 
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In other words, the surface density at any point on a charged ellipsoidal conductor is proportional to the perpendicular 
distance from the center of the ellipsoid to the plane tangent to the ellipsoid at the point.  The charge is thus greater on the more 
sharply rounded ends farther away from the origin. 

In the case of hydrogen-type molecules and molecular ions, rotational symmetry about the internuclear axis requires that 
two of the axes be equal.  Thus, the MO is a spheroid, and Eq. (11.37) can be integrated in terms of elementary functions.  If 
a b c  , the spheroid is prolate, and the potential is given by: 
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SPHEROIDAL FORCE EQUATIONS 
ELECTRIC FORCE 
The spheroidal MO is a two-dimensional surface of constant potential given by Eq. (11.46) for 0  .  For an isolated electron 
MO the electric field inside is zero as given by Gauss’ Law: 

 
0S V

dA dV



 E  (11.47) 

where the charge density,  , inside the MO is zero.  Gauss’ Law at a two-dimensional surface with continuity of the potential 
across the surface according to Faraday’s law in the electrostatic limit [4-6] is: 

  1 2
0




  n E E  (11.48) 

2E  is the electric field inside which is zero.  The electric field of an ellipsoidal MO with semimajor and semiminor axes a  and 

b c , respectively, is given by substituting  given by Eq. (11.38-11.42) into Eq. (11.48). 
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wherein the ellipsoidal-coordinate parameter 0   at the surface of the MO and D  is the distance from the origin to the tangent 
plane given by Eq. (11.44).  The electric field and thus the force and potential energy between the protons and the electron MO 
can be solved based on three principles: (1) Maxwell’s equations require that the electron MO is an equipotential energy surface 
that is a function of   alone; thus, it is a prolate spheroid, (2) stability to radiation, and conservation first principles require that 
the angular velocity is constant and given in polar coordinates with respect to the origin by Eq. (11.24), and (3) the equations of 
motion due to the central force of each proton (Eqs. (11.5-11.19) and Eqs. (11.68-11.70)) also determine that the current is 
ellipsoidal, and based on symmetry, the current is a prolate spheroid.  Thus, based on Maxwell’s equations, conservation 
principles, and Newton’s Laws for the equations of motion, the electron MO constraints and the motion under the force of the 
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protons both give rise to a prolate spheroid.  Since the energy of motion is determined from the Coulombic central field (Eqs. 
(11.5-11.19), the protons give rise to a prolate spheroidal energy surface (a surface of constant energy) that is matched to the 
equipotential, prolate spheroidal electron MO.   
 
The electron cannot emit radiation; thus, it maintains the prolate spheroidal shape based on the overall conservation of angular 
momentum and energy (Appendix II: Stability and Absence of Self Interaction and Self Energy).  Chapter 36 (Leptons) provides 
the conditions for the creation of an electron from a photon that forbid the electron from being severable.  These properties that 
maintain the stability of an electron molecular orbital are invoked and provide that the integral of the physical properties such 
as the angular momentum of  (Eq. (11.101)) and energies in the inverse r-squared electric field originating at each focus over 
the entire electron match the boundary conditions.  Consequently, the electron MO behaves as if it has rigidity based on the 
integrated conserved angular momentum of   (Eq. (11.101) as well as kinetic energy T  (Eq. (11.119)) wherein T  is one-half 
the magnitude of eV  (Eq. (11.117)) as required for an inverse-squared force [1] wherein eV  is the source of T .  As in the case of 

an atomic orbital, a MO comprises a current density surface with flow along paths.  An algorithm given in the Force Balance of 
Hydrogen-Type Molecules section solves the distribution wherein the velocity distribution on each path of the current 
distribution is variable to match the boundary conditions. 
 

The force balance equation between the average ellipsoidal central field of the protons at the foci and the ellipsoidal 
electron MO is solved to give the position of the foci.  Then, the total energy is determined including the repulsive energy 
between the two protons at the foci to determine whether the original assumption of an elliptic orbit was valid.  If the condition 

0E   is met, then the problem of the stable elliptic orbit is solved.  In any case that this condition is not found to be met, then a 
stable orbit cannot be formed.  The force and energy equations of a point charge (mass) (Eqs. (11.5-11.24)) are reformulated in 
term of densities for charge, current, mass, momentum, and potential, kinetic, and total energies.  Consider an elliptical orbit 
shown in Figure 11.1 that applies to a point charge (mass) as well as a point on a continuous elliptical current loop that 
comprises a basis element of the continuous current density of the ellipsoidal MO.  The tangent plane at any point on the 
ellipsoid makes equal angles with the foci radii at that point and the sum of the distance to the foci is a constant, 2a .  Thus, the 
normal is the bisector of the angle between the foci radii at that point as shown in Figure 11.1. 
 
Figure 11.1.   An elliptical current element of the prolate spheroidal MO showing the semimajor axis a , the semiminor axis 
b , the foci 1F  and 2F , and the vector  r t  from the origin to a point  , ,x y z .  The radial vectors from the foci to a point on the 

ellipse have a total length of 2a  and make equal angles   with the tangent such that the normal vector is the bisector of the 
interior angle 2 .  
 

 
 

The unit vector normal to the ellipsoidal MO at a point  , ,x y z  is:  
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  1F r t  and   2F r t  are defined as the components of the central forces centered on 1F  and 2F .  The components of the 

central forces that are normal to the ellipsoidal MO in the direction of d̂ , the unit vector in the i -direction are defined as 
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  1F r t  and   2F r t .  The normalized projections or projection factor of the sum of these central forces in the d̂ -direction 

at the point  , ,x y z  is: 
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where 1r  and 2r  are the radial vectors of the central forces from the corresponding focus to the point  , ,x y z  on the ellipsoidal 

MO. 
The polar-coordinate elliptical orbit of a point charge due to its motion in a central inverse-squared-radius field is given 

by Eqs. (11.10-11.12) as the solution of the polar-coordinate-force equations, Eqs. (11.5-11.19) and (11.68-11.70).  The orbit is 
also completely specified in Cartesian coordinates by the solution of Eqs. (11.5-11.19) and (11.68-11.70) for the semimajor and 
semiminor axes.  Then, the corresponding polar-coordinate elliptical orbit is given as a plane cross section through the foci of the 
Cartesian-coordinate-system ellipsoid having the same axes given by Eq. (11.26) where c b .  Thus, the Coulumbic central 
force can be determined in terms of the general Cartesian coordinates from the polar-coordinate central force equations (Eqs. 
(11.5-11.19)).  Consider separately the elliptical solution at each focus given in polar coordinates by Eq. (11.10). 
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where 
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The magnitude of the sum of the central forces centered on 1F  and 2F  that are normal to the ellipsoidal MO are: 

 

   

   
 

 

 

1 1 2 2 2 2
1 2

2 2

22 2

2 2 2 2

22 2

2 2 2 2

22 2

1 cos 1 cos
                      

1

1 2 cos cos 1 2 cos cos
                      

1

1 cos 1 cos
                      

1

                   

k k
F r F r

r r

e e
k

a e

e e e e
k

a e

e e
k

a e

 

   

 

  

  




    




  




 
2 2

22 2

2 2 cos
   

1

e
k

a e






 (11.55) 

The vector central forces centered on 1F  and 2F  that are normal to the ellipsoidal MO are then given by the product of the 

corresponding magnitude and vector projection given by Eqs. (11.55) and (11.51), respectively, 
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Eq. (11.56) is based on a single point charge e .  For a charge-density distribution that is given as an ellipsoidal equipotential, the 
 -dependence must vanish.  In addition to the elliptical orbit being completely specified in Cartesian coordinates by the solution 
of Eqs. (11.5-11.19) and Eqs. (11.68-11.70) for the semimajor and semiminor axes in Eq. (11.26), the polar-coordinate elliptical 
orbit is also completely specified by the total constant total energy E  and the angular momentum which for the electron is the 
constant  .  Considering Eq. (11.56), the corresponding total energy of the electron is conserved and is determined by the 
integration over the MO to give the average: 
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Eq. (11.57) is transformed from a two-centered-central force to a one-centered-central force to match the form of the potential of 
the ellipsoidal MO.  In this case, 
  1 2, r t r r i  (11.58) 

In the case that  
 1 2r r a   (11.59) 

then, 
  r t b  (11.60) 

and the one-centered-central force is in the 
 
i -direction.  Consider the current motion on the great circle in the yz-plane 

containing the semiminor axes, each of length b , as shown in Figure 11.2.  In order to match the average elliptic force for the 
condition of Eq. (11.60), Eq. (11.57) transforms as 
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Eq. (11.61) has the same form as that of the electric field of the ellipsoidal MO given by Eq. (11.49), except for the scaling factor 
of two-centered coordinates 2cch : 
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 (11.62) 

As shown in the case of the derivation of the Laplacian charge-density and electric field, if 2 2 2 2r x y z    is the distance from 

the origin to any point on the ellipsoid  , it is apparent that as   becomes very large 2r  .  Thus, at great distances from the 
origin, the potential becomes that of a point charge at the origin as given by Eq. (11.36).  The same boundary condition applies 
to the potential and field of the protons.  The limiting case is also given as 0e  .  Then, to transform the scale factor to that of 
one-centered coordinates for an ellipsoidal MO, the reciprocal of the scaling factor multiplies the Laplacian-MO-electric-field 
term.  The reciprocal of Eq. (11.62) is: 
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 (11.63) 

such that as 0e  , 1
2

1

2cch  .  This transform scale factor corresponds to the interchange of the points of highest and lowest 

velocity on the surface and the distribution of the charge-density in the opposite manner as shown infra.  The charge-density 
distribution corrects the angular variation in central force over the surface such that a solution of the central force equation of 
motion and the Laplacian MO are solved simultaneously.  It can also be considered as a multipole normalization factor such as 
those of the spherical harmonics and the spherical geometric factor of atomic electrons that gives the central force as a function 
of   only. 

The reciprocal of the 2cch  form-factor with the dependence of the charge density on the distance parameter  r t  gives: 
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From Eq. (11.31), the magnitude of the ellipsoidal field corresponding to a below “ground state” hydrogen-type 
molecular ion is an integer p .  The integer is one in the case of the hydrogen molecular ion and an integer greater than one in 
the case of each dihydrino molecular ion.  The central-electric-force constant, k , from the two protons that includes the central-
field contribution due to photons of lower-energy states is:  
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Substitution of Eq. (11.65) for k  in Eq. (11.64) gives the one-center-coordinate electric force eleF  between the protons and the 

ellipsoidal MO: 
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where e  is the charge and with the distance from the origin to a nucleus at a focus defined as 'c , the eccentricity, e , is: 
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  (11.67) 

From the orbital equations in polar coordinates, Eqs. (11.10-11.12), the following relationship can be derived [1]: 
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For any ellipse, 

 21b a e   (11.69) 
thus, 
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  (point charge (mass) in polar coordinates) (11.70) 

From, the equal energy condition, it can be shown that b  for the motion of a point charge (mass) in polar coordinates due to a 
proton at one focus corresponds to: 

 'c a b    (11.71) 
of the MO in ellipsoidal coordinates, and 1k  of one attracting focus is replaced by 12k k  of ellipsoidal coordinates with two 

attracting foci.  In ellipsoidal coordinates, k  is given by Eq. (11.65) and L  for the electron equals  . 
Consider the force balance equation for the point on the ellipse at the intersection of the semiminor axis b  with the 

ellipse.  At this point called  0,b , the distances from each focus, 1r  and 2r , to the ellipse are equal.  The relationship for the sum 

of the distances from the foci to any point on the ellipse is: 
 1 2 2r r a   (11.72) 

Thus, at point  0,b , 

 1 2r r a   (11.73) 

Using Eq. (11.5), the magnitude of the force balance in the radial (  r t ) direction, from the origin, is given by:  
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wherein the mr  term of Eq. (11.5) is zero and   is the angle from the focus to point  0,b .  Using Eqs. (11.24), (11.94), and 

(11.95), Eq. (11.74) becomes: 
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In order for the prolate spheroidal MO to be an equipotential surface, the mass and charge density must be according to Eq. 
(11.45).  In this case, the mass and charge density along the ellipse is such that the magnitudes of the radial and transverse forces 
components at point  0,b  are equivalent.  Furthermore, according to Eq. (11.5), the central force of each proton at a focus is 

separable and symmetrical to that at the other focus.  Based on symmetry, the transverse forces of the two protons are in opposite 
directions and the radial components are in the same direction.  But, the relationship between the magnitudes must still hold 
wherein at point  0,b  the transverse force is equivalent to that due to the sum of the charges at one focus.  The sum of the 

magnitudes of the transverse forces which is equivalent to a force of 2e  at each focus in turn is: 
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Thus, using the mass and charge-density scaling factor, 

'
'

c
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 , to match the equipotential condition in Eq. (11.75) gives: 

 
2

2

2
2 2 0

'
2

' 4
e

c
pe bbb

c a am a b
b





 (11.77) 

 
2

2 0
2

4
'

2e

a
c

m pe





 (11.78) 

Using Eq. (1.256) 
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Then, the length of the semiminor axis of the prolate spheroidal MO, b c , is: 

 2 2b a c    (11.80) 
Correspondingly, 'c  is given by Eq. (11.71). 

Substitution of Eq. (11.79) into Eq. (11.66) gives the electric force: 
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CENTRIFUGAL FORCE 
The centrifugal force along the radial vector from each proton at each focus of the ellipsoid is given by the 2mr  term of Eq. 
(11.5).  The tangent plane at any point on the ellipsoid makes equal angles with the foci radii at that point and the sum of the 
distance to the foci is a constant, 2a .  Thus, the normal is the bisector of the angle between the foci radii at that point as shown 
in Figure 11.1.  In order to satisfy the equation of motion for an equal energy surface for both foci, the transverse component of 
the central force of one foci at any point on the elliptic orbit due to the central force of the other (Eq. (11.5)) must cancel on 
average and vice versa.  Thus, the centrifugal force due to the superposition of the central forces in the direction of each foci 
must be normal to an ellipsoidal surface in the direction perpendicular to the direction of motion.  Thus, it is in the  -direction.  
This can only be achieved by a time rate of change of the momentum density that compensates for the variation of the distances 
from each focus to each point on an elliptical cross section.  Since the angular momentum must be conserved, there can be no net 
force in the direction transverse to the elliptical path over each orbital path.  The total energy must also be conserved; thus, as 
shown infra. the distribution of the mass must also be a solution of Laplace’s equation in the parameter   only.  Thus, the mass-
density constraint is the same as the charge-density constraint.  As further shown infra., the distribution and concomitantly the 
centrifugal force is a function of D , the time-dependent distance from the center of the ellipsoid to a tangent plane given by Eq. 
(11.44) where D  and the Cartesian coordinates are the time-dependent parameters.   

Each point or coordinate position on the continuous two-dimensional electron MO defines an infinitesimal mass-density 
element which moves along an orbit comprising an elliptical plane cross section of the spheroidal MO through the foci.  The 
kinetic energy of the electron is conserved.  Then, the corresponding radial conservative force balance equation is 
 1( ) 0m r C r   (11.82) 

The motion is such that the eccentric angle,  , changes at a constant rate at each point.  That is t   at time t  where the 
angular velocity   is a constant.  The solution of the homogeneous equation with 2

1C   is: 
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 ( ) cos sinr t a t b t  i j  (11.83) 

where a  is the semimajor axis, b  is semiminor axis, and the boundary conditions of  r t a  for 0t   and  r t b  for 

2
t

   were applied.  Eq. (11.83) is the parametric equation of the ellipse of the orbit.  The velocity is given by the time 

derivative of the parametric position vector: 
 ( ) ( ) sin cosv t r t a t b t      i j  (11.84) 

The velocity is 
2


 out of phase with the charge density at  r t a  ( 0t  ) and  r t b  (

2
t

  ) such that the lowest charge 

density has the highest velocity and the highest charge density has the lowest velocity.  In this case, it can be shown that the 
current is constant along each elliptical path of the MO.  Recall that nonradiation results when constant   given by Eq. (11.24) 
that corresponds to a constant current, which further maintains the current continuity condition. 

Consider Eq. (11.32) for the prolate spheroidal MO.  From this equation, the mass and current-densities, the angular 
momentum, and the potential and kinetic energies are a function of   alone, and any dependence on the orthogonal coordinate 
parameters averages to unity.  From Eq. (11.32). 

 1R C



  (11.85) 

Substitution of Eq. (11.40) into Eq. (11.85) gives: 
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where 1C  is from Eq. (11.36).  Substitution of Eq. (11.39) into Eq. (11.86) gives: 
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Comparison of Eq. (11.86) with Eq. (11.87) demonstrates that: 
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The current density J  is given by the product of the constant frequency (Eq. (11.24)) and the charge density (Eq. (11.40)). 
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The total constant current is dependent on   alone according to Eq. (11.32).  Then, applying the result of Eq. (11.88) to Eq. 
(11.89) gives: 
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 (11.90) 

the constant current that is nonradiative. 
If ( )ta  denotes the acceleration vector, then 

 2( ) ( ) rt r t a i  (11.91) 

In other words, the acceleration is centrifugal as in the case of circular motion with constant angular speed  .  The dot 

product of  tr  with d̂ , the unit vector normal to the ellipsoidal MO at a point  , ,x y z  given by Eq. (11.50), is:  
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Using Eq. (11.26), the normal component projection is: 
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where D , the distance from the origin to the tangent plane, is given by Eq. (11.44). 
The centrifugal force, ciF , on mass element im  [7] given by the second term of Eq. (11.82) is: 

 2 ( )ci i im a m r t  F  (11.94) 

Substitution of the angular velocity given by Eq. (11.24) and em  for m  into Eq. (11.94) gives the centrifugal force cF  on the 

electron that is normal to the MO surface according to Eq. (11.93). 
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cF  has an equivalent dependence on D  as the electric force based on the charge distribution (Eq. (11.45)).  This is expected 

based on the invariance of 
e

e

m
 which results in the same distribution of the mass and charge. 

The equipotential charge-density distribution gives rise to the constant current condition.  It also gives rise to a constant 
total kinetic energy condition wherein the angular velocity given by Eq. (11.24) is a constant.  Recall from Eq. (11.32), that on 
the surface 0  ;   must be independent of   and   and depend only on   at any point outside the ellipsoid 0  .  Since the 
current and total kinetic energy are also constant on the surface 0  , the total kinetic energy depends only on  .  Thus, the 

centrifugal force on the mass of the electron, em , must be in the same direction as the electric field corresponding to  , normal 

to the electron surface wherein any tangential component in Eq. (11.94) averages to zero over the electron MO by the mass 
distribution given by Eqs. (11.40) and (11.45) with em  replacing e . 

The cancellation of tangential acceleration over each elliptical path maintains the charge density distribution given by Eq. 
(11.40) with constant current at each point on each elliptical path of the MO.  Since the centrifugal force is given by Eq. (11.94), 
the multiplication of the mass density by the scaling factor 1h  and integration with respect to   gives a constant net centrifugal 

force.  Thus, the result matches those of the determination of the constant current (Eq. (11.90)) and angular momentum shown 
infra. (Eq. (11.101)) wherein the charge and mass densities given in Eqs. (11.90-11.91) and (11.100), respectively, were 
integrated over. 

Specifically, consider the normal-directed centrifugal force, ciF , on mass element im : 

 2
ci im D  F i  (11.96) 

The mass density is given by Eq. (11.40) with em  replacing e .  Then, the substitution of the mass density for im  in Eq. (11.96) 

and using Eq. (11.24) for   gives the centrifugal force density caF : 
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Eq. (11.32) determines that the centrifugal force is a function of   alone, and any dependence on the transverse coordinate 

parameters averages to zero.  Using the result of Eq. (11.88) gives the net centrifugal force cF : 
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 (11.98) 

In the limit as the ellipsoidal coordinates go over into spherical coordinates, Eq. (11.95) reduces to the centrifugal force 
of the spherical atomic orbital given by Eq. (1.253) with Eq. (1.35).  This condition must be and is met as a further boundary 
condition that parallels that of Eqs. (11.32-11.37).  Using the same dependence of the total mass (charge) on the scale factor 1h  

according to Eqs. (11.32-11.40), the further boundary conditions on the angular momentum and kinetic energy are met. 
Specifically, the constant potential and current conditions and the use of Eq. (11.32) in the derivation of Eq. (11.95) also 

satisfy another condition, the conservation of   of angular momentum of the electron.  The angular momentum ip  at each point 

i  of mass im  is 
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The mass density is given by Eq. (11.40) with em  replacing e .  Then, substitution of im  in Eq. (11.99) by the mass density and 

using Eq. (11.24) for   gives the angular momentum density  tp : 
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 (11.100) 

Using the result of Eq. (11.88) gives the total constant angular momentum L : 
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Eq. (11.101) demonstrates conservation of angular momentum that is a function of   alone that parallels the case of atomic 
electrons where L  conservation is a function of the radius r  alone as given by Eq. (1.37). 

Similarly, the kinetic energy  T t  at each point i  of mass im  is: 
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In Eqs. (11.96-11.98), im  was replaced by the mass density and the   integral was determined to give the centrifugal force in 

terms of the mass of the electron.  The kinetic energy can also be determined from the   integral of the centrifugal force: 
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The result is given in Eq. (11.119).  From Eq. (11.102), the kinetic energy is time (position) dependent, but the total kinetic 
energy corresponding to the centrifugal force given by Eq. (11.95) satisfies the condition that the time-averaged kinetic energy is 
1/2 the time-averaged potential energy for elliptic motion in an inverse-squared central force [1].  (Here, the potential and total 
kinetic energies are constant and correspond to the time-averaged energies of the general case.)  Thus, as shown by Eqs. (11.122) 
(11.124), (11.262), and (11.264) energy is conserved. 
 
FORCE BALANCE OF HYDROGEN-TYPE MOLECULAR IONS 
Consider the case of spheroidal coordinates based on the rotational symmetry about the semimajor axis [2].  In the limit, as the 
focal distance 2c  and the eccentricity of the series of confocal ellipses approaches zero, spheroidal coordinates go over into 
spherical coordinates with r   and cos  .  The field of an equipotential two-dimensional charge surface of constant 
radius r R  is equivalent to that of a point charge of the total charge of the spherical shell at the origin.  The force balance 
between the centrifugal force and the central Coulomb force for spherical symmetry is given by Eq. (1.253). 

Similarly, the centrifugal force is in the direction of   and balances the central Coulombic force between the protons at 
the foci and the electron MO.  In the case of the prolate spheroidal MO, the inhomogeneous equation given by Eq. (11.5) must 
hold for each fixed position of  r t  since the MO is static in time due to the constant current condition.  With  r t  fixed, the 

mr  term of Eq. (11.5) is zero, and the force balanced equation is the balance between the centrifugal force and the Coulombic 
force which are both normal to the surface of the elliptic orbit: 
 2 ( )mr f r   (11.104) 
Substitution of Eq. (11.81) and Eq. (11.95) into Eq. (11.104) gives the force balance between the centrifugal and electric central 
forces: 
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Substitution of a  given by Eq. (11.109) into Eq. (11.79) gives:  

 0a
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   (11.110) 

The internuclear distance from Eq. (11.110) is:  
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 Substitution of 02a
a

p
  and 0'

a
c

p
  into Eq. (11.80) gives the length of the semiminor axis of the prolate spheroidal MO, 

b c : 
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Substitution of 02a
a

p
  and 0'

a
c

p
  into Eq. (11.67) gives the eccentricity, e :  
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From Eqs. (11.63-11.65), the result of Eq. (11.113) can be used to the obtain the electric force eleF  between the protons and the 

ellipsoidal MO as: 
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where the electric field E  of the MO is given by Eq. (11.49).  Then, the force balance of the hydrogen-type molecular ion is 
given by: 
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which has the parametric solution given by Eq. (11.83) when: 
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The solutions for the prolate spheroidal axes and eccentricity are given by Eqs. (11.109-11.113). 
 
ENERGIES OF HYDROGEN-TYPE MOLECULAR IONS 
From Eq. (11.31), the magnitude of the ellipsoidal field corresponding to a below “ground state” hydrogen-type molecule is an 
integer, p .  The force balance equation (Eq. (11.115)) applies for each point of the electron MO having non-constant charge 
(mass)-density and velocity over the equipotential and equal energy surface.  The electron potential and kinetic energies are thus 
determined from an ellipsoidal integral.   

The potential energy is doubled due to the transverse electric force.  The force normal to the MO is given by the dot 

product of the sum of the force vectors from each focus with d̂  where the angle   is 
2

   , and the transverse forces are 

given by the cross product with d̂ .  As shown in Figure 11.1, equivalently, the transverse projection is given with the angle   
replacing   where the range of   is the same as  .  The two contributions to the potential energy doubles it.  The potential 

energy, eV , of the electron MO in the field of magnitude p  times that of the two protons at the foci is:  
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 (11.117) 

where 

 2 2a b c   (11.118) 
2 'c  is the distance between the foci which is the internuclear distance.  The kinetic energy, T , of the electron MO follows from 
the same type of integral as eV  using Eqs. (7-14) of Stratton [8], Eqs. (11.37-11.46), and integral #147 of Lide [9].  T  is given by 

the corresponding integral of the centrifugal force (LHS of Eq. (11.115)) with the constraint that the current motion allows the 
equipotential and equal energy condition with a central field due to the protons; thus, it is corrected by the scale factor 2cch  given 

by Eq. (11.62).  The 2cch  correction can be considered the scaling factor of the moment of inertia such that the kinetic energy is 

equivalent to the rotational energy for constant angular frequency  .  The kinetic energy, T , of the electron MO is given by 
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 (11.119) 

The potential energy, pV , due to proton-proton repulsion in the field of magnitude p  times that of the protons at the foci ( 0  ) 
is: 
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The total energy, TE , is given by the sum of the energy terms 

 T e pE V V T    (11.121) 

Substitution of a  and b  given by Eqs. (11.109) and (11.112), respectively, into Eqs. (11.117), (11.119), (11.120), and (11.121) 
gives: 
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 2 2 2 213.6 (4 ln 3 2 ln 3) 16.28 TE eV p p p p eV       (11.125) 

The total energy, which includes the proton-proton-repulsion term is negative which justifies the original treatment of the force 
balance using the analytical-mechanics equations of an ellipse that considered only the binding force between the protons and the 
electron and the electron centrifugal force.  T  is one-half the magnitude of eV  as required for an inverse-squared force [1] 

wherein eV  is the source of T . 

 

VIBRATION OF HYDROGEN-TYPE MOLECULAR IONS 
A charge, q , oscillating according to 0 0( ) sint tr d  has a Fourier spectrum 

 0
0 0( , ) ( cos ){ [ ( 1) ] [ ( 1) ]}

2 m

q d
J k d m m

            J k  (11.126) 

where 'mJ s  are Bessel functions of order m .  These Fourier components can, and do, acquire phase velocities that are equal to 

the velocity of light [10].  The protons of hydrogen-type molecular ions and molecules oscillate as simple harmonic oscillators; 
thus, vibrating protons will radiate.  Moreover, non-oscillating protons may be excited by one or more photons that are resonant 
with the oscillatory resonance frequency of the molecule or molecular ion, and oscillating protons may be further excited to 
higher energy vibrational states by resonant photons.  The energy of a photon is quantized according to Planck’s equation 
 E    (11.127) 
The energy of a vibrational transition corresponds to the energy difference between the initial and final vibrational states.  Each 
state has an electromechanical resonance frequency, and the emitted or absorbed photon is resonant with the difference in 
frequencies.  Thus, as a general principle, quantization of the vibrational spectrum is due to the quantized energies of photons 
and the electromechanical resonance of the vibrationally excited ion or molecule. 

It is shown by Fowles [11] that a perturbation of the orbit determined by an inverse-squared force results in simple 
harmonic oscillatory motion of the orbit.  In a circular orbit in spherical coordinates, the transverse equation of motion gives 
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where L  is the angular momentum.  The radial equation of motion is:  

    2m r r f r   (11.129) 

Substitution of Eq. (11.128) into Eq. (11.129) gives: 
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For a circular orbit, r  is a constant and 0r  .  Thus, the radial equation of motion is given by:  
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where a  is the radius of the circular orbit for central force  f a  at r a .  A perturbation of the radial motion may be expressed 

in terms of a variable x  defined by: 
 x r a   (11.132) 
The differential equation can then be written as 

      2 3
/mx m L m x a f x a

     (11.133) 

Expanding the two terms involving x a  as a power series in x , gives: 
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  (11.134) 
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Substitution of Eq. (11.131) into Eq. (11.134) and neglecting terms involving 2x  and higher powers of x  gives: 

    3
' 0mx f a f a x

a

     
  (11.135) 

For an inverse-squared central field, the coefficient of x  in Eq. (11.135) is positive, and the equation is the same as that of the 
simple harmonic oscillator.  In this case, the particle, if perturbed, oscillates harmonically about the circle r a , and an 
approximation of the angular frequency of this oscillation is: 
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m m


      (11.136) 

An apsis is a point in an orbit at which the radius vector assumes an extreme value (maximum or minimum).  The angle 
swept out by the radius vector between two consecutive apsides is called the apsidal angle.  Thus, the apsidal angle is   for 
elliptical orbits under the inverse-squared law of force.  In the case of a nearly circular orbit, Eq. (11.135) shows that r  oscillates 
about the circle r a , and the period of oscillation is given by: 
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The apsidal angle in this case is just the amount by which the polar angle   increases during the time that r  oscillates from a 

minimum value to the succeeding maximum value which is r .  From Eq. (11.128), 
2

/L m

r
  ; therefore,   remains constant, 

and Eq. (11.131) gives: 
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Thus, the apsidal angle is given by 
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  (11.139) 

Thus, the power force of   nf r cr   gives: 

   1/2
3 n     (11.140) 

The apsidal angle is independent of the size of the orbit in this case.  The orbit is re-entrant, or repetitive, in the case of the 
inverse-squared law ( 2n   ) for which   . 

A prolate spheroid MO and the definition of axes are shown in Figures 11.5A and 11.5B, respectively.  Consider the two 
nuclei A and B, each at a focus of the prolate spheroid MO.  From Eqs. (11.115), (11.117), and (11.119), the attractive force 
between the electron and each nucleus at a focus is: 
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and 
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In addition to the attractive force between the electron and the nuclei, there is a repulsive force between the two nuclei 
that is the source of a corresponding reactive force on the reentrant electron orbit.  Consider an elliptical orbital plane cross 
section of the MO in the xy-plane with a nucleus A at (-c', 0) and a nucleus B at (c', 0).  For B acting as the attractive focus, the 
reactive repulsive force at the point (a, 0), the positive semimajor axis, depends on the distance from (a, 0) to nucleus A at (-c', 0) 
(i.e. the distance from the position of the electron MO at the semimajor axis to the opposite nuclear repelling center at the 
opposite focus).  The distance is given by the sum of the semimajor axis, a , and 'c , 1/2 the internuclear distance.  The 
contribution from the repulsive force between the two protons is: 
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and 
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Thus, from Eqs. (11.136) and (11.141-11.144), the angular frequency of this oscillation is: 
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 (11.145) 

where the semimajor axis, a , is 
2 Ha

a
p

  according to Eq. (11.116) and 'c  is ' Ha
c

p
  according to Eq. (11.110). 

In the case of a hydrogen molecule or molecular ion, the electrons which have a mass of 1/1836 that of the protons move 
essentially instantaneously, and the charge density is that of a continuous membrane.  Thus, a stable electron orbit is maintained 
with oscillatory motion of the protons.  Hydrogen molecules and molecular ions are symmetrical along the semimajor axis; thus, 
the oscillatory motion of protons is along this axis.  Let x  be the increase in the semimajor axis due to the reentrant orbit with a 
corresponding displacement of the protons along the semimajor axis from the position of the initial foci of the stationary state.  
The equation of proton motion due to the perturbation of an orbit having a central inverse-squared central force [1] and 
neglecting terms involving 2x  and higher is given by 
 0x kx    (11.146) 
which has the solution in terms of the maximum amplitude of oscillation, A , the reduced nuclear mass,  , the restoring constant 

or spring constant, k , the resonance angular frequency, 0 , and the vibrational energy, vibE , [12] 

 0cosA t  (11.147) 

where 

 0

k


  (11.148) 

For a symmetrical displacement x , the potential energy corresponding to the oscillation PvibE  is given by: 

 2 21
2

2PvibE kx kx   
 

 (11.149) 

The total energy of the oscillating molecular ion, TotalvibE , is given as the sum of the kinetic and potential energies 

 2 21

2TotalvibE x kx   (11.150) 

The velocity is zero when x  is the maximum amplitude, A .  The total energy of the oscillating molecular ion, TotalvibE , is then 

given as the potential energy with x A  
 2

TotalvibE kA  (11.151) 

thus,  

 TotalvibE
A

k
  (11.152) 

It is shown in the Excited States of the One-Electron Atom (Quantization) section that the change in angular frequency of 
the electron atomic orbital (Eq. (2.21)) is identical to the angular frequency of the photon necessary for the excitation, photon  

(Eq. (2.19)).  The energy of the photon necessary to excite the equivalent transition in an electron atomic orbital is one-half of 
the excitation energy of the stationary cavity because the change in kinetic energy of the electron atomic orbital supplies one-half 
of the necessary energy.  The change in the angular frequency of the atomic orbital during a transition and the angular frequency 
of the photon corresponding to the superposition of the free space photon and the photon corresponding to the kinetic energy 
change of the atomic orbital during a transition are equivalent.  The correspondence principle holds.  It can be demonstrated that 
the resonance condition between these frequencies is to be satisfied in order to have a net change of the energy field [13].  The 
bound electrons are excited with the oscillating protons.  Thus, the mechanical resonance frequency, 0 , is only one-half that of 

the electromechanical frequency which is equal to the frequency of the free space photon,  , which excites the vibrational mode 
of the hydrogen molecule or hydrogen molecular ion.  The vibrational energy, vibE , corresponding to the photon is given by: 

 2
0 2vib

k
E kA 


       (11.153) 

where Planck’s equation (Eq. (11.127)) was used.  The reduced mass is given by: 
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Thus, 
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 (11.155) 

Since the protons and electron are not fixed, but vibrate about the center of mass, the maximum amplitude is given by the 
reduced amplitude, reducedA , given by  
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 (11.156) 

where nA  is the amplitude n  if the origin is fixed.  Thus, Eq. (11.155) becomes: 
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 (11.157) 

and from Eq. (11.148), reducedA  is: 
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Then, from Eq. (11.67), 'cA , the displacement of 'c  is the eccentricity e  given by Eq. (11.113) times reducedA  (Eq. (11.158)): 

 
 ' 1/45/22 2
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k
  


 (11.159) 

Thus, during bond formation, the perturbation of the orbit determined by an inverse-squared force results in simple 
harmonic oscillatory motion of the orbit, and the corresponding frequency,  0 , for a hydrogen-type molecular ion  2 1/H p  

given by Eqs. (11.136) and (11.145) is  

     1
2 2 2 140 165.51 

0 4.449  10  /
k Nm

p p p X radians s
 



    (11.160) 

where the reduced nuclear mass of hydrogen given by Eq. (11.154) is: 
 0.5 pm   (11.161) 

and the spring constant,  0k , given by Eqs. (11.136) and (11.145) is:  

   4 10 165.51 k p Nm  (11.162) 

The transition-state vibrational energy,  0vibE , is given by Planck’s equation (Eq. (11.127)): 

   2 14 20 4.44865  10  / 0.2928 vibE p X rad s p eV     (11.163) 

The amplitude of the oscillation,  0reducedA , given by Eq. (11.158) and Eqs. (11.161-11.162) is: 
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 (11.164) 

Then, from Eq. (11.67),  ' 0cA , the displacement of 'c  is the eccentricity e  given by Eq. (11.113) times  0reducedA  (Eq. 

(11.164)). 
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The spring constant and vibrational frequency for the formed molecular ion are then obtained from Eqs. (11.136) and (11.141-
11.145) using the increases in the semimajor axis and internuclear distances due to vibration in the transition state.  The 
vibrational energy,  1vibE , for the  2 1/H p  1 0     transition given by adding  ' 0cA  (Eq. (11.159)) to the distances a  

and 'a c  in Eqs. (11.145) and (11.163) is: 
   21 0.270 vibE p eV  (11.166) 

where   is the vibrational quantum number. 
A harmonic oscillator is a linear system as given by Eq. (11.146).  In this case, the predicted resonant vibrational 

frequencies and energies, spring constants, and amplitudes for  2 1/H p  for vibrational transitions to higher energy i f   are 

given by  f i   times the corresponding parameters given by Eq. (11.160) and Eqs. (11.162-11.164).  However, excitation of 

vibration of the molecular ion by external radiation causes the semimajor axis and, consequently, the internuclear distance to 
increase as a function of the vibrational quantum number  .  Consequently, the vibrational energies of hydrogen-type molecular 
ions are nonlinear as a function of the vibrational quantum number  .  The lines become more closely spaced and the change in 
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amplitude, reducedA , between successive states becomes larger as higher states are excited due to the distortion of the molecular 

ion in these states.  The energy difference of each successive transition of the vibrational spectrum can be obtained by 
considering nonlinear terms corresponding to anharmonicity. 

The harmonic oscillator potential energy function can be expanded about the internuclear distance and expressed as a 
Maclaurin series corresponding to a Morse potential after Karplus and Porter (K&P) [14] and after Eq. (11.134).  Treating the 
Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy corrections can be found by 
perturbation methods.  The energy   of state   is: 

  0 0 01 x       ,    0,1, 2,3...   (11.167) 

where  
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0  is the frequency of the 1 0     transition corresponding to Eq. (11.166), and 0D  is the bond dissociation energy given 

by Eq. (11.198).  From Eqs. (11.166), (11.168), and (11.198), 
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The vibrational energies of successive states are given by Eqs. (11.166-11.167) and (11.169). 
Using Eqs. (11.145), (11.158-11.160), (11.162-11.169), and (11.199) the corresponding parameters for deuterium-type 

molecular ions with: 
 pm   (11.170) 

are 
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    (11.171) 

   4 10 165.65 k p Nm  (11.172) 

   20 0.20714 vibE p eV  (11.173) 
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 (11.174) 

   21 0.193 vibE p eV  (11.175) 
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The vibrational energies of successive states are given by Eqs. (11.167) and (11.175-11.176). 

 

THE DOPPLER ENERGY TERM OF HYDROGEN-TYPE MOLECULAR IONS 
As shown in the Vibration of Hydrogen-type Molecular Ions section, the electron orbiting the nuclei at the foci of an ellipse may 
be perturbed such that a stable reentrant orbit is established that gives rise to a vibrational state corresponding to time harmonic 
oscillation of the nuclei and electron.  The perturbation is caused by a photon that is resonant with the frequency of oscillation of 
the nuclei wherein the radiation is electric dipole with the corresponding selection rules.   

Oscillation may also occur in the transition state.  The perturbation arises from the decrease in internuclear distance as the 
molecular bond forms.  Relative to the unperturbed case given in the Force Balance of Hydrogen-type Molecular Ions section, 
the reentrant orbit may give rise to a decrease in the total energy while providing a transient kinetic energy to the vibrating 
nuclei.  However, as an additional condition for stability, radiation must be considered.  Regarding the potential for radiation, the 
nuclei may be considered point charges.  A point charge undergoing periodic motion accelerates and as a consequence radiates 
according to the Larmor formula (cgs units) [15]: 
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where e  is the charge, v  is its acceleration, and c  is the speed of light.  The radiation has a corresponding force that can be 
determined based on conservation of energy with radiation.  The radiation reaction force, radF , given by Jackson [16] is: 
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Then, the Abraham-Lorentz equation of motion is given by [16]: 
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where extF  is the external force and m  is the mass.  The external force for the vibrating system is given by Eq. (11.146). 

 kxextF  (11.180) 

where x  is the displacement of the protons along the semimajor axis from the position of the initial foci of the stationary state in 
the absence of vibration with a reentrant orbit of the electron.  A nonradiative state must be achieved after the emission due to 
transient vibration wherein the nonradiative condition given by Eq. (11.24) must be satisfied.   

As shown in the Resonant Line Shape and Lamb Shift section, the spectroscopic linewidth arises from the classical rise-
time band-width relationship, and the Lamb Shift is due to conservation of energy and linear momentum and arises from the 
radiation reaction force between the electron and the photon.  The radiation reaction force in the case of the vibration of the 
molecular ion in the transition state corresponds to a Doppler energy, DE , that is dependent on the motion of the electron and the 

nuclei.  The Doppler energy of the electron is given by Eq. (2.155) after Gibb [17]: 
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where RE  is the recoil energy which arises from the photon’s linear momentum given by Eq. (2.153), KE  is the vibrational 

kinetic energy of the reentrant orbit in the transition state, and M  is the mass of the electron em . 

As given in the Vibration of Hydrogen-Type Molecular Ions section, for an inverse-squared central field, the coefficient 
of x  in Eq. (11.135) is positive, and the equation is the same as that of the simple harmonic oscillator.  Since the electron of the 
hydrogen molecular ion is perturbed as the internuclear separation decreases with bond formation, it oscillates harmonically 
about the semimajor axis given by Eq. (11.116), and an approximation of the angular frequency of this oscillation is 
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      (11.182) 

From Eqs. (11.115), (11.117), and (11.119), the central force terms between the electron MO and the two protons are: 
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and 
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Thus, the angular frequency of this oscillation is: 
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where the semimajor axis, a , is 
2 Ha

a
p

  according to Eq. (11.116) including the reduced electron mass.  The kinetic energy, 

KE , is given by Planck’s equation (Eq. (11.127)). 

 2 16 22.06538  10  / 13.594697 KE p X rad s p eV     (11.186) 

In Eq. (11.181), substitution of the total energy of the hydrogen molecular ion, TE , (Eq. (11.125)) for hE  , the mass of the 

electron, em , for M , and the kinetic energy given by Eq. (11.186) for KE  divided by 2p , the number of multipoles of a 

molecular hydrino state p  (Eq. (5.45)) gives the Doppler energy of the electron for the reentrant orbit. 
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 (11.187) 
The total energy of the molecular ion is decreased by DE . 

In addition to the electron, the nuclei also undergo simple harmonic oscillation in the transition state at their 
corresponding frequency given in the Vibration of Hydrogen-Type Molecular Ions section.  On average, the total energy of 
vibration is equally distributed between kinetic energy and potential energy [18].  Thus, the average kinetic energy of vibration 
corresponding to the Doppler energy of the electrons, KvibE , is 1/2 of the vibrational energy of the molecular ion given by Eq. 

(11.166).  The decrease in the energy of the hydrogen molecular ion due to the reentrant orbit in the transition state 
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corresponding to simple harmonic oscillation of the electron and nuclei, oscE , is given by the sum of the corresponding energies, 

DE  and KvibE .  Using Eq. (11.187) and vibE  from Eq. (11.163) gives: 

 21
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      (11.188) 

  2 21
0.118755 0.29282 

2oscE p eV p eV    (11.189) 

To the extent that the MO dimensions are the same, the electron reentrant orbital energies KE  are the same independent 

of the isotope of hydrogen, but the vibrational energies are related by Eq. (11.148).  Thus, the differences in bond energies are 
essentially given by 1/2 the differences in vibrational energies.  Using Eq. (11.187) with the deuterium reduced electron mass for 

TE  and DE , and vibE  for  2 1/D p  given by Eq. (11.173), that corresponds to the deuterium reduced nuclear mass (Eq. 

(11.170)), the corresponding oscE  is: 

  2 21
0.118811 0.20714 

2oscE p eV p eV    (11.190) 

 
TOTAL, IONIZATION, AND BOND ENERGIES OF HYDROGEN AND DEUTERIUM 
MOLECULAR IONS 
The total energy of the hydrogen molecular ion which is equivalent to the negative of the ionization energy is given by the sum 
of TE  (Eqs. (11.121) and (11.125)) and oscE  given by Eqs. (11.185-11.188).  Thus, the total energy of the hydrogen molecular 

ion having a central field of pe  at each focus of the prolate spheroid molecular orbital including the Doppler term is: 

 T e p oscE V V T E     (11.191) 
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 (11.192) 

From Eqs. (11.189) and (11.191-11.192), the total energy for hydrogen-type molecular ions is: 
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 (11.193) 

The total energy of the deuterium molecular ion is given by the sum of TE  (Eq. (11.125)) corrected for the reduced electron 

mass of D  and oscE  given by Eq. (11.190). 
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The bond dissociation energy, DE , is the difference between the total energy of the corresponding hydrogen atom or  1/H p  

atom [19-20], called hydrino atom having a principal quantum number 1/ p  where p  is an integer, and TE . 

  ( 1/ )D TE E H p E   (11.195) 

where [19] 
   2( 1/ ) 13.59844 E H p p eV   (11.196) 

and [20] 
   2( 1/ ) 13.603 E D p p eV   (11.197) 

The hydrogen molecular ion bond energy, DE , is given by Eq. (11.193) with the reduced electron mass and Eqs. (11.195-

11.196): 
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 (11.198) 

The deuterium molecular ion bond energy, DE , is given by Eq. (11.194) with the reduced electron mass of D  and Eqs. (11.195) 

and (11.197). 
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HYDROGEN-TYPE MOLECULES 
FORCE BALANCE OF HYDROGEN-TYPE MOLECULES 
Hydrogen-type molecules comprise two indistinguishable electrons bound by an elliptic field.  Each electron experiences a 
centrifugal force.  The balancing centripetal force (on each electron) is produced by the electric force between the electron and 
the elliptic electric field and the magnetic force between the two electrons causing the electrons to pair wherein the interaction 
between the pairing electrons involves a magnetic moment of a Bohr magneton, B , as given in the Magnetic Moment of an 

Ellipsoidal MO section.  The internal field is uniform along the major axis, and the far field is that of a dipole as shown in the 
Magnetic Field of an Ellipsoidal MO section.  The magnetic force is derived by first determining the interaction of the two 
electrons due to the field of the outer electron 2 acting on the magnetic moments of electron 1 and vice versa.  Insight into the 
behavior is given by considering the physics of a single bound electron in an externally applied uniform magnetic field as 
discussed in the Two-Electron Atoms section.  The uniform current- (charge-) density function  0

0 ,Y    was given in the 

Atomic Orbital Equation of Motion for  = 0 Based on the Current Vector Field (CVF) section.  The resultant angular 
momentum projections of the spherically-symmetric atomic orbital current density,  0

0 ,Y   , corresponding to the interaction 

are 
4xy L


 and 
2z L


.  As shown in the Resonant Precession of the Spin-1/2-Current-Density Function Gives Rise to the 

Bohr Magneton section, the electron spin angular momentum gives rise to a trapped photon with   of angular momentum along 
an S -axis.  Then, the spin state of an atomic orbital comprises a photon standing wave that is phase-matched to a spherical 
harmonic source current, a spherical harmonic dipole  , sinmY     with respect to the S -axis.  The dipole spins about the S -

axis at the angular velocity given by Eq. (1.36) with   of angular momentum.  S  rotates about the z-axis at the Larmor 

frequency at 
3

   such that it has a static projection of the angular momentum of || cos  
3 2 RZ


   S i

  as given by Eq. 

(1.97), and from Eq. (1.96), the projection of S  onto the transverse plane (xy-plane) is 
3

sin  
3 4 RY


   S i  .  Then, the 

vector projection of the radiation-reaction-type magnetic force of the Two Electron Atom section given by Eqs. (7.24) and (7.31) 

contain the factor 
3

4
 .  This represents the maximum projection of the time-dependent magnetic moment onto an axis of the 

spherical-central-force system. 
The atomic orbital can serve as a basis element to form a molecular orbital (MO).  The total magnitude of the angular 

momentum of   is conserved for each member of the linear combinations of  0
0 ,Y   ’s in the transition from the  0

0 ,Y   ’s to 

the MO.  Since the charge and current densities have the same distribution, the equipotential energy surface solution of Laplace’s 
equation for the charge distribution also determines the current distribution.  Newton’s laws determine the angular frequency and 
the velocity of the charge motion corresponding to the current.  Specifically, the further constraint from Newton’s laws that the 
orbital surface is a constant total energy surface and the condition of nonradiation provide that the motion is periodic with a 
constant period and that the current is continuous and constant over a period.  These boundary conditions determine the 
corresponding velocity function.  In non-spherical coordinates, the nonuniform charge distribution given by Laplace’s equation 
is compensated by a nonuniform velocity distribution such that the constant current condition is met.  Then, the conservation of 
the angular momentum is provided when symmetrically stretching the current density of an atomic  0

0 ,Y    current density 

along the semimajor axis of the MO so formed.   
The angular momentum projection may be determined by first considering the case of the hydrogen molecular ion.  

Specifically, the angular momentum must give the results of the Stern-Gerlach experiment as shown for atomic electrons and 
free electrons in the Resonant Precession of the Spin-1/2-Current-Density Function Gives Rise to the Bohr Magneton section and 
Stern-Gerlach Experiment section, respectively.  The hydrogen-molecular-ion MO, and all MOs in general, have cylindrical 
symmetry along the bond axis.  Then, in general,  0

0 ,Y    can serve as a basis element for an MO having cylindrical symmetry 

along the semimajor axis.  This defines the axis for stretching the  0
0 ,Y    basis element to form the MO (Figure 11.2) while 

conserving the angular momentum.  The charge and current distribution is normalized by applying the method given in the 
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Uniformity of 0
0 ( , )Y    section according to the distribution given by Eq. (11.42).  This gives rise to an ellipsoidal surface 

comprised of the equivalent of elliptical-orbit, plane cross sections in the direction parallel to the semimajor axis with the 
conserved angular momentum projections along the orthogonal semiminor axes. 
 
Figure 11.2.   The bound electron MO, a prolate spheroidal two-dimensional supercurrent comprising an extended continuous 
distribution of charge and current completely surrounding the nuclei at the foci, obtained by stretching  0

0 ,Y    along the 

semimajor axis.  Unlike a spinning top, there is a complex pattern of motion on its surface that generates two orthogonal 
components of angular momentum (Figure 11.4) that give rise to the phenomenon of electron spin.  A.  The z-axis view of the 

MO current paths having 
2z L


 matching the angular momentum projection on the 
1 1

, ,
2 2

  
 

x y zi i i -axis of the basis 

element  0
0 ,Y   .  B.  A representation of the z-axis view of the continuous charge-density and supercurrent-density 

distributions of the MO with 144 vectors overlaid giving the direction of the currents (nuclei not to scale). 

 
 A  B 
 

As shown in the Atomic Orbital Equation of Motion for  = 0 Based on the Current Vector Field (CVF) section, the 
atomic orbital is comprised of the uniform function  0

0 ,Y    with the intrinsic angular momentum directed along two 

orthogonal axes having three angular momentum components of /
4xy   L


 and 
2z L


.  Then,  0
0 ,Y    serves as the basis 

element for the formation of a MO with conservation of the total magnitude of the angular momentum of   (Eq. (1.37)) and the 
orthogonal projections xyL  and zL  of  0

0 ,Y    directed along the semiminor axes of the MO.  Since the direction of the 

stretching of the great-circle elements of  0
0 ,Y    having a radius of the semiminor axes is perpendicular to the angular 

momentum axes, the conserved angular momentum projections of the MO are /
4y   L


 and 
2z L


 as shown in Figure 11.4. 

The transform is that of a minimum energy, equipotential spherical to prolate spheroidal surface.  A convenient method to 
perform the stretching is numerically using a computer instead of using basis elements, convolutions, and rotational matrices in 
ellipsoidal coordinates following the method for construction of  0

0 ,Y    given in the Generation of the Atomic Orbital CVFs 

section.  As shown for the  0
0 ,Y    normalization algorithm in the Uniformity of 0

0 ( , )Y    section, the equipotential charge 

density of the MO can be obtained by stretching and weighting the total constant current on each current loop without changing 
the angular momentum distribution since the changes are orthogonal to the angular momentum axes.  In addition, the current 
distribution along each loop is adjusted to achieve the equipotential charge density (Eq. (11.42)) wherein the current is constant 
due to a corresponding variable velocity with position on the loop (Eqs. (11.84) and (11.23-11.24) using the area A of the elliptic 
plane section of the prolate spheroid). 

The algorithm for generating the charge and current density numerically may be an adaptation of computed tomography 
algorithms such as the original: Apply an Affine transform to the atomic electron current pattern to form an initial current 
distribution.  Calculate the density at each point area from the initial distribution, substrate it from the prolate spheroid 
distribution, add the normalized error to the current of each contributing loop, distribute the current correction along each loop in 
a manner to match Eq. (11.45), and repeat over all point areas repetitively until the error goes to zero.  Alternatively, a numerical 
spheroid to ellipsoidal transform may be applied to the numerically normalized atomic current motion wherein the angular 
momentum of each current loop is conserved and the constant current is based on the corresponding velocity variation on the 
ellipsoidal surface.  Specifically, normalization was achieved using a transformation that transforms an ellipsoidal MO into the 
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AO atomic orbital 0
0 ( , )Y   .  Then, sample points of the normalized sphere were used to numerically perform the transform in 

reverse using the inverse of the ellipsoidal MO to 0
0 ( , )Y    transformation to give the current densities shown in Figure 11.3 

[21].  The change in velocity is inherently compensated by the mass/charge density such that the overall flow of increments of 
mass/charge on each ellipse is constant, and the transform of each ellipse to a circle is such that the angular momentum remains 
the same.  The radius of the sphere is the same as the semiminor axis, but could be arbitrary in the normalization algorithm since 
densities are computed (corresponding to the number of samples in a certain solid angle). 
 
Figure 11.3.   The y-axis view of the numerically normalized current density of the ellipsoidal MO using the inverse of the 
ellipsoidal MO to 0

0 ( , )Y    transformation. 

 
 

Now consider the behavior of the hydrogen molecular ion in a magnetic field.  As shown in the Resonant Precession of 
the Spin-1/2-Current-Density Function Gives Rise to the Bohr Magneton section, in general, the photon angular momentum 
corresponding to the resonant excitation of the Larmor excited state is  , and the angular momentum change corresponding to 
the spin-flip transition is also  .  In the case of the hydrogen molecular ion, the Larmor-excitation photon carries   of angular 
momentum that gives rise to a prolate spheroidal dipole current about an S -axis in the same manner as in the case of the 
spherical dipole of the Larmor excited atomic orbital shown in Figures 1.15 and 1.16.  The former are given by the prolate 
angular function, which comprises an associated Legendre function  mP   [22], and the latter comprises the spherical harmonic 

dipole  , sinmY    .  Both are with respect to the S -axis.  For hydrogen molecular ion, /
4y   L


 and 
2z L


 of intrinsic 

spin are along the semiminor axes of the prolate spheroidal MO and S  is along the semimajor axis as shown in Figure 11.4.  
Thus, the Larmor excitation is constrained by Maxwell’s equations to be along the semimajor axis.  In general, all bonds are 
cylindrically symmetrical about the internuclear or semimajor axis; thus, the Larmor precession occurs about the bond axis of an 
MO wherein the intrinsic angular momentum components rotate about S  at the Larmor frequency and are not stationary relative 
to the magnetic field.  In the coordinate system rotating at the Larmor frequency (denoted by the axes labeled RX , RY , and RZ  in 

Figure 11.2), the angular momentum of S  of magnitude   is stationary.  The RY -components of magnitude /
4

 


 and the RZ -

component of magnitude 
2


 rotate about S  at the Larmor frequency.  The opposing intrinsic magnetic moments of 

4
B  along 

the RY -axis corresponding to the angular momentum of /
4y   L


 (Eq. (28) of Box 1.1 and Eq. (2.65)) balances the torque on 

the 
2


 angular momentum component along the RZ -axis, and all of the components have the necessary orthogonality. 
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Then, the S -axis is the direction of the magnetic moment of each unpaired electron of a molecule or molecular ion.  The 
magnetic moment of S  of B  corresponding to its   of angular momentum is consistent with the Stern-Gerlach experiment.  

The Larmor excitation can only be parallel or antiparallel to the magnetic field in order to conserve the angular momentum of the 
electron as well as the   of angular momentum of each of the photon corresponding to the Larmor excitation and the photon that 
causes a 180° flip of the direction of S .  The result is the same as that for the atomic electron and the free electron given in the 
Resonant Precession of the Spin-1/2-Current-Density Function Gives Rise to the Bohr Magneton section and Stern-Gerlach 
Experiment section, respectively.  The magnetic field is given in the Magnetic Field of an Ellipsoidal Molecular Orbital section. 
 
Figure 11.4.  The angular momentum components of the MO and S  in the rotating coordinate system RX , RY , and RZ  that 

precesses at the Larmor frequency about S  such that the S  vector is stationary. 
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Next, consider the magnetic-pairing force of the hydrogen molecule due to the spin-angular-momentum components.  

The magnetic moments of electrons 1 and 2 of the hydrogen molecule cancel, as they are spin paired to form an energy 
minimum at the distance   (i.e. 1 2  ).  The molecular magnetic force follows from the derivation for that between the 

electrons of two-electron atoms as given in the Two-Electron Atoms section.  The latter force was derived by first determining 
the interaction of the two electrons due to the field of the outer electron 2 acting on the magnetic moment of electron 1 and vice 
versa.  It was also given by the relationship between the angular momentum, energy, and frequency for the transition of electron 
2 from the continuum to the ground state of the two-electron atom.  The molecular magnetic force follows from Eqs. (7.25-7.31) 
with the conversion to ellipsoidal coordinates.  The conversion is apparent from comparing the centrifugal forces for each 
coordinate system given by Eq. (11.98) and Eqs. (7.1-7.2).  In the present case of hydrogen-type molecules, the radiation-
reaction-type magnetic force arises between the electrons, each having the components shown in Figure 11.4.  With the photon 
angular momentum projection of   and the total nuclear charge (non-photon-field) of 2, the magnitude of the magnetic force 
between the two electrons is 1/2 that of the centrifugal force given by Eq. (11.95).  This force is a term in the overall force 
balance. 

In addition to the spin pairing force between the two electrons, the electric and centrifugal forces must be considered in 
the force balance.  In the hydrogen-type molecule, the two electrons are bound by the central electric field as in the case of the 
molecular ion.  The hydrogen-type molecule is formed by the binding of an electron 2 to the hydrogen-type molecular ion 
comprising two protons at the foci of the prolate spheroidal MO of electron 1.  The ellipsoids of electron 1 and electron 2 are 
confocal; thus, the electric fields and the corresponding forces are normal to each MO of electron 1 and electron 2.  The field of 
the protons is ellipsoidal on average, and the binding of electron 2 requires a quantized energy release in units of  .  The 
magnetic force is also quantized in terms of  .  The final bound electrons must have the same angular momentum and be paired 
in the same orbit; thus, they must have the same eccentricity.  This is only possible according to Eq. (11.11) if they have the 
same central force.  Consequently, to conserve angular momentum, the electric force on electron 2 must be the same as that as on 
electron 1.  Due to the magnetic pairing force between electron 2 and electron 1 as well as the central electric force, the balance 
between the centrifugal force and the central field of electron 2 of the hydrogen-type molecule formed by electron 2 binding to a 
hydrogen-type molecular ion is the same as that given by Eq. (11.115).  Then, the force balance between the centrifugal force 
and the sum of the Coulombic and additionally the magnetic spin-pairing forces to solve for the semimajor axis is: 
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 0a
a

p
  (11.202) 

Substitution of Eq. (11.202) into Eq. (11.79) is:  

 0

1

2
c a

p
   (11.203) 

The internuclear distance given by multiplying Eq. (11.203) by two is:  

 0 2
2 '

a
c

p
  (11.204) 

Substitution of Eqs. (11.202-11.203) into Eq. (11.80) is: 

 0

1

2
b c a

p
   (11.205) 

Substitution of Eqs. (11.202-11.203) into Eq. (11.67) is: 

 
1

2
e   (11.206) 

For hydrogen,  r t D  for 
2

n
  , 0,1, 2,3,4n  .  Thus, there is no dipole moment, and the molecule is not predicted to be 

infrared active.  However, it is predicted to be Raman active due to the quadrupole moment.  The liquefaction temperature of 2H  

is also predicted to be significantly higher than isoelectronic helium. 
 

ENERGIES OF HYDROGEN-TYPE MOLECULES 
The energy components defined previously for the molecular ion, Eqs. (11.117), (11.119), (11.120), and (11.121), apply in the 
case of the corresponding molecule except that all of the field lines of the protons must end on the MO comprising two-paired 
electrons.  With spin pairing of the mirror-image-current electrons, the scaling factors due to the non-ellipsoidal variation of the 
electric field of the protons is unity as in the case of the sum of squares of spherical harmonics.  Thus, the hydrogen-type 
molecular energies are given by the integral of the forces without correction.  Then, each molecular-energy component is given 
by the integral of corresponding force in Eq. (11.200) where each energy component is the total for the two equivalent electrons 
with the central-force action at the position of the electron MO where the parameters a  and b  are given by Eqs. (11.202) and 
(11.205), respectively. 

The potential energy, eV , of the two-electron MO comprising equivalent electrons in the field of magnitude p  times that 

of the two protons at the foci is:  
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  (11.207) 

which is equivalent to 2Ze pe  times the potential of the MO given by Eq. (11.46) after Eq. (11.114).  The potential energy, 
pV , due to proton-proton repulsion in the field of magnitude p  times that of the protons at the foci ( 0  ) is 
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 (11.208) 

The kinetic energy, T , of the two-electron MO of total mass 2 em  is: 
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 (11.209) 

The magnetic energy, mV , of the two-electron MO of total mass 2 em  corresponding to the magnetic force of Eq. (11.200) is: 
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 (11.210) 

The total energy, TE , is given by the sum of the energy terms (Eqs. (11.207-11.210)). 

 T e m pE V T V V     (11.211) 

 
2

2 2 2 22 2 1
13.60 2 2 2 ln 2 31.63

2 2 1
T

p
E eV p p p p

   
             

 (11.212) 

where a  and b  are given by Eqs. (11.202) and (11.205), respectively.  The total energy, which includes the proton-proton-
repulsion term is negative which justifies the original treatment of the force balance using the analytical mechanics equation of 
an ellipse that considered only the binding force between the protons and the electrons and the electron centrifugal force.  As 
shown by Eqs. (11.290) and (11.292), T  is one-half the magnitude of eV  as required for an inverse-squared force [1] wherein eV  

is the source of T . 
 

VIBRATION OF HYDROGEN-TYPE MOLECULES 
The vibrational energy levels of hydrogen-type molecules may be solved in the same manner as hydrogen-type molecular ions 
given in the Vibration of Hydrogen-type Molecular Ions section.  The corresponding central force terms of Eq. (11.136) are: 
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and 
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The distance for the reactive nuclear-repulsive terms is given by the sum of the semimajor axis, a , and 'c , 1/2 the internuclear 
distance.  The contribution from the repulsive force between the two protons is: 
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and 
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Thus, from Eqs. (11.136) and (11.213-11.216), the angular frequency of the oscillation is: 
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where the semimajor axis, a , is 0a
a

p
  according to Eq. (11.202) and 'c  is 0'

2

a
c

p
  according to Eq. (11.203).  Thus, during 

bond formation, the perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory 
motion of the orbit, and the corresponding frequency,  0 , for a hydrogen-type molecule  2 1/H p  given by Eqs. (11.136) and 

(11.145) is: 

     1
2 2 2 140 621.98 

0 8.62385  10  /
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    (11.218) 
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where the reduced nuclear mass of hydrogen is given by Eq. (11.161) and the spring constant,  0k , given by Eqs. (11.136) and 

(11.217) is:  

   4 10 621.98 k p Nm  (11.219) 

The transition-state vibrational energy,  0vibE , is given by Planck’s equation (Eq. (11.127)): 

   2 14 20 8.62385  10  / 0.56764 vibE p X rad s p eV     (11.220) 

The amplitude of oscillation,  0reducedA , given by Eqs. (11.158), (11.161), and (11.219) is: 
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Then, from Eq. (11.67),  ' 0cA , the displacement of 'c  is the eccentricity e  given by Eq. (11.206) times  0reducedA  (Eq. 

(11.221)): 
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The spring constant and vibrational frequency for the formed molecule are then obtained from Eqs. (11.136) and (11.213-
11.222) using the increases in the semimajor axis and internuclear distances due to vibration in the transition state.  The 
vibrational energy,  1vibE , for the  2 1/H p  1 0     transition given by adding  ' 0cA  (Eq. (11.222)) to the distances a  

and 'a c  in Eqs. (11.213-11.220) is: 

   21 0.517 vibE p eV  (11.223) 

where   is the vibrational quantum number.  Using Eq. (11.176) with Eqs. (11.223) and (11.252), the anharmonic perturbation 
term, 0 0x , of  2 1/H p  is 
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where 0  is the frequency of the 1 0     transition corresponding to Eq. (11.223) and 0D  is the bond dissociation energy 

given by Eq. (11.252).  The vibrational energies of successive states are given by Eqs. (11.167) and (11.223-11.224). 
Using the reduced nuclear mass given by Eq. (11.170), the corresponding parameters for deuterium-type molecules 

 2 1/D p  (Eqs. (11.213-11.224) and (11.253)) are: 
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   4 10 621.98 k p Nm  (11.226) 

   20 0.4014 vibE p eV  (11.227) 
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   21 0.371 vibE p eV  (11.229) 
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The vibrational energies of successive states are given by Eqs. (11.167) and (11.229-11.230). 
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THE DOPPLER ENERGY TERM OF HYDROGEN-TYPE MOLECULES 
The radiation reaction force in the case of the vibration of the molecule in the transition state also corresponds to the Doppler 
energy, DE , given by Eq. (11.181) that is dependent on the motion of the electrons and the nuclei.  Here, a nonradiative state 

must also be achieved after the emission due to transient vibration wherein the nonradiative condition given by Eq. (11.24) must 
be satisfied.  Typically, a third body is required to form hydrogen-type molecules.  For example, the exothermic chemical 
reaction of H H  to form 2H  does not occur with the emission of a photon.  Rather, the reaction requires a collision with a 

third body, M , to remove the bond energy— 2 *H H M H M     [23].  The third body distributes the energy from the 

exothermic reaction, and the end result is the 2H  molecule and an increase in the temperature of the system.  Thus, a third body 

removes the energy corresponding to the additional force term given by Eq. (11.180).  From Eqs. (11.200), (11.207) and 
(11.209), the central force terms between the electron MO and the two protons are: 
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and 
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Thus, the angular frequency of this oscillation is: 
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where the semimajor axis, a , is 0a
a

p
  according to Eq. (11.202).  The kinetic energy, KE , is given by Planck’s equation (Eq. 

(11.127)): 
 2 16 24.13414  10  / 27.2116 KE p X rad s p eV     (11.234) 

In Eq. (11.181), substitution of the total energy of the hydrogen molecule, TE , (Eq. (11.212)) for hE  , the mass of the electron, 

em , for M , and the kinetic energy given by Eq. (11.234) for KE  divided by 2p , the number of multipoles of a molecular 

hydrino state p  (Eq. (5.45)), gives the Doppler energy of the electrons for the reentrant orbit. 
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The total energy of the molecule is decreased by DE . 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their 
corresponding frequency given in the Vibration of Hydrogen-Type Molecules section.  On average, the total energy of vibration 
is equally distributed between kinetic energy and potential energy [18].  Thus, the average kinetic energy of vibration 
corresponding to the Doppler energy of the electrons, KvibE , is 1/2 of the vibrational energy of the molecule given by Eq. 

(11.148).  The decrease in the energy of the hydrogen molecule due to the reentrant orbit in the transition state corresponding to 
simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  and KvibE .  

Using Eq. (11.235) and vibE  from Eq. (11.220) gives: 
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      (11.236) 

  2 21
0.326469 0.56764 

2oscE p eV p eV    (11.237) 

To the extent that the MO dimensions are the same, the electron reentrant orbital energies, KE , are the same independent 

of the isotope of hydrogen, but the vibrational energies are related by Eq. (11.148).  Thus, the differences in bond energies are 
essentially given by 1/2 the differences in vibrational energies.  Using Eq. (11.235) and vibE  for  2 1/D p  given by Eq. (11.227), 

that corresponds to the deuterium reduced nuclear mass (Eq. (11.170)), the corresponding oscE  is: 

  2 21
0.326469 0.401380 

2oscE p eV p eV    (11.238) 
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TOTAL, IONIZATION, AND BOND ENERGIES OF HYDROGEN AND DEUTERIUM 
MOLECULES 
The total energy of the hydrogen molecule is given by the sum of TE  (Eqs. (11.211-11.212)) and oscE  given in Eqs. (11.233-

11.236).  Thus, the total energy of the hydrogen molecule having a central field of pe  at each focus of the prolate spheroid 
molecular orbital including the Doppler term is: 
 T e m p oscE V T V V E      (11.239) 
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 (11.240) 

From Eqs. (11.237) and (11.239-11.240), the total energy for hydrogen-type molecules is: 
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The total energy of the deuterium molecule is given by the sum of TE  (Eq. (11.212)) and oscE  given by Eq. (11.238). 

  

2

2 2 2

2

31.6354 

1
31.6354 0.326469 0.401380 

2

31.760 

T oscE p eV E

p eV p eV p eV

p eV

  

   

 

 (11.242) 

The total energy, which includes the proton-proton-repulsion term is negative which justifies the original treatment of the force 
balance using the analytical mechanics equation of an ellipse that considered only the binding force between the protons and the 
electrons, the spin-pairing force, and the electron centrifugal force. 

The first ionization energy of the hydrogen molecule, 1IP , 

    2 21/ 1/H p H p e    (11.243) 

is given by the difference of Eqs. (11.193) and (11.241). 
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The second ionization energy, 2IP , is given by the negative of Eq. (11.193). 

 2
2 16.2527 IP p eV  (11.245) 

The first ionization energy of the deuterium molecule, 1IP , 

    2 21/ 1/D p D p e     (11.246) 

is given by the difference of Eqs. (11.194) and (11.242). 
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The second ionization energy, 2IP , is given by the negative of Eq. (11.194). 

 2
2 16.2988 IP p eV  (11.248) 

The bond dissociation energy, DE , is the difference between the total energy of the corresponding hydrogen atoms and TE  

  (2 1/ )D TE E H p E   (11.249) 

where [19]: 
   2(2 1/ ) 27.20 E H p p eV   (11.250) 

and [20]: 
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   2(2 1/ ) 27.206 E D p p eV   (11.251) 

The hydrogen bond energy, DE , is given by Eqs. (11.249-11.250) and (11.241): 
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The deuterium bond energy, DE , is given by Eqs. (11.249), (11.251), and (11.242): 
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THE HYDROGEN MOLECULAR ION 0'
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FORCE BALANCE OF HYDROGEN MOLECULAR ION 
Force balance between the electric and centrifugal forces is given by Eq. (11.115) where 1p   
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which has the parametric solution given by Eq. (11.83) when: 
 02a a  (11.255) 
The semimajor axis, a , is also given by Eq. (11.116) where 1p  .  The internuclear distance, 2 'c , which is the distance 
between the foci is given by Eq. (11.111) where 1p  . 

 02 ' 2c a  (11.256) 

The experimental internuclear distance is 2 oa .  The semiminor axis is given by Eq. (11.112) where 1p  . 

 03b a  (11.257) 

The eccentricity, e , is given by Eq. (11.113). 
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ENERGIES OF THE HYDROGEN MOLECULAR ION 
The potential energy, eV , of the electron MO in the field of the protons at the foci ( 0  ) is given by Eq. (11.117) where 1p   
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The potential energy, pV , due to proton-proton repulsion is given by Eq. (11.120) where 1p   
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The kinetic energy, T , of the electron MO is given by Eq. (11.119) where 1p   
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Substitution of a  and b  given by Eqs. (11.255) and (11.257), respectively, into Eqs. (11.259-11.261) is: 
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The Doppler term, oscE , for hydrogen and deuterium are given by Eqs. (11.189) and (11.190), respectively, where 1p   
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1
0.118755 0.29282 0.027655 

2osc D KvibE H E E eV eV eV        (11.265) 
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    2

1
0.118811 0.20714 0.01524 

2oscE D eV eV eV       (11.266) 

The total energy, TE , for the hydrogen molecular ion given by Eqs. (11.191-11.193) is: 
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 (11.267) 

where in Eqs. (11.262-11.267), the radius of the hydrogen atom Ha  (Eq. (1.259)) was used in place of 0a  to account for the 

corresponding electrodynamic force between the electron and the nuclei as given in the case of the hydrogen atom by Eq. 
(1.252).  The negative of Eq. (11.267) is the ionization energy of 2H   and the second ionization energy, 2IP , of 2H .  From Eqs. 

(11.191-11.192) and (11.194), the total energy, TE , for the deuterium molecular ion (the ionization energy of 2D  and the second 

ionization energy, 2IP , of 2D ) is: 

  1
16.284 0.118811 0.20714 16.299 

2TE eV eV eV eV       (11.268) 

The bond dissociation energy, DE , is the difference between the total energy of the corresponding hydrogen atom and TE .  The 

hydrogen molecular ion bond energy, DE , including the reduced electron mass given by Eq. (11.198) where 1p   is 

 2.535 0.118755 2.654 DE eV eV eV    (11.269) 

The experimental bond energy of the hydrogen molecular ion [24] is: 
 2.651 DE eV  (11.270) 

From Eq. (11.199) where 1p  , the deuterium molecular ion bond energy, DE , including the reduced electron mass of D  is 

 2.5770 0.118811 2.6958 DE eV eV eV    (11.271) 

The experimental bond energy of the deuterium molecular ion [25] is: 
 2.691 DE eV  (11.272) 

 

VIBRATION OF THE HYDROGEN MOLECULAR ION 
It can be shown that a perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory 
motion of the orbit [11].  The resonant vibrational frequency for 2H   given by Eq. (11.160) is: 

     1
140 165.51 

0 4.449  10  /
k Nm

X radians s
 



    (11.273) 

wherein 1p  .  The spring constant,  0k , for 2H   given by Eq. (11.162) is: 

   10 165.51 k Nm  (11.274) 

The vibrational energy,  0vibE , of 2H   during bond formation given by Eq. (11.163) is: 

  0 0.29282 vibE eV  (11.275) 

The amplitude of oscillation given by Eq. (11.164) is: 
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The vibrational energy for the 2H   1 0     transition given by Eq. (11.166) is: 

  1 0.270 vibE eV  (11.277) 

The experimental vibrational energy of 2H   [14, 20] is: 

 0.271 vibE eV  (11.278) 

The anharmonicity term of 2H   given by Eq. (11.169) is: 

 1
0 0 55.39 x cm   (11.279) 

The experimental anharmonicity term of 2H   from NIST [20] is: 

 166.2 e ex cm   (11.280) 
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The vibrational energy for the 2D  1 0     transition given by Eq. (11.175) is: 

 0.193 vibE eV  (11.281) 

The vibrational energy of the 2D  [20] based on calculations from experimental data is: 

 0.196 vibE eV  (11.282) 

The anharmonicity term of 2D  given by Eq. (11.176) is: 

 1
0 0 27.86 x cm   (11.283) 

The experimental anharmonicity term of 2D  for the state 
2 1  

g
X s  is not given, but the term for state 

2 3  
g

B d  from 

NIST [20] is: 
 12.62 e ex cm   (11.284) 

THE HYDROGEN MOLECULE 0' 
  

2H 2c 2a  

FORCE BALANCE OF THE HYDROGEN MOLECULE 
The force balance equation for the hydrogen molecule is given by Eq. (11.200) where 1p   
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which has the parametric solution given by Eq. (11.83) when, 

 0a a  (11.286) 

The semimajor axis, a , is also given by Eq. (11.202) where 1p  .  The internuclear distance, 2 'c , which is the distance 
between the foci is given by Eq. (11.204) where 1p  . 

 02 ' 2c a  (11.287) 

The experimental internuclear distance is 02a .  The semiminor axis is given by Eq. (11.205) where 1p  . 

 0
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2
b a  (11.288) 

The eccentricity, e , is given by Eq. (11.206). 
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The finite dimensions of the hydrogen molecule are evident in the plateau of the resistivity versus pressure curve of metallic 
hydrogen [26]. 
 

ENERGIES OF THE HYDROGEN MOLECULE 
The energies of the hydrogen molecule are given by Eqs. (11.207-11.210) where 1p   
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The energy, mV , of the magnetic force is 
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The Doppler terms, oscE , for hydrogen and deuterium molecules are given by Eqs. (11.237) and (11.238), respectively, where 

1p   

    2

1
0.326469 0.56764 0.042649 

2osc D KvibE H E E eV eV eV        (11.294) 
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    2

1
0.326469 0.401380 0.125779 

2oscE D eV eV eV      (11.295) 

The total energy, TE , for the hydrogen molecule given by Eqs. (11.239-11.241) is 
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 (11.296) 

From Eqs. (11.239-11.240) and (11.242), the total energy, TE , for the deuterium molecule is: 

  1
31.635 0.326469 0.401380 31.7608 

2TE eV eV eV eV       (11.297) 

The first ionization energies of the hydrogen and deuterium molecules, 1IP , (Eqs. (11.243) and (11.246)) are given by the 

differences in the total energy of corresponding molecular ions and molecules which are given by Eqs. (11.244) and (11.247), 
respectively, where 1p  : 

  1 2 15.4248 IP H eV  (11.298) 

  1 2 15.4627 IP D eV  (11.299) 

The bond dissociation energy, DE , is the difference between the total energy of two of the corresponding hydrogen atoms and 

TE .  The hydrogen molecular bond energy, DE , given by Eq. (11.252) where 1p   is: 

 4.478 DE eV  (11.300) 

The experimental bond energy of the hydrogen molecule [23] is: 

 4.478 DE eV  (11.301) 

The deuterium molecular bond energy, DE , given by Eq. (11.253) where 1p   is: 

 4.556 DE eV  (11.302) 

The experimental bond energy of the deuterium molecule [23] is: 

 4.556 DE eV  (11.303) 

 

VIBRATION OF THE HYDROGEN MOLECULE 
It can be shown that a perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory 
motion of the orbit [11].  The resonant vibrational frequency for 2H  given by Eq. (11.218) is: 

     1
140 621.98 

0 8.62385  10  /
k Nm

X radians s
 



    (11.304) 

The spring constant,  0k , for 2H  given by Eq. (11.219) is: 

   10 621.98 k Nm  (11.305) 

wherein 1p  .  The vibrational energy,  0vibE , of 2H  during bond formation given by Eq. (11.220) is: 

  0 0.56764 vibE eV  (11.306) 

The amplitude of oscillation given by Eq. (11.221) is: 
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The vibrational energy for the 2H  1 0     transition given by Eq. (11.223) is: 

  1 0.517 vibE eV  (11.308) 
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The experimental vibrational energy of 2H  [27-28] is: 

  1 0.5159 vibE eV  (11.309) 

The anharmonicity term of 2H  given by Eq. (11.224) is: 

 1
0 0 120.4 x cm   (11.310) 

The experimental anharmonicity term of 2H  from Huber and Herzberg [25] is: 

 1121.33 e ex cm   (11.311) 

The vibrational energy for the 2D  1 0     transition given by Eq. (11.229) is: 

 0.371 vibE eV  (11.312) 

The experimental vibrational energy of 2D  [14, 20] is: 

 0.371 vibE eV  (11.313) 

The anharmonicity term of 2D  given by Eq. (11.230) is: 

 1
0 0 60.93 x cm   (11.314) 

The experimental anharmonicity term of 2D  from NIST [20] is: 

 161.82 e ex cm   (11.315) 

The results of the determination of the bond, vibrational, total, and ionization energies, and internuclear distances for 
hydrogen and deuterium molecules and molecular ions are given in Table 11.1.  The calculated results are based on first 
principles and given in closed form equations containing fundamental constants only.  The agreement between the experimental 
and calculated results is excellent. 

Despite the predictions of standard quantum mechanics that preclude the imaging of a molecule orbital, the full three-
dimensional structure of the outer molecular orbital of 2N  has been recently tomographically reconstructed [29].  The charge-

density surface observed is similar to that shown in Figure 11.6 for 2H  which is direct evidence that electrons are not point-

particle probability waves that have no form until they are “collapsed to a point” by measurement.  Rather they are physical, 
two-dimensional equipotential charge density surfaces. 
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Table 11.1.   The calculated and experimental parameters of 2H , 2D , 2H   and 2D . 

 
Parameter Calculated Experimental Eqs. Ref. for Exp.

2
H  Bond Energy 4.478 eV 4.478 eV 11.300 24 

2
D  Bond Energy 4.556 eV 4.556 eV 11.302 24 

2
H   Bond Energy 2.654 eV 2.651 eV 11.269 24 

2
D  Bond Energy 2.696 eV 2.691 eV 11.271 25 

2
H  Total Energy 31.677 eV 31.675 eV 11.296 24, 30, 19a

2
D  Total Energy 31.760 eV 31.760 eV 11.297 20, 25b

2
H  Ionization Energy 15.425 eV 15.426 eV 11.298 30 

2
D  Ionization Energy 15.463 eV 15.466 eV 11.299 25 

2
H   Ionization Energy 16.253 eV 16.250 eV 11.267 24, 19c

2
D  Ionization Energy 16.299 eV 16.294 eV 11.268 20, 25d

2
H   Spin Magnetic Moment 0.5

B
  0.5

B
  12.24 31 

Absolute 
2

H  Gas-Phase NMR Shift 
-28.0 ppm -28.0 ppm 11.416 32-33 

2
H  Quadrupole Moment 

0.4764 X 10-16 cm2 0.38 0.15 X 10-16 cm2 11.430-11.431 46 

2
H  Internuclear Distance 0.7411 Å 0.741 Å 12.75 34 

2
D   Internuclear Distance 0.7411 Å 0.741 Å 12.75 34 

2
H   Internuclear Distance 1.0577 Å 1.06 Å 12.81 24 

2
D  Internuclear Distance 1.0577 Å 1.0559 Å 12.81 25 

2
H  Vibrational Energy 0.517 eV 0.516 eV 11.308 27, 28 

2
D  Vibrational Energy 0.371 eV 0.371 eV 11.313 14, 20 

2
H  e e

x  120.4 1cm  121.33 1cm  11.310 25 

2
D  e e

x  60.93 1cm  61.82 1cm  11.314 20 

2
H   Vibrational Energy 0.270 eV 0.271 eV 11.277 14, 20 

2
D  Vibrational Energy 0.193 eV 0.196 eV 11.281 20 

2
H  J=1 to J=0 Rotational Energy 0.01511 eV 0.01509 eV 12.77 24 

2
D  J=1 to J=0 Rotational Energy 0.007557 eV 0.00755 eV 12.78 24 

2
H   J=1 to J=0 Rotational Energy 0.00742 eV 0.00739 eV 12.83 24 

2
D  J=1 to J=0 Rotational Energy 0.0037095 eV 0.003723 eV 12.84 25 

 

a
 The experimental total energy of the hydrogen molecule is given by adding the first (15.42593 eV) [30] and second (16.2494 eV) ionization energies 

where the second ionization energy is given by the addition of the ionization energy of the hydrogen atom (13.59844 eV) [19] and the bond energy of 

2
H   (2.651 eV) [24]. 

b
 The experimental total energy of the deuterium molecule is given by adding the first (15.466 eV) [25] and second (16.294 eV) ionization energies where 

the second ionization energy is given by the addition of the ionization energy of the deuterium atom (13.603 eV) [20] and the bond energy of 
2

D  (2.692 

eV) [25]. 
c
 The experimental second ionization energy of the hydrogen molecule, 

2
IP , is given by the sum of the ionization energy of the hydrogen atom (13.59844 

eV) [19] and the bond energy of 
2

H  (2.651 eV) [24]. 
d

 The experimental second ionization energy of the deuterium molecule, 
2

IP , is given by the sum of the ionization energy of the deuterium atom (13.603 

eV) [20] and the bond energy of 
2

D  (2.692 eV) [25]. 
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THE DIHYDRINO MOLECULAR ION 0'
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FORCE BALANCE OF THE DIHYDRINO MOLECULAR ION 
Force balance between the electric and centrifugal forces of  2 1/ 2H   is given by Eq. (11.115) where 2p   
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which has the parametric solution given by Eq. (11.83) when: 
 0a a  (11.317) 
The semimajor axis, a , is also given by Eq. (11.116) where 2p  .  The internuclear distance, 2 'c , which is the distance 
between the foci is given by Eq. (11.111) where 2p  . 

 02 'c a  (11.318) 

The semiminor axis is given by Eq. (11.112) where 2p  . 

 0

3

2
b a  (11.319) 

The eccentricity, e , is given by Eq. (11.113). 
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ENERGIES OF THE DIHYDRINO MOLECULAR ION 
The potential energy, eV , of the electron MO in the field of magnitude twice that of the protons at the foci ( 0  ) is given by 

Eq. (11.117) where 2p   
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The potential energy, pV , due to proton-proton repulsion in the field of magnitude twice that of the protons at the foci ( 0  ) is 

given by Eq. (11.120) where 2p   
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The kinetic energy, T , of the electron MO is given by Eq. (11.119) where 2p   
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Substitution of a  and b  given by Eqs. (11.317) and (11.319), respectively, into Eqs. (11.321-11.323) and using Eqs. (11.191-
11.193) with 2p   gives: 
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 T e p oscE V V T E     (11.327) 
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 (11.328) 

where Eqs. (11.324-11.326) are equivalent to Eqs. (11.122-11.124) with 2p  .  The bond dissociation energy, DE , given by Eq. 

(11.198) with 2p   is the difference between the total energy of the corresponding hydrino atom and TE  given by Eq. (11.328): 

      2
2( 1/ ) ( 1/ ) 2 2.654 10.62 D T TE E H p E H p eV eV     (11.329) 
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VIBRATION OF THE DIHYDRINO MOLECULAR ION 
It can be shown that a perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory 
motion of the orbit [11].  The resonant vibrational frequency for  2 1/ 2H   from Eq. (11.160) is: 

  
1

2 15165.51 
0 2 1.78  10  /

Nm
X radians s





   (11.330) 

wherein 2p  .  The spring constant,  0k , for  2 1/ 2H   from Eq. (11.162) is: 

   4 1 10 2 165.51 2648 k Nm Nm    (11.331) 

The amplitude of oscillation from Eq. (11.164) is: 
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The vibrational energy,  1vibE , for the 1 0     transition given by Eq. (11.166) is: 

    21 2 0.270 1.08 vibE eV eV   (11.333) 
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FORCE BALANCE OF THE DIHYDRINO MOLECULE 
The force balance equation for the dihydrino molecule  2 1/ 2H

 
is given by Eq. (11.200) where 2p   
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which has the parametric solution given by Eq. (11.83) when 

 0

2

a
a   (11.335) 

The semimajor axis, a , is also given by Eq. (11.202) where 2p  .  The internuclear distance, 2 'c , which is the distance 
between the foci is given by Eq. (11.204) where 2p  . 
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The semiminor axis is given by Eq. (11.205) where 2p  . 

 0

1

2 2
b c a   (11.337) 

The eccentricity, e , is given by Eq. (11.206). 
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ENERGIES OF THE DIHYDRINO MOLECULE

 

The energies of the dihydrino molecule  2 1/ 2H  are given by Eqs. (11.207-11.210) and Eqs. (11.239-11.241) with 2p   
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The energy, mV , of the magnetic force is 
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 (11.342) 

 T e m p oscE V T V V E      (11.343) 
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 (11.344) 

where Eqs. (11.339-11.342) are equivalent to Eqs. (11.207-11.210) with 2p  .  The bond dissociation energy, DE , given by Eq. 

(11.252) with 2p   is the difference between the total energy of the corresponding hydrino atoms and TE  given by Eq. 

(11.344). 

      2
2(2 1/ ) ( 1/ ) 2 4.478 17.91 D T TE E H p E H p eV eV     (11.345) 

 
VIBRATION OF THE DIHYDRINO MOLECULE 
It can be shown that a perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory 
motion of the orbit [11].  The resonant vibrational frequency for the  2 1/ 2H  from Eq. (11.218) is 

  
1

2 2 15621.98 
0 2 2 3.45  10  /

k Nm
X radians s

 



    (11.346) 

wherein 2p  .  The spring constant,  0k , for  2 1/ 2H  from Eq. (11.219) is: 

   4 1 10 2 621.98 9952 k Nm Nm    (11.347) 

The amplitude of oscillation from Eq. (11.221) is: 
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 (11.348) 

The vibrational energy,  1vibE , of  2 1/ 2H  from Eq. (11.223) is: 

    21 2 0.517  2.07 vibE eV eV   (11.349) 

 

GEOMETRY 
The internuclear distance can also be determined geometrically. The spheroidal MO of the hydrogen molecule is an equipotential 
energy surface, which is an energy minimum surface.  For the hydrogen molecule, the electric field is zero for 0  . Consider 
two hydrogen atoms A and B approaching each other.  Consider that the two electrons form a spheroidal MO as the two atoms 
overlap, and the charge is distributed such that an equipotential two-dimensional surface is formed. The electric fields of atoms 
A and B add vectorially as the atoms overlap.  The energy at the point of intersection of the overlapping atomic orbitals 
decreases to a minimum as they superimpose and then rises with further overlap.  When this energy is a minimum the 
internuclear distance is determined.  It can be demonstrated [35] that when two hydrogen atomic orbitals superimpose such that 
the radial electric field vector from nucleus A and B makes a 45  angle with the point of intersection of the two original atomic 
orbitals, the electric energy of interaction between atomic orbitals given by 

 2
interaction 0

1
2  

2
E X dv  E  (11.350) 

is a minimum (Figure 7.1 of [35]).  The MO is a minimum potential energy surface; therefore, a minimum of energy of one point 
on the surface is a minimum for the entire surface of the MO.  Thus,  

 
2 02 0.748HR a Å   (11.351) 

The experimental internuclear bond distance is 0.746 Å . 
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DIHYDRINO IONIZATION ENERGIES 
The first ionization energy, 1IP , of the dihydrino molecule 

    2 21/ 1/H p H p e    (11.352) 

is given by Eq. (11.244) with 2p  . 

      1 2 21/ 1/T TIP E H p E H p   (11.353) 

  2
1 2 15.4248 61.70 IP eV eV   (11.354) 

The second ionization energy, 2IP , is given by Eq. (11.245) with 2p  . 

  2
2 2 16.2527 65.01 IP eV eV   (11.355) 

A hydrino atom can react with a hydrogen, deuterium, or tritium nucleus to form a dihydrino molecular ion that further 
reacts with an electron to form a dihydrino molecule. 
    21/ 1/H p H e H p    (11.356) 

The energy released is 
  ( 1/ ) TE E H p E   (11.357) 

where TE  is given by Eq. (11.241). 
A hydrino atom can react with a hydrogen, deuterium, or tritium atom to form a dihydrino molecule. 

    21/ 1/H p H H p   (11.358) 

The energy released is 
     1/ TE E H p E H E    (11.359) 

where TE  is given by Eq. (11.241). 
 

SIZES OF REPRESENTATIVE ATOMS AND MOLECULES 
ATOMS 
 
Figure 11.5.   Cross-section of an atomic orbital. 
 

 
 

Helium Atom (He) 
Helium comprises the nucleus at the origin and two electrons as a spherical shell at 00.567r a . 
 

Hydrogen Atom (  HH a ) 
Hydrogen comprises the nucleus at the origin and the electron as a spherical shell at Hr a . 
 

Hydrino Atom (  
  

Ha
H

2
) 

Hydrino atom (1/2) comprises the nucleus at the origin and the electron as a spherical shell at 
2
Ha

r  . 
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MOLECULES 
 
Figure 11.6.   A. Prolate spheroid MO.  B. Prolate spheroid parameters of molecules and molecular ions where a  is the 
semimajor axis, 2a  is the total length of the molecule or molecular ion along the principal axis, b c  is the semiminor axis, 
2 2b c  is the total width of the molecule or molecular ion along the minor axis, 'c  is the distance from the origin to a focus 
(nucleus), 2 'c  is the internuclear distance, and the protons are at the foci. 
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NUCLEAR SPIN-SPIN TRANSITION OF HYDROGEN-TYPE MOLECULES 
Each proton of hydrogen-type molecules possesses a magnetic moment, which is derived in the Proton and Neutron section and 
is given by 

 

2
2
3

2
2

P
p

e

m




 
 
 


 (11.360) 

The magnetic moment, m , of the proton is given by Eq. (11.360), and the magnetic field of the proton follows from the 
relationship between the magnetic dipole field and the magnetic moment, m , as given by Jackson [36] where P zm i . 

 
3

( 2cos sin )P
rr 

   H i i  (11.361) 

Multiplication of Eq. (11.361) by the permeability of free space, 0 , gives the magnetic flux, B , due to proton one at proton 

two. 

 0
3

( 2cos sin )P
rr 

    B i i  (11.362) 

ortho/para
magE , the magnetic energy to flip the orientation of proton two’s magnetic moments, P , from parallel magnetic moments 

to antiparallel magnetic moments with respect to the direction of the magnetic moment of proton one with corresponding 
magnetic flux B  is: 

 
2

0
3

ortho/para 2
2 P

mag PE
r

  
   B   (11.363) 

where r  is the internuclear distance 2c' where c' is given by Eq. (11.204).  Substitution of the internuclear distance into Eq. 
(11.363) for r  gives: 
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   B   (11.364) 

ortho/para
magE  corresponds to a force that causes the internuclear distance and concomitantly the other dimensions of the 2H  MO to 

change thereby having a relatively substantial effect on the energy difference of the ortho and para states.  A useful parameter, 
the ro-vibrational ortho-para splitting, can easily be calculated from the result of Lavrov and Weber [37] for  2 1/ 4H  using the 

Morse-potential expansion with an inter nuclear distance of 1/4 that of 2H  for  2 1/ 4H : 
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 (11.365) 

In the case that 
2

2
1

e e

a

B 



,   2 22

2 1
1/4 16 4 1418 H HH cm       where the calculated 2H  result of 88.61 1cm  (Ref. [38]) 

allowed for the cancellation of the curve-fit parameter a  and where e  and eB  are the vibartional and rotational parameters 

given by Eqs. (11.217) and (12.89), respectively.   
 
NUCLEAR MAGNETIC RESONANCE SHIFT 
The proton gyromagnetic ratio, / 2p  , is  

 1/ 2 42.57602  P MHz T    (11.366) 

The NMR frequency, f , is the product of the proton gyromagnetic ratio given by Eq. (11.366) and the magnetic flux, B . 

 1/ 2 42.57602  Pf MHz T   B B  (11.367) 

A typical radio frequency (RF) is 400 MHz .  According to Eq. (11.367) this corresponds to a flux of 9.39496 T  provided by a 
superconducting NMR magnet.  With a constant magnetic field, the frequency is scanned to yield the spectrum where the 
frequency scan is typically achieved using a Fourier transform on the free induction decay signal following a radio frequency 

pulse.  Historically, the radiofrequency was held constant, the applied magnetic field, 0H  ( 0
0

B
H


 ), was varied over a small 

range, and the frequency of energy absorption was recorded at the various values for 0H .  By convention based on this historic 
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mode of operation, the radiofrequency spectrum is converted into the corresponding applied magnetic field, 0H  ( 0
0

B
H


 ), of 

energy absorption and displayed as a function of increasing 0H .  The protons that would absorb energy at a lower 0H  give rise 

to a downfield absorption peak; whereas, the protons that would absorb energy at a higher 0H  give rise to an upfield absorption 

peak.  The electrons of the compound of a sample influence the field at the nucleus such that it deviates slightly from the applied 
value.  For the case that the chemical environment has no NMR effect, the value of 0H  at resonance with the radiofrequency 

held constant at 400 MHz  is: 

 
  

01
0 0

2 400 2

42.57602  P

MHzf
H

MHz T


      (11.368) 

In the case that the chemical environment has a NMR effect, a different value of 0H  is required for resonance.  This chemical 

shift is proportional to the electronic magnetic flux charge at the nucleus due to the applied field, which in the case of each 
dihydrino molecule is a function of its semimajor and semiminor axes as shown infra. 

Consider the application of a z-axis-directed uniform external magnetic flux, zB , to a dihydrino molecule comprising 

prolate spheroidal electron MOs with two spin-paired electrons.  The diamagnetic reaction current increases or decreases the MO 
current to counteract any applied flux according to Lenz’s law as shown in the Hydrino Hydride Ion Nuclear Magnetic 
Resonance Shift section.  The current of hydrogen-type molecules is along elliptical orbits parallel to the semimajor axis.  Thus, 
each nuclear magnetic moment must be in the direction of the semiminor axis for the electronic interaction with the nuclei.  
Thus, the nuclei are NMR active towards zB  when the orientation of the semimajor axis, a , is along the x-axis, and the 

semiminor axes, b c , are along the y-axis and z-axis, respectively.  The flux is applied over the time interval i ft t t    such 

that the field increases at a rate /dB dt .  The electric field, E , along a perpendicular elliptic path of the dihydrino MO at the 
plane 0z   is given by 

 
dB

E ds dA
dt

     (11.369) 

The induced electric field must be constant along the path; otherwise, compensating currents would flow until the electric field is 
constant.  Thus, Eq. (11.369) becomes 
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dB dB dB
dA dA ab

dt dt dtE
aE k aE kds

 
  
 


 (11.370) 

where  E k  is the elliptic integral given by: 

  
2

2
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1 sin 1.2375E k k d



     (11.371) 
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    (11.372) 

the area of an ellipse, A , is  
 A ab  (11.373) 
the perimeter of an ellipse, s , is: 
  4s aE k  (11.374) 

a  is the semimajor axis given by Eq. (11.202), b  is the semiminor axis given by Eq. (11.205), and e  is the eccentricity given by 
Eq. (11.206).  The acceleration along the path, /dv dt , during the application of the flux is determined by the electric force on 
the charge density of the electrons: 

 
 4e

dv e ab dB
m eE

dt aE k dt


   (11.375) 

Thus, the relationship between the change in velocity, v , and the change in B  is: 

 
 4 e

e ab
dv dB

aE k m


  (11.376) 

Let v  represent the net change in v  over the time interval i ft t t    of the application of the flux.  Then, 
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0 04 4
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e ev

e ab e abB
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      (11.377) 

The average current, I , of a charge moving in time harmonically along an ellipse is: 

 
 4

ev
I ef

aE k
   (11.378) 
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where f  is the frequency.  The corresponding magnetic moment is given by: 

 
 4

abev
m AI abI

aE k

    (11.379) 

Thus, from Eqs. (11.377) and (11.379), the change in the magnetic moment, m , due to an applied magnetic flux, B , is [39] 
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4 e
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aE k m
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m  (11.380) 

Next, the contribution from all plane cross-sections of the prolate spheroid MO must be integrated along the z-axis.  The 
spheroidal surface is given by 
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a b b
    (11.381) 

The intersection of the plane 'z z  ( 'b z b   ) with the spheroid determines the curve 
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Eq. (11.383) is an ellipse with semimajor axis, 'a , and semiminor axis, 'b , given by: 
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The eccentricity, 'e , is given by  
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 (11.386) 

where e  is given by Eq. (11.372).  The area, 'A , is given by:  
 ' ' 'A a b  (11.387) 
and the perimeter, 's , is given by 

    
2 2

2 2
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' 4 ' 4 1 1

z z
s a E k aE k s

b b
      (11.388) 

where s  is given by Eq. (11.374).  The differential magnetic moment change along the z-axis is: 
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Using Eq. (11.385) for the parameter 'b , the change in magnetic moment for the dihydrino molecule is given by the integral 
over 'b b b   : 
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Then, the integral to correct for the z-dependence of 'b  is: 
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 (11.391) 

where the semiminor axis, 0

2

a
b

p
 , given by Eq. (11.205) was used. 

The change in magnetic moment would be given by the substitution of Eq. (11.391) into Eq. (11.390), if the charge 
density were constant along the path of Eqs. (11.370) and (11.378), but it is not.  The charge density of the MO in rectangular 
coordinates (Eq. (11.42)) is 
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 (11.392) 

(The mass-density function of an MO is equivalent to its charge-density function where m  replaces q  of Eq. (11.42)).  The 

equation of the plane tangent to the ellipsoid at the point 0 0 0,  ,  x y z  is: 

 0 0 0
2 2 2

1
x y z

X Y Z
a b c

    (11.393) 

where ,  ,  X Y Z  are running coordinates in the plane.  After dividing through by the square root of the sum of the squares of the 
coefficients of ,  ,X Y  and Z , the right member is the distance D  from the origin to the tangent plane.  That is, 
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 (11.394) 

so that 
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e
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  (11.395) 

In other words, the surface density at any point on the ellipsoidal MO is proportional to the perpendicular distance from the 
center of the ellipsoid to the plane tangent to the ellipsoid at the point.  The charge is thus greater on the more sharply rounded 
ends farther away from the origin.  In order to maintain current continuity, the diamagnetic velocity of Eq. (11.377) must be a 
constant along any given path integral corresponding to a constant electric field.  Consequently, the charge density must be the 
minimum value of that given by Eq. (11.392).  The minimum corresponds to y b  and 0x z   such that the charge density is: 
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The MO is an equipotential surface, and the current must be continuous over the two-dimensional surface.  Continuity of the 
surface current density, K , due to the diamagnetic effect of the applied magnetic field on the MO and the equipotential 
boundary condition require that the current of each elliptical curve determined by the intersection of the plane 'z z  
( 'b z b   ) with the spheroid be the same.  The charge density is spheroidally symmetrical about the semimajor axis.  Thus,  , 
the charge density per unit length along each elliptical path cross section of Eq. (11.383) is given by distributing the surface 
charge density of Eq. (11.396) uniformly along the z-axis for 'b z b   .  So,  ' 0z  , the linear charge density   in the 

plane ' 0z  , is: 

  ' 0 2
1 4 2
2

e e
z b

ab a
b


 

     (11.397) 

And, the linear charge density must be equally distributed over each elliptical path cross-section corresponding to each plane 
'z z .  The current is independent of 'z  when the linear charge density,  'z , is normalized for the path length: 
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   (11.398) 

where the equality of the eccentricities of each elliptical plane cross section given by Eq. (11.386) was used.  Substitution of Eq. 

(11.398) for the corresponding charge density, 
 4 '

e

a E k
, of Eq. (11.390) and using Eq. (11.391) gives: 
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The two electrons are spin-paired and the velocities are mirror opposites.  Thus, the change in velocity of each electron 
treated individually (Eq. (10.3)) due to the applied field would be equal and opposite.  However, as shown in the Three Electron 
Atom section, the two paired electrons may be treated as one with twice the mass where em  is replaced by 2 em  in Eq. (11.399).  

In this case, the paired electrons spin together about the applied field axis, the z-axis, to cause a reduction in the applied field 
according to Lenz’s law.  Thus, from Eq. (11.399), the change in magnetic moment is given by:  

 
2 2

0
224 e

e a

p m
 

B
m  (11.400) 

The opposing diamagnetic flux is uniform, parallel, and opposite the applied field as given by Stratton [40].  Specifically, 
the change in magnetic flux, B , at the nucleus due to the change in magnetic moment, m , is: 
 0 2A  B m  (11.401) 
where 0  is the permeability of vacuum, 
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  (11.402) 

is an elliptic integral of the second kind given by Whittaker and Watson [41], and 

 2 2( ) ( )sR s b s a    (11.403) 

Substitution of Eq. (11.403) into Eq. (11.402) gives: 
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From integral 154 of Lide [42]: 
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The evaluation at the limits of the first integral is 
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From integral #147 of Lide [9], the second integral is: 
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Evaluation at the limits of the second integral gives: 
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Combining Eq. (11.406) and Eq. (11.408) gives: 
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where the semimajor axis, 0a
a

p
 , given by Eq. (11.202) and the semiminor axis, 0

2

a
b

p
 , given by Eq. (11.205) were used. 

Substitution of Eq. (11.400) and Eq. (11.409) into Eq. (11.401) gives: 
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Additionally, it is found both theoretically and experimentally that the dimensions, 2r , of the molecule corresponding to the area 
in Eqs. (11.369) and (11.379) used to derive Eq. (11.410) must be replaced by an average, 2r , that takes into account 

averaging over the orbits isotropically oriented.  The correction of 2/3 is given by Purcell [39] (also Eq (11.391)).  In the case of 
hydrogen-type molecules, the electronic interaction with the nuclei require that each nuclear magnetic moment is in the direction 
of the semiminor axis.  But free rotation about each of three axes results in an isotropic averaging of 2/3 where the rotational 
frequencies of hydrogen-type molecules are much greater than the corresponding NMR frequency (e.g. 1210  Hz  versus 810  Hz ).  

Thus, Eq. (11.410) gives the absolute upfield chemical shift, 
B

B


, of  2 1/H p  relative to a bare proton: 
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 (11.411) 

where p  is an integer. 

For resonance to occur, 0H , the change in applied field from that given by Eq. (11.368), must compensate by an equal 

and opposite amount as the field due to the electrons of molecular hydrino.  Compared to protons with no chemical shift, the 
ratio of 0H  for resonance of the protons of the dihydrino molecule  2 1/H p  to that of 2H  is a positive integer.  According to 

Eq. (11.202), the ratio of the semimajor axis of the dihydrino molecule  2 1/H p  to that of the hydrogen molecule 2H  is the 

reciprocal of an integer p .  It follows from Eqs. (11.202) and (11.411) that the diamagnetic flux (flux opposite to the applied 
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field) at each nucleus is inversely proportional to the semimajor radius, 0a
a

p
 .  That is, if only the size is considered, the 

absolute absorption peak of the dihydrino molecule (i.e. relative to a proton with no shift) occurs at a value of 0H  that is a 

multiple of p  times the value that is resonant for H2.  However, the source current of the state must be considered in addition to 
the reduced geometrical dimensions. 

As shown in the Stability of “Ground” and Hydrino States section, for the below “ground” (fractional quantum number) 
energy states of the hydrogen atom,  photon , the two-dimensional surface charge due to the “trapped photon” at the electron 

atomic orbital and phase-locked with the electron atomic orbital current, is given by Eqs. (5.27) and (2.11).  The excited states of 
the hydrogen molecule are solved using the same approach as those of the excited states of atoms wherein the corresponding 
geometry is prolate spheroid rather than spherical and the photon fields are modeled by associated Legendre functions or 
ellipsoidal spherical harmonics with regard to the semimajor axis as given in the Excited States of the Hydrogen Molecule 
section.  The total central ellipsoidal field of the molecule at the position of the molecular orbital (MO) due to the superposition 
of the field of the nuclei and the photon field is equivalent to an integer p  times that of the nuclei at the foci of the prolate 
spheroidal MO.  The photon source current gives rise to an additional contribution to the diamagnetism of the two electrons that 
is a function of p .   

As given in the Excited States of the Hydrogen Molecule section, the current of the paired electrons of the MO are phase 
locked to the photon field of magnitude p  of the dihydrino state.  For the spherical harmonics, the quantum number of the 

electron are p ,  , m , and sm  as described in the Excited States of the One-Electron Atom (Quantization) section wherein the 

principal quantum number of excited states is replaced by 
1

n
p

 .  From Eq. (5.27), 
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In the case that the photons and corresponding source current spin in opposite directions for the two electrons, the orbital 
magnetic moments cancel.  However, as given in the Pair Production section, a photon having an energy equivalent to that of the 
mass energy of the electron may undergo particle production to form an electron. To maintain continuity, the photon surface 
current of a dihydrino state must behave as the charge equivalent to its energy during the interaction of the electrons and the 
phased locked photon-field surface current with the external magnetic field such that the photon component gives rise to a 
proportional diamagnetic effect as well.  The photon diamagnetic component is given by Eqs. (29.10-29.11) as the charge 
equivalent to its energy that superimposes with the diamagnetism of the two electrons.  The relativistic term after Eq. (29.10) and 
the central field magnitude term for the dihydrino state having principle quantum number p  are 2  and p , respectively.  The 

photon contribution to the change in flux SRB  for molecular hydrino  2 1/H p  given by applying the corresponding relativistic 

factor of 2
SR   to Eq. (11.401) is 

 2
0 2SR p A    B m  (11.413) 

Thus, using Eq. (11.411) and Eq. (11.413), the upfield chemical shift, SRB

B


, due to the photon contribution of the molecule 

 2 1/H p  corresponding to the lower-energy state with principal quantum energy state p  is given by: 
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The total shift, TB

B


, for  2 1/H p  is given by the sum of that of the electrons given by Eq. (11.411) and that of the photon 

given by Eq. (11.414): 
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  2 328.01 1.49  10TB
p p X ppm

B


    (11.416) 

where the first term applies to 2H  with 1p   and integer >1p   for  2 1/H p . 

2H  has been characterized by gas phase 1H  NMR.  The experimental absolute resonance shift of gas-phase TMS relative 

to the proton’s gyromagnetic frequency is -28.5 ppm [32].  The experimental absolute resonance shift of TMS is -31.5 ppm 
relative to the proton’s gyromagnetic frequency [43-44].  2H  was observed at 0.48 ppm compared to gas phase TMS set at 0.00 

ppm [33].  Thus, the corresponding absolute 2H  gas-phase resonance shift of -28.0 ppm (-28.5 + 0.48) ppm was in excellent 

agreement with the predicted absolute gas-phase shift of -28.01 ppm given by Eq. (11.411).  The solution NMR of 2H  has a 
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chemical shift of about +4.65 ppm relative to TMS in many solvents [45] corresponding to a solvent or matrix shift of about +1 
ppm.  The chemical shift of  2 1/H p  is given by the difference of Eq. (11.416) and -31.5 ppm plus any solvent shift.   

As given in the Parameters and Magnetic Energies Due to the Spin Magnetic Moment of  2 1/ 4H  section  2 1/H p  has 

an unpaired electron such that it is paramagnetic.  The paramagnetism contributes to the difficulty of observing molecular 
hydrino NMR peaks directly.  However molecular hydrino states can give rise to a matrix shift in the MAS NMR spectrum when 
the matrix comprises NMR active H species such as a matrix having waters of hydration or an alkaline hydroxide solid matrix 
wherein a local interaction with  2 1/H p  causes an upfield matrix shift.  This effect may be enhanced for H species capable of 

rapid H exchange wherein the local  2 1/H p  interaction influences a larger population due to the rapid H exchange. 

 

QUADRUPOLE MOMENT 
The quadrupole moment 33Q of a charge distribution  r 

along the z-axis is given by 

   2 23zzQ dr r z r    
 

 (11.417) 

In cylindrical coordinates, the quadrupole moment is given by 

 2 22zzQ dz d drr z r        (11.418) 

wherein from Eqs. (11.26), (11.45), and (11.46) the electron charge distribution  is 
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Consider that the prolate spheroid is aligned with the major axis along the z-axis such that the magnitude of the charge density of 
the hydrogen-type molecular orbital is 
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Substitution of Eq. (11.419) into Eq. (11.418) gives the electron contribution to the quadrupole moment zzeQ : 
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Integration with respect to r and  gives 
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  (11.422) 

With the substitution of the semimajor axis (Eq. (11.202)), semiminor axis (Eq. (11.205)), and ' /z z a  into Eq. (11.422), zzeQ  

becomes 
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Integral (11.423) given by Mathematica is 
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Next, consider the quadrupole moment contribution of the two protons of hydrogen-type molecules wherein the protons 
are aligned along the z-axis with a separation of the internuclear distance 2 'c given by Eq. (11.204).  The quadrupole moment 
tensor is given by [46]: 

   3 23ij i j ijQ d x x x r   x  (11.425) 

The charge densities of the protons are given by 
       3 3' 'e c c     x x k x k  (11.426) 

The quadrupole moment may be easily evaluated in Cartesian coordinates wherein the Dirac delta functions become 
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                3 3' ' ' 'c c z c x y z c x y             x k x k  (11.427) 

Substitution of Eqs. (11.426-11.427) into Eq. (11.425) gives the proton quadrupole contribution zzpQ : 
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 (11.428) 

The charge-normalized quadrupole moment of hydrogen-type molecule  2 1/zzH pQ

e
is given by the sum of the charge-normalized 

quadrupole moment contributions of the protons, zzpQ

e
 given by Eq. (11.428), and the electrons, zzeQ

e
given by Eq. (11.424): 

    2

2 2 2
1/ 2 0 0 0

2 2 2
4 ' 0.29873 2 0.29873 1.70127

zzH p zzp zze
Q Q Q a a a

c
e e e p p p

        (11.429) 

wherein the distance of each proton from the origin 'c  is given by Eq. (11.203).  In the case of 2H  wherein 1p  , the charge-

normalized quadrupole moment given by Eq. (11.429) is  

 2 2 16 2
01.70127 0.476404 10zzHQ

a X cm
e

   (11.430) 

which agrees with the experimental results of Ramsey [47]: 

 2 16 20.38 0.15 10zzHQ
X cm

e
   (11.431) 

In the case of  2 1/ 4H  wherein 4p  , the charge-normalized quadrupole moment given by Eq. (11.429) is  

  2

2
1/4 18 20

2
1.70127 2.97752 10

4
zzHQ a

X cm
e

   (11.432) 
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Chapter 12 
  
DIATOMIC MOLECULAR ENERGY STATES 
  
 
 
 
 
EXCITED ELECTRONIC STATES OF ELLIPSOIDAL MOLECULAR ORBITALS 
Excited states of atomic orbitals are discussed in the Excited States of the One-Electron Atom (Quantization) section and the 
Excited States of Helium section.  In the case of ellipsoidal MOs, excited electronic states are created when photons of discrete 
frequencies are trapped in the ellipsoidal resonator cavity of the MO of the outer excited-state electron.  The photon changes the 
effective charge at the MO surface where the central field is ellipsoidal and arises from both the net field of the nuclei at the foci 
of the inner MO and the trapped photon of the outer.  The “trapped photons” are solutions of the two-dimensional Laplacian in 
ellipsoidal coordinates given by Eq. (11.27).  The excited-state photon's electric field at the outer electron (Eq. (2.15) except 
ellipsoidal coordinates) superimposes that of the net field of the nuclei at the foci of the inner MO and inner MO charge such that 
the net electric field has a magnitude proportional to /Z n  in the direction of i  at the outer electron where 2,3,4,...n   for 

excited states.  Force balance is achieved at a series of ellipsoidal equipotential two-dimensional surfaces with an increased 
distance  .  The state geometrical parameters are solved from the force balance equation and the relationships among the 
ellipsoidal parameters given in the Derivation of the General Geometrical and Energy Equations of Organic Chemistry section.  
The force balance of the outer excited-state electron is given by balance between the centrifugal force, the central Coulombic 
force corresponding to the effective central field due to the superposition of photon field at the outer electron and the net field of 
the nuclei at the foci of the inner MO, and the magnetic forces in the case of paired electrons in the unexcited state.  The energies 
corresponding to the excited electron are given by the prolate spheroidal energy equations given in the Derivation of the General 
Geometrical and Energy Equations of Organic Chemistry section except for a correction corresponding to a single electron, and 
the electric terms are scaled according to the effective central field. 
 

EXCITED STATES OF THE HYDROGEN MOLECULAR ION 
FORCE BALANCE OF THE EXCITED STATES OF THE HYDROGEN MOLECULAR ION 
The excited states of the hydrogen molecular ion are determined by the same physics as those of one and two electron atoms.  
The excited-state photon's electric field superposes that of the protons at the foci of the MO such that the excited-state electric 
field has a magnitude proportional to /e n  in the direction of i  at the electron MO where 2,3,4,...n   for excited states.  

Balance between the centrifugal and the Coulomb forces is achieved at a series of MOs, ellipsoidal equipotential two-
dimensional surfaces, confocal with the 1n  -state ellipsoid MO wherein the corresponding Coulombic force that balances the 
centrifugal force meets the requirement that the excited-state electric field has a magnitude proportional to /e n  at the electron.  
Thus, force balance between the electric and centrifugal forces given by Eq. (11.115) where 1/p n  is 
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which has the parametric solution given by Eq. (11.83) when semimajor axis, a , is: 
 02a na  (12.2) 
The internuclear distance, 2 'c , which is the distance between the foci is given by Eq. (11.111) where 1/p n . 

 02 ' 2c na  (12.3) 

The semiminor axis is given by Eq. (11.112) where 1/p n . 

 03b na  (12.4) 
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The eccentricity, e , is given by Eq. (11.113). 
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e   (12.5) 

 
ENERGIES OF THE EXCITED STATES OF THE HYDROGEN MOLECULAR ION 
The potential energy, eV , of the electron MO in the field of the protons at the foci ( 0  ) is given by Eq. (11.117) where 
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To match the condition that electric field has a magnitude proportional to /Z n  in the direction of i  at the electrons, the 

corresponding potential energy, pV , due to proton-proton repulsion is given by Eq. (11.120) where 1/p n  
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The kinetic energy, T , of the electron MO is given by Eq. (11.119) 
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Substitution of a  and b  given by Eqs. (12.2) and (12.4), respectively, into Eqs. (12.6-12.8) is: 
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The Doppler term, oscE , for hydrogen is given by Eq. (11.189) where 1/p n  
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The total energy, TE , for the hydrogen molecular ion given by Eqs. (11.191-11.193) is: 
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  (12.13) 

The negative of Eq. (12.13) is the ionization energy of the excited state of 2H  .  The energy eT  from the 1n   state (also referred 

to as the state X) to the energy of the thn  excited state is given by the difference of TE  given by Eq. (12.13) and the energy of 

unexcited 2H   given by Eq. (12.13) with 1n  : 
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 (12.14) 

These states are much higher in energy than the bond dissociation energy and cannot be observed.  This result is consistent with 
observations wherein the excited state spectrum of 2H   comprises only excited vibrational levels and levels within a van der 

Waals state [1–3]. 
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VIBRATION OF THE EXCITED STATES OF THE HYDROGEN MOLECULAR ION 
It can be shown that a perturbation of the orbit determined by an inverse-squared force results in simple harmonic oscillatory 
motion of the orbit [4].  The resonant vibrational frequency for 2H   given by Eq. (11.160) is 
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radians s
n n n


 

             
     

 (12.15) 

wherein 1/p n .  The spring constant,  0k , for 2H   excited states given by Eq. (11.162) is: 
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The vibrational energy,  0vibE , of the 2H   excited state for the determination of oscE  given by Eq. (11.163) is: 
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The amplitude of oscillation given by Eq. (11.164) is: 
   00 0.1125reducedA n a  (12.18) 

The vibrational energy for the 2H   excited-state 1 0     transition given by Eq. (11.166) is: 
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The anharmonicity term of the 2H   excited state given by Eq. (11.169) is: 
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MAGNETIC MOMENT OF AN ELLIPSOIDAL MOLECULAR ORBITAL 
The magnetic dipole moment,  , of a current loop is: 

 iA   (12.21) 

where i  is the current and A  is the area of the loop.  For any elliptic orbital due to a central field, the frequency, f , is: 
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where L  is the angular momentum, m  is the mass, and the area A  of an ellipse is given by Eq. (11.25).  The current, i , is: 

 
2

e

eL
m

i ef
ab

 


 (12.23) 

where e  is the charge.  The magnetic moment is given by substitution of Eqs. (12.23) and (11.25) into Eq. (12.21) where 
2

L 


 

is the intrinsic electron angular momentum of the ellipsoidal MO given in the Force Balance of Hydrogen-type Molecules 
section: 
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where B  is the Bohr magneton.  In a Larmor excited state, the electron gains L    along the semimajor axis as the intrinsic 

angular momentum precesses about this axis at the Larmor frequency.  The magnetic moment of the Larmor excited state of 
cylindrical symmetry is given by Eq. (2.65): 
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which is the Bohr magneton. 
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MAGNETIC FIELD OF AN ELLIPSOIDAL MOLECULAR ORBITAL 
The magnetic field can be solved as a magnetostatic boundary value problem, which is equivalent to that of a uniformly 
magnetized ellipsoid.  The magnetic scalar potential inside the ellipsoidal MO,  , [5] and outside of the MO,  , [6] are 
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and 
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respectively, where R for a prolate spheroid given by Stratton [7] (Eq. (11.32)) is: 

    2 2R b a      (12.28) 

and the spheroidal [7] parameters for Eq. (12.27) after Chang [6] are:   
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The magnetic field inside the ellipsoidal MO, x
H , is [5]: 
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The magnetic field inside the ellipsoidal MO is uniform and parallel to the semimajor axis.  The Cartesian-coordinate magnetic 
field components outside the ellipsoidal MO, , ,x y z

H , are obtained by taking the gradient of   given by Eq. (12.27): 
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where  
 1 2 3u x u y u z    (12.33) 
Substitution of Eq. (12.27) into Eq. (12.32) gives [6] 
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where 

 arctan
z

y
   (12.37) 

A plot of the field lines of the magnetic dipole due to a resonant Larmor excitation of the prolate-spheroidal 2H   MO is shown in 

Figures 12.1A-C. 
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Figure 12.1A.   The two-dimensional cross-section of the field lines of the magnetic dipole due to a resonant Larmor 
excitation of the prolate-spheroidal 2H   MO.  The internal field is uniform, and the field external to the prolate spheroidal MO is 

a dipole field. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 12.1C.   The field lines of the magnetic dipole due 
to a resonant Larmor excitation of the prolate-spheroidal 2H   

MO with the MO partially cut-away to show the uniform 
internal field lines. 

Figure 12.1B.   The field lines of the magnetic dipole due 
to a resonant Larmor excitation of the prolate-spheroidal 2H   

MO. The field external to the prolate spheroidal MO is a 
dipole field. 
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EXCITED STATES OF THE HYDROGEN MOLECULE 

FORCE BALANCE OF THE EXCITED STATES OF THE HYDROGEN MOLECULE 
In the mathematical limit, as the eccentricity goes to zero the hydrogen molecule becomes the helium atom.  The excited states 
of the hydrogen molecule are determined by the same physics as those of the helium atom.  It was shown in the Excited States of 
Helium section that the inner atomic orbital is essentially that of He  for all excited states with the exact result upon ionization.  
The infinite 2H  excited state corresponds to a free electron with the inner MO and protons comprising 2H  .  Implicit in the 

calculation of the energy of the outer electron of each 2H  excited state is that the inner electron has the geometrical parameters, 

component energies, and the total energy of 2H   as shown to very good approximation for the inner atomic electron of helium 

excited states.  For 2H , the excited-state photon's two-dimensional ellipsoidal electric field at the outer electron superimposes 

that of the field of the nuclei at the foci of the inner MO and inner MO charge such that the resultant electric field has a 
magnitude /e n  in the direction of i  at the outer electron where 2,3,4,...n   for excited states.  Then, the force balance of the 

outer excited-state electron is given by the balance between the centrifugal force, the central Coulombic force corresponding to 
the effective central field due to the superposition of the photon field at the outer electron and the net field of the protons at the 
foci of the inner MO, and the magnetic forces for the particular spin and orbital state.  The geometrical parameters for 2H  are 

determined from the semimajor axis given by the force balance and the relationships among the ellipsoidal parameters.  The 
energies corresponding to the excited electron are given by the prolate spheroidal energy equations given in the Derivation of the 
General Geometrical and Energy Equations of Organic Chemistry section except for a 1/2 correction corresponding to a single 
electron, and the electric terms are scaled according to the effective central field of 1/ n . 
 
SINGLET EXCITED STATES 
  = 0 

The force balance between the electric, magnetic, and centrifugal forces of the outer electron given by Eqs. (9.10) and 
(11.285) is: 
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where the geometrical factor due to the electron rotation about the semimajor axis is given by Eq. (11.391) and m  is a positive 
or negative integer wherein the inner and outer electron may rotate relative to each other to quantized the magnetic force such 
that net relative motion obeys the condition 0 .  The parametric solution given by Eq. (11.83) occurs when semimajor axis, 
a , is:  

 0 2
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m
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 (12.39) 

The internuclear distance, 2 'c , which is the distance between the foci is given by Eq. (11.79) where 1/p n . 
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The semiminor axis is given by Eq. (11.80). 
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The eccentricity, e , is given by Eq. (11.67). 
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  ≠ 0 
The excited singlet states of the hydrogen molecule for   ≠ 0 are solved using the same approach as those of the excited 

states of the helium atom given in the corresponding section, wherein the force balance due to the  ,Maga m  terms 

corresponding to prolate spheroid geometry rather than spherical are also associated Legendre functions or spherical harmonics 
with regard to the semimajor axis as given by Li, Kang, and Leong [8]. 

The magnetic forces comprise the component of Eq. (12.38) corresponding to the nondynamic current and the  ,Maga m  

component due to the time dynamic modulation current and its interaction with electron spin.  The force balance between the 
electric, magnetic, and centrifugal forces of the outer electron given by Eqs. (12.38) and (9.52) is 
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where the 3 / 4  and 3r  terms are replaced by one and 2 2Da b   as given in the Force Balance of Hydrogen-Types Molecules 
section.  The parametric solution given by Eq. (11.83) occurs when semimajor axis, a , is:  
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The internuclear distance, 2 'c , which is the distance between the foci is given by Eq. (11.79) where 1/p n . 
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The semiminor axis is given by Eq. (11.80). 
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The eccentricity, e , is given by Eq. (11.67). 

 

 

1/2

'
3

1 122 2 1
3 2 1 !! 2 1

c n
e

a
m

n

 
 

               

 
   

 (12.47) 

 
TRIPLET EXCITED STATES 
  = 0 

The force-balance equation and semimajor-axis solution of triplet excited states for   = 0 are equivalent to those of the 
corresponding singlet excited states given by Eqs. (12.38-12.39).  However, due to the triplet spin state, the magnetic force in 
Eq. (12.38) is increased by a factor of two as in the case of the corresponding helium excited states given in Eq. (9.31).  Thus, m  
is replaced by 2m .  Then, the force balance between the electric, magnetic, and centrifugal forces of the outer electron is 
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The parametric solution given by Eq. (11.83) occurs when semimajor axis, a , is:  
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The internuclear distance, 2 'c , which is the distance between the foci is given by Eq. (11.79) where 1/p n . 
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The semiminor axis is given by Eq. (11.80). 
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The eccentricity, e , is given by Eq. (11.67). 
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  ≠ 0 
The magnetic forces of triplet excited molecular states having   ≠ 0 comprise the nondynamic-current component of Eq. 

(12.43) with the parameter m  of the magnetic force of Eq. (12.38) increased by a factor of two and the  ,Maga m  component 

due to the time dynamic modulation current and its interaction with electron spin.  The latter is solved using the same approach 
as that of the triplet excited states of the helium atom given in the corresponding section.  The force balance between the electric, 
magnetic, and centrifugal forces of the outer electron given by Eqs. (12.48) and (9.63) is 
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where the 3 / 4  and 3r  terms are replaced by one and 2 2Da b   as given in the Force Balance of Hydrogen-Types Molecules 
section.  The parametric solution given by Eq. (11.83) occurs when semimajor axis, a , is:  
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The internuclear distance, 2 'c , which is the distance between the foci is given by Eq. (11.79) with the 2 factor and 1/p n . 

 
 

1/2

0
0

3
2 1 122 2
3 2 1 !! 2 1

2 ' 2 2
2 2

m
n n

aa
c a

p

 
                

 
   

 (12.55) 

The semiminor axis is given by Eq. (11.80). 
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 (12.56) 

The eccentricity, e , is given by Eq. (11.67). 

 

 

1/2

'
3

2 1 122 2 2
3 2 1 !! 2 1

c n
e

a
m

n

 
 

               

 
   

 (12.57) 

 

ENERGIES OF THE EXCITED STATES OF THE HYDROGEN MOLECULE 
The component energies of the outer electron of the hydrogen molecule of the excited state corresponding to quantum number n  
are given by Eqs. (11.290-11.293) and (11.233-11.236) where the energies are each multiplied by a factor of 1/2 since the outer 
MO comprises only one electron, and those corresponding to charge are multiplied by effective-charge factor of 1/ n : 
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where with regard to Eq. (12.62), the angular frequency of reentrant oscillation   and corresponding energies KE , DE , and oscE  

are given by Eqs. (11.233-11.236) with 1/p n  and the factor of 1/2 was applied since the outer MO comprises only one 

electron.  The potential energy, pV , due to proton-proton repulsion (Eq. 12.59)) is zero.  The repulsive term applies only to the 

total energy of 2H   which is implicit in the calculation of the energy of the outer electron of the 2H  excited state as in the case 

with the energy of the helium excited states given in the Excited States of Helium section.  The total energy, TE , for the 

hydrogen molecular excited state given by Eqs. (11.239-11.240) is: 

 T e m p oscE V T V V E      (12.63) 
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 (12.64) 

The negative of Eq. (12.64) is the ionization energy of the excited state of 2H .  The energy eT  from the 1n   state (also referred 

to as the state X) to the energy of the thn  excited state is given by the sum of TE  given by Eq. (12.64) and 1IP  of 2H  given by 

Eq. (11.298): 
  2 15.4248 e TT H E eV   (12.65) 

The geometrical (Eqs. (12.38-12.55) and energy (Eqs. (12.56-12.62)) parameters of singlet and triplet excited states of molecular 
hydrogen are given in Tables 12.1 and 12.2, respectively, where KvibE  was given to very good approximation by e  of 2H   (the 

n    state) since there is a close match with e  of each excited state [9].  The color scale, translucent views of the charge 

densities of exemplary ellipsoidal spherical harmonics that modulate the time independent spin function are shown in Figure 
12.2.  The modulation functions propagate about the major axis as spatially and temporally harmonic charge-density waves. 
 
Figure 12.2.   Overhead-view of exemplary color scale, translucent views of the charge-densities of the inner and outer 
electrons of molecular-hydrogen excited states.  The outer-electron orbital function modulates the time-constant (spin) function, 
(shown for t = 0; three-dimensional view).  The inner electron is essentially that of 

2
H   (nuclei red, not to scale). 

 



466 
Chapter 12 

 
T

a
b

le
 1

2
.1

. 
T

he
 g

eo
m

et
ri

ca
l a

nd
 e

ne
rg

y 
pa

ra
m

et
er

s 
of

 th
e 

si
ng

le
t e

xc
it

ed
 s

ta
te

s 
of

 m
ol

ec
ul

ar
 h

yd
ro

ge
n 

co
m

pa
re

d 
to

 th
e 

ex
pe

ri
m

en
ta

l e
ne

rg
ie

s 
[9

].
 

T
a

b
le

 1
2

.2
. 

T
he

 g
eo

m
et

ri
ca

l a
nd

 e
ne

rg
y 

pa
ra

m
et

er
s 

of
 th

e 
tr

ip
le

t e
xc

it
ed

 s
ta

te
s 

of
 m

ol
ec

ul
ar

 h
yd

ro
ge

n 
co

m
pa

re
d 

to
 th

e 
ex

pe
ri

m
en

ta
l e

ne
rg

ie
s 

[9
].

 



467 
Diatomic Molecular Energy States 

DIATOMIC MOLECULAR ROTATION 
A molecule with a permanent dipole moment can resonantly absorb a photon, which excites a rotational mode about the center of 
mass of the molecule.  Momentum must be conserved with excitation of a rotational mode.  The photon carries   of angular 
momentum; thus, the rotational angular momentum of the molecule changes by  .  And, the rotational charge-density function 
is equivalent to the rigid rotor problem considered in the Rotational Parameters of the Electron (Angular Momentum, Rotational 
Energy, Moment of Inertia) section with the exception that for a diatomic molecule having atoms of masses 1m  and 2m , the 

moment of inertia is:  
 2I r  (12.66) 

where   is the reduced mass 

 1 2

1 2

m m

m m
 


 (12.67) 

and where r  is the distance between the centers of the atoms, the internuclear distance.  The rotational energy levels follow from 
Eq. (1.71) 
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 (12.68) 

where J  is an integer.  For Eq. (12.68), 0J   corresponds to rotation about the z-axis where the internuclear axis is along the x-
axis, and 0J   corresponds to a linear combination of rotations about the z and y-axis (Figure 11.4). 

As given in the Selection Rules section, the radiation of a multipole of order (  , m ) carries m  units of the z 

component of angular momentum per photon of energy  .  Thus, the z component of the angular momentum of the 
corresponding excited rotational state is 
 zL m   (12.69) 

Thus, the selection rule for rotational transitions is:  
 1J    (12.70) 
In addition, the molecule must possess a permanent dipole moment.  In the case of absorption of electromagnetic radiation, the 
molecule goes from a state with a quantum number J  to one with a quantum number of 1J  .  Using Eq. (12.68), the energy 
difference is: 
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 (12.71) 

 

DIATOMIC MOLECULAR ROTATION OF HYDROGEN-TYPE MOLECULES 
The reduced mass of hydrogen-type molecular ions and molecules, 

2H , having two protons is given by Eq. (12.67) where 

1 2 pm m m  , and pm  is the mass of the proton. 
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The moment of inertia of hydrogen-type molecules is given by substitution of the reduced mass (Eq. (12.72)) for   of Eq. 
(12.66) and substitution of the internuclear distance (Eq. (11.204)) for r  of Eq. (12.66). 
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where p  is an integer which corresponds to  2 1/H p .  The Doppler energy term, DE , of the bond energy (Eqs. (11.235), and 

(11.240-11.241)) decreases the internuclear distance, r , of Eq. (12.66), which increases the rotational energy.  To determine the 
internuclear distance considering the correction for DE , consider that the contribution of DE  to the binding energy is one-half 

the magnitude of the potential energy contribution as required for an inverse-squared force [10] wherein DE  is the source of the 

additional binding energy term.  Then, the sum of ½ DE  and the unperturbed total energy comprising the sum of the inverse-

squared field terms given by Eqs. (11.207-11.211) is subtracted from the total energy given by Eqs. (11.207-11.211) with the 
semimajor axis  a  comprising a variable.  The difference is equated to zero, and the resulting Eq. (12.74) is solved reiteratively 
for the semimajor axis  a  with the prolate other spheroidal dimensions dependent on the semimajor axis given by Eqs. (11.79-
11.80) and (11.67). 

  (12.74) 

internuclear distance for   p 1 is 
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 2c '  0.7411 Å  (12.75) 
Eq. (12.75) is also the internuclear distance for molecular hydrogen isotopes such as D

2
.  To a high degree of accuracy, the 

general result for hydrogen-type molecules is 

 2c ' 
0.7411

p
 Å  (12.76) 

Using Eqs. (12.66), (12.71-12.72), and (12.76), the rotational energy absorbed by a hydrogen-type molecule with the transition 
from the state with the rotational quantum number J  to one with the rotational quantum number 1J   is: 

  (12.77) 

The result of Eq. (12.77) without the correction for centrifugal distortion compares well to the experimental value of 

  
E  0.01509 eV 121.7 cm1   for   p 1 [11].   

Using the reduced mass for molecular deuterium which to a high level of accuracy is twice that of molecular hydrogen 
given by Eq. (12.72) and the internuclear distance given by Eq. (12.76) in Eq. (12.71) gives the rotational energy of deuterium-
type molecules as: 

  (12.78) 

The result of Eq. (12.78) without the correction for centrifugal distortion compares well to the experimental value of 

  
E  0.00755 eV 60.90 cm1   for   p 1 [11].   

 

DIATOMIC MOLECULAR ROTATION OF HYDROGEN-TYPE MOLECULAR IONS 
The moment of inertia of hydrogen-type molecular ions is given by substitution of the reduced mass (Eq. (12.72)) for   of Eq. 
(12.66) and substitution of the internuclear distance (Eq. (11.111)) for r  of Eq. (12.66). 
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where p  is an integer which corresponds to  2 1/H p .  The Doppler energy term, DE , of the bond energy (Eqs. (11.187), and 

(11.192-11.193)) decreases the internuclear distance, r , of Eq. (12.66), which increases the rotational energy.  To determine the 
internuclear distance considering the correction for DE , consider that the contribution of DE  to the binding energy is one-half 

the magnitude of the potential energy contribution as required for an inverse-squared force [10] wherein DE  is the source of the 

additional binding energy term.  Then, the sum of ½ DE  and the unperturbed total energy comprising the sum of the inverse-

squared field terms given by Eqs. (11.117-11.121) with the semimajor axis given by Eq. (11.116) is subtracted from the total 
energy given by Eqs. (11.117-11.121) with the semimajor axis a  comprising a variable.  The difference is equated to zero, and 
the resulting Eq. (12.80) is solved reiteratively for the semimajor axis a  with the prolate other spheroidal dimensions dependent 
on the semimajor axis given by Eqs. (11.79-11.80) and (11.67). 

  (12.80) 

internuclear distance for   p 1 is 

 2c '  1.0577 Å  (12.81) 

Eq. (12.81) is also the internuclear distance for molecular hydrogen isotopes such as D
2
 .  To a high degree of accuracy, the 

general result for hydrogen-type molecular ions is 

 2c ' 
1.0577

p
 Å  (12.82) 

Using Eqs. (12.66), (12.71-12.72), and (12.82), the rotational energy absorbed by a hydrogen-type molecular ion with the 
transition from the state with the rotational quantum number J  to one with the rotational quantum number 1J   is: 

  (12.83) 
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The result of Eq. (12.83) without the correction for centrifugal distortion is a good match to the experimentally observed 
wavelength of 169 m  [11].  The rotational wavelength for 6p   is 4.7 m .  A broad 4.7 m  solar chromospheric absorption 
line is observed which was previously assigned to cool carbon monoxide clouds; however, the temperature of the chromosphere, 

6000 K , is higher than that at which carbon monoxide completely decomposes into carbon and oxygen, 4000 K  [12].  The 

assignment of the 4.7 m  absorption line to the Doppler-broadened 0J   to 1J   rotational transition of 0
2 2 '

3

a
H c


   

 

provides a resolution of the problem of cool carbon monoxide clouds. 
Using the reduced mass for molecular deuterium which to a high level of accuracy is twice that of molecular hydrogen 

given by Eq. (12.72) and the internuclear distance given by Eq. (12.82) in Eq. (12.71) gives the rotational energy of deuterium-
type molecular ions as: 

  (12.84) 

The result of Eq. (12.84) without the correction for centrifugal distortion compares well to the experimental value of 

  
E  0.003723 eV 30.03 cm1   for   p 1 [13].   

 

CENTRIFUGAL DISTORTION 
The equilibrium internuclear distance of the hydrogen molecular ion and hydrogen molecule can increase as a result of a 
centrifugal force due to rotation.  Since the centrifugal distortion increases as a function of J , the rotational term given by Eq. 
(12.68) can be added as a centrifugal potential to the harmonic oscillator potential energy relationship (Eq. (11.146)) to give 

 JE r , a combined potential dependent on the internuclear separation [14].  From Eq. (11.146) and Eq. (12.68), 
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where er  is the equilibrium internuclear distance with 0J   and 0k  is the spring constant with 0  .  Let 'er  be the equilibrium 

internuclear distance for which  JE r  is a minimum.  A relationship between the distorted equilibrium internuclear distance 'er  

and J  is derived from  JE r  by taking the derivative with respect to r , setting the derivative equal to zero corresponding to the 

minimum, and evaluating the equation at 'er .  The result using Eq. (12.66) is: 
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Since the deviation due to centrifugal distortion is small such that 
'
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 , 'er  may be determined as a function of J , and 

'er  may be solved from Eq. (12.86) by successive approximation.  Little accuracy is lost by the first-order correction resulting 

from the substitution of 'e er r  in the rotational term of Eq. (12.86) to give: 
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where 
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and 
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Then, er  can be replaced by 'er  in the relationship for  JE r  (Eq. (12.85)) to determine the correction to the rotational energy 

due to centrifugal distortion.   
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By substitution of 'er  given by Eq. (12.87) into Eq. (12.90), expanding the result in powers of ( 1)J J  , and retaining only the 

first two terms which are predominant,  JE r  is given by: 

  2
( 1) ( 1)J e eE J J hcB J J hcD      (12.91) 
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where the centrifugal distortion term eD  is given by: 
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and 
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For most molecules, the corrections due to centrifugal distortion represented by eD  are relatively small except for high J  

values.  From Eqs. (11.223), (12.72),(12.75), and (12.92-12.93), eD  for 2H  is: 
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 (12.94) 

The experimental eD  of 2H  [15,16] is: 

 10.0465 eD cm  (12.95) 

From Eq. (11.170), (11.287), (11.312), (12.66), and (12.92-12.93), eD  for 2D  is: 
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 (12.96) 

The experimental eD  of 2D  [15,16] is: 

 10.01159 eD cm  (12.97) 

There is good agreement between the calculated and experimental values of eD . 
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Chapter 13 
  
GENERAL DIATOMIC AND POLYATOMIC MOLECULAR 
IONS AND MOLECULES 
  
 
 
 
 
Non-hydrogen diatomic and polyatomic molecular ions and molecules can be solved using the similar principles as those used to 
solve hydrogen molecular ions and molecules wherein the hydrogen molecular orbitals (MOs) and hydrogen atomic orbitals 
serve as basis functions for the MOs of the general diatomic and polyatomic molecular ions or molecules.  The MO must (1) be a 
solution of Laplace's equation to give a equipotential energy surface, (2) correspond to an orbital solution of the Newtonian 
equation of motion in an inverse-radius-squared central field having a constant total energy, (3) be stable to radiation, and (4) 
conserve the electron angular momentum of  .  Energy of the MO must be matched to that of the outermost atomic orbital of a 
bonding heteroatom in the case where a minimum energy is achieved with a direct bond to the atomic orbital (AO).  In the case 
that an independent MO is formed, the AO force balance causes the remaining electrons to be at lower energy and a smaller 
radius.  The atomic orbital may hybridize in order to achieve a bond at an energy minimum.  At least one molecule or molecular 
ion representative of each of these cases was solved.  Specifically, the results of the determination of bond parameters of 3H  , 

3D , OH , OD , 2H O , 2D O , NH , ND , 2NH , 2ND , 3NH , 3ND , CH , CD , 2CH , 3CH , 4CH , 2N , 2O , 2F , 2Cl , CN , CO , 

and NO  are given in Table 13.1.  The calculated results for homo- and hetero-diatomic radicals and molecules, and polyatomic 
molecular ions and molecules are based on first principles and given in closed-form, exact equations containing fundamental 
constants only.  The agreement between the experimental and calculated results is excellent. 
 

TRIATOMIC MOLECULAR HYDROGEN-TYPE ION ( 3H  ) 
The polyatomic molecular ion  3 1/H p  is formed by the reaction of a proton with a hydrogen-type molecule 

    2 31/ 1/H p H H p    (13.1) 

and by the exothermic reaction 
        2 2 31/ 1/ 1/ 1/H p H p H p H p     (13.2) 

 

FORCE BALANCE OF 3H  -TYPE MOLECULAR IONS 
 3 1/H p -type molecular ions comprise two indistinguishable spin-paired electrons bound by three protons.  The ellipsoidal 

molecular orbital (MO) satisfies the boundary constraints as shown in the Nature of the Chemical Bond of Hydrogen-Type 
Molecules section.  Since the protons are indistinguishable, ellipsoidal MOs about each pair of protons taken one at a time are 
indistinguishable.   3 1/H p  is then given by a superposition or linear combinations of three equivalent ellipsoidal MOs that 

form a equilateral triangle where the points of contact between the prolate spheroids are equivalent in energy and charge density.  
The outer perimeter of the superposition of three prolate spheroids is the  3 1/H p  MO with the protons at the foci that bind and 

maintain the electron MO. 
As in the case for  2 1/H p  and  2 1 /H p  shown in the Nature of the Chemical Bond of Hydrogen-Type Molecules 

section, the stability of  3 1/H p  is due to the dependence of the charge density of the distance D  from the origin to the tangent 

plane.  That is, 
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so that 
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In other words, the surface density at any point on a charged ellipsoidal conductor is proportional to the perpendicular distance 
from the center of the ellipsoid to the plane tangent to the ellipsoid at the point.  The charge is thus greater on the more sharply 
rounded ends farther away from the origin.  This distribution places the charge closest to the protons to give a minimum energy.   

The balanced forces also depend on D  as shown in the Nature of the Chemical Bond of Hydrogen-Type Molecules 
section.  The D -dependence of the charge density as well as the centrifugal and Coulombic central field of two nuclei at the foci 

of the ellipsoid applies to each ellipsoid which is given from any other by a rotation of 
3

   about an axis at a focus that is 

perpendicular to the plane of the equilateral triangle defined by the three foci.  Since the centrifugal, Coulombic, and magnetic 
forces relate mass and charge densities which are interchangeable by the ratio / ee m , the conditions at any point on any given 

ellipsoid is applicable to any other point on the ellipsoid.  Furthermore, this condition can be generalized to any point of the other 
members of the set of three ellipsoids due to equivalence.  As a further constraint to maintain the force balance between the three 
protons and the  3 1/H p  MO comprising the superposition of the three  2 1/H p -type ellipsoidal MOs, the total charge of the 

two electrons must be normalized over the three basis set  2 1/H p -type ellipsoidal MOs.  In this case, the parameters of each 

basis element  2 1/H p -type ellipsoidal MO is solved, and the energies are given by the electron charge where it appears 

multiplied by a factor of 3 / 2  (three MOs normalized by the total charge of two electrons). 
Consider each  2 1/H p -type ellipsoidal MO.  At each point on the  3 1/H p  MO, the electron experiences a 

centrifugal force, and the balancing centripetal force (on each electron) is produced by the electric force between the electron and 
the ellipsoidal electric field and the radiation-reaction-type magnetic force between the two electrons causing the electrons to 
pair.  The force balance equation derived in Force Balance of Hydrogen-Type Molecules section is given by Eq. (11.200): 
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Substitution of Eq. (13.7) into Eq. (11.79) is:  
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The internuclear distance given by multiplying Eq. (13.8) by two is:  
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Substitution of Eqs. (13.7-13.8) into Eq. (11.80) is: 
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Substitution of Eqs. (13.7-13.8) into Eq. (11.67) is: 

 
1

2
e   (13.11) 

Using the parameters given by Eqs. (13.7-13.11), the resulting  3 1/H p  MO comprising the superposition of three  2 1/H p -

type ellipsoidal MOs is shown in Figure 13.1.  The outer surface of the superposition comprises charge density of the MO.  The 
equilateral triangular structure was confirmed experimentally [1].  The  3 1/H p  MO having no distinguishable electrons is 

consistent with the absence of strong excited states observed for 3H   [1].  It is also consistent with the absence of a permanent 

dipole moment [1]. 
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Figure 13.1.   The equilateral triangular  3 1/H p  MO formed by the superposition of three  2 1/H p -type ellipsoidal MOs 

with the protons at the foci.  (A)-(B) Oblique and top views of the charge-density shown in color scale showing the ellipsoid 
surfaces and the nuclei (red, not to scale).  (C) Cross sectional view with one proton cut away. 
 

 
 

ENERGIES OF 3H  -TYPE MOLECULAR IONS 
Due to the equivalence of the  2 1/H p -type ellipsoidal MOs and the linear superposition of their energies, the energy 

components defined previously for the molecule, Eqs. (11.207-11.212) apply in the case of the corresponding  3 1/H p  

molecular ion.  And, each molecular energy component is given by the integral of corresponding force in Eq. (13.5).  Each 
energy component is the total for the two equivalent electrons with the exception that the total charge of the two electrons is 
normalized over the three basis set  2 1/H p -type ellipsoidal MOs.  Thus, the energies are those given for  2 1/H p  in the 

Energies of Hydrogen-Type Molecules section with the electron charge, where it appears, multiplied by a factor of 3 / 2 .  In 
addition, the three sets of equivalent proton-proton pairs give rise to a factor of three times the proton-proton repulsion energy 
given by Eq. (11.208).  The parameters a  and b  are given by Eqs. (13.7) and (13.10), respectively. 

 
2 2 2

2 2 2 2
0

3 2
ln

2 8
e

pe a a b
V

a b a a b
  


  

 (13.12) 

 
2

2 2
0

3
8p

p e
V

a b



  (13.13) 

 
2 2 2

2 2 2 2
ln

2 e

a a b
T

m a a b a a b

 


  


 (13.14) 

The energy, mV , corresponding to the magnetic force of Eq. (13.5) is: 
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where the charge e  appears in the magnetic energy mV  according to Eqs. (7.14-7.24) as discussed in the Force Balance of 

Hydrogen-Type Molecules section. 
 
VIBRATION OF 3H  -TYPE MOLECULAR IONS 

The vibrational energy levels of 3H  -type molecular ions may be solved as three equivalent coupled harmonic oscillators by 

developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [2] wherein the spring constants are 
derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of 
Hydrogen-Type Molecules section. 
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THE DOPPLER ENERGY TERM OF 3H  -TYPE MOLECULAR IONS 
As shown in the Vibration of Hydrogen-type Molecular Ions section, the electron orbiting the nuclei at the foci of an ellipse may 
be perturbed such that a stable reentrant orbit is established that gives rise to a vibrational state corresponding to time harmonic 
oscillation of the nuclei and electron.  The perturbation is caused by a photon that is resonant with the frequency of oscillation of 
the nuclei wherein the radiation is electric dipole with the corresponding selection rules. 

Oscillation may also occur in the transition state.  The perturbation arises from the decrease in internuclear distance as the 
molecular bond forms.  Relative to the unperturbed case given in the Force Balance of Hydrogen-type Molecular Ions section, 
the reentrant orbit may give rise to a decrease in the total energy while providing a transient kinetic energy to the vibrating 
nuclei.  However, as an additional condition for stability, radiation must be considered.  A nonradiative state must be achieved 
after the emission due to transient vibration wherein the nonradiative condition given by Eq. (11.24) must be satisfied.  The 
radiation reaction force due to the vibration of  2 1/H p  and  2 1/H p  in the transition state was derived in the Doppler Energy 

Term of Hydrogen-type Molecular Ions section and the Doppler Energy Term of Hydrogen-type Molecules section, respectively, 
and corresponds to a Doppler energy, DE , that is dependent on the motion of the electron and the nuclei.  The radiation reaction 

force in the case of the vibration of  3 1/H p  in the transition state also corresponds to the Doppler energy, DE , given by Eq. 

(11.181) that is dependent on the motion of the electrons and the nuclei.  Here, a nonradiative state must also be achieved after 
the emission due to transient vibration wherein the nonradiative condition given by Eq. (11.24) must be satisfied.  Typically, a 
third body is required to form 3H  -type molecular ions.  For example, the exothermic chemical reaction of H H  to form 2H  

does not occur with the emission of a photon.  Rather, the reaction requires a collision with a third body, M , to remove the bond 
energy- 2 *H H M H M     [3].  The third body distributes the energy from the exothermic reaction, and the end result is 

the 2H  molecule and an increase in the temperature of the system.  Thus, a third body removes the energy corresponding to the 

additional force term given by Eq. (11.180). 
The kinetic energy of the transient vibration is derived from the corresponding central forces.  From Eqs. (13.5) and 

(13.12), the central force terms between the electron MO and the protons of each of the three  2 1/H p -type ellipsoidal MOs are 
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Thus, using Eqs. (11.136) and (13.18-13.19), the angular frequency of this oscillation is: 
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where the semimajor axis, a , is 0a
a

p
  according to Eq. (13.7).  The kinetic energy, KE , is given by Planck's equation (Eq. 

(11.127)): 
 2 16 25.06326  10  / 33.3273 KE p X rad s p eV     (13.21) 

In Eq. (11.181), substitution of the total energy of the 3H  -type molecular ion, TE , (Eq. (13.17)) for hE  , the mass of the 

electron, em , for M , and the kinetic energy given by Eq. (13.21) for KE  gives the Doppler energy of the electrons for the 

reentrant orbit. 
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The total energy of the 3H  -type molecular ion is decreased by DE . 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their 
corresponding frequency.  On average, the total energy of vibration is equally distributed between kinetic energy and potential 
energy [4].  Thus, the average kinetic energy of vibration corresponding to the Doppler energy of the electrons, KvibE , is 1/2 of 

the vibrational energy of the 3H  -type molecular ion given by Eq. (11.148).  The decrease in the energy of the molecular ion due 

to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, oscE , is 

given by the sum of the corresponding energies, DE  and KvibE .  Using Eq. (13.22) and the experimental vibrational energy 3H   

of 12521.31 0.312605 vibE cm eV   [1] gives: 
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The reentrant orbit for the binding of a proton to  2 1/H p  causes two bonds to oscillate by increasing and decreasing in length 

along opposite sides of the equilateral triangle at a relative phase angle of 180 .  Since the vibration and reentrant oscillation is 

along two lengths of the equilateral triangular MO with E  symmetry, oscE  for  3 1/H p ,   3 1/oscE H p , is: 
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  (13.25) 

To the extent that the MO dimensions are the same, the electron reentrant orbital energies, KE , are the same independent 

of the isotope of hydrogen, but the vibrational energies are related by Eq. (11.148).  Thus, the differences in bond energies are 
essentially given by 1/2 the differences in vibrational energies per bond.  Using Eq. (13.22), Eq. (13.25), and the experimental 

vibrational energy 3D  of 11834.67 0.227472 vibE cm eV   [1], the corresponding   3 1/oscE D p  is: 
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 (13.26) 

 

TOTAL AND BOND ENERGIES OF  3 1/H p - AND  3 1/D p -TYPE MOLECULAR IONS 
The total energy of the  3 1/H p -type molecular ion is given by the sum of TE  (Eqs. (13.16-13.17)) and   3 1/oscE H p  given 

Eqs. (13.20-13.25).  Thus, the total energy of  3 1/H p  having a central field of pe  at each focus of the prolate spheroid 

molecular orbital including the Doppler term is 
   3 1/T e m p oscE V T V V E H p      (13.27) 
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 (13.28) 

From Eqs. (13.24-13.25) and (13.27-13.28), the total energy of the 3H  -type molecular ion is: 
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The total energy of the 3D -type molecular ion is given by the sum of TE  (Eq. (13.17)) and   3 1/oscE D p  given by Eq. 

(13.26). 
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 (13.30) 

The bond dissociation energy, DE , is the difference between the total energy of the corresponding hydrogen molecule and TE  

  2( 1/ )D TE E H p E   (13.31) 

where   2 1/E H p  is given by Eq. (11.241): 

    2 3
2 1/ 31.351 0.326469 E H p p eV p eV    (13.32) 

and   2 1/E D p  is given by Eq. (11.242): 

    2 3
2 1/ 31.4345 0.326469 E D p p eV p eV    (13.33) 
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The 3H   bond dissociation energy, DE , is given by Eqs. (13.31-13.32) and (13.29): 
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The 3D  bond dissociation energy, DE , is given by Eqs. (13.31), (13.33), and (13.30): 
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THE 3H   MOLECULAR ION 

FORCE BALANCE OF THE 3H   MOLECULAR ION 
The force balance equation for 3H   is given by Eq. (13.5) where 1p   
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which has the parametric solution given by Eq. (11.83) when: 
 0a a  (13.37) 
The semimajor axis, a , is also given by Eq. (13.7) where 1p  .  The internuclear distance, 2 'c , which is the distance between 
the foci is given by Eq. (13.9) where 1p  . 

 02 ' 2c a  (13.38) 

The semiminor axis is given by Eq. (13.10) where 1p  . 
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The eccentricity, e , is given by Eq. (13.11). 
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ENERGIES OF THE 3H   MOLECULAR ION 
The energies of 3H   are given by Eqs. (13.12-13.15) where 1p   
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The energy, mV , of the magnetic force is 
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The Doppler terms,   3 1/oscE H p  and   3 1/oscE D p  are given by Eqs. (13.25) and (13.26), respectively, where 1p   
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The total energy, TE , for 3H   given by Eqs. (13.27-13.29) is: 
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From Eqs. (13.27-13.28) and (13.30), the total energy, TE , for 3D  is: 

    1
35.54975 2 0.406013 2 0.227472 36.134300 

2TE eV eV eV
       
 

 (13.48) 

The bond dissociation energy, DE , is the difference between the total energy of 2H  or 2D  and TE .  The 3H   molecular bond 

dissociation energy, DE , given by the difference between the experimental total energy of 2H  [5-7] 1 and the total energy of 3H   

(Eqs. (13.29) where 1p   and (13.47)) is 

  31.675  36.049167 = 4.374167 DE eV eV eV     (13.49) 

The 3H   bond dissociation energy, DE , given by Eq. (13.34) where 1p   is: 

 3.88614 0.485556 4.37170 DE eV eV eV    (13.50) 

The experimental bond dissociation energy of 3H   [8] is: 

 4.373 DE eV  (13.51) 

The difference between the results of Eqs. (13.49) and (13.50) is within the experimental and propagated errors in the different 
calculations.  The calculated results are based on first principles and given in closed-form equations containing fundamental 
constants only.  The agreement between the experimental and calculated results for the 3H   bond dissociation energy is 

excellent. 
The predicted 3D  molecular bond dissociation energy, DE , given by the difference between the total energy of 3D  (Eqs. 

(13.30) where 1p   and (13.48)) and the experimental total energy of 2D  [9-10]2 is: 

  31.76 36.134300 4.374300 DE eV eV eV      (13.52) 

The 3D  bond dissociation energy, DE , given by Eq. (13.35) where 1p   is: 

 3.88777 0.485556 4.373331 DE eV eV eV    (13.53) 

The results of the determination of bond parameters of 3H   are given in Table 13.1.  The calculated results are based on 

first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 

 

HYDROXYL RADICAL (OH ) 
The water molecule can be solved by first considering the solution of the hydroxyl radical which is formed by the reaction of a 
hydrogen atom and an oxygen atom: 
 H O OH   (13.54) 
The hydroxyl radical OH  can be solved using the same principles as those used to solve the hydrogen molecule wherein the 
diatomic molecular orbital (MO) developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular 
Ions section serves as basis function in linear combination with an oxygen atomic orbital (AO) to form the MO of OH .  The MO 
must (1) be a solution of Laplace's equation to give a equipotential energy surface, (2) correspond to an orbital solution of the 
Newtonian equation of motion in an inverse-radius-squared central field having a constant total energy, (3) be stable to radiation, 
and (4) conserve the electron angular momentum of  .  A further constraint with the substitution of a heteroatom (O ) for one of 
the hydrogen atoms is that the constant energy of the MO must match the energy of the heteroatom. 
 

 
1 The experimental total energy of the hydrogen molecule is given by adding the first (15.42593 eV) [5] and second (16.2494 eV) ionization energies 

where the second ionization energy is given by the addition of the ionization energy of the hydrogen atom (13.59844 eV) [6] and the bond energy of H
2

  

(2.651 eV) [7]. 
2 The experimental total energy of the deuterium molecule is given by adding the first (15.466 eV) [9] and second (16.294 eV) ionization energies where 

the second ionization energy is given by the addition of the ionization energy of the deuterium atom (13.603 eV) [10] and the bond energy of D
2

  (2.692 

eV) [9]. 
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FORCE BALANCE OF OH  
OH  comprises two spin-paired electrons in a chemical bond between the oxygen atom and the hydrogen atom such that one 
electron on O  remains unpaired.  The OH  radical MO is determined by considering properties of the binding atoms and the 
boundary constraints.  The prolate spheroidal 2H  MO developed in the Nature of the Chemical Bond of Hydrogen-Type 

Molecules section satisfies the boundary constraints; thus, the H -atom electron forms a 2H -type ellipsoidal MO with one of the 

O -atom electrons.  The O  electron configuration given in the Eight-Electron Atoms section is 2 2 41 2 2s s p , and the orbital  
arrangement is: 

 

        2p state

           

   1        0       -1

     (13.55) 

corresponding to the ground state 3
2P . 

In determining the central forces for O  in the Radius and Ionization Energy of the Outer Electron of the Oxygen Atom 
section, it was shown that the energy is minimized with conservation of angular momentum by the cancellation of the orbital 
angular momentum of a xp  electron by that of the yp  electron with the pairing of electron eight to fill the xp  orbital.  Then, the 

diamagnetic force is given by Eq. (10.156) is that of atomic nitrogen (Eq. (10.136) corresponding to the zp -orbital electron (Eq. 

(10.82) with 0m  ) as the source of diamagnetism with an additional contribution from the uncanceled xp  electron (Eq. (10.82) 

with 1m  ).  From Eqs. (10.83) and (10.89), the paramagnetic force, 2magF , is given by Eq. (10.157) corresponding to the spin-

angular-momentum contribution alone of the xp  electron and the orbital angular momentum of the zp  electron, respectively.  

The diamagnetic and paramagnetic forces cancel such that the central force is purely the Coulombic force.  This central force is 
maintained with bond formation such that the energy of the 2O p  shell is unchanged.  Thus, the angular momentum of each 
electron of the 2O p  shell is conserved with bond formation.  The central paramagnetic force due to spin is provided by the spin-
pairing force of the OH  MO that has the symmetry of an s  orbital that superimposes with the 2 p  orbitals such that the 
corresponding angular momenta of the 2O p  orbitals are unchanged. 

The 2 yO p  electron combines with the 1H s  electron to form a molecular orbital.  The proton of the H  atom is along the 

internuclear axis.  Due to symmetry, the other O  electrons are equivalent to point charges at the origin.  (See Eqs. (19-38) of 
Appendix II.)  Thus, the energies in the OH  MO involve only the 2 yO p  and 1H s  electrons and the change in the magnetic 

energy of the 2 yO p  electron with the other O  electrons (Eq. (13.152)) with the formation of the OH  MO.  The forces are 

determined by these energies. 
As in the case of 2H , the MO is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into 

O  atom for distances shorter than the radius of the 2 p  shell.  Otherwise, the electric field of the other 2O p  electrons would be 
perturbed, and the 2 p  shell would not be stable.  The corresponding increase in energy of O  would not be offset by any energy 
decrease in the OH  MO based on the distance from the O  nucleus to the 1H s  electron compared to those of the 2O p  
electrons.  Thus, the MO surface comprises a prolate spheroid at the H  proton that is continuous with the 2 p  shell at the O  
atom.  The energy of the prolate spheroid is matched to that of the 2O p  shell. 

The orbital energy E  for each elliptical cross section of the prolate spheroidal MO is given by the sum of the kinetic T  
and potential V  energies. E T V   is constant, and the closed orbits are those for which | |T V , and the open orbits are those 
for which | |T V . It can be shown that the time average of the kinetic energy, T  , for elliptic motion in an inverse-squared 

field is 1/ 2  that of the time average of the magnitude of the potential energy, V  .  1/ 2T V     [11]. In the case of an 

atomic orbital (AO), E T V  , and for all points on the AO, 1/ 2E T V  .  As shown in the Hydrogen-type Molecular Ions 

section, each point or coordinate position on the continuous two-dimensional electron MO defines an infinitesimal mass-density 
element which moves along an orbit comprising an elliptic plane cross section of the spheroidal MO through the foci.  The 
motion is such that eccentric angle,  , changes at a constant rate at each point.  That is t   at time t  where   is a constant, 
and 
 ( ) cos sinr t a t b t  i j  (13.56) 

Consider the boundary condition that the MO of OH  comprises a linear combination of an oxygen AO and a 2H -type 

ellipsoidal MO.  The charge density of an 2H -type ellipsoidal MO given by Eq. (13.4) maintains that the surface is an 

equipotential; however, the potential and kinetic energy of a point on the surface changes as it orbits the central field.  The 
potential energy is a maximum and the kinetic energy is a minimum at the semimajor axis, and the reverse occurs at the 
semiminor axis.  Since the time average of the kinetic energy, T  , for elliptic motion in an inverse-squared field is 1/ 2  that 
of the time average of the magnitude of the potential energy, by symmetry, the 1/ 2T V     condition holds for 1/2 of the 
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2H -type ellipsoidal MO having the H  focus and ending at the plane defined by the semiminor axes.  The O  nucleus comprises 

the other focus of the OH  MO.  The 2O p  AO obeys the energy relationship for all points.  Since the H  atomic orbital is at the 
Coulombic energy between the electron and proton given by Eq. (1.264), the energy matching condition is achieved while 
maintaining an energy match to the   O2 p  AO orbital with the charge density of 1/2e on the   O2 p  AO, corresponding to a 

donation of 0.25e from each MO electron.  Then, the charge in the MO force balance corresponds to that of 
  
2 0.75 e  1.5e .  

Thus, the linear combination of the H
2
-type ellipsoidal MO with the O2 p  AO must involve a 25% contribution from the H

2
-

type ellipsoidal MO to the   O2 p  AO in order to match the energy relationships.  Thus, the OH  MO must comprise 75% of a 

  H2
-type ellipsoidal MO (1/2 +25%) and an oxygen AO: 

 21 2  0.75   yO p AO H MO OH MO   (13.57) 

The force balance of the OH  MO is determined by the boundary conditions that arise from the linear combination of 
orbitals according to Eq. (13.57).  The force constant k  of a 2H -type ellipsoidal MO due to the equivalent of two point charges 

of at the foci is given by Eq. (11.65). 
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  (13.58) 

Since the 2H -type ellipsoidal MO comprises 75% of the OH  MO, the electron charge density in Eq. (13.58) is given by 

0.75e .  Thus, 'k  of the 2H -type-ellipsoidal-MO component of the OH  MO is 
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  (13.59) 

L  for the electron equals  ; thus, the distance from the origin of the OH  MO to each focus 'c  is given by Eqs. (11.79) and 
(13.59):  

 0 0
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1.5 3e

aa
c a

m e a


 


 (13.60) 

The internuclear distance from Eq. (13.60) is: 

 02
2 ' 2

3

aa
c   (13.61) 

The length of the semiminor axis of the prolate spheroidal OH  MO b c  given by Eq. (11.80) is: 

 2 2b a c   (13.62) 
The eccentricity, e , is: 

 
'c

e
a

  (13.63) 

Then, the solution of the semimajor axis a  allows for the solution of the other axes of the prolate spheroidal and eccentricity of 
the OH  MO. 

The general equation of the ellipsoidal MO having semiprincipal axes ,  ,  a b c  given by: 
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1
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a b c
    (13.64) 

is also completely determined by the total energy E  given by Eq. (11.18): 
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 (13.65) 

The energy of the oxygen 2 p  shell is the negative of the ionization energy of the oxygen atom given by Eq. (10.163).  
Experimentally, the energy is [12]: 
  2  ( ;  ) 13.6181 E p shell E ionization O eV     (13.66) 

Since the prolate spheroidal MO transitions to the O  AO, the energy E  in Eq. (13.66) adds to that of the 2H -type ellipsoidal 

MO to give the total energy of the OH  MO.  From the energy equation and the relationship between the axes given by Eqs. 
(13.60-13.63), the dimensions of the OH  MO are solved. 

The energy components derived previously for the hydrogen molecule, Eqs. (11.207-11.212), apply in the case of the 

2H -type ellipsoidal MO.  As in the case of the energies of  3 1/H p  given by Eqs. (13.12-13.16), each energy component of the 

2H -type ellipsoidal MO is the total for the two equivalent electrons with the exception that the total charge and energies of the 

two electrons is normalized by the percentage composition given by Eq. (13.57):  
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 T e m pE V T V V     (13.71) 

 
2 2 2

0 0

2 2 2 2
0

3 3 3
 ln 1

2 4 88
T

a ae a a b
E

a aa b a a b

         
     

 (13.72) 

 
2

0

0

3 3 '
 ln 1

8 ' 2 8 'T

ae a c
E

c a a c
         

 (13.73) 

Since the prolate spheroidal MO transitions to the O  AO and the energy of the 2O p  shell must remain constant and equal to the 

negative of the ionization energy given by Eq. (13.66), the total energy  TE OH  of the OH  MO is given by the sum of the 

energies of the orbitals corresponding to the composition of the linear combination of the O  AO and the 2H -type ellipsoidal 

MO that forms the OH  MO as given by Eq. (13.57): 
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2  ( ;  )  ln 1 13.6181 
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E OH E E p shell E E ionization O eV
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 (13.74) 

To match the boundary condition that the total energy of the entire 2H -type ellipsoidal MO is given by Eq. (11.212): 
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2 2 1
 2 2 2 ln 2 31.63536831 
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 (13.75) 

 TE OH  given by Eq. (13.74) is set equal to Eq. (13.75): 
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 (13.76) 

From the energy relationship given by Eq. (13.76) and the relationship between the axes given by Eqs. (13.60-13.63), the 
dimensions of theOH  MO can be solved. 

Substitution of Eq. (13.60) into Eq. (13.76) gives: 
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 (13.77) 

The most convenient way to solve Eq. (13.77) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is: 

 11
01.26430 6.69039  10  a a X m   (13.78) 

Substitution of Eq. (13.78) into Eq. (13.60) gives: 

 11
00.91808 4.85826  10  c a X m    (13.79) 

The internuclear distance given by multiplying Eq. (13.79) by two is:  

 11
02 1.83616 9.71651  10  c a X m    (13.80) 

The experimental bond distance is [13]: 

 112 9.71  10  c X m   (13.81) 

Substitution of Eqs. (13.78-13.79) into Eq. (13.62) gives: 

 11
00.86925 4.59985  10  b c a X m    (13.82) 

Substitution of Eqs. (13.78-13.79) into Eq. (13.63) gives: 
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 0.72615e   (13.83) 

The nucleus of the H  atom and the nucleus of the O  atom comprise the foci of the 2H -type ellipsoidal MO.  The 

parameters of the point of intersection of the 2H -type ellipsoidal MO and the 2 yO p  AO can be determined from the polar 

equation of the ellipse (Eq. (11.10)). 

 0
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1 cos '

e
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 (13.84) 

The radius of the 2 yO p  AO given by Eq. (10.162) is 8 0r a , and the polar radial coordinate of the ellipse and the radius of the 

2 yO p  AO are equal at the point of intersection.  Thus, Eq. (13.84) becomes: 
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 (13.85) 

where 0r a  for O  such that the polar angle '  is given by: 
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 (13.86) 

Substitution of Eqs. (13.78-13.79) into Eq. (13.86) gives: 
 ' 123.65    (13.87) 
Then, the angle 2 yO p AO  the radial vector of the 2 yO p  AO makes with the internuclear axis is 

 2 180 123.65 56.35
yO p AO       (13.88) 

as shown in Figure 13.2. 
 
Figure 13.2.   The cross section of the OH  MO showing the axes, angles, and point of intersection of the 2H -type ellipsoidal 

MO with the 2 yO p  AO.  The continuation of the 2H -type-ellipsoidal-MO basis element beyond the intersection point with the 

2O p  shell is shown as dashed since it only serves to solve the energy match with the 2O p  shell and does not represent charge 
density.  Similarly, the vertical dashed line only designates the parameters of the intersection point.  The actual charge density is 
shown by the solid lines.  Legend: a : semimajor axis, b : semiminor axis, 'c : internuclear distance, 

21 : H MOd d ,  1 2:
yO p AO  , and 

2 2: O pAOd d . 

 

 
 

The Cartesian i -coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal 
parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -coordinate components at the point 

of intersection.  Thus, the matching elliptic parametric angle 
2H MOt   satisfies the following relationship:  

 
20 2sin sin

yO p AO H MOa b   (13.89) 

such that 

 
2

1 0 sin 56.35
sinH MO

a

b
  

  (13.90) 

with the use of Eq. (13.88).  Substitution of Eq. (13.82) into Eq. (13.90) gives: 
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2

73.27H MO    (13.91) 

Then, the distance 
2H MOd  along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of intersection of the 

orbitals is given by: 
 

2 2
cosH MO H MOd a   (13.92) 

Substitution of Eqs. (13.78) and (13.91) into Eq. (13.92) gives: 
 

2

11
00.36397 1.92606  10  H MOd a X m   (13.93) 

The distance 2O pAOd  along the internuclear axis from the origin of the O  atom to the point of intersection of the orbitals is given 

by 
 

22 'O pAO H MOd c d   (13.94) 

Substitution of Eqs. (13.79) and (13.93) into Eq. (13.94) gives: 
 11

2 00.55411 2.93220  10  O pAOd a X m   (13.95) 

As shown in Eq. (13.57), in addition to the p -orbital charge-density modulation, the uniform charge-density in the yp  

orbital is increased by a factor of 0.25 and the H -atom density is decreased by a factor of 0.25.  The internuclear axis of the 
O H  bond is perpendicular to the bonding yp  orbital.  Using the orbital composition of OH  (Eq. (13.57)), the radii of 

01 0.12739O s a  (Eq. (10.51)), 02 0.59020O s a  (Eq. (10.62)), and 02O p a  (Eq. (10.162)) shells, and the parameters of the 

OH  MO given by Eqs. (13.3-13.4), (13.78-13.80), (13.82-13.83), and (13.87-13.95), the dimensional diagram and charge-
density of the OH  MO comprising the linear combination of the 2H -type ellipsoidal MO and the O  AO according to Eq. 

(13.57) are shown in Figures 13.2 and 13.3, respectively.   
 
In this case as well as in general, the current of the ellipsoidal MO and spherical AOs maintain spin pairing and current 

continuity.  The current may comprise a linear combination of the MO current onto the AO and the AO currents that may 
comprise standing-wave components with current reflection at the interceptions of the surfaces.  Thus, the current may flow 
equally in opposite directions between interception lines comprising mirror currents such that there is no net spin current.  The 
linear combination gives a minimum equipotential energy surface of spin-paired electrons.  Any asymmetrical charge 
distribution in the molecule corresponding to energy matching of the orbitals gives rise to a bond moment that is calculated in 
the Bond and Dipole Moment section. 
 
Figure 13.3.   OH  MO comprising the superposition of the 2H -type ellipsoidal MO and the 2 yO p  AO with a relative 

charge-density of 0.75 to 1.25; otherwise, the 2 yO p  is the same as that of the oxygen atom.  (A) Side-on, color scale, translucent 

view of the charge-density of the OH  MO and the nuclei (shown red, not to scale).  The ellipsoidal surface of the 2H -type 

ellipsoidal MO that transitions to the 2 yO p  AO, the 2O p  shell, the 2O s  shell, the 1O s  shell, and the nuclei are shown.  (B) 

Cut-away view showing the inner most 1O s  shell, and moving radially, the 2O s  shell, the 2O p  shell, and the 2H -type 

ellipsoidal MO that transitions to the 2 yO p  AO. 
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ENERGIES OF OH  
The energies of OH  given by the substitution of the semiprincipal axes (Eqs. (13.78-13.80) and (13.82)) into the energy 
equations (Eqs. (13.67-13.73)) are: 

 
2 2 2

2 2 2 2
0

3 2
ln 40.92709 

4 8
e

e a a b
V eV

a b a a b
      

    
 (13.96) 

 
2

2 2
0

14.81988 
8

p

e
V eV

a b
 


  (13.97) 

 
2 2 2

2 2 2 2

3
ln 16.18567 

4 2 e

a a b
T eV

m a a b a a b

    
    


 (13.98) 

 
2 2 2

2 2 2 2

3
ln 8.09284 

4 4
m

e

a a b
V eV

m a a b a a b

      
    


 (13.99) 

  
2

0

0

3 3 '
 ln 1 13.6181 31.63247 

8 ' 2 8 'T

ae a c
E OH eV eV

c a a c
            

 (13.100) 

where  TE OH  is given by Eq. (13.74) which is reiteratively matched to Eq. (13.75) within five-significant-figure round-off 

error. 
 

VIBRATION AND ROTATION OF OH  
The vibrational energy of OH  may be solved in the same manner as that of hydrogen-type molecular ions and hydrogen 
molecules given in the Vibration of Hydrogen-type Molecular Ions section, and the Vibration of Hydrogen-type Molecules 
section, respectively, except that the orbital composition and the requirement that the O2p shell remain at the same energy and 
radius in the OH  MO as it is in the O atom must be considered.  Each p-orbital comprises the sum of a constant function and a 
spherical harmonic function as given by Eq. (1.29).  In addition to the p-orbital charge-density modulation, the uniform charge-
density in yp  orbital is increased by a factor of 0.25, and the H-atom electron density is decreased by a factor of 0.25.  The force 

between the electron density of the 2H -type ellipsoidal MO and the nuclei determines the vibrational energy.  With the radius of 

the orbit at the oxygen atom fixed at  
 8 0r a  (13.101) 

according to Eq. (10.162), the central-force terms for the reentrant orbit between the electron density and the nuclei of the 2H -

type ellipsoidal MO are given by Eqs. (11.213-11.214), except that the corresponding charge of –0.75e replaces the charge of –e 
of Eqs. (11.213-11.214).  Furthermore, due to condition that the O2p shell remain at the same energy and radius in the OH  MO 
as it is in the O atom, the oscillation of 2H -type ellipsoidal is along the semiminor axis with the apsidal angle of Eq. (11.140) 

given by   .  Thus, the semimajor axis a of Eqs. (11.213-11.214) is replaced by the semiminor axis b : 
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and 
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Here, the force factor of 0.75 is equal to the equivalent term of Eq. (13.59).  As the 2H -type ellipsoidal oscillates along b , the 

internuclear distance changes 180° out of phase.  Thus, the distance for the reactive nuclear-repulsive terms is given by 
internuclear distance 2 'c  (Eq. (13.80)).  Similar to that of Eqs. (11.215-11.216), the contribution from the repulsive force 
between the two nuclei is 
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and 

  
 

2

3

0

' 2 '
4 2 '

e
f c

c
   (13.105) 

Thus, from Eqs. (11.136), (11.213-11.217), and (13.102-13.105), the angular frequency of the oscillation is 
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where b  is given by Eq. (13.82), 2 'c  is given by Eq. (13.80), and the reduced mass of 16OH  is given by: 

 
  

16
1 2

1 2

1 16

1 16 pOH

m m
m

m m
  

 
 (13.107) 

where pm  is the proton mass.  Thus, during bond formation, the perturbation of the orbit determined by an inverse-squared force 

results in simple harmonic oscillatory motion of the orbit, and the corresponding frequency,  0 , for 16OH  given by Eqs. 

(11.136), (11.148), and (13.106) is: 

     1
140 763.18 

0 6.96269  10  /
k Nm

X radians s
 



    (13.108) 

where the reduced nuclear mass of 16OH  is given by Eq. (13.107) and the spring constant,  0k , given by Eqs. (11.136) and 

(13.106) is:  
   10 763.18 k Nm  (13.109) 

The 16OH  transition-state vibrational energy,  0vibE , given by Planck’s equation (Eq. (11.127)) is: 

   14 10 6.96269  10  / 0.4583 3696.38 vibE X rad s eV cm       (13.110) 

Zero-order or zero-point vibration is not physical and is not observed experimentally as discussed in the Diatomic Molecular 
Vibration section; yet, there is a term e  of the old point-particle-probability-wave-mechanics that can be compared to  0vibE .  

From Herzberg [14], e , from the experimental curve fit of the vibrational energies of 16OH  is: 

 13735.21 e cm   (13.111) 

As shown in the Vibration of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function 
can be expanded about the internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after 
Karplus and Porter (K&P) [15] and after Eq. (11.134).  Treating the Maclaurin series terms as anharmonic perturbation terms of 
the harmonic states, the energy corrections can be found by perturbation methods.  The energy   of state   is: 

  0 0 01 x       ,    0,1, 2,3...   (13.112) 

where  
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0  is the frequency of the 1 0     transition, and 0D  is the bond dissociation energy given by Eq. (13.162).  From Eq. 

(13.112), 0  is given by: 

  0 0 00 2vibE x    (13.114) 

Substitution of Eq. (13.113) into Eq. (13.114) gives: 
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Eq. (13.115) can be expressed as: 
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which can be solved by the quadratic formula: 
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Only the positive root is real, physical; thus, 
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 (13.118) 

where  0vibE  is given by Eq. (13.110) and 0D  is given by Eq. (13.156).  The corresponding 16OH  1 0     vibrational 

energy,  1vibE , in electron volts is: 

  1 0.43666 vibE eV  (13.119) 

The experimental vibrational energy of 16OH  is [16-17]: 

    11 0.4424 3568 vibE eV cm  (13.120) 

Using Eqs. (13.118-13.119) with Eq. (13.113), the anharmonic perturbation term, 0 0x , of 16OH  is: 
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    (13.121) 

The experimental anharmonic perturbation term, 0 0x , of 16OH  [14] is: 

 1
0 0 82.81 x cm   (13.122)  

The vibrational energies of successive states are given by Eqs. (13.110), (13.112), and (13.121). 
Using the reduced nuclear mass of 16OD  given by  
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where pm  is the proton mass, the corresponding parameters for deuterated hydroxyl radical 16OD  (Eqs. (13.102-13.121) and 

(13.162)) are: 
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   10 763.18 k Nm  (13.125) 

   14 10 5.06610  10  / 0.33346 2689.51 vibE X rad s eV cm       (13.126) 
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 (13.127)  

  1 0.3219 vibE eV  (13.128) 
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    (13.129) 

From Herzberg [14], e , from the experimental curve fit of the vibrational energies of 16OD  is: 

 12720.9 e cm   (13.130) 

The experimental vibrational energy of 16OD  is [16-17]: 

    11 0.3263 2632.1 vibE eV cm  (13.131) 

and the experimental anharmonic perturbation term, 0 0x , of 16OD  [14] is: 

 1
0 0 44.2 x cm   (13.132) 
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which match the predictions given by Eqs. (13.126), (13.127-13.128), and (13.129), respectively. 
The eB  rotational parameters for 16OH  and 16OD  are given by: 
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where 
 2I r  (13.134) 

and eB  is eB  (Eq. (12.89) rather than Eq. (12.84)) to give units of 1cm . 

 Using the internuclear distance, 2 'r c , and reduced mass of 16OH  given by Eqs. (13.80) and (13.107), respectively, the 
corresponding eB  is: 

 118.835 eB cm  (13.135) 

The experimental eB  rotational parameter of 16OH  is [14]: 

 118.871 eB cm  (13.136) 

Using the internuclear distance, 2 'r c , and reduced mass of 16OD  given by Eqs. (13.80) and (13.123), respectively, the 
corresponding eB  is 

 19.971 eB cm  (13.137) 

The experimental eB  rotational parameter of 16OD  is [14]: 

 110.01 eB cm  (13.138) 
 

THE DOPPLER ENERGY TERMS OF 16OH  AND 16OD  
The radiation reaction force in the case of the vibration of 16OH  in the transition state corresponds to the Doppler energy, DE , 

given by Eq. (11.181) and Eq. (13.22) that is dependent on the motion of the electrons and the nuclei.  The kinetic energy of the 
transient vibration is derived from the corresponding central forces.  Following the same consideration as those used to derive 
Eqs. (13.102-13.103) and Eqs. (11.231-11.232), the central force terms between the electron density and the nuclei of 16OH  MO 
with the radius of the orbit at the oxygen atom fixed at:  
 8 0r a  (13.139) 

according to Eq. (10.162) are: 
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and 
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wherein the oscillation of 2H -type ellipsoidal MO is along the semiminor axis b  with the apsidal angle of Eq. (11.140) given by 

   due to condition that the O2p shell remain at the same energy and radius in the OH  MO as it is in the O atom. Thus, 
using Eqs. (11.136) and (13.140-13.141), the angular frequency of this oscillation is: 
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    (13.142) 

The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)): 

 164.41776  10  / 29.07844 KE X rad s eV     (13.143) 

In Eq. (11.181), substitution of the total energy of OH ,  TE OH , (Eq. (13.76)) for hE  , the mass of the electron, em , for M , 

and the kinetic energy given by Eq. (13.143) for KE  gives the Doppler energy of the electrons for the reentrant orbit. 

 
 

2 2

2 29.07844 2
31.63537 0.33749 K

D h
e

e eVE
E E eV eV

Mc m c      (13.144) 

The total energy of OH  is decreased by DE . 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their 
corresponding frequency.  On average, the total energy of vibration is equally distributed between kinetic energy and potential 
energy [4].  Thus, the average kinetic energy of vibration corresponding to the Doppler energy of the electrons, KvibE , is 1/2 of 

the vibrational energy of OH  given by Eq. (13.120).  The decrease in the energy of the OH  due to the reentrant orbit in the 
transition state corresponding to simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the 
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corresponding energies, DE  and KvibE .  Using Eq. (13.144) and the experimental 16OH  e  of  13735.21  0.463111 cm eV  

[16-17] gives: 

  16 1

2osc D Kvib D

k
E OH E E E


      (13.145) 

    16 1
0.33749 0.463111 0.10594 

2oscE OH eV eV eV      (13.146) 

To the extent that the MO dimensions are the same, the electron reentrant orbital energies, KE , are the same independent 

of the isotope of hydrogen, but the vibrational energies are related by Eq. (11.148).  Thus, the differences in bond energies are 
essentially given by 1/2 the differences in vibrational energies per bond.  Using Eq. (13.144), Eqs. (13.145-13.146), and the 

experimental 16OD  e  of  12720.9  0.33735 cm eV  [16-17], the corresponding  16
oscE OD  is: 

    16 1
0.33749 0.33735 0.16881 

2oscE OD eV eV eV      (13.147) 

 

TOTAL AND BOND ENERGIES OF 16OH  AND 16OD  RADICALS 
 16

T oscE OH , the total energy of the 16OH  radical including the Doppler term, is given by the sum of  TE OH  (Eq. (13.76)) 

and  16
oscE OH  given by Eqs. (13.142-13.146): 

          16 16 162  T osc e m p osc T oscE OH V T V V E p shell E OH E OH E OH          (13.148) 
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 (13.149) 

From Eqs. (13.145-13.146) and (13.148-13.149), the total energy of 16OH  is: 
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 (13.150) 

where the experimental e  was used for the 
k


  term.   16

T oscE OD , the total energy of 16OD  including the Doppler term, 

isgiven by the sum of    T TE OD E OH  (Eq. (13.76)) and  16
oscE OD  given by Eq. (13.147): 
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eV eV eV

eV

   

   

 

 (13.151) 

where the experimental e  was used for the 
k


  term.  The dissociation of the bond of the hydroxyl radical forms a free 

hydrogen atom with one unpaired electron and an oxygen atom with two unpaired electrons as shown in Eq. (13.55) which 
interact to stabilize the atom as shown by Eq. (10.161-10.162).  The lowering of the energy of the reactants decreases the bond 
energy.  Thus, the total energy of oxygen is reduced by the energy in the field of the two magnetic dipoles given by Eq. (7.46) 
and Eq. (13.101): 
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 (13.152) 

The corresponding bond dissociation energy, DE , is given by the sum of the total energies of the oxygen atom and the 

corresponding hydrogen atom minus the sum of  16
T oscE OH  and ( )E magnetic : 

    16 16( ) ( )D T oscE E O E H E OH E magnetic     (13.153) 
16( )E O  is given by Eq. (13.66),  DE H  [18]is: 
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 ( ) 13.59844 E H eV   (13.154) 

and  DE D  [19] is: 

 ( ) 13.603 E D eV   (13.155) 

The 16OH  bond dissociation energy,  16
DE OH , is given by Eqs. (13.150) and (13.152-13.155): 

 

        
 

16 1613.6181 13.59844 

                 27.21654 0.114411 31.74130 
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 (13.156) 

The experimental 16OH  bond dissociation energy is [20]: 

  16 4.41174 DE OH eV  (13.157) 

The 16OD  bond dissociation energy,  16
DE OD , is given by Eqs. (13.151-13.153): 

 

        
 

16 1613.6181 13.603 

                27.2211 0.114411 31.804183 

                4.4687 
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 (13.158) 

The experimental 16OD  bond dissociation energy is [21-22]: 

  16 4.454 DE OD eV  (13.159) 

The results of the determination of bond parameters of OH  and OD  are given in Table 13.1.  The calculated results are 
based on first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement 
between the experimental and calculated results is excellent. 
 

WATER MOLECULE ( 2H O ) 
The water molecule 2H O  is formed by the reaction of a hydrogen atom with a hydroxyl radical: 

 2OH H H O   (13.160) 

The water molecule can be solved using the same principles as those used to solve the hydrogen molecule, 3H 
, and OH  

wherein the diatomic molecular orbital (MO) developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and 
Molecular Ions section serves as basis function in a linear combination with an oxygen atomic orbital (AO) to form the MO of 

2H O .  The solution is very similar to that of OH  except that there are two OH  bonds in water. 

 

FORCE BALANCE OF 2H O  
2H O  comprises two chemical bonds between oxygen and hydrogen.  Each O H  bond comprises two spin-paired electrons 

with one from an initially unpaired electron of the oxygen atom and the other from the hydrogen atom.  The 2H O  MO is 

determined by considering properties of the binding atoms and the boundary constraints.  The 2H  prolate spheroidal MO 

satisfies the boundary constraints as shown in the Nature of the Chemical Bond of Hydrogen-Type Molecules section; thus, each 
H -atom electron forms a 2H -type ellipsoidal MO with one of the initially unpaired O -atom electrons.  The initial O  electron 

configuration given in the Eight-Electron Atoms section is 2 2 41 2 2s s p , and the orbital arrangement is given by Eqs. (10.154) and 
Eq. (13.55). 

As shown in the case of OH  in the Force Balance of OH  section, the forces that determine the radius and the energy of 
the 2O p  shell are unchanged with bond formation.  Thus, the angular momentum of each electron of the 2O p  is conserved 
with bond formation.  The central paramagnetic force due to spin of each O H  bond is provided by the spin-pairing force of 
the 2H O  MO that has the symmetry of an s  orbital that superimposes with the 2O p  orbitals such that the corresponding 

angular momenta are unchanged. 
Each of the 2 zO p  and 2 xO p  electron combines with a 1H s  electron to form a molecular orbital.  The proton of the H  

atom is along the internuclear axis.  Due to symmetry, the other O  electrons are equivalent to point charges at the origin.  (See 
Eqs. (19-38) of Appendix II.)  Thus, the energies in the 2H O  MO involve only each 2O p  and each 1H s  electron with the 

formation of each O H  bond.  The forces are determined by these energies. 
As in the case of 2H , each of two O H -bond MOs is a prolate spheroid with the exception that the ellipsoidal MO 

surface cannot extend into the O  atom for distances shorter than the radius of the 2 p  shell.  Otherwise, the electric field of the 
other 2O p  electrons would be perturbed, and the 2 p  shell would not be stable.  The corresponding increase in energy of O  
would not be offset by any energy decrease in the O H -bond MO based on the distance from the O  nucleus to the 1H s  
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electron compared to those of the 2O p  electrons.  Thus, the MO surface comprises a prolate spheroid at each H  proton that is 
continuous with the 2 p  shell at the O  atom.  The sum of the energies of the prolate spheroids is matched to that of the 2 p  shell. 

The orbital energy E  for each elliptical cross section of the prolate spheroidal MO is given by the sum of the kinetic T  
and potential V  energies.  E T V   is constant, and the closed orbits are those for which | |T V , and the open orbits are those 
for which | |T V .  It can be shown that the time average of the kinetic energy, T  , for elliptic motion in an inverse-squared 

field is 1/ 2  that of the time average of the magnitude of the potential energy, V  .  1/ 2T V     [11]. In the case of an 

atomic orbital (AO), E T V  , and for all points on the AO, 1/ 2E T V  .  As shown in the Hydrogen-type Molecular Ions 

section, each point or coordinate position on the continuous two-dimensional electron MO defines an infinitesimal mass-density 
element which moves along an orbit comprising an elliptic plane cross section of the spheroidal MO through the foci.  The 
motion is such that the eccentric angle,  , changes at a constant rate at each point.  That is t   at time t  where   is a 
constant, and 
 ( ) cos sinr t a t b t  i j  (13.161) 

Consider the boundary condition that the MO of 2H O  comprises a linear combination of an oxygen AO and two 2H -type 

ellipsoidal MOs, one for each O H -bond. The charge density of each 2H -type ellipsoidal MO given by Eqs. (11.44-11.45) and 

(13.3-13.4) maintains that the surface is an equipotential; however, the potential and kinetic energy of a point on the surface 
changes as it orbits the central field. The potential energy is a maximum and the kinetic energy is a minimum at the semimajor 
axis, and the reverse occurs at the semiminor axis.  Since the time average of the kinetic energy, T  , for elliptic motion in an 
inverse-squared field is 1/ 2  that of the time average of the magnitude of the potential energy, by symmetry, the 

1/ 2T V     condition holds for 1/2 of each 2H -type ellipsoidal MO having the H  focus and ending at the plane defined 

by the semiminor axes.  The O  nucleus comprises the other focus of each OH -MO component of the 2H O  MO.  The 2O p  AO 

obeys the energy relationship for all points.  Thus, the linear combination of the 2H -type ellipsoidal MO with the 2O p  AO 

must involve a 25% contribution from the 2H -type ellipsoidal MO to the 2O p  AO in order to match the energy relationships.  

Thus, the 2H O  MO must comprise two O H -bonds with each comprising 75% of a 2H -type ellipsoidal MO (1/2 +25%) and 

an oxygen AO: 
  2 2 21 2  0.75  1 2  0.75   z yO p AO H MO O p AO H MO H O MO       (13.162) 

The force balance of the 2H O  MO is determined by the boundary conditions that arise from the linear combination of 

orbitals according to Eq. (13.162).  The force constant k  of a 2H -type ellipsoidal MO due to the equivalent of two point charges 

at the foci is given by Eq. (11.65). 
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  (13.163) 

Since each 2H -type ellipsoidal MO comprises 75% of the O H -bond MO, the electron charge density in Eq. (13.163) is given 

by 0.75e .  Thus, 'k  of each 2H -type-ellipsoidal-MO component of the 2H O  MO is: 
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  (13.164) 

L  for the electron equals  ; thus, the distance from the origin of each O H -bond MO to each focus 'c  is given by Eqs. 
(11.79) and (13.164):  
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 (13.165) 

The internuclear distance from Eq. (13.165) is:  

 02
2 ' 2

3

aa
c   (13.166) 

The length of the semiminor axis of the prolate spheroidal O H -bond MO b c  given by Eq. (11.80) is: 

 2 2b a c   (13.167) 
The eccentricity, e , is: 

 
'c

e
a

  (13.168) 

The solution of the semimajor axis a  then allows for the solution of the other axes of the prolate spheroid and eccentricity of the 
O H -bond MO. 

The general equation of the ellipsoidal MO having semiprincipal axes ,  ,  a b c  given by: 
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is also completely determined by the total energy E  given by Eq. (11.18). 
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 (13.170) 

The energy of the oxygen 2 p  shell is the negative of the ionization energy of the oxygen atom given by Eqs. (10.163) and 
(13.66).  Experimentally, the energy is [12] 
  2  ( ;  ) 13.6181 E p shell E ionization O eV     (13.171) 

Since each of the two prolate spheroidal O H -bond MOs comprises a 2H -type-ellipsoidal MO that transitions to the O  AO, 

the energy E  in Eq. (13.171) adds to that of the two corresponding 2H -type ellipsoidal MOs to give the total energy of the 2H O  

MO.  From the energy equation and the relationship between the axes given by Eqs. (13.165-13.168), the dimensions of the 

2H O  MO are solved. 

The energy components defined previously for Hydrogen-Type Molecules, Eqs. (11.207-11.212), apply in the case of 

2H O .  Since the 2H O  MO comprises two equivalent O H -bond MOs, each a linear combination of a 2H -type-ellipsoidal MO 

and an 2O p  AO, the corresponding energy component of the 2H O  MO is given by the linear superposition of the component 

energies.  Thus, the energy scale factor is given as two times the force factor, the term in parentheses in Eq. (13.164).  In addition 
to the equivalence and linearity principles, this factor also arises from the consideration of the nature of each bond and the linear 
combination that forms the 2H O  MO.  Each O H -bond-energy component is the total for the two equivalent electrons with 

the exception that the total charge of the two electrons is normalized over the three basis set functions, two O H -bond MOs 
(OH -type ellipsoidal MOs given in the Energies of OH  section) and one 2O p  AO.  Thus, the contribution of the O H -bond 

MOs to the 2H O  MO energies are those given for  2 1/H p  in the Energies of Hydrogen-Type Molecules multiplied by a factor 

of 3 / 2  as in the case with 3H   (Eqs. (13.12), (13.15), (13.18-13.20)). In addition, the two sets of equivalent nuclear-point-

charge pairs give rise to a factor of two times the proton-proton repulsion energy given by Eq. (11.208). Thus, the component 
energies of the 2H O  MO are twice the corresponding energies of the OH  MO given by Eqs. (13.67-13.73). The parameters a , 

b , and 'c  are given by Eqs. (13.165-13.167), respectively. 
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 (13.175) 

 T e m pE V T V V     (13.176) 
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Since the prolate spheroidal 2H -type MO transitions to the O  AO and the energy of the 2O p  shell must remain constant and 

equal to the negative of the ionization energy given by Eq. (13.171), the total energy  2TE H O  of the 2H O  MO is given by the 

sum of the energies of the orbitals corresponding to the composition of the linear combination of the O  AO and the two 2H -type 

ellipsoidal MOs that forms the 2H O  MO as given by Eq. (13.162): 
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The two hydrogen atoms and the oxygen atom can achieve an energy minimum as a linear combination of two 2H -type 

ellipsoidal MOs each having the proton and the oxygen nucleus as the foci.  Each O H -bond MO comprises the same 2O p  

shell of constant energy given by Eq. (13.171).  Thus, the energy of the 2H O  MO is also given by the sum of that of the two 
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2H -type ellipsoidal MOs given by Eq. (11.212) minus the energy of the redundant oxygen atom of the linear combination given 

by Eq. (13.171): 
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 (13.180) 

 2TE H O  given by Eq. (13.179) is set equal to two times the energy of the 2H -type ellipsoidal MO minus the energy of the 

2O p  shell given by Eq. (13.180): 
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From the energy relationship given by Eq. (13.181) and the relationship between the axes given by Eqs. (13.165-13.167), the 
dimensions of the 2H O  MO can be solved. 

Substitution of Eq. (13.165) into Eq. (13.181) gives: 
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The most convenient way to solve Eq. (13.182) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is:  
 11

01.2641 6.68933  10  a a X m   (13.183) 

Substitution of Eq. (13.183) into Eq. (13.165) gives:  
 11

00.918005 4.85787  10  c a X m    (13.184) 

The internuclear distance given by multiplying Eq. (13.184) by two is:  
 11

02 1.83601 9.71574  10  c a X m    (13.185) 

The experimental bond distance is [23]: 
 112 9.70 .005  10  c X m    (13.186) 
Substitution of Eqs. (13.183-13.184) into Eq. (13.167) gives: 
 11

00.869031 4.59871  10  b c a X m    (13.187) 

Substitution of Eqs. (13.183-13.184) into Eq. (13.168) gives: 
 0.726212e   (13.188) 

The nucleus of the H  atom and the nucleus of the O  atom comprise the foci of each 2H -type ellipsoidal MO.  The 

parameters of the point of intersection of each 2H -type ellipsoidal MO and the 2 yO p  AO or 2 zO p  AO can be determined from 

the polar equation of the ellipse (Eq. (11.10)): 
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The radius of the 2O p  shell given by Eq. (10.162) is 8 0r a , and the polar radial coordinate of the ellipse and the radius of the 

2O p  shell are equal at the point of intersection.  Thus, Eq. (13.189) becomes: 
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such that the polar angle '  is given by 
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Substitution of Eqs. (13.183-13.184) into Eq. (13.191) gives: 
 ' 123.66    (13.192) 
Then, the angle 2O pAO  the radial vector of the 2O p  AO makes with the internuclear axis is: 

 2 180 123.66 56.33O pAO       (13.193) 

as shown in Figure 13.2.  The Cartesian i -coordinate of the interception point of the MO and the AO can be calculated using the 
MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -coordinate 
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components at the point of intersection.  Thus, the matching elliptic parametric angle 
2H MOt   satisfies the following 

relationship:  
 

20 2sin sinO pAO H MOa b   (13.194) 

such that 
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   (13.195) 

with the use of Eq. (13.193).  Substitution of Eq. (13.187) into Eq. (13.195) gives: 
 

2
73.28H MO    (13.196) 

Then, the distance 
2H MOd  along the internuclear axis from the origin of the 2H -type ellipsoidal MO to the point of intersection of 

the orbitals is given by 
 

2 2
cosH MO H MOd a   (13.197) 

Substitution of Eqs. (13.183) and (13.196) into Eq. (13.197) gives: 
 

2

11
00.3637 1.9244  10  H MOd a X m   (13.198) 

The distance 2O pAOd  along the internuclear axis from the origin of the O  atom to the point of intersection of the orbitals is given 

by 
 

22 'O pAO H MOd c d   (13.199) 

Substitution of Eqs. (13.184) and (13.198) into Eq. (13.199) gives: 
 11

2 00.5543 2.93343  10  O pAOd a X m   (13.200) 

In addition to the intersection of the 2H -type MO with the 2O p  shell, two adjoining ellipsoidal 2H -type MOs intersect 

at points of equipotential.  The angle and distance parameters are given by Eqs. (13.595-13.600) for the limiting methane case 
wherein four adjoining intersecting 2H -type MOs have the possibility of forming a self-contained two-dimensional equipotential 

surface of charge and current.  Charge continuity can be obeyed for the 2H O  MO if the current is continuous between the 

adjoining 2H -type MOs.  However, in the limiting case of methane, the existence of a separate linear combination of the 2H -

type MOs comprising four spin-paired electrons, not connected to the bonding carbon heteroatom requires that the electron be 
divisible.  It is possible for an electron to form time-dependent singular points or nodes having no charge as shown by Eqs. 
(1.28-1.29), and two-dimensional charge distributions having Laplacian potentials and one-dimensional regions of zero charge 
are possible for macroscopic charge densities and currents as given in Haus and Melcher [24].  However, it is not possible for 
single electrons to have two-dimensional discontinuities in charge based on internal forces and first principles discussed in 
Appendix II.  Thus, at the points of intersection of the 2H -type MOs of methane, symmetry, electron indivisibility, current 

continuity, and conservation of energy and angular momentum require that the current between the points of mutual contact and 
the carbon atom be projected onto and flow along the radial vector to the surface of the 32C sp  shell.  This current designated the 

bisector current (BC) meets the 32C sp  surface and does not travel to distances shorter than its radius.  The methane result must 

also apply in the case of other bonds including that of the water molecule.  Here, the 2H -type MOs intersect and the ellipsoidal 

current is projected onto the radial vector to the 2O p  shell and does not travel to distances shorter than its radius as in the case 
of a single O H  bond. 

As shown in Eq. (13.162), in addition to the p -orbital charge-density modulation, the uniform charge-density in the zp  

and yp  orbitals is increased by a factor of 0.25 and the H  atoms are each decreased by a factor of 0.25.  Using the orbital 

composition of 2H O  (Eq. (13.162)), the radii of 01 0.12739O s a  (Eq. (10.51)), 02 0.59020O s a  (Eq. (10.62)), and 02O p a  

(Eq. (10.162)) shells, and the parameters of the 2H O  MO given by Eqs. (13.3-13.4), (13.183-13.185), (13.187-13.188), and 

(13.192-13.200), the charge-density of the 2H O  MO comprising the linear combination of two O H -bond MOs (OH -type 

ellipsoidal MOs given in the Energies of OH  section) according to Eq. (13.162) is shown in Figure 13.4.  Each O H -bond 
MO comprises a 2H -type ellipsoidal MO and an 2O p  AO having the dimensional diagram shown in Figure 13.4. 
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Figure 13.4.   2H O  MO comprising the linear combination of two O H -bond MOs.  Each O H -bond MO comprises the 

superposition of a 2H -type ellipsoidal MO and the 2 zO p  AO or the 2 yO p  AO with a relative charge-density of 0.75 to 1.25; 

otherwise, the 2O p  orbitals are the same as those of the oxygen atom.  The internuclear axis of one O H  bond is 

perpendicular to the bonding yp  orbital, and the internuclear axis of the other O H  bond is perpendicular to the bonding zp  

orbital.  (A) Color scale, translucent view of the charge-density of the 2H O  MO from the top.  For each O H  bond, the 

ellipsoidal surface of each 2H -type ellipsoidal MO transitions to the 2O p  AO.  The 2O p  shell, the 2O s  shell, the 1O s  shell, 

and the nuclei (red, not to scale) are shown.  (B) Cut-away view showing the innermost 1O s  shell, and moving radially, the 2O s  
shell, the 2O p  shell, and the 2H -type ellipsoidal MO that transitions to the 2O p  AO for each O H  bond. Bisector current 

not shown. 
 

 
ENERGIES OF 2H O  

The energies of 2H O  given by the substitution of the semiprincipal axes (Eqs. (13.183-13.185) and (13.187)) into the energy 

equations (Eqs. (13.172-13.180)) are: 
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where  2TE H O  is given by Eq. (13.179) which is reiteratively matched to Eq. (13.180) within five-significant-figure round-off 

error. 
 

VIBRATION OF 2H O  
The vibrational energy levels of 2H O  may be solved as two equivalent coupled harmonic oscillators by developing the 

Lagrangian, the differential equation of motion, and the eigenvalue solutions [2] wherein the spring constants are derived from 
the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type 
Molecules section. 
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THE DOPPLER ENERGY TERM OF 2H O  
The radiation reaction force in the case of the vibration of 2H O  in the transition state corresponds to the Doppler energy, DE , 

given by Eq. (11.181) and Eqs. (13.22) and (13.144) that is dependent on the motion of the electrons and the nuclei.  The kinetic 
energy of the transient vibration is derived from the corresponding central forces.  As in the case of 3H  , the water molecule is a 

linear combination of three orbitals.  The water MO comprises two 2H -type ellipsoidal MOs and the O  AO.  Thus, the force 

factor of water in the determination of the Doppler frequency is equivalent to that of the 3H   ion given in Eqs. (13.18-13.20) and 

given by Eq. (13.164). From Eqs. (11.231-11.232) and (13.18-13.20), the central force terms between the electron density and 
the nuclei of each O H -bond MO with the radius of the orbit at the oxygen atom fixed at  
 8 0r a  (13.206) 

according to Eq. (10.162) with the oscillation along the semiminor axis are: 
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Thus, using Eqs. (11.136) and (13.207-13.208), the angular frequency of this oscillation is: 
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The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)): 

 166.24996  10  / 41.138334 KE X rad s eV     (13.210) 

The three basis elements of water, H , H , and O , all have the same Coulombic energy as given by Eqs. (1.264) and (10.163), 
respectively, such that the Doppler energy involves the total energy of the 2H O  MO.  Thus, in Eq. (11.181), substitution of the 

total energy of 2H O ,  2TE H O , (Eqs. (13.179-13.180) and Eq. (13.181)) for hE  , the mass of the electron, em , for M , and the 

kinetic energy given by Eq. (13.210) for KE  gives the Doppler energy of the electrons for the reentrant orbit: 
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e eVE
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The total energy of 2H O  is decreased by DE . 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their 
corresponding frequency.  On average, the total energy of vibration is equally distributed between kinetic energy and potential 
energy [4].  Thus, the average kinetic energy of vibration corresponding to the Doppler energy of the electrons, KvibE , is 1/2 of 

the vibrational energy of 2H O .  The decrease in the energy of 2H O  due to the reentrant orbit in the transition state 

corresponding to simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding 

energies, DE  and KvibE .  Using Eq. (13.211) and the experimental 16H OH  vibrational energy of 
13755.93 0.465680 vibE cm eV   [25] gives: 
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'
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      (13.212) 

  1
' 0.630041 0.465680 0.397201 

2oscE eV eV eV      (13.213) 

per bond.  As in the case for  3 1/H p  shown in the Doppler Energy Term of 3H  -type Molecular Ions section, the reentrant 

orbit for the binding of a hydrogen atom to a hydroxyl radical causes the bonds to oscillate by increasing and decreasing in 
length along the two O H  bonds at a relative phase angle of 180°.  Since the vibration and reentrant oscillation is along two 

bonds for the asymmetrical stretch ( 3v ), oscE  for 16H OH ,  16
oscE H OH , is: 

    16 1 1
2 2 0.630041 0.465680 0.794402 

2 2osc D

k
E H OH E eV eV eV


                

  (13.214) 

To the extent that the MO dimensions are the same, the electron reentrant orbital energies, KE , are the same independent 

of the isotope of hydrogen, but the vibrational energies are related by Eq. (11.148).  Thus, the differences in bond energies are 
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essentially given by 1/2 the differences in vibrational energies per bond.  Using Eq. (13.211), Eqs. (13.212-13.214), and the 
experimental 16D OD  vibrational energy of 12787.92 0.345661 vibE cm eV   [25], the corresponding  16

oscE D OD  is: 

    16 1
2 0.630041 0.345661 0.914421 

2oscE D OD eV eV eV
      
 

 (13.215) 

 

TOTAL AND BOND ENERGIES OF 16H OH  AND 16D OD  
16

2T oscE H O 
   

, the total energy of the 16H OH including the Doppler term, is given by the sum of  2TE H O  (Eq. (13.181)) and 
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oscE H OH  given Eqs. (13.207-13.214). 
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From Eqs. (13.214) and (13.216-13.217), the total energy of 16H OH  is: 
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where the experimental vibrational energy was used for the 
k


  term.  16

2T oscE D O 
   

, the total energy of 16D OD  including the 

Doppler term is given by the sum of    2 2T TE D O E H O  (Eq. (13.181)) and  16
oscE D OD  given by Eq. (13.215): 
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where the experimental vibrational energy was used for the 
k


  term.  As in the case of the hydroxyl radical, the dissociation 

of the bond of the water molecule forms a free hydrogen atom and a hydroxyl radical, with one unpaired electron each.  The 
lowering of the energy of the reactants due to the magnetic dipoles decreases the bond energy.  Thus, the total energy of oxygen 
is reduced by the energy in the field of the two magnetic dipoles given by Eq. (13.152).  The corresponding bond dissociation 
energy, DE , is given by the sum of the total energies of the corresponding hydroxyl radical and hydrogen atom minus the total 

energy of water,  16
T oscE H OH , and ( )E magnetic . 

Thus, DE of 16H OH  is given by: 

 16 16 16( ) ( ) ( )D T oscE H OH E H E OH E H OH E magnetic   
      

     (13.220) 

where 16( )TE OH  is given by the sum of the experimental energies of 16O  (Eq. (13.171)), H  (Eq. (13.154)), and the negative of 

the bond energy of 16OH  (Eq. (13.157)): 
 16( ) 13.59844 13.6181 4.41174 31.62828 E OH eV eV eV eV       (13.221) 

From Eqs. (13.154), (13.218), and (13.220-13.221), 16
DE H OH 
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 (13.222) 

The experimental 16H OH  bond dissociation energy is [26]: 
 16( ) 5.0991 DE H OH eV  (13.223) 
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Similarly, DE of 16D OD  is given by: 

  16 16 16( ) ( ) ( )D T oscE D OH E D E OD E magnetic E D OD   
      

     (13.224) 

where 16( )TE OD  is given by the sum of the experimental energies of 16O  (Eq. (13.171)), D  (Eq. (13.155)), and the negative of 

the bond energy of 16OD  (Eq. (13.159)): 
 16( ) 13.603 13.6181 4.454 31.6751 E OD eV eV eV eV       (13.225) 

From Eqs. (13.155), (13.220), and (13.224-13.225), 16
DE D OD 

 
 

 is 

  16( ) 13.603 31.6751 0.114411 50.567058 5.178 DE D OD eV eV eV eV eV       (13.226) 

The experimental 16D OD  bond dissociation energy is [27]: 
 16( ) 5.191 DE D OD eV  (13.227) 

 

BOND ANGLE OF 2H O  
The 2H O  MO comprises a linear combination of two O H -bond MOs.  Each O H -bond MO comprises the superposition of 

a 2H -type ellipsoidal MO and the 2 zO p  AO or the 2 yO p  AO with a relative charge-density of 0.75 to 1.25; otherwise, the 

2O p  orbitals are the same as those of the oxygen atom.  A bond is also possible between the two H atoms of the O H  bonds.  
Such H H  bonding would decrease the O H -bond strength since electron density would be shifted from the O H  bonds 
to the H H  bond.  Thus, the bond angle between the two O H  bonds is determined by the condition that the total energy of 
the 2H -type ellipsoidal MO between the terminal H  atoms of the O H  bonds is zero.  Since the two 2H -type ellipsoidal MOs 

comprise 75% of the H  electron density of 2H , the energies and the total energy TE  of the H H  bond is given by Eqs. 

(13.67-13.73).  From Eq. (11.79), the distance from the origin to each focus of the H H  ellipsoidal MO is 
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The internuclear distance from Eq. (13.228) is:  

 02 ' 2
2

aa
c   (13.229) 

The length of the semiminor axis of the prolate spheroidal H H  MO b c  is given by Eq. (13.167).  Substitution of Eq. 
(13.228) into Eq. (13.73) gives: 

 

0
2

0

0 0
0

3 3 2 ln 1
2 8

8
2 2

T

aa
a

ae
E

aaa aa
a

 
            

 (13.230) 

The radiation reaction force in the case of the vibration of H H  in the transition state corresponds to the Doppler 
energy, DE , given by Eq. (11.181) that is dependent on the motion of the electrons and the nuclei.  The total energy TE  that 

includes the radiation reaction of the H H  MO is given by the sum of TE  (Eq. (13.73)) and  2oscE H  given by Eqs. (11.213-

11.220), (11.231-11.236), and (11.239-11.240).  Thus, the total energy  TE H H  of the H H  MO including the Doppler 

term is 
  T e m p oscE V T V V E H H       (13.231) 
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To match the boundary condition that the total energy of the H H  ellipsoidal MO is zero,  TE H H  given by Eq. 

(13.232) is set equal to zero: 
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From the energy relationship given by Eq. (13.233) and the relationship between the axes given by Eqs. (13.165-13.167), the 
dimensions of the H H  MO can be solved. 

The most convenient way to solve Eq. (13.233) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is  
 10

04.300 2.275  10  a a X m   (13.234) 

Substitution of Eq. (13.234) into Eq. (13.228) gives: 
 11

01.466 7.759  10  c a X m    (13.235) 

The internuclear distance given by multiplying Eq. (13.235) by two is:  
 10

02 2.933 1.552  10  c a X m    (13.236) 

Substitution of Eqs. (13.234-13.235) into Eq. (13.167) gives: 
 10

04.042 2.139  10  b c a X m    (13.237) 

Substitution of Eqs. (13.234-13.235) into Eq. (13.168) gives: 
 0.341e   (13.238) 

Using the distance between the two H  atoms when the total energy of the corresponding MO is zero, the corresponding 
bond angle can be determined from the law of cosines: 
 2 2 22 cosineA B AB C    (13.239) 
With 2 O HA B c   , the internuclear distance of each O H  bond given by Eq. (13.185), and 2 'H HC c  , the internuclear 

distance of the two H  atoms, the bond angle between the O H  bonds is given by 

        2 2 2 2
2 ' 2 ' 2 2 ' cosine 2 'O H O H O H H Hc c c c       (13.240) 

 
   

 

2 2

1
2

2 2 ' 2 '
cos

2 2 '
O H H H

O H

c c

c
  



 
  

 
 

 (13.241) 

Substitution of Eqs. (13.185) and (13.236) into Eq. (13.241) gives: 
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The experimental internuclear distance of the two H  atoms, 2 'H Hc  , is [23]: 

 102 ' 1.55 0.01  10  H Hc X m
    (13.243) 

which matches Eq. (13.236) very well.  The experimental angle between the O H  bonds is [23]: 
 106    (13.244) 
which matches the predicted angle given by Eq. (13.242). 

The results of the determination of bond parameters of 2H O  and 2D O  are given in Table 13.1.  The calculated results are 

based on first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement 
between the experimental and calculated results is excellent. 
 

HYDROGEN NITRIDE ( NH ) 
The ammonia molecule can be solved by first considering the solution of the hydrogen and dihydrogen nitride radicals.  The 
former is formed by the reaction of a hydrogen atom and a nitrogen atom: 
 H N NH   (13.245) 
The hydrogen nitride radicals, NH  and 2NH , and ammonia, 3NH , can be solved using the same principles as those used to 

solve OH  and 2H O . 
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FORCE BALANCE OF NH  
NH  comprises two spin-paired electrons in a chemical bond between the nitrogen atom and the hydrogen atom such that two 
electrons on N  remain unpaired.  The NH  radical molecular orbital (MO) is determined by considering properties of the 
binding atoms and the boundary constraints.  The prolate spheroidal 2H  MO developed in the Nature of the Chemical Bond of 

Hydrogen-Type Molecules section satisfies the boundary constraints; thus, the H -atom electron forms a 2H -type ellipsoidal 

MO with one of the N -atom electrons.  The N  electron configuration given in the Seven-Electron Atoms section is 2 2 31 2 2s s p , 
and the orbital arrangement is 

 

     2p state

            

   1        0     -1

    (13.246) 

corresponding to the ground state 4 0
3/2S .  The 2 xN p  electron combines with the 1H s  electron to form a molecular orbital.  The 

proton of the H  atom is along the internuclear axis.  Due to symmetry, the other N  electrons are equivalent to point charges at 
the origin.  (See Eqs. (19-38) of Appendix II.)  Thus, the energies in the NH  MO involve only the 2 xN p  and 1H s  electrons 

and the change in the magnetic energy of the 2 xN p  electron with the other N  electrons (Eq. (13.305)) with the formation of the 

NH  MO.  The forces are determined by these energies. 
As in the case of 2H , the MO is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into 

N  atom for distances shorter than the radius of the 2 p  shell.  Thus, the MO surface comprises a prolate spheroid at the H  
proton that is continuous with the 2 p  shell at the N  atom whose nucleus serves as the other focus.  The energy of the prolate 

spheroid is matched to that of the 2N p  shell.  As in the case with OH , the linear combination of the 2H -type ellipsoidal MO 

with the 2N p  AO must involve a 25% contribution from the 2H -type ellipsoidal MO to the 2N p  atomic orbital (AO) in order 

to match potential, kinetic, and orbital energy relationships.  Thus, the NH  MO must comprise 75% of a 2H -type ellipsoidal 

MO and a nitrogen AO: 
 

 21 2  0.75   xN p AO H MO NH MO   (13.247) 

 
The force balance of the NH  MO is determined by the boundary conditions that arise from the linear combination of orbitals 
according to Eq. (13.247) and the energy matching condition between the hydrogen and nitrogen components of the MO.   

Similar to the OH  case given by Eq. (13.59), the 2H -type ellipsoidal MO comprises 75% of the NH  MO; so, the 

electron charge density in Eq. (11.65) is given by 0.75e .  Based on the condition that the electron MO is an equipotential 
energy surface, Eq. (11.79) gives the ellipsoidal parameter 'c  in terms of the central force of the foci, the electron angular 
momentum, and the ellipsoidal parameter a .  To meet the equipotential condition of the union of the 2H -type-ellipsoidal-MO 

and the N  AO, the force constant used to determine the ellipsoidal parameter 'c  is normalized by the ratio of the ionization 
energy of N  14.53414 eV  [6] and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of 
H  given by Eq. (1.264).  This normalizes the force to match that of the Coulombic force alone to meet the force matching 
condition of the NH  MO under the influence of the proton and the N  nucleus.  Thus, 'k  of Eq. (11.79) to determine 'c  is 
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L  for the electron equals  ; thus, the distance from the origin of the NH  MO to each focus 'c  is given by Eqs. (11.79) and 
(13.248):  
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 (13.249) 

The internuclear distance from Eq. (13.249) is  
 02 ' 2 0.712154c aa  (13.250) 

The length of the semiminor axis of the prolate spheroidal NH  MO b c  is given by Eqs. (11.80) and (13.62). The eccentricity, 
e , is given by Eq. (13.63).  Then, the solution of the semimajor axis a  allows for the solution of the other axes of the prolate 
spheroidal and eccentricity of the NH  MO. 

The energy of the nitrogen 2 p  shell is the negative of the ionization energy of the nitrogen atom given by Eq. (10.143).  
Experimentally, the energy is [6]: 
  2  ( ;  ) 14.53414 E p shell E ionization N eV     (13.251) 



General Diatomic and Polyatomic Molecular Ions and Molecules 501

Since the prolate spheroidal MO transitions to the N  AO, the energy E  in Eq. (13.251) adds to that of the 2H -type ellipsoidal 

MO to give the total energy of the NH  MO.  From the energy equation and the relationship between the axes given by Eqs. 
(13.249-13.250) and (13.62-13.63), the dimensions of the NH  MO are solved. 

The energy components of eV , pV , T , mV , and TE  are the same as those of OH  given by Eqs. (13.67-13.73).  Similarly 

to OH , the total energy  TE NH  of the NH  MO is given by the sum of the energies of the orbitals corresponding to the 

composition of the linear combination of the N  AO and the 2H -type ellipsoidal MO that forms the NH  MO as given by Eq. 

(13.247): 
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To match the boundary condition that the total energy of the entire 2H -type ellipsoidal MO is given by Eqs. (11.212) and 

(13.75),  TE NH  given by Eq. (13.252) is set equal to Eq. (13.75): 
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From the energy relationship given by Eq. (13.252) and the relationship between the axes given by Eqs. (13.249-13.250) and 
(13.62-13.63), the dimensions of the NH  MO can be solved. 

Substitution of Eq. (13.249) into Eq. (13.253) gives: 
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The most convenient way to solve Eq. (13.254) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is  
 11

01.36275 7.21136  10  a a X m   (13.255) 

Substitution of Eq. (13.255) into Eq. (13.249) gives: 
 11

00.98513 5.21310  10  c a X m    (13.256) 

The internuclear distance given by multiplying Eq. (13.256) by two is:  
 10

02 1.97027 1.04262  10  c a X m    (13.257) 

The experimental bond distance is [28]: 
 102 1.0362  10  c X m   (13.258) 
Substitution of Eqs. (13.255-13.256) into Eq. (13.62) gives: 
 11

00.94159 4.98270  10  b c a X m    (13.259) 

Substitution of Eqs. (13.255-13.256) into Eq. (13.63) gives: 
 0.72290e   (13.260) 
The nucleus of the H  atom and the nucleus of the N  atom comprise the foci of the 2H -type ellipsoidal MO.  The parameters of 

the point of intersection of the 2H -type ellipsoidal MO and the 2 xN p  AO are given by Eqs. (13.84-13.95).  The polar 

intersection angle '  is given by: 
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 (13.261) 

where 7 00.93084nr r a   is the radius of the N  atom.  Substitution of Eqs. (13.255-13.256) into Eq. (13.86) gives: 

 ' 114.61    (13.262) 
Then, the angle 2 xN p AO  the radial vector of the 2 xN p  AO makes with the internuclear axis is: 

 2 180 114.61 65.39
xN p AO       (13.263) 

as shown in Figure 13.5.   
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Figure 13.5.   The cross section of the NH  MO showing the axes, angles, and point of intersection of the 2H -type ellipsoidal 

MO with the 2 xN p  AO.  The continuation of the 2H -type-ellipsoidal-MO basis element beyond the intersection point with the 

2N p  shell is shown as dashed since it only serves to solve the energy match with the 2N p  shell and does not represent charge 
density.  Similarly, the vertical dashed line only designates the parameters of the intersection point.  The actual charge density is 
shown by the solid lines.  Legend: a : semimajor axis, b : semiminor axis, 'c : internuclear distance, 

21 : H MOd d , 1 2:
xN p AO  , 

2 2: N pAOd d , and 7:R r . 

 
 
 

The Cartesian i -coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal 
parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -coordinate components at the point 

of intersection.  Thus, the matching elliptic parametric angle 
2H MOt   satisfies the following relationship: 

 
27 2 0 2sin 0.93084 sin sin

x xN p AO N p AO H MOr a b     (13.264) 

such that 

 
2

0 21 1 0
0.93084 sin 0.93084 sin 65.39

sin sinxN p AO
H MO

a a

b b


   

   (13.265) 

with the use of Eq. (13.263).  Substitution of Eq. (13.259) into Eq. (13.265) gives: 
 

2
64.00H MO    (13.266) 

Then, the distance 
2H MOd  along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of intersection of the 

orbitals is given by: 
 

2 2
cosH MO H MOd a   (13.267) 

Substitution of Eqs. (13.255) and (13.266) into Eq. (13.267) gives: 
 

2

11
00.59747 3.16166  10  H MOd a X m   (13.268) 

The distance 2N pAOd  along the internuclear axis from the origin of the N  atom to the point of intersection of the orbitals is given 

by: 
 

22 'N pAO H MOd c d   (13.269) 

Substitution of Eqs. (13.79) and (13.93) into Eq. (13.94) gives: 
 11

2 00.38767 2.05144  10  N pAOd a X m   (13.270) 

As shown in Eq. (13.247), in addition to the p -orbital charge-density modulation, the uniform charge-density in the xp  

orbital is increased by a factor of 0.25 and the H -atom density is decreased by a factor of 0.25.  The internuclear axis of the 
N H  bond is perpendicular to the bonding xp  orbital.  Using the orbital composition of NH  (Eq. (13.27)), the radii of 

01 0.14605N s a  (Eq. (10.51)), 02 0.69385N s a  (Eq. (10.62)), and 02 0.93084N p a  (Eq. (10.142)) shells, and the parameters 

of the NH  MO given by Eqs. (13.3-13.4) and (13.255-13.270), the dimensional diagram and charge-density of the NH  MO 
comprising the linear combination of the 2H -type ellipsoidal MO and the N  AO according to Eq. (13.247) are shown in Figures 

13.5 and 13.6, respectively. 
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Figure 13.6.   NH  MO comprising the superposition of the 2H -type ellipsoidal MO and the 2 xN p  AO with a relative 

charge-density of 0.75 to 1.25; otherwise, the 2 xN p  is the same as that of the nitrogen atom.  (A) Side-on, color scale, 

translucent view of the charge-density of the NH  MO.  The ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to 

the 2 xN p  AO, the 2N p  shell, the 2N s  shell, the 1N s  shell, and the nuclei (red not to scale) are shown.  (B) Cut-away view 

showing the inner most 1N s  shell, and moving radially, the 2N s  shell, the 2N p  shell, and the 2H -type ellipsoidal MO that 

transitions to the 2 xN p  AO. 
 

 
 
ENERGIES OF NH  
The energies of NH  given by the substitution of the semiprincipal axes (Eqs. (13.255-13.256) and (13.259)) into the energy 
equations (Eqs. (13.67-13.73)) are: 

 
2 2 2

2 2 2 2
0

3 2
ln 37.85748 

4 8
e

e a a b
V eV

a b a a b
      

    
 (13.271) 
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  (13.272) 
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 (13.273) 
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 (13.274) 

  
2

0

0

3 3 '
 ln 1 14.53414 31.63544 

8 ' 2 8 'T

ae a c
E NH eV eV

c a a c
            

 (13.275) 

where  TE NH  is given by Eq. (13.253) which is reiteratively matched to Eq. (13.75) within five-significant-figure round-off 

error. 
 
VIBRATION AND ROTATION OF NH  
The vibrational energy of NH  may be solved in the same manner as that of OH .  From Eqs. (13.102-13.106) with the 
substitution of the NH  parameters, the angular frequency of the oscillation is: 

 
     

2 22 2

3 333
0 0 00 0 0 14

0.750.75
8 8 1.970278 2 ' 8 0.94159a

6.18700  10  /
14
15 p

e ee e
b ac

X rad s
m

  






    (13.276) 

where b  is given by Eq. (13.259), 2 'c  is given by Eq. (13.257), and the reduced mass of 14NH  is given by: 

 
  

14
1 2

1 2

1 14

1 14 pNH

m m
m

m m
  

 
 (13.277) 

where pm  is the proton mass.  Thus, during bond formation, the perturbation of the orbit determined by an inverse-squared force 

results in simple harmonic oscillatory motion of the orbit, and the corresponding frequency,  0 , for 14NH  given by Eqs. 

(11.136), (11.148), and (13.276) is 
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     1
140 597.59 

0 6.18700  10  /
k Nm

X radians s
 



    (13.278) 

where the reduced nuclear mass of 14NH  is given by Eq. (13.277) and the spring constant,  0k , given by Eqs. (11.136) and 

(13.276) is:  
   10 597.59 k Nm  (13.279) 

The 14NH  transition-state vibrational energy,  0vibE , given by Planck’s equation (Eq. (11.127)) is: 

   14 10 6.18700  10  / 0.407239 3284.58 vibE X rad s eV cm       (13.280) 

e , from the experimental curve fit of the vibrational energies of 14NH  is [28]: 

 13282.3 e cm   (13.281) 

Using Eqs. (13.112-13.118) with  0vibE  given by Eq. (13.280) and 0D  given by Eq. (13.311), the 14NH  1 0     

vibrational energy,  1vibE  is: 

    11 0.38581 3111.84 vibE eV cm  (13.282) 

The experimental vibrational energy of 14NH  using e  and e ex  [28] according to K&P [15] is:  

    11 0.38752 3125.5 vibE eV cm  (13.283) 

Using Eq. (13.113) with  1vibE  given by Eq. (13.282) and 0D  given by Eq. (13.311), the anharmonic perturbation term, 

0 0x , of 14NH  is: 

 1
0 0 86.37 x cm   (13.284) 

The experimental anharmonic perturbation term, 0 0x , of 14NH  [28] is: 

 1
0 0 78.4 x cm   (13.285)  

The vibrational energies of successive states are given by Eqs. (13.280), (13.112), and (13.284). 
Using b  given by Eq. (13.259), 2 'c  given by Eq. (13.257), 0D  given by Eq. (13.314), and the reduced nuclear mass of 14ND  

given by  

 
  

14
1 2

1 2

2 14

2 14 pND

m m
m

m m
  

 
 (13.286) 

where pm  is the proton mass, the corresponding parameters for deuterium nitride 14ND  (Eqs. (13.102-13.121)) are: 

     1
140 597.59 

0 4.51835  10  /
k Nm

X radians s
 



    (13.287) 

   10 579.59 k Nm  (13.288) 

   14 10 4.51835  10  / 0.29741 2398.72 vibE X rad s eV cm       (13.289) 

    11 0.28710 2305.35 vibE eV cm  (13.290) 

 1
0 0 47.40 x cm   (13.291) 

e , from the experimental curve fit of the vibrational energies of 14ND  is [28]: 

 12398 e cm   (13.292) 

The experimental vibrational energy of 14ND  using e  and e ex  [28] according to K&P [15] is:  

    11 0.2869 2314 vibE eV cm  (13.293) 

and the experimental anharmonic perturbation term, 0 0x , of 14ND  [28] is: 

 1
0 0 42 x cm   (13.294) 

which match the predictions given by Eqs. (13.289), (13.290) and (13.291), respectively. 
Using Eqs. (13.133-13.134) and the internuclear distance, 2 'r c , and reduced mass of 14NH  given by Eqs. (13.257) 

and (13.277), respectively, the corresponding eB  is: 

 116.495 eB cm  (13.295) 

The experimental eB  rotational parameter of 14NH  is [28]: 

 116.6993 eB cm  (13.296) 
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Using the internuclear distance, 2 'r c , and reduced mass of 14ND  given by Eqs. (13.257) and (13.286), respectively, the 
corresponding eB  is: 

 18.797 eB cm  (13.297) 

The experimental eB  rotational parameter of 14ND  is [28]: 

 18.7913 eB cm  (13.298) 

 

THE DOPPLER ENERGY TERMS OF 14NH  AND 14ND  
The equations of the radiation reaction force of hydrogen and deuterium nitride are the same as those of the corresponding 
hydroxyl radicals with the substitution of the hydrogen and deuterium nitride parameters.  Using Eqs. (11.136) and (13.140-
13.141), the angular frequency of the reentrant oscillation in the transition state is 

 

2

3
160

0.75
4

3.91850  10  /
e

e
b

X rad s
m

    (13.299) 

where b  is given by Eq. (13.259).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)): 

 163.91850  10  / 25.79224 KE X rad s eV     (13.300) 

In Eq. (11.181), substitution of the total energy of NH ,  TE NH , (Eq. (13.253)) for hE  , the mass of the electron, em , for M , 

and the kinetic energy given by Eq. (13.300) for KE  gives the Doppler energy of the electrons for the reentrant orbit: 

 
 

2 2

2 25.79224 2
31.63537 0.31785 K

D h
e

e eVE
E E eV eV

Mc m c      (13.301) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of NH  due to the reentrant orbit in the transition state corresponding to simple harmonic 
oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by Eq. (13.301) and 

KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of NH .  Using the experimental 14NH  e  

of  13282.3  0.40696 cm eV  [28]  14
oscE NH  is: 

  14 1

2osc D Kvib D

k
E NH E E E


      (13.302) 

    14 1
0.31785 0.40696 0.11437 

2oscE NH eV eV eV      (13.303) 

Using Eqs. (13.301) and the experimental 14ND  e  of  12398  0.29732 cm eV  [28]  14
oscE ND  is: 

    14 1
0.31785 0.29732 0.16919 

2oscE ND eV eV eV      (13.304) 

 

TOTAL AND BOND ENERGIES OF 14NH  AND 14ND  
 T oscE NH , the total energy of the 14NH  radical including the Doppler term, is given by the sum of  TE NH  (Eq. (13.253)) 

and  14
oscE NH  given by Eq. (13.303): 
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 (13.305) 
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 (13.306) 

From Eqs. (13.302-13.303) and (13.305-13.306), the total energy of 14NH  is: 
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1431.63537 
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T osc oscE NH eV E NH

eV eV eV
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 (13.307) 

where the experimental e  was used for the 
k


  term.   T oscE ND , the total energy of 14ND  including the Doppler term, is 

given by the sum of    T TE ND E NH  (Eq. (13.253)) and  14
oscE ND  given by Eq. (13.304): 

 

   
 

1431.63537 

1
                  31.63537 0.31785 0.29732 

2
                  31.80456 

T osc oscE ND eV E ND

eV eV eV

eV

   

   

 

 (13.308) 

where the experimental e  was used for the 
k


  term.  The dissociation of the bond of the hydrogen nitride forms a free 

hydrogen atom with one unpaired electron and a nitrogen atom with three unpaired electrons as shown in Eq. (13.246).  The xp  

and yp  fields cancel and the magnetic energy (Eq. (7.46)) with 7 00.93084r a  is subtracted due to the one component of magE  

given by Eq. (10.137): 

 
   

2 2 2
0 0

3 32
0 0

2 8
( ) 0.14185 

0.93084 0.93084
B

e

e
E magnetic eV

m a a

  
  


 (13.309) 

The corresponding bond dissociation energy, DE , is given by the sum of the total energies of the nitrogen atom and the 

corresponding hydrogen atom minus the sum of  T oscE NH  and ( )E magnetic : 

    14( ) ( )D T oscE E N E H E NH E magnetic     (13.310) 
14( )E N  is given by Eq. (13.251),  DE H  is given by Eq. (13.154), and  DE D  is given by Eq. (13.155).  The 14NH  bond 

dissociation energy,  14
DE NH , is given by Eqs. (13.154), (13.251), (13.307), and (13.309-13.310): 

 

        
 

14 14.53414 13.59844 

                 28.13258 0.14185 31.74974 

                 3.47530 

D T oscE NH eV eV E magnetic E NH

eV eV

eV

    

   



 (13.311) 

The experimental 14NH  bond dissociation energy from Ref. [29] and Ref. [30] is: 

  14 3.42 DE NH eV  (13.312) 

  14 3.47 DE NH eV  (13.313) 

The 14ND  bond dissociation energy,  14
DE ND , is given by Eqs. (13.155), (13.251), (13.308), and (13.309-13.310): 

 

        
 

14 14.53414 13.603 

                28.13714 0.14185 31.80456 

                3.5256 

D T oscE ND eV eV E magnetic E ND

eV eV

eV

    

   



 (13.314) 

The experimental 14ND  bond dissociation energy from Ref. [31] and Ref. [30] is: 

  
298

14 339 / 3.513 DE ND kJ mol eV   (13.315) 

  14 3.54 DE ND eV  (13.316) 

The results of the determination of bond parameters of NH  and ND  are given in Table 13.1.  The calculated results are 
based on first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement 
between the experimental and calculated results is excellent. 
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DIHYDROGEN NITRIDE ( 2NH ) 
The dihydrogen nitride radical 2NH  is formed by the reaction of a hydrogen atom with a hydrogen nitride radical: 

 2NH H NH   (13.317) 

2NH  can be solved using the same principles as those used to solve 2H O .  Two diatomic molecular orbitals (MOs) developed in 

the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section serve as basis functions in a linear 
combination with two nitrogen atomic orbitals (AOs) to form the MO of 2NH .  The solution is very similar to that of NH  

except that there are two NH  bonds in 2NH . 

 

FORCE BALANCE OF 2NH  
2NH  comprises two chemical bonds between nitrogen and hydrogen.  Each N H  bond comprises two spin-paired 

electrons with one from an initially unpaired electron of the nitrogen atom and the other from the hydrogen atom.  Each H -atom 
electron forms a 2H -type ellipsoidal MO with one of the initially unpaired N -atom electrons, 2 xp  or 2 yp , such that the proton 

and the N  nucleus serve as the foci.  The initial N  electron configuration given in the Seven-Electron Atoms section is 
2 2 31 2 2s s p , and the orbital arrangement is given by Eqs. (10.134) and (13.246).  The radius and the energy of the 2N p  shell are 

unchanged with bond formation.  The central paramagnetic force due to spin of each N H  bond is provided by the spin-pairing 
force of the 2NH  MO that has the symmetry of an s  orbital that superimposes with the 2N p  orbitals such that the 

corresponding angular momenta are unchanged. 
As in the case of 2H , each of two N H -bond MOs is a prolate spheroid with the exception that the ellipsoidal MO 

surface cannot extend into N  atom for distances shorter than the radius of the 2 p  shell since it is energetically unfavorable.  
Thus, the MO surface comprises a prolate spheroid at each H  proton that is continuous with the 2 p  shell at the N  atom.  The 

energies in the 2NH  MO involve only each 2N p  and each 1H s  electron with the formation of each N H  bond.  The sum of 

the energies of the prolate spheroids is matched to that of the 2 p  shell.  The forces are determined by these energies.  As in the 

case of NH , the linear combination of each 2H -type ellipsoidal MO with each 2N p  AO must involve a 25% contribution from 

the 2H -type ellipsoidal MO to the 2N p  AO in order to match potential, kinetic, and orbital energy relationships.  Thus, the 

2NH  MO must comprise two N H  bonds with each comprising 75% of a 2H -type ellipsoidal MO (1/2 +25%) and a nitrogen 

AO: 
  2 2 21 2  0.75  1 2  0.75   x yN p AO H MO N p AO H MO NH MO       (13.318) 

The force constant 'k  of each 2H -type-ellipsoidal-MO component of the 2NH  MO is given by Eq. (13.248).  The 

distance from the origin of each N H -bond MO to each focus 'c  is given by Eq. (13.249).  The internuclear distance is given 
by Eq. (13.250).  The length of the semiminor axis of the prolate spheroidal N H -bond MO b c  is given by Eq. (13.62).  
The eccentricity, e , is given by Eq. (13.63).  The solution of the semimajor axis a  then allows for the solution of the other axes 
of each prolate spheroid and eccentricity of each N H -bond MO.  Since each of the two prolate spheroidal N H -bond MOs 
comprises a 2H -type-ellipsoidal MO that transitions to the N  AO, the energy E  in Eq. (13.251) adds to that of the two 

corresponding 2H -type ellipsoidal MOs to give the total energy of the 2NH  MO.  From the energy equation and the relationship 

between the axes, the dimensions of the 2NH  MO are solved. 

The energy components of eV , pV , T , mV , and TE  are twice those of OH  and NH  given by Eqs. (13.67-13.73) and 

equal to those of 2H O  given by Eqs. (13.172-13.178).  Similarly to 2H O , since each prolate spheroidal 2H -type MO transitions 

to the N  AO and the energy of the 2N p  shell must remain constant and equal to the negative of the ionization energy given by 

Eq. (13.251), the total energy  2TE NH  of the 2NH  MO is given by the sum of the energies of the orbitals corresponding to the 

composition of the linear combination of the N  AO and the two 2H -type ellipsoidal MOs that forms the 2NH  MO as given by 

Eq. (13.318): 
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 (13.319) 

The two hydrogen atoms and the nitrogen atom can achieve an energy minimum as a linear combination of two 2H -type 

ellipsoidal MOs each having the proton and the nitrogen nucleus as the foci.  Each N H -bond MO comprises the same 2N p  

shell of constant energy given by Eq. (13.251).  Thus, the energy of the 2NH  MO is also given by the sum of that of the two 

2H -type ellipsoidal MOs given by Eq. (11.212) minus the energy of the redundant nitrogen atom of the linear combination given 

by Eq. (13.251): 
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 (13.320) 

 2TE NH  given by Eq. (13.319) is set equal to two times the energy of the 2H -type ellipsoidal MO minus the energy of the 

2N p  shell given by Eq. (13.320): 

  
2

0
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3 3 '
 ln 1 14.53414 48.73660 

4 ' 2 8 'T

ae a c
E NH eV eV

c a a c
            

 (13.321) 

From the energy relationship given by Eq. (13.321) and the relationship between the axes given by Eqs. (13.248-13.250) and 
(13.62-13.63), the dimensions of the 2NH  MO can be solved. 

Substitution of Eq. (13.249) into Eq. (13.321) gives: 
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0 0 0

0.7121543 3
 ln 1 34.20246
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 (13.322) 

The most convenient way to solve Eq. (13.322) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is  
 11

01.36276 7.21141  10  a a X m   (13.323) 

Substitution of Eq. (13.323) into Eq. (13.249) gives:  
 11

00.98514 5.21312  10  c a X m    (13.324) 

The internuclear distance given by multiplying Eq. (13.324) by two is:  
 10

02 1.97027 1.04262  10  c a X m    (13.325) 

The experimental bond distance is [32]: 
 102 1.024  10  c X m   (13.326) 
Substitution of Eqs. (13.323-13.324) into Eq. (13.62) gives: 
 11

00.94160 4.98276  10  b c a X m    (13.327) 

Substitution of Eqs. (13.323-13.324) into Eq. (13.63) gives: 
 0.72290e   (13.328) 
The nucleus of the H  atom and the nucleus of the N  atom comprise the foci of the 2H -type ellipsoidal MO.  The parameters of 

the point of intersection of each 2H -type ellipsoidal MO and the 2 xN p  AO or 2 yN p  AO are given by Eqs. (13.84-13.95) and 

(13.261-13.270).  Using Eqs. (13.323-13.325) and (13.327-13.328), the polar intersection angle '  given by Eq. (13.261) with 

7 00.93084nr r a   is 

 ' 114.61    (13.329) 
Then, the angle 2N pAO  the radial vector of the 2 xN p  AO or 2 yN p  AO makes with the internuclear axis is 

 2 180 114.61 65.39N pAO       (13.330) 

as shown in Figure 13.5.  The parametric angle 
2H MO   given by Eqs. (13.264-13.265), (13.327), and (13.330) is: 

 
2

64.00H MO    (13.331) 

Then, the distance 
2H MOd  along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of intersection of the 

orbitals given by Eqs. (13.267), (13.323), and (13.331) is: 
 

2

11
00.59748 3.16175  10  H MOd a X m   (13.332) 

The distance 2N pAOd  along the internuclear axis from the origin of the N  atom to the point of intersection of the orbitals given 

by Eqs. (13.269), (13.324), and (13.332) is: 
 11

2 00.38765 2.05137  10  N pAOd a X m   (13.333) 

As shown in Eq. (13.318), in addition to the p -orbital charge-density modulation, the uniform charge-density in the xp  

and yp  orbitals is increased by a factor of 0.25 and the H  atoms are each decreased by a factor of 0.25.  Using the orbital 

composition of 2NH  (Eq. (13.318)), the radii of 01 0.14605N s a  (Eq. (10.51)), 02 0.69385N s a  (Eq. (10.62)), and 

02 0.93084N p a  (Eq. (10.142)) shells, and the parameters of the 2NH  MO given by Eqs. (13.3-13.4) and (13.323-13.333), the 

charge-density of the 2NH  MO comprising the linear combination of two N H -bond MOs ( NH -type ellipsoidal MOs given 

in the Energies of NH  section) according to Eq. (13.318) is shown in Figure 13.7.  Each N H -bond MO comprises a 2H -type 

ellipsoidal MO and an 2N p  AO having the dimensional diagram shown in Figure 13.5. 
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Figure 13.7.   2NH  MO comprising the linear combination of two N H -bond MOs.  Each N H -bond MO comprises the 

superposition of a 2H -type ellipsoidal MO and the 2 xN p  AO or the 2 yN p  AO with a relative charge-density of 0.75 to 1.25; 

otherwise, the 2N p  orbitals are the same as those of the nitrogen atom.  The internuclear axis of one N H  bond is 

perpendicular to the bonding xp  orbital, and the internuclear axis of the other N H  bond is perpendicular to the bonding yp  

orbital.  (A) Color scale, translucent view of the charge-density of the 2NH  MO from the top.  For each N H  bond, the 

ellipsoidal surface of each 2H -type ellipsoidal MO transitions to a 2N p  AO.  The 2N p  shell, the 2N s  shell, the 1N s  shell, 

and the nuclei (red, not to scale) are shown.  (B) Cut-away view showing the inner most 1N s  shell, and moving radially, the 
2N s  shell, the 2N p  shell, and the 2H -type ellipsoidal MO that transitions to a 2N p  AO for each N H  bond.  Bisector 

current not shown. 
 

 
 
 

ENERGIES OF 2NH  
The energies of 2NH  given by the substitution of the semiprincipal axes ((Eqs. (13.323-13.325) and (13.327)) into the energy 

equations (Eqs. (13.172-13.176)) are: 
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 (13.338) 

where  2TE NH  is given by Eq. (13.319) which is reiteratively matched to Eq. (13.320) within five-significant-figure round-off 

error. 
 

VIBRATION OF 2NH  
The vibrational energy levels of 2NH  may be solved as two equivalent coupled harmonic oscillators by developing the 

Lagrangian, the differential equation of motion, and the eigenvalue solutions [2] wherein the spring constants are derived from 
the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type 
Molecules section. 
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THE DOPPLER ENERGY TERM OF 2NH  
The radiation reaction force in the case of the vibration of 2NH  in the transition state corresponds to the Doppler energy, DE , 

given by Eq. (11.181) and Eqs. (13.22) and (13.144) that is dependent on the motion of the electrons and the nuclei.  The kinetic 
energy of the transient vibration is derived from the corresponding central forces.  The equations of the radiation reaction force 
of dihydrogen and dideuterium nitride are the same as those of the corresponding water molecules with the substitution of the 
dihydrogen and dideuterium nitride parameters.  Using Eqs. (11.136) and (13.207-13.209), the angular frequency of the reentrant 
oscillation in the transition state is 
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    (13.339) 

where b  is given by Eq. (13.327).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)): 

 165.54150  10  / 36.47512 KE X rad s eV     (13.340) 

In Eq. (11.181), substitution of  2TE H  (Eqs. (11.212) and (13.75)), the maximum total energy of each 2H -type MO, for hE  , 

the mass of the electron, em , for M , and the kinetic energy given by Eq. (13.340) for KE  gives the Doppler energy of the 

electrons for the reentrant orbit: 
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 (13.341) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their 
corresponding frequency.  The decrease in the energy of 2NH  due to the reentrant orbit in the transition state corresponding to 

simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by 

Eq. (13.341) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of 2NH .  Using the 

experimental 14
2NH  vibrational energy of 13301.110 0.40929 vibE cm eV   [33] gives: 
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 (13.343) 

per bond.  As in the case for 2H O , the reentrant orbit for the binding of a hydrogen atom to a NH  radical causes the bonds to 

oscillate by increasing and decreasing in length along the two N H  bonds at a relative phase angle of 180°.  Since the 

vibration and reentrant oscillation is along two bonds for the asymmetrical stretch ( 3v ), oscE  for 14
2NH ,  14

2oscE NH , is: 
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 (13.344) 

Using Eq. (13.341), Eqs. (13.342-13.344), and the 14
2ND  vibrational energy of 12410.79 0.29890 vibE cm eV  , 

calculated from the experimental 14
2NH  vibrational energy using Eq. (11.148), the corresponding  14

2oscE ND  is: 

    14
2
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2
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eV

    
 

 

 (13.345) 
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TOTAL AND BOND ENERGIES OF 14
2NH  AND 14

2ND  
14

2T oscE NH 
   

, the total energy of the 14
2NH including the Doppler term, is given by the sum of  2TE NH  (Eq. (13.321)) and 

 14
2oscE NH  given Eqs. (13.339-13.344): 

        14 14 14
2 2 2 22T osc e m p osc T oscE NH V T V V E N p E NH E NH E NH 

   
         (13.346) 
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 (13.347) 

From Eqs. (13.344) and (13.346-13.347), the total energy of 14
2NH  is: 
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 (13.348) 

where the experimental 14
2NH  vibrational energy was used for the 

k


  term.  14

2T oscE ND 
   

, the total energy of 14
2ND  

including the Doppler term is given by the sum of    2 2T TE ND E NH  (Eq. (13.321)) and  14
2oscE ND  given by Eq. (13.345). 
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 (13.349) 

where the experimental 14
2NH  vibrational energy corrected for the reduced mass difference of hydrogen and deuterium was used 

for the 
k


  term.  The corresponding bond dissociation energy, DE , is given by the sum of the total energies of the 

corresponding hydrogen nitride radical and hydrogen atom minus the total energy of dihydrogen nitride,  14
2T oscE NH . 

Thus, DE of 14
2NH  is given by: 

 14 14 14
2 2( ) ( )D T oscE NH E H E NH E NH   

      
    (13.350) 

where 14( )TE NH  is given by the of the sum of the experimental energies of 14N  (Eq. (13.251)), H  (Eq. (13.154)), and the 

negative of the bond energy of 14NH  (Eq. (13.312)): 
 14( ) 13.59844 14.53414 3.42 31.55258 E NH eV eV eV eV       (13.351) 

From Eqs. (13.154), (13.348), and (13.350-13.351), 14
2DE NH 

 
 

 is: 
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 (13.352) 

The experimental 14
2NH  bond dissociation energy from Ref. [34] and Ref. [35] is: 

 14
2( ) 88 4 / 3.8160 DE NH kcal mole eV    (13.353) 

 14
2( ) 91.0 0.5 / 3.9461 DE NH kcal mole eV    (13.354) 

Similarly, DE of 14
2ND  is given by: 

  14 14 14
2 2( ) ( )D T oscE ND E D E ND E ND   

      
    (13.355) 
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where 14( )TE ND  is given by the of the sum of the experimental energies of 14N  (Eq. (13.251)), D  (Eq. (13.155)), and the 

negative of the bond energy of 14ND  (Eq. (13.315)): 
 14( ) 13.603 14.53414 3.513 31.6506 E ND eV eV eV eV       (13.356) 

From Eqs. (13.155), (13.349), and (13.355-13.356), 14
2DE ND 

 
 

 is 

  14
2( ) 13.603 31.6506 49.19366 3.9401 DE ND eV eV eV eV       (13.357) 

The 14
2ND  bond dissociation energy calculated from the average of the experimental bond energies [34-35] and vibrational 

energy of 14
2NH  [33] is: 
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BOND ANGLE OF 2NH  
The 2NH  MO comprises a linear combination of two N H -bond MOs.  Each N H -bond MO comprises the superposition 

of a 2H -type ellipsoidal MO and the 2 xN p  AO or the 2 yN p  AO with a relative charge density of 0.75 to 1.25; otherwise, the 

2N p  AOs are the same as those of the nitrogen atom.  A bond is also possible between the two H atoms of the N H  bonds.  
Such H H  bonding would decrease the N H  bond strength since electron density would be shifted from the N H  bonds 
to the H H  bond.  Thus, the bond angle between the two N H  bonds is determined by the condition that the total energy of 
the 2H -type ellipsoidal MO between the terminal H  atoms of the N H  bonds is zero.  From Eqs. (11.79) and (13.228), the 

distance from the origin to each focus of the H H  ellipsoidal MO is 
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 (13.359) 

The internuclear distance from Eq. (13.229) is:  

 02 ' 2
2

aa
c   (13.360) 

The length of the semiminor axis of the prolate spheroidal H H  MO b c  is given by Eq. (13.167). 
Since the two 2H -type ellipsoidal MOs comprise 75% of the H  electron density of 2H  and the energy of each 2H -type 

ellipsoidal MO is matched to that of the 2N p  AO; the component energies and the total energy TE  of the H H  bond are 

given by Eqs. (13.67-13.73) except that eV , T , and mV  are corrected for the energy matching factor of 0.93613 given in Eq. 

(13.248).  Substitution of Eq. (13.359) into Eq. (13.233) with the energy-matching factor gives: 
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 (13.361) 

From the energy relationship given by Eq. (13.361) and the relationship between the axes given by Eqs. (13.359-13.360) and 
(13.167-13.168), the dimensions of the H H  MO can be solved. 

The most convenient way to solve Eq. (13.361) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is:  
 10

04.9500 2.6194  10  a a X m   (13.362) 

Substitution of Eq. (13.362) into Eq. (13.359) gives: 
 11

01.5732 8.3251  10  c a X m    (13.363) 

The internuclear distance given by multiplying Eq. (13.363) by two is:  
 10

02 3.1464 1.6650  10  c a X m    (13.364) 

Substitution of Eqs. (13.362-13.363) into Eq. (13.167) gives: 
 10

04.6933 2.4836  10  b c a X m    (13.365) 

Substitution of Eqs. (13.362-13.363) into Eq. (13.168) gives: 
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 0.3178e   (13.366) 
Using, 2 'H Hc   (Eq. (13.364)), the distance between the two H  atoms when the total energy of the corresponding MO is 

zero (Eq. (13.361)), and 2 'N Hc   (Eq. (13.325)), the internuclear distance of each N H  bond, the corresponding bond angle can 

be determined from the law of cosines.  Using, Eq. (13.242), the bond angle   between the N H  bonds is: 
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 (13.367) 

The experimental angle between the N H  bonds is [32]: 
 103.3    (13.368) 

The results of the determination of bond parameters of 2NH  and 2ND  are given in Table 13.1.  The calculated results are 

based on first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement 
between the experimental and calculated results is excellent. 
 
AMMONIA ( 3NH ) 
Ammonia ( 3NH ) is formed by the reaction of a hydrogen atom with a dihydrogen nitride radical: 

 2 3NH H NH   (13.369) 

3NH  can be solved using the same principles as those used to solve 2NH  except that three rather than two 2H -type prolate 

spheroidal molecular orbitals (MOs) serve as basis functions in a linear combination with nitrogen atomic orbitals (AOs) to form 
the MO of 3NH . 

 
FORCE BALANCE OF 3NH  

3NH  comprises three chemical bonds between nitrogen and hydrogen.  Each N H  bond comprises two spin-paired electrons 

with one from an initially unpaired electron of the nitrogen atom and the other from the hydrogen atom.  Each H -atom electron 
forms a 2H -type ellipsoidal MO with one of the initially unpaired N -atom electrons, 2 xp , 2 yp , or 2 zp , such that the proton 

and the N  nucleus serve as the foci.  The initial N  electron configuration given in the Seven-Electron Atoms section is 
2 2 31 2 2s s p , and the orbital arrangement is given by Eqs. (10.134) and (13.246).  The radius and the energy of the 2N p  shell are 

unchanged with bond formation.  The central paramagnetic force due to spin of each N H  bond is provided by the spin-paring 
force of the 3NH  MO that has the symmetry of an s  orbital that superimposes with the 2N p  orbitals such that the 

corresponding angular momenta are unchanged. 
As in the case of 2H , each of three N H -bond MOs is a prolate spheroid with the exception that the ellipsoidal MO 

surface cannot extend into the N  atom for distances shorter than the radius of the 2 p  shell since it is energetically unfavorable.  
Thus, the MO surface comprises a prolate spheroid at each H  proton that is continuous with the 2 p  shell at the N  atom.  The 

energies in the 3NH  MO involve only each 2N p  and each 1H s  electron with the formation of each N H  bond.  The sum of 

the energies of the prolate spheroids is matched to that of the 2 p  shell.  The forces are determined by these energies.  As in the 

cases of NH  and 2NH , the linear combination of each 2H -type ellipsoidal MO with each 2N p  AO must involve a 25% 

contribution from the 2H -type ellipsoidal MO to the 2N p  AO in order to match potential, kinetic, and orbital energy 

relationships.  Thus, the 3NH  MO must comprise three N H  bonds with each comprising 75% of a 2H -type ellipsoidal MO 

(1/2 +25%) and a nitrogen AO: 
    2 2 2 31 2  0.75  1 2  0.75  1 2  0.75   x y zN p AO H MO N p AO H MO N p AO H MO NH MO         (13.370) 

The force constant 'k  of each 2H -type-ellipsoidal-MO component of the 3NH  MO is given by Eq. (13.248).  The 

distance from the origin of each N H -bond MO to each focus 'c  is given by Eq. (13.249).  The internuclear distance is given 
by Eq. (13.250).  The length of the semiminor axis of the prolate spheroidal N H -bond MO b c  is given by Eq. (13.62).  
The eccentricity, e , is given by Eq. (13.63).  The solution of the semimajor axis a  then allows for the solution of the other axes 
of each prolate spheroid and eccentricity of each N H -bond MO.  Since each of the three prolate spheroidal N H -bond 
MOs comprises a 2H -type-ellipsoidal MO that transitions to the N  AO, the energy E  in Eq. (13.251) adds to that of the three 

corresponding 2H -type ellipsoidal MOs to give the total energy of the 3NH  MO.  From the energy equation and the relationship 

between the axes, the dimensions of the 3NH  MO are solved. 

The energy components of eV , pV , T , mV , and TE  are three times those of OH  and NH  given by Eqs. (13.67-13.73) 

and 1.5 times those of 2H O  given by Eqs. (13.172-13.178).  Similarly to 2H O , since each prolate spheroidal 2H -type MO 

transitions to the N  AO and the energy of the 2N p  shell must remain constant and equal to the negative of the ionization 

energy given by Eq. (13.251), the total energy  3TE NH  of the 3NH  MO is given by the sum of the energies of the orbitals 
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corresponding to the composition of the linear combination of the N  AO and the three 2H -type ellipsoidal MOs that forms the 

3NH  MO as given by Eq. (13.370): 

 

   3

2
0

0

2  

            ( ;  )

3 3 '
            3  ln 1 14.53414 

8 ' 2 8 '

T T

T

E NH E E p shell

E E ionization N

ae a c
eV

c a a c

 

 

          

 (13.371) 

The three hydrogen atoms and the nitrogen atom can achieve an energy minimum as a linear combination of three 2H -type 

ellipsoidal MOs each having the proton and the nitrogen nucleus as the foci.  Each N H -bond MO comprises the same 2N p  

shell of constant energy given by Eq. (13.251).  Thus, an energy term of the 3NH  MO is given by the sum of the three 2H -type 

ellipsoidal MOs given by Eq. (11.212) minus the energy of the redundant nitrogen atom of the linear combination given by Eq. 
(13.251).  The total sum is determined by the energy matching condition of the binding atoms. 

In Eq. (13.248), the equipotential condition of the union of each 2H -type-ellipsoidal-MO and the N  AO was met when 

the force constant used to determine the ellipsoidal parameter 'c  was normalized by the ratio of the ionization energy of N  
14.53414 eV  [6] and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H  given by 
Eq. (1.264).  This normalized the force to match that of the Coulombic force alone to meet the force matching condition of the 
NH  MO under the influence of the proton and the N  nucleus.  The minimum total energy of the 3NH  MO from the sum of 

energies of a linear combination from four atoms is determined using the energy matching condition of Eq. (13.248).  Since each 
of the three prolate spheroidal N H -bond MOs of 3NH  comprises a 2H -type-ellipsoidal MO that transitions to the N  AO and 

the energy matching condition is met, the nitrogen energy E  (Eq. (13.251)) and the energy (Eq. (1.264)) of a hydrogen atomic 
orbital ( H  AO),  CoulombE H , corresponding to the Coulombic force of e  from the nitrogen nucleus is subtracted from the sum 

of the energies of the three corresponding 2H -type ellipsoidal MOs to given an energy minimum.  From another perspective, the 

electron configuration of 2NH  is equivalent to that of OH  and is given by Eq. (10.174).  2NH  serves as a one-electron atom 

that is energy matched by the H  AO as a basis element to minimize the energy of 3NH  in the formation of the third N H -

bond. 
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 (13.372) 

 3TE NH  given by Eq. (13.371) is set equal to Eq. (13.372), three times the energy of the 2H -type ellipsoidal MO minus the 

energy of the 2N p  shell and the H  AO: 
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 (13.373) 

From the energy relationship given by Eq. (13.373) and the relationship between the axes given by Eqs. (13.248-13.250) and 
(13.62-13.63), the dimensions of the 3NH  MO can be solved. 

Substitution of Eq. (13.249) into Eq. (13.373) gives: 
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The most convenient way to solve Eq. (13.374) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is:  
 11

01.34750 7.13066  10  a a X m   (13.375) 

Substitution of Eq. (13.375) into Eq. (13.249) gives:  
 11

00.97961 5.18385  10  c a X m    (13.376) 

The internuclear distance given by multiplying Eq. (13.376) by two is:  
 10

02 1.95921 1.03677  10  c a X m    (13.377) 

The experimental bond distance is [32]: 
 102 1.012  10  c X m   (13.378) 
Substitution of Eqs. (13.375-13.376) into Eq. (13.62) gives: 
 11

00.92527 4.89633  10  b c a X m    (13.379) 

Substitution of Eqs. (13.375-13.376) into Eq. (13.63) gives: 
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 0.72698e   (13.380) 
The nucleus of the H  atom and the nucleus of the N  atom comprise the foci of the 2H -type ellipsoidal MO.  The parameters of 

the point of intersection of each 2H -type ellipsoidal MO and the 2 xN p , 2 yN p , or 2 zN p  AO are given by Eqs. (13.84-13.95), 

(13.261-13.270), and (13.261-13.270).  Using Eqs. (13.375-13.377) and (13.379-13.380), the polar intersection angle '  given 
by Eq. (13.261) with 7 00.93084nr r a   is: 

 ' 115.89    (13.381) 
Then, the angle 2N pAO  the radial vector of the 2 xN p , 2 yN p , or 2 zN p  AO makes with the internuclear axis is 

 2 180 115.89 64.11N pAO       (13.382) 

as shown in Figure 13.5.  The parametric angle 
2H MO   given by Eqs. (13.264-13.265), (13.379), and (13.382) is: 

 
2

64.83H MO    (13.383) 

Then, the distance 
2H MOd  along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of intersection of the 

orbitals given by Eqs. (13.267), (13.375), and (13.383) is: 
 

2

11
00.57314 3.03292  10  H MOd a X m   (13.384) 

The distance 2N pAOd  along the internuclear axis from the origin of the N  atom to the point of intersection of the orbitals given 

by Eqs. (13.269), (13.376), and (13.384) is: 
 11

2 00.40647 2.15093  10  N pAOd a X m   (13.385) 

As shown in Eq. (13.370), in addition to the p -orbital charge-density modulation, the uniform charge-density in the xp , 

yp , and zp  orbitals is increased by a factor of 0.25 and the H  atoms are each decreased by a factor of 0.25.  Using the orbital 

composition of 3NH  (Eq. (13.370)), the radii of 01 0.14605N s a  (Eq. (10.51)), 02 0.69385N s a  (Eq. (10.62)), and 

02 0.93084N p a  (Eq. (10.142)) shells, and the parameters of the 3NH  MO given by Eqs. (13.3-13.4) and (13.375-13.385), the 

charge-density of the 3NH  MO comprising the linear combination of three N H -bond MOs ( NH -type ellipsoidal MOs given 

in the Energies of NH  section) according to Eq. (13.370) is shown in Figure 13.8.  Each N H -bond MO comprises a 2H -type 

ellipsoidal MO and an 2N p  AO having the dimensional diagram shown in Figure 13.5. 
 

Figure 13.8.  3NH  MO comprising the linear combination of three N H -bonds.  Each N H -bond MO comprises the 

superposition of a 2H -type ellipsoidal MO and the 2 xN p , 2 yN p , or 2 zN p  AO with a relative charge-density of 0.75 to 1.25; 

otherwise, the 2N p  orbitals are the same as those of the nitrogen atom.  The each internuclear axis of one N H  bond is 

perpendicular to the bonding p  orbital.  (A) Color scale, translucent view of the charge-density of the 3NH  MO shown 

obliquely from the top.  For each N H  bond, the ellipsoidal surface of each 2H -type ellipsoidal MO transitions to a 2N p  AO.  

The 2N p  shell, the 2N s  shell, the 1N s  shell, and the nuclei (red, not to scale) are shown.  (B) Off-center cut-away view 
showing the complete inner most 1N s  shell, and moving radially, the cross section of the 2N s  shell, the 2N p  shell, and the 

2H -type ellipsoidal MO that transitions to a 2N p  AO for each N H  bond.  Bisector current not shown.  (C)-(E) Color scale, 

side-on, top, and bottom translucent views of the charge-density of the 3NH  MO, respectively. 
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ENERGIES OF 3NH   
The energies of 3NH  given by the substitution of the semiprincipal axes ((Eqs. (13.375-13.377) and (13.379)) into the energy 

equations (Eqs. (13.67-13.73)) multiplied by three are: 
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where  3TE NH  is given by Eq. (13.371) which is reiteratively matched to Eq. (13.372) within five-significant-figure round-off 

error. 
 

VIBRATION OF 3NH  
The vibrational energy levels of 3NH  may be solved as three equivalent coupled harmonic oscillators by developing the 

Lagrangian, the differential equation of motion, and the eigenvalue solutions [2] wherein the spring constants are derived from 
the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type 
Molecules section. 
 

THE DOPPLER ENERGY TERM OF 3NH  
The radiation reaction force in the case of the vibration of 3NH  in the transition state corresponds to the Doppler energy, DE , 

given by Eq. (11.181) and Eqs. (13.22) and (13.144) that is dependent on the motion of the electrons and the nuclei.  The kinetic 
energy of the transient vibration is derived from the corresponding central forces.  The equations of the radiation reaction force 
of ammonia are the same as those of the corresponding water and dihydrogen and dideuterium nitride radicals with the 
substitution of the ammonia parameters.  Using Eqs. (11.136) and (13.207-13.209), the angular frequency of the reentrant 
oscillation in the transition state is 
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3
160
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2 4

5.68887  10  /
e
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X rad s
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    (13.391) 

where b  is given by Eq. (13.379).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)): 

 165.68887  10  / 37.44514 KE X rad s eV     (13.392) 

In Eq. (11.181), substitution of  2TE H  (Eqs. (11.212) and (13.75)), the maximum total energy of each 2H -type MO acting 

independently due to the 3hD  symmetry point group, for hE  , the mass of the electron, em , for M , and the kinetic energy given 

by Eq. (13.392) for KE  gives the Doppler energy of the electrons of each of the three bonds for the reentrant orbit: 

 
 

2 2

2 37.44514 2
31.6353683 0.38298 K

D h
e

e eVE
E E eV eV

Mc m c      (13.393) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their 
corresponding frequency.  The decrease in the energy of 3NH  due to the reentrant orbit in the transition state corresponding to 

simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by 

Eq. (13.393) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of 3NH .  Using the 

experimental 14
3NH  vibrational energy of 13443.59 0.426954 vibE cm eV   [36] gives: 

 
1

'
2osc D Kvib D

k
E E E E


      (13.394) 
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  1
' 0.38298 0.426954 0.16950 

2oscE eV eV eV      (13.395) 

per bond.  The reentrant orbit for the binding of a hydrogen atom to a 2NH  radical involves three N H  bonds.  Since the 

vibration and reentrant oscillation is along three bonds, oscE  for 14
3NH ,  14

3oscE NH , is: 

    14
3

1 1
3 3 0.38298 0.426954 0.50850 

2 2osc D

k
E NH E eV eV eV


                

  (13.396) 

Using Eq. (13.393), Eqs. (13.394-13.396), and the 14
3ND  experimental vibrational energy of 

12563.96 0.317893 vibE cm eV   [36], the corresponding  14
2oscE ND  is: 

    14
3

1
3 0.38298 0.317893 0.67209 

2oscE ND eV eV eV
      
 

 (13.397) 

 

TOTAL AND BOND ENERGIES OF 14
3NH  AND 14

3ND  
14

3T oscE NH 
   

, the total energy of the 14
3NH including the Doppler term, is given by the sum of  3TE NH  (Eq. (13.373)) and 

 14
3oscE NH  given Eqs. (13.391-13.396): 
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 (13.399) 

From Eqs. (13.396) and (13.398-13.399), the total energy of 14
2NH  is: 
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 (13.400) 

where the experimental 14
3NH  vibrational energy was used for the 

k


  term.  14

3T oscE ND 
   

, the total energy of 14
3ND  

including the Doppler term is given by the sum of    3 3T TE ND E NH  (Eq. (13.373)) and  14
3oscE ND  given by Eq. (13.397): 
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 (13.401) 

where the experimental 14
3ND  vibrational energy was used for the 

k


  term.  The corresponding bond dissociation energy, 

DE , is given by the sum of the total energies of the corresponding dihydrogen nitride radical and hydrogen atom minus the total 

energy of ammonia,  14
3T oscE NH . 

Thus, DE of 14
3NH  is given by: 

 14 14 14
3 2 3( ) ( )D T oscE NH E H E NH E NH   

      
    (13.402) 

where 14
2( )TE NH  is given by the of the sum of the experimental energies of 14N  (Eq. (13.251)), two H  (Eq. (13.154)), and the 

negative of the bond energies of 14NH  (Eq. (13.312)) and 14
2NH  (Eq. (13.354)): 

  14
2( ) 2 13.59844 14.53414 3.42 3.946 49.09709E NH eV eV eV eV eV        (13.403) 
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From Eqs. (13.154), (13.400), and (13.402-13.403), 14
2DE NH 

 
 

 is: 

 
 

14 14 14
3 2 3( ) ( )

13.59844 49.09709 67.27466 4.57913 

D T oscE NH E H E NH E NH

eV eV eV eV

   
      

  

     
 (13.404) 

The experimental 14
3NH  bond dissociation energy [37] is: 

 14
3( ) 4.60155 DE NH eV  (13.405) 

Similarly, DE of 14
3ND  is given by: 

  14 14 14
3 2 3( ) ( )D T oscE ND E D E ND E ND   

      
    (13.406) 

where 14
2( )TE ND  is given by the of the sum of the experimental energies of 14N  (Eq. (13.251)), two times the energy of D  (Eq. 

(13.155)), and the negative of the bond energies of 14ND  (Eq. (13.315)) and 14
2ND  (Eq. (13.358)): 

  14
2( ) 2 13.603 14.53414 3.5134 3.9362 49.18981 E ND eV eV eV eV eV        (13.407) 

From Eqs. (13.155), (13.401), and (13.406-13.407), 14
3DE ND 

 
 

 is: 

  14
3( ) 13.603 49.18981 67.43780 4.64499 DE ND eV eV eV eV       (13.408) 

The experimental 14
3ND  bond dissociation energy [37] is: 

 14
3( ) 4.71252 DE ND eV  (13.409) 

 

BOND ANGLE OF 3NH  
Using, 2 'H Hc   (Eq. (13.364)), the distance between the two H  atoms when the total energy of the corresponding MO is zero 

(Eq. (13.361)), and 2 'N Hc  , the internuclear distance of each N H  bond (Eq. (13.377)), the corresponding bond angle can be 

determined from the law of cosines.  Using Eq. (13.367), the bond angle   between the N H  bonds is: 
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2 1.95921 3.14643
cos cos 0.28956 106.67
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 (13.410) 

The experimental angle between the N H  bonds is [36]: 
 106.67    (13.411) 

The 3NH  molecule has a pyramidal structure with the nitrogen atom along the z-axis at the apex and the hydrogen atoms 

at the base in the xy-plane.  Since any two N H  bonds form an isosceles triangle, the distance origin Hd   from the origin to the 

nucleus of a hydrogen atom is given by: 

 
2 '

2sin 60
H H
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c
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 (13.412) 

Substitution of Eq. (13.364) into Eq. (13.412) gives: 
 01.81659origin Hd a   (13.413) 

The height along the z-axis of the pyramid from the origin to N  nucleus heightd  is given by: 

    22
2 'height N H origin Hd c d    (13.414) 

Substitution of Eqs. (13.377) and (13.413) into Eq. (13.414) gives: 
 00.73383heightd a  (13.415) 

The angle v  of each N H  bond from the z-axis is given by: 

 1tan origin H
v

height

d

d
 

 
   

 
 (13.416) 

Substitution of Eqs. (13.413) and (13.415) into Eq. (13.416) gives: 
 68.00°v   (13.417) 

The 3NH  MO shown in Figure 13.8 was rendered using these parameters. 

The results of the determination of bond parameters of 3NH  and 3ND  are given in Table 13.1.  The calculated results are based 

on first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 
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HYDROGEN CARBIDE (CH ) 
The methane molecule can be solved by first considering the solution of the hydrogen carbide, dihydrogen carbide, and methyl 
radicals.  The former is formed by the reaction of a hydrogen atom and a carbon atom: 
 H C CH   (13.418) 
The hydrogen carbide radicals, CH  and 2CH , methyl radical, 3CH , and methane, 4CH , can be solved using the same principles 

as those used to solve OH , 2H O , NH , 2NH , and 3NH  with the exception that the carbon 2s  and 2 p  shells hybridize to form 

a single 32sp  shell as an energy minimum. 
 

FORCE BALANCE OF CH  
CH  comprises two spin-paired electrons in a chemical bond between the carbon atom and the hydrogen atom.  The CH  
radical molecular orbital (MO) is determined by considering properties of the binding atoms and the boundary constraints.  The 
prolate spheroidal 2H  MO developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules section satisfies the 

boundary constraints; thus, the H -atom electron forms a 2H -type ellipsoidal MO with one of the C -atom electrons.  However, 

such a bond is not possible with the outer C  electrons in their ground state since the resulting 2H -type ellipsoidal MO would 

have a shorter internuclear distance than the radius of the carbon 2 p  shell, which is not energetically stable.  Thus, when 

bonding the carbon 2s  and 2 p  shells hybridize to form a single 32sp  shell as an energy minimum. 

The C  electron configuration given in the Six-Electron Atoms section is 2 2 21 2 2s s p , and the orbital arrangement is: 

 

       2p state

                

  1        0       -1

   (13.419) 

corresponding to the ground state 3
0P .  The radius 6r  of the 2 p  shell given by Eq. (10.122) is: 

 6 01.20654r a  (13.420) 

The energy of the carbon 2 p  shell is the negative of the ionization energy of the carbon atom given by Eq. (10.123).  
Experimentally, the energy is [12] 

  , 2  ( ;  ) 11.2603 E C p shell E ionization C eV     (13.421) 

The 2C s  atomic orbital (AO) combines with the 2C p  AOs to form a single 32sp  hybridized orbital (HO) with the orbital 
arrangement: 

 

3              2sp  state

                       

 0,0      1,-1      1,0       1,1

     (13.422) 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the four 

electrons.  The sum  3, 2TE C sp of calculated energies of C , C , 2C  , and 3C   from Eqs. (10.123), (10.113-10.114), (10.68),  

 
and (10.48), respectively, is: 

  3, 2 64.3921 48.3125 24.2762 11.27671 148.25751 TE C sp eV eV eV eV eV      (13.423) 

which agrees well with the sum of 148.02532 eV  from the experimental [6] values.  The orbital-angular-momentum interactions 

cancel such that the energy of the  3, 2TE C sp  is purely Coulombic.  By considering that the central field decreases by an 

integer for each successive electron of the shell, the radius 32sp
r  of the 32C sp  shell may be calculated from the Coulombic 

energy using Eq. (10.102). 
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Using Eqs. (10.102) and (13.424), the Coulombic energy  3, 2CoulombE C sp  of the outer electron of the 32C sp  shell is: 
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 (13.425) 

During hybridization, the spin-paired 2s  electrons are promoted to the 32C sp  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (13.152) at the initial radius of the 2s electrons.  From Eq. (10.62) with 6Z  , 
the radius 3r  of the 2C s shell is 

 3 00.84317r a  (13.426) 

Using Eqs. (13.152) and (13.426), the unpairing energy is: 
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 (13.427) 

Using Eqs. (13.425) and (13.427), the energy  3, 2E C sp  of the outer electron of the 32C sp  shell is: 
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 (13.428) 

The nitrogen atom's 2 p -shell electron configuration given by Eq. (10.134) is the same as that of the 32C sp  shell, and nitrogen’s 

calculated energy of 14.61664 eV  given by Eq. (10.143) is a close match with  3, 2E C sp .  Thus, the binding should be very 

similar except that four bonds to hydrogen can occur with carbon. 
The carbon 32C sp  electron combines with the 1H s  electron to form a molecular orbital.  The proton of the H  atom and 

the nucleus of the C  atom are along the internuclear axis and serve as the foci.  Due to symmetry, the other C  electrons are 
equivalent to point charges at the origin.  (See Eqs. (19-38) of Appendix II.)  Thus, the energies in the CH  MO involve only the 

32C sp  and 1H s  electrons.  The forces are determined by these energies. 

As in the case of 2H , the MO is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into 

the 32C sp  HO for distances shorter than the radius of the 32C sp  shell.  Thus, the MO surface comprises a prolate spheroid at the 

H  proton that is continuous with the 32C sp  shell at the C  atom whose nucleus serves as the other focus.  The energy of the 

2H -type ellipsoidal MO is matched to that of the 32C sp  shell.  As in the case with OH  and NH , the linear combination of the 

2H -type ellipsoidal MO with the 32C sp  HO must involve a 25% contribution from the 2H -type ellipsoidal MO to the 32C sp  

HO in order to match potential, kinetic, and orbital energy relationships.  Thus, the CH  MO must comprise 75% of a 2H -type 

ellipsoidal MO and a 32C sp  HO: 

 3
21 2 0.75   C sp H MO CH MO   (13.429) 

The force balance of the CH  MO is determined by the boundary conditions that arise from the linear combination of orbitals 
according to Eq. (13.429) and the energy matching condition between the hydrogen and 32C sp  HO components of the MO. 

As in the case with OH  (Eq. (13.57)), the 2H -type ellipsoidal MO comprises 75% of the CH  MO; so, the electron 

charge density in Eq. (11.65) is given by 0.75e .  The force constant 'k  to determine the ellipsoidal parameter 'c  in terms of 
the central force of the foci is given by Eq. (13.59).  The distance from the origin to each focus 'c  is given by Eq. (13.60).  The 
internuclear distance is given by Eq. (13.61).  The length of the semiminor axis of the prolate spheroidal C H -bond MO b c  
is given by Eq. (13.62).  The eccentricity, e , is given by Eq. (13.63).  The solution of the semimajor axis a  then allows for the 
solution of the other axes of each prolate spheroid and eccentricity of the CH  MO.  Since the CH MO comprises a 2H -type-

ellipsoidal MO that transitions to the 32C sp  HO, the energy  3, 2E C sp  in Eq. (13.428) adds to that of the 2H -type ellipsoidal 

MO to give the total energy of the CH  MO.  From the energy equation and the relationship between the axes, the dimensions of 
the CH  MO are solved. 

The energy components of eV , pV , T , and mV  are those of 2H  (Eqs. (11.207-11.212)) except that they are corrected for 

electron hybridization.  Hybridization gives rise to the 32C sp  HO-shell Coulombic energy  3, 2CoulombE C sp  given by Eq. 

(13.425).  To meet the equipotential condition of the union of the 2H -type-ellipsoidal-MO and the 32C sp  HO, the electron 

energies are normalized by the ratio of 14.82575 eV , the magnitude of  3, 2CoulombE C sp  given by Eq. (13.425), and 

13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  This 
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normalizes the energies to match that of the Coulombic energy alone to meet the energy matching condition of the CH  MO 
under the influence of the proton and the C  nucleus.  The hybridization energy factor 32C sp HO

C  is 

 3

3

2 2

0 0 0 0
2 22

0 0 02

8 8 13.605804 
0.91771
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8 8 0.91771
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C
e e eV

r a

 

 

     (13.430) 

The total energy  TE CH  of the CH  MO is given by the sum of the energies of the orbitals, the 2H -type ellipsoidal MO and 

the 32C sp  HO, that form the hybridized CH  MO.   TE CH  follows from Eq. (13.74) for OH , but the energy of the 32C sp  

HO given by Eq. (13.428) is substituted for the energy of O  and the 2H -type-ellipsoidal-MO energies are those of 2H  (Eqs. 

(11.207-11.212)) multiplied by the electron hybridization factor rather than by the factor of 0.75 : 
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 (13.431) 

To match the boundary condition that the total energy of the entire the 2H -type ellipsoidal MO is given by Eqs. (11.212) and 

(13.75),  TE CH  given by Eq. (13.431) is set equal to Eq. (13.75). 
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 (13.432) 

From the energy relationship given by Eq. (13.432) and the relationship between the axes given by Eqs. (13.60-13.63), the 
dimensions of the CH  MO can be solved. 

Substitution of Eq. (13.60) into Eq. (13.432) gives: 
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 (13.433) 

The most convenient way to solve Eq. (13.433) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is:  

 11
01.67465 8.86186  10  a a X m   (13.434) 

Substitution of Eq. (13.434) into Eq. (13.60) gives: 

 11
01.05661 5.59136  10  c a X m    (13.435) 

The internuclear distance given by multiplying Eq. (13.435) by two is:  
 10

02 2.11323 1.11827  10  c a X m    (13.436) 

The experimental bond distance is [14]: 

 102 1.1198  10  c X m   (13.437) 

Substitution of Eqs. (13.434-13.435) into Eq. (13.62) gives: 

 11
01.29924 6.87527  10  b c a X m    (13.438) 

Substitution of Eqs. (13.434-13.435) into Eq. (13.63) gives: 

 0.63095e   (13.439) 

The nucleus of the H  atom and the nucleus of the C  atom comprise the foci of the 2H -type ellipsoidal MO.  The parameters of 

the point of intersection of the 2H -type ellipsoidal MO and the 32C sp  HO are given by Eqs. (13.84-13.95) and (13.261-13.270).  

The polar intersection angle '  is given by Eq. (13.261) where 3 02
0.91771n sp

r r a   is the radius of the 32C sp  shell.  

Substitution of Eqs. (13.434-13.435) into Eq. (13.261) gives: 

 ' 81.03    (13.440) 

Then, the angle 32C sp HO
  the radial vector of the 32C sp  HO makes with the internuclear axis is: 

 32
180 81.03 98.97

C sp HO
       (13.441) 

as shown in Figure 13.9. 
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Figure 13.9.   The cross section of the CH  MO showing the axes, angles, and point of intersection of the 2H -type ellipsoidal 

MO with the 32C sp  HO.  The continuation of the 2H -type-ellipsoidal-MO basis element beyond the intersection point with the 
32C sp  shell is shown as dashed since it only serves to solve the energy match with the 32C sp  shell and does not represent 

charge density.  Similarly, the vertical dashed line only designates the parameters of the intersection point.  The actual charge 
density is shown by the solid lines.  Legend: a : semimajor axis, b : semiminor axis, 'c : internuclear distance, 

21 : H MOd d , 

31 2
:

C sp HO
  , 32 2

:
C sp HO

d d , and 32
:

sp
R r . 

 

 
 
 

 

The Cartesian i -coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal 
parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -coordinate components at the point 

of intersection.  Thus, the matching elliptic parametric angle 
2H MOt   satisfies the following relationship: 

 3 3 3
202 2 2

sin 0.91771 sin sin H MOsp C sp HO C sp HO
r a b     (13.442) 
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 (13.443) 

with the use of Eq. (13.441).  Substitution of Eq. (13.438) into Eq. (13.443) gives: 
 

2
44.24H MO    (13.444) 

Then, the distance 
2H MOd  along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of intersection of the 

orbitals is given by 
 

2 2
cosH MO H MOd a   (13.445) 

Substitution of Eqs. (13.434) and (13.444) into Eq. (13.445) gives: 
 

2

11
01.19968 6.34845  10  H MOd a X m   (13.446) 

The distance 32C sp HO
d  along the internuclear axis from the origin of the C  atom to the point of intersection of the orbitals is given 

by: 
 3

22
'H MOC sp HO

d d c   (13.447) 

Substitution of Eqs. (13.435) and (13.446) into Eq. (13.447) gives: 

 3

12
02

0.14307 7.57090  10  
C sp HO

d a X m   (13.448) 

As shown in Eq. (13.429), the uniform charge-density in the 32C sp  HO is increased by a factor of 0.25 and the H -atom 

density is decreased by a factor of 0.25.  Using the orbital composition of CH  (Eq. (13.429)), the radii of 01 0.17113C s a  (Eq. 

(10.51)) and 3
02 0.91771C sp a  (Eq. (13.424)) shells, and the parameters of the CH  MO given by Eqs. (13.3-13.4), (13.434-

13.436), and (13.438-13.448), the dimensional diagram and charge-density of the CH  MO comprising the linear combination of 
the 2H -type ellipsoidal MO and the 32C sp  HO according to Eq. (13.429) are shown in Figures 13.9 and 13.10, respectively. 
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Figure 13.10.   CH  MO comprising the superposition of the 2H -type ellipsoidal MO and the 32C sp  HO with a relative 

charge-density of 0.75 to 1.25; otherwise, the 32C sp  HO is unchanged.  (A) Side-on, color scale, translucent view of the charge-

density of the CH  MO.  The ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to the 32C sp  HO, the 32C sp  HO 

shell, 1C s  shell, and the nuclei (red, not to scale) are shown.  (B) Cut-away view showing the inner most 1C s  shell, and moving 
radially, the 32C sp  shell, and the 2H -type ellipsoidal MO that transitions to the 32C sp  HO. 

 

 
 

ENERGIES OF CH  
The energies of CH  are given by the substitution of the semiprincipal axes (Eqs. (13.434-13.435) and (13.438)) into the energy 
equations (Eq. (13.431) and Eqs. (11.207-11.211)) that are corrected for electron hybridization using Eq. (13.430). 
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where  TE CH  is given by Eq. (13.431) which is reiteratively matched to Eq. (13.75) within five-significant-figure round-off 

error. 

VIBRATION AND ROTATION OF CH  
The vibrational energy of CH  may be solved in the same manner as that of OH  and NH  except that the force between the 
electrons and the foci given by Eq. (13.102) is doubled due to electron hybridization of the two shells of carbon after Eq. 
(11.141).  From Eqs. (13.102-13.106) with the substitution of the CH  parameters, the angular frequency of the oscillation is 
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    (13.454) 

where b  is given by Eq. (13.438), 2 'c  is given by Eq. (13.436), and the reduced mass of 12CH  is given by: 
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 (13.455) 

where pm  is the proton mass.  Thus, during bond formation, the perturbation of the orbit determined by an inverse-squared force 

results in simple harmonic oscillatory motion of the orbit, and the corresponding frequency,  0 , for 12CH  given by Eqs. 

(11.136), (11.148), and (13.454) is: 
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     1
140 449.94 

0 5.39828  10  /
k Nm

X radians s
 



    (13.456) 

where the reduced nuclear mass of 12CH  is given by Eq. (13.455) and the spring constant,  0k , given by Eqs. (11.136) and 

(13.454) is:  
   10 449.94 k Nm  (13.457) 

The 12CH  transition-state vibrational energy,  0vibE , given by Planck's equation (Eq. (11.127)) is: 

   14 10 5.39828  10  / 0.35532 2865.86 vibE X rad s eV cm       (13.458) 

e , from the experimental curve fit of the vibrational energies of 12CH  is [14] : 

 12861.6 e cm   (13.459) 

Using Eqs. (13.112-13.118) with  0vibE  given by Eq. (13.458) and 0D  given by Eq. (13.488), the 12CH  1 0     

vibrational energy,  1vibE  is: 

    11 0.33879 2732.61 vibE eV cm  (13.460) 

The experimental vibrational energy of 12CH  using e  and e ex  [14] according to K&P [15] is: 

    11 0.33885 2733 vibE eV cm  (13.461) 

Using Eq. (13.113) with  1vibE  given by Eq. (13.460) and 0D  given by Eq. (13.488), the anharmonic perturbation term, 

0 0x , of 12CH  is: 

 1
0 0 66.624 x cm   (13.462) 

The experimental anharmonic perturbation term, 0 0x , of 12CH  [14] is: 

 1
0 0 64.3 x cm   (13.463)  

The vibrational energies of successive states are given by Eqs. (13.458), (13.112), and (13.462). 
Using b  given by Eq. (13.438), 2 'c  given by Eq. (13.436), 0D  given by Eq. (13.490), and the reduced nuclear mass of 12CD  

given by:  
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where pm  is the proton mass, the corresponding parameters for deuterium carbide 12CD  (Eqs. (13.102-13.121)) are: 

     1
140 449.94 

0 3.96126  10  /
k Nm

X radians s
 



    (13.465) 

   10 449.94 k Nm  (13.466) 

   14 10 3.96126  10  / 0.26074 2102.97 vibE X rad s eV cm       (13.467) 

    11 0.25173 2030.30 vibE eV cm  (13.468) 

 1
0 0 36.335 x cm   (13.469) 

e , from the experimental curve fit of the vibrational energies of 12CD  is [14] : 

 12101.0 e cm   (13.470) 

The experimental vibrational energy of 12CD  using e  and e ex  [14] according to K&P [15] is: 

    11 0.25189 2031.6 vibE eV cm  (13.471) 

and the experimental anharmonic perturbation term, 0 0x , of 12CD  is [14] : 

 1
0 0 34.7 x cm   (13.472) 

which match the predictions given by Eqs. (13.467), (13.468) and (13.469), respectively. 
Using Eqs. (13.133-13.134) and the internuclear distance, 2 'r c , and reduced mass of 12CH  given by Eqs. (13.436) and 

(13.455), respectively, the corresponding eB  is: 

 114.498 eB cm  (13.473) 

The experimental eB  rotational parameter of 12CH  is [14]: 

 114.457 eB cm  (13.474) 
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Using the internuclear distance, 2 'r c , and reduced mass of 12CD  given by Eqs. (13.436) and (13.464), respectively, the 
corresponding eB  is: 

 17.807 eB cm  (13.475) 

The experimental eB  rotational parameter of 12CD  is [14]: 

 17.808 eB cm  (13.476) 

 

THE DOPPLER ENERGY TERMS OF 12CH  AND 12CD  
The equations of the radiation reaction force of hydrogen and deuterium carbide are the same as those of the corresponding 
hydroxyl and hydrogen nitride radicals with the substitution of the hydrogen and deuterium carbide parameters.  Using Eqs. 
(11.136) and (13.140-13.142), the angular frequency of the reentrant oscillation in the transition state is 
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    (13.477) 

where b  is given by Eq. (13.438).  The kinetic energy, KE , is given by Planck’s equation (Eq. (11.127)): 

 162.41759  10  / 15.91299 KE X rad s eV     (13.478) 

In Eq. (11.181), substitution of the total energy of CH ,  TE CH , (Eq. (13.432)) for hE  , the mass of the electron, em , for M , 

and the kinetic energy given by Eq. (13.478) for KE  gives the Doppler energy of the electrons for the reentrant orbit: 

 
 

2 2
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31.63537 0.24966 K

D h
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e eVE
E E eV eV

Mc m c      (13.479) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of CH  due to the reentrant orbit in the transition state corresponding to simple harmonic 
oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by Eq. (13.479) and 

KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of CH .  The experimental 12CH  e  is 

 12861.6  0.35480 cm eV  [14] which matches the predicted e  of  12865.86  0.35532 cm eV  given by Eq. (13.458).  Using 

the predicted e  for KvibE  of the transition state,  12
oscE CH  is:  

  12 1

2osc D Kvib D

k
E CH E E E


      (13.480) 

    12 1
0.24966 0.35532 0.07200 

2oscE CH eV eV eV      (13.481) 

The experimental 12CD  e  is  12101.0  0.26049 cm eV  [14] which matches the predicted e  of  12102.97  0.26074 cm eV  

given by Eq. (13.467).  Using Eq. (13.479) and the predicted e for KvibE of the transition state,  12
oscE CD  is: 

    12 1
0.24966 0.26074 0.11929 

2oscE CD eV eV eV      (13.482) 

TOTAL AND BOND ENERGIES OF 12CH  AND 12CD  
 12

T oscE CH , the total energy of the 12CH  radical including the Doppler term, is given by the sum of  TE CH  (Eq. (13.432)) 

and  12
oscE CH  given by Eq. (13.481): 

          12 3 12 12, 2T osc e m p osc T oscE CH V T V V E C sp E CH E CH E CH          (13.483) 
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From Eqs. (13.480-13.481) and (13.483-13.484), the total energy of 12CH  is: 
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 (13.485) 

where the predicted e  (Eq. (13.458)) was used for the 
k


  term.   12

T oscE CD , the total energy of 12CD  including the 

Doppler term, is given by the sum of    T TE CD E CH  (Eq. (13.432)) and  12
oscE CD  given by Eq. (13.482). 
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 (13.486) 

where the predicted e  (Eq. (13.467)) was used for the 
k


  term.  

The CH  bond dissociation energy,  12
DE CH , is given by the sum of the total energies of the 32C sp  HO and the 

hydrogen atom minus  12
T oscE CH

3: 

      12 3 12, 2 ( )D T oscE CH E C sp E H E CH    (13.487) 

 3, 2E C sp  is given by Eq. (13.428), and  DE H  is given by Eq. (13.154).  Thus, the 12CH  bond dissociation energy, 

 12
DE CH , given by Eqs. (13.154), (13.428), (13.485), and (13.487) is: 
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 (13.488) 

The experimental 12CH  bond dissociation energy is [14]: 

  12 3.47 DE CH eV  (13.489) 

which is a close match to that of NH  as predicted based on the match between the N  and 32C sp  HO energies and electron 
configurations. 

The 12CD  bond dissociation energy,  12
DE CD , is given by the sum of the total energies of the 32C sp  HO and the 

deuterium atom minus  T oscE CD : 

      12 3 12, 2 ( )D T oscE CD E C sp E D E CD    (13.490) 

 3, 2E C sp  is given by Eq. (13.428), and  DE D  is given by Eq. (13.155).  Thus, the 12CD  bond dissociation energy, 

 12
DE CD , given by Eqs. (13.155), (13.428), (13.486), and (13.490) is: 
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 (13.491) 

The experimental 12CD  bond dissociation energy is [14]: 

  12 3.52 DE CD eV  (13.492) 

The results of the determination of bond parameters of CH  and CD  are given in Table 13.1.  The calculated results are 
based on first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement 
between the experimental and calculated results is excellent. 
 

 
3 The hybridization energy is the difference between E C, 2 p shell  given by Eq. (13.421) and E C , 2sp3  given by Eq. (13.428).  

Since this term adds to 
  
E C, 2 p shell  to give the total energy from which E

T  osc

12CH  is subtracted to give 
  
E

D

12CH , it is more 

convenient to simply use 
  
E C , 2sp3  directly in Eq. (13.487). 
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DIHYDROGEN CARBIDE ( 2CH ) 
The dihydrogen carbide radical 2CH  is formed by the reaction of a hydrogen atom with a hydrogen carbide radical: 

 2CH H CH   (13.493) 

2CH  can be solved using the same principles as those used to solve 2H O  and 2NH  with the exception that the carbon 2s  and 

2 p  shells hybridize to form a single 32sp  shell as an energy minimum.  Two diatomic molecular orbitals (MOs) developed in 
the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section serve as basis functions in a linear 
combination with two carbon 32sp  hybridized orbitals (HOs) to form the MO of 2CH .  The solution is very similar to that of 

CH  except that there are two CH  bonds in 2CH . 

 

FORCE BALANCE OF 2CH  
2CH  comprises two chemical bonds between carbon and hydrogen atoms.  Each C H  bond comprises two spin-paired 

electrons with one from an initially unpaired electron of the carbon atom and the other from the hydrogen atom.  Each H -atom 
electron forms a 2H -type ellipsoidal MO with an unpaired C -atom electrons.  However, such a bond is not possible with the 

outer two C  electrons in their ground state since the resulting 2H -type ellipsoidal MO would have a shorter internuclear 

distance than the radius of the carbon 2 p  shell, which is not energetically stable.  Thus, when bonding the carbon 2s  and 2 p  

shells hybridize to form a single 32sp  shell as an energy minimum.  The electron configuration and the energy,  3, 2E C sp , of 

the 32C sp  shell is given by Eqs. (13.422), and (13.428), respectively.  

For each C H  bond, a 32C sp  electron combines with the 1H s  electron to form a molecular orbital.  The proton of the 

H  atom and the nucleus of the C  atom are along each internuclear axis and serve as the foci.  As in the case of 2H , each of the 

two C H -bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into the 32C sp  HO 

for distances shorter than the radius of the 32C sp  shell since it is energetically unfavorable.  Thus, each MO surface comprises a 

prolate spheroid at the H  proton that is continuous with the 32C sp  shell at the C  atom whose nucleus serves as the other focus.  

The radius and the energy of the 32C sp  shell are unchanged with bond formation.  The central paramagnetic force due to spin of 

each C H  bond is provided by the spin-pairing force of the 2CH  MO that has the symmetry of an s  orbital that superimposes 

with the 32C sp  orbitals such that the corresponding angular momenta are unchanged. 

The energies in the 2CH  MO involve only each 32C sp  and each 1H s  electron with the formation of each C H  bond.  

The sum of the energies of the 2H -type ellipsoidal MOs is matched to that of the 32C sp  shell.  As in the cases of OH , 2H O , 

NH , 2NH , 3NH , and CH  the linear combination of each 2H -type ellipsoidal MO with the 32C sp  HO must involve a 25% 

contribution from the 2H -type ellipsoidal MO to the 32C sp  HO in order to match potential, kinetic, and orbital energy 

relationships.  Thus, the 2CH  MO must comprise two C H  bonds with each comprising 75% of a 2H -type ellipsoidal MO and 

a 32C sp  HO: 

 3 3
2 2 21 2 0.75  1 2 0.75   C sp H MO C sp H MO CH MO           (13.494) 

The force balance of the 2CH  MO is determined by the boundary conditions that arise from the linear combination of orbitals 

according to Eq. (13.494) and the energy matching condition between the hydrogen and 32C sp  HO components of the MO. 

The force constant 'k  to determine the ellipsoidal parameter 'c  of the each 2H -type-ellipsoidal-MO component of the 

2CH  MO in terms of the central force of the foci is given by Eq. (13.59).  The distance from the origin of each C H -bond MO 

to each focus 'c  is given by Eq. (13.60).  The internuclear distance is given by Eq. (13.61).  The length of the semiminor axis of 
the prolate spheroidal C H -bond MO b c  is given by Eq. (13.62).  The eccentricity, e , is given by Eq. (13.63).  The solution 
of the semimajor axis a  then allows for the solution of the other axes of each prolate spheroid and eccentricity of each C H -
bond MO.  Since each of the two prolate spheroidal C H -bond MOs comprises a 2H -type-ellipsoidal MO that transitions to 

the 32C sp  HO, the energy  3, 2E C sp  in Eq. (13.428) adds to that of the two corresponding 2H -type ellipsoidal MOs to give 

the total energy of the 2CH  MO.  From the energy equation and the relationship between the axes, the dimensions of the 2CH  

MO are solved. 
The energy components of eV , pV , T , and mV  are twice those of CH  corresponding to the two C H  bonds.  Since 

each prolate spheroidal 2H -type MO transitions to the 32C sp  HO and the energy of the 32C sp  shell must remain constant and 

equal to the  3, 2E C sp  given by Eq. (13.428), the total energy  2TE CH  of the 2CH  MO is given by the sum of the energies 
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of the orbitals corresponding to the composition of the linear combination of the 32C sp  HO and the two 2H -type ellipsoidal 

MOs that forms the 2CH  MO as given by Eq. (13.494).  Using Eq. (13.431),  2TE CH  is given by: 

      
2

3 0
2

0

1 '
, 2  0.91771 2 ln 1 14.63489 

4 ' 2 'T T

ae a c
E CH E E C sp eV

c a a c
            

 (13.495) 

The two hydrogen atoms and the hybridized carbon atom can achieve an energy minimum as a linear combination of two 2H -

type ellipsoidal MOs each having the proton and the carbon nucleus as the foci.  Hybridization gives rise to the 32C sp  HO-shell 

Coulombic energy  3, 2CoulombE C sp  given by Eq. (13.425).  To meet the equipotential condition of the union of the 2H -type-

ellipsoidal-MO and the 32C sp  HO, the electron energies in Eq. (13.495) were normalized by the ratio of 14.82575 eV , the 

magnitude of  3, 2CoulombE C sp  given by Eq. (13.425), and 13.605804 eV , the magnitude of the Coulombic energy between the 

electron and proton of H  given by Eq. (1.264).  The factor given by Eq. (13.430) normalized the energies to match that of the 
Coulombic energy alone to meet the energy matching condition of each C H -bond MO under the influence of the proton and 
the C  nucleus.  Each C H -bond MO comprises the same 32C sp  shell having its energy normalized to that of the Coulombic 

energy between the electron and a charge of e  at the carbon focus of the 2CH  MO.  Thus, the energy of the 2CH  MO is also 

given by the sum of that of the two 2H -type ellipsoidal MOs given by Eq. (11.212) minus the Coulombic energy, 

  13.605804 CoulombE H eV  , of the redundant e  of the linear combination: 
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 (13.496) 

 2TE CH  given by Eq. (13.495) is set equal to two times the energy of the 2H -type ellipsoidal MO minus the Coulombic 

energy of H  given by Eq. (13.496): 
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 (13.497) 

From the energy relationship given by Eq. (13.497) and the relationship between the axes given by Eqs. (13.60-13.63), the 
dimensions of the 2CH  MO can be solved. 

Substitution of Eq. (13.60) into Eq. (13.497) gives: 

 
 

0
2

0

0 0
0

2
1 3 0.91771 2 ln 1 35.03004
22 2

4
3 3

aa
a

ae
e

aaa aa
a

 
           

 (13.498) 

The most convenient way to solve Eq. (13.498) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is  
 11

01.64010 8.67903  10  a a X m   (13.499) 

Substitution of Eq. (13.499) into Eq. (13.60) gives: 

 11
01.04566 5.53338  10  c a X m    (13.500) 

The internuclear distance given by multiplying Eq. (13.500) by two is:  

 10
02 2.09132 1.10668  10  c a X m    (13.501) 

The experimental bond distance is [38]: 

 102 1.111  10  c X m   (13.502) 

Substitution of Eqs. (13.499-13.500) into Eq. (13.62) gives: 

 11
01.26354 6.68635  10  b c a X m    (13.503) 

Substitution of Eqs. (13.499-13.500) into Eq. (13.63) gives: 

 0.63756e   (13.504) 

The nucleus of the H  atom and the nucleus of the C  atom comprise the foci of each 2H -type ellipsoidal MO.  The parameters 

of the point of intersection of each 2H -type ellipsoidal MO and the 32C sp  HO are given by Eqs. (13.84-13.95), (13.261-
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13.270), and (13.440-13.448).  The polar intersection angle '  is given by Eq. (13.261) where 3 02
0.91771n sp

r r a   is the radius 

of the 32C sp  shell.  Substitution of Eqs. (13.499-13.500) into Eq. (13.261) gives: 

 ' 84.54    (13.505) 

Then, the angle 32C sp HO
  the radial vector of the 32C sp  HO makes with the internuclear axis is: 

 32
180 84.54 95.46

C sp HO
       (13.506) 

as shown in Figure 13.9.  The parametric angle 
2H MO  given by Eqs. (13.442-13.443), (13.503), and (13.506) is: 

 
2

46.30H MO    (13.507) 

Then, the distance 
2H MOd  along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of intersection of the 

orbitals given by Eqs. (13.445), (13.499), and (13.507) is: 

 2 0
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 (13.508) 

The distance 32C sp HO
d  along the internuclear axis from the origin of the C  atom to the point of intersection of the orbitals given 

by Eqs. (13.447), (13.500), and (13.508) is: 
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 (13.509) 

As shown in Eq. (13.494), the uniform charge-density in the 32C sp  HO is increased by a factor of 0.25 and the H -atom 

density is decreased by a factor of 0.25 for by each C H  bond.  Using the orbital composition of 2CH  (Eq. (13.494)), the radii 

of 01 0.17113C s a  (Eq. (10.51)) and 3
02 0.91771C sp a  (Eq. (13.424)) shells, and the parameters of the 2CH  MO given by 

Eqs. (13.3-13.4), (13.499-13.501), and (13.503-13.509), the charge-density of the 2CH  MO comprising the linear combination 

of two C H -bond MOs is shown in Figure 13.11.  Each C H -bond MO comprises a 2H -type ellipsoidal MO and a 32C sp  

HO having the dimensional diagram shown in Figure 13.9. 
 
Figure 13.11.   2CH  MO comprising the linear combination of two C H -bond MOs.  Each C H -bond MO comprises the 

superposition of a 2H -type ellipsoidal MO and a 32C sp  HO with a relative charge-density of 0.75 to 1.25; otherwise, the 32C sp  

HO shell is unchanged.  (A) Color scale, translucent view of the charge-density of the 2CH  MO from the top.  For each C H  

bond, the ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to the 32C sp  HO, the 32C sp  HO shell, 1C s  shell, 

and the nuclei (red, not to scale) are shown.  (B) Cut-away view showing the inner most 1C s  shell, and moving radially, the 
32C sp  shell, and the 2H -type ellipsoidal MO that transitions to the 32C sp  HO for each C H  bond.  Bisector current not 

shown. 
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ENERGIES OF 2CH  
The energies of 2CH  are two times those of CH  and are given by the substitution of the semiprincipal axes (Eqs. (13.499-

13.500) and (13.503)) into the energy equations Eq. (13.495) and (Eqs. (13.449-13.452)) that are multiplied by two: 

  
2 2 2

2 2 2 2
0

2
0.91771 ln 72.03287 

4
e

e a a b
V eV

a b a a b
  

  
  

 (13.510) 

 
2

2 2
0

26.02344 
4

p

e
V eV

a b
 


  (13.511) 

  
2 2 2

2 2 2 2
0.91771 ln 21.95990 

e

a a b
T eV

m a a b a a b

 
 

  


 (13.512) 

  
2 2 2

2 2 2 2
0.91771 ln 10.97995 

2
m

e

a a b
V eV

m a a b a a b

  
  

  


 (13.513) 

    
2

0
2

0

1 '
 0.91771 2 ln 1 14.63489 49.66437 

4 ' 2 'T

ae a c
E CH eV eV

c a a c
            

 (13.514) 

where  2TE CH  is given by Eq. (13.495) which is reiteratively matched to Eq. (13.496) within five-significant-figure round-off 

error. 

VIBRATION OF 2CH  
The vibrational energy levels of 2CH  may be solved as two equivalent coupled harmonic oscillators by developing the 

Lagrangian, the differential equation of motion, and the eigenvalue solutions [2] wherein the spring constants are derived from 
the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type 
Molecules section. 
 

THE DOPPLER ENERGY TERMS OF 12
2CH  

The reentrant oscillation of hybridized orbitals in the transition state is not coupled.  Therefore, the equations of the radiation 
reaction force of dihydrogen and dideuterium carbide are the same as those of the corresponding hydrogen carbide radicals with 
the substitution of the dihydrogen and dideuterium carbide parameters.  Using Eqs. (11.136) and (13.140-13.142), the angular 
frequency of the reentrant oscillation in the transition state is 
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where b  is given by Eq. (13.503).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)): 

 162.52077  10  / 16.59214 KE X rad s eV     (13.516) 

In Eq. (11.181), substitution of  2TE H  (Eqs. (11.212) and (13.75)), the maximum total energy of each 2H -type MO, for hE  , 

the mass of the electron, em , for M , and the kinetic energy given by Eq. (13.516) for KE  gives the Doppler energy of the 

electrons of each of the two bonds for the reentrant orbit: 
 

 
 

2 2

2 16.59214 2
31.63537 0.25493 K

D h
e

e eVE
E E eV eV

Mc m c      (13.517) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of 2CH  due to the reentrant orbit of each bond in the transition state corresponding to 

simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by 

Eq. (13.517) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of each C H  bond.  

Using e  given by Eq. (13.458) for KvibE  of the transition state having two independent bonds,  12
2'oscE CH  per bond is:  

  12
2

1
'

2osc D Kvib D

k
E CH E E E


      (13.518) 

    12
2

1
' 0.25493 0.35532 0.07727 

2oscE CH eV eV eV      (13.519) 

Given that the vibration and reentrant oscillation is for two C H  bonds,  12
2oscE CH , is: 
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 (13.520) 

 

TOTAL AND BOND ENERGIES OF 12
2CH  

 12
2T oscE CH , the total energy of the 12

2CH  radical including the Doppler term, is given by the sum of  2TE CH  (Eq. 

(13.497)) and  12
2oscE CH  given by Eq. (13.520). 
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 (13.522) 

From Eqs. (13.518-13.522), the total energy of 12
2CH  is: 

 
   

 

12 12
2 249.66493 

1
                     49.66493 2 0.25493 0.35532 49.81948 

2

T osc oscE CH eV E CH

eV eV eV eV

   

       
 

 (13.523) 

where e  given by Eq. (13.458) was used for the 
k


  term. 

12
2CH  has the same electronic configuration as 14NH .  The dissociation of the bond of the dihydrogen carbide radical 

forms a free hydrogen atom with one unpaired electron and a 32C sp  HO with three unpaired electrons as shown in Eq. (13.422) 

wherein the magnetic moments cannot all cancel.  Thus, the bond dissociation of 12
2CH  gives rise to 12CH  with the same 

electronic configuration as N  as given by Eq. (10.134).  The N  configuration is more stable than H  as shown in Eqs. (10.141-
10.143).  The lowering of the energy of the reactants decreases the bond energy.  The total energy of carbon is reduced by the 
energy in the field of the two magnetic dipoles given by Eq. (7.46) and Eq. (13.424). 
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 (13.524) 

The 2CH  bond dissociation energy,  12
2DE CH , is given by the sum of the total energies of the CH  radical and the hydrogen 

atom minus the sum of  12
2T oscE CH  and ( )E magnetic : 

        12 12 12
2 2( )D T oscE CH E CH E H E CH E magnetic     (13.525) 

where 12( )TE CH  is given by the sum of the energies of the 32C sp  HO,  3, 2E C sp  given by Eq. (13.428),  DE H  given by Eq. 

(13.154), and the negative of the bond energy of 12CH  given by Eq. (13.489): 
 12( ) 13.59844 14.63489 3.47 31.70333 E CH eV eV eV eV       (13.526) 

Thus, the 12
2CH  bond dissociation energy,  12

2DE CH , given by Eqs. (13.154), and (13.523-13.526) is: 

 
        

 

12 12
2 231.70333 13.59844 

                 45.30177 49.81948 0.14803 4.36968 

D T oscE CH eV eV E CH E magnetic

eV eV eV eV

    

     
 (13.527) 

The experimental 12
2CH  bond dissociation energy is [39]: 

  12
2 4.33064 DE CH eV  (13.528) 
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BOND ANGLE OF 12
2CH  

The 2CH  MO comprises a linear combination of two C H -bond MOs.  Each C H -bond MO comprises the superposition of 

a 2H -type ellipsoidal MO and the 32C sp  HO with a relative charge density of 0.75 to 1.25; otherwise, the 32C sp  shell is 

unchanged.  A bond is also possible between the two H atoms of the C H  bonds.  Such H H  bonding would decrease the 
C H  bond strength since electron density would be shifted from the C H  bonds to the H H  bond.  Thus, the bond angle 
between the two C H  bonds is determined by the condition that the total energy of the 2H -type ellipsoidal MO between the 

terminal H  atoms of the C H  bonds is zero.  From Eqs. (11.79) and (13.228), the distance from the origin to each focus of the 
H H  ellipsoidal MO is 

 0 0
2

'
2 2e

aa
c a

m e a


 


 (13.529) 

The internuclear distance from Eq. (13.229) is:  

 02 ' 2
2

aa
c   (13.530) 

The length of the semiminor axis of the prolate spheroidal H H  MO b c  is given by Eq. (13.62). 
The bond angle of 2CH  is derived by using the orbital composition and an energy matching factor as in the case with 

2NH  and 3NH .  Since the two 2H -type ellipsoidal MOs comprise 75% of the H  electron density of 2H  and the energy of each 

2H -type ellipsoidal MO is matched to that of the 32C sp  HO; the component energies and the total energy TE  of the H H  

bond are given by Eqs. (13.67-13.73) except that eV , T , and mV  are corrected for the hybridization-energy-matching factor of 

0.91771 given by Eq. (13.430).  Substitution of Eq. (13.529) into Eq. (13.233) with the hybridization factor gives: 

 

 

 

2
0

2 3
1 0 0

0 0
0 2

2 2

33
0 0

0.75
 3 3 42 0.91771 ln 1 2

2 8
8 1

2 20

0.75
8 8 '1

2 0.5

e

e

p

eaa
a

ae a
aaa aa m

a
m c

e e
a a c

m





 



                           
 

 
  

 





 (13.531) 

From the energy relationship given by Eq. (13.531) and the relationship between the axes given by Eqs. (13.529-13.530) and 
(13.62-13.63), the dimensions of the H H  MO can be solved. 

The most convenient way to solve Eq. (13.531) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is:  
 10

05.1500 2.7253  10  a a X m   (13.532) 

Substitution of Eq. (13.532) into Eq. (13.529) gives: 
 11

01.6047 8.4916  10  c a X m    (13.533) 

The internuclear distance given by multiplying Eq. (13.533) by two is:  
 10

02 3.2094 1.6983  10  c a X m    (13.534) 

Substitution of Eqs. (13.532-13.533) into Eq. (13.62) gives: 
 10

04.8936 2.5896  10  b c a X m    (13.535) 

Substitution of Eqs. (13.532-13.533) into Eq. (13.63) gives: 
 0.3116e   (13.536) 

Using, 2 'H Hc   (Eq. (13.534)), the distance between the two H  atoms when the total energy of the corresponding MO is 

zero (Eq. (13.531)), and 2 'C Hc   (Eq. (13.501)), the internuclear distance of each C H  bond, the corresponding bond angle can 

be determined from the law of cosines.  Using, Eq. (13.242), the bond angle   between the C H  bonds is: 
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cos cos 0.1775 100.22
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 (13.537) 

The experimental angle between the C H  bonds is [38]: 
 102.4    (13.538) 

The results of the determination of bond parameters of 2CH  are given in Table 13.1.  The calculated results are based on 

first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 
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METHYL RADICAL ( 3CH ) 
The methyl radical 3CH  is formed by the reaction of a hydrogen atom with a dihydrogen carbide radical: 

 2 3CH H CH   (13.539) 

3CH  can be solved using the same principles as those used to solve 3NH  with the exception that the carbon 2s  and 2 p  shells 

hybridize to form a single 32sp  shell as an energy minimum.  Three diatomic molecular orbitals (MOs) developed in the Nature 
of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section serve as basis functions in a linear combination 
with three carbon 32sp  hybridized orbitals (HOs) to form the MO of 3CH .  The solution is very similar to that of 2CH  except 

that there are three CH  bonds in 3CH . 
 
FORCE BALANCE OF 3CH  

3CH  comprises three chemical bonds between carbon and hydrogen atoms.  Each C H  bond comprises two spin-paired 

electrons with one from an initially unpaired electron of the carbon atom and the other from the hydrogen atom.  Each H -atom 
electron forms an 2H -type ellipsoidal MO with an unpaired C -atom electron.  However, such a bond is not possible with the 

outer two C  electrons in their ground state since the resulting 2H -type ellipsoidal MO would have a shorter internuclear 

distance than the radius of the carbon 2 p  shell which is not energetically stable, and only two electrons are unpaired.  Thus, 

when bonding the carbon 2s  and 2 p  shells hybridize to form a single 32sp  shell as an energy minimum.  The electron 

configuration and the energy,  3, 2E C sp , of the 32C sp  shell is given by Eqs. (13.422), and (13.428), respectively.  

For each C H  bond, a 32C sp  electron combines with the 1H s  electron to form a molecular orbital.  The proton of the 

H  atom and the nucleus of the C  atom are along each internuclear axis and serve as the foci.  As in the case of 2H , each of the 

three C H -bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into 32C sp  HO 

for distances shorter than the radius of the 32C sp  shell since it is energetically unfavorable.  Thus, each MO surface comprises a 

prolate spheroid at the H  proton that is continuous with the 32C sp  shell at the C  atom whose nucleus serves as the other focus.  

The radius and the energy of the 32C sp  shell are unchanged with bond formation.  The central paramagnetic force due to spin of 

each C H  bond is provided by the spin-pairing force of the 3CH  MO that has the symmetry of an s  orbital that superimposes 

with the 32C sp  orbitals such that the corresponding angular momenta are unchanged. 

The energies in the 3CH  MO involve only each 32C sp  and each 1H s  electron with the formation of each C H  bond.  

The sum of the energies of the 2H -type ellipsoidal MOs is matched to that of the 32C sp  shell.  As in the cases of OH , 2H O , 

NH , 2NH , 3NH , CH , and 2CH  the linear combination of each 2H -type ellipsoidal MO with the 32C sp  HO must involve a 

25% contribution from the 2H -type ellipsoidal MO to the 32C sp  HO in order to match potential, kinetic, and orbital energy 

relationships.  Thus, the 3CH  MO must comprise three C H  bonds with each comprising 75% of a 2H -type ellipsoidal MO 

and a 32C sp  HO: 

 3
2 33 1 2 0.75   C sp H MO CH MO     (13.540) 

The force balance of the 3CH  MO is determined by the boundary conditions that arise from the linear combination of orbitals 

according to Eq. (13.540) and the energy matching condition between the hydrogen and 32C sp  HO components of the MO. 

The force constant 'k  to determine the ellipsoidal parameter 'c  of each 2H -type-ellipsoidal-MO component of the 3CH  

MO in terms of the central force of the foci is given by Eq. (13.59).  The distance from the origin of each C H -bond MO to 
each focus 'c  is given by Eq. (13.60).  The internuclear distance is given by Eq. (13.61).  The length of the semiminor axis of the 
prolate spheroidal C H -bond MO b c  is given by Eq. (13.62).  The eccentricity, e , is given by Eq. (13.63).  The solution of 
the semimajor axis a  then allows for the solution of the other axes of each prolate spheroid and eccentricity of each C H -bond 
MO.  Since each of the three prolate spheroidal C H -bond MOs comprises a 2H -type-ellipsoidal MO that transitions to the 

32C sp  HO, the energy  3, 2E C sp  in Eq. (13.428) adds to that of the three corresponding 2H -type ellipsoidal MOs to give the 

total energy of the 3CH  MO.  From the energy equation and the relationship between the axes, the dimensions of the 3CH  MO 

are solved. 
The energy components of eV , pV , T , and mV  are three times those of CH  corresponding to the three C H  bonds.  

Since each prolate spheroidal 2H -type MO transitions to the 32C sp  HO and the energy of the 32C sp  shell must remain constant 

and equal to the  3, 2E C sp  given by Eq. (13.428), the total energy  3TE CH  of the 3CH  MO is given by the sum of the 
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energies of the orbitals corresponding to the composition of the linear combination of the 32C sp  HO and the three 2H -type 

ellipsoidal MOs that forms the 3CH  MO as given by Eq. (13.540).  Using Eq. (13.431),  3TE CH  is given by: 
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 (13.541) 

The three hydrogen atoms and the hybridized carbon atom can achieve an energy minimum as a linear combination of three 2H -

type ellipsoidal MOs each having the proton and the carbon nucleus as the foci.  Hybridization gives rise to the 32C sp  HO-shell 

Coulombic energy  3, 2CoulombE C sp  given by Eq. (13.425).  To meet the equipotential condition of the union of the 2H -type-

ellipsoidal-MO and the 32C sp  HO, the electron energies in Eqs. (13.431), (13.495), and (13.541) were normalized by the ratio 

of 14.82575 eV , the magnitude of  3, 2CoulombE C sp  given by Eq. (13.425), and 13.605804 eV , the magnitude of the Coulombic 

energy between the electron and proton of H  given by Eq. (1.224).  The factor given by Eq. (13.430) normalized the energies to 
match that of the Coulombic energy alone to meet the energy matching condition of each C H -bond MO under the influence 
of the proton and the C  nucleus.  Each C H -bond MO comprises the same 32C sp  shell having its energy normalized to that of 

the Coulombic energy between the electron and a charge of e  at the carbon focus of the 3CH  MO.  Thus, the energy of the 

3CH  MO is also given by the sum of that of the three 2H -type ellipsoidal MOs given by Eq. (11.212) minus two times the 

Coulombic energy,   13.605804 CoulombE H eV  , of the two redundant e 's of the linear combination: 
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 (13.542) 

 3TE CH  given by Eq. (13.541) is set equal to three times the energy of the 2H -type ellipsoidal MO minus two times the 

Coulombic energy of H  given by Eq. (13.542). 
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From the energy relationship given by Eq. (13.543) and the relationship between the axes given by Eqs. (13.60-13.63), the 
dimensions of the 3CH  MO can be solved. 

Substitution of Eq. (13.60) into Eq. (13.543) gives: 
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 (13.544) 

The most convenient way to solve Eq. (13.544) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is  

 11
01.62893 8.61990  10  a a X m   (13.545) 

Substitution of Eq. (13.545) into Eq. (13.60) gives: 

 11
01.04209 5.51450  10  c a X m    (13.546) 

The internuclear distance given by multiplying Eq. (13.546) by two is: 

 10
02 2.08418 1.10290  10  c a X m    (13.547) 

The experimental bond distance is [38]: 

 102 1.079  10  c X m   (13.548) 
Substitution of Eqs. (13.545-13.546) into Eq. (13.62) gives: 

 11
01.25198 6.62518  10  b c a X m    (13.549) 

Substitution of Eqs. (13.545-13.546) into Eq. (13.63) gives: 

 0.63974e   (13.550) 
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The nucleus of the H  atom and the nucleus of the C  atom comprise the foci of each 2H -type ellipsoidal MO.  The parameters 

of the point of intersection of each 2H -type ellipsoidal MO and the 32C sp  HO are given by Eqs. (13.84-13.95), (13.261-

13.270), and (13.434-13.442).  The polar intersection angle '  is given by Eq. (13.261) where 3 02
0.91771n sp

r r a   is the radius 

of the 32C sp  shell.  Substitution of Eqs. (13.545-13.546) into Eq. (13.261) gives: 
 ' 85.65    (13.551) 
Then, the angle 32C sp HO

  the radial vector of the 32C sp  HO makes with the internuclear axis is: 

 32
180 85.65 94.35

C sp HO
       (13.552) 

as shown in Figure 13.9.  The parametric angle 
2H MO  given by Eqs. (13.442-13.443), (13.549), and (13.552) is: 

 
2

46.96H MO    (13.553) 

Then, the distance 
2H MOd  along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of intersection of the 

orbitals given by Eqs. (13.445), (13.545), and (13.553) is: 

 2 0

11

1.11172

5.88295  10  

H MOd a

X m




 (13.554) 

The distance 32C sp HO
d  along the internuclear axis from the origin of the C  atom to the point of intersection of the orbitals given 

by Eqs. (13.447), (13.546), and (13.554) is: 

 3

12
02

0.06963 3.68457  10  
C sp HO

d a X m   (13.555) 

As shown in Eq. (13.540), the uniform charge-density in the 32C sp  HO is increased by a factor of 0.25 and the H -atom 

density is decreased by a factor of 0.25 for each C H  bond.  Using the orbital composition of 3CH  (Eq. (13.540)), the radii of 

01 0.17113C s a  (Eq. (10.51)) and 3
02 0.91771C sp a  (Eq. (13.424)) shells, and the parameters of the 3CH  MO given by Eqs. 

(13.3-13.4), (13.545-13.547), and (13.549-13.555), the charge-density of the 3CH  MO comprising the linear combination of 

three C H -bond MOs is shown in Figure 13.12.  Each C H -bond MO comprises a 2H -type ellipsoidal MO and a 32C sp  HO 

having the dimensional diagram shown in Figure 13.9. 
 

Figure 13.12.   3CH  MO comprising the linear combination of three C H -bond MOs.  Each C H -bond MO comprises 

the superposition of a 2H -type ellipsoidal MO and a 32C sp  HO with a relative charge-density of 0.75 to 1.25; otherwise, the 
32C sp  HO shell is unchanged.  (A) Color scale, translucent view of the charge-density of the 3CH  MO from the top.  For each 

C H  bond, the ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to the 32C sp  HO, the 32C sp  HO shell, 1C s  

shell, and the nuclei (red, not to scale) are shown.  (B) Cut-away view showing the inner most 1C s  shell, and moving radially, 
the 32C sp  shell, and the 2H -type ellipsoidal MO that transitions to the 32C sp  HO for each C H  bond.  Bisector current not 

shown.  (C)-(D) Color scale, bottom, top, and side-on translucent views of the charge-density of the 3CH  MO, respectively. 
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ENERGIES OF 3CH  

The energies of 3CH  are three times those of CH  and are given by the substitution of the semiprincipal axes (Eqs. (13.545-

13.546) and (13.549)) into the energy equations Eq. (13.541) and (Eqs. (13.449-13.452)) that are multiplied by three: 
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where  3TE CH  is given by Eq. (13.541) which is reiteratively matched to Eq. (13.542) within five-significant-figure-round-off-

error. 
 
VIBRATION OF 3CH  
The vibrational energy levels of 3CH  may be solved as three equivalent coupled harmonic oscillators by developing the 

Lagrangian, the differential equation of motion, and the eigenvalue solutions [2] wherein the spring constants are derived from 
the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type 
Molecules section. 
 

THE DOPPLER ENERGY TERMS OF 12
3CH  

The reentrant oscillation of hybridized orbitals in the transition state is not coupled.  Therefore, the equations of the radiation 
reaction force of methyl radical are the same as those of the corresponding hydrogen carbide radicals with the substitution of the 
methyl radical parameters.  Using Eqs. (11.136) and (13.140-13.142), the angular frequency of the reentrant oscillation in the 
transition state is: 
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    (13.561) 

where b  is given by Eq. (13.549).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)): 

 162.55577  10  / 16.82249 KE X rad s eV     (13.562) 

In Eq. (11.181), substitution of  2TE H  (Eqs. (11.212) and (13.75)), the maximum total energy of each 2H -type MO, for hE  , 

the mass of the electron, em , for M , and the kinetic energy given by Eq. (13.562) for KE  gives the Doppler energy of the 

electrons of each of the three bonds for the reentrant orbit: 
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In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of 3CH  due to the reentrant orbit of each bond in the transition state corresponding to 

simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by 

Eq. (13.563) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of each C H  bond.  

Using e  given by Eq. (13.458) for KvibE  of the transition state having three independent bonds,  12
3'oscE CH  per bond is 

  12
3

1
'

2osc D Kvib D

k
E CH E E E


      (13.564) 
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    12
3

1
' 0.25670 0.35532 0.07904 

2oscE CH eV eV eV      (13.565) 

Given that the vibration and reentrant oscillation is for three C H  bonds,  12
3oscE CH , is: 
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 (13.566) 

 

TOTAL AND BOND ENERGIES OF 12
3CH  

 12
3T oscE CH , the total energy of the 12

3CH  radical including the Doppler term, is given by the sum of  3TE CH  (Eq. (13.543)) 

and  12
3oscE CH  given by Eq. (13.566). 

          3 12 12
3 3 3 3, 2T osc e m p osc T oscE CH V T V V E C sp E CH E CH E CH          (13.567) 
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 (13.568) 

From Eqs. (13.564-13.568), the total energy of 12
3CH  is: 
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where e  given by Eq. (13.458) was used for the 
k


  term. 

The 3CH  bond dissociation energy,  12
3DE CH , is given by the sum of the total energies of the 2CH  radical and the 

hydrogen atom minus  12
3T oscE CH : 

      12 12 12
3 2 3( )D T oscE CH E CH E H E CH    (13.570) 

where 12
2( )TE CH  is given by the sum of the energies of the 32C sp  HO,  3, 2E C sp  given by Eq. (13.428),  2 DE H  given by 

Eq. (13.154), and the negative of the bond energies of 12CH  given by Eq. (13.489) and 12
2CH  given by Eq. (13.528): 

  12
2( ) 2 13.59844 14.63489 3.47 4.33064 

49.63241 

E CH eV eV eV eV

eV

    

 
 (13.571) 

Thus, the 12
3CH  bond dissociation energy,  12

3DE CH , given by Eqs. (13.154), and (13.569-13.571) is: 

 

     
 

12 12
3 349.63241  13.59844 

                 63.23085 67.93160 

                 4.70075 

D T oscE CH eV eV E CH

eV eV

eV

    

   



 (13.572) 

The experimental 12
3CH  bond dissociation energy is [40] 

  12
3 4.72444 DE CH eV  (13.573) 
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BOND ANGLE OF 12
3CH  

Consider the case that all of the MOs can participate in a superposition involving bonding of the terminal atoms.  Then, solving 
for 02 ' 3.61109H Hc a  , the distance between any adjacent two H  atoms when the total energy of the corresponding MO is zero 

given by Eq. (13.531) with the replacement of the hybridization factor and energy terms with   01
0.91771 2

2

a

a
  
 

 of Eq. 

(13.568), and   2c '
CH

, the internuclear distance of each C  H  bond (Eq. (13.547)), the corresponding bond angle can be 

determined from the law of cosines.  Using Eq. (13.537), the bond angle   between the C  H  bonds is: 

 
   

 
 

2 2

1 1
2

2 2.08418 3.61109
cos cos 0.50099 120

2 2.08418
  

 
     

 
 

 (13.574) 

which is in agreement with D3h  symmetry [38]. 

 The 3CH  radical has a pyramidal structure with the carbon atom along the z-axis at the apex and the hydrogen atoms at 

the base in the xy-plane.  The distance origin Hd   from the origin to the nucleus of a hydrogen atom given by Eqs. (13.534) and 

(13.412) is: 
 

  
d

originH
 2.0848a

0
 (13.575) 

The height along the z-axis of the pyramid from the origin to the C  nucleus is heightd  given by Eqs. (13.414), (13.547), and 

(13.575) is: 
 00heightd a  (13.576) 

The angle v  of each C H  bond from the z-axis given by Eqs. (13.416), (13.575), and (13.576) is: 

 90°v   (13.577) 

The 3CH  MO shown in Figure 13.12 was rendered using these parameters. 

The results of the determination of bond parameters of 3CH  are given in Table 13.1.  The calculated results are based on 

first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 
 
METHANE MOLECULE ( 4CH ) 
The methane molecule 4CH  is formed by the reaction of a hydrogen atom with a methyl radical: 

 3 4CH H CH   (13.578) 

4CH  can be solved using the same principles as those used to solve and 3CH  wherein the carbon 2s  and 2 p  shells hybridize to 

form a single 32sp  shell as an energy minimum.  Four diatomic molecular orbitals (MOs) developed in the Nature of the 
Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section serve as basis functions in a linear combination with 
four carbon 32sp  hybridized orbitals (HOs) to form the MO of 4CH .  The solution is very similar to that of 3CH  except that 

there are four CH  bonds in 4CH .  Methane is the simplest hydrocarbon that can be solved using the results for 3CH .  From the 

solution of 2CH  as well as 3CH , more complex hydrocarbons can be solved using these radicals as basis elements with bonding 

between the 32C sp  hybridized carbons. 
 
FORCE BALANCE OF 4CH  

4CH  comprises four chemical bonds between carbon and hydrogen atoms.  Each C H  bond comprises two spin-paired 

electrons with one from an initially unpaired electron of the carbon atom and the other from the hydrogen atom.  Each H -atom 
electron forms a 2H -type ellipsoidal MO with an unpaired C -atom electrons.  However, such a bond is not possible with the 

outer two C  electrons in their ground state since the resulting 2H -type ellipsoidal MO would have a shorter internuclear 

distance than the radius of the carbon 2 p  shell which is not energetically stable, and only two electrons are unpaired.  Thus, 

when bonding the carbon 2s  and 2 p  shells hybridize to form a single 32sp  shell as an energy minimum.  The electron 

configuration and the energy,  3, 2E C sp , of the 32C sp  shell is given by Eqs. (13.422), and (13.428), respectively.  

For each C H  bond, a 32C sp  electron combines with the 1H s  electron to form a molecular orbital.  The proton of the 

H  atom and the nucleus of the C  atom are along each internuclear axis and serve as the foci.  As in the case of 2H , each of the 

four C H -bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into the 32C sp  HO 

for distances shorter than the radius of the 32C sp  shell since it is energetically unfavorable.  Thus, each MO surface comprises a 

prolate spheroid at the H  proton that can be solved as being continuous with the 32C sp  shell at the C  atom whose nucleus 



General Diatomic and Polyatomic Molecular Ions and Molecules 539

serves as the other focus.  The radius and the energy of the 32C sp  shell are unchanged with bond formation.  The central 

paramagnetic force due to spin of each C H  bond is provided by the spin-pairing force of the 4CH  MO that has the symmetry 

of an s  orbital that superimposes with the 32C sp  orbitals such that the corresponding angular momenta are unchanged. 

The energies in the 4CH  MO involve only each 32C sp  and each 1H s  electron with the formation of each C H  bond.  

The sum of the energies of the 2H -type ellipsoidal MOs is matched to that of the 32C sp  shell.  As in the cases of OH , 2H O , 

NH , 2NH , 3NH , CH , 2CH , and 3CH  the 4CH  MO must comprise four C H  bonds with each having 75% of a 2H -type 

ellipsoidal MO and a 32C sp  HO in a linear combination in order to match potential, kinetic, and orbital energy relationships: 

 3
2 44 1 2 0.75   C sp H MO CH MO     (13.579) 

The force balance of the 4CH  MO is determined by the boundary conditions that arise from the linear combination of orbitals 

according to Eq. (13.579) and the energy matching condition between the hydrogen and 32C sp  HO components of the MO. 

The force constant 'k  to determine the ellipsoidal parameter 'c  of the each 2H -type-ellipsoidal-MO component of the 

4CH  MO in terms of the central force of the foci is given by Eq. (13.59).  The distance from the origin of each C H -bond MO 

to each focus 'c  is given by Eq. (13.60).  The internuclear distance is given by Eq. (13.61).  The length of the semiminor axis of 
the prolate spheroidal C H -bond MO b c  is given by Eq. (13.62).  The eccentricity, e , is given by Eq. (13.63).  The solution 
of the semimajor axis a  then allows for the solution of the other axes of each prolate spheroid and eccentricity of each C H -
bond MO.  Since each of the four prolate spheroidal C H -bond MOs comprises a 2H -type-ellipsoidal MO that transitions to 

the 32C sp  HO, the energy  3, 2E C sp  in Eq. (13.428) adds to that of the four corresponding 2H -type ellipsoidal MOs to give 

the total energy of the 4CH  MO.  From the energy equation and the relationship between the axes, the dimensions of the 4CH  

MO are solved. 
The energy components of eV , pV , T , and mV  are four times those of CH  corresponding to the four C H  bonds.  

Since each prolate spheroidal 2H -type MO transitions to the 32C sp  HO and the energy of the 32C sp  shell must remain constant 

and equal to the  3, 2E C sp  given by Eq. (13.428), the total energy  4TE CH  of the 4CH  MO is given by the sum of the 

energies of the orbitals corresponding to the composition of the linear combination of the 32C sp  HO and the four 2H -type 

ellipsoidal MOs that forms the 4CH  MO as given by Eq. (13.579).  Using Eq. (13.431),  4TE CH  is given by: 

      
2

3 0
4

0

4 1 '
, 2  0.91771 2 ln 1 14.63489 

8 ' 2 'T T

ae a c
E CH E E C sp eV

c a a c
            

 (13.580) 

The four hydrogen atoms and the hybridized carbon atom can achieve an energy minimum as a linear combination of four 2H -

type ellipsoidal MOs each having the proton and the carbon nucleus as the foci.  Hybridization gives rise to the 32C sp  HO-shell 

Coulombic energy  3, 2CoulombE C sp  given by Eq. (13.435).  To meet the equipotential condition of the union of the 2H -type-

ellipsoidal-MO and the 32C sp  HO, the electron energies in Eqs. (13.431), (13.495), (13.541), and (13.580) were normalized by 

the ratio of 14.82575 eV , the magnitude of  3, 2CoulombE C sp  given by Eq. (13.425), and 13.605804 eV , the magnitude of the 

Coulombic energy between the electron and proton of H  given by Eq. (1.264).  The factor given by Eq. (13.430) normalized the 
energies to match that of the Coulombic energy alone to meet the energy matching condition of each C H -bond MO under the 
influence of the proton and the C  nucleus.  Each C H -bond MO comprises the same 32C sp  shell having its energy 

normalized to that of the Coulombic energy between the electron and a charge of e  at the carbon focus of the 4CH  MO.  Thus, 

the energy of the 4CH  MO is also given by the sum of that of the four 2H -type ellipsoidal MOs given by Eq. (11.212) minus 

three times the Coulombic energy,   13.605804 CoulombE H eV  , of the three redundant e 's of the linear combination: 
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 (13.581) 

 4TE CH  given by Eq. (13.580) is set equal to four times the energy of the 2H -type ellipsoidal MO minus three times the 

Coulombic energy of H  given by Eq. (13.581): 

    
2

0
4

0

4 1 '
 0.91771 2 ln 1 14.63489 85.72406 

8 ' 2 'T

ae a c
E CH eV eV

c a a c
            

 (13.582) 
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From the energy relationship given by Eq. (13.582) and the relationship between the axes given by Eqs. (13.60-13.63), the 
dimensions of the 4CH  MO can be solved. 

Substitution of Eq. (13.60) into Eq. (13.543) gives: 

 
 

0
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0

0 0
0

2
4 1 3 0.91771 2 ln 1 71.08917
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 (13.583) 

The most convenient way to solve Eq. (13.583) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is  
 11

01.62340 8.59066  10  a a X m   (13.584) 

Substitution of Eq. (13.584) into Eq. (13.60) gives: 
 11

01.04032 5.50514  10  c a X m    (13.585) 

The internuclear distance given by multiplying Eq. (13.585) by two is: 
 10

02 2.08064 1.10103  10  c a X m    (13.586) 

The experimental bond distance is [41] : 
 102 1.087  10  c X m   (13.587) 
Substitution of Eqs. (13.584-13.585) into Eq. (13.62) gives: 
 11

01.24626 6.59492  10  b c a X m    (13.588) 

Substitution of Eqs. (13.584-13.585) into Eq. (13.63) gives: 
 0.64083e   (13.589) 
The nucleus of the H  atom and the nucleus of the C  atom comprise the foci of each 2H -type ellipsoidal MO.  The parameters 

of the point of intersection of each 2H -type ellipsoidal MO and the 32C sp  HO in the absence of the other three are given by 

Eqs. (13.84-13.95), (13.261-13.270), (13.434-13.442), and (13.551-13.555).  The polar intersection angle '  is given by Eq. 
(13.261) where 3 02

0.91771n sp
r r a   is the radius of the 32C sp  shell.  Substitution of Eqs. (13.584-13.585) into Eq. (13.261) 

gives: 
 ' 86.20    (13.590) 
Then, the angle 32C sp HO

  the radial vector of the 32C sp  HO makes with the internuclear axis is: 

 32
180 86.20 93.80

C sp HO
       (13.591) 

as shown in Figure 13.9.  The parametric angle 
2H MO  given by Eqs. (13.442-13.443), (13.588), and (13.591) is: 

 
2

47.29H MO    (13.592) 

Then, the distance 
2H MOd  along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of intersection of the 

orbitals given by Eqs. (13.445), (13.584), and (13.592) is: 
 

2

11
01.10121 5.82734  10  H MOd a X m   (13.593) 

The distance 32C sp HO
d  along the internuclear axis from the origin of the C  atom to the point of intersection of the orbitals given 

by Eqs. (13.447), (13.585), and (13.593) is: 
 3

12
02

0.06089 3.22208  10  
C sp HO

d a X m   (13.594) 

The 2H -type ellipsoidal MOs do not actually directly contact the 32C sp  HO.  As discussed in the Force Balance of 2H O  

section, with the addition of the fourth C H  bond, the 2H -type ellipsoidal MOs may linearly combine to form a continuous 

two-dimensional surface of equipotential equivalent to that of the MOs if they did contact the 32C sp  HO.  However, Eqs. 
(13.579-13.580) must hold based on conservation of momentum and the potential, kinetic, and total energy relationships.  In 
order that there is current continuity given the constraints of Eqs. (13.579-13.580), the existence of a self-contained, continuous-
current, linear-combination of the 2H -type ellipsoidal MOs requires that electrons are divisible between the combination 2H -

type MO and the 32C sp  HO.  This is not possible.   
 
Thus, at the points of intersection of the 2H -type MOs of methane symmetry, and in similar geometries such as that of 

3CH , representative of the general case, electron indivisibility, current continuity, and conservation of energy and angular 

momentum require that the current between the 32C sp  shell and points of mutual contact is projected onto and flows along the 

radial vector to the surface of 32C sp  shell.  This current designated the bisector current (BC) meets the 32C sp  surface and does 
not travel to distances shorter than its radius. 
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Moreover, an energy minimum is obtained when the H -atom charge-density of each C H -bond MO is decreased by a 
factor of 0.25 with a corresponding 0.25 increase in that of the three other C H -bond MOs.  In this case, the angular 
momentum components of the transferred current mutually cancel.  The geometry of the equivalent bonds is tetrahedral.  The 
symmetry point group is dT .  This geometry is equivalent to the indistinguishable bonds positioned uniformly on a spherical 

surface or also at the apexes of a cube.  The predicted angle   between the C H  bonds is: 
 109.5    (13.595) 
The experimental bond angle is [41]: 
 109.5    (13.596) 
The polar angle  at which the 2H -type ellipsoidal MOs intersect is given by the bisector of the angle   between the C H  

bonds: 

 
109.5

54.75
2

     (13.597) 

With the carbon nucleus defined as the origin and one of the C H  bonds defined as the positive x-axis, the polar-coordinate 
angle of the intersection occurs at: 
 ' 54.75 180 234.75       (13.598) 

The polar radius ir at this angle is given by Eqs. (13.84-13.85): 

  
'

1
'

'
1 cos '
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c
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 (13.599) 

Substitution of Eqs. (13.584-13.585) and (13.589) into Eq. (13.599) gives: 
 11

01.52223 8.05530  10  ir a X m   (13.600) 

Using the orbital composition of 4CH  (Eq. (13.579)), the radii of 01 0.17113C s a  (Eq. (10.51)) and 3
02 0.91771C sp a  

(Eq. (13.424)) shells, and the parameters of the 4CH  MO given by Eqs. (13.3-13.4), (13.584-13.586), and (13.588-13.600), the 

charge-density of the 4CH  MO comprising the linear combination of four C H -bond MOs is shown in Figure 13.13.  Each 

C H -bond MO having the dimensional diagram shown in Figure 13.9 comprises a 2H -type ellipsoidal MO and a 32C sp  HO 

according to Eq. (13.579).  But, based on the dT  symmetry of the 2H -type MOs, the charge is distributed 1:1 between the 2H -

type MOs and the 32C sp  shell. 
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Figure 13.13.   4CH  MO comprising the linear combination of four C H -bond MOs formed by the superposition of a 2H -

type ellipsoidal MO and a 32C sp  HO.  (A) Color scale, translucent view of the charge-density of the 4CH  MO.  The combined 

surface of the four 2H -type ellipsoidal MOs from each C H  bond that surrounds the 32C sp  HO, the 32C sp  HO shell, 1C s  

shell, and the nuclei (red, not to scale) are shown.  (B) Off-center cut-away view showing the complete inner most 1C s  shell, 
and moving radially, the 32C sp  shell, and the 2H -type ellipsoidal MOs that surround the 32C sp  HO.  Bisector current not 

shown.  (C) Opaque view.  (D)-(E) Additional translucent views. 

 
 

ENERGIES OF 4CH  
The energies of 4CH  are four times those of CH  and are given by the substitution of the semiprincipal axes (Eqs. (13.584-

13.585) and (13.588)) into the energy equations Eq. (13.580) and (Eqs. (13.449-13.452)) that are multiplied by four: 
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 (13.604) 
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 (13.605) 

where  4TE CH  is given by Eq. (13.580) which is reiteratively matched to Eq. (13.581) within five-significant-figure round-off 

error. 
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VIBRATION OF 4CH  
The vibrational energy levels of 4CH  may be solved as four equivalent coupled harmonic oscillators by developing the 

Lagrangian, the differential equation of motion, and the eigenvalue solutions [2] wherein the spring constants are derived from 
the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type 
Molecules section. 
 
THE DOPPLER ENERGY TERMS OF 12

4CH  
The reentrant oscillation of hybridized orbitals in the transition state is not coupled.  Therefore, the equations of the radiation 
reaction force of methane are the same as those of OH , CH , 2CH , and 3CH  with the substitution of the methane parameters.  

Using Eqs. (11.136) and (13.140-13.142), the angular frequency of the reentrant oscillation in the transition state is: 

 

2

3
160

0.75
4

2.57338  10  /
e

e
b

X rad s
m

    (13.606) 

where b  is given by Eq. (13.588).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)). 

 162.57338  10  / 16.93841 KE X rad s eV     (13.607) 

In Eq. (11.181), substitution of  2TE H  (Eqs. (11.212) and (13.75)), the maximum total energy of each 2H -type MO, for hE  , 

the mass of the electron, em , for M , and the kinetic energy given by Eq. (13.607) for KE  gives the Doppler energy of the 

electrons of each of the four bonds for the reentrant orbit: 
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 (13.608) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of 4CH  due to the reentrant orbit of each bond in the transition state corresponding to 

simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by 

Eq. (13.608) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of each C H  bond.  

Using e  given by Eq. (13.458) for KvibE  of the transition state having four independent bonds,  12
4'oscE CH  per bond is:  

  12
4

1
'

2osc D Kvib D

k
E CH E E E


      (13.609) 

    12
4

1
' 0.25758 0.35532 0.07992 

2oscE CH eV eV eV      (13.610) 

The reentrant orbit for the binding of a hydrogen atom to a 3CH  radical involves four C H  bonds.  Since the vibration and 

reentrant oscillation is along four bonds, oscE  for 12
4CH ,  12

4oscE CH , is: 
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 (13.611) 
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TOTAL AND BOND ENERGIES OF 12
4CH  

 12
4T oscE CH , the total energy of the 12

4CH  radical including the Doppler term, is given by the sum of  4TE CH  (Eq. 

(13.582)) and  12
4oscE CH  given by Eq. (13.611). 

          3 12 12
4 4 4 4, 2T osc e m p osc T oscE CH V T V V E C sp E CH E CH E CH          (13.612) 
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 (13.613) 

From Eqs. (13.609-13.613), the total energy of 12
4CH  is: 
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4 485.72406 
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 (13.614) 

where e  given by Eq. (13.458) was used for the 
k


  term. 

The 4CH  bond dissociation energy,  12
4DE CH , is given by the sum of the total energies of the 3CH  radical and the 

hydrogen atom minus  12
4T oscE CH : 

      12 12 12
4 3 4( )D T oscE CH E CH E H E CH    (13.615) 

where 12
3( )TE CH  is given by the sum of the energies of the 32C sp  HO,  3, 2E C sp  given by Eq. (13.428),  3 DE H  given by 

Eq. (13.154), and the negative of the bond energies of 12CH  given by Eq. (13.489), 12
2CH  given by Eq. (13.528), and 12

3CH  

given by Eq. (13.573): 

 
 12

3

3 13.59844 14.63489 
( ) 67.95529 

3.47 4.33064 4.72444 

eV eV
E CH eV

eV eV eV

  
   

   
 (13.616) 

Thus, the 12
4CH  bond dissociation energy,  12

4DE CH , given by Eqs. (13.154), and (13.614-13.616) is: 

 
     

 

12 12
4 467.95529  13.59844 

                 81.55373 86.04373 4.4900 

D T oscE CH eV eV E CH

eV eV eV

   

    
  (13.617) 

The experimental 12
4CH  bond dissociation energy is [40] : 

  12
4 4.48464 DE CH eV  (13.618) 

 The results of the determination of bond parameters of 4CH  are given in Table 13.1.  The calculated results are based on 

first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 
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NITROGEN MOLECULE 
The nitrogen molecule can be formed by the reaction of two nitrogen atoms: 

 2N N N   (13.619) 

The bond in the nitrogen molecule comprises a 2H -type molecular orbital (MO) with two paired electrons.  The force balance 

equation and radius 7r  of the 2 p  shell of N  is derived in the Seven-Electron Atoms section.  With the formation of the 2H -type 

MO by the contribution of a 2 p  electron from each N  atom, a diamagnetic force arises between the remaining 2 p  electrons 

and the 2H -type MO.  This force from each N  causes the 2H -type MO to move to greater principal axes than would result with 

the Coulombic force alone.  But, the integer increase of the central field and the resulting increased Coulombic as well as 
magnetic central forces on the remaining 2 p  electrons of each N  decrease the radius of the corresponding shell such that the 

energy minimum is achieved that is lower than that of the reactant atoms.  The resulting electron configuration of 2N  is 
2 2 2 2 2 2 2
1 2 1 2 1 2 1,21 1 2 2 2 2s s s s p p   where the subscript designates the N  atom, 1 or 2,   designates the 2H -type MO, and the orbital 

arrangement is: 
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 (13.620) 

Nitrogen is predicted to be diamagnetic in agreement with observations. 
 
 

FORCE BALANCE OF THE 2 p  SHELL OF THE NITROGEN ATOMS OF THE 
NITROGEN MOLECULE 
For each N  atom, force balance for the outermost 2 p  electron of 2N  (electron 6) is achieved between the centrifugal force and 

the Coulombic and magnetic forces that arise due to interactions between electron 6 and the other 2 p -shell as well as the 2s -
shell electrons due to spin and orbital angular momentum.  The forces used are derived in the Seven-Electron Atoms section.  
The central Coulomb force on the outer-most 2 p  shell electron of 2N  (electron 6) due to the nucleus and the inner five electrons 

is given by Eq. (10.70) with the appropriate charge and radius: 
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for 5r r .  The 2 p  shell possess an external electric field given by Eq. (10.92) for 6r r .  The energy is minimized with 

conservation of angular momentum.  This condition is met when the diamagnetic force, diamagneticF , of Eq. (10.82) due to the p -

orbital contribution is the same as that of the reactant nitrogen atoms given by Eq. (10.136) with 6r  replacing 7r : 
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 (13.622) 

And,  2magF  corresponding to the conserved orbital angular momentum of the three orbitals is given by Eq. (10.89). 
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The electric field external to the 2 p  shell given by Eq. (10.92) for 6r r  gives rise to a second diamagnetic force, 
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 2diamagneticF , given by Eq. (10.93).   2diamagneticF  due to the binding of the p-orbital electron having an electric field of +1 outside of 

its radius is: 
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 (13.624) 

In addition, the contribution of a 2 p  electron from each N  atom in the formation of the   MO gives rise to a 

paramagnetic force on the remaining two 2 p  electrons that pair.  The force, 3magF , follows from Eq. (10.11) wherein the two 

radii are equal to 6r  and the direction is positive, central: 
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 3magF  is present in additional diatomic molecules where its contribution minimizes the energy.  This AO spin-pairing force 

reduces the radius directly to reduce the energy, and it can also cancel the contribution of the corresponding electron to diamagneticF  

to further reduce the energy. 
 The radius of the 2 p  shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. 
(13.621)) and diamagnetic (Eqs. (13.622) and (13.624)), and paramagnetic (Eqs. (13.623) and (13.625)) forces as follows: 
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 (13.626) 

Substitution of 6
6e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (13.626) gives: 

 
22 2 2 2 2

3
3 3 2 2 2 4

6 6 0 6 6 3 6 3 6

3 ( 5) 3 3 3 6 2 3
1 10

4 4 4 12 4 4 5 2 4e e e e e

rZ e Z

m r m r r m r r Zm r r Z r m
               

   
 (13.627) 

The quadratic equation corresponding to Eq. (13.627) is: 

 

2 2

3

2
6 62 2 2 2

0 3 0 3

3 6 2 3
1 1 10

8 5 2 4
0

( 5) 1 3 3 ( 5) 1 3 3
4 12 4 4 12 4

e e

e e

Z
r

m m Z
r r

Z e Z e
Z m r Z m r 

               
                

      

 

 
  (13.628) 

The solution of Eq. (13.628) using the quadratic formula is: 
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    (13.629) 

The positive root of Eq. (13.629) must be taken in order that 6 0r  .  Substitution of 3

0

0.69385
r

a
  (Eq. (10.62) with 7Z  ) into 

Eq. (13.629) gives: 

 6 00.78402r a  (13.630) 

 



General Diatomic and Polyatomic Molecular Ions and Molecules 547

ENERGIES OF THE 2 p  SHELL OF THE NITROGEN ATOMS OF THE NITROGEN MOLECULE 
The central forces on the 2 p  shell of each N  are increased with the formation of the   MO, which reduces the shell’s radius 
and increases its total energy.  The Coulombic energy terms of the total energy of the two N  atoms at the new radius are 
calculated and added to the energy of the   MO to give the total energy of 2N .  Then, the bond energy is determined from the 

total 2N  energy. 

The radius 7r  of each nitrogen atom before bonding is given by Eq. (10.142). 

 7 00.93084r a  (13.631) 

Using the initial radius 7r  of each N  atom and the final radius 6r  of the 2N p  shell of 2N  (Eq. (13.630)) and by considering 

that the central Coulombic field decreases by an integer for each successive electron of the shell, the sum  2 , 2TE N p  of the 

Coulombic energy change of the 2N p  electrons of both atoms is determined using Eq. (10.102). 
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  (13.632) 

 

FORCE BALANCE OF THE   MO OF THE NITROGEN MOLECULE 
The 2 p  shell gives rise to two diamagnetic forces on the   MO.  As given for the hydrogen molecule in the Hydrogen-Type 
Molecules section, the   MO comprises two electrons,   electron 1 and   electron 2, that are bound at 0   as a 
equipotential prolate spheroidal MO by the central Coulombic field due to the nitrogen atoms at the foci and the spin pairing 
force on   electron 2 due to   electron 1 that initially has smaller semiprincipal axes.  The spin-pairing force given in Eq. 
(11.200) is equal to one half the centrifugal force of the two electrons.  The spin-pairing electron of the   MO is also repelled 
by the remaining 2 p  electrons of each N  according to Lenz law, and the force is based on the total number of these electrons 

en  that interact with the binding  -MO electron.  This diamagnetic force 1diamagneticMOF  is of the same form as the molecular spin-

pairing force but in the opposite direction.  The force follows from the derivations of Eqs. (10.219) and (11.200) which gives: 
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 (13.633) 

In addition, there is a relativistically corrected Lorentz force 2diamagneticMOF
 
on the pairing electron of the   MO that follows from 

Eqs. (7.15) and (11.200):  
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 (13.634) 

where L  is the magnitude of the angular momentum of each N  atom at a focus that is the source of the diamagnetism at the  -

MO. 
The force balance equation for the  -MO of the nitrogen molecule given by Eq. (11.200) and Eqs. (13.633-13.634) with 

2en   and L    is: 
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Substitution of 7Z   into Eq. (13.638) gives: 
 10

02.14286 1.13395  10  a a X m   (13.639) 

Substitution of Eq. (13.639) into Eq. (11.79) is:  
 11

01.03510 5.47750  10  c a X m    (13.640) 

The internuclear distance given by multiplying Eq. (13.640) by two is:  
 10

02 2.07020 1.09550  10  c a X m    (13.641) 

The experimental bond distance from Ref. [28] and Ref. [43] is: 
 102 1.09769  10  c X m   (13.642) 
 102 1.094  10  c X m   (13.643) 
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Figure 13.15.   2N  MO comprising the   MO ( 2H -type MO) with N

atoms at the foci that have each donated an electron to the   MO and have
smaller radii and higher binding energies as a consequence.  (A) Color scale,
translucent view of the charge-density of the 2N  MO.  (B) Off-center cut-

away view showing the complete inner most 1N s  shell, and moving radially,
the 2N s  shell, the 2N p  shell, and the   prolate spheroidal MO that have
the N  atoms as the foci. 

Substitution of Eqs. (13.639-13.640) into Eq. (11.80) is: 

 11
01.87628 9.92882  10  b c a X m    (13.644) 

Substitution of Eqs. (13.639-13.640) into Eq. (11.67) is: 

 0.48305e   (13.645) 

Using the electron configuration of 2N  (Eq. (13.620)), the radii of the 01 0.14605N s a  (Eq. (10.51)), 02 0.69385N s a  (Eq. 

(10.62)), and 02 0.78402N p a  (Eq. (13.630)) shells and the parameters of the   MO of 2N  given by Eqs. (13.3-13.4), 

(13.639-13.641), and (13.644-13.645), the dimensional diagram and charge-density of the 2N  MO are shown in Figures 13.14 

and 13.15, respectively. 
Despite the predictions of standard quantum mechanics that preclude the imaging of a molecular orbital, the full three-

dimensional structure of the outer molecular orbital of 2N  has been recently tomographically reconstructed [44].  The charge-

density surface observed is consistent with that shown in Figure 13.15.  This result constitutes direct evidence that electrons are 
not point-particle probability waves that have no form until they are “collapsed to a point” by measurement.  Rather they are 
physical, two-dimensional equipotential charge density surfaces. 
 
Figure 13.14.   The cross section of the 

2N  MO showing the axes,   MO ( 2H -type 

ellipsoidal MO), with the N  1s , 2s , and 2 p  
atomic orbitals (AOs).  Legend: a : semimajor 
axis, b : semiminor axis, 'c : internuclear 
distance, 6r : radius of the 2N p  shell having 

two paired electrons. 
 

 
 
 

Sum of the Energies of the   MO and the AOS of the Nitrogen Molecule 
The energies of the 2N    MO are given by the substitution of the semiprincipal axes (Eqs. (13.639-13.640) and (13.644)) into 

the energy equations (Eqs. (11.207-11.212)) of 2H : 
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Substitution of Eqs. (11.79) and (13.646-13.649) into Eq. (13.650) gives: 
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 (13.651) 

where  2 ,TE N   is the total energy of the   MO of 2N .  The sum,  2TE N , of  2 , 2TE N p , the 2 p  (AO) contribution given 

by Eq. (13.632), and  2 ,TE N  , the   MO contribution given by Eq. (13.651) is: 

 
     2 2 2, 2 ,

27.37174 11.32906 38.70080 
T T TE N E N p E N

eV eV eV

 

    
 (13.652) 

 
VIBRATION OF 2N  
The vibrational energy levels of 2N  may be solved by determining the Morse potential curve from the energy relationships for 

the transition from two N  atoms whose parameters are given by Eqs. (10.134-10.143) to the two N  atoms whose parameter 6r  

is given by Eq. (13.630) and the   MO whose parameters are given by Eqs. (13.639-13.641) and (13.644-13.645).  As shown in 
the Vibration of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about 
the internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K&P) 
[15] and after Eq. (11.134).  Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the 
energy corrections can be found by perturbation methods. 
 
THE DOPPLER ENERGY TERMS OF THE NITROGEN MOLECULE 
The equations of the radiation reaction force of nitrogen are the same as those of 2H  with the substitution of the nitrogen 

parameters.  Using Eqs. (11.231-11.233), the angular frequency of the reentrant oscillation in the transition state is: 
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where a  is given by Eq. (13.639).  The kinetic energy, KE , is given by Planck’s equation (Eq. (11.127)): 
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In Eq. (11.181), substitution of  2TE N  for hE  , the mass of the electron, em , for M , and the kinetic energy given by Eq. 

(13.654) for KE  gives the Doppler energy of the electrons of the reentrant orbit: 
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In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of the 2N  MO due to the reentrant orbit in the transition state corresponding to simple 

harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by Eq. 

(13.655) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy.  Using the experimental 2N  

e  of  12358.57  0.29243 cm eV  [28] for KvibE  of the transition state,  2oscE N  is:  
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TOTAL AND BOND ENERGIES OF THE NITROGEN MOLECULE 
 2T oscE N , the total energy of 2N  including the Doppler term, is given by the sum of  2TE N  (Eq. (13.652)) and  2oscE N  

given by Eq. (13.657): 
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From Eqs. (13.656-13.659), the total energy of the 2N  MO is: 
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 (13.660) 

where the experimental e  was used for the 
k


  term. 

The 2N  bond dissociation energy,  2DE N , is given by the difference in the total energies of the two N  atoms and 

 2T oscE N : 

      2 22D T oscE N E N E N   (13.661) 

where the energy of a nitrogen atom is [6] :  
 ( ) 14.53414 E N eV   (13.662) 

Thus, the 2N  bond dissociation energy,  2DE N , given by Eqs. (13.660-13.662) is: 

        2 22 14.53414 29.06828 38.78009 9.71181 D T oscE N eV E N eV eV eV         (13.663) 

The experimental 2N  bond dissociation energy from Ref. [43] and Ref. [45] is: 

  2 9.756 DE N eV  (13.664) 

  2 9.764 DE N eV  (13.665) 

The results of the determination of bond parameters of 2N  are given in Table 13.1.  The calculated results are based on first 

principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 
 
OXYGEN MOLECULE 
The oxygen molecule can be formed by the reaction of two oxygen atoms: 
 2O O O   (13.666) 

The bond in the oxygen molecule comprises a 2H -type molecular orbital (MO) with two paired electrons.  The force balance 

equation and radius 8r  of the 2 p  shell of O  is derived in the Eight-Electron Atoms section.  With the formation of the 2H -type 

MO by the contribution of a 2 p  electron from each O  atom, a diamagnetic force arises between the remaining 2 p  electrons 

and the 2H -type MO.  This force from each O  causes the 2H -type MO to move to greater principal axes than would result with 

the Coulombic force alone.  But, the integer increase of the central field and the resulting increased Coulombic as well as 
magnetic central forces on the remaining 2 p  electrons of each O  decrease the radius of the corresponding shell such that the 

energy minimum is achieved that is lower than that of the reactant atoms.  The resulting electron configuration of 2O  is 
2 2 2 2 3 3 2
1 2 1 2 1 2 1,21 1 2 2 2 2s s s s p p   where the subscript designates the O  atom, 1 or 2,   designates the 2H -type MO, and the orbital 

arrangement is: 
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 (13.667) 

Oxygen is predicted to be paramagnetic in agreement with observations [42]. 
 
FORCE BALANCE OF THE 2 p  SHELL OF THE OXYGEN ATOMS OF THE OXYGEN 
MOLECULE 
For each O  atom, force balance for the outermost 2 p  electron of 2O  (electron 7) is achieved between the centrifugal force and 

the Coulombic and magnetic forces that arise due to interactions between electron 7 and the other 2 p -shell as well as the 2s -
shell electrons due to spin and orbital angular momentum.  The forces used are derived in the Eight-Electron Atoms section.  The 
central Coulomb force on the outer-most 2 p  shell electron of 2O  (electron 7) due to the nucleus and the inner six electrons is 

given by Eq. (10.70) with the appropriate charge and radius: 
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for 6r r .  The 2 p  shell possess an external electric field given by Eq. (10.92) for 7r r .  The energy is minimized with 

conservation of angular momentum.  This condition is met when the magnetic forces are the same as those of the reactant 
oxygen atoms with 7r  replacing 8r .  The diamagnetic force, diamagneticF , of Eq. (10.82) due to the p -orbital contributions is given 

by Eq. (10.156): 
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And,  2magF  corresponding to the conserved spin and orbital angular momentum given by Eq. (10.157) is: 
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The electric field external to the 2 p  shell given by Eq. (10.92) for 7r r  gives rise to a second diamagnetic force, 

 2diamagneticF , given by Eq. (10.93).   2diamagneticF  due to the binding of the p-orbital electron having an electric field of +1 outside of 

its radius is : 
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The radius of the 2 p  shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. 
(13.688)) and diamagnetic (Eqs. (13.669) and (13.671)), and paramagnetic (Eq. (13.670)) forces as follows: 
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Substitution of 7
7e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (13.672) gives: 
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The quadratic equation corresponding to Eq. (13.673) is: 

 

22

3

2
7 72 2 2 2

0 3 0 3

7 2 3
1 10

6 2 4
0

( 6) 3 2 3 ( 6) 3 2 3
4 12 4 4 12 4

ee

e e

Z
r

m Zm
r r

Z e Z e
Z m r Z m r 

          
                

      



 
 (13.674) 

The solution of Eq. (13.674) using the quadratic formula is: 
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    (13.675) 

The positive root of Eq. (13.675) must be taken in order that 7 0r  .  Substitution of 3

0

0.59020
r

a
  (Eq. (10.62) with 8Z  ) into 

Eq. (13.675) gives: 

 7 00.91088r a  (13.676) 

 

ENERGIES OF THE 2 p  SHELL OF THE OXYGEN ATOMS OF THE OXYGEN 
MOLECULE 
The central forces on the 2 p  shell of each O  are increased with the formation of the   MO, which reduces the shell’s radius 
and increases its total energy.  The Coulombic energy terms of the total energy of the two O  atoms at the new radius are 
calculated and added to the energy of the   MO to give the total energy of 2O .  Then, the bond energy is determined from the 

total 2O  energy. 

The radius 8r  of each oxygen atom before bonding is given by Eq. (10.162). 

 8 0r a  (13.677) 

Using the initial radius 8r  of each O  atom and the final radius 7r  of the 2O p  shell of 2O  (Eq. (13.676)) and by considering that 

the central Coulombic field decreases by an integer for each successive electron of the shell, the sum  2 , 2TE O p  of the 

Coulombic energy change of the 2O p  electrons of both atoms is determined using Eq. (10.102): 
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FORCE BALANCE OF THE   MO OF THE OXYGEN MOLECULE 
The force balance equation for the  -MO of the oxygen molecule given by Eq. (11.200) and Eqs. (13.633-13.634) with 3en   

and 
3

4
L    is: 
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Substitution of 8Z   into Eq. (13.682) gives: 

 10
02.60825 1.38023  10  a a X m   (13.683) 

Substitution of Eq. (13.683) into Eq. (11.79) is:  

 11
01.14198 6.04312  10  c a X m    (13.684) 

The internuclear distance given by multiplying Eq. (13.684) by two is:  

 10
02 2.28397 1.20862  10  c a X m    (13.685) 

The experimental bond distance is [28] : 

 102 1.20752  10  c X m   (13.686) 

Substitution of Eqs. (13.683-13.684) into Eq. (11.80) is: 

 0

10
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b c a

X m

 


 (13.687) 

Substitution of Eqs. (13.683-13.684) into Eq. (11.67) is: 

 0.43783e   (13.688) 

Using the electron configuration of 2O  (Eq. (13.667)), the radii of the 01 0.12739O s a  (Eq. (10.51)), 02 0.59020O s a  (Eq. 

(10.62)), and 02 0.91088O p a  (Eq. (13.676)) shells and the parameters of the   MO of 2O  given by Eqs. (13.3-13.4), (13.683-

13.685), and (13.687-13.688), the dimensional diagram and charge-density of the 2O  MO are shown in Figures 13.16 and 13.17, 

respectively. 
 
Figure 13.16.  The cross section of the 2O  

MO showing the axes,   MO ( 2H -type 

ellipsoidal MO), with the O  1s , 2s , and 
2 p  atomic orbitals (AOs).  Legend: a : 
semimajor axis, b : semiminor axis, 'c : 
internuclear distance, 7r : radius of the 

2O p  shell having two paired electrons. 
 

 
 

Figure 13.17.   2O  MO comprising the   MO ( 2H -type MO) with O

atoms at the foci that have each donated an electron to the   MO and have
smaller radii and higher binding energies as a consequence.  (A) Color scale,
translucent view of the charge-density of the 2O  MO.  (B) Off-center cut-

away view showing the complete inner most 1O s  shell, and moving radially,
the 2O s  shell, the 2O p  shell, and the   prolate spheroidal MO that have the
O  atoms as the foci. 
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SUM OF THE ENERGIES OF THE   MO AND THE AOs OF THE OXYGEN 
MOLECULE 
The energies of the 2O    MO are given by the substitution of the semiprincipal axes (Eqs. (13.683-13.684) and (13.687)) into 

the energy equations (Eqs. (11.207-11.212)) of 2H : 
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 T e m pE V T V V     (13.693) 

Substitution of Eqs. (11.79) and (13.689-13.692) into Eq. (13.693) gives: 
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 (13.694) 

where  2 ,TE O   is the total energy of the   MO of 2O .  The sum,  2TE O , of  2 , 2TE O p , the 2 p  AO contribution given by: 

Eq. (13.678), and  2 ,TE O  , the   MO contribution given by Eq. (13.694) is: 

      2 2 2, 2 , 23.96074 8.31814 32.27888 T T TE O E O p E O eV eV eV        (13.695) 

 

VIBRATION OF 2O  
The vibrational energy levels of 2O  may be solved by determining the Morse potential curve from the energy relationships for 

the transition from two O  atoms whose parameters are given by Eqs. (10.154-10.163) to the two O  atoms whose parameter 7r  is 

given by Eq. (13.676) and the   MO whose parameters are given by Eqs. (13.683-13.685) and (13.687-13.688).  As shown in 
the Vibration of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about 
the internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K&P) 
[15] and after Eq. (11.134).  Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the 
energy corrections can be found by perturbation methods. 
 

THE DOPPLER ENERGY TERMS OF THE OXYGEN MOLECULE 
The equations of the radiation reaction force of oxygen are the same as those of 2H  with the substitution of the oxygen 

parameters.  Using Eqs. (11.231-11.233), the angular frequency of the reentrant oscillation in the transition state is: 
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    (13.696) 

where a  is given by Eq. (13.683).  The kinetic energy, KE , is given by Planck’s equation (Eq. (11.127)). 

 169.81432  10  / 6.45996 KE X rad s eV     (13.697) 

In Eq. (11.181), substitution of  2TE O  for hE  , the mass of the electron, em , for M , and the kinetic energy given by Eq. 

(13.697) for KE  gives the Doppler energy of the electrons of the reentrant orbit: 

 
 

2 2

2 6.45996 2
32.27888 0.16231 K

D h
e

e eVE
E E eV eV

Mc m c      (13.698) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of the 2O  MO due to the reentrant orbit in the transition state corresponding to simple 
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harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by Eq. 

(13.698) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy.  Using the experimental 2O  e  

of  11580.19  0.19592 cm eV  [28] for KvibE  of the transition state,  2oscE O  is:  

  2

1

2osc D Kvib D

k
E O E E E


      (13.699) 

    2

1
0.16231 0.19592 0.06435 

2oscE O eV eV eV      (13.700) 

 

TOTAL AND BOND ENERGIES OF THE OXYGEN MOLECULE 
 2T oscE O , the total energy of 2O  including the Doppler term, is given by the sum of  2TE O  (Eq. (13.695)) and  2oscE O  

given by Eq. (13.700): 
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From Eqs. (13.699-13.702), the total energy of the 2O  MO is: 
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 (13.703) 

where the experimental e  was used for the 
k


  term. 

The 2O  bond dissociation energy,  2DE O , is given by the difference in the total energies of the two O  atoms and 

 2T oscE O : 

      2 22D T oscE O E O E O   (13.704) 

where the energy of an oxygen atom is [6]:  
 ( ) 13.61806 E O eV   (13.705) 

Thus, the 2O  bond dissociation energy,  2DE O , given by Eqs. (13.703-13.705) is: 

        2 22 13.61806 27.23612 32.34323 5.10711 D T oscE O eV E O eV eV eV         (13.706) 

The experimental 2O  bond dissociation energy from Ref. [46] and Ref. [47] is: 

  2 5.11665 DE O eV  (13.707) 

  2 5.116696 DE O eV  (13.708) 

The results of the determination of bond parameters of 2O  are given in Table 13.1.  The calculated results are based on first 

principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 
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FLUORINE MOLECULE 
The fluorine molecule can be formed by the reaction of two fluorine atoms: 
 2F F F   (13.709) 

The bond in the fluorine molecule comprises a 2H -type molecular orbital (MO) with two paired electrons.  The force balance 

equation and radius 9r  of the 2 p  shell of F  is derived in the Nine-Electron Atoms section.  With the formation of the 2H -type 

MO by the contribution of a 2 p  electron from each F  atom, a diamagnetic force arises between the remaining 2 p  electrons 

and the 2H -type MO.  This force from each F  causes the 2H -type MO to move to greater principal axes than would result with 

the Coulombic force alone.  But, the integer increase of the central field and the resulting increased Coulombic as well as 
magnetic central forces on the remaining 2 p  electrons of each F  decrease the radius of the corresponding shell such that the 

energy minimum is achieved that is lower than that of the reactant atoms.  The resulting electron configuration of 2F  is 
2 2 2 2 4 4 2
1 2 1 2 1 2 1,21 1 2 2 2 2s s s s p p   where the subscript designates the F  atom, 1 or 2,   designates the 2H -type MO, and the orbital 

arrangement is: 
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                        2p state

        
  

0 1 0 1

                        2s state
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               1                   2F F

 (13.710) 

 

Fluorine is predicted to be diamagnetic in agreement with observations [42]. 
 
FORCE BALANCE OF THE 2 p  SHELL OF THE FLUORINE ATOMS OF THE 
FLUORINE MOLECULE 
For each F  atom, force balance for the outermost 2 p  electron of 2F  (electron 8) is achieved between the centrifugal force and 

the Coulombic and magnetic forces that arise due to interactions between electron 8 and the other 2 p -shell as well as the 2s -
shell electrons due to spin and orbital angular momentum.  The forces used are derived in the Nine-Electron Atoms section.  The 
central Coulomb force on the outer-most 2 p  shell electron of 2F  (electron 8) due to the nucleus and the inner seven electrons is 

given by Eq. (10.70) with the appropriate charge and radius: 
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for 7r r .  The 2 p  shell possess an external electric field given by Eq. (10.92) for 8r r .  The energy is minimized with 

conservation of angular momentum.  This condition is met when the diamagnetic force, diamagneticF , of Eq. (10.82) due to the p -

orbital contributions is the same as that of the reactant fluorine atoms given by Eq. (10.176) with 8r  replacing 9r : 
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 (13.712) 

Thus, diamagneticF  due to the two filled 2 p  orbitals per F  atom is twice that of 2N  given by Eq. (13.622) having one filled 2 p  

orbital per N  atom.   2magF  corresponding to the conserved spin and orbital angular momentum is also the same as that of the 

reactant fluorine atoms given by Eq. (10.177) and that of 2N  given by Eq. (13.623) where the outer radius of the 2 p  shell of the 
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F  atoms of 2F  is 8r . 
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 (13.713) 

The electric field external to the 2 p  shell given by Eq. (10.92) for 8r r  gives rise to a second diamagnetic force, 

 2diamagneticF , given by Eq. (10.93).   2diamagneticF  due to the binding of the p-orbital electron having an electric field of +1 outside of 

its radius is : 
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 (13.714) 

In addition, the contribution of a 2 p  electron from each F  atom in the formation of the   MO gives rise to a 

paramagnetic force on the remaining paired 2 p  electrons.  The force 3magF  is given by Eq. (13.625) wherein the radius is 8r : 
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 (13.715) 

The radius of the 2 p  shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. 
(13.711)) and diamagnetic (Eqs. (13.712) and (13.714)), and paramagnetic (Eqs. (13.713) and (13.715)) forces as follows: 
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 (13.716) 

Substitution of 8
8e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (13.716) gives: 
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The quadratic equation corresponding to Eq. (13.717) is: 
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 (13.718) 

The solution of Eq. (13.718) using the quadratic formula is: 
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    (13.719) 

The positive root of Eq. (13.719) must be taken in order that 8 0r  .  Substitution of 3

0

0.51382
r

a
  (Eq. (10.62) with 9Z  ) into 

Eq. (13.719) gives: 

 8 00.73318r a  (13.720) 
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ENERGIES OF THE 2 p  SHELL OF THE FLUORINE ATOMS OF THE FLUORINE 
MOLECULE 
The central forces on the 2 p  shell of each F  are increased with the formation of the   MO, which reduces the shell’s radius 
and increases its total energy.  The Coulombic energy terms of the total energy of the two F  atoms at the new radius are 
calculated and added to the energy of the   MO to give the total energy of 2F .  Then, the bond energy is determined from the 

total 2F  energy. 

The radius 9r  of each fluorine atom before bonding is given by Eq. (10.182): 

 9 00.78069r a  (13.721) 

Using the initial radius 9r  of each F  atom and the final radius 8r  of the 2F p  shell of 2F  (Eq. (13.720)) and by considering that 

the central Coulombic field decreases by an integer for each successive electron of the shell, the sum  2 , 2TE F p  of the 

Coulombic energy change of the 2F p  electrons of both atoms is determined using Eq. (10.102). 
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 (13.722) 

 

FORCE BALANCE OF THE   MO OF THE FLUORINE MOLECULE 
The relativistic diamagnetic force 2diamagneticMOF  of 2F  is one half that of 2N  due to the two versus one filled 2 p  orbitals per atom 

at the focus.  The force balance equation for the  -MO of the fluorine molecule is given by Eq. (11.200) and Eqs. (13.633-
13.634) with the correction of 1/2 due the two 2 p  orbitals per F  after Eqs. (10.2-10.11), 5en  , and L   : 
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Substitution of 9Z   into Eq. (13.726) gives: 

 10
03.55556 1.88152  10  a a X m   (13.727) 

Substitution of Eq. (13.727) into Eq. (11.79) is:  

 11
01.33333 7.05569  10  c a X m    (13.728) 

The internuclear distance given by multiplying Eq. (13.728) by two is:  

 10
02 2.66667 1.41114  10  c a X m    (13.729) 

The experimental bond distance is [28] : 

 102 1.41193  10  c X m   (13.730) 

Substitution of Eqs. (13.727-13.728) into Eq. (11.80) is: 

 10
03.29609 1.74421  10  b c a X m    (13.731) 

Substitution of Eqs. (13.727-13.728) into Eq. (11.67) is: 

 0.37500e   (13.732) 

Using the electron configuration of 2F  (Eq. (13.710)), the radii of the 01 0.11297F s a  (Eq. (10.51)), 02 0.51382F s a  (Eq. 

(10.62)), and 02 0.73318F p a  (Eq. (13.720)) shells and the parameters of the   MO of 2F  given by Eqs. (13.3-13.4), (13.727-

13.728), and (13.731-13.732), the dimensional diagram and charge-density of the 2F  MO are shown in Figures 13.18 and 13.19, 

respectively. 
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Figure 13.18.   The cross section of the 

2F  MO showing the axes,   MO ( 2H -type 

ellipsoidal MO), with the F  1s , 2s , and 
2 p  atomic orbitals (AOs).  Legend: a : 
semimajor axis, b : semiminor axis, 'c : 
internuclear distance, 8r : radius of the 2F p  

shell having two paired electrons. 
 

 
 

 
SUM OF THE ENERGIES OF THE   MO AND THE AOs OF THE FLUORINE 
MOLECULE 
The energies of the 2F    MO are given by the substitution of the semiprincipal axes (Eqs. (13.683-13.684) and (13.687)) into 

the energy equations (Eqs. (11.207-11.212)) of 2H : 
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 T e m pE V T V V     (13.737) 

Substitution of Eqs. (11.79) and (13.733-13.736) into Eq. (13.737) gives: 
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where  2 ,TE F   is the total energy of the   MO of 2F .  The sum,  2TE F , of  2 , 2TE F p , the 2 p  AO contribution given by 

Eq. (13.722), and  2 ,TE F  , the   MO contribution given by Eq. (13.738) is: 

 
     2 2 2, 2 ,

31.62353 4.75562 36.37915 
T T TE F E F p E F

eV eV eV

 

    
 (13.739) 

 

Figure 13.19.   2F  MO comprising the   MO ( 2H -type MO) with F

atoms at the foci that have each donated an electron to the   MO and have
smaller radii and higher binding energies as a consequence.  (A) Color scale,
translucent view of the charge-density of the 2F  MO.  (B) Off-center cut-

away view showing the complete inner most 1F s  shell, and moving radially,
the 2F s  shell, the 2F p  shell, and the   prolate spheroidal MO that have the
F  atoms as the foci. 
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VIBRATION OF 2F  
The vibrational energy levels of 2F  may be solved by determining the Morse potential curve from the energy relationships for 

the transition from two F  atoms whose parameters are given by Eqs. (10.174-10.183) to the two F  atoms whose parameter 8r  

is given by Eq. (13.720) and the   MO whose parameters are given by Eqs. (13.727-13.729) and (13.731-13.732).  As shown in 
the Vibration of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about 
the internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K&P) 
[15] and after Eq. (11.134).  Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the 
energy corrections can be found by perturbation methods. 
 

THE DOPPLER ENERGY TERMS OF THE FLUORINE MOLECULE 
The equations of the radiation reaction force of fluorine are the same as those of 2H  with the substitution of the fluorine 

parameters.  Using Eqs. (11.231-11.233), the angular frequency of the reentrant oscillation in the transition state is: 
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where a  is given by Eq. (13.727).  The kinetic energy, KE , is given by Planck’s equation (Eq. (11.127)): 

 156.16629  10  / 4.05876 KE X rad s eV     (13.741) 

In Eq. (11.181), substitution of  2TE F  for hE  , the mass of the electron, em , for M , and the kinetic energy given by Eq. 

(13.741) for KE  gives the Doppler energy of the electrons of the reentrant orbit: 
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In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of the 2F  MO due to the reentrant orbit in the transition state corresponding to simple 

harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by Eq. 

(13.742) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy.  Using the experimental 2F  e  

of  1916.64  0.11365 cm eV  [28] for KvibE  of the transition state,  2oscE F  is:  
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      (13.743) 

    2
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0.14499 0.11365 0.08817 

2oscE F eV eV eV      (13.744) 

 

TOTAL AND BOND ENERGIES OF THE FLUORINE MOLECULE 
 2T oscE F , the total energy of 2F  including the Doppler term, is given by the sum of  2TE F  (Eq. (13.739)) and  2oscE F  given 

by Eq. (13.744): 
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From Eqs. (13.743-13.746), the total energy of the 2F  MO is: 

      2 2

1
36.37915 36.37915 0.14499 0.11365 36.46732 

2T osc oscE F eV E F eV eV eV eV           (13.747) 

where the experimental e  was used for the 
k


  term. 

The 2F  bond dissociation energy,  2DE F , is given by the difference in the total energies of the two F  atoms and 

 2T oscE F : 

      2 22D T oscE F E F E F   (13.748) 

where the energy of a fluorine atom is [6]: 
 ( ) 17.42282 E F eV   (13.749) 

Thus, the 2F  bond dissociation energy,  2DE F , given by Eqs. (13.747-13.749) is: 

        2 22 17.42282 34.84564 36.46732 1.62168 D T oscE F eV E F eV eV eV         (13.750) 

The experimental 2F  bond dissociation energy is [48]: 

  2 1.606 DE F eV  (13.751) 

The results of the determination of bond parameters of 2F  are given in Table 13.1.  The calculated results are based on first 

principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 
 
CHLORINE MOLECULE 
The chlorine molecule can be formed by the reaction of two chlorine atoms: 

 2Cl Cl Cl   (13.752) 

The chlorine molecule can be solved by using the hybridization approach used to solve the methane series 1,2,3,4nCH  .  In the 

methane series, the 2s  and 2 p  shells of carbon hybridize to form a single 32sp  shell to achieve an energy minimum, and in a 

likewise manner, the 3s  and 3p  shells of chlorine hybridize to form a single 33sp  shell which forms the bonding orbital of 2Cl . 

 

FORCE BALANCE OF 2Cl  

2Cl  has two spin-paired electrons in a chemical bond between the chlorine atoms.  The 2Cl  molecular orbital (MO) is 

determined by considering properties of the binding atoms and the boundary constraints.  The prolate spheroidal 2H  MO 

developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules section satisfies the boundary constraints; thus, 
each Cl  atom could contribute a 3p  electron to form a   MO ( 2H -type ellipsoidal MO) as in the case of 2N , 2O , and 2F .  

However, such a bond is not possible with the outer Cl  electrons in their ground state since the resulting 3p  shells of chlorine 
atoms would overlap which is not energetically stable.  Thus, when bonding, the chlorine 3s  and 3p  shells hybridize to form a 

single 33sp  shell to achieve an energy minimum. 

The Cl  electron configuration given in the Seventeen-Electron Atoms section is 2 2 6 2 51 2 2 3 3s s p s p , and the orbital 
arrangement is: 

 

         3p state

           

   1         0        -1

      (13.753) 

corresponding to the ground state 2 0
3/2P .  The radius 17r  of the 3p  shell given by Eq. (10.363) is: 

 17 01.05158r a  (13.754) 

The energy of the chlorine 3p  shell is the negative of the ionization energy of the chlorine atom given by Eq. (10.364).  
Experimentally, the energy is [6]: 
  3  ( ;  ) 12.96764 E p shell E ionization Cl eV     (13.755) 

The 3Cl s  atomic orbital (AO) combines with the 3Cl p  AOs to form a single 33sp  hybridized orbital (HO) with the orbital 
arrangement. 

 

3               3sp  state

                    

 0,0       1,-1       1,0       1,1

        (13.756) 
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where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the seven 

electrons.  Using only the largest-force terms of the outer most and next inner shell, the calculated energies for the chlorine atom 
and the ions: Cl , Cl , 2Cl  , 3Cl  , 4Cl  , 5Cl   and 6Cl   are given in Eqs. (10.363-10.364), (10.353-10.354), (10.331-10.332), 

(10.309-10.310), (10.288-10.289), (10.255-10.256), and (10.235-10.236), respectively.  The sum  3,3TE Cl sp  of the 

experimental energies of Cl  and these ions is [6]: 

  3 12.96764 23.814 39.61 53.4652 
,3 408.88264 

67.8 97.03 114.1958 T

eV eV eV eV
E Cl sp eV

eV eV eV

   
     

 (13.757) 

The spin and orbital-angular-momentum interactions cancel such that the energy of the  3,3TE Cl sp  is purely Coulombic.  By 

considering that the central field decreases by an integer for each successive electron of the shell, the radius 33sp
r  of the 33Cl sp  

shell may be calculated from the Coulombic energy using Eq. (10.102): 

 
   3

2 216

03
10 0 0

( ) 28
0.93172

8 408.8826 8 408.8826 sp
n

Z n e e
r a

e eV e eV 


    (13.758) 

where 17Z  .  Using Eqs. (10.102) and (13.758), the Coulombic energy  3,3CoulombE Cl sp  of the outer electron of the 33Cl sp  

shell is: 

  
3

2 2
3

0 0 03

,3 14.60295 
8 8 0.93172Coulomb

sp

e e
E Cl sp eV

r a 
 

     (13.759) 

The calculated energy of the 32C sp  shell of 14.63489 eV  given by Eq. (13.428), and nitrogen’s calculated energy of 

14.61664 eV  given by Eq. (10.143) is a close match with  3,3CoulombE Cl sp . 

The unpaired 33Cl sp  electrons from each of two chlorine atoms combine to form a molecular orbital.  The nuclei of the 
Cl  atoms are along the internuclear axis and serve as the foci.  Due to symmetry, the other Cl  electrons are equivalent to point 
charges at the origin.  (See Eqs. (19-38) of Appendix II.)  Thus, the energies in the Cl  MO involve only the two 33Cl sp  
electrons.  The forces are determined by these energies. 

As in the case of 2H , the MO is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into 
33Cl sp  HO for distances shorter than the radius of the 33Cl sp  shell of each atom.  Thus, the MO surface comprises a partial 

prolate spheroid in between the nuclei and is continuous with the 33Cl sp  shell at each Cl  atom.  The energy of the 2H -type 

ellipsoidal MO is matched to that of the 33Cl sp  shell.  As in the case with OH , NH , and CH  (where the latter also 

demonstrates 3sp hybridization) the linear combination of the 2H -type ellipsoidal MO with each 33Cl sp  HO must involve a 

25% contribution from the 2H -type ellipsoidal MO to the 33Cl sp  HO in order to match potential, kinetic, and orbital energy 

relationships.  Thus, the 2Cl  MO must comprise two 33Cl sp HOs and 75% of a 2H -type ellipsoidal MO divided between the two 
33Cl sp  HOs: 

 3
2 22 3 0.75   Cl sp H MO Cl MO   (13.760) 

The force balance of the 2Cl  MO is determined by the boundary conditions that arise from the linear combination of orbitals 

according to Eq. (13.760) and the energy matching condition between the 2H -type-ellipsoidal-MO and 33Cl sp -HO components 

of the MO. 
As in the case with OH  (Eq. (13.57)), NH  (Eq. (13.247)), and CH  (Eq. (13.429)), the 2H -type ellipsoidal MO 

comprises 75% of the 2Cl  MO; so, the electron charge density in Eq. (11.65) is given by 0.75e .  Since the chlorine atoms of 

2Cl  are hybridized and the k  parameter is different from unity in order to meet the boundary constraints, both k  and 'k  must 

comprise the corresponding hybridization factors.  (In contrast, the chlorine atom of a C Cl  bond of an alkyl chloride is not 
hybridized, and only 'k  must comprise the corresponding hybridization factor.)  The force constant 'k  to determine the 
ellipsoidal parameter 'c  in terms of the central force of the foci is given by Eq. (13.59), except that 'k  is divided by two since 
the 2H -type-ellipsoidal-MO is physically divided between two 33Cl sp  HOs.  In addition, the energy matching at both 33Cl sp  

HOs further requires that 'k  be corrected with the hybridization factor given by Eq. (13.762).  Thus, 'k  of the 2H -type-

ellipsoidal-MO component of the 2Cl  MO is: 

 
   

3

2 2

3
0 0

0.75 0.752 2
' 0.93172

2 4 2 4Cl sp HO

e e
k C

 
   (13.761) 
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The distance from the origin to each focus 'c  is given by Eq. (13.60).  The internuclear distance is given by Eq. (13.61).  
The length of the semiminor axis of the prolate spheroidal Cl Cl -bond b c  is given by Eq. (13.62).  The eccentricity, e , is 
given by Eq. (13.63).  The solution of the semimajor axis a  then allows for the solution of the other axes of each prolate 
spheroid and eccentricity of the 2Cl  MO.  Since the 2Cl  MO comprises a 2H -type-ellipsoidal MO that transitions to the 33Cl sp  

HOs at each end of the molecule, the energy  3,3E Cl sp  in Eq. (13.759) adds to that of the 2H -type ellipsoidal MO to give the 

total energy of the 2Cl  MO.  From the energy equation and the relationship between the axes, the dimensions of the 2Cl  MO are 

solved. 
The energy components of eV , pV , T , and mV  are those of 2H  (Eqs. (11.207-11.211)) except that they are corrected for 

electron hybridization.  Hybridization gives rise to the 33Cl sp  HO-shell Coulombic energy  3,3CoulombE Cl sp  given by Eq. 

(13.759).  To meet the equipotential condition of the union of the 2H -type-ellipsoidal-MO with each 33Cl sp  HO, the electron 

energies are normalized by the ratio of 14.60295 eV , the magnitude of  3,3CoulombE Cl sp  given by Eq. (13.759), and 

13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  This 
normalizes the energies to match that of the Coulombic energy alone to meet the energy matching condition of the 2Cl  MO 

under the influence of the two 33Cl sp  HOs bridged by the 2H -type-ellipsoidal MO.  The hybridization energy factor 33Cl sp HO
C  

is: 

 
3

3

2 2

0 0 0 0
2 23

0 0 03

8 8

8 8 0.93172

13.605804 
0.93172

14.60295 

Cl sp HO

sp

e e
a a

C
e e

r a

eV

eV

 

 

 

 

 (13.762) 

The total energy  2TE Cl  of the 2Cl  MO is given by the sum of the energies of the orbitals, the 2H -type ellipsoidal MO and the 

two 33Cl sp  HOs, that form the hybridized 2Cl  MO.   2TE Cl  follows from Eq. (13.74) for OH , but the energy of the 33Cl sp  

HO given by Eq. (13.759) is substituted for the energy of O  and the 2H -type-ellipsoidal-MO energies are those of 2H  (Eqs. 

(11.207-11.212)) multiplied by the electron hybridization factor rather than by the factor of 0.75 : 
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,3
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 0.93172 2 ln 1 14.60295 

8 ' 2 '

T T CoulombE Cl E E Cl sp

ae a c
eV
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 (13.763) 

To match the boundary condition that the total energy of the entire the 2H -type ellipsoidal MO is given by Eqs. (11.212) and 

(13.75),  2TE Cl  given by Eq. (13.763) is set equal to Eq. (13.75): 
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 0.93172 2 ln 1 14.60295 
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31.63537 
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E Cl eV
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 (13.764) 

From the energy relationship given by Eq. (13.764) and the relationship between the axes given by Eqs. (13.60-13.63), the 
dimensions of the 2Cl  MO can be solved. 

Substitution of Eqs. (13.60) and (13.761) into Eq. (13.764) gives: 
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 (13.765) 

The most convenient way to solve Eq. (13.765) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is:  

 10
02.46500 1.30442  10  a a X m   (13.766) 

Substitution of Eq. (13.766) into Eq. (13.60) gives: 

 11
01.87817 9.93887  10  c a X m    (13.767) 

The internuclear distance given by multiplying Eq. (13.767) by two is:  
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 10
02 3.75635 1.98777  10  c a X m    (13.768) 

The experimental bond distance is [28] : 

 102 1.988  10  c X m   (13.769) 

Substitution of Eqs. (13.766-13.767) into Eq. (13.62) gives: 

 11
01.59646 8.44810  10  b c a X m    (13.770) 

Substitution of Eqs. (13.766-13.767) into Eq. (13.63) gives: 

 0.76194e   (13.771) 

The Cl nuclei comprise the foci of the 2H -type ellipsoidal MO.  The parameters of the point of intersection of the 2H -type 

ellipsoidal MO and the 33Cl sp  HO are given by Eqs. (13.84-13.95) and (13.261-13.270).  The polar intersection angle '  is 

given by Eq. (13.261) where 3 03
0.93172n sp

r r a   is the radius of the 33Cl sp  shell.  Substitution of Eqs. (13.766-13.767) into 

Eq. (13.261) gives 

 ' 81.72    (13.772) 

Then, the angle 33Cl sp HO
  the radial vector of the 33Cl sp  HO makes with the internuclear axis is: 

 33
180 81.72 98.28

Cl sp HO
       (13.773) 

as shown in Figure 13.20.  The Cartesian i -coordinate of the interception point of the MO and the AO can be calculated using 
the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -coordinate 

components at the point of intersection.  Thus, the matching elliptic parametric angle 
2H MOt   satisfies the following 

relationship: 

 3 3 3
203 3 3

sin 0.93172 sin sin H MOsp Cl sp HO Cl sp HO
r a b     (13.774) 

such that 

 
3

2

0 31 1 0
0.93172 sin 0.93172 sin 98.28

sin sinCl sp HO
H MO

a a

b b


   

   (13.775) 

with the use of Eq. (13.773).  Substitution of Eq. (13.770) into Eq. (13.775) gives: 

 
2

35.28H MO    (13.776) 

Then, the distance 
2H MOd  along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of intersection of the 

orbitals is given by: 

 
2 2

cosH MO H MOd a   (13.777) 

Substitution of Eqs. (13.766) and (13.776) into Eq. (13.777) gives: 

 
2

10
02.01235 1.06489  10  H MOd a X m   (13.778) 

The distance 33Cl sp HO
d  along the internuclear axis from the origin of each Cl  atom to the point of intersection of the orbitals is 

given by: 

 3
23

'H MOCl sp HO
d d c   (13.779) 

Substitution of Eqs. (13.768) and (13.778) into Eq. (13.779) gives: 

 3

12
03

0.13417 7.10022  10  
Cl sp HO

d a X m   (13.780) 

As shown in Eq. (13.760), a factor of 0.25 of the charge-density of the 2H -type ellipsoidal MO is distributed on each 
33Cl sp  HO.  Using the orbital composition of 2Cl  (Eq. (13.760)), the radii of the 01 0.05932Cl s a  (Eq. (10.51)), 

02 0.25344Cl s a  (Eq. (10.62)), 02 0.31190Cl p a  (Eq. (10.212)), and 3
03 0.93172Cl sp a  (Eq. (13.758)) shells, and the 

parameters of the 2Cl  MO given by Eqs. (13.3-13.4), (13.766-13.768), and (13.770-13.771), the dimensional diagram and 

charge-density of the 2Cl  MO comprising the linear combination of the 2H -type ellipsoidal MO and two 33Cl sp  HOs according 

to Eq. (13.760) are shown in Figures 13.20 and 13.21, respectively. 
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Figure 13.20.   The cross section of the 2Cl  MO showing the axes, angles, and point of intersection of the 2H -type ellipsoidal 

MO with the two 33Cl sp  HOs.  The continuation of the 2H -type-ellipsoidal-MO basis element beyond the intersection point 

with each 33Cl sp  shell is shown as dashed since it only serves to solve the energy match with each 33Cl sp  shell and does not 
represent charge density.  Similarly, the vertical dashed line only designates the parameters of the intersection points.  The actual 
charge density is shown by the solid lines.  Legend: a : semimajor axis, b : semiminor axis, 'c : internuclear distance, 

21 : H MOd d , 

31 3
:

Cl sp HO
  , 32 3

:
Cl sp HO

d d , and 33
:

sp
R r . 

 

 
 
 
 
 

Figure 13.21.   2Cl  MO comprising the superposition of the 2H -type ellipsoidal MO and the two 33Cl sp  HOs, each with a 
relative charge-density of 0.75 to 1.25 divided between the former and the latter; otherwise, the 33Cl sp  HO is unchanged.  (A) 
Side-on, color scale, translucent view of the charge-density of the 2Cl  MO.  The ellipsoidal surface of the 2H -type ellipsoidal 
MO that transitions to the 33Cl sp  HO, the 33Cl sp  HO, and the 1Cl s , 2Cl s  , and 2Cl p  shells of each Cl  atom are shown.  (B) 
Cut-away view showing the inner most 1Cl s  shell, and moving radially, the 2Cl s , 2Cl p , and 33Cl sp  shells, and the 2H -type 
ellipsoidal MO that transitions to the 33Cl sp  HOs. 
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ENERGIES OF 2Cl  
The energies of 2Cl  are given by the substitution of the semiprincipal axes (Eqs. (13.766-13.767) and (13.770)) into the energy 

equations, (Eq. (13.763) and Eqs. (11.207-11.211) of 2H ) that are corrected for electron hybridization using Eq. (13.762). 

  
2 2 2

2 2 2 2
0

2
0.93172 ln 27.02007 

8
e

e a a b
V eV

a b a a b
  

  
  

 (13.781) 
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 (13.784) 

    
2

35 0
2

0

1 '
 0.93172 2 ln 1 14.60295 31.63537 

8 ' 2 'T

ae a c
E Cl eV eV

c a a c
            

 (13.785) 

where  2TE Cl  is given by Eq. (13.763) which is reiteratively matched to Eq. (13.75) within five-significant-figure round-off 

error. 
 

VIBRATION AND ROTATION OF 2Cl  
In 2Cl , the division of the 2H -type ellipsoidal MO between the two 33Cl sp  HOs and the hybridization must be considered in 

determining the vibrational parameters.  One approach is to use Eq. (13.761) for the force constant and 33sp
r given by Eq. 

(13.758) for the distance parameter of the central force in Eq. (11.213) since the 2H -type ellipsoidal MO is energy matched to 

the 33Cl sp  HOs.  With the substitution of the 2Cl  parameters in Eqs. (11.213-11.217), the angular frequency of the oscillation 

is: 
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 (13.786) 

where 'c  is given by Eq. (13.767), and the reduced mass of 35
2Cl  is given by: 

 
  

35
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1 2

1 2

35 35

35 35 pCl

m m
m

m m
  

 
 (13.787) 

where pm  is the proton mass.  Thus, during bond formation, the perturbation of the orbit determined by an inverse-squared force 

results in simple harmonic oscillatory motion of the orbit, and the corresponding frequency,  0 , for 35
2Cl  given by Eqs. 

(11.136), (11.148), and (13.786) is: 

     1
140 301.19 

0 1.01438  10  /
k Nm

X radians s
 



    (13.788) 

where the reduced nuclear mass of 35
2Cl  is given by Eq. (13.787) and the spring constant,  0k , given by Eqs. (11.136) and 

(13.786) is:  
   10 301.19 k Nm  (13.789) 

The 35
2Cl  transition-state vibrational energy,  0vibE  or e , given by Planck’s equation (Eq. (11.127)) is: 

   14 10 1.01438  10  / 0.06677 538.52 vib eE X rad s eV cm         (13.790) 
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e , from the experimental curve fit of the vibrational energies of 35
2Cl  is [28] : 

 1559.7 e cm   (13.791) 

Using Eqs. (13.112-13.118) with  0vibE  given by Eq. (13.790) and 0D  given by Eq. (13.807), the 35
2Cl  1 0     

vibrational energy,  1vibE  is: 

    11 0.0659 531.70 vibE eV cm  (13.792) 

The experimental vibrational energy of 35
2Cl  using e  and e ex  [28] according to K&P [15] is: 

    11 0.0664 535.55 vibE eV cm  (13.793) 

Using Eq. (13.113) with  1vibE  given by Eq. (13.792) and 0D  given by Eq. (13.807), the anharmonic perturbation term, 

0 0x , of 35
2Cl  is: 

 1
0 0 3.41 x cm   (13.794) 

The experimental anharmonic perturbation term, 0 0x , of 35
2Cl  [28] is: 

 1
0 0 2.68 x cm   (13.795)  

The vibrational energies of successive states are given by Eqs. (13.790), (13.112), and (13.794). 
 Using Eqs. (13.133-13.134) and the internuclear distance, 2 'r c , and reduced mass of 35

2Cl  given by Eqs. (13.768) and 

(13.787), respectively, the corresponding eB  is: 

 10.2420 eB cm  (13.796) 

The experimental eB  rotational parameter of 35
2Cl  is [28]: 

 10.2440 eB cm  (13.797) 
 
THE DOPPLER ENERGY TERMS OF 2Cl  
The equations of the radiation reaction force of the symmetrical 2Cl  MO are the given by Eqs. (11.231-11.233) with the 

substitution of the 2Cl  parameters and the substitution of the force factor of Eq. (13.761).  The angular frequency of the reentrant 

oscillation in the transition state is: 
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m

    (13.798) 

where a  is given by Eq. (13.766).  The kinetic energy, KE , is given by Planck’s equation (Eq. (11.127)). 

 151.6.31418  10  / 4.15610 KE X rad s eV     (13.799) 

In Eq. (11.181), substitution of the total energy of 2Cl ,  2TE Cl , (Eq. (13.764)) for hE  , the mass of the electron, em , for M , 

and the kinetic energy given by Eq. (13.799) for KE  gives the Doppler energy of the electrons for the reentrant orbit: 

 
 

2 2

2 4.15610 2
31.63537 0.12759 K

D h
e

e eVE
E E eV eV

Mc m c      (13.800) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of 2Cl  due to the reentrant orbit in the transition state corresponding to simple harmonic 

oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by Eq. (13.800) and 

KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of 2Cl .  Using the experimental 35
2Cl  e  of 

 1559.7  0.06939 cm eV  [28] for KvibE  of the transition state,  35
2oscE Cl  is:  

  35
2

1

2osc D Kvib D

k
E Cl E E E


      (13.801) 

    35
2

1
0.12759 0.06939 0.09289 

2oscE Cl eV eV eV      (13.802) 
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TOTAL AND BOND ENERGIES OF 2Cl  
 35

2T oscE Cl , the total energy of the 35
2Cl  radical including the Doppler term, is given by the sum of  2TE Cl  (Eq. (13.764)) 

and  35
2oscE Cl  given by Eq. (13.802). 

          35 3 35 35
2 2 2 2,3T osc e m p Coulomb osc T oscE Cl V T V V E Cl sp E Cl E Cl E Cl          (13.803) 
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 (13.804) 

From Eqs. (13.801-13.804), the total energy of 35
2Cl  is: 

 
   

 

35 35
2 231.63537 

1
                  31.63537 0.12759 0.06939 31.72826 

2

T osc oscE Cl eV E Cl

eV eV eV eV

   

     
 (13.805) 

where the experimental e  (Eq. (13.791)) was used for the 
k


  term. 

The 2Cl  bond dissociation energy,  35
2DE Cl , is given by the difference between the total energies of the two 33Cl sp  

HOs and  35
2T oscE Cl : 

      35 3 35
2 22 ,3D Coulomb T oscE Cl E Cl sp E Cl   (13.806) 

 3,3CoulombE Cl sp  is given by Eq. (13.759); thus, the 35
2Cl  bond dissociation energy,  35

2DE Cl , given by Eqs. (13.759) and 

(13.805-13.806) is 
        35 35

2 22 14.60295 29.20590 31.72826 2.52236 D T oscE Cl eV E Cl eV eV eV         (13.807) 

The experimental 35
2Cl  bond dissociation energy is [49]: 

  35
2 2.51412 DE Cl eV  (13.808) 

The results of the determination of bond parameters of 2Cl  are given in Table 13.1.  The calculated results are based on 

first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 

 
CARBON NITRIDE RADICAL 
The carbon nitride radical can be formed by the reaction of carbon and nitrogen atoms: 
 C N CN   (13.809) 
The bond in carbon nitride radical comprises a 2H -type molecular orbital (MO) with two paired electrons.  The force balance 

equations and radii, 6r  and 7r , of the 2 p  shell of C  and N  are derived in the Six-Electron Atoms section and Seven-Electron 

Atoms section, respectively.  With the formation of the 2H -type MO by the contribution of a 2 p  electron from each of the C  

and N  atoms, a diamagnetic force arises between the remaining 2 p  electrons of each atom and the 2H -type MO.  This force 

from each atom causes the 2H -type MO to move to greater principal axes than would result with the Coulombic force alone.  

But, the integer increase of the central field and the resulting increased Coulombic as well as magnetic central forces on the 
remaining 2 p  electrons of each atom decrease the radii of the corresponding shells such that the energy minimum is achieved 

that is lower than that of the reactant atoms.  The resulting electron configuration of CN  is 2 2 2 2 1 2 2
,1 1 2 2 2 2 C NC s N s C s N s C p N p   

where   designates the 2H -type MO, and the orbital arrangement is: 
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 (13.810) 

The carbon nitride radical is predicted to be weakly paramagnetic. 
 
FORCE BALANCE OF THE 2 p  SHELL OF THE CARBON ATOM OF THE CARBON 
NITRIDE RADICAL 
For the C  atom, force balance for the outermost 2 p  electron of CN  (electron 5) is achieved between the centrifugal force and 
the Coulombic and magnetic forces that arise due to interactions between electron 5 and the 2s -shell electrons due to spin and 
orbital angular momentum.  The forces used are derived in the Six-Electron Atoms section.  The central Coulomb force on the 
outer-most 2 p  shell electron of CN  (electron 5) due to the nucleus and the inner four electrons is given by Eq. (10.70) with the 
appropriate charge and radius: 
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 rF i  (13.811) 

for 4r r .  The 2 p  shell possess an external electric field given by Eq. (10.92) for 5r r . 

The single unpaired carbon 2 p  electron gives rise to a diamagnetic force on the  -MO as given by Eqs. (13.835-

13.839).  The corresponding Newtonian reaction force cancels diamagneticF , of Eq. (10.82).  The energy is minimized with 

conservation of angular momentum.  This condition is met when: 
 0diamagnetic F  (13.812) 

And,  2magF  corresponding to the maximum orbital angular momentum of the three 2 p  orbitals given by Eq. (10.89) is: 
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 (13.813) 

The electric field external to the 2 p  shell given by Eq. (10.92) for 5r r  gives rise to a second diamagnetic force, 

 2diamagneticF , given by Eq. (10.93).   2diamagneticF  due to the binding of the p-orbital electron having an electric field of +1 outside of 

its radius is: 

 
2

3
 2 4

5

5 2
1 10 ( 1)

4 2diamagnetic
e

rZ
s s

Z m r

            
rF i


 (13.814) 

The radius of the 2 p  shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. 
(13.811)) and diamagnetic (Eqs. (13.812) and (13.814)), and paramagnetic (Eq. (13.813)) forces as follows: 
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 (13.815) 

Substitution of 5
5e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (13.815) gives: 
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The quadratic equation corresponding to Eq. (13.816) is: 
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 (13.817) 

The solution of Eq. (13.817) using the quadratic formula is: 
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   (13.818) 

The positive root of Eq. (13.818) must be taken in order that 5 0r  .  Substitution of 3

0

0.84317
r

a
  (Eq. (10.62) with 6Z  ) into 

Eq. (13.818) gives: 
 5 00.88084r a  (13.819) 

 
FORCE BALANCE OF THE 2 p  SHELL OF THE NITROGEN ATOM OF THE CARBON 
NITRIDE RADICAL 
For the N  atom, force balance for the outermost 2 p  electron of CN  (electron 6) is achieved between the centrifugal force and 
the Coulombic and magnetic forces that arise due to interactions between electron 6 and the other 2 p -shell as well as the 2s -
shell electrons due to spin and orbital angular momentum.  The forces used are derived in the Seven-Electron Atoms section.  
The central Coulomb force on the outer-most 2 p  shell electron of CN  (electron 6) due to the nucleus and the inner five 
electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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 rF i  (13.820) 

for 5r r .  The 2 p  shell possess an external electric field given by Eq. (10.92) for 6r r . 

The forces to determine the radius of the 2N p  shell of N  in CN  are the same as those of N  in 2N  except that in CN  

there is a contribution from the Newtonian reaction force that arises from the single unpaired carbon 2 p  electron.  The energy is 

minimized with conservation of angular momentum.  This condition is met when diamagneticF  of N  in CN  is canceled by the  -

MO -reaction force.  Eq. (13.622) becomes: 

 0diamagnetic F  (13.821) 

And,  2magF  corresponding to the conserved orbital angular momentum of the three orbitals given by Eq. (10.89) is: 
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 (13.822) 

The electric field external to the 2 p  shell given by Eq. (10.92) for 6r r  gives rise to a second diamagnetic force, 

 2diamagneticF , given by Eq. (10.93).   2diamagneticF  due to the binding of the p-orbital electron having an electric field of +1 outside of 

its radius is:  
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 (13.823) 

The N  forces eleF ,  2magF ,  2diamagneticF , and 3magF  of CN  are the same as those of 2N  given by Eqs. (13.621) and 

(13.623-13.624), respectively.  In both cases, the contribution of a 2 p  electron from the N  atom in the formation of the   MO 

gives rise to a paramagnetic force on the remaining two 2 p  electrons that pair.  Thus, the force,  3magF  of CN , given by Eq. 

(13.625) is: 
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 (13.824) 

The radius of the 2 p  shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. 
(13.820)) and diamagnetic (Eqs. (13.821) and (13.823)), and paramagnetic (Eqs. (13.822) and (13.824)) forces as follows: 
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 (13.825) 

Substitution of 6
6e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (13.626) gives: 
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The quadratic equation corresponding to Eq. (13.826) is 
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 (13.827) 

The solution of Eq. (13.827) using the quadratic formula is: 

 

2

0
3

0

3
3

3

6 3 0

3
1

8
3 33 ( 5)1

28

3 3 6 2( 5) 20 3 12 5 2

3 3
( 5)

2
,      

2

Za
Z r

a
ZZ rZ r Z

Z
Z r

r r in units of a

 
 
 
               

                  
 

  
   (13.828) 

The positive root of Eq. (13.828) must be taken in order that 6 0r  .  Substitution of 3

0

0.69385
r

a
  (Eq. (10.62) with 7Z  ) into 

Eq. (13.828) gives: 

 6 00.76366r a  (13.829) 

 
ENERGIES OF THE 2 p  SHELLS OF THE CARBON AND NITROGEN ATOMS OF THE 
CARBON NITRIDE RADICAL 
The central forces on the 2 p  shell of the C  and N  atoms are increased with the formation of the   MO which reduces each 
shell’s radius and increases its total energy.  The Coulombic energy terms of the total energy of the C  and N  atoms at the new 
radii are calculated and added to the energy of the   MO to give the total energy of CN .  Then, the bond energy is determined 
from the total CN  energy. 

The radius 6r  of the carbon atom before bonding is given by Eq. (10.122): 

 6 01.20654r a  (13.830) 

Using the initial radius 6r  of the C  atom and the final radius 5r  of the 2C p  shell of CN  (Eq. (13.819)) and by considering that 

the central Coulombic field decreases by an integer for each successive electron of the shell, the sum  , 2TE CN C p  of the 

Coulombic energy change of the 2C p  electron is determined using Eq. (10.102): 
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  (13.831) 

The radius 7r  of the nitrogen atom before bonding is given by Eq. (10.142). 

 7 00.93084r a  (13.832) 

Using the initial radius 7r  of the N  atom and the final radius 6r  of the 2N p  shell of CN  (Eq. (13.829)) and by considering that 

the central Coulombic field decreases by an integer for each successive electron of the shell, the sum  , 2TE CN N p  of the 

Coulombic energy change of the 2N p  electron is determined using Eq. (10.102): 
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FORCE BALANCE OF THE   MO OF THE CARBON NITRIDE RADICAL 
The diamagnetic force 1diamagneticMOF  for the  -MO of the CN  molecule due to the two paired electrons in the 2N p  shell given 

by Eq. (13.633) with 2en   is:   
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 (13.834) 

The force 2diamagneticMOF  is given by Eq. (13.634) except that the force is summed over the individual diamagnetic-force terms due 

to each component of angular momentum iL  acting on the electrons of the  -MO from each atom having a nucleus of charge 

jZ  at one of the foci of the  -MO: 
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 (13.835) 

Using Eqs. (11.200), (13.633-13.634), and (13.834-13.835), the force balance for the  -MO of the carbon nitride radical 

comprising carbon with charge 1 6Z   and 1L    and 2

3

4
L    and nitrogen with 2 7Z   and 3L    is: 

 
2 2 2 2

2 2 2 2 2 2 2
0 1 1 2

3
1 141

8 2 2e e e

e
D D D D

m a b ab m a b Z Z Z m a b

 
 
       
 

  
 (13.836) 
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Substitution of 1 6Z   and 2 7Z   into Eq. (13.839) gives: 

 10
02.45386 1.29853  10  a a X m   (13.840) 

Substitution of Eq. (13.840) into Eq. (11.79) is:  

 11
01.10767 5.86153  10  c a X m    (13.841) 

The internuclear distance given by multiplying Eq. (13.841) by two is:  

 10
02 2.21534 1.17231  10  c a X m    (13.842) 

The experimental bond distance from Ref. [28] is: 

 102 1.17181  10  c X m   (13.843) 

Substitution of Eqs. (13.840-13.841) into Eq. (11.80) is: 
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 10
02.18964 1.15871  10  b c a X m    (13.844) 

Substitution of Eqs. (13.840-13.841) into Eq. (11.67) is: 

 0.45140e   (13.845) 

Using the electron configuration of CN  (Eq. (13.810)), the radii of the 01 0.17113C s a  (Eq. (10.51)), 02 0.84317C s a  (Eq. 

(10.62)), 02 0.88084C p a  (Eq. (13.819)), 01 0.14605N s a  (Eq. (10.51)), 02 0.69385N s a  (Eq. (10.62)), and 

02 0.76366N p a  (Eq. (13.829)) shells and the parameters of the   MO of CN  given by Eqs. (13.3-13.4), (13.840-13.842), and 

(13.844-13.845), the dimensional diagram and charge-density of the CN  MO are shown in Figures 13.22 and 13.23, 
respectively. 
 

Figure 13.22.   The cross section of the CN  
MO showing the axes,   MO ( 2H -type 

ellipsoidal MO), with the C  1s , 2s , and 2 p  
atomic orbitals (AOs) and the N  1s , 2s , and 
2 p  AOs.  Legend: a : semimajor axis, b : 

semiminor axis, 'c : internuclear distance, 5r : 

radius of the 2C p  shell having one unpaired 

electron, 6r : radius of the 2N p  shell having 

two paired electrons. 
 

 
 
 

SUM OF THE ENERGIES OF THE   MO AND THE AOs OF THE CARBON NITRIDE 
RADICAL 
 
The energies of the CN    MO are given by the substitution of the semiprincipal axes (Eqs. (13.840-13.841) and (13.844)) into 
the energy equations (Eqs. (11.207-11.212)) of 2H : 

 
2 2 2

2 2 2 2
0

2
ln 23.90105 

8
e

e a a b
V eV

a b a a b
  

  
  

 (13.846) 

 
2

2 2
0

12.28328 
8

p

e
V eV

a b
 


  (13.847) 

 
2 2 2

2 2 2 2
ln 4.87009 

2 e

a a b
T eV

m a a b a a b

 
 

  


 (13.848) 
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 T e m pE V T V V     (13.850) 

Substitution of Eqs. (11.79) and (13.846-13.849) into Eq. (13.850) gives: 

Figure 13.23.   CN  MO comprising the   MO ( 2H -type MO) with C

and N  atoms at the foci that have each donated an electron to the   MO
and have smaller radii and higher binding energies as a consequence.  (A)
Color scale, translucent view of the charge-density of the CN  MO.  (B)
Off-center cut-away view showing the complete inner most 1C s  shell, and
moving radially, the 2C s  shell, the 2C p  shell, and the   prolate
spheroidal MO that has the C  atom as a focus.  Moving radially from the
nitrogen-atom focus, the complete inner most 1N s  shell, the 2N s  shell, the

2N p  shell, and the   prolate spheroidal MO are shown. 
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 (13.851) 

where  ,TE CN   is the total energy of the   MO of CN .  The sum,  TE CN , of  , 2TE CN C p , the 2C p  AO contribution 

given by Eq. (13.831),  , 2TE CN N p , the 2N p  AO contribution given by Eq. (13.833), and  ,TE CN  , the   MO 

contribution given by Eq. (13.851) is: 
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VIBRATION OF CN  
The vibrational energy levels of CN  may be solved by determining the Morse potential curve from the energy relationships for 
the transition from a C  atom and N  atom whose parameters are given by Eqs. (10.115-10.123) and (10.134-10.143), 
respectively, to a C  atom whose parameter 5r  is given by Eq. (10.819), a N  atom whose parameter 6r  is given by Eq. (13.829), 

and the   MO whose parameters are given by Eqs. (13.840-13.842) and (13.844-13.845).  As shown in the Vibration of 
Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about the internuclear 
distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K&P) [15] and after 
Eq. (11.134).  Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy 
corrections can be found by perturbation methods. 
 
THE DOPPLER ENERGY TERMS OF THE CARBON NITRIDE RADICAL 
The equations of the radiation reaction force of CN  are the same as those of 2H  with the substitution of the CN  parameters.  

Using Eqs. (11.231-11.233), the angular frequency of the reentrant oscillation in the transition state is: 
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where a  is given by Eq. (13.840).  The kinetic energy, KE , is given by Planck’s equation (Eq. (11.127)). 

 161.07550  10  / 7.07912 KE X rad s eV     (13.854) 

In Eq. (11.181), substitution of  TE CN  for hE  , the mass of the electron, em , for M , and the kinetic energy given by Eq. 

(13.854) for KE  gives the Doppler energy of the electrons of the reentrant orbit: 
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 (13.855) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of the CN  MO due to the reentrant orbit in the transition state corresponding to simple 
harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by Eq. 

(13.855) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy.  Using the experimental CN  

e  of  12068.59  0.25647 cm eV  [28] for KvibE  of the transition state,  oscE CN  is:  
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TOTAL AND BOND ENERGIES OF THE CARBON NITRIDE RADICAL 
 T oscE CN , the total energy of CN  including the Doppler term, is given by the sum of  TE CN  (Eq. (13.852)) and  oscE CN  

given by Eq. (13.857): 
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 (13.859) 

From Eqs. (13.856-13.859), the total energy of the CN  MO is: 

 

   

 

33.52149 

1
                  33.52149 0.17684 0.25647 

2
                  33.56970 

T osc oscE CN eV E CN

eV eV eV

eV

   

   

 

 (13.860) 

where the experimental e  was used for the 
k


  term. 

The CN  bond dissociation energy,  DE CN , is given by the difference between the sum of the energies of the C  and 

N  atoms and  T oscE CN : 

        D T oscE CN E C E N E CN    (13.861) 

where the energy of a carbon atom is [6]: 

 ( ) 11.26030 E C eV   (13.862) 

and the energy of a nitrogen atom is [6]: 

 ( ) 14.53414 E N eV   (13.863) 

Thus, the CN  bond dissociation energy,  DE CN , given by Eqs. (13.860-13.863) is: 
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 (13.864) 

The experimental CN  bond dissociation energy is [50]: 

  298 7.7731 DE CN eV  (13.865) 

The results of the determination of bond parameters of CN  are given in Table 13.1.  The calculated results are based on first 
principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 
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CARBON MONOXIDE MOLECULE 
The carbon monoxide molecule can be formed by the reaction of carbon and oxygen atoms: 
 C O CO   (13.866) 
The bond in the carbon monoxide molecule comprises a double bond, a 2H -type molecular orbital (MO) with four paired 

electrons.  The force balance equation and radius 6r  of the 2 p  shell of C  is derived in the Six-Electron Atoms section.  The 

force balance equation and radius 8r  of the 2 p  shell of O  is derived in the Eight-Electron Atoms section.  With the formation of 

the 2H -type MO by the contribution of two 2 p  electrons from each of the C  and O  atoms, a diamagnetic force arises between 

the remaining outer shell atomic electrons, the 2s  electrons of C  and the 2 p  electrons of O , and the 2H -type MO.  This force 

from C  and O  causes the 2H -type MO to move to greater principal axes than would result with the Coulombic force alone.  

But, the factor of two increase of the central field and the resulting increased Coulombic as well as magnetic central forces on 
the remaining 2O p  electrons decrease the radius of the corresponding shell such that the energy minimum is achieved that is 

lower than that of the reactant atoms.  The resulting electron configuration of CO  is 2 2 2 2 2 4
,1 1 2 2 2 C OC s O s C s O s O p   where   

designates the 2H -type MO, and the orbital arrangement is: 
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 (13.867) 

Carbon monoxide is predicted to be diamagnetic in agreement with observations [42]. 
 
FORCE BALANCE OF THE 2 p  SHELL OF THE OXYGEN ATOM OF THE CARBON 
MONOXIDE MOLECULE 
For the O  atom, force balance for the outermost 2 p  electron of CO  (electron 6) is achieved between the centrifugal force and 
the Coulombic and magnetic forces that arise due to interactions between electron 6 and the other 2 p  electron as well as the 2s -
shell electrons due to spin and orbital angular momentum.  The forces used are derived in the Eight-Electron Atoms section.  The 
central Coulomb force on the outer-most 2 p  shell electron of CO  (electron 6) due to the nucleus and the inner five electrons is 
given by Eq. (10.70) with the appropriate charge and radius: 
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for 5r r .  The 2 p  shell possesses a +2 external electric field given by Eq. (10.92) for 6r r .  The energy is minimized with 

conservation of angular momentum.  This condition is met when the diamagnetic force, diamagneticF , of Eq. (10.82) due to the p -

orbital contribution is given by: 
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 (13.869) 

And,  2magF  corresponding to the conserved spin and orbital angular momentum given by Eq. (10.157) is: 

 
2

 2 2
6 3

1 2
( 1)mag

e

s s
Z m r r

  rF i
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The electric field external to the 2 p  shell given by Eq. (10.92) for 6r r  gives rise to a second diamagnetic force, 

 2diamagneticF , given by Eq. (10.93).   2diamagneticF  due to the binding of the p-orbital electron having an electric field of +2 outside of 

its radius is: 
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 (13.871) 

In addition, the contribution of two 2 p  electrons in the formation of the   molecular orbital (MO) gives rise to a 

paramagnetic force on the remaining paired 2 p  electrons.  The force 3magF  is given by Eq. (13.625) wherein the radius is 6r : 
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The radius of the 2 p  shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. 
(13.868)) and diamagnetic (Eqs. (13.869) and (13.871)), and paramagnetic (Eqs. (13.870) and (13.872)) forces as follows: 
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Substitution of 6
6e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (13.873) gives: 
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The quadratic equation corresponding to Eq. (13.874) is 
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The solution of Eq. (13.875) using the quadratic formula is: 
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    (13.876) 

The positive root of Eq. (13.876) must be taken in order that 6 0r  .  Substitution of 3

0

0.59020
r

a
  (Eq. (10.62) with 8Z  ) into 

Eq. (13.876) gives: 

 6 00.68835r a  (13.877) 
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ENERGIES OF THE 2s  AND 2p  SHELLS OF THE CARBON ATOM AND THE 2 p  
SHELL OF THE OXYGEN ATOM OF THE CARBON MONOXIDE MOLECULE 
With the formation of the 2H -type MO by the contribution of two 2 p  electrons from the C  atom, the remaining outer-shell 

atomic electrons comprise the 2s  electrons, which are unchanged by bonding with oxygen.  However, the total energy of the 
CO  molecule, which is subtracted from the sum of the energies of the carbon and oxygen atoms to determine the bond energy, is 
increased by the ionization energies of C  and O  given by Eqs. (10.113-10.114) and (10.152-10.153), respectively.  
Experimentally, the energies are [6] : 

 ( ;  ) 24.38332 E ionization C eV   (13.878) 

 ( ;  ) 35.11730 E ionization O eV   (13.879) 

In addition, the central forces on the 2 p  shell of the O  atom are increased with the formation of the   MO, which 
reduces the shell’s radius and increases its total energy.  The Coulombic energy terms of the total energy of the O  atom at the 
new radius are calculated and added to the ionization energies of C  and O , and the energy of the   MO to give the total 
energy of CO .  Then, the bond energy is determined from the total CO  energy. 

The radius 8r  of the oxygen atom before bonding is given by Eq. (10.162): 

 8 0r a  (13.880) 

Using the initial radius 8r  of the O  atom and the final radius 6r  of the 2O p  shell (Eq. (13.877)) and by considering that the 

central Coulombic field decreases by an integer for each successive electron of the shell, the sum  , 2TE O p  of the Coulombic 

energy change of the 2O p  electrons of the O  atom is determined using Eq. (10.102): 
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  (13.881) 

 

FORCE BALANCE OF THE   MO OF THE CARBON MONOXIDE MOLECULE 
The force balance can be considered due to a second pair of two electrons binding to a molecular ion having 2e  at each focus 
and a first bound pair.  Then, the forces are the same as those of a molecule ion having e  at each focus.  The diamagnetic force 

1diamagneticMOF  for the  -MO of the CO  molecule due to the two paired electrons in each of the 2C s  and 2O p  shells is given by 

Eq. (13.633) with 2en  :   
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The force 2diamagneticMOF  is given by Eqs. (13.634) and (13.835) as the sum of the contributions due to carbon with 1Z Z  and 

oxygen with 2Z Z .  1diamagneticMOF  for CO  with iL    is: 
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 (13.883) 

The force balance equation for the  -MO of the carbon monoxide molecule given by Eqs. (11.200), (13.633-13.634), and 
(13.882-13.883) is: 
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Substitution of 1 6Z   and 2 8Z   into Eq. (13.887) gives: 

 10
02.29167 1.21270  10  a a X m   (13.888) 

Substitution of Eq. (13.888) into Eq. (11.79) is:  
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 11
01.07044 5.66450  10  c a X m    (13.889) 

The internuclear distance given by multiplying Eq. (13.889) by two is:  

 10
02 2.14087 1.13290  10  c a X m    (13.890) 

The experimental bond distance is [28]: 

 102 1.12823  10  c X m   (13.891) 

Substitution of Eqs. (13.888-13.889) into Eq. (11.80) is: 

 10
02.02630 1.07227  10  b c a X m    (13.892) 

Substitution of Eqs. (13.888-13.889) into Eq. (11.67) is: 

 0.46710e   (13.893) 

Using the electron configuration of CO  (Eq. (13.867)), the radii of the 01 0.17113C s a  (Eq. (10.51)), 02 0.84317C s a  (Eq. 

(10.62)), 01 0.12739O s a  (Eq. (10.51)), 02 0.59020O s a  (Eq. (10.62)), and 02 0.68835O p a  (Eq. (13.877)) shells and the 

parameters of the   MO of CO  given by Eqs. (13.3-13.4), (13.888-13.890), and (13.892-13.893), the dimensional diagram and 
charge-density of the CO  MO are shown in Figures 13.24 and 13.25, respectively. 
 
Figure 13.24.   The cross section of the 
CO  MO showing the axes,   MO ( 2H -type 

ellipsoidal MO) with four paired electrons, 
with the C  1s  and 2s  atomic orbitals (AOs) 
and the O  1s , 2s , and 2 p  AOs.  Legend: a : 
semimajor axis, b : semiminor axis, 'c : 
internuclear distance, 4r : radius of the 2C s  

shell having two paired electrons, 6r : radius 

of the 2O p  shell having two paired electrons. 

 

 
 
SUM OF THE ENERGIES OF THE   MO AND THE AOs OF THE CARBON 
MONOXIDE MOLECULE 
The energies of the CO    MO are given by the substitution of the semiprincipal axes (Eqs. (13.888-13.889) and (13.892)) into 
the energy equations (Eqs. (11.207-11.212)) of 2H  except that the terms based on charge are multiplied by four and the kinetic 

energy term is multiplied by two due to the  -MO double bond with two pairs of paired electrons: 
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 (13.894) 
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Figure 13.25.   CO  MO comprising the   MO ( 2H -type MO) with C

and O  atoms at the foci that have each donated two electrons to the   MO.
Consequently, the outer electrons of the carbon atom comprise the 2C s
shell, and the 2O p  shell has a smaller radius and a higher binding energy.
(A) Color scale, translucent view of the charge-density of the CO  MO.  (B)
Off-center cut-away view showing the complete inner most 1O s  shell, and
moving radially, the 2O s  shell, the 2O p  shell, and the   prolate
spheroidal MO that has the O  atom as a focus.  Moving radially from the
carbon-atom focus, the complete inner most 1C s  shell, the 2C s  shell, and
the   prolate spheroidal MO are shown. 
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 T e m pE V T V V     (13.898) 

Substitution of Eqs. (11.79) and (13.894-13.897) into Eq. (13.898) gives: 
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 (13.899) 

where  ,TE CO   is the total energy of the   MO of CO .  The total energy of CO ,  TE CO , is given by the sum of 

( ;  )E ionization C , the energy of the second electron of carbon (Eq. (13.878)) donated to the double bond, ( ;  )E ionization O , 

the energy of the second electron of oxygen (Eq. (13.879)) donated to the double bond,  , 2TE O p , the 2O p  AO contribution 

due to the decrease in radius with bond formation (Eq. (13.881)), and  ,TE CO  , the   MO contribution given by Eq. (13.899): 
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 (13.900) 

VIBRATION OF CO  
The vibrational energy levels of CO  may be solved by determining the Morse potential curve from the energy relationships for 
the transition from a C  atom and O  atom whose parameters are given by Eqs. (10.115-10.123) and (10.154-10.163), 
respectively, to a C  atom whose parameter 4r  is given by Eq. (10.61), an O  atom whose parameter 6r  is given by Eq. (13.877), 

and the   MO whose parameters are given by Eqs. (13.888-13.890) and (13.892-13.893).  As shown in the Vibration of 
Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about the internuclear 
distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K&P) [15] and after 
Eq. (11.134).  Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy 
corrections can be found by perturbation methods. 
 

THE DOPPLER ENERGY TERMS OF THE CARBON MONOXIDE MOLECULE 
The equations of the radiation reaction force of carbon monoxide are the same as those of 2H  with the substitution of the CO  

parameters except that there is a factor of four increase in the central force in Eq. (11.231) due to the double bond.  Using Eqs. 
(11.231-11.233), the angular frequency of the reentrant oscillation in the transition state is 
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    (13.901) 

where a  is given by Eq. (13.888).  The kinetic energy, KE , is given by Planck’s equation (Eq. (11.127)). 
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In Eq. (11.181), substitution of  TE CO  for hE  , the mass of the electron, em , for M , and the kinetic energy given by Eq. 

(13.902) for KE  gives the Doppler energy of the electrons of the reentrant orbit: 
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 (13.903) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of the CO  MO due to the reentrant orbit in the transition state corresponding to simple 
harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by Eq. 

(13.903) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy.  Using the experimental CO  

e  of  12169.81  0.26902 cm eV  [28] for KvibE  of the transition state,  'oscE CO  per bond is:  
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   1
'

2osc D Kvib D

k
E CO E E E


      (13.904) 

    1
' 0.28016 0.26902 0.14564 

2oscE CO eV eV eV      (13.905) 

Since the   MO bond is a double bond with twice a many electrons as a single bond,  'oscE CO  is multiplied by two to give: 

   0.29129 oscE CO eV   (13.906) 

 

TOTAL AND BOND ENERGIES OF THE CARBON MONOXIDE MOLECULE 
 T oscE CO , the total energy of CO  including the Doppler term, is given by the sum of  TE CO  (Eq. (13.900)) and  oscE CO  

given by Eq. (13.906): 
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 (13.908) 

From Eqs. (13.906-13.908), the total energy of the CO  MO is: 
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 (13.909) 

where the experimental e  was used for the 
k


  term. 

The CO  bond dissociation energy,  DE CO , is given by the difference between the sum of the energies of the C  and O  

atoms and  T oscE CO : 

        D T oscE CO E C E O E CO    (13.910) 

where the energy of a carbon atom is [6]:  

 ( ) 11.26030 E C eV   (13.911) 

and the energy of an oxygen atom is [6]:   

 ( ) 13.61806 E O eV   (13.912) 

Thus, the CO  bond dissociation energy,  DE CO , given by Eqs. (13.909-13.912) is: 
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 (13.913) 
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The experimental CO  bond dissociation energy is [49]: 

  298 11.15696 DE CO eV  (13.914) 

The results of the determination of bond parameters of CO  are given in Table 13.1.  The calculated results are based on first 
principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 
 
NITRIC OXIDE RADICAL 
The nitric oxide radical can be formed by the reaction of nitrogen and oxygen atoms: 

 N O NO   (13.915) 

The bond in the nitric oxide radical comprises a double bond, a 2H -type molecular orbital (MO) with four paired electrons.  The 

force balance equation and radius 7r  of the 2 p  shell of N  is derived in the Seven-Electron Atoms section.  The force balance 

equation and radius 8r  of the 2 p  shell of O  is derived in the Eight-Electron Atoms section.  With the formation of the 2H -type 

MO by the contribution of two 2 p  electrons from each of the N  and O  atoms, a diamagnetic force arises between the 

remaining outer shell atomic electrons, the 2s  and 2 p  electrons of N  and O , and the 2H -type MO.  This force from N  and O  

causes the 2H -type MO to move to greater principal axes than would result with the Coulombic force alone.  But, the factor of 

two increase of the central field and the resulting increased Coulombic as well as magnetic central forces on the remaining N  
and O  electrons decrease the radii of the corresponding shells such that the energy minimum is achieved that is lower than that 
of the reactant atoms.  The resulting electron configuration of NO  is 2 2 2 2 1 2 4

,1 1 2 2 2 2 N ON s O s N s O s N p O p   where   designates 

the 2H -type MO, and the orbital arrangement is: 

      state
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         0                   0

                         2s state
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                                     N O

 

 (13.916) 

Nitric oxide is predicted to be weakly paramagnetic in agreement with observations [42]. 
 
FORCE BALANCE OF THE 2 p  SHELL OF THE NITROGEN ATOM OF THE NITRIC 
OXIDE RADICAL 
For the N  atom, force balance for the outermost 2 p  electron of NO  (electron 5) is achieved between the centrifugal force and 
the Coulombic and magnetic forces that arise due to interactions between electron 5 and the 2s -shell electrons due to spin and 
orbital angular momentum.  The forces used are derived in the Seven-Electron Atoms section.  The central Coulomb force on the 
outer-most 2 p  shell electron of NO  (electron 5) due to the nucleus and the inner four electrons is given by Eq. (10.70) with the 
appropriate charge and radius: 
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for 4r r .  The 2 p  shell possess a +2 external electric field given by Eq. (10.92) for 5r r .  The energy is minimized with 

conservation of angular momentum.  This condition is met when the magnetic forces of N  in NO  are the same as those of N  in 
the nitrogen molecule with 5r  replacing 6r  and with an increase of the central field by an integer.  The diamagnetic force, 

diamagneticF , of Eq. (10.82) due to the p -orbital contribution is given by Eq. (13.622) with 5r  replacing 6r : 
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And,  2magF  corresponding to the conserved orbital angular momentum of the three orbitals is also the same as that of 2N given 

by Eq. (13.623) with 5r  replacing 6r : 
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 (13.919) 

The electric field external to the 2 p  shell given by Eq. (10.92) for 5r r  gives rise to a second diamagnetic force, 

 2diamagneticF , given by Eq. (10.93).   2diamagneticF  due to the binding of the p-orbital electron having an electric field of +2 outside of 

its radius follows from Eq. (13.624). 
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In addition to the N  forces eleF , diamagneticF ,  2magF , and 2diamagneticF  of NO  being the same as 2N  given by Eqs. (13.621-13.624), 

respectively, eleF ,  2magF , and  2diamagneticF  are also the same as those of CN  (Eqs. (13.820) and (13.822-13.823)).  In the 2N  and 

CN  cases, the contribution of a 2 p  electron from the N  atom in the formation of the   MO gives rise to an additional 

paramagnetic force on the remaining two 2 p  electrons that pair.  However, the force, 3magF , is absent in NO  since the single 

outer electron is unpaired. 
The radius of the 2 p  shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. 

(13.917)) and diamagnetic (Eqs. (13.918) and (13.920)), and paramagnetic (Eq. (13.919)) forces as follows: 
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 (13.921) 

Substitution of 5
5e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (13.921) gives: 
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The quadratic equation corresponding to Eq. (13.922) is 
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  (13.923) 

The solution of Eq. (13.923) using the quadratic formula is: 
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    (13.924) 

The positive root of Eq. (13.924) must be taken in order that 5 0r  .  Substitution of 3

0

0.69385
r

a
  (Eq. (10.62) with 7Z  ) into 

Eq. (13.924) gives: 

 5 00.74841r a  (13.925) 
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FORCE BALANCE OF THE 2 p  SHELL OF THE OXYGEN ATOM OF THE NITRIC 
OXIDE RADICAL 
For the O  atom, force balance for the outermost 2 p  electron of NO  (electron 6) is achieved between the centrifugal force and 
the Coulombic and magnetic forces that arise due to interactions between electron 6 and the other 2 p  electron as well as the 2s -
shell electrons due to spin and orbital angular momentum.  The forces used are derived in the Eight-Electron Atoms section.  The 
central Coulomb force on the outer-most 2 p  shell electron of NO  (electron 6) due to the nucleus and the inner five electrons is 
given by Eq. (10.70) with the appropriate charge and radius: 
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for 5r r .  The 2 p  shell possess an external electric field of +2 given by Eq. (10.92) for 6r r .  The energy is minimized with 

conservation of angular momentum.  This condition is met when the diamagnetic force, diamagneticF , of Eq. (10.82) due to the p -

orbital contribution is given by: 
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 (13.927) 

And,  2magF  corresponding to the conserved spin and orbital angular momentum given by Eqs. (10.157) and (13.670) is: 
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The electric field external to the 2 p  shell given by Eq. (10.92) for 6r r  gives rise to a second diamagnetic force, 

 2diamagneticF , given by Eq. (10.93).   2diamagneticF  due to the binding of the p-orbital electron having an electric field of +2 outside of 

its radius is: 
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 (13.929) 

In addition, the contribution of two 2 p  electrons in the formation of the   MO gives rise to a paramagnetic force on the 

remaining paired 2 p  electrons.  The force  3magF  is given by Eq. (13.625) wherein the radius is 6r : 
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The radius of the 2 p  shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. 
(13.926)) and diamagnetic (Eqs. (13.927) and (13.929)), and paramagnetic (Eqs. (13.928) and (13.930)) forces as follows: 
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Substitution of 6
6e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (13.931) gives: 
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The quadratic equation corresponding to Eq. (13.932) is: 
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  (13.933) 

 
 



General Diatomic and Polyatomic Molecular Ions and Molecules 585

The solution of Eq. (13.933) using the quadratic formula is: 
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    (13.934) 

The positive root of Eq. (13.934) must be taken in order that 6 0r  .  Substitution of 3

0

0.59020
r

a
  (Eq. (10.62) with 8Z  ) into 

Eq. (13.934) gives: 
 6 00.70460r a  (13.935) 

 
ENERGIES OF THE 2 p  SHELLS OF THE NITROGEN ATOM AND OXYGEN ATOM OF 
THE NITRIC OXIDE RADICAL 
With the formation of the 2H -type MO by the contribution of two 2 p  electrons from each of the N  and O  atoms, the total 

energy of the NO  molecule, which is subtracted from the sum of the energies of the nitrogen and oxygen atoms to determine the 
bond energy, is increased by the ionization energies of N   and O  given by Eqs. (10.132-10.133) and (10.152-10.153), 
respectively.  Experimentally, the energies are [6] : 

 ( ;  ) 29.6013 E ionization N eV   (13.936) 

 ( ;  ) 35.11730 E ionization O eV   (13.937) 

In addition, the central forces on the 2 p  shells of the N  and O  atoms are increased with the formation of the   MO 
which reduces each shell’s radius and increases its total energy.  The Coulombic energy terms of the total energy of the N  and 
O  atoms at the new radii are calculated and added to the ionization energies of N   and O , and the energy of the   MO to give 
the total energy of NO .  Then, the bond energy is determined from the total NO  energy. 

The radius 7r  of the nitrogen atom before bonding is given by Eq. (10.142): 

 7 00.93084r a  (13.938) 

Using the initial radius 7r  of the N  atom and the final radius 5r  of the 2N p  shell (Eq. (13.925)) and by considering that the 

central Coulombic field decreases by an integer for each successive electron of the shell, the sum  , 2TE N p  of the Coulombic 

energy change of the 2N p  electrons of the N  atom is determined using Eq. (10.102): 

      
24

4 0 5 7

( ) 1 1
, 2 13.60580 0.26186 3 10.68853 

8T
n

Z n e
E N p eV eV

r r

 
       

 
  (13.939) 

The radius 8r  of the oxygen atom before bonding is given by Eq. (10.162): 

 8 0r a  (13.940) 

Using the initial radius 8r  of the O  atom and the final radius 6r  of the 2O p  shell (Eq. (13.935)) and by considering that the 

central Coulombic field decreases by an integer for each successive electron of the shell, the sum  , 2TE O p  of the Coulombic 

energy change of the 2O p  electrons of the O  atom is determined using Eq. (10.102): 

      
25

4 0 6 8

( ) 1 1
, 2 13.60580 0.41925 3 4 39.92918 

8T
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Z n e
E O p eV eV
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  (13.941) 
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FORCE BALANCE OF THE   MO OF THE NITRIC OXIDE RADICAL 
The force balance can be considered due to a second pair of two electrons binding to a molecular ion having 2e  at each focus 
and a first bound pair.  Then, the forces are the same as those of a molecule ion having e  at each focus.  The diamagnetic force 

1diamagneticMOF  for the  -MO of the NO  molecule due to the two paired electrons in the 2O p  shell is given by Eq. (13.633) with: 

2en  :   

 
2

1 2 22diamagneticMO
e

D
m a b F i


 (13.942) 

2diamagneticMOF  of the nitric oxide radical comprising nitrogen with charge 1 7Z   and 1L    and 2

3

4
L    and oxygen with 

2 8Z   and 3L    is given by the corresponding sum of the contributions.  Using Eq. (13.835), 2diamagneticMOF  for NO  is: 
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 (13.943) 

The general force balance equation for the  -MO of the nitric oxide radical given by Eqs. (11.200), (13.633-13.634), and 
(13.942-13.943) is the same as that of CN  (Eq. (13.836)): 
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Substitution of 1 7Z   and 2 8Z   into Eq. (13.947) gives: 

 10
02.39158 1.26557  10  a a X m   (13.948) 

Substitution of Eq. (13.948) into Eq. (11.79) is:  

 11
01.09352 5.78666  10  c a X m    (13.949) 

The internuclear distance given by multiplying Eq. (13.949) by two is:  

 10
02 2.18704 1.15733  10  c a X m    (13.950) 

The experimental bond distance is [28]: 

 102 1.15077  10  c X m   (13.951) 

Substitution of Eqs. (13.948-13.949) into Eq. (11.80) is: 

 10
02.12693 1.12552  10  b c a X m    (13.952) 

Substitution of Eqs. (13.948-13.949) into Eq. (11.67) is: 

 0.45724e   (13.953) 

Using the electron configuration of NO  (Eq. (13.916)), the radii of the 01 0.14605N s a  (Eq. (10.51)), 02 0.69385N s a  (Eq. 

(10.62)), 02 0.74841N p a  (Eq. (13.925)), 01 0.12739O s a  (Eq. (10.51)), 02 0.59020O s a  (Eq. (10.62)), and 

02 0.70460O p a  (Eq. (13.935)) shells and the parameters of the   MO of NO  given by Eqs. (13.3-13.4), (13.948-13.950), and 

(13.952-13.953), the dimensional diagram and charge-density of the NO  MO are shown in Figures 13.26 and 13.27, 
respectively. 
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Figure 13.26.   The cross section of the 
NO  MO showing the axes,   MO ( 2H -type 

ellipsoidal MO) with four paired electrons, 
with the N  1s , 2s , and 2 p  atomic orbitals 
(AOs) and the O  1s , 2s , and 2 p  AOs.  
Legend: a : semimajor axis, b : semiminor 
axis, 'c : internuclear distance, 5r : radius of 

the 2N p  shell having two paired electrons, 

6r : radius of the 2O p  shell having two paired 

electrons. 
 

 
 
 

SUM OF THE ENERGIES OF THE   MO AND THE AOs OF THE NITRIC OXIDE RADICAL 
The energies of the NO    MO are given by the substitution of the semiprincipal axes (Eqs. (13.948-13.949) and (13.952)) into 
the energy equations (Eqs. (11.207-11.212)) of 2H  except that the terms based on charge are multiplied by four and the kinetic 

energy term is multiplied by two due to the  -MO double bond with two pairs of paired electrons: 
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 T e m pE V T V V     (13.958) 

Substitution of Eqs. (11.79) and (13.954-13.957) into Eq. (13.958) gives: 
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 (13.959) 

where  ,TE NO   is the total energy of the   MO of NO .  The total energy of NO ,  TE NO , is given by the sum of 

( ;  )E ionization N  , the energy of the second electron of nitrogen (Eq. (13.936)) donated to the double bond, ( ;  )E ionization O , 

the energy of the second electron of oxygen (Eq. (13.937)) donated to the double bond,  , 2TE N p , the 2N p  AO contribution 

Figure 13.27.   NO  MO comprising the   MO ( 2H -type MO) with N

and O  atoms at the foci that have each donated two electrons to the   MO
and have smaller radii and higher binding energies as a consequence.  (A)
Color scale, translucent view of the charge-density of the NO  MO.  (B)
Off-center cut-away view showing the complete inner most 1N s  shell, and
moving radially, the 2N s  shell, the 2N p  shell, and the   prolate
spheroidal MO that has the N  atom as a focus.  Moving radially from the
oxygen-atom focus, the complete inner most 1O s  shell, the 2O s  shell, the

2O p  shell, and the   prolate spheroidal MO are shown. 
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due to the decrease in radius with bond formation (Eq. (13.939)),  , 2TE O p , the 2O p  AO contribution due to the decrease in 

radius with bond formation (Eq. (13.941)), and  ,TE NO  , the   MO contribution given by Eq. (13.959). 
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 (13.960) 

 

VIBRATION OF NO  
The vibrational energy levels of NO  may be solved by determining the Morse potential curve from the energy relationships for 
the transition from a N  atom and O  atom whose parameters are given by Eqs. (10.134-10.143) and (10.154-10.163), 
respectively, to a N  atom whose parameter 5r  is given by Eq. (13.925), an O  atom whose parameter 6r  is given by Eq. 

(13.935), and the   MO whose parameters are given by Eqs. (13.948-13.950) and (13.952-13.953).  As shown in the Vibration 
of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about the 
internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K&P) 
[15] and after Eq. (11.134).  Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the 
energy corrections can be found by perturbation methods. 
 

THE DOPPLER ENERGY TERMS OF THE NITRIC OXIDE RADICAL 
The equations of the radiation reaction force of nitric oxide are the same as those of 2H  with the substitution of the NO  

parameters except that there is a factor of four increase in the central force in Eq. (11.231) due to the double bond.  Using Eqs. 
(11.231-11.233) and (13.901), the angular frequency of the reentrant oscillation in the transition state is 
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m

    (13.961) 

where a  is given by Eq. (13.948).  The kinetic energy, KE , is given by Planck’s equation (Eq. (11.127)): 

 162.23557  10  / 14.71493 KE X rad s eV     (13.962) 

In Eq. (11.181), substitution of  TE NO  for hE  , the mass of the electron, em , for M , and the kinetic energy given by Eq. 

(13.962) for KE  gives the Doppler energy of the electrons of the reentrant orbit: 

 
 

2 2

2 14.71493 2
34.43653 0.26134 K

D h
e

e eVE
E E eV eV

Mc m c      (13.963) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of the NO  MO due to the reentrant orbit in the transition state corresponding to simple 
harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by Eq. 

(13.963) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy.  Using the experimental NO  

e  of  11904.20  0.23609 cm eV  [28] for KvibE  of the transition state,  'oscE NO  per bond is:  

   1
'

2osc D Kvib D

k
E NO E E E


      (13.964) 

    1
' 0.26134 0.23609 0.14329 

2oscE NO eV eV eV      (13.965) 

Since the   MO bond is a double bond with twice a many electrons as a single bond,  'oscE NO  is multiplied by two to give:  

   0.28658 oscE NO eV   (13.966) 
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TOTAL AND BOND ENERGIES OF THE NITRIC OXIDE RADICAL 
 T oscE NO , the total energy of NO  including the Doppler term, is given by the sum of  TE NO  (Eq. (13.960)) and  oscE NO  

given by Eq. (13.966). 
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 (13.968) 

From Eqs. (13.966-13.968), the total energy of the NO  MO is: 

      34.43653 34.43653 0.28658 34.72312 T osc oscE NO eV E NO eV eV           (13.969) 

where the experimental e  was used for the 
k


  term. 

The NO  bond dissociation energy,  DE NO , is given by the difference between the sum of the energies of the N  and 

O  atoms and  T oscE NO : 

        D T oscE NO E N E O E NO    (13.970) 

where the energy of a nitrogen atom is [6]: 

 ( ) 14.53414 E N eV   (13.971) 

and the energy of an oxygen atom is [6]:  

 ( ) 13.61806 E O eV   (13.972) 

Thus, the NO  bond dissociation energy,  DE NO , given by Eqs. (13.969-13.972) is: 

 

     
 

14.53414 13.61806 

28.15220 34.72312 

6.57092 

D T oscE NO eV eV E NO

eV eV

eV

   

   



 (13.973) 

The experimental NO  bond dissociation energy is [49]: 

  298 6.5353 DE NO eV  (13.974) 

The results of the determination of bond parameters of NO  are given in Table 13.1.  The calculated results are based on first 
principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 
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Table 13.1.   The calculated and experimental bond parameters of 3H  , 3D , OH , OD , 2H O , 2D O , NH , ND , 2NH , 2ND , 

3NH , 3ND , CH , CD , 2CH , 3CH , 4CH , 2N , 2O , 2F , 2Cl , CN , CO , and NO . 
Parameter Calculated Experimental Ref. for Exp. 

3H   Bond Energy 4.373 eV 4.373 eV 8 

3D  Bond Energy 4.374 eV   

OH  Bond Energy 4.4104 eV 4.4117 eV 22 

OD  Bond Energy 4.4687 eV 4.454 eV 23 

OH  Bond Length 0.971651 Å 0.971 Å 13 

OD  Bond Length 0.971651 Å 0.971 Å 13 

OH  Vibrational Energy 0.4367 eV 0.4424 eV 16-17 

OD  Vibrational Energy 0.3219 eV 0.3263 eV 16-17 

OH  e  3696.38 -1cm  3735.21 -1cm  14 

OD  e  2689.51 -1cm  2720.9 -1cm  14 

OH  e ex  87.18 1cm  82.81 1cm  14 

OD  e ex  46.75 1cm  44.2 1cm  14 

OH  eB  18.835 1cm  18.871 1cm  14 

OD  eB  9.971 1cm  10.01 1cm  14 

2H O  Bond Energy 5.1059 eV 5.0991 eV 26 

2D O  Bond Energy 5.178 eV 5.191 eV 31-32 

2H O  O H  Bond Length 0.971574 Å 0.970  0.005 Å 23 

2D O  O D  Bond Length 0.971574 Å 0.970  0.005 Å 23 

2H O  H H  Distance 1.552 Å 1.55  0.01 Å 13 

2D O  D D  Distance 1.552 Å 1.55  0.01 Å 13 

2H O  Bond Angle 106° 106° 23 

2D O  Bond Angle 106° 106° 23 

NH  Bond Energy 3.47530 eV 3.47 eV 30 

ND  Bond Energy 3.52556 eV 3.5134 eV 31 

NH  Bond Length 1.04262 Å 1.0362 Å 28 

ND  Bond Length 1.04262 Å 1.0361 Å 28 

NH  Vibrational Energy 0.38581 eV 0.38752 eV 28 

ND  Vibrational Energy 0.28583 eV 0.28690 eV 28 

NH  e  3284.58 1cm  3282.3 1cm  28 

ND  e  2398.72 1cm  2398 1cm  28 

NH  e ex  86.37 1cm  78.4 1cm  28 

ND  e ex  47.40 1cm  42 1cm  28 

NH  eB  16.495 1cm  16.993 1cm  28 

ND  eB  8.797 1cm  8.7913 1cm  28 

2NH  Bond Energy 3.9323 eV 3.9461 eV 35 

2ND  Bond Energy 3.9401 eV 3.9362 eV 33-35 

2NH  Bond Length 1.04262 Å 1.0240 Å 32 

2ND  Bond Length 1.04262 Å   

2NH  Bond Angle 105.97° 103.3° 32 

2ND  Bond Angle 105.97°   

3NH  Bond Energy 4.57913 eV 4.60155 eV 37 

3ND  Bond Energy 4.64499 eV 4.71252 eV 37 

3NH  Bond Length 1.0368 Å 1.012 Å 32 

3ND  Bond Length 1.0368 Å   

3NH  Bond Angle 106.67° 106.67° 36 

3ND  Bond Angle 106.67° 106.70° 36 

CH  Bond Energy 3.47404 eV 3.47 eV 14 
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Parameter Calculated Experimental Ref. for Exp. 
CD  Bond Energy 3.51673 eV 3.52 eV 14 

CH  Bond Length 1.1183 Å 1.1198 Å 14 

CD  Bond Length 1.1183 Å 1.118 Å 14 

CH  Vibrational Energy 0.33879 eV 0.33885 eV 14 

CD  Vibrational Energy 0.25173 eV 0.25189 eV 14 

CH  e  2865.86 1cm  2861.6 1cm  14 

CD  e  2102.97 1cm  2101.0 1cm  14 

CH  e ex  66.624 1cm  64.3 1cm  14 

CD  e ex  36.335 1cm  34.7 1cm  14 

CH  eB  14.498 1cm  14.457 1cm  14 

CD  eB  7.807 1cm  7.808 1cm  14 

2CH  Bond Energy 4.36968 eV 4.33064 eV 39 

2CH  Bond Length 1.1067 Å 1.111 Å 38 

2CH  Bond Angle 100.22° 102.4° 38 

3CH  Bond Energy 4.70075 eV 4.72444 eV 40 

3CH  Bond Length 1.1029 Å 1.079 Å 38 

3CH  Bond Angle 120° 120° 38 

4CH  Bond Energy 4.4900 eV 4.48464 eV 40 

4CH  Bond Length 1.1010 Å 1.087 Å 41 

4CH  Bond Angle 109.5° 109.5° 41 

2N  Bond Energy 9.71181 eV 9.756 eV 43 

2N  Bond Length 1.0955 Å 1.094 Å 43 

2O  Bond Energy 5.10711 eV 5.11665 eV 46 

2O  Bond Length 1.20862 Å 1.20752 Å 28 

2F  Bond Energy 1.62168 eV 1.606 eV 48 

2F  Bond Length 1.41114 Å 1.41193 Å 28 

2Cl  Bond Energy 2.52236 eV 2.51412 eV 49 

2Cl  Bond Length 1.988 Å 1.988 Å 28 

2Cl  e  538.52 1cm  559.7 1cm  28 

2Cl  e ex  3.41 1cm  2.68 1cm  28 

2Cl  eB  0.2420 1cm  0.2440 1cm  28 

CN  Bond Energy 7.77526 eV 7.7731 eV 50 

CN  Bond Length 1.17231 Å 1.17181 Å 28 

CO  Bond Energy 11.16652 eV 11.15696 eV  49 

CO  Bond Length 1.13290 Å 1.12823 Å 28 

NO  Bond Energy 6.57092 eV 6.5353 eV  49 

NO  Bond Length 1.15733 Å 1.15077 Å 28 
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Chapter 14 
  
MORE POLYATOMIC MOLECULES AND HYDROCARBONS 
  
 
 
 
 
Additional polyatomic molecules can be solved using similar principles as those used to solve hydrogen molecular ions and 
molecules wherein the hydrogen molecular orbitals (MOs) and hydrogen atomic orbitals serve as basis functions for the MOs.  
The MO must (1) be a solution of Laplace's equation to give a equipotential energy surface, (2) correspond to an orbital solution 
of the Newtonian equation of motion in an inverse-radius-squared central field having a constant total energy, (3) be stable to 
radiation, and (4) conserve the electron angular momentum of  .  Energy of the MO must be matched to that of the outermost 
atomic orbital of a bonding heteroatom in the case where a minimum energy is achieved with a direct bond to the AO.  
Alternatively, the MO is continuous with the AO containing paired electrons that do not particpate in the bond.  Rather, they 
only provide a means for the energy matched MO to form a continuous equipotential energy surface.  In the case that an 
independent MO is formed, the AO force balance causes the remaining electrons to be at lower energy and a smaller radius.  In 
another case, the atomic orbital may hybridize in order to achieve a bond at an energy minimum, and the sharing of electrons 
between two or more such orbitals to form a MO permits the participating hybridized orbitals to decrease in energy through a 
decrease in the radius of one or more of the participating orbitals.  Representative cases were solved.  Specifically, the results of 
the determination of bond parameters of carbon dioxide ( 2CO ), nitrogen dioxide ( 2NO ), ethane ( 3 3CH CH ), ethylene 

( 2 2CH CH ), acetylene (CHCH ), benzene ( 6 6C H ), propane ( 3 8C H ), butane ( 4 10C H ), pentane ( 5 12C H ), hexane ( 6 14C H ), heptane 

( 7 16C H ), octane ( 8 18C H ), nonane ( 9 20C H ), decane ( 10 22C H ), undecane ( 11 24C H ), dodecane ( 12 26C H ), and octadecane ( 18 38C H ) 

are given in Table 14.1.  The calculated results are based on first principles and given in closed-form, exact equations containing 
fundamental constants only.  The agreement between the experimental and calculated results is excellent. 
 

CARBON DIOXIDE MOLECULE 
The carbon dioxide molecule can be formed by the reaction of carbon monoxide and an oxygen atom: 
 2CO O CO   (14.1) 

Each equivalent bond in the carbon dioxide molecule comprises a double bond that is energy-matched to the filled 2C s  orbital.  
Each such bond comprises 75% of a 2H -type MO with four paired electrons as a basis set such that three electrons can be 

assigned to each C O  bond.  Thus, the two 2C p  electrons combine with the four 2O p  electrons, two from each O , as a 

linear combination to form the two C O  bonds of 2CO .  The force balance equation and radius 8r  of the 2 p  shell of O  is 

derived in the Eight-Electron Atoms section.  With the formation of the 2H -type MOs by the contribution of two 2 p  electrons 

from each of the two O  atoms, a factor of two increase of the central field on the remaining 2O p  electrons arises.  The resulting 
increased Coulombic as well as magnetic central forces decrease the radii of the 2O p  shells such that the energy minimum is 

achieved that is lower than that of the reactant atoms.  The resulting electron configuration of 2CO  is 

2 1

2 2 2 2 2 2 2 2 6
1 2 1 2 1 2 , ,1 1 1 2 2 2 2 2 O C OC s O s O s C s O s O s O p O p   where the subscripts designate the O  atom, 1 or 2,   designates the 2H -

type MO, and the orbital arrangement is: 



Chapter 14 

 

596

 

           state
   

              

                         2p state
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                         C O

 (14.2) 

Carbon dioxide is predicted to be diamagnetic in agreement with observations [1]. 
 
FORCE BALANCE OF THE 2 p  SHELL OF THE OXYGEN ATOM OF THE CARBON 
DIOXIDE MOLECULE 
For each O  atom, force balance for the outermost 2 p  electron of 2CO  (electron 6) is achieved between the centrifugal force and 

the Coulombic and magnetic forces that arise due to interactions between electron 6 and the other 2 p  electrons as well as the 
2s -shell electrons due to spin and orbital angular momentum.  The forces used are derived in the Eight-Electron Atoms section.  
The central Coulomb force on the outer-most 2 p  shell electron of CO  (electron 6) due to the nucleus and the inner five 
electrons is given by Eq. (10.70) with the appropriate charge and radius: 

 
2

2
0 6

( 5)

4ele

Z e

r


 rF i  (14.3) 

for 5r r .  The 2 p  shell possess a +2 external electric field given by Eq. (10.92) for 6r r .  The energy is minimized with 

conservation of angular momentum.  This condition is met when the diamagnetic force, diamagneticF , of Eq. (10.82) due to the p -

orbital contribution is given by: 

 
2 2

2 2
6 3 6 3

2 2 3
( 1)

3 4 12 4diamagnetic
e e

s s
m r r m r r

      
 

r rF i i
 

 (14.4) 

where 1/ 2s  .  And,  2magF  corresponding to the conserved spin and orbital angular momentum given by Eq. (10.157) is: 

 
2

 2 2
6 3

1 2
( 1)mag

e

s s
Z m r r

  rF i


 (14.5) 

The electric field external to the 2 p  shell given by Eq. (10.92) for 6r r  gives rise to a second diamagnetic force, 

 2diamagneticF , given by Eq. (10.93).   2diamagneticF  due to the binding of the p-orbital electron having an electric field of +2 outside of 

its radius is: 

 
2

3
 2 4

6

6 2
1 10 ( 1)

5 2diamagnetic
e

rZ
s s

Z m r

            
rF i


 (14.6) 

The radius of the 2 p  shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (14.3)) 
and diamagnetic (Eqs. (14.4) and (14.6)), and paramagnetic (Eq. (14.5)) forces as follows: 

 
2 22 2 2
6 3

2 2 2 4
6 0 6 6 3 6 3 6

( 5) 2 2 6 2
( 1) ( 1) 1 10 ( 1)

4 12 5 2
e

e e e

m v rZ e Z
s s s s s s

r r m r r Zm r r Z r m
                 

 
 (14.7) 

Substitution of 6
6e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (14.7) gives: 

 
22 2 2 2

3
3 2 2 2 4

6 0 6 6 3 6 3 6

( 5) 2 3 2 3 6 2 3
1 10

4 12 4 4 5 2 4e e e e

rZ e Z

m r r m r r Zm r r Z r m
              

  
 (14.8) 

The quadratic equation corresponding to Eq. (14.8) is: 
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 (14.9) 

The solution of Eq. (14.9) using the quadratic formula is: 
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    (14.10) 

The positive root of Eq. (14.10) must be taken in order that 6 0r  .  Substitution of 3

0

0.59020
r

a
  (Eq. (10.62) with 8Z  ) into 

Eq. (14.10) gives: 
 6 00.74776r a  (14.11) 
 
ENERGIES OF THE 2s  AND 2 p  SHELLS OF THE CARBON ATOM AND THE 2 p  
SHELL OF THE OXYGEN ATOMS OF THE CARBON DIOXIDE MOLECULE 
Consider the determination of the total energy of 2CO  from the reaction of a carbon atom with two oxygen atoms.  With the 

formation of the 2H -type MO by the contribution of two 2 p  electrons from the C  atom, the remaining outer-shell atomic 

electrons comprise the 2s  electrons which are unchanged by bonding with two oxygen atoms.  However, the total energy of the 

2CO  molecule, which is subtracted from the sum of the energies of the oxygen atom and carbon monoxide molecule to 

determine the O CO  bond energy, is increased by the ionization energies of C , C , O , and 2O  given by Eqs. (14.12-14.15), 
respectively.  Experimentally, the energies are [2]: 
 ( ;  ) 11.26030 E ionization C eV  (14.12) 

 ( ;  ) 24.38332 E ionization C eV   (14.13) 
 ( ;  ) 13.61806 E ionization O eV  (14.14) 

 ( ;  ) 35.11730 E ionization O eV   (14.15) 
In addition, the central forces on the 2 p  shell of the O  atom are increased with the formation of the   MO which 

reduces the shell's radius and increases its total energy.  The Coulombic energy terms of the total energy of each O  atom at the 
new radius are calculated and added to the ionization energies of C , C , O , and 2O , and the energy of the   MO to give the 
total energy of 2CO .  Then, the bond energy is determined from the total 2CO  energy. 

The radius 8r  of each oxygen atom before bonding is given by Eq. (10.162): 

 8 0r a  (14.16) 

Using the initial radius 8r  of each O  atom and the final radius 6r  of the 2O p  shell (Eq. (14.11)) and by considering that the 

central Coulombic field decreases by an integer for each successive electron of the shell, the sum  , 2TE O p  of the Coulombic 

energy change of the 2O p  electrons of each O  atom is determined using Eq. (10.102): 

      
25

4 0 6 8

( ) 1 1
,2 13.60580 0.33733 3 4 32.12759 

8T
n

Z n e
E O p eV eV

r r

 
        

 
  (14.17) 

 

FORCE BALANCE OF THE   MO OF THE CARBON DIOXIDE MOLECULE 
As in the case of 2H , the   MO is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into the 

C  atom for distances shorter than the radius of the 2C s  shell; nor, can it extend into the O  atom for distances shorter than the 
radius of the 2O p  shell.  Thus, the MO surface of each C O  bond comprises a prolate spheroid that bridges and is continuous 
with the 2s  and 2 p  shells of the O  and C  atoms whose nuclei serve as the foci.  The energy of each prolate spheroid is 
matched to that of the 2C s  and 2O p  shells.  As in the case of previous examples of energy-matched MOs such as OH  and 

NH , the C O -bond MO must comprise 75% of a 2H -type ellipsoidal MO in order to match potential, kinetic, and orbital 
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energy relationships.  However, the paired electrons of the 2C s  and 2O p  shells are not involved in bonding.  Rather, the AOs 
permit a continuous surface comprising the two C O -bond MOs having six paired electrons, two from each of the C  and the 
two O  atoms: 
  2 22 0.75   H MO CO MO  (14.18) 

The force balance of the 2CO  MO is determined by the boundary conditions that arise from the linear combination of orbitals 

according to Eq. (14.18) and the energy matching condition between the carbon and oxygen components of the MO. 
 Similar to the OH  and 2H O  cases given by Eqs. (13.57) and (13.162), the 2H -type ellipsoidal MO comprises 75% of 

the 2CO  MO; so, the electron charge density in Eq. (11.65) is given by 0.75e . Thus, 'k  of each 2H -type-ellipsoidal-MO 

component of the 2CO  MO is given by Eq. (13.59).  The distance from the origin of each C O -bond MO to each focus 'c  is 

given by Eq. (13.60).  The internuclear distance is given by Eq. (13.61).  The length of the semiminor axis of the prolate 
spheroidal C O -bond MO b c  is given by Eq. (13.62).  The eccentricity, e , is given by Eq. (13.63).  Then, the solution of 
the semimajor axis a  allows for the solution of the other axes of the prolate spheroidal and eccentricity of the 2CO  MO. 

The energy components of eV , pV , T , mV , and TE  of the 2CO    MO are the same as those of OH  given by Eqs. 

(13.67-13.73), except that the terms based on charge are multiplied by four and the kinetic energy term is multiplied by two due 
to each  -MO double bond: 
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4 3 '
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E C O

c a c



          

 (14.19) 

where  ,TE C O   is the total energy of each C O    MO of 2CO .  The total energy of a 2H -type ellipsoidal MO is given 

by Eqs. (11.212) and (13.75).  A minimum energy is obtained when each double bond of the   MO of 2CO  comprises the 

energy equivalent of four 2H -type ellipsoidal MOs.  For each C O  bond to match the energy of the 2C s  orbital, the 

ionization energy of C  and C  (Eqs. (14.12-14.13)) must be added for each bond of the double bond.  Thus, the total energy of 
each C O -bond MOs is: 
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 ,TE C O   given by Eq. (14.19) is set equal to Eq. (14.20): 
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From the energy relationship given by Eq. (14.21) and the relationship between the axes given by Eqs. (13.60-13.63), the 
dimensions of the 2CO  MO can be solved. 

Substitution of Eq. (13.60) into Eq. (14.21) gives: 
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 (14.22) 

The most convenient way to solve Eq. (14.22) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is  
 11

01.80703 9.56239  10  a a X m   (14.23) 

Substitution of Eq. (14.23) into Eq. (13.60) is:  
 11

01.09758 5.80815  10  c a X m    (14.24) 

The internuclear distance given by multiplying Eq. (14.24) by two is:  
 10

02 2.19516 1.16163  10  c a X m    (14.25) 

The experimental bond distance is [3] 
 102 1.1600  10  c X m   (14.26) 
Substitution of Eqs. (14.23-14.24) into Eq. (13.62) is: 
 11

01.43550 7.59636  10  b c a X m    (14.27) 

Substitution of Eqs. (14.23-14.24) into Eq. (13.63) is: 
 0.60740e   (14.28) 
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The C  and O  nuclei comprise the foci of each 2H -type ellipsoidal MO defined as O C O  .  Consider the left-hand 

C O  bond of the two equivalent bonds in the absence of the right-hand bond.  The parameters of the point of intersection of 
the 2H -type ellipsoidal MO and the 2C s  AO are given by Eqs. (13.84-13.95) and (13.261-13.270).  The polar intersection angle 

'  is given by Eq. (13.261) where 4 00.84317nr r a   is the radius of the 2C s  shell.  Substitution of Eqs. (14.23-14.24) into Eq. 

(13.261) gives 
 ' 54.53    (14.29) 
Then, the angle 2C sAO  the radial vector of the 2C s  AO makes with the internuclear axis is: 

 2 180 54.53 125.47C sAO       (14.30) 

as shown in Figure 14.1.  The Cartesian i -coordinate of the interception point of the MO and the AO can be calculated using the 
MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -coordinate 

components at the point of intersection.  Thus, the matching elliptic parametric angle 
2H MOt   satisfies the following 

relationship: 
 

24 02 2sin 0.84317 sin sinC sAO C sAO H MOr a b     (14.31) 

such that 

 
2

1 10 020.84317 sin 0.84317 sin125.47
sin sinC sAO

H MO

a a

b b


   

   (14.32) 

with the use of Eq. (14.30).  Substitution of Eq. (14.27) into Eq. (14.32) gives: 
 

2
28.58H MO    (14.33) 

Then, the distance 
2H MOd  along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of intersection of 

the orbitals is given by 
 

2 2
cosH MO H MOd a   (14.34) 

Substitution of Eqs. (14.23) and (14.33) into Eq. (14.34) gives: 
 

2

11
01.58687 8.39737  10  H MOd a X m   (14.35) 

The distance 2C sAOd  along the internuclear axis from the origin of the C  atom to the point of intersection of the orbitals is given 

by 
 

22 'C sAO H MOd d c   (14.36) 

Substitution of Eqs. (14.24) and (14.35) into Eq. (14.36) gives: 
 11

02 0.48929 2.58922  10  C sAOd a X m   (14.37) 

The C  and O  nuclei comprise the foci of each 2H -type ellipsoidal MO defined as O C O  .  Consider the right-hand 

C O  bond of the two equivalent bonds.  The parameters of the point of intersection of the 2H -type ellipsoidal MO and the 

2O p  AO are given by Eqs. (13.84-13.95) and (13.261-13.270).  The polar intersection angle '  is given by Eq. (13.261) where 

6 00.74776nr r a   is the radius of the 2O p  shell.  Substitution of Eqs. (14.23-14.24) into Eq. (13.261) gives 

 ' 30.18    (14.38) 
Then, the angle 2O pAO  the radial vector of the 2O p  AO makes with the internuclear axis is: 

 2 180 30.18 149.82O pAO       (14.39) 

as shown in Figure 14.1.  The Cartesian i -coordinate of the interception point of the MO and the AO can be calculated using the 
MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -coordinate 

components at the point of intersection.  Thus, the matching elliptic parametric angle 
2H MOt   satisfies the following 

relationship: 
 

26 02 2sin 0.74776 sin sinO pAO O pAO H MOr a b     (14.40) 

such that 
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01 1 020.74776 sin 0.74776 sin149.82
sin sinO pAO
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   (14.41) 

with the use of Eq. (14.39).  Substitution of Eq. (14.27) into Eq. (14.41) gives: 
 

2
15.18H MO    (14.42) 

Then, the distance 
2H MOd  along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of intersection of 

the orbitals is given by: 
 

2 2
cosH MO H MOd a   (14.43) 

Substitution of Eqs. (14.23) and (14.42) into Eq. (14.43) gives: 
 

2

11
01.74396 9.22862  10  H MOd a X m   (14.44) 
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The distance 2O pAOd  along the internuclear axis from the origin of each O  atom to the point of intersection of the orbitals is 

given by: 
 

22 'pAO H MOd d c   (14.45) 

Substitution of Eqs. (14.24) and (14.44) into Eq. (14.45) gives: 
 11

02 0.64637 3.42047  10  O pAOd a X m   (14.46) 

As shown in Eq. (14.18), each C O  bond comprises a factor of 0.75 of the charge-density of double that of the 2H -

type ellipsoidal MO.  Using the electron configuration of 2CO  (Eq. (14.2)), the radii of the 01 0.17113C s a  (Eq. (10.51)), 

02 0.84317C s a  (Eq. (10.62)), 01 0.12739O s a  (Eq. (10.51)), 02 0.59020O s a  (Eq. (10.62)), and 02 0.74776O p a  (Eq. 

(14.11)) shells and the parameters of the   MO of 2CO  given by Eqs. (13.3-13.4), (14.23-14.25), and (14.27-14.28), the 

dimensional diagram and charge-density of the 2CO  MO are shown in Figures 14.1 and 14.2, respectively. 

 
Figure 14.1.   The cross section of the 2CO  MO showing the axes,   MO (two 2H -type ellipsoidal MOs) with six paired 

electrons, with the C  1s  and 2s  AOs and the O  1s , 2s , and 2 p  AOs.  Legend: a : semimajor axis, b : semiminor axis, 'c : 

internuclear distance, 4r : radius of the 2C s  shell having two paired electrons, 6r : radius of the 2O p  shell having two paired 

electrons. 
 

 
 

 
Figure 14.2.   2CO  MO comprising the   MO (two 2H -type MOs) with C  and two O  atoms at the foci that have each 

donated two electrons to the   MO.  Consequently, the outer electrons of the carbon atom comprise the 2C s  shell, and each 
2O p  shell has a smaller radius and a higher binding energy.  (A) Color scale, translucent view of the charge-density of the 2CO  

MO.  (B) Off-center cut-away view showing each complete inner most 1O s  shell, and moving radially, the 2O s  shell, the 2O p  
shell, and the   prolate spheroidal MO that has the corresponding O  atom as a focus.  Moving radially from the carbon-atom 
focus, the complete inner most 1C s  shell, the 2C s  shell, and the   prolate spheroidal MOs are shown. 
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SUM OF THE ENERGIES OF THE   MO AND THE AOS OF THE CARBON DIOXIDE 
MOLECULE 
The energies of the 2CO    MO are given by the substitution of the semiprincipal axes (Eqs. (14.23-14.24) and (14.27)) into the 

energy equations of OH  (Eqs. (13.67-13.73)), except that the terms based on charge are multiplied by four and the kinetic 
energy term is multiplied by two due to each  -MO double bond: 
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 (14.50) 

 e m pTE V T V V     (14.51) 

Substitution of Eqs. (13.60) and (14.47-14.50) into Eq. (14.51) gives: 
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 (14.52) 

where  ,TE C O   is the total energy of each C O    MO of 2CO  given by Eq. (14.19) which is reiteratively matched to Eq. 

(14.20) within five-significant-figure round off error. 
The total energy of 2CO ,  2TE CO , is given by the sum of ( ;  )E ionization C  and ( ;  )E ionization C , the sum of the 

energies of the first and second electrons of carbon (Eqs. (14.12-14.13)) donated to each double bond, the sum of 
( ;  )E ionization O  and two times ( ;  )E ionization O , the energies of the first and second electrons of oxygen (Eqs. (14.14-14.15)) 

donated to the double bonds, two times  , 2TE O p , the 2O p  AO contribution due to the decrease in radius with the formation 

of each bond (Eq. (14.17)), and two times  ,TE C O  , the   MO contribution given by Eq. (14.22): 
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 (14.53) 

 

VIBRATION OF 2CO  
The vibrational energy levels of 2CO  may be solved by determining the Morse potential curve from the energy relationships for 

the transition from a C  atom and two O  atoms whose parameters are given by Eqs. (10.115-10.123) and (10.154-10.163), 
respectively, to a C  atom whose parameter 4r  is given by Eq. (10.61), two O  atoms whose parameter 6r  is given by Eq. (14.11), 

and the   2CO  MO whose parameters are given by Eqs. (14.23-14.25) and (14.27-14.28).  As shown in the Vibration of 

Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about the internuclear 
distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K&P) [4] and after Eq. 
(11.134).  Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy corrections 
can be found by perturbation methods. 
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THE DOPPLER ENERGY TERMS OF THE CARBON DIOXIDE MOLECULE 
The equations of the radiation reaction force of carbon dioxide are the same as those of OH  with the substitution of the 2CO  

parameters except that there is a factor of four increase in the central force in Eq. (13.140) due to the double bond.  Using Eqs. 
(13.140-13.142), the angular frequency of the reentrant oscillation in the transition state is 
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3
160
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e

e

b
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m

    (14.54) 

where b  is given by Eq. (14.27).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)). 

 164.16331  10  / 27.40365 KE X rad s eV     (14.55) 

In Eq. (11.181), substitution of  2 / 2TE CO  for hE  , the mass of the electron, em , for M , and the kinetic energy given by Eq. 

(14.55) for KE  gives the Doppler energy of the electrons of the reentrant orbit: 

 
 

2 2

2 27.40365 2
27.63421 0.28619 K

D h
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e eVE
E E eV eV

Mc m c      (14.56) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The transition state comprises O CO  , oxygen binding to CO .  Vibration of the linear XYZ-molecular transition 
state corresponds to 3  [5] with the maximum kinetic energy localized to the nascent C O  bond.  In this case, the kinetic 

energy of the nuclei is the maximum for this bond.  Thus, KvibE  is the vibrational energy.  The decrease in the energy of the 2CO  

MO due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and nuclei, 

oscE , is given by the sum of the corresponding energies, DE  given by Eq. (14.56) and KvibE , the vibrational energy.  Using the  

experimental 2CO   3vibE   of  12349  0.29124 cm eV  [6] for KvibE  of the transition state,  2oscE CO  is:  

  2osc D DKvib vibE CO E E E E     (14.57) 

  2 0.28619 0.29124 0.00505 oscE CO eV eV eV     (14.58) 

 
TOTAL AND BOND ENERGIES OF THE CARBON DIOXIDE MOLECULE 

 2T oscE CO , the total energy of 2CO  including the Doppler term, is given by the sum of  2TE CO  (Eq. (14.53)) and 

 2oscE CO  given by Eq. (14.58). 
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From Eqs. (14.57-14.60), the total energy of the 2CO  MO is: 

    2 255.25476 55.25476 0.00505 55.26336 oscT oscE CO eV E CO eV eV eV          (14.61) 

where the experimental vibE  was used. 

As in the case of the dissociation of the bond of the hydroxyl radical, an oxygen atom is formed with dissociation of 

2CO .  O  has two unpaired electrons as shown in Eq. (13.55) which interact to stabilize the atom as shown by Eq. (10.161-

10.162).  The lowering of the energy of the reactants decreases the bond energy.  Thus, the total energy of oxygen is reduced by 
the energy in the field of the two magnetic dipoles given by Eq. (7.46) and Eq. (13.101). 
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 (14.62) 

The 2CO  bond dissociation energy,  2DE CO , is given by the sum of the energies of the CO  and the O  atom minus the sum of 

 2T oscE CO  and ( )E magnetic : 

         2 2( )D T oscE CO E CO E O E magnetic E CO     (14.63) 

The energy of an oxygen atom is given by Eq. (14.14) and ( )TE CO  is given by the sum of the experimental energies of C  (Eq. 

(14.12)), O  (Eq. (14.14)), and the negative of the bond energy of CO  (Eq. (13.914)): 

 ( ) 11.26030 13.618060 11.15696 36.03532 E CO eV eV eV eV       (14.64) 

The energy of O  is given by the negative of the corresponding ionization energy given in Eq. (4.14).  Thus, the 2CO  bond 

dissociation energy,  2DE CO , given by the Eqs. (4.14) and (14.61-14.64) is: 
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 (14.65) 

The experimental 2CO  bond dissociation energy is [7]: 

  298 2 5.516 DE CO eV  (14.66) 

The results of the determination of bond parameters of 2CO  are given in Table 14.1.  The calculated results are based on first 

principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 
 

NITROGEN DIOXIDE MOLECULE 
The nitrogen dioxide molecule can be formed by the reaction of nitric oxide and an oxygen atom: 

 2NO O NO   (14.67) 

The bonding in the nitrogen dioxide molecule comprises two double bonds, each a 2H -type MO with four paired electrons 

wherein the central N  atom is shared by both bonds such that six electrons can be assigned to the two N O  bonds.  Thus, two 
2N p  electrons combine with the four 2O p  electrons, two from each O , as a linear combination to form the two overlapping 

N O  bonds of 2NO .  The force balance equation and radius 7r  of the 2 p  shell of N  is derived in the Seven-Electron Atoms 

section.  The force balance equation and radius 8r  of the 2 p  shell of O  is derived in the Eight-Electron Atoms section.  With 

the formation of each of the two 2H -type MOs by the contribution of two 2 p  electrons each from the N  and O  atoms, a 

diamagnetic force arises between the remaining outer shell atomic electrons, the 2s  and 2 p  electrons of N  and O , and the 2H -

type MO.  This force from N  and O  causes the 2H -type MO to move to greater principal axes than would result with the 

Coulombic force alone.  But, the factor of two increase of the central field and the resulting increased Coulombic as well as 
magnetic central forces on the remaining N  and O  electrons decrease the radii of the corresponding shells such that the energy 
minimum is achieved that is lower than that of the reactant atoms.  The resulting electron configuration of 2NO  is 

2 1

2 2 2 2 2 2 1 2 2 6
1 2 1 2 1 2 , ,1 1 1 2 2 2 2 2 2 O N ON s O s O s N s O s O s N p O p O p   where the subscripts designate the O  atom, 1 or 2,   designates the 

2H -type MO, and the orbital arrangement is: 
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                         2p state

         

 0 0 0
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              O



     

  

  

  
                               

 

N O

 (14.68) 

Nitrogen dioxide is predicted to be weakly paramagnetic in agreement with observations [1]. 
 
FORCE BALANCE OF THE 2 p  SHELL OF THE NITROGEN ATOM OF NITROGEN 
DIOXIDE 
For the N  atom, force balance for the outermost 2 p  electron of 2NO  (electron 5) is achieved between the centrifugal force and 

the Coulombic and magnetic forces that arise due to interactions between electron 5 and the 2s -shell electrons due to spin and 
orbital angular momentum.  The forces used are derived in the Seven-Electron Atoms section.  The central Coulomb force on the 
outer-most 2 p  shell electron of NO  (electron 5) due to the nucleus and the inner four electrons is given by Eq. (10.70) with the 
appropriate charge and radius: 
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for 4r r .  The 2 p  shell possess a +2 external electric field given by Eq. (10.92) for 5r r .  The energy is minimized with 

conservation of angular momentum.  This condition is met when the magnetic forces of N  in 2NO  are the same as those of N  

in NO .  They are also the same as those of N  in the nitrogen molecule with 5r  replacing 6r  and with an increase of the central 

field by an integer.  The diamagnetic force, diamagneticF , of Eq. (10.82) due to the p -orbital contribution is given by Eq. (13.918). 
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 (14.70) 

And,  2magF  corresponding to the conserved orbital angular momentum of the three orbitals is also the same as that of 2NO  

given by Eq. (13.919): 
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 (14.71) 

The electric field external to the 2 p  shell given by Eq. (10.92) for 5r r  gives rise to a second diamagnetic force, 

 2diamagneticF , given by Eq. (10.93).   2diamagneticF  due to the binding of the p-orbital electron having an electric field of +2 outside 

of its radius is given by Eq. (13.920): 
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 (14.72) 

The radius of the 2 p  shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (14.69)) 
and diamagnetic (Eqs. (14.70) and (14.72)), and paramagnetic (Eq. (14.71)) forces as follows: 
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 (14.73) 

Substitution of 5
5e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (14.73) gives: 
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The quadratic equation corresponding to Eq. (14.74) is: 
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 (14.75) 
The solution of Eq. (14.75) using the quadratic formula is: 
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    (14.76) 

The positive root of Eq. (14.76) must be taken in order that 5 0r  .  Substitution of 3

0

0.69385
r

a
  (Eq. (10.62) with 7Z  ) into 

Eq. (14.76) gives: 
 5 00.74841r a  (14.77) 

 
FORCE BALANCE OF THE 2 p  SHELL OF EACH OXYGEN ATOM OF NITROGEN 
DIOXIDE 
For each O  atom, force balance for the outermost 2 p  electron of 2NO  (electron 6) is achieved between the centrifugal force and 

the Coulombic and magnetic forces that arise due to interactions between electron 6 and the other 2 p  electron as well as the 2s -
shell electrons due to spin and orbital angular momentum.  The forces used are derived in the Eight-Electron Atoms section.  The 
central Coulomb force on the outer-most 2 p  shell electron of 2NO  (electron 6) due to the nucleus and the inner five electrons is 

given by Eq. (10.70) with the appropriate charge and radius: 
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for 5r r .  The 2 p  shell possess an external electric field of +2 given by Eq. (10.92) for 6r r .  The energy is minimized with 

conservation of angular momentum.  This condition is met when the magnetic forces of O  in 2NO  are the same as those of O  in 

NO .  The diamagnetic force, diamagneticF , of Eq. (10.82) due to the p -orbital contribution given by Eq. (13.927) is: 
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 (14.79) 

And,  2magF  corresponding to the conserved spin and orbital angular momentum given by Eq. (13.928) is: 
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 (14.80) 

The electric field external to the 2 p  shell given by Eq. (10.92) for 6r r  gives rise to a second diamagnetic force, 

 2diamagneticF , given by Eq. (10.93).   2diamagneticF  due to the binding of the p-orbital electron having an electric field of +2 outside 

of its radius given by Eq. (13.929) is: 
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 (14.81) 

In addition, the contribution of two 2 p  electrons in the formation of the   MO gives rise to a paramagnetic force on the 

remaining paired 2 p  electrons.  The force  3magF  is given by Eq. (13.930) is: 
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The radius of the 2 p  shell is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (14.78)) 
and diamagnetic (Eqs. (14.79) and (14.81)), and paramagnetic (Eqs. (14.80) and (14.82)) forces as follows: 
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Substitution of 6
6e

v
m r




 (Eq. (1.35)) and 
1

2
s   into Eq. (14.83) gives: 
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The quadratic equation corresponding to Eq. (14.84) is: 
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  (14.85) 

The solution of Eq. (14.85) using the quadratic formula is: 

 

2

0
3

0

3
3

3

6 3 0

3
1

8
2 2 33 ( 5)1 12 28

2 2 3 6 2( 5) 20 3 1
12 2 5 2

2 2 3
( 5)

12 2
,      

2

Za Z r
a

ZZ r
Z r Z

Z
Z r

r r in units of a

 
 

 
                  

                         
      

    (14.86) 

The positive root of Eq. (14.86) must be taken in order that 6 0r  .  Substitution of 3

0

0.59020
r

a
  (Eq. (10.62) with 8Z  ) into 

Eq. (14.86) gives: 
 6 00.70460r a  (14.87) 

 
ENERGIES OF THE 2 p  SHELLS OF THE NITROGEN ATOM AND OXYGEN ATOMS 
OF NITROGEN DIOXIDE 
Consider the determination of the total energy of 2NO  from the reaction of a nitrogen atom with two oxygen atoms.  With the 

formation of each 2H -type MO by the contribution of two 2 p  electrons from each of the N  and the two O  atoms, the total 

energy of the 2NO  molecule, which is subtracted from the sum of the energies of the nitrogen and oxygen atoms to determine 

the bond energy, is increased by the ionization energies of N , N  , O , and 2O  given by Eqs. (14.88-14.91), respectively.  
Experimentally, the energies are [2]: 

 ( ;  ) 14.53414 E ionization N eV  (14.88) 

 ( ;  ) 29.6013 E ionization N eV   (14.89) 

 ( ;  ) 13.61806 E ionization O eV  (14.90) 

 ( ;  ) 35.11730 E ionization O eV   (14.91) 

In addition, the central forces on the 2 p  shells of the N  and O  atoms are increased with the formation of the   MOs 
which reduces each shell's radius and increases its total energy.  The change per bond is the same as that of NO  since the final 
radii given by Eq. (14.77) and (14.87) are the same for NO  and 2NO .  The Coulombic energy terms of the total energy of the N  

and O  atoms at the new radii are calculated and added to the ionization energies of N , N  , O , and 2O , and the energy of the 
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  MOs to give the total energy of 2NO .  Then, the bond energy is determined from the total 2NO  energy. 

The radius 7r  of the nitrogen atom before bonding is given by Eq. (10.142). 

 7 00.93084r a  (14.92) 

Using the initial radius 7r  of the N  atom and the final radius 5r  of the 2N p  shell (Eq. (14.77)) and by considering that the 

central Coulombic field decreases by an integer for each successive electron of the shell, the sum  , 2TE N p  of the Coulombic 

energy change of the 2N p  electrons of the N  atom is determined using Eq. (10.102): 
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  (14.93) 

The radius 8r  of the oxygen atom before bonding is given by Eq. (10.162). 

 8 0r a  (14.94) 

Using the initial radius 8r  of the O  atom and the final radius 6r  of the 2O p  shell (Eq. (14.87)) and by considering that the 

central Coulombic field decreases by an integer for each successive electron of the shell, the sum  , 2TE O p  of the Coulombic 

energy change of the 2O p  electrons of the O  atom is determined using Eq. (10.102). 
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  (14.95) 

 

FORCE BALANCE OF THE   MO OF NITROGEN DIOXIDE 
The force balance can be considered due to a second pair of two electrons binding to a molecular ion having 2e  at each focus 
and a first bound pair.  Then, the forces are the same as those of a molecule ion having e  at each focus.  The diamagnetic force 

1diamagneticMOF  for each  -MO of the 2NO  molecule due to the two, paired electrons in the 2O p  shell is given by Eq. (13.633) 

with 2en  :   

 
2

2 21 2 e
diamagneticMO D

m a b F i


 (14.96) 

This is also the corresponding force of NO  given by Eq. (13.942).  2diamagneticMOF  of the nitrogen dioxide molecule comprising 

nitrogen with charge 1 7Z   and 1L    and 2

3

4
L    and the two oxygen atoms, each with 2 8Z   and 3L    is given by 

the corresponding sum of the contributions.  Using Eq. (13.835), 2diamagneticMOF  for 2NO  is: 
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 (14.97) 

This is also the corresponding force of NO  given by Eq. (13.943) except the term due to oxygen is twice that of NO  due to the 
two oxygen atoms of 2NO .  The general force balance equation for the  -MO of the nitrogen dioxide molecule given by Eqs. 

(11.200), and (14.97-14.98) is also the same as that of CN  (Eq. (14.836)) except for the doubling of the 
2

2

Z
 term due to the two 

oxygen atoms: 
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Substitution of 1 7Z   and 2 8Z   into Eq. (14.101) gives: 

 10
02.51658 1.33171  10  a a X m   (14.102) 

Substitution of Eq. (14.102) into Eq. (11.79) is:  

 11
01.12173 5.93596  10  c a X m    (14.103) 

The internuclear distance given by multiplying Eq. (14.103) by two is:  

 10
02 2.24347 1.18719  10  c a X m    (14.104) 

The experimental bond distance is [3]: 

 102 1.193  10  c X m   (14.105) 

Substitution of Eqs. (14.102-14.103) into Eq. (11.80) is: 

 10
02.25275 1.19210  10  b c a X m    (14.106) 

Substitution of Eqs. (14.102-14.103) into Eq. (11.67) is: 

 0.44574e   (14.107) 

The bonding in the nitrogen dioxide molecule comprises two double bonds, each a 2H -type MO with four paired 

electrons wherein the central N  atom is shared by both bonds such that six electrons can be assigned to the two N O  bonds.  
Thus, two 2N p  electrons combine with the four 2O p  electrons, two from each O , as a linear combination to form the two 

overlapping N O  bonds of 2NO .  Using the electron configuration of 2NO  (Eq. (14.68)), the radii of the 01 0.14605N s a  

(Eq. (10.51)), 02 0.69385N s a  (Eq. (10.62)), 02 0.74841N p a  (Eq. (14.77)), 01 0.12739O s a  (Eq. (10.51)), 

02 0.59020O s a  (Eq. (10.62)), and 02 0.70460O p a  (Eq. (14.87)) shells and the parameters of the   MOs of 2NO  given by 

Eqs. (13.3-13.4), (14.102-14.104), and (14.106-14.107), the dimensional diagram and charge-density of the 2NO  MO are shown 

in Figures 14.3 and 14.4, respectively. 
 
Figure 14.3.   The cross section of the 2NO  MO showing the axes,   MOs (two 2H -type ellipsoidal MOs) with six paired 

electrons, with the N  1s , 2s , and 2 p  AOs and the O  1s , 2s , and 2 p  AOs.  Legend: a : semimajor axis, b : semiminor axis, 

'c : internuclear distance, 5r : radius of the 2N p  shell having one unpaired electron, 6r : radius of each 2O p  shell having two 

paired electrons. 
 



ore Polyatomic Molecules and Hydrocarbons 

 

609

Figure 14.4.   2NO  MO comprising two   MOs ( 2H -type MOs) with N  and O  atoms at the foci that have each donated two 

electrons to the   MOs and have smaller radii and higher binding energies as a consequence.  (A)-(B) Top and side color scale, 
translucent views of the charge-density of the 2NO  MO.  (C) Off-center cut-away view showing the complete inner most 1N s  

shell, and moving radially, the 2N s  shell, the 2N p  shell, and the   prolate spheroidal MOs that each have the N  atom as a 
focus.  Moving radially from each oxygen-atom focus, the complete innermost 1O s  shell, the 2O s  shell, the 2O p  shell, and the 

  prolate spheroidal MOs are shown. 
 

 
 
 

SUM OF THE ENERGIES OF THE   MOS AND THE AOS OF NITROGEN DIOXIDE 
The energies of each 2NO    MO are the same as those of NO  (Eqs. (13.954-13.958)).  They are given by the substitution of 

the semiprincipal axes (Eqs. (14.102-14.103) and (14.106)) into the energy equations (Eqs. (11.207-11.212)) of 2H  except that 

the terms based on charge are multiplied by four and the kinetic energy term is multiplied by two due to the  -MO double bond 
with two pairs of paired electrons: 
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 T e m pE V T V V     (14.112) 

Substitution of Eqs. (11.79) and (14.108-14.111) into Eq. (14.112) gives: 
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 (14.113) 

where  ,TE N O   is the total energy of each   MO of 2NO .  The total energy of 2NO ,  2TE NO , is given by the sum of 

( ;  )E ionization N  and ( ;  )E ionization N  , the sum of the energies of the first and second electrons of nitrogen (Eqs. (14.88-

14.89)) donated to each double bond, the sum of ( ;  )E ionization O  and two times ( ;  )E ionization O , the energies of the first 

and second electrons of oxygen (Eqs. (14.90-14.91)) donated to the double bonds,  , 2TE N p , the 2N p  AO contribution due to 

the decrease in radius with the formation of each bond (Eq. (14.93)), two times  , 2TE O p , the 2O p  AO contribution due to the 

decrease in radius with the formation of each bond (Eq. (14.95)), and two times  ,TE N O  , the   MO contribution given by 

Eq. (14.113): 
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VIBRATION OF 2NO  
The vibrational energy levels of 2NO  may be solved by determining the Morse potential curve from the energy relationships for 

the transition from a N  atom and two O  atoms whose parameters are given by Eqs. (10.134-10.143) and (10.154-10.163), 
respectively, to a N  atom whose parameter 5r  is given by Eq. (14.77), two O  atoms whose parameter 6r  is given by Eq. 

(14.87), and the   MOs whose parameters are given by Eqs. (14.102-14.104) and (14.106-14.107).  As shown in the Vibration 
of Hydrogen-type Molecular Ions section, the harmonic oscillator potential energy function can be expanded about the 
internuclear distance and expressed as a Maclaurin series corresponding to a Morse potential after Karplus and Porter (K&P) [4] 
and after Eq. (11.134).  Treating the Maclaurin series terms as anharmonic perturbation terms of the harmonic states, the energy 
corrections can be found by perturbation methods. 
 

THE DOPPLER ENERGY TERMS OF NITROGEN DIOXIDE 
The equations of the radiation reaction force of nitrogen dioxide are the same as those of NO  with the substitution of the 2NO  

parameters.  Using Eq. (13.961), the angular frequency of the reentrant oscillation in the transition state is: 
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    (14.115) 

where a  is given by Eq. (14.102).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)). 

 162.07110  10  / 13.63231 KE X rad s eV     (14.116) 

In Eq. (11.181), substitution of  2 / 2TE NO  for hE  , the mass of the electron, em , for M , and the kinetic energy given by Eq. 

(14.116) for KE  gives the Doppler energy of the electrons of the reentrant orbit: 

 
 

2 2

2 13.63231 2
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D
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e eVE
E E eV eV

Mc m c      (14.117) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The transition state comprises O NO  , oxygen binding to NO .  As in the case of 2CO bond formation, vibration in 

the transition state corresponds to 3  [5] with the maximum kinetic energy localized to the nascent N O  bond.  In this case, the 

kinetic energy of the nuclei is the maximum for this bond.  Thus, KvibE  is the vibrational energy.  The decrease in the energy of 

the 2NO  MO due to the reentrant orbit in the transition state corresponding to simple harmonic oscillation of the electrons and 

nuclei, oscE , is given by the sum of the corresponding energies, DE  given by Eq. (14.117) and KvibE , the vibrational energy.  

Using the experimental 2NO   3vibE   of  11618  0.20061 cm eV  [6] for KvibE  of the transition state,  2oscE NO  is:  

  2osc D DKvib vibE NO E E E E     (14.118) 

  2 0.18840 0.20061 0.01221 oscE NO eV eV eV     (14.119) 
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TOTAL AND BOND ENERGIES OF NITROGEN DIOXIDE 
 2T oscE NO , the total energy of 2NO  including the Doppler term, is given by the sum of  2TE NO  (Eq. (14.114)) and 

 2oscE NO  given by Eq. (14.119). 
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From Eqs. (14.119-14.121), the total energy of the 2NO  MO is: 

 

   2 251.58536 
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 (14.122) 

where the experimental vibE  was used. 

As in the case of the dissociation of the bond of the hydroxyl radical, an oxygen atom is formed with dissociation of 

2NO .  O  has two unpaired electrons as shown in Eq. (13.55) which interact to stabilize the atom as shown by Eq. (10.161-

10.162).  The lowering of the energy of the reactants decreases the bond energy.  Thus, the total energy of oxygen is reduced by 
the energy in the field of the two magnetic dipoles given by Eq. (7.46) and Eq. (13.101). 
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 (14.123) 

The 2NO  bond dissociation energy,  2DE NO , is given by the sum of the energies of the NO  and the O  atom minus the sum of 

 2T oscE NO  and ( )E magnetic : 

         2 2( )D T oscE NO E NO E O E magnetic E NO     (14.124) 

The energy of an oxygen atom is given by the negative of Eq. (14.90), and ( )TE NO  is given by the sum of the experimental 

energies of N  (negative of Eq. (14.88)), O , and the negative of the bond energy of NO  (Eq. (13.974)). 

 ( ) 14.53414 13.618060 6.53529 34.68749 E NO eV eV eV eV       (14.125) 
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Thus, the 2NO  bond dissociation energy,  2DE NO , given by Eqs. (4.90) and (14.112-14.125) is: 

 
      

 
2 234.68749 13.618060 ( )

                 48.30555 0.11441 51.57315 3.15319 

D T oscE NO eV eV E magnetic E NO

eV eV eV eV

    

    
 (14.126) 

The experimental 2NO  bond dissociation energy is [7]: 

  298 2 3.161 DE NO eV  (14.127) 

 
BOND ANGLE OF 2NO  
The 2NO  MO comprises a linear combination of two N O -bond MOs.  A bond is also possible between the two O  atoms of 

the N O  bonds.  Such O O  bonding would decrease the N O  bond strength since electron density would be shifted from 
the N O  bonds to the O O  bond.  Thus, the bond angle between the two N O  bonds is determined by the condition that 
the total energy of the 2H -type ellipsoidal MO between the terminal O  atoms of the N O  bonds is zero.  From Eqs. (11.79) 

and (13.228), the distance from the origin to each focus of the O O  ellipsoidal MO is: 
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The internuclear distance from Eq. (13.229) is:  

 02 ' 2
2

aa
c   (14.129) 

The length of the semiminor axis of the prolate spheroidal O O  MO b c  is given by Eq. (13.167). 
The component energies and the total energy TE  of the O O  bond are given by the energy equations (Eqs. (11.207-

11.212), (11.213-11.217), and (11.239)) of 2H  except that the terms based on charge are multiplied by four and the kinetic 

energy term is multiplied by two due to the O O  double bond with two pairs of paired electrons.  Substitution of Eq. (14.128) 
into Eqs. (11.207-11.212) gives: 
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 (14.130) 

From the energy relationship given by Eq. (14.130) and the relationship between the axes given by Eqs. (14.128-14.129) and 
(13.167-14.168), the dimensions of the O O  MO can be solved. 

The most convenient way to solve Eq. (14.130) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 

 10
08.3360 4.4112  10  a a X m   (14.131) 

Substitution of Eq. (14.131) into Eq. (14.128) gives: 

 10
02.0416 1.0804  10  c a X m    (14.132) 

The internuclear distance given by multiplying Eq. (14.132) by two is: 

 10
02 4.0831 2.1607  10  c a X m    (14.133) 

Substitution of Eqs. (14.131-14.132) into Eq. (14.167) gives: 

 10
08.0821 4.2769  10  b c a X m    (14.134) 

Substitution of Eqs. (14.131-14.132) into Eq. (14.168) gives: 

 0.2449e   (14.135) 

From, 2 'C Cc   (Eq. (14.133)), the distance between the two O  atoms when the total energy of the corresponding MO is 

zero (Eq. (14.130)), and 2 'N Oc   (Eq. (14.104)), the internuclear distance of each N O  bond, the corresponding bond angle can 

be determined from the law of cosines.  Using, Eqs. (13.240-13.242), the bond angle   between the N O  bonds is: 
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 (14.136) 

The experimental angle between the N O  bonds is [3]: 

 134.1    (14.137) 

The results of the determination of bond parameters of 2NO  are given in Table 14.1.  The calculated results are based on 

first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 

 

ETHANE MOLECULE ( 3 3CH CH ) 
The ethane molecule 3 3CH CH  is formed by the reaction of two methyl radicals: 

 3 3 3 3CH CH CH CH   (14.138) 

3 3CH CH  can be solved using the same principles as those used to solve 3CH , wherein the 2s  and 2 p  shells of each C  

hybridize to form a single 32sp  shell as an energy minimum, and the sharing of electrons between two 32C sp  hybridized 
orbitals (HOs) to form a molecular orbital (MO) permits each participating hybridized orbital to decrease in radius and energy.  
First, two sets of three H  atomic orbitals (AOs) combine with two sets of three carbon 32sp  HOs to form two methyl groups 

comprising a linear combination of six diatomic 2H -type MOs developed in the Nature of the Chemical Bond of Hydrogen-

Type Molecules and Molecular Ions section.  Then, the two 3CH  groups bond by forming a 2H -type MO between the remaining 
32C sp  HO on each carbon. 

 
FORCE BALANCE OF THE C C -BOND MO OF ETHANE 

3 3CH CH  comprises a chemical bond between two 3CH  radicals wherein each methyl radical comprises three chemical bonds 

between carbon and hydrogen atoms.  The solution of the parameters of 3CH  is given in the Methyl Radical ( 3CH ) section.  

Each C H  bond of 3CH  having two spin-paired electrons, one from an initially unpaired electron of the carbon atom and the 

other from the hydrogen atom, comprises the linear combination of 75% 2H -type ellipsoidal MO and 25% 32C sp  HO.  The 

proton of the H  atom and the nucleus of the C  atom are along each internuclear axis and serve as the foci.  As in the case of 

2H , each of the three C H -bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend 

into 32C sp  HO for distances shorter than the radius of the 32C sp  shell since it is energetically unfavorable.  Thus, each MO 

surface comprises a prolate spheroid at the H  proton that is continuous with the 32C sp  shell at the C  atom whose nucleus 

serves as the other focus.  The electron configuration and the energy,  3, 2E C sp , of the 32C sp  shell is given by Eqs. (13.422) 

and (13.428), respectively.  The central paramagnetic force due to spin of each C H  bond is provided by the spin-pairing force 
of the 3CH  MO that has the symmetry of an s  orbital that superimposes with the 32C sp  orbitals such that the corresponding 

angular momenta are unchanged. 
Two 3CH  radicals bond to form 3 3CH CH  by forming a MO between the two remaining 32C sp -HO electrons of the two 

carbon atoms.  However, in this case, the sharing of electrons between two 32C sp  HOs to form a molecular orbital (MO) 

comprising two spin-paired electrons permits each 32C sp  HO to decrease in radius and energy. 
As in the case of the C H  bonds, the C C -bond MO is a prolate-spheroidal-MO surface that cannot extend into 

32C sp  HO for distances shorter than the radius of the 32C sp  shell of each atom.  Thus, the MO surface comprises a partial 

prolate spheroid in between the carbon nuclei and is continuous with the 32C sp  shell at each C  atom.  The energy of the 2H -

type ellipsoidal MO is matched to that of the 32C sp  shell.  As in the case of previous examples of energy-matched MOs such as 

those of OH , NH , CH , and the C O -bond MO of 2CO , the C C -bond MO of ethane must comprise 75% of a 2H -type 

ellipsoidal MO in order to match potential, kinetic, and orbital energy relationships.  Thus, the C C -bond MO must comprise 
two 32C sp HOs and 75% of a 2H -type ellipsoidal MO divided between the two 32C sp  HOs: 

 3
22 2 0.75   C sp H MO C C bond MO     (14.139)  

The linear combination of the 2H -type ellipsoidal MO with each 32C sp  HO further comprises an excess 25% charge-density 

contribution from each 32C sp  HO to the C C -bond MO to achieve an energy minimum.  The force balance of the C C -bond 
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MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.139) and the 
energy matching condition between the 32C sp -HO components of the MO. 

Similarly, the energies of each 3CH  MO involve each 32C sp  and each 1H s  electron with the formation of each C H  

bond.  The sum of the energies of the 2H -type ellipsoidal MOs is matched to that of the 32C sp  shell.  This energy is determined 

by the considering the effect of the donation of 25% electron density from the two 32C sp  HOs to the C C -bond MO.  The 
32sp  hybridized orbital arrangement given by Eq. (13.422) is: 

 

3             2sp  state

                       

0,0      1,-1      1,0       1,1

     (14.140) 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the four 

electrons.  The sum  3, 2TE C sp of calculated energies of C , C , 2C  , and 3C   from Eqs. (10.123), (10.113-10.114), (10.68), 

and (10.48), respectively, is: 

  3, 2 64.3921 48.3125 24.2762 11.27671 148.25751 TE C sp eV eV eV eV eV      (14.141) 

which agrees well with the sum of 148.02532 eV  from the experimental [2] values.  Consider the case of the 32C sp  HO of each 

methyl radical.  The orbital-angular-momentum interactions cancel such that the energy of the  3, 2TE C sp  is purely 

Coulombic.  By considering that the central field decreases by an integer for each successive electron of the shell, the radius 

32sp
r  of the 32C sp  shell may be calculated from the Coulombic energy using Eq. (10.102): 
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where 6Z   for carbon.  Using Eqs. (10.102) and (14.142), the Coulombic energy  3, 2CoulombE C sp  of the outer electron of the 
32C sp  shell is: 
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     (14.143) 

During hybridization, the spin-paired 2s  electrons are promoted to the 32C sp  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (13.152) at the initial radius of the 2s electrons.  From Eq. (10.62) with 6Z  , 
the radius 3r  of the 2C s shell is: 

 3 00.84317r a  (14.144) 

Using Eqs. (13.152) and (14.144), the unpairing energy is: 
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Using Eqs. (14.143) and (14.145), the energy  3, 2E C sp  of the outer electron of the 32C sp  shell is: 
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Next, consider the formation of the C C -bond MO of ethane from two methyl radicals, each having a 32C sp electron 
with an energy given by Eq. (14.146).  The total energy of the state is given by the sum over the four electrons.  The sum 

 3, 2T ethaneE C sp of calculated energies of 32C sp , C , 2C  , and 3C   from Eqs. (10.123), (10.113-10.114), (10.68), and (10.48), 

respectively, is: 
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 (14.147) 

where  3, 2E C sp  is the sum of the energy of C , 11.27671 eV , and the hybridization energy.  The orbital-angular-momentum 
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interactions also cancel such that the energy of the  3, 2T ethaneE C sp  is purely Coulombic.  

The sharing of electrons between two 32C sp  HOs to form a C C -bond MO permits each participating hybridized 
orbital to decrease in radius and energy.  In order to further satisfy the potential, kinetic, and orbital energy relationships, each 

32C sp  HO donates an excess of 25% of its electron density to the C C -bond MO to form an energy minimum.  By considering 
this electron redistribution in the ethane molecule as well as the fact that the central field decreases by an integer for each 
successive electron of the shell, the radius 32ethane sp

r  of the 32C sp  shell of ethane may be calculated from the Coulombic energy 

using Eq. (10.102). 
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  (14.148) 

Using Eqs. (10.102) and (14.148), the Coulombic energy  3, 2Coulomb ethaneE C sp  of the outer electron of the 32C sp  shell is: 
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     (14.149) 

During hybridization, the spin-paired 2s  electrons are promoted to the 32C sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (13.152).  Using Eqs. (14.145) and (14.149), the energy  3, 2ethaneE C sp  of the 

outer electron of the 32C sp  shell is: 
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 (14.150) 

Thus,  3, 2TE C C sp , the energy change of each 32C sp  shell with the formation of the C C -bond MO is given by the 

difference between Eq. (14.146) and Eq. (14.150). 

        3 3 3, 2 , 2 ,2 15.35946 14.63489 0.72457 T ethaneE C C sp E C sp E C sp eV eV eV          (14.151) 

The 2H -type ellipsoidal MO comprises 75% of the C C -bond MO shared between two 32C sp  HOs corresponding to 

the electron charge density in Eq. (11.65) of 
0.75

2

e
.  But, the additional 25% charge-density contribution to the C C -bond 

MO causes the electron charge density in Eq. (11.65) to be 0.5
2

e
e


  .  Thus, the force constant 'k  to determine the ellipsoidal 

parameter 'c  in terms of the central force of the foci given by Eq. (11.65) is: 

 
  2

0

0.5 2
'

4

e
k


  (14.152) 

The distance from the origin to each focus 'c  is given by substitution of Eq. (14.152) into Eq. (13.60).  Thus, the distance from 
the origin of the C C -bond MO to each focus 'c  is given by:  

 0
02

'
e

c a aa
m e a


 


 (14.153) 

The internuclear distance from Eq. (14.153) is:  

 02 ' 2c aa  (14.154) 

The length of the semiminor axis of the prolate spheroidal C C -bond MO b c  is given by Eq. (13.62).  The eccentricity, e , 
is given by Eq. (13.63).  The solution of the semimajor axis a  then allows for the solution of the other axes of each prolate 
spheroid and eccentricity of the C C -bond MO.  Since the C C -bond MO comprises a 2H -type-ellipsoidal MO that 

transitions to the 32ethaneC sp  HO of each carbon, the energy  3, 2ethaneE C sp  in Eq. (14.150) adds to that of the 2H -type 

ellipsoidal MO to give the total energy of the C C -bond MO.  From the energy equation and the relationship between the axes, 

the dimensions of the C C -bond MO are solved.  Similarly,  3, 2ethaneE C sp  is added to the energy of the 2H -type ellipsoidal 

MO of each C H  bond of the methyl groups to give its total energy.  From the energy equation and the relationship between 
the axes, the dimensions of the equivalent C H -bond MOs of the methyl groups in ethane are solved. 
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The general equations for the energy components of eV , pV , T , mV , and TE  of the C C -bond MO are the same as 

those of the CH  MO as well as each C H -bond MO of the methyl groups except that energy of the 32ethaneC sp  HO is used.  

Since the prolate spheroidal 2H -type MO transitions to the 32ethaneC sp  HO of each carbon and the energy of the 32ethaneC sp  

shell must remain constant and equal to the  3, 2ethaneE C sp  given by Eq. (14.150), the total energy  ,TE C C   of the   

component of the C C -bond MO is given by the sum of the energies of the orbitals corresponding to the composition of the 
linear combination of the 32ethaneC sp  HO and the 2H -type ellipsoidal MO that forms the   component of the C C -bond MO 

as given by Eq. (14.139) with the electron charge redistribution.  Using Eqs. (13.431) and (14.150),  ,TE C C   is given by: 

      
2

3 0

0

1 '
, , 2  0.91771 2 ln 1 15.35946 

8 ' 2 'T T ethane

ae a c
E C C E E C sp eV

c a a c



             

 (14.155) 

To match the boundary condition that the total energy of the entire the 2H -type ellipsoidal MO is given by Eqs. (11.212) and 

(13.75),  ,TE C C   given by Eq. (14.155) is set equal to Eq. (13.75): 

    
2
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0

1 '
,  0.91771 2 ln 1 15.35946 31.63536831 

8 ' 2 'T

ae a c
E C C eV eV

c a a c



             

 (14.156) 

From the energy relationship given by Eq. (14.156) and the relationship between the axes given by Eqs. (14.153-14.154) and 
(13.62-13.63), the dimensions of the C C -bond MO can be solved. 

Substitution of Eq. (14.153) into Eq. (14.156) gives: 
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 0.91771 2 ln 1 16.27589
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 (14.157) 

The most convenient way to solve Eq. (14.157) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is  

 10
02.10725 1.11511  10  a a X m   (14.158) 

Substitution of Eq. (14.158) into Eq. (14.153) gives: 

 11
01.45164 7.68173  10  c a X m    (14.159) 

The internuclear distance given by multiplying Eq. (14.159) by two is:  

 10
02 2.90327 1.53635  10  c a X m    (14.160) 

The experimental bond distance is [3]: 

 102 1.5351  10  c X m   (14.161) 

Substitution of Eqs. (14.158-14.159) into Eq. (13.62) gives: 

 11
01.52750 8.08317  10  b c a X m    (14.162) 

Substitution of Eqs. (14.158-14.159) into Eq. (13.63) gives: 

 0.68888e   (14.163) 

The nucleus of the C  atoms comprise the foci of the 2H -type ellipsoidal MO.  The parameters of the point of intersection of the 

2H -type ellipsoidal MO and the 32ethaneC sp  HO are given by Eqs. (13.84-13.95) and (13.261-13.270).  The polar intersection 

angle '  is given by Eq. (13.261) where 3 02
0.87495n ethane sp

r r a   is the radius of the 32ethaneC sp  shell.  Substitution of Eqs. 

(14.158-14.159) into Eq. (13.261) gives: 

 ' 67.33    (14.164) 

Then, the angle 32ethaneC C sp HO



 the radial vector of the 32C sp  HO makes with the internuclear axis is: 

 32
180 67.33 112.67

ethaneC C sp HO



      (14.165) 

as shown in Figure 14.5. 
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Figure 14.5.   The cross section of the C C -bond MO (  MO) and one C H -bond MO of ethane showing the axes, 
angles, and point of intersection of each 2H -type ellipsoidal MO with the corresponding 32ethaneC sp  HO.  The continuation of 

each 2H -type-ellipsoidal-MO basis element of the C C  bond and the C H -bond beyond the intersection point with each 
32ethaneC sp  shell and   MO is shown as dashed since each only serves to solve the energy match with the 32ethaneC sp  shell and 

does not represent charge density.  Similarly, the vertical dashed line only designates the parameters of each intersection point.  
The actual charge density is shown by the solid lines.  Legend: a : semimajor axis, b : semiminor axis, 'c : internuclear distance, 
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Consider the right-hand intersection point.  The Cartesian i -coordinate of the interception point of the MO and the AO can be 
calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -

coordinate components at the point of intersection.  Thus, the matching elliptic parametric angle 
2,ethaneC C H MOt    satisfies the 

following relationship: 
 3 3 3

20 ,2 2 2
sin 0.87495 sin sin

ethaneethane ethane
C C H MOethane sp C C sp HO C C sp HO

r a b    
   (14.166) 

such that 
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   (14.167) 

with the use of Eq. (14.166).  Substitution of Eq. (14.162) into Eq. (14.167) gives: 
 

2, 31.91
ethaneC C H MO     (14.168) 

Then, the distance 
2,ethaneC C H MOd   along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of 

intersection of the orbitals is given by: 
 

2 2, ,cos
ethane ethaneC C H MO C C H MOd a    (14.169) 

Substitution of Eqs. (14.158) and (14.168) into Eq. (14.169) gives: 
 

2

11
0, 1.78885 9.46617  10  

ethaneC C H MOd a X m
    (14.170) 

The distance 32ethaneC C sp HO
d


 along the internuclear axis from the origin of the C  atom to the point of intersection of the orbitals 

is given by: 
 3

2,2
'

ethaneethane
C C H MOC C sp HO

d d c
   (14.171) 

Substitution of Eqs. (14.159) and (14.170) into Eq. (14.171) gives: 
 3

11
02

0.33721 1.78444  10  
ethaneC C sp HO

d a X m


   (14.172) 
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FORCE BALANCE OF THE 3CH  MOS OF ETHANE 
Each of the two equivalent 3CH  MOs must comprise three C H  bonds with each comprising 75% of a 2H -type ellipsoidal 

MO and a 32C sp  HO as given by Eq. (13.540): 

 3
2 33 1 2 0.75   C sp H MO CH MO     (14.173) 

The force balance of the 3CH  MO is determined by the boundary conditions that arise from the linear combination of orbitals 

according to Eq. (13.540) and the energy matching condition between the hydrogen and 32C sp  HO components of the MO. 

The force constant 'k  to determine the ellipsoidal parameter 'c  of the each 2H -type-ellipsoidal-MO component of the 

3CH  MO in terms of the central force of the foci is given by Eq. (13.59).  The distance from the origin of each C H -bond MO 

to each focus 'c  is given by Eq. (13.60).  The internuclear distance is given by Eq. (13.61).  The length of the semiminor axis of 
the prolate spheroidal C H -bond MO b c  is given by Eq. (13.62).  The eccentricity, e , is given by Eq. (13.63).  The solution 
of the semimajor axis a  then allows for the solution of the other axes of each prolate spheroid and eccentricity of each C H -
bond MO.  Since each of the three prolate spheroidal C H -bond MOs comprises an 2H -type-ellipsoidal MO that transitions to 

the 32ethaneC sp  HO of ethane, the energy  3, 2ethaneE C sp  of Eq. (14.150) adds to that of the three corresponding 2H -type 

ellipsoidal MOs to give the total energy of the 3CH  MO.  From the energy equation and the relationship between the axes, the 

dimensions of the 3CH  MO are solved. 

The energy components of eV , pV , T , and mV  are the same as those of methyl radical, three times those of CH  

corresponding to the three C H  bonds except that energy of the 32ethaneC sp  HO is used.  Since each prolate spheroidal 2H -type 

MO transitions to the 32ethaneC sp  HO and the energy of the 32ethaneC sp  shell must remain constant and equal to the 

 3, 2ethaneE C sp  given by Eq. (14.150), the total energy  3ethaneTE CH  of the 3CH  MO is given by the sum of the energies of the 

orbitals corresponding to the composition of the linear combination of the 32ethaneC sp  HO and the three 2H -type ellipsoidal MOs 

that forms the 3CH  MO as given by Eq. (13.540).  Using Eq. (13.431),  3ethaneTE CH  is given by: 
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3 1 '
, 2  0.91771 2 ln 1 15.35946 

8 ' 2 'ethaneT T ethane

ae a c
E CH E E C sp eV
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 (14.174) 

 3ethaneTE CH  given by Eq. (14.174) is set equal to three times the energy of the 2H -type ellipsoidal MO minus two times the 

Coulombic energy of H  given by Eq. (13.542): 
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E CH eV eV
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 (14.175) 

From the energy relationship given by Eq. (14.175) and the relationship between the axes given by Eqs. (13.60-13.63), the 
dimensions of the 3CH  MO can be solved. 

Substitution of Eq. (13.60) into Eq. (14.175) gives: 
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 (14.176) 

The most convenient way to solve Eq. (14.176) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is:  

 11
01.64469 8.70331  10  a a X m   (14.177) 

Substitution of Eq. (14.177) into Eq. (14.60) gives: 

 11
01.04712 5.54111  10  c a X m    (14.178) 

The internuclear distance given by multiplying Eq. (14.178) by two is:  

 10
02 2.09424 1.10822  10  c a X m    (14.179) 

The experimental bond distance is [3]: 

 102 1.0940  10  c X m   (14.180) 
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Substitution of Eqs. (14.177-14.178) into Eq. (14.62) gives: 

 11
01.26828 6.71145  10  b c a X m    (14.181) 

Substitution of Eqs. (14.177-14.178) into Eq. (13.63) gives: 

 0.63667e   (14.182) 

The nucleus of the H  atom and the nucleus of the C  atom comprise the foci of each 2H -type ellipsoidal MO.  The 

parameters of the point of intersection of the 2H -type ellipsoidal MO and the 32ethaneC sp  HO are given by Eqs. (13.84-13.95) 

and (13.261-13.270).  The polar intersection angle '  is given by Eq. (13.261) where 3 02
0.87495n ethane sp

r r a   is the radius of 

the 32ethaneC sp  shell.  Substitution of Eqs. (14.177-14.178) into Eq. (13.261) gives: 

 ' 79.34    (14.183) 

Then, the angle 32ethaneC H sp HO



 the radial vector of the 32C sp  HO makes with the internuclear axis is: 

 32
180 79.34 100.66

ethaneC H sp HO



      (14.184) 

as shown in Figure 14.6.   
 

Figure 14.6.   The cross section of one C H -bond MO of ethane showing the axes, angles, and point of intersection of the 

2H -type ellipsoidal MO with the 32ethaneC sp  HO.  The continuation of the 2H -type-ellipsoidal-MO basis element beyond the 

intersection point with the 32ethaneC sp  shell is shown as dashed since it only serves to solve the energy match with the 32ethaneC sp  

shell and does not represent charge density.  Similarly, the vertical dashed line only designates the parameters of the intersection 
point.  The actual charge density is shown by the solid lines.  Legend: a : semimajor axis, b : semiminor axis, 'c : internuclear 
distance, 
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The Cartesian i -coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal 
parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -coordinate components at the point 

of intersection.  Thus, the matching elliptic parametric angle 
2,ethaneC H H MOt    satisfies the following relationship: 

 3 3 3
20 ,2 2 2

sin 0.87495 sin sin
ethaneethane ethane

C H H MOethane sp C H sp HO C H sp HO
r a b    

   (14.185) 

such that 
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   (14.186) 

with the use of Eq. (14.184).  Substitution of Eq. (14.181) into Eq. (14.186) gives: 

 
2, 42.68

ethaneC H H MO     (14.187) 

Then, the distance 
2,ethaneC H H MOd   along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of 

intersection of the orbitals is given by: 
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2 2, ,cos

ethane ethaneC H H MO C H H MOd a    (14.188) 

Substitution of Eqs. (14.177) and (14.187) into Eq. (14.188) gives: 

 
2

11
0, 1.20901 6.39780  10  

ethaneC H H MOd a X m
    (14.189) 

The distance 32ethaneC H sp HO
d


 along the internuclear axis from the origin of the C  atom to the point of intersection of the orbitals 

is given by 

 3
2,2

'
ethaneethane

C H H MOC H sp HO
d d c

   (14.190) 

Substitution of Eqs. (14.178) and (14.189) into Eq. (14.190) gives: 

 3
12

02
0.16189 8.56687  10  

ethaneC H sp HO
d a X m


   (14.191) 

 

BOND ANGLE OF THE 3CH  GROUPS 
Each 3CH  MO comprises a linear combination of three C H -bond MOs.  Each C H -bond MO comprises the superposition 

of a 2H -type ellipsoidal MO and the 32ethaneC sp  HO.  A bond is also possible between the two H atoms of the C H  bonds.  

Such H H  bonding would decrease the C H  bond strength since electron density would be shifted from the C H  bonds to 
the H H  bond.  Thus, the bond angle between the two C H  bonds is determined by the condition that the total energy of the 

2H -type ellipsoidal MO between the terminal H  atoms of the C H  bonds is zero.  From Eqs. (11.79) and (13.228), the 

distance from the origin to each focus of the H H  ellipsoidal MO is: 

 0 0
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'
2 2e

aa
c a

m e a


 


 (14.192) 

The internuclear distance from Eq. (13.229) is:  

 02 ' 2
2

aa
c   (14.193) 

The length of the semiminor axis of the prolate spheroidal H H  MO b c  is given by Eq. (14.62). 
The bond angle of the 3CH  groups of ethane is derived by using the orbital composition and an energy matching factor 

as in the case with the 3CH  radical.  Since the two 2H -type ellipsoidal MOs initially comprise 75% of the H  electron density of 

2H  and the energy of each 2H -type ellipsoidal MO is matched to that of the 32ethaneC sp  HO, the component energies and the 

total energy TE  of the H H  bond are given by Eqs. (13.67-13.73) except that eV , T , and mV  are corrected for the 

hybridization-energy-matching factor of 0.87495.  Hybridization with 25% electron donation to the C C -bond gives rise to the 
32ethaneC sp  HO-shell Coulombic energy  3, 2Coulomb ethaneE C sp  given by Eq. (14.149).  The corresponding normalization factor 

for determining the zero of the total H H  bond energy is given by the ratio of 15.55033 eV , the magnitude of 

 3, 2Coulomb ethaneE C sp  given by Eq. (14.149), and 13.605804 eV , the magnitude of the Coulombic energy between the electron 

and proton of H  given by Eq. (1.264).  The hybridization energy factor 32ethaneC sp HO
C  is: 

 3
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     (14.194) 

Substitution of Eq. (14.152) into Eq. (13.233) with the hybridization factor of 0.87495 gives: 
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 (14.195) 
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From the energy relationship given by Eq. (14.195) and the relationship between the axes given by Eqs. (14.192-14.193) and 
(14.62-14.63), the dimensions of the H H  MO can be solved. 

The most convenient way to solve Eq. (14.195) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is  

 10
05.7000 3.0163  10  a a X m   (14.196) 

Substitution of Eq. (14.196) into Eq. (14.192) gives: 

 11
01.6882 8.9335  10  c a X m    (14.197) 

The internuclear distance given by multiplying Eq. (14.197) by two is: 

 10
02 3.3764 1.7867  10  c a X m    (14.198) 

Substitution of Eqs. (14.196-14.197) into Eq. (14.62) gives: 

 10
05.4443 2.8810  10  b c a X m    (14.199) 

Substitution of Eqs. (14.196-14.197) into Eq. (13.63) gives: 

 0.2962e   (14.200) 

From, 2 'H Hc   (Eq. (14.198)), the distance between the two H  atoms when the total energy of the corresponding MO is 

zero (Eq. (14.195)), and 2 'C Hc   (Eq. (14.179)), the internuclear distance of each C H  bond, the corresponding bond angle can 

be determined from the law of cosines.  Using, Eq. (13.242), the bond angle   between the C H  bonds is 

 
   

 
 

2 2

1 1
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2 2.09424 3.3764
cos cos 0.29964 107.44

2 2.09424
  

 
     

 
 

 (14.201) 

The experimental angle between the C H  bonds is [8]: 

 107.4    (14.202) 

The 3CH  radical has a pyramidal structure with the carbon atom along the z-axis at the apex and the hydrogen atoms at 

the base in the xy-plane.  The distance origin Hd   from the origin to the nucleus of a hydrogen atom given by Eqs. (14.198) and 

(13.412) is: 

 01.94936origin Hd a   (14.203) 

The height along the z-axis of the pyramid from the origin to C  nucleus heightd  given by Eqs. (13.414), (14.179), and (14.203) is 

 00.76540heightd a  (14.204) 

The angle v  of each C H  bond from the z-axis given by Eqs. (13.416), (14.203), and (14.204) is: 

 68.563°v   (14.205) 

The C C  bond is along the z-axis.  Thus, the bond angle C C H    between the internuclear axis of the C C  bond and a H  

atom of the methyl groups is given by: 

 180C C H v      (14.206) 

Substitution of Eq. (14.205) into Eq. (14.206) gives: 

 111.44°C C H     (14.207) 

The experimental angle between the C C H   bonds is [3]: 

 111.17C C H      (14.208) 

The 3 3CH CH  MO shown in Figure 14.7 was rendered using these parameters.  A minimum energy is obtained with a staggered 

configuration consistent with observations [3]. 
 The charge-density in the C C -bond MO is increased by a factor of 0.25 with the formation of the 32ethaneC sp  HOs each 

having a smaller radius.  Using the orbital composition of the 3CH  groups (Eq. (14.173)) and the C C -bond MO (Eq. 

(14.139)), the radii of 01 0.17113C s a  (Eq. (10.51)) and 3
02 0.87495ethaneC sp a  (Eq. (14.148)) shells, and the parameters of the 

C C -bond (Eqs. (13.3-13.4), (14.158-14.160), and (14.162-14.172)), the parameters of the C H -bond MOs (Eqs. (13.3-
13.4), (14.177-14.179), and (14.181-14.191)), and the bond-angle parameters (Eqs. (14.195-14.208)), the charge-density of the 

3 3CH CH  MO comprising the linear combination of two sets of three C H -bond MOs and a C C -bond MO bridging the two 

methyl groups is shown in Figure 14.7.  Each C H -bond MO comprises a 2H -type ellipsoidal MO and a 32ethaneC sp  HO  
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having the dimensional diagram shown in Figure 14.6.  The C C -bond MO comprises a 2H -type ellipsoidal MO bridging two 
32ethaneC sp  HOs having the dimensional diagram shown in Figure 14.5. 

 
Figure 14.7.   3 3CH CH  MO comprising the linear combination of two sets of three C H -bond MOs and a C C -bond MO.  

(A) Color scale, translucent view of the charge-density of the C C -bond MO with the 32ethaneC sp  HOs shown transparently.  

The C C -bond MO comprises a 2H -type ellipsoidal MO bridging two 32ethaneC sp  HOs.  For each C H  and the C C  bond, 

the ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to the 32ethaneC sp  HO, the 32ethaneC sp  HO shell, inner most 

1C s  shell, and the nuclei (red, not to scale), are shown.  (B)-(C) End-on view, translucent view high-lighting the C C -bond 
MO, and opaque view of the charge-density of the 3 3CH CH  MO, respectively. 
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ENERGIES OF THE 3CH  GROUPS 
The energies of each 3CH  group of ethane are given by the substitution of the semiprincipal axes (Eqs. (14.177-14.178) and 

(14.181)) into the energy equations of the methyl radical (Eqs. (13.556-13.560)), with the exception that  3, 2ethaneE C sp  

replaces  3, 2E C sp  in Eq. (13.560): 
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where  3ethaneTE CH  is given by Eq. (14.174) which is reiteratively matched to Eq. (13.542) within five-significant-figure round 

off error. 
 

VIBRATION OF THE 12
3CH  GROUPS 

The vibrational energy levels of 3CH  in ethane may be solved as three equivalent coupled harmonic oscillators by developing 

the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] wherein the spring constants are derived 
from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type 
Molecules section. 
 

THE DOPPLER ENERGY TERMS OF THE 12
3CH  GROUPS 

The equations of the radiation reaction force of the methyl groups in ethane are the same as those of the methyl radical with the 
substitution of the methyl-group parameters.  Using Eq. (13.561), the angular frequency of the reentrant oscillation in the 
transition state is 
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where b  is given by Eq. (14.181).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)): 

 162.50664  10  / 16.49915 KE X rad s eV     (14.215) 

In Eq. (11.181), substitution of  2TE H  (Eqs. (11.212) and (13.75)), the maximum total energy of each 2H -type MO, for hE  , 

the mass of the electron, em , for M , and the kinetic energy given by Eq. (14.215) for KE  gives the Doppler energy of the 

electrons of each of the three bonds for the reentrant orbit: 
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In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of 3CH  due to the reentrant orbit of each bond in the transition state corresponding to 

simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by 

Eq. (14.216) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of each C H  bond.  

Using e  given by Eq. (13.458) for KvibE  of the transition state having three independent bonds,  12
 3'ethane oscE CH  per bond is: 
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      (14.217) 

    12
 3

1
' 0.25422 0.35532 0.07656 

2ethane oscE CH eV eV eV      (14.218) 
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Given that the vibration and reentrant oscillation is for three C H  bonds,  12
3ethane oscE CH , is: 

    12
 3

1 1
3 3 0.25422 0.35532 0.22967 

2 2ethane osc D

k
E CH E eV eV eV


                

  (14.219) 

 
TOTAL AND DIFFERENCE ENERGIES OF THE 12

3CH  GROUPS 
 12

3ethaneT oscE CH , the total energy of each 12
3CH  group including the Doppler term, is given by the sum of  3ethaneTE CH  (Eq. 

(14.213)) and  12
 3ethane oscE CH  given by Eq. (14.219). 
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From Eqs. (14.217-14.221), the total energy of each 12
3CH  is: 
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 (14.222) 

where e  given by Eq. (13.458) was used for the 
k


  term.   

 The total energy for each methyl radical given by Eq. (13.569) is: 
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The difference in energy between the methyl groups and the methyl radical  12
3T oscE CH  is given by two times the difference 

between Eqs. (14.222) and (14.223): 

 
      

  

12 12 12
3 3 32

                        2 67.92417 67.93160 0.01487 

T osc ethaneT osc radicalT oscE CH E CH E CH

eV eV eV

    

    
 (14.224) 

 

SUM OF THE ENERGIES OF THE C C    MO AND THE HOS OF ETHANE 
The energy components of eV , pV , T , mV , and TE  of the C C -bond MO are the same as those of the CH  MO as well as each 

C H -bond MO of the methyl groups except that energy of the 32ethaneC sp  HO is used.  The energies of each C C -bond MO 

are given by the substitution of the semiprincipal axes (Eqs. (14.158-14.159) and (14.162)) into the energy equations of the CH  

MO (Eqs. (13.449-13.453)), with the exception that  3, 2ethaneE C sp  replaces  3, 2E C sp  in Eq. (13.453). 
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where  ,TE C C   is the total energy of the C C    MO given by Eq. (14.155) which is reiteratively matched to Eq. (13.75) 

within five-significant-figure round off error. 
The total energy of the C C -bond MO,  TE C C , is given by the sum of two times  3, 2TE C C sp , the energy 

change of each 32C sp  shell due to the decrease in radius with the formation of the C C -bond MO (Eq. (14.151)), and 

 ,TE C C  , the   MO contribution given by Eq. (14.156). 

 

     
 

 

   

3

2
00

0 0 0

2 , 2 ,

2 0.72457 

                 1
 0.91771 2 ln 1 15.35946 

28

                 2 0.72457 31.63537 33.08452 

T T TE C C E C C sp E C C

eV

a aaae
eV

aaa a aa

eV eV eV





    

  
 
                   

     

 (14.230) 

 

VIBRATION OF ETHANE 
The vibrational energy levels of 3 3CH CH  may be solved as two sets of three equivalent coupled harmonic oscillators with a 

bridging harmonic oscillator by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] 
wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions 
section and the Vibration of Hydrogen-Type Molecules section. 
 

THE DOPPLER ENERGY TERMS OF THE C C -BOND MO OF ETHANE 
The equations of the radiation reaction force of the symmetrical C C -bond MO are given by Eqs. (11.231-11.233), except the 
force-constant factor is 0.5  based on the force constant 'k  of Eq. (14.152), and the C C -bond MO parameters are used.  The 
angular frequency of the reentrant oscillation in the transition state is 

 

2

3
150

0.5
4

9.55643  10  /
e

e
a

X rad s
m

    (14.231) 

where a  is given by Eq. (14.158).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)). 

 159.55643  10  / 6.29021 KE X rad s eV     (14.232) 

In Eq. (11.181), substitution of  TE C C  (Eq. (14.230)) for hE  , the mass of the electron, em , for M , and the kinetic energy 

given by Eq. (14.232) for KE  gives the Doppler energy of the electrons of each of the three bonds for the reentrant orbit: 
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In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of the C C -bond MO due to the reentrant orbit of the bond in the transition state 
corresponding to simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding 

energies, DE  given by Eq. (14.233) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of 

the C C  bond.  Using the experimental C C   3vibE   of  1993  0.12312 cm eV  [10] for KvibE  of the transition state, 

 ,oscE C C   is:  

   1
,

2osc D Kvib D

k
E C C E E E


       (14.234) 
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2oscE C C eV eV eV       (14.235) 
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TOTAL ENERGIES OF THE C C -BOND MO OF ETHANE 
 T oscE C C  , the total energy of the C C -bond MO including the Doppler term, is given by the sum of  TE C C  (Eq. 

(14.230)) and  ,oscE C C   given by Eq. (14.235). 

 
       

         

3 3

3

, 2 2 , 2 ,

                     , 2 , 2 , ,

T osc e m p ethane T osc

T T osc T osc

E C C V T V V E C sp E C C sp E C C

E C C E C C sp E C C E C C E C C



  

          

         
 (14.236) 

 

 

   
2

30

0

2

3
0

2

1 '
 0.91771 2 ln 1 15.35946 2 ,2

8 ' 2 '

1
12 4

2
2

1

1
                    33.08452 0.16416 

2

T

T osc

e

e

ae a c
eV E C C sp

c a a c

eE C C
ka

m

m c

k
eV eV










                 
       
     
      

   





 (14.237) 

From Eqs. (14.234-14.237), the total energy of the C C -bond MO is: 
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where the experimental vibE  was used for the 
k


  term. 

 

BOND ENERGY OF THE C C  BOND OF ETHANE 
The dissociation energy of the C C  bond of 3 3CH CH ,  3 3DE H C CH , is given by two times  3, 2E C sp  (Eq. (14.146)), the 

initial energy of the 32C sp  HO of each 3CH  radical that bond with a single C C  bond, minus the sum of  12
3T oscE CH  (Eq. 

(14.224)), the energy change going from the methyl radicals to the methyl groups of ethane, and  T oscE C C   (Eq. (14.238)).  

Thus, the dissociation energy of the C C  bond of 3 3CH CH , is: 
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 (14.239) 

The experimental dissociation energy of the C C  bond of 3 3CH CH  is [6]: 

  3 3 3.89690 DE H C CH eV   (14.240) 

The results of the determination of bond parameters of 3 3CH CH  are given in Table 14.1.  The calculated results are 

based on first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement 
between the experimental and calculated results is excellent. 
 

ETHYLENE MOLECULE ( 2 2CH CH ) 
The ethylene molecule 2 2CH CH  is formed by the reaction of two dihydrogen carbide radicals: 

 2 2 2 2CH CH CH CH   (14.241) 

2 2CH CH  can be solved using the same principles as those used to solve the methane series 1,2,3,4nCH  , wherein the 2s  and 2 p  

shells of each C  hybridize to form a single 32sp  shell as an energy minimum, and the sharing of electrons between two 32C sp  
hybridized orbitals (HOs) to form a molecular orbital (MO) permits each participating hybridized orbital to decrease in radius 
and energy.  First, two sets of two H  atomic orbitals (AOs) combine with two sets of two carbon 32sp  HOs to form two 

dihydrogen carbide groups comprising a linear combination of four diatomic 2H -type MOs developed in the Nature of the 

Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section.  Then, the two 2CH  groups bond by forming a 2H -

type MO between the remaining two 32C sp  HOs on each carbon atom. 
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FORCE BALANCE OF THE C C -BOND MO OF ETHYLENE 
2 2CH CH  comprises a chemical bond between two 2CH  radicals wherein each radical comprises two chemical bonds between 

carbon and hydrogen atoms.  The solution of the parameters of 2CH  is given in the Dihydrogen Carbide ( 2CH ) section.  Each 

C H  bond of 2CH  having two spin-paired electrons, one from an initially unpaired electron of the carbon atom and the other 

from the hydrogen atom, comprises the linear combination of 75% 2H -type ellipsoidal MO and 25% 32C sp  HO.  The proton of 

the H  atom and the nucleus of the C  atom are along each internuclear axis and serve as the foci.  As in the case of 2H , each of 

the two C H -bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into 32C sp  HO 

for distances shorter than the radius of the 32C sp  shell since it is energetically unfavorable.  Thus, each MO surface comprises a 

prolate spheroid at the H  proton that is continuous with the 32C sp  shell at the C  atom whose nucleus serves as the other focus.  

The electron configuration and the energy,  3, 2E C sp , of the 32C sp  shell is given by Eqs. (13.422) and (13.428), respectively.  

The central paramagnetic force due to spin of each C H  bond is provided by the spin-pairing force of the 2CH  MO that has 

the symmetry of an s  orbital that superimposes with the 32C sp  orbitals such that the corresponding angular momenta are 
unchanged. 

Two 2CH  radicals bond to form 2 2CH CH  by forming a MO between the two pairs of remaining 32C sp -HO electrons of 

the two carbon atoms.  However, in this case, the sharing of electrons between four 32C sp  HOs to form a molecular orbital 

(MO) comprising four spin-paired electrons permits each 32C sp  HO to decrease in radius and energy. 
As in the case of the C H  bonds, the C C -bond MO is a prolate-spheroidal-MO surface that cannot extend into 

32C sp  HO for distances shorter than the radius of the 32C sp  shell of each atom.  Thus, the MO surface comprises a partial 

prolate spheroid in between the carbon nuclei and is continuous with the 32C sp  shell at each C  atom.  The energy of the 2H -

type ellipsoidal MO is matched to that of the 32C sp  shell.  As in the case of previous examples of energy-matched MOs such as 

those of OH , NH , CH , the C O -bond MO of 2CO , and the C C -bond MO of 3 3CH CH , the C C -bond MO of ethylene 

must comprise 75% of a 2H -type ellipsoidal MO in order to match potential, kinetic, and orbital energy relationships.  Thus, the 

C C -bond MO must comprise a linear combination of two MOs wherein each comprises two 32C sp HOs and 75% of a 2H -

type ellipsoidal MO divided between the 32C sp  HOs: 

  3
22 2 2 0.75   C sp H MO C C bond MO     (14.242)  

The linear combination of each 2H -type ellipsoidal MO with each 32C sp  HO further comprises an excess 25% charge-density 

contribution from each 32C sp  HO to the C C -bond MO to achieve an energy minimum.  The force balance of the C C -
bond MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.242) 
and the energy matching condition between the 32C sp -HO components of the MO. 

Similarly, the energies of each 2CH  MO involve each 32C sp  and each 1H s  electron with the formation of each C H  

bond.  The sum of the energies of the 2H -type ellipsoidal MOs is matched to that of the 32C sp  shell.  This energy is determined 

by the considering the effect of the donation of 25% electron density from the two pairs of 32C sp  HOs to the C C -bond MO 

with the formation of the 32ethyleneC sp  HOs each having a smaller radius.  The 32sp  hybridized orbital arrangement is given by 

Eq. (14.140).  The sum  3, 2TE C sp of calculated energies of C , C , 2C  , and 3C   is given by Eq. (14.141).  The radius 32sp
r  of 

the 32C sp  shell is given by Eq. (14.142).  The Coulombic energy  3, 2CoulombE C sp  and the energy  3, 2E C sp  of the outer 

electron of the 32C sp  shell are given by Eqs. (14.143) and (14.146), respectively. 

Next, consider the formation of the C C -bond MO of ethylene from two 2CH  radicals, each having a 32C sp electron 

with an energy given by Eq. (14.146).  The total energy of the state is given by the sum over the four electrons.  The sum 

 3, 2T ethyleneE C sp of calculated energies of 32C sp , C , 2C  , and 3C   from Eqs. (10.123), (10.113-10.114), (10.68), and (10.48), 

respectively, is: 
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 (14.243) 

where  3, 2E C sp  (Eq. (14.146)) is the sum of the energy of C , 11.27671 eV , and the hybridization energy.  The orbital-

angular-momentum interactions also cancel such that the energy of the  3, 2T ethyleneE C sp  is purely Coulombic. 
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The sharing of electrons between two pairs of 32C sp  HOs to form a C C -bond MO permits each participating 
hybridized orbital to decrease in radius and energy.  In order to further satisfy the potential, kinetic, and orbital energy 
relationships, each participating 32C sp  HO donates an excess of 25% per bond of its electron density to the C C -bond MO to 
form an energy minimum.  By considering this electron redistribution in the ethylene molecule as well as the fact that the central 
field decreases by an integer for each successive electron of the shell, the radius 32ethylene sp

r  of the 32C sp  shell of ethylene may be 

calculated from the Coulombic energy using Eq. (10.102). 
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where 6Z   for carbon.  Using Eqs. (10.102) and (14.244), the Coulombic energy  3, 2Coulomb ethyleneE C sp  of the outer electron of 

the 32C sp  shell is: 
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     (14.245) 

During hybridization, the spin-paired 2s  electrons are promoted to the 32C sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (13.152).  Using Eqs. (14.145) and (14.245), the energy  3, 2ethyleneE C sp  of the 

outer electron of the 32C sp  shell is 
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Thus,  3, 2TE C C sp , the energy change of each 32C sp  shell with the formation of the C C -bond MO is given by the 

difference between Eq. (14.146) and Eq. (14.246): 
        3 3 3, 2 , 2 ,2 15.76868 14.63489 1.13380 T ethyleneE C C sp E C sp E C sp eV eV eV          (14.247) 

As in the case of 2Cl , each 2H -type ellipsoidal MO comprises 75% of the C C -bond MO shared between two 32C sp  HOs 

corresponding to the electron charge density in Eq. (11.65) of 
0.75

2

e
.  But, the additional 25% charge-density contribution to 

each bond of the C C -bond MO causes the electron charge density in Eq. (11.65) to be 0.5
2

e
e


  .  The corresponding force 

constant 'k  is given by Eq. (14.152).  In addition, the energy matching at both 32C sp  HOs further requires that 'k  be corrected 
by the hybridization factor given by Eq. (13.430).  Thus, the force constant 'k  to determine the ellipsoidal parameter 'c  in terms 
of the central force of the foci (Eq. (11.65)) is given by: 
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The distance from the origin to each focus 'c  is given by substitution of Eq. (14.248) into Eq. (13.60).  Thus, the distance from 
the origin of the component of the double C C -bond MO to each focus 'c  is given by: 
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The internuclear distance from Eq. (14.249) is:  

 02 ' 2
0.91771

aa
c   (14.250) 

The length of the semiminor axis of the prolate spheroidal C C -bond MO b c  is given by Eq. (13.62).  The eccentricity, e , 
is given by Eq. (13.63).  The solution of the semimajor axis a  then allows for the solution of the other axes of each prolate 
spheroid and eccentricity of the C C -bond MO.  From the energy equation and the relationship between the axes, the 
dimensions of the C C -bond MO are solved. 

The general equations for the energy components of eV , pV , T , mV , and TE  of the C C -bond MO are the same as 

those of the CH  MO except that energy of the 32ethyleneC sp  HO is used and the double-bond nature is considered.  In the case of 

a single bond, the prolate spheroidal 2H -type MO transitions to the 32ethyleneC sp  HO of each carbon, and the energy of the 
32ethyleneC sp  shell must remain constant and equal to the  3, 2ethyleneE C sp  given by Eq. (14.246).  Thus, the energy 

 3, 2ethyleneE C sp  in Eq. (14.246) adds to that of the energies of the corresponding 2H -type ellipsoidal MO.  The second bond of 

the double C C -bond MO also transitions to the 32ethyleneC sp  HO of each C .  The energy of a second 2H -type ellipsoidal MO 



More Polyatomic Molecules and Hydrocarbons 629

adds to the first energy component, and the two bonds achieve an energy minimum as a linear combination of the two 2H -type 

ellipsoidal MOs each having the carbon nuclei as the foci.  Each C C -bond MO comprises the same 32ethyleneC sp  HO shells of 

constant energy given by Eq. (14.246).  As in the case of the water, 2NH , and ammonia molecules given by Eqs. (13.180), 

(13.320), and (13.372), respectively, the energy of the redundant shell is subtracted from the total energy of the linear 
combination of the   MO.  Thus, the total energy  ,TE C C   of the   component of the C C -bond MO is given by the 

sum of the energies of the two bonds each comprising the linear combination of the 32ethyleneC sp  HO and the 2H -type ellipsoidal 

MO as given by Eq. (14.242) wherein the TE  terms add positively, the  3, 2ethyleneE C sp  terms cancel, and the energy matching 

condition between the components is provided by Eq. (14.248).  Using Eqs. (13.431) and (14.246),  ,TE C C   is given by: 
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The total energy term of the double C C -bond MO is given by the sum of the two 2H -type ellipsoidal MOs given by Eq. 

(11.212).  To match this boundary condition,  ,TE C C   given by Eq. (14.251) is set equal to two times Eq. (13.75). 
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From the energy relationship given by Eq. (14.252) and the relationship between the axes given by Eqs. (14.249-14.250) and 
(13.62-13.63), the dimensions of the C C -bond MO can be solved. 

Substitution of Eq. (14.249) into Eq. (14.252) gives: 
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 (14.253) 

The most convenient way to solve Eq. (14.253) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is:  

 11
01.47228 7.79098  10  a a X m   (14.254) 

Substitution of Eq. (14.254) into Eq. (14.249) gives 

 11
01.26661 6.70259  10  c a X m    (14.255) 

The internuclear distance given by multiplying Eq. (14.255) by two is:  

 10
02 2.53321 1.34052  10  c a X m    (14.256) 

The experimental bond distance is [3]: 

 102 1.339  10  c X m   (14.257) 

Substitution of Eqs. (14.254-14.255) into Eq. (13.62) gives: 

 11
00.75055 3.97173  10  b c a X m    (14.258) 

Substitution of Eqs. (14.252-14.255) into Eq. (13.63) gives: 

 0.86030e   (14.259) 

The nucleus of the C  atoms comprise the foci of the 2H -type ellipsoidal MO.  The parameters of the point of intersection of the 

2H -type ellipsoidal MO and the 32ethyleneC sp  HO are given by Eqs. (13.84-13.95) and (13.261-13.270).  The polar intersection 

angle '  is given by Eq. (13.261) where 3 02
0.85252n ethylene sp

r r a   is the radius of the 32ethyleneC sp  shell.  Substitution of Eqs. 

(14.254-14.255) into Eq. (13.261) gives: 

 ' 129.84    (14.260) 

Then, the angle 32ethyleneC C sp HO



 the radial vector of the 32C sp  HO makes with the internuclear axis is: 

 32
180 129.84 50.16

ethyleneC C sp HO



       (14.261) 

as shown in Figure 14.8. 
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Figure 14.8.   The cross section of the C C -bond MO (  MO) and one C H -bond MO of ethylene showing the axes, 
angles, and point of intersection of each 2H -type ellipsoidal MO with the corresponding 32ethyleneC sp  HO.  The continuation of 

each 2H -type-ellipsoidal-MO basis element of the C C  bond and the C H -bond beyond the intersection point with each 
32ethyleneC sp  shell and   MO is shown as dashed since each only serves to solve the energy match with the 32ethyleneC sp  shell and 

does not represent charge density.  Similarly, the vertical dashed line only designates the parameters of each intersection point.  
The actual charge density is shown by the solid lines.  Legend: a : semimajor axis, b : semiminor axis, 'c : internuclear distance, 
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Consider the right-hand intersection point.  The Cartesian i -coordinate of the interception point of the MO and the AO can be 
calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -

coordinate components at the point of intersection.  Thus, the matching elliptic parametric angle 
2,ethyleneC C H MOt    satisfies 

the following relationship: 
 3 3 3

20 ,2 2 2
sin 0.85252 sin sin

ethyleneethylene ethylene
C C H MOethylene sp C C sp HO C C sp HO

r a b    
   (14.262) 

such that 
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   (14.263) 

with the use of Eq. (14.261).  Substitution of Eq. (14.258) into Eq. (14.263) gives: 
 

2, 60.70
ethyleneC C H MO     (14.264) 

Then, the distance 
2,ethyleneC C H MOd   along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of 

intersection of the orbitals is given by: 
 

2 2, ,cos
ethylene ethyleneC C H MO C C H MOd a    (14.265) 

Substitution of Eqs. (14.254) and (14.264) into Eq. (14.265) gives: 

 
2

11
0, 0.72040 3.81221  10  

ethyleneC C H MOd a X m
    (14.266) 

The distance 32ethyleneC C sp HO
d


 along the internuclear axis from the origin of the C  atom to the point of intersection of the orbitals 

is given by: 

 3
2,2

'
ethyleneethylene

C C H MOC C sp HO
d c d 

   (14.267) 

Substitution of Eqs. (14.255) and (14.266) into Eq. (14.267) gives: 

 3
11

02
0.54620 2.89038  10  

ethyleneC C sp HO
d a X m


   (14.268) 
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FORCE BALANCE OF THE 2CH  MOS OF ETHYLENE 
Each of the two equivalent 2CH  MOs must comprise two C H  bonds with each comprising 75% of a 2H -type ellipsoidal MO 

and a 32C sp  HO as given by Eq. (13.494): 

 3
2 22 1 2 0.75   C sp H MO CH MO     (14.269) 

The force balance of the 2CH  MO is determined by the boundary conditions that arise from the linear combination of orbitals 

according to Eq. (13.494) and the energy matching condition between the hydrogen and 32C sp  HO components of the MO. 

The force constant 'k  to determine the ellipsoidal parameter 'c  of each 2H -type-ellipsoidal-MO component of the 2CH  

MO in terms of the central force of the foci is given by Eq. (13.59).  The distance from the origin of each C H -bond MO to 
each focus 'c  is given by Eq. (13.60).  The internuclear distance is given by Eq. (13.61).  The length of the semiminor axis of the 
prolate spheroidal C H -bond MO b c  is given by Eq. (13.62).  The eccentricity, e , is given by Eq. (13.63).  The solution of 
the semimajor axis a  then allows for the solution of the other axes of each prolate spheroid and eccentricity of each C H -bond 
MO.  From the energy equation and the relationship between the axes, the dimensions of the 2CH  MO are solved. 

Consider the formation of the double C C -bond MO of ethylene from two 2CH  radicals, each having a 32C sp shell 

with an energy given by Eq. (14.146).  The energy components of eV , pV , T , mV , and TE  are the same as those of the 

dihydrogen carbide radical, two times those of CH  corresponding to the two C H  bonds, except that two times 

 3, 2TE C C sp  is subtracted from  2TE CH  of Eq. (13.495).  The subtraction of the energy change of the 32C sp  shells with 

the formation of the C C -bond MO matches the energy of the C H -bond MOs to the decrease in the energy of the 32C sp  

HOs.  Using Eqs. (13.495) and (14.247),  2ethyleneTE CH  is given by: 
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 (14.270) 

 2ethyleneTE CH  given by Eq. (14.270) is set equal to two times the energy of the 2H -type ellipsoidal MO minus the Coulombic 

energy of H  given by Eq. (13.496): 
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 (14.271)  

From the energy relationship given by Eq. (14.271) and the relationship between the axes given by Eqs. (13.60-13.63), the 
dimensions of the 2CH  MO can be solved. 

Substitution of Eq. (13.60) into Eq. (14.271) gives: 
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0

0 0
0

2
2 1 3 0.91771 2 ln 1 37.29762
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8

3 3
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aaa aa
a

 
           

 (14.272) 

The most convenient way to solve Eq. (14.272) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is:  
 11

01.56946 8.30521  10  a a X m   (14.273) 

Substitution of Eq. (14.273) into Eq. (13.60) gives: 
 11

01.02289 5.41290  10  c a X m    (14.274) 

The internuclear distance given by multiplying Eq. (14.274) by two is:  
 10

02 2.04578 1.08258  10  c a X m    (14.275) 

The experimental bond distance is [3]: 
 102 1.087  10  c X m   (14.276) 
Substitution of Eqs. (14.273-14.274) into Eq. (14.62) gives: 
 11

01.19033 6.29897  10  b c a X m    (14.277) 

Substitution of Eqs. (14.273-14.274) into Eq. (14.63) gives: 
 0.65175e   (14.278) 

The nucleus of the H  atom and the nucleus of the C  atom comprise the foci of each 2H -type ellipsoidal MO.  The 

parameters of the point of intersection of the 2H -type ellipsoidal MO and the 32ethyleneC sp  HO are given by Eqs. (13.84-13.95) 
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and (13.261-13.270).  The polar intersection angle '  is given by Eq. (13.261) where 3 02
0.85252n ethylene sp

r r a   is the radius of 

the 32etthyleneC sp  shell.  Substitution of Eqs. (14.273-14.274) into Eq. (13.261) gives: 

 ' 84.81    (14.279) 
Then, the angle 32ethyleneC H sp HO




 the radial vector of the 32C sp  HO makes with the internuclear axis is: 

 32
180 84.81 95.19

ethyleneC H sp HO



      (14.280) 

as shown in Figure 14.9.   
 

 

Figure 14.9.   The cross section of one C H -bond MO of ethylene showing the axes, angles, and point of intersection of the 

2H -type ellipsoidal MO with the 32ethyleneC sp  HO.  The continuation of the 2H -type-ellipsoidal-MO basis element beyond the 

intersection point with the 32ethyleneC sp  shell is shown as dashed since it only serves to solve the energy match with the 
32ethyleneC sp  shell and does not represent charge density.  Similarly, the vertical dashed line only designates the parameters of the 

intersection point.  The actual charge density is shown by the solid lines.  Legend: a : semimajor axis, b : semiminor axis, 'c : 
internuclear distance, 
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The Cartesian i -coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal 
parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -coordinate components at the point 

of intersection.  Thus, the matching elliptic parametric angle 
2,ethyleneC H H MOt    satisfies the following relationship: 

 3 3 3
20 ,2 2 2

sin 0.85252 sin sin
ethylene ethylene

C H H MOethylene sp C H sp HO C H sp HO
r a b    

   (14.281) 

such that 
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   (14.282) 

with the use of Eq. (14.280).  Substitution of Eq. (14.277) into Eq. (14.282) gives: 
 

2, 45.50
ethyleneC H H MO     (14.283) 

Then, the distance 
2,ethyleneC H H MOd   along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of 

intersection of the orbitals is given by: 
 

2 2, ,cos
ethylene ethyleneC H H MO C H H MOd a    (14.284) 

Substitution of Eqs. (14.273) and (14.283) into Eq. (14.284) gives: 
 

2

11
0, 1.10002 5.82107  10  

ethyleneC H H MOd a X m
    (14.285) 

The distance 32ethyleneC H sp HO
d


 along the internuclear axis from the origin of the C  atom to the point of intersection of the orbitals 

is given by: 
 3

2,2
'

ethyleneethylene
C H H MOC H sp HO

d d c
   (14.286) 

Substitution of Eqs. (14.274) and (14.285) into Eq. (14.286) gives: 
 3

12
02

0.07713 4.08171  10  
ethyleneC H sp HO

d a X m


   (14.287) 
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BOND ANGLE OF THE 2CH  GROUPS 
Each 2CH  MO comprises a linear combination of two C H -bond MOs.  Each C H -bond MO comprises the superposition 

of a 2H -type ellipsoidal MO and the 32ethyleneC sp  HO.  A bond is also possible between the two H atoms of the C H  bonds.  

Such H H  bonding would decrease the C H  bond strength since electron density would be shifted from the C H  bonds to 
the H H  bond.  Thus, the bond angle between the two C H  bonds is determined by the condition that the total energy of the 

2H -type ellipsoidal MO between the terminal H  atoms of the C H  bonds is zero.  From Eqs. (11.79) and (13.228), the 

distance from the origin to each focus of the H H  ellipsoidal MO is: 

 0 0
2

'
2 2e

aa
c a

m e a


 


 (14.288) 

The internuclear distance from Eq. (13.229) is:  

 02 ' 2
2

aa
c   (14.289) 

The length of the semiminor axis of the prolate spheroidal H H  MO b c  is given by Eq. (14.62). 
The bond angle of the 2CH  groups of ethane is derived by using the orbital composition and an energy matching factor 

as in the case with the dihydrogen carbide radical and the 3CH  groups of ethane.  Since the two 2H -type ellipsoidal MOs 

initially comprise 75% of the H  electron density of 2H  and the energy of each 2H -type ellipsoidal MO is matched to that of the 
32ethyleneC sp  HO, the component energies and the total energy TE  of the H H  bond are given by Eqs. (13.67-13.73) except 

that eV , T , and mV  are corrected for the hybridization-energy-matching factor of 0.85252 .  Hybridization with 25% electron 

donation to the C C -bond gives rise to the 32ethyleneC sp  HO-shell Coulombic energy  3, 2Coulomb ethyleneE C sp  given by Eq. 

(14.245).  The corresponding normalization factor for determining the zero of the total H H  bond energy is given by the ratio 
of 15.95955 eV , the magnitude of  3, 2Coulomb ethyleneE C sp  given by Eq. (14.245), and 13.605804 eV , the magnitude of the 

Coulombic energy between the electron and proton of H  given by Eq. (1.264).  The hybridization energy factor 32ethyleneC sp HO
C  is: 

 3

3

2 2

0 0 0 0
2 22

0 0 02

8 8 13.605804 
0.85252
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8 8 0.85252

ethyleneC sp HO

ethylene sp

e e
a a eV

C
e e eV

r a

 

 

     (14.290) 

Substitution of Eq. (14.290) into Eq. (13.233) or Eq. (14.195) with the hybridization factor of 0.85252  gives: 
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 (14.291) 

From the energy relationship given by Eq. (14.291) and the relationship between the axes given by Eqs. (14.192-14.193) and 
(14.62-14.63), the dimensions of the H H  MO can be solved. 

The most convenient way to solve Eq. (14.291) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is:  

 10
06.0400 3.1962  10  a a X m   (14.292) 

Substitution of Eq. (14.292) into Eq. (14.288) gives: 

 11
01.7378 9.1961  10  c a X m    (14.293) 

The internuclear distance given by multiplying Eq. (14.293) by two is:  

 10
02 3.4756 1.8392  10  c a X m    (14.294) 
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Substitution of Eqs. (14.292-14.293) into Eq. (14.62) gives: 
 10

05.7846 3.0611  10  b c a X m    (14.295) 

Substitution of Eqs. (14.292-14.293) into Eq. (14.63) gives: 

 0.2877e   (14.296) 

From, 2 'H Hc   (Eq. (14.294)), the distance between the two H  atoms when the total energy of the corresponding MO is 

zero (Eq. (14.291)), and 2 'C Hc   (Eq. (14.275)), the internuclear distance of each C H  bond, the corresponding bond angle can 

be determined from the law of cosines.  Using, Eq. (13.242), the bond angle HCH  between the C H  bonds is: 

 
   

 
 

2 2

1 1
2

2 2.04578 3.4756
cos cos 0.44318 116.31

2 2.04578
HCH  

 
     

 
 

 (14.297) 

The experimental angle between the C H  bonds is [11]: 

 116.6HCH    (14.298) 

The C C  bond is along the z-axis.  Thus, based on the symmetry of the equivalent bonds, the bond angle C C H    between the 

internuclear axis of the C C  bond and a H  atom of the 2CH  groups is given by: 

 
 360

2
HCH

C C H


  

 
  (14.299) 

Substitution of Eq. (14.298) into Eq. (14.299) gives: 

 121.85°C C H     (14.300) 

The experimental angle between the C C H   bonds is [11]: 

 121.7C C H      (14.301) 

and [3] 

 121.3C C H      (14.302) 

The C C  bond and H  atoms of ethylene line in a plane, and rotation about the C C  is not possible due to conservation of 
angular momentum in the two sets of spin-paired electrons of the double bond.  The 2 2CH CH  MO shown in Figure 14.10 was 

rendered using these parameters. 
The charge-density in the C C -bond MO is increased by a factor of 0.25 per bond with the formation of the 

32ethyleneC sp  HOs each having a smaller radius.  Using the orbital composition of the 2CH  groups (Eq. (14.269)) and the C C -

bond MO (Eq. (14.242)), the radii of 01 0.17113C s a  (Eq. (10.51)) and 3
02 0.85252ethyleneC sp a  (Eq. (14.244)) shells, and the 

parameters of the C C -bond (Eqs. (13.3-13.4), (14.254-14.256), and (14.258-14.268)), the parameters of the C H -bond 
MOs (Eqs. (13.3-13.4), (14.273-14.275), and (14.277-14.287)), and the bond-angle parameters (Eqs. (14.297-14.302)), the 
charge-density of the 2 2CH CH  MO comprising the linear combination of two sets of two C H -bond MOs and a C C -bond 

MO bridging the two 2CH  groups is shown in Figure 14.10.  Each C H -bond MO comprises a 2H -type ellipsoidal MO and a 
32ethyleneC sp  HO having the dimensional diagram shown in Figure 14.9.  The C C -bond MO comprises a 2H -type ellipsoidal 

MO bridging two 32ethyleneC sp  HOs having the dimensional diagram shown in Figure 14.8. 
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Figure 14.10.  2 2CH CH  MO comprising the linear combination of two sets of two C H -bond MOs and a C C -bond 

MO.  (A) Color scale, translucent view of the charge-density of the C C -bond MO with the 32ethyleneC sp  HOs shown 

transparently.  The C C -bond MO comprises a 2H -type ellipsoidal MO bridging two sets of two 32ethyleneC sp  HOs.  For each 

C H  and the C C  bond, the ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to the 32ethyleneC sp  HO, the 
32ethyleneC sp  HO shell, inner most 1C s  shell, and the nuclei (red, not to scale), are shown.  (B)-(D) End-on view, translucent view 

high-lighting the C C -bond MO, and opaque view of the charge-density of the 2 2CH CH  MO, respectively.  

 

 
 
 

 

ENERGIES OF THE 2CH  GROUPS 
The energies of each 2CH  group of ethylene are given by the substitution of the semiprincipal axes (Eqs. (14.273-14.274) and 

(14.277)) into the energy equations of dihydrogen carbide (Eqs. (13.510-13.514)), with the exception that two times 

 3, 2TE C C sp  (Eq. (14.247)) is subtracted from  2TE CH  in Eq. (13.514). 
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 (14.307)  

where  2ethyleneTE CH  is given by Eq. (14.270) which is reiteratively matched to Eq. (13.496) within five-significant-figure round 

off error. 
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VIBRATION OF THE 12
2CH  GROUPS 

The vibrational energy levels of 2CH  in ethylene may be solved as two equivalent coupled harmonic oscillators by developing 

the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] wherein the spring constants are derived 
from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type 
Molecules section. 
 

THE DOPPLER ENERGY TERMS OF THE 12
2CH  GROUPS 

The equations of the radiation reaction force of the 2CH  groups in ethylene are the same as those of the dihydrogen carbide 

radical with the substitution of the 2CH -group parameters.  Using Eq. (13.515), the angular frequency of the reentrant oscillation 

in the transition state is: 

 

2

3
160

0.75
4

2.75685  10  /
e

e
b

X rad s
m

    (14.308) 

where b  is given by Eq. (14.277).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)): 

 162.75685  10  / 18.14605 KE X rad s eV     (14.309) 

In Eq. (11.181), substitution of  2TE H  (Eqs. (11.212) and (13.75)), the maximum total energy of each 2H -type MO, for hE  , 

the mass of the electron, em , for M , and the kinetic energy given by Eq. (14.309) for KE  gives the Doppler energy of the 

electrons of each of the two bonds for the reentrant orbit: 

 
 

2 2

2 18.14605 2
31.63537 0.26660 K

D h
e

e eVE
E E eV eV

Mc m c      (14.310) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of 2CH  due to the reentrant orbit of each bond in the transition state corresponding to 

simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by 

Eq. (14.310) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of each C H  bond.  

Using e  given by Eq. (13.458) for KvibE  of the transition state having two independent bonds,  12
 2'ethylene oscE CH  per bond is: 

  12
 2

1
'

2ethylene osc D Kvib D

k
E CH E E E


      (14.311) 

    12
 2

1
' 0.26660 0.35532 0.08894 

2ethylene oscE CH eV eV eV      (14.312) 

Given that the vibration and reentrant oscillation is for two C H  bonds,  12
2ethylene oscE CH , is: 
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  (14.313) 

 

TOTAL AND DIFFERENCE ENERGIES OF THE 12
2CH  GROUPS 

 12
2ethyleneT oscE CH , the total energy of each 12

2CH  group including the Doppler term, is given by the sum of  2ethyleneTE CH  (Eq. 

(14.307)) and  12
 2ethylene oscE CH  given by Eq. (14.313): 
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 (14.315) 

From Eqs. (14.313-14.315), the total energy of each 12
2CH  is: 
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 (14.316) 

where e  given by Eq. (13.458) was used for the 
k


  term.   

 The total energy for each dihydrogen carbide radical given by Eq. (13.523) is: 
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The difference in energy between the 2CH groups and the dihydrogen carbide radical  12
2T oscE CH  is given by two times the 

difference between Eqs. (14.316) and (14.317): 
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SUM OF THE ENERGIES OF THE C C    MO AND THE HOS OF ETHYLENE 
The energy components of eV , pV , T , mV , and TE  of the C C -bond MO are the same as those of the CH  MO except that 

each term is multiplied by two corresponding to the double bond and the energy term corresponding to the 32ethyleneC sp  HOs in 

the equation for TE  is zero.  The energies of each C C -bond MO are given by the substitution of the semiprincipal axes (Eqs. 

(14.254-14.255) and (14.258)) into two times the energy equations of the CH  MO (Eqs. (13.449-13.453)), with the exception 

that zero replaces  3, 2E C sp  in Eq. (13.453). 
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where  ,TE C C   is the total energy of the C C    MO given by Eq. (14.251) which is reiteratively matched to two times 

Eq. (13.75) within five-significant-figure round off error. 

The total energy of the C C -bond MO,  TE C C , is given by the sum of two times  3, 2TE C C sp , the energy 

change of each 32C sp  shell due to the decrease in radius with the formation of the C C -bond MO (Eq. (14.247)), and 

 ,TE C C  , the   MO contribution given by Eq. (14.252). 
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 (14.324) 

 

VIBRATION OF ETHYLENE 
The vibrational energy levels of 2 2CH CH  may be solved as two sets of two equivalent coupled harmonic oscillators with a 

bridging harmonic oscillator by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] 
wherein the spring constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions 
section and the Vibration of Hydrogen-Type Molecules section. 
 

THE DOPPLER ENERGY TERMS OF THE C C -BOND MO OF ETHYLENE 
The equations of the radiation reaction force of the C C -bond MO are given by Eq. (13.142), except the force-constant factor 
is  0.93172 0.5  based on the force constant 'k  of Eq. (14.248), and the C C -bond MO parameters are used.  The angular 

frequency of the reentrant oscillation in the transition state is: 

 

  2

3
160

0.5
0.91771

4
4.30680  10  /

e

e

b
X rad s

m

    (14.325) 

where b  is given by Eq. (14.258).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)). 

 164.30680  10  / 28.34813 KE X rad s eV     (14.326) 

In Eq. (11.181), substitution of   / 2TE C C  (Eq. (14.324)) for hE  , the mass of the electron, em , for M , and the kinetic 

energy given by Eq. (14.326) for KE  gives the Doppler energy of the electrons of each of the two bonds for the reentrant orbit: 

 
 

2 2

2 28.34813 2
32.76916 0.34517 K

D h
e

e eVE
E E eV eV

Mc m c      (14.327) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of the C C -bond MO due to the reentrant orbit of the bond in the transition state 
corresponding to simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding 

energies, DE  given by Eq. (14.327) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of 

the C C  bond.  Using the experimental C C   3vibE   of  11443.5  0.17897 cm eV  [12] for KvibE  of the transition state 

having two bonds,  ' ,oscE C C   per bond is:  

   1
' ,

2osc D Kvib D

k
E C C E E E


       (14.328) 

    1
' , 0.34517 0.17897 0.25568 

2oscE C C eV eV eV       (14.329) 

Given that the vibration and reentrant oscillation is for two C C  bonds of the C C  double bond,   ,ethylene oscE C C  , is: 

     

1 1
, 2 2 0.34517 0.17897 0.51136 

2 2ethylene osc D

k
E C C E eV eV eV


                 

  (14.330) 
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TOTAL ENERGIES OF THE C C -BOND MO OF ETHYLENE 
 T oscE C C  , the total energy of the C C -bond MO including the Doppler term, is given by the sum of  TE C C  (Eq. 

(14.324)) and   ,ethylene oscE C C   given by Eq. (14.330). 
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From Eqs. (14.330-14.332), the total energy of the C C -bond MO is: 
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 (14.333) 

where the experimental vibE  was used for the 
k


  term. 

 

BOND ENERGY OF THE C C  BOND OF ETHYLENE 
The dissociation energy of the C C  bond of 2 2CH CH ,  2 2DE H C CH , is given by four times  3, 2E C sp  (Eq. (14.146)), 

the initial energy of each 32C sp  HO of each 2CH  radical that forms the double C C  bond, minus the sum of  12
2T oscE CH  

(Eq. (14.318)), the energy change going from the dihydrogen carbide radicals to the 2CH  groups of ethylene, and  T oscE C C   

(Eq. (14.333)).  Thus, the dissociation energy of the C C  bond of 2 2CH CH , is: 
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 (14.334) 

The experimental dissociation energy of the C C  bond of 2 2CH CH  is [7]: 

  2 2 7.5969 DE H C CH eV   (14.335) 

The results of the determination of bond parameters of 2 2CH CH  are given in Table 14.1.  The calculated results are 

based on first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement 
between the experimental and calculated results is excellent. 
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ACETYLENE MOLECULE (CHCH ) 
The acetylene molecule CHCH  is formed by the reaction of two hydrogen carbide radicals: 
 CH CH CHCH   (14.336) 

CHCH  can be solved using the same principles as those used to solve the methane series 1,2,3,4nCH   as well as ethane, wherein 

the 2s  and 2 p  shells of each C  hybridize to form a single 32sp  shell as an energy minimum, and the sharing of electrons 

between two 32C sp  hybridized orbitals (HOs) to form a molecular orbital (MO) permits each participating hybridized orbital to 

decrease in radius and energy.  First, two sets of one H  atomic orbital (AO) combine with two sets of one carbon 32sp  HO to 

form two hydrogen carbide groups comprising a linear combination of two diatomic 2H -type MOs developed in the Nature of 

the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section.  Then, the two CH  groups bond by forming a 

2H -type MO between the remaining three 32C sp  HOs on each carbon atom. 

 

FORCE BALANCE OF THE C C -BOND MO OF ACETYLENE 
CHCH  comprises a chemical bond between two CH  radicals wherein each radical comprises a chemical bond between a 
carbon and a hydrogen atom.  The solution of the parameters of CH  is given in the Hydrogen Carbide (CH ) section.  The 
C H  bond of CH  having two spin-paired electrons, one from an initially unpaired electron of the carbon atom and the other 
from the hydrogen atom, comprises the linear combination of 75% 2H -type ellipsoidal MO and 25% 32C sp  HO.  The proton of 

the H  atom and the nucleus of the C  atom are along each internuclear axis and serve as the foci.  As in the case of 2H , the 

C H -bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into 32C sp  HO for 

distances shorter than the radius of the 32C sp  shell since it is energetically unfavorable.  Thus, the MO surface comprises a 

prolate spheroid at the H  proton that is continuous with the 32C sp  shell at the C  atom whose nucleus serves as the other focus.  

The electron configuration and the energy,  3, 2E C sp , of the 32C sp  shell is given by Eqs. (13.422) and (13.428), respectively.  

The central paramagnetic force due to spin of the C H  bond is provided by the spin-pairing force of the CH  MO that has the 
symmetry of an s  orbital that superimposes with the 32C sp  orbitals such that the corresponding angular momenta are 
unchanged. 

Two CH  radicals bond to form CHCH  by forming a MO between the two pairs of three remaining 32C sp -HO electrons 

of the two carbon atoms.  However, in this case, the sharing of electrons between two 32C sp  HOs to form a MO comprising six 

spin-paired electrons permits each 32C sp  HO to decrease in radius and energy. 
As in the case of the C H  bonds, the C C -bond MO is a prolate-spheroidal-MO surface that cannot extend into 

32C sp  HO for distances shorter than the radius of the 32C sp  shell of each atom.  Thus, the MO surface comprises a partial 

prolate spheroid in between the carbon nuclei and is continuous with the 32C sp  shell at each C  atom.  The energy of the 2H -

type ellipsoidal MO is matched to that of the 32C sp  shell.  As in the case of previous examples of energy-matched MOs such as 

those of OH , NH , CH , the C O -bond MO of 2CO , the C C -bond MO of 3 3CH CH , and the C C -bond MO of 

2 2CH CH , the C C -bond MO of acetylene must comprise 75% of a 2H -type ellipsoidal MO in order to match potential, 

kinetic, and orbital energy relationships.  Thus, the C C -bond MO must comprise a linear combination of three MOs wherein 
each comprises two 32C sp HOs and 75% of a 2H -type ellipsoidal MO divided between the 32C sp  HOs: 

  3
23 2 2 0.75   C sp H MO C C bond MO     (14.337)  

The linear combination of each 2H -type ellipsoidal MO with each 32C sp  HO further comprises an excess 25% charge-density 

contribution from each 32C sp  HO to the C C -bond MO to achieve an energy minimum.  The force balance of the C C -
bond MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.337) 
and the energy matching condition between the 32C sp -HO components of the MO. 

Similarly, the energies of each CH  MO involve each 32C sp  and each 1H s  electron with the formation of each C H  

bond.  The sum of the energies of the 2H -type ellipsoidal MOs is matched to that of the 32C sp  shell.  This energy is determined 

by the considering the effect of the donation of 25% electron density from the three pairs of 32C sp  HOs to the C C -bond MO 

with the formation of the 32acetyleneC sp  HOs each having a smaller radius.  The 32sp  hybridized orbital arrangement is given by 

Eq. (14.140).  The sum  3, 2TE C sp of calculated energies of C , C , 2C  , and 3C   is given by Eq. (14.141).  The radius 32sp
r  of 

the 32C sp  shell is given by Eq. (14.142).  The Coulombic energy  3, 2CoulombE C sp  and the energy  3, 2E C sp  of the outer 

electron of the 32C sp  shell are given by Eqs. (14.143) and (14.146), respectively. 
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Next, consider the formation of the C C -bond MO of acetylene from two CH  radicals, each having a 32C sp electron 
with an energy given by Eq. (14.146).  The total energy of the state is given by the sum over the four electrons.  The sum 

 3, 2T acetyleneE C sp of calculated energies of 32C sp , C , 2C  , and 3C   from Eqs. (10.123), (10.113-10.114), (10.68), and 

(10.48), respectively, is 

 

    
 

3 3, 2 64.3921 48.3125 24.2762 , 2

                        64.3921 48.3125 24.2762 14.63489 

                        151.61569 

T acetyleneE C sp eV eV eV E C sp

eV eV eV eV

eV

    

    

 

 (14.338) 

where  3, 2E C sp  (Eq. (14.146)) is the sum of the energy of C , 11.27671 eV , and the hybridization energy.  The orbital-

angular-momentum interactions also cancel such that the energy of the  3, 2T acetyleneE C sp  is purely Coulombic. 

The sharing of electrons between three pairs of 32C sp  HOs to form a C C -bond MO permits each participating 
hybridized orbital to decrease in radius and energy.  In order to further satisfy the potential, kinetic, and orbital energy 
relationships, each participating 32C sp  HO donates an excess of 25% of its electron density to the C C -bond MO to form an 
energy minimum.  By considering this electron redistribution in the acetylene molecule as well as the fact that the central field 
decreases by an integer for each successive electron of the shell, the radius 32acetylene sp

r  of the 32C sp  shell of acetylene may be 

calculated from the Coulombic energy using Eq. (10.102). 
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  (14.339) 

where 6Z   for carbon.  Using Eqs. (10.102) and (14.339), the Coulombic energy  3, 2Coulomb acetyleneE C sp  of the outer electron 

of the 32C sp  shell is: 

  
3

2 2
3

0 0 02

, 2 16.39089 
8 8 0.83008Coulomb acetylene

acetylene sp

e e
E C sp eV

r a 
 

     (14.340) 

During hybridization, the spin-paired 2s  electrons are promoted to the 32C sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (13.152).  Using Eqs. (14.145) and (14.340), the energy  3, 2acetyleneE C sp  of the 

outer electron of the 32C sp  shell is 

  
 3

2 22
3 0

32
0 32
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ee
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 (14.341) 

Thus,  3, 2TE C C sp , the energy change of each 32C sp  shell with the formation of the C C -bond MO is given by the 

difference between Eq. (14.146) and Eq. (14.341): 

        3 3 3, 2 , 2 ,2 16.20002 14.63489 1.56513 T acetyleneE C C sp E C sp E C sp eV eV eV          (14.342) 

As in the case of 2Cl , each 2H -type ellipsoidal MO comprises 75% of the C C -bond MO shared between two 32C sp  HOs 

corresponding to the electron charge density in Eq. (11.65) of 
0.75

2

e
.  But, the additional 25% charge-density contribution to 

each bond of the C C -bond MO causes the electron charge density in Eq. (11.65) to be 0.5
2

e
e


  .  The corresponding force 

constant 'k  to determine the ellipsoidal parameter 'c  in terms of the central force of the foci (Eq. (11.65)) is given by Eq. 
(14.152).  The distance from the origin to each focus 'c  is given by Eq. (14.153).  The internuclear distance is given by Eq. 
(14.154).  The length of the semiminor axis of the prolate spheroidal C C -bond MO b c  is given by Eq. (13.62).  The 
eccentricity, e , is given by Eq. (13.63).  The solution of the semimajor axis a  then allows for the solution of the other axes of 
each prolate spheroid and eccentricity of the C C -bond MO.  From the energy equation and the relationship between the axes, 
the dimensions of the C C -bond MO are solved. 

The general equations for the energy components of eV , pV , T , mV , and TE  of the C C -bond MO are the same as 

those of the CH  MO except that energy of the 32acetyleneC sp  HO is used and the triple-bond nature is considered.  In the case of a 

single bond, the prolate spheroidal 2H -type MO transitions to the 32acetyleneC sp  HO of each carbon, and the energy of the 
32acetyleneC sp  shell must remain constant and equal to the  3, 2acetyleneE C sp  given by Eq. (14.391).  Thus, the energy 

 3, 2acetyleneE C sp  in Eq. (14.391) adds to that of the energies of the corresponding 2H -type ellipsoidal MO.  The second and 

third bonds of the triple C C -bond MO also transition to each 32acetyleneC sp  HO of each C .  The energy of a second and a third 
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2H -type ellipsoidal MO adds to the first energy component, and the three bonds achieve an energy minimum as a linear 

combination of the three 2H -type ellipsoidal MOs each having the carbon nuclei as the foci.  Each C C -bond MO comprises 

the same 32acetyleneC sp  HO shells of constant energy given by Eq. (14.391).  As in the case of the water, 2NH , ammonia, and 

ethylene molecules given by Eqs. (13.180), (13.320), (13.372), and (14.251), respectively, the energy of the redundant shell is 
subtracted from the total energy of the linear combination of the   MO.  Thus, the total energy  ,TE C C   of the   

component of the C C -bond MO is given by the sum of the energies of the three bonds each comprising the linear 
combination of the 32acetyleneC sp  HO and the 2H -type ellipsoidal MO as given by Eq. (14.337) wherein the TE  terms add 

positively and the  3, 2acetyleneE C sp  term is positive due to the sum over a negative and two positive terms.  Using Eqs. (13.431) 

and (14.341),  ,TE C C   is given by: 
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 (14.343) 

The total energy term of the triple C C -bond MO is given by the sum of the three 2H -type ellipsoidal MOs given by Eq. 

(11.212).  To match this boundary condition,  ,TE C C   given by Eq. (14.343) is set equal to three times Eq. (13.75): 
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 (14.344) 

From the energy relationship given by Eq. (14.344) and the relationship between the axes given by Eqs. (14.153-14.154) and 
(13.62-13.63), the dimensions of the C C -bond MO can be solved. 

Substitution of Eq. (14.153) into Eq. (14.344) gives: 
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 (14.345) 

The most convenient way to solve Eq. (14.345) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is  
 11

01.28714 6.81122  10  a a X m   (14.346) 

Substitution of Eq. (14.346) into Eq. (14.153) gives: 
 11

01.13452 6.00362  10  c a X m    (14.347) 

The internuclear distance given by multiplying Eq. (14.347) by two is: 
 10

02 2.26904 1.20072  10  c a X m    (14.348) 

The experimental bond distance is [3]: 
 102 1.203  10  c X m   (14.349) 
Substitution of Eqs. (14.346-14.347) into Eq. (13.62) gives: 
 11

00.60793 3.21704  10  b c a X m    (14.350) 

Substitution of Eqs. (14.346-14.347) into Eq. (13.63) gives: 
 0.88143e   (14.351) 
The nucleus of the C  atoms comprise the foci of the 2H -type ellipsoidal MO.  The parameters of the point of intersection of the 

2H -type ellipsoidal MO and the 32acetyleneC sp  HO are given by Eqs. (13.84-13.95) and (13.261-13.270).  The polar intersection 

angle '  is given by Eq. (13.261) where 3 02
0.83008n acetylene sp

r r a   is the radius of the 32acetyleneC sp  shell.  Substitution of 

Eqs. (14.346-14.347) into Eq. (13.261) gives: 
 ' 137.91    (14.352) 
Then, the angle 32acetyleneC C sp HO




 the radial vector of the 32C sp  HO makes with the internuclear axis is: 

 32
180 137.91 42.09

acetyleneC C sp HO



      (14.353) 

as shown in Figure 14.11. 
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Figure 14.11.   The cross section of the C C -bond MO (  MO) and one C H -bond MO of acetylene showing the axes, 
angles, and point of intersection of each 2H -type ellipsoidal MO with the corresponding 32acetyleneC sp  HO.  The continuation of 

each 2H -type-ellipsoidal-MO basis element of the C C  bond and the C H -bond beyond the intersection point with each 
32acetyleneC sp  shell and   MO is shown as dashed since each only serves to solve the energy match with the 32acetyleneC sp  shell 

and does not represent charge density.  Similarly, the vertical dashed line only designates the parameters of each intersection 
point.  The actual charge density is shown by the solid lines.  Legend: a : semimajor axis, b : semiminor axis, 'c : internuclear 
distance, 
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Consider the right-hand intersection point.  The Cartesian i -coordinate of the interception point of the MO and the AO can be 
calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -

coordinate components at the point of intersection.  Thus, the matching elliptic parametric angle 
2,acetyleneC C H MOt    satisfies 

the following relationship: 
 3 3 3

20 ,2 2 2
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   (14.354) 
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   (14.355) 

with the use of Eq. (14.353).  Substitution of Eq. (14.350) into Eq. (14.355) gives: 
 

2, 66.24
acetyleneC C H MO     (14.356) 

Then, the distance 
2,acetyleneC C H MOd   along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of 

intersection of the orbitals is given by: 
 

2 2, ,cos
acetylene acetyleneC C H MO C C H MOd a    (14.357) 

Substitution of Eqs. (14.346) and (14.356) into Eq. (14.357) gives: 
 

2

11
0, 0.51853 2.74396  10  

acetyleneC C H MOd a X m
    (14.358) 

The distance 32acetyleneC C sp HO
d


 along the internuclear axis from the origin of the C  atom to the point of intersection of the 

orbitals is given by: 
 3

2,2
'

acetyleneacetylene
C C H MOC C sp HO

d c d 
   (14.359) 

Substitution of Eqs. (14.347) and (14.358) into Eq. (14.359) gives: 
 3

11
02

0.61599 3.25966  10  
acetyleneC C sp HO

d a X m


   (14.360) 
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FORCE BALANCE OF THE CH  MOS OF ACETYLENE 
The C H  bond of each of the two equivalent CH  MOs must comprise 75% of a 2H -type ellipsoidal MO and a 32C sp  HO as 

given by Eq. (13.429): 
 3

21 2 0.75   C sp H MO CH MO   (14.361) 

The force balance of the CH  MO is determined by the boundary conditions that arise from the linear combination of orbitals 
according to Eq. (13.429) and the energy matching condition between the hydrogen and 32C sp  HO components of the MO. 

The force constant 'k  to determine the ellipsoidal parameter 'c  of the each 2H -type-ellipsoidal-MO component of the 

CH  MO in terms of the central force of the foci is given by Eq. (13.59).  The distance from the origin of each C H -bond MO 
to each focus 'c  is given by Eq. (13.60).  The internuclear distance is given by Eq. (13.61).  The length of the semiminor axis of 
the prolate spheroidal C H -bond MO b c  is given by Eq. (13.62).  The eccentricity, e , is given by Eq. (13.63).  The solution 
of the semimajor axis a  then allows for the solution of the other axes of each prolate spheroid and eccentricity of each C H -
bond MO.  From the energy equation and the relationship between the axes, the dimensions of the CH  MO are solved. 

Consider the formation of the triple C C -bond MO of acetylene from two CH  radicals, each having a 32C sp shell 

with an energy given by Eq. (14.146).  The energy components of eV , pV , T , mV , and TE  are the same as those of the hydrogen 

carbide radical, except that two times  3, 2TE C C sp  is subtracted from  TE CH  of Eq. (13.495).  The subtraction of the 

energy change of the 32C sp  shells with the formation of the C C -bond MO matches the energy of the C H -bond MOs to 

the decrease in the energy of the 32C sp  HOs.  Using Eqs. (13.495) and (14.342),  
acetyleneTE CH  is given by: 
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acetyleneTE CH  given by Eq. (14.362) is set equal to the energy of the 2H -type ellipsoidal MO given by Eq. (13.75). 
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 (14.363)  

From the energy relationship given by Eq. (14.363) and the relationship between the axes given by Eqs. (13.60-13.63), the 
dimensions of the CH  MO can be solved. 

Substitution of Eq. (13.60) into Eq. (14.363) gives: 
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The most convenient way to solve Eq. (14.364) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is  
 11

01.48719 7.86987  10  a a X m   (14.365) 

Substitution of Eq. (14.365) into Eq. (14.60) gives: 
 11

00.99572 5.26913  10  c a X m    (14.366) 

The internuclear distance given by multiplying Eq. (14.366) by two is: 
 10

02 1.99144 1.05383  10  c a X m    (14.367) 

The experimental bond distance is [3]: 
 102 1.060  10  c X m   (14.368) 
Substitution of Eqs. (14.365-14.366) into Eq. (14.62) gives: 
 11

01.10466 5.84561  10  b c a X m    (14.369) 

Substitution of Eqs. (14.365-14.366) into Eq. (14.63) gives: 
 0.66953e   (14.370) 

The nucleus of the H  atom and the nucleus of the C  atom comprise the foci of each 2H -type ellipsoidal MO.  The 

parameters of the point of intersection of the 2H -type ellipsoidal MO and the 32acetyleneC sp  HO are given by Eqs. (13.84-13.95) 

and (13.261-13.270).  The polar intersection angle '  is given by Eq. (13.261) where 3 02
0.83008n acetylene sp

r r a   is the radius of 

the 32acetyleneC sp  shell.  Substitution of Eqs. (14.365-14.366) into Eq. (13.261) gives: 

 ' 90.99    (14.371) 
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Then, the angle 32acetyleneC H sp HO



 the radial vector of the 32C sp  HO makes with the internuclear axis is 

 32
180 90.99 89.01

acetyleneC H sp HO



       (14.372) 

as shown in Figure 14.11.  The Cartesian i -coordinate of the interception point of the MO and the AO can be calculated using 
the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -coordinate 

components at the point of intersection.  Thus, the matching elliptic parametric angle 
2,acetyleneC H H MOt    satisfies the 

following relationship: 

 3 3 3
20 ,2 2 2

sin 0.83008 sin sin
acetyleneacetylene acetylene

C H H MOacetylene sp C H sp HO C H sp HO
r a b    

   (14.373) 

such that 
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2

0
1 1 0

2

,

0.83008 sin 0.83008 sin89.01
sin sinacetylene

acetylene

C H sp HO

C H H MO

a a

b b


  




   (14.374) 

with the use of Eq. (14.372).  Substitution of Eq. (14.369) into Eq. (14.374) gives: 

 
2, 48.71

acetyleneC H H MO     (14.375) 

Then, the distance 
2,acetyleneC H H MOd   along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of 

intersection of the orbitals is given by 

 
2 2, ,cos

acetylene acetyleneC H H MO C H H MOd a    (14.376) 

Substitution of Eqs. (14.365) and (14.375) into Eq. (14.376) gives: 

 
2

11
3 0,: 0.98145 5.19359  10  

acetyleneC H H MOd d a X m
    (14.377) 

The distance 32acetyleneC H sp HO
d


 along the internuclear axis from the origin of the C  atom to the point of intersection of the 

orbitals is given by 

 3
2,2

'
acetyleneacetylene

C H H MOC H sp HO
d c d 

   (14.378) 

Substitution of Eqs. (14.366) and (14.377) into Eq. (14.378) gives: 

 3
13

4 02
: 0.01427 7.55329  10  

acetyleneC H sp HO
d d a X m


   (14.379) 

with the C C  triple bond along one axis, the minimum energy is obtained with the C H -bond MO at a maximum separation.  
Thus, the bond angle C C H    between the internuclear axis of the C C  bond and the H  atom of the CH  groups is 

 180C C H      (14.380) 

The experimental angle between the C C H   bonds is [6]: 

 180C C H      (14.381) 

The CHCH  MO shown in Figure 14.12 was rendered using these parameters. 
The charge-density in the C C -bond MO is increased by a factor of 0.25 per bond with the formation of the 

32acetyleneC sp  HOs each having a smaller radius.  Using the orbital composition of the CH  groups (Eq. (14.361)) and the C C -

bond MO (Eq. (14.337)), the radii of 01 0.17113C s a  (Eq. (10.51)) and 3
02 0.83008acetyleneC sp a  (Eq. (14.339)) shells, and the 

parameters of the C C -bond (Eqs. (13.3-13.4), (14.346-14.348), and (14.350-14.360)), the parameters of the C H -bond 
MOs (Eqs. (13.3-13.4), (14.365-14.367), and (14.369-14.379)), and the bond-angle parameter (Eqs. (14.380-14.381)), the 
charge-density of the CHCH  MO comprising the linear combination of two C H -bond MOs and a C C -bond MO bridging 
the two CH  groups is shown in Figure 14.12.  Each C H -bond MO comprises a 2H -type ellipsoidal MO and a 32acetyleneC sp  

HO having the dimensional diagram shown in Figure 14.11.  The C C -bond MO comprises a 2H -type ellipsoidal MO 

bridging two 32acetyleneC sp  HOs having the dimensional diagram also shown in Figure 14.11. 
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Figure 14.12.  CHCH  MO comprising the linear combination of two C H -bond MOs and a C C -bond MO.  (A) Color 
scale, translucent view of the charge-density of the C C -bond MO with the 32acetyleneC sp  HOs shown transparently.  The 

C C -bond MO comprises a 2H -type ellipsoidal MO bridging two sets of three 32acetyleneC sp  HOs.  For each C H  and the 

C C  bond, the ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to the 32acetyleneC sp  HO, the 32acetyleneC sp  HO 

shell, inner most 1C s  shell, and the nuclei (red, not to scale), are shown.  (B)-(D) Translucent view high-lighting the C C -
bond MO and end-on view of the charge-density of the CHCH  MO, respectively.  
 
 

 
 
ENERGIES OF THE CH  GROUPS 
The energies of each CH  group of acetylene are given by the substitution of the semiprincipal axes (Eqs. (14.365-14.366) and 
(14.369)) into the energy equations of hydrogen carbide (Eqs. (13.510-13.514)), with the exception that two times 

 3, 2TE C C sp  (Eq. (14.342)) is subtracted from  TE CH  in Eq. (13.514). 
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 (14.386)  

where  
acetyleneTE CH  is given by Eq. (14.362) which is reiteratively matched to Eq. (13.75) within five-significant-figure round 

off error. 
 

VIBRATION OF THE 12CH  GROUPS 
The vibrational energy levels of CH  in acetylene may be solved using the methods given in the Vibration and Rotation of CH  
section. 
 

THE DOPPLER ENERGY TERMS OF THE 12CH  GROUPS 
The equations of the radiation reaction force of the CH  groups in acetylene are the same as those of the hydrogen carbide 
radical with the substitution of the CH -group parameters.  Using Eq. (13.477), the angular frequency of the reentrant oscillation 
in the transition state is: 
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3.08370  10  /
e

e
b

X rad s
m

    (14.387) 

where b  is given by Eq. (14.369).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)): 

 163.08370  10  / 20.29747 KE X rad s eV     (14.388) 

In Eq. (11.181), substitution of  2TE H  (Eqs. (11.212) and (13.75)), the maximum total energy of each 2H -type MO, for hE  , 

the mass of the electron, em , for M , and the kinetic energy given by Eq. (14.388) for KE  gives the Doppler energy of the 

electrons for the reentrant orbit: 

 
 

2 2

2 20.29747 2
31.63537 0.28197 K

D h
e

e eVE
E E eV eV

Mc m c      (14.389) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of CH  due to the reentrant orbit of each bond in the transition state corresponding to 
simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by 

Eq. (14.389) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of each C H  bond.  

Using e  given by Eq. (13.458) for KvibE  of the transition state,  12
 acetylene oscE CH  is: 

  12
 

1

2acetylene osc D Kvib D

k
E CH E E E


      (14.390) 

    12
 

1
0.28197 0.35532 0.10430 

2acetylene oscE CH eV eV eV      (14.391) 

 

TOTAL AND DIFFERENCE ENERGIES OF THE 12CH  GROUPS 
 12

acetyleneT oscE CH , the total energy of each 12CH  group including the Doppler term, is given by the sum of  
acetyleneTE CH  (Eq. 

(14.386)) and  12
 acetylene oscE CH  given by Eq. (14.391). 
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 (14.393) 

From Eqs. (14.391-14.393), the total energy of each 12CH  is: 

 
   

 

12 12
 31.63537 

1
31.63537 0.28197 0.35532 31.73967 

2

acetyleneT osc acetylene oscE CH eV E CH

eV eV eV eV

   

       
 

 (14.394) 

where e  given by Eq. (13.458) was used for the 
k


  term.   

 The total energy for each hydrogen carbide radical given by Eq. (13.485) is: 
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 (14.395) 

The difference in energy between the CH groups and the hydrogen carbide radical  12
T oscE CH  is given by two times the 

difference between Eqs. (14.394) and (14.395). 

 

      
  

12 12 122
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 (14.396) 

 

SUM OF THE ENERGIES OF THE C C    MO AND THE HOS OF ACETYLENE 
The energy components of eV , pV , T , mV , and TE  of the C C -bond MO are the same as those of the CH  MO except that 

each term is multiplied by three corresponding to the triple bond and the energy term corresponding to the 32acetyleneC sp  HOs in 

the equation for TE  is positive.  The energies of each C C -bond MO are given by the substitution of the semiprincipal axes 

(Eqs. (14.346-14.347) and (14.350)) into three times the energy equations of the CH  MO (Eqs. (13.449-13.453)), with the 

exception that  3, 2E C sp  in Eq. (13.453) is positive and given by Eq. (14.341). 
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 (14.401)  

where  ,TE C C   is the total energy of the C C    MO given by Eq. (14.343) which is reiteratively matched to three times 

Eq. (13.75) within five-significant-figure round off error. 

The total energy of the C C -bond MO,  TE C C , is given by the sum of two times  3, 2TE C C sp , the energy 

change of each 32C sp  shell due to the decrease in radius with the formation of the C C -bond MO (Eq. (14.342)), and 

 ,TE C C  , the   MO contribution given by Eq. (14.344). 
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 (14.402) 

 

VIBRATION OF ACETYLENE 
The vibrational energy levels of CHCH  may be solved as two equivalent coupled harmonic oscillators with a bridging harmonic 
oscillator by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] wherein the spring 
constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the 
Vibration of Hydrogen-Type Molecules section. 
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THE DOPPLER ENERGY TERMS OF THE C C -BOND MO OF ACETYLENE 
The equations of the radiation reaction force of the C C -bond MO are given by Eq. (14.231), except that the C C -bond MO 
parameters are used.  The angular frequency of the reentrant oscillation in the transition state is: 

 

2

3
160

0.5
4

2.00186  10  /
e

e
a

X rad s
m

    (14.403) 

where a  is given by Eq. (14.346).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)). 

 162.00186  10  / 13.17659 KE X rad s eV     (14.404) 

In Eq. (11.181), substitution of   / 3TE C C  (Eq. (14.402)) for hE  , the mass of the electron, em , for M , and the kinetic energy 

given by Eq. (14.404) for KE  gives the Doppler energy of the electrons of each of the three bonds for the reentrant orbit: 
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32.67879 0.23468 K

D h
e

e eVE
E E eV eV

Mc m c      (14.405) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of the C C -bond MO due to the reentrant orbit of the bond in the transition state 
corresponding to simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding 

energies, DE  given by Eq. (14.405) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of 

the C C  bond.  Using the experimental C C   3vibE   of  13374  0.41833 cm eV  [6] for KvibE  of the transition state having 

three bonds,  ' ,oscE C C   per bond is:  

   1
' ,

2osc D Kvib D

k
E C C E E E


       (14.406) 

    1
' , 0.23468 0.41833 0.02551 

2oscE C C eV eV eV       (14.407) 

Given that the vibration and reentrant oscillation is for three C C  bonds of the C C  triple bond,   ,acetylene oscE C C  , is: 
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 (14.408) 

 
TOTAL ENERGIES OF THE C C -BOND MO OF ACETYLENE 

 T oscE C C  , the total energy of the C C -bond MO including the Doppler term, is given by the sum of  TE C C  (Eq. 

(14.402)) and   ,acetylene oscE C C   given by Eq. (14.408). 
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From Eqs. (14.408-14.410), the total energy of the C C -bond MO is: 
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where the experimental vibE  was used for the 
k


  term. 

 

BOND ENERGY OF THE C C  BOND OF ACETYLENE 
As in the case of 12

2CH  and 14NH , the dissociation of the C C  bond forms three unpaired electrons per central atom wherein 

the magnetic moments cannot all cancel.  The energy per atom ( )E magnetic  is given by Eq. (13.524).  Thus, the dissociation 

energy of the C C  bond of CHCH ,  DE HC CH , is given by six times  3, 2E C sp  (Eq. (14.146)), the initial energy of 

each 32C sp  HO of each CH  radical that forms the triple C C  bond, minus the sum of  12
T oscE CH  (Eq. (14.396)), the 

energy change going from the hydrogen carbide radicals to the CH  groups of acetylene,  T oscE C C   (Eq. (14.411)), and two 

times ( )E magnetic  given by Eq. (13.524).  Thus, the dissociation energy of the C C  bond of CHCH , is: 
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 (14.412) 

The experimental dissociation energy of the C C  bond of CHCH  is [7]: 
   10.0014 DE HC CH eV   (14.413) 

The results of the determination of bond parameters of CHCH  are given in Table 14.1.  The calculated results are based 
on first principles and given in closed-form, exact equations containing fundamental constants only.  The agreement between the 
experimental and calculated results is excellent. 
 

BENZENE MOLECULE ( 6 6C H ) 
The benzene molecule 6 6C H  is formed by the reaction of three ethylene molecules: 

 2 2 6 6 23 3CH CH C H H   (14.414) 

6 6C H  can be solved using the same principles as those used to solve ethylene wherein the 2s  and 2 p  shells of each C  

hybridize to form a single 32sp  shell as an energy minimum, and the sharing of electrons between two 32C sp  hybridized 
orbitals (HOs) to form a molecular orbital (MO) permits each participating hybridized orbital to decrease in radius and energy.  
Each 32sp  HO of each carbon atom initially has four unpaired electrons.  Thus, the 6 H  atomic orbitals (AOs) of benzene 

contribute six electrons and the six 3sp -hybridized carbon atoms contribute twenty-four electrons to form six C H  bonds and 

six C C  bonds.  Each C H  bond has two paired electrons with one donated from the H  AO and the other from the 32C sp  
HO.  Each C C  bond comprises a linear combination of a factor of 0.75  of four paired electrons (three electrons) from two 
sets of two 32C sp  HOs of the participating carbon atoms.  Each C H  and each C C  bond comprises a linear combination of 

one and two diatomic 2H -type MOs developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular 

Ions section, respectively. 
 

FORCE BALANCE OF THE C C -BOND MO OF BENZENE 
6 6C H  can be considered a linear combination of three ethylene molecules wherein a C H  bond of each 2CH  group of 

2 2H C CH  is replaced by a C C  bond to form a six-member ring of carbon atoms.  The solution of the ethylene molecule is 

given in the Ethylene Molecule ( 2 2CH CH ) section.  Before forming ethylene groups, the 32sp  hybridized orbital arrangement of 

each carbon atom is given by Eq. (14.140).  The sum  3, 2TE C sp of calculated energies of C , C , 2C  , and 3C   is given by 

Eq. (14.141).  The radius 32sp
r  of the 32C sp  shell is given by Eq. (14.142).  The Coulombic energy  3, 2CoulombE C sp  and the 

energy  3, 2E C sp  of the outer electron of the 32C sp  shell are given by Eqs. (14.143) and (14.146), respectively.  Two 2CH  

radicals bond to form 2 2CH CH  by forming a MO between the two pairs of remaining 32C sp -HO electrons of the two carbon 
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atoms.  However, in this case, the sharing of electrons between four 32C sp  HOs to form a MO comprising four spin-paired 

electrons permits each 32C sp  HO to decrease in radius and energy.  The C C -bond MO is a prolate-spheroidal-MO surface 

that cannot extend into 32C sp  HO for distances shorter than the radius of the 32C sp  shell of each atom.  Thus, the MO surface 

comprises a partial prolate spheroid in between the carbon nuclei and is continuous with the 32C sp  shell at each C  atom.  The 

energy of the 2H -type ellipsoidal MO is matched to that of each 32C sp  shell.  As in the case of previous examples of energy-

matched MOs such as those of OH , NH , CH , the C O -bond MO of 2CO , and the C C -bond MO of 3 3CH CH , the 

C C -bond MO of ethylene must comprise 75% of a 2H -type ellipsoidal MO in order to match potential, kinetic, and orbital 

energy relationships.  Thus, the C C -bond MO must comprise a linear combination of two MOs wherein each comprises two 
32C sp HOs and 75% of a 2H -type ellipsoidal MO divided between the 32C sp  HOs: 

  3
22 2 2 0.75   C sp H MO C C bond MO     (14.415)  

The linear combination of each 2H -type ellipsoidal MO with each 32C sp  HO further comprises an excess 25% charge-density 

contribution from each 32C sp  HO to the C C -bond MO to achieve an energy minimum.  The force balance of the C C -
bond MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.415) 
and the energy matching condition between the 32C sp -HO components of the MO. 

 The sharing of electrons between two pairs of 32C sp  HOs to form a C C -bond MO permits each participating 

hybridized orbital to decrease in radius and energy.  The sum  3, 2T ethyleneE C sp  of calculated energies of 32C sp , C , 2C  , and 
3C   is given by Eq. (14.243).  In order to further satisfy the potential, kinetic, and orbital energy relationships, each participating 

32C sp  HO donates an excess of 25% of its electron density to the C C -bond MO to form an energy minimum.  By 
considering this electron redistribution in the ethylene molecule as well as the fact that the central field decreases by an integer 
for each successive electron of the shell, the radius 32ethylene sp

r  of the 32C sp  shell of ethylene calculated from the Coulombic 

energy is given by Eq. (14.244).  The Coulombic energy  3, 2Coulomb ethyleneE C sp  of the outer electron of the 32C sp  shell is given 

by Eq. (14.245).  The energy  3, 2ethyleneE C sp  of the outer electron of the 32C sp  shell is given by Eq. (14.246).  

 3, 2TE C C sp  (Eq. (14.247)), the energy change of each 32C sp  shell with the formation of the C C -bond MO is given by 

the difference between  3, 2ethyleneE C sp  and  3, 2E C sp . 

Consider the case where three sets of C C -bond MOs form bonds between the two carbon atoms of each molecule to 
form a six-member ring such that the six resulting bonds comprise eighteen paired electrons.  Each bond comprises a linear 
combination of two MOs wherein each comprises two 32C sp HOs and 75% of a 2H -type ellipsoidal MO divided between the 

32C sp  HOs: 
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 (14.416)  

The linear combination of each 2H -type ellipsoidal MO with each 32C sp  HO further comprises an excess 25% charge-density 

contribution per bond from each 32C sp  HO to the C C -bond MO to achieve an energy minimum.  Thus, the dimensional 
parameters of each bond C C -bond are determined using the same equations as those used to determine the same parameters 
of the C C -bond MO of ethylene (Eqs. (14.242-14.268)) while matching the boundary conditions of the structure of benzene.  
The energies of each C C  bond of benzene are also determined using the same equations as those of ethylene with the 
parameters of benzene.  The result is that the energies are essentially given as 0.75  times the energies of the C C -bond MO of 
ethylene (Eqs. (14.251-14.253) and (14.319-14.333)). 

The derivation of the dimensional parameters of benzene follows the same procedure as the determination of those of 
ethylene.  As in the case of ethylene, each 2H -type ellipsoidal MO comprises 75% of the C C -bond MO shared between two 

32C sp  HOs corresponding to the electron charge density in Eq. (11.65) of 
0.75

2

e
.  But, the additional 25% charge-density 

contribution to each bond of the C C -bond MO causes the electron charge density in Eq. (11.65) to be 0.5
2

e
e


  .  The 

corresponding force constant 'k  is given by Eq. (14.152).  In addition, the energy matching at all six 32C sp  HOs further 
requires that 'k  be corrected by a hybridization factor (Eq. (13.430)) as in the case of ethylene, expect that the constraint that the 
bonds connect a six-member ring of C C  bonds of benzene rather two 32C sp  HOs of ethylene decreases the hybridization 
factor of benzene compared to that of ethylene (Eq. (14.248)).  
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Since the energy of each 2H -type ellipsoidal MO is matched to that of all the continuously connected 32benzeneC sp  HOs, 

the hybridization-energy-matching factor is 0.85252 .  Hybridization with 25% electron donation to each C C -bond gives rise 

to the 32benzeneC sp  HO-shell Coulombic energy  3, 2Coulomb benzeneE C sp  given by Eq. (14.245).  The corresponding hybridization 

factor is given by the ratio of 15.95955 eV , the magnitude of  3, 2Coulomb benzeneE C sp  given by Eq. (14.245), and 13.605804 eV , 

the magnitude of the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  The hybridization energy 
factor 32benzeneC sp HO

C  is: 

 3

3

2 2

0 0 0 0
2 2

0 0 0

2

2

8 8 13.605804 
0.85252

15.95955 
8 8 0.85252

benzeneC sp HO

benzene sp

e e
a a eV

C
e e eV

r a

 

 

     (14.417) 

Thus, the force constant 'k  to determine the ellipsoidal parameter 'c  in terms of the central force of the foci (Eq. (11.65)) 
is given by: 

 
   

3

2 2

0 0
2

0.5 2 0.5 2
' 0.85252

4 4benzeneC sp HO

e e
k C

 
   (14.418) 

The distance from the origin to each focus 'c  is given by substitution of Eq. (14.418) into Eq. (13.60).  Thus, the distance from 
the origin of the component of the double C C -bond MO to each focus 'c  is given by  

 
 

0 0
2

'
0.85252 0.85252e

aa
c a

m e a


 


 (14.419) 

The internuclear distance from Eq. (14.419) is:  

 02 ' 2
0.85252

aa
c   (14.420) 

The length of the semiminor axis of the prolate spheroidal C C -bond MO b c  is given by Eq. (13.62).  The eccentricity, e , 
is given by Eq. (13.63).  The solution of the semimajor axis a  then allows for the solution of the other axes of each prolate 
spheroid and eccentricity of the C C -bond MO.  From the energy equation and the relationship between the axes, the 
dimensions of the C C -bond MO are solved. 

The general equations for the energy components of eV , pV , T , mV , and TE  of the C C -bond MO of benzene are the 

same as those of the 2 2CH CH  MO except that energy of the 32benzeneC sp  HO is used and the hybridization factor is given by Eq. 

(14.417).   Using Eqs. (14.251) and (14.417),  ,TE C C   is given by: 

        
2

3 3 0

0

2 1 '
, , 2 , 2  0.85252 2 ln 1

8 ' 2 'T T benzene benzene

ae a c
E C C E E C sp E C sp

c a a c



             

 (14.421) 

The total energy term of the double C C -bond MO is given by the sum of the two 2H -type ellipsoidal MOs given by Eq. 

(11.212).  To match this boundary condition,  ,TE C C   given by Eq. (14.421) is set equal to two times Eq. (13.75): 

    
2

0

0

2 1 '
,  0.85252 2 ln 1 63.27074 

8 ' 2 'T

ae a c
E C C eV

c a a c



            

 (14.422) 

From the energy relationship given by Eq. (14.422) and the relationship between the axes given by Eqs. (14.419-14.420) and 
(13.62-13.63), the dimensions of the C C -bond MO can be solved. 

 
Substitution of Eq. (14.419) into Eq. (14.422) gives: 
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 (14.423) 

The most convenient way to solve Eq. (14.423) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is:  
 11

01.47348 7.79733  10  a a X m   (14.424) 

Substitution of Eq. (14.424) into Eq. (14.4129) gives: 
 11

01.31468 6.95699  10  c a X m    (14.425) 

The internuclear distance given by multiplying Eq. (14.425) by two is:  
 10

02 2.62936 1.39140  10  c a X m    (14.426) 

The experimental bond distance is [3] : 
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 102 1.339  10  c X m   (14.427) 
Substitution of Eqs. (14.424-14.425) into Eq. (13.62) gives: 
 11

00.66540 3.52116  10  b c a X m    (14.428) 

Substitution of Eqs. (14.424-14.425) into Eq. (13.63) gives: 
 0.89223e   (14.429) 
The nucleus of the C  atoms comprise the foci of the 2H -type ellipsoidal MO.  The parameters of the point of intersection of the 

2H -type ellipsoidal MO and the 32benzeneC sp  HO are given by Eqs. (13.84-13.95) and (13.261-13.270). Each benzene carbon 

atom contributes   0.75 1.13380 0.85035 eV eV    (Eqs. (14.483) and (14.493)) to each of the two 
3e

C C -bond MOs and 

  0.5 1.13380 0.56690 eV eV    (Eq. (14.467)) to the corresponding C H -bond MO.  The energy contribution due to the 

charge donation at each carbon superimposes linearly.  The radius of 032
0.79597

benzene sp
r a  is calculated using Eq. (14.518) 

using the total energy donation to each bond with which it is participates in bonding.  The polar intersection angle '  is given by  
Eq. (13.261) where 3 02

0.79597n benzene sp
r r a   is the radius of the 32benzeneC sp  shell.  Substitution of Eqs. (14.424-14.425) into 

Eq. (13.261) gives: 
 ' 134.24    (14.430) 
Then, the angle 32benzeneC C sp HO




 the radial vector of the 32C sp  HO makes with the internuclear axis is: 

 32
180 134.24 45.76

benzeneC C sp HO



       (14.431) 

as shown in Figure 14.13. 
 

Figure 14.13.  The cross section of one C C -bond MO (  MO) and one C H -bond MO of benzene showing the axes, 
angles, and point of intersection of each 2H -type ellipsoidal MO with the corresponding 32benzeneC sp  HO.  The continuation of 

each 2H -type-ellipsoidal-MO basis element of the C C  bond and the C H -bond beyond the intersection point with each 
32benzeneC sp  shell and   MO is shown as dashed since each only serves to solve the energy match with the 32benzeneC sp  shell and 

does not represent charge density.  Similarly, the vertical dashed line only designates the parameters of each intersection point.  
The actual charge density is shown by the solid lines.  Legend: a : semimajor axis, b : semiminor axis, 'c : internuclear distance, 
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Consider the right-hand intersection point.  The Cartesian i -coordinate of the interception point of the MO and the AO can be 
calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -

coordinate components at the point of intersection.  Thus, the matching elliptic parametric angle 
2,benzeneC C H MOt    satisfies the 

following relationship: 
 3 3 3

20 ,2 2 2
sin 0.79597 sin sin

benzenebenzene benzene
C C H MObenzene sp C C sp HO C C sp HO

r a b    
   (14.432) 

such that 
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   (14.433) 
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with the use of Eq. (14.431).  Substitution of Eq. (14.428) into Eq. (14.433) gives: 
 

2, 58.98
benzeneC C H MO     (14.434) 

Then, the distance 
2,benzeneC C H MOd   along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of 

intersection of the orbitals is given by: 
 

2 2, ,cos
benzene benzeneC C H MO C C H MOd a    (14.435) 

Substitution of Eqs. (14.424) and (14.434) into Eq. (14.435) gives: 
 

2

11
0, 0.75935 4.01829  10  

benzeneC C H MOd a X m
    (14.436) 

The distance 32benzeneC C sp HO
d


 along the internuclear axis from the origin of the C  atom to the point of intersection of the orbitals 

is given by 
 3

2,2
'

benzenebenzene
C C H MOC C sp HO

d c d 
   (14.437) 

Substitution of Eqs. (14.425) and (14.436) into Eq. (14.437) gives: 
 3

11
02

0.55533 2.93870  10  
benzeneC C sp HO

d a X m


   (14.438) 

 
FORCE BALANCE OF THE CH  MOS OF BENZENE 
Benzene can also be considered as comprising chemical bonds between six CH  radicals wherein each radical comprises a 
chemical bond between carbon and hydrogen atoms.  The solution of the parameters of CH  is given in the Hydrogen Carbide 
(CH ) section.  Each C H  bond of CH  having two spin-paired electrons, one from an initially unpaired electron of the carbon 
atom and the other from the hydrogen atom, comprises the linear combination of 75% 2H -type ellipsoidal MO and 25% 32C sp  

HO as given by Eq. (13.439): 
 3

21 2 0.75   C sp H MO CH MO   (14.439) 

The proton of the H  atom and the nucleus of the C  atom are along each internuclear axis and serve as the foci.  As in the case 
of 2H , the C H -bond MO is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into 32C sp  

HO for distances shorter than the radius of the 32C sp  shell since it is energetically unfavorable.  Thus, each MO surface 

comprises a prolate spheroid at the H  proton that is continuous with the 32C sp  shell at the C  atom whose nucleus serves as the 
other focus. 
 The force balance of the CH  MO is determined by the boundary conditions that arise from the linear combination of 
orbitals according to Eq. (14.439) and the energy matching condition between the hydrogen and 32C sp  HO components of the 

MO.  The force constant 'k  to determine the ellipsoidal parameter 'c  of each 2H -type-ellipsoidal-MO component of the CH  

MO in terms of the central force of the foci is given by Eq. (13.59).  The distance from the origin of each C H -bond MO to 
each focus 'c  is given by Eq. (13.60).  The internuclear distance is given by Eq. (13.61).  The length of the semiminor axis of the 
prolate spheroidal C H -bond MO b c  is given by Eq. (13.62).  The eccentricity, e , is given by Eq. (13.63).  The solution of 
the semimajor axis a  then allows for the solution of the other axes of each prolate spheroid and eccentricity of each C H -bond 
MO.  From the energy equation and the relationship between the axes, the dimensions of the CH  MO are solved. 

Consider the formation of the double C C -bond MOs of benzene wherein ethylene formed from two 2CH  radicals, 

each having a 32C sp shell with an energy given by Eq. (14.146), serves as a basis element.  The energy components of eV , pV , 

T , mV , and TE  are the same as those of the hydrogen carbide radical, except that  3, 2TE C C sp  is subtracted from  TE CH  

of Eq. (13.495).  As in the case of the 2CH  groups of ethylene (Eq. (14.270)), the subtraction of the energy change of the 32C sp  

shell per H  with the formation of the C C -bond MO matches the energy of each C H -bond MO to the decrease in the 
energy of the corresponding 32C sp  HO.  Using Eqs. (13.431) and (14.247),  

benzeneTE CH  is given by: 
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 (14.440) 

 
benzeneTE CH  given by Eq. (14.440) is set equal to the energy of the 2H -type ellipsoidal MO given by Eq. (13.75). 
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 (14.441)  

From the energy relationship given by Eq. (14.441) and the relationship between the axes given by Eqs. (13.60-13.63), the 
dimensions of the CH  MO can be solved. 
 



More Polyatomic Molecules and Hydrocarbons 655

 Substitution of Eq. (13.60) into Eq. (14.441) gives: 
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 (14.442) 

The most convenient way to solve Eq. (14.442) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is  
 11

01.60061 8.47006  10  a a X m   (14.443) 

Substitution of Eq. (14.443) into Eq. (14.60) gives: 
 11

01.03299 5.46636  10  c a X m    (14.444) 

The internuclear distance given by multiplying Eq. (14.444) by two is: 
 10

02 2.06598 1.09327  10  c a X m    (14.445) 

The experimental bond distance is [3]: 
 102 1.101  10  c X m   (14.446) 
Substitution of Eqs. (14.443-14.444) into Eq. (14.62) gives: 
 11

01.22265 6.47000  10  b c a X m    (14.447) 

Substitution of Eqs. (14.443-14.444) into Eq. (14.63) gives: 
 0.64537e   (14.448) 

The nucleus of the H  atom and the nucleus of the C  atom comprise the foci of each 2H -type ellipsoidal MO.  The 

parameters of the point of intersection of the 2H -type ellipsoidal MO and the 32benzeneC sp  HO are given by Eqs. (13.84-13.95) 

and (13.261-13.270).  The polar intersection angle '  is given by Eq. (13.261) where 3 02
0.79597n benzene sp

r r a   is the radius of 

the 32benzeneC sp  shell.  Substitution of Eqs. (14.443-14.444) into Eq. (13.261) gives: 

 ' 74.42    (14.449) 
Then, the angle 32benzeneC H sp HO




 the radial vector of the 32C sp  HO makes with the internuclear axis is: 

 32
180 74.42 105.58

benzeneC H sp HO



      (14.450) 

as shown in Figure 14.14. 
 
Figure 14.14.   The cross section of one C H -bond MO of benzene showing the axes, angles, and point of intersection of 
the 2H -type ellipsoidal MO with the 32benzeneC sp  HO.  The continuation of the 2H -type-ellipsoidal-MO basis element beyond 

the intersection point with the 32benzeneC sp  shell is shown as dashed since it only serves to solve the energy match with the 
32benzeneC sp  shell and does not represent charge density.  Similarly, the vertical dashed line only designates the parameters of the 

intersection point.  The actual charge density is shown by the solid lines.  Legend: a : semimajor axis, b : semiminor axis, 'c : 
internuclear distance, 
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The Cartesian i -coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal 
parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -coordinate components at the point 

of intersection.  Thus, the matching elliptic parametric angle 
2,benzeneC H H MOt    satisfies the following relationship: 

 
2

3 3 30 ,2 2 2
sin 0.79597 sin sin

benzeneC H H MO
benzene benzenebenzene sp C H sp HO C H sp HO

r a b    
   (14.451) 

such that 
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   (14.452) 

with the use of Eq. (14.450).  Substitution of Eq. (14.447) into Eq. (14.452) gives: 
 

2, 38.84
benzeneC H H MO     (14.453) 

Then, the distance 
2,benzeneC H H MOd   along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of 

intersection of the orbitals is given by: 
 

2 2, ,cos
benzene benzeneC H H MO C H H MOd a    (14.454) 

Substitution of Eqs. (14.443) and (14.453) into Eq. (14.454) gives: 
 

2

11
0, 1.24678 6.59767  10  

benzeneC H H MOd a X m
    (14.455) 

The distance 32benzeneC H sp HO
d


 along the internuclear axis from the origin of the C  atom to the point of intersection of the orbitals 

is given by: 
 3

2,2
'

benzenebenzene
C H H MOC H sp HO

d d c
   (14.456) 

Substitution of Eqs. (14.444) and (14.455) into Eq. (14.456) gives: 
 3

11
02

0.21379 1.13131  10  
benzeneC H sp HO

d a X m


   (14.457) 

The basis set of benzene, the ethylene molecule, is planar with bond angles of approximately 120° (Eqs. (14.298-14.302)).  To 
form a closed ring of equivalent planar bonds, the C C bonds of benzene form a planar hexagon.  The bond angle C C C    

between the internuclear axis of any two adjacent C C  bonds is: 
 120C C C      (14.458) 

The bond angle C C H    between the internuclear axis of each C C  bond and the corresponding H  atom of each CH  group is 

 120C C H      (14.459) 

The experimental angle between the C C C   bonds is [13-15]: 
 120C C C      (14.460) 

The experimental angle between the C C H   bonds is [13-15]: 
 120C C H      (14.461) 

The 6 6C H  MO shown in Figure 14.15 was rendered using these parameters. 

The charge-density in the C C -bond MO is increased by a factor of 0.25 per bond with the formation of the 
32benzeneC sp  HOs each having a smaller radius.  Using the orbital composition of the CH  groups (Eq. (14.439)) and the C C -

bond MO (Eq. (14.416)), the radii of 01 0.17113C s a  (Eq. (10.51)) and 3
02 0.79597benzeneC sp a  (Eq. (14.520)) shells, and the 

parameters of the C C -bond (Eqs. (13.3-13.4), (14.424-14.426), and (14.428-14.438)), the parameters of the C H -bond 
MOs (Eqs. (13.3-13.4), (14.443-14.445), and (14.447-14.457)), and the bond-angle parameters (Eqs. (14.458-14.459)), the 

charge-density of the 6 6C H  MO comprising the linear combination of six sets of C H -bond MOs with bridging 
3e

C C -bond 

MOs is shown in Figure 14.15.  Each C H -bond MO comprises a 2H -type ellipsoidal MO and a 32benzeneC sp  HO having the 

dimensional diagram shown in Figure 14.14.  The C C -bond MO comprises a 2H -type ellipsoidal MO bridging two sets of 

two 32benzeneC sp  HOs having the dimensional diagram shown in Figure 14.13.  
 



More Polyatomic Molecules and Hydrocarbons 657

Figure 14.15.  6 6C H  MO comprising the linear combination of six sets of C H -bond MOs bridged by C C -bond MOs.  

(A) Color scale, translucent view of the charge-density of the 6 6C H -bond MO with each 32benzeneC sp  HOs shown transparently.  

Each C C -bond MO comprises a 2H -type ellipsoidal MO bridging two pairs of 32benzeneC sp  HOs.  For each C H  and 

C C  bond, the ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to the 32benzeneC sp  HO, the 32benzeneC sp  HO 

shell, inner most 1C s  shell, and the nuclei (red, not to scale), are shown.  (B)-(D) End-on view, translucent view high-lighting 
each C C -bond MO, and opaque view of the charge-density of the 6 6C H  MO, respectively. 
 

 
 
 

ENERGIES OF THE CH  GROUPS 
The energies of each CH  group of benzene are given by the substitution of the semiprincipal axes (Eqs. (14.443-14.444) and 

(14.447)) into the energy equations of hydrogen carbide (Eqs. (13.449-13.453)), with the exception that  3, 2TE C C sp  (Eq. 

(14.247)) is subtracted from  TE CH  in Eq. (13.453). 
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 (14.466)  

where  
benzeneTE CH  is given by Eq. (14.440) which is reiteratively matched to Eq. (13.75) within five-significant-figure round 

off error. 
The total energy of the C H -bond MO,  

benzeneTE C H , is given by the sum of  30.5 , 2TE C C sp , the energy change 

of each 32C sp  shell per single bond due to the decrease in radius with the formation of the corresponding C C -bond MO (Eq. 

(14.247)), and  
benzeneTE CH , the   MO contribution given by Eq. (14.441). 
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VIBRATION OF THE 12CH  GROUPS 
The vibrational energy levels of CH  in benzene may be solved using the methods given in the Vibration and Rotation of CH  
section. 
 

THE DOPPLER ENERGY TERMS OF THE 12CH  GROUPS 
The equations of the radiation reaction force of the CH  groups in benzene are the same as those of the hydrogen carbide radical 
with the substitution of the CH -group parameters.  Using Eq. (13.477), the angular frequency of the reentrant oscillation in the 
transition state is 

 

2

3
160

0.75
4

2.64826  10  /
e

e
b

X rad s
m

    (14.468) 

where b  is given by Eq. (14.447).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)). 

 162.64826  10  / 17.43132 KE X rad s eV     (14.469) 

In Eq. (11.181), substitution of  2TE H  (Eqs. (11.212) and (13.75)), the maximum total energy of each 2H -type MO, for hE  , 

the mass of the electron, em , for M , and the kinetic energy given by Eq. (14.469) for KE  gives the Doppler energy of the 

electrons for the reentrant orbit: 

 
 

2 2

2 17.43132 2
31.63537 0.26130 K

D h
e

e eVE
E E eV eV

Mc m c      (14.470) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of CH  due to the reentrant orbit of each bond in the transition state corresponding to 
simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by 

Eq. (14.470) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of the C H  bond.  Using 

e  given by Eq. (13.458) for KvibE  of the transition,  12
 benzene oscE CH  per bond is: 

  12
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2DDbenzene osc Kvib
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E CH E E E


      (14.471) 

    12
 

1
0.26130 0.35532 0.08364 

2benzene oscE CH eV eV eV      (14.472) 

 
TOTAL AND BOND ENERGIES OF THE 12CH  GROUPS 

 12
benzeneT oscE CH , the total energy of each 12CH  group including the Doppler term, is given by the sum of  

benzeneTE C H  

(Eq. (14.467)) and  12
 benzene oscE CH  given by Eq. (14.472). 
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From Eqs. (14.472-14.474), the total energy of each 12CH  is: 
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where e  given by Eq. (13.458) was used for the 
k


  term.   

As in the case of 12
2CH , 14NH , and acetylene, the dissociation of the C C  bonds forms three unpaired electrons per 

central atom wherein the magnetic moments cannot all cancel.  The energy per atom ( )E magnetic  is given by Eq. (13.524).  

Thus, the bond dissociation energy of each CH  group of the linear combination to form benzene,  12

benzeneDE CH , is given by 

the sum of the total energies of the 32C sp  HO and the hydrogen atom minus the sum of  12
benzeneT oscE CH  and ( )E magnetic  

given by Eq. (13.524): 

       12 3 12, 2 ( ) ( )
benzeneD benzeneT oscE CH E C sp E H E CH E magnetic     (14.476) 

 3, 2E C sp  is given by Eq. (13.428),  DE H  is given by Eq. (13.154), and ( )E magnetic  is given by Eq. (13.524).  Thus, 

 12

benzeneDE CH  given by Eqs. (13.154), (13.428), (13.524), (14.475), and (14.476) is: 
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SUM OF THE ENERGIES OF THE C C    MO ELEMENT AND THE HOs OF 
BENZENE 
The energy components of eV , pV , T , mV , and TE  of the C C -bond MO of benzene are the same as those of the 2 2CH CH  

MO except that the hybridization factor is given by Eq. (14.417).  The energies of each C C -bond MO are given by the 
substitution of the semiprincipal axes (Eqs. (14.424-14.425) and (14.428)) into energy equations of the 2 2CH CH  MO (Eqs. 

(14.319-14.323)), with the exception that the hybridization factor is 0.85252  (Eq. (14.417)). 
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where  ,TE C C   is the total energy of the C C    MO given by Eq. (14.421) which is reiteratively matched to two times 

Eq. (13.75) within five-significant-figure round off error. 

The total energy of the C C -bond MO,  TE C C , is given by the sum of two times  3, 2TE C C sp , the energy 

change of each 32C sp  shell due to the decrease in radius with the formation of the C C -bond MO (Eq. (14.247)), and 

 ,TE C C  , the   MO contribution given by Eq. (14.422). 
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which is the same  ,TE C C   of ethylene given by Eq. (14.324). 

 

VIBRATION OF BENZENE 
The C C  vibrational energy levels of 6 6C H  may be solved as six sets of equivalent coupled harmonic oscillators where each 

C  is further coupled to the corresponding C H  oscillator by developing the Lagrangian, the differential equation of motion, 
and the eigenvalue solutions [9] wherein the spring constants are derived from the central forces as given in the Vibration of 
Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section. 
 

THE DOPPLER ENERGY TERMS OF THE C C -BOND MO ELEMENT OF BENZENE 
The equations of the radiation reaction force of the C C -bond MO of benzene are given by Eq. (13.142), except the force-
constant factor is  0.85252 0.5  based on the force constant 'k  of Eq. (14.418), and the C C -bond MO parameters are used.  

The angular frequency of the reentrant oscillation in the transition state is: 
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    (14.484) 

where b  is given by Eq. (14.428).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)). 

 164.97272  10  / 32.73133 KE X rad s eV     (14.485) 

In Eq. (11.181), substitution of  2TE H  (Eqs. (11.212) and (13.75)), the maximum total energy of each 2H -type MO, for hE  , 

the mass of the electron, em , for M , and the kinetic energy given by Eq. (14.485) for KE  gives the Doppler energy of the 

electrons for the reentrant orbit: 

 
 

2 2

2 32.73133 2
31.63536831 0.35806 K

D h
e

e eVE
E E eV eV

Mc m c      (14.486) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of the C C -bond MO due to the reentrant orbit of the bond in the transition state 
corresponding to simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding 

energies, DE  given by Eq. (14.486) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of 

the C C  bond.  Using the experimental C C   16vibE   of  11584.8  0.19649 cm eV  [16] for KvibE  of the transition state 

having two bonds,  ' ,oscE C C   per bond is:  

   1
' ,

2osc D Kvib D

k
E C C E E E


       (14.487) 

    1
' , 0.35806 0.19649 0.25982 

2oscE C C eV eV eV       (14.488) 

Given that the vibration and reentrant oscillation is for two C C  bonds of each C C  double bond,   ,benzene oscE C C  , is: 

     

1 1
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k
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  (14.489) 
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TOTAL ENERGIES OF THE C C -BOND MO ELEMENT OF BENZENE 
 T oscE C C  , the total energy of the C C -bond MO of benzene including the Doppler term, is given by the sum of 

 TE C C  (Eq. (14.483)) and   ,benzene oscE C C   given by Eq. (14.489). 
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From Eqs. (14.489-14.491), the total energy of the C C -bond MO is: 
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where the experimental vibE  was used for the 
k


  term. 

 
TOTAL BOND DISSOCIATION ENERGY OF BENZENE 
Ethylene serves as a basis element for the C C  bonding of benzene wherein each of the six 

3e

C C  bonds of benzene comprises 

  0.75 4 3  electrons according to Eq. (14.416).  The total energy of the bonds of the eighteen electrons of the 
3e

C C  bonds of 

benzene,  
6 6

3
,T

e
E C H C C , is given by   6 0.75  times  

T oscE C C   (Eq. (14.492)), the total energy of the C C -bond MO 

of benzene including the Doppler term, minus eighteen times  3, 2E C sp  (Eq. (14.146)), the initial energy of each 32C sp  HO of 

each C  that forms the double C C  bonds.  Thus, the total energy of the six 
3e

C C  bonds of benzene is: 
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 (14.493) 

Each of the C H  bonds of benzene comprises two electrons according to Eq. (14.439).  From the energy of each C H  bond, 

 12

benzeneDE CH  (Eq. (14.477)), the total energy of the twelve electrons of the six C H  bonds of benzene,  6 6 ,TE C H C H , is 

given by:  

         12
6 6 , 6 6 3.90454 23.42724 

benzeneT DE C H C H E CH eV eV        (14.494) 

The total bond dissociation energy of benzene,  6 6DE C H , is given by the negative sum of 
3

6 6 ,
e

TE C H C C  
 

 (Eq. (14.493)) and 

 6 6 ,TE C H C H  (Eq. (14.494)): 
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The experimental total bond dissociation energy of benzene,  6 6TE C H , is given by the negative difference between the 

enthalpy of its formation (   fH benzene gas ) and the sum of the enthalpy of the formation of the gaseous carbons 

(   fH C gas ) and hydrogen (   fH H gas ) atoms.  The heats of formation are [17-18]: 

     82.9 /  0.8592 /fH benzene gas kJ mole eV molecule   (14.496) 

     716.68 /  7.42774 /fH C gas kJ mole eV atom   (14.497) 

     217.998 /  2.259353 /fH H gas kJ mole eV atom   (14.498) 

thus, the total bond dissociation energy of benzene,  6 6DE C H , is: 
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 (14.499) 

where  6 6TE C H  is the total energy of the bonds.  The results of the determination of bond parameters of 6 6C H  are given in 

Table 14.1.  The calculated results are based on first principles and given in closed-form, exact equations containing fundamental 
constants only.  The agreement between the experimental and calculated results is excellent. 
 

CONTINUOUS-CHAIN ALKANES ( 2 2,   3,4,5...n nC H n   ) 
The continuous chain alkanes, 2 2n nC H  , are the homologous series comprising terminal methyl groups at each end of the chain 

with 2n   methylene ( 2CH ) groups in between: 

  3 2 32n
CH CH CH


 (14.500) 

2 2n nC H   can be solved using the same principles as those used to solve ethane and ethylene wherein the 2s  and 2 p  shells of 

each C  hybridize to form a single 32sp  shell as an energy minimum, and the sharing of electrons between two 32C sp  
hybridized orbitals (HOs) to form a molecular orbital (MO) permits each participating hybridized orbital to decrease in radius 
and energy.  Three H  AOs combine with three carbon 32sp  HOs and two H  AOs combine with two carbon 32sp  HOs to form 

each methyl and methylene group, respectively, where each bond comprises a 2H -type MO developed in the Nature of the 

Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section.  The 3CH  and 2CH  groups bond by forming 2H -type 

MOs between the remaining 32C sp  HOs on the carbons such that each carbon forms four bonds involving its four 32C sp  HOs. 
 

FORCE BALANCE OF THE C C -BOND MOs OF CONTINUOUS-CHAIN ALKANES 
2 2n nC H   comprises a chemical bond between two terminal 3CH  radicals and 2n   2CH  radicals wherein each methyl and 

methylene radical comprises three and two chemical bonds, respectively, between carbon and hydrogen atoms.  The solution of 
the parameters of 3CH  is given in the Methyl Radical ( 3CH ) section.  The solution of the parameters of 2CH  is given in the 

Dihydrogen Carbide Radical ( 2CH ) section and follows the same procedure.  Each C H  bond having two spin-paired 

electrons, one from an initially unpaired electron of the carbon atom and the other from the hydrogen atom, comprises the linear 
combination of 75% 2H -type ellipsoidal MO and 25% 32C sp  HO as given by Eq. (13.429): 

 3
21 2 0.75   C sp H MO C H MO    (14.501) 

The proton of the H  atom and the nucleus of the C  atom are along each internuclear axis and serve as the foci.  As in the case 
of 2H , each of the C H -bond MOs is a prolate spheroid with the exception that the ellipsoidal MO surface cannot extend into 

32C sp  HO for distances shorter than the radius of the 32C sp  shell since it is energetically unfavorable.  Thus, each MO surface 

comprises a prolate spheroid at the H  proton that is continuous with the 32C sp  shell at the C  atom whose nucleus serves as the 

other focus.  The electron configuration and the energy,  3, 2E C sp , of the 32C sp  shell is given by Eqs. (13.422) and (13.428), 

respectively.  The central paramagnetic force due to spin of each C H  bond is provided by the spin-pairing force of the 3CH  

or 2CH  MO that has the symmetry of an s  orbital that superimposes with the 32C sp  orbitals such that the corresponding 

angular momenta are unchanged.  The energies of each 3CH  and 2CH  MO involve each 32C sp  and each 1H s  electron with the 

formation of each C H  bond.  The sum of the energies of the 2H -type ellipsoidal MOs is matched to that of the 32C sp  shell.  
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The force balance of the C H -bond MO is determined by the boundary conditions that arise from the linear combination of 
orbitals according to Eq. (14.139) and the energy matching condition between the 32C sp -HO components of the MO. 

The 3CH  and 2CH  groups form C C  bonds comprising 2H -type MOs between the remaining 32C sp  HOs on the 

carbons such that each carbon forms four bonds involving its four 32C sp  HOs.  The sharing of electrons between any two 
32C sp  HOs to form a molecular orbital (MO) comprising two spin-paired electrons permits each 32C sp  HO to decrease in 

radius and energy.  As in the case of the C H  bonds, each C C -bond MO is a prolate-spheroidal-MO surface that cannot 
extend into 32C sp  HO for distances shorter than the radius of the 32C sp  shell of each atom.  Thus, the MO surface comprises a 

partial prolate spheroid in between the carbon nuclei and is continuous with the 32C sp  shell at each C  atom.  The energy of the 

2H -type ellipsoidal MO is matched to that of the 32C sp  shell.  As in the case of previous examples of energy-matched MOs 

such as the C C -bond MO of ethane, each C C -bond MO of 2 2n nC H   must comprise 75% of a 2H -type ellipsoidal MO in 

order to match potential, kinetic, and orbital energy relationships.  Thus, the C C -bond MO must comprise two 32C sp HOs 

and 75% of a 2H -type ellipsoidal MO divided between the two 32C sp  HOs: 

 3
22 2 0.75   C sp H MO C C bond MO     (14.502)  

The linear combination of the 2H -type ellipsoidal MO with each 32C sp  HO further comprises an excess 25% charge-density 

contribution from each 32C sp  HO to the C C -bond MO to achieve an energy minimum.  The force balance of the C C -bond 
MO is determined by the boundary conditions that arise from the linear combination of orbitals according to Eq. (14.502) and the 
energy matching condition between the 32C sp -HO components of the MO. 

 Before bonding, the 32sp  hybridized orbital arrangement of each carbon atom is given by Eq. (14.140).  The sum 

 3, 2TE C sp of calculated energies of C , C , 2C  , and 3C   is given by Eq. (14.141).  The radius 32sp
r  of the 32C sp  shell is 

given by Eq. (14.142).  The Coulombic energy  3, 2CoulombE C sp  and the energy  3, 2E C sp  of the outer electron of the 32C sp  

shell are given by Eqs. (14.143) and (14.146), respectively. 
The formation of each C C  bond of 2 2n nC H   further requires that the energy of all 2H -type prolate spheroidal MOs (  

MOs) be matched at all 32C sp  HOs since they are continuous throughout the molecule.  Thus, the energy of each 32C sp  HO 

must be a linear combination of that of the 3CH  and 2CH  groups that serve as basis elements.  Each 3CH  forms one C C  

bond, and each 2CH  group forms two.  Thus, the energy of each 32C sp  HO of each 3CH  and 2CH  group alone is given by that 

in ethane and ethylene, respectively.  The parameters of ethane and ethylene are given by Eqs. (14.147-14.151) and (14.244-
14.247), respectively.  The alkane parameters can be determined by first reviewing those of ethane and ethylene. 

With the formation of the C C -bond MO of ethane from two methyl radicals, each having a 32C sp electron with an 
energy given by Eq. (14.146), the total energy of the state is given by the sum over the four electrons.  The sum 

 3, 2T ethaneE C sp of calculated energies of 32C sp , C , 2C  , and 3C   given by Eq. (14.147), is: 
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 (14.503) 

where  3, 2E C sp  is the sum of the energy of C , 11.27671 eV , and the hybridization energy.  The orbital-angular-momentum 

interactions also cancel such that the energy of the  3, 2T ethaneE C sp  is purely Coulombic.  

The sharing of electrons between two 32C sp  HOs to form a C C -bond MO permits each participating hybridized 
orbital to decrease in radius and energy.  In order to further satisfy the potential, kinetic, and orbital energy relationships, each 

32C sp  HO donates an excess of 25% of its electron density to the C C -bond MO to form an energy minimum.  By considering 
this electron redistribution in the ethane molecule as well as the fact that the central field decreases by an integer for each 
successive electron of the shell, the radius 32ethane sp

r  of the 32C sp  shell of ethane may be calculated from the Coulombic energy 

using Eq. (10.102). 
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  (14.504) 

using Eqs. (10.102) and (14.504), the Coulombic energy  3, 2Coulomb ethaneE C sp  of the outer electron of the 32C sp  shell is: 
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During hybridization, one of the spin-paired 2s  electrons is promoted to the 32C sp  shell as an unpaired electron.  The energy 

for the promotion is the magnetic energy given by Eq. (14.145).  Using Eqs. (14.145) and (14.505), the energy  3, 2ethaneE C sp  

of the outer electron of the 32C sp  shell is: 

  
 3

2 22
3 0

32
0 32
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ee
E C sp eV eV eV
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thus,  3, 2TE C C sp , the energy change of each 32C sp  shell with the formation of the C C -bond MO is given by the 

difference between Eq. (14.146) and Eq. (14.506). 
        3 3 3, 2 , 2 ,2 15.35946 14.63489 0.72457 T ethaneE C C sp E C sp E C sp eV eV eV          (14.507) 

Next, consider the formation of the C C -bond MO of ethylene from two 2CH  radicals, each having a 32C sp electron 

with an energy given by Eq. (14.146).  The sum  3, 2T ethyleneE C sp of calculated energies of 32C sp , C , 2C  , and 3C   is given 

by Eq. (14.147).  The sharing of electrons between two pairs of 32C sp  HOs to form a C C -bond MO permits each 
participating HO to decrease in radius and energy.  In order to further satisfy the potential, kinetic, and orbital energy 
relationships, each participating 32C sp  HO donates an excess of 25% of its electron density to the C C -bond MO to form an 
energy minimum.  By considering this electron redistribution in the ethylene molecule as well as the fact that the central field 
decreases by an integer for each successive electron of the shell, the radius 32ethylene sp

r  of the 32C sp  shell of ethylene may be 

calculated from the Coulombic energy using Eqs. (10.102) and (14.147): 
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where 6Z   for carbon.  Using Eqs. (10.102) and (14.508), the Coulombic energy  3, 2Coulomb ethyleneE C sp  of the outer electron of 

the 32C sp  shell is: 
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During hybridization, one of the spin-paired 2s  electrons is promoted to the 32C sp  shell as an unpaired electron.  The energy 

for the promotion is the magnetic energy given by Eq. (14.145).  Using Eqs. (14.145) and (14.509), the energy  3, 2ethyleneE C sp  

of the outer electron of the 32C sp  shell is: 
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thus,  3, 2TE C C sp , the energy change of each 32C sp  shell with the formation of the C C -bond MO is given by the 

difference between Eq. (14.146) and Eq. (14.510): 
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 (14.511) 

To meet the energy matching condition for all   MOs at all 32C sp  HOs, the energy  3, 2alkaneE C sp  of the outer 

electron of the 32C sp  shell of each alkane carbon atom must be the average of  3, 2ethaneE C sp  (Eq. (14.506)) and 

 3, 2ethyleneE C sp  (Eq. (14.510)). 
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And,  3, 2
alkaneTE C C sp , the energy change of each 32C sp  shell with the formation of each C C -bond MO, must be the 

average of  3, 2TE C C sp  (Eq. (14.507)) and  3, 2TE C C sp  (Eq. (14.511)). 
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 (14.513) 

using Eq. (10.102), the radius 32alkane sp
r  of the 32C sp  shell of each carbon atom of 2 2n nC H   may be calculated from the 

Coulombic energy using the initial energy  3, 2 14.82575 CoulombE C sp eV   (Eq. (14.143)) and  3, 2
alkaneTE C C sp  Eq. 

(14.513)), the energy change of each 32C sp  shell with the formation of each C C -bond MO.  Consider the case of a methyl 

carbon which donates  3, 2
alkaneTE C C sp  Eq. (14.513)) to a single C C  bond: 
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using Eqs. (10.102) and (14.514), the Coulombic energy  3, 2Coulomb alkaneE C sp  of the outer electron of the 32C sp  shell is: 
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     (14.515) 

During hybridization, one of the spin-paired 2s  electrons is promoted to the 32C sp  shell as an unpaired electron.  The energy 

for the promotion is the magnetic energy given by Eq. (14.145).  Using Eqs. (14.145) and (14.515), the energy  3, 2alkaneE C sp  

of the outer electron of the 32C sp  shell is: 
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thus,  3, 2
alkaneTE C C sp , the energy change of each 32C sp  shell with the formation of each C C -bond MO is given by the 

difference between Eq. (14.146) and Eq. (14.516): 

        3 3 3, 2 , 2 , 2 15.56407 14.63489 0.92918 
alkaneT alkaneE C C sp E C sp E C sp eV eV eV          (14.517) 

which agrees with Eq. (14.513). 
The energy contribution due to the charge donation at each carbon superimposes linearly.  In general, the radius 32mol sp

r  of 

the 32C sp  HO of a carbon atom of a group of a given molecule is calculated using Eq. (14.514) by considering 

 3, 2
molTE MO sp , the total energy donation to each bond with which it participates in bonding.  The general equation for the 

radius is given by: 
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 (14.518) 

The 32C sp  HO of each methyl group of an alkane contributes 0.92918 eV  to the corresponding single C C  bond; thus, the 

corresponding 32C sp  HO radius is given by Eq. (14.514).  The 32C sp  HO of each methylene group of 2 2n nC H   contributes 

0.92918 eV  to each of the two corresponding C C  bond MOs.  Thus, the radius of each methylene group of an alkane is 
given by: 
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 (14.519) 

As in the case with ethane, the 2H -type ellipsoidal MO comprises 75% of the C C -bond MO shared between two 

32C sp  HOs corresponding to the electron charge density in Eq. (11.65) of 
0.75

2

e
.  But, the additional 25% charge-density 

contribution to the C C -bond MO causes the electron charge density in Eq. (11.65) to be 0.5
2

e
e


  .  Thus, the force constant 

'k  to determine the ellipsoidal parameter 'c  in terms of the central force of the foci is given by Eq. (14.152).  The distance from 
the origin of the C C -bond MO to each focus 'c  is given by Eq. (14.153).  The internuclear distance from is given by Eq. 
(14.154).  The length of the semiminor axis of the prolate spheroidal C C -bond MO b c  is given by Eq. (13.62).  The 
eccentricity, e , is given by Eq. (13.63).  The solution of the semimajor axis a  then allows for the solution of the other axes of 
each prolate spheroid and eccentricity of the C C -bond MO.  Since the C C -bond MO comprises a 2H -type-ellipsoidal MO 

that transitions to the 32alkaneC sp  HO of each carbon, the energy  3, 2alkaneE C sp  in Eq. (14.512) adds to that of the 2H -type 

ellipsoidal MO to give the total energy of the C C -bond MO.  From the energy equation and the relationship between the axes, 

the dimensions of the C C -bond MO are solved.  Similarly,  3, 2alkaneE C sp  is added to the energy of the 2H -type ellipsoidal 

MO of each C H  bond of the methyl and methylene groups to give their total energy.  From the energy equation and the 
relationship between the axes, the dimensions of the equivalent C H -bond MOs of the methyl and methylene groups in the 
alkane are solved. 

The general equations for the energy components of eV , pV , T , mV , and TE  of each C C -bond MO are the same as 

those of the CH  MO except that energy of the 32alkaneC sp  HO is used.  The energy components at each carbon atom 

superimpose linearly and may be treated independently.  Since each prolate spheroidal 2H -type MO transitions to the 32alkaneC sp  

HO of each corresponding carbon of the bond and the energy of the 32alkaneC sp  shell treated independently must remain constant 

and equal to the  3, 2alkaneE C sp  given by Eq. (14.512), the total energy  ' ,
alkaneTE C C   of the   component of each C C -

bond MO is given by the sum of the energies of the orbitals corresponding to the composition of the linear combination of the 
32alkaneC sp  HO and the 2H -type ellipsoidal MO that forms the   component of the C C -bond MO as given by Eq. (14.502) 

with the electron charge redistribution.  The total number of C C  bonds in 2 2n nC H   is 1n  .  Using Eqs. (13.431) and (14.512), 

 ,
alkaneTE C C   of the 1n   bonds is given by: 
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 (14.520) 

To match the boundary condition that the total energy of each 2H -type ellipsoidal MO is given by Eqs. (11.212) and (13.75), 

 ,
alkaneTE C C   given by Eq. (14.520) is set equal to  1n   times Eq. (13.75). 
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 0.91771 2 ln 1
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 (14.521) 

From the energy relationship given by Eq. (14.521) and the relationship between the axes given by Eqs. (14.153-14.154) and 
(13.62-13.63), the dimensions of the C C -bond MO can be solved. 

Substitution of Eq. (14.153) into Eq. (14.521) gives: 
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 0.91771 2 ln 1 16.07130
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 (14.522) 

The most convenient way to solve Eq. (14.522) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is:  
 10

02.12499 1.12450  10  a a X m   (14.523) 

Substitution of Eq. (14.523) into Eq. (14.155) gives: 
 11

01.45774 7.71400  10  c a X m    (14.524) 
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The internuclear distance given by multiplying Eq. (14.524) by two is:  

 10
02 2.91547 1.54280  10  c a X m    (14.525) 

The experimental C C  bond distance of propane is [3]: 

 102 1.532  10  c X m   (14.526) 

The experimental C C  bond distance of butane is [3]: 

 102 1.531  10  c X m   (14.527) 

Substitution of Eqs. (14.523-14.524) into Eq. (13.62) gives: 

 11
01.54616 8.18192  10  b c a X m    (14.528) 

Substitution of Eqs. (14.523-14.524) into Eq. (13.63) gives: 

 0.68600e   (14.529) 

The nucleus of the C  atoms comprise the foci of each 2H -type ellipsoidal MO.  The parameters of the point of intersection of 

the 2H -type ellipsoidal MO and the 32alkaneC sp  HO are given by Eqs. (13.84-13.95) and (13.261-13.270).  The polar intersection 

angle '  is given by Eq. (13.261) where for methylene bonds 3 3 02 2
=0.81549n alkane sp methylene sp

r r r a   is the radius of the 

32alkaneC sp  shell given by Eq. (14.519).  Substitution of Eqs. (14.523-14.524) into Eq. (13.261) gives: 

 ' 56.41    (14.530) 

Then, the angle 32alkaneC C sp HO



 the radial vector of the 32C sp  HO makes with the internuclear axis is: 

 32
180 56.41 123.59

alkaneC C sp HO



      (14.531) 

as shown in Figure 14.16. 
 
Figure 14.16.   The cross section of one C C -bond MO (  MO) and one C H -bond MO of 2 2n nC H   showing the axes, 

angles, and point of intersection of each 2H -type ellipsoidal MO with the corresponding 32alkaneC sp  HO.  The continuation of 

each 2H -type-ellipsoidal-MO basis element of the C C  bond and the C H -bond beyond the intersection point with each 
32alkaneC sp  shell and   MO is shown as dashed since each only serves to solve the energy match with the 32alkaneC sp  shell and 

does not represent charge density.  Similarly, the vertical dashed line only designates the parameters of each intersection point.  
The actual charge density is shown by the solid lines.  Legend: a : semimajor axis, b : semiminor axis, 'c : internuclear distance, 
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Consider the right-hand intersection point.  The Cartesian i -coordinate of the interception point of the MO and the AO can be 
calculated using the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -

coordinate components at the point of intersection.  Thus, the matching elliptic parametric angle 
2,alkaneC C H MOt    satisfies the 

following relationship: 
 3 3 3

20 ,2 2 2
sin 0.81549 sin sin

alkanealkane alkane
C C H MOalkane sp C C sp HO C C sp HO

r a b    
   (14.532) 

such that 
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2

0 21 1 0
,

0.81549 sin 0.81549 sin123.59
sin sinalkane
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C C sp HO
C C H MO

a a

b b


  




   (14.533) 

with the use of Eq. (14.531).  Substitution of Eq. (14.528) into Eq. (14.533) gives: 
 

2, 26.06
alkaneC C H MO     (14.534) 

Then, the distance 
2,alkaneC C H MOd   along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of intersection 

of the orbitals is given by 
 

2 2, ,cos
alkane alkaneC C H MO C C H MOd a    (14.535) 

Substitution of Eqs. (14.523) and (14.534) into Eq. (14.535) gives: 
 

2

10
, 01.90890 1.01015  10  

alkaneC C H MOd a X m
    (14.536) 

The distance 32alkaneC C sp HO
d


 along the internuclear axis from the origin of the C  atom to the point of intersection of the orbitals is 

given by: 
 3

2,2
'

alkanealkane
C C H MOC C sp HO

d d c
   (14.537) 

Substitution of Eqs. (14.524) and (14.536) into Eq. (14.537) gives: 
 3

11
02

0.45117 2.38748  10  
alkaneC C sp HO

d a X m


   (14.538) 

 
FORCE BALANCE OF THE 3CH  MOs OF CONTINUOUS-CHAIN ALKANES 
Each of the two 3CH  MOs must comprise three equivalent C H  bonds with each comprising 75% of a 2H -type ellipsoidal 

MO and a 32C sp  HO as given by Eq. (13.540). 

 3
2 33 1 2 0.75   C sp H MO CH MO     (14.539) 

The force balance of the 3CH  MO is determined by the boundary conditions that arise from the linear combination of orbitals 

according to Eq. (14.539) and the energy matching condition between the hydrogen and 32C sp  HO components of the MO. 

The force constant 'k  to determine the ellipsoidal parameter 'c  of the each 2H -type-ellipsoidal-MO component of the 

3CH  MO in terms of the central force of the foci is given by Eq. (13.59).  The distance from the origin of each C H -bond MO 

to each focus 'c  is given by Eq. (13.60).  The internuclear distance is given by Eq. (13.61).  The length of the semiminor axis of 
the prolate spheroidal C H -bond MO b c  is given by Eq. (13.62).  The eccentricity, e , is given by Eq. (13.63).  The solution 
of the semimajor axis a  then allows for the solution of the other axes of each prolate spheroid and eccentricity of each C H -
bond MO.  Since each of the three prolate spheroidal C H -bond MOs comprises an 2H -type-ellipsoidal MO that transitions to 

the 32alkaneC sp  HO of 2 2n nC H  , the energy  3, 2alkaneE C sp  of Eq. (14.512) adds to that of the three corresponding 2H -type 

ellipsoidal MOs to give the total energy of the 3CH  MO.  From the energy equation and the relationship between the axes, the 

dimensions of the 3CH  MO are solved. 

The energy components of eV , pV , T , and mV  are the same as those of methyl radical, three times those of CH  

corresponding to the three C H  bonds except that energy of the 32alkaneC sp  HO is used.  Since each prolate spheroidal 2H -

type MO transitions to the 32alkaneC sp  HO and the energy of the 32alkaneC sp  shell must remain constant and equal to the 

 3, 2alkaneE C sp  given by Eq. (14.512), the total energy  3alkaneTE CH  of the 3CH  MO is given by the sum of the energies of the 

orbitals corresponding to the composition of the linear combination of the 32alkaneC sp  HO and the three 2H -type ellipsoidal 

MOs that forms the 3CH  MO as given by Eq. (14.539).  Using Eq. (13.431) or Eq. (13.541),  3alkaneTE CH  is given by: 

      
2

3 0
3

0

3 1 '
, 2  0.91771 2 ln 1 15.56407 

8 ' 2 'TalkaneT alkane
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E CH E E C sp eV

c a a c
            

 (14.540) 

 3alkaneTE CH  given by Eq. (14.540) is set equal to three times the energy of the 2H -type ellipsoidal MO minus two times the 

Coulombic energy of H  given by Eq. (13.542): 
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E CH eV eV
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 (14.541) 
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From the energy relationship given by Eq. (14.541) and the relationship between the axes given by Eqs. (13.60-13.63), the 
dimensions of the 3CH  MO can be solved. 

Substitution of Eq. (13.60) into Eq. (14.541) gives: 
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 (14.542) 

The most convenient way to solve Eq. (14.542) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is:  
 11

01.64920 8.72720  10  a a X m   (14.543) 

Substitution of Eq. (14.543) into Eq. (14.60) gives: 
 11

01.04856 5.54872  10  c a X m    (14.544) 

The internuclear distance given by multiplying Eq. (14.544) by two is: 
 10

02 2.09711 1.10974  10  c a X m    (14.545) 

The experimental C H  bond distance of propane is [3]: 
 102 1.107  10  c X m   (14.546) 
Substitution of Eqs. (14.543-14.544) into Eq. (14.62) gives: 
 11

01.27295 6.73616  10  b c a X m    (14.547) 

Substitution of Eqs. (14.543-14.544) into Eq. (14.63) gives: 
 0.63580e   (14.548) 

The nucleus of the H  atom and the nucleus of the C  atom comprise the foci of each 2H -type ellipsoidal MO.  The 

parameters of the point of intersection of the 2H -type ellipsoidal MO and the 32alkaneC sp  HO are given by Eqs. (13.84-13.95) 

and (13.261-13.270).  The polar intersection angle '  is given by Eq. (13.261) where 3 02
0.86359n alkane sp

r r a   is the radius of 

the 32alkaneC sp  shell.  Substitution of Eqs. (14.543-14.544) into Eq. (13.261) gives: 

 ' 77.49    (14.549) 
Then, the angle 32alkaneC H sp HO




 the radial vector of the 32C sp  HO makes with the internuclear axis is: 

 32
180 77.49 102.51

alkaneC H sp HO



      (14.550) 

as shown in Figure 14.17.   
 
Figure 14.17.   The cross section of one C H -bond MO of 2 2n nC H   showing the axes, angles, and point of intersection of 

the 2H -type ellipsoidal MO with the 32alkaneC sp  HO.  The continuation of the 2H -type-ellipsoidal-MO basis element beyond the 

intersection point with the 32alkaneC sp  shell is shown as dashed since it only serves to solve the energy match with the 32alkaneC sp  

shell and does not represent charge density.  Similarly, the vertical dashed line only designates the parameters of the intersection 
point.  The actual charge density is shown by the solid lines.  Legend: a : semimajor axis, b : semiminor axis, 'c : internuclear 
distance, 
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The Cartesian i -coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal 
parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -coordinate components at the point 

of intersection.  Thus, the matching elliptic parametric angle 
2,alkaneC H H MOt    satisfies the following relationship: 

 3 3 3
20 ,2 2 2

sin 0.86359 sin sin
alkane alkane

C H H MOalkane sp C H sp HO C H sp HO alkane
r a b    

   (14.551) 

such that 
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   (14.552) 

with the use of Eq. (14.550).  Substitution of Eq. (14.547) into Eq. (14.552) gives: 
 

2, 41.48
alkaneC H H MO     (14.553) 

Then, the distance 
2,alkaneC H H MOd   along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of 

intersection of the orbitals is given by: 
 

2 2, ,cos
alkane alkaneC H H MO C H H MOd a    (14.554) 

Substitution of Eqs. (14.543) and (14.553) into Eq. (14.554) gives: 
 

2

11
0, 1.23564 6.53871  10  

alkaneC H H MOd a X m
    (14.555) 

The distance 32alkaneC H sp HO
d


 along the internuclear axis from the origin of the C  atom to the point of intersection of the orbitals 

is given by 
 3

2,2
'

alkanealkane
C H H MOC H sp HO

d d c
   (14.556) 

Substitution of Eqs. (14.544) and (14.555) into Eq. (14.556) gives: 
 3

12
02

0.18708 9.89999  10  
alkaneC H sp HO

d a X m


   (14.557) 

 

BOND ANGLE OF THE 3CH  AND 2CH  GROUPS 
Each 3CH  MO comprises a linear combination of three C H -bond MOs.  Each C H -bond MO comprises the superposition 

of a 2H -type ellipsoidal MO and the 32alkaneC sp  HO.  A bond is also possible between the two H atoms of the C H  bonds.  

Such H H  bonding would decrease the C H  bond strength since electron density would be shifted from the C H  bonds to 
the H H  bond.  Thus, the bond angle between the two C H  bonds is determined by the condition that the total energy of the 

2H -type ellipsoidal MO between the terminal H  atoms of the C H  bonds is zero.  From Eqs. (11.79) and (13.228), the 

distance from the origin to each focus of the H H  ellipsoidal MO is: 

 0 0
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2 2e

aa
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m e a


 


 (14.558) 

The internuclear distance from Eq. (14.558) is:  

 02 ' 2
2

aa
c   (14.559) 

The length of the semiminor axis of the prolate spheroidal H H  MO b c  is given by Eq. (14.62). 
The bond angle of the 3CH  groups of 2 2n nC H   is derived by using the orbital composition and an energy matching factor 

as in the case with the 3CH  radical.  Since each pair of 2H -type ellipsoidal MOs initially comprise 75% of the H  electron 

density of 2H  and the energy of each 2H -type ellipsoidal MO is matched to that of the 32alkaneC sp  HO, the component energies 

and the total energy TE  of the H H  bond are given by Eqs. (13.67-13.73) except that eV , T , and mV  are corrected for the 

hybridization-energy-matching factor of 0.86359 .  Hybridization with 25% electron donation to the C C -bond gives rise to 

the 32alkaneC sp  HO-shell Coulombic energy  3, 2Coulomb alkaneE C sp  given by Eq. (14.515).  The corresponding normalization 

factor for determining the zero of the total H H  bond energy is given by the ratio of 15.75493 eV , the magnitude of 

 3, 2Coulomb alkaneE C sp  given by Eq. (14.515), and 13.605804 eV , the magnitude of the Coulombic energy between the electron 

and proton of H  given by Eq. (1.264).  The hybridization energy factor 32alkaneC sp HO
C  is: 

 3

3

2 2

0 0 0 0
2 22

0 0 02

8 8 13.605804 
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8 8 0.86359

alkaneC sp HO
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e e
a a eV

C
e e eV
r a

 

 

     (14.560) 

Substitution of Eq. (14.558) into Eq. (13.233) with the hybridization factor of 0.86359  gives: 
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 (14.561) 

From the energy relationship given by Eq. (14.561) and the relationship between the axes given by Eqs. (14.558-14.559) and 
(14.62-14.63), the dimensions of the H H  MO can be solved. 

The most convenient way to solve Eq. (14.561) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is:  
 10

05.8660 3.1042  10  a a X m   (14.562) 

Substitution of Eq. (14.562) into Eq. (14.558) gives: 
 11

01.7126 9.0627  10  c a X m    (14.563) 

The internuclear distance given by multiplying Eq. (14.563) by two is:  
 10

02 3.4252 1.8125  10  c a X m    (14.564) 

Substitution of Eqs. (14.562-14.563) into Eq. (14.62) gives: 
 10

05.6104 2.9689  10  b c a X m    (14.565) 

Substitution of Eqs. (14.562-14.563) into Eq. (14.63) gives: 
 0.2920e   (14.566) 

Using 2 'H Hc   (Eq. (14.564)), the distance between the two H  atoms when the total energy of the corresponding MO is 

zero (Eq. (14.561)), and 2 'C Hc  , the internuclear distance of each C H  bond, the corresponding bond angle can be determined 

from the law of cosines.  Since the internuclear distance of each C H  bond of 3CH  (Eq. (14.545)) and 2CH  (Eq. (14.597)) are 

sufficiently equivalent, the bond angle determined with either is within experimental error of being the same.  Using, Eqs. 
(13.242), (14.545), and (14.564), the bond angle   between the C H  bonds is: 

 
   

 
 

2 2

1 1
2

2 2.09711 3.4252
cos cos 0.33383 109.50

2 2.09711
  

 
     

 
 

 (14.567) 

The experimental angle between the C H  bonds is [19]: 
 109.3    (14.568) 

The 3CH  radical has a pyramidal structure with the carbon atom along the z-axis at the apex and the hydrogen atoms at 

the base in the xy-plane.  The distance origin Hd   from the origin to the nucleus of a hydrogen atom given by Eqs. (14.564) and 

(13.412) is: 
 01.97754origin Hd a   (14.569) 

The height along the z-axis of the pyramid from the origin to C  nucleus heightd  given by Eqs. (13.414), (14.545), and (14.569) is 

 00.69800heightd a  (14.570) 

The angle v  of each C H  bond from the z-axis given by Eqs. (13.416), (14.569), and (14.570) is: 

 70.56°v   (14.571) 

The C C  bond is along the z-axis.  Thus, the bond angle C C H    between the internuclear axis of the C C  bond and a H  

atom of the methyl groups is given by: 
 180C C H v      (14.572) 

Substitution of Eq. (14.571) into Eq. (14.572) gives: 
 109.44°C C H     (14.573) 

The experimental angle between the C C H   bonds is [19]: 
 109.3C C H      (14.574) 

The 2 2n nC H   MOs shown in Figures 14.18-14.28 were rendered using these parameters.  A minimum energy is obtained with a 

staggered configuration consistent with observations [3]. 
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ENERGIES OF THE 3CH  GROUPS 
The energies of each 3CH  group of 2 2n nC H   are given by the substitution of the semiprincipal axes (Eqs. (14.543-14.544) and 

(14.547)) into the energy equations of methyl radical (Eqs. (13.556-13.560)), with the exception that  3, 2alkaneE C sp  (Eq. 

(14.514)) replaces  3, 2E C sp  in Eq. (13.560). 
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 (14.579)  

where  3alkaneTE CH  is given by Eq. (14.540) which is reiteratively matched to Eq. (13.542) within five-significant-figure round 

off error. 
 
VIBRATION OF THE 12

3CH  GROUPS 
The vibrational energy levels of the C H  bonds of 3CH  in 2 2n nC H   may be solved as three equivalent coupled harmonic 

oscillators by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] wherein the spring 
constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the 
Vibration of Hydrogen-Type Molecules section. 
 
THE DOPPLER ENERGY TERMS OF THE 12

3CH  GROUPS 
The equations of the radiation reaction force of the methyl groups in 2 2n nC H   are the same as those of the methyl radical with the 

substitution of the methyl-group parameters.  Using Eq. (13.561), the angular frequency of the reentrant oscillation in the 
transition state is: 

 

2

3
160

0.75
4

2.49286  10  /
e

e
b

X rad s
m

    (14.580) 

where b  is given by Eq. (14.547).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)). 

 162.49286  10  / 16.40846 KE X rad s eV     (14.581) 

In Eq. (11.181), substitution of  2TE H  (Eqs. (11.212) and (13.75)), the maximum total energy of each 2H -type MO, for hE  , 

the mass of the electron, em , for M , and the kinetic energy given by Eq. (14.581) for KE  gives the Doppler energy of the 

electrons of each of the three bonds for the reentrant orbit: 

 
 

2 2

2 16.40846 2
31.63537 0.25352 K

D h
e

e eVE
E E eV eV

Mc m c      (14.582) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of 3CH  due to the reentrant orbit of each bond in the transition state corresponding to 

simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by 

Eq. (14.582) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of each C H  bond.  

Using e  given by Eq. (13.458) for KvibE  of the transition state having three independent bonds,  12
 3'alkane oscE CH  per bond is: 

  12
 3

1
'

2alkane osc D Kvib D

k
E CH E E E


      (14.583) 

    12
 3

1
' 0.25352 0.35532 0.07586 

2alkane oscE CH eV eV eV      (14.584) 
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Given that the vibration and reentrant oscillation is for three C H  bonds,  12
3alkane oscE CH , is: 

    12
 3

1 1
3 3 0.25352 0.35532 0.22757 

2 2alkane osc D

k
E CH E eV eV eV


                

  (14.585) 

 
TOTAL BOND ENERGIES OF THE 12

3CH  GROUPS 
 12

3alkaneT oscE CH , the total energy of each 12
3CH  group including the Doppler term, is given by the sum of  3alkaneTE CH  (Eq. 

(14.579)) and  12
 3alkane oscE CH  given by Eq. (14.585). 

          12 3 12 12
3  3 3  3, 2

alkanealkaneT osc e m p alkane alkane osc T alkane oscE CH V T V V E C sp E CH E CH E CH          (14.586) 
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 (14.587)  

From Eqs. (14.585-14.587), the total energy of each 12
3CH  is: 

 
   

 

12 12
3  367.69450 

1
67.69450 3 0.25352 0.35532 67.92207 

2

alkaneT osc alkane oscE CH eV E CH

eV eV eV eV

   

       
 

 (14.588) 

where e  given by Eq. (13.458) was used for the 
k


  term. 

The total 3CH  bond dissociation energy,  12
3alkaneDE CH  is given by the sum of the initial 32C sp  HO energy,  3, 2E C sp  

(Eq. (14.146)), and three times the energy of the hydrogen atom,  DE H  (Eq. (13.154)), minus  12
3alkaneT oscE CH  (Eq. 

(14.588)). 
      12 3 12

3 3, 2 3 ( )
alkaneD alkaneT oscE CH E C sp E H E CH    (14.589) 

Thus, the total 12
3CH  bond dissociation energy,  12

3alkaneDE CH  is: 

 
       

 

12 12
3 214.63489 3 13.59844 

55.43021 67.92207 12.49186 

alkaneD alkaneT oscE CH eV eV E CH

eV eV eV

   

    
 (14.590) 

 
FORCE BALANCE OF THE 2CH  MOs OF CONTINUOUS-CHAIN ALKANES 
Each of the 2CH  MOs must comprise two equivalent C H  bonds with each comprising 75% of a 2H -type ellipsoidal MO and 

a 32C sp  HO as given by Eq. (13.494). 

 3
2 22 1 2 0.75   C sp H MO CH MO     (14.591) 

The force balance of each 2CH  MO is determined by the boundary conditions that arise from the linear combination of orbitals 

according to Eq. (14.591) and the energy matching condition between the hydrogen and 32C sp  HO components of the MO. 

The force constant 'k  to determine the ellipsoidal parameter 'c  of the each 2H -type-ellipsoidal-MO component of the 2CH  MO 

in terms of the central force of the foci is given by Eq. (13.59).  The distance from the origin of each C H -bond MO to each 
focus 'c  is given by Eq. (13.60).  The internuclear distance is given by Eq. (13.61).  The length of the semiminor axis of the 
prolate spheroidal C H -bond MO b c  is given by Eq. (13.62).  The eccentricity, e , is given by Eq. (13.63).  The solution of 
the semimajor axis a  then allows for the solution of the other axes of each prolate spheroid and eccentricity of each C H -bond 
MO.  Since each of the two prolate spheroidal C H -bond MOs comprises an 2H -type-ellipsoidal MO that transitions to the 

32alkaneC sp  HO of 2 2n nC H  , the energy  3, 2alkaneE C sp  of Eq. (14.512) adds to that of the two corresponding 2H -type ellipsoidal  
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MOs to give the total energy of the 2CH  MO.  From the energy equation and the relationship between the axes, the dimensions 

of the 2CH  MO are solved. 

The energy components of eV , pV , T , and mV  are the same as those of dihydrogen carbide radical, two times those of 

CH  corresponding to the two C H  bonds except that energy of the 32alkaneC sp  HO is used.  Since each prolate spheroidal 2H -

type MO transitions to the 32alkaneC sp  HO and the energy of the 32alkaneC sp  shell treated independently must remain constant and 

equal to the  3, 2alkaneE C sp  given by Eq. (14.512), the total energy  2alkaneTE CH  of the 2CH  MO is given by the sum of the 

energies of the orbitals corresponding to the composition of the linear combination of the 32alkaneC sp  HO and the two 2H -type 

ellipsoidal MOs that forms the 2CH  MO as given by Eq. (14.591).  Using Eq. (13.431) or Eq. (13.495),  2alkaneTE CH  is given 

by: 

      
2

3 0
2

0

2 1 '
, 2  0.91771 2 ln 1 15.56407 

8 ' 2 'alkaneT T alkane

ae a c
E CH E E C sp eV

c a a c
            

 (14.592) 

 2alkaneTE CH  given by Eq. (14.592) is set equal to two times the energy of the 2H -type ellipsoidal MO minus the Coulombic 

energy of H  given by Eq. (13.496). 
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0
2

0

2 1 '
 0.91771 2 ln 1 15.56407 49.66493 

8 ' 2 'T

ae a c
E CH eV eV

c a a c
            

 (14.593) 

From the energy relationship given by Eq. (14.593) and the relationship between the axes given by Eqs. (13.60-13.63), the 
dimensions of the 2CH  MO can be solved. 

Substitution of Eq. (13.60) into Eq. (14.593) gives: 
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 (14.594) 

The most convenient way to solve Eq. (14.594) is by the reiterative technique using a computer.  The result to within the round-
off error with five-significant figures is  
 11

01.67122 8.84370  10  a a X m   (14.595) 

Substitution of Eq. (14.595) into Eq. (14.60) gives: 
 11

01.05553 5.58563  10  c a X m    (14.596) 

The internuclear distance given by multiplying Eq. (14.596) by two is:  
 10

02 2.11106 1.11713  10  c a X m    (14.597) 

The experimental C H  bond distance of butane is [3]: 
 102 1.117  10  c X m   (14.598) 
Substitution of Eqs. (14.595-14.596) into Eq. (14.62) gives: 
 11

01.29569 6.85652  10  b c a X m    (14.599) 

Substitution of Eqs. (14.595-14.596) into Eq. (14.63) gives: 
 0.63159e   (14.600) 

The nucleus of the H  atom and the nucleus of the C  atom comprise the foci of each 2H -type ellipsoidal MO.  The 

parameters of the point of intersection of the 2H -type ellipsoidal MO and the 32alkaneC sp  HO are given by Eqs. (13.84-13.95) 

and (13.261-13.270).  The polar intersection angle '  is given by Eq. (13.261) where 3 02
0.81549n methylene sp

r r a   is the radius of 

the 32methyleneC sp  shell (Eq. (14.521)).  Substitution of Eqs. (14.595-14.596) into Eq. (13.261) gives: 

 ' 68.47    (14.601) 
Then, the angle 32alkaneC H sp HO




 the radial vector of the 32C sp  HO makes with the internuclear axis is: 

 32
180 68.47 111.53

C H sp HOalkane



      (14.602) 

as shown in Figure 14.17.  The Cartesian i -coordinate of the interception point of the MO and the AO can be calculated using 
the MO ellipsoidal parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -coordinate 

components at the point of intersection.  Thus, the matching elliptic parametric angle 
2,C H H MOalkane

t    satisfies the following 

relationship: 
 3 3 3

20 ,2 2 2
sin 0.81549 sin sin C H H MOalkane sp C H sp HO C H sp HO alkanealkane alkane

r a b    
   (14.603) 

such that 
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   (14.604) 

with the use of Eq. (14.602).  Substitution of Eq. (14.599) into Eq. (14.604) gives: 
 

2, 35.84C H H MOalkane
     (14.605) 

Then, the distance 
2,C H H MOalkane

d   along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of 

intersection of the orbitals is given by: 
 

2 2, ,cosC H H MO C H H MOalkane alkane
d a    (14.606) 

Substitution of Eqs. (14.595) and (14.605) into Eq. (14.606) gives: 
 

2

11
0, 1.35486 7.16963  10  C H H MOalkane

d a X m
    (14.607) 

The distance 32alkaneC H sp HO
d


 along the internuclear axis from the origin of the C  atom to the point of intersection of the orbitals 

is given by: 
 3

2,2
'C H H MOC H sp HO alkanealkane

d d c
   (14.608) 

Substitution of Eqs. (14.596) and (14.605) into Eq. (14.608) gives: 
 3

11
02

0.29933 1.58400  10  
C H sp HOalkane

d a X m


   (14.609) 

The charge-density in each C C -bond MO is increased by a factor of 0.25 with the formation of the 32alkaneC sp  HOs 

each having a smaller radius.  Using the orbital composition of the C C -bond MOs (Eq. (14.504)), 3CH  groups (Eq. (14.539)), 

and the 2CH  groups (Eq. (14.591)), the radii of 01 0.17113C s a  (Eq. (10.51)), 3
02 0.86359alkaneC sp a  (Eq. (14.514)), and 

3 3
02 2 0.81549alkane methyleneC sp C sp a   (Eq. (14.521)) shells, the parameters of the C C -bonds (Eqs. (13.3-13.4), (14.523-

14.525), and (14.528-14.538)), the parameters of the C H -bond MOs of the 3CH  groups (Eqs. (13.3-13.4), (14.544-14.545), 

and (14.547-14.557)), the parameters of the C H -bond MOs of the 2CH  groups (Eqs. (13.3-13.4), (14.595-14.597), and 

(14.599-14.609)), and the bond-angle parameters (Eqs. (14.562-14.574)), the charge-density of the 2 2n nC H   MO comprising the 

linear combination 2 2n   C H -bond MOs and 1n   C C -bond MOs, each bridging one or more methyl or methylene 
groups is shown for representative cases where data was available [17-18].  Propane, butane, pentane, hexane, heptane, octane, 
nonane, decane, undecane, dodecane, and octadecane are shown in Figures 14.18-14.28, respectively.  Each C H -bond MO 
comprises a 2H -type ellipsoidal MO and a 32alkaneC sp  HO having the dimensional diagram shown in Figure 14.16.  Each C C -

bond MO comprises a 2H -type ellipsoidal MO bridging two 32alkaneC sp  HOs having the dimensional diagram shown in Figure 

14.17. 
 

ENERGIES OF THE 2CH  GROUPS 
The energies of each 2CH  group of 2 2n nC H   are given by the substitution of the semiprincipal axes (Eqs. (14.595-14.596) and 

(14.599)) into the energy equations of dihydrogen carbide radical (Eqs. (13.510-13.514)), with the exception that 

 3, 2alkaneE C sp  (Eq. (14.512)) replaces  3, 2E C sp  in Eq. (13.514): 
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 (14.610) 
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  (14.611) 
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 (14.612) 
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 (14.613) 
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 0.91771 2 ln 1 15.56407 49.66493 
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ae a c
E CH eV eV
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 (14.614) 

where  2alkaneTE CH  is given by Eq. (14.592) which is reiteratively matched to Eq. (13.496) within five-significant-figure round 

off error. 
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VIBRATION OF THE 12
2CH  GROUPS 

The vibrational energy levels of the C H  bonds of 2CH  in 2 2n nC H   may be solved as two equivalent coupled harmonic 

oscillators by developing the Lagrangian, the differential equation of motion, and the eigenvalue solutions [9] wherein the spring 
constants are derived from the central forces as given in the Vibration of Hydrogen-Type Molecular Ions section and the 
Vibration of Hydrogen-Type Molecules section. 
 
THE DOPPLER ENERGY TERMS OF THE 12

2CH  GROUPS 
The equations of the radiation reaction force of the methylene groups in 2 2n nC H   are the same as those of the dihydrogen carbide 

radical with the substitution of the methylene-group parameters.  Using Eq. (13.515), the angular frequency of the reentrant 
oscillation in the transition state is: 

 

2
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160

0.75
4

2.42751  10  /
e

e
b

X rad s
m

    (14.615) 

where b  is given by Eq. (14.599).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)). 

 162.42751  10  / 15.97831 KE X rad s eV     (14.616) 

In Eq. (11.181), substitution of  2TE H  (Eqs. (11.212) and (13.75)), the maximum total energy of each 2H -type MO, for hE  , 

the mass of the electron, em , for M , and the kinetic energy given by Eq. (14.616) for KE  gives the Doppler energy of the 

electrons of each of the three bonds for the reentrant orbit: 

 
 

2 2

2 15.97831 2
31.63537 0.25017 K

D h
e

e eVE
E E eV eV

Mc m c      (14.617) 

In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of 2CH  due to the reentrant orbit of each bond in the transition state corresponding to 

simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding energies, DE  given by 

Eq. (14.617) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of each C H  bond.  

Using e  given by Eq. (13.458) for KvibE  of the transition state having two independent bonds,  12
 2'alkane oscE CH  per bond is: 

  12
 2

1
'

2alkane osc D Kvib D

k
E CH E E E


      (14.618) 

    12
 2

1
' 0.25017 0.35532 0.07251 

2alkane oscE CH eV eV eV      (14.619) 

Given that the vibration and reentrant oscillation is for two C H  bonds,  12
2alkane oscE CH , is: 
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1 1
2 2 0.25017 0.35532 0.14502 

2 2alkane osc D

k
E CH E eV eV eV


                

  (14.620) 

 
TOTAL BOND ENERGIES OF THE 12

2CH  GROUPS 
 12

2alkaneT oscE CH , the total energy of each 12
2CH  group including the Doppler term, is given by the sum of  2alkaneTE CH  (Eq. 

(14.614)) and  12
 2alkane oscE CH  given by Eq. (14.620). 
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 (14.621) 
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 (14.622) 
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From Eqs. (14.620-14.622), the total energy of each 12
2CH  is: 

 
   

 

12 12
2  249.66493 

1
49.66493 2 0.25017 0.35532 49.80996 

2

alkaneT osc alkane oscE CH eV E CH

eV eV eV eV

   

       
 

 (14.623) 

where e  given by Eq. (13.458) was used for the 
k


  term. 

The derivation of the total 2CH  bond dissociation energy,  12
2alkaneDE CH  follows from that of the bond dissociation 

energy of dihydrogen carbide radical,  12
2DE CH , given by Eqs. (13.524-13.527).   12

2alkaneDE CH  is given by the sum of the 

initial 32C sp  HO energy,  3, 2E C sp  (Eq. (14.146)), and two times the energy of the hydrogen atom,  E H  (Eq. (13.154)), 

minus the sum of  12
2alkaneT oscE CH  (Eq. (14.623)) and ( )E magnetic  (Eq. (13.524)): 

        12 3 12
2 2, 2 2 ( )

alkaneD alkaneT oscE CH E C sp E H E CH E magnetic     (14.624) 

Thus, the total 12
2CH  bond dissociation energy,  12

2alkaneDE CH  is: 

 
         

 

12 12
2 214.63489 2 13.59844 

                      41.83177 49.80996 0.14803 7.83016 

alkaneD alkaneT oscE CH eV eV E CH E magnetic

eV eV eV eV

    

     
 (14.625) 

 
SUM OF THE ENERGIES OF THE C C    MOs AND THE HOs OF CONTINUOUS-
CHAIN ALKANES 
The energy components of eV , pV , T , mV , and TE  of the C C -bond MOs are the same as those of the CH  MO except that 

energy of the 32alkaneC sp  HO is used.  The energies of each C C -bond MO are given by the substitution of the semiprincipal 

axes (Eqs. (14.523-14.524) and (14.528)) into the energy equations of the CH  MO (Eqs. (13.449-13.453)), with the exception 

that  3, 2alkaneE C sp  (Eq. (14.512)) replaces  3, 2E C sp  in Eq. (13.453).  The total number of C C  bonds of 2 2n nC H   is 1n  .  

Thus, the energies of the 1n   bonds is given by: 
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 (14.626) 
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  (14.627) 
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 (14.628) 
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 (14.629) 
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 (14.630) 

where  ,
alkaneTE C C   is the total energy of the C C    MOs given by Eq. (14.520) which is reiteratively matched to Eq. 

(13.75) within five-significant-figure round off error. 
Since there are two carbon atoms per bond, the number of C C  bonds is 1n  , and the energy change of each 32C sp  

shell due to the decrease in radius with the formation of each C C -bond MO is  3, 2
alkaneTE C C sp  (Eq. (14.517)), the total 

energy of the C C -bond MOs,  
alkaneTE C C , is given by the sum of    32 1 ,2

alkaneTn E C C sp   and  ,
alkaneTE C C  , the   

MO contribution given by Eq. (14.630). 
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 (14.631) 

 

VIBRATION OF CONTINUOUS-CHAIN ALKANES 
The vibrational energy levels of the C C  bonds of 2 2n nC H   may be solved as 1n   sets of coupled carbon harmonic oscillators 

wherein each carbon is further coupled to two or three equivalent H  harmonic oscillators by developing the Lagrangian, the 
differential equation of motion, and the eigenvalue solutions [9] wherein the spring constants are derived from the central forces 
as given in the Vibration of Hydrogen-Type Molecular Ions section and the Vibration of Hydrogen-Type Molecules section. 
 
THE DOPPLER ENERGY TERMS OF THE C C -BOND MOs OF CONTINUOUS-CHAIN 
ALKANES 
The equations of the radiation reaction force of each symmetrical C C -bond MO are given by Eqs. (11.231-11.233), except the 
force-constant factor is 0.5  based on the force constant 'k  of Eq. (14.152), and the C C -bond MO parameters are used.  The 
angular frequency of the reentrant oscillation in the transition state is: 
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e

e
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X rad s
m

    (14.632) 

where a  is given by Eq. (14.523).  The kinetic energy, KE , is given by Planck's equation (Eq. (11.127)). 

 159.43699  10  / 6.21159 KE X rad s eV     (14.633) 

In Eq. (11.181), substitution of  
alkaneTE C C  (Eq. (14.631)) with 2n   for hE  , the mass of the electron, em , for M , and the 

kinetic energy given by Eq. (14.633) for KE  gives the Doppler energy of the electrons of each of the bonds for the reentrant 

orbit: 
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In addition to the electrons, the nuclei also undergo simple harmonic oscillation in the transition state at their corresponding 
frequency.  The decrease in the energy of each C C -bond MO due to the reentrant orbit of the bond in the transition state 
corresponding to simple harmonic oscillation of the electrons and nuclei, oscE , is given by the sum of the corresponding 

energies, DE  given by Eq. (14.634) and KvibE , the average kinetic energy of vibration which is 1/2 of the vibrational energy of 

each C C  bond.  Using the ethane experimental C C   3vibE   of  1993  0.12312 cm eV  [10] for KvibE  of the transition 

state having 1n   independent bonds,   ' ,alkane oscE C C   per bond is:  

   

1
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2alkane osc D Kvib D

k
E C C E E E


       (14.635) 

     

1
' , 0.16515 0.12312 0.10359 

2alkane oscE C C eV eV eV       (14.636) 

Given that the vibration and reentrant oscillation is for 1n   C C  bonds,   ,alkane oscE C C  , is: 
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 (14.637) 

 
TOTAL ENERGIES OF THE C C -BOND MOs OF CONTINUOUS-CHAIN ALKANES 

 alkaneT oscE C C  , the total energy of the 1n   bonds of the C C -bond MOs including the Doppler term, is given by the sum 

of  
alkaneTE C C  (Eq. (14.631)) and   ,alkane oscE C C   given by Eq. (14.637). 
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 (14.639) 

From Eqs. (14.637-14.639), the total energy of the 1n   bonds of the C C -bond MOs is: 
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 (14.640) 

where the experimental vibE  was used for the 
k


  term. 

 
TOTAL BOND ENERGY OF THE C C  BONDS OF CONTINUOUS-CHAIN ALKANES 
Since there are two carbon atoms per bond and the number of C C  bonds is 1n  , the total bond energy of the C C  bonds of 

2 2n nC H  ,   1D n
E C C


 , is given by    32 1 ,2n E C sp  minus  alkaneT oscE C C   (Eq. (14.640)) where  3, 2E C sp  (Eq. 

(14.146)) is the initial energy of each 32C sp  HO of the 3CH  and 2CH  groups that bond to the C C  bonds.  Thus, the total 

dissociation energy of the C C  bonds of 2 2n nC H  , is: 
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1 2 1 ,2

                     2 1 14.63489 1 33.59732 

                     1 2 14.63489 33.59732 1 4.32754 

nD alakneT oscE C C n E C sp E C C

n eV n eV

n eV eV n eV

     

     

      

 (14.641) 

 
TOTAL ENERGY OF CONTINUOUS-CHAIN ALKANES 

 2 2D n nE C H  , the total bond dissociation energy of 2 2n nC H  , is given as the sum of the energy components due to the two 

methyl groups, 2n   methylene groups, and 1n   C C  bonds where each energy component is given by Eqs. (14.590), 
(14.625), and (14.641), respectively.  Thus, the total bond dissociation energy of 2 2n nC H   is: 

 
         

       

12 12
12 2 3 22 2

                    1 4.32754 2 12.49186 2 7.83016 

nD n n D alkane alkaneD DE C H E C C E CH n E CH

n eV eV n eV

     

    
 (14.642) 

The experimental total bond dissociation energy of 2 2n nC H  ,  
exp 2 2D n nE C H  , is given by the negative difference between 

the enthalpy of its formation (   2 2f n nH C H gas ) and the sum of the enthalpy of the formation of the reactant gaseous 

carbons (   fH C gas ) and hydrogen (   fH H gas ) atoms: 

 
             

     
exp 2 2 2 2

2 2

2 2

                       7.42774 2 2 2.259353 

D n n f n n f f

f n n

E C H H C H gas n H C gas n H H gas

H C H gas n eV n eV

 



         

       
 (14.643) 

where the heats of formation atomic carbon and hydrogen gas are given by [17-18]: 
     716.68 /  7.42774 /fH C gas kJ mole eV atom   (14.644) 
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     217.998 /  2.259353 /fH H gas kJ mole eV atom   (14.645) 

Using the corresponding experimental   2 2f n nH C H gas  [18],  2 2D n nE C H   was determined for propane, butane, 

pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, and octadecane in the corresponding sections, and the 
results of the determination of the total energies are given in Table 14.1.  The calculated results are based on first principles and 
given in closed-form, exact equations containing fundamental constants only.  The agreement between the experimental and 
calculated results is excellent. 

Using the results for 2 2n nC H   and the functional groups as basis sets that are linearly combined, the exact solution for the 

dimensional parameters, charge density functions, and energies of all molecules can be obtained.  For example, one or more of 
the hydrogen atoms of the solution for 2 2n nC H   can be substituted with one or more of the previously solved functional groups or 

derivative functional groups to give a desired molecule.  The solution is given by energy matching each group to 2 2n nC H  .  

Substitution of one or more H ’s of 2 2n nC H   with functional groups from the list of 3CH , other 2 2n nC H   groups, 2 2H C CH , 

HC CH , F , Cl , O , OH , NH , 2NH , CN , NO , 2NO , CO , 2CO , and 6 6C H  give the solutions of branched alkanes, 

alkenes, and alkynes, alkyl halides, ethers, alcohols, amides, amines, nitriles, alkyl nitrosos, alkyl nitrates, aldehydes, ketones, 
carbolylic acids, esters, and substituted aromatics. 
 

PROPANE ( 3 8C H ) 
Using Eq. (14.642) with 3n  , the total bond dissociation energy of 3 8C H  is: 

 
       

        

12 12
3 8 3 22

2

                    2 4.32754 2 12.49186 1 7.83016 41.46896 

alkane alkaneD D D DE C H E C C E CH E CH

eV eV eV eV

   

   
 (14.646) 

Using Eq. (14.643), the experimental total bond dissociation energy of 3 8C H ,  
exp 3 8DE C H , given by the negative difference 

between the enthalpy of its formation (   3 8 1.0758 fH C H gas eV   ) [18] and the sum of the enthalpy of the formation of 

the gaseous carbons (   fH C gas ) and hydrogen (   fH H gas ) atoms is: 

 
           

    
exp 3 8 3 8 3 8

                 1.0758 3 7.42774 8 2.259353 41.434 

D f f fE C H H C H gas H C gas H H gas

eV eV eV eV

        

       
 (14.647) 

The charge-density of the 3 8C H  molecular orbital (MO) comprising a linear combination of two methyl groups and one 

methylene group is shown in Figure 14.18. 
 
Figure 14.18.   3 8C H  MO comprising a linear combination of C H -bond MOs and C C -bond MOs of the two methyl 

groups and one methylene group.  (A) Color scale, translucent view of the charge-density of the C C -bond and C H -bond 
MOs and the 3

propane 2C sp  HOs.  Each C C -bond MO comprises a 2H -type ellipsoidal MO bridging two 32propaneC sp  HOs.  For 

each C H  and the C C  bond, the ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to the 32propaneC sp  HO, 

the 32propaneC sp  HO shell, inner most 1C s  shell, and the nuclei (red, not to scale), are shown.  (B) Opaque view highlighting the 

C C -bond MOs of the charge-density of the 3 8C H  MO. 
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BUTANE ( 4 10C H ) 
Using Eq. (14.642) with 4n  , the total bond dissociation energy of 4 10C H  is: 
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2 2
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                 53.62666 
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 (14.648) 

Using Eq. (14.643), the experimental total bond dissociation energy of 4 10C H ,  
exp 4 10DE C H , given by the negative difference 

between the enthalpy of its formation (   4 10 1.3028 fH C H gas eV   ) [18] and the sum of the enthalpy of the formation of 

the gaseous carbons (   fH C gas ) and hydrogen (   fH H gas ) atoms is: 

 

           
    

exp 4 10 4 10 4 10

                 1.3028 4 7.42774 10 2.259353 

                 53.61 

D f f fE C H H C H gas H C gas H H gas

eV eV eV

eV

        

      


 (14.649) 

The charge-density of the 4 10C H  molecular orbital (MO) comprising a linear combination of two methyl and two methylene 

groups is shown in Figure 14.19. 
 
Figure 14.19.   4 10C H  MO comprising a linear combination of C H -bond MOs and C C -bond MOs of the two methyl 

and two methylene groups.  (A) Color scale, translucent view of the charge-density of the C C -bond and C H -bond MOs 
and the 3

butane 2C sp  HOs.  Each C C -bond MO comprises a 2H -type ellipsoidal MO bridging two 3
butane 2C sp  HOs.  For each 

C H  and the C C  bond, the ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to the 3
butane 2C sp  HO, the 

3
butane 2C sp  HO shell, inner most 1C s  shell, and the nuclei (red, not to scale), are shown.  (B) Opaque view highlighting the 

C C -bond MOs of the charge-density of the 4 10C H  MO. 
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PENTANE ( 5 12C H ) 
Using Eq. (14.642) with 5n  , the total bond dissociation energy of 5 12C H  is: 
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 (14.650) 

Using Eq. (14.643), the experimental total bond dissociation energy of 5 12C H ,  
exp 5 12DE C H , given by the negative difference 

between the enthalpy of its formation (   5 12 1.5225 fH C H gas eV   ) [18] and the sum of the enthalpy of the formation of 

the gaseous carbons (   fH C gas ) and hydrogen (   fH H gas ) atoms is: 

 

           
    

exp 5 12 5 12 5 12
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 (14.651) 

The charge-density of the 5 12C H  molecular orbital (MO) comprising a linear combination of two methyl and three methylene 

groups is shown in Figure 14.20. 
 
Figure 14.20.   5 12C H  MO comprising a linear combination of C H -bond MOs and C C -bond MOs of the two methyl 

and three methylene groups.  (A) Color scale, translucent view of the charge-density of the C C -bond and C H -bond MOs 
and the 3

pentane 2C sp  HOs.  Each C C -bond MO comprises a 2H -type ellipsoidal MO bridging two 3
pentane 2C sp  HOs.  For each 

C H  and the C C  bond, the ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to the 3
pentane 2C sp  HO, the 

3
pentane 2C sp  HO shell, inner most 1C s  shell, and the nuclei (red, not to scale), are shown.  (B) Opaque view highlighting the 

C C -bond MOs of the charge-density of the 5 12C H  MO. 
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HEXANE ( 6 14C H ) 
Using Eq. (14.642) with 6n  , the total bond dissociation energy of 6 14C H  is: 
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 (14.652) 

Using Eq. (14.643), the experimental total bond dissociation energy of 6 14C H ,  
exp 6 14DE C H , given by the negative difference 

between the enthalpy of its formation (   6 14 1.7298 fH C H gas eV   ) [18] and the sum of the enthalpy of the formation of 

the gaseous carbons (   fH C gas ) and hydrogen (   fH H gas ) atoms is: 
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 (14.653) 

The charge-density of the 6 14C H  molecular orbital (MO) comprising a linear combination of two methyl and four methylene 

groups is shown in Figure 14.21. 
 
Figure 14.21.   6 14C H  MO comprising a linear combination of C H -bond MOs and C C -bond MOs of the two methyl 

and four methylene groups.  (A) Opaque view of the charge-density of the C C -bond and C H -bond MOs.  Each C C -
bond MO comprises a 2H -type ellipsoidal MO bridging two 3

hexane 2C sp  HOs.  (B) Translucent view high-lighting the C C -

bond MOs of the charge-density of the 6 14C H  MO.  For each C H  and the C C  bond, the ellipsoidal surface of the 2H -type 

ellipsoidal MO that transitions to the 3
hexane 2C sp  HO, the 3

hexane 2C sp  HO shell, inner most 1C s  shell, and the nuclei (red, not to 

scale), are shown. 
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HEPTANE ( 7 16C H ) 
Using Eq. (14.642) with 7n  , the total bond dissociation energy of 7 16C H  is: 
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 (14.654) 

Using Eq. (14.643), the experimental total bond dissociation energy of 7 16C H ,  
exp 7 16DE C H , given by the negative difference 

between the enthalpy of its formation (   7 16 1.9443 fH C H gas eV   ) [18] and the sum of the enthalpy of the formation of 

the gaseous carbons (   fH C gas ) and hydrogen (   fH H gas ) atoms is: 
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 (14.655) 

The charge-density of the 7 16C H  MO comprising a linear combination of two methyl and five methylene groups is shown in 

Figure 14.22. 
 
Figure 14.22.   7 16C H  MO comprising a linear combination of C H -bond MOs and C C -bond MOs of the two methyl 

and five methylene groups.  (A) Opaque view of the charge-density of the C C -bond and C H -bond MOs.  Each C C -
bond MO comprises a 2H -type ellipsoidal MO bridging two 3

heptane 2C sp  HOs.  (B) Translucent view high-lighting the C C -

bond MOs of the charge-density of the 7 16C H  MO.  For each C H  and the C C  bond, the ellipsoidal surface of the 2H -type 

ellipsoidal MO that transitions to the 3
heptane 2C sp  HO, the 3

heptane 2C sp  HO shell, inner most 1C s  shell, and the nuclei (red, not 

to scale), are shown. 
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OCTANE ( 8 18C H ) 
Using Eq. (14.642) with 8n  , the total bond dissociation energy of 8 18C H  is: 
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 (14.656) 

Using Eq. (14.643), the experimental total bond dissociation energy of 8 18C H ,  
exp 8 18DE C H , given by the negative difference 

between the enthalpy of its formation (   8 18 2.1609 fH C H gas eV   ) [18] and the sum of the enthalpy of the formation of 

the gaseous carbons (   fH C gas ) and hydrogen (   fH H gas ) atoms is: 
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 (14.657) 

The charge-density of the 8 18C H  MO comprising a linear combination of two methyl and six methylene groups is shown in 

Figure 14.23. 
 
Figure 14.23.  8 18C H  MO comprising a linear combination of C H -bond MOs and C C -bond MOs of the two methyl and 

six methylene groups.  (A) Opaque view of the charge-density of the C C -bond and C H -bond MOs.  Each C C -bond MO 
comprises a 2H -type ellipsoidal MO bridging two 3

octane 2C sp  HOs.  (B) Translucent view high-lighting the C C -bond MOs of 

the charge-density of the 8 18C H  MO.  For each C H  and the C C  bond, the ellipsoidal surface of the 2H -type ellipsoidal 

MO that transitions to the 3
octane 2C sp  HO, the 3

octane 2C sp  HO shell, inner most 1C s  shell, and the nuclei (red, not to scale), are 

shown. 
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NONANE ( 9 20C H ) 
Using Eq. (14.642) with 9n  , the total bond dissociation energy of 9 20C H  is: 

 

       
        

12 12
9 20 3 28

2 7

                  8 4.32754 2 12.49186 7 7.83016 

                  114.41516 

alkane alkaneD D D DE C H E C C E CH E CH

eV eV eV

eV

   

  



 (14.658) 

Using Eq. (14.643), the experimental total bond dissociation energy of 9 20C H ,  
exp 9 20DE C H , given by the negative difference 

between the enthalpy of its formation (   9 20 2.3651 fH C H gas eV   ) [18] and the sum of the enthalpy of the formation of 

the gaseous carbons (   fH C gas ) and hydrogen (   fH H gas ) atoms is: 
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 (14.659) 

The charge-density of the 9 20C H  MO comprising a linear combination of two methyl and seven methylene groups is shown in 

Figure 14.24. 
 
Figure 14.24.  9 20C H  MO comprising a linear combination of C H -bond MOs and C C -bond MOs of the two methyl 

and seven methylene groups.  (A) Opaque view of the charge-density of the C C -bond and C H -bond MOs.  Each C C -
bond MO comprises a 2H -type ellipsoidal MO bridging two 3

nonane 2C sp  HOs.  (B) Translucent view high-lighting the C C -

bond MOs of the charge-density of the 9 20C H  MO.  For each C H  and the C C  bond, the ellipsoidal surface of the 2H -type 

ellipsoidal MO that transitions to the 3
nonane 2C sp  HO, the 3

nonane 2C sp  HO shell, inner most 1C s  shell, and the nuclei (red, not to 

scale), are shown. 
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DECANE ( 10 22C H ) 
Using Eq. (14.642) with 10n  , the total bond dissociation energy of 10 22C H  is: 
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 (14.660) 

Using Eq. (14.643), the experimental total bond dissociation energy of 10 22C H ,  10 22expDE C H , given by the negative difference 

between the enthalpy of its formation (   10 22 2.5858 fH C H gas eV   ) [18] and the sum of the enthalpy of the formation of 

the gaseous carbons (   fH C gas ) and hydrogen (   fH H gas ) atoms is: 
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 (14.661) 

The charge-density of the 10 22C H  molecular orbital (MO) comprising a linear combination of two methyl and eight methylene 

groups is shown in Figure 14.25. 
 
Figure 14.25.   10 22C H  MO comprising a linear combination of C H -bond MOs and C C -bond MOs of the two methyl 

and eight methylene groups.  (A) Opaque view of the charge-density of the C C -bond and C H -bond MOs.  Each C C -
bond MO comprises a 2H -type ellipsoidal MO bridging two 3

decane 2C sp  HOs.  (B) Translucent view high-lighting the C C -

bond MOs of the charge-density of the 10 22C H  MO.  For each C H  and the C C  bond, the ellipsoidal surface of the 2H -type 

ellipsoidal MO that transitions to the 3
decane 2C sp  HO, the 3

decane 2C sp  HO shell, inner most 1C s  shell, and the nuclei (red, not to 

scale), are shown. 
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UNDECANE ( 11 24C H ) 
Using Eq. (14.642) with 11n  , the total bond dissociation energy of 11 24C H  is: 
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 (14.662) 

Using Eq. (14.643), the experimental total bond dissociation energy of 11 24C H ,  
exp 11 24DE C H , given by the negative difference 

between the enthalpy of its formation (   11 24 2.8066 fH C H gas eV   ) [18] and the sum of the enthalpy of the formation of 

the gaseous carbons (   fH C gas ) and hydrogen (   fH H gas ) atoms is: 
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 (14.663) 

The charge-density of the 11 24C H  MO comprising a linear combination of two methyl and nine methylene groups is shown in 

Figure 14.26. 
 
Figure 14.26.   11 24C H  MO comprising a linear combination of C H -bond MOs and C C -bond MOs of the two methyl 

and nine methylene groups.  (A) Opaque view of the charge-density of the C C -bond and C H -bond MOs.  Each C C -
bond MO comprises a 2H -type ellipsoidal MO bridging two 3

undecane 2C sp  HOs.  (B) Translucent view high-lighting the C C -

bond MOs of the charge-density of the 11 24C H  MO.  For each C H  and the C C  bond, the ellipsoidal surface of the 2H -type 

ellipsoidal MO that transitions to the 3
undecane 2C sp  HO, the 3

undecane 2C sp  HO shell, inner most 1C s  shell, and the nuclei (red, 

not to scale), are shown. 
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DODECANE ( 12 26C H ) 
Using Eq. (14.642) with 12n  , the total bond dissociation energy of 12 26C H  is: 
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 (14.664) 

Using Eq. (14.643), the experimental total bond dissociation energy of 12 26C H ,  12 26expDE C H , given by the negative difference 

between the enthalpy of its formation (   12 26 2.9994 fH C H gas eV   ) [18] and the sum of the enthalpy of the formation of 

the gaseous carbons (   fH C gas ) and hydrogen (   fH H gas ) atoms is: 
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 (14.665) 

The charge-density of the 12 26C H  MO comprising a linear combination of two methyl and ten methylene groups is shown in 

Figure 14.27. 
 
Figure 14.27.   12 26C H  MO comprising a linear combination of C H -bond MOs and C C -bond MOs of the two methyl 

and ten methylene groups.  (A) Opaque view of the charge-density of the C C -bond and C H -bond MOs.  Each C C -bond 
MO comprises a 2H -type ellipsoidal MO bridging two 3

dodecane 2C sp  HOs.  (B) Translucent view high-lighting the C C -bond 

MOs of the charge-density of the 12 26C H  MO.  For each C H  and the C C  bond, the ellipsoidal surface of the 2H -type 

ellipsoidal MO that transitions to the 3
dodecane 2C sp  HO, the 3

dodecane 2C sp  HO shell, inner most 1C s  shell, and the nuclei (red, 

not to scale), are shown. 
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OCTADECANE ( 18 38C H ) 
Using Eq. (14.642) with 18n  , the total bond dissociation energy of 18 38C H  is: 
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 (14.666) 

Using Eq. (14.643), the experimental total bond dissociation energy of 18 38C H ,  
exp 18 38DE C H , given by the negative difference 

between the enthalpy of its formation (   18 38 4.2970 fH C H gas eV   ) [18] and the sum of the enthalpy of the formation of 

the gaseous carbons (   fH C gas ) and hydrogen (   fH H gas ) atoms is: 
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 (14.667) 

The charge-density of the 18 38C H  molecular orbital (MO) comprising a linear combination of two methyl and sixteen methylene 

groups is shown in Figure 14.28. 
 
Figure 14.28.   18 38C H  MO comprising a linear combination of C H -bond MOs and C C -bond MOs of the two methyl 

and sixteen methylene groups.  (A) Opaque view of the charge-density of the C C -bond and C H -bond MOs.  Each C C -
bond MO comprises a 2H -type ellipsoidal MO bridging two 3

octadecane 2C sp  HOs.  (B) Translucent view high-lighting the C C -

bond MOs of the charge-density of the 18 38C H  MO.  For each C H  and the C C  bond, the ellipsoidal surface of the 2H -type 

ellipsoidal MO that transitions to the 3
octadecane 2C sp  HO, the 3

octadecane 2C sp  HO shell, inner most 1C s  shell, and the nuclei (red, 

not to scale), are shown. 
 

 
 

 



More Polyatomic Molecules and Hydrocarbons 691

Table 14.1.   The calculated and experimental bond parameters of 2CO , 2NO , 3 3CH CH , 2 2CH CH , CHCH , benzene, 

propane, butane, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, and octadecane. 
 

Parameter Calculated Experimental Ref. for Exp. 

2CO  Bond Energy 5.49553 eV 5.51577 eV 7 

2CO  Bond Length 1.1616 Å 1.1600 Å 3 

2NO  Bond Energy 3.1532 eV 3.161 eV 7 

2NO  Bond Length 1.1872 Å 1.193 Å 3 

2NO  Bond Angle 131.012° 134.1° 3 

3 3H C CH  Bond Energy 3.90245 eV 3.8969 eV 7 

3 3H C CH  Bond Length 1.53635 Å 1.5351 Å 3 

2 3H CH CH  Bond Length 1.10822 Å 1.0940 Å 3 

Ethane H C H   Bond Angle 107.44° 107.4° 8 

Ethane C C H   Bond Angle 111.44° 111.17° 3 

2 2H C CH  Bond Energy 7.55681 eV 7.597 eV 7 

2 2H C CH  Bond Length 1.3405 Å 1.339 Å 3 

2H CHCH  Bond Length 1.0826 Å 1.087 Å 3 

Ethylene H C H   Bond Angle 116.31° 116.6° 11 

Ethylene C C H   Bond Angle 121.85° 121.7° 11 

HC CH  Bond Energy 10.07212 eV 10.0014 eV 7 

HC CH  Bond Length 1.2007 Å 1.203 Å 3 

H CCH  Bond Length 1.0538 Å 1.060 Å 3 

Acetylene C C H   Bond Angle 180° 180° 6 

6 6C H  Total Bond Energy 57.2601 eV 57.26 eV 17-18 

Benzene C C  Bond Length 1.3914 Å 1.399 Å 3 

6 5H C H  Bond Length 1.0933 Å 1.101 Å 3 

6 6C H  C C C   Bond Angle 120° 120° 13-15 

6 6C H  C C H   Bond Angle 120° 120° 13-15 

3 8C H  Total Bond Energy 41.46896 eV 41.434 eV 17-18 

Propane C C  Bond Length 1.5428 Å 1.532 Å 3 

Propane C H  Bond Length 1.1097 Å 1.107 Å 3 

Alkane H C H   Bond Angle 109.50° 109.3° 19 

Alkane C C H   Bond Angle 109.44° 109.3° 19 

4 10C H  Total Bond Energy 53.62666 eV 53.61 eV 17-18 

Butane C C  Bond Length 1.5428 Å 1.531 Å 3 

Butane C H  Bond Length 1.11713 Å 1.117 Å 3 

5 12C H  Total Bond Energy 65.78436 eV 65.77 eV 17-18 

6 14C H  Total Bond Energy 77.94206 eV 77.93 eV 17-18 

7 16C H  Total Bond Energy 90.09976 eV 90.09 eV 17-18 

8 18C H  Total Bond Energy 102.25746 eV 102.25 eV 17-18 

9 20C H  Total Bond Energy 114.41516 eV 114.40 eV 17-18 

10 22C H  Total Bond Energy 126.57286 eV 126.57 eV 17-18 

11 24C H  Total Bond Energy 138.73056 eV 138.736 eV 17-18 

12 26C H  Total Bond Energy 150.88826 eV 150.88 eV 17-18 

18 38C H  Total Bond Energy 223.83446 eV 223.85 eV 17-18 
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Chapter 15 
  
ORGANIC MOLECULAR FUNCTIONAL GROUPS  
AND MOLECULES 
  
 
 
 
 
DERIVATION OF THE GENERAL GEOMETRICAL AND ENERGY EQUATIONS OF 
ORGANIC CHEMISTRY 
Organic molecules comprising an arbitrary number of atoms can be solved using similar principles and procedures as those used 
to solve alkanes of arbitrary length.  Alkanes can be considered to be comprised of the functional groups of 3CH , 2CH , and 

C C .  These groups with the corresponding geometrical parameters and energies can be added as a linear sum to give the 
solution of any straight chain alkane as shown in the Continuous-Chain Alkanes section.  Similarly, the geometrical parameters 
and energies of all functional groups such as alkanes, branched alkanes, alkenes, branched alkenes, alkynes, alkyl fluorides, alkyl 
chlorides, alkyl bromides, alkyl iodides, alkene halides, primary alcohols, secondary alcohols, tertiary alcohols, ethers, primary 
amines, secondary amines, tertiary amines, aldehydes, ketones, carboxylic acids, carboxylic esters, amides, N-alkyl amides, 
N,N-dialkyl amides, urea, acid halides, acid anhydrides, nitriles, thiols, sulfides, disulfides, sulfoxides, sulfones, sulfites, 
sulfates, nitro alkanes, nitrites, nitrates, conjugated polyenes, aromatics, heterocyclic aromatics, substituted aromatics, and others 
can be solved.  The functional-group solutions can be made into a linear superposition and sum, respectively, to give the solution 
of any organic molecule.  The solutions of the functional groups can be conveniently obtained by using generalized forms of the 
geometrical and energy equations.  The total bond energies of exemplary organic molecules calculated using the functional 
group composition and the corresponding energies derived in the following sections compared to the experimental values are 
given in Tables 15.410.1–15.410.43. 

Consider the case wherein at least two atomic orbitals hybridize as a linear combination of electrons at the same energy 
in order to achieve a bond at an energy minimum, and the sharing of electrons between two or more such orbitals to form a MO 
permits the participating hybridized orbitals to decrease in energy through a decrease in the radius of one or more of the 
participating orbitals.  The force-generalized constant 'k  of a 2H -type ellipsoidal MO due to the equivalent of two point charges 

at the foci is given by: 

 
2

1 2

0

2
'

4

C C e
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  (15.1) 

where 1C  is the fraction of the 2H -type ellipsoidal MO basis function of a chemical bond of the molecule or molecular ion 

which is 0.75 (Eq. (13.59)) in the case of H  bonding to a central atom and 0.5 (Eq. (14.152)) otherwise, and 2C  is the factor that 

results in an equipotential energy match of the participating at least two molecular or atomic orbitals of the chemical bond.  
From Eqs. (13.58-13.63), the distance from the origin of the MO to each focus 'c  is given by:  
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The internuclear distance is  
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The length of the semiminor axis of the prolate spheroidal MO b c  is given by: 

 2 2b a c   (15.4) 
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And, the eccentricity, e , is 

 
'c

e
a

  (15.5) 

From Eqs. (11.207-11.212), the potential energy of the two electrons in the central field of the nuclei at the foci is: 
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The potential energy of the two nuclei is: 
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The kinetic energy of the electrons is 
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And, the energy, Vm , of the magnetic force between the electrons is: 
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The total energy of the 2H -type prolate spheroidal MO,  2H MOTE , is given by the sum of the energy terms: 

  2H MOT e m pE V T V V     (15.10) 
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where 1n  is the number of equivalent bonds of the MO and applies in the case of functional groups.  In the case of independent 

MOs not in contact with the bonding atoms, the terms based on charge are multiplied by BOc , the bond-order factor.  It is 1 for a 

single bond, 4 for an independent double bond as in the case of the 2CO  and 2NO  molecules, and 9 for an independent triplet 

bond.  Then, the kinetic energy term is multiplied by 'BOc  which is 1 for a single bond, 2 for a double bond, and 9/2 for a triple 

bond.  1c  is the fraction of the 2H -type ellipsoidal MO basis function of an MO which is 0.75 (Eqs. (13.67-13.73)) in the case of 

H  bonding to an unhybridized central atom and 1 otherwise, and 2c  is the factor that results in an equipotential energy match of 

the participating MO and at least two atomic orbitals of the chemical bond.  Specifically, to meet the equipotential condition and 
energy matching conditions for the union of the 2H -type-ellipsoidal-MO and the HOs or AOs of the bonding atoms, the factor 

2c  of a 2H -type ellipsoidal MO may given by (i) one, (ii) the ratio of the Coulombic or valence energy of the AO or HO of at 

least one atom of the bond and 13.605804 eV , the Coulombic energy between the electron and proton of H , (iii) the ratio of the 
valence energy of the AO or HO of one atom and the Coulombic energy of another, (iv) the ratio of the valence energies of the 
AOs or HOs of two atoms, (v) the ratio of two 2c  factors corresponding to any of cases (ii)-(iv), and (vi) the product of two 

different 2c  factors corresponding to any of the cases (i)-(v).  Specific examples of the factor 2c  of a 2H -type ellipsoidal MO 

given in previous sections are: 
0.936127 , the ratio of the ionization energy of N  14.53414 eV  and 13.605804 eV , the Coulombic energy between the 
electron and proton of  H;  

0.91771, the ratio of 14.82575 eV ,  3, 2CoulombE C sp , and 13.605804 eV ; 

0.87495, the ratio of 15.55033 eV ,  3, 2Coulomb ethaneE C sp , and 13.605804 eV ; 

0.85252 , the ratio of 15.95955 eV ,  3, 2Coulomb ethyleneE C sp , and 13.605804 eV ; 

0.85252 , the ratio of 15.95955 eV ,  3, 2Coulomb benzeneE C sp , and 13.605804 eV , and 

0.86359 , the ratio of 15.55033 eV ,  3, 2Coulomb alkaneE C sp , and 13.605804 eV . 

In the generalization of the hybridization of at least two atomic-orbital shells to form a shell of hybrid orbitals, the 
hybridized shell comprises a linear combination of the electrons of the atomic-orbital shells.  The radius of the hybridized shell is 
calculated from the total Coulombic energy equation by considering that the central field decreases by an integer for each 
successive electron of the shell and that the total energy of the shell is equal to the total Coulombic energy of the initial AO 

electrons.  The total energy  3,TE atom msp  ( m  is the integer of the valence shell) of the AO electrons and the hybridized shell 

is given by the sum of energies of successive ions of the atom over the n  electrons comprising total electrons of the at least one 
AO shell.   
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where mIP  is the m th ionization energy (positive) of the atom.  The radius 3msp
r  of the hybridized shell is given by: 
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Then, the Coulombic energy  3,CoulombE atom msp  of the outer electron of the 3 atom msp  shell is given by: 
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In the case that during hybridization at least one of the spin-paired AO electrons is unpaired in the hybridized orbital (HO), the 
energy change for the promotion to the unpaired state is the magnetic energy ( )E magnetic  at the initial radius r of the AO 
electron: 
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Then, the energy  3,E atom msp  of the outer electron of the 3 atom msp  shell is given by the sum of  3,CoulombE atom msp  and 

( )E magnetic : 
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Consider next that the at least two atomic orbitals hybridize as a linear combination of electrons at the same energy in 
order to achieve a bond at an energy minimum with another atomic orbital or hybridized orbital.  As a further generalization of 
the basis of the stability of the MO, the sharing of electrons between two or more such hybridized orbitals to form a MO permits 
the participating hybridized orbitals to decrease in energy through a decrease in the radius of one or more of the participating 
orbitals.  In this case, the total energy of the hybridized orbitals is given by the sum of  3,E atom msp  and the next energies of 

successive ions of the atom over the n  electrons comprising the total electrons of the at least two initial AO shells.  Here, 

 3,E atom msp  is the sum of the first ionization energy of the atom and the hybridization energy.  An example of 

 3,E atom msp  for  3, 2E C sp  is given in Eq. (14.503) where the sum of the negative of the first ionization energy of C , 

11.27671 eV , plus the hybridization energy to form the 32C sp  shell given by Eq. (14.146) is  3, 2 14.63489 E C sp eV  . 

Thus, the sharing of electrons between two 3 atom msp  HOs to form an atom-atom-bond MO permits each participating 
hybridized orbital to decrease in radius and energy.  In order to further satisfy the potential, kinetic, and orbital energy 
relationships, each 3 atom msp  HO donates an excess of 25% per bond of its electron density to the atom-atom-bond MO to form 
an energy minimum wherein the atom-atom bond comprises one of a single, double, or triple bond.  In each case, the radius of 
the hybridized shell is calculated from the Coulombic energy equation by considering that the central field decreases by an 
integer for each successive electron of the shell and the total energy of the shell is equal to the total Coulombic energy of the 
initial AO electrons plus the hybridization energy.  The total energy  3. ,TE mol atom msp  ( m  is the integer of the valence shell) 

of the HO electrons is given by the sum of energies of successive ions of the atom over the n  electrons comprising total 
electrons of the at least one initial AO shell and the hybridization energy: 
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where mIP  is the m th ionization energy (positive) of the atom and the sum of 1IP  plus the hybridization energy is 

 3,E atom msp .  Thus, the radius 3msp
r  of the hybridized shell due to its donation of a total charge Qe  to the corresponding 

MO is given by: 
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where e  is the fundamental electron charge and 1,2,3s   for a single, double, and triple bond, respectively. The Coulombic 

energy  3. ,CoulombE mol atom msp  of the outer electron of the 3 atom msp  shell is given by: 
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In the case that during hybridization at least one of the spin-paired AO electrons is unpaired in the hybridized orbital (HO), the 
energy change for the promotion to the unpaired state is the magnetic energy ( )E magnetic  at the initial radius r of the AO 

electron given by Eq. (15.15).  Then, the energy  3. ,E mol atom msp  of the outer electron of the 3 atom msp  shell is given by the 

sum of  3. ,CoulombE mol atom msp  and ( )E magnetic : 
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 3,TE atom atom msp , the energy change of each 3 atom msp  shell with the formation of the atom-atom-bond MO is given by: 

the difference between  3. ,E mol atom msp  and  3,E atom msp : 

      3 3 3, . , ,TE atom atom msp E mol atom msp E atom msp    (15.21) 

As examples from prior sections,  3. ,CoulombE mol atom msp  is one of: 

 3, 2Coulomb ethyleneE C sp ,  3, 2Coulomb ethaneE C sp ,  3, 2Coulomb acetyleneE C sp , and  3, 2Coulomb alkaneE C sp ; 

 3,CoulombE atom msp  is one of  3, 2CoulombE C sp  and  3,3CoulombE Cl sp ; 

  3. ,E mol atom msp  is one of  3, 2ethyleneE C sp ,  3, 2ethaneE C sp ,  3, 2acetyleneE C sp  and  3, 2alkaneE C sp ;  

  3,E atom msp  is one of  3, 2E C sp  and  3,3E Cl sp ; 

  3,TE atom atom msp  is one of  3, 2E C C sp ,  3, 2E C C sp , and  3, 2E C C sp ; 

 3 atom msp  is one of 32C sp , and 33Cl sp  

   3
1 ,TE atom atom s msp  is  3, 2TE C C sp  and   3

2 ,TE atom atom s msp  is  3, 2TE C C sp , and 

3msp
r is one of 32C sp

r , 32ethane sp
r , 32ethylene sp

r , 32acetylene sp
r , 32alkane sp

r , and 33Cl sp
r . 

In the case of the 32C sp  HO, the initial parameters (Eqs. (14.142-14.146)) are: 
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In Eq. (15.18), 
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Eqs. (14.147) and (15.17) gives: 

    3 3. , , 2 151.61569 T T ethaneE mol atom msp E C sp eV    (15.27) 

Using Eqs. (15.18-15.28), the final values of 32C sp
r ,  32CoulombE C sp , and  32E C sp , and the resulting 3, 2

BO

TE C C C sp  
 

 of 

the MO due to charge donation from the HO to the MO where 
BO

C C  refers to the bond order of the carbon-carbon bond for 
different values of the parameter s  are given in Table 15.1. 
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Table 15.1.   The final values of rC2sp3, ECoulomb(C2sp3), and E(C2sp3) and the resulting ET(C BO C,C2sp3) of the MO due to 

charge donation from the HO to the MO where C BO C refers to the bond order of the carbon-carbon bond. 
 

MO 
Bond 
Order 
(BO) 

1s  2s   3 02C sp
r a  

Final 
 

 32CoulombE C sp  

(eV) 
Final 

 32E C sp  

(eV) 
Final 

3, 2
BO

TE C C C sp  
 

(eV) 

I 1 0 0.87495 -15.55033 -15.35946 -0.72457 
II 2 0 0.85252 -15.95955 -15.76868 -1.13379 
III 3 0 0.83008 -16.39089 -16.20002 -1.56513 
IV 4 0 0.80765 -16.84619 -16.65532 -2.02043 

 

In another generalized case of the basis of forming a minimum-energy bond with the constraint that it must meet the 
energy matching condition for all MOs at all HOs or AOs, the energy  3. ,E mol atom msp  of the outer electron of the 

3 atom msp  shell of each bonding atom must be the average of  3. ,E mol atom msp  for two different values of s : 
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  (15.28) 

In this case,  3,TE atom atom msp , the energy change of each 3 atom msp  shell with the formation of each atom-atom-bond 

MO, is average for two different values of s : 
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Consider an aromatic molecule such as benzene given in the Benzene Molecule section.  Each C C  double bond 
comprises a linear combination of a factor of 0.75  of four paired electrons (three electrons) from two sets of two 32C sp  HOs of 
the participating carbon atoms.  Each C H  bond of CH  having two spin-paired electrons, one from an initially unpaired 
electron of the carbon atom and the other from the hydrogen atom, comprises the linear combination of 75% 2H -type ellipsoidal 

MO and 25% 32C sp  HO as given by Eq. (13.439).  However,  3,TE atom atom msp  of the C H -bond MO is given by 

 30.5 ,2TE C C sp  (Eq. (14.247)) corresponding to one half of a double bond that matches the condition for a single-bond 

order for C H  that is lowered in energy due to the aromatic character of the bond. 
A further general possibility is that a minimum-energy bond is achieved with satisfaction of the potential, kinetic, and 

orbital energy relationships by the formation of an MO comprising an allowed multiple of a linear combination of 2H -type 
ellipsoidal MOs and corresponding HOs or AOs that contribute a corresponding allowed multiple (e.g. 0.5, 0.75, 1) of the bond 
order given in Table 15.1.  For example, the alkane MO given in the Continuous-Chain Alkanes section comprises a linear 
combination of factors of 0.5 of a single bond and 0.5 of a double bond.   

Consider a first MO and its HOs comprising a linear combination of bond orders and a second MO that shares a HO with 
the first.  In addition to the mutual HO, the second MO comprises another AO or HO having a single bond order or a mixed bond 
order.  Then, in order for the two MOs to be energy matched, the bond order of the second MO and its HOs or its HO and AO is 
a linear combination of the terms corresponding to the bond order of the mutual HO and the bond order of the independent HO 
or AO.  Then, in general,  3,TE atom atom msp , the energy change of each 3 atom msp  shell with the formation of each atom-

atom-bond MO, is a weighted linear sum for different values of s  that matches the energy of the bonded MOs, HOs, and AOs: 
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where 
nsc is the multiple of the BO of ns .  The radius 3msp

r  of the 3 atom msp  shell of each bonding atom is given by the 

Coulombic energy using the initial energy  3,CoulombE atom msp  and  3,TE atom atom msp , the energy change of each 
3 atom msp  shell with the formation of each atom-atom-bond MO: 
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where  32 14.825751 CoulombE C sp eV  .  The Coulombic energy  3. ,CoulombE mol atom msp  of the outer electron of the 
3 atom msp  shell is given by Eq. (15.19).  In the case that during hybridization, at least one of the spin-paired AO electrons is 

unpaired in the hybridized orbital (HO), the energy change for the promotion to the unpaired state is the magnetic energy 
( )E magnetic  (Eq. (15.15)) at the initial radius r of the AO electron.  Then, the energy  3. ,E mol atom msp  of the outer electron 
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of the 3 atom msp  shell is given by the sum of  3. ,CoulombE mol atom msp  and ( )E magnetic  (Eq. (15.20)).  

 3,TE atom atom msp , the energy change of each 3 atom msp  shell with the formation of the atom-atom-bond MO is given by 

the difference between  3. ,E mol atom msp  and  3,E atom msp  given by Eq. (15.21).  Using Eq. (15.23) for  3, 2CoulombE C sp  in 

Eq. (15.31), the single bond order energies given by Eqs. (15.18-15.27) and shown in Table 15.1, and the linear combination 
energies (Eqs. (15.28-15.30)), the parameters of linear combinations of bond orders and linear combinations of mixed bond 
orders are given in Table 15.2. 
 

Table 15.2.   The final values of rC2sp3, ECoulomb(C2sp3), and E(C2sp3) and the resulting ET(
BO

C C ,C2sp3) of the MO 

comprising a linear combination of  H2-type ellipsoidal MOs and corresponding HOs of single or mixed bond order where cs
n
 is 

the multiple of the bond order parameter ET (atom – atom (sn), msp3) given in Table 15.1. 

Consider next the radius of the AO or HO due to the contribution of charge to more than one bond.  The energy contribution due 
to the charge donation at each atom such as carbon superimposes linearly.  In general, the radius 32mol sp

r  of the 32C sp  HO of a 

carbon atom of a given molecule is calculated using Eq. (14.514) by considering  3, 2
molTE MO sp , the total energy donation 

to all bonds with which it participates in bonding.  The general equation for the radius is given by: 
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8 , 2 , 2 8 14.825751 , 2
mol mol
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E C sp E MO sp e eV E MO sp 


 

  
 (15.32) 

The Coulombic energy  3. ,CoulombE mol atom msp  of the outer electron of the 3 atom msp  shell is given by Eq. (15.19).  In the 

case that during hybridization, at least one of the spin-paired AO electrons is unpaired in the hybridized orbital (HO), the energy 
change for the promotion to the unpaired state is the magnetic energy ( )E magnetic  (Eq. (15.15)) at the initial radius r of the AO 

electron.  Then, the energy  3. ,E mol atom msp  of the outer electron of the 3 atom msp  shell is given by the sum of 

 3. ,CoulombE mol atom msp  and ( )E magnetic  (Eq. (15.20)). 

For example, the 32C sp  HO of each methyl group of an alkane contributes 0.92918 eV  (Eq. (14.513)) to the 

corresponding single C C  bond; thus, the corresponding 32C sp  HO radius is given by Eq. (14.514).  The 32C sp  HO of each 

methylene group of 2 2n nC H   contributes 0.92918 eV  to each of the two corresponding C C  bond MOs.  Thus, the radius 
(Eq. (15.32)), the Coulombic energy (Eq. (15.19)), and the energy (Eq. (15.20)) of each alkane methylene group are: 
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 (15.33) 
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 (15.35) 

In the determination of the parameters of functional groups, heteroatoms bonding to 32C sp  HOs to form MOs are energy 

matched to the 32C sp  HOs.  Thus, the radius and the energy parameters of a bonding heteroatom are given by the same 

equations as those for 32C sp  HOs.  Using Eqs. (15.15), (15.19-15.20), (15.24), and (15.32) in a generalized fashion, the final 

values of the radius of the HO or AO, . .Atom HO AOr ,  3. ,CoulombE mol atom msp , and  32molE C sp  are calculated using 

 3, 2 Tgroup
E MO sp , the total energy donation to each bond with which an atom participates in bonding corresponding to the 

values of 3, 2
BO

TE C C C sp  
 

 of the MO due to charge donation from the AO or HO to the MO given in Tables 15.1 and 15.2. 

 

Table 15.3.A.   The final values of rAtom.HO.AO, ECoulomb (mol.atom,msp3), and E(CmolC2sp3) calculated using the values of 

ET(
BO

C C ,C2sp3) given in Tables 15.1 and 15.2. 
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Table 15.3.B.   The final values of rAtom.HO.AO, ECoulomb (mol.atom,msp3), and  E(CmolC2sp3) calculated for heterocyclic groups 

using the values of ET(
BO

C C ,C2sp3) given in Tables 15.1 and 15.2. 

 
 

 
From Eq. (15.18), the general equation for the radius due to a total charge Qe  of an AO or a HO that participates in 

bonding to form a MO is given by: 
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  (15.36) 

By equating the radii of Eqs. (15.36) and (15.32), the total charge parameter Q  of the AO or HO can be calculated wherein the 
excess charge is on the MO: 
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 (15.37) 

The modulation of the constant function by the time and spherically harmonic functions as given in Eq. (1.29) time-averages to 
zero such that the charge density of any HO or AO is determined by the constant function.  The charge density   is then given 
by the fundamental charge e  times the number of electrons n  divided by the area of the spherical shell of radius 32mol sp

r  given 

by Eq. (15.32): 
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  (15.38) 

The charge density of an ellipsoidal MO in rectangular coordinates (Eqs. (11.42-11.45)) is: 
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 (15.39) 

where D  is the distance from the origin to the tangent plane.  The charge q  is given by the fundamental electron charge e  

times the sum of parameter 1n  of Eqs. (15.51) and (15.61) and the charge donation parameter Q  (Eq. (15.37)) of each AO or HO 

to the MO.  Thus, the charge density of the MO is given by: 

 
 1

4

e n Q
D

abc



 

  (15.40) 

The charge density of the MO that is continuous with the surface of the AO or HO and any radial bisector current 
resulting from the intersection of two or more MOs as given in the Methane Molecule ( 4CH ) section is determined by the 

current continuity condition.  Consider the continuity of the current due to the intersection of an MO with a corresponding AO or 
HO.  The parameters of each point of intersection of each 2H -type ellipsoidal MO and the corresponding atom AO or HO 

determined from the polar equation of the ellipse are given by Eqs. (15.80-15.87).  The overlap charge q  is given by the total 
charge of the prolate-spheroidal MO minus the integral of the charge density of the MO over the area between curves of 
intersection with the AOs or HOs that forms the MO: 

    1 1 1
4

D
q e n Q dA e n Q dA

abc



          
    (15.41) 

The overlap charge of the prolate-spheroidal MO q  is uniformly distributed on the external spherical surface of the AO or HO 

of radius 3

3

2mol sp
r  such that the charge density   from Eq. (15.41) is: 

 
q

A
 
  (15.42) 

where A  is the external surface area of the AO or HO between the curves of intersection with the MO surface. 
At the curves of intersection of two or more MOs where they occur, the current between the AO or HO shell and curves of 
mutual contact is projected onto and flows in the direction of the radial vector to the surface of the AO or HO shell.  This current 
designated the bisector current (BC) meets the AO or HO surface and does not travel to distances shorter than its radius.  Due to 
symmetry, a radial axis through the AO or HO exists such that current travels from the MOs to the AO or HO along the radial 
vector in one direction and returns to the MO along the radial vector in the opposite direction from the AO or HO surface to 
conserve current flow.  The MO current onto the bisector currents and the connecting current on the external surface of the AO 
or HO must be continuously maintained.  Given the corresponding constant MO   (Eq. (11.24)), the continuity condition 
requires that the charge density on these surfaces times the area ( 2r ) must be a constant corresponding to constant current, 
and this current must be matched at the inflow from the MO to the inflow bisector current, the HO or AO external surface, the 
outflow bisector current, and the return current on the opposite surface of the MO.  Thus,   on each surface s  having charge 

sq  is given by Eq. (15.42) wherein sq q    and q  is given by Eq. (15.41) with the integral over the MO area between 

curves of intersection of the MOs.  A  is surface area corresponding to each sq  of the bisector currents and the external surface 

of the AO or HO between the curves of intersection of the bisector current with the AO or HO surface.  Since the potential of an 
MO is that of a point charge at infinity (Eq. (11.36)), an asymmetry in the distribution of charge between nonequivalent HOs or 
AOs of the MO occurs to maintain an energy match of the MO with the bridged orbitals.  The charge must redistribute between 
the spherical orbitals to achieve a corresponding current-density that maintains constant current at the equivalent-energy 
condition according to the energy-matching factor such as 2c  or 2C  of Eqs. (15.51) and (15.61).  Since the orbital energy and 

radius are reciprocally related, the contribution scales as the square of the ratio (over unity) of the energy of the resultant net 
positively-charged orbital and the initial matched energy of the resultant net negatively-charged orbital of the bond multiplied by 
the energy-matching factor (e.g. 2c  or 2C ).  The partial charges on the HOs or AOs corresponding to the charge contribution are 

equivalent to point charges centered on the nuclei.  Due to symmetry, the bond moment   of each functional group is along the 
internuclear axis and is calculated from the partial changes at the separation distance, the internuclear distance.  The dipole 
moment of a given molecule is then given by the vector sum of the bond moments in the molecule.  Thus, the dipole moment is 
given by taking into account the magnitude and direction of the bond moment of each functional group wherein the function-
group bond moment stays constant from molecule to molecule and is in the vector direction of the internuclear axis as given in 
the Bonds and Dipole Moments section. 
 The angles at which any two prolate spheroidal A C  and B C -bond MOs intersect can be determined using Eq. 
(13.85) by equating the radii of the elliptic cross sections of the MOs: 
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 (15.43) 
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and by using the following relationship between the polar angles 1   and 2  : 

 1 2 360ACB  
      (15.44) 

where ACB  is the bond angle of atoms A  and B  with central atom C .  From either angle, the polar radius of intersection can 

be determined using Eq. (13.85).  An example for methane is shown in Eqs. (13.597-13.600).  Using these coordinates and the 
radius of the AO or HO, the limits of the integrals for the determination of the charge densities as well as the regions of each 
charge density are determined. 

The energy of the MO is matched to each of the participating outermost atomic or hybridized orbitals of the bonding 
atoms wherein the energy match includes the energy contribution due to the AO or HO’s donation of charge to the MO.  The 
force constant 'k  (Eq. (15.1)) is used to determine the ellipsoidal parameter 'c  (Eq. (15.2)) of each 2H -type-ellipsoidal-MO in 

terms of the central force of the foci.  Then, 'c  is substituted into the energy equation (from Eq. (15.11)) which is set equal to 1n  

times the total energy of 2H  where 1n  is the number of equivalent bonds of the MO and the energy of 2H , 31.63536831 eV , 

Eq.  (11.212) is the minimum energy possible for a prolate spheroidal MO.  From the energy equation and the relationship 
between the axes, the dimensions of the MO are solved.  The energy equation has the semimajor axis a  as its only parameter.  
The solution of the semimajor axis a  then allows for the solution of the other axes of each prolate spheroid and eccentricity of 
each MO (Eqs. (15.3-15.5)).  The parameter solutions then allow for the component and total energies of the MO to be 
determined. 

The total energy,  2H MOTE , is given by the sum of the energy terms (Eqs. (15.6-15.11)) plus  /TE AO HO : 

    2 /H MOT e m p TE V T V V E AO HO      (15.45) 
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 (15.46) 

where 1n  is the number of equivalent bonds of the MO, 1c  is the fraction of the 2H -type ellipsoidal MO basis function of a 

chemical bond of the group, 2c  is the factor that results in an equipotential energy match of the participating at least two atomic 

orbitals of each chemical bond, and  /TE AO HO  is the total energy comprising the difference of the energy  /E AO HO  of at 

least one atomic or hybrid orbital to which the MO is energy matched and any energy component  
2

/H MOE AO HO  due to the 

AO or HO’s charge donation to the MO.   
      

2
/ / /T H MOE AO HO E AO HO E AO HO   (15.47) 

As specific examples given in previous sections,  /TE AO HO  is one from the group of:  

    / 2  ( ;  ) 13.6181 TE AO HO E O p shell E ionization O eV     ; 

    / 2  ( ;  ) 14.53414 TE AO HO E N p shell E ionization N eV     ; 

    3/ , 2 14.63489 TE AO HO E C sp eV   ; 

    3/ ,3 14.60295 T CoulombE AO HO E Cl sp eV   ; 

  / ( ;  ) ( ;  )TE AO HO E ionization C E ionization C  ; 

    3/ , 2 15.35946 T ethaneE AO HO E C sp eV   ; 

      3 3/ , 2 , 2T ethylene ethyleneE AO HO E C sp E C sp  ; 

        3 3/ , 2 2 ,2 14.63489 2.26758 T TE AO HO E C sp E C C sp eV eV       ; 

        3 3 3/ , 2 , 2 ,2 16.20002 T acetylene acetylene acetyleneE AO HO E C sp E C sp E C sp eV    ; 

        3 3/ , 2 2 ,2 14.63489 3.13026 T TE AO HO E C sp E C C sp eV eV       ; 

      3 3/ , 2 , 2T benzene benzeneE AO HO E C sp E C sp  ; 

        3 3/ , 2 , 2 14.63489 1.13379 T TE AO HO E C sp E C C sp eV eV       , and 

    3/ , 2 15.56407 T alkaneE AO HO E C sp eV  . 

To solve the bond parameters and energies, 0 0
2

1 2 1 2

'
2 2e

aa
c a

m e C C a C C


 


 (Eq. (15.2)) is substituted into  2H MOTE  to: 

give 
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 (15.48) 

The total energy is set equal to (  )E basis energies  which in the most general case is given by the sum of a first integer 1n  times 

the total energy of 2H minus a second integer 2n  times the total energy of H , minus a third integer 3n  times the valence energy 

of  E AO  (e.g.   14.53414 E N eV  ) where the first integer can be 1,2,3... , and each of the second and third integers can be 

0,1,2,3... .   

      1 2 3(  ) 31.63536831 13.605804 E basis energies n eV n eV n E AO      (15.49) 

In the case that the MO bonds two atoms other than hydrogen, (  )E basis energies  is 1n  times the total energy of 2H  where 1n  is 

the number of equivalent bonds of the MO and the energy of 2H , 31.63536831 eV , Eq. (11.212) is the minimum energy 

possible for a prolate spheroidal MO: 
  1(  ) 31.63536831 E basis energies n eV   (15.50) 

 2H MOTE , is set equal to (  )E basis energies , and the semimajor axis a  is solved.  Thus, the semimajor axis a  is solved 

from the equation of the form: 
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 (15.51) 

The distance from the origin of the 2H -type-ellipsoidal-MO to each focus 'c , the internuclear distance 2 'c , and the length of the 

semiminor axis of the prolate spheroidal 2H -type MO b c  are solved from the semimajor axis a  using Eqs. (15.2-15.4).  

Then, the component energies are given by Eqs. (15.6-15.9) and (15.48). 
The total energy of the MO of the functional group,  MOTE , is the sum of the total energy of the components comprising 

the energy contribution of the MO formed between the participating atoms and  3, .TE atom atom msp AO , the change in the 

energy of the AOs or HOs upon forming the bond.  From Eqs. (15.48-15.49),  MOTE  is: 

    3(  ) , .MOT TE E basis energies E atom atom msp AO    (15.52) 

During bond formation, the electrons undergo a reentrant oscillatory orbit with vibration of the nuclei, and the 
corresponding energy E osc  is the sum of the Doppler, DE , and average vibrational kinetic energies, KvibE : 
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  (15.53) 

where 1n  is the number of equivalent bonds of the MO , k  is the spring constant of the equivalent harmonic oscillator, and   is 

the reduced mass.  The angular frequency of the reentrant oscillation in the transition state corresponding to DE  is determined by 

the force between the central field and the electrons in the transition state.  The force and its derivative are given by: 
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such that the angular frequency of the oscillation in the transition state is given by: 
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       (15.56) 
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where R  is the semimajor axis a  or the semiminor axis b  depending on the eccentricity of the bond that is most representative 
of the oscillation in the transition state, BOc  is the bond-order factor which is 1 for a single bond and when the MO comprises 1n  

equivalent single bonds as in the case of functional groups.  BOc  is 4 for an independent double bond as in the case of the 2CO  

and 2NO  molecules and 9 for an independent triple bond.  1oC  is the fraction of the 2H -type ellipsoidal MO basis function of the 

oscillatory transition state of a chemical bond of the group, and 2oC  is the factor that results in an equipotential energy match of 

the participating at least two atomic orbitals of the transition state of the chemical bond.  Typically, 1 1oC C  and 2 2oC C .  The 

kinetic energy, KE , corresponding to DE  is given by Planck's equation for functional groups: 
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The Doppler energy of the electrons of the reentrant orbit is: 
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 (15.58) 

oscE  given by the sum of DE  and KvibE  is: 
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 (15.59) 

hE   of a group having 1n  bonds is given by   1/MOTE n  such that: 
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  (15.60) 

 GroupT oscE   is given by the sum of  MOTE  (Eq. (15.51)) and oscE  (Eq. (15.60)).   
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 (15.61) 

The total energy of the functional group  groupTE  is the sum of the total energy of the components comprising the energy 

contribution of the MO formed between the participating atoms, (  )E basis energies , the change in the energy of the AOs or HOs 

upon forming the bond (  3, .TE atom atom msp AO ), the energy of oscillation in the transition state, and the change in magnetic 

energy with bond formation, magE .  From Eq. (15.61), the total energy of the group  GroupTE  is: 
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 (15.62) 

The change in magnetic energy magE  which arises due to the formation of unpaired electrons in the corresponding fragments 

relative to the bonded group is given by: 
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 (15.63) 

where r is the radius of the atom that reacts to form the bond and 3c  is the number of electron pairs. 
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The total bond energy of the group  GroupDE  is the negative difference of the total energy of the group (Eq. (15.64)) and the total 

energy of the two starting orbitals given by the sum of  4 4  /initialc E c AO HO  and  5 5  /initialc E c AO HO :   
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 (15.65) 

In the case of organic molecules, the atoms of the functional groups are energy matched to the 32C sp  HO such that: 

  / 14.63489 E AO HO eV   (15.66) 

For examples of magE  from previous sections: 
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    (15.69) 

In the general case of the solution of an organic functional group, the geometric bond parameters are solved from the 
semimajor axis and the relationships between the parameters by first using Eq. (15.51) to arrive at a .   Then, the remaining 
parameters are determined using Eqs. (15.1-15.5).  Next, the energies are given by Eqs. (15.61-15.68).  To meet the equipotential 
condition for the union of the 2H -type-ellipsoidal-MO and the HO or AO of the atom of a functional group, the factor 2c  of a 

2H -type ellipsoidal MO in principal Eqs. (15.51) and (15.61) may given by:  
 

(i) one: 
 2 1c   (15.70) 

(ii) the ratio that is less than one of 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton 
of H  given by Eq. (1.264), and the magnitude of the Coulombic energy of the participating AO or HO of the atom, 

 3. ,CoulombE MO atom msp  given by Eqs. (15.19) and (15.31-15.32).  For  3. ,CoulombE MO atom msp >13.605804 eV : 
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   (15.71) 

For  3. ,CoulombE MO atom msp <13.605804 eV : 
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   (15.72) 

(iii) the ratio that is less than one of 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton 
of H  given by Eq. (1.264), and the magnitude of the valence energy, ( )E valence , of the participating AO or HO of the 

atom where ( )E valence  is the ionization energy or  3. ,E MO atom msp  given by Eqs. (15.20) and (15.31-15.32).  For 

( )E valence >13.605804 eV : 
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0  
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e
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   (15.73) 

For ( )E valence <13.605804 eV : 
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   (15.74) 

(iv) the ratio that is less than one of the magnitude of the Coulombic energy of the participating AO or HO of a first atom, 

 3. ,CoulombE MO atom msp  given by Eqs. (15.19) and (15.31-15.32), and the magnitude of the valence energy, 

( )E valence , of the participating AO or HO of a second atom to which the first is energy matched where ( )E valence  is 

the ionization energy or  3. ,E MO atom msp  given by Eqs. (15.20) and (15.31-15.32).  For 

 3. ,CoulombE MO atom msp > ( )E valence : 

 2 3

( )

. ,Coulomb

E valence
c

E MO atom msp
  (15.75) 

For  3. ,CoulombE MO atom msp < ( )E valence : 

 
 3

2

. ,

( )

CoulombE MO atom msp
c

E valence
  (15.76) 

(v) the ratio of the magnitude of the valence-level energies, ( )nE valence , of the AO or HO of the nth participating atom of 

two that are energy matched where ( )E valence  is the ionization energy or  3. ,E MO atom msp  given by Eqs. (15.20) and 

(15.31-15.32): 

 1
2

2

( )

( )

E valence
c

E valence
  (15.77) 

(vi) the factor that is the ratio of the hybridization factor  2 1c  of the valence AO or HO of a first atom and the hybridization 

factor  2 2c  of the valence AO or HO of a second atom to which the first is energy matched where  2c n  is given by 

Eqs. (15.71-15.77); alternatively 2c  is the hybridization factor  2 1c  of the valence AOs or HOs a first pair of atoms and 

the hybridization factor  2 2c  of the valence AO or HO a third atom or second pair to which the first two are energy 

matched: 
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2
2

2

1

2

c
c

c
  (15.78) 

(vii) the factor that is the product of the hybridization factor  2 1c  of the valence AO or HO of a first atom and the 

hybridization factor  2 2c  of the valence AO or HO of a second atom to which the first is energy matched where  2c n  

is given by Eqs. (15.71-15.78); alternatively 2c  is the hybridization factor  2 1c  of the valence AOs or HOs a first pair of 

atoms and the hybridization factor  2 2c  of the valence AO or HO a third atom or second pair to which the first two are 

energy matched: 
    2 2 21 2c c c  (15.79) 

The hybridization factor 2c  corresponds to the force constant k  (Eqs. (11.65) and (13.58)).  In the case that the valence or 

Coulombic energy of the AO or HO is less than 13.605804 eV , the magnitude of the Coulombic energy between the electron 
and proton of H  given by Eq. (1.264), then 2C  corresponding to 'k  (Eq. (15.1)) is given by Eqs. (15.71-15.79). 

Specific examples of the factors 2c  and 2C  of a 2H -type ellipsoidal MO of Eq. (15.60) given in following sections are: 

   
     

3

3 3
2 2

, 2 14.63489 
2   2 0.91771 0.77087

17.42282 

E C sp eV
c C sp HO to F c C sp HO

E F eV


  


; 

   
     3 3

2 23

12.96764 
2   2 0.91771 0.81317

14.63489 , 2

E Cl eV
C C sp HO to Cl c C sp HO

eVE C sp


  


; 

   
     3 3

2 23

11.81381 
2   2 0.91771 0.74081

14.63489 , 2

E Br eV
C C sp HO to Br c C sp HO

eVE C sp


  


; 

   
     3 3

2 23

10.45126 
2   2 0.91771 0.65537

14.63489 , 2

E I eV
C C sp HO to I c C sp HO

eVE C sp


  


; 

   
     3 3

2 23

13.61806 
2   2 0.91771 0.85395

14.63489 , 2

E O eV
c C sp HO to O c C sp HO

eVE C sp


  


; 

   
 2 3

14.53414 
  1 0.94627

15.35946 , 2

E N eV
c H to N

eVE C sp


   


; 

   
     3 3

2 23

14.53414 
2   2 0.91771 0.91140

14.63489 , 2

E N eV
c C sp HO to N c C sp HO

eVE C sp


  


; 

   
 2 3

14.53414 
  2 0.93383

15.56407 , 2

E N eV
c H to N

eVE C sp


   


; 

    
 2

,3 10.36001 
3   0.76144

13.60580 

E S p eV
C S p to H

E H eV


  


; 

   
     3 3

2 23

10.36001 
2   S 2 0.91771 0.64965

14.63489 , 2

E S eV
C C sp HO to c C sp HO

eVE C sp


  


; 

   
     3 3 3

2 2

13.61806 
  3   2 2 0.91771 1.20632

10.36001 

E O eV
c O to S sp to C sp HO c C sp HO

E S eV


  


;  

   
 

3

3
2

3 11.57099 
3 0.85045

13.60580 
CoulombE S sp eV

c S sp
E H eV


  


; 

   
     

3

3 3 3
2 23

3 11.52126 
2   3 3 0.85045 0.66951

14.63489 , 2

E S sp eV
C C sp HO to S sp c S sp

eVE C sp


  


; 

   
     

3

3 3 3
2 2

,3 11.52126 
3     2 2 0.91771 0.77641

,2 13.61806 

E S sp eV
C S sp to O to C sp HO c C sp HO

E O p eV


  


; 

    
     3 3

2 2

13.61806 
  2   2 2 0.91771 0.85987

14.53414 

E O eV
c O to N p to C sp HO c C sp HO

E N eV


  


;  
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3
2

2 3
2

2   0.91140
2   2 1.06727

0.853952   

c C sp HO to N
c N p to O p

c C sp HO to O
   ; 

   3 3
2 2

13.605804 
2 2 0.85252

15.95955 

eV
C benzeneC sp HO c benzeneC sp HO

eV
   ; 

   
     3 3

2 23

13.61806 
2   2 0.85252 0.79329

14.63489 , 2

E O eV
c arylC sp HO to O c arylC sp HO

eVE C sp


  


;  

   
 2 3

14.53414 
   0.92171

15.76868 , 2

E N eV
c H to aniline N

eVE C sp


  


; 

   
     3 3

2 23

14.53414 
2   2 0.85252 0.84665

14.63489 , 2

E N eV
c arylC sp HO to N c arylC sp HO

eVE C sp


  


, and 

   
 

3
2 3

,3 10.36001 
3   -  2 0.65700

15.76868 , 2

E S p eV
C S p to aryl type C sp HO

eVE C sp


  


. 

 

MO INTERCEPT ANGLES AND DISTANCES 
Consider the general case of Eqs. (13.84-13.95), wherein the nucleus of a B  atom and the nucleus of a A  atom comprise the 
foci of each 2H -type ellipsoidal MO of an A B  bond.  The parameters of the point of intersection of each 2H -type ellipsoidal 

MO and the A -atom AO are determined from the polar equation of the ellipse: 

 0

1

1 cos '

e
r r

e 





 (15.80) 

The radius of the A  shell is Ar , and the polar radial coordinate of the ellipse and the radius of the A  shell are equal at the point 

of intersection such that: 

  
'

1
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'
1 cos '
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c
ar a c

c
a




 


 (15.81) 

The polar angle '  at the intersection point is given by: 

  1

'
1

' cos ' 1
'



    
       A

c
a aa c
c r

  (15.82) 

Then, the angle  A AO  the radial vector of the A  AO makes with the internuclear axis is: 

  180 'A AO    (15.83) 

The Cartesian i -coordinate of the interception point of the MO and the AO can be calculated using the MO ellipsoidal 
parameters by first calculating the parametric angle in Eq. (11.83) that matches Cartesian j -coordinate components at the point 

of intersection.  Thus, the matching elliptic parametric angle 
2H MOt   satisfies the following relationship: 

 
2 sin sinA A AO H MOr b   (15.84) 

such that 

 
2

1  sin
sin a A AO

H MO

r

b

   (15.85) 

The distance 
2H MOd  along the internuclear axis from the origin of 2H -type ellipsoidal MO to the point of intersection of the 

orbitals is given by: 
 

2 2
cosH MO H MOd a   (15.86) 

The distance  A AOd  along the internuclear axis from the origin of the A  atom to the point of intersection of the orbitals is given 

by: 
 

2 'A AO H MOd c d   (15.87) 

 
BOND ANGLES 
Further consider an ACB  MO comprising a linear combination of C A -bond and C B -bond MOs where C  is the general 
central atom.  A bond is also possible between the A  and B  atoms of the C A  and C B  bonds.  Such A B  bonding would 
decrease the C A  and C B  bond strengths since electron density would be shifted from the latter bonds to the former bond.  
Thus, the ACB  bond angle is determined by the condition that the total energy of the 2H -type ellipsoidal MO between the 
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terminal A  and B  atoms is zero.  The force constant 'k  of a 2H -type ellipsoidal MO due to the equivalent of two point charges 

at the foci is given by: 

 
2

1 2

0

2
'

4

C C e
k


  (15.88) 

where 1C  is the fraction of the 2H -type ellipsoidal MO basis function of a chemical bond of the molecule which is 0.75 (Eq. 

(13.59)) for a terminal A H  ( A  is H  or other atom) and 1 otherwise and 2C  is the factor that results in an equipotential 

energy match of the participating at least two atomic orbitals of the chemical bond and is equal to the corresponding factor of 
Eqs. (15.51) and (15.61).  The distance from the origin of the MO to each focus 'c  of the A B  ellipsoidal MO is given by:  

 0 0
2

1 2 1 2

'
2 2e

aa
c a

m e C C a C C


 


 (15.89) 

The internuclear distance is: 

 0

1 2

2 ' 2
2

aa
c

C C
  (15.90) 

The length of the semiminor axis of the prolate spheroidal A B  MO b c  is given by Eq. (15.4). 
The component energies and the total energy,  2H MOTE , of the A B  bond are given by the energy equations (Eqs. 

(11.207-11.212), (11.213-11.217), and (11.239)) of 2H  except that the terms based on charge are multiplied by BOc , the bond-

order factor which is 1 for a single bond and when the MO comprises 1n  equivalent single bonds as in the case of functional 

groups.  BOc  is 4 for an independent double bond as in the case of the 2CO  and 2NO  molecules.  The kinetic energy term is 

multiplied by 'BOc  which is 1 for a single bond, 2 for a double bond, and 9/2 for a triple bond.  The electron energy terms are 

multiplied by 1c , the fraction of the 2H -type ellipsoidal MO basis function of a terminal chemical bond, which is 0.75 (Eq. 

(13.233)) for a terminal A H  ( A  is H  or other atom) and 1 otherwise.  The electron energy terms are further multiplied by 2c , 
the hybridization or energy-matching factor that results in an equipotential energy match of the participating at least two atomic 
orbitals of each terminal bond.  Furthermore, when A B  comprises atoms other than H ,  3, .TE atom atom msp AO , the 

energy component due to the AO or HO’s charge donation to the terminal MO, is added to the other energy terms to give 
 2H MOTE : 

    2

2
30

1 2
0

'
2 ' ln 1 , .

8 ' '
H MOT BO BO T

ae a c
E c c c c E atom atom msp AO

c a a c
           

 (15.91) 

The radiation reaction force in the case of the vibration of A B  in the transition state corresponds to the Doppler 
energy, DE , given by Eq. (11.181) that is dependent on the motion of the electrons and the nuclei.  The total energy that includes 

the radiation reaction of the A B  MO is given by the sum of  2H MOTE  (Eq. (15.91)) and oscE  given by Eqs. (11.213-11.220), 

(11.231-11.236), and (11.239-11.240).  Thus, the total energy  TE A B  of the A B  MO including the Doppler term is: 
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c ec c ea c
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 (15.92) 

where 1oC  is  the fraction of the 2H -type ellipsoidal MO basis function of the oscillatory transition state of the A B  bond which 

is 0.75 (Eq. (13.233)) in the case of H  bonding to a central atom and 1 otherwise, 2oC  is the factor that results in an 

equipotential energy match of the participating at least two atomic orbitals of the transition state of the chemical bond, and 

1 2

1 2

m m

m m
 


 is the reduced mass of the nuclei given by Eq. (11.154).  To match the boundary condition that the total energy of 

the A B  ellipsoidal MO is zero,  TE A B  given by Eq. (15.92) is set equal to zero.  Substitution of Eq. (15.90) into Eq. 

(15.92) gives: 
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 (15.93) 

The vibrational energy-term of Eq. (15.93) is determined by the forces between the central field and the electrons and those 
between the nuclei (Eqs. (11.141-11.145)).  The electron-central-field force and its derivative are given by: 

  
2

1 2
3

04BO

c c e
f a c

a


   (15.94) 

and 

  
2

1 2
3

0

' 2
4BO

c c e
f a c
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  (15.95) 

The nuclear repulsion force and its derivative are given by: 
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'
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e
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 (15.96) 

and 

  
 

2

3

0

' '
4 '

e
f a c

a c
  


 (15.97) 

such that the angular frequency of the oscillation is given by: 
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         (15.98) 

Since both terms of osc D KvibE E E   are small due to the large values of a  and 'c , to very good approximation, a convenient 

form of Eq. (15.93) which is evaluated to determine the bond angles of functional groups is given by: 
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 (15.99) 

From the energy relationship given by Eq. (15.99) and the relationship between the axes given by Eqs. (15.2-15.5), the 
dimensions of the A B  MO can be solved.  The most convenient way to solve Eq. (15.99) is by the reiterative technique using 
a computer. 

A factor 2c  of a given atom in the determination of 2c  for calculating the zero of the total A B  bond energy is typically 

given by Eqs. (15.71-15.74).  In the case of a H H  terminal bond of an alkyl or alkenyl group, 2c  is typically the ratio of 2c  of 

Eq. (15.71) for the H H  bond which is one and 2c  of the carbon of the corresponding C H  bond: 

 
 3

2 3
2

 21

( 2 ) 13.605804 
CoulombE C H C sp

c
c C sp eV


    (15.100) 

In the case of the determination of the bond angle of the ACH  MO comprising a linear combination of C A -bond and C H -
bond MOs where A  and C  are general, C  is the central atom, and 2c  for an atom is given by Eqs. (15.71-15.79), 2c  of the 
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A H  terminal bond is typically the ratio of 2c  of the A  atom for the A H  terminal bond and 2c  of the C  atom of the 

corresponding C H  bond: 

 
3

2
2 3

2

( ( ) )

( ( ) )

c A A H msp
c

c C C H msp

 


 (15.101) 

In the case of the determination of the bond angle of the COH  MO of an alcohol comprising a linear combination of C O -
bond and O H -bond MOs where C , O , and H  are carbon, oxygen, and hydrogen, respectively, 2c  of the C H  terminal 

bond is typically 0.91771 since the oxygen and hydrogen atoms are at the Coulomb potential of a proton and an electron (Eqs. 
(1.257) and (10.162), respectively) that is energy matched to the 32C sp  HO. 

In the determination of the hybridization factor 2c  of Eq. (15.99) from Eqs. (15.71-15.79), the Coulombic energy, 

 3. ,CoulombE MO atom msp , or the energy,  3. ,E MO atom msp , the radius 3 A B AorBsp
r


 of the A  or B  AO or HO of the heteroatom 

of the A B  terminal bond MO such as the 32C sp  HO of a terminal C C  bond is calculated using Eq. (15.32) by considering 

 3, 2
molTE MO sp , the total energy donation to each bond with which it participates in bonding as it forms the terminal bond.  

The Coulombic energy  3. ,CoulombE MO atom msp  of the outer electron of the 3 atom msp  shell is given by Eq. (15.19).  In the 

case that during hybridization, at least one of the spin-paired AO electrons is unpaired in the hybridized orbital (HO), the energy 
change for the promotion to the unpaired state is the magnetic energy ( )E magnetic  (Eq. (15.15)) at the initial radius r of the AO 

electron.  Then, the energy  3. ,E MO atom msp  of the outer electron of the 3 atom msp  shell is given by the sum of 

 3. ,CoulombE MO atom msp  and ( )E magnetic  (Eq. (15.20)). 

In the specific case of the terminal bonding of two carbon atoms, the 2c  factor of each carbon given by Eq. (15.71) is 

determined using the Coulombic energy  3 2CoulombE C C C sp  of the outer electron of the 32C sp  shell given by Eq. (15.19) 

with the radius 3 2C C C sp
r


 of each 32C sp  HO of the terminal C C  bond calculated using Eq. (15.32) by considering 

 3, 2
molTE MO sp , the total energy donation to each bond with which it participates in bonding as it forms the terminal bond 

including the contribution of the methylene energy, 0.92918 eV  (Eq. (14.513)), corresponding to the terminal C C  bond.  The 

corresponding  3, .TE atom atom msp AO in Eq. (15.99) is  32 1.85836 TE C C C sp eV   . 

In the case that the terminal atoms are carbon or other heteroatoms, the terminal bond comprises a linear combination of 
the HOs or AOs; thus, 2c  is the average of the hybridization factors of the participating atoms corresponding to the normalized 

linear sum: 

     2 2 2

1
 1  2

2
c c atom c atom     (15.102) 

In the exemplary cases of C C , O O , and N N  where C  is carbon: 
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   (15.103) 

In the exemplary cases of C N , C O , and C S , 

  
 

2 23

1 13.605804 
  

2  2

     Coulomb

eV
c c C to B

E C B C sp
 (15.104) 

where C  is carbon and  2   c C to B  is the hybridization factor of Eqs. (15.61) and (15.93) that matches the energy of the atom B  

to that of the atom C  in the group.  For these cases, the corresponding  3, .TE atom atom msp AO  term in Eq. (15.99) depends 

on the hybridization and bond order of the terminal atoms in the molecule, but typical values matching those used in the 
determination of the bond energies (Eq. (15.65)) are: 

 3 2 . 2 1.44915 TE C O C sp O p eV   ;  32 . 2 1.65376 TE C O C sp O p eV   ;  3 2 . 2 1.44915 TE C N C sp N p eV   ; 

 3 2 . 2 0.72457 TE C S C sp S p eV   ;  2 . 2 1.44915 TE O O O p O p eV   ;   2 . 2 1.65376 TE O O O p O p eV   ; 

  2 . 2 1.44915 TE N N N p N p eV   ;  2 . 2 1.44915 TE N O N p O p eV   ;   2 . 2 1.44915 TE F F F p F p eV   ; 

  3 . 3 0.92918 TE Cl Cl Cl p Cl p eV   ;  4 . 4 0.92918 TE Br Br Br p Br p eV   ;   5 . 5 0.36229 TE I I I p I p eV   ; 
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 3 2 . 2 1.85836 TE C F C sp F p eV   ;  32 . 3 0.92918 TE C Cl C sp Cl p eV   ;  3 2 . 4 0.72457 TE C Br C sp Br p eV   ; 

 3 2 . 5 0.36228 TE C I C sp I p eV   , and  2 . 3 0.92918 TE O Cl O p Cl p eV   . 

In the case that the terminal bond is X X  where X  is a halogen atom, 1c  is one, and 2c  is the average (Eq. (15.102)) 

of the hybridization factors of the participating halogen atoms given by Eqs. (15.71-15.72) where  3. ,CoulombE MO atom msp  is 

determined using Eq. (15.32) and  3. , 13.605804 CoulombE MO atom msp eV  for X I .  The factor 1C  of Eq. (15.99) is one for 

all halogen atoms.  The factor 2C  of fluorine is one since it is the only halogen wherein the ionization energy is greater than 

13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  For each of 
the other halogens, Cl , Br , and I , 2C  is the hybridization factor of Eq. (15.61) given by Eq. (15.79) with  2 1c  being that of 

the halogen given by Eq. (15.77) that matches the valence energy of X  (  1E valence ) to that of the 32C sp  HO 

(  2 14.63489 E valence eV  , Eq. (15.25)) and to the hybridization of 32C sp  HO (  2 2 0.91771c  , Eq. (13.430)).  

 3, .TE atom atom msp AO  of Eq. (15.99) is the maximum for the participating atoms which is 1.44915 eV , 0.92918 eV , 

0.92918 eV , and 0.33582 eV  for F , Cl , Br , and I , respectively. 
 Consider the case that the terminal bond is C X  where C  is a carbon atom and X  is a halogen atom.  The factors 1c  

and 1C  of Eq. (15.99) are one for all halogen atoms.  For X F , 2c  is the average (Eq. (15.104)) of the hybridization factors of 

the participating carbon and F  atoms where 2c  for carbon is given by Eq. (15.71) and 2c  for fluorine matched to carbon is given 

by Eq. (15.79) with  2 1c  for the fluorine atom given by Eq. (15.77) that matches the valence energy of F  

(  1 17.42282 E valence eV  ) to that of the 32C sp  HO (  2 14.63489 E valence eV  , Eq. (15.25)) and to the hybridization of 
32C sp  HO (  2 2 0.91771c  , Eq. (13.430)).  The factor 2C  of fluorine is one since it is the only halogen wherein the ionization 

energy is greater than 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H  given by 
Eq. (1.264).  For each of the other halogens, Cl , Br , and I , 2c  is the hybridization factor of the participating carbon atom since 

the halogen atom is energy matched to the carbon atom.  2C  of the terminal-atom bond matches that used to determine the 

energies of the corresponding C X -bond MO.  Then, 2C  is the hybridization factor of Eq. (15.61) given by Eq. (15.79) with 

 2 1c  for the halogen atom given by Eq. (15.77) that matches the valence energy of X  (  1E valence ) to that of the 32C sp  HO 

(  2 14.63489 E valence eV  , Eq. (15.25)) and to the hybridization of 32C sp  HO (  2 2 0.91771c  , Eq. (13.430)).  

 3, .TE atom atom msp AO  of Eq. (15.99) is the maximum for the participating atoms which is 1.85836 eV , 0.92918 eV , 

0.72457 eV , and 0.33582 eV  for F , Cl , Br , and I , respectively. 
 Consider the case that the terminal bond is H X  corresponding to the angle of the atoms HCX  where C  is a carbon 
atom and X  is a halogen atom.  The factors 1c  and 1C  of Eq. (15.99) are 0.75  for all halogen atoms.  For X F , 2c  is given by 

Eq. (15.78) with 2c  of the participating carbon and F  atoms given by Eq. (15.71) and Eq. (15.74), respectively.  The factor 2C  

of fluorine is one since it is the only halogen wherein the ionization energy is greater than 13.605804 eV , the magnitude of the 
Coulombic energy between the electron and proton of H  given by Eq. (1.264).  For each of the other halogens, Cl , Br , and I , 

2c  is also given by Eq. (15.78) with 2c  of the participating carbon given by Eq. (15.71) and 2c  of the participating X  atom 

given by 2 0.91771c   (Eq. (13.430)) since the X  atom is energy matched to the 32C sp  HO.  In these cases, 2C  is given by Eq. 

(15.74) for the corresponding atom X  where 2C  matches the energy of the atom X  to that of H . 

Using the distance between the two atoms A  and B  of the general molecular group ACB  when the total energy of the 
corresponding A B  MO is zero, the corresponding bond angle can be determined from the law of cosines: 
 2 2 2

1 2 1 2 32 cosines s s s s    (15.105) 

With 1 2 C As c  , the internuclear distance of the C A  bond, 2 2 C Bs c  , the internuclear distance of each C B  bond, and 

3 2 'A Bs c  , the internuclear distance of the two terminal atoms, the bond angle ACB  between the C A  and C B  bonds is 

given by: 

         2 2 2
2 ' 2 ' 2 2 ' 2 ' cosine 2 'C A C B C A C B A Bc c c c c        (15.106) 

 
     

  

2 2 2

1 2 ' 2 ' 2 '
cos

2 2 ' 2 '
C A C B A B

ACB
C A C B

c c c

c c
   


 

  
  

 
 

 (15.107) 

 Consider the exemplary structure ( )b a a bC C O O  wherein aC  is bound to bC , aO , and bO .  In the general case that the 

three bonds are coplanar and two of the angles are known, say 1  and 2 , then the third 3  can be determined geometrically: 
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 3 1 2360      (15.108) 

In the general case that two of the three coplanar bonds are equivalent and one of the angles is known, say 1 , then the second 

and third can be determined geometrically: 

 
 1

2 3

360

2


 


   (15.109) 

 
ANGLES AND DISTANCES FOR AN MO THAT FORMS AN ISOSCELES TRIANGLE 
In the general case where the group comprises three A B  bonds having B  as the central atom at the apex of a pyramidal 
structure formed by the three bonds with the A  atoms at the base in the xy-plane, the 3vC  axis centered on B  is defined as the 

vertical or z-axis, and any two A B  bonds form an isosceles triangle.  Then, the angle of the bonds and the distances from and 
along the z-axis are determined from the geometrical relationships given by Eqs. (13.412-13.416). 
 the distance origin Bd   from the origin to the nucleus of a terminal B  atom is given by 

 
2 '

2sin 60
B B

origin B

c
d 

 


 (15.110) 

 the height along the z-axis from the origin to the A  nucleus heightd  is given by: 

    22
2 'height A B origin Bd c d   , and (15.111) 

 the angle v  of each A B  bond from the z-axis is given by: 

 1tan origin B
v

height

d

d
 

 
   

 
 (15.112) 

Consider the case where the central atom B  is further bound to a fourth atom C  and the B C  bond is along the z-axis.  
Then, the bond ABC  given by Eq. (14.206) is: 

 180ABC v     (15.113) 
 
DIHEDRAL ANGLE 
Consider the plane defined by a general ACA  MO comprising a linear combination of two C A -bond MOs where C  is the 
central atom.  The dihedral angle /BC ACA  between the ACA -plane and a line defined by a third bond with C , specifically that 

corresponding to a C B -bond MO, is calculated from the bond angle ACA  and the distances between the A , B , and C  

atoms.  The distance 1d  along the bisector of ACA  from C  to the internuclear-distance line between A  and A , 2 'A Ac  , is given 

by: 

 1 2 ' cos
2
ACA

C Ad c


  (15.114) 

where 2 'C Ac   is the internuclear distance between A  and C .  The atoms A , A , and B  define the base of a pyramid.  Then, the 

pyramidal angle ABA  can be solved from the internuclear distances between A  and A , 2 'A Ac  , and between A  and B , 2 'A Bc  , 

using the law of cosines (Eq. (15.107)): 

 
     

  

2 2 2

1 2 ' 2 ' 2 '
cos

2 2 ' 2 '
A B A B A A

ABA
A B A B

c c c

c c
   


 

  
  

 
 

 (15.115) 

Then, the distance 2d  along the bisector of ABA  from B  to the internuclear-distance line 2 'A Ac  , is given by: 

 2 2 ' cos
2
ABA

A Bd c


  (15.116) 

The lengths 1d , 2d , and 2 'C Bc   define a triangle wherein the angle between 1d  and the internuclear distance between B  and C , 

2 'C Bc  , is the dihedral angle /BC ACA  that can be solved using the law of cosines (Eq. (15.107)): 

 
 
 

22 2
1 21

/
1

2 '
cos

2 2 '
C B

BC ACA
C B

d c d

d c
 




  
  

 
 

 (15.117) 

 

GENERAL DIHEDRAL ANGLE 
Consider the plane defined by a general ACB  MO comprising a linear combination of C A  and C B -bond MOs where C  is 
the central atom.  The dihedral angle /CD ACB  between the ACB -plane and a line defined by a third bond of C  with D , 

specifically that corresponding to a C D -bond MO, is calculated from the bond angle ACB  and the distances between the A , 

B , C , and D  atoms.  The distance 1d  from C  to the bisector of the internuclear-distance line between A  and B , 2 'A Bc  , is 
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given by two equations involving the law of cosines (Eq. (15.105)).  One with 1 2 C As c  , the internuclear distance of the C A  

bond, 2 1s d , 3

2 '

2
A Bc

s  , half the internuclear distance between A  and B , and 
1ACd  , the angle between 1d  and the 

C A  bond is given by: 

       
1

2
2 2

1 1

2 '
2 ' 2 2 ' cosine

2
A B

C A C A ACd

c
c d c d  

  
     
 

 (15.118) 

The other with 1 2 C Bs c  , the internuclear distance of the C B  bond, 2 1s d , 3

2 '

2
A Bc

s  , and 
1ACB ACd      where ACB  

is the bond angle between the C A  and C B  bonds is given by: 

         
1

2
2 2

1 1

2 '
2 ' 2 2 ' cosine

2
A B

C B C B ACB ACd

c
c d c d   

   
      
 

 (15.119) 

Subtraction of Eq. (15.119) from Eq. (15.118) gives: 

 
   

      1 1

2 2

1

2 ' 2 '

2 2 ' cosine 2 ' cosine

C A C B

C A ACd C B ACB ACd

c c
d

c c  
 

    




 
 (15.120) 

Substitution of Eq. (15.120) into Eq. (15.118) gives 
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2 2 ' cosine 2 ' cosine

2 '

2

 


    

 
 

    



     
     
          
 

      

C A C B
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C A C B
C A ACd

C A ACd C B ACB ACd

A B

c c
c

c c

c c
c

c c

c

  


  

0




 (15.121) 

The angle between 1d  and the C A  bond, 
1ACd , can be solved reiteratively using Eq. (15.121), and the result can be 

substituted into Eq. (15.120) to give 1d . 

The atoms A , B , and D  define the base of a pyramid.  Then, the pyramidal angle ADB  can be solved from the 

internuclear distances between A  and D , 2 'A Dc  , between B  and D , 2 'B Dc  , and between A  and B , 2 'A Bc  , using the law of 

cosines (Eq. (15.107)): 

 
     

  

2 2 2

1 2 ' 2 ' 2 '
cos

2 2 ' 2 '
A D B D A B

ADB
A D B D

c c c

c c
   


 

  
  

 
 

 (15.122) 

Then, the distance 2d  from D  to the bisector of the internuclear-distance line between A  and B , 2 'A Bc  , is given by 

two equations involving the law of cosines (Eq. (15.105)).  One with 1 2 A Ds c  , the internuclear distance between A  and D , 

2 2s d , 3

2 '

2
A Bc

s  , half the internuclear distance between A  and B , and 
2ADd  , the angle between 2d  and the A D  axis 

is given by: 

       
2

2
2 2

2 2

2 '
2 ' 2 2 ' cosine

2
A B

A D A D ADd

c
c d c d  

  
     
 

 (15.123) 

The other with 1 2 B Ds c  , the internuclear distance between B  and D , 2 2s d , and 
2ADB ADd      where ADB  is the bond 

angle between the A D  and B D  axes is given by: 

         
2

2
2 2

2 2

2 '
2 ' 2 2 ' cosine

2
A B

B D B D ADB ADd

c
c d c d   

   
      
 

 (15.124) 

Subtraction of Eq. (15.124) from Eq. (15.123) gives: 
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2
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A D B D
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 (15.125) 

Substitution of Eq. (15.125) into Eq. (15.123) gives: 
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 (15.126) 

The angle between 2d  and the A D  axis, 
2ADd , can be solved reiteratively using Eq. (15.126), and the result can be 

substituted into Eq. (15.125) to give 2d . 

The lengths 1d , 2d , and 2 'C Bc   define a triangle wherein the angle between 1d  and the internuclear distance between C  

and D , 2 'C Dc  , is the dihedral angle /CD ACB  that can be solved using the law of cosines (Eq. (15.107)): 

 
 
 

22 2
1 21

/
1

2 '
cos

2 2 '





  
   

 

C D
CD ACB

C D

d c d

d c
  (15.127) 

 
SOLUTION OF GEOMETRICAL AND ENERGY PARAMETERS OF MAJOR 
FUNCTIONAL GROUPS AND CORRESPONDING ORGANIC MOLECULES 
The exemplary molecules given in the following sections were solved using the solutions of organic chemical functional groups 
as basis elements wherein the structures and energies where linearly added to achieve the molecular solutions.  Each functional 
group can be treated as a building block to form any desired molecular solution from the corresponding linear combination.  
Each functional group element was solved using the atomic orbital and hybrid orbital spherical atomic orbital solutions bridged 
by molecular orbitals comprised of the 2H -type prolate spheroidal solution given in the Nature of the Chemical Bond of 

Hydrogen-Type Molecules section.  The energy of each MO was matched at the HO or AO by matching the hybridization and 
total energy of the MO to the AOs and HOs.  The energy magE  (e.g. given by Eq. (15.67) for a 32C sp  HO and Eq. (15.68) for an 

2O p  AO) was subtracted for each set of unpaired electrons created by bond breakage. 
The bond energy is not equal to the component energy of each bond as it exists in the molecule, although, they are close.  

The total energy of each group is its contribution to the total energy of the molecule as a whole.  The determination of the bond 
energies for the creation of the separate parts must take into account the energy of the formation of any radicals and any 
redistribution of charge density within the pieces and the corresponding energy change with bond cleavage.  Also, the vibrational 
energy in the transition state is dependent on the other groups that are bound to a given functional group.  This will affect the 
functional-group energy.  But, because the variations in the energy based on the balance of the molecular composition are 
typically of the order of a few hundreds of electron volts at most, they were neglected. 

The energy of each functional-group MO bonding to a given carbon HO is independently matched to the HO by 
subtracting the contribution to the change in the energy of the HO from the total MO energy given by the sum of the MO 

contributions and  3, 2 14.63489 E C sp eV   (Eq. (13.428)).  The intercept angles are determined from Eqs. (15.80-15.87) 

using the final radius of the HO of each atom.  The final carbon-atom radius is determined using Eqs. (15.32) wherein the sum of 
the energy contributions of each atom to all the MOs in which it participates in bonding is determined.  This final radius is used 
in Eqs. (15.19) and (15.20) to calculate the final valence energy of the HO of each atom at the corresponding final radius.  The 
radius of any bonding heteroatom that contributes to a MO is calculated in the same manner, and the energy of its outermost 
shell is matched to that of the MO by the hybridization factor between the carbon-HO energy and the energy of the heteroatomic 
shell.  The donation of electron density to the AOs and HOs reduces the energy.  The donation of the electron density to the 
MO’s at each AO or HO is that which causes the resulting energy to be divided equally between the participating AOs or HOs to 
achieve energy matching. 

The molecular solutions can be used to design synthetic pathways and predict product yields based on equilibrium 
constants calculated from the heats of formation.  New stable compositions of matter can be predicted as well as the structures of 
combinatorial chemistry reactions.  Further important pharmaceutical applications include the ability to graphically or 
computationally render the structures of drugs that permit the identification of the biologically active parts of the molecules to be 
identified from the common spatial charge-density functions of a series of active molecules.  Drugs can be designed according to 
geometrical parameters and bonding interactions with the data of the structure of the active site of the drug. 

To calculate conformations, folding, and physical properties, the exact solutions of the charge distributions in any given 
molecule are used to calculate the fields, and from the fields, the interactions between groups of the same molecule or between 
groups on different molecules are calculated wherein the interactions are distance and relative orientation dependent.  The fields 
and interactions can be determined using a finite-element-analysis approach of Maxwell’s equations. 
 



Chapter 15 716

CONTINUOUS-CHAIN ALKANES ( 2 2,   3,4,5...n nC H n   ) 
The continuous-chain alkanes, 2 2n nC H  , are the homologous series comprising terminal methyl groups at each end of the chain 

with 2n   methylene ( 2CH ) groups in between: 

  3 2 32n
CH CH CH


 (15.128) 

2 2n nC H   can be solved using the same principles as those used to solve ethane and ethylene wherein the 2s  and 2 p  shells of 

each C  hybridize to form a single 32sp  shell as an energy minimum, and the sharing of electrons between two 32C sp  
hybridized orbitals (HOs) to form a molecular orbital (MO) permits each participating hybridized orbital to decrease in radius 
and energy.  Three H  AOs combine with three carbon 32sp  HOs and two H  AOs combine with two carbon 32sp  HOs to form 

each methyl and methylene group, respectively, where each bond comprises a 2H -type MO developed in the Nature of the 

Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section.  The 3CH  and 2CH  groups bond by forming 2H -type 

MOs between the remaining 32C sp  HOs on the carbons such that each carbon forms four bonds involving its four 32C sp  HOs.  

For the alkyl C C  group,  3, .TE atom atom msp AO  is 1.85836 eV  where both energy contributions are given by Eq. 

(14.513).  It is based on the energy match between the 32C sp  HOs of the chain comprising methylene groups and terminal 
methyl groups. 
The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) 
parameters of straight-chain alkanes are given in Tables 15.4, 15.5, and 15.6, respectively.  The total energy of each straight-
chain alkane given in Table 15.7 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.6 

corresponding to functional-group composition of the molecule.  The bond angle parameters of straight-chain alkanes 
determined using Eqs. (15.88-15.117) are given in Table 15.8.  In this angle table and those given in subsequent sections when 

2c  is given as the ratio of two values of 2c  designated to Atom 1 and Atom 2 and corresponding to CoulombicE  of Atom 1 and 

Atom 2, respectively, then 
 
 

2
2

2

 2

 1

c Atom
c

c Atom
  . The color scale, translucent view of the charge-density of exemplary alkane, butane 

comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with 

one or more hydrogen MOs is shown in Figure 15.1. 
 

Figure 15.1.   (A-B) Color scale, translucent and opaque views of the charge-density of butane.  Each representation shows 
the orbitals of the atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
 
 

 



Organic Molecular Functional Groups and Molecules 717

Table 15.4.   The geometrical bond parameters of straight-chain alkanes and experimental values [1]. 
 

Parameter C  C  
Group 

 3 C H CH  

Group

 2 C H CH  

Group 

 0 a a  2.12499 1.64920 1.67122 

 0'  c a  1.45744 1.04856 1.05553 

Bond Length 

 2 '  c Å  1.54280 1.10974 1.11713 

Exp. Bond Length 

 Å  

1.532 
(propane) 

1.531 
(butane)

1.107 
( C  H  propane) 

1.117 
( C  H butane)

1.107 
( C  H  propane) 

1.117 
( C  H butane) 

 0,  b c a  1.54616 1.27295 1.29569 

e  0.68600 0.63580 0.63159 
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Table 15.6.   The energy parameters (eV) of functional groups of straight-chain alkanes. 
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BRANCHED ALKANES ( 2 2,   3,4,5...n nC H n   ) 
The branched-chain alkanes, 2 2n nC H  , comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, and may 

comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The 

methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be 
identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl 
(  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  

bonds comprise functional groups.  The branched-alkane groups are solved using the same principles as those used to solve the 
methyl and methylene functional groups wherein the 2s  and 2 p  AOs of each C  hybridize to form a single 32sp  shell as an 

energy minimum, and the sharing of electrons between two 32C sp  HOs to form a MO permits each participating hybridized 

orbital to decrease in radius and energy.   3, .TE atom atom msp AO  of each C C -bond MO in Eq. (15.61) due to the charge 

donation from the C  atoms to the MO is 1.85836 eV  or 1.44915 eV  based on the energy match between the 32C sp  HOs 
corresponding to the energy contributions equivalent to those of methylene, 0.92918 eV  (Eq. (14.513)), or methyl, 

0.72457 eV  (Eq. (14.151)), groups, respectively. 
The symbols of the functional groups of branched-chain alkanes are given in Table 15.9. The geometrical (Eqs. (15.1-

15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of branched-
chain alkanes are given in Tables 15.10, 15.11, and 15.12, respectively.  The total energy of each branched-chain alkane given in 
Table 15.13 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.12 corresponding to functional-

group composition of the molecule.  The bond angle parameters of branched-chain alkanes determined using Eqs. (15.88-
15.117) are given in Table 15.14. The color scale, translucent view of the charge-density of exemplary alkane, isobutane, 
comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with 

one or more hydrogen MOs is shown in Figure 15.2. 
 
Figure 15.2.   Color scale, translucent view of the charge-density of isobutane showing the orbitals of the atoms at their radii, 
the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale).  (A) Top view.  (B) Side view. 
 

 
 

 
Table 15.9.   The symbols of functional groups of branched alkanes. 

 
Functional Group Group Symbol

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C  H
CC bond (n-C) C  C (a)
CC bond (iso-C) C  C (b)
CC bond (tert-C) C  C (c)
CC (iso to iso-C) C  C (d)
CC (t to t-C) C  C (e)
CC (t to iso-C) C  C (f)
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ALKENES ( 2 ,   3,4,5...n nC H n   ) 
The straight and branched-chain alkenes, 2n nC H , comprise at least one carbon-carbon double bond comprising a functional 

group that is solved equivalently to the double bond of ethylene.  The double bond may be bound to one, two, three, or four 
carbon single bonds that substitute for the hydrogen atoms of ethylene.  Based on the condition of energy matching of the orbital, 
any magnetic energy due to unpaired electrons in the constituent fragments, and differences in oscillation in the transition state, 
three distinct functional groups can be identified: C  vinyl single bond to ( )C C C  , C  vinyl single bond to ( )C H C  , and 

C  vinyl single bond to 2( )C C CH  .  In addition, 2CH  of the 2C CH   moiety is an alkene functional group. 

The alkyl portion of the alkene may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, and 

may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  

The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be 
identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl 
(  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  

bonds comprise functional groups.  The branched-chain-alkane groups in alkenes are equivalent to those in branched-chain 
alkanes.  The solution of the functional groups comprises the hybridization of the 2s  and 2 p  AOs of each C  to form a single 

32sp  shell as an energy minimum, and the sharing of electrons between two 32C sp  HOs to form a MO permits each 

participating hybridized orbital to decrease in radius and energy.   3, .TE atom atom msp AO  of the C C -bond MO in Eq. 

(15.61) due to the charge donation from the C  atoms to the MO is equivalent to that of ethylene, 2.26759 eV , given by Eq. 

(14.247).   3, .TE atom atom msp AO  of each C C -bond MO in Eq. (15.61) is 1.85836 eV  or 1.44915 eV  based on the 

energy match between the 32C sp  HOs corresponding to the energy contributions equivalent to those of methylene, 
0.92918 eV  (Eq. (14.513)), or methyl, 0.72457 eV  (Eq. (14.151)), groups, respectively. 

The symbols of the functional groups of alkenes are given in Table 15.15.  The geometrical (Eqs. (15.1-15.5) and 
(15.41)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.56)) parameters of alkenes are given in 
Tables 15.16, 15.17, and 15.18, respectively.  The total energy of each alkene given in Table 15.19 was calculated as the sum 
over the integer multiple of each  GroupDE  of Table 15.18 corresponding to functional-group composition of the molecule.  For 

each set of unpaired electrons created by bond breakage, the 32C sp  HO magnetic energy magE  that is subtracted from the 

weighted sum of the    ( )GroupDE eV  values based on composition is given by Eq. (15.67).  The bond angle parameters of alkenes, 

determined using Eqs. (15.88-15.117), are given in Table 15.20. The color scale, translucent view of the charge-density of 
exemplary alkene, propene, comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type 

ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.3. 
 
Figure 15.3.   Color scale, translucent view of the charge-density of propene showing the orbitals of the atoms at their radii, 
the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale).  (A) Top view.  (B) Side view. 
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Table 15.15.   The symbols of functional groups of alkenes. 
 

Functional Group Group Symbol
CC double bond C  C
C vinyl single bond to -C(C)=C C  C (i)
C vinyl single bond to -C(H)=C C  C (ii)
C vinyl single bond to -C(C)=CH2 C  C (iii)

CH2 alkenyl group  2 C H CH  (i) 

CH3 group  3 C H CH  

CH2 alkyl group  2 C H CH  (ii) 

CH C  H
CC bond (n-C) C  C (a)
CC bond (iso-C) C C (b)
CC bond (tert-C) C  C (c)
CC (iso to iso-C) C  C (d)
CC (t to t-C) C  C (e)
CC (t to iso-C) C  C (f)
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ALKYNES ( 2 2,   3,4,5...n nC H n   ) 
The straight and branched-chain alkynes, 2 2n nC H  , have at least one carbon-carbon triple bond comprising a functional group 

that is solved equivalently to the triple bond of acetylene.  The triple bond may be bound to one or two carbon single bonds that 
substitute for the hydrogen atoms of acetylene.  Based on the energy matching of the mutually bound C , these C C -bond MOs 
are defined as primary and secondary C C  functional groups, respectively, that are unique to alkynes.  In addition, the 
corresponding terminal CH  of a primary alkyne comprises a functional group that is solved equivalently to the methylyne group 
of acetylene as given in the Acetylene Molecule section. 

The alkyl portion of the alkyne may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, and 

may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  

The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be 
identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl 
(  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  

bonds comprise functional groups.  The branched-chain-alkane groups in alkynes are equivalent to those in branched-chain 
alkanes. 

The solution of the functional groups comprises the hybridization of the 2s  and 2 p  AOs of each C  to form a single 
32sp  shell as an energy minimum, and the sharing of electrons between two 32C sp  HOs to form a MO permits each 

participating hybridized orbital to decrease in radius and energy.   3, .TE atom atom msp AO  of the C C -bond MO in Eq. 

(15.61) due to the charge donation from the C  atoms to the MO is equivalent to that of acetylene, 3.13026 eV , given by Eq. 

(14.342).   3, .TE atom atom msp AO  of each -alkyl-bond MO in Eq. (15.61) is 1.85836 eV  or 1.44915 eV  based on the 

energy match between the 32C sp  HOs corresponding to the energy contributions equivalent to those of methylene, 
0.92918 eV  (Eq. (14.513)), or methyl, 0.72457 eV  (Eq. (14.151)), groups, respectively.  For the C C  groups each 

comprising a C  single bond to C C ,  3, .TE atom atom msp AO  is 0.72457 eV  based on the energy match between the 
32C sp  HOs for the mutually bound C  of the single and triple bonds.  The parameter   of each group is matched for oscillation 

in the transition state based on the group being primary or secondary. 
The symbols of the functional groups of alkynes are given in Table 15.21.  The geometrical (Eqs. (15.1-15.5) and 

(15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkynes are given in 
Tables 15.22, 15.23, and 15.24, respectively.  The total energy of each alkyne given in Table 15.25 is calculated as the sum over 
the integer multiple of each  GroupDE  of Table 15.24 corresponding to functional-group composition of the molecule.  The bond 

angle parameters of alkynes determined using Eqs. (15.88-15.117) are given in Table 15.26.  Each C  of the C C  group can 
further bond with only one atom, and the bond is linear as a minimum of energy as in the case of acetylene. The color scale, 
translucent view of the charge-density of exemplary alkyne, propyne, comprising the concentric shells of atoms with the outer 
shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.4. 

 
Figure 15.4.   Color scale, translucent view of the charge-density of propyne showing the orbitals of the atoms at their radii, 
the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Table 15.21.   The symbols of functional groups of alkynes. 
 

Functional Group Group Symbol
CC triple bond C  C
C single bond to C  C  (1°) C  C (i)
C single bond to C  C  (2°) C  C (ii)
CH (terminal) C  H (i)

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH (alkyl) C  H (ii)
CC bond (n-C) C C (a)
CC bond (iso-C) C  C (b)
CC bond (tert-C) C C (c)
CC (iso to iso-C) C  C (d)
CC (t to t-C) C  C (e)
CC (t to iso-C) C  C (f)
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ALKYL FLUORIDES ( 2 2 ,   1,2,3,4,5...   1,2,3...n mn mC H F n m      ) 
The branched-chain alkyl fluorides, 2 2n n m mC H F  , may comprise at least two terminal methyl groups ( 3CH ) at each end of the 

chain, and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon 

single bonds wherein at least one H  is replaced by a fluorine.  The C F  bond comprises a functional group for each case of 
F  replacing a H  of methane in the series 4 ,   1, 2,3, 4,m mH C F m    and F  replacing a H  of an alkane.  The methyl, 

methylene, methylyne functional groups are equivalent to those of branched-chain alkanes.  Six types of C C  bonds can be 
identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl 
(  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  

bonds comprise functional groups that are equivalent to those of branched-chain alkanes. 
The solution of the C F  functional groups comprises the hybridization of the 2s  and 2 p  AOs of each C  to form a 

single 32sp  shell as an energy minimum, and the sharing of electrons between the 32C sp  HO and the F  AO to form a 

molecular orbital (MO) permits each participating orbital to decrease in radius and energy.  In alkyl fluorides, the 32C sp  HO has 

a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and 

the F  AO has an energy of   17.42282 E F eV  .  To meet the equipotential condition of the union of the C F  2H -type-

ellipsoidal-MO with these orbitals, the hybridization factor 2c  of Eq. (15.61) for the C F -bond MO given by Eqs. (15.77) and 

(15.79) is: 

    
     

3

3 3
2 2

, 2 14.63489 
2   2 0.91771 0.77087

17.42282 

E C sp eV
c C sp HO to F c C sp HO

E F eV


  


 (15.129) 

 3, .TE atom atom msp AO  of the C F -bond MO in Eq. (15.61) based on the charge donation from F  to the MO is 

determined by the linear combination that results in a energy that is a minimum which does not exceed the energy of the AO of 
the F  atom to which it is energy matched. 

The symbols of the functional groups of branched-chain alkyl fluorides are given in Table 15.27.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of 
branched-chain alkyl fluorides are given in Tables 15.28, 15.29, and 15.30, respectively.  The total energy of each branched-
chain alkyl fluoride given in Table 15.31 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.30 

corresponding to functional-group composition of the molecule.  For each set of unpaired electrons created by bond breakage, 
the 32C sp  HO magnetic energy magE  that is subtracted from the weighted sum of the    ( )GroupDE eV  values based on 

composition is given by Eq. (15.67).  In the case of trifluoromethane, magE  is positive since the term due to the fluorine atoms 

cancels that of the CH  group.  The C C  bonds to the CHF  group (one H  bond to C ) were each treated as an iso C C  
bond.  The C C  bonds to the CF  group (no H  bonds to C ) were each treated as a tert-butyl C C .  magE  was subtracted for 

each t-butyl group.  The bond angle parameters of branched-chain alkyl fluorides determined using Eqs. (15.70-15.79), (15.87-
15.117) and (15.129) are given in Table 15.32. The color scale, translucent view of the charge-density of exemplary alkyl 
fluoride, 1-fluoropropane, comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type 

ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.5. 
 
Figure 15.5.  Color scale, translucent view of the charge-density of 1-fluoropropane showing the orbitals of the atoms at 
their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the 

atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Table 15.27.   The symbols of functional groups of branched-chain alkyl fluorides. 
 

Functional Group Group Symbol

CF of CF
m

H
4m

 C  F  (i) 

CF of C
n
H

2n2m
F

m
 C  F  (ii) 

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C  H
CC bond (n-C) C C (a)
CC bond (iso-C) C  C (b)
CC bond (tert-C) C C (c)
CC (iso to iso-C) C  C (d)
CC (t to t-C) C C (e)
CC (t to iso-C) C  C (f)

 



Organic Molecular Functional Groups and Molecules 739

 

 

T
a

b
le

 1
5

.2
8

. 
 T

he
 g

eo
m

et
ri

ca
l b

on
d 

pa
ra

m
et

er
s 

of
 b

ra
nc

he
d-

ch
ai

n 
al

ky
l f

lu
or

id
es

 a
nd

 e
xp

er
im

en
ta

l v
al

ue
s 

[1
].

 

T
a

b
le

 1
5

.2
9

.  
T

he
 M

O
 to

 H
O

 in
te

rc
ep

t g
eo

m
et

ri
ca

l b
on

d 
pa

ra
m

et
er

s 
of

 b
ra

nc
he

d-
ch

ai
n 

al
ky

l f
lu

or
id

es
.  

R
, R
', 

R
" a

re
 H

 o
r 

al
ky

l g
ro

up
s.

  E
T
 is

 E
T
 (

at
om

 –
 a

to
m

, 

m
sp

3 .
A

O
).

 



Chapter 15 740

 
 
       

T
a

b
le

 1
5

.3
0

. 
 T

he
 e

ne
rg

y 
pa

ra
m

et
er

s 
(e

V
) 

of
 f

un
ct

io
na

l g
ro

up
s 

of
 b

ra
nc

he
d-

ch
ai

n 
al

ky
l f

lu
or

id
es

. 

T
a

b
le

 1
5

.3
1

. 
 T

he
 to

ta
l b

on
d 

en
er

gi
es

 o
f 

br
an

ch
ed

-c
ha

in
 a

lk
yl

 f
lu

or
id

es
 c

al
cu

la
te

d 
us

in
g 

th
e 

fu
nc

tio
na

l g
ro

up
 c

om
po

si
ti

on
 a

nd
 th

e 
en

er
gi

es
 o

f 
T

ab
le

 1
5.

30
 c

om
pa

re
d 

to
 th

e 
ex

pe
ri

m
en

ta
l v

al
ue

s 
[3

].
  T

he
 m

ag
ne

ti
c 

en
er

gy
 E

m
ag

  t
ha

t i
s 

su
bt

ra
ct

ed
 f

ro
m

 th
e 

w
ei

gh
te

d 
su

m
 o

f 
th

e 
E

D
 (

G
ro

up
) (

eV
) 

va
lu

es
 b

as
ed

 o
n 

co
m

po
si

ti
on

 is
 g

iv
en

 b
y 

(1
5.

58
).

 



Organic Molecular Functional Groups and Molecules 741

 

T
a

b
le

 1
5

.3
2

. 
 T

he
 b

on
d 

an
gl

e 
pa

ra
m

et
er

s 
of

 b
ra

nc
he

d-
ch

ai
n 

al
ky

l f
lu

or
id

es
 a

nd
 e

xp
er

im
en

ta
l v

al
ue

s 
[1

].
  I

n 
th

e 
ca

lc
ul

at
io

n 
of

 θ
ν, 

th
e 

pa
ra

m
et

er
s 

fr
om

 th
e 

pr
ec

ed
in

g 
an

gl
e 

w
er

e 
us

ed
.  

E
T
 is

 E
T
 (

at
om

 –
 a

to
m

, m
sp

3 .
A

O
).

 



Chapter 15 742

ALKYL CHLORIDES ( 2 2 ,   1,2,3,4,5...   1,2,3...n mn mC H Cl n m      )  
The branched-chain alkyl chlorides, 2 2n n m mC H Cl  , may comprise at least two terminal methyl groups ( 3CH ) at each end of the 

chain, and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon 

single bonds wherein at least one H  is replaced by a chlorine.  The C Cl  bond comprises a functional group for each case of 
Cl  replacing a H  of methane for the series 4 ,   1, 2,3,m mH C Cl m    with the C Cl  bond of 4CCl  comprising another 

functional group due to the limitation of the minimum energy of Cl  matched to that of the 32C sp  HO.  In addition, the C Cl  
bond due to Cl  replacing an H  of an alkane is a functional group.  The methyl, methylene, methylyne functional groups are 
equivalent to those of branched-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the 
same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) 

groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups that 
are equivalent to those of branched-chain alkanes. 

The solution of the C Cl  functional groups comprises the hybridization of the 2s  and 2 p  AOs of each C  to form a 

single 32sp  shell as an energy minimum, and the sharing of electrons between the 32C sp  HO and the Cl  AO to form a MO 
permits each participating orbital to decrease in radius and energy.  In alkyl chlorides, the energy of chlorine is less than the 
Coulombic energy between the electron and proton of H  given by Eq. (1.264).  Thus, 2c  in Eq. (15.61) is one, and the energy 

matching condition is determined by the 2C  parameter.  Then, 32C sp  HO has a hybridization factor of 0.91771 (Eq. (13.430)) 

with a corresponding energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the Cl  AO has an energy of 

  12.96764 E Cl eV  .  To meet the equipotential condition of the union of the C Cl  2H -type-ellipsoidal-MO with these 

orbitals, the hybridization factor 2C  of Eq. (15.61) for the C Cl -bond MO given by Eqs. (15.77) and (15.79) is: 

    
     3 3

2 23

12.96764 
2   2 0.91771 0.81317

14.63489 , 2

E Cl eV
C C sp HO to Cl c C sp HO

eVE C sp


  


 (15.130) 

The valence energy of the carbon 2 p  is 11.2603 eV  and that of the Cl  AO is 12.96764 eV .  The energy difference is more 

than that of  32 , 2TE C C sp  given by Eq. (14.151) for a single bond.  Thus,  3, .TE atom atom msp AO  of the C Cl -bond 

MO of 4m mCCl H   and 2 2n n m mC H Cl   in Eq. (15.61) due to the charge donation from the C  and Cl  atoms to the MO is 

1.44915 eV  based on the energy match between the 32C sp  HO and the Cl  AO corresponding to the energy contributions 

equivalent to those of methyl groups, 0.72457 eV  (Eq. (14.151)).   3, .TE atom atom msp AO  of the C Cl -bond MO of 

chloroform with four C Cl  bonds is 0.92918 eV  (Eq. (14.513)) based on the maximum single-bond-energy contribution of 
the 32C sp  HO. 

The symbols of the functional groups of branched-chain alkyl chlorides are given in Table 15.33.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of 
branched-chain alkyl chlorides are given in Tables 15.34, 15.35, and 15.36, respectively.  The total energy of each branched-
chain alkyl chloride given in Table 15.37 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.36 

corresponding to functional-group composition of the molecule.  For each set of unpaired electrons created by bond breakage, 
the 32C sp  HO magnetic energy magE  that was subtracted from the weighted sum of the    ( )GroupDE eV  values based on 

composition is given by Eq. (15.67).  The C C  bonds to the CHCl  group (one H  bond to C ) were each treated as an iso 
C C  bond.  The C C  bonds to the CCl  group (no H  bonds to C ) were each treated as a tert-butyl C C .  magE  was 

subtracted for each t-butyl group.  The bond angle parameters of branched-chain alkyl chlorides determined using Eqs. (15.70-
15.79), (15.88-15.117) and (15.130) are given in Table 15.38. The color scale, translucent view of the charge-density of 
exemplary alkyl chloride, 1-chloropropane, comprising the concentric shells of atoms with the outer shell bridged by one or 
more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.6. 
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Figure 15.6.   Color scale, translucent view of the charge-density of 1-chloropropane showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
 
Table 15.33.   The symbols of functional groups of branched-chain alkyl chlorides. 
 

Functional Group Group Symbol

CCl of CCl
m

H
4m

 C  Cl  (i) 

CCl of   CCl
4
 C  Cl  (ii) 

CCl of C
n
H

2n2m
Cl

m
 C  Cl  (iii) 

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C  H
CC bond (n-C) C  C (a)
CC bond (iso-C) C  C (b)
CC bond (tert-C) C  C (c)
CC (iso to iso-C) C  C (d)
CC (t to t-C) C  C (e)
CC (t to iso-C) C  C (f)
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ALKYL BROMIDES ( 2 2 ,   1,2,3,4,5...   1,2,3...n mn mC H Br n m      ) 
The branched-chain alkyl bromides, 2 2n n m mC H Br  , may comprise at least two terminal methyl groups ( 3CH ) at each end of the 

chain, and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon 

single bonds wherein at least one H  is replaced by a bromine.  The C Br  bond comprises a functional group for each case of 
Br  replacing a H  of methane for the series 4 ,   1, 2,3,m mH C Br m    with the C Br  bond of 4CBr  comprising another 

functional group due to the limitation of the minimum energy of Br  matched to that of the 32C sp  HO.  In addition, the C Br  
bond due to Br  replacing a H  of an alkane is a functional group.  The methyl, methylene, methylyne functional groups are 
equivalent to those of branched-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the 
same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) 

groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups that 
are equivalent to those of branched-chain alkanes. 

The solution of the C Br  functional groups comprises the hybridization of the 2s  and 2 p  shells of each C  to form a 

single 32sp  shell as an energy minimum, and the sharing of electrons between the 32C sp  hybridized orbital (HO) and the Br  
AO to form a molecular orbital (MO) permits each participating orbital to decrease in radius and energy.  In alkyl bromides, the 
energy of bromine is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  Thus, 2c  in 

Eq. (15.61) is one, and the energy matching condition is determined by the 2C  parameter.  Then, the 32C sp  HO has a 

hybridization factor of 0.91771  (Eq. (13.430)) with a corresponding energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and 

the Br  AO has an energy of   11.81381 E Br eV  .  To meet the equipotential condition of the union of the C Br  2H -type-

ellipsoidal-MO with these orbitals, the hybridization factor 2C  of Eq. (15.61) for the C Br -bond MO given by Eqs. (15.77) 

and (15.79) is: 

    
     3 3

2 23

11.81381 
2   2 0.91771 0.74081

14.63489 , 2

E Br eV
C C sp HO to Br c C sp HO

eVE C sp


  


 (15.131) 

The valence energy of the carbon 2 p  is 11.2603 eV  and that of the Br  AO is 11.81381 eV .  The energy difference is less 

than that of  3, 2TE C C sp  given by Eq. (14.151) for a single bond.  Thus,  3, .TE atom atom msp AO  of the alkyl C Br -

bond MO in Eq. (15.61) due to the charge donation from the C  and Br  atoms to the MO is 0.92918 eV  (Eq. (14.513)) based 

on the maximum single-bond-energy contribution of the 32C sp  HO.   3, .TE atom atom msp AO  of the series 

4  1, 2,3m mCBr H m   is equivalent to those of methyl groups, 0.72457 eV  (Eq. (14.151)).   For 4CBr , 

 3, .TE atom atom msp AO  of the C Br -bond MO in Eq. (15.61) due to the charge donation from the C  and Br  atoms to the 

MO is 0.36229 eV  based on the maximum charge density on the 32C sp  HO.  It is given by Eqs. (15.18-15.20) and Eq. (15.29) 

with a linear combination of 1s   corresponding to  3, . 0.72457 TE atom atom msp AO eV    and 0s   corresponding to: 

 3, . 0TE atom atom msp AO  . 

The symbols of the functional groups of branched-chain alkyl bromides are given in Table 15.39.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of 
branched-chain alkyl bromides are given in Tables 15.49, 15.50, and 15.51, respectively.  The total energy of each branched-
chain alkyl bromide given in Table 15.52 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.51 

corresponding to functional-group composition of the molecule.  For each set of unpaired electrons created by bond breakage, 
the 32C sp  HO magnetic energy magE  that was subtracted from the weighted sum of the    ( )GroupDE eV  values based on 

composition is given by Eq. (15.67).  The C C  bonds to the CHBr  group (one H  bond to C ) were each treated as an iso 
C C  bond.  The C C  bonds to the CBr  group (no H  bonds to C ) were each treated as a tert-butyl C C .  The bond angle 
parameters of branched-chain alkyl bromides determined using Eqs. (15.70-15.79), (15.88-15.117) and (15.131) are given in 
Table 15.44. The color scale, translucent view of the charge-density of exemplary alkyl bromide, 1-bromopropane, comprising 
the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs is shown in Figure 15.7. 
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Figure 15.7.   Color scale, translucent view of the charge-density of 1-bromopropane showing the orbitals of the atoms at 
their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the 

atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 

 
Table 15.39.  The symbols of functional groups of branched-chain alkyl bromides. 
 

Functional Group Group Symbol
CBr of 4m mCBr H   C Br  (i) 

CBr of 4CBr  C Br  (ii) 

CBr of 2 2n n m mC H Br   C Br  (iii) 

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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ALKYL IODIDES ( 2 2 ,   1,2,3,4,5...   1,2,3...n mn mC H I n m      ) 
The branched-chain alkyl iodides, 2 2n n m mC H I  , may comprise at least two terminal methyl groups ( 3CH ) at each end of the 

chain, and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon 

single bonds wherein at least one H  is replaced by an iodine atom.  The C I  bond comprises a functional group for I  
replacing a H  of methane ( 3CH I ) or for I  replacing a H  of an alkane corresponding to the series 2 2n n m mC H I  .  The C I  

bond of each of 2 2CH I  and 3CHI  comprise separate functional groups due to the limitation of the minimum energy of I  

matched to that of the 32C sp  HO.  The methyl, methylene, methylyne functional groups are equivalent to those of branched-
chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain 
alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to 

isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups that are equivalent to those of 
branched-chain alkanes. 

The solution of the C I  functional groups comprises the hybridization of the 2s  and 2 p  AOs of each C  to form a 

single 32sp  shell as an energy minimum, and the sharing of electrons between the 32C sp  HO and the I  AO to form a MO 
permits each participating orbital to decrease in radius and energy.  In alkyl iodides, the energy of iodine is less than the 
Coulombic energy between the electron and proton of H  given by Eq. (1.264).  Thus, 2c  in Eq. (15.61) is one, and the energy 

matching condition is determined by the 2C  parameter.  Then, the 32C sp  HO has a hybridization factor of 0.91771 (Eq. 

(13.430)) with a corresponding energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)).  The I  AO has an energy of 

  10.45126 E I eV  .  To meet the equipotential condition of the union of the C I  2H -type-ellipsoidal-MO with these 

orbitals, the hybridization factor 2C  of Eq. (15.60) for the C I -bond MO given by Eqs. (15.77) and (15.79) is: 

    
     3 3

2 23

10.45126 
2   2 0.91771 0.65537

14.63489 , 2

E I eV
C C sp HO to I c C sp HO

eVE C sp


  


 (15.132) 

The valence energy of the carbon 2 p  is 11.2603 eV  and that of the I  AO is 10.45126 eV .  The energy difference is 

positive.  Thus, based on the maximum charge density on the 32C sp  HO  3, .TE atom atom msp AO  of the C I -bond MO in 

Eq. (15.61) due to the charge donation from the C  and I  atoms to the MO is 0.36229 eV  (Eqs. (15.18-15.20 and Eq. (15.29) 

with a linear combination of 1s  ,  3, . 0.72457 TE atom atom msp AO eV    and  3, . 0TE atom atom msp AO  ) for methyl 

and alkyl iodides, 0.18114 eV  for diiodomethane, and 0  for 3CHI . 

The symbols of the functional groups of branched-chain alkyl iodides are given in Table 15.45.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of 
branched-chain alkyl iodides are given in Tables 15.55, 15.56, and 15.57, respectively.  The total energy of each branched-chain 
alkyl iodide given in Table 15.49 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.48 

corresponding to functional-group composition of the molecule.  For each set of unpaired electrons created by bond breakage, 
the 32C sp  HO magnetic energy magE  that was subtracted from the weighted sum of the    ( )GroupDE eV  values based on 

composition is given by Eq. (15.67).  The C C  bonds to the CHI  group (one H  bond to C ) were each treated as an iso C C  
bond.  The C C  bonds to the CI  group (no H  bonds to C ) were each treated as a tert-butyl C C .  magE  is subtracted for 

each t-butyl group.  The bond angle parameters of branched-chain alkyl iodides determined using Eqs. (15.70-15.79), (15.88-
15.117) and (15.132) are given in Table 15.50. The color scale, translucent view of the charge-density of exemplary alkyl iodide, 
1-iodopropane, comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs 

or joined with one or more hydrogen MOs is shown in Figure 15.8. 
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Figure 15.8.   Color scale, translucent view of the charge-density of 1-iodopropane showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
Table 15.45.   The symbols of functional groups of branched-chain alkyl iodides. 
 

Functional Group Group Symbol
CI of 3CH I  and 2 2n n m mC H I   C I  (i) 

CI of 2 2CH I  C I  (ii) 

CI of 3CHI  C I  (iii) 

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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ALKENYL HALIDES ( 2 ,   3,4,5...   1,2,3...n mn mC H X n m     ) 
The branched-chain alkenyl halides, 2 2n n m mC H X   with , , ,X F Cl Br I , may comprise alkyl and alkenyl functional groups 

wherein at least one H  is replaced by a halogen atom.  In the case that a halogen atom replaces an alkyl H , the C X  bond 
comprises the alkyl-halogen functional groups given in their respective sections.  The alkenyl halogen C X  bond comprises a 
separate functional group for each case of X  bonding to the C C -bond functional group given in the Alkenes section.  In 
addition the CH  group of the moiety XCH C  comprises a functional group unique to alkenyl halides.  The straight and 
branched-chain alkenes, 2n nC H , comprise at least one carbon-carbon double bond comprising a functional group that is solved 

equivalently to the double bond of ethylene.  The double bond may be bound to one, two, three, or four carbon single bonds that 
substitute for the hydrogen atoms of ethylene.  The three distinct functional groups given in the Alkenes section are C  vinyl 
single bond to ( )C C C  , C  vinyl single bond to ( )C H C  , and C  vinyl single bond to 2( )C C CH  .  In addition, 2CH  of 

the 2C CH   moiety is also an alkene functional group solved in the Alkenes section. 

Consider the case where X Cl  substitutes for a carbon single bond or a hydrogen atom.  Based on the condition of 
energy matching of the orbital, any magnetic energy due to unpaired electrons in the constituent fragments, and differences in 
oscillation in the transition state, two distinct C Cl  functional groups can be identified: Cl  vinyl single bond to ( )C C C   
and Cl  vinyl single bond to ( )C H C  .  The alkenyl-halide CH  group is equivalent to that solved in the Hydrogen Carbide 

(CH ) section except that  
2

/ 1.13379 H MOE AO HO eV    in order to energy match to the C Cl  and C C  bonds. 

The alkyl portion of the alkenyl halide may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, 

and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single 

bonds.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds 
can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within 
isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl 

C C  bonds comprise functional groups.  The branched-chain-alkane groups in alkene halides are equivalent to those in 
branched-chain alkanes. 

 3, .TE atom atom msp AO  of the C C -bond MO in Eq. (15.61) due to the charge donation from the C  atoms to the 

MO is equivalent to that of ethylene, 2.26759 eV , given by Eq. (14.247).   3, .TE atom atom msp AO  of each C C -bond 

MO in Eq. (15.61) is 1.85836 eV  or 1.44915 eV  based on the energy match between the 32C sp  HOs corresponding to the 
energy contributions equivalent to those of methylene, 0.92918 eV  (Eq. (14.513), or methyl, 0.72457 eV  (Eq. (14.151)), 
groups, respectively. 

The solution of each C X  functional group comprises the hybridization of the 2s  and 2 p  AOs of the C  atom to form 

a single 32sp  shell as an energy minimum, and the sharing of electrons between the 32C sp  HO and the X  AO to form a MO 
permits each participating orbital to decrease in radius and energy.  The alkenyl C X -bond functional groups comprise single 
bonds and are equivalent to those of the corresponding alkyl halides except that the halogen AO and the C X -bond MO are 
each energy matched to the alkene 32C sp  HO.  In alkenyl halides with , ,   X Cl Br or I , the energy of the halogen atom is less 

than the Coulombic energy between the electron and proton of H  given by Eq. (1.264)).  Thus, 2c  in Eq. (15.61) is one, and the 

energy matching condition is determined by the 2C  parameter.  For example, the hybridization factor 2C  of Eq. (15.61) for the 

alkenyl C Cl -bond MO given by Eq. (15.130) is  3
2 2   Cl 0.81317C C sp HO to  . 

 3, .TE atom atom msp AO  of the alkenyl C Cl -bond MO in Eq. (15.61) due to the charge donation from the C and 

Cl  atoms to the MO is 1.44915 eV  for the Cl  vinyl single bond to ( )C H C   C Cl  group and 0.92918 eV  for the Cl  

vinyl single bond to ( )C C C   C Cl  group.  It is based on the energy match between the Cl  atom and the 32C sp  HO of an 
unsubstituted vinyl group and a substituted vinyl group given by Eqs. (14.151) and (14.513), respectively. 

The symbols of the functional groups of branched-chain alkenyl chlorides are given in Table 15.51.  The geometrical 
(Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of 
branched-chain alkenyl chlorides are given in Tables 15.52, 15.53, and 15.54, respectively.  The total energy of each branched-
chain alkenyl chloride given in Table 15.55 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.54 

corresponding to functional-group composition of the molecule.  The bond angle parameters of branched-chain alkenyl chlorides 
determined using Eqs. (15.70-15.79), (15.88-15.117) and (15.130) are given in Table 15.56. The color scale, translucent view of 
the charge-density of exemplary alkenyl halide, 2-chloropropene, comprising the concentric shells of atoms with the outer shell 
bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.9. 
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Figure 15.9.   Color scale, translucent view of the charge-density of 2-chloropropene showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
Table 15.51.   The symbols of functional groups of branched-chain alkenyl chlorides. 
 

Functional Group Group Symbol
Cl vinyl single bond to -C(H)=C C Cl  (i) 
Cl vinyl single bond to -C(C)=C C Cl  (ii) 
CC double bond C C  
C vinyl single bond to -C(C)=C C C  (i) 
C vinyl single bond to -C(H)=C C C  (ii) 
C vinyl single bond to -C(C))=CH2 C C  (iii) 
CH (alkenyl halide) C H  (i) 

CH2 alkenyl group  2 C H CH  (i) 

CH3 group  3 C H CH  

CH2 alkyl group  2 C H CH  (ii) 

CH (alkyl) C H  (ii) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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ALCOHOLS ( 2 2 ,   1,2,3,4,5...n mnC H O n   ) 
The alkyl alcohols, 2 2n n mC H O , comprise an OH  functional group and two types of C O  functional groups, one for methyl 

alcohol and the other for general alkyl alcohols.  The alkyl portion of the alkyl alcohol may comprise at least two terminal 
methyl groups ( 3CH ) at each end of the chain, and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as 

well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional groups are equivalent to those of 
straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-
chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to 

isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  The branched-chain-alkane 
groups in alcohols are equivalent to those in branched-chain alkanes.   

The OH  functional group was solved in the Hydroxyl Radical (OH ) section.  Each C O  group is solved by 
hybridizing the 2s  and 2 p  AOs of the C  atom to form a single 32sp  shell as an energy minimum, and the sharing of electrons 

between the 32C sp  HO and the O  AO to form a MO permits each participating orbital to decrease in radius and energy.  In 

alkyl alcohols, the 32C sp  HO has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of 

 3, 2 14.63489 E C sp eV   (Eq. (15.25)) and the O  AO has an energy of   13.61806 E O eV  .  To meet the equipotential 

condition of the union of the C O  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor 2c  of Eq. (15.61) for 

the C O -bond MO given by Eqs. (15.77) and (15.79) is: 

    
     3 3

2 23

13.61806 
2   2 0.91771 0.85395

14.63489 , 2

E O eV
c C sp HO to O c C sp HO

eVE C sp


  


 (15.133) 

 3, .TE atom atom msp AO  of the C O -bond MO in Eq. (15.61) due to the charge donation from the C  and O  atoms to the 

MO is 1.65376 eV  for the 3CH OH  C O  group.  It is based on the energy match between the OH  group and the 32C sp  

HO of a methyl group and is given by the linear combination of 0.92918 eV  (Eq. (14.513)) and 0.72457 eV  (Eq. (14.151)), 

respectively.  For the alkyl C O  group,  3, .TE atom atom msp AO  is 1.85836 eV .  It is based on the energy match between 

the O  AO and the 32C sp  HO of a methylene group where both energy contributions are given by Eq. (14.513). 
The symbols of the functional groups of branched-chain alkyl alcohols are given in Table 15.66.  The geometrical (Eqs. 

(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
alcohols are given in Tables 15.58, 15.59, and 15.60, respectively.  The total energy of each alkyl alcohol given in Table 15.61 
was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.60 corresponding to functional-group 

composition of the molecule.  The bond angle parameters of alkyl alcohols determined using Eqs. (15.88-15.117) are given in 
Table 15.62. The color scale, translucent view of the charge-density of exemplary alcohol, 1-propanol, comprising the concentric 
shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs 

is shown in Figure 15.10. 
 
Figure 15.10.   Color scale, translucent view of the charge-density of 1-propanol showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale).  (A) Side view.  (B) Front view. 
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Table 15.57.   The symbols of functional groups of alkyl alcohols. 
 

Functional Group Group Symbol
OH group OH  
CH3OH C-O C O  (i) 
Alkyl C-O C O  (ii) 

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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ETHERS ( 2 2 ,   2,3,4,5...n mnC H O n   ) 
The alkyl ethers, 2 2n n mC H O , comprise two types of C O  functional groups, one for methyl or t-butyl groups corresponding to 

the C  and the other for general alkyl groups.  The alkyl portion of the alkyl ether may comprise at least two terminal methyl 
groups ( 3CH ) at each end of the chain, and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as 

C  bound by carbon-carbon single bonds.  The methyl and methylene functional groups are equivalent to those of straight-chain 
alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In 
addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, 

isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  The branched-chain-alkane groups in ethers 
are equivalent to those in branched-chain alkanes. 

Each C O  group is solved by hybridizing the 2s  and 2 p  AOs of the C  atom to form a single 32sp  shell as an energy 

minimum, and the sharing of electrons between the 32C sp  HO and the O  AO to form a MO permits each participating orbital to 

decrease in radius and energy.  In alkyl ethers, the 32C sp  HO has a hybridization factor of 0.91771 (Eq. (13.430)) and an 

energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)) and the O  AO has an energy of   13.61806 E O eV  .  To meet the 

equipotential condition of the union of the C O  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor 2c  of Eq. 

(15.61) for the C O -bond MO given by Eq. (15.133) is  3
2 2   0.85395c C sp HO to O  .   3, .TE atom atom msp AO  of the 

C O -bond MO in Eq. (15.52) due to the charge donation from the C  and O  atoms to the MO is 1.44915 eV  for the 

3CH O   and  3 3
CH C O   C O  groups.  It is based on the energy match between the O  AO, initially at the Coulomb 

potential of a proton and an electron (Eqs. (1.257) and (10.162), respectively), and the 32C sp  HO of a methyl group as given by 

Eq. (14.151).  For the alkyl C O  group,  3, .TE atom atom msp AO  is 1.65376 eV .  It is based on the energy match between 

the O  AO and the 32C sp  HO of a methylene group and is given by the linear combination of 0.72457 eV  (Eq. (14.151)) and 
0.92918 eV  (Eq. (14.513)), respectively. 

The symbols of the functional groups of branched-chain alkyl ethers are given in Table 15.63.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
ethers are given in Tables 15.64, 15.65, and 15.66, respectively.  The total energy of each alkyl ether given in Table 15.67 was 
calculated as the sum over the integer multiple of each  GroupDE  of Table 15.66 corresponding to functional-group composition 

of the molecule.  The bond angle parameters of alkyl ethers determined using Eqs. (15.88-15.117) are given in Table 15.68. The 
color scale, translucent view of the charge-density of exemplary ether, diethyl ether, comprising the concentric shells of atoms 
with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in 

Figure 15.11. 
 
Figure 15.11.   Color scale, translucent view of the charge-density of diethyl ether showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale).  (A) Oblique view.  (B) View along the nitrogen atom. 
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Table 15.63.   The symbols of functional groups of alkyl ethers. 
 

Functional Group Group Symbol

C-O ( 3CH O   and  3 3
CH C O  ) C O  (i) 

C-O (alkyl) C O  (ii) 

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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PRIMARY AMINES ( 2 2 ,   1,2,3,4,5...n mn mC H N n    ) 
The primary amines, 2 2n n m mC H N  , comprise an 2NH  functional group and a C N  functional group.  The alkyl portion of the 

primary amine may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, and may comprise methylene 

( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene 

functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane 
C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-

butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise 

functional groups.  The branched-chain-alkane groups in primary amines are equivalent to those in branched-chain alkanes.   
The primary amino ( 2NH ) functional group was solved using the procedure given in the Dihydrogen Nitride ( 2NH ) 

section.  Using the results of Eqs. (13.245-13.368), the primary amino parameters in Eq. (15.61) are 1 2n  , 1 0.75C  , 

2 0.93613C   (Eqs. (13.248-13.249)), 1 1.5oC  , and 1 0.75c  .  In primary amines, the 32C sp  HO of the 2C NH -bond MO 

has an energy of  3, 2 15.35946 E C sp eV   (Eq. (15.18) with 1s   and Eqs. (15.19-15.20)) and the N  AO has an energy of 

  14.53414 E N eV  .  To meet the equipotential condition of the union of the N H  2H -type-ellipsoidal-MO with the 
32C sp  HO, the hybridization factor 2c  of Eq. (15.61) for the N H -bond MO given by Eq. (15.77) is: 

    
 2 3

14.53414 
  1 0.94627

15.35946 , 2

E N eV
c H to N

eVE C sp


   


 (15.134) 

The C N  group is solved by hybridizing the 2s  and 2 p  AOs of the C  atom to form a single 32sp  shell as an energy 

minimum, and the sharing of electrons between the 32C sp  HO and the N  AO to form a MO permits each participating orbital 

to decrease in radius and energy.  In primary amines, the 32C sp  HO has a hybridization factor of 0.91771 (Eq. (13.430)) with a 

corresponding energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the N  AO has an energy of   14.53414 E N eV  .  

To meet the equipotential condition of the union of the C N  2H -type-ellipsoidal-MO with these orbitals, the hybridization 

factor 2c  of Eq. (15.61) for the C N -bond MO given by Eqs. (15.77) and (15.79) is: 

    
     3 3

2 23

14.53414 
2   2 0.91771 0.91140

14.63489 , 2

E N eV
c C sp HO to N c C sp HO

eVE C sp


  


 (15.135) 

 3, .TE atom atom msp AO  of the C N -bond MO in Eq. (15.61) due to the charge donation from the C and N  atoms to the 

MO is 1.44915 eV .  It is based on the energy match between the N  of the 2NH  group and the 32C sp  HO corresponding to 

the energy contributions to the single bond that are equivalent to those of methyl groups, 0.72457 eV  (Eq. (14.151)), where the 
N H  bonds are also energy matched to the C N  bond. 

The symbols of the functional groups of branched-chain primary amines are given in Table 15.69.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of primary 
amines are given in Tables 15.70, 15.71, and 15.72, respectively.  The total energy of each primary amine given in Table 15.73 
was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.72 corresponding to functional-group 

composition of the molecule.  The bond angle parameters of primary amines determined using Eqs. (15.88-15.117) are given in 
Table 15.74. The color scale, translucent view of the charge-density of exemplary primary amine, propylamine, comprising the 
concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs is shown in Figure 15.12. 
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Figure 15.12.   (A)-(B) Color scale, translucent views of the charge-density of propylamine showing the orbitals of the atoms 
at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the 

atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
Table 15.69.   The symbols of functional groups of primary amines. 

 
Functional Group Group Symbol

NH2 group 2NH  

C-N C N  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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SECONDARY AMINES ( 2 2 ,   2,3,4,5...n mn mC H N n   ) 
The secondary amines, 2 2n n m mC H N  , comprise an NH  functional group and two types of C N  functional groups, one for the 

methyl group corresponding to the C  of C N  and the other for general alkyl secondary amines.  The alkyl portion of the 
secondary amine may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, and may comprise 

methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and 

methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The 
n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) 

and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise 

functional groups.  The branched-chain-alkane groups in secondary amines are equivalent to those in branched-chain alkanes.   
The secondary amino ( NH ) functional group was solved using the procedure given in the Hydrogen Nitride ( NH ) 

section.  Using the results of Eqs. (13.245-13.316), the secondary amino parameters in Eq. (15.61) are 1 1n  , 1 0.75C  , 

2 0.93613C   (Eqs. (13.248-13.249)), 1 0.75oC  , and 1 0.75c  .  In secondary amines, the 32C sp  HO of the C NH -bond MO 

has an energy of  3, 2 15.56407 E C sp eV   (Eqs. (14.514-14.516)); Eq. (15.29) with 1s   and 2s  , Eq. (15.31), and Eqs. 

(15.19-15.20)) and the N  AO has an energy of   14.53414 E N eV   (Eq. (13.251)).  To meet the equipotential condition of 

the union of the N H  2H -type-ellipsoidal-MO with the 32C sp  HO, the hybridization factor 2c  of Eq. (15.61) for the N H -

bond MO given by Eq. (15.77) is: 

    
 2 3

14.53414 
  2 0.93383

15.56407 , 2

E N eV
c H to N

eVE C sp


   


 (15.136) 

The C N  group is solved by hybridizing the 2s  and 2 p  AOs of the C  atom to form a single 32sp  shell as an energy 

minimum, and the sharing of electrons between the 32C sp  HO and the N  AO to form a MO permits each participating orbital 

to decrease in radius and energy.  In secondary amines, the 32C sp  HO has a hybridization factor of 0.91771 (Eq. (13.430)) with 

a corresponding energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the N  AO has an energy of   14.53414 E N eV  .  

To meet the equipotential condition of the union of the C N  2H -type-ellipsoidal-MO with these orbitals, the hybridization 

factor 2c  of Eq. (15.61) for the C N -bond MO given by Eq. (15.135) is  3
2 2   0.91140c C sp HO to N  . 

As given in the Continuous-Chain Alkanes ( 2 2 ,   3, 4,5...n nC H n   ) section, each methylene group forms two single 

bonds, and the energy of each 32C sp  HO of each 2CH  group alone is given by that in ethylene, 1.13379 eV  (Eq. (14.511)).  

In secondary amines, the N  of the NH  group also binds to two 32C sp  HOs and the corresponding  3, .TE atom atom msp AO  

of each C N -bond MO in Eq. (15.61) due to the charge donation from the C and N  atoms to the MO is 1.13379 eV .  It is 
based on the energy match between the N  of the NH  group to the two 32C sp  HOs corresponding to the energy contributions 
to each of the two single bonds that are equivalent to those of independent methylene groups, 1.13379 eV  (Eq. (14.511)), 

where the N H  bond is also energy matched to the C N  bonds.  3, .TE atom atom msp AO  of the C N -bond MO in Eq. 

(15.61) due to the charge donation from the C and N  atoms to the MO is 1.13379 eV .  It is based on the energy match 
between the N  of the NH  group to two 32C sp  HOs corresponding to the energy contributions to the single bond that are 
equivalent to those of methyl groups, 0.72457 eV  (Eq. (14.151)), where the N H  bonds are also energy matched to the 
C N  bond. 

The symbols of the functional groups of branched-chain secondary amines are given in Table 15.75.  The geometrical 
(Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of 
secondary amines are given in Tables 15.76, 15.77, and 15.78, respectively.  As in the case of 2NH  (Eq. (13.339)), 1 12oC C  

rather than 1 1oC C  in Eq. (15.61) for the C N  bond.  The total energy of each secondary amine given in Table 15.79 was 

calculated as the sum over the integer multiple of each  GroupDE  of Table 15.78 corresponding to functional-group composition 

of the molecule.  The bond angle parameters of secondary amines determined using Eqs. (15.88-15.117) are given in Table 
15.80. The color scale, translucent view of the charge-density of exemplary secondary amine, dimenthylamine, comprising the 
concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs is shown in Figure 15.13. 
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Figure 15.13.   (A)-(B) Color scale, translucent views of the charge-density of dimethylamine showing the orbitals of the 
atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell 

of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
Table 15.75.   The symbols of functional groups of secondary amines. 
 

Functional Group Group Symbol
NH group NH  
C-N (methyl) C N  (i) 
C-N (alkyl) C N  (ii) 

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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TERTIARY AMINES ( 2 3 ,   3,4,5...n nC H N n   ) 
The tertiary amines, 2 3n nC H N , have three C N  bonds to methyl or alkyl groups wherein C N  comprises a functional 

group.  The alkyl portion of the tertiary amine may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, 

and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single 

bonds.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds 
can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within 
isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl 

C C  bonds comprise functional groups.  The branched-chain-alkane groups in tertiary amines are equivalent to those in 
branched-chain alkanes.   

The C N  group is solved by hybridizing the 2s  and 2 p  AOs of the C  atom to form a single 32sp  shell as an energy 

minimum, and the sharing of electrons between the 32C sp  HO and the N  AO to form a MO permits each participating orbital 

to decrease in radius and energy.  In tertiary amines, the 32C sp  HO has a hybridization factor of 0.91771 (Eq. (13.430)) with a 

corresponding energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the N  AO has an energy of   14.53414 E N eV  .  

To meet the equipotential condition of the union of the C N  2H -type-ellipsoidal-MO with these orbitals, the hybridization 

factor 2c  of Eq. (15.61) for the C N -bond MO given by Eq. (15.135) is  3
2 2   N 0.91140c C sp HO to  . 

As given in the Continuous-Chain Alkanes ( 2 2 ,   3, 4,5...n nC H n   ) section, the energy of each 32C sp  HO must be a 

linear combination of that of the 3CH  and 2CH  groups that serve as basis elements.  Each 3CH  forms one C C  bond, and 

each 2CH  group forms two.  Thus, the energy of each 32C sp  HO of each 3CH  and 2CH  group alone is given by that in ethane, 

0.72457 eV  (Eq. (14.151)), and ethylene, 1.13379 eV  (Eq. (14.511)), respectively.  In order to match the energy of the 

component HOs and MOs for the entire molecule, the energy  3, 2
alkaneTE C C sp  given as a linear combination of these basis 

elements is 0.92918 eV  (Eq. (14.513)).  In tertiary amines, the N  binds to three 32C sp  HOs and the corresponding 

 3, .TE atom atom msp AO  of each C N -bond MO in Eq. (15.61) due to the charge donation from the C and N  atoms to the 

MO is 0.92918 eV .  It comprises a linear combination of the energy for a primary amine, 0.72457 eV  and a secondary 
amine, 1.13379 eV . 

The symbols of the functional groups of branched-chain tertiary amines are given in Table 15.81.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of tertiary 
amines are given in Tables 15.82, 15.83, and 15.84, respectively.  The total energy of each tertiary amine given in Table 15.85 
was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.84 corresponding to functional-group 

composition of the molecule.  The bond angle parameters of tertiary amines determined using Eqs. (15.88-15.117) are given in 
Table 15.86. The color scale, translucent view of the charge-density of exemplary tertiary amine, trimethylamine, comprising the 
concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs is shown in Figure 15.14. 
 
Figure 15.14.   Color scale, translucent view of the charge-density of trimethylamine showing the orbitals of the atoms at 
their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the 

atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).  (A) Top view.  (B) Side view. 
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Table 15.81.   The symbols of functional groups of tertiary amines. 
 

Functional Group Group Symbol
C-N C N  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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ALDEHYDES ( 2 ,   1,2,3,4,5...n nC H O n   ) 
The alkyl aldehydes, 2n nC H O , each have a HC O  moiety that comprises a C O  functional group and a CH  functional 

group.  The single bond of carbon to the carbonyl carbon atom, ( )C C O H , is a functional group.  In addition to the C O  

functional group, formaldehyde comprises a 2CH  functional group.  The alkyl portion of the alkyl aldehyde may comprise at 

least two terminal methyl groups ( 3CH ) at each end of the chain, and may comprise methylene ( 2CH ), and methylyne ( CH ) 

functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional groups are 
equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same 
as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups 

and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  The 
branched-chain-alkane groups in aldehydes are equivalent to those in branched-chain alkanes.   

The CH  functional group was solved in the Hydrogen Carbide (CH ) section except that magE  is not subtracted since 

unpaired electrons are not created with fragmentation of the CH  functional group of aldehydes.  The 2CH  functional group of 

formaldehyde is solved in the Dihydrogen Carbide ( 2CH ) section except that the energy of each C H  MO is matched to the 

initial energy of the 32C sp  HO (Eq. (15.25)).  The C O  and ( )C C O H  groups are solved by hybridizing the 2s  and 2 p  

AOs of each C  atom to form a single 32sp  shell as an energy minimum, and the sharing of electrons between the 32C sp  HO 

and the O  AO or between two 32C sp  HOs, respectively, to form a MO permits each participating orbital to decrease in radius 

and energy.  In alkyl aldehydes, the 32C sp  HO has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding 

energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)) and the O  AO has an energy of   13.61806 E O eV  .  To meet the 

equipotential condition of the union of the C O  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor 2c  of Eq. 

(15.61) for the C O -bond MO given by Eq. (15.133) is  3
2 2   0.85395c C sp HO to O  .  The unpaired electrons created by 

bond breakage of the double C O  bond requires that two times the 2O p  AO magnetic energy magE  (Eq. (15.69)) be 

subtracted from the total energy to give   ( )GroupDE eV  for C O . 

 3, .TE atom atom msp AO  of the C O -bond MO in Eq. (15.61) due to the charge donation from the C and O  atoms 

to the MO is 2.69893 eV  which is an energy minimum for the double bond between the pair of 32C sp  HO electrons of the C  
atom and the pair of AO electrons of the O  atom.  It is given as a linear combination of the energy contributions corresponding 
to a double bond, 1.13379 eV  (Eq. (14.247)), and a triple bond, 1.56513 eV  (Eq. (14.342)).  The triple bond contribution 
includes the 32C sp  HO electron of the C H  bond in addition to the pair involved directly in the double bond with O .  

 3, .TE atom atom msp AO  of the ( )C C O H  group is equivalent to that of an alkane, 1.85836 eV , where both energy 

contributions are given by Eq. (14.513).  It is based on the energy match between the 32C sp  HOs of the aldehyde.  In order to 
match energy between the groups bonded to the C O , electron-density is shared.  Due to the interaction in the transition state 
between the groups based on the sharing, 1 12oC C  rather than 1 1oC C  in Eq. (15.61) for the ( )C C O H  bond. 

The symbols of the functional groups of alkyl aldehydes are given in Table 15.87.  The geometrical (Eqs. (15.1-15.5) and 
(15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl aldehydes are 
given in Tables 15.88, 15.89, and 15.90, respectively.  The total energy of each alkyl aldehyde given in Table 15.91 was 
calculated as the sum over the integer multiple of each  GroupDE  of Table 15.90 corresponding to functional-group composition 

of the molecule.  The bond angle parameters of alkyl aldehydes determined using Eqs. (15.88-15.117) are given in Table 15.92. 
The color scale, translucent view of the charge-density of exemplary aldehyde, Propanal, comprising the concentric shells of 
atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown 

in Figure 15.15. 
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Figure 15.15.   (A)-(B) Color scale, translucent views of the charge-density of propanal showing the orbitals of the atoms at 
their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the 

atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
Table 15.87.   The symbols of functional groups of alkyl aldehydes. 
 

Functional Group Group Symbol

CH2 (formaldehyde) group  2 C H CH  (i) 

CH (aldehyde) group CH  (i) 
C=O C O  (i) 
C-C(O)H ( )C C O H  

CH3 group  3 C H CH  

CH2 (alkyl) group  2 C H CH  (ii) 

CH (alkyl) C H  (ii) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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KETONES ( 2 ,   1,2,3,4,5...n nC H O n   ) 
The alkyl ketones, 2n nC H O , each have a C O  moiety that comprises a functional group.  Each of the two single bonds of 

carbon to the carbonyl carbon atom, ( )C C O , is also a functional group.  The alkyl portion of the alkyl ketone may comprise at 

least two terminal methyl groups ( 3CH ) at each end of the chain, and may comprise methylene ( 2CH ), and methylyne ( CH ) 

functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional groups are 
equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same 
as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups 

and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  The 
branched-chain-alkane groups in ketones are equivalent to those in branched-chain alkanes.   

The C O  and ( )C C O  groups are solved by hybridizing the 2s  and 2 p  AOs of each C  atom to form a single 32sp  

shell as an energy minimum, and the sharing of electrons between the 32C sp  HO and the O  AO or between two 32C sp  HOs, 

respectively, to form a MO permits each participating orbital to decrease in radius and energy.  In alkyl ketones, the 32C sp  HO 

has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)) 

and the O  AO has an energy of   13.61806 E O eV  .  To meet the equipotential condition of the union of the C O  2H -

type-ellipsoidal-MO with these orbitals, the hybridization factor 2c  of Eq. (15.61) for the C O -bond MO given by Eq. 

(15.133) is  3
2 2   0.85395c C sp HO to O  .  The unpaired electrons created by bond breakage of the double C O  bond requires 

that two times the 2O p  AO magnetic energy magE  (Eq. (15.69)) be subtracted from the total energy to give   ( )GroupDE eV  for 

C O . 

As in the case with aldehydes,  3, .TE atom atom msp AO  of the C O -bond MO in Eq. (15.61) due to the charge 

donation from the C  and O  atoms to the MO is 2.69893 eV  which is an energy minimum for the double bond between the 
pair of 32C sp  HO electrons of the C  atom and the pair of AO electrons of the O  atom.  It is given as a linear combination of 
the energy contributions corresponding to a double bond, 1.13379 eV  (Eq. (14.247)), and a triple bond, 1.56513 eV  (Eq. 
(14.342)).  The triple bond contribution includes the 32C sp  HO electron of the ( )C C O  bond in addition to the pair involved 

directly in the double bond with O .  Consequently,  3, .TE atom atom msp AO  of the ( )C C O -bond MO is 1.44915 eV , 

corresponding to the energy contributions of the two 32C sp  HOs to the single bond that are equivalent to those of methyl 

groups, 0.72457 eV  (Eq. (14.151)).  Since there are two ( )C C O  bonds in ketones versus one in aldehydes, 1 1oC C  in Eq. 

(15.61) for each ( )C C O  ketone bond. 
The symbols of the functional groups of alkyl ketones are given in Table 15.93.  The geometrical (Eqs. (15.1-15.5) and 

(15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.64)) parameters of alkyl ketones are given 
in Tables 15.94, 15.95, and 15.96, respectively.  The total energy of each alkyl ketone given in Table 15.97 was calculated as the 
sum over the integer multiple of each  GroupDE  of Table 15.96 corresponding to functional-group composition of the molecule.  

For each set of unpaired electrons created by bond breakage , the 32C sp  HO magnetic energy magE  that is subtracted from the 

weighted sum of the    ( )GroupDE eV  values based on composition is given by Eq. (15.67).  The bond angle parameters of alkyl 

ketones determined using Eqs. (15.88-15.117) are given in Table 15.98. The color scale, translucent view of the charge-density 
of exemplary ketone, methyl ethyl ketone, comprising the concentric shells of atoms with the outer shell bridged by one or more 

2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.16. 
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Figure 15.16.   (A)-(B) Color scale, translucent views of the charge-density of methyl ethyl ketone showing the orbitals of the 
atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell 

of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
 

Table 15.93.   The symbols of functional groups of alkyl ketones. 
 

Functional Group Group Symbol
C=O C O  
C-C(O) ( )C C O  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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CARBOXYLIC ACIDS ( 2 2,   1,2,3,4,5...n nC H O n   ) 
The alkyl carboxylic acids, 2 2n nC H O , comprise a C O  functional group, and the single bond of carbon to the carbonyl carbon 

atom, ( )C C O , is also a functional group.  Formic acid has a HC O  moiety that comprises a more stable C O  functional 
group and a CH  functional group.  All carboxylic acids further comprise a C OH  moiety that comprises C O  and OH  
functional groups.  The alkyl portion of the alkyl carboxylic acid may comprise at least two terminal methyl groups ( 3CH ) at 

each end of the chain, and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by 

carbon-carbon single bonds.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six 
types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the 
C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, 

and t-butyl to t-butyl C C  bonds comprise functional groups.  The branched-chain-alkane groups in carboxylic acids are 
equivalent to those in branched-chain alkanes.   

The CH  functional group was solved in the Hydrogen Carbide (CH ) section except that the energy of the C H  MO is 

matched to the carbon-atom contribution to  
2

/H MOE AO HO  and  3, .TE atom atom msp AO  of the C O  group.  The alkyl 

carboxylic acid C O  and ( )C C O  groups are equivalent to those given in the Aldehydes section except that KvibE  is that of a 

carboxylic acid, and ( )C C O  is equivalent to the n-alkane C C  bond group in the case of conjugated carbonyls wherein the 
alkene groups when present such as the C C  group are equivalent to those of the corresponding alkene.  The formic acid 
C O  group is solved equivalently to that of the alkyl carboxylic acid group, except that  

2
/H MOE AO HO  and 

 3, .TE atom atom msp AO  correspond to a 25% increase in the donation of charge density from the orbitals of the atoms to the 

C O  MO due to the presence of a H  bound to the carbonyl carbon.  Also, KvibE  is that corresponding to formic acid.  The 

C O  and OH  groups are equivalent to those of alkyl alcohols given in the corresponding section except that the energy of the 
C O  MO is matched to that of the C O  group and KvibE  is that of a carboxylic acid.   

2
/H MOE AO HO  of the C O  group 

is equal to  3, .TE atom atom msp AO  of the alkyl C O  group in order to match the energies of the corresponding MOs. 

As in the case with aldehydes and ketones,  3, .TE atom atom msp AO  of the C O -bond MO in Eq. (15.61) of alkyl 

carboxylic acids due to the charge donation from the C  and O  atoms to the MO is 2.69893 eV  which is an energy minimum 
for the double bond between the pair of 32C sp  HO electrons of the C  atom and the pair of AO electrons of the carbonyl O  
atom.  It is given as a linear combination of the energy contributions corresponding to a double bond, 1.13379 eV  (Eq. 
(14.247)), and a triple bond, 1.56513 eV  (Eq. (14.342)).  The triple bond contribution includes the energy match of the 
carbonyl 32C sp  HO electron with the O  of the C O -bond MO in addition to the pair involved directly in the double bond with 
the carbonyl O . 

 3, .TE atom atom msp AO  of the formic acid C O -bond MO in Eq. (15.61) due to the charge donation from the C  

and O  atoms to the MO is 3.58557 eV .  This is also an energy minimum for the double bond between the pair of 32C sp  HO 
electrons of the C  atom and the pair of AO electrons of the carbonyl O  atom.  It is given as a linear combination of the energy 
contributions corresponding to a triple bond, 1.56513 eV  (Eq. (14.342)), and a quadruple bond, 2.02043 eV  (Eqs. (15.18-
15.21) with 4s  )) where the bond order components are increased by an integer over that of alkyl carboxylic acids due to the 
presence of a H  bound to the carbonyl carbon. 

 3, .TE atom atom msp AO  of the carboxylic acid ( )C C O  group is equivalent to that of alkanes and aldehydes, 

1.85836 eV , where both energy contributions are given by Eq. (14.513).  It is based on the energy match between the 32C sp  

HOs of the carboxylic acid.  As in the case of aldehydes, 1 12oC C  in Eq. (15.52). 

 3, .TE atom atom msp AO  of the carboxylic acid C O  group is equivalent to that of alkyl alcohols, 1.85836 eV .  It 

is based on the energy match between the O  AO and the 32C sp  HO of a methylene group (the maximum hybridization for a 

single bond) where both energy contributions are given by Eq. (14.513).  3, .TE atom atom msp AO  of the C O  group 

matches that of the ( )C C O  group. 
The symbols of the functional groups of alkyl carboxylic acids are given in Table 15.99.  The geometrical (Eqs. (15.1-

15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
carboxylic acids are given in Tables 15.100, 15.101, and 15.102, respectively.  The total energy of each alkyl carboxylic acid 
given in Table 15.103 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.102 corresponding to 

functional-group composition of the molecule.  For each set of unpaired electrons created by bond breakage, the 32C sp  HO 

magnetic energy magE  that is subtracted from the weighted sum of the   ( )GroupDE eV  values based on composition is given by 

Eq. (15.67).  The bond angle parameters of alkyl carboxylic acids determined using Eqs. (15.79-15.108) are given in Table 
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15.104. The color scale, translucent view of the charge-density of exemplary carboxylic acid, Propanoic acid, comprising the 
concentric shells of atoms with the outer shell bridged by one or more H2-type ellipsoidal MOs or joined with one or more 
hydrogen MOs is shown in Figure 15.17. 
 
Figure 15.17.  (A)-(B) Color scale, translucent views of the charge-density of propanoic acid showing the orbitals of the 
atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell 

of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
 

Table 15.99.   The symbols of functional groups of alkyl carboxylic acids. 
 

Functional Group Group Symbol
CH (formic acid) group C H  (i) 
C-C(O) ( )C C O  

C=O (formic acid) C O  (i) 
C=O (alkyl carboxylic acid) C O  (ii) 
(O)C-O C O  
OH group OH  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH (alkyl) group C H  (ii) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
CC double bond C C  
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CARBOXYLIC ACID ESTERS ( 2 2,   1,2,3,4,5...n nC H O n   ) 

The alkyl carboxylic acid esters, 2 2n nC H O , comprise a C O  functional group, and the single bond of carbon to the carbonyl 

carbon atom, ( )C C O , is also a functional group.  Formic acid ester has a HC O  moiety that comprises a more stable C O  
functional group and a CH  functional group.  All carboxylic acid esters further comprise a COR  moiety that comprises a C O  
functional group and three types of O R  functional groups, one for R  comprising methyl, one for R  comprising an alkyl ester 
group of a formate, and one for R  comprising an alkyl ester group of an alkyl carboxylate.  The alkyl portion of the alkyl 
carboxylic acid ester may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, and may comprise 

methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and 

methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The 
n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) 

and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise 

functional groups.  The branched-chain-alkane groups in carboxylic acid esters are equivalent to those in branched-chain 
alkanes.   

The CH  functional group is equivalent to that of formic acid.  The alkyl carboxylic acid ester C O  and ( )C C O  
groups are equivalent to those given in the Carboxylic Acids section.  The formic acid ester C O  group is equivalent to that 
given in the Carboxylic Acids section except that KvibE  is that corresponding to a formic acid ester.  The C O  group is 

equivalent to that given in the Carboxylic Acids section except that the parameters corresponding to oscillation of the bond in the 
transition state,  ( )DE eV  and KvibE , are those of a carboxylic acid ester.  As in the case with the alkyl ethers, each O C  group 

is solved by hybridizing the 2s  and 2 p  AOs of the C  atom to form a single 32sp  shell as an energy minimum, and the sharing 

of electrons between the 32C sp  HO and the O  AO to form a MO permits each participating orbital to decrease in radius and 

energy.  To meet the equipotential condition of the union of the O C  2H -type-ellipsoidal-MO with other orbitals of the 

molecule, the hybridization factor 2c  of Eq. (15.60) for the O C -bond MO given by Eq. (15.133) is: 

 3
2 2   0.85395c C sp HO to O  . 

 3, .TE atom atom msp AO  (Eq. (15.61)) of (1) the C O  group of alkyl carboxylic acid esters, (2) the C O  group of 

formic acid esters, (3) the alkyl carboxylic acid ester ( )C C O  group, and (4) the carboxylic acid ester C O  group are 
equivalent to those of the corresponding carboxylic acids.  The values given in the Carboxylic Acids section are 2.69893 eV , 

3.58557 eV , 1.85836 eV , and 1.85836 eV , respectively.   3, .TE atom atom msp AO  of the C O  group matches that of 

the ( )C C O  group.  Also, as in the case of aldehydes, 1 12oC C  in Eq. (15.61) for the ( )C C O  group. 

 3, .TE atom atom msp AO  of the O C -bond MO in Eq. (15.61) due to the charge donation from the C  and O  atoms 

to the MO is 1.13379 eV  for the 3O CH  group of formate and alkyl carboxylates, 1.44915 eV  for the O R  group of alkyl 

carboxylates, and 1.85836 eV  for the O R  group of alkyl formates, where R  is an alkyl group.  Each is based on the energy 
match between the O  AO, initially at the Coulomb potential of a proton and an electron (Eqs. (1.257) and (10.162), 
respectively), the 32C sp  HO of the methyl or alkyl ester group, and the carbonyl carbon.  The increasing energy contributions to 
the single bond correspond to the increasing hybridization of linear combinations of increasing bond order.  The energy 
contributions corresponding to one half of a double bond and those of the methyl-methyl and methylene-methylene bonds are 

1.13379 eV (Eq. (14.247)), two times 0.72457 eV  (Eq. (14.151)), and two times 0.92918 eV  (Eq. (14.513)), respectively. 
The symbols of the functional groups of alkyl carboxylic acid esters are given in Table 15.105.  The geometrical (Eqs. 

(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
carboxylic acid esters are given in Tables 15.106, 15.107, and 15.108, respectively.  The total energy of each alkyl carboxylic 
acid ester given in Table 15.109 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.108 

corresponding to functional-group composition of the molecule.  For each set of unpaired electrons created by bond breakage , 
the 32C sp  HO magnetic energy magE  that is subtracted from the weighted sum of the    ( )GroupDE eV  values based on 

composition is given by Eq. (15.67).  The bond angle parameters of alkyl carboxylic acid esters determined using Eqs. (15.88-
15.117) are given in Table 15.110. The color scale, translucent view of the charge-density of exemplary carboxylic acid ester, 
methyl acetate, comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs 

or joined with one or more hydrogen MOs is shown in Figure 15.18. 
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Figure 15.18.   Color scale, translucent view of the charge-density of methyl acetate showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
Table 15.105.   The symbols of functional groups of alkyl carboxylic acid esters. 
 

Functional Group Group Symbol
CH (formic acid ester) group C H  (i) 
C-C(O) ( )C C O  

C=O (formic acid ester) C O  (i) 
C=O (alkyl carboxylic acid ester) C O  (ii) 
(O)C-O C O  
O-CH3 O C  (i) 
O-R (formic acid ester) O C  (ii) 
O-R (alkyl acid ester) O C  (iii) 
OH group OH  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH (alkyl) group C H  (ii) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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AMIDES ( 2 1 ,   1,2,3,4,5...n nC H NO n   ) 
The alkyl amides, 2 1n nC H NO , comprise a C O  functional group, and the single bond of carbon to the carbonyl carbon atom, 

( )C C O , is also a functional group.  Formamide has a HC O  moiety that comprises a more stable C O  functional group 
and a CH  functional group that is equivalent to that of the CH  (i) of aldehydes given in the corresponding section.  It is also 
equivalent to that of the iso-CH  group of branched-chain-alkyl portion of the alkyl amide except that magE  (Eq. (15.47)) is not 

subtracted from  GroupDE .  All amides further comprise a 2C NH  moiety that comprises a 2NH  functional group and two types 

of C N  functional groups, one for formamide and the other for alkyl amides ( 2( )RC O NH  where R  is alkyl).  The alkyl 

portion of the alkyl amide may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, and may comprise 

methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and 

methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The 
n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) 

and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise 

functional groups.  The branched-chain-alkane groups in amides are equivalent to those in branched-chain alkanes.   
The 2NH  functional group was solved in the Dihydrogen Nitride ( 2NH ) section except that the energy of the N H  

MO is matched to the nitrogen-atom contribution to  
2

/H MOE AO HO  and  3, .TE atom atom msp AO  of the C N  group.  

Both alkyl amide C O  groups and the ( )C C O  group are equivalent to those given in the Carboxylic Acid Esters section 

except that KvibE  of the ( )C C O  group is matched to that of an amide.  The C N  groups are equivalent to those of alkyl 

amines given in the corresponding section except that the energy of the C N  MO is matched to that of the C O  group and 

KvibE  is that of a amide.   
2

/H MOE AO HO  of the C N  group is equal to  3, .TE atom atom msp AO  of the alkyl C O  and 

C N  groups in order to match the energies of the corresponding MOs. 
As in the case of primary amines, each C N  group is solved by hybridizing the 2s  and 2 p  AOs of the C  atom to form 

a single 32sp  shell as an energy minimum, and the sharing of electrons between the 32C sp  HO and the N  AO to form a MO 
permits each participating orbital to decrease in radius and energy.  To meet the equipotential condition of the union of the 
C N  2H -type-ellipsoidal-MO with other orbitals of the molecule, the hybridization factor 2c  of Eq. (15.52) for the C N -bond 

MO given by Eq. (15.133) is  3
2 2   0.91140c C sp HO to N  . 

 3, .TE atom atom msp AO  (Eq. (15.52)) of the C O  group of alkyl amides and the C O  group of formamide are 

equivalent to those of the corresponding carboxylic acids and esters.  The values given in the Carboxylic Acids section are 
2.69893 eV  and 3.58557 eV , respectively.   

 3, .TE atom atom msp AO  of the amide ( )C C O  group is the same as alkanes, aldehydes, carboxylic acids, and 

carboxylic acid esters, 1.85836 eV , where both energy contributions are given by Eq. (14.513).  Also, as in the case of 
aldehydes, 1 12oC C  in Eq. (15.61). 

In order to match energy throughout the chain of the amide molecule,  3, .TE atom atom msp AO  of the C N -bond 

MO in Eq. (15.61) due to the charge donation from the C and N  atoms to the MO is 1.65376 eV .  It is based on the energy 
match between the 32C sp  HO of the carbonyl and the primary amino group 2NH .  It is given by the linear combination of 

0.92918 eV  (Eq. (14.513)) which matches the contiguous ( )C C O  or ( )HC O  group and 0.72457 eV  (Eq. (14.151)), the 
contribution of a primary amino group given in the Primary Amines section. 

The symbols of the functional groups of alkyl amides are given in Table 15.111.  The geometrical (Eqs. (15.1-15.5) and 
(15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl amides are given 
in Tables 15.112, 15.113, and 15.114, respectively.  The total energy of each alkyl amide given in Table 15.115 was calculated 
as the sum over the integer multiple of each  GroupDE  of Table 15.114 corresponding to functional-group composition of the 

molecule.  The bond angle parameters of alkyl amides determined using Eqs. (15.88-15.117) are given in Table 15.116. The 
color scale, translucent view of the charge-density of exemplary amide, propionamide, comprising the concentric shells of atoms 
with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in 

Figure 15.19. 
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Figure 15.19.   (A)-(B) Color scale, translucent views of the charge-density of propionamide showing the orbitals of the 
atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell 

of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
 
 

 
 
 

Table 15.111.   The symbols of functional groups of alkyl amides. 
 

Functional Group Group Symbol
CH (formamide) group C H  (i) 
C-C(O) ( )C C O  

C=O (formamide) C O  (i) 
C=O (alkyl amide) C O  (ii) 
(O)C-N (formamide) C N  (i) 
(O)C-N (alkyl amide) C N  (ii) 

NH2 group 2NH  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH (alkyl) group C H  (ii) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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N-ALKYL AND N,N-DIALKYL-AMIDES ( 2 1 ,   2,3,4,5...n nC H NO n   ) 
The N-alkyl and N,N-dialkyl amides, 2 1n nC H NO , comprise a C O  functional group, and the single bond of carbon to the 

carbonyl carbon atom, ( )C C O , is also a functional group.  Formamide has a HC O  moiety that comprises a more stable 
C O  functional group and a CH  functional group that is equivalent to that of the iso-CH  group of branched-chain-alkyl 
portion of the N-alkyl or N,N-dialkyl amide.  All amides further comprise a  1 2C N R R  moiety that comprises two types of 

C N  functional groups, one for formamide and the other for alkyl amides (  1 2( )RC O N R R  where R  is alkyl).  The N or N,N-

dialkyl moiety comprises three additional groups depending on the alkyl substitution of the nitrogen.  In the case of a single 
methyl or alkyl substitution, the NH C  bond and NH  are functional groups, and the N C  bond of a di-substituted nitrogen 
is the third. 

The alkyl portion of the N-alkyl or N,N-dialkyl amide may comprise at least two terminal methyl groups ( 3CH ) at each 

end of the chain, and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-

carbon single bonds.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of 
C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  
bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-

butyl to t-butyl C C  bonds comprise functional groups.  The branched-chain-alkane groups in N-alkyl or N,N-dialkyl amides 
are equivalent to those in branched-chain alkanes.   

The NH  functional group was solved in the Hydrogen Nitride ( NH ) section except that the energy of the N H  MO is 

matched to the nitrogen-atom contribution to  
2

/H MOE AO HO  and  3, .TE atom atom msp AO  of the C N  group.  The 

( )C C O  group, both N-alkyl or N,N-dialkyl amide C O  groups, and both C N  groups are equivalent to those given in the 
Amides section. 

As in the case of primary amines, each N C  group is solved by hybridizing the 2s  and 2 p  AOs of the C  atom to form 

a single 32sp  shell as an energy minimum, and the sharing of electrons between the 32C sp  HO and the N  AO to form a MO 
permits each participating orbital to decrease in radius and energy.  To meet the equipotential condition of the union of the 
N C  2H -type-ellipsoidal-MO with other orbitals of the molecule, the hybridization factor 2c  of Eq. (15.61) for the N C -

bond MO given by Eq. (15.133) is  3
2 2   0.91140c C sp HO to N  . 

 3, .TE atom atom msp AO  of the N-substituted amide ( )C C O  group is the same as alkanes, aldehydes, carboxylic 

acids, carboxylic acid esters, and amides, 1.85836 eV , where both energy contributions are given by Eq. (14.513).  Also, as in 
the case of aldehydes, 1 12oC C  in Eq. (15.61). 

 3, .TE atom atom msp AO  (Eq. (15.61)) of the C O  group of N-substituted alkyl amides and the C O  group of N-

substituted formamide are equivalent to those of the corresponding carboxylic acids, carboxylic esters, and amides.  The values 
given in the Carboxylic Acids section are 2.69893 eV  and 3.58557 eV , respectively.   

 3, .TE atom atom msp AO  of both C N  functional groups are the same as those of the corresponding groups of 

amides, 1.65376 eV .   3, .TE atom atom msp AO  of the singly-substituted NH C -bond MO in Eq. (15.61) due to the charge 

donation from the N  and C  atoms to the MO is 0.92918 eV .  It is equivalent to that of tertiary amines and matches the energy 

of the NH C  group to that of the C N  group wherein  3, .TE atom atom msp AO  of the latter is a linear combination of 

0.92918 eV  (Eq. (14.513)) and 0.72457 eV (Eq. (14.151)).  3, .TE atom atom msp AO  of the doubly-substituted N C -

bond MO is 0.72457 eV .  It is equivalent to that of the contribution of each atom of a primary amine and also matches the 

energy of the N C  group to that of the C N  group by matching one of the components of  3, .TE atom atom msp AO  of the 

latter. 
The symbols of the functional groups of N-alkyl and N,N-dialkyl amides are given in Table 15.117.  The geometrical 

(Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of N-
alkyl and N,N-dialkyl amides are given in Tables 15.118, 15.119, and 15.120, respectively.  The total energy of each N-alkyl or 
N,N-dialkyl amide given in Table 15.121 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.120 

corresponding to functional-group composition of the molecule.  The bond angle parameters of N-alkyl and N,N-dialkyl amides 
determined using Eqs. (15.79-15.108) are given in Table 15.122. The color scale, translucent view of the charge-density of 
exemplary alkyl-amide, N,N-dimethylacetamide, comprising the concentric shells of atoms with the outer shell bridged by one 
or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.20. 
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Figure 15.20.  Color scale, translucent view of the charge-density of N,N-dimethylacetamide showing the orbitals of the 
atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell 

of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
 

Table 15.117.   The symbols of functional groups of N-alkyl and N,N-dialkyl amides. 
 

Functional Group Group Symbol
CH (formamide) group C H  (i) 
C-C(O) ( )C C O  

C=O (N-alkyl and N,N-dialkyl formamide) C O  (i) 
C=O (N-alkyl and N,N-dialkyl amide) C O  (ii) 
(O)C-N (N-alkyl and N,N-dialkyl  
formamide) 

C N  (i) 

(O)C-N (N-alkyl and N,N-dialkyl amide) C N  (ii) 
NH group NH  
N-C (N-alkyl) N C  (i) 
N-C (N,N,-dialkyl) N C  (ii) 

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH (alkyl) group C H  (ii) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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UREA ( 4 2CH N O ) 
Urea, 4 2CH N O , comprises a C O  functional group and two 2C NH  moieties that each comprise a 2NH  functional group 

and a C N  functional group.  The C O  group is equivalent to that given for formamide in the Amides section except that the 
energy terms due to oscillation in the transition state are matched to that of urea.  The 2NH  and C N  functional groups are 

also equivalent to those given in the Amides section.   3, .TE atom atom msp AO  (Eq. (15.61)) of the C O  and C N  groups 

are equivalent to those of formamide.  The values given in the Amides section are 3.58557 eV , and 1.65376 eV , 
respectively.  

The symbols of the functional groups of urea are given in Table 15.123.  The geometrical (Eqs. (15.1-15.5) and (15.51)), 
intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of urea are given in Tables 15.124, 
15.125, and 15.126, respectively.  The total energy of urea given in Table 15.127 was calculated as the sum over the integer 
multiple of each  GroupDE  of Table 15.126 corresponding to functional-group composition of the molecule.  The bond angle 

parameters of urea determined using Eqs. (15.88-15.117) are given in Table 15.128. The color scale, translucent view of the 
charge-density of urea comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal 

MOs or joined with one or more hydrogen MOs is shown in Figure 15.21. 
 
Figure 15.21.   Color scale, translucent view of the charge-density of urea showing the orbitals of the atoms at their radii, the 
ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
Table 15.123 .   The symbols of functional groups of urea. 
 

Functional Group Group Symbol
C=O (urea) C O  
(O)C-N (urea) C N  

NH2 group 2NH  
 

Table 15.124.   The geometrical bond parameters of urea and experimental values [1]. 
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Table 15.126.   The energy parameters (eV) of functional groups of urea. 
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CARBOXYLIC ACID HALIDES ( 2 1 ,   , , , ;   1,2,3,4,5...n nC H OX X F Cl Br I n    ) 
The alkyl carboxylic acid halides, 2 1n nC H OX , comprise a C O  functional group, and the single bond of carbon to the 

carbonyl carbon atom, ( )C C O , is also a functional group.  All carboxylic acid halides further comprise a C X  functional 
group where X  is a halogen atom.  The alkyl portion of the alkyl carboxylic acid halide may comprise at least two terminal 
methyl groups ( 3CH ) at each end of the chain, and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as 

well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional groups are equivalent to those of 
straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-
chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to 

isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  The branched-chain-alkane 
groups in carboxylic acids are equivalent to those in branched-chain alkanes.   

The alkyl carboxylic acid halide C O  and ( )C C O  groups are equivalent to those given in the Aldehydes section and 

the Ketones section, respectively.  The values of  3, .TE atom atom msp AO  given in these sections are 2.69893 eV  and 

1.44915 eV , respectively. 
As in the case of alkyl halides, each ( )O C X  group is solved by hybridizing the 2s  and 2 p  AOs of the C  atom to 

form a single 32sp  shell as an energy minimum, and the sharing of electrons between the 32C sp  HO and the X  AO to form a 
MO permits each participating orbital to decrease in radius and energy.  For example, to meet the equipotential condition of the 
union of the ( )O C Cl  2H -type-ellipsoidal-MO with other orbitals of the molecule, the hybridization factor 2C  of Eq. (15.61) 

for the ( )O C Cl -bond MO given by Eq. (15.130) is  3
2 2   0.81317C C sp HO to Cl  .  The solution is equivalent to that of the 

alkyl chloride bond except that the energy parameters corresponding to oscillation in the transition state are matched to those of 
a carboxylic acid chloride. 

As in the case with the C Cl  group of alkyl chlorides,  3, .TE atom atom msp AO  of the ( )O C Cl -bond MO in Eq. 

(15.61) of alkyl carboxylic acid chlorides due to the charge donation from the C  and Cl  atoms to the MO is 1.44915 eV  
where both energy contributions are given by Eq. (14.511).  This matches the energy of the ( )C C O  functional group with that 
of the ( )O C Cl  group within the carboxylic acid chloride molecule. 

The symbols of the functional groups of alkyl carboxylic acid chlorides are given in Table 15.129.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
carboxylic acid chlorides are given in Tables 15.130, 15.131, and 15.132, respectively.  The total energy of each alkyl carboxylic 
acid chloride given in Table 15.133 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.132 

corresponding to functional-group composition of the molecule.  The bond angle parameters of alkyl carboxylic acid chlorides 
determined using Eqs. (15.88-15.117) are given in Table 15.134. The color scale, translucent view of the charge-density of 
exemplary carboxylic acid halide, acetyl chloride, comprising the concentric shells of atoms with the outer shell bridged by one 
or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.22. 

 
Figure 15.22.   Color scale, translucent view of the charge-density of acetyl chloride showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Table 15.129.   The symbols of functional groups of alkyl carboxylic acid chlorides. 
 

Functional Group Group Symbol
C-C(O) ( )C C O  

C=O (alkyl carboxylic acid chloride) C O  
(O)C-Cl C Cl  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH (alkyl) group C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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CARBOXYLIC ACID ANHYDRIDES ( 2 2 3,  2,3,4,5...n nC H O n  ) 
The alkyl carboxylic acid anhydrides, 2 2 3n nC H O , have two  O C O  moieties that each comprise C O  and C O  functional 

groups.  The single bond of carbon to the carbonyl carbon atom, ( )C C O , is also a functional group.  The alkyl portion of the 

alkyl carboxylic acid anhydride may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, and may 

comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The 

methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be 
identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl 
(  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  

bonds comprise functional groups.  The branched-chain-alkane groups in carboxylic acid anhydrides are equivalent to those in 
branched-chain alkanes. 

The alkyl carboxylic acid anhydride C O  and ( )C C O  groups are equivalent to those given in the Carboxylic Acid 

Esters section and the Ketones section, respectively.  The values of  3, .TE atom atom msp AO  given in these sections are 

2.69893 eV  and 1.44915 eV , respectively.  The C O  group is also equivalent to that given in the Carboxylic Acid Esters 

section except that  3, .TE atom atom msp AO  is equivalent to that of an alkyl ether as given in the corresponding section and 

the energy terms due to oscillation in the transition state are matched to that of a carboxylic acid anhydride. 
For the C O  group,  3, .TE atom atom msp AO  is 1.65376 eV .  It is based on the energy match between the O  AO 

and the 32C sp  HO of each ( )C C O  group and is given by the linear combination of 0.72457 eV  (Eq. (14.151)) and 

0.92918 eV  (Eq. (14.513)), respectively.  This matches 0.72457 eV , the energy contribution of each of the 32C sp  HOs to 
each ( )C C O  functional group, with that of the corresponding energy component of the C O  group and gives a minimum 
energy within the carboxylic acid anhydride molecule. 

The symbols of the functional groups of alkyl carboxylic acid anhydrides are given in Table 15.135.  The geometrical 
(Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of 
alkyl carboxylic acid anhydrides are given in Tables 15.136, 15.137, and 15.138, respectively.  The total energy of each alkyl 
carboxylic acid anhydride given in Table 15.139 was calculated as the sum over the integer multiple of each  GroupDE  of Table 

15.138 corresponding to functional-group composition of the molecule.  The bond angle parameters of alkyl carboxylic acid 
anhydrides determined using Eqs. (15.88-15.117) are given in Table 15.140. The color scale, translucent view of the charge-
density of exemplary carboxylic acid anhydride, acetic anhydride, comprising the concentric shells of atoms with the outer shell 
bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.23. 

 
 

Figure 15.23.   (A)-(B), color scale, translucent views of the charge-density of acetic anhydride showing the orbitals of the 
atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell 

of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 



Chapter 15 842

Table 15.135.  The symbols of functional groups of alkyl carboxylic acid anhydrides. 
 

Functional Group Group Symbol
C-C(O) ( )C C O  

C=O (alkyl carboxylic acid anhydride) C O  
(O)C-O C O  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH (alkyl) group C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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NITRILES ( 2 1 ,   2,3,4,5...n nC H N n   ) 
The nitriles, 2 1n nC H N , comprise a C N  functional group, and the single bond of carbon to the nitrile carbon atom, C CN , 

is also a functional group.  The alkyl portion of the nitrile may comprise at least two terminal methyl groups ( 3CH ) at each end 

of the chain, and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-

carbon single bonds.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of 
C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  
bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-

butyl to t-butyl C C  bonds comprise functional groups.  The branched-chain-alkane groups in nitriles are equivalent to those in 
branched-chain alkanes.   

The nitrile C N  is solved equivalently to acetylene as given in the Acetylene Molecule section except that the energy 
for  /AO HOE  is two times that given in Eq. (14.343), 16.20002 eV , in order to match the N  AOs to that of the nitrile 32C sp  HO 

having a bond order of three.   3, .TE atom atom msp AO  of the C N  functional group is 1.56513 eV  (Eq. (14.342)) 

corresponding to the third-order bonded 32C sp  HO.  
The C CN  functional group is equivalent to that of an alkyl C C  group given in the Continuous-Chain Alkanes 

section except that  2H MOTE  and KvibE  are those corresponding to a nitrile.  As given in the Continuous-Chain Alkanes section, 

 3, .TE atom atom msp AO  of the alkyl C C  group is 1.85836 eV  where both energy contributions are given by Eq. 

(14.513).  It is based on energy matching within the nitrile.  It corresponds to the maximum-magnitude energy contributions of a 
single-bonded and a third-order bonded 32C sp  HO. 

The symbols of the functional groups of nitriles are given in Table 15.141.  The geometrical (Eqs. (15.1-15.5) and 
(15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of nitriles are given in 
Tables 15.142, 15.143, and 15.144, respectively.  The total energy of each nitrile given in Table 15.139 was calculated as the 
sum over the integer multiple of each  GroupDE  of Table 15.144 corresponding to functional-group composition of the molecule.  

For each set of unpaired electrons created by bond breakage, the 32C sp  HO magnetic energy magE  that is subtracted from the 

weighted sum of the    ( )GroupDE eV  values based on composition is given by Eq. (15.67).  The bond angle parameters of nitriles 

determined using Eqs. (15.88-15.117) are given in Table 15.146.  The C  of the C N  group can further bond with only one 
atom, and the bond is linear as a minimum of energy as in the case of acetylene and alkynes. The color scale, translucent view of 
the charge-density of exemplary nitrile, propanenitrile, comprising the concentric shells of atoms with the outer shell bridged by 
one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.24. 
 

Figure 15.24.   Color scale, translucent view of the charge-density of propanenitrile showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Table 15.141.   The symbols of functional groups of nitriles. 
 

Functional Group Group Symbol
C-CN C C  (i) 
CN C N  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH (alkyl) group C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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THIOLS ( 2 2 ,   1,2,3,4,5...n mnC H S n   ) 
The alkyl thiols, 2 2n n mC H S , comprise a SH  functional group and a C S  functional group.  The alkyl portion of the alkyl thiol 

may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, and may comprise methylene ( 2CH ), and 

methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional 
groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond 
is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl 

(  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional 

groups.  The branched-chain-alkane groups in thiols are equivalent to those in branched-chain alkanes.   
The parameters of the SH  functional group is solved using Eq. (15.41).  As in the case of the C H  bonds of 

 1, 2,3nCH n  , the S H -bond MO is a partial prolate spheroid in between the sulfur and hydrogen nuclei and is continuous 

with the 3S p  shell.  The energy of the 2H -type ellipsoidal MO is matched to that of the 3S p  shell and comprises 75% of a 

2H -type ellipsoidal MO in order to match potential, kinetic, and orbital energy relationships.  Since the energy of S , 

  10.36001 E S eV  , is less that that of H , the linear combination of the 2H -type ellipsoidal MO with the 3S p  shell further 

comprises an excess 50% charge-density donation from H  to the 3S p  shell of the S H -bond MO to achieve an energy 
minimum.  The initial total energy of the shell is given by the sum over the four 3p  electrons.  From Eq. (15.12), the sum 

 ,3TE S p of the energies of S , S  , 2S  , and 3S   [38] is: 

  ,3 10.36001 23.33788 34.79 47.222 115.70989 TE S p eV eV eV eV eV       (15.137) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 pr  of the 3S p  

shell may be calculated from the Coulombic energy using Eqs. (15.13) and (15.137). 

 
   

2 215

3 0
12 0 0

( ) 10
1.17585

8 115.70989 8 115.70989 p
q

Z q e e
r a

e eV e eV 


    (15.138) 

where 16Z   for sulfur.  Using Eqs. (15.14) and (15.138), the Coulombic energy  ,3CoulombE S p  of the outer electron of the 

3S p  shell is: 

  
2 2

0 3 0 0

,3 11.57099 
8 8 1.17585Coulomb

p

e e
E S p eV

r a 
 

     (15.139) 

The sharing of the electrons between the S  and H  atoms permits the formation an S H -bond MO that is lowered 
more in energy than the participating 3S p  orbital which consequently increases in energy.  By considering the 50% electron 
redistribution in the S H  group as well as the fact that the central field decreases by an integer for each successive electron of 
the shell, the radius 3S H pr   of the 3S p  shell may be calculated from the Coulombic energy using Eq. (15.18).  

      
2 215

3 0
12 0 0

10.5
( ) 2 0.25 1.23465

8 115.70989 8 115.70989 S H p
n

e e
r Z n a

e eV e eV 


      
 
  (15.140) 

where the 2s    in Eq. (15.18) due  to the charge donation from H  to S .  Using Eqs. (15.19) and (15.121), the Coulombic 
energy  ,3Coulomb S HE S p  of the outer electron of the 3S p  shell is: 

  
2 2

0 3 0 0

,3 11.01999 
8 8 1.23465Coulomb S H

S H p

e e
E S p eV

r a 


 
     (15.141) 

Thus,  ,3TE S H p , the energy change of each 3S p  shell with the formation of the S H -bond MO is given by the 

difference between Eq. (15.139) and Eq. (15.141): 

        ,3 ,3 ,3 11.01999 11.57099 0.55100 T S HE S H p E S p E S p eV eV eV         (15.142) 

Then, in Eq. (15.51): 

      / ,3 10.36001 0.55100 10.91101 T TE AO HO E S E S H p eV eV eV         (15.143) 

And, in Eq. (15.65), 

  3, . 0.55100 TE atom atom msp AO eV   (15.144) 
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Due to the charge donation from H  to S , 1 1c   in both Eqs. (15.51) and (15.65).  As in the case of the C H -bond 

MO, 1 0.75C   based on the orbital composition.  In alkyl thiols, the energy of sulfur is less than the Coulombic energy between 

the electron and proton of H  given by Eq. (1.264).  Thus, 2c  in Eq. (15.61) is also one, and the energy matching condition is 

determined by the 2C  parameter.  Using the energy of S ,   10.36001 E S eV   in Eq. (15.74), the hybridization factor 2C  of 

Eq. (15.61) for the S H -bond MO is: 

    
 2

,3 10.36001 
3   0.76144

13.60580 

E S p eV
C S p to H

E H eV


  


 (15.145) 

Since the energy of S  is matched to the Coulombic energy between the electron and proton of H ,   0E H a , 

    4 0/ 13.60580 initialE c AO HO E H a eV   ,    5 / 13.59844 initialE c AO HO E H eV   , and magE  is that corresponding 

to   0E H a  given by Eq. (15.67).   GroupDE  for hydrogen sulfide is equivalent to that of the SH  functional group, and the 

   ( )GroupDE eV  for dihydrogen sulfide follows the same derivation as that for the SH  functional group except that the parameters 

correspond to 1 2n   rather than 1 1n   in Eqs. (15.51) and (15.65). 

Furthermore, with the energy of S  matched to the Coulombic energy between the electron and proton of H , the energy 
of the C S -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in Eq. (15.51) with 

 / 0E AO HO   and    
2

/ /T H MOE AO HO E AO HO  .  Then, the solution of the C S  functional group comprises the 

hybridization of the 2s  and 2 p  AOs of C  to form a single 32sp  shell as an energy minimum, and the sharing of electrons 

between the 32C sp  HO and the S  AO to form a MO permits each participating orbital to decrease in radius and energy.  Since 

the energy of sulfur is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264), 2c  in Eq. 

(15.61) is one, and the energy matching condition is determined by the 2C  parameter.  Then, 32C sp  HO has a hybridization 

factor of 0.91771  (Eq. (13.430)) with a corresponding energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the S  AO has 

an energy of   10.36001 E S eV  .  To meet the equipotential condition of the union of the C S  2H -type-ellipsoidal-MO 

with these orbitals, the hybridization factor 2C  of Eq. (15.60) for the C S -bond MO given by Eqs. (15.77) and (15.79) is: 

    
     3 3

2 23

10.36001 
2   S 2 0.91771 0.64965

14.63489 , 2

E S eV
C C sp HO to c C sp HO

eVE C sp


  


 (15.146) 

Since the sulfur is energy matched to   0E H a  in the S H -bond MO,  3, .TE atom atom msp AO  of the C S -bond 

MO in Eq. (15.61) due to the charge donation from the C  and S  atoms to the MO is 0.72457 eV  corresponding to the energy 
contribution equivalent to that of a methyl group (Eq. (14.151)). 

The symbols of the functional groups of branched-chain alkyl thiols are given in Table 15.147.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
thiols are given in Tables 15.148, 15.149, and 15.150, respectively.  The total energy of each alkyl thiol given in Table 15.151 
was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.150 corresponding to functional-group 

composition of the molecule.  For each set of unpaired electrons created by bond breakage, the 32C sp  HO magnetic energy magE  

that is subtracted from the weighted sum of the   ( )GroupDE eV  values based on composition is given by Eq. (15.67).  The C C  

bonds to the HCSH  group (one H  bond to C ) were each treated as an iso C C  bond.  The C C  bonds to the CSH  group 
(no H  bonds to C ) were each treated as a tert-butyl C C .  magE  was subtracted for each t-butyl group.  The bond angle 

parameters of alkyl thiols determined using Eqs. (15.88-15.117) are given in Table 15.152. The color scale, translucent view of 
the charge-density of exemplary thiol, ethanethiol, comprising the concentric shells of atoms with the outer shell bridged by one 
or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.25. 
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Figure 15.25.   Color scale, translucent view of the charge-density of ethanethiol showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
 
Table 15.147.  The symbols of functional groups of alkyl thiols. 
 

Functional Group Group Symbol
SH group SH  

H2S 2H S  

C-S C S  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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SULFIDES ( 2 2 ,   2,3,4,5...n mnC H S n   ) 
The alkyl sulfides, 2 2n n mC H S , comprise two types of C S  functional groups, one for t-butyl groups corresponding to the C  

and the other for the remaining general alkyl groups including methyl.  The alkyl portion of the alkyl sulfide may comprise at 
least two terminal methyl groups ( 3CH ) at each end of the chain, and may comprise methylene ( 2CH ), and methylyne ( CH ) 

functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional groups are 
equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same 
as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups 

and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  The 
branched-chain-alkane groups in sulfides are equivalent to those in branched-chain alkanes. 

Each C S  group is solved by hybridizing the 2s  and 2 p  AOs of the C  atom to form a single 32sp  shell as an energy 

minimum, and the sharing of electrons between the 32C sp  HO and the S  AO to form a MO permits each participating orbital to 
decrease in radius and energy.  Since the energy of sulfur is less than the Coulombic energy between the electron and proton of 
H  given by Eq. (1.264), 2c  in Eq. (15.61) is one, and the energy matching condition is determined by the 2C  parameter.  As in 

the case of thiols, 2C  of Eq. (15.61) for the C S -bond MO given by Eq. (15.146) is  3
2 2   S 0.64965C C sp HO to  . 

The C S  group of alkyl sulfides is equivalent to that of thiols where  3, .TE atom atom msp AO  is 0.72457 eV  (Eq. 

(14.151)).  The t-butyl-C S  group is also equivalent to that of thiols except that the energy parameters corresponding to the 
oscillation in the transition state are matched to those of the t-butyl group. 

The symbols of the functional groups of branched-chain alkyl sulfides are given in Table 15.153.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
sulfides are given in Tables 15.154, 15.155, and 15.156, respectively.  Consider that the C S bond is along the x axis in the xy-
plane.  The S  nucleus is at the focus +c and the C  nucleus is at the focus –c.  The elliptic angle '  is taken as counterclockwise 
from the x-axis for S  and as clockwise from the –x-axis for C .  The total energy of each alkyl sulfide given in Table 15.157 
was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.156 corresponding to functional-group 

composition of the molecule.  magE  given by Eq. (15.67) was subtracted for each t-butyl group.  The bond angle parameters of 

alkyl sulfides determined using Eqs. (15.88-15.117) are given in Table 15.158. The color scale, translucent view of the charge-
density of exemplary sulfide, dimethyl sulfide, comprising the concentric shells of atoms with the outer shell bridged by one or 
more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.26. 
 

Figure 15.26.  Color scale, translucent view of the charge-density of dimethyl sulfide showing the orbitals of the atoms at 
their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the 

atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Table 15.153.   The symbols of functional groups of alkyl sulfides. 
 
 

Functional Group Group Symbol
C-S (methyl, alkyl) C S  (i) 

C-S (  3 3
CH C S  ) C S  (ii) 

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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DISULFIDES ( 2 2 2 ,   2,3,4,5...n n mC H S n   ) 
The alkyl disulfides, 2 2 2n n mC H S , comprise C S  and S S  functional groups.  The alkyl portion of the alkyl disulfide may 

comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, and may comprise methylene ( 2CH ), and 

methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional 
groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond 
is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl 

(  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional 

groups.  The branched-chain-alkane groups in disulfides are equivalent to those in branched-chain alkanes. 
Each C S  group is equivalent to that of general alkyl sulfides given in the corresponding section.  As in the case of 

thiols and sulfides, 2C  of Eq. (15.61) for the C S -bond MO given by Eq. (15.146) is  3
2 2   S 0.64965C C sp HO to   and 

 3, .TE atom atom msp AO  is 0.72457 eV  (Eq. (14.151)). 

The S S  group is solved as an 2H -type-ellipsoidal-MO that is energy matched to the energy of sulfur, 

  10.36001 E S eV  , such that  / 10.36001 E AO HO eV   in Eq. (15.51) with    / /TE AO HO E AO HO .  The S S -

bond MO is further energy matched to the 32C sp  HO of the C S -bond MO.  2C  of Eq. (15.61) for the S S -bond MO given 

by Eq. (15.146) is also  3
2 2   S 0.64965C C sp HO to  .  In order to match  3, .TE atom atom msp AO  of the C S  group 

( 0.72457 eV  (Eq. (14.151))),  3, .TE atom atom msp AO  of the S S -bond MO is determined using a linear combination of 

the AOs corresponding to 0.72457 eV  and 0 eV  in Eq. (15.29), Eq. (15.31), and Eqs. (15.19-15.20).  The result corresponding 

to bond order 1/2I in Table 15.2 is  3, . 0.36229 TE atom atom msp AO eV   . 

The symbols of the functional groups of branched-chain alkyl disulfides are given in Table 15.159.  The geometrical 
(Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of 
alkyl disulfides are given in Tables 15.160, 15.161, and 15.162, respectively.  The total energy of each alkyl disulfide given in 
Table 15.163 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.162 corresponding to functional-

group composition of the molecule.  magE  given by Eq. (15.67) was subtracted for each t-butyl group.  The bond angle 

parameters of alkyl disulfides determined using Eqs. (15.88-15.117) are given in Table 15.164. The color scale, translucent view 
of the charge-density of exemplary disulfide, dimethyl disulfide, comprising the concentric shells of atoms with the outer shell 
bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.27. 

 
Figure 15.27 .   Color scale, translucent view of the charge-density of dimethyl disulfide showing the orbitals of the atoms at 
their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the 

atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Table 15.159.   The symbols of functional groups of alkyl disulfides. 
 

Functional Group Group Symbol
C-S C S  
S-S S S  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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SULFOXIDES (  2 2 ,   2,3,4,5...n n m
C H SO n   )  

The alkyl sulfoxides,  2 2n n m
C H SO , comprise a C SO C   moiety that comprises C S  and SO  functional groups.  The 

alkyl portion of the alkyl sulfoxide may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, and may 

comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The 

methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be 
identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl 
(  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isop.ropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  

bonds comprise functional groups.  The branched-chain-alkane groups in sulfoxides are equivalent to those in branched-chain 
alkanes. 

The electron configuration of oxygen is 2 2 41 2 2s s p , and the orbital arrangement given by Eq. (10.154) has two unpaired 

electrons corresponding to the ground state 3
2P .  The SO  functional group comprises a double bond between the two unpaired 

electrons of O .  The sulfur atom is energy matched to the 32C sp  HO.  In alkyl sulfoxides, the 32C sp  HO has a hybridization 

factor of 0.91771  (Eq. (13.430)) with a corresponding energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the S  AO has 

an initial energy of   10.36001 E S eV   [38].  To meet the equipotential condition of the union of the S O  2H -type-

ellipsoidal-MO with these orbitals, the hybridization factor 2c  of Eq. (15.61) for the S O -bond MO given by Eqs. (15.77) and 

(15.79) is: 

    
     3 3 3

2 2

13.61806 
  3   2 2 0.91771 1.20632

10.36001 

E O eV
c O to S sp to C sp HO c C sp HO

E S eV


  


 (15.147) 

The S  atom also forms a single bond with each of the 32C sp  HOs of the two C S  groups.  The formation of these 
bonds is permitted by the hybridization of the four electrons of the 3S p  shell to give the orbital arrangement: 

 

3              3sp  state

                       

0,0      1,-1      1,0       1,1

     (15.148) 

where the quantum numbers ( ,m ) are below each electron.  The 3s  shell remains unchanged.  Then, the Coulombic energy 

 3,3CoulombE S sp  of the outer electron of the 33S sp  shell given by Eq. (15.137) with 3 03
1.17585

sp
r a  (Eq. (15.138)) is 

11.57099 eV .  Using Eq. (15.16) with the radius of the sulfur atom 16 01.32010r a  given by Eq. (10.341), the energy 

 33E S sp  of the outer electron of the 33S sp  shell is given by the sum of  33CoulombE S sp  and ( )E magnetic : 

 
 

 3

2 2 2 22 2
3 0 0

32 3 2
0 16 0 0 03

2 2
3

8 8 1.17585 1.32010

11.57099 0.04973 11.52126 

e esp

e ee e
E S sp

r m r a m a

eV eV

 
 
 

   

    

 
 (15.149) 

Then, the hybridization energy  33hybridizationE S sp  of the 33S sp  HO is 

      3 33 3 11.52126 10.36001 1.16125 hybridizationE S sp E S sp E S eV eV eV        (15.150) 

The SO  group is matched to the C S  group with which it shares the common hybridized S  atom.  Consequently, 

 33hybridizationE S sp  is subtracted from  TE Group  in the determination of  DE Group  (Eq. (15.65)).  Furthermore, the energy of 

the S O -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in Eq. (15.51) with the energy 

matched to the final energy of the hybridized S atom such that    3/ 3 = 11.52126 E AO HO E S sp eV   and 
2H MOE  

   3/ 3 1.16125 hybridizationAO HO E S sp eV   . Then,    / 10.36001 TE AO HO E S eV   . Also,  3, .TE atom atom msp AO  

of the S O  bond is zero since there are no bonds with a 32C sp  HO. 
The C S  group is solved as an energy minimum by hybridizing the 2s  and 2 p  AOs of the C  atom to form a single 

32sp  shell and by hybridizing the four 3S p  electrons to form a 33S sp  shell, and the sharing of electrons between the 32C sp  

HO and the 33S sp  HO to form a MO permits each participating orbital to decrease in radius and energy.  Using the Coulombic 

energy of the 33S sp  shell,  33CoulombE S sp  given by Eq. (15.139) in Eq. (15.72), the 33S sp -shell hybridization factor, 

 3
2 3c S sp , is: 

    
 

3

3
2

3 11.57099 
3 0.85045

13.60580 
CoulombE S sp eV

c S sp
E H eV


  


 (15.151) 
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As in the case of thiols, sulfides, and disulfides, the energy of sulfur is less than the Coulombic energy between the 
electron and proton of H  given by Eq. (1.264).  Thus, 1c  and 2c  are equal to one in Eq. (15.61), and the energy matching 

condition is determined by the 2C  parameter.  In alkyl sulfoxides, the 32C sp  HO has a hybridization factor of 0.91771 (Eq. 

(13.430)) with a corresponding energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)) and the 33S sp  HO has an energy of 

 33 = 11.52126 E S sp eV  (Eq. (15.149)).  To meet the equipotential condition of the union of the C S  2H -type-ellipsoidal-

MO with these orbitals, the hybridization factor 2C  of  Eq. (15.61) for the C S -bond MO given by Eqs. (15.77) and (15.79) is: 

    
     

3

3 3 3
2 23

3 11.52126 
2   3 3 0.85045 0.66951

14.63489 , 2

E S sp eV
C C sp HO to S sp c S sp

eVE C sp


  


 (15.152) 

As in the case of thiols, sulfides, and disulfides, with the energy of S  matched to the Coulombic energy between the 
electron and proton of H , the energy of the C S -bond MO is the sum of the component energies of the 2H -type ellipsoidal 

MO given in Eq. (15.51) with  / 0AO HOE   and    
2

/ /T H MOE AO HO E AO HO  .  For sulfoxides, 

 
2

/ 0.72457 H MOE AO HO eV   .  Further equivalently,  3, . 0.72457 TE atom atom msp AO eV    (Eq. (14.151)). 

The symbols of the functional groups of branched-chain alkyl sulfoxides are given in Table 15.165.  The geometrical 
(Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of 
alkyl sulfoxides are given in Tables 15.166, 15.167, and 15.168, respectively.  Consider that the C S bond is along the x axis in 
the xy-plane.  The S  nucleus is at the focus +c and the C  nucleus is at the focus –c.  The elliptic angle '  is taken as 
counterclockwise from the x-axis for S  and as clockwise from the –x-axis for C .  The total energy of each alkyl sulfoxide given 
in Table 15.169 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.168 corresponding to 

functional-group composition of the molecule.  The bond angle parameters of alkyl sulfoxides determined using Eqs. (15.88-
15.117) are given in Table 15.170. The color scale, translucent view of the charge-density of exemplary sulfoxide, dimethyl 
sulfoxide, comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or 

joined with one or more hydrogen MOs is shown in Figure 15.28. 
 
Figure 15.28.   (A)-(B) Color scale, translucent views of the charge-density of dimethyl sulfoxide showing the orbitals of the 
atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell 

of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 

 
 
Table 15.165.   The symbols of functional groups of alkyl sulfoxides. 
 

Functional Group Group Symbol
C-S C  S
SO SO

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C  H
CC bond (n-C) C C (a)
CC bond (iso-C) C C (b)
CC bond (tert-C) C  C (c)
CC (iso to iso-C) C C (d)
CC (t to t-C) C C (e)
CC (t to iso-C) C C (f)
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DIMETHYL SULFOXIDE DIHEDRAL ANGLE 
The dihedral angle /S O CSC   between the plane defined by the CSC  MO comprising a linear combination of two S C -bond 

MOs and a line defined by the S O -bond MO where S  is the central atom is calculated using the results given in Table 15.170 
and Eqs. (15.114-15.117).  The distance 1d  along the bisector of CSC  from S  to the internuclear-distance line between C  and 

C , 2 'C Cc  , is given by: 

 1 0 0

96.20°
2 ' cos 4.9800 cos 2.23423

2 2
CSC

S Cd c a a


    (15.153) 

where 2 'S Cc   is the internuclear distance between S  and C .  The atoms C , C , and O  define the base of a pyramid.  Then, the 

pyramidal angle COC  can be solved from the internuclear distances between C  and C , 2 'C Cc  , and between C  and O , 

2 'C Oc  , using the law of cosines (Eq. (15.115)): 

 
     

  
     

  

2 2 2 2 2 2

1 12 ' 2 ' 2 ' 4.95984 4.95984 4.9800
cos cos 60.27°

2 2 ' 2 ' 2 4.95984 4.95984
C O C O C C

COC
C O C O

c c c

c c
    


 

      
     

   
   

 (15.154) 

Then, the distance 2d  along the bisector of COC  from O  to the internuclear-distance line 2 'C Cc  , is given by: 

 2 0 0

60.27
2 ' cos 4.95984 cos 4.28952

2 2
COC

C Od c a a





    (15.155) 

The lengths 1d , 2d , and 2 'S Oc   define a triangle wherein the angle between 1d  and the internuclear distance between O  and S , 

2 'S Oc  , is the dihedral angle /S O CSC   that can be solved using the law of cosines (Eq. (15.117)). 

 
 
 

     
  

2 2 2 22 2
1 21 1

/
1

2 ' 2.23423 2.81792 4.28952
cos cos 115.74°

2 2 ' 2 2.23423 2.81792
S O

S O CSC
S O

d c d

d c
  
 



      
     

   
   

 (15.156) 

The experimental [1] dihedral angle /S O CSC   is 

 / 115.5°S O CSC    (15.157) 
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SULFONES (  2 2 2 ,   2,3,4,5...n n m
C H SO n   ) 

The alkyl sulfones,  2 2 2n n m
C H SO , comprise a 2C SO C   moiety that comprises C – S and 2SO  functional groups.  The alkyl 

portion of the alkyl sulfone may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, and may comprise 

methylene ( 2CH ), and methylyne (CH) functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and 

methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C – C bonds can be identified.  The 
n-alkane C – C  bond is the same as that of straight-chain alkanes.  In addition, the C – C  bonds within isopropyl (  3 2

CH CH ) 

and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C – C  bonds comprise 

functional groups. The branched-chain-alkane groups in sulfones are equivalent to those in branched-chain alkanes. 
The two unpaired electrons of eachO  atom form a MO with two unpaired electrons of the sulfur atom such that the MO 

comprises a linear combination of two bonds, each of bond order two involving the sulfur HOs and oxygen AOs of both oxygen 
atoms.  Due to the bonding between unpaired electrons of different oxygen atoms magE  (Eq. (15.68)) is subtracted from the total 

energy.  Otherwise, the 2SO -bond MO of sulfones is solved in the same manner as the SO -bond MO of sulfoxides given in the 

corresponding section wherein 1n  in Eqs. (15.51) and (15.61) is four versus two.  Also, the C S -bond MO is equivalent to that 

of sulfoxides having  3, . 0.72457 TE atom atom msp AO eV    (Eq. (14.151)). 

The symbols of the functional groups of branched-chain alkyl sulfones are given in Table 15.171.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
sulfones are given in Tables 15.172, 15.173, and 15.174, respectively.  The total energy of each alkyl sulfone given in Table 
15.165 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.174 corresponding to functional-group 

composition of the molecule.  The bond angle parameters of alkyl sulfones determined using Eqs. (15.88-15.117) are given in 
Table 15.176. The color scale, translucent view of the charge-density of exemplary sulfone, dimethyl sulfone, comprising the 
concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs is shown in Figure 15.29. 
 
Figure 15.29.   (A)-(B) Color scale, translucent views of the charge-density of dimethyl sulfone showing the orbitals of the 
atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell 

of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 

Table 15.171.   The symbols of functional groups of alkyl sulfones. 
 

Functional Group Group Symbol
C-S C S  

SO2 2SO  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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SULFITES (  2 2 3 ,   2,3,4,5...n n m
C H SO n   ) 

The alkyl sulfites,  2 2 3n n m
C H SO , comprise a C O SO O C     moiety that comprises two types C O  functional groups, 

one for methyl and one for alkyl, and O S and SO  functional groups.  The alkyl portion of the alkyl sulfite may comprise at 
least two terminal methyl groups ( 3CH ) at each end of the chain, and may comprise methylene ( 2CH ), and methylyne ( CH ) 

functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional groups are 
equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same 
as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups 

and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  The 
branched-chain-alkane groups in sulfites are equivalent to those in branched-chain alkanes. 

The SO  functional group is equivalent to that of sulfoxides with  3, . 0TE atom atom msp AO   as given in the 

Sulfoxides section.  The methyl and alkyl C O  functional groups having  3, . 1.44915 TE atom atom msp AO eV    and 

 3, . 1.65376 TE atom atom msp AO eV   , respectively, are equivalent to the corresponding ether groups given in the Ethers 

section except for the energy terms corresponding to oscillation of the bond in the transition state. 
The electron configuration of oxygen is 2 2 41 2 2s s p , and the orbital arrangement given by Eq. (10.154) has two unpaired 

electrons corresponding to the ground state 3
2P .  The SO  functional group comprises a double bond between the S  atom and 

the two unpaired electrons of O .  The S  atom also forms single bonds with two additional oxygen atoms that are each further 
bound to methyl or alkyl groups.  The first bond-order bonding in the O S  groups is between the sulfur atom and a 2O p  AO 
of each oxygen of the two bonds.  The formation of these four bonds with the sulfur atom is permitted by the hybridization of the 
four electrons of the 3S p  shell to give the orbital arrangement given by Eq. (15.148).  Then, the Coulombic energy 

 3,3CoulombE S sp  of the outer electron of the 33S sp  shell given by Eq. (15.139) with 3 03
1.17585

sp
r a  (Eq. (15.138)) is 

11.57099 eV .  Using Eq. (15.16) with the radius of the sulfur atom 16 01.32010r a  given by Eq. (10.341), the energy 

 33E S sp  of the outer electron of the 33S sp  shell given by the sum of  33CoulombE S sp  and ( )E magnetic  is 

 33 11.52126 E S sp eV  (Eq. (15.149)). 

Thus, the O S  group is solved as an energy minimum by hybridizing the four 3S p  electrons to form a 33S sp  shell, and 

the sharing of electrons between the 2O p  AO and the 33S sp  HO to form a MO permits each participating orbital to decrease in 
radius and energy.  As in the case of thiols, sulfides, disulfides, and sulfoxides, the energy of sulfur is less than the Coulombic 
energy between the electron and proton of H  given by Eq. (1.264).  Thus, 1c  and 2c  are equal to one in Eq. (15.61), and the 

energy matching condition is determined by the 2C  parameter.  Each 32C sp  HO has a hybridization factor of 0.91771 (Eq. 

(13.430)) with a corresponding energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the S  HO has an energy of 

 33 11.52126 E S sp eV  .  To meet the equipotential condition of the union of the O S  2H -type-ellipsoidal-MO with these 

orbitals with the oxygen that further bonds to a 32C sp  HO, the hybridization factor 2C  of Eq. (15.61) for the O S -bond MO 

given by Eqs. (15.77) and (15.79) is: 

    
     

3

3 3 3
2 2

,3 11.52126 
3     2 2 0.91771 0.77641

,2 13.61806 

E S sp eV
C S sp to O to C sp HO c C sp HO

E O p eV


  


 (15.158) 

As in the case of thiols, sulfides, disulfides, and sulfoxides, with the energy of S  matched to the Coulombic energy 
between the electron and proton of H , the energy of the O S -bond MO is the sum of the component energies of the 2H -type 

ellipsoidal MO given in Eq. (15.51) with  / 0E AO HO   and    
2

/ /T H MOE AO HO E AO HO  .  For sulfites, 

 
2

/ 0.92918 H MOE AO HO eV    and equivalently,  3, . 0.92918 TE atom atom msp AO eV    (Eq. (14.513)) due to the 

maximum energy match with the oxygen AO as in the case with carboxylic acid esters.   
The symbols of the functional groups of branched-chain alkyl sulfites are given in Table 15.177.  The geometrical (Eqs. (15.1-
15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl sulfites 
are given in Tables 15.178, 15.179, and 15.180, respectively.  The total energy of each alkyl sulfite given in Table 15.175 was 
calculated as the sum over the integer multiple of each  GroupDE  of Table 15.180 corresponding to functional-group composition 

of the molecule.  The bond angle parameters of alkyl sulfites determined using Eqs. (15.88-15.117) are given in Table 15.182.  
The color scale, translucent view of the charge-density of sulfite, dimethyl sulfite, comprising the concentric shells of atoms with 
the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 

15.30. 
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Figure 15.30.   Color scale, translucent view of the charge-density of dimethyl sulfite showing the orbitals of the atoms at 
their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the 

atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
Table 15.177.   The symbols of functional groups of alkyl sulfites. 
 

Functional Group Group Symbol
C-O (methyl) C O  (i) 
C-O (alkyl) C O  (ii) 
O-SO2 O S  
SO SO  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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SULFATES (  2 2 4 ,   2,3,4,5...n n m
C H SO n   ) 

The alkyl sulfates,  2 2 4n n m
C H SO , comprise a 2C O SO O C     moiety that comprises two types C O  functional groups, 

one for methyl and one for alkyl, and O S and 2SO  functional groups.  The alkyl portion of the alkyl sulfate may comprise at 

least two terminal methyl groups ( 3CH ) at each end of the chain, and may comprise methylene ( 2CH ), and methylyne ( CH ) 

functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional groups are 
equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same 
as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups 

and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  The 
branched-chain-alkane groups in sulfates are equivalent to those in branched-chain alkanes. 

The methyl and alkyl C O  functional groups having  3, . 1.44915 TE atom atom msp AO eV    and 

 3, . 1.65376 TE atom atom msp AO eV   , respectively, are equivalent to the corresponding groups given in the Sulfites 

section.  The O S  functional group having  3, . 0.92918 TE atom atom msp AO eV   is equivalent to that given in the Sulfites 

section.  The 2SO  functional group is equivalent to that of sulfones with  3, . 0TE atom atom msp AO   as given in the Sulfones 

section. 
The symbols of the functional groups of branched-chain alkyl sulfates are given in Table 15.183.  The geometrical (Eqs. 

(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
sulfates are given in Tables 15.184, 15.185, and 15.186, respectively.  The total energy of each alkyl sulfate given in Table 
15.187 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.186 corresponding to functional-group 

composition of the molecule.  The bond angle parameters of alkyl sulfates determined using Eqs. (15.88-15.117) are given in 
Table 15.188. The color scale, translucent view of the charge-density of exemplary sulfate, dimethyl sulfate, comprising the 
concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs is shown in Figure 15.31. 
 
Figure 15.31.   (A)-(B) Color scale, translucent views of the charge-density of dimethyl sulfate showing the orbitals of the 
atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell 

of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Table 15.183.   The symbols of functional groups of alkyl sulfates. 
 

Functional Group Group Symbol
C-O (methyl) C O  (i) 
C-O (alkyl) C O  (ii) 
O-SO3 O S  

SO2 2SO  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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NITROALKANES (  2 2 2 ,   1,2,3,4,5...n n m m
C H NO n    ) 

The nitroalkanes,  2 2 2n n m m
C H NO  , comprise a 2NO  functional group and a C N  functional group.  The alkyl portion of the 

nitroalkane may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, and may comprise methylene 

( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene 

functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane 
C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-

butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise 

functional groups.  The branched-chain-alkane groups in nitroalkanes are equivalent to those in branched-chain alkanes.   
The electron configuration of oxygen is 2 2 41 2 2s s p , and the orbital arrangement given by Eq. (10.154) has two unpaired 

electrons corresponding to the ground state 3
2P .  The electron configuration of nitrogen is 2 2 31 2 2s s p , and the orbital 

arrangement given by Eq. (10.134) has three unpaired electrons corresponding to the ground state 4 0
3/ 2S .  The bonding in the 

nitro ( 2NO ) functional group is similar to that in the 2SO  group given previously.  It also has similarities to the bonding in the 

carbonyl functional group.  In the 2NO  group, the two unpaired electrons of the O  atoms form a MO with two unpaired 

electrons of the nitrogen atom such that the MO comprises a linear combination of two bonds, each of bond order two involving 
the nitrogen AOs and oxygen AOs of both oxygen atoms.  The nitrogen atom is then energy matched to the 32C sp  HO.  In 

nitroalkanes, the 32C sp  HO has a hybridization factor of 0.91771 (Eq. (13.430)) with a corresponding energy of 

 3, 2 14.63489 E C sp eV   (Eq. (15.25)), the N  AO has an energy of   14.53414 E N eV  , and the O  AO has an energy of 

  13.61806 E O eV   [38].  To meet the equipotential condition of the union of the N O  2H -type-ellipsoidal-MO with these 

orbitals, the hybridization factor 2c  of Eq. (15.61) for the N O -bond MO given by Eqs. (15.77) and (15.79) is: 

    
     3 3

2 2

13.61806 
  2   2 2 0.91771 0.85987

14.53414 

E O eV
c O to N p to C sp HO c C sp HO

E N eV


  


 (15.159) 

Since there are two O  atoms in a linear combination that comprises the bonding of the 2NO  group, the unpaired electrons of 

each O  cancel each others effect such that magE  is not subtracted from the total energy of 2NO .  Additionally, 

   3, . 3.71673 4 0.92918 TE atom atom msp AO eV eV      (Eq. (14.513)) is the maximum given the bonding involves four 

electrons comprising two bonds, each having a bond order of one. 
The C N  group is equivalent to that of primary amines except that the energies corresponding to vibration in the 

transition state are matched to a nitroalkane and  
2

/ 0.72457 H MOE AO HO eV    for nitroalkane and 

 
2

/ 1.44915 H MOE AO HO eV    for primary amines.  Whereas,  3, . 1.44915 TE atom atom msp AO eV    for both 

functional groups.  This condition matches the energy of the C N  group with the 2NO  having  
2

/ 0H MOE AO HO  . 

The symbols of the functional groups of branched-chain nitroalkanes are given in Table 15.189.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of 
nitroalkanes are given in Tables 15.190, 15.191, and 15.192, respectively.  The total energy of each nitroalkane given in Table 
15.193 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.192 corresponding to functional-group 

composition of the molecule.  magE  given by Eq. (15.67) was subtracted for each t-butyl group.  The bond angle parameters of 

nitroalkanes determined using Eqs. (15.88-15.117) are given in Table 15.194.  The color scale, translucent view of the charge-
density of exemplary nitroalkane, nitroethane, comprising the concentric shells of atoms with the outer shell bridged by one or 
more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.32. 

 



Chapter 15 
 

 

892

 

Figure 15.32.   Color scale, translucent view of the charge-density of nitroethane showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 

Table 15.189.   The symbols of functional groups of nitroalkanes. 
 

Functional Group Group Symbol

NO2 group 2NO  

C-N C N  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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ALKYL NITRITES (  2 2 2 ,   1,2,3,4,5...n n m m
C H NO n    ) 

The alkyl nitrites,  2 2 2n n m m
C H NO  , comprise a RC O NO   moiety that comprises C O , O N , and NO  functional 

groups.  The alkyl portion of the alkyl nitrite may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, 

and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single 

bonds.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds 
can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within 
isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl 

C C  bonds comprise functional groups.  The branched-chain-alkane groups in alkyl nitrites are equivalent to those in 
branched-chain alkanes.   

The electron configuration of oxygen is 2 2 41 2 2s s p , and the orbital arrangement given by Eq. (10.154) has two unpaired 

electrons corresponding to the ground state 3
2P .  The electron configuration of nitrogen is 2 2 31 2 2s s p , and the orbital 

arrangement given by Eq. (10.134) has three unpaired electrons corresponding to the ground state 4 0
3/ 2S .  The bonding in the 

nitro ( NO ) functional group is similar to that in the SO  group given previously.  It also has similarities to the bonding in the 
carbonyl functional group.  In the NO  group, the two unpaired electrons of the O  atom form a MO with two unpaired electrons 
of the nitrogen atom such that the MO comprises a double bond.  The nitrogen atom is then energy matched to the O N  
functional group that is further energy matched to the 32C sp  HO of the C O  functional group.  To meet the equipotential 

condition of the union of the N O  2H -type-ellipsoidal-MO with other orbitals of the molecule, the hybridization factor 2c  of 

Eq. (15.60) for the N O -bond MO given by Eq. (15.159) is  3
2  2   2 0.85987c O to N p to C sp HO  . 

As in the case of the carbonyl group, two unpaired O  electrons result upon bond breakage of the N O  bond which 
requires that two times magE  of oxygen (Eq. (15.68)) be subtracted from the total energy of NO .  Additionally, 

 3, .TE atom atom msp AO  and  
2

/H MOE AO HO  are equal to 0.92918 eV  (Eq. (14.513)) which matches the energy of the 

N O  bond with the contiguous O N  bond and matches the energy contribution of an oxygen atom. 
The O N  functional group comprise a single-bond, 2H -type-ellipsoidal-MO between the remaining unpaired nitrogen 

electron and an unpaired electron of the second oxygen atom which further forms a single bond with the 32C sp  HO of the 

C O  functional group.  In alkyl nitrites, the hybridization factor 2c  of Eq. (15.61) for the C O -bond MO given by Eq. 

(15.133) is  3
2 2   0.85395c C sp HO to O  .  The hybridization factor 2c  of Eq. (15.61) for a C N -bond MO given by Eq. 

(15.135) is  3
2 2   0.91140c C sp HO to N  .  Thus, the hybridization factor 2c  of Eq. (15.61) for O N  that bridges the C O  

and N O  bonds given by Eq. (15.78) is: 

    
 

3
2

2 3
2

2   0.91140
2   2 1.06727

0.853952   

c C sp HO to N
c N p to O p

c C sp HO to O
    (15.160) 

 3, . 0.92918 TE atom atom msp AO eV    in order to match the energy of the NO  group and 

 / 15.35946 E AO HO eV   in order to match the C O  functional group. 

The C O  functional group is equivalent to that of an ether as given in the corresponding section except that 

 3, .TE atom atom msp AO  and  
2

/H MOE AO HO  are both 0.72457 eV  which matches the energy contribution of an 

independent 32C sp  HO (Eq. (14.151)).  Also, the energy terms corresponding to the oscillation of the bond in the transition state 
are matched to a nitrite. 

The symbols of the functional groups of branched-chain alkyl nitrites are given in Table 15.195.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
nitrites are given in Tables 15.196, 15.197, and 15.198, respectively.  The total energy of each alkyl nitrite given in Table 15.199 
was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.198 corresponding to functional-group 

composition of the molecule.  The bond angle parameters of alkyl nitrites determined using Eqs. (15.88-15.117) are given in 
Table 15.200. The color scale, translucent view of the charge-density of exemplary alkyl nitrite, methyl nitrite, comprising the 
concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs is shown in Figure 15.33. 
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Figure 15.33.   (A)-(B) Color scale, translucent views of the charge-density of methyl nitrite showing the orbitals of the 
atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell 

of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 

 

Table 15.195.  The symbols of functional groups of alkyl nitrites. 
 

Functional Group Group Symbol
NO group NO  
O-N O N  
C-O C O  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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ALKYL NITRATES (  2 2 3 ,   1,2,3,4,5...n n m m
C H NO n    ) 

The alkyl nitrates,  2 2 3n n m m
C H NO  , comprise a 2RC O NO   moiety that comprises C O , O N , and 2NO  functional 

groups.  The alkyl portion of the alkyl nitrate may comprise at least two terminal methyl groups ( 3CH ) at each end of the chain, 

and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single 

bonds.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds 
can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within 
isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl 

C C  bonds comprise functional groups.  The branched-chain-alkane groups in alkyl nitrates are equivalent to those in 
branched-chain alkanes.   

The 2NO  functional group is equivalent to that of nitro alkanes with the exception that  
2

/H MOE AO HO  as well as 

 3, .TE atom atom msp AO  is equal to 3.71673 eV  in order to match the group energy to that of the contiguous O N  bond.  

Furthermore, the O N  group with  3, . 0.92918 TE atom atom msp AO eV    is equivalent to that of nitrites as given in the 

corresponding section. 
The C O  functional group is equivalent to that of an ether as given in the corresponding section except that 

 3, .TE atom atom msp AO  and  
2

/H MOE AO HO  are both 0.92918 eV  which matches the energy contribution of an 

independent 32C sp  HO (Eq. (14.513)).  Also, the energy terms corresponding to the oscillation of the bond in the transition state 
are matched to a nitrate. 

The symbols of the functional groups of branched-chain alkyl nitrates are given in Table 15.201.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
nitrates are given in Tables 15.202, 15.203, and 15.204, respectively.  The total energy of each alkyl nitrate given in Table 
15.205 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.204 corresponding to functional-group 

composition of the molecule.  The bond angle parameters of alkyl nitrates determined using Eqs. (15.88-15.117) are given in 
Table 15.206. The color scale, translucent view of the charge-density of exemplary alkyl nitrate, ethyl nitrate, comprising the 
concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs is shown in Figure 15.34. 
 
Figure 15.34.  (A)-(B) Color scale, translucent views of the charge-density of ethyl nitrate showing the orbitals of the atoms 
at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the 

atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Table 15.201.   The symbols of functional groups of alkyl nitrates. 
 

Functional Group Group Symbol

NO2 group 2NO  

O-N O N  
C-O C O  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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CYCLIC AND CONJUGATED ALKENES ( 2 2 2 2 ,   3,4,5... ,  1,2,3...,  0  1n n m cC H n m c or       ) 
The cyclic and conjugated alkenes are represented by the general formula 2 2 2 2 ,   3, 4,5... ,  1, 2,3...,  0  1n n m cC H n m c or        

where m  is the number of double bonds and 0c   for a straight-chain alkene and 1c   for a cyclic alkene.  They have at least 
one carbon-carbon double bond comprising a functional group that is solved equivalently to the double bond of ethylene.  
Consider the cyclic and conjugated alkenes 1,3-butadiene, 1,3-pentadiene, 1,4-pentadiene, 1,3-cyclopentadiene, and 
cyclopentene.  Based on the condition of energy matching of the orbital, any magnetic energy due to unpaired electrons in the 
constituent fragments, and differences in oscillation in the transition state, five distinct C C  functional groups can be identified 
as given in Table 15.208.  The designation of the structure of the groups are shown in Figures 15.35A-E.  In addition, 2CH  of 

any 2C CH   moiety is a conjugated alkene functional group.  The alkyl portion of the cyclic or conjugated alkene may 

comprise at least one terminal methyl group ( 3CH ), and may comprise methylene ( 2CH ), and methylyne (CH ) functional 

groups that are equivalent to those of branched-chain alkanes. 
The solution of the functional groups comprises the hybridization of the 2s  and 2 p  AOs of each C  to form a single 

32sp  shell as an energy minimum, and the sharing of electrons between two 32C sp  HOs to form a MO permits each 
participating hybridized orbital to decrease in radius and energy.  The C C  groups are solved in the same manner as those of 
the branched-chain alkanes given in the corresponding section.  For example, the cyclopentene a bC C  group is equivalent to 

the n-C C  alkane group.  Many of the corresponding energies of the molecules of this class are similar, and they can be related 
to one another based on the structure.  For example, cyclopentadiene is formed by ring closure of 1,3-pentadiene with the 
elimination of H  from the terminal methyl and methylene groups.  Thus, the energy of each of the corresponding carbon-carbon 
bonds in cyclopentadiene is the same as that in 1,3-pentadiene except that the difference between the energies of the 1,3-
pentadiene c dC C  and the cyclopentadiene a bC C groups is the magnetic energy (Eq. (15.67)) which is subtracted from the 

a bC C  total bond energy according to Eqs. (13.524-13.527) due to the formation of a CH  group from the methylene group.  

The color scale, translucent view of the charge-density of exemplary cyclic and conjugated alkene, 1,3-butadiene, comprising the 
concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs is shown in Figure 15.35. 
 
Figure 15.35.   Color scale, translucent view of the charge-density of 1,3-butadiene showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 

 
 

 3, .TE atom atom msp AO  of the C C -bond MO in Eq. (15.61) due to the charge donation from the C  atoms to the 

MO is equivalent to that of ethylene, 2.26759 eV , given by Eq. (14.247).   3, .TE atom atom msp AO  of each C C -bond 

MO in Eq. (15.61) is 2.26759 eV  or 1.85836 eV  based on the energy match between the 32C sp  HOs corresponding to the 
energy contributions equivalent to those of alkene, 1.13379 eV  (Eq. (14.247)), or methylene, 0.92918 eV  (Eq. (14.513)), 
groups, respectively, that are contiguous with the C C -bond carbons.  In the former case, the total energy of the C C  bond 
MO is matched to that of the alkane energy in the determination of the bond length.  The charge density of 0.5e must be donated 
to the C C  bond in order to match the energy of the adjacent flanking double bonds.  This further lowers the total energy of the 
C C -bond MO and increases the C C  bond energy.  This additional lowering of the C C -bond energy by additional charge 
donation over that of an alkane bond due to adjacent double bonds is called conjugation. 

The symbols of the functional groups of cyclic and conjugated alkenes are given in Table 15.207.  The structures of 1,3-
butadiene, 1,3-pentadiene, 1,4-pentadiene, 1,3-cyclopentadiene, and cyclopentene are shown in Figures 15.35A-E, respectively.  
The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) 
parameters of cyclic and conjugated alkenes are given in Tables 15.208, 15.209, and 15.210, respectively.  The total energy of 
each cyclic or conjugated alkenes given in Table 15.211 was calculated as the sum over the integer multiple of each  GroupDE  of 
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Table 15.210 corresponding to functional-group composition of the molecule.  For each set of unpaired electrons created by 
bond breakage, the 32C sp  HO magnetic energy magE  that is subtracted from the weighted sum of the   ( )GroupDE eV  values 

based on composition is given by Eq. (15.67).  The bond angle parameters of cyclic and conjugated alkenes determined using 
Eqs. (15.88-15.117) are given in Table 15.212. 
 
Figure 15.35A.  1,3 Butadiene 

 
 
Figure 15.35B.  1,3 Pentadiene 
 

 
 
Figure 15.35C .  1,4 Pentadiene 

 
 
Figure 15.35D.  1,3 Cyclopentadiene 

 
 
Figure 15.35E.  Cyclopentene 

 
 

Table 15.207.   The symbols of functional groups of cyclic and conjugated alkenes. 
 

Functional Group Group Symbol
CC double bond C C  
1,3-butadiene, 1,3-pentadiene b bC C  

1,3-cyclopentadiene c cC C  
C C  (a) 

1,3-pentadiene c dC C  

cyclopentene b cC C  
C C  (b) 

1,4-pentadiene b cC C  C C  (c) 

1,3-cyclopentadiene a bC C  C C  (d) 

cyclopentene a bC C  C C  (e) 

CH2 alkenyl group  2 C H CH  (i) 

CH3 group  3 C H CH  

CH2 alkyl group  2 C H CH  (ii) 

CH C H  
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AROMATIC AND HETEROCYCLIC COMPOUNDS 
Aromatic and heterocyclic molecules comprise at least one of an aromatic or a cyclic conjugated alkene functional group.  The 
latter was described in the Cyclic and Conjugated Alkenes section.  The aromatic bond is uniquely stable and requires the 
sharing of the electrons of multiple H2-type MOs.  The results of the derivation of the parameters of the benzene molecule given 
in the Benzene Molecule ( 6 6C H ) section can be generalized to any aromatic functional group(s) of aromatic and heterocyclic compounds. 

6 6C H  can be considered a linear combination of three ethylene molecules wherein a C – H bond of each 2CH  group of 

2 2H C CH  is replaced by a C C  bond to form a six-member ring of carbon atoms.  The solution of the ethylene molecule is 

given in the Ethylene Molecule ( 2 2CH CH ) section.  The radius 32ethylene sp
r  ( 00.85252a ) of the 32C sp  shell of ethylene calculated 

from the Coulombic energy is given by Eq. (14.244).  The Coulombic energy  3, 2Coulomb ethyleneE C sp  ( 15.95955 eV ) of the 

outer electron of the 32C sp  shell is given by Eq. (14.245).  The energy  3, 2ethyleneE C sp  ( 15.76868 eV ) of the outer electron 

of the 32C sp  shell is given by Eq. (14.246).   3, 2TE C C sp  ( 1.13380 eV ) (Eq. (14.247)), the energy change of each 32C sp  

shell with the formation of the C C -bond MO is given by the difference between  3, 2ethyleneE C sp  and  3, 2E C sp .  6 6C H  

can be solved using the same principles as those used to solve ethylene wherein the 2s  and 2 p  shells of each C  hybridize to 

form a single 32sp  shell as an energy minimum, and the sharing of electrons between two 32C sp  hybridized orbitals (HOs) to 

form a molecular orbital (MO) permits each participating hybridized orbital to decrease in radius and energy.  Each 32sp  HO of 
each carbon atom initially has four unpaired electrons.  Thus, the 6H atomic orbitals (AOs) of benzene contribute six electrons 
and the six 3sp -hybridized carbon atoms contribute twenty-four electrons to form six C – H  bonds and six C C  bonds.  Each 

C H  bond has two paired electrons with one donated from the H AO and the other from the 32C sp  HO.  Each C C  bond 

comprises a linear combination of a factor of 0.75  of four paired electrons (three electrons) from two sets of two 32C sp  HOs of 
the participating carbon atoms.  Each C – H  and each C = C  bond comprises a linear combination of one and two diatomic H2-
type MOs developed in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section, respectively. 

Consider the case where three sets of C = C-bond MOs form bonds between the two carbon atoms of each molecule to form 
a six-member ring such that the six resulting bonds comprise eighteen paired electrons.  Each bond comprises a linear combination 
of two MOs wherein each comprises two 32C sp HOs and 75% of a H2-type ellipsoidal MO divided between the 32C sp  HOs: 

 
   

 

4
3

2

3

3 2 2 0.75  3  

6    

e

e

C sp H MO C C ethylene type bond MO

C C bond MO of benzene

       
 
    

 (15.161) 

The linear combination of each 2H -type ellipsoidal MO with each 32C sp  HO further comprises an excess of 25% charge-

density contribution per bond from each 32C sp  HO to the C C -bond MO to achieve an energy minimum.  Thus, the 
dimensional parameters of each bond C C -bond are determined using Eqs. (15.51) and (15.1-15.5) in a form that are the same 
equations as those used to determine the same parameters of the C = C-bond MO of ethylene (Eqs. (14.242-14.268)) while 
matching the boundary conditions of the structure of benzene.   

Hybridization with 25% electron donation to each C C -bond gives rise to the 32benzeneC sp  HO-shell Coulombic energy 

 3, 2Coulomb benzeneE C sp  given by Eq. (14.245).  To meet the equipotential condition of the union of the six 32C sp  HOs, 2c  and 2C  

of  Eq. (15.51) for the aromatic 
3e

C C -bond MO is given by Eq. (15.71) as the ratio of 15.95955 eV , the magnitude of 

 3, 2Coulomb benzeneE C sp  (Eq. (14.245)), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and 

proton of H  (Eq. (1.264)): 

    3 3
2 2

13.605804 
2 2 0.85252

15.95955 

eV
C benzeneC sp HO c benzeneC sp HO

eV
    (15.162) 

The energies of each 
3e

C C  bond of benzene are also determined using the same equations as those of ethylene (Eqs. 

(14.251-14.253) and (14.319-14.333)) with the parameters of benzene. Ethylene serves as a basis element for the 
3e

C C  bonding 

of benzene wherein each of the six 
3e

C C  bonds of benzene comprises (0.75)(4) = 3 electrons according to Eq. (15.161). The 

total energy of the bonds of the eighteen electrons of the 
3e

C C  bonds of benzene,  3

6 6 ,
e

TE C H C C , is given by (6)(0.75) times 

 
T oscE C C   (Eq. (14.492)), the total energy of the 

3e

C C -bond MO of benzene including the Doppler term, minus eighteen 

times  3, 2E C sp  (Eq. (14.146)), the initial energy of each 32C sp  HO of each C that forms the 
3e

C C  bonds of bond order two. 
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Thus, the total energy of the six 
3e

C C  bonds of benzene with three electron per aromatic bond given by Eq. (14.493) is: 

 

         
     

 

3
3

6 6 , 6 0.75 6 3 ,2

6 0.75 66.05796 18 14.63489 

                           297.26081 263.42798 33.83284 

e

T T oscE C H C C E C C E C sp

eV eV

eV eV eV


     
 

   

     

 (15.163) 

The results of benzene can be generalized to the class of aromatic and heterocyclic compounds.  hE   of an aromatic bond is 

given by  2TE H  (Eqs. (11.212) and (14.486)), the maximum total energy of each 2H -type MO such that: 

  1 1 2

2 1
31.63536831 

2
K

osc D Kvib

E k
E n E E n eV

Mc 

 
      

 
  (15.164) 

The factor of 0.75 corresponding to the three electrons per aromatic bond of bond order two given in the Benzene Molecule 
( 6 6C H ) section modifies Eqs. (15.61-15.65).  Multiplication of the total energy given by Eq. (15.64) by 1 0.75f   with the 

substitution of Eq. (15.164) gives the total energy of the aromatic bond: 

  

 3

2
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 (15.165) 

The total bond energy of the aromatic group  GroupDE  is the negative difference of the total energy of the group (Eq. (15.165)) 

and the total energy of the starting species given by the sum of  4 4  /initialc E c AO HO  and  5 5  /initialc E c AO HO :   
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1 2
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4
2

8
31.63536831 

/  /
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  (15.166) 

Since there are three electrons per aromatic bond, 4c  is three times the number of aromatic bonds. 

Benzene can also be considered as comprising chemical bonds between six CH radicals wherein each radical comprises a 
chemical bond between carbon and hydrogen atoms.  The solution of the parameters of CH is given in the Hydrogen Carbide 
(CH ) section.  Those of the benzene are given in the Benzene Molecule ( 6 6C H ) section.  The energy components of eV , pV , T , 

mV , and TE  are the same as those of the hydrogen carbide radical, except that  3, 2 1.13379 TE C C sp eV    (Eq. (14.247)) is 

subtracted from  TE CH  of Eq. (13.495) to match the energy of each C H -bond MO to the decrease in the energy of the 

corresponding 32C sp  HO.  In the corresponding generalization of the aromatic CH  group, the geometrical parameters are 

determined using Eq. (15.51) and Eqs. (15.1-15.5) with  3, . 1.13379 TE atom atom msp AO eV   . 

The total energy of the benzene C H -bond MO,  
benzeneTE C H , given by Eq. (14.467) is the sum of 

 30.5 , 2TE C C sp , the energy change of each 32C sp  shell per single bond due to the decrease in radius with the formation of 

the corresponding 
3e

C C -bond MO (Eq. (14.247)), and  
benzeneTE CH , the   MO contribution given by Eq. (14.441).  In the 

corresponding generalization of the aromatic CH group, the energy parameters are determined using Eqs. (15.165-15.166) with 

1 1f   and  3 1.13379 
, .

2T

eV
E atom atom msp AO


  .  Thus, the energy contribution to the single aromatic CH  bond is one 

half that of the 
3e

C C  double bond contribution.  This matches the energies of the CH  and 
3e

C C  aromatic groups, conserves 
the electron number with the equivalent charge density as that of 1s  in Eqs. (15.18-15.21), and further gives a minimum 

energy for the molecule.  Breakage of the aromatic 
3e

C C  bonds to give CH  groups creates unpaired electrons in these 
fragments that corresponds to 3 1c   in Eq. (15.65) with magE  given by Eq. (15.67). 
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Each of the C H  bonds of benzene comprises two electrons according to Eq. (14.439).  From the energy of each C H  

bond,  12 Dbenzene
E CH  (Eq. (14.477)), the total energy of the twelve electrons of the six C H  bonds of benzene, 

 6 6 ,TE C H C H , given by Eq. (14.494) is:  

         12
6 6 , 6 6 3.90454 23.42724       T Dbenzene

E C H C H E CH eV eV  (15.167) 

The total bond dissociation energy of benzene,  6 6DE C H , given by Eq. (14.495) is the negative sum of  3

6 6 ,
e

TE C H C C  (Eq. 

(14.493)) and  6 6 ,TE C H C H  (Eq. (14.494)): 

            
3

6 6 6 6 6 6, , 33.83284 23.42724 57.2601 
e

D T TE C H E C H C C E C H C H eV eV eV            (15.168) 

Using the parameters given in Tables 15.214 and 15.216 in the general equations (Eqs. (15.51), (15.1-15.5), and (15.165-15.166)) 
reproduces the results for benzene given in the Benzene Molecule ( 6 6C H ) section as shown in Tables 15.214 and 15.216. 

The symbols of the functional groups of aromatics and heterocyclics are given in Table 15.213.  The geometrical (Eqs. 
(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) 
parameters of aromatics and heterocyclics are given in Tables 15.214, 15.215, and 15.216, respectively.  The total energy of 
benzene given in Table 15.217 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.216 

corresponding to functional-group composition of the molecule.  The bond angle parameters of benzene determined using Eqs. 
(15.88-15.117) are given in Table 15.218.  The color scale, translucent view of the charge-density of exemplary aromatic, 
benzene, comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or 

joined with one or more hydrogen MOs is shown in Figure 15.36. 
 

Figure 15.36.   Color scale, translucent view of the charge-density of benzene showing the orbitals of the atoms at their radii, 
the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 

 

Table 15.213.   The symbols of functional groups of aromatics and heterocyclics. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  (i) 

 
Table 15.214.   The geometrical bond parameters of aromatics and heterocyclics and experimental values [1]. 
 

Parameter 
3


e

C C  Group CH  Group 

 0 a a  1.47348 1.60061 

 0'  c a  1.31468 1.03299 

Bond Length  2 '  c Å  1.39140 1.09327 

Exp. Bond Length 

 Å  
1.399 

(benzene) 
1.101 

(benzene) 

 0,  b c a  0.66540 1.22265 

e  0.89223 0.64537 
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Table 15.216.   The energy parameters (eV) of functional groups of aromatics and heterocyclics. 
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NAPHTHALENE 
Naphthalene has the formula 10 8C H  and comprises a planar molecule with two aromatic rings that share a common C C  group.  

In order to be aromatic, the total number of bonding electrons must be a multiple of 3 since the number of electrons of the 
aromatic bond is   0.75 4 3  as shown in the Benzene section.  In the case of naphthalene, the peripheral 10 carbons form the 

aromatic MO with the center bridged by a C C  single bond.  Then, 30 electrons of the 48 available form aromatic bonds, two 
electrons form the bridging C C  single bond, and 16 electrons form the eight C H  single bonds.  The energies of the 
aromatic carbons are given by the same equations as those of benzene (Eqs. (15.51), (15.1-15.5), and (15.165-15.166)), except 
that there are 10 in naphthalene versus six in benzene.  Since there are three electrons per aromatic bond, 4c  is three times ten, 

the number of aromatic bonds.  Similarly, the aromatic C H  group of naphthalene is equivalent to that of benzene. 
To meet the equipotential condition of the union of the ten 32C sp  HOs bridged by the C C  single bond, the parameters 

1c , 2C , and 2oC  of Eq. (15.51) are one for the C C  group, 1oC  and 1C  are 0.5, and 2c  given by Eq. (15.161) is 

 3
2 2 0.85252c C sp HO  .  Otherwise, the solutions of the C C  bond parameters are equivalent to those of the replaced C H  

groups with  / 14.63489 E AO HO eV   and  
2

/ 1.13379 H MOE AO HO eV    per carbon in Eq. (15.51).  Similarly, the 

energy parameters are determined using Eqs. (15.61-15.65) with  3 1.13379 
, .

2T

eV
E atom atom msp AO


  . 

The symbols of the functional groups of naphthalene are given in Table 15.219.  The corresponding designation of the 
structure is shown in Figure 15.37B.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy 
(Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of naphthalene are given in Tables 15.220, 15.221, and 
15.222, respectively.  The total energy of naphthalene given in Table 15.223 was calculated as the sum over the integer multiple 
of each  GroupDE  of Table 15.222 corresponding to functional-group composition of the molecule.  The bond angle parameters of 

naphthalene determined using Eqs. (15.88-15.117) are given in Table 15.224. The color scale, translucent view of the charge-
density of naphthalene, comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type 

ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.37A.  The polycyclic aromatic hydrocarbon 
pentacene was imaged by atomic force microscopy using a single CO molecule as the probe [53].  The resulting breakthrough in 
resolution revealed that in contrast to the fuzzy images touted by quantum theoreticians as proof of the cloud model of the 
electron, the images showed localized bonding MOs and AOs in agreement with the classical solution as shown in Figure 15.38. 
 
Figure 15.37.   (A) Color scale, translucent view of the charge-density of naphthalene showing the orbitals of the atoms at 
their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the 

atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).  (B) Chemical structure and atom designation of 
naphthalene. 
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Figure 15.38.   Atomic force microscopy image of pentacene by Gross et al. [53] and the superimposed analytical classical 
solution that matches the physical structure. 
 

 

 
 
Table 15.219.  The symbols of functional groups of naphthalene. 
 

Functional Group Group Symbol

a aC C  (aromatic bond) 3e

C C  
CH (aromatic) CH  (i) 

b bC C  (bridging bond) C C  
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Table 15.222.   The energy parameters (eV) of functional groups of naphthalene. 
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TOLUENE 
Toluene has the formula 7 8C H  and comprises the benzene molecule with one hydrogen atom replaced by a methyl group 

corresponding to a 3CH  functional group and a C C  functional group.  The aromatic 
3e

C C  and C H  functional groups are 

equivalent to those of benzene given in the Aromatic and Heterocyclic Compounds section.  The 3CH  functional group is the 

same as that of continuous and branched-chain alkanes given in the corresponding sections. 
The bond between the methyl and aromatic ring comprises a C C  functional group that is solved using the same 

principles as those used to solve the alkane functional groups wherein the 2s  and 2 p  AOs of each C  hybridize to form a single 
32sp  shell as an energy minimum, and the sharing of electrons between two 32C sp  HOs to form a MO permits each 

participating hybridized orbital to decrease in radius and energy.  To match energies within the MO that bridges methyl and 

aromatic carbons,  /E AO HO  and  
2

/H MOE AO HO  in Eq. (15.50) are 15.35946 eV (Eq. (14.155)) and 
1.13379 

2

eV
, 

respectively.  
To meet the equipotential condition of the union of the aromatic and methyl 32C sp  HOs of the C C  single bond, the 

parameters 1c , 2C , and 2oC  of Eq. (15.51) are one for the C C  group, 1oC  and 1C  are 0.5, and 2c  given by Eq. (13.430) is 

 3
2 2 0.91771c C sp HO  .  To match the energies of the functional groups,  3, .TE atom atom msp AO  of the C C -bond MO 

in Eq. (15.61) due to the charge donation from the C  atoms to the MO is 1.13379 eV  which is the same energy per 32C sp  HO 
as that of the replaced C H  group.   

The symbols of the functional groups of toluene are given in Table 15.225.  The corresponding designation of the 
structure is shown in Figure 15.39B.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy 
(Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of toluene are given in Tables 15.226, 15.227, and 15.228, 
respectively.  The total energy of toluene given in Table 15.229 was calculated as the sum over the integer multiple of each 

 GroupDE  of Table 15.228 corresponding to functional-group composition of the molecule.  The bond angle parameters of toluene 

determined using Eqs. (15.88-15.117) are given in Table 15.230. The color scale, translucent view of the charge-density of 
toluene comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined 

with one or more hydrogen MOs is shown in Figure 15.39A. 
 
Figure 15.39.   (A) Color scale, translucent view of the charge-density of toluene showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale).  (B) Chemical structure and atom designation of toluene. 
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Table 15.225.   The symbols of functional groups of toluene. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  (i) 

a bC C  ( 3CH  to aromatic bond) C C  

CH3 group  3 C H CH  

 
 
Table 15.226.   The geometrical bond parameters of toluene and experimental values [1]. 
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Table 15.228.  The energy parameters (eV) of functional groups of toluene. 
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HALOBENZENES 
Halobenzenes have the formula 6 6    , , , m mC H X X F Cl Br I  and comprise the benzene molecule with at least one hydrogen 

atom replaced by a halogen atom corresponding to a C X  functional group.  The aromatic 
3


e

C C  and C H  functional groups 
are equivalent to those of benzene given in the Aromatic and Heterocyclic Compounds section. The hybridization factors of the 
aryl C X  functional groups are equivalent to those of the corresponding alkyl halides as given in Tables 15.30, 15.36, 15.42, 
and 15.48, and are solved using the same principles as those used to solve the alkyl halide functional groups as given in the 
corresponding sections.  In each case, the 2s  and 2 p  AOs of each C  hybridize to form a single 32sp  shell as an energy 

minimum, and the sharing of electrons between the 32C sp  HO and X  AO to form a MO permits each participating hybridized 

orbital to decrease in radius and energy.  Therefore, the MO is energy matched to the 32C sp  HO such that  /E AO HO  in Eq. 

(15.51) is 14.63489  eV .   3, .TE atom atom msp AO  of each C X  functional group given in Table 15.234 that achieves 

matching of the energies of the AOs and HOs within the functional groups of the MOs are those of alkanes and alkenes given in 
Tables 15.1 and 15.2.  To further match energies within each MO that bridges the halogen AO and aromatic carbon 32C sp  HO, 

 
2

/ H MOE AO HO  in Eq. (15.51) is  3, .TE atom atom msp AO  of the alkene C C  functional group, 2.26759  eV  given by 

Eq. (14.247), plus the maximum possible contribution of  3, .TE atom atom msp AO  of the C X  functional group to minimize 

the energy of the MO as given in Table 15.234.   4  /initialE c AO HO  is 14.63489  eV  (Eq. (15.25)), except for C I  due to the 

low ionization potential of the I  AO.  In order to achieve an energy minimum with energy matching within iodo-aryl molecules, 

 4  /initialE c AO HO  of the C I  functional group is 15.76868  eV  (Eq. (14.246)), and  3, .TE atom atom msp AO  is 

1.65376  eV  given by the linear combination of 0.72457  eV  (Eq. (14.151)) and 0.92918  eV  (Eq. (14.513)), respectively. 
The small differences between energies of ortho, meta, and para-dichlorobenzene is due to differences in the energies of 

vibration in the transition state that contribute to oscE .  Two types of C Cl  functional groups can be identified based on 

symmetry that determine the parameter R  in Eq. (15.57).  One corresponds to the special case of 1,3,5 substitution and the other 
corresponds to other cases of single or multiple substitutions of Cl  for H .  P-dichlorobenzene is representative of the bonding 
with R a .  1,2,3-trichlorobenzene is the particular case wherein R b .  Also, beyond the binding of three chlorides magE  is 

subtracted for each additional Cl  due to the formation of an unpaired electrons on each C Cl  bond. 
The symbols of the functional groups of halobenzenes are given in Table 15.231.  The geometrical (Eqs. (15.1-15.5) and 

(15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of 
halobenzenes are given in Tables 15.232, 15.233, and 15.234, respectively.  The total energy of each halobenzene given in Table 
15.235 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.234 corresponding to functional-group 

composition of the molecule.  For each set of unpaired electrons created by bond breakage, the 32C sp  HO magnetic energy magE  

that is subtracted from the weighted sum of the   ( )GroupDE eV  values based on composition is given by Eq. (15.67).  The bond 

angle parameters of halobenzenes determined using Eqs. (15.88-15.117) are given in Table 15.236. The color scale, translucent 
view of the charge-density of chlorobenzene comprising the concentric shells of atoms with the outer shell bridged by one or 
more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.40. 
 

Figure 15.40.  Color scale, translucent view of the charge-density of chlorobenzene showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Table 15.231.   The symbols of functional groups of halobenzenes. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3


e

C C  
CH (aromatic) CH  (i) 
F C  ( F  to aromatic bond) C F  
Cl C  ( Cl  to aromatic bond) C Cl  (a) 
Cl C  ( Cl  to aromatic bond of 1,3,5-

trichlorobenzene) 
C Cl  (b) 

Br C  ( Br  to aromatic bond) C Br  
I C  ( I  to aromatic bond) C I  

 



Chapter 15 930

T
a

b
le

 1
5

.2
3

3
. 

 T
he

 M
O

 to
 H

O
 in

te
rc

ep
t g

eo
m

et
ri

ca
l b

on
d 

pa
ra

m
et

er
s 

of
 h

al
ob

en
ze

ne
s.

  E
T
 is

 E
T
 (

at
om

 –
 a

to
m

,m
sp

3 .
A

O
).

 

 
 
T

a
b

le
 1

5
.2

3
2

.  
T

he
 g

eo
m

et
ri

ca
l b

on
d 

pa
ra

m
et

er
s 

of
 h

al
ob

en
ze

ne
s 

an
d 

ex
pe

ri
m

en
ta

l v
al

ue
s 

[1
].

 



Organic Molecular Functional Groups and Molecules 931

 
 

 

T
a

b
le

 1
5

.2
3

4
. 

 T
he

 e
ne

rg
y 

pa
ra

m
et

er
s 

(e
V

) 
of

 f
un

ct
io

na
l g

ro
up

s 
of

 h
al

ob
en

ze
ne

s.
 



Chapter 15 932

 
 

T
a

b
le

 1
5

.2
3

5
. 

 T
he

 to
ta

l b
on

d 
en

er
gi

es
 o

f 
ha

lo
be

nz
en

es
 c

al
cu

la
te

d 
us

in
g 

th
e 

fu
nc

ti
on

al
 g

ro
up

 c
om

po
si

ti
on

 a
nd

 th
e 

en
er

gi
es

 o
f 

T
ab

le
 1

5.
23

4 
co

m
pa

re
d 

to
 th

e 
ex

pe
ri

m
en

ta
l v

al
ue

s 
[3

].
  T

he
 m

ag
ne

ti
c 

en
er

gy
 E

m
ag

 th
at

 is
 s

ub
tr

ac
te

d 
fr

om
 th

e 
w

ei
gh

te
d 

su
m

 o
f 

th
e 

E
D
 (

G
ro

up
) 

(e
V

) 
va

lu
es

 b
as

ed
 o

n 
co

m
po

si
ti

on
 is

 g
iv

en
 b

y 
(1

5.
58

).
 

T
a

b
le

 1
5

.2
3

6
. 

 T
he

 b
on

d 
an

gl
e 

pa
ra

m
et

er
s 

of
 h

al
ob

en
ze

ne
s 

an
d 

ex
pe

ri
m

en
ta

l v
al

ue
s 

[1
].

  E
T
 is

 E
T
 (

at
om

 –
 a

to
m

,m
sp

3 .
A

O
).

 



Organic Molecular Functional Groups and Molecules 933

PHENOL 
Phenol has the formula 6 6C H O  and comprises the benzene molecule with one hydrogen atom replaced by a hydroxyl 

corresponding to an OH  functional group and a C O  functional group.  The aromatic 
3e

C C  and C H  functional groups are 
equivalent to those of benzene given in the Aromatic and Heterocyclic Compounds section.  The OH  functional group is the 
same as that of alcohols given in the corresponding section. 

The bond between the hydroxyl and aromatic ring comprises a C O  functional group that is solved using the same 
principles as those used to solve the alcohol functional groups wherein the 2s  and 2 p  AOs of each C  hybridize to form a 

single 32sp  shell as an energy minimum, and the sharing of electrons between the 32C sp  HO and O  AO to form a MO permits 

each participating hybridized orbital to decrease in radius and energy.  In aryl alcohols, the aromatic 32C sp  HO has a 

hybridization factor of 0.85252  (Eq. (15.162)) with an initial energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)) and the O  

AO has an energy of   13.61806 E O eV  .  To meet the equipotential condition of the union of the C O  2H -type-

ellipsoidal-MO with these orbitals, the hybridization factor 2c  of Eq. (15.61) for the C O -bond MO given by Eqs. (15.77) and 

(15.79) is: 

    
     3 3

2 23

13.61806 
2   2 0.85252 0.79329

14.63489 , 2

E O eV
c arylC sp HO to O c arylC sp HO

eVE C sp


  


 (15.169) 

 3, .TE atom atom msp AO  of the C O -bond MO in Eq. (15.61) due to the charge donation from the C  and O  atoms 

to the MO is 1.49608 eV .  It is based on the energy match between the OH  group and the 32C sp  HO of an aryl group and is 
given by the linear combination of 0.92918 eV  (Eq. (14.513)) and 1.13379 eV  (Eq. (14.247)), respectively. 

The symbols of the functional groups of phenol are given in Table 15.237.  The geometrical (Eqs. (15.1-15.5) and 
(15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of 
phenol are given in Tables 15.238, 15.239, and 15.240, respectively.  The total energy of phenol given in Table 15.241 was 
calculated as the sum over the integer multiple of each  GroupDE  of Table 15.240 corresponding to functional-group composition 

of the molecule.  The bond angle parameters of phenol determined using Eqs. (15.88-15.117) are given in Table 15.242. The 
color scale, translucent view of the charge-density of phenol comprising the concentric shells of atoms with the outer shell 
bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.41. 
 
Figure 15.41.   Color scale, translucent view of the charge-density of phenol showing the orbitals of the atoms at their radii, 
the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
Table 15.237.   The symbols of functional groups of phenol. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  (i) 
Aryl C-O C O  (a) 
OH group OH  
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Table 15.240.   The energy parameters (eV) of functional groups of phenol. 
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ANILINE 
Aniline and methyl aniline have the formula 6 7C H N  and 7 9C H N , respectively.  They comprise the benzene and toluene 

molecules with one hydrogen atom replaced by an amino group corresponding to an 2NH  functional group and a C N  

functional group.  The aromatic 
3e

C C  and C H  functional groups are equivalent to those of benzene given in the Aromatic 
and Heterocyclic Compounds section.  The C C  and 3CH  functional groups of methyl anilines are equivalent to those of 

toluene given in the corresponding section. 
The aryl amino ( 2NH ) functional group was solved using the procedure given in the Dihydrogen Nitride ( 2NH ) section.  

Using the results of Eqs. (13.245-13.368), the aryl amino parameters in Eq. (15.60) are 1 2n  , 1 0.75C  , 2 0.93613C   (Eqs. 

(13.248-13.249)), 1 1.5oC  , and 1 0.75c  .  In the determination of the hybridization factor 2c  of Eq. (15.61) for the N H -

bond MO of aryl amines, the 32C sp  HO of the 2C NH -bond MO has an energy of  3, 2 15.76868 E C sp eV   (Eq. (15.18)) 

corresponding to 2s   in Eqs. (15.18-15.20), and the N  AO has an energy of   14.53414 E N eV  .  To meet the 

equipotential condition of the union of the N H  2H -type-ellipsoidal-MO with the 32C sp  HO, the hybridization factor 2c  

given by Eq. (15.77) is: 

    
 2 3

14.53414 
   0.92171

15.76868 , 2

E N eV
c H to aniline N

eVE C sp


  


 (15.170) 

The bond between the amino and aromatic ring comprises a C N  functional group that is the same as that of 2° amines 
(methylene) except that the energies corresponding to oscillation in the transition state are those of aniline.  The group is solved 
using the same principles as those used to solve the primary and secondary-amine functional groups wherein the 2s  and 2 p  

AOs of each C  hybridize to form a single 32sp  shell as an energy minimum, and the sharing of electrons between the 32C sp  
HO and N  AO to form a MO permits each participating hybridized orbital to decrease in radius and energy.  The hybridization 
is determined in a similar manner to that of the C O  group of phenol.  In anilines, the aromatic 32C sp  HO has a hybridization 

factor of 0.85252  (Eq. (15.162)) with an initial energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)) and the N  AO has an 

energy of   14.53414 E N eV  .  To meet the equipotential condition of the union of the C N  2H -type-ellipsoidal-MO with 

these orbitals, the hybridization factor 2c  of Eq. (15.60) for the C N -bond MO given by Eqs. (15.77) and (15.79) is: 

 

   
   

 

3 3
2 23

2   2
, 2

14.53414 
0.85252

14.63489 
0.84665

E N
c arylC sp HO to N c arylC sp HO

E C sp

eV

eV









 (15.171) 

 3, .TE atom atom msp AO  of the C N -bond MO in Eq. (15.61) due to the charge donation from the C  and N  atoms to the 

MO is 1.13379 eV  (Eq. (14.247)).  It is based on the energy match between the 2NH  group and the 32C sp  HO of the aryl 

group and is twice that of the aryl C H  group that it replaces.  
The symbols of the functional groups of aniline and methyl-substituted anilines are given in Table 15.243.  The 

geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and 
(15.165-15.166)) parameters of aniline and methyl-substituted anilines are given in Tables 15.244, 15.245, and 15.246, 
respectively.  The total energy of each aniline and methyl-substituted aniline given in Table 15.247 was calculated as the sum 
over the integer multiple of each  GroupDE  of Table 15.246 corresponding to functional-group composition of the molecule.  The 

bond angle parameters of aniline and methyl-substituted anilines determined using Eqs. (15.88-15.117) are given in Table 
15.248. The color scale, translucent view of the charge-density of aniline comprising the concentric shells of atoms with the 
outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 

15.42. 
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Figure 15.42.  Color scale, translucent view of the charge-density of aniline showing the orbitals of the atoms at their radii, 
the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
Table 15.243.  The symbols of functional groups of aniline and methyl-substituted anilines. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  (i) 
Aryl C-N C N  (a) 

NH2 group 2NH  

a bC C  ( 3CH  to aromatic bond) C C  (a) 

CH3 group  3 C H CH  
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Table 15.246.   The energy parameters (eV) of functional groups of aniline and methyl-substituted anilines. 
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ARYL NITRO COMPOUNDS 
Aryl nitro compounds have a hydrogen of an aryl group replaced by a nitro corresponding to an 2NO  functional group and a 

C N  functional group.  Examples include nitrobenzene, nitrophenol, and nitroaniline with formulas 6 5 2C H NO , 6 5 3C H NO , and 

6 6 2 2C H N O , respectively.  The aromatic 
3e

C C  and C H  functional groups are equivalent to those of benzene given in the 

Aromatic and Heterocyclic Compounds section.  The OH  and C O  functional groups of nitrophenols are the same as those of 
phenol given in the corresponding section.  The 2NH  and C N  functional groups of nitroanilines are the same as those of 

aniline given in the corresponding section. The differences between the total bond energies of the nitroanilines given in Table 
15.252 are due to differences in the oscE  term.  For simplicity and since the differences are small, the oscE  terms for nitroanilines 

were taken as the same. 
The 2NO  group is the same as that given in the Nitroalkanes section.  The bond between the nitro and aromatic ring 

comprises a C N  functional group that is the same as that of nitroalkanes given in the corresponding section except that 

 3, .TE atom atom msp AO  is 0.72457 eV , one half of that of the C N -bond MO of nitroalkanes and equivalent to that of 

methyl (Eq. (14.151)) in order to maintain the independence and aromaticity of the benzene functional group.  In addition, the 
energy terms due to oscillation in the transition state correspond to those of an aryl nitro compound.  

The symbols of the functional groups of aryl nitro compounds are given in Table 15.249.  The geometrical (Eqs. (15.1-
15.5) and (15.42)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) 
parameters of aryl nitro compounds are given in Tables 15.250, 15.251, and 15.252, respectively.  The total energy of each aryl 
nitro compound given in Table 15.253 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.252 

corresponding to functional-group composition of the molecule.  For each set of unpaired electrons created by bond breakage, 
the 32C sp  HO magnetic energy magE  that is subtracted from the weighted sum of the    ( )GroupDE eV  values based on 

composition is given by Eq. (15.67).  The bond angle parameters of aryl nitro compounds determined using Eqs. (15.88-15.117) 
are given in Table 15.254. The color scale, translucent view of the charge-density of exemplary aryl nitro, nitrobenzene, 
comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with 

one or more hydrogen MOs is shown in Figure 15.43. 
 
Figure 15.43.   Color scale, translucent view of the charge-density of nitrobenzene showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
Table 15.249.   The symbols of functional groups of aryl nitro compounds. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  (i) 
Aryl C-N (aniline) C N  (a) 
Aryl C-N (nitro) C N  (b) 
Aryl C-O C O  (a) 

NO2 group 2NO  

NH2 group 2NH  

OH group OH  
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Table 15.252.   The energy parameters (eV) of functional groups of aryl nitro compounds.  
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BENZOIC ACID COMPOUNDS 
Benzoic acid compounds have a hydrogen of an aryl group replaced by a carboxylic acid group corresponding to an 

( )C C O OH   moiety that comprises C O  and OH  functional groups that are the same as those of carboxylic acids given in 
the corresponding section.  The single bond of aryl carbon to the carbonyl carbon atom, ( )C C O , is also a functional group.  

This group is also equivalent to the same group of carboxylic acids except that  
2

/H MOE AO HO  in Eq. (15.51) and 

 3, .TE atom atom msp AO  in Eq. (15.61) are both 1.29147 eV  which is a linear combination of 
1.13379 

2

eV
, 

 3, .TE atom atom msp AO  of the C H  group that the ( )C C O  group replaces, and that of an independent 32C sp  HO, 

0.72457 eV  (Eq. (14.151)). 
 
Examples include benzoic acid, chlorobenzoic acid, and aniline carboxylic acid with formulas 7 6 2C H O , 7 5 2C H O Cl , and 

7 7 2C H NO , respectively.  The aromatic 
3e

C C  and C H  functional groups are equivalent to those of benzene given in 

Aromatic and Heterocyclic Compounds section.  The 2NH  and C N  functional groups of aniline carboxylic acids are the 

same as those of aniline given in the corresponding section.  The C Cl  functional group of 2-chlorobenzoic acids 
corresponding to meta substitution is equivalent to that of chlorobenzene given in the corresponding section.  The C Cl  
functional group of 3 or 4-chlorobenzoic acids corresponding to ortho and para substitution is also equivalent to that of 
chlorobenzene, except that  3, .TE atom atom msp AO  in Eq. (15.61) is 0.92918 eV  (Eq. (14.513)) for both cases since each 

of these positions can form a resonance structure with the carboxylic acid group which is permissive of greater charge donation 
from the 32C sp  HO.  

The symbols of the functional groups of benzoic acid compounds are given in Table 15.255.  The corresponding 
designations of benzoic acid is shown in Figure 15.44B.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-
15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of benzoic acid compounds are given in 
Tables 15.256, 15.257, and 15.258, respectively.  The total energy of each benzoic acid compound given in Table 15.259 was 
calculated as the sum over the integer multiple of each  GroupDE  of Table 15.258 corresponding to functional-group composition 

of the molecule.  The bond angle parameters of benzoic acid compounds determined using Eqs. (15.88-15.117) are given in 
Table 15.260. The color scale, translucent view of the charge-density of benzoic acid comprising the concentric shells of atoms 
with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in 

Figure 15.44A. 
 
Figure 15.44.   (A) Color scale, translucent view of the charge-density of benzoic acid showing the orbitals of the atoms at 
their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the 

atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).  (B) Chemical structure and atom designation of 
benzoic acid. 
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Table 15.255.   The symbols of functional groups of benzoic acid compounds. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  (i) 
C-C(O) ( )C C O  

C=O (aryl carboxylic acid) C O  
(O)C-O C O  
OH group OH  
Cl C  ( Cl  to aromatic bond of 2-
chlorobenzoic acid) 

C Cl  (i) 

Cl C  ( Cl  to aromatic bond of 3 or 4-
chlorobenzoic acid) 

C Cl  (ii) 

Aryl C-N (aniline) C N  

NH2 group 2NH  

 



Chapter 15 948

 
 

 

T
a

b
le

 1
5

.2
5

6
. 

 T
he

 g
eo

m
et

ri
ca

l b
on

d 
pa

ra
m

et
er

s 
of

 b
en

zo
ic

 a
ci

d 
co

m
po

un
ds

 a
nd

 e
xp

er
im

en
ta

l v
al

ue
s 

[1
].

 



Organic Molecular Functional Groups and Molecules 949

 
 
 

T
a

b
le

 1
5

.2
5

7
. 

 T
he

 M
O

 to
 H

O
 in

te
rc

ep
t g

eo
m

et
ri

ca
l b

on
d 

pa
ra

m
et

er
s 

of
 b

en
zo

ic
 a

ci
d 

co
m

po
un

ds
.  

E
T
 is

 E
T
 (

at
om

 –
 a

to
m

,m
sp

3 .
A

O
).

 



Chapter 15 950

T
a

b
le

 1
5

.2
5

8
. 

 T
he

 e
ne

rg
y 

pa
ra

m
et

er
s 

(e
V

) 
of

 f
un

ct
io

na
l g

ro
up

s 
of

 b
en

zo
ic

 a
ci

d 
co

m
po

un
ds

.  
 

 



Organic Molecular Functional Groups and Molecules 951

T
a

b
le

 1
5

.2
5

9
. 

 T
he

 to
ta

l b
on

d 
en

er
gi

es
 o

f 
be

nz
oi

c 
ac

id
 c

om
po

un
ds

 c
al

cu
la

te
d 

us
in

g 
th

e 
fu

nc
ti

on
al

 g
ro

up
 c

om
po

si
ti

on
 a

nd
 th

e 
en

er
gi

es
 o

f 
T

ab
le

 1
5.

25
8 

co
m

pa
re

d 
to

 th
e 

ex
pe

ri
m

en
ta

l v
al

ue
s 

[3
].

 

T
a

b
le

 1
5

.2
6

0
. 

 T
he

 b
on

d 
an

gl
e 

pa
ra

m
et

er
s 

of
 b

en
zo

ic
 a

ci
d 

co
m

po
un

ds
 a

nd
 e

xp
er

im
en

ta
l v

al
ue

s 
[1

].
  E

T
 is

 E
T
 (

at
om

 –
 a

to
m

,m
sp

3 .
A

O
).

 

 
 
 



Chapter 15 952

ANISOLE 
Anisole has the formula 7 8C H O  and comprises the phenol molecule with the hydroxyl hydrogen atom replaced by the moiety 

3O CH   to form an ether comprising aromatic and methyl functional groups as well as two types of C O  functional groups, 

one for aryl carbon to oxygen and one for methyl carbon to oxygen.  The aromatic 
3e

C C  and C H  functional groups are 
equivalent to those of benzene given in the Aromatic and Heterocyclic Compounds section.  The 3CH  and methyl C O  

functional groups are the same as those of the corresponding ether groups given in the corresponding section. 
The C O  functional group comprising the bond between the ether oxygen and aromatic ring is equivalent to that of the 

methyl ether C O  functional group except that  
2

/H MOE AO HO  in Eq. (15.51) and  3, .TE atom atom msp AO  in Eq. 

(15.61) are both 1.13379 eV  (Eq. (14.247)).   3, .TE atom atom msp AO  is based on the energy match between the 3OCH  

group and the 32C sp  HO of the aryl group and is twice that of the aryl C H  group that it replaces. 
The symbols of the functional groups of anisole are given in Table 15.261.  The geometrical (Eqs. (15.1-15.5) and 

(15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of 
anisole are given in Tables 15.262, 15.263, and 15.264, respectively.  The total energy of anisole given in Table 15.265 was 
calculated as the sum over the integer multiple of each  GroupDE  of Table 15.264 corresponding to functional-group composition 

of the molecule.  The bond angle parameters of anisole determined using Eqs. (15.88-15.117) are given in Table 15.266. The 
color scale, translucent view of the charge-density of anisole comprising the concentric shells of atoms with the outer shell 
bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.45. 
 
Figure 15.45 .   Color scale, translucent view of the charge-density of anisole showing the orbitals of the atoms at their radii, 
the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
Table 15.261.  The symbols of functional groups of anisole. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  (i) 
Aryl C-O C O  (a) 
Methyl C-O C O  (b) 

CH3 group  3 C H CH  
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Table 15.264.   The energy parameters (eV) of functional groups of anisole. 
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PYRROLE 
Pyrrole having the formula 4 5C H N  comprises the conjugated alkene 1,3-butadiene that forms a cyclic structure by terminal-

atom bonding to a NH  functional group.  The two symmetrical carbon-to-nitrogen bonds comprise the C N C   functional 
group.  The 1,3-butadiene moiety comprises C C , C C , and CH  functional groups.  The C C  and C C  groups are 
equivalent to the corresponding groups of 1,3-butadiene given in the Cyclic and Conjugated Alkenes section except that the 
energy terms corresponding to oscillation in the transition state match pyrrole.  Furthermore, the conjugated double bonds have 
the same bonding as in 1,3-butadiene except that the hybridization terms 2c  of the C C  and C C  groups and 2C and 2oC  of 

the C C  group in Eqs. (15.51) and (15.61) become that of benzene given by Eq. (15.162), 

(    3 3
2 22 2 0.85252C benzeneC sp HO c benzeneC sp HO  ), in the cyclic pyrrole MO which has aromatic character.  The 

bonding in pyrrole, furan, and thiophene are the same except for the energy match to the corresponding heteroatoms.  The 
hybridization permits double-bond character in the carbon-heteroatom  bonding.   

The NH  group is solved equivalently to that of a secondary amine as given in the corresponding section except that the 
hybridization term 2c  is that of the amino group of aniline in order provide double-bond character to match the group to the 

other orbitals of the molecule.  Similarly, the CH  functional group is equivalent to that of 1,3-butadiene, except that 

 
2

/ 2.26758 H MOE AO HO eV    (Eq. (14.247)) in Eq. (15.51) in order to provide matching double-bond character. 

The solution of the C N C   functional group comprises the hybridization of the 2s  and 2 p  AOs of each C  to form a 

single 32sp  shell as an energy minimum, and the sharing of electrons between two 32C sp  HOs and the nitrogen atom to form a 
MO permits each participating hybridized orbital to decrease in radius and energy.  Thus, the C N C  -bond MO comprising a 
linear combination of two single bonds is solved in the same manner as a double bond with 1 2n   in Eqs. (15.51) and (15.61).  

The hybridization factor  3
2 2   0.84665c arylC sp HO to N   (Eq. (15.171)) matches the double-bond character of the 32C sp  

HOs to the N  atom of the NH  group, and 2C and 2oC  in Eqs. (15.51) and (15.61) become that of benzene given by Eq. 

(15.162),  3
2 2 0.85252C benzeneC sp HO  .  Furthermore,  

2
/H MOE AO HO  in Eq. (15.51) and  3, .TE atom atom msp AO  in 

Eq. (15.61) are both 0.92918 eV  (Eq. (14.513)) per atom corresponding to 3.71673 eV  in total. This is the maximum energy 
for a single bond and corresponds to methylene character as given in the Continuous-Chain Alkanes section. 
The symbols of the functional groups of pyrrole are given in Table 15.267.  The structure of pyrrole is shown in Figure 15.46B.  
The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) 
parameters of pyrrole are given in Tables 15.268, 15.269, and 15.270, respectively.  The total energy of pyrrole given in Table 
15.271 was calculated as the sum over the integer multiple of each ED(Group) of Table 15.270 corresponding to functional-group 
composition of the molecule.  The bond angle parameters of pyrrole determined using Eqs. (15.88-15.117) are given in Table 
15.272. The color scale, translucent view of the charge-density of pyrrole comprising the concentric shells of atoms with the 
outer shell bridged by one or more H2-type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 
15.46A. 
 
Figure 15.46.   (A) Color scale, translucent view of the charge-density of pyrrole showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale).  (B) Chemical structure and atom designation of pyrrole. 
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Table 15.267.   The symbols of functional groups of pyrrole. 
 

Functional Group Group Symbol

a bC C  double bond C C  

b bC C  C C  

a aC N C   C N C   

NH group NH  
CH CH  
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Table 15.270.  The energy parameters (eV) of functional groups of pyrrole. 
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FURAN 
Furan having the formula 4 4C H O  comprises the conjugated alkene 1,3-butadiene that forms a cyclic structure by terminal-atom 

bonding to an oxygen atom.  The two symmetrical carbon-to-oxygen bonds comprise the C O C   functional group.  The 1,3-
butadiene moiety comprises C C , C C , and CH  functional groups.  The CH , C C , and C C  groups are equivalent to 
the corresponding groups of pyrrole given in the corresponding section. 

The C O C   functional group of furan is solved in a similar manner as that of the C N C   group of pyrrole.  The 
solution of the C O C   functional group comprises the hybridization of the 2s  and 2 p  AOs of each C  to form a single 32sp  

shell as an energy minimum, and the sharing of electrons between two 32C sp  HOs and the oxygen atom to form a MO permits 
each participating hybridized orbital to decrease in radius and energy.  Thus, the C O C  -bond MO comprising a linear 
combination of two single bonds is solved in the same manner as a double bond with 1 2n   in Eqs. (15.51) and (15.61).  The 

hybridization factor  3
2 2   0.79329c arylC sp HO to O   (Eq. (15.169)) matches the double-bond character of the 32C sp  HOs to 

the O  atom, and 2C and 2oC  in Eqs. (15.51) and (15.61) become that of benzene given by Eq. (15.162), 

 3
2 2 0.85252C benzeneC sp HO  .  Furthermore,  3, .TE atom atom msp AO  in Eq. (15.61) is 0.92918 eV  (Eq. (14.513)) per 

atom corresponding to 3.71673 eV  in total.   
The symbols of the functional groups of furan are given in Table 15.273.  The structure of furan is shown in Figure 

15.47B.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and 
(15.17-15.65)) parameters of furan are given in Tables 15.274, 15.275, and 15.276, respectively.  The total energy of furan given 
in Table 15.277 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.276 corresponding to 

functional-group composition of the molecule.  The bond angle parameters of furan determined using Eqs. (15.88-15.117) are 
given in Table 15.278. The color scale, translucent view of the charge-density of furan comprising the concentric shells of atoms 
with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in 

Figure 15.47A. 
 
Figure 15.47.   (A) Color scale, translucent view of the charge-density of furan showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale).  (B) Chemical structure and atom designation of furan. 
 

 
 
 
 
Table 15.273.   The symbols of functional groups of furan. 
 

Functional Group Group Symbol

a bC C  double bond C C  

b bC C  C C  

a aC O C   C O C   

CH CH  
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Table 15.276.   The energy parameters (eV) of functional groups of furan. 
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THIOPHENE 
Thiophene having the formula 4 4C H S  comprises the conjugated alkene 1,3-butadiene that forms a cyclic structure by terminal-

atom bonding to an oxygen atom.  The two symmetrical carbon-to-sulfur bonds comprise the C S C   functional group.  The 
1,3-butadiene moiety comprises C C , C C , and CH  functional groups.  The CH , C C , and C C  groups are equivalent 
to the corresponding groups of pyrrole and furan given in the corresponding sections. 

The C S C   functional group of thiophene is solved in a similar manner as that of the C N C   group of pyrrole and 
the C O C   group of furan.  The solution of the C S C   functional group comprises the hybridization of the 2s  and 2 p  

AOs of each C  to form a single 32sp  shell as an energy minimum, and the sharing of electrons between two 32C sp  HOs and 
the sulfur atom to form a MO permits each participating hybridized orbital to decrease in radius and energy.  Thus, the 
C S C  -bond MO comprising a linear combination of two single bonds is solved in the same manner as a double bond with 

1 2n   in Eqs. (15.51) and (15.61). 

In thiophene, the energy of sulfur is less than the Coulombic energy between the electron and proton of H  given by Eq. 
(1.264).  Thus, 2c  in Eq. (15.61) is  3

2 2 0.85252c benzeneC sp HO   to match the double-bond character of the 32C sp  HOs, and 

the energy matching condition is further determined by the 2C  parameter.  Using the energy of S ,   10.36001 E S eV   in Eq. 

(15.77) and the 32C sp  HO energy of  3, 2 15.76868 E C sp eV   (Eq. (15.18)) corresponding to 2s   in Eqs. (15.18-15.20), 

the hybridization factor 2C  of Eq. (15.61) for the C S C  -bond MO is: 

    
 

3
2 3

,3 10.36001 
3   aryl-type 2 0.65700

15.76868 , 2

E S p eV
C S p to C sp HO

eVE C sp


  


 (15.172) 

1oC  is also given by Eq. (15.172).  Furthermore,  
2

/H MOE AO HO  of the C S C  -bond MO in Eq. (15.51) and 

 3, .TE atom atom msp AO  in Eq. (15.61) are both 0.72457 eV  per atom corresponding to 2.89830 eV  in total.  The energy 

contribution equivalent to that of a methyl group (Eq. (14.151)) and that of the C S -bond MO of thiols given in the 
corresponding section matches the energy of the sulfur atom to the 32C sp  HOs. 

The symbols of the functional groups of thiophene are given in Table 15.279.  The structure of thiophene is shown in 
Figure 15.48B.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) 
and (15.17-15.65)) parameters of thiophene are given in Tables 15.280, 15.281, and 15.282, respectively.  The total energy of 
thiophene given in Table 15.283 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.282 

corresponding to functional-group composition of the molecule.  The bond angle parameters of thiophene determined using Eqs. 
(15.88-15.117) are given in Table 15.284. The color scale, translucent view of the charge-density of thiophene comprising the 
concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs is shown in Figure 15.48A. 
 
Figure 15.48.  (A) Color scale, translucent view of the charge-density of thiophene showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale).  (B)  Chemical structure and atom designation of 
thiophene. 
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Table 15.279.   The symbols of functional groups of thiophene. 
 

Functional Group Group Symbol

a bC C  double bond C C  

b bC C  C C  

a aC S C   C S C   

CH CH  
 
Table 15.280.   The geometrical bond parameters of thiophene and experimental values [1]. 
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 Table 15.282.  The energy parameters (eV) of functional groups of thiophene. 
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IMIDAZOLE 
Imidazole having the formula 3 4 2C H N  comprises a conjugated system that is equivalent to pyrrole with one of the conjugated 

CH  groups replaced by a nitrogen atom.  The CH , NH , and C C  groups are equivalent to the corresponding groups of 
pyrrole, furan, and thiophene where present.  In addition, the nitrogen substitution creates a C N C   moiety comprising 
C N  and N C  functional groups.  The C N  bonding is the same as that of a tertiary amine except that the hybridization 

term 2c  in Eqs. (15.51) and (15.61) is that of the amino group of aniline,  3
2 2   0.84665c arylC sp HO to N   (Eq. (15.171)).  The 

hybridization factor provides double-bond character to match the group to the other orbitals of the molecule.   
2

/H MOE AO HO  

in Eq. (15.51) and  3, .TE atom atom msp AO  in Eq. (15.61) are both 0.92918 eV  (Eq. (14.513)).  This matches the energy of 

the group to that of the contiguous N C  group wherein  
2

/H MOE AO HO  in Eq. (15.51) and  3, .TE atom atom msp AO  in 

Eq. (15.61) are both 0.92918 eV  (Eq. (14.513)) per atom of the double bond with aromatic character as in the case of the prior 
heterocyclic compounds.  As in the prior cases of pyrrole, furan, and thiophene, 1 2n   and 2C and 2oC  are the same as 

 3
2 2 0.85252C benzeneC sp HO   (Eq. (15.162)) in Eqs. (15.51) and (15.61).  To match the energy of the nitrogen to the 32C sp  

HO, 2c  of the N C -bond MO is also given by Eq. (15.171).  These parameters also provide an energy match to the C N C   

group. 
As in the case of pyrrole, the C N C  -bond MO comprising a linear combination of two single bonds is solved in the 

same manner as a double bond with 1 2n   in Eqs. (15.51) and (15.61).  The hybridization factor 

 3
2 2   0.84665c arylC sp HO to N   (Eq. (15.171)) matches the double-bond character of the 32C sp  HOs to the N  atom of the 

NH  group, and 2C  and 2oC  in Eqs. (15.51) and (15.61) become that of benzene given by Eq. (15.162), 

 3
2 2 0.85252C benzeneC sp HO  .  Furthermore,  

2
/H MOE AO HO  in Eq. (15.51) and  3, .TE atom atom msp AO  in Eq. 

(15.61) are both 0.92918 eV  (Eq. (14.513)) per atom corresponding to 3.71673 eV  in total. 
The symbols of the functional groups of imidazole are given in Table 15.285.  The structure of imidazole is shown in 

Figure 15.49B.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) 
and (15.17-15.65)) parameters of imidazole are given in Tables 15.286, 15.287, and 15.288, respectively.  The total energy of 
imidazole given in Table 15.289 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.288 

corresponding to functional-group composition of the molecule.  The bond angle parameters of imidazole determined using Eqs. 
(15.88-15.117) are given in Table 15.290. The color scale, translucent view of the charge-density of imidazole, comprising the 
concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs is shown in Figure 15.49A. 
 
Figure 15.49.   (A) Color scale, translucent view of the charge-density of imidazole showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale).  (B) Chemical structure and atom designation of 
imidizole. 
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Table 15.285.   The symbols of functional groups of imidazole. 
 

Functional Group Group Symbol

a bC C  double bond C C  

b cN C  double bond N C  

b bC N  C N  

a a cC N C   C N C   

aN H  group NH  

CH CH  
 

 
Table 15.286.   The geometrical bond parameters of imidazole and experimental values [1]. 
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PYRIDINE 
Pyridine has the formula 5 5C H N  and comprises the benzene molecule with one CH  group replaced by a nitrogen atom which 

gives rise to a 
3e

C N  functional group.  The aromatic 
3e

C C  and C H  functional groups are equivalent to those of benzene 
given in the Aromatic and Heterocyclic Compounds section with the aromaticity maintained by the electrons from nitrogen in 

the 
3e

C N  group, which is also aromatic. 
As in the case of the aromatic carbons of benzene, each pyridine 32C sp  HO initially has four unpaired electrons.  Each 

C H  bond has two paired electrons with one donated from the H  AO and the other from the 32C sp  HO.  In pyridine the three 

2N p  electrons are donated to the aromatic bond.  Thus, as in the case of the 
3e

C C  group, each 
3e

C N  bond comprises a linear 

combination of a factor of 0.75 of four paired electrons (three electrons) from the 32C sp  HO and the 2N p  AO of the 
participating carbon and nitrogen atoms, respectively. 

The solution of the 
3e

C N  functional group comprises the hybridization of the 2s  and 2 p  AOs of each C  to form a 

single 32sp  shell as an energy minimum, and the sharing of electrons between the 32C sp  HO and the nitrogen atom to form a 

MO permits each participating hybridized orbital to decrease in radius and energy.  The 
3e

C N -bond MO is solved as a double 

bond with 1 2n   in Eqs. (15.51) and (15.166).  The hybridization factor  3
2 2   0.91140c C sp HO to N   (Eq. (15.135)) matches 

the double-bond character of the 32C sp  HO to the N  atom, and 2C  and 2oC  in Eqs. (15.51) and (15.166) are also given by Eq. 

(15.135) in order to match the nitrogen to the aromatic 32C sp  HO such that  
2

/ 0H MOE AO HO   in Eq. (15.51).  Furthermore, 

 3, .TE atom atom msp AO  of the 
3e

C N -bond MO in Eq. (15.166) due to the charge donation from the C and N  atoms to the 

MO is 1.44915 eV  corresponding to an energy contribution from each atom that is equivalent to that of an independent methyl 
group, 0.72457 eV  (Eq. (14.151)).  The contributions are also the same as those for a primary amine group as given in the 
corresponding section.  As in the case of benzene, the aromatic  GroupTE  and  GroupDE  are given by Eqs. (15.165) and (15.166), 

respectively, with 1 0.75f  .  The breakage of the CNC  bonds results in three unpaired electrons on the N  atom.  Thus, the 

corresponding magE  given by Eq. (15.69) was normalized for the two bonds per atom and for 1 0.75f   and was subtracted from 

the total energy of the 
3e

C N -bond MO in Eq. (15.166).  The pyridine vibrational energies are similar to those of benzene [63]; 
thus, the value for benzene was used. 

The symbols of the functional groups of pyridine are given in Table 15.291.  The corresponding designation of the 
structure is shown in Figure 15.50B.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy 
(Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of pyridine are given in Tables 15.292, 15.293, and 15.294, 
respectively.  The total energy of pyridine given in Table 15.295 was calculated as the sum over the integer multiple of each 

 GroupDE  of Table 15.294 corresponding to functional-group composition of the molecule.  The bond angle parameters of 

pyridine determined using Eqs. (15.88-15.117) are given in Table 15.296. The color scale, translucent view of the charge-density 
of pyridine comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or 

joined with one or more hydrogen MOs is shown in Figure 15.50A. 
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Figure 15.50.   (A) Color scale, translucent view of the charge-density of pyridine showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale). (B) Chemical structure and atom designation of pyridine. 
 

 
 
 
Table 15.291.   The symbols of functional groups of pyridine. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  

3e

aC N  
3e

C N  
 

Table 15.292.   The geometrical bond parameters of pyridine and experimental values [1]. 
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Table 15.294.   The energy parameters (eV) of functional groups of pyridine. 
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PYRIMIDINE 
Pyrimidine has the formula 4 4 2C H N  and comprises the pyridine molecule with one additional CH  group replaced by a nitrogen 

atom, which gives rise to a second 
3e

C N  functional group that is equivalent to that of pyridine given in the corresponding 

section.  The aromatic 
3e

C C  and C H  functional groups are also equivalent to those of pyridine and benzene given in the 

Aromatic and Heterocyclic Compounds section with the aromaticity maintained by the electrons from nitrogen in the 
3e

C N  
group which is also aromatic. 

The symbols of the functional groups of pyrimidine are given in Table 15.297.  The corresponding designation of the 
structure is shown in Figure 15.51B.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy 
(Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of pyrimidine are given in Tables 15.298, 15.299, and 
15.300, respectively.  The total energy of pyrimidine given in Table 15.301 was calculated as the sum over the integer multiple 
of each  GroupDE  of Table 15.300 corresponding to functional-group composition of the molecule.  The bond angle parameters of 

pyrimidine determined using Eqs. (15.88-15.117) are given in Table 15.302. The color scale, translucent view of the charge-
density of pyrimidine comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal 

MOs or joined with one or more hydrogen MOs is shown in Figure 15.51A. 
 

Figure 15.51.  (A) Color scale, translucent view of the charge-density of pyrimidine showing the orbitals of the 
atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell 

of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).  (B) Chemical structure and atom 
designation of pyrimidine. 
 

 
 
Table 15.297 .   The symbols of functional groups of pyrimidine. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  

3

, ,

e

a b dC N  
3e

C N  
 
Table 15.298.   The geometrical bond parameters of pyrimidine and experimental values [1]. 



Organic Molecular Functional Groups and Molecules 

 

981

 
 
T

a
b

le
 1

5
.2

9
9

. 
 T

he
 M

O
 to

 H
O

 in
te

rc
ep

t g
eo

m
et

ri
ca

l b
on

d 
pa

ra
m

et
er

s 
of

 p
yr

im
id

in
e.

  E
T
 is

 E
T
 (

at
om

 –
 a

to
m

,m
sp

3 .
A

O
).

 



Chapter 15 
 

 

982 

Table 15.300.   The energy parameters (eV) of functional groups of pyrimidine. 
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PYRAZINE 
Pyrazine has the formula 4 4 2C H N  and comprises the pyrimidine molecule with para rather than ortho aromatic nitrogen atoms.  

The 
3e

C N  functional group is equivalent to that of pyrimidine and pyridine given in the corresponding sections.  The aromatic 
3e

C C  and C H  functional groups are also equivalent to those of pyrimidine, pyridine, and benzene given in the Aromatic and 

Heterocyclic Compounds section with the aromaticity maintained by the electrons from nitrogen in the 
3e

C N  group, which is 
also aromatic. 

The symbols of the functional groups of pyrazine are given in Table 15.303.  The corresponding designation of the 
structure is shown in Figure 15.52B.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy 
(Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of pyrazine are given in Tables 15.304, 15.305, and 15.306, 
respectively.  The total energy of pyrazine given in Table 15.307 was calculated as the sum over the integer multiple of each 

 GroupDE  of Table 15.306 corresponding to functional-group composition of the molecule.  The bond angle parameters of 

pyrazine determined using Eqs. (15.88-15.117) are given in Table 15.308. The color scale, translucent view of the charge-density 
of pyrazine comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or 

joined with one or more hydrogen MOs is shown in Figure 15.52A. 
 
Figure 15.52.   (A) Color scale, translucent view of the charge-density of pyrazine showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale).  (B) Chemical structure and atom designation of pyrazine. 
 

 
 
 
Table 15.303.   The symbols of functional groups of pyrazine. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  

3e

aC N  
3e

C N  
 
Table 15.304.   The geometrical bond parameters of pyrazine and experimental values [1]. 
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Table 15.306.   The energy parameters (eV) of functional groups of pyrazine. 
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QUINOLINE 
Quinoline has the formula 9 7C H N  and comprises the naphthalene molecule with one CH  group replaced by a nitrogen atom 

which gives rise to a 
3e

C N  functional group.  The aromatic 
3e

C C  and C H  functional groups are equivalent to those of 

naphthalene given in the corresponding section with the aromaticity maintained by the electrons from nitrogen in the 
3e

C N  
group, which is also aromatic.  The C C  functional group is also equivalent to that of naphthalene.  The bonding in quinoline 

can be further considered as a linear combination of the naphthalene and pyridine groups wherein the 
3e

C N  group is equivalent 
to that of pyridine, pyrimidine, and pyrazine as given in the corresponding sections. 

The symbols of the functional groups of quinoline are given in Table 15.309.  The corresponding designation of the 
structure is shown in Figure 15.53B.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy 
(Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of quinoline are given in Tables 15.310, 15.311, and 15.312, 
respectively.  The total energy of quinoline given in Table 15.313 was calculated as the sum over the integer multiple of each 

 GroupDE  of Table 15.312 corresponding to functional-group composition of the molecule.  The bond angle parameters of 

quinoline determined using Eqs. (15.88-15.117) are given in Table 15.314. The color scale, translucent view of the charge-
density of quinoline comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal 

MOs or joined with one or more hydrogen MOs is shown in Figure 15.53A. 
 
Figure 15.53.   (A) Color scale, translucent view of the charge-density of quinoline showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale).  (B) Chemical structure and atom designation of 
quinoline. 
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Table 15.309.   The symbols of functional groups of quinoline. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  

b bC C  (bridging bond) C C  
3

,

e

a dC N  
3e

C N  
 
 

Table 15.310.   The geometrical bond parameters of quinoline and experimental values [1]. 
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Table 15.312.   The energy parameters (eV) of functional groups of quinoline. 
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ISOQUINOLINE 
Isoquinoline has the formula 9 7C H N  and comprises the naphthalene molecule with one CH  group replaced by a nitrogen atom 

which gives rise to a 
3e

C N  functional group.  Isoquinoline is also equivalent to quinoline with the nitrogen in the meta rather 

than the ortho position relative to the benzene ring of the molecule.  The aromatic 
3e

C C  and C H  functional groups are 
equivalent to those of naphthalene given in the corresponding section with the aromaticity maintained by the electrons from 

nitrogen in the 
3e

C N  group which is also aromatic.  The C C  functional group is also equivalent to that of naphthalene.  The 
bonding in isoquinoline can be further considered as a linear combination of the naphthalene and pyridine groups wherein the 

3e

C N  group is equivalent to that of pyridine, pyrimidine, pyrazine, and quinoline as given in the corresponding sections.  
The symbols of the functional groups of isoquinoline are given in Table 15.315.  The corresponding designation of the 

structure is shown in Figure 15.54B.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy 
(Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of isoquinoline are given in Tables 15.316, 15.317, and 
15.318, respectively.  The total energy of isoquinoline given in Table 15.319 was calculated as the sum over the integer multiple 
of each  GroupDE  of Table 15.318 corresponding to functional-group composition of the molecule.  The bond angle parameters of 

isoquinoline determined using Eqs. (15.88-15.117) are given in Table 15.320. The color scale, translucent view of the charge-
density of isoquinoline comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type 

ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.54A. 
 
Figure 15.54.   (A) Color scale, translucent view of the charge-density of isoquinoline showing the orbitals of the atoms at 
their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the 

atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale).  (B) Chemical structure and atom designation of 
isoquinoline. 
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Table 15.315.   The symbols of functional groups of isoquinoline. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  

b bC C  (bridging bond) C C  
3

,

e

a dC N  
3e

C N  
 

Table 15.316.   The geometrical bond parameters of isoquinoline and experimental values [1]. 
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Table 15.318.   The energy parameters (eV) of functional groups of isoquinoline. 
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INDOLE 
Indole having the formula 8 7C H N  comprises a phenyl moiety with a conjugated five-membered ring which comprises pyrrole 

except that one of the double bonds is part of the aromatic ring.  The structure is shown in Figure 15.55B.  The aromatic 
3e

C C  
and C H  functional groups of the phenyl moiety are equivalent to those of benzene given in the Aromatic and Heterocyclic 
Compounds section.  The CH , NH , and d eC C  groups of the pyrrole-type ring are equivalent to the corresponding groups of 

pyrrole, furan, and thiophene where present as given in the corresponding sections.  The b dC C  single bond of aryl carbon to 

the d eC C  bond is also a functional group.  This group is equivalent to the ( )C C O  group of benzoic acids with regard to 

 
2

/H MOE AO HO  in Eq. (15.51) and  3, .TE atom atom msp AO  in Eq. (15.61) both being 1.29147 eV .  This energy is a 

linear combination of 
1.13379 

2

eV
,  3, .TE atom atom msp AO  of the C H  group that the b dC C  and ( )C C O  groups 

replace, and that of an independent 32C sp  HO, 0.72457 eV  (Eq. (14.151)).  However, as in the case of pyrrole, the indole 

hybridization term 2c  is the aromatic  3
2 2 0.85252c benzeneC sp HO   to match the aryl 32C sp  HO, and the energy terms 

corresponding to oscillation in the transition state correspond to indole. 
As in the case of pyrrole, the C N C  -bond MO comprising a linear combination of two single bonds is solved in the 

same manner as a double bond with 1 2n   in Eqs. (15.51) and (15.61).  The hybridization factor 

 3
2 2   0.84665c arylC sp HO to N   (Eq. (15.171)) matches the aromatic character of the 32C sp  HOs to the N  atom of the NH  

group, and 2C  and 2oC  in Eqs. (15.51) and (15.61) become that of benzene given by Eq. (15.162), 

 3
2 2 0.85252C benzeneC sp HO  .  Furthermore,  

2
/H MOE AO HO  in Eq. (15.51) and  3, .TE atom atom msp AO  in Eq. 

(15.61) are both 2.42526 eV  which is a linear combination of 
1.13379 

2

eV
,  3, .TE atom atom msp AO  of the C H  group 

that the cC N  bond replaces, and 1.85836 eV  (Eq. (14.513)) which is equivalent to the corresponding component of the 

C N C  -bond of pyrrole. 
The symbols of the functional groups of indole are given in Table 15.321.  The geometrical (Eqs. (15.1-15.5) and 

(15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of indole are given in 
Tables 15.322, 15.323, and 15.324, respectively.  The total energy of indole given in Table 15.325 was calculated as the sum 
over the integer multiple of each  GroupDE  of Table 15.324 corresponding to functional-group composition of the molecule.  The 

bond angle parameters of indole determined using Eqs. (15.88-15.117) are given in Table 15.326. The color scale, translucent 
view of the charge-density of indole comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -

type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.55A. 
 
Figure 15.55.   (A) Color scale, translucent view of the charge-density of indole showing the orbitals of the atoms at their 
radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale).  (B) Chemical structure and atom designation of indole. 
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Table 15.321.   The symbols of functional groups of indole. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  (i) 

d eC C  double bond C C  

b dC C  C C  

CH CH  (ii) 

c eC N C   C N C   

NH group NH  
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ADENINE 
Adenine having the formula 5 5 5C H N  comprises a pyrimidine moiety with an aniline-type moiety and a conjugated five-

membered ring, which comprises imidazole except that one of the double bonds is part of the aromatic ring.  The structure is 

shown in Figure 15.56B.  The aromatic 
3e

C C , C H , and 
3e

C N  functional groups of the pyrimidine moiety are equivalent to 
those of pyrimidine as given in the corresponding section.  The CH , NH , d eC N , and e eN C  groups of the imidazole-type 

ring are equivalent to the corresponding groups of imidazole as given in the corresponding section.  The C N C   functional 
group of the imidazole-type ring is equivalent to the corresponding group of indole having the same structure with the 
C N C   group bonding to aryl and alkenyl groups.  The 2NH  and a aC N  functional groups of the aniline-type moiety are 

equivalent to those of aniline as given in the corresponding section except that  
2

/H MOE AO HO  of the a aC N  group is equal 

to twice  3, .TE atom atom msp AO , and  to meet the equipotential condition of the union of the C N  2H -type-ellipsoidal-

MO with these orbitals, the hybridization factor 2c  of Eq. (15.60) for the C N -bond MO given by Eqs. (15.77), (15.79), and 

(15.162) is: 

    
     3 3

2 23

14.53414 
2   2 0.85252 0.77638

15.95955 , 2

E N eV
c arylC sp HO to N c arylC sp HO

eVE C sp


  


 (15.173) 

The symbols of the functional groups of adenine are given in Table 15.327.  The geometrical (Eqs. (15.1-15.5) and 
(15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of adenine are given in 
Tables 15.328, 15.329, and 15.330, respectively.  The total energy of adenine given in Table 15.331 was calculated as the sum 
over the integer multiple of each  GroupDE  of Table 15.330 corresponding to functional-group composition of the molecule.  The 

bond angle parameters of adenine determined using Eqs. (15.88-15.117) are given in Table 15.332. The color scale, charge-
density of adenine comprising atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or 

more hydrogen MOs is shown in Figure 15.56A. 
 

Figure 15.56.  (A) Color scale, charge-density of adenine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure and atomic designation of adenine. 
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Table 15.327.   The symbols of functional groups of adenine. 
 

Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  (i) 

3

,

e

b c cC N       
3

,

e

a b bC N  
3e

C N  

a aC N  C N  (a) 

NH2 group 2NH  

e eN C  double bond N C  

d eC N  C N  (b) 

dN H  group NH  

CH CH  (ii) 

c d eC N C   C N C   
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THYMINE 
Thymine having the formula 5 6 2 2C H N O  is a pyrimidine with carbonyl substitutions at positions aC  and bC  and a methyl 

substitution at position dC  further comprising a vinyl group as shown in Figure 15.57B.  Each C O , adjacent C N , and NH  

functional group is equivalent to the corresponding group of alkyl amides.  The methyl-vinyl moiety is equivalent to the 3CH , 

( )C C C  , CH , and C C  functional groups of alkenes.  Thymine further comprises bN H  and b c cC N C   groups that are 

equivalent to the corresponding groups of imidazole as given in the corresponding section.  The a dC C  bond comprises another 

functional group that is equivalent to the a dC C  group of guanine. 

The symbols of the functional groups of thymine are given in Table 15.333.  The geometrical (Eqs. (15.1-15.5) and 
(15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of thymine are given in 
Tables 15.334, 15.335, and 15.336, respectively.  The total energy of thymine given in Table 15.337 was calculated as the sum 
over the integer multiple of each  GroupDE  of Table 15.336 corresponding to functional-group composition of the molecule.  The 

bond angle parameters of thymine determined using Eqs. (15.88-15.117) are given in Table 15.338. The color scale, charge-
density of thymine comprising atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or 

more hydrogen MOs is shown in Figure 15.57A. 
 
Figure 15.57.  (A) Color scale, charge-density of thymine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure and atom designation of thyamine. 
 

 
 
Table 15.333.   The symbols of functional groups of thymine. 
 

Functional Group Group Symbol

aC O       bC O   (alkyl amide) C O  

a bC N       b bC N  amide C N  

bN H  amide group NH  (i) 

CH3 group  3 C H CH  

c dC C  double bond C C  

d eC C  C C  (i) 

a dC C  C C  (ii) 

b c cC N C   C N C   

cN H  group NH  (ii) 

cC H  CH  
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GUANINE 
Guanine having the formula 5 5 5C H N O  is a purine with a carbonyl substitution at position aC , and a primary amine moiety is at 

position bC  as shown in Figure 15.58B.  The carbonyl functional group is equivalent to that of alkyl amides and the 2NH  and 

b aC N  functional groups of the primary amine moiety are equivalent to the 2NH  and a aC N  functional groups of adenine.  

Guanine further comprises an imidazole moiety wherein the CH , dN H , d cC C , d eC N , e eN C , and c d eC N C   groups 

of the imidazole-type ring are equivalent to the corresponding groups of imidazole as given in the corresponding section.  The 
six-membered ring also comprises the groups a b bC N C  , bN H , c cN C , and c dC N  that are equivalent to the 

corresponding imidazole and adenine functional groups.  The a dC C  bond comprises another functional group that is the 60C -

single-bond functional group except that  3, . 0TE atom atom msp AO   in order to match the energies of the single and double-

bonded moieties within the molecule. 
The symbols of the functional groups of guanine are given in Table 15.339.  The geometrical (Eqs. (15.1-15.5) and 

(15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of guanine are given in 
Tables 15.340, 15.341, and 15.342, respectively.  The total energy of guanine given in Table 15.343 was calculated as the sum 
over the integer multiple of each  GroupDE  of Table 15.342 corresponding to functional-group composition of the molecule.  The 

bond angle parameters of guanine determined using Eqs. (15.88-15.117) are given in Table 15.344. The color scale, charge-
density of guanine comprising atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or 

more hydrogen MOs is shown in Figure 15.58A. 
 

Figure 15.58.  (A) Color scale, charge-density of guanine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure and atomic designation of guanine. 
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Table 15.339.   The symbols of functional groups of guanine. 
 

Functional Group Group Symbol

aC O  (alkyl amide) C O  

b aC N  C N  (a) 

NH2 group 2NH  

c dC C  double bond C C  

a dC C  C C  

e eN C       c bN C  double bond N C  

d eC N       c cC N  C N  (b) 

c d eC N C        a b bC N C   C N C   

dN H       bN H  group NH  

eC H  CH  
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CYTOSINE 
Cytosine having the formula 4 5 3C H N O  is a pyrimidine with a carbonyl substitution at position bC , and a primary amine moiety 

is at position aC  as shown in Figure 15.59B.  The carbonyl and adjacent b bC N  functional groups are equivalent to the 

corresponding groups of alkyl amides.  The 2NH  and a aC N  functional groups of the primary amine moiety are equivalent to 

the 2NH  and a aC N  functional groups of adenine.  The vinyl moiety, c dHC C H , comprises C C  and CH  functional 

groups that are equivalent to the corresponding alkene groups.  Cytosine further comprises b aN C , cN H , and b c cC N C   

groups that are equivalent to the corresponding groups of imidazole as given in the corresponding section.  The a dC C  bond 

comprises another functional group that is equivalent to the a dC C  group of guanine and thymine except that 

 3, .TE atom atom msp AO  is equivalent to the contribution of a 32C sp  HO of an alkane, 0.92918 eV  (Eq. (14.513)), in order 

to match the energies of the single and double-bonded moieties within the molecule. 
The symbols of the functional groups of cytosine are given in Table 15.345.  The geometrical (Eqs. (15.1-15.5) and 

(15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of cytosine are given in 
Tables 15.346, 15.347, and 15.348, respectively.  The total energy of cytosine given in Table 15.349 was calculated as the sum 
over the integer multiple of each  GroupDE  of Table 15.348 corresponding to functional-group composition of the molecule.  The 

bond angle parameters of cytosine determined using Eqs. (15.88-15.117) are given in Table 15.350. The color scale, charge-
density of cytosine comprising atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or 

more hydrogen MOs is shown in Figure 15.59A. 
 

Figure 15.59.  (A) Color scale, charge-density of cytosine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure and atomic designation of cytosine. 
 

 
Table 15.345.   The symbols of functional groups of cytosine. 

Functional Group Group Symbol

a aC N  C N  (a) 

NH2 group 2NH  

b aN C  double bond N C  

bC O   (alkyl amide) C O  

b bC N  amide C N  (b) 

c dC C  double bond C C  

cC H       dC H  CH  

a dC C  C C  

b c cC N C   C N C   

cN H  group NH  
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ALKYL PHOSPHINES (  2 1 3
,   1,2,3,4,5...n nC H P n   ) 

The alkyl phosphines,  2 1 3n nC H P , comprise a P C  functional group.  The alkyl portion of the alkyl phosphine may 

comprise at least two terminal methyl groups ( 3CH ) at each end of each chain, and may comprise methylene ( 2CH ), and 

methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional 
groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond 
is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl 

(  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional 

groups.  The branched-chain-alkane groups in alkyl phosphines are equivalent to those in branched-chain alkanes.  The P C  
group may further join the 33P sp  HO to an aryl HO. 

As in the case of carbon, the bonding in the phosphorous atom involves 3sp  hybridized orbitals formed, in this case, 

from the 3p  and 3s  electrons of the outer shells with five 33P sp  HOs rather than four 32C sp  HOs.  The P C  bond forms 

between 33P sp  and 32C sp  HOs to yield phosphines.  The semimajor axis a  of the P C  functional group is solved using Eq. 
(15.51).  Using the semimajor axis and the relationships between the prolate spheroidal axes, the geometric and energy 
parameters of the MO are calculated using Eqs. (15.1-15.117) in the same manner as the organic functional groups given in 
Organic Molecular Functional Groups and Molecules section.  

The energy of phosphorous is less than the Coulombic energy between the electron and proton of H  given by Eq. 
(1.264).  A minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the 
Hydroxyl Radical (OH ) section with hybridization of the phosphorous atom such that in Eqs. (15.51) and (15.61), the sum of 
the energies of the 2H -type ellipsoidal MOs is matched to that of the 33P sp  shell as in the case of the corresponding carbon and 

silicon molecules.   
The P  electron configuration is 2 3[ ]3 3Ne s p  corresponding to the ground state 4

3/ 2S , and the 33sp  hybridized orbital 

arrangement after Eq. (13.422) is: 
 

 

3              3sp  state

                       

 0,0       1,-1      1,0        1,1

     (15.174) 

 
where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the five 

electrons.  The sum  3,3TE P sp  of experimental energies [38] of P , P , 2P  , 3P  , and 4P   is: 

  3,3 65.0251 51.4439 30.2027 19.7695 10.48669 

176.92789 

TE P sp eV eV eV eV eV

eV

    


 

 (15.175) 
By considering that the central field decreases by an integer for each successive electron of the shell, the radius 33sp

r  of the 

33P sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 214

03
10 0 0

( ) 15
1.15350

8 176.92789 8 176.92789 sp
n

Z n e e
r a

e eV e eV 


    (15.176) 

where 15Z   for phosphorous.  Using Eq. (15.14), the Coulombic energy  3,3CoulombE P sp  of the outer electron of the 33P sp  

shell is: 

  
3

2 2
3

0 0 03

,3 11.79519 
8 8 1.15350Coulomb

sp

e e
E P sp eV

r a 
 

     (15.177) 

During hybridization, the spin-paired 3s  electrons are promoted to the 33P sp  shell as paired electrons at the radius 33sp
r  of the 

33P sp  shell.  The energy for the promotion is the difference in the magnetic energy given by Eq. (15.15) at the initial radius of 

the 3s  electrons and the final radius of the 33P sp  electrons.  From Eq. (10.255) with 15Z  , the radius 12r  of 3P s  shell is 

 12 01.09443r a  (15.178) 

Using Eqs. (15.15) and (15.178), the unpairing energy is: 

 
       

3

2 2
20

3 3 3 32

12 0 0
3

2 1 1 1 1
( ) 8 0.01273 

1.09443 1.15350
o B

e
sp

e
E magnetic eV

m r a ar

  
                


 (15.179) 



Chapter 15 
 

1022 

Using Eqs. (15.177) and (15.179), the energy  3,3E P sp  of the outer electron of the 33P sp  shell is: 

  
   3

3

2 22
3 0

3 32
0 123

3

2 1 1
,3 11.79519 0.01273 11.78246 

8 esp
sp

ee
E P sp eV eV eV

r m r r




 
          

 
 


 (15.180) 

For the P C  functional group, hybridization of the 2s  and 2 p  AOs of each C  and the 3s  and 3p  AOs of each P  to 

form single 32sp  and 33sp  shells, respectively, forms an energy minimum, and the sharing of electrons between the 32C sp  and 
33P sp  HOs to form a MO permits each participating orbital to decrease in radius and energy.  In branched-chain alkyl 

phosphines, the energy of phosphorous is less than the Coulombic energy between the electron and proton of H  given by Eq. 
(1.264).  Thus, 2c  in Eq. (15.61) is one, and the energy matching condition is determined by the 2C  parameter.  Then, the 32C sp  

HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the 33P sp  HO has an energy of 

 3,3 11.78246 E P sp eV   (Eq. (15.180)).  To meet the equipotential condition of the union of the P C  2H -type-ellipsoidal-

MO with these orbitals, the hybridization factor 2C  of Eq. (15.61) for the P C -bond MO given by Eqs. (15.77), (15.79), and 

(13.430) is: 

    
     

3

3 3 3
2 23

,3 11.78246 
2   3 2 0.91771 0.73885

14.63489 , 2

E P sp eV
C C sp HO to P sp HO c C sp HO

eVE C sp


  


 (15.181) 

The energy of the P C -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in Eq. (15.51) 

with    3/ ,3E AO HO E P sp  given by Eq. (15.180), and  3, .TE atom atom msp AO  is one half 0.72457 eV  given by Eq. 

(14.151) in order to match the energies of the carbon and phosphorous HOs. 
The symbols of the functional groups of branched-chain alkyl phosphines are given in Table 15.351.  The geometrical 

(Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of 
alkyl phosphines are given in Tables 15.352, 15.353, and 15.354, respectively.  The total energy of each alkyl phosphine given in 
Table 15.355 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.354 corresponding to functional-

group composition of the molecule.  The bond angle parameters of alkyl phosphines determined using Eqs. (15.88-15.117) are 
given in Table 15.356.  The color scale, charge-density of exemplary alkyl phosphine, triphenylphosphine, comprising atoms 
with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in 

Figure 15.60. 
 
Figure 15.60.  Color scale, charge-density of triphenylphosphine showing the orbitals of the atoms at their radii, the 
ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei.  (A) Top view.  (B) Side view. 
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Table 15.351.   The symbols of functional groups of alkyl phosphines. 
 

Functional Group Group Symbol
P-C P C  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  (i) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  (ii) 
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ALKYL PHOSPHITES (  2 1 3
,   1,2,3,4,5...n nC H O P n  ) 

The alkyl phosphites,  2 1 3n nC H O P , comprise P O  and C O  functional groups.  The alkyl portion of the alkyl phosphite 

may comprise at least two terminal methyl groups ( 3CH ) at each end of each chain, and may comprise methylene ( 2CH ), and 

methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional 
groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond 
is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl 

(  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional 

groups.  The branched-chain-alkane groups in alkyl phosphites are equivalent to those in branched-chain alkanes.   
The ether portion comprises two types of C O  functional groups, one for methyl or t-butyl groups corresponding to the 

C , and the other for general alkyl groups that are equivalent to those in the Ethers section.  The P O  bond forms between the 
33P sp  HO and an 2O p  AO to yield phosphites.  The semimajor axis a  of the P O  functional group is solved using Eq. 

(15.51).  Using the semimajor axis and the relationships between the prolate spheroidal axes, the geometric and energy 
parameters of the MO are calculated using Eqs. (15.1-15.117) in the same manner as the organic functional groups given in 
Organic Molecular Functional Groups and Molecules section.  

For the P O  functional group, hybridization the 3s  and 3p  AOs of each  to form a single 33sp  shell forms an energy 

minimum, and the sharing of electrons between the 2O p  AOs and 33P sp  HOs to form a MO permits each participating orbital 

to decrease in radius and energy.  The O  AO has an energy of   13.61805 E O eV  , and the 33P sp  HO has an energy of 

 3,3 11.78246 E P sp eV   (Eq. (15.180)).  In branched-chain alkyl phosphites, the energy matching condition is determined 

by the 2c  and 2C  parameters of Eq. (15.51) given by Eqs. (15.77), (15.79), and (13.430). 

    
     

3

3 3
2 2 2

,3 11.78246 
  2   3 2 0.91771 0.79401

,2 13.61805 

E P sp eV
c and C O pAO to P sp HO c C sp HO

E O p eV


  


 (15.182) 

The energy of the P O -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in Eq. (15.51) 

with  /E AO HO  being  3,3E P sp  given by Eq. (23.180), and  3, .TE atom atom msp AO  is equivalent to that of single bond, 

1.44914 eV , given by twice Eq. (14.151) in order to match the energies of the oxygen AO with the phosphorous and carbon 
HOs. 

The symbols of the functional groups of branched-chain alkyl phosphites are given in Table 15.357.  The geometrical 
(Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of 
alkyl phosphites are given in Tables 15.358, 15.359, and 15.360, respectively.  The total energy of each alkyl phosphite given in 
Table 15.361 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.360 corresponding to functional-

group composition of the molecule.  The bond angle parameters of alkyl phosphites determined using Eqs. (15.88-15.117) are 
given in Table 15.362.  The color scale, charge-density of exemplary alkyl phosphite, tri-isopropyl phosphite, comprising atoms 
with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in 

Figure 15.61. 
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Figure 15.61.  Color scale, charge-density of tri-isopropyl phosphite showing the orbitals of the atoms at their radii, the 
ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei. 

 
 

 
 

Table 15.357.   The symbols of functional groups of alkyl phosphites. 
 

Functional Group Group Symbol
P-O P O  

C-O ( 3CH O   and  3 3
CH C O  ) C O  (i) 

C-O (alkyl) C O  (ii) 

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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ALKYL PHOSPHINE OXIDES (  2 1 3
,   1,2,3,4,5...n nC H P O n    ) 

The alkyl phosphine oxides,  2 1 3n nC H P O  , comprise P C  and P O  functional groups.  The alkyl portion of the alkyl 

phosphine oxide may comprise at least two terminal methyl groups ( 3CH ) at each end of each chain, and may comprise 

methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and 

methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The 
n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) 

and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise 

functional groups.  The branched-chain-alkane groups in alkyl phosphine oxides are equivalent to those in branched-chain 
alkanes.   

The P C  functional group is equivalent to that of alkyl phosphines.  The P O  bond forms between the 33P sp  HO 
and an 2O p  AO to yield phosphine oxides.  The semimajor axis a  of the P O  functional group is solved using Eq. (15.51).  
Using the semimajor axis and the relationships between the prolate spheroidal axes, the geometric and energy parameters of the 
MO are calculated using Eqs. (15.1-15.117) in the same manner as the organic functional groups given in Organic Molecular 
Functional Groups and Molecules section.  
For the P O  functional group, hybridization the 3s  and 3p  AOs of each P  to form a single 33sp  shells forms an energy 

minimum, and the sharing of electrons between the 2O p  AOs and 33P sp  HOs to form a MO permits each participating orbital 
to decrease in radius and energy.  In branched-chain alkyl phosphine oxides, the energy of phosphorous is less than the 
Coulombic energy between the electron and proton of H  given by Eq. (1.264).  The energy matching condition is determined by 
the 2c  parameter given by Eq. (15.182).  The energy of the P O -bond MO is the sum of the component energies of the 2H -

type ellipsoidal MO given in Eq. (15.51) with  /E AO HO  being twice  3,3E P sp  given by Eq. (15.180) corresponding to the 

double bond, and  3, .TE atom atom msp AO  is equivalent to that of an alkene double bond, 2.26758 eV , given by Eq. 

(14.247) in order to match the energies of the carbon and phosphorous HOs and the oxygen AO. 
The symbols of the functional groups of branched-chain alkyl phosphine oxides are given in Table 15.363.  The 

geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) 
parameters of alkyl phosphine oxides are given in Tables 15.364, 15.365, and 15.366, respectively.  The total energy of each 
alkyl phosphine oxide given in Table 15.367 was calculated as the sum over the integer multiple of each  GroupDE  of Table 

15.366 corresponding to functional-group composition of the molecule.  The bond angle parameters of alkyl phosphine oxides 
determined using Eqs. (15.88-15.117) are given in Table 15.368.  The color scale, charge-density of exemplary alkyl phosphine 
oxide, trimethylphosphine oxide, comprising atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or 

joined with one or more hydrogen MOs is shown in Figure 15.62. 
 

Figure 15.62.  Color scale, charge-density of trimethylphosphine oxide showing the orbitals of the atoms at their radii, the 
ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei.  (A) Top view.  (B) Side view. 
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Table 15.363.   The symbols of functional groups of alkyl phosphine oxides. 
 

Functional Group Group Symbol
P=O P O  
P-C P C  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  (i) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  (ii) 

 



Organic Molecular Functional Groups and Molecules 
 

1035

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

T
a

b
le

 1
5

.3
6

4
. 

 T
he

 g
eo

m
et

ri
ca

l b
on

d 
pa

ra
m

et
er

s 
of

 a
lk

yl
 p

ho
sp

hi
ne

 o
xi

de
s 

an
d 

ex
pe

ri
m

en
ta

l v
al

ue
s 

[1
].

 

T
a

b
le

 1
5

.3
6

5
. 

 T
he

 M
O

 to
 H

O
 in

te
rc

ep
t g

eo
m

et
ri

ca
l b

on
d 

pa
ra

m
et

er
s 

of
 a

lk
yl

 p
ho

sp
hi

ne
 o

xi
de

s.
  R

, R
', 

R
'' 

ar
e 

H
 o

r 
al

ky
l g

ro
up

s.
  E

T
 is

 E
T
 (

at
om

 –
 a

to
m

,m
sp

3 .
A

O
).

 



Chapter 15 
 

1036 

 
 
 

T
a

b
le

 1
5

.3
6

6
. 

 T
he

 e
ne

rg
y 

pa
ra

m
et

er
s 

(e
V

) 
of

 f
un

ct
io

na
l g

ro
up

s 
of

 a
lk

yl
 p

ho
sp

hi
ne

 o
xi

de
s.

 

T
a

b
le

 1
5

.3
6

7
. 

 T
he

 t
ot

al
 b

on
d 

en
er

gi
es

 o
f 

al
ky

l 
ph

os
ph

in
e 

ox
id

es
 c

al
cu

la
te

d 
us

in
g 

th
e 

fu
nc

ti
on

al
 g

ro
up

 c
om

po
si

ti
on

 a
nd

 t
he

 e
ne

rg
ie

s 
of

 T
ab

le
 1

5.
36

6 
co

m
pa

re
d 

to
 t

he
 

ex
pe

ri
m

en
ta

l v
al

ue
s 

[6
9]

.  



Organic Molecular Functional Groups and Molecules 
 

1037

  
 

 

T
a

b
le

 1
5

.3
6

8
. 

 T
he

 b
on

d 
an

gl
e 

pa
ra

m
et

er
s 

of
 a

lk
yl

 p
ho

sp
hi

ne
 o

xi
de

s 
an

d 
ex

pe
ri

m
en

ta
l 

va
lu

es
 [

1]
.  

In
 t

he
 c

al
cu

la
ti

on
 o

f 
θ v

, t
he

 p
ar

am
et

er
s 

fr
om

 t
he

 p
re

ce
di

ng
 a

ng
le

 
w

er
e 

us
ed

.  
E

T
 is

 E
T
 (

at
om

 –
 a

to
m

,m
sp

3 .
A

O
).

 



Chapter 15 
 

1038 

ALKYL PHOSPHATES (  2 1 3
,   1,2,3,4,5...n nC H O P O n    ) 

The alkyl phosphates,  2 1 3n nC H O P O  , comprise P O , P O , and C O  functional groups.  The P O  functional group 

is equivalent to that of alkyl phosphine oxides.  The P O  and C O  functional groups are equivalent to those of alkyl 
phosphites.  The alkyl portion of the alkyl phosphate may comprise at least two terminal methyl groups ( 3CH ) at each end of 

each chain, and may comprise methylene ( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon 

single bonds.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  
bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds 
within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to 

t-butyl C C  bonds comprise functional groups.  The branched-chain-alkane groups in alkyl phosphates are equivalent to those 
in branched-chain alkanes.   

The symbols of the functional groups of branched-chain alkyl phosphates are given in Table 15.369.  The geometrical 
(Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of 
alkyl phosphates are given in Tables 15.370, 15.371, and 15.372, respectively.  The total energy of each alkyl phosphate given in 
Table 15.373 was calculated as the sum over the integer multiple of each  GroupDE  of Table 15.372 corresponding to functional-

group composition of the molecule.  The bond angle parameters of alkyl phosphates determined using Eqs. (15.88-15.117) are 
given in Table 15.374.  The color scale, charge-density of exemplary alkyl phosphate, tri-isopropyl phosphate, comprising of 
atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown 

in Figure 15.63. 
 
Figure 15.63.   Color scale, charge-density of tri-isopropyl phosphate showing the orbitals of the atoms at their radii, the 
ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei. 
 

 
 

Table 15.369.   The symbols of functional groups of alkyl phosphates. 
 

Functional Group Group Symbol
P=O P O  
P-O P O  

C-O ( 3CH O   and  3 3
CH C O  ) C O  (i) 

C-O (alkyl) C O  (ii) 

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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ORGANIC AND RELATED IONS ( 2RCO , 3ROSO , 3NO ,   22
RO PO ,  3RO SiO , 

   2 2
R Si O , 3RNH  , 2 2R NH  ) 

Proteins comprising amino acids with amino and carboxylic acid groups are charged at physiological pH.  Deoxyribonucleic acid 
(DNA), the genetic material of living organisms also comprises negatively charged phosphate groups.  Thus, the bonding of 
organic ions is considered next.  The molecular ions also comprise functional groups that have an additional electron or are 
deficient by an electron in the cases of monovalent molecular anions and cations, respectively.  The molecular chemical bond 
typically comprises an even integer number of paired electrons, but with an excess of deficiency, the bonding may involve an 
odd number of electrons, and the electrons may be distributed over multiple bonds, solved as a linear combination of standard 
bonds.  As given in the Benzene Molecule section and other sections on aromatic molecules such as naphthalene, toluene, 
chlorobenzene, phenol, aniline, nitrobenzene, benzoic acid, pyridine, pyrimidine, pyrazine, quinoline, isoquinoline, indole, and 
adenine, the paired electrons of MOs may be distributed over a linear combination of bonds such that the bonding between two 
atoms involves less than an integer multiple of two electrons.  Specifically, the results of the derivation of the parameters of the 
benzene molecule given in the Benzene Molecule ( 6 6C H ) section was generalized to any aromatic functional group of aromatic 

and heterocyclic compounds in the Aromatic and Heterocyclic Compounds section.  Ethylene serves as a basis element for the 
3e

C C  bonding of the aromatic bond wherein each of the 
3e

C C  aromatic bonds comprises   0.75 4 3  electrons according to 

Eq. (15.161).  Thus, in these aromatic cases, three electrons can be assigned to a given bond between two atoms wherein the 
electrons of the linear combination of bonded atoms are paired and comprise an integer multiple of two.   

In graphite, the minimum energy structure with equivalent carbon atoms wherein each carbon forms bonds with three 
other such carbons requires a redistribution of charge within an aromatic system of bonds.  Considering that each carbon 
contributes four bonding electrons, the sum of electrons of a vertex-atom group is four from the vertex atom plus two from each 
of the two atoms bonded to the vertex atom where the latter also contribute two each to the juxtaposed group.  These eight 
electrons are distributed equivalently over the three bonds of the group such that the electron number assignable to each bond is 
8

3
.  Thus, the 

  8/3e

C C  functional group of graphite comprises the aromatic bond with the exception that the electron-number per 

bond is 
8

3
. 

As given in the Bridging Bonds of Boranes section and the Bridging Bonds of Organoaluminum Hydrides section, other 
examples of electron deficient bonding involving two paired electrons centered on three atoms are three-center bonds as opposed 
to the typical single bond, a two-center bond.  The 32B sp  HOs comprise four orbitals containing three electrons as given by Eq. 

(23.1) that can form three-center as well as two-center bonds.  The designation for a three-center bond involving two 32B sp  

HOs and a 1H s  AO is B H B  , and the designation for a three-center bond involving three 32B sp  HOs is B B B  .  In the 
aluminum case, each Al H Al  -bond MO and Al C Al  -bond MO comprises the corresponding single bond and forms with 
further sharing of electrons between each 33Al sp  HO and each 1H s  AO and 32C sp  HO, respectively.  Thus, the geometrical 
and energy parameters of the three-center bond are equivalent to those of the corresponding two-center bonds except that the 
bond energy is increased in the former case since the donation of electron density from the unoccupied 33Al sp  HO to each 
Al H Al  -bond MO and Al C Al  -bond MO permits the participating orbital to decrease in size and energy.  

To match the energies of the AOs and MOs of the ionic functional group with the others within the molecular ion, the 
bonding in organic ions comprises a standard bond that serves as basis element and retains the same geometrical characteristics 
as that standard bond.  In the case of organic oxyanions, the A O  ( , , , ,A C S N P Si ) bond is intermediate between a single 

and double bond, and the latter serves as a basis element.  Similar to the case of the 
3e

C C  aromatic bond wherein ethylene is the 
basis element, the A O -bond functional group serves as the basis element for the A O  functional group of the oxyanion of 

carboxylates, sulfates, nitrates, phosphates, silanolates, and siloxanolates.  This oxyanion group designated by 
3e

A O  comprises 

  0.75 4 3  electrons after Eq. (15.161).  Thus, the energy parameters of the 
3e

A O  functional group are given by the factor 

of    0.75 4 3  times those of the corresponding A O  functional group, and the geometric parameters are the same.  The 

C O , S O , 2N O , P O , and Si O  basis elements are given in the Carboxylic Acids, Sulfates, Alkyl Nitrates, 

Phosphates, and Silicon Oxides, Silicic Acids, Silanols, Siloxanes and Disiloxanes sections, respectively.  A convenient means to 
obtain the final group energy parameters of  GroupTE  and  GroupDE  is by using Eqs. (15.165-15.166) with 1 0.75f  : 
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where 4c  is    0.75 4 3  when 5 0c   and otherwise 4c  is   0.75 2 1.5  and 5c  is   0.75 2 1.5 . 

The nature of the bonding of the amino functional group of protonated amines is similar to that in 3H  .  As given in the 

Triatomic Molecular Hydrogen-type Ion ( 3H  ) section, 3H   comprises two indistinguishable spin-paired electrons bound by 

three protons.  The ellipsoidal molecular orbital (MO) satisfies the boundary constraints as shown in the Nature of the Chemical 
Bond of Hydrogen-Type Molecules section.  Since the protons are indistinguishable, ellipsoidal MOs about each pair of protons 
taken one at a time are indistinguishable. 3H   is then given by a superposition or linear combinations of three equivalent 

ellipsoidal MOs that form an equilateral triangle where the points of contact between the prolate spheroids are equivalent in 
energy and charge density.  Due to the equivalence of the 2H -type ellipsoidal MOs and the linear superposition of their energies, 

the energy components defined previously for the 2H  molecule, Eqs. (11.207-11.212) apply in the case of the corresponding 3H   

molecular ion.  And, each molecular energy component is given by the integral of corresponding force in Eq. (13.5).  Each 
energy component is the total for the two equivalent electrons with the exception that the total charge of the two electrons is 
normalized over the three basis set 2H -type ellipsoidal MOs.  Thus, the energies (Eqs. (13.12-13.17)) are those given in the 

Energies of Hydrogen-Type Molecules section with the electron charge, where it appears, multiplied by a factor of 3 / 2 , and the 
three sets of equivalent proton-proton pairs give rise to a factor of three times the proton-proton repulsion energy given by Eq. 
(11.208). 

With the protonation of the imidogen ( NH ) functional group, the minimum energy structure with equivalent hydrogen 
atoms comprises two protons bound to N  by two paired electrons, one from H  and one from N  with the MO matched to the 

2N p  AO.  These two electrons are distributed equivalently over the two H N  bonds of the group such that the electron 

number assignable to each bond is 
2

2
.  Thus, the 2NH   functional group has the imidogen energy parameters with the exception 

that each energy term is multiplied by the factor 2  due to the two bonds with electron-number per bond of 
2

2
 and has the same 

geometric parameters as the NH  functional group given in the Secondary Amines section.  A convenient means to obtain the 
final group energy parameters of  GroupTE  and  GroupDE  is by using Eqs. (15.165-15.166) (Eqs. (15.183-15.184)) with 1 2f   and 

4c  and 5c  multiplied by two. 

With the protonation of the amidogen ( 2NH ) functional group, the minimum energy structure with equivalent hydrogen 

atoms comprises three protons bound to N  by four paired electrons, two from 2 H  and two from N  with the MO matched to 
the 2N p  AO.  These four electrons are distributed equivalently over the three H N  bonds of the group such that the electron 

number assignable to each bond is 
4

3
.  Thus, the 3NH   functional group has the amidogen energy parameters with the exception 

that each energy term is multiplied by the factor 
3

2
 due to the three bonds with electron-number per bond of 

4

3
 and has the same 

geometric parameters as the 2NH  functional group given in the Primary Amines section.  A convenient means to obtain the final 

group energy parameters of  GroupTE  and  GroupDE  is by using Eqs. (15.165-15.166) (Eqs. (15.183-15.184)) with 1 3 / 2f   and 

4c  and 5c  multiplied by 3/2. 
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The symbols of the functional groups of organic and related ions are given in Table 15.375.  The geometrical (Eqs. (15.1-
15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters are given in 
Tables 15.376, 15.377, and 15.378, respectively.  Due to its charge, the bond angles of the organic and related ions that minimize 
the total energy are those that maximize the separation of the groups.  For ions having three bonds to the central atom, the angles 
are 120°, and ions having four bonds are tetrahedral.  The color scale, charge-density of exemplary organic ion, protonated 
lysine, comprising atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs is shown in Figure 15.64. 
 
Figure 15.64.   Color scale, charge-density of protonated lysine ion showing the orbitals of the atoms at their radii, the 
ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei. 
 

 
 

Table 15.375.   The symbols of functional groups of organic and related ions. 
 

Functional Group Group Symbol
(O)C-O- (alkyl carboxylate) C O  
(RO)(O)2S-O- (alkyl sulfate) S O  
(O)2N-O- (nitrate) N O  
(RO)2(O)P-O- (alkyl phosphate) P O  
(RO)3Si-O- (alkyl siloxanolate) 
(R)2Si(-O-)2 (alkyl silanolate) Si O  

NH2
+ group 2NH   

NH3
+ group 3NH   
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Table 15.378.   The energy parameters (eV) of functional groups of organic and related ions. 
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MONOSACCHARIDES OF DNA AND RNA 
The simple sugar moiety of DNA and RNA comprises the alpha forms of 2-deoxy-D-ribose and D-ribose, respectively.  The 
sugars comprise the alkyl 2CH , CH , and C C  functional groups and the alkyl alcohol C O  and OH  functional groups 

given in the Alcohols section.  In addition, the alpha form of the sugars comprise the C O  ether functional group given in the 
Ethers section, and the open-chain forms further comprise the carbon to carbonyl C C , the methylyne carbon of the aldehyde 
carbonyl CH , and the aldehyde carbonyl C O functional groups given in the Aldehydes section.  The total energy of each 
sugar given in Tables 15.379-15.382 was calculated as the sum over the integer multiple of each  GroupDE  corresponding to the 

functional-group composition wherein the group identity and energy  GroupDE  are given in each table.  The color scale, charge-

density of the monosaccharides, each comprising atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or 

joined with one or more hydrogen MOs are shown in Figure 15.65. 
 
Figure 15.65.   Color scale, charge-density of riboses showing the orbitals of the atoms at their radii, the ellipsoidal surface of 
each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, 

and the hydrogen nuclei.  (A) 2-deoxy-D-ribose.  (B) D-ribose.  (C) Alpha-2-deoxy-D-ribose.  (D) Alpha-D-ribose. 
 

 



Organic Molecular Functional Groups and Molecules 

 

1049

 
 
T

a
b

le
 1

5
.3

7
9

. 
 T

he
 to

ta
l g

as
eo

us
 b

on
d 

en
er

gy
 o

f 
2-

de
ox

y-
D

-r
ib

os
e 

(C
5H

10
O

4)
 c

al
cu

la
te

d 
us

in
g 

th
e 

fu
nc

ti
on

al
 g

ro
up

 c
om

po
si

ti
on

 a
nd

 th
e 

en
er

gi
es

 g
iv

en
 s

up
ra

.  

T
a

b
le

 1
5

.3
8

0
. 

 T
he

 to
ta

l g
as

eo
us

 b
on

d 
en

er
gy

 o
f 

D
-r

ib
os

e 
(C

5H
10

O
5)

 c
al

cu
la

te
d 

us
in

g 
th

e 
fu

nc
ti

on
al

 g
ro

up
 c

om
po

si
ti

on
 a

nd
 th

e 
en

er
gi

es
 g

iv
en

 s
up

ra
. c

om
pa

re
d 

to
 

th
e 

ex
pe

ri
m

en
ta

l v
al

ue
s 

[3
].

 

T
a

b
le

 1
5

.3
8

1
. 

 T
he

 to
ta

l g
as

eo
us

 b
on

d 
en

er
gy

 o
f 

al
ph

a-
2-

de
ox

y-
D

-r
ib

os
e 

(C
5H

10
O

4)
 c

al
cu

la
te

d 
us

in
g 

th
e 

fu
nc

ti
on

al
 g

ro
up

 c
om

po
si

ti
on

 a
nd

 th
e 

en
er

gi
es

 g
iv

en
 s

up
ra

. 

T
a

b
le

 1
5

.3
8

2
. 

 T
he

 to
ta

l g
as

eo
us

 b
on

d 
en

er
gy

 o
f 

al
ph

a-
D

-r
ib

os
e 

(C
5H

10
O

5)
 c

al
cu

la
te

d 
us

in
g 

th
e 

fu
nc

ti
on

al
 g

ro
up

 c
om

po
si

ti
on

 a
nd

 th
e 

en
er

gi
es

 g
iv

en
 s

up
ra

. 



Chapter 15 

 

1050

NUCLEOTIDE BONDS OF DNA AND RNA 
DNA and RNA comprise a backbone of alpha-2-deoxy-D-ribose and alpha-D-ribose, respectively, with a charged phosphate 
moiety at the 3’ and 5’ positions of two consecutive ribose units in the chain and a base bound at the 1’ position wherein the 
ribose H  of each of the corresponding 3’ or 5’ O H  and 1’ C H  bonds is replaced by P  and the base N , respectively.  For 
the base, the H  of the N H at the pyrimidine 1 position or the purine 9 position is replaced by the sugar C .  The basic 
repeating unit of DNA or RNA is a nucleotide that comprises a monosaccharide, a phosphate moiety and a base.  The structure 
of the nucleotide bond is shown in Figure 15.66 with the designation of the corresponding atoms.  The phosphate moiety 
comprises the P O , P O , and C O  functional groups given in the Phosphates section as well as the P O  group given in 
the Organic and Related Ions section.  The nucleoside bond (sugar C to base N) comprises the tertiary amine C N  functional 
group given in the corresponding section.  The bases, adenine, guanine, thymine, and cytosine are equivalent to those given in 
the corresponding sections.  The symbols of the functional groups of the nucleotide bond are given in Table 15.383.  The 
geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) 
parameters are given in Tables 15.384, 15.385, and 15.386, respectively.  The functional group composition and the 
corresponding energy  GroupDE  of each group of the nucleotide bond of DNA and RNA are given in Table 15.387.  The bond 

angle parameters of the nucleoside bond determined using Eqs. (15.88-15.117) are given in Table 15.388.  The color scale 
rendering of the charge-density of the exemplary tetra-nucleotide, (deoxy)adenosine 3’-monophosphate—5’-(deoxy)thymidine 
3’-monophosphate—5’-(deoxy)guanosine 3’-monophosphate—5’-(deoxy)cytidine monophosphate (ATGC) comprising the 
concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs is shown in Figure 15.67.  Figure 15.68 shows the color scale rendering of the charge-density of the exemplary 

DNA fragment ACTGACTGACTG
TGACTGACTGAC

 wherein each complementary strand comprises a dodeca-nucleotide of the form (base (1)—

deoxyribose) monophosphate—( base(2)—deoxyribose) monophosphate— with the phosphates bridging the 3’ and 5’ ribose 
carbons with the opposite order for the complementary stands. Figure 15.68 shows the color scale rendering of the charge-
density of an exemplary double-stranded DNA helix. 
 
Figure 15.66.   Designation of the atoms of the nucleotide bond. 
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Figure 15.67.   The color scale rendering of the charge-
density of the exemplary tetra-nucleotide, 
(deoxy)adenosine monophosphate—(deoxy)thymidine 
monophosphate—(deoxy)guanosine monophosphate—
(deoxy)cytidine monophosphate (ATGC) showing the 
orbitals of the atoms at their radii and the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that 

transitions to the corresponding outer shell of the atom(s) 
participating in each bond.  

Figure 15.68.   Color scale rendering of the charge-

density of the DNA fragment ACTGACTGACTG
TGACTGACTGAC

 showing 

the orbitals of the atoms at their radii and the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that 

transitions to the corresponding outer shell of the atom(s) 
participating in each bond. 
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Figure 15.69.   Color scale, opaque view of the charge density of a double-stranded DNA helix created and modeled using 
Millsian 2.0. 
 

 
 

Table 15.383.   The symbols of functional groups of the nucleotide bond. 
 

Functional Group Group Symbol
C-N C N  
C-O (alkyl) C O   
P=O P O  
P-O P O  
(RO)2(O)P-O- (alkyl phosphate) P O  

 
Table 15.384.   The geometrical bond parameters of the nucleotide bond and experimental values [1]. 
 

Parameter C N  
Group 

C O  
Group 

P O  
Group 

P O  
Group 

P O  
Group

 0 a a  1.96313 1.79473 1.91663 1.84714 1.91663 

 0'  c a  1.40112 1.33968 1.38442 1.52523 1.38442 

Bond Length 

 2 '  c Å  1.48288 1.41785 1.46521E-10 1.61423 1.46521 

Exp. Bond Length 

 Å  
1.458 

(trimethylamine) 

1.418 
(ethyl methyl 
ether (avg.)) 

1.48 [65] 
(DNA) 
1.4759 
( PO ) 

1.631 [70] 
(MHP) 

1.60 [65] 
(DNA) 

1.48 [65] 
(DNA) 

 0,  b c a  1.37505 1.19429 1.32546 1.04192 1.32546 

e  0.71372 0.74645 0.72232 0.82573 0.72232
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Table 15.386.   The energy parameters (eV) of functional groups of the nucleotide bond. 
 

 
 
Table 15.387.   The functional group composition and the energy ED(Group) of each group of the nucleotide bond. 
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AMINO ACIDS ( 2 ( )H N CH R COOH  ) 
The amino acids, 2 ( )H NCH R COOH , each have a primary amine moiety comprised of 2NH  and C N  functional groups, an 

alkyl carboxylic acid moiety comprised of a C O  functional group, and the single bond of carbon to the carbonyl carbon atom, 
( )C C O , is also a functional group.  The carboxylic acid moiety further comprises a C OH  moiety that comprises C O  and 

OH  functional groups.  The alpha carbon comprises a methylyne (CH ) functional group bound to a side chain R  group by an 
isopropyl C C  bond functional group.  These groups common to all amino acids are given in the Primary Amines section, the 
Carboxylic Acids section, and the Branched Alkanes section, respectively.  The R  group is unique for each amino acid and 
determines its characteristic hydrophilic, hydrophobic, acidic, and basic properties.  These characteristic functional groups are 
given in the prior organic functional group sections.  The total energy of each amino acid given in Tables 15.389-15.408 was 
calculated as the sum over the integer multiple of each  GroupDE  corresponding to the functional-group composition of the amino 

acid wherein the group identity and energy  GroupDE  are given in each table.  The structure and the color scale, charge-density of 

the amino acids, each comprising atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one 

or more hydrogen MOs are shown in Figures 15.70-15.89. 
 

ASPARTIC ACID 
 

Figure 15.70.  (A) Color scale, charge-density of aspartic acid showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of aspartic acid. 
 

 

 
 

GLUTAMIC ACID 
 

Figure 15.71.   (A) Color scale, charge-density of glutamic acid showing the orbitals of the atoms at their radii, the 
ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei.  (B) Chemical structure of glutamic acid. 
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CYSTEINE 
 
Figure 15.72.   (A) Color scale, charge-density of cysteine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of cysteine. 
 
 

 
 
 
LYSINE 
 
Figure 15.73.   (A) Color scale, charge-density of lysine showing the orbitals of the atoms at their radii, the ellipsoidal surface 
of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, 

and the hydrogen nuclei.  (B) Chemical structure of lysine. 
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ARGININE 
 
Figure 15.74.   (A) Color scale, charge-density of arginine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of arginine. 
 
 

 
 
 
HISTIDINE 
 
Figure 15.75.   (A) Color scale, charge-density of histidine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of histidine. 
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ASPARAGINE 
 
Figure 15.76.  (A) Color scale, charge-density of asparagine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of asparagine.  
 

 
 

 
GLUTAMINE 
 
Figure 15.77.   (A) Color scale, charge-density of glutamine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of Glutamine. 
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THREONINE 
 
Figure 15.78.   (A) Color scale, charge-density of threonine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of threonine. 
 
 

 
 
TYROSINE 
 
Figure 15.79.   (A) Color scale, charge-density of tyrosine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of tyrosine. 
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SERINE 
 
Figure 15.80.   (A) Color scale, charge-density of serine showing the orbitals of the atoms at their radii, the ellipsoidal surface 
of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each bond, 

and the hydrogen nuclei.  (B) Chemical structure of serine. 
 
 

 
 
TRYPTOPHAN 
 
Figure 15.81.   (A) Color scale, charge-density of tryptophan showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of tryptophan. 
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PHENYLALANINE 
 
Figure 15.82.   (A) Color scale, charge-density of phenylalanine showing the orbitals of the atoms at their radii, the 
ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei.  (B) Chemical structure of phenylalanine. 
 

 
 
 
PROLINE 
 
Figure 15.83.   (A) Color scale, charge-density of proline showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of proline. 
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METHIONINE 
 
Figure 15.84.   (A) Color scale, charge-density of methionine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of methionine. 
 
 

 
 
LEUCINE 
 
Figure 15.85.   (A) Color scale, charge-density of leucine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of leucine. 
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ISOLEUCINE 
 
Figure 15.86.   (A) Color scale, charge-density of isoleucine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of isoleucine. 
 
 

 
 
VALINE 
 
Figure 15.87.  (A) Color scale, charge-density of valine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H or H2-type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in each 

bond, and the hydrogen nuclei.  (B) Chemical structure of valine. 
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ALANINE 
 
Figure 15.88.   (A) Color scale, charge-density of alanine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of alanine. 
 

 
 
 
GLYCINE 
 
Figure 15.89.   (A) Color scale, charge-density of glycine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei.  (B) Chemical structure of glycine. 
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POLYPEPTIDES ( ( ) ( )
n

HN CH R C O 
    ) 

The amino acids can be polymerized by reaction of the OH  group from the carboxylic acid moiety of one amino acid with 
H from the alpha-carbon 2NH  of another amino acid to form 2H O  and an amide bond as part of a polyamide chain of a 

polypeptide or protein.  Each amide bond that forms by the condensation of two amino acids is called a peptide bond.  It 
comprises a C O  functional group, and the single bond of carbon to the carbonyl carbon atom, ( )C C O , is also a functional 

group.  The peptide bond further comprises a  C NH R  moiety that comprises NH  and C N  functional groups where R  is 

the characteristic side chain of each amino acid that is unchanged in terms of its functional group composition upon the 
formation of the peptide bond.  From the N-Alkyl and N,N-Dialkyl-Amides section, the functional group composition and the 
corresponding energy  GroupDE  of each group of the peptide bond is given in Table 15.409.  The color scale, charge-density of 

the exemplary polypeptide, phenylalanine-leucine-glutamine-asparic acid (phe-leu-gln-asp) comprising the atoms with the outer 
shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 15.90.  The 

color scale, opaque view of the charge-density of the exemplary protein bovine pancreatic trypsin inhibitor (BPTI) is shown in 
Figure 15.91. 
 
Figure 15.90.   Color scale, charge-density of the polypeptide phenylalanine-leucine-glutamine-aspartic acid (phe-leu-gln-
asp) showing the orbitals of the atoms at their radii and the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that 

transitions to the corresponding outer shell of the atom(s) participating in each bond. 
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Figure 15.91.  Color scale, opaque view of the charge-density of bovine pancreatic trypsin inhibitor (BPTI) protein created and 
modeled using Millsian 2.0.  BPTI has been used as a medication administered by injection to reduce bleeding during complex 
surgery, such as heart and liver surgery.  Its main effect is the inhibition of fibrinolysis, the process that leads to the breakdown 
of blood clots. The aim in its use is to decrease the need for blood transfusions during surgery, as well as end-organ damage due 
to hypotension (low blood pressure) as a result of marked blood loss.  However, this drug was temporarily withdrawn worldwide 
in 2007 after studies suggested that its use increased the risk of complications or death.  This protein is usually used as the 
benchmark for bimolecular modeling method and with accurate knowledge of its structure, it is possible to engineer it to avoid 
its prior side effects. 
 

 
 
 

Table 15.409.   The functional group composition and the energy  GroupDE  of each group of the peptide bond. 

Formula ( )C C O  
(alkyl 
amide) 
Group

C N  
((O)C-N alkyl amide) 

Group 

C N  
(N alkyl amide) 

Group 

NH  
(N alkyl amide) 

Group 

Energies  GroupDE  of Functional 

Groups (eV) 
4.35263 4.12212 3.40044 3.49788 

Composition 1 1 1 1
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SUMMARY TABLES OF ORGANIC MOLECULES 
The bond energies, calculated using closed-form equations having integers and fundamental constants only for classes of 
molecules whose designation is based on the main functional group, are given in the following tables with the experimental 
values. 
 
Table 15.410.1.   Summary results of n-alkanes. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental
Total Bond 
Energy (eV)

Relative 
Error 

C3H8 propane 41.46896 41.434 -0.00085 
C4H10 butane 53.62666 53.61 -0.00036 
C5H12 pentane 65.78436 65.77 -0.00017 
C6H14 hexane 77.94206 77.93 -0.00019 
C7H16 heptane 90.09976 90.09 -0.00013 
C8H18 octane 102.25746 102.25 -0.00006 
C9H20 nonane 114.41516 114.40 -0.00012 
C10H22 decane 126.57286 126.57 -0.00003 
C11H24 undecane 138.73056 138.736 0.00004 
C12H26 dodecane 150.88826 150.88 -0.00008 
C18H38 octadecane 223.83446 223.85 0.00008 

 
Table 15.410.2.   Summary results of branched alkanes. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental
Total Bond 
Energy (eV)

Relative 
Error 

C4H10 isobutane 53.69922 53.695 -0.00007 
C5H12 isopentane 65.85692 65.843 -0.00021 
C5H12 neopentane 65.86336 65.992 0.00195 
C6H14 2-methylpentane 78.01462 78.007 -0.00010 
C6H14 3-methylpentane 78.01462 77.979 -0.00046 
C6H14 2,2-dimethylbutane 78.02106 78.124 0.00132 
C6H14 2,3-dimethylbutane 77.99581 78.043 0.00061 
C7H16 2-methylhexane 90.17232 90.160 -0.00014 
C7H16 3-methylhexane 90.17232 90.127 -0.00051 
C7H16 3-ethylpentane 90.17232 90.108 -0.00072 
C7H16 2,2-dimethylpentane 90.17876 90.276 0.00107 
C7H16 2,2,3-trimethylbutane 90.22301 90.262 0.00044 
C7H16 2,4-dimethylpentane 90.24488 90.233 -0.00013 
C7H16 3,3-dimethylpentane 90.17876 90.227 0.00054 
C8H18 2-methylheptane 102.33002 102.322 -0.00008 
C8H18 3-methylheptane 102.33002 102.293 -0.00036 
C8H18 4-methylheptane 102.33002 102.286 -0.00043 
C8H18 3-ethylhexane 102.33002 102.274 -0.00055 
C8H18 2,2-dimethylhexane 102.33646 102.417 0.00079 
C8H18 2,3-dimethylhexane 102.31121 102.306 -0.00005 
C8H18 2,4-dimethylhexane 102.40258 102.362 -0.00040 
C8H18 2,5-dimethylhexane 102.40258 102.396 -0.00006 
C8H18 3,3-dimethylhexane 102.33646 102.369 0.00032 
C8H18 3,4-dimethylhexane 102.31121 102.296 -0.00015 
C8H18 3-ethyl-2-methylpentane 102.31121 102.277 -0.00033 
C8H18 3-ethyl-3-methylpentane 102.33646 102.317 -0.00019 
C8H18 2,2,3-trimethylpentane 102.38071 102.370 -0.00010 
C8H18 2,2,4-trimethylpentane 102.40902 102.412 0.00003 
C8H18 2,3,3-trimethylpentane 102.38071 102.332 -0.00048 
C8H18 2,3,4-trimethylpentane 102.29240 102.342 0.00049 
C8H18 2,2,3,3-tetramethylbutane 102.41632 102.433 0.00016 
C9H20 2,3,5-trimethylhexane 114.54147 114.551 0.00008 
C9H20 3,3-diethylpentane 114.49416 114.455 -0.00034 
C9H20 2,2,3,3-tetramethylpentane 114.57402 114.494 -0.00070 
C9H20 2,2,3,4-tetramethylpentane 114.51960 114.492 -0.00024 
C9H20 2,2,4,4-tetramethylpentane 114.57316 114.541 -0.00028 
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Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental
Total Bond 
Energy (eV)

Relative 
Error 

C9H20 2,3,3,4-tetramethylpentane 114.58266 114.484 -0.00086 
C10H22 2-methylnonane 126.64542 126.680 0.00027 
C10H22 5-methylnonane 126.64542 126.663 0.00014 

 
Table 15.410.3.   Summary results of alkenes. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C3H6 propene 35.56033 35.63207 0.00201 
C4H8 1-butene  47.71803 47.78477 0.00140 
C4H8 trans-2-butene 47.93116 47.90395 -0.00057 
C4H8 isobutene 47.90314 47.96096 0.00121 
C5H10 1-pentene 59.87573 59.95094 0.00125 
C5H10 trans-2-pentene 60.08886 60.06287 -0.00043 
C5H10 2-methyl-1-butene 60.06084 60.09707 0.00060 
C5H10 2-methyl-2-butene 60.21433 60.16444 -0.00083 
C5H10 3-methyl-1-butene 59.97662 60.01727 0.00068 
C6H12 1-hexene 72.03343 72.12954 0.00133 
C6H12 trans-2-hexene 72.24656 72.23733 -0.00013 
C6H12 trans-3-hexene 72.24656 72.24251 -0.00006 
C6H12 2-methyl-1-pentene 72.21854 72.29433 0.00105 
C6H12 2-methyl-2-pentene 72.37203 72.37206 0.00000 
C6H12 3-methyl-1-pentene 72.13432 72.19173 0.00080 
C6H12 4-methyl-1-pentene 72.10599 72.21038 0.00145 
C6H12 3-methyl-trans-2-pentene 72.37203 72.33268 -0.00054 
C6H12 4-methyl-trans-2-pentene 72.34745 72.31610 -0.00043 
C6H12 2-ethyl-1-butene 72.21854 72.25909 0.00056 
C6H12 2,3-dimethyl-1-butene 72.31943 72.32543 0.00008 
C6H12 3,3-dimethyl-1-butene 72.31796 72.30366 -0.00020 
C6H12 2,3-dimethyl-2-butene 72.49750 72.38450 -0.00156 
C7H14 1-heptene 84.19113 84.27084 0.00095 
C7H14 5-methyl-1-hexene 84.26369 84.30608 0.00050 
C7H14 trans-3-methyl-3-hexene 84.52973 84.42112 -0.00129 
C7H14 2,4-dimethyl-1-pentene 84.44880 84.49367 0.00053 
C7H14 4,4-dimethyl-1-pentene 84.27012 84.47087 0.00238 
C7H14 2,4-dimethyl-2-pentene 84.63062 84.54445 -0.00102 
C7H14 trans-4,4-dimethyl-2-pentene 84.54076 84.54549 0.00006 
C7H14 2-ethyl-3-methyl-1-butene 84.47713 84.44910 -0.00033 
C7H14 2,3,3-trimethyl-1-butene 84.51274 84.51129 -0.00002 
C8H16 1-octene 96.34883 96.41421 0.00068 
C8H16 trans-2,2-dimethyl-3-hexene 96.69846 96.68782 -0.00011 
C8H16 3-ethyl-2-methyl-1-pentene 96.63483 96.61113 -0.00025 
C8H16 2,4,4-trimethyl-1-pentene 96.61293 96.71684 0.00107 
C8H16 2,4,4-trimethyl-2-pentene 96.67590 96.65880 -0.00018 
C10H20 1-decene 120.66423 120.74240 0.00065 
C12H24 1-dodecene 144.97963 145.07163 0.00063 
C16H32 1-hexadecene 193.61043 193.71766 0.00055 

 
Table 15.410.4.  Summary results of alkynes. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C3H4 propyne 29.42932 29.40432 -0.00085 
C4H6 1-butyne 41.58702 41.55495 -0.00077 
C4H6 2-butyne 41.72765 41.75705 0.00070 
C9H16 1-nonyne 102.37552 102.35367 -0.00021 
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Table 15.410.5.   Summary results of alkyl fluorides. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental
Total Bond 
Energy (eV)

Relative 
Error 

CF4 tetrafluoromethane 21.07992 21.016 -0.00303 
CHF3 trifluoromethane 19.28398 19.362 0.00405 
CH2F2 difluoromethane 18.22209 18.280 0.00314 
C3H7F 1-fluoropropane 41.86745 41.885 0.00041 
C3H7F 2-fluoropropane 41.96834 41.963 -0.00012 

 

Table 15.410.6.   Summary results of alkyl chlorides. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental
Total Bond 
Energy (eV)

Relative 
Error 

CCl4 tetrachloromethane 13.43181 13.448 0.00123 
CHCl3 trichloromethane 14.49146 14.523 0.00217 
CH2Cl2 dichloromethane 15.37248 15.450 0.00499 
CH3Cl chloromethane 16.26302 16.312 0.00299 
C2H5Cl chloroethane 28.61064 28.571 -0.00138 
C3H7Cl 1-chloropropane 40.76834 40.723 -0.00112 
C3H7Cl 2-chloropropane 40.86923 40.858 -0.00028 
C4H9Cl 1-chlorobutane 52.92604 52.903 -0.00044 
C4H9Cl 2-chlorobutane 53.02693 52.972 -0.00104 
C4H9Cl 1-chloro-2-methylpropane 52.99860 52.953 -0.00085 
C4H9Cl 2-chloro-2-methylpropane 53.21057 53.191 -0.00037 
C5H11Cl 1-chloropentane 65.08374 65.061 -0.00034 
C5H11Cl 1-chloro-3-methylbutane 65.15630 65.111 -0.00069 
C5H11Cl 2-chloro-2-methylbutane 65.36827 65.344 -0.00037 
C5H11Cl 2-chloro-3-methylbutane 65.16582 65.167 0.00002 
C6H13Cl 2-chlorohexane 77.34233 77.313 -0.00038 
C8H17Cl 1-chlorooctane 101.55684 101.564 0.00007 
C12H25Cl 1-chlorododecane 150.18764 150.202 0.00009 
C18H37Cl 1-chlorooctadecane 223.13384 223.175 0.00018 

 

Table 15.410.7.   Summary results of alkyl bromides. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental
Total Bond 
Energy (eV)

Relative 
Error 

CBr4 tetrabromomethane 11.25929 11.196 -0.00566 
CHBr3 tribromomethane 12.87698 12.919 0.00323 
CH3Br bromomethane 15.67551 15.732 0.00360 
C2H5Br bromoethane 28.03939 27.953 -0.00308 
C3H7Br 1-bromopropane 40.19709 40.160 -0.00093 
C3H7Br 2-bromopropane 40.29798 40.288 -0.00024 
C5H10Br2 2,3-dibromo-2-methylbutane 63.53958 63.477 -0.00098 
C6H13Br 1-bromohexane 76.67019 76.634 -0.00047 
C7H15Br 1-bromoheptane 88.82789 88.783 -0.00051 
C8H17Br 1-bromooctane 100.98559 100.952 -0.00033 
C12H25Br 1-bromododecane 149.61639 149.573 -0.00029 
C16H33Br 1-bromohexadecane 198.24719 198.192 -0.00028 

 

Table 15.410.8.  Summary results of alkyl iodides. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental
Total Bond 
Energy (eV)

Relative 
Error 

CHI3 triiodomethane 10.35888 10.405 0.00444 
CH2I2 diiodomethane 12.94614 12.921 -0.00195 
CH3I iodomethane 15.20294 15.163 -0.00263 
C2H5I iodoethane 27.36064 27.343 -0.00066 
C3H7I 1-iodopropane 39.51834 39.516 -0.00006 
C3H7I 2-iodopropane 39.61923 39.623 0.00009 
C4H9I 2-iodo-2-methylpropane 51.96057 51.899 -0.00119 
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Table 15.410.9.   Summary results of alkene halides. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C2H3Cl chloroethene 22.46700 22.505 0.00170 
C3H5Cl 2-chloropropene 35.02984 35.05482 0.00071 

 
Table 15.410.10.   Summary results of alcohols. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

CH4O methanol 21.11038 21.131 0.00097 
C2H6O ethanol 33.40563 33.428 0.00066 
C3H8O 1-propanol 45.56333 45.584 0.00046 
C3H8O 2-propanol 45.72088 45.766 0.00098 
C4H10O 1-butanol 57.72103 57.736 0.00026 
C4H10O 2-butanol 57.87858 57.922 0.00074 
C4H10O 2-methyl-1-propananol 57.79359 57.828 0.00060 
C4H10O 2-methyl-2-propananol 58.15359 58.126 -0.00048 
C5H12O 1-pentanol 69.87873 69.887 0.00011 
C5H12O 2-pentanol 70.03628 70.057 0.00029 
C5H12O 3-pentanol 70.03628 70.097 0.00087 
C5H12O 2-methyl-1-butananol 69.95129 69.957 0.00008 
C5H12O 3-methyl-1-butananol 69.95129 69.950 -0.00002 
C5H12O 2-methyl-2-butananol 70.31129 70.246 -0.00092 
C5H12O 3-methyl-2-butananol 69.96081 70.083 0.00174 
C6H14O 1-hexanol 82.03643 82.054 0.00021 
C6H14O 2-hexanol 82.19398 82.236 0.00052 
C7H16O 1-heptanol 94.19413 94.214 0.00021 
C8H18O 1-octanol 106.35183 106.358 0.00006 
C8H18O 2-ethyl-1-hexananol 106.42439 106.459 0.00032 
C9H20O 1-nonanol 118.50953 118.521 0.00010 
C10H22O 1-decanol 130.66723 130.676 0.00007 
C12H26O 1-dodecanol 154.98263 154.984 0.00001 
C16H34O 1-hexadecanol 203.61343 203.603 -0.00005 

 
Table 15.410.11.   Summary results of ethers. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C2H6O dimethyl ether 32.84496 32.902 0.00174 
C3H8O ethyl methyl ether 45.19710 45.183 -0.00030 
C4H10O diethyl ether 57.54924 57.500 -0.00086 
C4H10O methyl propyl ether 57.35480 57.355 0.00000 
C4H10O isopropyl methyl ether 57.45569 57.499 0.00075 
C6H14O dipropyl ether 81.86464 81.817 -0.00059 
C6H14O diisopropyl ether 82.06642 82.088 0.00026 
C6H14O t-butyl ethyl ether 82.10276 82.033 -0.00085 
C7H16O t-butyl isopropyl ether 94.36135 94.438 0.00081 
C8H18O dibutyl ether 106.18004 106.122 -0.00055 
C8H18O di-sec-butyl ether 106.38182 106.410 0.00027 
C8H18O di-t-butyl ether 106.36022 106.425 0.00061 
C8H18O t-butyl isobutyl ether 106.65628 106.497 -0.00218 

 



Organic Molecular Functional Groups and Molecules 

 

1077

Table 15.410.12.   Summary results of 1 amines. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

CH5N methylamine 23.88297 23.857 -0.00110 
C2H7N ethylamine 36.04067 36.062 0.00060 
C3H9N propylamine 48.19837 48.243 0.00092 
C4H11N butylamine 60.35607 60.415 0.00098 
C4H11N sec-butylamine 60.45696 60.547 0.00148 
C4H11N t-butylamine 60.78863 60.717 -0.00118 
C4H11N isobutylamine 60.42863 60.486 0.00094 

 

Table 15.410.13.  Summary results of 2 amines. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C2H7N dimethylamine 35.76895 35.765 -0.00012 
C4H11N diethylamine 60.22930 60.211 -0.00030 
C6H15N dipropylamine 84.54470 84.558 0.00016 
C6H15N diisopropylamine 84.74648 84.846 0.00117 
C8H19N dibutylamine 108.86010 108.872 0.00011 
C8H19N diisobutylamine 109.00522 109.106 0.00092 

 

Table 15.410.14.  Summary results of 3 amines. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C3H9N trimethylamine 47.83338 47.761 -0.00152 
C6H15N triethylamine 84.30648 84.316 0.00012 
C9H21N tripropylamine 120.77958 120.864 0.00070 

 

Table 15.410.15.  Summary results of aldehydes. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

CH2O formaldehyde 15.64628 15.655 0.00056 
C2H4O acetaldehyde 28.18711 28.198 0.00039 
C3H6O propanal 40.34481 40.345 0.00000 
C4H8O butanal 52.50251 52.491 -0.00022 
C4H8O isobutanal 52.60340 52.604 0.00001 
C5H10O pentanal 64.66021 64.682 0.00034 
C7H14O heptanal 88.97561 88.942 -0.00038 
C8H16O octanal 101.13331 101.179 0.00045 
C8H16O 2-ethylhexanal 101.23420 101.259 0.00025 

 
Table 15.410.16.  Summary results of ketones. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C3H6O acetone 40.68472 40.672 -0.00031 
C4H8O 2-butanone 52.84242 52.84 -0.00005 
C5H10O 2-pentanone 65.00012 64.997 -0.00005 
C5H10O 3-pentanone 65.00012 64.988 -0.00005 
C5H10O 3-methyl-2-butanone 65.10101 65.036 -0.00099 
C6H12O 2-hexanone 77.15782 77.152 -0.00008 
C6H12O 3-hexanone 77.15782 77.138 -0.00025 
C6H12O 2-methyl-3-pentanone 77.25871 77.225 -0.00043 
C6H12O 3,3-dimethyl-2-butanone 77.29432 77.273 -0.00028 
C7H14O 3-heptanone 89.31552 89.287 -0.00032 
C7H14O 4-heptanone 89.31552 89.299 -0.00018 
C7H14O 2,2-dimethyl-3-pentanone 89.45202 89.458 0.00007 
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Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C7H14O 2,4-dimethyl-3-pentanone 89.51730 89.434 -0.00093 
C8H16O 2,2,4-trimethyl-3-pentanone 101.71061 101.660 -0.00049 
C9H18O 2-nonanone 113.63092 113.632 0.00001 
C9H18O 5-nonanone 113.63092 113.675 0.00039 
C9H18O 2,6-dimethyl-4-heptanone 113.77604 113.807 0.00027 

 
Table 15.410.17.  Summary results of carboxylic acids. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

CH2O2 formic acid 21.01945 21.036 0.00079 
C2H4O2 acetic acid 33.55916 33.537 -0.00066 
C3H6O2 propanoic acid 45.71686 45.727 0.00022 
C4H8O2 butanoic acid 57.87456 57.883 0.00015 
C5H10O2 pentanoic acid 70.03226 69.995 -0.00053 
C5H10O2 3-methylbutanoic acid 70.10482 70.183 0.00111 
C5H10O2 2,2-dimethylpropanoic acid 70.31679 69.989 -0.00468 
C6H12O2 hexanoic acid 82.18996 82.149 -0.00050 
C7H14O2 heptanoic acid 94.34766 94.347 0.00000 
C8H16O2 octanoic acid 106.50536 106.481 -0.00022 
C9H18O2 nonanoic acid 118.66306 118.666 0.00003 
C10H20O2 decanoic acid 130.82076 130.795 -0.00020 
C12H24O2 dodecanoic acid 155.13616 155.176 0.00026 
C14H28O2 tetradecanoic acid 179.45156 179.605 0.00085 
C15H30O2 pentadecanoic acid 191.60926 191.606 -0.00002 
C16H32O2 hexadecanoic acid 203.76696 203.948 0.00089 
C18H36O2 stearic acid 228.08236 228.298 0.00094 
C20H40O2 eicosanoic acid 252.39776 252.514 0.00046 

 
Table 15.410.18.  Summary results of carboxylic acid esters. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C2H4O2 methyl formate 32.71076 32.762 0.00156 
C3H6O2 methyl acetate 45.24849 45.288 0.00087 
C6H12O2 methyl pentanoate 81.72159 81.726 0.00005 
C7H14O2 methyl hexanoate 93.87929 93.891 0.00012 
C8H16O2 methyl heptanoate 106.03699 106.079 0.00040 
C9H18O2 methyl octanoate 118.19469 118.217 0.00018 
C10H20O2 methyl nonanoate 130.35239 130.373 0.00016 
C11H22O2 methyl decanoate 142.51009 142.523 0.00009 
C12H24O2 methyl undecanoate 154.66779 154.677 0.00006 
C13H26O2 methyl dodecanoate 166.82549 166.842 0.00010 
C14H28O2 methyl tridecanoate 178.98319 179.000 0.00009 
C15H30O2 methyl tetradecanoate 191.14089 191.170 0.00015 
C16H32O2 methyl pentadecanoate 203.29859 203.356 0.00028 
C4H8O2 propyl formate 57.76366 57.746 -0.00030 
C4H8O2 ethyl acetate 57.63888 57.548 -0.00157 
C5H10O2 isopropyl acetate 69.89747 69.889 -0.00013 
C5H10O2 ethyl propanoate 69.79658 69.700 -0.00139 
C6H12O2 butyl acetate 81.95428 81.873 -0.00099 
C6H12O2 t-butyl acetate 82.23881 82.197 -0.00051 
C6H12O2 methyl 2,2-dimethylpropanoate 82.00612 81.935 -0.00087 
C7H14O2 ethyl pentanoate 94.11198 94.033 -0.00084 
C7H14O2 ethyl 3-methylbutanoate 94.18454 94.252 0.00072 
C7H14O2 ethyl 2,2-dimethylpropanoate 94.39651 94.345 -0.00054 
C8H16O2 isobutyl isobutanoate 106.44313 106.363 -0.00075 
C8H16O2 propyl pentanoate 106.26968 106.267 -0.00003 



Organic Molecular Functional Groups and Molecules 

 

1079

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C8H16O2 isopropyl pentanoate 106.37057 106.384 0.00013 
C9H18O2 butyl pentanoate 118.42738 118.489 0.00052 
C9H18O2 sec-butyl pentanoate 118.52827 118.624 0.00081 
C9H18O2 isobutyl pentanoate 118.49994 118.576 0.00064 

 
Table 15.410.19.  Summary results of amides. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

CH3NO formamide 23.68712 23.697 0.00041 
C2H5NO acetamide 36.15222 36.103 -0.00135 
C3H7NO propanamide  48.30992 48.264 -0.00094 
C4H9NO butanamide 60.46762 60.449 -0.00030 
C4H9NO 2-methylpropanamide 60.51509 60.455 -0.00099 
C5H11NO pentanamide 72.62532 72.481 -0.00200 
C5H11NO 2,2-dimethylpropanamide 72.67890 72.718 0.00054 
C6H13NO hexanamide  84.78302 84.780 -0.00004 
C8H17NO octanamide 109.09842 109.071 -0.00025 

 

Table 15.410.20.  Summary results of N-alkyl and N,N-dialkyl amides. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C3H7NO N,N-dimethylformamide 47.679454 47.574 0.00221 
C4H9NO N,N-dimethylacetamide 60.14455 59.890 -0.00426 
C6H13NO N-butylacetamide 84.63649 84.590 -0.00055 

 

Table 15.410.21.  Summary results of urea. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

CH4N2O urea 31.35919 31.393 0.00108 
 

Table 15.410.22.  Summary results of acid halide. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C2H3ClO acetyl chloride 28.02174 27.990 -0.00115 
 

Table 15.410.23.  Summary results of acid anhydrides. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C4H6O3 acetic anhydride 56.94096 56.948 0.00013 
C6H10O3 propanoic anhydride 81.25636 81.401 0.00177 

 

Table 15.410.24.  Summary results of nitriles. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C2H3N acetonitrile 25.72060 25.77 0.00174 
C3H5N propanenitrile 37.87830 37.94 0.00171 
C4H7N butanenitrile 50.03600 50.08 0.00082 
C4H7N 2-methylpropanenitrile 50.13689 50.18 0.00092 
C5H9N pentanenitrile 62.19370 62.26 0.00111 
C5H9N 2,2-dimethylpropanenitrile 62.47823 62.40 -0.00132 
C7H13N heptanenitrile 86.50910 86.59 0.00089 
C8H15N octanenitrile 98.66680 98.73 0.00069 
C10H19N decanenitrile 122.98220 123.05 0.00057 
C14H27N tetradecanenitrile 171.61300 171.70 0.00052 
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Table 15.410.25.  Summary results of thiols. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

HS hydrogen sulfide 3.77430 3.653 -0.03320 
H2S dihydrogen sulfide 7.56058 7.605 0.00582 
CH4S methanethiol 19.60264 19.575 -0.00141 
C2H6S ethanethiol 31.76034 31.762 0.00005 
C3H8S 1-propanethiol 43.91804 43.933 0.00035 
C3H8S 2-propanethiol 44.01893 44.020 0.00003 
C4H10S 1-butanethiol 56.07574 56.089 0.00024 
C4H10S 2-butanethiol 56.17663 56.181 0.00009 
C4H10S 2-methyl-1-propanethiol 56.14830 56.186 0.00066 
C4H10S 2-methyl-2-propanethiol 56.36027 56.313 -0.00084 
C5H12S 2-methyl-1-butanethiol 68.30600 68.314 0.00012 
C5H12S 1-pentanethiol 68.23344 68.264 0.00044 
C5H12S 2-methyl-2-butanethiol 68.51797 68.441 -0.00113 
C5H12S 3-methyl-2-butanethiol 68.31552 68.381 0.00095 
C5H12S 2,2-dimethyl-1-propanethiol 68.16441 68.461 0.00433 
C6H14S 1-hexanethiol 80.39114 80.416 0.00031 
C6H14S 2-methyl-2-pentanethiol 80.67567 80.607 -0.00085 
C7H16S 1-heptanethiol 92.54884 92.570 0.00023 
C10H22S 1-decanethiol 129.02194 129.048 0.00020 

 

Table 15.410.26.  Summary results of sulfides. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C2H6S dimethyl sulfide 31.65668 31.672 0.00048 
C3H8S ethyl methyl sulfide 43.81438 43.848 0.00078 
C4H10S diethyl sulfide 55.97208 56.043 0.00126 
C4H10S methyl propyl sulfide 55.97208 56.029 0.00102 
C4H10S isopropyl methyl sulfide 56.07297 56.115 0.00075 
C5H12S butyl methyl sulfide 68.12978 68.185 0.00081 
C5H12S t-butyl methyl sulfide 68.28245 68.381 0.00144 
C5H12S ethyl propyl sulfide 68.12978 68.210 0.00117 
C5H12S ethyl isopropyl sulfide 68.23067 68.350 0.00174 
C6H14S diisopropyl sulfide 80.48926 80.542 0.00065 
C6H14S butyl ethyl sulfide 80.28748 80.395 0.00133 
C6H14S methyl pentyl sulfide 80.28748 80.332 0.00056 
C8H18S dibutyl sulfide 104.60288 104.701 0.00094 
C8H18S di-sec-butyl sulfide 104.80466 104.701 -0.00099 
C8H18S di-t-butyl sulfide 104.90822 104.920 0.00011 
C8H18S diisobutyl sulfide 104.74800 104.834 0.00082 
C10H22S dipentyl sulfide 128.91828 128.979 0.00047 
C10H22S diisopentyl sulfide 129.06340 129.151 0.00068 

 

Table 15.410.27.  Summary results of disulfides. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C2H6S2 dimethyl disulfide 34.48127 34.413 -0.00199 
C4H10S2 diethyl disulfide 58.79667 58.873 0.00129 
C6H14S2 dipropyl disulfide 83.11207 83.169 0.00068 
C8H18S2 di-t-butyl disulfide 107.99653 107.919 -0.00072 
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Table 15.410.28.  Summary results of sulfoxides. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C2H6SO dimethyl sulfoxide 35.52450 35.435 -0.00253 
C4H10SO diethyl sulfoxide 59.83990 59.891 0.00085 
C6H14SO dipropyl sulfoxide 84.15530 84.294 0.00165 

 
Table 15.410.29.  Summary results of sulfones. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C2H6SO2 dimethyl sulfone 40.27588 40.316 0.00100 
 
Table 15.410.30.  Summary results of sulfites. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C2H6SO3 dimethyl sulfite 43.95058 44.042 0.00207 
C4H10SO3 diethyl sulfite 68.54939 68.648 0.00143 
C8H18SO3 dibutyl sulfite 117.18019 117.191 0.00009 

 
Table 15.410.31.  Summary results of sulfates. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C2H6SO4 dimethyl sulfate 48.70196 48.734 0.00067 
C4H10SO4 diethyl sulfate 73.30077 73.346 0.00061 
C6H14SO4 dipropyl sulfate 97.61617 97.609 -0.00008 

 
Table 15.410.32.  Summary results of nitro alkanes. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

CH3NO2 nitromethane 25.14934 25.107 -0.00168 
C2H5NO2 nitroethane 37.30704 37.292 -0.00040 
C3H7NO2 1-nitropropane 49.46474 49.451 -0.00028 
C3H7NO2 2-nitropropane 49.56563 49.602 0.00074 
C4H9NO2 1-nitrobutane 61.62244 61.601 -0.00036 
C4H9NO2 2-nitroisobutane 61.90697 61.945 0.00061 
C5H11NO2 1-nitropentane 73.78014 73.759 -0.00028 

 
Table 15.410.33.  Summary results of nitrite. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

CH3NO2 methyl nitrite 24.92328 24.955 0.00126 
 
Table 15.410.34.  Summary results of nitrate. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental
Total Bond 
Energy (eV)

Relative 
Error 

CH3NO3 methyl nitrate 28.18536 28.117 -0.00244 
C2H5NO3 ethyl nitrate 40.34306 40.396 0.00131 
C3H7NO3 propyl nitrate 52.50076 52.550 0.00093 
C3H7NO3 isopropyl nitrate 52.60165 52.725 0.00233 
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Table 15.410.35.  Summary results of conjugated alkenes. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental
Total Bond 
Energy (eV)

Relative 
Error 

C5H8 cyclopentene 54.83565 54.86117 0.00047 
C4H6 1,3 butadiene 42.09159 42.12705 0.00084 
C5H8 1,3 pentadiene 54.40776 54.42484 0.00031 
C5H8 1,4 pentadiene 54.03745 54.11806 0.00149 
C5H6 1,3 cyclopentadiene 49.27432 49.30294 0.00058 

 
Table 15.410.36.  Summary results of aromatics and heterocyclic aromatics. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental
Total Bond 
Energy (eV)

Relative 
Error 

C6H6 benzene 57.26008 57.26340 0.00006 
C6H5Cl fluorobenzene 57.93510 57.887 -0.00083 
C6H5Cl chlorobenzene 56.55263 56.581 0.00051 
C6H4Cl2 m-dichlorobenzene 55.84518 55.852 0.00012 
C6H3Cl3 1,2,3-trichlorobenzene 55.13773 55.077 -0.00111 
C6H3Cl3 1,3,5-trichlorobenzene 55.29542 55.255 -0.00073 
C6Cl6 hexachlorobenzene 52.57130 52.477 -0.00179 
C6H5Br bromobenzene 56.17932 56.391a 0.00376 
C6H5I iodobenzene 55.25993 55.261 0.00001 
C6H5NO2 nitrobenzene 65.18754 65.217 0.00046 
C7H8 toluene 69.48425 69.546 0.00088 
C7H6O2 benzoic acid 73.76938 73.762 -0.00009 
C7H5ClO2 2-chlorobenzoic acid 73.06193 73.082 0.00027 
C7H5ClO2 3-chlorobenzoic acid 73.26820 73.261 -0.00010 
C6H7N aniline 64.43373 64.374 -0.00093 
C7H9N 2-methylaniline 76.62345 76.643 -0.00025 
C7H9N 3-methylaniline 76.62345 76.661 0.00050 
C7H9N 4-methylaniline 76.62345 76.654 0.00040 
C6H6N2O2 2-nitroaniline 72.47476 72.424 -0.00070 
C6H6N2O2 3-nitroaniline 72.47476 72.481 -0.00009 
C6H6N2O2 4-nitroaniline 72.47476 72.476 -0.00002 
C7H7NO2 aniline-2-carboxylic acid 80.90857 80.941 0.00041 
C7H7NO2 aniline-3-carboxylic acid 80.90857 80.813 -0.00118 
C7H7NO2 aniline-4-carboxylic acid 80.90857 80.949 0.00050 
C6H6O phenol 61.75817 61.704 -0.00087 
C6H4N2O5 2,4-dinitrophenol 77.61308 77.642 0.00037 
C6H8O anisole 73.39006 73.355 -0.00047 
C10H8 naphthalene 90.74658 90.79143 0.00049 
C4H5N pyrrole 44.81090 44.785 -0.00057 
C4H4O furan 41.67782 41.692 0.00033 
C4H4S thiophene 40.42501 40.430 0.00013 
C3H4N2 imidazole 39.76343 39.74106 -0.00056 
C5H5N pyridine 51.91802 51.87927 -0.00075 
C4H4N2 pyrimidine 46.57597 46.51794 -0.00125 
C4H4N2 pyrazine 46.57597 46.51380 0.00095 
C9H7N quinoline 85.40453 85.48607 0.00178 
C9H7N isoquinoline 85.40453 85.44358 0.00046 
C8H7N indole 78.52215 78.514 -0.00010 

a Liquid. 
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Table 15.410.37.  Summary results of DNA bases. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C5H5N5 adenine 70.85416 70.79811 -0.00079 
C5H6N2O2 thymine 69.08792 69.06438 -0.00034 
C5H5N5O guanine 76.88212 77.41849 -0.00055 
C4H5N3O cytosine 59.53378 60.58056 0.01728 

 
Table 15.410.38.  Summary results of alkyl phosphines. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C3H9P trimethylphosphine 45.80930 46.87333 0.02270 
C6H15P triethylphosphine 82.28240 82.24869 -0.00041 
C18H15P triphenylphosphine 168.40033 167.46591 -0.00558 

 
Table 15.410.39.  Summary results of alkyl phosphites. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C3H9O3P trimethyl phosphite 61.06764 60.94329 -0.00204 
C6H15O3P triethyl phosphite 98.12406 97.97947 -0.00148 
C9H21O3P tri-isopropyl phosphite 134.89983 135.00698 0.00079 

 

Table 15.410.40.  Summary results of alkyl phosphine oxides. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C3H9PO trimethylphosphine oxide 53.00430 52.91192 -0.00175 
 

Table 15.410.41.  Summary results of alkyl phosphates. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C6H15O4P triethyl phosphate 105.31906 104.40400 -0.00876 
C9H21O4P tri-n-propyl phosphate 141.79216 140.86778 -0.00656 
C9H21O4P tri-isopropyl phosphate 142.09483 141.42283 -0.00475 
C9H27O4P tri-n-butyl phosphate 178.26526 178.07742 -0.00105 

 

Table 15.410.42.  Summary results of monosaccharides of DNA and RNA. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C5H10O4 2-deoxy-D-ribose 77.25842  
C5H10O5 D-ribose  81.51034 83.498a 0.02381 
C5H10O4 alpha-2-deoxy-D-ribose 77.46684  
C5H10O5 alpha-D-ribose 82.31088  

a Crystal 
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Table 15.410.43.  Summary results of amino acids. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

C4H7NO4 aspartic acid  68.98109 70.843a 0.02628 
C5H9NO4 glutamic acid 81.13879 83.167a 0.02438 
C3H7NO4S cysteine 55.02457 56.571a 0.02733 
C6H14N2O2 lysine 95.77799 98.194a 0.02461 
C6H14N2O2 arginine  105.07007 107.420a 0.02188 
C6H9N3O2 histidine 88.10232 89.599a 0.01671 
C4H8N2O2 asparagine 71.57414 73.513a 0.02637 
C5H10N2O2 glutamine 83.73184 85.843a 0.02459 
C4H9NO3 threonine 68.95678 71.058a 0.02956 
C9H11NO3 tyrosine 109.40427 111.450a 0.01835 
C3H7NO3 serine 56.66986 58.339a 0.02861 
C11H12N2O2 tryptophan 126.74291 128.084a 0.01047 
C9H11NO2 phenylalanine 104.90618 105.009 0.00098 
C5H9NO2 proline 71.76826 71.332 -0.00611 
C5H9NO2 methionine 79.23631 79.214 -0.00028 
C6H13NO2 leucine 89.12115 89.047 -0.00083 
C6H13NO2 isoleucine 89.02978 90.612 0.01746 
C6H13NO2 valine 76.87208 76.772 -0.00130 
C3H7NO2 alanine 52.57549 52.991 0.00785 
C2H5NO2 glycine 40.28857 40.280 -0.00021 

a Crystal 
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Chapter 16 
  
APPLICATIONS: PHARMACEUTICALS, SPECIALTY 
MOLECULAR FUNCTIONAL GROUPS AND MOLECULES, 
DIPOLE MOMENTS AND INTERACTIONS 
  
 
 
 
 
GENERAL CONSIDERATIONS OF THE BONDING IN PHARMACEUTICALS  
AND SPECIALTY MOLECULES 
Pharmaceutical and specialty molecules comprising an arbitrary number of atoms can be solved using similar principles and 
procedures as those used to solve general organic molecules of arbitrary length and complexity.  Pharmaceuticals and specialty 
molecules can be considered to be comprised of functional groups such as those of alkanes, branched alkanes, alkenes, branched 
alkenes, alkynes, alkyl fluorides, alkyl chlorides, alkyl bromides, alkyl iodides, alkene halides, primary alcohols, secondary 
alcohols, tertiary alcohols, ethers, primary amines, secondary amines, tertiary amines, aldehydes, ketones, carboxylic acids, 
carboxylic esters, amides, N-alkyl amides, N,N-dialkyl amides, ureas, acid halides, acid anhydrides, nitriles, thiols, sulfides, 
disulfides, sulfoxides, sulfones, sulfites, sulfates, nitro alkanes, nitrites, nitrates, conjugated polyenes, aromatics, heterocyclic 
aromatics, substituted aromatics, and others given in the Organic Molecular Functional Groups and Molecules section.  The 
solutions of the functional groups can be conveniently obtained by using generalized forms of the geometrical and energy 
equations.  The functional-group solutions can be made into a linear superposition and sum, respectively, to give the solution of 
any pharmaceutical or specialty molecule comprising these groups.  The total bond energies of exemplary pharmaceutical or 
specialty molecules such as aspirin, RDX, and NaH are calculated using the functional group composition and the corresponding 
energies derived in the previous sections as well as those of any new component functional groups derived herein. 

 
ASPIRIN (ACETYLSALICYLIC ACID) 
Aspirin comprises salicylic acid (ortho-hydroxybenzoic acid) with the H  of the phenolic OH  group replaced by an acetyl 
group.  Thus, aspirin comprises the benzoic acid ( )C C O OH   moiety that comprises C O  and OH  functional groups that 
are the same as those of carboxylic acids given in the corresponding section.  The single bond of aryl carbon to the carbonyl 

carbon atom, ( )C C O , is also a functional group given in the Benzoic Acid Compounds section.  The aromatic 
3e

C C  and 
C H  functional groups are equivalent to those of benzene given in the Aromatic and Heterocyclic Compounds section.  The 
phenolic ester C O  functional group is equivalent to that given in the Phenol section.  The acetyl 3( )O C O CH   moiety 

comprises (i) C O  and C C  functional groups that are the same as those of carboxylic acids and esters given in the 
corresponding sections, (ii) a 3CH  group that is equivalent to that of alkanes given in the corresponding sections, (iii) and a 

C O  bridging the carbonyl carbon and the phenolic ester which is equivalent to that of esters given in the corresponding 
section.   

The symbols of the functional groups of aspirin are given in Table 16.1.   
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The corresponding designations of aspirin are shown in Figure 16.1B.  The geometrical (Eqs. (15.1-15.5) and (15.51)), 
intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of aspirin are given in Tables 16.2, 
16.3, and 16.4, respectively.  The total energy of aspirin given in Table 16.5 was calculated as the sum over the integer multiple 
of each  GroupDE  of Table 16.4 corresponding to functional-group composition of the molecule.  The bond angle parameters of 

aspirin determined using Eqs. (15.88-15.117) are given in Table 16.6.  The color scale, translucent view of the charge density of 
aspirin comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined 

with one or more hydrogen MOs is shown in Figure 16.1A. 
 
Figure 16.1.   (A) Color scale, translucent view of the charge density of aspirin showing the orbitals of the atoms at their radii, 
the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) 

participating in each bond, and the hydrogen nuclei (red, not to scale).  (B) Chemical structure and designation of aspirin. 
 

 
 
 
Table 16.1.   The symbols of functional groups of aspirin. 

 
Functional Group Group Symbol

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  
Aryl C-C(O) ( )C C O  (i) 

Alkyl C-C(O) ( )C C O  (ii) 

C=O (aryl carboxylic acid) C O  
Aryl (O)C-O C O  (i) 
Alkyl (O)C-O C O  (ii) 
Aryl C-O C O  (iii) 
OH group OH  

CH3 group 3CH  
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CYCLOTRIMETHYLENE-TRINITRAMINE ( 3 6 6 6C H N O ) 
The compound cyclotrimethylene-trinitramine, commonly referred to as Cyclonite or by the code designation RDX, is a well-
known explosive.  RDX comprises three methylene ( 2CH ) groups joined by six alkyl C N  secondary amine functional groups 

given in the corresponding section.  Each of the three N ’s of the six-membered ring shown in Figure 16.2B is bonded to a 2NO  

functional group given in the Nitroalkanes section by a N N  functional group.  The latter requires hybridization of the nitrogen 
atoms in order to match the energies of the bridged groups. 

Similar to the case of carbon, silicon, and aluminum, the bonding in the nitrogen of the N N  functional group involves 

four 3sp  hybridized orbitals formed from the outer 2 p  and 2s  shells.  In RDX, bonds form between two 32N sp  HOs ( N N  

functional group), between a 32N sp  HO and a 32C sp  HO ( C N  functional group), and between a 32N sp  HO and a 2O p  AO 

(each N O  bond of the 2NO  functional group).  The geometrical and energy equations of the N N  functional group are 

given in the Derivation of the General Geometrical and Energy Equations of Organic Chemistry section wherein the energy is 

matched to  3, 2 14.63489 E C sp eV   (Eq. (15.25)). 

The 32sp  hybridized orbital arrangement after Eq. (13.422) is: 
 

 

3                2sp  state

                       

 0,0       1,-1      1,0       1,1

     (16.1) 

 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the five 

electrons.  The sum  3,2TE N sp  of experimental energies [15] of N , N  , 2N  , 3N  , and 4N   is: 

  3 97.8902 77.4735 47.44924 
,2

29.6013 14.53414 

266.94838 

T

eV eV eV
E N sp

eV eV

eV

  
    
 

 (16.2) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 32sp
r  of the 

32N sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 26

02
2 0 0

( ) 15
0.76452

8 266.94838 8 266.94838 sp
n

Z n e e
r a

e eV e eV 


    (16.3) 

where 7Z   for nitrogen.  Using Eq. (15.14), the Coulombic energy  3,2CoulombE N sp  of the outer electron of the 32N sp  shell 

is: 

  
3

2 2
3

0 0 02

, 2 17.79656 
8 8 0.76452Coulomb

sp

e e
E N sp eV

r a 
 

     (16.4) 

In RDX, the 32C sp  HO has a hybridization factor of 0.91771  (Eq. (13.430)) with a corresponding energy of 

 3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the N  HO has an energy of  3, 2 17.79656 E N sp eV   (Eq. (16.4)).  To meet 

the equipotential, minimum-energy condition of the union of the 32N sp  and 32C sp  HOs, 2 1C   in Eqs. (15.2-15.5), (15.51), 

and (15.61) for the N N -bond MO, and 2c  given by Eqs. (15.77) and (15.79) is: 

    
     

3

3 3 3 3
2 23

, 2 14.63489 
2   2   2 2 0.91771 0.75468

17.79656 , 2
b a

E C sp eV
c C sp HO to N sp HO to N sp HO c C sp HO

eVE N sp


  


 (16.5) 

The energy of the N N -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in Eq. (15.51).  

Since the energy of the MO is matched to that of the 32C sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is: 

 3, 2 14.63489 E C sp eV   given by Eq. (15.25) and  3, .TE atom atom msp AO  is 0 eV . 

The symbols of the functional groups of RDX are given in Table 16.7.  The geometrical (Eqs. (15.1-15.5) and (15.51)), 
intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of RDX are given in Tables 16.8, 
16.9, and 16.10, respectively.  The total energy of RDX given in Table 16.11 was calculated as the sum over the integer multiple 
of each  GroupDE  of Table 16.10 corresponding to functional-group composition of the molecule.  The bond angle parameters of 

RDX determined using Eqs. (15.88-15.117) are given in Table 16.12.  The color scale charge density of RDX comprising atoms 
with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in 

Figure 16.2A. 
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Figure 16.2.   (A) Color scale charge density of RDX showing the outer orbitals of the atoms at their radii and the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond.  (B) Chemical structure and atom designation of RDX. 
 
 
 

 
 
 
 
Table 16.7.    The symbols of functional groups of RDX. 
 

Functional Group Group Symbol

NO2 group 2NO  

N-N N N  
C-N (alkyl) C N  

CH2 group  2 C H CH  

 
Table 16.8.   The geometrical bond parameters of RDX and experimental values [1]. 
 

Parameter 
2NO  

Group 

N N  
Group 

C N  
Group 

 2 C H CH  

Group 
 0 a a  1.33221 1.68711 1.94862 1.67122 

 0'  c a  1.15421 1.29889 1.39593 1.05553 

Bond Length 

 2 '  c Å  1.22157 1.37468 1.47739 1.11713 

Exp. Bond Length 
1.224 

(nitromethane) 
1.22 avg. [16] 

(RDX) 

1.390 [16] 
(RDX) 

1.468 [16] 
(RDX) 

1.107 
( C H  propane) 

1.117 
( C H  butane) 

1.092 [16] 
(RDX) 

 0,  b c a  0.66526 1.07668 1.35960 1.29569 

e  0.86639 0.76989 0.71637 0.63159 
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Table 16.10.   The energy parameters (eV) of functional groups of RDX. 
 

Parameters 
2NO  

Group

N N  
Group 

C N  
Group 

2CH  

Group

1n  2 1 1 2 

2n  0 0 0 1 

3n  0 0 0 0 

1C  0.5 0.5 0.5 0.75 

2C  1 1 1 1 

1c  1 1 1 1 

2c  0.85987 0.75468 0.91140 0.91771 

3c  0 0 0 1 

4c  4 2 2 1 

5c  0 0 0 2 

1oC  0.5 0.5 1 0.75 

2oC  1 1 1 1 

 ( )eV eV  -106.90919 -32.25503 -31.98456 -70.41425 

 ( )pV eV  23.57588 10.47496 9.74677 25.78002 

 ( )T eV  40.12475 9.55926 8.20698 21.06675 

 ( )mV eV  -20.06238 -4.77963 -4.10349 -10.53337 

 /  ( )AO HOE eV  0 -14.63489 -14.63489 -15.56407 
 

2
/  ( )AO HOH MOE eV  0 0 -1.13379 0 

 /  ( )AO HOTE eV  0 -14.63489 -13.50110 -15.56407 

 2  ( )H MOTE eV  -63.27093 -31.63533 -31.63540 -49.66493 

 3, .  ( )TE atom atom msp AO eV  -3.71673 0 -1.13379 0 

   ( )MOTE eV  -66.98746 -31.63537 -32.76916 -49.66493 

 15 10  /rad s  19.0113 26.1663 26.0778 24.2751 

 ( )KE eV  12.51354 17.22313 17.16484 15.97831 

 ( )DE eV  -0.23440 -0.25974 -0.26859 -0.25017 

 ( )KvibE eV  0.19342 
[17]

0.12770 
[18]

0.11159 
[19] 

0.35532 
(Eq. (13.458))

 ( )oscE eV  -0.13769 -0.19588 -0.21280 -0.14502 

 ( )magE eV  0.11441 0.14803 0.14803 0.14803 

   ( )GroupTE eV  -67.26284 -31.83125 -32.98196 -49.80996 

 4  /  ( )c AO HOinitialE eV   -14.63489 -14.63489 -14.63489 -14.63489 

 5  /  ( )c AO HOinitialE eV  0 0 0 -13.59844 

   ( )GroupDE eV  8.72329 2.56147 3.71218 7.83016 

Exp.    ( )GroupDE eV   Est. 2.86, 2.08 [20] 3.69 [20]  

 
Table 16.11.   The total bond energy of gaseous-state RDX calculated using the functional group composition and the 
energies of Table 16.10. 
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SODIUM HYDRIDE MOLECULE (NaH ) 
Alkali hydride molecules each comprising an alkali metal atom and a hydrogen atom can be solved using similar principles and 
procedures as those used to solve organic molecules.  The solutions of these molecules can be conveniently obtained by using 
generalized forms of the force balance equation given in the Force Balance of the   MO of the Carbon Nitride Radical section 
and the geometrical and energy equations given in the Derivation of the General Geometrical and Energy Equations of Organic 
Chemistry section. 

The bonding in the sodium atom involves the outer 3s  atomic orbital (AO), and the Na H  bond forms between the 
3Na s  AO and the 1H s  AO.  The energy of the reactive outer electron of the sodium atom is significantly less than the 

Coulombic energy between the electron and proton of H  given by Eq. (1.276).  Consequently, the outer electron comprising the 
3Na s  AO and the 1H s  AO form a  -MO, and the inner AOs of Na  remain unaltered.  The MO semimajor axis of molecular 

sodium hydride is determined from the force balance equation of the centrifugal, Coulombic, and magnetic forces as given in the 
Polyatomic Molecular Ions and Molecules section and the More Polyatomic Molecules and Hydrocarbons section.  Then, the 
geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117) wherein the distance from the origin of the 

2H -type-ellipsoidal-MO to each focus 'c , the internuclear distance 2 'c , and the length of the semiminor axis of the prolate 

spheroidal 2H -type MO b c  are solved from the semimajor axis a. 

The force balance of the centrifugal force equated to the Coulombic and magnetic forces is solved for the length of the 
semimajor axis.  The Coulombic force on the pairing electron of the MO is: 

 
2

2
08Coulomb

e
D

ab 
F i  (16.6) 

The spin pairing force is 

 
2

2 22spin pairing
e

D
m a b  F i


 (16.7) 

The diamagnetic force is: 

 
2

1 2 24
e

diamagneticMO
e

n
D

m a b  F i


 (16.8) 

where en  is the total number of electrons that interact with the binding  -MO electron.  The diamagnetic force 2diamagneticMOF  on 

the pairing electron of the   MO is given by the sum of the contributions over the components of angular momentum:  

 2 2 2
, 2

i
diamagneticMO

i j j e

L
D

Z m a b  F i


 (16.9) 

where L  is the magnitude of the angular momentum of each atom at a focus that is the source of the diamagnetism at the  -

MO.  The centrifugal force is:  

 
2

2 2centrifugalMO
e

D
m a b  F i


 (16.10) 

The force balance equation for the  -MO of the Na H -bond MO with 2en   and 
3

2
4

L
 

   
 

  is: 

 
2 2 2 2

2 2 2 2 2 2 2
0

3
2 2 4

8 2 2 2e e e

e
D D D D

m a b ab m a b Z Z m a b

 
 
     
 

  
 (16.11) 

 0

3
2 42a a
Z Z

 
 
   
 

 (16.12) 

With 11Z  , the semimajor axis of the Na H -bond MO is: 
 02.26055a a  (16.13) 

Using the semimajor axis, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117) in the 
same manner as the organic functional groups given in the Organic Molecular Functional Groups and Molecules section.  For the 
Na H -bond MO of the NaH , 1 1c  , 2 1c   and 2 1C   in both the geometry relationships (Eqs. (15.2-15.5)) and the energy 

equation (Eq. (15.61)).  In NaH  the molecule, the 3Na s  AO has an energy of  3 5.139076 E Na s eV   [15] and the H  AO 

has an energy of   13.59844 E H eV   [15].  To meet the equipotential condition of the union of the 3Na s  AO and the 1H s  

AO, 2c  and 2C  of Eqs. (15.2-15.5) and Eq. (15.61) for the Na H -bond MO given by Eq. (15.77) is: 
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    2 2

5.139076 
3    1  3    1  0.37792

13.59844 

eV
C Na s AO to H s AO c Na s AO to H s AO

eV


  


 (16.14) 

The energy of the MO is matched to that of the 2Na p  AO with which it intersects such that  /E AO HO  is 

 2 47.2864 E Na p eV   [15]; thus,  4 /  ( )initialE c AO HO eV  is given by the sum of  2 47.2864 E Na p eV   and 

 3 5.139076 E Na s eV  . 

The symbol of the functional group of molecular NaH  is given in Table 16.13.  The geometrical (Eqs. (15.1-15.5) and 
(16.11-16.14)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.61-15.65) and (16.13-16.14)) parameters of molecular NaH  
are given in Tables 16.14, 16.15, and 16.16, respectively.  The color scale, translucent view of the charge-densities of molecular 
NaH  comprising the concentric shells of the inner AOs of the Na  atom and an outer MO formed from the outer 3Na s  AO and 
the 1H s  AO are shown in Figure 16.3.  
 
Figure 16.3.   Color scale, translucent view of the charge-densities of molecular NaH  showing the inner orbitals of the Na  
atom at their radii, the ellipsoidal surface of the 2H -type ellipsoidal MO formed from the outer 3Na s  AO and the 1H s  AO H , 
and the hydrogen nucleus (red, not to scale). 
 

 
 
 
 
 
 
 
 
 
 
 
 
Table 16.13.   The symbol of the functional group of molecular NaH . 
 

Functional Group Group Symbol
NaH group Na H  

 
Table 16.14.   The geometrical bond parameters of molecular NaH  and experimental values [20]. 
 

Parameter Na H  
Group

 0 a a  2.26055 

 0'  c a  1.72939 

Bond Length  2 '  c Å  1.83031 

Exp. Bond Length 

 Å  
1.88654 
 NaH  

 0,  b c a  1.45577 
e  0.76503
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Table 16.16.   The energy parameters (eV) of the Na–H functional group of molecular NaH. 
 
 

Parameters Na H  Group 

1n  1 

2n  0 

3n  0 

1C  0.37792 

2C  1 

1c  1 

2c  1 

3c  0 

4c  1 

5c  1 

1oC  0.37792 

2oC  1 

 ( )eV eV  -31.72884 

 ( )pV eV  7.86738 

 ( )T eV  7.01795 

 ( )mV eV  -3.50898 

 /  ( )AO HOE eV  -47.2864 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  -47.2864 

 2  ( )H MOTE eV  -67.63888 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -67.63888 

 15 10  /rad s  14.4691 [20] 

 ( )KE eV  9.52384 

 ( )DE eV  -0.41296 

 ( )KvibE eV  0.14534 

 ( )oscE eV  -0.34029 

 ( )magE eV  0.11441 

   ( )GroupTE eV  -67.97917 

 4  /  ( )c AO HOinitialE eV   -52.425476 

 5  /  ( )c AO HOinitialE eV  -13.59844 

   ( )GroupDE eV  1.95525 

Exp.    ( )GroupDE eV  1.92451 ( Na H  [21]) 

 

  



Applications: Pharmaceuticals, Specialty Molecular Functional Groups and Molecules,  
Dipole Moments and Interactions 

 

1103

BOND AND DIPOLE MOMENTS 
The bond moment of a functional group may be calculated by considering the charge donation between atoms of the functional 
group.  Since the potential of an MO is that of a point charge at infinity (Eq. (11.36)), an asymmetry in the distribution of charge 
between nonequivalent HOs or AOs of the MO occurs to maintain an energy match of the MO with the bridged orbitals.  The 
charge must redistribute between the spherical orbitals to achieve a corresponding current-density that maintains constant current 
at the equivalent-energy condition according to the energy-matching factor such as 2c  or 2C  of Eqs. (15.51) and (15.61).  Since 

the orbital energy and radius are reciprocally related, the contribution scales as the square of the ratio (over unity) of the energy 
of the resultant net positively-charged orbital and the initial matched energy of the resultant net negatively-charged orbital of the 
bond multiplied by the energy-matching factor (e.g. 2c  or 2C ).  The partial charges on the HOs or AOs corresponding to the 

charge contribution are equivalent to point charges centered on the nuclei.  Due to symmetry, the bond moment   of each 
functional group is along the internuclear axis and is calculated from the partial charges at the separation distance, the 
internuclear distance.  

Using the reciprocal relationship between the orbital energies and radii, the dependence of the orbital area on the radius 
squared, and the relationship of the partial charge q  to the areas with energy matching for each electron of the MO, the bond 
moment   along the internuclear axis of A B  wherein A  is the net positively-charged atom is given by: 

 
 
 

2

1 1 2 'A

B

E valence
qd n ce c

E valence


  
         

 (16.15) 

wherein 1n  is the number of equivalent bonds of the MO, c  is energy-matching factor such as 1c , 2c , 1C , or 2C  of Eqs. (15.51) 

and (15.61) where 1c  and 2C  may correspond to both electrons of a MO localized on one AO or HO such as when the magnitude 

of the valence or Coulombic energy of the AO or HO is less than that of   13.605804 CoulombE H eV   or when the orbital may 

contain paired or shared electrons in a linear combination with the partner orbital, and d  is the charge-separation distance, the 
internuclear distance 2 'c .   BE valence  is the initial matched energy of the resultant net negatively-charged orbital of the bond 

that is further lowered by bonding (Eqs. (15.32) and (15.16)) to atom A  having an energy  AE valence .  Typically, 

 BE valence  of a carbon-heteroatom bond is 14.63489 eV , the initial 32C sp  HO (Eq. (15.25)) energy to which the 

heteroatom is energy matched.  Functional group bond moments determined using Eq. (16.15) are given in Table 16.17. 
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Table 16.17. The bond moments of functional groups compared to experimental values [22–87] wherein the parameters 
correspond to those given previously except as indicated. 
 

Functional Group a 1n  ( 1c ) 2c  ( 1C ) 2C   BE valence   AE valence

 

q

e
 

Bond  
Length 

 2 '  c Å  

Bond 
Moment 
  (D) 

Exp. Bond 
Moment 
  (D) 

H C  (alkyl) 1 0.91771 1 14.63489 15.35946 0.070 1.11713 0.37 0.4 
H C  (aromatic) 1 0.91771 1 15.95955 15.95955 0 1.09327 0 0 

—H N b (amine) 1 0.78896 1 13.59844 15.81768 0.279 1.00343 1.34 1.31 

—H N c (ammonia) 1 0.74230 1 13.59844 15.81768 0.262 1.03677 1.30 1.31 

—H O d (alcohol) 1 0.91771 1 13.59844 15.81768 0.324 0.97165 1.51 1.51 

—H O e (water) 1 0.91419 1 13.59844 15.81768 0.323 0.97157 1.51 1.51 

C N  1 0.91140 1 14.53414 14.82575 0.037 1.46910 0.26 0.22 
C O  1 0.85395 1 14.63489 15.56407 0.112 1.41303 0.76 0.74 

C F f 1 1.09254b 1 14.63489 15.98435 0.211 1.38858 1.41 1.41 

C Cl  1 1 (2)0.81317 14.63489 15.35946 0.165 1.79005 1.42 1.46 
C Br  1 1 (2)0.74081 14.63489 15.35946 0.150 1.93381 1.40 1.38 

C I g 1 1 (2)0.65537 14.63489 15.28545 0.119 2.13662 1.22 1.19 

C O  2 0.85395 1 14.63489 16.20002 0.385 1.20628 2.23 2.3 
C N  3 0.91140 1 14.63489 16.20002 0.616 1.16221 3.44 3.5 

H S h 1 0.69878 1 14.63489 15.81768 0.118 1.34244 0.76 0.69 

C S  1 1 0.91771 14.63489 15.35946 0.093 1.81460 0.81 0.9 
S O  1 1 0.77641 14.63489 15.76868 0.125 1.56744 0.94 1.0 

S O i 2 0.82897 1 10.36001 11.57099 0.410 1.49118 2.94 2.93 

N O  1 1.06727 1 14.53414 14.82575 0.043 1.40582 0.29 0.30 
N O  (nitro) 2 0.91140 1 14.63489 15.95955 0.345 1.22157 2.02 2.01 
C P  1 1 0.73885 14.63489 15.35946 0.075 1.86534 0.67 0.69 
P O  1 0.79401 1 14.63489 15.35946 0.081 1.61423 0.62 0.60 

P O j 2 1.25942 1 14.63489 15.76868 0.405 1.46521 2.85 2.825 

Si H  1 1 0.75800 10.25487 11.37682 0.131 1.48797 0.94 0.99 
Si C  1 1 0.70071 14.63489 15.35946 0.071 1.87675 0.64 0.60 

Si O k 1 1 1.32796 10.25487 10.87705 0.166 1.72480 1.38 1.38 

B H l 1 1.14361 1 11.80624 12.93364 0.172 1.20235 0.99 1.0 
B C  1 0.80672 1 14.63489 15.35946 0.082 1.57443 0.62 0.69 
B O  (alkoxy) 1 1 0.79562 11.80624 12.93364 0.159 1.37009 1.05 0.93 
B N  1 1 0.81231 11.89724 14.53414 0.400 1.36257 2.62 2.68 

B F m 1 0.85447 1 14.88734 17.42282 0.316 1.29621 1.97 1.903 
B Cl  1 1 0.91044 11.80624 12.93364 0.182 1.76065 1.54 1.58 

a The more positive atom is on the left. 

b 
2

c  from Eqs. (15.77), (15.79), and Eq. (13.430) and  AE valence  is given by 1/2 two 2H -type ellipsoidal MOs (Eq. (11.212)). 
c 

2
c  from Eqs. (15.77), (15.79), and the product of 0.936127 (Eq. (13.248)) and 0.92235 given by 13.59844 / (13.59844 0.25 )DeV eV E   where DE  is 

the N H  bond energy 14
3 4.57913 DE NH eV 

 
 

  given by Eq. (13.404) and the energy of H  is 13.59844  eV ;  AE valence  is given by 1/2 two 

2H -type ellipsoidal MOs (Eq. (11.212)). 
d  AE valence  is given by 1/2 two 2H -type ellipsoidal MOs (Eq. (11.212)). 
e 

2
c  from Eqs. (15.77) given by 13.59844 / (13.59844 0.25 )DeV eV E   where DE  is the O H  bond energy 16( ) 5.1059 DE H OH eV  given by 

Eq. (13.222) and the energy of H  is 13.59844  eV ;  AE valence  is given by 1/2 two 2H -type ellipsoidal MOs (Eq. (11.212)). 
f Eq. (15.129) with the inverse energy ratio of   17.42282 E F eV   and  3, 2 14.63489 E C sp eV   corresponding to the higher binding energy of 

the former. 
g  AE valence  is given by 15.35946 1 / 2 mageV E  (Eqs. (14.150) and (15.67)). 
h 

1
c  from Eqs.  (15.79), (15.145), and (13.430);  AE valence  is given by 1/2 two 2H -type ellipsoidal MOs (Eq. (11.212)). 

i 
2

c  from the reciprocal of Eq. (15.147),  AE valence  is given by Eq. (15.139), and  BE valence  is   10.36001 E S eV  . 
j 

2
c  from the reciprocal of Eq. (15.182). 

k 
2

c  from the reciprocal of Eq. (20.49). 
l 

2
c  from the reciprocal of Eq. (22.29). 

m 
2

c  from Eq. (15.77) using   17.42282 E F eV   and  3, 2 14.88734 B FboraneE B sp eV    (Eq. (22.61)). 
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The dipole moment of a given molecule is then given by the vector sum of the bond moments in the molecule.  Thus, the dipole 
moment is given by taking into account the magnitude and direction of the bond moment of each functional group wherein the 
functional group bond moment stays constant from molecule to molecule and is in the vector direction of the internuclear axis.  
The dipole moments of water and ammonia to compare to the experimental values are given from the corresponding moments in 
Table 16.17.  The calculated dipole moment of 2H O  is: 

  
2

106
2 1.51 cos 1.8128

2H O D    
 

 (16.16) 

where the angle between the O H  bond is 106° given by Eq. (13.242).  The experimental dipole moment of 2H O  is [23] : 

 
2

1.8546H O D   (16.17) 

The calculated dipole moment of 3NH  is: 

    
3

3 1.30 cos 68 1.467NH D     (16.18) 

where the angle between each N H  bond and the z-axis is 68° given by Eq. (13.417).  The experimental dipole moment of 

3NH  is [23]: 

 
3

1.4718NH D   (16.19) 

The charge distributions of the functional groups given in Table 16.17 facilitate the rendering of the charge distribution 
of molecules of unlimited complexity comprised of these functional groups.  What was previously impossible to achieve using 
supercomputers can be readily accomplished on a personal computer (PC).  The rendering of the true charge densities of the 
exemplary proteins insulin and lysozyme are shown in color scale, opaque view in Figures 16.4 and 16.5, respectively.  The 
color scale, opaque view of the charge density of an exemplary double-stranded RNA helix is shown in Figure 16.6. 
 
Figure 16.4.   Color scale, opaque view of the charge density of insulin created and modeled using Millsian 2.0 on a PC. 
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Figure 16.5.  Color scale, opaque view of the charge density of lysozyme created and modeled using Millsian 2.0 on a PC. 
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Figure 16.6.  Color scale, opaque view of the charge density of a double-stranded DNA helix created and modeled using 
Millsian 2.0 on a PC. 
 

 
 
 



Chapter 16 

 

1108

NATURE OF THE DIPOLE BOND: DIPOLE-DIPOLE, HYDROGEN, AND VAN DER 
WAALS BONDING 
The boundless number and length of permutations of the functional groups can form a correspondingly infinite number of 
molecules.  The intermolecular forces instill upon molecules their inherent properties such as state—being solid, liquid, or gas, 
the temperatures at which phase transitions occur, and the energy content change required to change the state.  However, the 
types of bonding are relatively few even though the breadth of molecular compositions is infinite.  Since all molecules comprise 
nuclei that behave on the scale of molecules as electrostatic point charges, and electrically charged electrons exist as charge and 
current densities that obey Maxwell’s equations, the binding is determined by electrical and electrodynamics forces.  These 
typically dominate over any magnetic forces since the latter is a relativistic effect of the former and is thus negligible as the 
norm.  Thus, essentially all molecular bonding is Coulombic in nature.  The extreme case involves ions, and ionic bonding 
between charged functional groups of molecules obeys the same physical principles as inorganic ions as given in the Nature of 
the Solid Ionic Bond of Alkali Hydrides and Halides section.  Similarly, the charge-density distributions of negatively-charged 
electrons relative to the positively-charged nuclei of neutral molecules gives rise to Coulombic-based bonding that can be 
grouped into two main categories, bonding that comprises permanent dipole-dipole interactions further including an extreme 
case, hydrogen bonding, and bonding regarding reversible mutually induced dipole fields in near-neighbor molecules called van 
der Waals bonding.   

The H bond is exemplary of the extreme of dipole-dipole interactions as the source of bond energy and rises from the 
extremely high dipole moments of H  bound to F , O , or N  as shown in the Bond and Dipole Moments section.  The bond 
energies of these types of bonds are large due to the very high Coulombic energy associated with the dipole-dipole interaction 
between H-bonded molecules compared to those having much lower dipole moments.  Still H-bond energies are typically small 
by the standards of covalent bonds.  The differences are also reflected in the relative bond lengths.  In water for example, the 
O H  bond distance and energy are 2 0.970 .005 c Å    (Eq. (13.186)) and 16( ) 5.1059 DE H OH eV  (Eq. (13.222), 

respectively; whereas, those of the hydrogen bond of water are 2 1.78 O Hc Å   (Eq. (16.27) and ,0 0.233 /vapor CE eV H bond    

(Eq. (16.57)), respectively.  On the other end of the spectrum, van der Waals bonds are also Coulombic in nature and are 
between dipoles.  However, the dipoles are mutually induced rather than permanent, and the mutual induction is typically small.  
Thus, the bond distances are on the order of angstroms and the energies in the 10’s of meV’s range.  The bonding between 
molecules gives rise to condensed matter, and the classical theory of condensed matter based on these forms of bonding is 
treated next.  
 
CONDENSED MATTER PHYSICS 
Condensed matter comprises liquids and solids of atoms and molecules.  It is shown infra that the geometrical parameters, 
energies, and properties of the latter can be solved using the same equations as those used to solve the geometrical parameters 
and component energies of the individual molecules as given in the Organic Molecular Functional Groups and Molecules 
section. 

The structure and properties of liquids can be solved by first solving the unit cell of the corresponding condensed solid.  
The unit cell may be solved by first determining the packing that minimizes the lattice energy.  In nature, there are a small, finite 
number of packing arrangements.  The particular arrangement relates to the most efficient one giving the most objects packed 
into a given space with the size and shape limitations.  The water molecule, for example, is small compared to the unit cell of 
ice; so, it will naturally assume a tetrahedral structure and hexagonal packing given the geometry of its electric dipoles with a 
partial positive on the H ’s and partial negative on the O .  In general, a reiterative algorithm is used that optimizes the packing 
of the molecules and tests that packing against the unit cell parameters and lattice energy until an optimum is found.  The lattice 
parameters can be verified by X-ray crystallography and neutron diffraction.  The lattice energy can be measured using 
calorimetry; so, the model can be directly tested. 

Bonding in neutral condensed solids and liquids arises from interactions between molecules wherein the molecules of the 
lattice have multipoles that give rise to corresponding Coulombic or magnetic interactions.  Typically, the multipoles are electric 
or magnetic dipoles.  Consider the former case.  Since the separated partial charges that give rise to bond moments are equivalent 
to point charges centered on the bond nuclei as given in the Bond and Dipole Moments section, the maximum interaction energy 
between interacting species can be calculated using Coulomb’s law with the corresponding partial monopole charges and 
separation distance.  The energy from the interaction of the partial charges increases as the separation decreases, but 
concomitantly, the energy of a bond that may form between the interacting species increases as well.  The equilibrium separation 
distance corresponds to the occurrence of the balance between the Coulombic potential energy of the interacting atoms and the 
energy of the bond whose formation involves the interacting atoms.  Thus, the balance is at the energy threshold for the 
formation of a nascent bond that would replace the interacting partial charges while also destabilizing the standard bonds of the 
interacting molecules.  Then, an optimal lattice structure corresponds to an energy minimum with an associated energy.  The 
minimum energy structure corresponds to the highest density of interacting dipoles in their minimum energy state.  A convenient 
method to calculate the lattice energy is to determine the electric or magnetic field in the material having an electric or magnetic 
polarization density, and in turn, the energy can be calculated from the energy of each dipole in the corresponding field using the 
electrostatic or magnetostatic form of Gauss’ or Amperes’ equation, respectively. 

Once the a, b , and c  parameters of the unit cell are solved from the energy (force) balance between the electric 
monopoles and the nascent bond energy, the unit cell is determined.  Then, the unit cell can be proliferated to arbitrary scale to 
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render the solid.  Typically, only one lattice parameter needs to be determined since the additional distances can be determined 
from geometrical relations based on the unit cell structure.  The lattice energy may be calculated from the potential between 
dipoles using the cell parameters.  The dielectric constant and other properties may also be calculated using Maxwell’s equations 
and other first principles.   

The structures of liquids can be modeled as linear combinations of unit cells comprising perturbations of the solid unit 
cell.  In one approach, increasing disorder is added to the solid structure in the transition from solid to liquid to gas.  Complete 
disorder or statistical gas behavior applies in the ideal gas limit.  Thus, liquid states may be modeled by adding more cells with 
increasing loss of order of the solid unit cell as the temperature of the liquid is increased.  The disorder is due to population of 
translational, rotational, and vibrational levels to match the internal energy at a given temperature.  Consider thermodynamics.  
In principle, it is possible to classically calculate the fields over all space, the exact field interactions, and the position, trajectory, 
momentum, and energy of every particle of a material at each instance.  Then, the material properties can be determined from 
these parameters.  However, in practice, it is impossible computationally.  For the same reason, simple underlying physical 
principles are applied to derive statistical properties for large ensembles of particles as given in the Statistical Mechanics section.  
The same statistical thermodynamic methods may be applied to modeling liquids and gases using the exact solutions of the 
individual molecules.  Using the molecular geometrical parameters, charge distributions, and corresponding interactions as input, 
unit cells can be computed based on the solid unit cell.  Working with increasing numbers of unit cells of increasing randomness 
and populating the unit cells based on appropriate statistical models such as Boltzmann statistics for increasing enthalpy input 
and temperature, accurate models of liquids are provided.  The corresponding liquid properties can be solved from each liquid 
structure. 

A preferred approach to solving the energy and geometric parameters of ice, considered next, is to solve the separation 
distance of the electric monopoles comprising a partial positive on each H  and a partial negative charge on each O  as the 
balance between the Coulombic attraction energy between the partial charges and the repulsion energy due to the formation of a 
nascent H O  bond between the hydrogen-bonded atoms.  The nascent bond substitutes for the hydrogen bond while also 
removing electron density and stability from the standard water molecule bonds.  Thus, it offsets the Coulombic energy and 
establishes the equilibrium minimum approach distance of the interacting atoms of the water molecules.  Then, using Gauss’s 
law, the energy per water molecule is calculated as the dipole energy in the electric field of the lattice of electric dipoles. 
 

GEOMETRICAL PARAMETERS AND ENERGIES OF THE HYDROGEN BOND OF 2H O  
IN THE ICE PHASE 
The extraordinary properties of water are determined by hydrogen (H) bonds, designated by the dotted bond O H O    , each 
between a participating H  of one water molecule and an O  of another.  The structure of each phase of water is then determined 
by the number of H bonds on average per water molecule.  As shown in the Bond and Dipole Moments section, the O H  bond 
has a bond moment   of 1.51 D corresponding to a partial charge on each H  of 0.323e  and a component of partial charge on 
each O  per bond moment of 0.323e .  The thermodynamic basis of the H bond is the minimization of the Coulombic energy 
between the H  and O  of the hydrogen bond, limited by the formation of a nascent bond between these atoms that destabilizes 
the initial O H  bond.  The sum of the torques and forces are zero at force balance to achieve a hexagonal crystal structure that 
is an energy minimum.  The maximum electrostatic energy of the partial charges is calculated for the components along the H-
bond axis.  This energy is balanced by the total energy of the nascent bond that can form between the H O    atoms of the H 
bond.  The bond length of the H bond, the internuclear distance between the H  and O  of the H O    bond, is calculated by a 
similar method as that used to determine the bond angle given in the Bond Angle of 2H O  section. 

The 2H O  MO comprises a linear combination of two O H -bond MOs.  Each O H -bond MO comprises the 

superposition of a 2H -type ellipsoidal MO and the 2 zO p  AO or the 2 yO p  AO with a relative H  partial orbital contribution to 

the MO of 0.75; otherwise, the 2O p  orbitals are the same as those of the oxygen atom.  The solution of the geometrical 

parameters and component energies are given in the Water Molecule ( 2H O ) section and the color scale charge density of the

2H O  MO is shown in Figure 16.7. 
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Figure 16.7.   2H O  MO comprising the linear combination of two O H -bond MOs.  Each O H -bond MO comprises the 

superposition of a 2H -type ellipsoidal MO and the 2 zO p  AO or the 2 yO p  AO with a relative charge-density of 0.75 to 1.25; 

otherwise, the 2O p  orbitals are the same as those of the oxygen atom.  The internuclear axis of one O H  bond is 

perpendicular to the bonding yp  orbital, and the internuclear axis of the other O H  bond is perpendicular to the bonding zp  

orbital.  (A) Color scale, translucent view of the charge-density of the 2H O  MO from the top.  For each O H  bond, the 

ellipsoidal surface of each 2H -type ellipsoidal MO transitions to the 2O p  AO.  The 2O p  shell, the 2O s  shell, the 1O s  shell, 

and the nuclei (red, not to scale) are shown.  (B) Cut-away view showing the innermost 1O s  shell, and moving radially, the 2O s  
shell, the 2O p  shell, and the 2H -type ellipsoidal MO that transitions to the 2O p  AO for each O H  bond. Bisector current 

not shown. 
 

 
 
 
Rather than consider the possible bond between the two H atoms of the O H  bonds in the determination of the bond angle, 
consider that the hydrogen bond may achieve a partial bond order or partial three-centered O H O   bond as given in the 
Bridging Bonds of Organoaluminum Hydrides ( Al H Al   and Al C Al  ) and Bridging Bonds of Boranes ( B H B   and 
B B B  ) sections, and the H can become mobile between water molecules corresponding to H exchange.  Such exchange of 
O H O     to O H O    bonding would decrease the initial O H -bond strength since electron density would be shifted from 
the O H  bonds to the O H    bond.  Concomitantly, the Coulombic energy of the H bond would be eliminated.  Thus, the 
equilibrium distance er  or internuclear bond distance of O H    designated as 2 O H ec r   is determined by the condition that the 

total energy of the nascent 2H -type ellipsoidal MO formed from the atoms of the O H    bond is equal to the maximum 

Coulombic energy between the partial charges of the H  and O  atoms of the H bond. 
The O H  bond moments superimpose at the central O .  The minimum energy corresponds to the maximum separation 

of the    of each bond moment on the O  atom that occurs in space and time with   phase.  The corresponding distance is the 
hypotenuse of the right triangle having the distance 2 O Hc   between the H  and O  nuclei of the H O    bond as one side and the 

radius of the oxygen atom, 2 0O pr a  (Eq. (10.162)), as the other.  Then, the maximum Coulomb energy  CoulombE H bond  

between the atoms of the O H    bond due to the two separated   ’s on the oxygen atom with the    centered on the nucleus of 
hydrogen is: 

  
   

2 2

22

0 2

2

4 2
Coulomb

O H O p

e
E H bond

c r



 


 

 
 (16.20) 

Since each H  bond is between two 2H O  molecules and there are four H  bonds per 2H O  molecule, the Coulomb energy per 

2H O   2CoulombE H O  is equivalent to two times  CoulombE H bond  (Eq. (16.20)): 
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 (16.21) 
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Eq. (16.21) is the energy to be equated to that of the nascent covalent bonds involving the atoms of the H bonds of the 
water molecule.  Using Eq. (15.3), the internuclear distance of this bond, 2 O H ec r  , in terms of the corresponding semimajor 

axis O Ha   is:  

 0

1 2

2 2
2

O H
O H

a a
c

C C


   (16.22) 

The length of the semiminor axis of the prolate spheroidal MO b c  is given by: 

    2 2

O H O H O Hb a c     (16.23) 

And, the eccentricity, e , is: 

 O H
O H

O H

c
e

a






  (16.24) 

The semimajor axis O Ha   of the O H    bond is determined using the general equation for determination of the bond 

angle between terminal atoms given by Eqs. (15.93) and (15.99) with Eqs. (15.46-15.47) except that the MO energy is matched 
to the Coulombic energy of the H bond (Eq. (16.21) with substitution of Eq. (15.3)) rather than being set equal to zero for zero 
interaction energy in the case of the bond-angle determination: 
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 (16.25) 

where 1n  is the number of equivalent bonds of the MO, 1c  is the fraction of the 2H -type ellipsoidal MO basis function, 2c  is the 

factor that results in an equipotential energy match of the participating at least two atomic orbitals of each chemical bond, 1oC  is 

the fraction of the 2H -type ellipsoidal MO basis function of the oscillatory transition state of a chemical bond of the group, and 

2oC  is the factor that results in an equipotential energy match of the participating at least two atomic orbitals of the transition 

state of the chemical bond,  /TE AO HO  is the total energy comprising the difference of the energy  /E AO HO  of at least 

one atomic or hybrid orbital to which the MO is energy matched and any energy component  
2

/H MOE AO HO  due to the AO 

or HO’s charge donation to the MO,  3, .TE atom atom msp AO  is the change in the energy of the AOs or HOs upon forming 

the bond, and   is the reduced mass. 
For the determination of the H-bond distance, the energy parameters are the same as those of water given in the Water 

Molecule  2H O  section except that any parameters due to matching AO’s,  /TE AO HO  and  3, .TE atom atom msp AO , is 

zero since only the energies of the MO electrons to form the O H    MO are considered.  The partial charge /q e   from 

Table 16.17 is 0.323, and the reduced mass is 
16

17
  .  The parameters are summarized in Table 16.18 and Eq. (16.26). 
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Table 16.18.   The energy parameters (eV) of the O H    functional group of the hydrogen bond of Type I ice. 
Parameters O H   Group 
  0.323

1n  2 

1C  0.75 

2C  1 

1c  0.75 

2c  1 

1oC  1.5 

2oC  1 

 ( )eV eV  -20.30177 

 ( )pV eV  16.15958 
( )T eV  2.38652

 ( )mV eV  -1.19326 
 /  ( )A O H OE eV  0

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -2.94892 

 3, .  ( )TE atom atom msp AO eV  0 

   ( )MOTE eV  -2.94892 

 15 10  /rad s  6.55917 

 ( )KE eV  4.31736 

 ( )DE eV  -0.012122 

 ( )KvibE eV  0.03263 

 ( )oscE eV  0.004191 

   ( )GroupTE eV  -2.94054 

 

Substitution of the parameters of Table 16.18, the internuclear distance 2 O Hc   given by Eq. (13.185), and R  given by Eq. 

(16.23) and (16.22) into Eq. (16.25) gives: 
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 (16.26) 

 
From the energy relationship given by Eq. (16.26) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the O H    MO can be solved. 

The most convenient way to solve Eq. (16.26) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is:  

 10
04.25343 2.25082  10  O Ha a X m

    (16.27) 

The component energy parameters at this condition are given in Table 16.18.  Substitution of Eq. (16.27) into Eq. (16.22) gives 

 11
01.68393 8.91097  10  O Hc a X m

    (16.28) 

and internuclear distance of the H bond: 

 10
02 3.36786 1.78219  10  1.78219 O Hc a X m Å

     (16.29) 

The internuclear distance of the O H given by Eq. (13.185) is:  

 11
02 1.83601 9.71574  10  c a X m    (16.30) 

The internuclear distance 2 O Hc   of the O H  bond added to 2 O Hc   gives the internuclear distance 2 O HOc   between the oxygen 

atoms of the group O H O    : 

 2 2 2O HO O H O Hc c c       (16.31) 

Substitution of 2 O Hc   (Eq. (16.29)) and 2 O Hc   (Eq. (13.185)) into Eq. (16.31) gives the nearest-neighbor separation, the 

internuclear distance 2 O HOc   between the oxygen atoms of the O H O     bond in Type I ice: 

 10 11 102 2 2 1.78219  10  9.71574  10  2.75377  10  2.75377 O HO O H O Hc c c X m X m X m Å  
           (16.32) 

The experimental oxygen nearest-neighbor separation distance 2 O HOc   is [88]: 

 2 2.75 O HOc Å   (16.33) 

The experimental internuclear distance of the O H bond of 2H O  is [89]: 

 112 9.70 .005  10  c X m    (16.34) 

Using Eqs. (16.33) and (16.34), the experimental H bond distance 2 O Hc   in Type I ice is [88, 89]: 

 2 1.78 O Hc Å   (16.35) 

The other H-bond MO parameters can also be determined by the relationships among the parameters.  Substitution of 
Eqs. (16.27) and (16.28) into Eq. (16.23) gives: 

 10
03.90590 2.06691  10  O H O Hb c a X m

     (16.36) 

Substitution of Eqs. (16.27) and (16.28) into Eq. (16.24) gives: 

 0.39590O He    (16.37) 
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Since water is a hexagonal crystal system in common with the carbon allotrope diamond, the internuclear distance of the 

two terminal O  atoms of a set of three 2H O ’s corresponding to the hexagonal lattice parameter la  is calculated using the same 

approach as that given by Eqs. (17.1-17.3) using the law of cosines:   

 2 2 2
1 2 1 2 32 cosines s s s s    (16.38) 

where 3 ls a  is the hypotenuse of the isosceles triangle having equivalent sides of length equal to 2 O HOc  .  With the bond 

angle between three water molecules formed by the two corresponding H bonds given by 
2 2 2, , 109.5H O H O H O   [90] and 

1 2 2 O HOs s c    given by Eq. (16.32), the distance between the oxygen atoms of the terminal water molecules along the 

hypotenuse, 
2 23 2 H O H O ls c a  , is: 

          
2 2

22
2 2 2 1 cos 109.5 2 2.75377 1 cos 109.5 4.49768 l H O H O O HOa c c ine Å ine Å           (16.39) 

Due to the tetrahedral structure shown in Figure 16.8, four water molecules form a pyramidal structure with a central 

 2 1H O  at the apex designated as on the z-axis, and the three other water molecules,  2   2,3,4H O n n  , form the base in the 

xy-plane.  As further shown in Figure 16.8, a fifth  2 5H O  is positioned a distance 2 O HOc   along the z-axis.  Twice the height 

along the z-axis from the base of the pyramid to the fifth 2H O  comprises the Type I ice unit cell parameter c which is 

determined next using Eqs. (13.412-13.417). 

Since any two O H O     bonds having the internuclear distance 2 O HOc   between the oxygen atoms of Type I ice form 

an isosceles triangle having the hypotenuse la  between the terminal oxygens, the distance origin Od   from the origin of the 

pyramidal base to the nucleus of a terminal oxygen atom is given by: 

 
2sin 60

l
origin O

a
d  


 (16.40) 

Substitution of Eq. (16.39) into Eq. (16.40) gives 
 02.59674origin Od a   (16.41) 

The height heightd  along the z-axis of the pyramid from the origin to the O  nucleus of  2 1H O  is given by: 

    22
2height O HO origin Od c d    (16.42) 

Substitution of Eqs. (16.32) and (16.41) into Eq. (16.42) gives: 
 00.91662heightd a  (16.43) 

The angle v  of each O H O     bond from the z-axis is given by: 

 1tan origin O
v

height

d

d
 

 
   

 
 (16.44) 

Substitution of Eqs. (16.41) and (16.43) into Eq. (16.44) gives: 

 70.56°v   (16.45) 

Using Eqs. (16.32) and (16.43), the hexagonal lattice parameter lc  for Type I ice given by twice the height along the z-axis from 

the base of the pyramid to the fifth water,  2 5H O , is 

    2 2 2 2.75377 0.91662 7.34077 l O HO heightc c d Å Å Å      (16.46) 

The experimental lattice parameters la  and lc  for Type I ice are [90, 91]: 

 
4.49 

4.5212 
l

l

a Å

a Å




 (16.47) 

and [91, 92] : 

 
7.31 

7.3666 
l

l

c Å

c Å




 (16.48) 

The tetrahedral unit cell and the ideal hexagonal lattice structure of Type I ice are shown in Figures 16.8–16.10, using the color 
scale charge density of each water molecule. 
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Figure 16.8.   Tetrahedral unit cell structure of Type I ice using the transparent color scale charge density of each 2H O  MO 

comprising the linear combination of two O H -bond MOs. (A) Each dipole-dipole bond that is Coulombic in nature is 
depicted by connecting sticks.  (B) Bond representation removed. 
 

 
 

Figure 16.9.   C-axis view of the ideal hexagonal lattice structure of Type I ice using the opaque color scale charge density 

of each 2H O  MO comprising the linear combination of two O H -bond MOs. Each dipole-dipole bond that is Coulombic 

in nature is depicted by connecting sticks. 
 

 
 
 
Figure 16.10.  An off-angle view of the ideal hexagonal lattice structure of Type I ice using the opaque color scale charge 

density of each 2H O  MO comprising the linear combination of two O H -bond MOs.  Each dipole-dipole bond that is 

Coulombic in nature is depicted by connecting sticks. 
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A convenient method to calculate the lattice energy is to determine the electric field in ice having an electric polarization 
density corresponding to the aligned molecular water dipoles moments, and in turn, the energy can be calculated from the energy 
of each dipole in the corresponding field using the electrostatic form of Gauss’ equation.  The electric field inside of a material 

having a uniform polarization density 0P  given by Eq. (6.3.3.15) of Haus and Melcher [93] is: 

    0
2

0

cos sin
3 r

P
H O  


  E i i  (16.49) 

The polarization density 0P  given by Eq. (6.3.3.3) of Haus and Melcher [93] is: 

 
20 H OP N  (16.50) 

where 
2H O  is the dipole moment of water and N  is the number density of water dipoles given by the density ice  divided by the 

molecular weight MW  and multiplied by the Avogadro constant AN : 

 ice
AN N

MW


  (16.51) 

Substitution of Eqs. (16.50) and (16.51) into Eq. (16.49) gives: 

    
2

2
0

cos sin
3

ice
H O A

r

N
MWH O 


 


  E i i  (16.52) 

The energy of forming the condensed phase is that of the alignment of the water dipoles each comprised of two O H  
component dipoles where the angular dependence along the z-axis in ice is unity, and this condition applies even in the case of 
the local order in water.  The corresponding energy  2U H O  per water dipole due to the polarization electric field of the lattice 

of hexagonal dipoles is given by: 
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2

2 2
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2
2

3

ice
H O A

H O
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MWU H O H O







  E  (16.53) 

Substitution of the density of ice 
6 3

0.92 

1  10  

g

X m
   [90], the 18 /M W g mole , 236.0221415  10  /AN X molecules mole , and the 

water dipole moment given by Eq. (16.16) with the predicted and experimental hexagonal bond angle of ice, 
2

109.5H O    

[90]: 
    

2

302 1.51 cos 109.5 / 2 5.79898  10H O X C m      (16.54) 

into Eq. (16.53) gives 

  
 

 

6 3230 23

2
0

0.92 
1  10  2 5.79898  10 6.0221415  10  /
18 /

3

0.48643  46.934 /

g
X mX C m X molecules mole

g mole
U H O

eV kJ mole




 



  

 (16.55) 

 2U H O  is also the negative of ,0vapor CE  , the energy of water initially at 0 °C or the energy of vaporization of water at 0 °C: 

    ,0 2 0.48643  46.934 /vapor CE U H O eV kJ mole     (16.56) 

The experimental energy of vaporization of water at 0 °C (Type I ice) is [94] : 
 ,0 45.054 /vapor CE kJ mole   (16.57) 

The calculated results based on first principles and given analytical equations are summarized in Table 16.19. 
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Table 16.19.   The calculated and experimental geometrical and energy parameters of the H bond of water of Type I ice. 
 

Parameter Calculated Experimental 
Ref. for 

Exp. 

H Bond Length 2 O Hc   1.78219 Å 1.78 Å 88, 89 

Nearest Neighbor Separation 

Distance 2 O HOc   
2.75377 Å 2.75 Å 88 

2H O Lattice Parameter la  4.49768 Å 
4.49 Å 

4.5212 Å
90 
91 

2H O Lattice Parameter lc  7.34077 Å 
7.31 Å 

7.3666 Å
92 
91 

Energy of Vaporization of Water 
at 0 °C 

46.934 kJ/mole 45.054 kJ/mole 94 

 
As the temperature increases, the corresponding molecular kinetic energy can excite a vibrational mode along the H bond 

axis.  Concomitantly, the O H  bond elongates and decreases in energy.  As a consequence, the hydrogen bond achieves a 
partial bond order or partial three-centered O H O   bond, and the H  can undergo exchange between water molecules.  The 
time-average effect of exchange is to decrease the statistical equilibrium separation distance of water molecules.  In competition 
with the separation-distance decreasing effect of exchange is the increasing effect due to collisional impact and recoil as a 
function of increasing temperature.  The former effect dominates from the temperature of ice to 4°C at which point water 
assumes a maximum density.  Thereafter, the momentum imparted with water-water collisions overwhelms the decrease due to 
exchange, and the molecular separation statistically increases with temperature until a totally gaseous state is achieved at 
atmospheric pressure at 100°C.  Unit cells with increasing entropy can be derived from the ice unit cell by populating 
translational, rotational, and vibrational levels of molecules within the cells to match the internal energy at a given temperature.  
Using statistical mechanical models such as Boltzmann statistics to populate an increasing number of basis units cells of 
increasing disorder and based on the ice unit cell, the behavior of water as a function of temperature can be modeled over the 
range of states from ice to liquid to steam.  The structure of each phase of water is then determined by the number of H bonds on 
average per water molecule.  Based on the 10% energy change in the heat of vaporization in going from ice at 0°C to water at 
100°C [94], the average number of H bonds per water molecule in boiling water is 3.6.  The H bond distance is calculated next 
using the enthalpy to form steam from boiling water. 

 

GEOMETRICAL PARAMETERS AND ENERGIES OF THE HYDROGEN BOND OF 2H O 
IN THE VAPOR PHASE 
Two or more water molecules can interact along the O H    or H  bond axis.  In the gas phase, the maximum energy of 
interaction between water molecules of steam is equivalent to the negative of the heat of vaporization of water at the boiling 
point, 100°C; otherwise, water vapor would form the corresponding condensed state.  For the determination of the H-bond 
distance, the energy parameters, partial charge, and reduced mass are the same as those of the water molecules of ice given in 
Eq. (16.26) except that the negative of the experimental  ,100 0.42137  40.657 /vapor CE eV kJ mole   [94] is equated to the 

nascent covalent bond energy.  The parameters are summarized in Table 16.20 and Eq. (16.58). 
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Table 16.20.   The energy parameters (eV) of the O H    functional group of the hydrogen bond of water vapor. 
 

Parameters O H   Group 
  0.323

1n  2 

1C  0.75 

2C  1 

1c  0.75 

2c  1 

1oC  1.5 

2oC  1 

 ( )eV eV  -15.20020 

 ( )pV eV  14.08285 

 ( )T eV  1.35707 

 ( )mV eV  -0.67853 

 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.43882 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.43882 

 15 10  /rad s  4.20131 

 ( )KE eV  2.76538 

 ( )DE eV  -0.001444 

 ( )KvibE eV  0.02033 

 ( )oscE eV  0.008724 

   ( )GroupTE eV  -0.42137 

 

Substitution of the parameters of Table 16.20 and ,0vapor CE   (Eq. (16.57)) into Eq. (16.26) gives: 
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 (16.58) 

From the energy relationship given by Eq. (16.58) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the O H  MO can be solved. 

The most convenient way to solve Eq. (16.58) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 

 
10

05.60039 2.96360  10  O Ha a X m
    (16.59) 

The component energy parameters at this condition are given in Table 16.20.  Substitution of Eq. (16.59) into Eq. (16.22) gives 

 
10

01.93225 1.02250  10  O Hc a X m
    (16.60) 

and internuclear distance of the H bond: 

 
10

02 3.86450 2.04501  10  O Hc a X m
    (16.61) 

The experimental H bond distance 2 O Hc   in the gas phase is [95]: 

 
102 2.02  10  O Hc X m

   (16.62) 

and [96] 

 
102 2.05  10  O Hc X m

   (16.63) 

The other H-bond MO parameters can also be determined by the relationships among the parameters.  Substitution of Eqs. 
(16.59) and (16.60) into Eq. (16.23) gives: 

 
10

05.25650 2.78162  10  O H O Hb c a X m
     (16.64) 

Substitution of Eqs. (16.59) and (16.60) into Eq. (16.24) gives: 

 0.34502O He    (16.65) 

Substitution of 2 O Hc   (Eq. (16.61)) and 2 O Hc   (Eq. (13.185)) into Eq. (16.31) gives the nearest neighbor separation, the 

internuclear distance 2 O HOc   between the oxygen atoms of the O H O   bond of water vapor: 

 
10 11 102 2 2 2.04501  10  9.71574  10  3.01658  10  3.01658 O HO O H O Hc c c X m X m X m Å  

           (16.66) 

Using Eqs. (16.31), (16.34), and (16.63), the experimental nearest neighbor separation 2 O HOc   is [89, 96]: 

 
10 11 102 2 2 2.05  10  9.70  10  3.02  10  3.02 O HO O H O Hc c c X m X m X m Å  

           (16.67) 

H-bonded water vapor molecules in steam are shown in Figure 16.11 using the color scale charge density of each water 
molecule. 
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Figure 16.11.   Structure of steam.  (A). Ensemble of gaseous water molecules undergoing elastic hard-sphere collisions.  (B). 

H-bonded water vapor molecules using the color scale charge density of each 2H O  MO comprising the linear combination of 

two O H -bond MOs. 

 
 

The calculated results based on first principles and given by analytical equations are summarized in Table 16.21. 
 
Table 16.21.   The calculated and experimental geometrical and energy parameters of the H bond of steam. 
 

Parameter Calculated Experimental Ref. for Exp.

H Bond Length 2 O Hc   2.04501 Å 
2.02 Å 
2.05 Å

95, 96 

Nearest Neighbor Separation Distance 

2 O HOc   
3.01658 Å 3.02 Å 89, 96 
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GEOMETRICAL PARAMETERS AND ENERGIES OF THE HYDROGEN BOND OF 2H O 
AND 3NH  
Similar to the water molecule, the ammonia molecule has a strong dipole moment along each of its N H -bonds.  The 3NH  MO 

comprises the linear combination of three N H -bond MOs.  Each N H -bond MO comprises the superposition of a 2H -type 

ellipsoidal MO and the 2 xN p , 2 yN p , or 2 zN p  AO with a relative H  partial orbital contribution to the MO of 0.75.  The 

solution of the geometrical parameters and component energies are given in the Ammonia ( 3NH ) section, and the color scale 

charge density of the 3NH  MO is shown in Figure 16.12. 

 

Figure 16.12.   3NH  MO comprising the linear combination of three N H -bonds.  Each N H -bond MO comprises the 

superposition of a 2H -type ellipsoidal MO and the 2 xN p , 2 yN p , or 2 zN p  AO.  (A) Color scale, translucent view of the charge 

density of the 3NH  MO shown obliquely from the top.  For each N H  bond, the ellipsoidal surface of each 2H -type ellipsoidal 

MO transitions to a 2N p  AO.  The 2N p  shell, the 2N s  shell, the 1N s  shell, and the nuclei (red, not to scale) are shown.  (B) 
Off-center cut-away view showing the complete inner most 1N s  shell, and moving radially, the cross section of the 2N s  shell, 

the 2N p  shell, and the 2H -type ellipsoidal MO that transitions to a 2N p  AO for each N H  bond.  (C)-(E) Color scale, side-

on, top, and bottom translucent views of the charge density of the 3NH  MO, respectively. 

 
 

 
 
Due to the interacting dipoles, hydrogen bonds also form between the nitrogen of ammonia and the hydrogen of water 
molecules.  Water hydrogen bonds to ammonia molecules by interaction along the N HO  or H  bond axis.  As shown in the 
Bond and Dipole Moments section, each N H  bond of ammonia has a bond moment   of 1.30 D corresponding to a N  

component of partial charge of 0.262e , and the O H  bond has a bond moment   of 1.51 D corresponding to a H  partial 
charge  of 0.323e .  The thermodynamic basis of the H bond is the minimization of the Coulombic energy between the 

hydrogen bonded H  of 2H O  and N  of ammonia, limited by the formation of a nascent N H  bond between these atoms that 

destabilizes the initial O H  bond of the water molecule partner.  As in the case of ice, the maximum electrostatic energy of the 
partial charges is calculated for the components along the H-bond axis.  This energy is balanced by the total energy of the 
nascent bond that can form between the N H  atoms of the H bond.  The bond length of the H bond, the internuclear distance 
between the N  and H  of the N H  bond, is calculated using Eq. (16.25) by a similar method as that used to calculate the 
O H  bond distance of ice.  According to the method given in the Geometrical Parameters and Energies of the Hydrogen Bond 

of 2H O  section, the equilibrium distance er  or internuclear bond distance of N H  designated as 2 N H ec r   is determined by 

the condition that the total energy of the nascent 2H -type ellipsoidal MO formed from the atoms of the N H  bond is equal to 

the maximum Coulombic energy between the partial charges of the N  and H  atoms of the H bond. 
The maximum Coulumbic energy corresponds to the minimum separation distance of N  and H  atoms corresponding to 

the alignment along the N H  bond axis.  The corresponding distance from the   of the 2H O  H and the 3NH  N  is the 
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distance 2 N Hc   between the N  and H  nuclei of the N H  bond.  Then, the maximum Coulomb energy  CoulombE H bond  

between the atoms of the N H  bond due to the    on the nitrogen atom with the    centered on the nucleus of hydrogen is: 

  
2

04 2
N H

Coulomb
N H

e
E H bond

c

 


 




 


 (16.68) 

Eq. (16.68) is the energy to be equated to that of the nascent bonds involving the atoms of the H bond. 
For the determination of the H-bond distance, the energy parameters of the nascent N H  bond are the same as those of 

ammonia given in the Ammonia  3NH  section except that any parameter due to matching AO’s,  /TE AO HO  and 

 3, .TE atom atom msp AO , is zero since only the energies of the MO electrons to form the N H  MO are considered.  The 

energy of Eq. (16.68) is multiplied by three to match the total energy of the three N H  bond MOs of ammonia.  The partial 

charges /q e   from Table 16.17 are –0.262 and +0.323, and the reduced mass is 14

15
  .  The parameters are summarized in 

Table 16.22 and Eq. (16.69). 
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Table 16.22.   The energy parameters (eV) of the N H  functional group of the hydrogen bond of the ammonia-water 
molecular dimer. 
 

Parameters N H  
Group

N

 0.262 

H

 0.323 

1n  3 

1C  0.75 

2C  0.93613 

1c  0.75 

2c  1 

1oC  1.5 

2oC  1 

 ( )eV eV  -23.60741 

 ( )pV eV  20.75035 

 ( )T eV  2.17246 

 ( )mV eV  -1.08623 

 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -1.77083 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -1.77083 

 15 10  /rad s  4.44215 

 ( )KE eV  2.92390 

 ( )DE eV  -0.00599 

 ( )KvibE eV  0.021843 

 ( )oscE eV  0.00493 

   ( )GroupTE eV  1.75603 

   ( )GroupTE eV  per N H  0.58534 
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Substitution of the parameters of Table 16.22 into Eq. (16.25) with N HR a   gives: 
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 (16.69) 

From the energy relationship given by Eq. (16.69) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the N H  MO can be solved. 

The most convenient way to solve Eq. (16.69) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 

 
10

05.43333 2.87519  10  N Ha a X m
    (16.70) 

The component energy parameters at this condition are given in Table 16.22.  Substitution of Eq. (16.70) into Eq. (16.22) gives 

 
10

01.96707 1.04093  10  N Hc a X m
    (16.71) 

and internuclear distance of the H bond: 

 
10

02 3.93414 2.08186  10  2.08186 N Hc a X m Å
     (16.72) 

The experimental H bond distance 2 N Hc   in the gas phase is [96, 97]: 

 
102 2.02  10  N HOc X m

   (16.73) 

The other H-bond MO parameters can also be determined by the relationships among the parameters.  Substitution of Eqs. 
(16.70) and (16.71) into Eq. (16.23) gives 

 
10

05.06475 2.68015  10  N H N Hb c a X m
     (16.74) 

Substitution of Eqs. (16.70) and (16.71) into Eq. (16.24) gives: 

 0.36204N He    (16.75) 

The addition of 2 N Hc   (Eq. (16.72)) and 2 O Hc   (Eq. (13.185)) gives the nearest neighbor separation, the internuclear distance 

2 N HOc   between the nitrogen and oxygen atoms of the N H O   bond of the ammonia-water molecular dimer: 

 
10 11

10

2 2 2 2.08186  10  9.71574  10  

3.05343  10  3.05343 

N HO N H O Hc c c X m X m

X m Å

 
  



     

 
 (16.76) 

The addition of the experimental 2 N Hc   (Eq. (16.73)) and 2 O Hc   (Eq. (13.185)) gives the experimental nearest neighbor 

separation 2 N HOc   [96, 89]: 

 
10 11

10

2 2 2 2.02  10  9.70  10  

2.99  10  2.99 

N HO N H O Hc c c X m X m

X m Å

 
  



     

 
 (16.77) 

H-bonded ammonia-water molecular dimer is shown in Figure 16.13 using the color scale charge density of each molecule. 
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Figure 16.13.   Structure of the 3H N H OH   H bond.  The H-bonded ammonia-water vapor molecular dimer using the 

color scale charge density of each 3NH  and 2H O  MO comprising the linear combination of three N H  and two O H -bond 

MOs, respectively. 
 

 
 
 

The energy of forming the dimer in the gas phase is that of the alignment of the ammonia dipole moment in the electric 

field of the H O  water dipole.  Using 
3

301.467 4.89196  10H N D X C m     Eq. (16.18), 

2

30
, 1.51 5.02385  10H O H O D X C m 

     (Table 16.17), and the N H  distance, 
102 2.08186  10  N Hc X m

   (Eq. (16.72)), the 

N H  bond dissociation energy  DE N H  of the ammonia-water molecular dimer is: 
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 (16.78) 

The experimental N H  bond dissociation energy between amino N  and hydroxyl H  is approximately [98] : 

   29 DE N H kJ   (16.79) 

The calculated results based on first principles and given by analytical equations are summarized in Table 16.23. 
 
Table 16.23.   The calculated and experimental geometrical and energy parameters of the H-bonded ammonia-water vapor 
molecular dimer. 
 

Parameter Calculated Experimental Ref. for Exp.

H Bond Length 2 N Hc   2.08186 Å 2.02 Å 96, 97 

Nearest Neighbor Separation Distance 

2 N HOc   
3.05343 Å 2.99 Å 96, 89 

N H    Bond Dissociation Energy 29.48 kJ/mole 29 kJ/mole 98 
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GEOMETRICAL PARAMETERS DUE TO THE INTERPLANE VAN DER WAALS 
COHESIVE ENERGY OF GRAPHITE 
Eq. (16.25) can be applied to other solids such as graphite.  Graphite is an allotrope of carbon that comprises planar sheets of 
covalently bound carbon atoms arranged in hexagonal aromatic rings of a macromolecule of indefinite size.  The structure of 
graphite is shown in Figures 16.14A and B.  The structure shown in Figure 16.14 has been confirmed directly by TEM imaging, 
and the Pi cloud predicted by quantum mechanics has been dispatched [99]. 
 
Figure 16.14.   The structure of graphite. (A) Single plane of macromolecule of indefinite size. (B) Layers of graphitic planes. 
 

(A)  (B) 
 
 
 

 
 
 

 
As given in the Graphite section, the structure of the indefinite network of aromatic hexagons of a sheet of graphite is 

solved using a linear combination of aromatic 
3e

C C  aromatic bonds comprising   0.75 4 3  electrons according to Eq. 

(15.161).  In graphite, the minimum energy structure with equivalent carbon atoms wherein each carbon forms bonds with three 
other such carbons requires a redistribution of charge within an aromatic system of bonds.  Considering that each carbon 
contributes four bonding electrons, the sum of electrons of graphite at a vertex-atom comprises four from the vertex atom plus 
two from each of the two atoms bonded to the vertex atom where the latter also contribute two each to the juxtaposed bond.  
These eight electrons are distributed equivalently over the three bonds of the group such that the electron number assignable to 

each bond is 8

3
.  Thus, the 

  8/3e

C C  functional group of graphite comprises the aromatic bond with the exception that the 

electron-number per bond is 8

3
.  The sheets, in turn, are bound together by weaker intermolecular van der Waals forces.  The 

geometrical and energy parameters of graphite are calculated using Eq. (16.25) with the van der Waals energy equated to the 
nascent bond energy.  

The van der Waals energy is due to mutually induced nonpermanent dipoles in near-neighbor bonds.  Albeit, the 
  8/3e

C C  functional group is symmetrical such that it lacks a permanent dipole moment, a reversible dipole can be induced upon 

van der Waals bonding.  The parameters of the 
  8/3e

C C  functional group are the same as those of the aromatic 
  3e

C C  
functional group, the basis functional group of aromatics, except that the bond order is 8/3 (e.g. 8/3 32 2e e

C C C C
c c

 
  ).  Using Eq. 

(16.15) wherein 2C  of Eq. (15.51) for the aromatic 
3e

C C -bond MO is 

   3 3
2 22 2 0.85252C aromaticC sp HO c aromaticC sp HO   (Eq. (15.162)) and  3, 2Coulomb benzeneE C sp  is 15.95955 eV  (Eq. 

(14.245)),  3,2 14.63489 E C sp eV   (Eq. (14.143)) and 102 1.39140  10  c X m   (Table 15.214), the van der Waals dipole of 

graphite is given in Table 16.24. 
 

Table 16.24.  The parameters and van der Waals dipole bond moment of the 
  8/3e

C C  functional group of graphite. 
 

Functional 
Group 

1n
 

( 1c ) 2c  ( 1C )

2C  

 BE valence

 

 AE valence

 

q

e
 Bond Length 

 2 '  c Å  
Bond Moment 

  (D) 
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  8/3e

C C  

8

3
 

0.85252 1 14.82575 15.95955 0.36101 1.3914 2.41270 

 
The interaction between a dipole in one plane with the nearest neighbor in another plane is zero in the case that the aromatic 
rings of one layer are aligned such that they would superimpose as the interlayer separation goes to zero.  But, the energy of 
interaction is nonzero when one plane is translated relative to a neighboring plane.  A minimum equal-energy is achieved 

throughout the graphite structure when each layer is displaced by 32 e
C C

c

 , the bond length of 

  8/3e

C C , along an intra-planar 2C  

axis relative to the next as shown in Figure 16.14B.  Then, a pair of dipoles exists for each dipole of a given plane with one 
dipole above and one below in neighboring planes such that all planes can be equivalently bound by van der Waals forces.  In 

this case, the distance 
1 2...r   between dipole 1  in one plane and its nearest neighbor 2  above or below on a neighboring and 

32 e
C C

c

 -displaced plane is: 

    3
1 2

2
2

... 2 2e C C
C C

r c c  

    (16.80) 

where 2 C Cc   is the interplane distance.  The alignment angle 
1 2...   between the dipoles is: 

 

   
1 2

1 2
3

1 1
... 2

2...

2 2
sin sin

2 2e

C C C C

C C
C C

c c

r
c c

 
 

   




 
 

 
 (16.81) 

The van der Waals energy is the potential energy between interacting neighboring pairs of 
  8/3e

C C  induced dipoles.  Using Eqs. 

(16.80-16.81), 
  8/3

302.41270 8.04790  10e
C C

D X C m 


    (Table 16.24), and the 

  8/3e

C C  distance, 

  8/3

102 1.39140  10  e
C C

c X m


   (Table 15.214), the van der Waals energy of graphite between two planes at a vertex atom is: 

 

   
 
 

 

 

 

  8/3

1 2

1 2

2

  ...3

0 ...

230

1.52
210 0

0
1 2

0

1 1 2

2
210 0

1 2

2
3 cos

4

6 8.04790  10

4 1.39140  10  2
2

2
2

cossin

1.39140  10  2
2

e
C C

van der Waals

C C

C C

C C

E graphite
r

X C m

a a
X m

C C

a a
C C

a a
X m

C C

 

 












 





 



 

  
      



 
  
 


 
 
 
 
 
 
 
 
 
 
 



 (16.82) 

where there are three bonds at each vertex atom. 
The graphite inter-plane distance of 3.5Å [100] is calculated using Eq. (16.25) with the van der Waals energy (Eq. 

(16.82)) between dipoles of two neighboring planes equated to the nascent bond energy.  The energy matching parameter 2c  is 

the same that of the graphite sheet corresponding to the aromatic carbons as given in the Graphite section, and the reduced mass 
is 6  .  The parameters are summarized in Table 16.25 and Eq. (16.83).  
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Table 16.25.  The energy parameters (eV) of the graphite interplanar functional group ( aromatic aromaticC C ). 

 
Parameters 

aromatic aromaticC C  

Group

1n  1 

1C  0.5 

2C  1 

1c  1 

2c  0.85252 

1oC  0.5 

2oC  1 

 ( )eV eV  -4.35014 

 ( )pV eV  4.10093 

 ( )T eV  0.19760 

 ( )mV eV  -0.09880 

 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.15042 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.15042 

 15 10  /rad s  0.800466 

 ( )KE eV  0.52688 

 ( )DE eV  -0.00022 

 ( )KvibE eV  0.00317 

 ( )oscE eV  0.00137 

   ( )GroupTE eV  -0.14905 

 
Substitution of the parameters of Table 16.25 and the interlayer cohesive energy of graphite (Eq. (16.82)) into Eq. (16.25) with 

C CR a   gives: 
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 (16.83) 

From the energy relationship given by Eq. (16.83) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the C C    MO can be solved. 

The most convenient way to solve Eq. (16.83) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 

 
10

011.00740 5.82486  10  C Ca a X m
    (16.84) 

The component energy parameters at this condition are given in Table 16.25.  Substitution of Eq. (16.84) into Eq. (16.22) gives: 

 
10

03.31774 1.75567  10  C Cc a X m
    (16.85) 

and internuclear distance of the graphite interplane bond at vacuum ambient pressure: 

 
10

02 6.63548 3.51134  10  3.51134 C Cc a X m Å
     (16.86) 

The experimental graphite interplane distance 2 C Cc   is [100]: 

 
102 3.5  10  3.5 C Cc X m Å

    (16.87) 

The other interplane bond MO parameters can also be determined by the relationships among the parameters.  Substitution of 
Eqs. (16.84) and (16.85) into Eq. (16.23) gives: 

 
10

010.49550 5.55398  10  C C C Cb c a X m
     (16.88) 

Substitution of Eqs. (16.84) and (16.85) into Eq. (16.25) gives: 

 0.30141C Ce    (16.89) 

Using Eqs. (16.80) and (16.86), the distance 
1 2...r   between dipole 1  on one plane and its nearest neighbor 2  above or below 

on a juxtaposed and 32 e
C C

c

 -displaced plane is: 

 
1 2

10
... 3.77697  10  r X m 

  (16.90) 

Using Eqs. (16.81) and (16.86), the alignment angle 
1 2...   between the dipoles is: 

 
1 2... 68.38365      (16.91) 

Using Eqs. (16.82) and (16.90-91), the van der Waals energy per carbon atom is: 

    / 0.04968 van der WaalsE graphite C eV  (16.92) 

The experimental van der Waals energy per carbon atom is [101]: 

    / 0.052 van der WaalsE graphite C eV  (16.93) 

The calculated results based on first principles and given by analytical equations are summarized in Table 16.26. 
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Table 16.26.   The calculated and experimental geometrical parameters and interplane van der Waals cohesive energy of 
graphite. 
 

Parameter Calculated Experimental Ref. for Exp.

Graphite Interplane Distance 2 C Cc   3.51134 Å 3.5 Å 100 

van der Waals Energy per Carbon Atom 0.04968 eV 0.052 eV 101
 

Graphite has a high cohesive energy due to its significant van der Waals dipole bond moment of 2.41270D.  Other 
species such as atoms and molecules having mirror symmetry and consequently no permanent dipole moment also form 
reversible van der Waals dipole bond moments.  Different phases can be achieved according to the extent of the van der Waals 
dipole bonding as the internal energy as a function of temperature and pressure changes analogously to the H-bonded system 
water that can exist as ice, water, and steam.  Thus, the factors in the van der Waals bonding can give rise to numerous material 
behaviors.  In the case of atoms such as noble gas atoms and certain diatomic molecules such as hydrogen, the moments, their 
interaction energies, and the corresponding nascent bond energies are much smaller.  Thus, except at cryogenic temperatures, 
these elements exist as gases, and even at temperatures approaching absolute zero, solidification of helium has not been achieved 
in the absence of high pressure.  This is due to the nature of the induced dipoles and van der Waals phenomena in helium.  Since 
this system is a good example of van der Waals forces in atoms, it will be treated next. 
 
GEOMETRICAL PARAMETERS AND ENERGIES DUE TO THE INTERATOMIC VAN 
DER WAALS COHESIVE ENERGY OF LIQUID HELIUM 
Noble gases such as helium are typically gaseous and comprised of non-interacting atoms having no electric or magnetic 
multipoles.  But, at very low temperatures it is possible to form diffuse diatomic molecules, or alternatively, these gases may be 
condensed with the formation of mutually induced van der Waals dipole interactions.  As a measure of the nascent bond between 
two noble gas atoms used to calculate the limiting separation for condensation, consider that the experimental bond energies of 
diatomic molecules of helium and argon, for example, are only 49.7 meV and 49 meV, respectively [21].  This is a factor of 
about 100 smaller than the bond energy of a carbon-carbon bond that is the form of nascent bond in graphite.  Thus, the 
corresponding energy of the interspecies interaction is smaller and the van der Waals spacing is larger, except wherein the 
nascent bond energy as a function of separation distance mitigates this relationship to some extent.  The nature of the helium 
bonding is solved using the same approach as that of other functional groups given in the Organic Molecular Functional Groups 
and Molecules section. 
Helium is a two-electron neutral atom with both electrons paired as mirror-image current densities in a shell of radius 

00.566987a (Eq. (7.35)).  Thus, in isolation or at sufficient separation, there is no energy between helium atoms.  The absence of 

any force such as so-called long-range London forces having a ; 2nr n   dependency is confirmed by elastic electron scattering 
from helium atoms as shown in the Electron Scattering Equation for the Helium Atom Based on the Atomic Orbital Model 
section.  However, reversible mutual van der Waals dipoles may be induced by collisions when the atoms are in close proximity 
such that helium gas can condense into a liquid.  The physics is similar to the case of graphite except that the dipoles are atomic 
rather than molecular, and in both cases the limiting separation is based on the formation of a nascent bond to replace the dipole-
dipole interaction.  Thus, Eq. (16.25) can also be applied to atoms such as helium. 

The van der Waals bonding in the helium atom involves hybridizing the one 1s  AO into 11s  HO orbitals containing two 
electrons.  The total energy of the state is given by the sum over the two electrons.  The sum  1,1TE He s  of experimental 

energies [15] of He  and He  is: 

  1,1 54.41776 24.587387 

79.005147 

TE He s eV eV

eV

 


 (16.94) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 11s
r  of the 11He s  

shell may be calculated from the Coulombic energy using Eq. (15.13): 

 
   1

2 21

01
0 0 0

( ) 3
0.51664

8 79.005147 8 79.005147 s
n

Z n e e
r a

e eV e eV 


    (16.95) 

where 2Z   for helium.  Using Eq. (15.14), the Coulombic energy  1,1CoulombE He s  of the outer electron of the van der Waals 

bound 11He s  shell is: 

  
1

2 2
1

0 0 01

,1 26.335049 
8 8 0.51664Coulomb

s

e e
E He s eV

r a 
 

     (16.96) 

To meet the equipotential condition of the union of the two 11He s  HOs in a nascent bond, 2c  of Eqs. (15.2-15.5) and Eq. (15.61) 

for the nascent He He -bond MO is given by Eq. (15.75) as the ratio of the valance energy of the He  AO, 

  24.587387 E He eV  and the magnitude of  1,1CoulombE He s  (Eq. (16.96)): 
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  1
2

24.587387 
, 1 0.93364

26.33505 

eV
c He He He s HO

eV
    (16.97) 

The opposite charge distributions act as symmetrical point charges at the point of maximum separation, each being centered at 

1/2 the He -atom radius from the origin.  Using the parameters of Eq. (16.97) and 
11

02 0.51664 2.73395  10  c a X m    (Eq. 

(16.95)), the van der Waals dipole of helium is given in Table 16.27. 
 
Table 16.27.   The parameters and van der Waals dipole bond moment of the He  functional group of liquid helium. 
 

Functional 
Group 

1n  ( 1c ) 2c  ( 1C ) 2C   BE valence   AE valence  q

e
 Bond  

Length 

 2 '  c Å  

Bond 
Moment 
  (D) 

He  1 0.93364 1 24.587387 26.33505 0.13744 0.273395 0.18049 
 
As in the case with graphite, the van der Waals energy is the potential energy between interacting neighboring induced 

dipoles.  Using 
310.18049 6.02040  10He D X C m     (Table 16.27), the van der Waals energy is: 

    
 

 22 31

  3 3

0 ... 0
0

1 2

2 6.02040  102
2

4
4 2

2

He
van der Waals

He He He He

X C m
E He

r a a
C C










 
 

 
   

  
  
  

 (16.98) 

where there are two bonds at each vertex atom. 
The helium interatomic distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.98)) between 

neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  is the same as that of the helium 

dipole, and the reduced mass is 2  .  The parameters are summarized in Table 16.28 and Eq. (16.99).  
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Table 16.28.   The energy parameters (eV) of the helium functional group ( He He ). 
 

Parameters He He  
Group

1n  1 

1C  0.5 

2C  0.93364
-1
 

1c  1 

2c  0.93364 

1oC  0.5 

2oC  0.93364
-1
 

 ( )eV eV  -3.96489 

 ( )pV eV  3.88560 

 ( )T eV  0.15095 

 ( )mV eV  -0.07548 

 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.00382 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.00382 

 15 10  /rad s  0.635696 

 ( )KE eV  0.41843 

 ( )DE eV  0.00000 

 ( )KvibE eV  0.00443 

 ( )oscE eV  0.00221 

   ( )GroupTE eV  -0.00160 
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Substitution of the parameters of Table 16.28 and the interatomic cohesive energy of helium (Eq. (16.98)) into Eq. (16.25) with 

He HeR a   gives: 
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 (16.99) 

From the energy relationship given by Eq. (16.99) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the He He  MO can be solved. 

The most convenient way to solve Eq. (16.99) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 

 
10

013.13271 6.94953  10  He Hea a X m
    (16.100) 

The component energy parameters at this condition are given in Table 16.28.  Substitution of Eq. (16.100) into Eq. (16.22) gives 

 
10

03.50160 1.85297  10  He Hec a X m
    (16.101) 

and internuclear distance between neighboring helium atoms: 

 
10

02 7.00320 3.70593  10  3.70593 He Hec a X m Å
     (16.102) 

The experimental helium interatomic distance 2 C Cc   at 4.24K and <2.25 K are [102]: 

 
 
 

10

10

2 4.24 3.72  10  3.72 

2 2.25 3.70  10  3.70 

He He

He He

c K X m Å

c K X m Å







  

   
 (16.103) 

The other interatomic bond MO parameters can also be determined by the relationships among the parameters.  Substitution of 
Eqs. (16.100) and (16.101) into Eq. (16.23) gives 

 
10

012.65729 6.69795  10  He He He Heb c a X m
     (16.104) 

Substitution of Eqs. (16.100) and (16.101) into Eq. (16.25) gives: 

 0.26663He Hee    (16.105) 

Using Eqs. (16.99) and (16.102) and the relationship that there are two van der Waals bonds per helium atom and two atoms per 
bond, the van der Waals energy per helium atom is: 

     / 0.000799 van der WaalsE liquid He He eV  (16.106) 

The experimental van der Waals energy calculated from the heat of vaporization per helium atom is [103]: 

    ,4.221 0.0829 / 0.000859 /van der Waals vapor KE liquid He E kJ mole eV He    (16.107) 

At 1.7 K, the viscosity of liquid helium is close to zero, and a characteristic roton scattering dominates over phonon scattering at 
this temperature and below [104].  The van der Waals bond energy is also equivalent to the roton energy [105, 106] 

   8.7 0.00075 rotonE liquid He K eV   (16.108) 

and the roton is localized within a region of radius 3.7 4.0   Å [104, 106-108] that matches the He He  van der Waals bond 
distance (Eq. (16.102)).  The origin of the roton energy and its cross section as belonging to the van der Waals bond resolves its 
nature.  Independent of this result, the modern view of the roton is that it is not considered associated with the excitation of 
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vorticity as it was historically; rather it is considered to be due to short-wavelength phonon excitations [105].  Its role in 
scattering free electrons in superfluid helium is discussed in the Free Electrons in Superfluid Helium are Real in the Absence of 
Measurement Requiring a Connection of   to Physical Reality section.  The calculated results based on first principles and 
given by analytical equations are summarized in Table 16.29. 
 

Table 16.29.   The calculated and experimental geometrical parameters and interatomic van der Waals cohesive energy of 
liquid helium. 
 

Parameter Calculated Experimental Ref. for Exp.

Liquid Helium Interatomic Distance 2 C Cc   3.70593 Å 
3.72 Å (T=4.24 K) 

3.70 (T<2.25K) 
102 

Roton Length Scale 3.70593 Å 3.7-4.0 Å 104, 106-108
van der Waals Energy per Helium Atom 
(4.221 K) 

0.000799 eV 0.000859 eV 103 

Roton Energy 0.000799 eV 0.00075 eV 105, 106
 

Helium exhibits unique behavior due to its possible phases based on the interplay of the factors that determine the van der 
Waals bonding at a given temperature and pressure to achieve an energy minimum.  In extreme cases of sufficient ultra-low 
temperatures with the atoms driven in phase with an external excitation field such that the formation of a van der Waals-dipole-
bound macromolecular state or other forms of bonding, such as metallic bonding in the case of alkali metals or van der Waals 
bonding in meta-stable helium atoms, are suppressed, a pure statistical thermodynamic state called a Bose-Einstein condensate 
[109] (BEC)1 can form having a predominant population of the atoms in a single, lowest-energy translational state in the trap. 
Since helium has only two electrons in an outer s-shell having a small diameter, the dipole moment is too weak to form 
transverse dipoles associated with packing.  Specifically, with the angular dependence of packed dipoles interactions, the van der 

Waals energy    van der WaalsE He  (Eqs. (16.98) and (16.99)) between neighboring dipoles becomes less than the vibrational energy 

in the transition state ( KvibE  term of Eq. (16.99) from Eq. (15.53)).  Consequently, helium can only mutually induce and form 

linear dipole-dipole bonds having end-to-end interactions as an energy minimum.  Interposed atoms can form a non-bonded 
phase having correlated translational motion and obeying Bose-Einstein statistics.  This phase forms a Bose-Einstein condensate 
(BEC) as an energy minimum wherein the translations are synchronous.  Since a phase comprised of linearly ordered unit cells 
held together by dipole interactions, specifically van der Waals dipole interactions, can exist with a BEC phase, super-fluidity 
can arise wherein the lines of bound dipoles move without friction relative to the BEC phase having correlated-translational 
motion.  The linear bonding is also the origin of quantized vortex rings that enter as quantized vortex lines to form rings. 

The van der Waals bonds undergo breakage and formation and exist on a time-average basis depending on the internal 
energy and pressure as in the case of liquid water.  The van der Waals bonding exhibits a maximum extent as the temperature is 
lowered below the boiling point, and the BEC phase comprises the balance of the atoms as the temperature is further lowered to 
absolute zero.  Helium cannot form a solid without application of high pressure to decrease the interatomic separation and permit 
energetically favorable transverse dipole interactions as well as linear ones.  In contrast, other noble gases such as Ne , Ar, Kr
, and Xe each possess additional shells including an outer p-shell having a relatively larger radius that gives rise to a significant 
bond moment supportive of dipole packing interactions; thus, these gases can form solids without the application of high 
pressure. 
 
GEOMETRICAL PARAMETERS AND ENERGIES DUE TO THE INTERATOMIC VAN 
DER WAALS COHESIVE ENERGY OF SOLID NEON 
Neon is a ten-electron neutral atom having the electron configuration 

2 2 61 2 2s s p  with the electrons of each shell paired as mirror-

image current densities in a shell wherein the radius of the outer shell is 10 00.63659r a  (Eq. (10.202)).  Thus, in isolation or at 

sufficient separation, there is no energy between neon atoms.  However, reversible mutual van der Waals dipoles may be induced 
by collisions when the atoms are in close proximity such that neon gas can condense into a liquid and further solidify at 
sufficiently low temperatures due to the strong dipole moment that accommodates close packing.  As in the case of helium, the 
dipoles are atomic rather than molecular, and the limiting separation is based on the formation of a nascent bond to replace the 
dipole-dipole interaction.  Thus, Eq. (16.25) can also be applied to neon atoms. 

 
1 The BEC is incorrectly interpreted as a single large atom having a corresponding probability wave function of quantum mechanics.  Since excitation 

occurs in units of  in order of to conserve angular momentum as shown previously for electronic (Chapter 2), vibrational (Chapter 11), rotational 
(Chapter 12), and translational excitation (Chapter 3) and Bose-Einstein statistics arise from an underlying deterministic physics (Chapter 24), this state 
comprised of an ensemble of individual atoms is predicted classically using known equations [110].  As in the case of the coherent state of photons in a 
laser cavity (Chapter 4), the coherency of the BEC actually disproves the inherent Heisenberg Uncertainty Principle (HUP) of quantum mechanics since 
the atomic positions and energies are precisely determined simultaneously.  Furthermore, it is possible to form a BEC comprising molecules in addition to 
atoms [111] wherein the molecules lack zero-order vibration in contradiction to the HUP.  The classical physics underlying Bose-Einstein statistics was 
covered in the Statistical Mechanics section. 
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The van der Waals bonding in the neon atom involves hybridizing the three 2 p  AOs into 
32p  HO orbitals containing 

six electrons.  The total energy of the state is given by the sum over the six electrons.  The sum  3, 2TE Ne p  of experimental 

energies [15] of Ne , Ne , 2N e  , 3Ne  , 4N e  , and 5N e   is 

  3 157.93 126.21 97.12 
,2 507.2375 

63.45 40.96296 21.56454 T

eV eV eV
E Ne p eV

eV eV eV

  
     

 (16.109) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 32 p
r  of the 

32Ne p  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 29

02
4 0 0

( ) 21
0.56329

8 507.2375 8 507.2375 p
n

Z n e e
r a

e eV e eV 


    (16.110) 

where 10Z   for neon.  Using Eq. (15.14), the Coulombic energy  3, 2CoulombE Ne p  of the outer electron of the van der Waals 

bound 
32Ne p  shell is: 

  
3

2 2
3

0 0 02

, 2 24.154167 
8 8 0.56329Coulomb

p

e e
E Ne p eV

r a 
 

     (16.111) 

To meet the equipotential condition of the union of the two 
32Ne p  HOs in a nascent bond, 2c  of Eqs. (15.2-15.5) and Eq. 

(15.61) for the nascent Ne Ne -bond MO is given by Eq. (15.75) as the ratio of the valance energy of the Ne  AO, 

  21.56454 E Ne eV  and the magnitude of  3, 2CoulombE Ne p  (Eq. (16.111)). 

  3
2

21.56454 
, 2 0.89279

24.154167 

eV
c Ne Ne Ne p HO

eV
    (16.112) 

The opposite charge distributions act as symmetrical point charges at the point of maximum separation, each being centered at 

1/2 the Ne -atom radius from the origin.  Using the parameters of Eq. (16.112) and 
11

02 0.56329 2.98080  10  c a X m    (Eq. 

(16.110)), the van der Waals dipole of neon is given in Table 16.30. 
 
Table 16.30.   The parameters and van der Waals dipole bond moment of the Ne  functional group of solid neon. 
 

Functional 
Group 

1n  ( 1c ) 2c  ( 1C ) 2C   BE valence   AE valence  q

e
 Bond  

Length 

 2 '  c Å  

Bond 
Moment 
  (D) 

Ne  1 0.89279 1 21.56454 24.15417 0.22730 0.298080 0.32544 
 

The minimum-energy packing of neon dipoles is face-centered cubic also called cubic close packing.  In this case, each 

neon atom has 12 nearest neighbors and the angle between the aligned dipoles is 
4

  radians.  As in the case with graphite, the 

van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 
300.32544 1.08554  10Ne D X C m     (Table 16.30), the van der Waals energy is: 

    
 

 22 30

  3 3

0 ... 0
0

1 2

24 1.08554  102
12 cos cos

4 44
4 2

2

Ne
van der Waals

Ne Ne Ne Ne

X C m
E Ne

r a a
C C

  








 
 

          
     

  
  

 (16.113) 

The neon interatomic distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.113)) between 

neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  is the same as that of the neon 

dipole, and the reduced mass is 10  .  The parameters are summarized in Table 16.31 and Eq. (16.114).  
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Table 16.31.   The energy parameters (eV) of the neon functional group ( Ne Ne ). 
 

Parameters Ne Ne  
Group

1n  1 

1C  0.5 

2C  0.89279
-1
 

1c  1 

2c  0.89279 

1oC  0.5 

2oC  0.89279
-1
 

 ( )eV eV  -4.40464 

 ( )pV eV  4.27694 

 ( )T eV  0.19429 

 ( )mV eV  -0.09714 

 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.03055 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.03055 

 15 10  /rad s  0.810674 

 ( )KE eV  0.53360 

 ( )DE eV  -0.00004 

 ( )KvibE eV  0.00240 

 ( )oscE eV  0.00116 

   ( )GroupTE eV  -0.02939 
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Substitution of the parameters of Table 16.31 and the interatomic cohesive energy of neon (Eq. (16.113)) into Eq. (16.25) with 

Ne NeR a   gives: 
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 (16.114)  

From the energy relationship given by Eq. (16.114) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the Ne Ne  MO can be solved. 

The most convenient way to solve Eq. (16.114) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is:  

 
10

011.33530 5.99838  10  Ne Nea a X m
    (16.115) 

The component energy parameters at this condition are given in Table 16.31.  Substitution of Eq. (16.115) into Eq. (16.22) gives 

 
10

03.18120 1.68342  10  Ne Nec a X m
    (16.116) 

and internuclear distance between neighboring neon atoms: 

 
10

02 6.36239 3.36683  10  3.36683 Ne Nec a X m Å
     (16.117) 

The experimental neon interatomic distance 2 C Cc   at the melting point of 24.48 K is [112, 113]: 

   102 24.48 3.21  10  3.21 Ne Nec K X m Å
    (16.118) 

The other interatomic bond MO parameters can also be determined by the relationships among the parameters.  Substitution of 
Eqs. (16.115) and (16.116) into Eq. (16.23) gives: 

 
10

010.87975 5.75732  10  Ne Ne Ne Neb c a X m
     (16.119) 

Substitution of Eqs. (16.115) and (16.116) into Eq. (16.25) gives: 

 0.28065Ne Nee    (16.120) 

A convenient method to calculate the lattice energy is to determine the electric field in solid neon having an electric 
polarization density corresponding to the aligned dipoles moments, and in turn, the energy can be calculated from the energy of 
each dipole in the corresponding field using the electrostatic form of Gauss’ equation.  Substitution of the density of solid neon 

at the melting point 
6 3

1.433 

1  10  

g

X m
   [113], the 20.179 /MW g mole , 

236.0221415  10  /AN X molecules mole , and the neon 

dipole moment given in Table 16.30 into Eq. (16.53) gives: 

  
   

 

6 3230 232  

0 0

1.433 
1  10  2 1.08554  10 6.0221415  10  /2

20.179 /
3 3

0.02368  2.285 /

solid Ne
Ne A

g
X mX C m X molecules moleN

g moleMWU Ne

eV kJ mole



 


 

 

  

 (16.121) 

 U Ne  is also the negative of   van der WaalsE , the van der Waals energy per neon atom: 
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     / 0.02368 2.285 /van der WaalsE solid Ne Ne eV kJ mole   (16.122) 

The experimental van der Waals energy calculated from the heat of vaporization and fusion per neon atom at the boiling point 
and triple point, respectively, is [103] : 

     0.02125 / 2.0502 /van der Waals vapor fusionE solid Ne E E eV Ne kJ mole     (16.123) 

The calculated results based on first principles and given by analytical equations are summarized in Table 16.32.  Using neon the 
atomic radius (Eq. (16.110)) and the nearest-neighbor distance (Eq. (16.117)), the lattice structure of neon is shown in Figure 
16.17A.  The charge density of the van der Waals dipoles of the crystalline lattice is shown in Figure 16.18A. 
 
Table 16.32.   The calculated and experimental geometrical parameters and interatomic van der Waals cohesive energy of 
solid neon. 
 

Parameter Calculated Experimental Ref. for Exp.

Solid Neon Interatomic Distance 2 C Cc   3.36683 Å 3.21 Å (T=24.48 K) 113 

van der Waals Energy per Neon Atom 0.02368 eV 0.02125 eV 103
 
GEOMETRICAL PARAMETERS AND ENERGIES DUE TO THE INTERATOMIC VAN 
DER WAALS COHESIVE ENERGY OF SOLID ARGON 
Argon is an eighteen-electron neutral atom having the electron configuration 

2 2 6 2 61 2 2 3 3s s p s p  with the electrons of each shell 

paired as mirror-image current densities in a shell wherein the radius of the outer shell is 18 00.86680r a  (Eq. (10.386)).  Thus, in 

isolation or at sufficient separation, there is no energy between argon atoms.  However, reversible mutual van der Waals dipoles 
may be induced by collisions when the atoms are in close proximity such that argon gas can condense into a liquid and further 
solidify at sufficiently low temperatures due to the strong dipole moment that accommodates close packing.  As in the case of 
helium, the dipoles are atomic rather than molecular, and the limiting separation is based on the formation of a nascent bond to 
replace the dipole-dipole interaction.  Thus, Eq. (16.25) can also be applied to argon atoms. 

The van der Waals bonding in the argon atom involves hybridizing the three 3p  AOs into 
33p  HO orbitals containing six 

electrons.  The total energy of the state is given by the sum over the six electrons.  The sum  3,3TE Ar p  of experimental 

energies [15] of Ar, Ar  , 2Ar  , 3Ar  , 4Ar  , and 5Ar   is: 

  3 91.009 75.02 59.81 
,3 309.96827 

40.74 27.62966 15.75961 T

eV eV eV
E Ar p eV

eV eV eV

  
     

 (16.124) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 33 p
r  of the 

33Ar p  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 217

03
12 0 0

( ) 21
0.92178

8 309.96827 8 309.96827 p
n

Z n e e
r a

e eV e eV 


    (16.125) 

where 18Z   for argon.  Using Eq. (15.14), the Coulombic energy  3,3CoulombE Ar p  of the outer electron of the van der Waals 

bound 
33Ar p  shell is 

  
3

2 2
3

0 0 03

,3 14.760394 
8 8 0.92178Coulomb

p

e e
E Ar p eV

r a 
 

     (16.126) 

To meet the equipotential condition of the union of the two 
33Ar p  HOs in a nascent bond, 2c  of Eqs. (15.2-15.5) and Eq. 

(15.61) for the nascent Ar Ar -bond MO is given by Eq. (15.75) as the ratio of the valance energy of the Ar AO, 

  15.75961 E Ar eV  and the magnitude of  3,3CoulombE Ar p  (Eq. (16.126)). 

  3
2

14.760394 
, 3 0.93660

15.75961 

eV
c Ar Ar Ar p HO

eV
    (16.127) 

Since the outer 
33Ar p  HO shell is at a lower energy and greater radius than the non-polarized 3p  shell, the inner shells are 

polarized as well.  The dipole of the outer shell can polarize the inner shells to the limit that the sum of the primary and 
secondary dipoles is twice the primary scaled by the energy matching factors of the van der Waals bond given in Eq. (16.15).  
Thus, the limiting dipole due to polarization of the inner shells is given by: 

 
       1 11 11

1 2

30

2 2 ' 2 0.93660 0.13110 0.93660 4.87784  10  

                           2.49410  10 0.74771 

Ar c qC c e X m

X C m D

   



 

  
 (16.128) 
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The condition of Eq. (16.128) is matched by the participation of the outer four shells as given in Table 16.33.  At each shell, 
opposite charge distributions act as symmetrical point charges at the point of maximum separation, each being centered at 1/2 the 

shell radius from the origin.  Using the parameters of Eq. (16.127) and 
11

02 0.92178 4.87784  10  c a X m    (Eq. (16.125)) as 

well as the radii of the inner shells of argon (Table 10.17), the van der Waals dipole of argon is given in Table 16.33 as the sum 
of the moments of each participating shell.  
 
Table 16.33.   The parameters and van der Waals dipole bond moment of the Ar functional group of solid argon. 
 

Functional 
Group 

1n
 

( 1c ) 

2c  

( 1C ) 

2C  

 BE valence

 

 AE valence

 

q

e
 Bond  

Length  2 '  c Å  
Bond 

Moment 
  (D) 

Ar 1 0.93660 1 14.76039 15.75961 0.13110 

33Ar p  HO 0.48778 
3Ar s  AO 0.41422 
2Ar p  AO 0.15282 
2Ar s  AO 0.12615 

0.74366 

 
The minimum-energy packing of argon dipoles is face-centered cubic also called cubic close packing.  In this case, each 

argon atom has 12 nearest neighbors and the angle between the aligned dipoles is 
4

  radians.  As in the case with graphite, the 

van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 
300.74366 2.48058  10Ar D X C m     (Table 16.33), the van der Waals energy is: 

    
 

 22 30

  3 3

0 ... ... 0
0

1 2

24 2.48058  102
12 cos cos

4 44
4 2

2

Ar
van der Waals

Ar Ar Ar Ar

X C m
E Ar

r a a
C C

  




              
     

 (16.129) 

The argon interatomic distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.129)) between 

neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  is the same as that of the argon 

dipole, and the reduced mass is 20  .  The parameters are summarized in Table 16.34 and Eq. (16.130).  
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Table 16.34.   The energy parameters (eV) of the argon functional group ( Ar Ar ). 
Parameters Ar Ar Group

1n  1 

1C  0.5 

2C  0.93660
-1
 

1c  1 

2c  0.93660 

1oC  0.5 

2oC  0.93660
-1
 

 ( )eV eV  -4.18356 

 ( )pV eV  3.97600 

 ( )T eV  0.16731 

 ( )mV eV  -0.08365 

 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.12391 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.12391 

 15 10  /rad s  0.683262 

 ( )KE eV  0.44974 

 ( )DE eV  -0.00016 

 ( )KvibE eV  0.00153 

 ( )oscE eV  0.00060 

   ( )GroupTE eV  -0.12331 

 
Substitution of the parameters of Table 16.34 and the interatomic cohesive energy of argon (Eq. (16.129)) into Eq. (16.25) with 

...Ar ArR a  gives: 
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 (16.130) 

From the energy relationship given by Eq. (16.130) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the Ar Ar  MO can be solved. 

The most convenient way to solve Eq. (16.130) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is:  

 
10

... 012.50271 6.61615  10  Ar Ara a X m   (16.131) 

The component energy parameters at this condition are given in Table 16.34.  Substitution of Eq. (16.131) into Eq. (16.22) gives 

 
10

03.42199 1.81084  10  Ar Arc a X m
    (16.132) 

and internuclear distance between neighboring argon atoms: 

   10
02 0 6.84397 3.62167  10  3.62167 Ar Arc K a X m Å

     (16.133) 

The experimental argon interatomic distance 2 C Cc   is [114] 

   102 4.2 3.71   10  3.71  Ar Arc K X m Å
    (16.134) 

The other interatomic bond MO parameters can also be determined by the relationships among the parameters.  Substitution of 
Eqs. (16.131) and (16.132) into Eq. (16.23) gives: 

 
10

... ... 012.02530 6.36351  10  Ar Ar Ar Arb c a X m    (16.135) 

Substitution of Eqs. (16.131) and (16.132) into Eq. (16.25) gives: 

 ... 0.27370Ar Are   (16.136) 

A convenient method to calculate the lattice energy is to determine the electric field in solid argon having an electric 
polarization density corresponding to the aligned dipoles moments, and in turn, the energy can be calculated from the energy of 
each dipole in the corresponding field using the electrostatic form of Gauss’ equation.  Substitution of the density of solid argon 

at 4.2 K 
6 3

1.83 

1  10  

g

X m
   [114], the 39.948 /MW g mole , 

236.0221415  10  /AN X molecules mole , and the argon dipole 

moment given in Table 16.33 into Eq. (16.53) gives: 

 

 
 

 

 

2  

0

6 3230 23

0

2

3

1.83 
1  10  2 2.48058  10 6.0221415  10  /

39.948 /
3

0.07977  7.697 /

solid Ar
Ar AN

MWU Ar

g
X mX C m X molecules mole

g mole

eV kJ mole













 


  

 (16.137) 

 U Ar  is also the negative of   van der WaalsE , the van der Waals energy per argon atom: 
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     ,4.2 / 0.07977 7.697 /van der WaalsE solid Ar K Ar eV kJ mole   (16.138) 

The experimental van der Waals energy is the cohesive energy [115]: 

     ,0 0.08022 / 7.74 /van der WaalsE solid Ar K eV Ar kJ mole   (16.139) 

The calculated results based on first principles and given by analytical equations are summarized in Table 16.35. Using argon the 
atomic radius (Eq. (16.125)) and the nearest-neighbor distance (Eq. (16.133)), the lattice structure of argon is shown in Figure 
16.17B.  The charge density of the van der Waals dipoles of the crystalline lattice is shown in Figure 16.18B. 
 
Table 16.35.   The calculated and experimental geometrical parameters and interatomic van der Waals cohesive energy of 
solid argon. 
 

Parameter Calculated Experimental Ref. for Exp.

Solid Argon Interatomic Distance 2 C Cc   3.62167 Å (T=0 K) 3.71 Å (T=4.2 K) 114 

van der Waals Energy per Argon Atom 0.07977 eV (T=4.2 K) 0.08022 eV (T=0 K) 115
 
GEOMETRICAL PARAMETERS AND ENERGIES DUE TO THE INTERATOMIC VAN 
DER WAALS COHESIVE ENERGY OF SOLID KRYPTON 
Krypton is a thirty-six-electron neutral atom having the electron configuration 

2 2 6 2 6 10 2 61 2 2 3 3 3 4 4s s p s p d s p  with the electrons 

of each shell paired as mirror-image current densities in a shell wherein the radius of the outer shell is 36 00.97187r a  (Eq. 

(10.102)).  Thus, in isolation or at sufficient separation, there is no energy between krypton atoms.  However, reversible mutual 
van der Waals dipoles may be induced by collisions when the atoms are in close proximity such that krypton gas can condense 
into a liquid and further solidify at sufficiently low temperatures due to the strong dipole moment that accommodates close 
packing.  As in the case of helium, the dipoles are atomic rather than molecular, and the limiting separation is based on the 
formation of a nascent bond to replace the dipole-dipole interaction.  Thus, Eq. (16.25) can also be applied to krypton atoms. 

The van der Waals bonding in the krypton atom involves hybridizing the three 4 p  AOs into 
34p  HO orbitals 

containing six electrons.  The total energy of the state is given by the sum over the six electrons.  The sum  3, 4TE Kr p  of 

experimental energies [15, 116-119] of Kr , Kr  , 2Kr  , 3Kr  , 4Kr  , and 5Kr   is: 

  3 78.5 64.7 52.5 
,4 271.00945 

36.950 24.35984 13.99961 T

eV eV eV
E Kr p eV

eV eV eV

  
     

 (16.140) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 34 p
r  of the 

34Kr p  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 235

04
30 0 0

( ) 21
1.05429

8 271.00945 8 271.00945 p
n

Z n e e
r a

e eV e eV 


    (16.141) 

where 36Z   for krypton.  Using Eq. (15.14), the Coulombic energy  3, 4CoulombE Kr p  of the outer electron of the van der 

Waals bound 
34Kr p  shell is: 

  
3

2 2
3

0 0 04

, 4 12.905212 
8 8 1.05429Coulomb

p

e e
E Kr p eV

r a 
 

     (16.142) 

To meet the equipotential condition of the union of the two 
34Kr p  HOs in a nascent bond, 2c  of Eqs. (15.2-15.5) and Eq. 

(15.61) for the nascent Kr Kr -bond MO is given by Eq. (15.75) as the ratio of the valance energy of the Kr  AO, 

  13.99961 E Kr eV  and the magnitude of  3, 4CoulombE Kr p  (Eq. (16.142)). 

  3
2

12.905212 
, 4 0.92183

13.99961 

eV
c Kr Kr Kr p HO

eV
    (16.143) 

Since the outer 
34Kr p  HO shell is at a lower energy and greater radius than the non-polarized 4 p  shell, the inner shells are 

polarized as well.  The dipole of the outer shell can polarize the inner shells to the limit that the sum of the primary and 
secondary dipoles is twice the primary scaled by the energy matching factors of the van der Waals bond given in Eq. (16.15).  
Thus, the limiting dipole due to polarization of the inner shells is given by: 

 
     11 11

1 2

30

2 2 ' 2 0.16298 0.92183 5.57905  10  

                          3.42870  10 1.02790 

Kr c qC c e X m

X C m D

  



 

  
 (16.144) 

The condition of Eq. (16.144) is matched by the participation of the outer three shells as given in Table 16.36.  At each shell, 
opposite charge distributions act as symmetrical point charges at the point of maximum separation, each being centered at 1/2 the 
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shell radius from the origin.  Using the parameters of Eq. (16.143) and 
11

02 1.05429 5.57905  10  c a X m    (Eq. (16.141)) as 

well as the radii of the inner shells of krypton (Eq. (10.102)), the van der Waals dipole of krypton is given in Table 16.36 as the 
sum of the moments of each participating shell.  
 
Table 16.36.   The parameters and van der Waals dipole bond moment of the Kr  functional group (FG) of solid krypton.  
 

FG 
1n

 

( 1c ) 

2c  

( 1C ) 

2C  

 BE valence   AE valence  q

e
 / /Ion IP Z  

[116-119] 
Bond  

Length 

 2 '  c Å  

(Eqs. (16.141) 
and (10.102)) 

Bond 
Moment 
  (D) 

Kr
 

1 0.92183 1 12.90521 13.99961 0.16298  
 
 
6Kr   

111.0 
7 
 
8Kr   

231.5 
9 

34Kr p  HO 
0.55790 

 
4Kr s AO 

0.45405 
 
 

3Kr d  AO 
0.27991 

1.01129 

 
The minimum-energy packing of krypton dipoles is face-centered cubic also called cubic close packing.  In this case, 

each krypton atom has 12 nearest neighbors and the angle between the aligned dipoles is 
4

  radians.  As in the case with 

graphite, the van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 
301.01129 3.37329  10Kr D X C m     (Table 16.36), the van der Waals energy is: 

    
 

 22 30

  3 3

0 ... ... 0
0

1 2

24 3.37329  102
12 cos cos

4 44
4 2

2

Kr
van der Waals

Kr Kr Kr Kr

X C m
E Kr

r a a
C C

  




              
     

 (16.145) 

The krypton interatomic distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.145)) between 

neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  is the same as that of the krypton 

dipole, and the reduced mass is 42  .  The parameters are summarized in Table 16.37 and Eq. (16.146).  
 



Chapter 16 

 

1144

Table 16.37.   The energy parameters (eV) of the krypton functional group ( Kr Kr ). 

Parameters Kr Kr  
Group

1n  1 

1C  0.5 

2C  0.92183 

1c  1 

2c  0.92183 

1oC  0.5 

2oC  0.92183 

 ( )eV eV  -3.75058 

 ( )pV eV  3.52342 

 ( )T eV  0.13643 

 ( )mV eV  -0.06821 

 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.15895 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.15895 

 15 10  /rad s  0.550731 

 ( )KE eV  0.36250 

 ( )DE eV  -0.00019 

 ( )KvibE eV  0.00091 

 ( )oscE eV  0.00026 

   ( )GroupTE eV  -0.15869 
 
Substitution of the parameters of Table 16.37 and the interatomic cohesive energy of krypton (Eq. (16.145)) into Eq. (16.25) 

with ...Kr KrR a  gives: 
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 (16.146)  

From the energy relationship given by Eq. (16.146) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the Kr Kr  MO can be solved. 

The most convenient way to solve Eq. (16.146) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is:  

 
10

013.74580 7.27396  10  Kr Kra a X m
    (16.147) 

The component energy parameters at this condition are given in Table 16.37.  Substitution of Eq. (16.147) into Eq. (16.22) gives 

 
10

03.86154 2.04344  10  Kr Krc a X m
    (16.148) 

and internuclear distance between neighboring krypton atoms: 

   10
02 0 7.72308 4.08688  10  4.08688 Kr Krc K a X m Å

     (16.149) 

The experimental krypton interatomic distance 2 C Cc   is [113] 

   102 0 3.992   10  3.992  Kr Krc K X m Å
    (16.150) 

The other interatomic bond MO parameters can also be determined by the relationships among the parameters.  Substitution of 
Eqs. (16.147) and (16.148) into Eq. (16.23) gives: 

 
10

013.19225 6.98104  10  Kr Kr Kr Krb c a X m
     (16.151) 

Substitution of Eqs. (16.147) and (16.148) into Eq. (16.25) gives: 

 0.28092Kr Kre    (16.152) 

A convenient method to calculate the lattice energy is to determine the electric field in solid krypton having an electric 
polarization density corresponding to the aligned dipoles moments, and in turn, the energy can be calculated from the energy of 
each dipole in the corresponding field using the electrostatic form of Gauss’ equation.  Substitution of the density of solid 

krypton at 4.2 K 
6 3

3.094 

1  10  

g

X m
   [113], the 83.80 /MW g mole , 

236.0221415  10  /AN X molecules mole , and the krypton 

dipole moment given in Table 16.36 into Eq. (16.53) gives: 
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1  10  2 3.37329  10 6.0221415  10  /

83.80 /
3

0.11890  11.472 /
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X mX C m X molecules mole

g mole

eV kJ mole













 


  

 (16.153) 

[  U Kr ] is also the negative of   van der WaalsE , the van der Waals energy per krypton atom: 
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     ,0 / 0.11890 11.472 /van der WaalsE solid Kr K Kr eV kJ mole   (16.154) 

The experimental van der Waals energy is the cohesive energy [120]: 

     ,0 / 0.11561 11.15454 /van der WaalsE solid Kr K Kr eV kJ mole   (16.155) 

The calculated results based on first principles and given by analytical equations (0 K) are summarized in Table 16.38.  Using 
krypton the atomic radius (Eq. (16.141)) and the nearest-neighbor distance (Eq. (16.149)), the lattice structure of krypton is 
shown in Figure 16.15C.  The charge density of the van der Waals dipoles of the crystalline lattice is shown in Figure 16.16C. 
 
Table 16.38.   The calculated and experimental geometrical parameters and interatomic van der Waals cohesive energy (0 K) 
of solid krypton. 
 

Parameter Calculated Experimental Ref. for Exp.

Solid Krypton Interatomic Distance 2 C Cc  4.08688 Å 3.992 Å 113 

van der Waals Energy per Krypton Atom 0.11890 eV 0.11561 eV 120
 
GEOMETRICAL PARAMETERS AND ENERGIES DUE TO THE INTERATOMIC VAN 
DER WAALS COHESIVE ENERGY OF SOLID XENON 
Xenon is a fifty-four-electron neutral atom having the electron configuration 

2 2 6 2 6 10 2 6 10 2 61 2 2 3 3 3 4 4 4 5 5s s p s p d s p d s p  with the 

electrons of each shell paired as mirror-image current densities in a shell wherein the radius of the outer shell is 54 01.12168r a  

(Eq. (10.102)).  Thus, in isolation or at sufficient separation, there is no energy between xenon atoms.  However, reversible 
mutual van der Waals dipoles may be induced by collisions when the atoms are in close proximity such that xenon gas can 
condense into a liquid and further solidify at sufficiently low temperatures due to the strong dipole moment that accommodates 
close packing.  As in the case of helium, the dipoles are atomic rather than molecular, and the limiting separation is based on the 
formation of a nascent bond to replace the dipole-dipole interaction.  Thus, Eq. (16.25) can also be applied to xenon atoms. 

The van der Waals bonding in the xenon atom involves hybridizing the three 5p  AOs into 
35p  HO orbitals containing 

six electrons.  The total energy of the state is given by the sum over the six electrons.  The sum  3,5TE Xe p  of experimental 

energies [15, 121-122] of Xe, Xe , 2X e  , 3Xe  , 4X e  , and 5Xe   is: 

  3 66.703 54.14 40.9 
,5 225.89784 

31.050 20.975 12.129842 T

eV eV eV
E Xe p eV

eV eV eV

  
     

 (16.156) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 35 p
r  of the 

35Xe p  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 253

05
48 0 0

( ) 21
1.26483

8 225.897842 8 225.897842 p
n

Z n e e
r a

e eV e eV 


    (16.157) 

where 54Z   for xenon.  Using Eq. (15.14), the Coulombic energy  3,5CoulombE Xe p  of the outer electron of the van der Waals 

bound 
35Xe p  shell is: 

  
3

2 2
3

0 0 05

,5 10.757040 
8 8 1.26483Coulomb

p

e e
E Xe p eV

r a 
 

     (16.158) 

To meet the equipotential condition of the union of the two 
35Xe p  HOs in a nascent bond, 2c  of Eqs. (15.2-15.5) and Eq. 

(15.61) for the nascent Xe Xe -bond MO is given by Eq. (15.75) as the ratio of the valance energy of the Xe AO, 

  12.129842 E Xe eV   and the magnitude of  3,5CoulombE Xe p  (Eq. (16.158)). 

  3
2

10.75704 
, 5 0.88682

12.129842 

eV
c Xe Xe Xe p HO

eV
    (16.159) 

Since the outer 
35Xe p  HO shell is at a lower energy and greater radius than the non-polarized 5p  shell, the inner shells are 

polarized as well.  The dipole of the outer shell can polarize the inner shells to the limit that the sum of the primary and 
secondary dipoles is twice the primary scaled by the energy matching factors of the van der Waals bond given in Eq. (16.15).  
Thus, the limiting dipole due to polarization of the inner shells is given by: 
     1 11 30

1 22 2 ' 2 0.24079 0.88682 6.69318  10  5.16444  10 1.54826 Xe c qC c e X m X C m D         (16.160) 

The condition of Eq. (16.160) is matched by the participation of the outer two shells as given in Table 16.39.  At each shell, 
opposite charge distributions act as symmetrical point charges at the point of maximum separation, each being centered at 1/2 the 

shell radius from the origin.  Using the parameters of Eq. (16.159) and 
11

02 1.26483 6.69318  10  c a X m    (Eq. (16.157)) as 
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well as the radius of the inner 5s  shell of xenon (Eq. (10.102)), the van der Waals dipole of xenon is given in Table 16.39 as the 
sum of the moments of each participating shell.  
 
Table 16.39.   The parameters and van der Waals dipole bond moment of the Xe functional group (FG) of solid xenon.  
 

FG 
1n

 

( 1c ) 

2c  

( 1C ) 

2C  

 BE valence   AE valence  q

e
 / /Ion IP Z  

[121-122] 
Bond Length 

 2 '  c Å  

(Eqs. (16.157) 
and (10.102)) 

Bond 
Moment 
  (D) 

Xe 1 0.88682 1 10.75704 12.12984 0.24079  
 
 
6Xe   

91.6 
7

35Xe p  HO 

0.66932 
 

5Xe s AO 
0.55021 

1.41050 

 

 
The minimum-energy packing of xenon dipoles is face-centered cubic also called cubic close packing.  In this case, each 

xenon atom has 12 nearest neighbors and the angle between the aligned dipoles is 
4

  radians.  As in the case with graphite, the 

van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 
301.41050 4.70492  10Xe D X C m     (Table 16.39), the van der Waals energy is: 

    
 

 22 30

  3 3

0 ... ... 0
0

1 2

24 4.70492  102
12 cos cos

4 44
4 2

2

Xe
van der Waals

Xe Xe Xe Xe

X C m
E Xe

r a a

C C

  




              
     

 (16.161) 

The xenon interatomic distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.161)) between 

neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  is the same that of the xenon 

dipole, and the reduced mass is 65  .  The parameters are summarized in Table 16.40 and Eq. (16.162).  
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Table 16.40.   The energy parameters (eV) of the xenon functional group ( Xe Xe ). 
 

Parameters Xe Xe  Group 

1n  1 

1C  0.5 

2C  0.88682 

1c  1 

2c  1 

1oC  0.5 

2oC  0.88682 

 ( )eV eV  -3.49612 

 ( )pV eV  3.20821 

 ( )T eV  0.10960 

 ( )mV eV  -0.05480 
 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.23311 

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.23311 

 15 10  /rad s  0.432164 

 ( )KE eV  0.28446 

 ( )DE eV  -0.00025 

 ( )KvibE eV  0.00062 

 ( )oscE eV  0.00006 

   ( )GroupTE eV  -0.23305 

 
 
Substitution of the parameters of Table 16.40 and the interatomic cohesive energy of xenon (Eq. (16.161)) into Eq. (16.25) with 

...Xe XeR a  gives: 
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o Xe Xe Xe Xe
o Xe Xe
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 (16.162)  

From the energy relationship given by Eq. (16.162) and the relationships between the axes given by Eqs. (16.22-16.24), the 
dimensions of the Xe Xe  MO can be solved. 

The most convenient way to solve Eq. (16.162) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 

 
10

015.94999 8.44037  10  Xe Xea a X m
    (16.163) 

The component energy parameters at this condition are given in Table 16.40.  Substitution of Eq. (16.163) into Eq. (16.22) gives 

 
10

04.24093 2.24420  10  Xe Xec a X m
    (16.164) 

and internuclear distance between neighboring xenon atoms: 

   10
02 0 8.48187 4.48841  10  4.48841 Xe Xec K a X m Å

     (16.165) 

The experimental xenon interatomic distance 2 C Cc   at the melting point of 161.35 K is [112, 113]: 

   102 161.35 4.492   10  4.492  Xe Xec K X m Å
    (16.166) 

The other interatomic bond MO parameters can also be determined by the relationships among the parameters.  Substitution of 
Eqs. (16.163) and (16.164) into Eq. (16.23) gives: 

 
10

015.37585 8.13655  10  Xe Xe Xe Xeb c a X m
     (16.167) 

Substitution of Eqs. (16.163) and (16.164) into Eq. (16.25) gives: 

 0.26589Xe Xee    (16.168) 

A convenient method to calculate the lattice energy is to determine the electric field in solid xenon having an electric 
polarization density corresponding to the aligned dipoles moments, and in turn, the energy can be calculated from the energy of 
each dipole in the corresponding field using the electrostatic form of Gauss’ equation.  Substitution of the density of solid xenon 

at 0 K 
6 3

3.780 

1  10  

g

X m
   [113], the 131.29 /MW g mole , 

236.0221415  10  /AN X molecules mole , and the xenon dipole 

moment given in Table 16.39 into Eq. (16.53) gives: 

 

 
 

 

 

2  

0

6 3230 23

0

2

3

3.780 
1  10  2 4.70492  10 6.0221415  10  /

131.29 /
3

0.18037  17.403 /

solid Xe
Xe AN

MWU Xe

g
X mX C m X molecules mole

g mole

eV kJ mole













 


  

 (16.169) 
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 U Xe  is also the negative of   van der WaalsE , the van der Waals energy per xenon atom: 

     ,0 / 0.18037 17.403 /van der WaalsE solid Xe K Xe eV kJ mole   (16.170) 

The experimental van der Waals energy is the cohesive energy [123]: 

     ,0 0.16608 / 16.02472 /van der WaalsE solid Xe K eV Xe kJ mole   (16.171) 

The calculated results based on first principles and given by analytical equations are summarized in Table 16.41.  Using xenon 
the atomic radius (Eq. (16.157)) and the nearest-neighbor distance (Eq. (16.165)), the lattice structure of xenon is shown in 
Figure 16.15D.  The charge density of the van der Waals dipoles of the crystalline lattice is shown in Figure 16.16D. 
 
Table 16.41.   The calculated and experimental geometrical parameters and interatomic van der Waals cohesive energy of 
solid xenon. 
 

Parameter Calculated Experimental Ref. for Exp.

Solid Xenon Interatomic Distance 2 C Cc   4.4884 Å (T=0 K) 4.492 Å (T=161.35K) 113 

van der Waals Energy per Xenon Atom 
(0 K) 

0.18037 eV 0.16608 eV 123 

 
Figure 16.15.   The face-centered cubic crystal structures of noble gas condensates, all to the same scale.  (A) The crystal 
structure of neon.  (B) The crystal structure of argon.  (C) The crystal structure of krypton.  (D) The crystal structure of xenon. 
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Figure 16.16.   The charge densities of the van der Waals dipoles and face-centered cubic crystal structures of noble gas 
condensates, all to the same scale.  (A) The charge density and crystal structure of neon.  (B) The charge density and crystal 
structure of argon.  (C) The charge density and crystal structure of krypton.  (D) The charge density and crystal structure of 
xenon. 
 

 
 

GEOMETRICAL PARAMETERS AND ENERGIES DUE TO THE INTERMOLECULAR 
VAN DER WAALS COHESIVE ENERGIES OF H2 DIMER, SOLID H2, H2(1/p) DIMER, 
AND SOLID H2(1/p) 
Molecular hydrogen and molecular hydrino are typically gaseous molecules having no net electric field.  But, at very low 
temperatures it is possible to form diffuse dimers, or alternatively, these gases may be condensed with the formation of mutually 
induced van der Waals dipole interactions. The nature of the van der Waals bonding of molecular hydrogen and molecular 
hydrino is solved using the same approach as that of condensed helium atoms, except analogously with the comparison of 
isoelectronic helium and H2 excited states, the prolate spherical coordinate equations replace the spherical coordinate equations 
of the two-electron system. 

Molecular hydrogen and molecular hydrino are each a two-electron neutral molecule with both electrons paired as 
mirror-image current densities in a prolate spheroidal shell of semimajor and minor axes given by Eqs. (11.202) and (11.205), 
respectively.  Thus, in isolation or at sufficient separation, there is no energy between hydrogen-type molecules.  However, 
reversible mutual van der Waals dipoles may be induced by collisions when the atoms are in close proximity such that hydrogen-
type gas can condense into dimers, liquid, and solid states depending on the temperature and pressure.  The limiting separation of 
the corresponding van der Waals bonding between molecular dipoles is based on the formation of a nascent bond to replace the 
dipole-dipole interaction.  Thus, the isoelectronic helium case of general van der Waals Eq. (16.25) given by Eq. (16.99) also 
applies to hydrogen-type molecules.  Based on symmetry, the molecules at aligned along their semimajor axes, the induces 
charges act the position of the nuclei at the foci, and the dipole separation is in the direction of the semimajor axes given by the 
internuclear distance (Eq. (11.204)). 

The van der Waals bonding in the hydrogen-type molecules involves hybridizing the1s molecular orbitals (MO) into a 
11s hybridized molecular orbital (HMO) containing two electrons.  The total energy of the state is given by the sum over the two 

electrons given by Eq. (11.241).  The sum   1
2 1 / ,1TE H p s  is: 

 
2 331.351 0.326469 TE p eV p eV   (16.172)  
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The HMO electron energy is equally distributed to each equivalent electron to give the Coulombic energy   1
2 1/ ,1CoulombE H p s  

of the outer electron of the van der Waals bound   1
2 1/ 1H p s  shell: 

   
2 3

1
2

2 3

31.351 0.326469 
1 / ,1

2

15.6755 0.16323 

Coulomb

p eV p eV
E H p s

p eV p eV

 


  

 (16.173)  

To meet the equipotential condition of the union of the two   1
2 1/ 1H p s  HOs in a nascent bond, 2c  of Eqs. (15.2-15.5) and Eq. 

(15.61) for the nascent    2 21/ 1/H p H p -bond MO is given by Eq. (15.75) as the ratio of the valance energy of the  2 1/H p  

MO,   
1

2 3
2 1/ 15.2171 0.207714 IPE H p p eV p eV  given by Eq. (11. 244) and the magnitude of   1

2 1/ ,1CoulombE H p s  (Eq. 

(16.173)): 

       
2 3

1
2 2 2 2 2 3

15.2171 0.207714 
1/ 1/ , 1/ 1

15.6755 0.16323 

p eV p eV
c H p H p H p s HMO

p eV p eV


 


 (16.174)  

The opposite charge distributions act as point charges at the foci, the position of the nuclei such that the separation distance is the 
internuclear distance given by Eq. (11.204). 

The van der Waals dipole of  2 1/H p is calculated by the same method as that of helium using the parameters of Eq. 

(16.174) and 0 2
2 '

a
c

p
  (Eq. (11.204)).  As in the case with helium, the van der Waals energy is the potential energy between 

interacting neighboring induced dipoles.  Using the van der Waals dipole of  2 1/H p , the van der Waals energy for a hydrogen 

type dimer is: 

      
    

2

2 2

2

1/

  2 3

0 1/ ... 1/

2
1 /

4

H p

van der Waals

H p H p

E H p
r




  (16.175)  

The dimer interatomic distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.175)) between 
neighboring dipoles equated to the nascent bond energy.  From the energy relationship given by Eq. (16.25) and the relationships 

between the axes given by Eqs. (16.22-16.24), the dimensions of the    2 21/ 1/H p H p  MO can be solved. 

 

PARAMETERS AND ENERGIES DUE TO THE INTERMOLECULAR VAN DER WAALS COHESIVE 
ENERGIES OF H2 DIMER 

In the case of 2H , 1p   such that the parameter 2c  is given by  

  
2 3

1
2 2 2 2 2 3

115.2171 1 0.207714 
, 1 0.9739

115.6755 1 0.16323 

eV eV
c H H H s HMO

eV eV


  


 (16.176)  

Using the parameters of Eq. (16.176) and 02 ' 2c a  (Eq. (11.204)), the van der Waals dipole of 2H is given in Table 16.42. 

 

Table 16.42.   The parameters and van der Waals dipole bond moment of the 2H  functional group of hydrogen dimer. 

 
Functional 

Group 1n
 

( 1c ) 2c  ( 1C ) 2C   BE valence
 

 AE valence
 

q

e
 

Bond 
Length 

 2 '  c Å

Bond 
Moment 
  (D) 

2H  1 0.9739 1 15.4248 15.83901 0.05300 0.748369 0.19053
 

The van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 

2

316.30.19053   105524H D X C m    (Table 16.42), the van der Waals energy is: 

    
 

 
2

2 2 2 2

2 231

  2 3 3

0 0
0

1 2

6.35522 2   10

4
4

4

2
2

H

van der Waals

H H H H

X C m
E H

r a a

C C








 


 

 
  
 

 (16.177)  
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The hydrogen dimer intermolecular distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.177)) 

between neighboring dipoles equated to the nascent bond energy. The energy matching parameter 2c  of 2 2H H  is the same as 

that of the 2H  dipole, and the reduced mass is 1  . The parameters are summarized in Table 16.43 and Eq. (16.178).  

 

Table 16.43.   The energy parameters (eV) of the hydrogen dimer functional group ( 2 2H H ). 

 
Parameters 

2 2H H  

Group

1n  1 

1C  0.5 

2C  0.97385
-1

 

1c  1 

2c  0.97385 

1oC  0.5 

2oC  0.97385
-1

 

 ( )eV eV  -3.64208

 ( )pV eV  3.57387
 ( )T eV  0.12236

 ( )mV eV  -0.06118
 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.00703

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.00703

 15 10  /rad s  0.515948 

 ( )KE eV  0.33961 

 ( )DE eV  0.00001 

 ( )KvibE eV  0.00028 

 ( )oscE eV  -0.00013 

   ( )GroupTE eV  -0.00069 

 
Substitution of the parameters of Table 16.43 and the interatomic cohesive energy of hydrogen dimer (Eq. (16.177)) into Eq. 

(16.25) with 
2 2H HR a   gives: 
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 (16.178)  

wherein  0.05300  is /q e  the induced charge from Table 16.42.  From the energy relationship given by Eq. (16.178) and the 

relationships between the axes given by Eqs. (16.22-16.24), the dimensions of the 2 2H H  MO can be solved. 

The most convenient way to solve Eq. (16.178) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 
 

2 2

10
0  2  114.88 60 7.87553 0  H Ha a X m

    (16.179)  

The component energy parameters at this condition are given in Table 16.43.  Substitution of Eq. (16.179) into Eq. (16.22) gives 
 

2 2

10
0   3.80702 2.0145 109  H Hc a X m

    (16.180)  

and internuclear distance between neighboring 2H  nuclei: 

 
2 2

10
0 22 7.61404 4.0 918 4  91 80  .02 1 H Hc a X m Å

     (16.181)  

The other intermolecular bond MO parameters can also be determined by the relationships among the parameters.  Substitution 
of Eqs. (16.179) and (16.180) into Eq. (16.23) gives 
 

2 2 2 2

10
014.387 6  .  10  44 7 1350H H H Hb c a X m

     (16.182)  

Substitution of Eqs. (16.179) and (16.180) into Eq. (16.25) gives: 
 

2 2
0.25580H He    (16.183)  

Using Eqs. (16.177) and (16.181), the van der Waals energy of the hydrogen dimer is: 
    1

  2 2[ ]  5.0.00069 59 van der WaalsE H eV cm  (16.184)  

The experimental 0D is shown in Figure of Ref. [124], [125]  is: 

 1
0 5.6 D cm  (16.185)  

From Table 16.43, the hydrogen dimer vibrational energy ( )KvibE eV  that matches the experimental dimer spectrum [126] is  

  1 ( ) 0.00028 2.3 KvibE eV eV cm  (16.186)  

 

PARAMETERS AND ENERGIES DUE TO THE INTERMOLECULAR VAN DER WAALS COHESIVE 
ENERGIES OF SOLID H2 

The minimum-energy packing of 2H  dipoles is face-centered cubic also called cubic close packing.  In this case, each 2H  

molecule has 12 nearest neighbors and the angle between the aligned dipoles is 
4

  radians.  As in the case with hydrogen dimer, 

the van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 

2

316.30.19053   105524H D X C m     (Table 16.42), the van der Waals energy is: 
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 (16.187)  

The hydrogen dimer intermolecular distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.187)) 

between neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  of 2 2H H  is the same as 

that of the 2H  dipole, and the reduced mass is 1  .  The parameters are summarized in Table 16.44 and Eq. (16.188).  

 

Table 16.44.   The energy parameters (eV) of the solid hydrogen functional group ( 2 2H H ). 

 

Parameters 2 2H H  

Group

1n  1 

1C  0.5 

2C  0.97385
-1

 

1c  1 

2c  0.97385 

1oC  0.5 

2oC  0.97385
-1

 

 ( )eV eV  -3.63998
 ( )pV eV  3.57286

 ( )T eV  0.12222

 ( )mV eV  -0.06111
 /  ( )AO HOE eV  0

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.00601

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.00601

 15 10  /rad s  0.515511 

 ( )KE eV  0.33932 

 ( )DE eV  0.00001 

 ( )KvibE eV  0.00028 

 ( )oscE eV  -0.00013 

   ( )GroupTE eV  -0.00587 

 

Substitution of the parameters of Table 16.43 and the interatomic cohesive energy of solid hydrogen (Eq. (16.187)) into Eq. 
(16.25) with 

2 2H HR a   gives: 
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 (16.188)  
wherein  0.05300  is /q e  the induced charge from Table 16.42.  From the energy relationship given by Eq. (16.188) and the 

relationships between the axes given by Eqs. (16.22-16.24), the dimensions of the 2 2H H  MO can be solved. 

The most convenient way to solve Eq. (16.188) is by the reiterative technique using a computer.  The result to within the 

round-off error with five-significant figures is: 
 

2 2

10
0  1  114.89 00 7.87998 0  H Ha a X m

    (16.189)  

The component energy parameters at this condition are given in Table 16.44.  Substitution of Eq. (16.189) into Eq. (16.22) gives 
 

2 2

10
0   3.80810 2.0151 106  H Hc a X m

    (16.190)  

and internuclear distance between neighboring 2H  nuclei: 

 
2 2

10
0 32 7.61619 4.0 031 4  01 10  .03 3 H Hc a X m Å

     (16.191)  

The other intermolecular bond MO parameters can also be determined by the relationships among the parameters.  Substitution 

of Eqs. (16.189) and (16.190) into Eq. (16.23) gives 
 

2 2 2 2

10
014.395 6  .  10  84 7 1795H H H Hb c a X m

     (16.192)  

Substitution of Eqs. (16.189) and (16.190) into Eq. (16.25) gives: 
 

2 2
0.25573H He    (16.193)  

A convenient method to calculate the lattice energy is to determine the electric field in solid molecular hydrogen having an 

electric polarization density corresponding to the aligned dipoles moments, and in turn, the energy can be calculated from the 

energy of each dipole in the corresponding field using the electrostatic form of Gauss’ equation.  Substitution of the density of 

solid hydrogen 
6 3

0.086 

1  10  

g

X m
   [127], the 2.016 /MW g mole , 236.0221415  10  /AN X molecules mole , and the 2H  dipole 

moment given in Table 16.42 into Eq. (16.53) gives: 
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 (16.194)  

 2U H is also the negative of   van der WaalsE , the van der Waals energy per 2H  molecule: 

    2 2 / 0.00488 0.470 /van der WaalsE solid H H eV kJ mole   (16.195)  

The experimental van der Waals energy calculated from the heat of vaporization and fusion per hydrogen molecule [128] is 

 

   2

0.44936 0 .05868

0

 

/  /

 /.50804

van der Waals vapor fusionE solid H E E

kJ mole kJ mole

kJ mole

 

 


 (16.196)  

 

PARAMETERS AND ENERGIES DUE TO THE INTERMOLECULAR VAN DER WAALS COHESIVE 
ENERGIES OF H2(1/4) DIMER 

In the case of 2H , 4p   such that the parameter 2c  is given by  

 
      

2 3
1

2 2 2 2 2 3

4 15.2171 4 0.207714 
1/ 4 1/ 4 , 1/ 4 1

4 15.6755 4 0.16323 
0.9828

eV eV
c H H H s HMO

eV eV


 




 (16.197)  

Using the parameters of Eq. (16.197) and 0

2
2 '

4
c a  (Eq. (11.204)), the van der Waals dipole of  2 1/ 4H is given in Table 

16.45. 
 
Table 16.45.   The parameters and van der Waals dipole bond moment of the  2 1/ 4H  functional group of hydrogen dimer. 

 
Functional 

Group 1n
 

( 1c )

2c  

( 1C )

2C  

 BE valence
 

 AE valence
 

q

e
 

Bond 
Length 

 2 '  c Å

Bond 
Moment 
  (D) 

 2 1/ 4H  1 0.9828 1 256.767 261.255 0.03466 0.187092 0.03114

 
The van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 

 2

31
1/4 0.03114 1 8  .038 105 H D X C m    (Table 16.45), the van der Waals energy is: 
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38852 2   10
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H
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H HH H
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E H

a ar

C C











 

 
 
 
 

 (16.198)  

The molecular hydrino dimer intermolecular distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. 

(16.198)) between neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  of 

   2 21/ 4 1/ 4H H  is the same as that of the  2 1/ 4H  dipole, and the reduced mass is 1  . The parameters are summarized 

in Table 16.46 and Eq. (16.199).  
 



Chapter 16 

 

1158

Table 16.46.   The energy parameters (eV) of the hydrogen dimer functional group (    2 21/ 4 1/ 4H H ). 

 
Parameters    2 21/ 4 1/ 4H H  

Group

1n  1 

1C  0.5 

2C  0.9828
-1

 

1c  1 

2c  0.9828 

1oC  0.5 

2oC  0.9828
-1

 

 ( )eV eV  -56.96364
 ( )pV eV  56.03381

 ( )T eV  1.85462

 ( )mV eV  -0.92731
 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.00253

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.00253

 15 10  /rad s  7.83940

 ( )KE eV  5.16003

 ( )DE eV  0.00001

 ( )KvibE eV  0.00285

 ( )oscE eV  -0.00141

   ( )GroupTE eV  -0.00111
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Substitution of the parameters of Table 16.46 and the interatomic cohesive energy of hydrogen dimer (Eq. (16.198)) into Eq. 
(16.25) with    2 21/4 1/4H HR a   gives: 
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   (16.199)  

wherein  0.03466  is /q e  the induced charge from Table 16.45.  From the energy relationship given by Eq. (16.199) and the 

relationships between the axes given by Eqs. (16.22-16.24), the dimensions of the    2 21/ 4 1/ 4H H  MO can be solved. 

The most convenient way to solve Eq. (16.199) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 
    2 2 2

10
01/4 1/4 3.  3  10839 1 2 3.0 168H Ha a X m

    (16.200)  

The component energy parameters at this condition are given in Table 16.46.  Substitution of Eq. (16.200) into Eq. (16.22) gives 
    2 2 2

11
01/4 1/4 0.  2  1971 6 5.13967 0H Hc a X m


    (16.201)  

and internuclear distance between neighboring 2H  nuclei: 

    2 2 2

10
01/4 1/4 1.94251 1.02793 12    .10  02793H Hc a X m Å


     (16.202)  

The other intermolecular bond MO parameters can also be determined by the relationships among the parameters.  Substitution 
of Eqs. (16.200) and (16.201) into Eq. (16.23) gives 
        2 2 2 22 2

10
01/4 1/4 1/4 1/4 3.71443 1.9   106559H H H Hb c a X m

     (16.203)  

Substitution of Eqs. (16.200) and (16.201) into Eq. (16.25) gives: 
    2 2 2

1/4 1/4 0.25298H He    (16.204)  

Using Eqs. (16.198) and (16.202), the van der Waals energy of the hydrogen dimer is: 
     1

  2 2 0.0014 11 8.9 9[ 1 / ]  1van der WaalsE H eV cm  (16.205)  

 

PARAMETERS AND ENERGIES DUE TO THE INTERMOLECULAR VAN DER WAALS COHESIVE 
ENERGIES OF SOLID H2(1/4) 
The minimum-energy packing of  2 1/ 4H  dipoles is face-centered cubic also called cubic close packing.  In this case, each 

 2 1/ 4H  molecule has 12 nearest neighbors and the angle between the aligned dipoles is 
4

 radians.  As in the case with 

 2 1/ 4H  dimer, the van der Waals energy is the potential energy between interacting neighboring induced dipoles.  Using 

 2

31
1/4 0.03114 1 8  .038 105 H D X C m     (Table 16.45), the van der Waals energy is: 
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 (16.206)  

The hydrogen dimer intermolecular distance is calculated using Eq. (16.25) with the van der Waals energy (Eq. (16.206)) 

between neighboring dipoles equated to the nascent bond energy.  The energy matching parameter 2c  of    2 21/ 4 1/ 4H H  is 

the same as that of the  2 1/ 4H  dipole, and the reduced mass is 1  .  The parameters are summarized in Table 16.47 and Eq. 

(16.207).  
 
Table 16.47.   The energy parameters (eV) of the solid hydrogen functional group (    2 21/ 4 1/ 4H H ). 

 
Parameters    2 21/ 4 1/ 4H H  

Group

1n  1 

1C  0.5 

2C  0.9828
-1

 

1c  1 

2c  0.9828 

1oC  0.5 

2oC  0.9828
-1

 

 ( )eV eV  -56.98072
 ( )pV eV  56.04202

 ( )T eV  1.85572

 ( )mV eV  -0.92786
 /  ( )AO HOE eV  0 

 
2

/  ( )AO HOH MOE eV  0 

 /  ( )AO HOTE eV  0 

 2  ( )H MOTE eV  -0.01084

 3, .  ( )TE atom atom msp AO eV 0 

   ( )MOTE eV  -0.01084

 15 10  /rad s  7.84284

 ( )KE eV  5.16229

 ( )DE eV  0.00005

 ( )KvibE eV  0.00285

 ( )oscE eV  -0.00138

   ( )GroupTE eV  -0.00946
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Substitution of the parameters of Table 16.47 and the interatomic cohesive energy of solid hydrogen (Eq. (16.206)) into Eq. 
(16.25) with    2 21/4 1/4H HR a   gives: 

 
   

  

   

  

 
   

   

  
   

 

2 2

2 2

2 2

2 2

2 2

231

3

01/4 1/4
0 1

0

1/4 1/4

2
01/4 1/4

1
01/4 1/4

0 1

01/4 1/4

24   10
cos

4
4 2

2 0.5

1
2

2

 
2 0.5

8 ln
2 0.5

2 0.5

1.03885

0.9828

0.9828

0.9828

0.9828

H H

H H

H H

H H

H H

X C m

a a

a

a

a ae
a

a a

a a
a






















   
 
  

 
 
 

 
 
 
 







 

  
    

  

    
 

   
   

2 2

2 22 2

2 2

1

2

3

1/4 1/4

2
2

1

3

1/4 1/41/4 1/4
1/4 1/4

2

0

1

.9828

0.9828 0.03466

0.03466

8

0.98280.5
4

82
1

1 2
2

o H H

H Ho H H
o H H

e

e

a

e

aa
a

m

e

m c

e



 










  
  
  
  
  
  
  

  
  
  

  

 
 

 
  
           




  

3

0

1
2 0.5

1

                

0.9828

    

a 
 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (16.207)  

wherein  0.03466  is /q e  the induced charge from Table 16.42.  From the energy relationship given by Eq. (16.207) and the 

relationships between the axes given by Eqs. (16.22-16.24), the dimensions of the    2 21/ 4 1/ 4H H  MO can be solved. 

The most convenient way to solve Eq. (16.207) is by the reiterative technique using a computer.  The result to within the 
round-off error with five-significant figures is: 
    2 2

10
01/4 1/4 3.  9  108381 2 3.0 108H Ha a X m

    (16.208)  

The component energy parameters at this condition are given in Table 16.47.  Substitution of Eq. (16.208) into Eq. (16.22) gives 
    2 2 2

11
01/4 1/4 0.  1  1971 1 5.13891 0H Hc a X m


    (16.209)  

and internuclear distance between neighboring  nuclei: 

    2 2

10
01/4 1/42 11.94223 .0277  8 1.0 277810  H Hc a X m Å


     (16.210)  

The other intermolecular bond MO parameters can also be determined by the relationships among the parameters.  Substitution 
of Eqs. (16.208) and (16.209) into Eq. (16.23) gives 
        2 2 2 22 2

10
01/4 1/4 1/4 1/4 3.71330 1.9   106499H H H Hb c a X m

     (16.211)  

Substitution of Eqs. (16.208) and (16.209) into Eq. (16.25) gives: 
    2 2 2

1/4 1/4 0.25301H He    (16.212)  

A convenient method to calculate the lattice energy is to determine the electric field in solid molecular hydrogen having an 
electric polarization density corresponding to the aligned dipoles moments, and in turn, the energy can be calculated from the 
energy of each dipole in the corresponding field using the electrostatic form of Gauss’ equation.  The  2 1/ 4H  number density 

of solid  2 1/ 4H N  is given by the 4, the number of  2 1/ 4H  molecules per unit cell divided by the volume of the face centered 

cubic cell.  Using the neighbor internuclear distance    2 21/4 1/42 H Hc 
  (Eq. (16.210)) as the length of the unit cell, N  can be 

approximated by 

 

      
 

2 2

1
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3 30

1/4 1 4

2
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3.684 1/ 4
1.  027

4 4
 10  

  18 02 7
H H

N X
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  (16.213)  

Substitution of number density of solid  2 1/ 4H N  given by Eq. (16.213) and the  dipole moment given in Table 

16.45 into Eq. (16.53) gives: 

H
2

1/ 4 

H
2

1/ 4 
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 (16.214)  

  2 1/ 4U H is also the negative of   van der WaalsE , the van der Waals energy per  2 1/ 4H  molecule: 

         2 2 0.01869 1. 1/ 4 / 1/ 4   /803van der WaalsE solid H H eV kJ mole  (16.215)  

 
PARAMETERS AND MAGNETIC ENERGIES DUE TO THE SPIN MAGNETIC MOMENT OF H2(1/4) 
Molecular hydrino  2 1/H p  comprises (i) two electrons bound in a minimum energy, equipotential, prolate spheroidal, two-

dimensional current membrane comprising a molecular orbital (MO), (ii) two 1Z   nuclei such as two protons at the foci of the 
prolate spheroid, and (iii) a photon wherein the photon equation of each state is different from that of an excited H2 state given in 
the Excited States of the Hydrogen Molecule section, in that the photon increases the central field by an integer rather than 
decreasing the central prolate spheroidal field to that of a reciprocal integer of the fundamental charge at each nucleus centered 
on the foci of the spheroid, and the electrons of  2 1/H p  are paired in the same shell at the same position   versus being in 

separate   positions.  The interaction of the hydrino state photon electric field with each electron gives rise to a nonradiative 
radial monopole such that the state is stable.  In contrast, by the same mechanism, the excited H2 state photon gives rise to a 
radiative radial dipole at the outer excited state electron resulting in the state being unstable to radiation.  For exited states, the 
photon electric field comprises a prolate spheroidal harmonic in space and time that modulates the constant prolate spheroidal 
current of the outer electron in-phase.  The former corresponds to orbital angular momentum and the latter corresponds to spin 
angular momentum.  Due to the unique stable state of molecular hydrino comprising two nonradiative electrons in a single MO, 
the nature of the trapped photon field, the nature of the vector photon propagation inside the molecular hydrino serving as a 
resonator cavity, and the nature of the electron currents are unique.  

Consider the formation of a nonradiative state H2 molecule from two non-radiative 1n   state H atoms requiring the 
bond energy to be removed by a third body collision: 

 2 *H H M H M     (16.216a) 

wherein *M  denotes the third body in an energetic state2.  Molecular hydrino may form by the same nonradiative mechanism 
wherein, hydrino atoms and hydrino molecules comprise an additional photon component of the central field that is nonradiative 
by virtue of being equivalent to an integer multiple of the central field of a proton at the origin and at each focus of the prolate 
spheroid MO, respectively.  The combination of two electrons into a single molecular orbital while maintaining the radiationless 
integer photonic central field gives rise to the special case of a doublet MO state in molecular hydrino rather than a singlet state.  

The singlet state is nonmagnetic; whereas, the doublet state has a net magnetic moment of a Bohr magneton B . 

Specifically, the basis element of the current of each hydrogen-type atom is a great circle as shown in the Generation of 
the Atomic Orbital-CVFS section, and the great circle current basis elements transition to elliptic current basis elements in 
hydrogen-type molecules as shown in the Force Balance of Hydrogen-Type Molecules section.  As shown in the Equation of the 
Electric Field inside the Atomic Orbital section, (i) photons carry electric field and comprise closed field line loops, (ii) a 
hydrino or a molecular hydrino each comprises a trapped photon wherein the photon field-line loops each travel along a mated 
great circle or elliptic current loop basis element in the same vector direction, (iii) the direction of each field line increases in the 
direction perpendicular to the propagation direction with relative motion as required by special relativity, and (iv) since the linear 
velocity of each point along a field line loop of a trapped photon is light speed c, the electric field direction relative to the 

laboratory frame is purely perpendicular to its mated current loop and it exists only at  nr r  .  The paired electrons of the 

hydrogen molecular orbital comprise a singlet state having no net magnetic moment.  However, the photon field lines of two 

 

2 The hydrino molecule comprises two hydrogen isotope nuclei and two electrons in a single molecular orbital (MO).  Uniquely the MO comprises a 

paired and unpaired electron (Parameters and Magnetic Energies Due to the Spin Magnetic Moment of H2(1/4) section).  To conserve spin angular 

momentum during the formation of a bond between two hydrino atoms, the bond energy must be released as a neutrino such as an electron neutrino of spin 

½ that serves the function of the third body of *M  Eq. (16.216a): 
      21 / 1 / 1 /

e
H p H p H p     (16.216b)  

Specifically, a neutrino comprises a photon having 
2

  angular momentum in its electric and magnetic fields (Neutrinos section).  During the reaction of Eq. 

(16.216b), the angular momentum of the reactants is conserved in the products wherein each of the two reacting hydrino atoms are electron spin ½, and the 
product molecular hydrino and electron neutrino are also each spin ½.  The neutrino emission reaction (Eq. (16.216b)) may be exploited for 
communication (e.g. a neutrino telecommunication system). 
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hydrino atoms that superimpose during the formation of a molecular hydrino can only propagate in one direction to avoid 
cancellation and give rise to a central field to provide force balance between the centrifugal and central forces (Eq. (11.200)).  
This special case gives rise to a doublet state in molecular hydrino. 

The MO may be treated as a linear combination of the great ellipses that comprise the current density function of each 
electron as given in the Generation of the Orbitsphere-CVFS section and the Force Balance of Hydrogen-Type Molecules 
section.  To meet the boundary conditions that each corresponding photon is matched in direction with each electron current and 
that the electron angular momentum is  are satisfied, one half of electron 1 and one half of electron 2 may be spin up and 
matched with the two photons of the two electrons on the MO, and the other half of electron 1 may be spin up and the other half 
of electron 2 may be spin down such that one half of the currents are paired and one half of the currents are unpaired.  Thus, the 

spin of the MO is  1

2
    where each arrow designates the spin vector of one electron.  The two photons that bind the two 

electrons in the molecular hydrino state are phase-locked to the electron currents and circulate in opposite directions.  Given the 
indivisibility of each electron and the condition that the MO comprises two identical electrons, the force of the two photons is 
transferred to the totality of the electron MO comprising a linear combination of the two identical electrons to satisfy Eq. 
(11.200).  The resulting angular momentum and magnetic moment of the unpaired current density are  and a Bohr magneton 

B , respectively.   

Due to its unpaired electron, molecular hydrino is electron paramagnetic resonance (EPR) spectroscopy active.  
Moreover, due to the unpaired electron in a common molecular orbital with a paired electron, the EPR spectrum is uniquely 
characteristic of and identifies molecular hydrino as shown infra.  As given in the Electron g Factor section, flux is linked by an 

unpaired electron in quantized units of the fluxon or magnetic flux quantum 
2

h

e
.  The electric energy, the magnetic energy, and 

the dissipated energy of a fluxon treading the atomic orbital given by Eqs. (1.226 -1.227) is  

 

2
2

 

2 4
2 1

2 3 2 3 2
spin
mag g B BE B g B

    
  

                  
 (16.217) 

In the case of the molecular hydrino, the unpaired electron is a linear combination of two electrons of the MO wherein one half 
of the current density is paired, and one half is unpaired.  The fluxon links both interlocked electrons such that the contribution 
of the flux linkage terms are doubled.  The corresponding g factor is  

 
2

2
2

(1/ )

2 4
2 1 2 2.0046386

2 3 2 3 2H pg
  
  

                     
 (16.218) 

The energy between parallel and antiparallel levels of the unpaired electron in an applied magnetic field is  
 

2 2.0046 (1/ ) 2.0046386spin
mag H p B BE g B B     (16.219) 

The result of Eq. (16.218) was confirmed wherein the electron paramagnetic resonance peak was observed with g factor of 
2.00445 [131].  

Molecular hydrino comprises a linear combination of an unpaired and a paired electron in a common prolate spheroidal 
molecular orbital (MO) wherein ellipsoidal current elements alternate in pairs of contiguous parallel and antiparallel currents.  
Consider the designation of the prolate spheroidal MO wherein the y and z-axes are semiminor axes and the x-axis is the 

semimajor axis.  The resulting current density comprises a prolate spheroid possessing 
2

  of angular momentum along either the 

+z-axis or –z-axis and 
4

  along each of the +y and –y-axes as shown in Figure 11.4 wherein the unpaired-paired intrinsic 

current density may occupy two degenerate distributions about either the +z-axis or –z-axis.  The application of a magnetic field 
lifts the degeneracy.  The semimajor or x-axis of the molecular hydrino aligns parallel or antiparallel to an applied magnetic field 
with capture of a photon of the Larmor frequency corresponding to the applied field-electron spin interaction energy /

E   given 

by the Bohr magneton B  times the applied flux B : 

 / BE B    (16.220) 
The resulting cylindrical rotation of the MO current about the semimajor axis gives rise to  of angular momentum along either 
the +x or –x-axis (Figure 11.4) and causes the spin current vectors in the transverse plane containing the semiminor axes to 
average to zero.  A 180° electron spin flip transition along the semimajor axis may occur with the absorption of a resonant 
microwave photon having the energy given by Eqs. (16.217-16.219).  The  of angular momentum of the spin flip photon aligns 

along either the +z or –z-axis in the transverse plane wherein the unpaired current 
2

  of angular momentum along the either the 

+z-axis or –z-axis quantizes the orientation of spin flip photon angular momentum.  In the case that the angular momentum of 
the spin flip photon is opposite that of the unpaired current, the unpaired current also flips its orientation with a concomitant flip 
of the corresponding angular momentum by 180° in the transverse plane.  The semiminor axis spin flip transition lifts the 
degeneracy of the semimajor axis spin flip transition due to an interaction of the paired and unpaired current of the MO.  The 
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three sources of splitting of the spin flip transition are considered: (i) the energy of interaction of the internal magnetic field of 
the electron MO on the proton magnetic moments, (ii) the energy of interaction of the transition between nuclear spin isomer 
states on the spin of the electron MO, and (iii) the coupling energy between the spin unpaired electro and the spin paired electron 
of the  2 1/ 4H  electron MO.  

Hydrogen-type molecules comprise a proton at each focus of the prolate spheroid molecular orbital, each with nuclear 

spin and a corresponding magnetic dipole moment of P .  Consider that effect on the protons when a magnetic field is applied 

along the semimajor axis, the x-axis, that excites the Larmor precession of the unpaired electron of  2 1/H p  to give rise to an 

electron spin magnetic moment of a Bohr magneton also aligned along the semimajor axis.  The intrinsic electron spin vectors 
along the two transverse semiminor axes, the y-axis and the z-axis, as shown in Figure 11.4 rotate around the applied magnetic 
field and the electron spin magnetic moment at the Larmor frequency given by Eq. (1.227).  The magnetic field inside the 

ellipsoidal MO, x
H , (Eq. (12.31)) is: 
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   (16.221) 

Substitution of the  2 1/ 4H  semimajor axis a (Eq. (11.202)) and the  2 1/ 4H  semiminor axis b (Eq. (11.205)) into Eq. (16.221) 

gives 

 404.5 1  2 x X TB    (16.222) 

This large electrodynamic field aligns parallel or antiparallel to the applied field corresponding to the direction of the Larmor 
electron magnetic moment.  However, this electrodynamic field is transverse to the vector direction of the proton magnetic 
moments that must align along the direction of the magnetostatic intrinsic spin as a condition of the formation and energy 
stability of the  2 1/ 4H  molecule.  Thus, the nuclear magnetic moments align in the transverse plane, the yz-plane that is 

perpendicular to three-semimajor axis magnetic components: (i) the applied magnetic field that excites the Larmor rotation, (ii) 
the electron spin magnetic moment, and (iii) the electrodynamic magnetic field of the electron’s Larmor rotation.  The intrinsic 
electron spin vectors along the transverse two semiminor axes, the y-axis and the z-axis, (Figure 11.4) rotate around these three-
semimajor axis magnetic components at the Larmor frequency given by Eq. (1.227).  Since the nuclear magnetic moments are 
transverse to the three-semimajor axis magnetic components, and the Larmor-frequency rotation causes the intrinsic electron 
spin magnetic interaction with the nuclear spins to average to zero, the nuclear magnetic moments do not interact with the three-
semimajor axis magnetic components.  Then, the energy contribution of the nuclear magnetic moments to an electron spin 
transition depends only on the mutual interaction of the nuclear magnetic moments.   

Next, the interaction between the proton nuclear magnetic moments resulting in the splitting of the quantized energy 
levels of the electron spin transition by the energy corresponding to the interaction is considered.  In general, the potential energy 

of interaction  mag dipoleE  of two quantized magnetic dipoles 1m and 2m  separated by a distance r  is given by 

    0
 1 2 1 23

ˆ ˆ3
4

mag dipoleE



     m r m r m m
 r

 (16.223)  

where 0  is the permeability of free space and r̂  is a unit vector parallel to the line joining the centers of the two dipoles.  The 

energy is decreased in the case of antiparallel interacting magnetic moments, and the energy is increased in the case of parallel 
magnetic moments.  Consider the splitting energy of interaction with two parallel-aligned nuclear magnetic moments.  With the 

substitution of the proton magnetic moment P  for each parallel-aligned nuclear magnetic moment and the  2 1/ 4H  internuclear 

separation given by Eq. (11.204) for r  into Eq. (16.223), the energy   e-P mag dipoleE  to flip the spin direction of one proton 

magnetic moment of  2 1/ 4H relative to the other is 
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 (16.224)  

In order for this ortho-para nuclear spin isomer energy of Eq. (16.224) to split the electron spin transition, there must be a 
coupling mechanism between the nuclear and electron spins.  Since the electron spin vector is along the semimajor axis, and the 
proton spins are transversely oriented in the plane containing the semiminor axes, there is no direct coupling mechanism.  
Moreover, the flux change inside of the electron MO due to the transition of the nuclear spin isomer state corresponding to Eq. 
(16.224) has an insignificant effect on the spin transition energy as shown by flux linkage terms of Eq. (16.217).  Since the spin 
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transition is independent of the nuclear spin transition, the electron spin transition leaves the ortho or para nuclear spin state of 

 2 1/ 4H  unchanged, and there is no nuclear spin state energy splitting. 

Consider the third electron spin splitting mechanism regarding the coupling energy of the spin unpaired and paired 
electrons of the electron MO.  The semiminor axis spin flip transition lifts the degeneracy of the semimajor axis spin flip 
transition due to an interaction of the paired and unpaired current of the MO.  The magnetic field of the unpaired electron 
induces a diamagnetic current in the paired electron.  The resulting magnetic moment that shifts the spin flip transition energy is 
opposite that of the spin magnetic moment and proportionally much smaller.  In addition to the intrinsic relative motion of the 
linear combination of the paired and unpaired electron currents of  2 1/ 4H  and the rotation of the electron MO about the 

semimajor axis corresponding to electron spin along this axis, the paired and unpaired electrons may rotate relative to each other 

during a spin transition similar to the case of excited-state 2H  as given in the Excited States of the Hydrogen Molecule section.  

The relative rotation is quantized in terms of m  integer units of  in opposite directions wherein the magnetic moments cancel, 
but the relativistic effect gives rise to a corresponding electron spin-orbital coupling quantum number m .  The unpaired-paired 
coupling or spin-orbital coupling energy is given as the diamagnetic moment times the magnetic flux of the unpaired electron.  

Since flux is linked by an unpaired electron in units of the magnetic flux quantum, the spin-orbital coupling energy /S OE  between 

two magnetic moments of  2 1/ 4H  given by Eq. (2.194) can be expressed as: 
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 (16.225) 

wherein the semiminor radius of the  2 1/ 4H  MO is given by Eq. (11.205) with 4p   and m  is the magnitude of the 

diamagnetic susceptibility of the paired electron given by Eq. (11.416):   
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 (16.226) 

In the case of spin-orbital coupling involving the intrinsic spin of 
2

 , the electron spin-orbital coupling quantum number m  is 

1 / 2m  .  Additional states arise due to the relative motion of the two electrons of the  2 1/ 4H  MO.  Consider the case of 2H  

excited states given in the Excited States of the Hydrogen Molecule section wherein the relative rotational motion of the two 
excited state electrons corresponds to the quantum number m  being a positive or negative integer such that net relative motion 
obeys the condition 0 .  The quantum number m  also applies to the molecular hydrino electron spin flip split by electron 
spin-orbital coupling wherein m  is a positive integer.  With the substitution of Eq. (16.226) into Eq. (16.225), the unpaired-
paired coupling is 

     1.5 27 5 2 27
/

3
7.0821 10 64 2 .2 7 426 10  

4
 s o eE m X m c m X J     (16.227) 

The electron paramagnetic resonance (EPR) comprises a peak at the energy equivalent position given by Eq. (16.219), that is 
symmetrically split into a series of pairs of peaks, one shifted downfield by the energy of Eq. (16.227), and the other shifted 
upfield by the energy of Eq. (16.227), wherein downfield and upfield denote lower and higher magnetic flux for a resonant 
transition at fixed EPR frequency, respectively.  

Consider the case that the EPR frequency is 9.820295 GHz, the resonance magnetic flux B  for the principal peak given 
by Eq. (16.219) is 

 .  
2.00

9.82

6

0295
0

4 38
001

6
35

B

h
B T

GHz


   (16.228) 

where h is Planck’s constant and B  is the Bohr magneton.  The resonance magnetic flux shift CB  of a principal peak at 

position 1B  due to a splitting energy CE  is given by 
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Using Eqs. (16.227-16.229), the downfield and upfield shifts /S OB  with quantized spin-orbital splitting energies /S OE  (Eq. 

(16.227) and electron spin-orbital coupling quantum numbers 0.5,1, 2, 3, 5....m   are given in units of Gauss by 
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The spin-orbital splitting shift of 277.426   10m X J  is independent of the applied EPR field/frequency combination for both 
downfield and upfield shifted peaks.  

The potential energy of a superconducting quantum interference device (SQUID) given by Eq. (42.115) comprises the 
sum of the Josephson coupling energy of the junction and the equivalent of the magnetic energy of the loop.  The free electron of 

 2 1/ 4H  behaves equivalently to a superconducting quantum interference device (SQUID).  In addition to the flux linked by the 

unpaired electron during the spin flip transition corresponding to the energy terms of the 
2 (1/ )H pg  (Eqs. (16.218) and (16.219)), a 

free electron of  2 1/ 4H  must link the magnetic flux component corresponding to spin-orbital coupling.  This flux contribution 

increases the magnetic energy and the energy of the combined spin flip (Eq. (16.228)) and spin-orbital coupling (Eq. (16.227)) 
transition energy for a given spin-orbital quantum number m .  Thus, the downfield spin-orbital splitting peaks are shifted further 
downfield by the corresponding magnetic energies; whereas, the upfield spin-orbital splitting peaks are not shifted since the 
upfield peaks correspond to emission of the spin-orbital coupling transition energies alone, and the magnetic energies thermalize.  
The Josephson coupling energies due to fluxon linkage during spin-orbital transitions are given by Eq. (16.227), and the 
magnetic energies /S OMagU  arising from the absorption of the corresponding spin-orbital coupling transitional flux are given by 
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 (16.231) 

wherein m  is the spin-orbital quantum number, ½ the spin flip transition energy corresponds to the terms 0U  and  as given 

by Eqs. (16.217), (16.218), and (16.228) in units of magnetic flux (i.e. the equivalent SQUID parameters of  2 1/ 4H  are 

2

 2.0046
0 0

(1/ )

0.5 spin
mag

H p B

E
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g 


   ), and the flux change due to the transition   is the spin-orbital splitting energy of quantum number 

m  given in units of magnetic flux by Eqs. (16.227) and (16.230).  The corresponding magnetic energies  given by Eqs. 

(16.231), (16.217), and (16.218) in units of Joules are 

  (16.232) 

The downfield magnetic energy shifts /S OMagU  given by Eq. (16.232) are added to the quantized spin-orbital splitting energies 

/S OE  ( /S OB ) (Eq. (16.227)) to given combined quantized spin-orbital splitting energies /S OcombinedE  in units of Joules: 
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The downfield magnetic energy shifts /S OMagU  given by Eq. (16.231) are added to the quantized spin-orbital splitting energies 

/S OE  (Eq. (16.230)) to given combined quantized spin-orbital downfield shift energies /
downfield
S OcombinedB  in units of Gauss: 
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 (16.234) 

The downfield peak positions /
downfield
S OcombinedB  due to the combined shifts due to the magnetic energy and the spin-orbital coupling 

energy given by Eq. (16.228) and (16.234) are: 
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There is no magnetic energy shift for upfield shift peaks corresponding to the emission of the spin-orbital coupling energy given 

by Eq. (16.230).  Using Eq. (16.228) and Eqs. (16.227-16.230), the upfield peak positions /
upfield
S OB  with quantized spin-orbital 
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splitting energies /S OE  (Eq. (16.227)) and electron spin-orbital coupling quantum numbers  are given by 
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The downfield shifts due to the magnetic energies in units of Joules (Eq. (16.232)) and Gauss (Eq. (16.231)), the downfield 
shifts due to spin-orbital coupling energies in units of Joules (Eq. (16.227) and Gauss (Eq. (16.230)) for spin-orbital coupling 
quantum numbers 0.5,1, 2, 3, 5....m   are given in Table 16.48. 
 

Table 16.48.   The 9.820295 GHz  2 1/ 4H
 
EPR downfield shifts due to the magnetic energies and the downfield shifts 

due to spin-orbital coupling energies for spin-orbital coupling quantum numbers 0 .5,1, 2, 3, 5m  . 
m Downfield 

Magnetic 
Energy Shift (J)

Downfield 
Magnetic 

Energy Shift (G)

Spin-Orbital 
Shift 
(J)

Spin-Orbital 
Shift 
(G) 

0.5 8.36376E-29 0.04499 3.71288E-27 1.99714 
1 3.34550E-28 0.17995 7.42576E-27 3.99427 
2 1.33820E-27 0.71981 1.48515E-26 7.98854 
3 3.01095E-27 1.61957 2.22773E-26 11.98281 
4 5.35280E-27 2.87924 2.97030E-26 15.97708 
5 8.36376E-27 4.49881 3.71288E-26 19.97135 

 
The combined downfield shifts due to the magnetic and spin-orbital coupling energies in units of Joules (Eq. (16.233) and Gauss 
(Eq. (16.234)), the resulting downfield peak positions (Eq. (16.235), and the upfield peak positions (Eq. (16.236)) shifted only 
by the spin-orbital coupling energies (Eqs. (16.227) and (16.230)), for spin-orbital coupling quantum numbers 0.5,1, 2, 3, 5....m   
wherein the principal peak with the g-factor of 2.0046386 (Eq. (16.218)) is observed at 0.35001 T (Eq. (16.228) are given in 
Table 16.49.   
 
Table 16.49.   The 9.820295 GHz  2 1/ 4H

 
EPR combined downfield shifts due to the magnetic and spin-orbital coupling, 

the resulting downfield peak positions, and the upfield peak positions shifted only by the spin-orbital coupling energies for spin-
orbital coupling quantum numbers 0 .5,1, 2, 3, 5m  . 

m Combined 
Downfield 
Magnetic 

Energy Shift (J)

Combined 
Downfield 
Magnetic 

Energy Shift (G)

Downfield Peak 
Position 

(T) 

Upfield Peak 
Position 

(T) 

0.5 3.79652E-27 2.04212 0.34980 0.35021 
1 7.76031E-27 4.17422 0.34959 0.35041 
2 1.61897E-26 8.70835 0.34914 0.35081 
3 2.52882E-26 13.60238 0.34865 0.35121 
4 3.50559E-26 18.85632 0.34812 0.35160 
5 4.54926E-26 24.47016 0.34756 0.35200 

 
As given in the Electron g Factor section, magnetic flux is linked by an unpaired electron in quantized units of the fluxon 

or the magnetic flux quantum 
2

h

e
.  As shown in the Hydrino Hydride Ion Hyperfine Lines section, hydrino hydride ion 

 1/H p  also possesses a linear combination of two electrons with one paired and the other unpaired in a common atomic 

orbital versus a MO.  The emission spectrum of the binding of a free electron to a hydrino atom to form the corresponding 
hydrino hydride ion results in a series of evenly spaced emission peaks wherein the energy spacing matches that predicted for the 
binding electron to link the magnetic flux of the hydrino atom in units of the magnetic flux quantum in the bound-free emission 
spectral region.  The flat intensity profile matches that of Josephson junctions such as ones of superconducting quantum 

interference devices (SQUIDs) that also link magnetic flux in quantized units of the magnetic flux quantum or fluxon 
2

h

e
.  The 

same behavior is predicted for the linkage of magnetic flux by molecular hydrino during a spin transition and the derivation of 
the corresponding fluxon linkage energies follows that of Eq. (7.93) of the Hydrino Hydride Ion Hyperfine Lines section.   

As given by Eq. (16.218), the fluxon links both correlated electrons such that the energy contribution of the flux linkage 
of a fluxon by molecular hydrino is 
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m  0.5,1,2,3,5....
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Using the energy of MO due to an applied flux given by Eq. (16.220), wherein (i) both the magnetic moments due to spin and 

the corresponding induced diamagnetic moment are corrected for the vector projection of 
3

4
 (Eqs. (16.226-16.227) 

corresponding to an increase of the energy for resonant flux linkage, (ii) the magnetic flux density B  is given by the ratio of the 

flux and the area, and (iii) the flux is linked in units of the fluxon 
2

h

e  , the fluxon linkage energies E by molecular hydrino 

 2 1/ 4H  during a spin transition are  
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 (16.238) 

In Eq. (16.238), the energy of flux linkage is an integer function of the components of angular moment involved in the splitting 

of the principal transition corresponding to the electron fluxon quantum number m .  Therefore, the electron fluxon quantum 

number m  has the following integer values: (i) the electron fluxon quantum number m  corresponding to the spin-orbital 

coupling involving the intrinsic spin of 
2

  is 1m  , (ii) the electron fluxon quantum number m  corresponding to the spin 

with 1m   involving the semimajor axis spin is 2m  , and (iii) the electron fluxon quantum number m  corresponding to the 

spin with 1;  1m m    involving the semimajor axis spin and relative motion of the two electrons of the  2 1/ 4H  MO is 

3m  .  In addition, j  is an integer corresponding to the number of fluxons linked having fluxion linkage quantum number m

, 1/ 2s  , A  is the area of the continuous distribution of current element loops (Force Balance of Hydrogen-Type Molecules 
section and Figure 11.2) linked by the integer number of fluxons as given in the Electron g Factor section, and the magnitude of 

the diamagnetic susceptibility m   is given by 

  2 3 728.01 1.49  1 80 .1777 10m p p X ppm X   
     (16.239) 

With the substitution of Eq. (16.239) into Eq. (16.238), E is 
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wherein the semiminor radius of the  2 1/ 4H  MO is given by Eq. (11.205) with 4p  .  Using Eq. (16.229) with the E, the 

fluxon linkage energy of  2 1/ 4H  (Eq. (16.240)), and the spin-orbital peak positions (Eqs. (16.235) and (16.236)), the separation 

B  of the integer series of peaks at each spin-orbital peak position (Table 16.49) for an EPR frequency of 9.820295 GHz is 

given by 
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and 
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 (16.242) 

The 9.820295 GHz  2 1/ 4H  EPR spectral separations B  (Eqs. (16.235) and (16.236)) of each integer series of the peaks 

comprising sub-splitting of the downfield and upfield peaks of Table 16.49 corresponding to the principal peak having a g-factor 

of 2.0046386 (Eq. (16.218)) split by quantized spin-orbital coupling energies /S OE  (Eqs. (16.227) and (16.230)) and magnetic 

energies /S OMagU  (Eqs. (16.231) and (16.232)) for electron spin-orbital coupling quantum numbers 0.5,1, 2, 3, 4, 5m   and 

electron fluxon quantum numbers 1,2,3m   (Eq. (16.240) are given in Table 16.50. 
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Table 16.50.   The 9.820295 GHz  2 1/ 4H  EPR spectral separation B  of each integer series of the peaks comprising 

sub-splitting of the downfield and upfield peaks of Table 16.49 for electron spin-orbital coupling quantum numbers 

0.5,1, 2, 3, 4, 5m   and electron fluxon quantum numbers 1,2,3m  . 

m m  Downfield 
Peak Position 

(T) 

B
 

(G) 
Upfield  

Peak 
Position 

(T)

B
 

(G) 

0.5 1 0.34980 0.3109 0.35021 0.3112 
1 2 0.34959 0.6214 0.35041 0.6228 
2 3 0.34914 0.9309 0.35081 0.9353 
3 3 0.34865 0.9296 0.35121 0.9364 
4 3 0.34812 0.9282 0.35160 0.9375 
5 3 0.34756 0.9267 0.35200 0.9385 

 
The spin-orbital splitting peak intensity for electron spin-orbital coupling quantum number 0.5m  is predicted to be 

dominant due to the high cross section of the spin flip transition to involve a torque about the intrinsic angular moment vector as 
shown in Resonant Precession of the Spin-1/2-Current-Density Function Gives Rise to the Bohr Magneton section.  For integer 
electron spin-orbital coupling quantum number m  spin-orbital splitting peaks, the relative intensities are predicted to decrease 
with integer electron spin-orbital coupling quantum number m .  In the case that the statistical population obeys the rules of 
multipole transitions, the relative peak intensities according to Eqs. (1.7-1.8) and Eq. (1.19) go as  
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Furthermore, consider the relative intensities of fluxon peaks within an integer series.  If the cross-sectional area of the flux 
linker is constant relative to the flux source, then the line intensities for the sub-splitting would be equal.  However, the cross-
sectional area of the electron current relative to the applied field changes as the current comprising a continuous ensemble of 
current loops flips orientation by 180°.  The current flowing over the surface of the prolate spheroidal to reverse the spin 
direction by 180° is a mechanism whereby the relative intensities of the sub-splitting is higher for the center lines compared to 
those at the extrema.  The line intensities and widths reflect the electron MO geometrical form factor in the case of 0.5m . 

In summary, the predicted  2 1/ 4H  EPR spectrum comprises a principal peak with a theoretical g-factor of 2.0046386 

(Eq. (16.218)) that is split by spin-orbital coupling energies /S OE  and corresponding magnetic energies  on the downfield 

side into a series of pairs of peaks with members separated by the sum of  (Eqs. (16.227) and (16.230)) and  (Eqs. 

(16.231) and (16.232)) that is a function of electron spin-orbital coupling quantum number m .  Each spin-orbital splitting peak 

is further sub-split into a series of equally spaced peaks of integer fluxon energy B  (Eqs. (16.241) and (16.242)) that is a 

function of electron fluxon quantum number m .  As given in the Hydrino Hydride Ion Hyperfine Lines section, the pattern of 

integer-spaced peaks predicted for the EPR spectrum of  2 1/ 4H  is very similar to that experimentally observed on the hydrino 

hydride ion that also comprises a paired and unpaired electron in a common orbital, except that the orbital is an atomic orbital 
[132-135].  The peak separations and sub-splitting due to spin-orbital splitting energies, spin-orbital splitting magnetic energies, 
and fluxon energies may deviate from the values given in Tables 16.49 and 16.50.  Interactions may exist with the matrix 
surrounding the hydrino molecule.  For example, protons of water molecules absorbed as waters of hydration of a crystalline 
matrix having trapped hydrino molecules could cause and external nuclear splitting effect.   

The predicted EPR spectrum was confirmed experimentally [131].  The 9.820295 GHz EPR spectrum was performed on 
a white polymeric compound (WPC) identified by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), 
transmission electron spectroscopy (TEM), scanning electron microscopy (SEM), time-of-flight secondary ionization mass 
spectroscopy (ToF-SIMs), Rutherford backscattering spectroscopy (RBS), and X-ray photoelectron spectroscopy (XPS) as 
GaOOH:H2(1/4).  The WPC was formed by dissolving Ga2O3 collected from a hydrino reaction run in a SunCell® in 4M 
aqueous KOH, allowing fibers to grow, and float to the surface where they were collected by filtration.  The white fibers were 
not solution in concentrated acid or base; whereas control GaOOH is.  No white fibers formed in control solutions.  Control 
GaOOH showed no EPR spectrum.  The experimental EPR was acquired by Professor Fred Hagen, TU Delft, with a high 
sensitivity resonator at a microwave power of -28 dB and a modulation amplitude of 0.02 G, that can be changed to 0.1 G since 
Dr. Hagen rigorously determined that the minimum line width is 0.15 to 0.2 G.  The average error between the EPR spectrum 
and theory for peak positions given in Tables 16.49-16.50 was 0.097 G.  The EPR spectrum was replicated by Bruker using two 
instruments on two samples.   

Specifically, the observed principal peak at g = 2.0045(5)) was assigned to the theoretical peak having a g-factor of 
2.0046386 (Eq. (16.218)).  This principal peak was split into a series of pairs of peaks with members separated by energies 

U
S /OMag

E
S /O

U
S /OMag
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matching /S OE  (Eqs. (16.227) and (16.230)) corresponding to each electron spin-orbital coupling quantum number m .  The 

results confirmed the spin-orbital coupling between the spin magnetic moment of the unpaired electron and an orbital 
diamagnetic moment induced in the paired electron alone or in combination with rotational current motion about the semimajor 
molecular axis that shifted the flip energy of the spin magnetic moment.  The data further matched the theoretically predicted 
one-sided tilt of the spin-orbital splitting energies wherein the downfield shift was observed to increase with quantum number m  

due to the magnetic energies  (Eqs. (16.231) and (16.232)) of the corresponding magnetic flux linked during a spin-

orbital transition.  Each spin-orbital splitting peak was further sub-split into a series of equally spaced peaks that matched the 

integer fluxon energies B  (Eqs. (16.241) and (16.242)) dependent on electron fluxon quantum number m  corresponding to 

the number of angular momentum components involved in the transition.  The evenly spaced series of sub-splitting peaks was 
assigned to flux linkage during the coupling between the paired and unpaired magnetic moments in units of the magnetic flux 

quantum 
2

h

e
 while a spin flip transition occurs.  The EPR spectrum recorded at different frequencies showed that the peak 

assigned the g factor of 2.0046386 (Eq. (16.218)) remained at constant g factor.  Moreover, the peaks, shifted by the fixed spin-
orbital splitting energies relative to this true g-factor peak, exactly maintained the separation of the spin-orbital splitting energies 
independent of frequency as predicted.   

Another consideration is that molecular hydrino can also form dimers that would alter the EPR spectrum.  Consider the 
splitting energy of interaction with two axially aligned magnetic moments of a  2 1/ 4H  dimer.  With the substitution of a Bohr 

magneton B for each axially aligned magnetic moment and the  2 1/ 4H  dimer separation given by Eq. (16.202) for r  into Eq. 

(16.223), the energy 
2 2 [ (1/4)]  -mag H e dipoleE  to flip the spin direction of two electron magnetic moments of  2 2

1/ 4H    is 

  
 

2 2

2
0
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  (16.244)  

 
ROTATIONAL ENERGIES DUE TO THE SPIN MAGNETIC MOMENT OF H2(1/4) 

Molecular hydrino  2 1/H p  possesses an unpaired electron that causes rotational transitions to be forbidden.  This 

selection rule barrier to observing infrared and Raman spectra may be circumvented by application of an external magnetic field 
or by recording the spectrum on a compound or material with intrinsic magnetization such as one being ferromagnetic or 
paramagnetic.  An example of the former is molecular hydrino bonded or absorbed on the surface of a nickel or iron foil.  An 
example of the latter is a paramagnetic compound that cages the molecular hydrino such as FeOOH, Fe2O3 or a compound that 
may be diamagnetic but possess paramagnetic ions in proximity to  2 1/H p  such as 3G a   ions in the case of GaOOH  that 

serves as a cage for  2 1/H p .   

The presence of molecular hydrino in strong matrix magnetic field may result in the alignment of the free electron 

angular moment of 
2

  along the magnetic field vector direction in either the z-axis or the y-axis direction of the coordinates of 

 2 1/H p  shown in Figure 11.4.  The alignment permits the excitation of a concerted transition of a rotational molecular 

hydrino transition coupling to the spin-orbital splitting and fluxon linkage sub-splitting of the free electron energy levels.  The 
spin flip energy given by Eq. (16.219) with an exemplary intrinsic field of 1 T is  
 

2 2.0046 (1/ )
23 12.004638 )1.85910  10  (0.93 86 5 8 spin

mag H p B BE g B B X J cm        (16.245) 
To conserve the photon’s angular momentum of , rotational excitation requires  of angular momentum along the axis of 
molecular rotation, a semiminor axis being either the z-axis or y-axis.  The  of angular momentum gives rise to a corresponding 
magnet moment of a Bohr magneton along this rotational angular momentum axis.  Typically, the unpaired electron of 

 2 1/H p  gives rise to a Bohr magneton of magnetic moment along the internuclear axis when a magnetic field is applied.  

However, the molecular rotation of the hydrino molecule about one of the semiminor axes causes the excitation of the 
semimajor-axis Bohr magneton of magnetic moment to be forbidden.  The rotational transition energy may be split by the spin-
orbital energy given by Eq. (16.225), except that the orbital component of spin-orbital splitting is not diamagnetically induced 

such that 1m   and the spin-orbital energy / ,S O rotE  due to rotational excitation is: 

U
S /OMag
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 (16.246) 

wherein 0 .5,1, 2, 3, ...m  . The spin-orbital splitting energies due to rotation are given in Table 16.51. 
The energies of the concerted excitation of the rotational and spin-orbital coupling transitions are sub-split by the energy 

corresponding to flux linkage in units of the magnetic flux quantum 
2

h

e
.  The free electron angular momentum of 

2

  and the 

rotational angular momentum of  add when the corresponding vectors are aligned along a common z-axis to give a resultant 

angular momentum of 3

2
L   .  The energy contribution of the flux linkage of a fluxon by molecular hydrino is given by Eq. 

(16.238) with 1m   since the orbital component of spin-orbital coupling is not diamagnetically induced.  In the case of 3

2
L   , 

the  2 1/ 4H  fluxon linkage energies , ,rot concertedE  for fluxon sub-splitting quantum numbers 3/2 0.5,1,2,3...m   due to spin-

orbital coupling to a molecular rotational transition are 

 

2
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 (16.247) 

wherein j  is an integer corresponding to the number of fluxons linked having fluxon linkage quantum number 3/2m  and the 

semiminor radius of the  2 1/ 4H  MO is given by Eq. (11.205) with 4p   (
0

4 2

a
r  ).  As in the case with spin flip transitions 

observable by EPR spectroscopy, the fluxon sub-splitting quantum number is determined by the number of angular momentum 
components active during the transition.  Due to the nature of the rotation transition wherein the rotational quantum number J  
may be arbitrarily large, the upper range of the fluxon sub-splitting quantum number is not bounded. 

Alternatively, the spin component of 
2

  may align perpendicular to the rotational angular momentum of  to give a 

resultant z-axis angular momentum of  wherein the spin component averages to zero since it rotates about the z-axis due to 
molecular rotation.  In the case of L   , the  2 1/ 4H  fluxon linkage energies ,rotE  for fluxon sub-splitting quantum numbers 

0.5,1,2,3,...m   due to spin-orbital coupling to a molecular rotational transition are 
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 (16.248) 

wherein j  is an integer corresponding to the number of fluxons linked having fluxon linkage quantum number m  and the 

semiminor radius of the  2 1/ 4H  MO is given by Eq. (11.205) with 4p   (
0

4 2

a
r  ).  The fluxon linkage energies ,rotE  due to 

spin-orbital coupling to molecular rotation transition are given in Table 16.51. 
The absorption of fluxons increases the magnetic energy of  2 1/H p .  Using Eq. (16.231), the Josephson coupling 

energies due to fluxon linkage during concerted rotational-spin rotational and spin-orbital transitions are given by Eq. (16.247), 
and the magnetic energies / ,S OMag concertedU  arising from the absorption of the integer number of fluxons j  having fluxon linkage 

quantum number 3/2m  are given by 
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wherein 1 1
0 , , 3/246.24 ; 46.24 rot concertedU cm E m cm 

      (Eq. (16.247)), and the energy between rotational transitions 

corresponds to the term  (Eq. (16.256, 4p  )).  The fluxon peak spacing increases as the energy of the concerted rotation-

fluxon absorption transition increases and decreases in the case of emission.  
Using Eq. (16.231), the magnetic energies /S OMagU  arising from the absorption of the integer number of fluxons j  having 

fluxon linkage quantum number m  during concerted rotational and spin-orbital transitions are given by 
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 (16.250) 

wherein 1 1
0 , 3/230.83 ; 30.83 rotU cm E m cm 

     (Eq. (16.248)), and the energy between rotational transitions corresponds 

to the term  (Eq. (16.256, 4p  )).  The fluxon peak spacing increases as the energy of the concerted rotation-fluxon 

absorption transition increases and decreases in the case of emission.  

 

Table 16.51.  .   The electron spin-orbital coupling splitting energies and fluxon sub-splitting energies of molecular 

rotational transitions for spin-orbital coupling quantum numbers m  0.5,1,2,3,...,10 and for electron fluxon quantum numbers 

m  1,2,3,...,10 and m3/2
 1,2,3,...,10 . 

m Spin-Orbital 
Splitting 
Energy 
(cm-1) 

m  Fluxon Sub-
Splitting Energy 

(cm-1) 

m3/2
 Fluxon Sub-

Splitting 
Energy 
(cm-1) 

0.5 264 0.5 15.4 0.5 23.1 
1 528 1 30.8 1 46.2 
2 1056 2 61.7 2 92.5 
3 1583 3 92.5 3 138.7 
4 2111 4 123.3 4 185.0 
5 2639 5 154.1 5 231.2 
6 3167 6 185.0 6 277.5 
7 3695 7 215.8 7 323.7 
8 4223 8 246.6 8 370.0 
9 4750 9 277.5 9 416.2 
10 5278 10 308.3 10 462.4 

 
The observation of spin-orbital transitions by Raman spectroscopy may be greatly enhanced by the deposition of molecular 
hydrinos on a metal surface to enhance the Raman spectrum.  Surface enhanced Raman (SER) is very sensitive because of the 
surface plasmon waves set up by the stimulating wavelength.  The surface plasmon field may extend about 40-60 nm below the 
surface, providing some depth sensitivity in the material.   

The moment of inertia may be measured using rotational energy spectroscopy such as Raman spectroscopy, and using the 
known nuclear masses, the moment of inertia gives the nuclear separation which is characteristic of and identifies molecular 

hydrino of a given quantum state p .  Specifically, for a diatomic molecule having atoms of masses 1m  and 2m , the moment of 

inertia is (Eq. (12.66)):  

 
2I r  (16.251) 

where   is the reduced mass given by (Eq. (12.67)): 

 1 2

1 2

mm

m m



 (16.252) 

and where r  is the distance between the centers of the atoms, the internuclear distance.  The rotational energy levels follow from 
Eq. (1.71) and are given by (Eq. (12.68)): 

 
2

( 1)
2rotationalE J J
I

 


 (16.253) 

where J  is an integer.  The pure rotational energies of hydrogen type molecules for transition from the J  to the quantized 'J  


0


0
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rotational state are given by (Eq. (12.77)): 
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 (16.254) 

wherein Pm  is the mass of the proton, the moment of inertia 

2117.411 10
0.5 p

X m
I m

p

 
  

 
, and the integer-squared dependence is 

due to the reciprocal integer dependence of the internuclear distance given by (Eq. (12.76)): 

 
0.7411

2 '  c Å
p

  (16.255) 

For example, the predicted rotational energy of  2 1/ 4H is four squared or 16 times that of 2H  due to the internuclear distance 

being one fourth that of 2H  (Eq. (16.254)).  At ambient laboratory temperature, molecules overwhelmingly populate the 

rotational state 0J  .  Then, Eq. (16.253) becomes 

 
  2 1

0 '

' ' 1
 121.89 

2J J

J J
E p cm

 


   (16.256) 

Molecular hydrino  2 1/H p  is a diatomic molecule comprising two protons and two electrons, except that it is unique from 

molecular hydrogen in that it has an unpaired electron having an intrinsic angular momentum of 
2

 .  This electron spin angular 

momentum may align along the same axis as the rotational angular of  or transverse to it.  Consider that the rotational energy 

 of  2 1/H p  about z-axis which is the common axis of the intrinsic electron angular momentum of 
2

  and rotational 

angular momentum of .  The rotational energy due to the concerted double excitation of rotation due to spin and diatomic 
rotation is given by the sum of the diatomic molecular rotational energy given by Eq. (16.253) and the spin rotational energy also 
given by Eq. (16.253) with the exception that the rotational quantum number J  can only change by : 
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 (16.257) 

In the case that the initial rotational state is 0J  , Eq. (16.256) becomes 
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 (16.258) 

Consider that the diatomic molecular rotation is about the z-axis such that the corresponding rotational angular momentum of  
is aligned along the z-axis.  In the case that the axis of the intrinsic electron spin angular momentum of 

2

  is along the 

orthogonal semiminor axis, the y-axis, the rotation energy  of  2 1/H p  is given by Eq. (16.255). 

The radiation of a multipole of order (, m) carries m  units of the z component of angular momentum per photon of 

energy  .  Thus, the z component of the angular momentum of the corresponding excited rotational state is (Eq. (12.69)): 
  (16.259) 
Thus, the selection rule for dipole and quadrupole rotational transitions are (Eq. (12.70)):  
 1J    (16.260) 
and  
 2J    (12.261) 
Not only are the lowest energy Raman transitions for pure rotational transitions (Eq.(16.255)) and for concerted rotational-spin 
transition (Eq. (16.257)) allowed by each of the selection rules given by Eqs. (16.259) and (16.260), but coupling of allowed 
dipole and quadrupole transitions permit excitation of higher rotational energy levels.  Isotopic substitution and ortho-para state 
occupancy also determines the section rules of Raman transitions.  Exemplary transitions are given in Table 16.52. 

E
rotational

1

E
rotational
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Due to the equivalence of the two semiminor axes, a double rotational excitation comprising the superposition of the 

independent rotations about each may occur.  The energy of the double excitation of these two rotational modes is the sum of the 

individual pure and concerted rotational transitions.  Using Eqs. (16.256) and (16.258), the energies  double rotationE  of the combined 

rotational excitations are 

 
 ' ''2 '2

2 1
 

12
121.89 

2 2
p pc c

double rotational

J JJ J
E p cm

  
  
 

 (16.262) 

Exemplary transitions are given in Table 16.52.   

 
Table 16.52.   H2(1/4) Raman energies for (i) pure 0J   to ' 1, 2,3,...J   rotational transitions, (ii) concerted 0J   to 

' 0,1, 2, 3, ...J   molecular rotational transition involving a spin rotation transition having the spin rotational state quantum 

number change from 0J   to 1J  , and double transition having energies given by the sum of the independent transitions. 

J’ Pure Rotational  

Transition (cm-1) 

Concerted Molecular 
Rotational-Spin Rotation 

Transition (cm-1) 

' '/p cJ J  Double Rotational 
Transition (cm-1) 

0 0 1950 1/0 3900 
1 1950 3900 2/0 7801 
2 5851 7801 2/1 9751 
3 11701 13652 3/0 13652 
4 19502 21453 3/1 15602 
5 29254 31204 3/2 19502 
6 40955 42905 4/0 21453 
7 54607 56557 4/1 23403 
8 70209 72159 4/2 27303 
9 87761 89711 4/3 33154 
10 107263 109213 5/0 31204 

 

The rotation energies shown in Table 16.52 with spin-orbital splitting and fluxon linkage sub-splitting energy shifts were 
observed by Raman spectroscopy [136].  Moreover, some of the observed lines matched those of the Diffuse Interstellar Bands 
(DIBs) [136, 137]. 
 

END-OVER-END ROTATION OF HYDROGEN-TYPE MOLECULAR DIMERS 
The reduced masses of hydrogen-type molecular dimers having two protons 

2H  or deuterons 
2D  are given by Eqs. (12.67) and 

(12.72) where 1 2 pm m m   and 1 2 2 pm m m  , respectively: 

 
2
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H p
p p

m m
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 (16.263)  
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D p
p p

m m
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m m
  


 (16.264)  

where pm  is the mass of the proton.  The moment of inertia of hydrogen-type molecular dimers is given by summation of the 

moments of inertial for two sets of nuclei, each equidistant from the center of rotation along the x-axis.  The moment of inertia of 
the nearest neighbor nuclei is given by substitution of the reduced mass (Eqs. (16.263) or (16.264)) for   of Eq. (12.66) and 

substitution of the internuclear distance dimer2 'c  (Eq. (16.181) or (16.202))for r  of Eq. (12.66).  The moment of inertia of the 

farthest neighbor nuclei is given by substitution of the reduced mass (Eqs. (16.263) or (16.264)) for   of Eq. (12.66) and 

substitution of the internuclear distance dimer2 'c  (Eq. (16.181) or (16.202))) plus the internuclear distance 2 'c  (Eq. (11.204) for 

r  of Eq. (12.66). 
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 (16.266)  
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Using Eqs. (12.71), (12.67), and (12.74), the rotational energies absorbed by a hydrogen-type molecular dimer with the transition 

from the state with the rotational quantum number J  to one with the rotational quantum number 1J   are: 
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  (16.269)  
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  (16.272)  

The results for 2H and 2D  dimers (Eqs. (16.269) and (16.270)) match experimental observations [138]. 

 
REACTION KINETICS AND THERMODYNAMICS 
Reaction kinetics may be modeled using the classical solutions of reacting species and their interactions during collisions 
wherein the bond order of the initial and final bonds undergo a decreasing and increasing bond order, respectively, with 
conservation of charge and energy.  Collisions can be modeled starting with the simple hard sphere model with conservation of 
energy and momentum.  The energy distribution may be modeled using the appropriate statistical thermodynamics model such as 
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Maxwell-Boltzmann statistics.  Low-energy collisions are elastic, but for sufficiently high energy, a reaction may occur.  Hot 
reacting species such as molecules at the extreme of the kinetic energy distribution can achieve the transition state, the 
intermediate species at the cross over point in time and energy between the reactants and products.  The rate function to form the 
transition state may depend on the collisional orientation as well as the collisional energy.  Bond distortion conserves the energy 
and momentum of the collision from the trajectories of the reactants.  For sufficient distortion due to a sufficiently energetic 
collision at an appropriate relative orientation, a reaction occurs wherein the products exiting the collision event are different 
from the reactants entering the collision.  The initial reactant energy and momentum as well as those arising from any bonding 
energy changes are conserved in the translational, rotational, and vibrational energies of the products.  The bond energy changes 
are given by the differences in the energies of the product and reactants molecules wherein the geometrical parameters, energies, 
and properties of the latter can be solved using the same equations as those used to solve the geometrical parameters and 
component energies of the individual molecules as given in the Organic Molecular Functional Groups and Molecules section.  
The bond energy changes at equilibrium determine the extent of a reaction according to the Gibbs free energy of reaction.  
Whereas, the corresponding dynamic reaction-trajectory parameters of translational, rotational, and vibrational energies as well 
as the time dependent electronic energy components such as the electron potential and kinetic energies of intermediates 
correspond to the reaction kinetics.  Each aspect will be treated next in turn. 

Consider the gas-phase reaction of two species A  and B  comprising the reactants that form one or more products nC  

where n is an integer: 

 1 nA B C C   (16.273) 

Arising from collisional probabilities, the concentrations (denoted    , ,...A B ) as a function of time can be fitted to a second-

order rate law 

 
      

1

'
n

i
i

d A
k A B k C

dt 

     (16.274) 

where k  and 'k  are the forward and reverse rate constants.  The equilibrium constant K  corresponding to the balance between 
the forward and reverse reactions is given by the quotient of the forward and reverse rate constants: 

 
'

k
K

k
  (16.275) 

The relationship between the temperature-dependent equilibrium constant and the standard Gibbs free energy of reaction 

 0
TG T  at temperature T  is: 

  
 0

TG T

RT
KK Q T e



  (16.276) 

where R  is the ideal gas constant,  
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 (16.277) 

is the reaction quotient at the standard state, and  
    0 0 0

T T TG T H T T S      (16.278) 

where  0
TH T  and 0

TS  are the standard-state enthalpy and entropy of reaction, respectively.  Rearranging Eq. (16.276) gives 

the free energy change upon reaction: 

 KQ
G RTln

K
   (16.279) 

If the instantaneous free energy change is zero, then the reaction is at equilibrium.  An exergonic or work-producing reaction 
corresponds to the cases with  0

TG T  or G  negative, and endergonic or work consuming reactions corresponds to positive 

values.  The enthalpy of reaction or heat of reaction at constant pressure is negative for an exothermic (heat releasing) reaction, 
and is positive for an endothermic (heat absorbing) reaction.  The enthalpy of reaction may be calculated by Hess’s law as the 
difference of the sum of the heats of formation of the products minus the sum of the heats of formation of the reactants wherein 
the individual heats of the molecules are solved using the equations given in the Organic Molecular Functional Groups and 
Molecules section. 
 
TRANSITION STATE THEORY 
Transition state theory (TST) has been widely validated experimentally.  It entails the application of classical trajectory 
calculations that allow the study of the dynamics at the microscopic level such as differential cross sections, total cross sections, 
and product energy distributions, as well as at the macroscopic level for the determination of thermal rate constants by solving 
the classical equations of motion with the formation of the transition state.  The reaction trajectory parameters give rise to terms 
of a classical thermodynamic kinetics equation discovered in 1889 by Arrhenius and named after him.  The data of the variation 
of the rate constant k  with temperature of many reactions fit the Arrhenius equation given by 
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aE

RTk Ae


  (16.280) 

where aE  is the activation energy and A  is a preexponential or frequency factor that may have a relatively small temperature 

dependence compared to the exponential term of Eq. (16.244).  For reactions that obey the Arrhenius equation, when ln k  is 

plotted versus 1/T  in a so-called Arrhenius plot, the slope is the constant /aE R , and the intercept is A .  Eq. (16.280) confirms 

that typically two colliding molecules require a certain minimum kinetic energy of relative motion to sufficiently distort initial 
reactant bonds and concomitantly allow nascent bonds to form.  The crossover species from reactants to products called the 
transition state will proceed through the minimum energy complex involving the reactants.  Thus, the activation energy can be 
interpreted as the minimum energy that the reactants must have in order to form the transition state and transform to product 

molecules.  aE  can be calculated from the total energy of the transition state relative to that of the reactants and is achieved when 

the thermal energy of the reactants overcomes the energy deficit between the energy of the reactants and that of the transition 
state.  The preexponential factor corresponds to the collision frequency and energy of collisions upon which the formation of the 
transition state is dependent. 
 For bimolecular reactions, transition state theory yields [139]: 

        ‡1
exp /T

B

k T T K G RT
k T h

     (16.281) 

where ‡
TG   is the quasi-thermodynamic free energy of activation,  T  is a transmission coefficient, K   is the reciprocal of 

the concentration, h is Planck’s constant, and Bk  is the Boltzmann constant.  The factor  
1

Bk T h
 is obtained by dynamical 

classical equations of motion involving species trajectories having a statistical mechanical distribution.  Specifically, the reactant 
molecular distribution is typically a Maxwell-Boltzmann distribution.  The classical derivation of the preexponential term of the 
Arrhenius equation can be found in textbooks and review articles such as section 2.4 of Ref. [139].  Typically the A  term can be 
accurately determined from the Maxwell-Boltzmann-distribution-constrained classical equations of motion by sampling or by 
using Monte Carlo methods on many sets (usually more than ten thousand) of initial conditions for the coordinates and momenta 
involving the trajectories.  The translational levels are a continuous distribution, and the rotational and vibrational levels are 
quantized according to the classical equations given, for example, in the Vibration of the Hydrogen Molecular Ion section and 
the Diatomic Molecular Rotation section. 
 

SN2 REACTION OF Cl  WITH 3CH Cl  
Consider the SN2 (bimolecular nucleophilic substitution) gas-phase reaction of C l   with chloromethane through a transition 
state: 

 3 3Cl CH Cl ClCH Cl     (16.282) 

The corresponding Arrhenius equation for the reaction given by Eq. (16.280) is: 

  
‡

‡
B

E

k TB
R

k T Q
k T e

h






 (16.283) 

where Bk  is the Boltzmann constant, h is Planck’s constant, ‡E  is the activation energy of the transition state ‡, T  is the 

temperature, R  is the reaction partition per unit volume, and 
‡Q  is the coordinate independent transition-state partition 

function.  The preexponential factor 
‡

B
R

k T Q

h 
 has previously been calculated classically and shown to be in agreement with the 

experimental rate constant [140].  Then, only the transition state need be calculated and its geometry and energy compared to 
observations to confirm that classical physics is predictive of reaction kinetics.  The activation energy can be calculated by 
determining the energy at the point that the nascent bond with the chloride ion is the same as that of the leaving chlorine wherein 
the negative charge is equally distributed on the chlorines.  The rearrangement of bonds and the corresponding electron MOs of 
the reactants and products can be modeled as a continuous transition of the bond orders of the participating bonds from unity to 
zero and vice versa, respectively, wherein the transition state is a minimum-energy molecule having bonds between all of the 

reactants, C l   and 3CH Cl  
 
TRANSITION STATE 
The reaction proceeds by back-side attack of C l   on 3CH Cl .  Based on symmetry, the reaction pathway passes through a 3hD  

configuration having Cl C Cl  

   on the 3C  axis.  The hydrogen atoms are in the h  plane with the bond distances the same 

as those of the 3CH  functional group given in the Alkyl Chlorides section, since this group is not involved in the substitution 

reaction.  The transition-state group Cl C Cl  

   is treated as a three-centered-bond functional group that comprises a linear 
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combination of C l   and the C Cl  group of chloromethane ( C Cl  (i) given in Table 15.33).  It is solved using the Eq. 

(15.51) with the total energy matched to the sum of the 2H -type ellipsoidal MO total energy, 31.63536831 eV  given by Eq. 

(11.212) as in the case of chloromethane, and the energy of the two outer electrons of C l  , 

  1 2 12.96764 3.612724 16.58036 E Cl IP IP eV eV eV          [15, 141].  These electrons are contributed to form the 

back-side-attack bond.  Then, the corresponding parameter  / ( )AO HOTE eV  is 14.63489 16.58036 31.21525 eV eV eV     due 

to the match of the MO energy to both  3, 2 14.63489 E C sp eV   (Eq. (15.25)) and  E Cl  , and  5 / ( )c AO HOinitialE eV  is 

16.58036 eV  corresponding to the initial energy of the C l   electrons.  Also, due to the two C Cl  bonds of the 

Cl C Cl  

   functional group 1 2n  .  Otherwise all of the parameters of Eq. (15.51) remain the same as those of 

chloromethane given in Table 15.36.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy 
(Eqs. (15.6-15.11) and (15.17-15.65)) parameters are given in Tables 16.53, 16.54, and 16.55, respectively.  The color scale, 

translucent view of the charge density of the chloride-ion-chloromethane transition state comprising the Cl C Cl  

   

functional group is shown in Figure 16.17.  The transition state bonding comprises two paired electrons in each Cl C   MO 

with two from C l  , one from Cl  and one from 3CH .  As a symmetrical three-centered bond, the central bonding species are two 

Cl  bound to a central 3CH   per Cl C   MO with a continuous current onto the C H  MO at the intersection of each 

Cl C   MO with the 3CH   group.  Due to the four electrons and the valence of the chlorines, the latter possess a partial 

negative charge of 0.5e  distributed on each Cl C   MO such that the far field is equivalent to that of the corresponding point 
charge at each Cl  nucleus. 
 

Figure 16.17.  Color scale, translucent view of the chloride-ion-chloromethane transition state comprising the Cl C Cl  

   

functional group showing the orbitals of the atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that 

transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to scale). 

 
 

Table 16.53.   The geometrical bond parameters of the Cl C Cl  

   and 3CH  functional groups of the chloride-ion-

chloromethane transition state. 
 

Parameter Cl C Cl  

   Group  3 C H CH  Group 

 0 a a  3.70862 1.64920 

 0' c a  2.13558 1.04856 

Bond Length  2 '  c Å  2.26020 1.10974 

Literature Bond Length 

 Å  2.3-2.4 [140,142] 1.06-1.07 [140] 

 0,  b c a  3.03202 1.27295 

e 0.57584 0.63580 
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Table 16.55.   The energy parameters (eV) of the  and  functional groups of the chloride-ion-

chloromethane transition state. 
 

Parameters 
 Group  Group 

 2 3 

 0 2 

 1 0 

 0.5 0.75 

 0.81317 1 

 1 1 

 1 0.91771 

 1 0 

 2 1  

 1 3 

 0.5 0.75 

 0.81317 1 

 -33.44629 -107.32728 

 12.74200 38.92728 
 4.50926 32.53914 

 -2.25463 -16.26957 
 -31.21525 -15.56407 

 -1.44915 0 

 -29.76611 -15.56407 
 -16.58036 0 

 -48.21577 -67.69451 

 -1.44915 0 

 -49.66491 -67.69450 

 3.69097 24.9286 

 2.42946 16.40846 

 -0.07657 -0.25352 

 

0.08059 
[5]

0.35532 
(Eq. (13.458)) 

 -0.03628 -0.22757 

 0.14803 0.14803 

 -49.73747 -67.92207 

  -14.63489 -14.63489 

 -16.58036 -13.59844 

 3.73930 12.49186 

 

 The bond energy of the  group of chloromethane from Table 15.36 is  compared to 

the bond energy of the  functional group of the chloride-ion-chloromethane transition state of 

Cl C Cl  

  3CH

Cl C Cl  

  3CH

1n

2n

3n

1C

2C

1c

2c

3c

4c

5c

1oC

2oC

 ( )eV eV

 ( )pV eV
 ( )T eV

 ( )mV eV
 /  ( )AO HOE eV

 
2

/  ( )AO HOH MOE eV

 /  ( )AO HOTE eV
 3  /  ( )n AO HOE eV

 2  ( )H MOTE eV

 3, .  ( )TE atom atom msp AO eV

   ( )MOTE eV

 15 10  /rad s

 ( )KE eV

 ( )DE eV

 ( )KvibE eV

 ( )oscE eV

 ( )magE eV

   ( )GroupTE eV

 4  /  ( )c AO HOinitialE eV

 5  /  ( )c AO HOinitialE eV

   ( )GroupDE eV

C Cl   ( ) 3.77116 GroupDE eV eV

Cl C Cl  
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 (Table 16.55).  Since the energies of the  functional groups are unchanged, the chloride-ion-

chloromethane transition state is  higher in energy than chloromethane.  

Experimentally, the transition state is about  higher [137].  Using this energy as the corresponding activation 

energy  of Eq. (16.283) with the classically determined preexponential factor  predicts the experimental reaction 

rate very well [140]. 

NEGATIVELY-CHARGED MOLECULAR ION COMPLEX  
In addition to the nature and energy of the transition state designated by , experimental gas-phase rate constants indicate that 

the reaction of  with  passes through a bound state comprising the attachment of  to the positive dipole of 

 [140, 142, 143] (the dipole moment of the  functional group is given in the Bond and Dipole Moments section).  

This negatively-charged molecular ion complex designated  exists as a more stable state in between the reactants and the 
transition state, and by equivalence of the chlorines, it also exists between the transition state and the products.  Experimentally 

 is  more stable than the isolated reactants and products,  and .  Thus, an energy well 

corresponding to  occurs on either side of the energy barrier of the transition state  that is about  above the 
reactants and products [140, 143].  Thus, the combination of the depth of this well and the barrier height yields an intrinsic 
barrier to nucleophilic substitution given by the reaction of Eq. (16.282) of  [140, 143]. 

The negatively-charged molecular ion complex  comprises the functional groups of  (  (i) and  

given in Table 15.33 of the Alkyl Chlorides section) and a  functional group wherein  is bound to the  

moiety by an ion-dipole bond.  As given in the case of the dipole-dipole bonding of ice, liquid water, and water vapor as well as 
the van der Waals bonding in graphite and noble gases given in the Condensed Matter Physics section, the bond energy and bond 

distance of the  functional group are determined by the limiting energy and distance of the formation of a corresponding 

nascent  covalent bond that destabilizes the  bond of the  moiety by involving charge density of its 

electrons in the formation the nascent bond.  Subsequently, the higher energy  functional group of the transition 
state is formed. 

The energy and geometric parameters of the  functional group are solved using Eq. (15.51) with the total energy 

matched to the -type ellipsoidal MO total energy, .  The parameter  is 

 due to the match of the MO energy to both  (Eq. 

(15.25)) and the outer electron of  ( ) [141] that forms the nascent bond by the involving the 

electrons of the  group of the  moiety.  Then,  is  corresponding to the initial 

energy of the outer  electron.  Also,  in Eq. (15.61) is  due to the charge donation 

from the  HO to the MO based on the energy match between the  HOs corresponding to the energy contribution of 

methylene,  (Eq. (14.513)).   since the  electrons are paired upon dissociation, and the vibrational 

energy of the transition state is appropriate for .  Otherwise, all of the parameters of Eq. (15.51) remain the same as 
those of chloromethane given in Table 15.36.  The geometrical (Eqs. (15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), 
and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters are given in Tables 16.56, 16.57, and 16.58, respectively.  The 

color scale, translucent view of the charge density of the negatively-charged molecular ion complex  comprising the  

functional group is shown in Figure 16.18.  The bonding in the  complex comprises two paired electrons in the  MO 

with 1/2 of the charge density from  and the other half from .  The central bonding species are a  bound to a central 

 with a continuous current onto the  MO at the intersection of the  MO with the  group.  Due to the 

two electrons and the valence of the chlorine, the latter possess a negative charge of  distributed on the  MO such that 

the far field is equivalent to that of the corresponding point charge at the  nucleus.  The bonding in the  moiety is 

equivalent to that of chloromethane except that the  bonds are in a plane to accommodate the  MO. 
 

   ( ) 3.73930 GroupDE eV eV 3CH

 0.03186 +0.73473 /E eV kcal mole  
1 1 /kcal mole

‡E
‡

B
R

k T Q

h 


‡

C l  3CH Cl C l 

3CH Cl C Cl


 12.2 2 /kcal mole C l  3CH Cl
 ‡ 1 1 /kcal mole

13.2 2.2 /kcal mole
 3CH Cl C Cl 3CH

Cl C  C l  3CH Cl

Cl C 
3Cl CH Cl  C Cl 3CH Cl

Cl C Cl  

 

Cl C 
2H 31.63536831 eV  / ( )AO HOTE eV

14.63489 3.612724 18.24761 eV eV eV     3, 2 14.63489 E C sp eV 

 E Cl  1 3.612724 IP eV 

C Cl 3CH Cl  5  / ( )c AO HOinitialE eV 3.612724 eV

C l   3, .TE atom atom msp AO 1.85836 eV

C
32C sp

0.92918 eV 0magE  C l 

Cl C 

 Cl C 
 Cl C 

C l  3CH Cl

3CH  C H Cl C  3CH 

e Cl C 
Cl 3CH Cl

C H Cl C 
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Figure 16.18.  Color scale, translucent view of the negatively-charged molecular ion complex  comprising the  

functional group showing the orbitals of the atoms at their radii, the ellipsoidal surface of each  or -type ellipsoidal MO 

that transitions to the corresponding outer shell of the atom(s) participating in each bond, and the hydrogen nuclei (red, not to 
scale). 
 

 
 

Table 16.56.  The geometrical bond parameters of the , , and  functional groups of the negatively-

charged molecular ion complex . 
 

Parameter 
 Group  Group  (i) 

Group 

 2.66434 1.64920 2.32621 

 1.81011 1.04856 1.69136 

Bond Length 
 1.91574 1.10974 1.79005 

Literature Bond 
Length 

 

>1.80 
curve fit [136] 

1.06-1.07 [1] 
1.785 [1] 

(methyl chloride) 

 1.95505 1.27295 1.59705 

 0.67938 0.63580 0.72709 
 
 

 Cl C 
H 2H

Cl C  C Cl 3CH


Cl C   3 C H CH C Cl

 0 a a

 0'  c a

 2 '  c Å

 Å

 0,  b c a

e
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Table 16.58.   The energy parameters (eV) of the , , and  functional groups of the negatively-charged 

molecular ion complex . 
 

Parameters 
 Group  Group  

(i) 
Group 

 1 3 1 

 0 2 0 

 0 0 0 

 0.5 0.75 0.5 

 0.81317 1 0.81317 

 1 1 1 

 1 0.91771 1 

 0 0 1 

 2 1  2 

 1 3 0 

 0.5 0.75 0.5 

 0.81317 1 0.81317 

 -24.89394 -107.32728 -29.68411 

 7.51656 38.92728 8.04432 
 4.67169 32.53914 6.38036 

 -2.33584 -16.26957 -3.19018 
 -18.24761 -15.56407 -14.63489 

 -1.65376 0 -1.44915 

 -16.59386 -15.56407 -13.18574 

 -31.63537 -67.69451 -31.63536 

 -1.65376 0 -1.44915 

 -33.28913 -67.69450 -33.08452 

 6.06143 24.9286 7.42995 

 3.98974 16.40846 4.89052 

 -0.13155 -0.25352 -0.14475 

 

0.02790 
[144]

0.35532 
(Eq. (13.458))

0.08059 
[5] 

 -0.11760 -0.22757 -0.10445 

 0 0.14803 0.14803 

 -33.40672 -67.92207 -33.18897 

  -14.63489 -14.63489 -14.63489 

 -3.612724 -13.59844 0 

 0.52422 12.49186 3.77116 

 

The bond energies of the  moiety are unchanged to the limit of the formation of the  functional group of 

the negatively-charged molecular ion complex .  Thus, the energy of stabilization of forming the ion-dipole complex is 

Cl C  C Cl 3CH


Cl C  3CH C Cl

1n

2n

3n

1C

2C

1c

2c

3c

4c

5c

1oC

2oC

 ( )eV eV

 ( )pV eV
 ( )T eV

 ( )mV eV
 /  ( )AO HOE eV

 
2

/  ( )AO HOH MOE eV

 /  ( )AO HOTE eV

 2  ( )H MOTE eV

 3, .  ( )TE atom atom msp AO eV

   ( )MOTE eV

 15 10  /rad s

 ( )KE eV

 ( )DE eV

 ( )KvibE eV

 ( )oscE eV

 ( )magE eV

   ( )GroupTE eV

 4  /  ( )c AO HOinitialE eV

 5  /  ( )c AO HOinitialE eV

   ( )GroupDE eV

3CH Cl Cl C 
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equivalent to the bond energy of the  functional group.  Experimentally  is  more stable than the 

isolated reactants and products [134, 136, 137],  and .  The bond energy of the  functional group of the 

negatively-charged molecular ion complex  of  given in Table 16.58 matches 

the experimental stabilization energy very well.  A simulation of the reaction of Eq. (16.282) is available on the internet [145]. 
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Chapter 17 
  
NATURE OF THE SOLID MOLECULAR BOND  
OF THE THREE ALLOTROPES OF CARBON 
  
 
 
 
 
GENERAL CONSIDERATIONS OF THE SOLID MOLECULAR BOND 
The solid molecular bond of a material comprising an arbitrary number of atoms can be solved using similar principles and 
procedures as those used to solve organic molecules of arbitrary length.  Molecular solids are also comprised of functional 
groups.  Depending on the material, exemplary groups are C C , C C , C O , C N , C S , and others given in the Organic 
Molecular Functional Groups and Molecules section.  The solutions of these functional groups or any others corresponding to 
the particular solid can be conveniently obtained by using generalized forms of the geometrical and energy equations given in 
the Derivation of the General Geometrical and Energy Equations of Organic Chemistry section.  The appropriate functional 
groups with their geometrical parameters and energies can be added as a linear sum to give the solution of any molecular solid.  

 
DIAMOND 
It is demonstrated in this Diamond section as well as the Fullerene ( 60C ) and Graphite sections, that very complex 

macromolecules can be simply solved from the groups at each vertex carbon atom of the structure.  Specifically, for fullerene a 
C C  group is bound to two C C  bonds at each vertex carbon atom of 60C .  The solution of the macromolecule is given by 

superposition of the geometrical and energy parameters of the corresponding two groups. In graphite, each sheet of joined 
hexagons can be constructed with a C C  group bound to two C C  bonds at each vertex carbon atom that hybridize to an 

aromatic-like functional group, 
  8 /3e

C C , with 
8

3
 electron-number per bond compared to the pure aromatic functional group, 

  3e

C C , with 3  electron-number per bond as given in the Aromatics section.  Similarly, diamond comprising, in principle, an 
infinite network of carbons can be solved using the functional group solutions where the task is also simple since diamond has 
only one functional group, the diamond C C  functional group. 

The diamond C C  bonds are all equivalent, and each C C  bond can be considered bound to a t-butyl group at the 
corresponding vertex carbon.  Thus, the parameters of the diamond C C  functional group are equivalent to those of the t-butyl 
C C  group of branched alkanes given in the Branched Alkanes section.  Based on symmetry, the parameter R  in Eqs. (15.56) 
and (15.61) is the semimajor axis a , and the vibrational energy in the oscE  term is that of diamond.  Also, the 32C sp  HO 

magnetic energy magE  given by Eq. (15.67) was subtracted for each t-butyl group of alkyl fluorides, alkyl chlorides, alkyl 

iodides, thiols, sulfides, disulfides, and nitroalkanes as given in the corresponding sections of Chapter 15 due to a set of unpaired 
electrons being created by bond breakage.  Since each C C  group of diamond bonds with a t-butyl group at each vertex carbon, 

3c  of Eq. (15.65) is one, and magE  is given by Eq. (15.67). 

The symbol of the functional group of diamond is given in Table 17.1.  The geometrical (Eqs. (15.1-15.5) and (15.51)) 
parameters of diamond are given in Table 17.2.  The lattice parameter la  was calculated from the bond distance using the law of 

cosines:   
 2 2 2

1 2 1 2 32 cosines s s s s    (17.1) 
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With the bond angle 109.5CCC    [1] and 1 2 2 C Cs s c   , the internuclear distance of the C C  bond, 3 2
t tC Cs c  , the 

internuclear distance of the two terminal C  atoms is given by: 

     2
2 2 2 ' 1 cosine 109.5

t tC C C Cc c      (17.2) 

Two times the distance 2
t tC Cc   is the hypotenuse of the isosceles triangle having equivalent sides of length equal to the lattice 

parameter la .  Using Eq. (17.2) and 2 1.53635 C Cc Å   from Table 17.2, the lattice parameter la  for the cubic diamond structure 

is given by: 

 
 

    22 2
2 2 2 ' 1 cos ine 109.5 3.54867 

2
t tC C

l C C

c
a c Å






      (17.3) 

The intercept (Eqs. (15.80-15.87)) and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of diamond are given in 
Tables 17.2, 17.3, and 17.4, respectively.  The total energy of diamond given in Table 17.5 was calculated as the sum over the 
integer multiple of each  GroupDE  of Table 17.4 corresponding to functional-group composition of the molecular solid.  The 

experimental C C  bond energy of diamond,  
expDE C C  at 298 K, is given by the difference between the enthalpy of 

formation of gaseous carbon atoms from graphite (   f graphiteH C gas ) and the heat of formation of diamond 

(   
fH C diamond ) wherein graphite has a defined heat of formation of zero (   0fH C graphite  : 

        
exp

1

2D f graphite fE C C H C gas H C diamond       (17.4) 

where the heats of formation of atomic carbon and diamond are [2]: 
     716.68 /  7.42774 /f graphiteH C gas kJ mole eV atom   (17.5) 

     1.9 /  0.01969 /fH C diamond kJ mole eV atom   (17.6) 

Using Eqs. (17.4-17.6),  
expDE C C  is: 

    
exp

1
7.42774 0.01969 3.704 

2DE C C eV eV eV     (17.7) 

where the factor of one half corresponds to the ratio of two electrons per bond and four electrons per carbon atom.  The bond 
angle parameters of diamond determined using Eqs. (15.88-15.117) are given in Table 17.6.  The structure of diamond is shown 
in Figure 17.1. 
 
Figure 17.1.  (A-B) The structure of diamond.  

 

 
 

 
 
 
 
 



Nature of the Solid Molecular Bond of the Three Allotropes of Carbon 
 

1193

Table 17.1.   The symbols of the functional group of diamond. 

Functional Group Group Symbol
CC bond (diamond-C) C C  

 
Table 17.2.   The geometrical bond parameters of diamond and experimental values [1, 3]. 

Parameter C C  
Group

 0 a a  2.10725 

 0'  c a  1.45164 

Bond Length  2 '  c Å  1.53635 

Exp. Bond Length  Å  1.54428 

 0,  b c a  1.52750 

e  0.68888

Lattice Parameter   la Å  3.54867 

Exp. Lattice Parameter   la Å  3.5670 
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Table 17.4.   The energy parameters (eV) of the functional group of diamond. 
 
 
 
 
 
   
 

 

Table 17.5.   The total bond energy of diamond calculated using the functional group composition and the energy of Table 
17.4 compared to the experimental value [1-2]. 
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FULLERENE ( 60C ) 
60C  comprises 60 equivalent carbon atoms that are bound as 60 single bonds and 30 double bonds in the geometric form of a 

truncated icosahedron: twelve pentagons and twenty hexagons joined such that no two pentagons share an edge.  To achieve this 
minimum energy structure each equivalent carbon atom serves as a vertex incident with one double and two single bonds.  Each 
type of bond serves as a functional group which has aromatic character.  The aromatic bond is uniquely stable and requires the 
sharing of the electrons of multiple 2H -type MOs.  The results of the derivation of the parameters of the benzene molecule given 

in the Benzene Molecule ( 6 6C H ) section was generalized to any aromatic functional group of aromatic and heterocyclic 

compounds in the Aromatic and Heterocyclic Compounds section.  Ethylene serves as a basis element for the 
3e

C C  bonding of 

the aromatic bond wherein each of the 
3e

C C  aromatic bonds comprises   0.75 4 3  electrons according to Eq. (15.161) 

wherein 2C  of Eq. (15.51) for the aromatic 
3e

C C -bond MO given by Eq. (15.162) is 

   3 3
2 22 2 0.85252C aromaticC sp HO c aromaticC sp HO   and  3, . 2.26759 TE atom atom msp AO eV   .  In 60C , the 

minimum energy structure with equivalent carbon atoms wherein each carbon forms bonds with three other such carbons 
requires a redistribution of charge within an aromatic system of bonds.  The C C  functional group of 60C  comprises the 

aromatic bond with the exception that it comprises four electrons.  Thus,  GroupTE  and  GroupDE  are given by Eqs. (15.165) and 

(15.166), respectively, with 1 1f  , 4 4c  , and ( )KvibE eV  is that of 60C . 

 In addition to the C C  bond, each vertex carbon atom of 60C  is bound to two C C  bonds that substitute for the 

aromatic 
3e

C C  and C H  bonds.  As in the case of the C C -bond MO of naphthalene, to match energies within the MO that 
bridges single and double-bond MOs,  /E AO HO  and  

2
/H MOE AO HO  in Eq. (15.51) are 14.63489 eV  and 2.26759 eV , 

respectively. 
To meet the equipotential condition of the union of the 32C sp  HOs of the C C  single bond bridging double bonds, the 

parameters 1c , 2C , and 2oC  of Eq. (15.51) are one for the C C  group, 1oC  and 1C  are 0.5, and 2c  given by Eq. (13.430) is 

 3
2 2 0.91771c C sp HO  .  To match the energies of the functional groups with the electron-density shift to the double bond, 

 3, .TE atom atom msp AO  of each of the equivalent C C -bond MOs in Eq. (15.61) due to the charge donation from the C  

atoms to the MO can be considered a linear combination of that of C C -bond MO of toluene, 1.13379 eV  and that of the 

aromatic C H -bond MO, 
1.13379 

2

eV
.  Thus,  3, .TE atom atom msp AO  of each C C -bond MO of 60C  is 

   1.13379 0.5 1.13379 
0.75 1.13379 0.85034 

2

eV eV
eV eV

  
    .  As in the case of the aromatic C H  bond, 3 1c   in 

Eq. (15.65) with magE  given by Eq. (15.67), and ( )KvibE eV  is that of 60C . 

The symbols of the functional groups of 60C  are given in Table 17.7.  The geometrical (Eqs. (15.1-15.5) and (15.51)), 

intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of 60C  are given 

in Tables 17.8, 17.9, and 17.10, respectively.  The total energy of 60C  given in Table 17.11 was calculated as the sum over the 

integer multiple of each  GroupDE  of Table 17.10 corresponding to functional-group composition of the molecule.  The bond 

angle parameters of 60C  determined using Eqs. (15.87-15.117) are given in Table 17.12.  The structure of 60C  is shown in 

Figures 17.2A and B. The fullerene vertex-atom group comprising a double and two single bonds can serve as a basis element to 
form other higher-order fullerene-type macromolecules, hyperfullerenes, and complex hybrid conjugated carbon and aromatic 
structures comprising a mixture of elements from the group of fullerene, graphitic, and diamond carbon described in the 
corresponding sections. 
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Figure 17.2.   60C  MO comprising a hollow cage of sixty carbon atoms bound with the linear combination of sixty sets of 

C C -bond MOs bridged by 30 sets of C C -bond MOs.  A C C  group is bound to two C C  groups at each vertex carbon 
atom of 60C .  Color scale, translucent pentagonal view (A), and hexagonal view (B), of the charge-density of the 60C -bond MO 

with each 32C sp  HO shown transparently.  For each C C  and C C  bond, the ellipsoidal surface of the 2H -type ellipsoidal 

MO that transitions to the 32C sp  HO, the 32C sp  HO shell, inner most 1C s  shell, and the nuclei (red, not to scale), are shown. 
 

 
 
 

 
 

 
 

 
 
Table 17.7.   The symbols of functional groups of 60C . 
 

Functional Group Group Symbol
C C  (aromatic-type) C C  
C C  (bound to C C  aromatic-type) C C  

 
Table 17.8.   The geometrical bond parameters of 60C  and experimental values [5]. 
 

Parameter 
C C  
Group

C C  
Group 

 0 a a  1.47348 1.88599 

 0'  c a  1.31468 1.37331 

Bond Length  2 '  c Å  1.39140 1.45345 

Exp. Bond Length 

 Å  
1.391 
( 60C ) 

1.455 
( 60C ) 

 0,  b c a  0.66540 1.29266 

e  0.89223 0.72817 
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 Table 17.10.  The energy parameters (eV) of functional groups of C60.  

Table 17.11.   The total bond energies of C60 calculated using the functional group composition and the energies of Table 
17.10 compared to the experimental values [7]. 
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FULLERENE DIHEDRAL ANGLES 
For 60C , the bonding at each vertex atom bC  comprises two single bonds, a b aC C C  , and a double bond, b cC C .  The 

dihedral angle /C C C C C     between the plane defined by the a b aC C C   moiety and the line defined by the corresponding 

b cC C  moiety is calculated using the results given in Table 17.12 and Eqs. (15.114-15.117).  The distance 1d  along the bisector 

of 
a bC C C a    from bC  to the internuclear-distance line between one aC  and the other aC , 2 '

a aC Cc  , is given by: 

 1 0 0

108.00°
2 ' cos 2.74663 cos 1.61443

2 2
a b

b a

C C C a
C Cd c a a

  
    (17.8) 

where 2 '
b aC Cc   is the internuclear distance between bC  and aC .  The atoms aC , aC , and cC  define the base of a pyramid.  Then, 

the pyramidal angle 
a c aC C C  can be solved from the internuclear distances between cC  and aC , 2 '

c aC Cc  , and between aC  and 

aC , 2 '
a aC Cc  , using the law of cosines (Eq. (15.115)). 

 
     

  
     

  

2 2 2
2 2 2

0 0 01 1

0 0

2 ' 2 ' 2 ' 4.65618a 4.65618a 4.4441a
cos cos

2 4.65618a 4.65618a2 2 ' 2 '

57.01°

c a c a a a

a b a

c a c a

C C C C C C

C C C

C C C C

c c c

c c
    


 

               


 (17.9) 

Then, the distance 2d  along the bisector of 
a c aC C C  from cC  to the internuclear-distance line 2 '

a aC Cc  , is given by: 

 2 0 0

57.01
2 ' cos 4.65618 cos 4.09176

2 2
a c a

c a

C C C
C Cd c a a





    (17.10) 

The lengths 1d , 2d , and 2 '
b cC Cc   define a triangle wherein the angle between 1d  and the internuclear distance between bC  and 

cC , 2 '
b cC Cc  , is the dihedral angle /C C C C C     that can be solved using the law of cosines (Eq. (15.117)). 

 
 
 

     
  

22 2 2 2 2
1 2 0 0 01 1

/
0 01

2 ' 1.61443a 2.62936a 4.09176a
cos cos

2 1.61443a 2.62936a2 2 '

148.29°

b c

b c

C C

C C C C C

C C

d c d

d c
  
   



               


 (17.11) 

The dihedral angle for a truncated icosahedron corresponding to /C C C C C     is: 

 / 148.28°C C C C C      (17.12) 

The dihedral angle /C C C C C     between the plane defined by the a b cC C C   moiety and the line defined by the 

corresponding b aC C  moiety is calculated using the results given in Table 17.12 and Eqs. (15.118-15.127).  The parameter 1d  

is the distance from bC  to the internuclear-distance line between aC  and cC , 2 '
a cC Cc  .  The angle between 1d  and the b aC C  

bond, 
1a bC C d , can be solved reiteratively using Eq. (15.121). 

 

     
      

     
 
   

1 1

1

1

22 2

2

2 2

2 ' 2 '
2 '

2 2 ' cosine 2 ' cosine

2 ' 2 '
2 2 ' c

2 ' cosine
2

2 ' cosine

 


    

 


 

  

  
  
 
  
  
  
      

b a b c

b a

b a a b b c a b c a b

b a b c

b a

b a a b

b c a b c a b

C C C C

C C

C C C C d C C C C C C C d

C C C C

C C

C C C C d

C C C C C C C d

c c
c

c c

c c
c

c

c

  



 

     
      

     

1

1 1

2

2
2 2

2 0 0
0

0 0

2 2

0 0
0

osine 0

2 '

2

2.74663a 2.62936a
2.74663a

2 2.74663a cosine 2.62936a cosine 120.00

2.74663a 2.62936a
2 2.74663a

2.74663a
2





 

 
 
 
 
 
 
  
 
 
 
 
       

  
   




a b

a c

a b a b

C C d

C C

C C d C C d

c



 

 
   

1

1

1

0

0

2

0

cosine 0
cosine

2.62936a cosine 120.00

4.6562a

2






 
 
 
 
 

   
                    

 
      

a b

a b

a b

C C d
C C d

C C d





 (17.13) 
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The solution of Eq. (17.13) is: 
 

2
57.810

a aC C d    (17.14) 

Eq. (17.14) can be substituted into Eq. (15.120) to give 1d : 

 

   
      

   
        

1 1

2 2

1

2 2

0 0
0

0 0

2 ' 2 '

2 2 ' cosine 2 ' cosine

2.74663a 2.62936a
1.33278a

2 2.74663a cosine 57.810 2.62936a cosine 120.00 57.810

b a b c

b a a b b c a b c a b

C C C C

C C C C d C C C C C C C d

c c
d

c c  
 

    




 


 

   

 (17.15) 

The atoms aC , aC , and cC  define the base of a pyramid.  Then, the pyramidal angle 
a a cC C C  can be solved from the 

internuclear distances between aC  and aC , 2 '
a aC Cc  , and between aC  and cC , 2 '

a cC Cc  , using the law of cosines (Eq. (15.115)). 

 

     
  

     
  

2 2 2

1

2 2 2

0 0 01

0 0

2 ' 2 ' 2 '
cos

2 2 ' 2 '

4.44410a 4.65618a 4.65618a
cos 61.50°

2 4.44410a 4.65618a

a a a c a c

a a c

a a a c

C C C C C C

C C C

C C C C

c c c

c c
   


 



   
 
 
  

   
 

 (17.16) 

The parameter 2d  is the distance from aC  to the bisector of the internuclear-distance line between aC  and cC , 2 '
a cC Cc  .  

The angle between 2d  and the a aC C  axis, 
2a aC C d , can be solved reiteratively using Eq. (15.126). 

 

     
      

     
 
   

2 2

2

2

22 2

2

2 2

2 ' 2 '
2 '

2 2 ' cosine 2 ' cosine

2 ' 2 '
2 2 ' c

2 ' cosine
2

2 ' cosine

 


    

 


 

  

  
   
  
  
  
      

a a a c

a a

a a a a a c a a c a a

a a a c

b a

a a a a

a c a a c a a

C C C C

C C

C C C C d C C C C C C C d

C C C C

C C

C C C C d

C C C C C C C d

c c
c

c c

c c
c

c

c

  



 

     
      

     
 

1

2 2

2

2
2 2

2 0 0
0

0 0

2 2

0 0
0

0

osine 0

2 '

2

4.44410a 4.65618a
4.44410a

2 4.44410a cosine 4.65618a cosine 61.50

4.44410a 4.65618a
2 4.44410a

4.44410a
2





 

 
 
 
 
 
 
  
 
 
 
 
       

  
   




a b

a c

a a a a

C C d

C C

C C d C C d

c



 

   
2

2

20

2

0

cosine 0
cosine

4.65618a cosine 61.50

4.6562a

2






 
 
 
 
 

   
                     

 
      

a a

a a

a a

C C d
C C d

C C d





 (17.17) 

The solution of Eq. (17.17) is: 
 

2
31.542

a aC C d    (17.18) 

Eq. (17.18) can be substituted into Eq. (15.125) to give 2d : 

 

   
      

   
        

2 2

2 2

2

2 2

0 0
0

0 0

2 ' 2 '

2 2 ' cosine 2 ' cosine

4.44410a 4.65618a
3.91101a

2 4.44410a cosine 31.542 4.65618a cosine 61.50 31.542

a a a c

a a a a a c a a c a a

C C C C

C C C C d C C C C C C C d

c c
d

c c  
 

    




 


 

   

 (17.19) 

The lengths 1d , 2d , and 2 '
b aC Cc   define a triangle wherein the angle between 1d  and the internuclear distance between bC  and 

aC , 2 '
b aC Cc  , is the dihedral angle /C C C C C     that can be solved using the law of cosines (Eq. (15.117)). 
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22 2
1 21

/

1

2 2 2

0 0 01

0 0

2 '
cos

2 2 '

1.33278a 2.74663a 3.91101a
cos 144.71°

2 1.33278a 2.74663a

b a

b a

C C

C C C C C

C C

d c d

d c
 
   





   
 
 
  

   
 

 (17.20) 

The dihedral angle for a truncated icosahedron corresponding to /C C C C C     is: 

 / 144.24°C C C C C      (17.21) 

 
GRAPHENE AND GRAPHITE 
In addition to fullerene and diamond described in the corresponding sections, graphite is the third allotrope of carbon.  It 
comprises planar sheets of covalently bound carbon atoms arranged in hexagonal aromatic rings of a macromolecule of 
indefinite size.  Each sheet comprises graphene.  The sheets, in turn, are bound together by weaker intermolecular forces.  It was 
demonstrated in the Fullerene ( 60C ) section, that a very complex macromolecule, fullerene, could be simply solved from the 

groups at each vertex carbon atom of the structure.  Specifically, a C C  group is bound to two C C  bonds at each vertex 
carbon atom of 60C .  The solution of the macromolecule is given by superposition of the geometrical and energy parameters of 

the corresponding two groups.  Similarly, diamond comprising, in principle, an infinite network of carbons was also solved in 
the Diamond section using the functional group solutions, the diamond C C  functional group which is the only functional 
group of diamond. 
 The structure of the indefinite network of aromatic hexagons of a sheet of graphite can also be solved by considering the 
vertex atom.  As in the case of fullerene, each sheet of joined hexagons can be constructed with a C C  group bound to two 
C C  bonds at each vertex carbon atom of graphite.  However, an alternative bonding to that of 60C  is possible for graphite due 

to the structure comprising repeating hexagonal units.  In this case, the lowest energy structure is achieved with a single 
functional group, one which has aromatic character.  The aromatic bond is uniquely stable and requires the sharing of the 
electrons of multiple 2H -type MOs.  The results of the derivation of the parameters of the benzene molecule given in the 

Benzene Molecule ( 6 6C H ) section was generalized to any aromatic functional group of aromatic and heterocyclic compounds in 

the Aromatic and Heterocyclic Compounds section.  Ethylene serves as a basis element for the 
3e

C C  bonding of the aromatic 

bond wherein each of the 
3e

C C  aromatic bonds comprises   0.75 4 3  electrons according to Eq. (15.161) wherein 2C  of Eq. 

(15.51) for the aromatic 
3e

C C -bond MO given by Eq. (15.162) is    3 3
2 22 2 0.85252C aromaticC sp HO c aromaticC sp HO   

and  3, . 2.26759 TE atom atom msp AO eV   . 

In graphite, the minimum energy structure with equivalent carbon atoms wherein each carbon forms bonds with three 
other such carbons requires a redistribution of charge within an aromatic system of bonds.  Considering that each carbon 
contributes four bonding electrons, the sum of electrons of a vertex-atom group is four from the vertex atom plus two from each 
of the two atoms bonded to the vertex atom where the latter also contribute two each to the juxtaposed group.  These eight 
electrons are distributed equivalently over the three bonds of the group such that the electron number assignable to each bond is 
8

3
.  Thus, the 

  8 /3e

C C  functional group of graphite comprises the aromatic bond with the exception that the electron-number per 

bond is 
8

3
.   GroupTE  and  GroupDE  are given by Eqs. (15.165) and (15.166), respectively, with 1

2

3
f   and 4

8

3
c  .  As in the case 

of diamond comprising equivalent carbon atoms, the 32C sp  HO magnetic energy magE  given by Eq. (15.67) was subtracted due 

to a set of unpaired electrons being created by bond breakage such that 3c  of Eqs. (15.165) and (15.166) is one. 

The symbol of the functional group of graphite is given in Table 17.13.  The geometrical (Eqs. (15.1-15.5) and (15.51)), 
intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11), (15.17-15.65), and (15.165-15.166)) parameters of graphite are 
given in Tables 17.14, 17.15, and 17.16, respectively.  The total energy of graphite given in Table 17.17 was calculated as the 
sum over the integer multiple of each  GroupDE  of Table 17.16 corresponding to functional-group composition of the molecular 

solid.  The experimental 
  8 /3e

C C  bond energy of graphite at 0 K,  
exp

  8/3e

DE C C , is given by the difference between the 

enthalpy of formation of gaseous carbon atoms from graphite,   f graphiteH C gas , and the interplanar binding energy, xE , 

wherein graphite solid has a defined heat of formation of zero (   0fH C graphite  : 

   
exp

  8/3 2

3

e

D f graphite xE C C H C gas E          
 (17.22) 
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The factor of 
2

3
 corresponds to the ratio of 

8

3
 electrons per bond and 4  electrons per carbon atom.  The heats of formation of 

atomic carbon from graphite [9] and xE  [10] are: 

     711.185 /  7.37079 /f graphiteH C gas kJ mole eV atom   (17.23) 

 0.0228 /xE eV atom  (17.24) 

Using Eqs. (17.21-17.23),  
exp

  8 /3e

DE C C  is: 

  
exp

  8/3 2
7.37079 0.0228 4.89866 

3

e

DE C C eV eV eV     
 

 (17.25) 

The bond angle parameters of graphite determined using Eqs. (15.87-15.117) are given in Table 17.18.  The inter-plane 
distance for graphite of 3.5Å is calculated in the Geometrical Parameters Due to the Interplane van der Waals Cohesive Energy 

of Graphite section.  The structure of graphite is shown in Figure 17.3A and B.  The graphite 
  8/3e

C C  functional group can 
serve as a basis element to form additional complex polycyclic aromatic carbon structures such as nanotubes [11-15]. 
 
Figure 17.3.  The structure of graphite. (A) Single plane of macromolecule of indefinite size. (B) Layers of graphitic 
planes. 

 
(A)  (B) 

 
 
 

 
 
 
 

 
Table 17.13.   The symbols of the functional group of graphite. 
 

Functional Group Group Symbol

CC bond (graphite-C) 
  8/3e

C C  
 
Table 17.14.   The geometrical bond parameters of graphite and experimental values. 
 

Parameter   8/3e

C C  
Group

 0 a a  1.47348 

 0'  c a  1.31468 

Bond Length  2 '  c Å  1.39140 

Exp. Bond Length  Å  

1.42 
(graphite) [11] 

1.399 
(benzene) [16]

 0,  b c a  0.66540 

e  0.89223
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Table 17.16.   The energy parameters (eV) of the functional group of graphite. 
 

Table 17.17 .   The total bond energy of graphite calculated using the functional group composition and the energy of Table 
17.16 compared to the experimental value [9-10]. 
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Table 17.19.  The calculated and experimental total bond energies of allotropes of carbon using closed-form equations 
having integers and fundamental constants only. 
 

Formula Name 
Calculated 

Total Bond Energy 
(eV)

Experimental 
Total Bond Energy 

(eV)

Relative Error

Cn diamond 3.74829 3.704 -0.01 
C60 fullerene 419.75539 419.73367 -0.00005
Cn graphite 4.91359 4.89866 -0.00305
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Chapter 18 
  
NATURE OF THE IONIC BOND OF ALKALI HYDRIDES 
AND HALIDES 
  
 
 
 
 
ALKALI-HYDRIDE CRYSTAL STRUCTURES 
The alkali hydrides are lithium hydride ( LiH ), sodium hydride ( NaH ), potassium hydride ( KH ), rubidium hydride ( RbH ), 
and cesium hydride ( CsH ).  These saline or salt-like alkali-metal hydrides each comprise an equal number of alkali cations and 
hydride ions [1] in unit cells of a crystalline lattice.  The crystal structure of these ionic compounds is the face-centered cubic 
NaCl  structure [2].  This close-packed structure is expected since it gives the optimal approach of the positive and negative ions 
[3].  The structure comprises face-centered cubes of both M   and H   ions combined, but offset by half a unit cell length in one 
direction so that M   ions are centered in the edges of the H   lattice and vice versa.  Each M   is surrounded by six nearest 
neighbor H   ions and vice versa.  The resulting unit cell consists of anions (or cations) at the midpoint of each edge and at the 
center of the cell such that the unit cell contains four cations and four anions. 

The interionic radius of each hydride can be derived by considering the radii of the alkali ion and the hydride ion, the 
electron energies at these radii, and the conditions for stability of the ions as the internuclear distance changes and the ions are 
mutually influenced by Coulombic forces.  Then, the lattice energy is given by the sum over the crystal of the minimum energy 
of the interacting ion pairs at the radius of minimum approach for which the ions are stable.  The sum is further over all 
Coulombic interactions of the ions of the crystal. 

Each hydride MH  ( , , , ,M Li Na K Rb Cs ) is comprised of M   and H   ions.  From Coulomb’s Law, the lattice energy 
U  for point charges is given by the Born-Mayer equation [3] 

 
2

0 0 0

1
4c

e
U NM Z Z

r r


 

 
   

 
 (18.1) 

where N  is Avogadro’s number, cM  is the Madelung constant (the convergent sum of all Coulombic interactions of any given 

ion with the lattice of ions), Z  and Z  are the ionic charges in elementary charge units, 0r  is the distance between ion centers, 

and   is a constant that corrects for higher-order terms (e.g. 6
01/ r  to 12

01/ r  terms) in repulsion between close neighbor ions.  The 

—M H  distance can be calculated from the minimum energy packing of the ions, which is stable.  Each ion is surrounded in a 
symmetrical octahedral field of six counterions.  From Eq. (18.1), the lattice energy increases as the interionic distance 
decreases.  But, the interionic distance cannot be the sum of the contact radii.  This is easily appreciated by considering that the 
energies of the outer electron of M   and the outer two electrons of H   are very different.  For sufficiently small interionic 
distances, the most energetic reaction that can occur which eliminates the cation and consequently the lattice energy is the 
following : 
 M e M    (18.2) 
For shorter distances, the spherically symmetrical 1

0S  state of the hydride ion is distorted by M  , and it is not stable in the ionic 

crystal when the —M H  distance is given by the condition that the total Coulombic energy of attractive terms of H   in the 
field of M   as well as the repulsive terms between like-charged ions is equal to the binding energy of M ,  BE M , for the 

cations of the crystal.  Then, the lattice energy is given by the product of Avogadro’s number,  BE M , and the Madelung 

constant which takes into account all inverse 0r  (point-like) Coulombic interactions of the crystal: 

  cU NM BE M   (18.3) 
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Thus, cM  is the factor of stability of forming the crystal from M   and H   ions.  The value for the NaCl  structure is 

1.74756cM   [3]. 

Since the Coulombic potential of the ions is equivalent to that of point charges with some higher order ion-ion-interaction 
repulsive terms, the —M H  distance  0r MH  given using Eq. (18.1), Eq. (18.3), and  BE M  is: 

  
     

22 2 2

0 0 0

0

4

4 4 4

2

Z Z e Z Z e Z Z e

BE M BE M BE M
r MH


  

      
  

   (18.4) 

wherein 100.4  10  X m   for alkali hydrides [4-5].  The parameters of the hydride ion are given in the corresponding section. 
 
LITHIUM HYDRIDE 
The calculated ionic radii for Li  and H   ions given in Tables 7.1 and 7.2 are 00.35566a  and 01.8660a , respectively.  But, the 

interionic distance cannot be the sum of the contact radii since the calculated ionization energies of Li  (Eqs. (7.35), (7.45-7.46), 
and (7.63)) and H   (Eq. (7.69)) are 75.665 eV  and 0.75471 eV , respectively.  Furthermore, since the calculated ionization 
energy (Eq. (10.25)) of Li  to Li  is 5.40381 eV  as shown in Table 10.1 and the ionization energy (Eq. (7.69)) of H   to H  is 

190.75471  (1.20836  10  )eV X J , for sufficiently small interionic distances, the lithium ion may be reduced. 

Substitution of   198.65786  10  BE Li X J  into Eq. (18.3) gives the calculated lattice energy of 

    191.74756 8.65786  10  911.1 /  217.8 /cU NM BE Li N X J kJ mole kcal mole     (18.5) 

This agrees well with the experimental lattice energy of 217.95 /U kcal mole   [1] and confirms that the ionic compound 
LiH  comprises a precise packing of discrete ions. 

The calculated radius of Li  (Eq. (10.13)) given in Table 10.1 is 02.55606a , and the calculated binding energy is 
195.40381  (8.65786  10  )eV X J  (Eq. (10.25)).  The —Li H  distance,  0r LiH , calculated using Eq. (18.4) with the 

substitution of   198.65786  10  BE Li X J  is: 

   10
0 2.17  10  r LiH X m  (18.6) 

The calculated —Li H  is in reasonable agreement with the experimental distance of   10
0 2.04  10  r LiH X m  [1] given the 

experimental difficulty of performing X-ray diffraction on lithium and hydrogen due to the low electron densities.  Furthermore, 
there is a 15% variation in experimental measurements of the density of LiH  [1] that affects the internuclear spacing.  Using the 

—Li H  distance and the calculated ionic radii, the lattice structure of LiH  is shown in Figure 18.1A. 
 
SODIUM HYDRIDE 
The calculated ionic radii for Na  and H   ions given in Tables 10.8 and 7.2 are 00.560945a  and 01.8660a , respectively.  But, 

the interionic distance can not be the sum of the contact radii since the calculated ionization energies of Na  (Eqs. (10.212-
10.213)) and H   (Eq. (7.69)) are 48.5103 eV  and 0.75471 eV , respectively.  Furthermore, since the calculated ionization 
energy (Eqs. (10.226-10.227)) of Na  to Na  is 5.12592 eV  as shown in Table 10.10 and the ionization energy (Eq. (7.69)) of 
H   to H  is 190.75471  (1.20836  10  )eV X J , for sufficiently small interionic distances, the sodium ion may be reduced. 

Substitution of   198.21263  10  BE Na X J  into Eq. (18.3) gives the calculated lattice energy of 

    191.74756 8.21263  10  864.3 /  206.6 /cU NM BE Na N X J kJ mole kcal mole     (18.7) 

This agrees well with the experimental lattice energy of 202.0 /U kcal mole   [2] and confirms that the ionic 
compound NaH  comprises a precise packing of discrete ions. 

The calculated radius of Na  (Eq. (10.226)) given in Table 10.10 is 02.65432a , and the calculated binding energy is 
195.12592  (8.21263  10  )eV X J  (Eqs. (10.226-10.227)).  The —Na H  distance,  0r NaH , calculated using Eq. (18.4) with 

the substitution of   198.21263  10  BE Na X J  is: 

   10
0 2.33  10  r NaH X m  (18.8) 

The calculated —Na H  is in good agreement with the experimental distance of   10
0 2.44  10  r NaH X m  [2].  Using the 

—Na H  distance and the calculated ionic radii, the lattice structure of NaH  is shown in Figure 18.1B. 
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Figure 18.1.   The crystal structures of MH  all to the same scale.  ( Li = green, Na = yellow, K  = purple, and H   and 
1

4
H   

 
 

= blue).  (A) The crystal structure of LiH .  (B) The crystal structure of NaH .  (C) The crystal structure of KH .  (D) 

The crystal structure of 
1

4
KH

 
 
 

. 
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POTASSIUM HYDRIDE 
The calculated ionic radii for K   and H   ions given in Tables 10.17 and 7.2 are 00.85215a  and 01.8660a , respectively.  But, 

the interionic distance cannot be the sum of the contact radii since the calculated ionization energies of K   (Eqs. (10.399-
10.400)) and H   (Eq. (7.69)) are 31.9330 eV  and 0.75471 eV , respectively.  Furthermore, since the calculated ionization 
energy (Eqs. (10.414-10.415)) of K  to K   is 4.33 eV  as shown in Table 10.19 and the ionization energy (Eq. (7.69)) of H   to 
H  is 190.75471  (1.20836  10  )eV X J , for sufficiently small interionic distances, the potassium ion may be reduced. 

Substitution of   196.93095  10  BE K X J  into Eq. (18.3) gives the calculated lattice energy of: 

    191.74756 6.93095  10  729.4 /  174.3 /cU NM BE K N X J kJ mole kcal mole     (18.9) 

This agrees well with the experimental lattice energy of 177.2 /U kcal mole   [2] and confirms that the ionic 
compound KH  comprises a precise packing of discrete ions. 

The calculated radius of K  (Eq. (10.414)) given in Table 10.19 is 03.14515a , and the calculated binding energy is 
194.32596  (6.93095  10  )eV X J  (Eqs. (10.414-10.415)).  The —K H  distance,  0r KH , calculated using Eq. (18.4) with the 

substitution of   196.93095  10  BE K X J  is: 

   10
0 2.86  10  r KH X m  (18.10) 

The calculated —K H  is in good agreement with the experimental distance of   10
0 2.85  10  r KH X m  [2].  Using the 

—K H  distance and the calculated ionic radii, the lattice structure of KH  is shown in Figure 18.1C.  An aggregate crystal of 
unit cells is shown in Figure 18.2. 
 
Figure 18.2.   The crystal structure of KH .  ( K  = purple and H  = blue).  (A) Opaque view showing the external 
geometrical crystal structure of an aggregate of unit cells of KH .  (B) The crystal structure of KH  showing an aggregate of 
units cells. 
 

A B 
 

 
RUBIDIUM AND CESIUM HYDRIDE 
As further tests of the boundary condition, the lattice energies of RbH  and CsH  are given by the product of Avogadro’s 
number, the Madelung constant of 1.74756cM  , and the binding energy of Rb  and Cs  of 4.17713 eV  and 3.89390 eV  [6], 

respectively.  Using Eq. (18.3), the calculated lattice energy of RbH  is: 
  1.74756 4.17713 704.3 / 168.3 /U N e eV kJ mole kcal mole     (18.11) 

This agrees well with the experimental lattice energy of 168.6 /U kcal mole   [2] and confirms that the ionic compound RbH  
comprises a precise packing of discrete ions.   

Substitution of   196.6925  10  BE Rb X J  into Eq. (18.4) gives the —Rb H  distance  0r RbH : 

   10
0 2.99  10  r RbH X m  (18.12) 

The calculated —Rb H  is in good agreement with the experimental distance of   10
0 3.02  10  r RbH X m  [2].  

Using Eq. (18.3), the calculated lattice energy of CsH  is: 
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  1.74756 3.89390 656.6 / 156.9 /U N e eV kJ mole kcal mole     (18.13) 

This agrees well with the experimental lattice energy of 154.46 /U kcal mole   [1] and 162.0 /U kcal mole   [2] and 
confirms that the ionic compound CsH  comprises a precise packing of discrete ions.   

Substitution of   196.23872  10  BE Cs X J  into Eq. (18.4) gives the —Cs H  distance  0r CsH : 

   10
0 3.24  10  r CsH X m  (18.14) 

The calculated —Cs H  is in good agreement with the experimental distance of   10
0 3.19  10  r CsH X m  [2].  

 

POTASSIUM HYDRINO HYDRIDE ( 1
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The crystal structure of each alkali hydrino hydride 
1
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 is the same as that of the corresponding ordinary alkali hydride 

except that the radii of the hydride ions 
1

H
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 are each a reciprocal integer times that of the ordinary hydride as given by Eq. 

(7.73).  Thus, the lattice energy of 
1

4
KH  

 
 

 is the same as that of KH  given by Eq. (18.9), and the 
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 is the same as that of KH  given by Eq. (18.10).  Using the 

1
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4
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 distance (Eq. (18.10)), the radius of K   

of 00.85215a  (Eq. (10.399)) and the radius of 
1

4
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 of 0 0

1.8660
0.4665

4
a a  (Eq. (7.73)), the lattice structure of 

1

4
KH  

 
 

 is 

shown in Figure 18.1D. 
 
ALKALI-HALIDE CRYSTAL STRUCTURES 
The alkali halides ( MX ) are lithium, sodium, potassium, rubidium, and cesium cations, M  , with fluoride, chloride, bromide, 
and iodide anions, X  .  These saline or salt-like alkali-metal halides each comprise an equal number of alkali cations and halide 
ions [3] in unit cells of a crystalline lattice.  The crystal structure of these ionic compounds is the face-centered cubic NaCl  
structure except for CsCl , CsBr , and CsI  that have the CsCl  structure at ordinary temperatures and pressures [3].  These 
close-packed structures are expected since it gives the optimal approach of the positive and negative ions [3].  The NaCl  
structure comprises face-centered cubes of both M   and X   ions combined, but offset by half a unit cell length in one direction 
so that M   ions are centered in the edges of the X   lattice and vice versa.  Each M   is surrounded by six nearest neighbor X   
ions and vice versa.  The resulting unit cell consists of anions (or cations) at the midpoint of each edge and at the center of the 
cell such that the unit cell contains four cations and four anions.  The CsCl  structure comprises body-centered cubes of both M   
and X   ions wherein M   is in the center of cubes of X   and vice versa. 
 
ALKALI-HALIDE LATTICE PARAMETERS AND ENERGIES 
The interionic radius of each alkali halide can be derived by considering the radii of the alkali ion and the halide ion, the electron 
energies at these radii, and the conditions for stability of the ions as the internuclear distance changes and the ions are mutually 
influenced by the Coulombic fields.  Then, the lattice energy is given by the sum over the crystal of the minimum energy of the 
interacting ion pairs at the radius of minimum approach for which the ions are stable.  The sum is further over all Coulombic 
interactions of the ions of the crystal. 

As in the case with alkali hydrides, each alkali halide MX  ( , , , ,M Li Na K Rb Cs  and , , ,X F Cl Br I ) is comprised of 

M   and X   ions.  From Coulomb’s law, the lattice energy U  for point charges is given by Eq. (18.1), the Born-Mayer 
equation.  The —M X  distance can be calculated from the minimum energy packing of the ions, which is stable.  Each ion of 
the NaCl  and CsCl  structure is surrounded in a symmetrical octahedral or cubic field of six or four counterions, respectively.  
From Eq. (18.1), the lattice energy increases as the interionic distance decreases.  But, the interionic distance cannot be the sum 
of the contact radii.  This is easily appreciated by considering that the energies of the outer electron of M   and the outer 
electrons of X   are very different.  For sufficiently small interionic distances, the most energetic reaction that can occur which 
eliminates the cation and consequently the lattice energy is given by Eq. (18.2).  For shorter distances, the spherically 
symmetrical 1

0S  state of the halide ion is distorted by M  , and it is not stable in the ionic crystal when the —M X  distance is 

sufficiently small.  To first order, this distance is given by the condition that the total Coulombic energy of attractive terms of 
X   in the field of M   as well as the repulsive terms between like-charged ions is equal to the binding energy of M ,  BE M , 

for the cations of the crystal. 
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As in the case of the alkali hydrides, the lattice energies of alkali halides are determined by the binding energy of the 
corresponding metal atom.  However, for each alkali halide an additional energy term arises corresponding to the effect of the 
electric field of the metal ion on the magnetic forces and energy of the halide ion.  With the binding of the ions in both alkali 
hydrides and halides, the electric field lines of the metal ions end on those of the negative ions.  But, each electron of the hydride 
ion occupies a symmetrically symmetrical s  orbital, and the electrons collectively comprise a filled s  shell only such that there 
is no dipole to interact with the external electric field of the positive ions.  Whereas, the outer shell of the halide ions comprise 
p -orbital electrons having magnetic dipoles.  These dipoles can interact with the external electric field having dipole 

components.  Thus, the cation-anion separation in ionic compounds having electrons with magnetic dipole moments due to 
orbital angular momentum is dependent on the effect of the electric field on the magnetic forces of the anion. 

Since the magnetic field is a relativistic effect of the electric field and the electron’s charge, e , charge-to-mass ratio, 
e

e

m
, 

angular momentum of  , and the magnetic moment of B  are relativistically invariant, it is not surprising as shown in the Stark 

Effect section that the energy, StarkE , of a one-electron atom in an electric field follows from that of a magnetic dipole in a 

magnetic field, Eqs. (2.68-2.69), with the magnetic dipole moment replaced by the electric dipole moment and the magnetic flux 
replaced by the electric field appliedE .  Thus, in alkali halides, the change in Coulombic lattice energy due to the Stark effect is 

given by the change in magnetic energy of the anion.  The Stark-effect energy can be expressed in terms of the magnetic-dipole 
energy according to Eqs. (2.73-2.75): 
 BE B  (18.15) 

The corresponding force StarkF  on the outer nth electron of the anion is given by Eqs. (7.27-7.31). 
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 (18.16) 

From the radius change and the magnetic energy change, the Stark energy component ( ;  )E ionization X   is calculated.  Then, 

the lattice energy is given by the product of Avogadro’s number, the Madelung constant which takes into account all inverse 0r  

(point-like) Coulombic interactions of the crystal, and the sum of  BE M , and ( ;  )E ionization X  : 

   ( ;  )cU NM BE M E ionization X      (18.17) 

Thus, cM  is the factor of stability of forming the crystal from M   and X   ions.  The values for the NaCl  and CsCl  structures 

are 1.74756cM   and 1.76267cM  [3], respectively. 

Since the Coulombic potential of the ions is equivalent to that of point charges with some higher order ion-ion-interaction 
repulsive terms, the —M X  distance  0r MX  given using Eq. (18.1), Eq. (18.3),  BE M  and ( ;  )E ionization X   is: 
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  (18.18) 

wherein 100.2  10  X m   for alkali halides [5, 7].  The parameters of the gas-phase halide ions are derived next following the 
same procedure as that used to solve multielectron atoms. 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
FLUORIDE ION 
The fluoride atom comprises a nine-electron atom having a central charge of 9Z   times that of the proton.  There are two 
indistinguishable spin-paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two 

indistinguishable spin-paired electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and two sets of paired 

and an unpaired electron in an atomic orbital at 9r  given by Eq. (10.182).  The next electron which binds to form the 

corresponding ten-electron fluoride ion is attracted by the net magnetic force between the pairing (electron 10) and unpaired 
(electron 9) to form three pairs of electrons of opposite spin in xp , yp , and zp  orbitals of an atomic orbital at the same radius 

10r .  The resulting electron configuration is 2 2 61 2 2s s p , and the orbital arrangement is: 

 

        2p state

          

  1        0        -1

       (18.19) 

corresponding to the ground state 1
0S . 
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Unlike the case of the hydride ion comprising a filled s  shell only, the outer shell of the fluoride ion comprises additional 
orbitals to the one filled by the electron which binds to form the negative ion.  The forces are purely magnetic in order to 
maintain the boundary conditions of an equipotential minimum energy for electrons of the additional orbitals.  Thus, the central 
Coulomb force acts on the outer electron to cause it to bind wherein this electric force on the outer-most electron due to the 
nucleus and the inner nine electrons is given by Eq. (10.70) with the appropriate charge and radius: 
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for 9r r  with 9Z  . 

As in the case with the closed-shell s  orbitals, the spin-pairing force magF  between electron 9 and electron 10 given by 

Eq. (7.24) is: 
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Due to the spin-pairing force the diamagnetic forces and paramagnetic forces are altered relative to those of the 
isoelectronic neon atom.  The energy of the fluoride ion is minimized and the angular momentum is conserved with the pairing 
of electron ten to fill the 2 yp  orbital.  Then, the orbital angular momentum of each set of the 2 xp  and zp  spin-paired electrons 

give rise to the diamagnetic force (Eq. (10.82)), diamagneticF : 
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From Eq. (10.84),  2magF  due to spin and orbital angular momentum is: 
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The outward centrifugal force on electron 10 is balanced by the electric force and the magnetic forces (on electron 10).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (18.20)), 
diamagnetic (Eq. (18.22)), and paramagnetic (Eqs. (18.21) and (18.23)) forces as follows: 
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Substitution of 10
10e

v
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 (Eq. (1.35)), 9Z  , and 
1

2
s   into Eq. (18.24) gives: 
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Substitution of 3

0

0.51382
r

a
  (Eq. (10.62)) into Eq. (18.27) gives: 

 10 02.75769r a  (18.28) 

The ionization energy of the fluoride ion is given by the magnetic energy of the outer electron calculated by integrating 
the sum of the diamagnetic (Eq. (18.22)) and paramagnetic (Eqs. (18.21) and (18.23)) forces from 10r  to  : 
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 (18.29) 

Eq. (18.29) with 3 00.51382r a  (Eq. (10.62)), 10 02.75769r a  (Eq. (18.28)), and 9Z   gives: 

 ( ;  ) 3.40603 E ionization F eV   (18.30) 
The experimental ionization energy of the fluoride ion is [8] : 
 ( ;  ) 3.4011895 E ionization F eV   (18.31) 
 
RADIUS AND IONIZATION ENERGY OF THE OUTER ELECTRON OF THE 
CHLORIDE ION 
The chlorine atom comprises a seventeen-electron atom having a central charge of  Z = 17 times that of the proton.  There are 
two indistinguishable spin-paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) (Eq. (10.51)), two 

indistinguishable spin-paired electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), three sets of paired 

electrons in an atomic orbital at 10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an atomic orbital with 

radii 11r  and 12r  both given by Eq. (10.255), and two sets of paired and an unpaired electron in an atomic orbital with radius 17r  

given by Eq. (10.363).  The next electron which binds to form the corresponding eighteen-electron chloride ion is attracted by 
the net magnetic force between the pairing (electron 18) and unpaired (electron 17) to form three pairs of electrons of opposite 
spin in xp , yp , and zp  orbitals of an atomic orbital at the same radius 18r .  The resulting electron configuration is 

2 2 6 2 61 2 2 3 3s s p s p , and the orbital arrangement is: 

 

        3p state

          

  1         0       -1

       (18.32) 

corresponding to the ground state 1
0S . 

Unlike the case of the hydride ion, the outer shell of the chloride ion comprises additional orbitals to the one filled by the 
electron which binds to form the negative ion.  The forces are purely magnetic in order to maintain the boundary conditions of an 
equipotential minimum energy for electrons of the additional orbitals.  Thus, the central Coulomb force acts on the outer electron 
to cause it to bind wherein this electric force on the outer-most electron due to the nucleus and the inner seventeen electrons is 
given by Eq. (10.70) with the appropriate charge and radius: 
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for 17r r  with 17Z  . 

As in the case with the closed-shell s  orbitals, the spin-pairing force magF  between electron 18 and electron 17 given by 

Eq. (7.24) is 
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 (18.34) 

Due to the spin-pairing force the diamagnetic forces and paramagnetic forces are altered relative to those of the 
isoelectronic argon atom.  The energy of the chloride ion is minimized and the angular momentum is conserved with the pairing 
of electron eighteen to fill the 3 yp  orbital when the orbital angular momentum of each set of the xp , yp , and zp  spin-paired 

electrons add negatively to cancel.  Then, the diamagnetic force (Eq. (10.82)), diamagneticF , is zero as in the case of the closed- p -

shell atom neon: 
 0diamagnetic F  (18.35) 

The orbital angular momentum of each set of the 3 xp  and zp  spin-paired electrons and the spin and orbital angular 

momentum of electrons 17 and 18 that pair upon the binding to fill the 3 yp  shell give rise to the magnetic force 2magF  with the 

corresponding contributions given by Eqs. (10.83) and (10.84), respectively: 
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The outward centrifugal force on electron 18 is balanced by the electric force and the magnetic forces (on electron 18).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (18.33)), 
diamagnetic (Eq. (18.35)), and paramagnetic (Eqs. (18.34) and (18.36)) forces as follows: 
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Substitution of 18
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 (Eq. (1.35)), 17Z  , and 
1

2
s   into Eq. (18.37) gives: 
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 (18.39) 

 
0

 18 12 0

12

3
41

17 ,     
3

6
4

17

a
r r in units of a

r

 
 
 
   (18.40) 

Substitution of 12

0

0.86545
r

a
  (Eq. (10.255)) into Eq. (18.40) gives: 

 18 02.68720r a  (18.41) 

The ionization energy of the chloride ion is given by the magnetic energy of the outer electron calculated by integrating 
the sum of the diamagnetic (Eq. (18.35)) and paramagnetic (Eqs. (18.34) and (18.36)) forces from 18r  to  : 
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Eq. (18.42) with 12 00.86545r a  (Eq. (10.255)), 18 02.68720r a  (Eq. (18.41)), and 17Z   gives: 

 ( ;  ) 3.67238 E ionization Cl eV   (18.43) 
The experimental ionization energy of the chloride ion is [8]: 
 ( ;  ) 3.612724 E ionization Cl eV   (18.44) 
 
CHANGE IN THE RADIUS AND IONIZATION ENERGY OF THE FLUORIDE ION 
DUE TO THE ION FIELD 
As in the case of the alkali hydrides, the lattice energies of alkali halides are equivalent to the binding energy of the 
corresponding metal atom, except for an additional energy term corresponding to the Stark effect of the metal ion on the 
magnetic forces and energy of the halide ion.  The corresponding force StarkF  on the outer electron of the fluoride ion given by 

Eq. (18.16) is 
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Then, the outward centrifugal force on electron 10 is balanced by the electric force and the magnetic forces (on electron 10).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (18.20)), 
diamagnetic (Eq. (18.22)), and paramagnetic (Eqs. (18.21), (18.23), and (18.45)) forces as follows: 
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Substitution of 10
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 (Eq. (1.35)), 9Z  , and 
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s   into Eq. (18.46) gives: 
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Substitution of 3

0

0.51382
r

a
  (Eq. (10.62)) into Eq. (18.47) gives: 

 10 02.46408r a  (18.48) 

The ionization energy of the fluoride ion is given by the magnetic energy of the outer electron calculated by integrating 
the sum of the diamagnetic (Eq. (18.22)) and paramagnetic (Eqs. (18.21), (18.23), and (18.45)) forces from 10r  to  : 
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Eq. (18.49) with 3 00.51382r a  (Eq. (10.62)), 10 02.46408r a  (Eq. (18.48)), and 9Z   gives: 

 ( ;  ) 4.05046 E ionization F eV   (18.50) 

The energy change of the fluoride ion ( ;  )E ionization F   due to the Stark effect is given by the difference between Eqs. (18.50) 
and (18.30): 
 ( ;  ) 4.05046 3.40603 0.64444 E ionization F eV eV eV     (18.51) 
 
CHANGE IN THE RADIUS AND IONIZATION ENERGY OF THE CHLORIDE ION 
DUE TO THE ION FIELD 
Similar to the case of the alkali fluorides, the lattice energies of alkali chlorides are equivalent to the binding energy of the 
corresponding metal atom, except for those cases where there is an additional energy term corresponding to the Stark effect of 
the metal ion on the magnetic forces and energy of the chloride ion.  The selection rules for the Stark effect in one-electron 
atoms given by Eq. (2.78) is: 
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The corresponding energies are given in Table 2.3.  For fluoride having an outer 2p shell: 
 1m   (18.53) 

corresponding to the force StarkF  on the outer electron of the fluoride ion given by Eq. (18.45) and the binding energy change 

( ;  )E ionization F   given by Eq. (18.50). 
In the case of the chloride ion, the outer shell is 3p .  For cations having an outer filled  ;  3ns or np n   shell, the interaction of 

the 3p  and 2 p  shells of Cl  due to the field of the cation gives rise to a diamagnetic Stark force StarkF  corresponding to the 

selection rule: 
 1m    (18.54) 

wherein the cation’s electrons cannot compensate for the diamagnetism by changing orientation.  Thus, for Li  and Na  
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 (18.55) 

and for K  , Rb , and Cs  with   ;  3ns or np n   

 0Stark F  (18.56) 

Then, the outward centrifugal force on electron 18 is balanced by the electric force and the magnetic forces (on electron 18).  
The radius of the outer electron is calculated by equating the outward centrifugal force to the sum of the electric (Eq. (18.33)), 
diamagnetic (Eq. (18.35)), and paramagnetic (Eqs. (18.34), (18.36), and (18.55)) forces as follows: 
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 (Eq. (1.35)), 17Z  , and 
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Substitution of 12

0

0.86545
r

a
  (Eq. (10.255)) into Eq. (18.58) gives: 

 18 02.83145r a  (18.59) 

The ionization energy of the chloride ion is given by the magnetic energy of the outer electron calculated by integrating 
the sum of the diamagnetic (Eq. (18.35)) and paramagnetic (Eqs. (18.34), (18.36), and (18.55)) forces from 18r  to  : 
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Eq. (18.60) with 12 00.86545r a  (Eq. (10.255)), 18 02.83145r a  (Eq. (18.59)), and 17Z   gives: 

 ( ;  ) 3.39420 E ionization Cl eV   (18.61) 

For Li  and Na  chlorides, the energy change of the chloride ion ( ;  )E ionization Cl  due to the Stark effect is given by the 
difference between Eqs. (18.61) and (18.43). 
 ( ;  ) 3.39420 3.67238 0.27818 E ionization Cl eV eV eV      (18.62) 
 
LITHIUM FLUORIDE 
The calculated ionic radii for Li  and F   ions in LiF  given by Eqs. (10.49) and (18.48) are 00.35566a  and 02.46408a , 

respectively.  But, the interionic distance cannot be the sum of the contact radii since the calculated ionization energies of Li  
(Eqs. (7.35), (7.45-7.46), and (7.63)) and F   (Eq. (18.50)) are 75.665 eV  and 4.05046 eV , respectively.  Furthermore, since the 
calculated ionization energy (Eq. (10.25)) of Li  to Li  is 5.40381 eV  as shown in Table 10.1 and the ionization energy (Eq. 
(18.50)) of F   to F  is 4.05046 eV , for sufficiently small interionic distances, the lithium ion may be reduced. 

Substitution of   198.65786  10  BE Li X J  and  19( ;  ) 0.64444  1.03251  10  E ionization F eV X J    (Eq. (18.51)) 

into Eq. (18.17) gives the calculated lattice energy of: 
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 (18.63) 

This agrees well with the experimental lattice energy of 250.7 /U kcal mole   [9] and confirms that the ionic compound LiF  
comprises a precise packing of discrete ions. 

The —Li F  distance,  0r LiF , calculated using Eq. (18.18) with the substitution of   198.65786  10  BE Li X J  and 
19( ;  ) 1.03251  10  E ionization F X J    is: 

   10
0 2.16  10  r LiF X m  (18.64) 

The calculated —Li F  is in reasonable agreement with the experimental distance of   10
0 2.01  10  r LiF X m  [10].  Using the 

—Li F  distance and the calculated ionic radii, the lattice structure of LiF  is shown in Figure 18.3A. 
 
SODIUM FLUORIDE 
The calculated ionic radii for Na  and F   ions in NaF  given by Eqs. (10.212) and (18.48) are 00.560945a  and 02.46408a , 

respectively.  But, the interionic distance cannot be the sum of the contact radii since the calculated ionization energies of Na  
(Eqs. (10.212-10.213)) and F   (Eq. (18.50)) are 48.5103 eV  and 4.05046 eV , respectively.  Furthermore, since the calculated 
ionization energy (Eqs. (10.226-10.227)) of Na  to Na  is 5.12592 eV  as shown in Table 10.10 and the ionization energy (Eq. 
(18.50)) of F   to F  is 4.05046 eV , for sufficiently small interionic distances, the sodium ion may be reduced. 

Substitution of   198.21263  10  BE Na X J  and 19( ;  ) 1.03251  10  E ionization F X J    (Eq. (18.51)) into Eq. (18.17) 

gives the calculated lattice energy of: 
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 (18.65) 

This agrees well with the experimental lattice energy of 222 /U kcal mole   [9] and confirms that the ionic compound NaF  
comprises a precise packing of discrete ions. 

The —Na F  distance,  0r NaF , calculated using Eq. (18.18) with the substitution of   198.21263  10  BE Na X J  and 
19( ;  ) 1.03251  10  E ionization F X J    is: 
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   10
0 2.28  10  r NaF X m  (18.66) 

The calculated —Na F  is in reasonable agreement with the experimental distance of   10
0 2.32  10  r NaF X m  [10].  Using 

the —Na F  distance and the calculated ionic radii, the lattice structure of NaF  is shown in Figure 18.3B. 
 
Figure 18.3.   The crystal structures of MF  all to the same scale.  ( Li = green, Na = yellow, K  = purple, Rb = blue, Cs = 
red, and F  = gold).  (A) The crystal structure of LiF .  (B) The crystal structure of NaF .  (C) The crystal structure of KF .  (D) 
The crystal structure of RbF .  (E) The crystal structure of CsF . 
 

 
 

POTASSIUM FLUORIDE 
The calculated ionic radii for K   and F   ions in KF  given by Eqs. (10.399) and (18.48) are 00.85215a  and 02.46408a , 

respectively.  But, the interionic distance cannot be the sum of the contact radii since the calculated ionization energies of K   
(Eqs. (10.399-10.400)) and F   (Eq. (18.50)) are 31.9330 eV  and 4.05046 eV , respectively.  Furthermore, since the calculated 
ionization energy (Eqs. (10.414-10.415)) of K  to K   is 4.33 eV  as shown in Table 10.19 and the ionization energy (Eq. 
(18.50)) of F   to F  is 4.05046 eV , for sufficiently small interionic distances, the potassium ion may be reduced. 

Substitution of   196.93095  10  BE K X J  and 19( ;  ) 1.03251  10  E ionization F X J    (Eq. (18.51)) into Eq. (18.17) 

gives the calculated lattice energy of: 
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 (18.67) 
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This agrees well with the experimental lattice energy of 198 /U kcal mole   [9] and confirms that the ionic compound KF  
comprises a precise packing of discrete ions. 

The —K F  distance,  0r KF , calculated using Eq. (18.18) with the substitution of   196.93095  10  BE K X J  and 
19( ;  ) 1.03251  10  E ionization F X J    is: 

   10
0 2.68  10  r KF X m  (18.68) 

The calculated —K F  is in reasonable agreement with the experimental distance of   10
0 2.67  10  r KF X m  [10].  Using the 

—K F  distance and the calculated ionic radii, the lattice structure of KF  is shown in Figure 18.3C. 
 
RUBIDIUM FLUORIDE 
The Rb  ionic radius calculated using Eq. (10.102) and the experimental ionization energy of Rb , 27.2895 eV  [6] is 

00.99714a  and the calculated ionic radius F   ions in RbF  given by Eq. (18.48) is 02.46408a .  But, the interionic distance 

cannot be the sum of the contact radii since the experimental and calculated ionization energies of Rb  [6] and F   (Eq. (18.50)) 
are 27.2895 eV  and 4.05046 eV , respectively.  Furthermore, since the experimental ionization energy of Rb  to Rb  is 
4.177128 eV  [6] and the ionization energy (Eq. (18.50)) of F   to F  is 4.05046 eV , for sufficiently small interionic distances, 
the rubidium ion may be reduced. 

Substitution of   196.6925  10  BE Rb X J  and 19( ;  ) 1.03251  10  E ionization F X J    (Eq. (18.51)) into Eq. (18.17) 

gives the calculated lattice energy of: 
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 (18.69) 

This agrees well with the experimental lattice energy of 190 /U kcal mole   [9] and confirms that the ionic compound RbF  
comprises a precise packing of discrete ions. 

The —Rb F  distance,  0r RbF , calculated using Eq. (18.18) with the substitution of   196.6925  10  BE Rb X J  and 
19( ;  ) 1.03251  10  E ionization F X J    is: 

   10
0 2.77  10  r RbF X m  (18.70) 

The calculated —Rb F  is in reasonable agreement with the experimental distance of   10
0 2.83  10  r RbF X m  [10].  Using the 

—Rb F  distance and the ionic radii, the lattice structure of RbF  is shown in Figure 18.3D. 
 
CESIUM FLUORIDE 
The Cs  ionic radius calculated using Eq. (10.102) and the experimental ionization energy of Cs , 23.15744 eV  [6] is 

01.17506a  and the calculated ionic radius F   ions in CsF  given by Eq. (18.48) is 02.46408a .  But, the interionic distance 

cannot be the sum of the contact radii since the experimental and calculated ionization energies of Cs  [6] and F   (Eq. (18.50)) 
are 23.15744 eV  and 4.05046 eV , respectively.  Furthermore, since the experimental ionization energy of Cs  to Cs  is 
3.893905 eV  [6] and the ionization energy (Eq. (18.50)) of F   to F  is 4.05046 eV , for sufficiently small interionic distances, 
the cesium ion may be reduced. 

Substitution of   196.23872  10  BE Cs X J  and 19( ;  ) 1.03251  10  E ionization F X J    (Eq. (18.51)) into Eq. (18.17) 

gives the calculated lattice energy of: 

 

  
 

 

19 19

( ;  )

      1.74756 6.23872  10  1.03251  10  

      765.21 /  182.89 /

cU NM BE Cs E ionization F

N X J X J

kJ mole kcal mole



 

   

 



 (18.71) 

This agrees well with the experimental lattice energy of 181 /U kcal mole   [9] and confirms that the ionic compound CsF  
comprises a precise packing of discrete ions. 

The —Cs F  distance,  0r CsF , calculated using Eq. (18.18) with the substitution of   196.23872  10  BE Cs X J  and 
19( ;  ) 1.03251  10  E ionization F X J    is: 

   10
0 2.96  10  r CsF X m  (18.72) 

The calculated —Cs F  is in reasonable agreement with the experimental distance of   10
0 3.01  10  r CsF X m  [10].  Using the 

—Cs F  distance and the ionic radii, the lattice structure of CsF  is shown in Figure 18.3E. 
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LITHIUM CHLORIDE 
The calculated ionic radii for Li  and Cl  ions in LiCl  given by Eqs. (10.49) and (18.59) are 00.35566a  and 02.83145a , 

respectively.  But, the interionic distance cannot be the sum of the contact radii since the calculated ionization energies of Li  
(Eqs. (7.35), (7.45-7.46), and (7.63)) and Cl  (Eq. (18.61)) are 75.665 eV  and 3.39420 eV , respectively.  Furthermore, since 
the calculated ionization energy (Eq. (10.25)) of Li  to Li  is 5.40381 eV  as shown in Table 10.1 and the ionization energy (Eq. 
(18.61)) of Cl  to Cl  is 3.39420 eV , for sufficiently small interionic distances, the lithium ion may be reduced. 

Substitution of   198.65786  10  BE Li X J  and  20( ;  ) 0.27818  4.45691  10  E ionization Cl eV X J      (Eq. 

(18.62)) into Eq. (18.17) gives the calculated lattice energy of: 
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 (18.73) 

This agrees well with the experimental lattice energy of 207 /U kcal mole   [9] and confirms that the ionic compound LiCl  
comprises a precise packing of discrete ions. 

The —Li Cl  distance,  0r LiCl , calculated using Eq. (18.18) with the substitution of   198.65786  10  BE Li X J  and 
20( ;  ) 4.45691  10  E ionization Cl X J     is: 

   10
0 2.59  10  r LiCl X m  (18.74) 

The calculated —Li Cl  is in reasonable agreement with the experimental distance of   10
0 2.57  10  r LiCl X m  [10].  Using 

the —Li Cl  distance and the calculated ionic radii, the lattice structure of LiCl  is shown in Figure 18.4A. 
 

Figure 18.4.   The crystal structures of MCl  all to the same scale.  ( Li = green, Na = yellow, K  = purple, Rb = blue, 
Cs = red, and Cl = brown).  (A) The crystal structure of LiCl .  (B) The crystal structure of NaCl .  (C) The crystal structure of 
KCl .  (D) The crystal structure of RbCl .  (E) The crystal structure of CsCl . 
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SODIUM CHLORIDE 
The calculated ionic radii for Na  and Cl  ions in NaCl  given by Eqs. (10.212) and (18.59) are 00.560945a  and 02.83145a , 

respectively.  But, the interionic distance cannot be the sum of the contact radii since the calculated ionization energies of Na  
(Eqs. (10.212-10.213)) and Cl  (Eq. (18.61)) are 48.5103 eV  and 3.39420 eV , respectively.  Furthermore, since the calculated 
ionization energy (Eqs. (10.226-10.227)) of Na  to Na  is 5.12592 eV  as shown in Table 10.10 and the ionization energy (Eq. 
(18.61)) of Cl  to Cl  is 3.39420 eV , for sufficiently small interionic distances, the sodium ion may be reduced. 

Substitution of   198.21263  10  BE Na X J  and 20( ;  ) 4.45691  10  E ionization Cl X J     (Eq. (18.62)) into Eq. 

(18.17) gives the calculated lattice energy of: 
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 (18.75) 

This agrees well with the experimental lattice energy of 189 /U kcal mole   [9] and confirms that the ionic compound NaCl  
comprises a precise packing of discrete ions. 

The —Na Cl  distance,  0r NaCl , calculated using Eq. (18.18) with the substitution of   198.21263  10  BE Na X J  

and 20( ;  ) 4.45691  10  E ionization Cl X J     is: 

   10
0 2.75  10  r NaCl X m  (18.76) 

The calculated —Na Cl  is in reasonable agreement with the experimental distance of   10
0 2.82  10  r NaCl X m  [10].  Using 

the —Na Cl  distance and the calculated ionic radii, the lattice structure of NaCl  is shown in Figure 18.4B. 
 
POTASSIUM CHLORIDE 
The calculated ionic radii for K   and Cl  ions in KCl  given by Eqs. (10.399) and (18.59) are 00.85215a  and 02.83145a , 

respectively.  But, the interionic distance cannot be the sum of the contact radii since the calculated ionization energies of K   
(Eqs. (10.399-10.400)) and Cl  (Eq. (18.61)) are 31.9330 eV  and 3.39420 eV , respectively.  Furthermore, since the calculated 
ionization energy (Eqs. (10.414-10.415)) of K  to K   is 4.33 eV  as shown in Table 10.19 and the ionization energy (Eq. 
(18.61)) of Cl  to Cl  is 3.39420 eV , for sufficiently small interionic distances, the potassium ion may be reduced. 

Substitution of   196.93095  10  BE K X J  and 20( ;  ) 4.45691  10  E ionization Cl X J     (Eq. (18.62)) into Eq. 

(18.17) gives the calculated lattice energy of: 
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 (18.77) 

This agrees well with the experimental lattice energy of 172 /U kcal mole   [9] and confirms that the ionic compound KCl  
comprises a precise packing of discrete ions. 

The —K Cl  distance,  0r KCl , calculated using Eq. (18.18) with the substitution of   196.93095  10  BE K X J  and 
20( ;  ) 4.45691  10  E ionization Cl X J     is: 

   10
0 3.11  10  r KCl X m  (18.78) 

The calculated —K Cl  is in reasonable agreement with the experimental distance of   10
0 3.15  10  r KCl X m  [10].  Using the 

—K Cl  distance and the calculated ionic radii, the lattice structure of KCl  is shown in Figure 18.4C. 
 
RUBIDIUM CHLORIDE 
The Rb  ionic radius calculated using Eq. (10.102) and the experimental ionization energy of Rb , 27.2895 eV  [6] is 

00.99714a  and the calculated ionic radius Cl  ions in RbCl  given by Eq. (18.59) is 02.83145a .  But, the interionic distance 

cannot be the sum of the contact radii since the experimental and calculated ionization energies of Rb  [6] and Cl  (Eq. (18.61)) 
are 27.2895 eV  and 3.39420 eV , respectively.  Furthermore, since the experimental ionization energy of Rb  to Rb  is 
4.177128 eV  [6] and the ionization energy (Eq. (18.61)) of Cl  to Cl  is 3.39420 eV , for sufficiently small interionic distances, 
the rubidium ion may be reduced. 

Substitution of   196.6925  10  BE Rb X J  and 20( ;  ) 4.45691  10  E ionization Cl X J     (Eq. (18.62)) into Eq. 

(18.17) gives the calculated lattice energy of: 
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 (18.79) 

This agrees well with the experimental lattice energy of 166 /U kcal mole   [9] and confirms that the ionic compound RbCl  
comprises a precise packing of discrete ions. 

The —Rb Cl  distance,  0r RbCl , calculated using Eq. (18.18) with the substitution of   196.6925  10  BE Rb X J  and 
20( ;  ) 4.45691  10  E ionization Cl X J     is: 

   10
0 3.23  10  r RbCl X m  (18.80) 

The calculated —Rb Cl  is in reasonable agreement with the experimental distance of   10
0 3.29  10  r RbCl X m  [10].  Using 

the —Rb Cl  distance and the ionic radii, the lattice structure of RbCl  is shown in Figure 18.4D. 
 
CESIUM CHLORIDE 
The Cs  ionic radius calculated using Eq. (10.102) and the experimental ionization energy of Cs , 23.15744 eV  [6] is 

01.17506a  and the calculated ionic radius Cl  ions in CsCl  given by Eq. (18.59) is 02.83145a .  But, the interionic distance 

cannot be the sum of the contact radii since the experimental and calculated ionization energies of Cs  [6] and Cl  (Eq. (18.61)) 
are 23.15744 eV  and 3.39420 eV , respectively.  Furthermore, since the experimental ionization energy of Cs  to Cs  is 
3.893905 eV  [6] and the ionization energy (Eq. (18.61)) of Cl  to Cl  is 3.39420 eV , for sufficiently small interionic distances, 
the cesium ion may be reduced. 

Substitution of   196.23872  10  BE Cs X J  and 20( ;  ) 4.45691  10  E ionization Cl X J     (Eq. (18.62)) into Eq. 

(18.17) gives the calculated lattice energy of: 
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 (18.81) 

This agrees well with the experimental lattice energy of 160 /U kcal mole   [9] and confirms that the ionic compound CsCl  
comprises a precise packing of discrete ions. 

The —Cs Cl  distance,  0r CsCl , calculated using Eq. (18.18) with the substitution of   196.23872  10  BE Cs X J  and 
20( ;  ) 4.45691  10  E ionization Cl X J     is: 

   10
0 3.49  10  r CsCl X m  (18.82) 

The calculated —Cs Cl  is in reasonable agreement with the experimental distance of   10
0 3.54  10  r CsCl X m  [10].  Using 

the —Cs Cl  distance and the ionic radii, the lattice structure of CsCl  is shown in Figure 18.4E. 
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Chapter 19 
  
THE NATURE OF THE METALLIC BOND  
OF ALKALI METALS 
  
 
 
 
 
GENERALIZATION OF THE NATURE OF THE METALLIC BOND 
Common metals comprise alkali, alkaline earth, and transition elements and have the properties of high electrical and thermal 
conductivity, opacity, surface luster, ductility, and malleability.  From Maxwell’s equations, the electric field inside of a metal 
conductor is zero.  As shown in Appendix II, the bound electron exhibits this feature.  The charge is confined to a two-
dimensional layer and the field is normal and discontinuous at the surface.  The relationship between the electric field equation 
and the electron source charge-density function is given by Maxwell’s equation in two dimensions [1-3]. 

  1 2
0




  n E E  (19.1) 

where n  is the normal unit vector, 1 0E  ( 1E  is the electric field inside of the MO), 2E  is the electric field outside of the MO 

and   is the surface charge density.  The properties of metals can be accounted for by the existence of free electrons bound to 
the corresponding lattice of positive ions.  Based on symmetry, the natural coordinates are Cartesian.  Then, the problem of the 
solution of the nature of the metal bonds reduces to a familiar electrostatics problem—the fields and the two-dimensional surface 
charge density induced on a planar conductor by a point charge such that a zero potential inside of the conductor is maintained 
according to Maxwell’s equations. 

There are many examples of charges located near a conductor such as an electron emitted from a cathode or a power line 
suspended above the conducting earth.  Consider a point charge e  at a position  0,0, d  near an infinite planar conductor as 

shown in Figure 19.1. 
 
Figure 19.1.   A point charge above an infinite planar conductor. 
 
 
 
 
 
 
 
 
 
 
 
 

With the potential of the conductor set equal to zero, the potential   in the upper half space ( 0z  ) is given by 
Poisson’s equation (Eq. (3.9)), subject to the boundary condition that 0   at 0z   and at z   .  The potential for the point 
charge in free space is: 

  
 22 2

0

1
, ,

4

e
x y z

x y z d
        

 (19.2) 

 
The Poisson solution that meets the boundary condition that the potential is zero at the surface of the infinite planar conductor is 
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that due to the point charge and an image charge of e  at the position  0,0, d  as shown in Figure 19.2. 

 
Figure 19.2.   A point charge above an infinite planar conductor and the image charge to meet the boundary condition 0   
at 0z  . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The potential for the corresponding electrostatic dipole in the positive half space is: 

      2 22 2 2 2
0

1 1
        0

4, ,

0                                                                                    0

e
for z

x y z x y z d x y z d

for z


                
 

 

 (19.3) 

The electric field shown in Figure 19.3 is nonzero only in the positive half space and is given by: 

 
 

  
 

  3/ 2 3/ 22 22 2 2 204
y z y zx y z d x y z de

x y z d x y z d
      

    
       

x xi i i i i i
E  (19.4) 

 
Figure 19.3.   Electric field lines from a positive point charge near an infinite planar conductor. 

 

 
 
At the surface ( 0z  ), the electric field is normal to the conductor as required by Gauss' and Faraday's laws: 

  
 3/ 22 2 2

0

, ,0
2

zed
x y
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i
E  (19.5) 

The surface charge density shown in Figure 19.4 is given by Eq. (19.1) with zn i  and 2 0E : 
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Figure 19.4.   The surface charge density distribution on the surface of the conduction planar conductor induced by the point 
charge at the position  0,0, d .  (A) The surface charge density     (shown in color-scale relief).  (B) The cross-sectional 

view of the surface charge density. 
 

 
A 
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The total induced charge is given by the integral of the density over the surface: 

 

 3/ 22 2 2

2

2 2

2

2 2

2

2

2

cos

2

1

1
'

inducedq ds

ed
dydx

x y d

ed
d dx

x d

ed
dx

x d

ed
d

d

e













 







 

 



 












 














 



 

 





 (19.7) 

wherein the change of variables  
1

2 2 2 tany x d    and tan 'x d   were used.  The total surface charge induced on the surface 

of the conductor is exactly equal to the negative of the point charge located above the conductor. 
Now consider the case where the infinite planar conductor is charged with a surface charge density   corresponding to a 

total charge of a single electron, e , and the point charge of e  is due to a metal ion M  .  Then, according to Maxwell’s 
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equations, the potential function of M   is given by Eq. (19.3), the electric field between M   and   is given by Eqs. (19.4-
19.5), and   is given by Eq. (19.6).  The field lines of M   end on  , and the electric field is zero in the metal and in the 
negative half space.  The potential energy between M   and   at the surface ( 0z  ) given by the product of Eq. (19.2) and Eq. 
(19.6) is 

 
 3/ 22 2 2 2 2 2
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e ed
V dxdy
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Using a change of coordinates to cylindrical and integral # 47 of Lide [4] gives: 
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The corresponding force from the negative gradient as well as the integral of the product of the electric field (Eq. (19.5)) and the 
charge density (Eq. (19.6)) is: 
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 (19.14) 

where d  is treated as a variable to be solved as discussed below.  The potential is equivalent to that of the charge and its image 
charge located a distance 2d  apart.  In addition, the potential and force are equivalent to those of the charge e  and an image 

charge 
2

e
 located a distance d  apart. 

In addition to the infinite planar conductor at 0z   and the point charge e  at a position  0,0, d  near the infinite planar 

conductor as shown in Figure 19.1, next consider the introduction of a second infinite planar conductor located at position 
2z d  as shown in Figure 19.5. 

 
Figure 19.5.   A point charge located between two infinite planar conductors. 
 
 
 
 
 
 
 
 
 

+q 2d
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As shown, by Kong [5], an image charge at  0,0, d  meets the boundary condition of zero potential at the bottom plate, but it 

gives rise to a potential at the top.  Similarly, an image charge at  0,0,3d , meets the boundary condition of zero potential at the 

top plate, but it gives rise to a potential at the bottom.  Satisfaction of the boundary condition of zero potential at both plates due 
to the presence of the initial real charge requires an infinite series of alternating positive and negative image charges spaced a 
distance d  apart with the potential given by the summation over the real point source and its point-source image charges of e  
and e .  Since fields superimpose, by adding real charges in a periodic lattice, the image charges cancel except for one per each 
real charge at a distance 2d  apart as in the original case considered in Figure 19.1. 

In the real world, the idealized infinite planar conductor is a planar metal sheet experimentally comprised of an 
essentially infinite lattice of metal ions M   and free electrons that provide surface densities   in response to an applied external 
field such as that due to an external charge of e  due to a metal ion M  .  Then, it is required that the solutions of the external 
point charge at an infinite planar conductor are also those of the metal ions and free electrons of metals based on the uniqueness 
of solutions of Maxwell’s equations and the constraint that the individual electrons in a metal conserve the classical physical 
laws of the macro-scale conductor.  In metals, a superposition of planar free electrons given in the Electron in Free Space section 
replaces the infinite planar conductor.  Then, the nature of the metal bond is a lattice of metal ions with field lines that end on the 
corresponding lattice of electrons wherein each has the two-dimensional charge density   given by Eq. (19.6) to match the 
boundary conditions of equipotential, minimum energy, and conservation of charge and angular momentum for an ionized 
electron.  Consider an infinite lattice of positive charges in the hollow Cartesian cavities whose walls are the intersecting planes 
of conductors and that each planar conductor comprises an electron.  By Gauss’ law, the field lines of each real charge end on 
each of the n  planar-electron walls of the cavity wherein the surface charge density of contribution of each electron is that of 

image charge of 
e

n


 equidistant across each wall from a given charge e .  Then, each electron contributes the charge 

e

n


 to the 

corresponding ion where each is equivalent electrostatically to an image point charge at twice the distance from the point charge 
of e  due to M  . 

Thus, the metallic bond is equivalent to the ionic bond given in the Alkali-Hydride Crystal Structures section with a 
Madelung constant of one with each negative ion at a position of one half the distance between the corresponding positive ions, 
but electrostatically equivalent to being positioned at twice this distance, the M  - M  -separation distance.  The surface charge 
density of a planar electron having an electric field equivalent to that of image point charge for the corresponding positive ion of 
the lattice is shown in Figure 19.6. 
 
Figure 19.6.  The surface charge density     of a planar electron shown in color scale. 
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ALKALI-METAL CRYSTAL STRUCTURES 
The alkali metals are lithium ( Li ), sodium ( Na ), potassium ( K ), rubidium ( Rb ), and cesium ( Cs ).  These alkali metals each 
comprise an equal number of alkali cations and electrons in unit cells of a crystalline lattice.  The crystal structure of these 
metals is the body-centered cubic CsCl  structure [6-8].  This close-packed structure is expected since it gives the optimal 

approach of the positive ions and negative electrons.  For a body-centered cell, there is an identical atom at , ,
2 2 2

a a a
x y z    

for each atom at , ,x y z .  The structure of the ions with lattice parameters a b c   and electrons at the diagonal positions 

centered at , ,
4 4 4

a a a
x y z    

 
 are shown in Figure 19.7.  In this case 8n   electron planes per body-centered ion are 

perpendicular to the four diagonal axes running from each corner of the cube through the center to the opposite corner.  The 
planes intersect these diagonals at one half the distance from each corner to the center of the body-centered atom.  The mutual 
intersection of the planes forms a hexagonal cavity about each ion of the lattice.  The length 1l  to a perpendicular electron plane 

along the axis from a corner atom to a body-centered atom that is the midpoint of this axis is: 
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 (19.15) 

The angle d  of each diagonal axis from the xy-plane of the unit cell is: 
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1
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d  (19.16) 

The angle p  from the horizontal to the electron plane that is perpendicular to the diagonal axis is: 

 180 90 35.26 54.73p        (19.17) 

 
The length 3l  along a diagonal axis in the xy-plane from a corner atom to another at which point an electron plane intersects the 

xy-plane is: 
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 (19.18) 

The length 2l  of the octagonal edge of the electron plane from a body-centered atom to the xy-plane defined by four corner 

atoms is: 

  2 3

3 3 1 3
sin sin 35.26

4 24 2 4 2 3
d

a
l l a a      (19.19) 

The length 4l  along the edge of the unit cell in the xy-plane from a corner atom to another at which point an electron plane 

intersects the xy-plane at this axis is:  

 
   

3
4

3
34 2

cos 45 cos 45 4
  

 

a
l

l a  (19.20) 

The dimensions and angles given by Eqs. (19.15-19.20) are shown in Figure 19.7. 
Each M   is surrounded by six planar two-dimensional membranes that are comprised of electron density   on which 

the electric field lines of the positive charges end.  The resulting unit cell consists cations at the end of each edge and at the 
center of the cell with an electron membrane as the perpendicular bisector of the axis from an identical atom at 

, ,
2 2 2

a a a
x y z    for each atom at , ,x y z  such that the unit cell contains two cations and two electrons.  The ions and electrons 

of the unit cell are also shown in Figure 19.7.  The electron membranes exist throughout the metal, but they terminate on metal 
atomic orbitals or MOs of bonds between metal atoms and other reacted atoms such as the MOs of metal oxide bonds at the 
edges of the metal. 
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Figure 19.7. The body-centered cubic lithium metal lattice showing the electrons as planar two-dimensional membranes of 
zero thickness that are each an equipotential energy surface comprised of the superposition of multiple electrons.  (A) and (B) 
The unit-cell component of the surface charge density of a planar electron having an electric field equivalent to that of an image 
point charge for each corresponding positive ion of the lattice.  (C) Opaque view of the ions and electrons of a unit cell.  (D) 
Transparent view of the ions and electrons of a unit cell. 
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The interionic radius of each cation and electron membrane can be derived by considering the electron energies at these 

radii and by calculating the corresponding forces of the electrons with the ions.  Then, the lattice energy is given by the sum over 
the crystal of the energy of the interacting ion and electron pairs at the radius of force balance between the electrons and ions. 

For each point charge of e  due to a metal ion M  , the planar two-dimensional membrane comprised of electrons 
contributes a surface charge density   given by Eq. (19.6) corresponding to that of a point image charge having a total charge of 
a single electron, e .  The potential of each electron is double that of Eq. (19.13) since there are two mirror-image M   ions per 
planar electron membrane: 

 
2

04

e
V

d


  (19.21) 

where d  is treated as a variable to be solved.  The same result is obtained from considering the integral of the product of two 
times the electric field (Eq. (19.5)) and the charge density (Eq. (19.6)) according to Eq. (19.14).  In order to conserve angular 
momentum and maintain current continuity, the kinetic energy has two components.  Since the free electron of a metal behaves 
as a point mass, one component using Eq. (1.35) with r d  is:  
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 (19.22) 

The other component of kinetic energy is given by integrating the mass density  m r  (Eq. (19.6)) with e  replaced by em  and 

velocity  v r  (Eq. (1.35)) over their radial dependence ( 2 2 2 2 2r x y z d     ): 
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where integral #47 of Lide [4] was used.  Thus, the total kinetic energy given by the sum of Eqs. (19.22) and (19.23) is: 
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Each metal M  ( , , , ,M Li Na K Rb Cs ) is comprised of M   and e  ions. The structure of the ions comprises lattice parameters 

a b c   and electrons at the diagonal positions centered at , ,
4 4 4

a a a
x y z    

 
.  Thus, the separation distance d  between 

each M   and the corresponding electron membrane is: 
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where 
2

a
x y z      .  Thus, the lattice parameter a  is given by: 

 
4

3

d
a   (19.26) 

The molar metal bond energy DE  is given by Avogadro's number N  times the negative sum of the potential energy, kinetic 

energy, and ionization or binding energy (  BE M ) of M : 
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 (19.27) 

The separation distance d  between each M   and the corresponding electron membrane is given by the force balance 
between the outward centrifugal force and the sum of the electric, paramagnetic and diamagnetic forces as given in the Three- 
Through Twenty-Electron Atoms section.  The electric force eleF  corresponding to Eq. (19.21) given by its negative gradient is: 
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e

d
F i  (19.28) 

where inward is taken as the positive direction.  The centrifugal force centrifugalF  is given by the negative gradient of Eq. (19.24) 

times two since the charge and mass density are doubled due to the presence of mirror image M   ion pairs across the electron 
membrane at the origin for any given ion. 
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 (19.29) 

where d  is treated as a variable to be solved.  In addition, there is an outward spin-pairing force magF  between the electron 

density elements of two opposing ions that is given by Eqs. (7.24) and (10.52): 
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 (19.30) 

where 
1

2
s  .  The remaining magnetic forces are determined by the electron configuration of the particular atom as given for the 

examples of lithium, sodium, and potassium metals in the corresponding sections. 

 
LITHIUM METAL  

For Li , there are two spin-paired electrons in an atomic orbital with: 

 1 2 0

3
1 4
2 6

r r a

 
 
   
 

 (19.31) 

as given by Eq. (7.35) where nr  is the radius of electron n  which has velocity nv .  For the next electron that contributes to the 
metal-electron membrane, the outward centrifugal force on electron 3 is balanced by the electric force and the magnetic forces 
(on electron 3).  The radius of the metal-band electron is calculated by equating the outward centrifugal force (Eq. (19.29)) to the 
sum of the electric (Eq. (19.28)) and diamagnetic (Eq. (19.30)) forces as follows: 

 
2 2 2

3 2 3
0

8 3

3 4 4e e

e

m d d Zm d
 

 
 (19.32) 

 10
0 0

3
8 4 2.95534 1.56390  10  
3 3

d a a X m

 
 
    
 

 (19.33) 

where 3Z  .  Using Eq. (19.26), the lattice parameter a  is: 
 10

06.82507 3.61167  10  a a X m   (19.34) 

The experimental lattice parameter a  [7] is: 
 10

06.63162 3.5093  10  a a X m   (19.35) 

The calculated —Li Li  distance is in reasonable agreement with the experimental distance given the experimental difficulty of 
performing X-ray diffraction on lithium due to the low electron densities. 

Using Eq. (19.27) and the experimental binding energy of lithium,   195.39172 8.63849  10  BE Li eV X J   [9], the 

molar metal bond energy DE  is: 
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 (19.36) 

This agrees well with the experimental lattice [10] energy of: 
 159.3 /DE kJ mole  (19.37) 

and confirms that Li  metal comprises a precise packing of discrete ions, Li  and e . Using the —Li Li  and —Li e   
distances and the calculated (Eq. (7.35)) Li  ionic radius of 00.35566 0.18821a Å , the crystalline lattice structure of the unit 

cell of Li  metal is shown in Figure 19.8 , a portion of the crystalline lattice of Li  metal is shown in Figure 19.9, and  the Li  
unit cell is shown relative to the other alkali metals in Figure 19.10. 
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Figure 19.8.  The body-centered cubic metal lattice of lithium showing the unit cell of electrons and ions.   (A) Diagonal 
view.   (B) Top view. 
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Figure 19.9.  A portion of the crystalline lattice of Li  metal comprising 33  body-centered cubic unit cells of electrons and 
ions.  (A) Rotated diagonal opaque view.  (B) Rotated diagonal transparent view.  (C) Side transparent view. 
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Figure 19.10.  The crystalline unit cells of the alkali metals showing each lattice of ions and electrons to the same scale.  

( Li = green, Na = yellow, K  = purple, Rb = blue, Cs = red).  (A) The crystal structure of Li .  (B) The crystal structure of 
Na .  (C) The crystal structure of K .  (D) The crystal structure of Rb .  (E) The crystal structure of Cs . 
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SODIUM METAL 
For Na , there are two indistinguishable spin-paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) 

(Eq. (10.51)), two indistinguishable spin-paired electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), and 

three sets of paired electrons in an atomic orbital at 10r  given by Eq. (10.212).  For 11Z  , the next electron which binds to 

contribute to the metal electron membrane to form the metal bond is attracted by the central Coulomb field and is repelled by 
diamagnetic forces due to the 3 sets of spin-paired inner electrons. 

In addition to the spin-spin interaction between electron pairs, the three sets of 2p electrons are orbitally paired.  The 
metal electron of the sodium atom produces a magnetic field at the position of the three sets of spin-paired 2p electrons.  In order 
for the electrons to remain spin and orbitally paired, a corresponding diamagnetic force,  3diamagneticF , on electron eleven from the 

three sets of spin-paired electrons follows from Eqs. (10.83-10.84) and (10.220): 
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1 10
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e

s s
Z m d

  F i


 (19.38) 

corresponding to the xp  and yp  electrons with no spin-orbit coupling of the orthogonal zp  electrons (Eq. (10.84)).  The outward 

centrifugal force on electron 11 is balanced by the electric force and the magnetic forces (on electron 11).  The radius of the 
outer electron is calculated by equating the outward centrifugal force (Eq. (19.29)) to the sum of the electric (Eq. (19.28)) and 
diamagnetic (Eqs. (19.30) and (19.38)) forces as follows: 
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where 11Z   and 
1

2
s  .  Using Eq. (19.26), the lattice parameter a  is: 

 10
08.15840 4.31724  10  a a X m   (19.41) 

The experimental lattice parameter a  [7] is: 

 10
08.10806 4.2906  10  a a X m   (19.42) 

The calculated —Na Na  distance is in good agreement with the experimental distance. 
Using Eq. (19.27) and the experimental binding energy of sodium,   195.13908 8.23371  10  BE Na eV X J   [9], the 

molar metal bond energy DE  is: 
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 (19.43) 

This agrees well with the experimental lattice [10] energy of: 

 107.5 /DE kJ mole  (19.44) 

and confirms that Na  metal comprises a precise packing of discrete ions, Na  and e .  Using the —Na Na  and —Na e   
distances and the calculated (Eq. (10.212)) Na  ionic radius of 00.56094 0.29684a Å , the crystalline lattice structure of Na  

metal is shown in Figure 19.10B. 
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POTASSIUM METAL 
For K  , there are two indistinguishable spin-paired electrons in an atomic orbital with radii 1r  and 2r  both given by Eq. (7.35) 

(Eq. (10.51)), two indistinguishable spin-paired electrons in an atomic orbital with radii 3r  and 4r  both given by Eq. (10.62), 

three sets of paired electrons in an atomic orbital at 10r  given by Eq. (10.212), two indistinguishable spin-paired electrons in an 

atomic orbital with radii 11r  and 12r  both given by Eq. (10.255), and three sets of paired electrons in an atomic orbital with radius 

18r  given by Eq. (10.399).  With 19Z  , the next electron which binds to contribute to the metal electron membrane to form the 

metal bond is attracted by the central Coulomb field and is repelled by diamagnetic forces due to the 3 sets of spin-paired inner 
3p electrons. 

 
The spherically symmetrical closed 3p shell of nineteen-electron atoms produces a diamagnetic force, diamagneticF , that is 

equivalent to that of a closed s shell given by Eq. (10.11) with the appropriate radii.  The inner electrons remain at their initial 
radii, but cause a diamagnetic force according to Lenz's law that is: 
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 (19.45) 

The diamagnetic force,  3diamagneticF , on electron nineteen from the three sets of spin-paired electrons given by Eq. (10.409) 

is  
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 (19.46) 

corresponding to the 3 xp , yp , and zp  electrons. 

The outward centrifugal force on electron 19 is balanced by the electric force and the magnetic forces (on electron 19).  
The radius of the outer electron is calculated by equating the outward centrifugal force (Eq. (19.29)) to the sum of the electric 
(Eq. (19.28)) and diamagnetic (Eqs. (19.30), (19.45), and (19.46)) forces as follows: 
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where 
1

2
s  . 
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 (19.48) 

Substitution of 18

0

0.85215
r

a
  (Eq. (10.399) with 19Z  ) into Eq. (19.48) gives: 

 10
04.36934 2.31215  10  d a X m   (19.49) 

Using Eq. (19.26), the lattice parameter a  is: 

 10
010.09055 5.33969  10  a a X m   (19.50) 

The experimental lattice parameter a  [7] is: 

 10
010.05524 5.321  10  a a X m   (19.51) 

The calculated —K K  distance is in good agreement with the experimental distance. 
Using Eq. (19.27) and the experimental binding energy of potassium,   194.34066 6.9545  10  BE K eV X J   [9], the 

molar metal bond energy DE  is: 
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This agrees well with the experimental lattice [10] energy of  
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 89 /DE kJ mole  (19.53) 

and confirms that K  metal comprises a precise packing of discrete ions, K   and e .  Using the —K K  and —K e   distances 
and the calculated (Eq. (10.399)) K   ionic radius of 00.85215 0.45094a Å , the crystalline lattice structure of K  metal is 

shown in Figure 19.10C. 
 
RUBIDIUM AND CESIUM METALS 
Rubidium and cesium provide further examples of the nature of the bonding in alkali metals.  The distance d  between each 
metal ion M   and the corresponding electron membrane is calculated from the experimental parameter a , and then the molar 
metal bond energy DE  is calculated using Eq. (19.27). 

The experimental lattice parameter a  [7] for rubidium is: 
 10

010.78089 5.705  10  a a X m   (19.54) 

Using Eq. (19.25), the lattice parameter d  is: 
 10

04.66826 2.47034  10  d a X m   (19.55) 

Using Eqs. (19.27) and (19.55) and the experimental binding energy of rubidium,   194.17713 6.6925  10  BE Rb eV X J   [9], 

the molar metal bond energy DE  is: 
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This agrees well with the experimental lattice [10] energy of:  

 80.9 /DE kJ mole  (19.57) 

and confirms that Rb  metal comprises a precise packing of discrete ions, Rb  and e .  Using the —Rb Rb  and —Rb e   
distances and the Rb  ionic radius of 0.52766 Å calculated using Eq. (10.102) and the experimental ionization energy of Rb , 
27.2895 eV  [9], the crystalline lattice structure of Rb  metal is shown in Figure 19.10D. 

The experimental lattice parameter a  [7] for cesium is: 

 10
011.60481 6.141  10  a a X m   (19.58) 

Using Eq. (19.25), the lattice parameter d  is: 

 10
05.02503 2.65913  10  d a X m   (19.59) 

Using Eqs. (19.27) and (19.59) and the experimental binding energy of cesium,   193.8939 6.23872  10  BE Cs eV X J   [9], 

the molar metal bond energy DE  is: 
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 (19.60) 

This agrees well with the experimental lattice [10] energy of:  

 76.5 /DE kJ mole  (19.61) 

and confirms that Cs  metal comprises a precise packing of discrete ions, Cs  and e .  Using the —Cs Cs  and —Cs e   
distances and the Cs  ionic radius of 0.62182 Å calculated using Eq. (10.102) and the experimental ionization energy of Cs , 
23.15744 eV  [9], the crystalline lattice structure of Cs  metal is shown in Figure 19.10E. 

Other metals can be solved in a similar manner.  Iron, for example, is also a body-centered cubic lattice, and the solution 
of the lattice spacing and energies are given by Eqs. (19.21-19.30).  The parameter d  is given by the iron force balance which 
has a corresponding form to those of alkali metals such as that of lithium given by Eqs. (19.32-19.35).  In addition, the changes 
in radius and energy of the second 4s  electron due to the ionization of the first of the two 4s  electrons to the metal band is 
calculated in the similar manner as those of the atoms of diatomic molecules such as N2  given by Eqs. (13.621-13.632).  This 

energy term is added to those of Eq. (19.27) to give the molar metal bond energy E
D

. 
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PHYSICAL IMPLICATIONS OF THE NATURE OF FREE ELECTRONS IN METALS 
The extension of the free-electron membrane throughout the crystalline lattice is the reason for the high thermal and electrical 
conductivity of metals.  Electricity can be conducted on the extended electron membranes by the application of an electric field 
and a connection with a source of electrons to maintain current continuity.  Heat can be transferred by radiation or by collisions, 
or by infrared-radiation-induced currents propagated through the crystal.  The surface luster and opacity is due to the reflection 
of electromagnetic radiation by mirror currents on the surfaces of the free-planar electron membranes.  Ductility and malleability 
result from the feature that the field lines of a given ion end on the induced electron surface charge of the planar, perfectly 
conducting electron membrane.  Thus, layers of the metal lattice can slide over each other without juxtaposing charges of the 
same sign which causes ionic crystals to fracture. 

The electrons in metals have surface-charge distributions that are merely equivalent to the image charges of the ions.  
When there is vibration of the ions, the thermal electron kinetic energy can be directed through channels of least resistance from 
collisions.  The resulting kinetic energy distribution over the population of electrons can be modeled using Fermi Dirac statistics 
wherein the specific heat of a metal is dominated by the motion of the ions since the electrons behave as image charges.  Based 
on the physical solution of the nature of the metallic bond, the small electron contribution to the specific heat of a metal is 
predicted to be proportional to the ratio of the temperature to the electron kinetic energy [11].  Based on Fermi-Dirac statistics, 
the electron contribution to the specific heat of a metal given by Eq. (23.68) is: 
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Now that the true structure of metals has been solved, it is interesting to relate the Fermi energy to the electron kinetic energy.  
The relationships between the electron velocity, the de Broglie wavelength, and the lattice spacing used to calculate the Fermi 
energy in the Electron-Energy Distribution section are also used in the kinetic energy derivation.  The Fermi energy given by Eq. 
(23.61) is: 
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where the electron density parameter for alkali metals is two electrons per body-centered cubic cell of lattice spacing a .  Since 
in the physical model, the field lines of two mirror-image ions M   end on opposite sides per section of the two-dimensional 
electron membrane, the kinetic energy equivalent to the Fermi energy is twice that given by Eq. (19.24).  Then, the ratio /F TR  of  

the Fermi energy to the kinetic energy provides a comparison of the statistical model to the solution of the nature of the metallic 
bond in the determination of electron contribution to the specific heat: 
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 (19.64) 

where Eq. (19.26) was used to convert the parameter a  to d . 
From the physical nature of the current, the electrical and thermal conductivities corresponding to the currents can be 

determined.  The electrical current is classically given by  

 Fi e
he

    (19.65) 

where the energy and angular momentum of the conduction electrons are quantized according to   and Planck’s equation (Eq. 
(4.8)), respectively.  From Eq. (19.65), the electrical conductivity is given by:  
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where   is the frequency of the unit current carried by each electron.  The thermal current is also carried by the kinetic energy of 
the electron plane waves.  Since there are two degrees of freedom in the plane of each electron rather than three, the thermal 
conductivity   is given by: 
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The Wiedemann-Franz law gives the relationship of the thermal conductivity   to the electrical conductivity   and absolute 
temperature T .  Thus, using Eqs. (19.66-19.67), the constant 0L  is given by:  
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 (19.68) 

From Eqs. (19.64) and (19.68), the statistical model is reasonably close to the physical model to be useful in modeling the 
specific-heat contribution of electrons in metals based on their inventory of thermal energy and the thermal-energy distribution 
in the crystal.  However, the correct physical nature of the current carriers comprising two-dimensional electron planes is 
required in cases where the simplistic statistical model fails as in the case of the anisotropic violation of the Wiedemann-Franz 
law [12-13]. 

Semiconductors comprise covalent bonds wherein the electrons are of sufficiently high energy that excitation creates an 
ion and a free electron.  The free electron forms a membrane as in the case of metals.  This membrane has the same planar 
structure throughout the crystal.  This feature accounts for the high conductivity of semiconductors when the electrons are 
excited by the application of external fields or electromagnetic energy that causes ion-pair ( M  — e ) formation. 

Superconductors comprise free-electron membranes wherein current flows in a reduced dimensionality of two or one 
dimensions with the bonding being covalent along the remaining directions such that electron scattering from other planes does 
not interfere with the current flow.  In addition, the spacing of the electrons along the membrane is such that the energy is band-
passed with respect to magnetic interactions of conducting electrons as given in the superconductivity section. 
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Chapter 20 
  
SILICON MOLECULAR FUNCTIONAL GROUPS  
AND MOLECULES 
  
 
 
 
 
GENERAL CONSIDERATIONS OF THE SILICON MOLECULAR BOND 
Silane molecules comprising an arbitrary number of atoms can be solved using similar principles and procedures as those used to 
solve organic molecules of arbitrary length and complexity.  Silanes can be considered to be comprised of functional groups such 
as 3SiH , 2SiH , SiH , Si Si , and C Si .  The solutions of these functional groups or any others corresponding to the particular 

silane can be conveniently obtained by using generalized forms of the force balance equation given in the Force Balance of the 
  MO of the Carbon Nitride Radical section for molecules comprised of silicon and hydrogen only and the geometrical and 
energy equations given in the Derivation of the General Geometrical and Energy Equations of Organic Chemistry section for 
silanes further comprised of heteroatoms such as carbon.  The appropriate functional groups with their geometrical parameters 
and energies can be added as a linear sum to give the solution of any silane. 

 

SILANES ( 2 2n nSi H  ) 
As in the case of carbon, the bonding in the silicon atom involves four 3sp  hybridized orbitals formed from the 3p  and 3s  

electrons of the outer shells.  Si Si  and Si H  bonds form between 33Si sp  HOs and between a 33Si sp  HO and a 1H s  AO to 

yield silanes.  The geometrical parameters of each Si Si  and 1,2,3nSiH   functional group is solved from the force balance 

equation of the electrons of the corresponding  -MO and the relationships between the prolate spheroidal axes.  Then, the sum 
of the energies of the 2H -type ellipsoidal MOs is matched to that of the 33Si sp  shell as in the case of the corresponding carbon 
molecules.  As in the case of ethane given in the Ethane Molecule section, the energy of the Si – Si  functional group is 
determined for the effect of the donation of 25% electron density from each participating 33Si sp  HO to the Si – Si-bond MO. 

The energy of silicon is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  A 
minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the Hydroxyl 
Radical (OH ) section with the donation of 75% electron density from the participating 33Si sp  HO to each Si H -bond MO.  

As in the case of acetylene given in the Acetylene Molecule section, the energy of each nSi H  functional group is determined 
for the effect of the charge donation. 

The 33sp  hybridized orbital arrangement after Eq. (13.422) is: 
 

 

3             3sp  state

                       

 0,0      1,-1      1,0       1,1

     (20.1) 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the four 

electrons.  The sum  3,3TE Si sp  of experimental energies [1] of Si , Si , 2Si  , and 3Si   is: 

  3,3 45.14181 33.49302 16.34584 8.15168 =103.13235 TE Si sp eV eV eV eV eV     (20.2) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 33sp
r  of the 

33Si sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 
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where 14Z   for silicon.  Using Eq. (15.14), the Coulombic energy  3,3CoulombE Si sp  of the outer electron of the 33Si sp  shell 

is: 
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During hybridization, one of the spin-paired 3s  electrons is promoted to the Si3sp3 shell as an unpaired electron.  The energy for 
the promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 3s  electrons.  From Eq. (10.255) with 
Z = 14, the radius r12 of the Si3s shell is: 
 12 01.25155r a  (20.5) 

Using Eqs. (15.15) and (20.5), the unpairing energy is: 
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 (20.6) 

Using Eqs. (20.4) and (20.6), the energy E(Si,3sp3) of the outer electron of the Si3sp3 shell is 
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 (20.7) 

Next, consider the formation of the Si–Si-bond MO of silanes wherein each silicon atom has a Si3sp3 electron with an 
energy given by Eq. (20.7).  The total energy of the state of each silicon atom is given by the sum over the four electrons.  The 

sum  3,3T silaneE Si sp  of energies of 33Si sp  (Eq. (20.7)), Si , 2Si  , and 3Si   is: 

 
    

 

3 3,3 45.14181 33.49302 16.34584 ,3

                        45.14181 33.49302 16.34584 10.25487 105.23554 

T silaneE Si sp eV eV eV E Si sp

eV eV eV eV eV

    

      
 (20.8) 

where E(Si,3sp3) is the sum of the energy of Si, –8.15168 eV, and the hybridization energy. 
The sharing of electrons between two Si3sp3 HOs to form a Si–Si-bond MO permits each participating orbital to decrease 

in size and energy.  In order to further satisfy the potential, kinetic, and orbital energy relationships, each  Si3sp3 HO donates an 
excess of 25% of its electron density to the  Si–Si-bond MO to form an energy minimum.  By considering this electron 
redistribution in the silane molecule as well as the fact that the central field decreases by an integer for each successive electron 
of the shell, the radius 33silane sp

r  of the Si3sp3 shell may be calculated from the Coulombic energy using Eq. (15.18): 

 
   3

2 213

03
10 0 0

9.75
( ) 0.25 1.26057

8 105.23554 8 105.23554 silane sp
n

e e
r Z n a

e eV e eV 

      
 
  (20.9) 

Using Eqs. (15.19) and (20.9), the Coulombic energy  3,3Coulomb silaneE Si sp  of the outer electron of the 33Si sp  shell is: 

  
3

2 2
3

0 0 03

,3 10.79339 
8 8 1.26057Coulomb silane

silane sp

e e
E Si sp eV

r a 
 

     (20.10) 

During hybridization, one of the spin-paired 3s  electrons is promoted to the Si3sp3 shell as an unpaired electron.  The energy for 

the promotion is the magnetic energy given by Eq. (20.6).  Using Eqs. (20.6) and (20.10), the energy  3,3silaneE Si sp  of the outer 

electron of the Si3sp3 shell is: 

  
 3

2 22
3 0

32
0 123

2
,3 10.79339 0.05836 10.73503 

8silane

esilane sp

ee
E Si sp eV eV eV

r m r





      


 (20.11) 

Thus, ET (Si–Si,3sp3), the energy change of each Si3sp3  shell with the formation of the Si–Si-bond MO is given by the difference 
between Eq. (20.11) and Eq. (20.7): 
        3 3 3,3 ,3 ,3 10.73503 10.25487 0.48015 T silaneE Si Si sp E Si sp E Si sp eV eV eV          (20.12) 

Next, consider the formation of the Si H -bond MO of silanes wherein each silicon atom contributes a 33Si sp electron 

having the sum  3,3T silaneE Si sp of energies of 33Si sp  (Eq. (20.7)), Si , 2Si  , and 3Si   given by Eq. (20.8).  Each Si H -bond 

MO of each functional group 1,2,3nSiH   forms with the sharing of electrons between each 33Si sp  HO and each 1H s  AO.  As in 

the case of C H , the 2H -type ellipsoidal MO comprises 75% of the Si H -bond MO according to Eq. (13.429).  

Furthermore, the donation of electron density from each Si3sp3 HO to each Si H -bond MO permits the participating orbital to 
decrease in size and energy.  In order to further satisfy the potential, kinetic, and orbital energy relationships, each 33Si sp  HO 
donates an excess of 75% of its electron density to the Si H -bond MO to form an energy minimum.  By considering this 
electron redistribution in the silane molecule as well as the fact that the central field decreases by an integer for each successive 
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electron of the shell, the radius 33silane sp
r  of the 33Si sp  shell may be calculated from the Coulombic energy using Eq. (15.18). 

 
   3

2 213

03
10 0 0

9.25
( ) 0.75 1.19592

8 105.23554 8 105.23554 silane sp
n

e e
r Z n a

e eV e eV 

      
 
  (20.13) 

Using Eqs. (15.19) and (20.13), the Coulombic energy  3,3Coulomb silaneE Si sp  of the outer electron of the 33Si sp  shell is: 

  
3

2 2
3

0 0 03

,3 11.37682 
8 8 1.19592Coulomb silane

silane sp

e e
E Si sp eV

r a 
 

     (20.14) 

During hybridization, one of the spin-paired 3s  electrons is promoted to the Si3sp3  shell as an unpaired electron.  The energy for 

the promotion is the magnetic energy given by Eq. (20.6).  Using Eqs. (20.6) and (20.14), the energy  3,3silaneE Si sp  of the outer 

electron of the 33Si sp  shell is: 

  
 3

2 22
3 0

32
0 123

2
,3 11.37682 0.05836 11.31845 

8silane

esilane sp

ee
E Si sp eV eV eV

r m r





      


 (20.15) 

Thus,  3,3TE Si H sp , the energy change of each 33Si sp  shell with the formation of the Si H -bond MO is given by the 

difference between Eq. (20.15) and Eq. (20.7): 
        3 3 3,3 ,3 ,3 11.31845 10.25487 1.06358         T silaneE Si H sp E Si sp E Si sp eV eV eV  (20.16) 

Silane ( 4SiH ) involves only Si – H -bond MOs of equivalent tetrahedral structure to form a minimum energy surface 

involving a linear combination of all four hydrogen MOs.  Here, the donation of electron density from the Si3sp3 HO to each 
Si H -bond MO permits the participating orbital to decrease in size and energy as well.  However, given the resulting 
continuous electron-density surface and the equivalent MOs, the 33Si sp  HO donates an excess of 100% of its electron density to 
the Si H -bond MO to form an energy minimum.  By considering this electron redistribution in the silane molecule as well as 
the fact that the central field decreases by an integer for each successive electron of the shell, the radius 33silane sp

r  of the 33Si sp  

shell may be calculated from the Coulombic energy using Eq. (15.18): 

 
   3

2 213

03
10 0 0
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( ) 1 1.16360

8 105.23554 8 105.23554 silane sp
n

e e
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e eV e eV 

      
 
  (20.17) 

Using Eqs. (15.19) and (20.17), the Coulombic energy  3,3Coulomb silaneE Si sp  of the outer electron of the 33Si sp  shell is 

  
3

2 2
3

0 0 03

,3 11.69284 
8 8 1.16360Coulomb silane

silane sp

e e
E Si sp eV

r a 
 

     (20.18) 

During hybridization, one of the spin-paired 3s  electrons is promoted to the 33Si sp  shell as an unpaired electron.  The energy 

for the promotion is the magnetic energy given by Eq. (20.6).  Using Eqs. (20.6) and (20.18), the energy  3,3silaneE Si sp  of the 

outer electron of the Si3sp3 shell is: 

  
 3

2 22
3 0

32
0 123

2
,3 11.69284 0.05836 11.63448 

8silane

esilane sp

ee
E Si sp eV eV eV

r m r





      


 (20.19) 

Thus,  3,3TE Si H sp , the energy change of each 33Si sp  shell with the formation of the Si H -bond MO is given by the 

difference between Eq. (20.19) and Eq. (20.7): 

        3 3 3,3 ,3 ,3 11.63448 10.25487 1.37960 T silaneE Si H sp E Si sp E Si sp eV eV eV          (20.20) 

Consider next the radius of the HO due to the contribution of charge to more than one bond.  The energy contribution due 
to the charge donation at each silicon atom superimposes linearly.  In general, the radius 33mol sp

r  of the 33Si sp  HO of a silicon 

atom of a given silane molecule is calculated after Eq. (15.32) by considering  3,3
molTE MO sp , the total energy donation to 

all bonds with which it participates in bonding.  The general equation for the radius is given by: 

 
       3

2 2

3 3 3 3
0 0

8 ,3 ,3 8 10.31324 ,3
mol mol

mol sp
Coulomb T T

e e
r

E Si sp E MO sp e eV E MO sp 


 

  
 (20.21) 

where  3,3CoulombE Si sp  is given by Eq. (20.4).  The Coulombic energy  3,3CoulombE Si sp  of the outer electron of the Si sp3 shell 

considering the charge donation to all participating bonds is given by Eq. (15.14) with Eq. (20.4).  The energy E (Si,3sp3) of the 
outer electron of the 3 3Si sp  shell is given by the sum of  3,3CoulombE Si sp  and ( )E magnetic  (Eq. (20.6)).  The final values of 

the radius of the 33Si sp  HO, 33sp
r ,  3,3CoulombE Si sp , and  33silaneE Si sp  calculated using  3,3

molTE MO sp , the total energy 
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donation to each bond with which an atom participates in bonding are given in Table 20.1.  These hybridization parameters are 
used in Eqs. (15.88-15.117) for the determination of bond angles given in Table 20.7. 
 

Table 20.1.   Hybridization parameters of atoms for determination of bond angles with final values of 33sp
r ,  3,3CoulombE Si sp , 

and  33silaneE Si sp  calculated using the appropriate values of  3,3
molTE MO sp  (  3,3

molTE MO sp  designated as TE ) for each 

corresponding terminal bond spanning each angle. 
 

Atom 
Hybridization 
Designation 

TE  TE

 
TE

 
TE

 
TE

 
33sp

r  

Final 
 3,3CoulombE Si sp

(eV) 
Final 

 3,3E Si sp

 
(eV) 
Final 

1 0 0 0 0 0 1.31926 -10.31324 -10.25487 
2 -0.48015 0 0 0 0 1.26057 -10.79339 -10.73503 

 

The MO semimajor axis of each functional group of silanes is determined from the force balance equation of the 
centrifugal, Coulombic, and magnetic forces as given in the Polyatomic Molecular Ions and Molecules section and the More 
Polyatomic Molecules and Hydrocarbons section.  The distance from the origin of the 2H -type-ellipsoidal-MO to each focus 'c , 

the internuclear distance 2 'c , and the length of the semiminor axis of the prolate spheroidal 2H -type MO b c  are solved from 

the semimajor axis a .  Then, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117).   
The force balance of the centrifugal force equated to the Coulombic and magnetic forces is solved for the length of the 

semimajor axis.  The Coulombic force on the pairing electron of the MO is: 

 
2

2
08Coulomb

e
D

ab 
F i  (20.22) 

The spin pairing force is 

 
2

2 22spin pairing
e

D
m a b  F i


 (20.23) 

The diamagnetic force is: 

 
2

1 2 24
e

diamagneticMO
e

n
D

m a b  F i


 (20.24) 

where en  is the total number of electrons that interact with the binding  -MO electron.  The diamagnetic force 2diamagneticMOF  on 

the pairing electron of the   MO is given by the sum of the contributions over the components of angular momentum:  

 
2

2 2 2
, 2

i
diamagneticMO

i j j e

L
D

Z m a b  F i


 (20.25) 

where L  is the magnitude of the angular momentum of each atom at a focus that is the source of the diamagnetism at the  -

MO.  The centrifugal force is:  

 
2

2 2centrifugalMO
e

D
m a b  F i


 (20.26) 

The force balance equation for the  -MO of the Si Si -bond MO with 3en   and 
3

4
4

L    corresponding to four 

electrons of the 33Si sp  shell is: 

 
2 2 2 2

2 2 2 2 2 2 2
0

3
4

3 4
8 2 2 2e e e

e
D D D D

m a b ab m a b Z m a b

 
 
    
 

  
 (20.27) 

 0

3
4

5 4
2

a a
Z

 
 
  
 

 (20.28) 

With 14Z  , the semimajor axis of the Si Si -bond MO is: 
 02.74744a a  (20.29) 

The force balance equation for each  -MO of the Si H -bond MO with 2en   and 
3

4
4

L    corresponding to four 

electrons of the 33Si sp  shell is: 
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 (20.30) 

 0

3
4

42a a
Z

 
 
  
 

 (20.31) 

With Z = 14, the semimajor axis of the Si – H-bond MO is: 
 02.24744a a  (20.32) 

Using the semimajor axis, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117) in the 
same manner as the organic functional groups given in the Organic Molecular Functional Groups and Molecules section.  For the 
Si Si  functional group, the 33Si sp  HOs are equivalent; thus, 1 1c   in both the geometry relationships (Eqs. (15.2-15.5)) and 

the energy equation (Eq. (15.61)).  In order for the bridging MO to intersect the 33Si sp  HOs while matching the potential, 

kinetic, and orbital energy relationships given in the Hydroxyl Radical (OH ) section, for the Si Si  functional group, 1

0.75

2
C   

in both the geometry relationships (Eqs. (15.2-15.5)) and the energy equation (Eq. (15.61)).  This is the same value as 1C  of the 

chlorine molecule given in the corresponding section.  The hybridization factor gives the parameters 2c  and 2C  for both as well.  

To meet the equipotential condition of the union of the two 33Si sp  HOs, 2c  and 2C  of Eqs. (15.2-15.5) and Eq. (15.61) for the 

Si Si -bond MO is given by Eq. (15.72) as the ratio of 10.31324 eV , the magnitude of  3,3Coulomb silaneE Si sp  (Eq. (20.4)), and 

13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H  (Eq. (1.264)): 

    3 3
2 2

10.31324 
3 3 0.75800

13.605804 

eV
C silaneSi sp HO c silaneSi sp HO

eV
    (20.33) 

The energy of the MO is matched to that of the 33Si sp  HO such that  /E AO HO  is  3,3E Si sp  given by Eq. (20.7) and 

 3, .TE atom atom msp AO  is two times  3,3TE Si Si sp  given by Eq. (20.12). 

For the Si H -bond MO of the 1,2,3nSiH   functional groups, 1c  is one and 1 0.75C   based on the orbital composition as 

in the case of the C H -bond MO.  In silanes, the energy of silicon is less than the Coulombic energy between the electron and 
proton of H  given by Eq. (1.264).  Thus, 2c  in Eq. (15.61) is also one, and the energy matching condition is determined by the 

2C  parameter, the hybridization factor for the Si H -bond MO given by Eq. (20.33).  Since the energy of the MO is matched to 

that of the 33Si sp  HO,  /E AO HO  is  3,3E Si sp  given by Eq. (20.7) and  3, .TE atom atom msp AO  is  3,3TE Si H sp  

given by Eq. (20.16).  The energy  1,2,3D nE SiH   of the functional groups 1,2,3nSiH   is given by the integer n times that of Si – H: 

    1,2,3D n DE SiH nE SiH   (20.34) 

Similarly, for silane,  3, .TE atom atom msp AO  is  3,3TE Si H sp  given by Eq. (20.20).  The energy  4DE SiH  of 

4SiH  is given by the integer 4  times that of the 4nSiH   functional group: 

    4 44D D nE SiH E SiH   (20.35) 

The symbols of the functional groups of silanes are given in Table 20.2.  The geometrical (Eqs. (15.1-15.5), (20.1-20.16), 
(20.29), and (20.32-20.33)), intercept (Eqs. (15.80-15.87) and (20.21)), and energy (Eqs. (15.61), (20.1-20.16), and (20.33-
20.35)) parameters of silanes are given in Tables 20.3, 20.4, and 20.5, respectively.  The total energy of each silane given in 
Table 20.6 was calculated as the sum over the integer multiple of each  GroupDE  of Table 20.5 corresponding to functional-group 

composition of the molecule.  magE  of Table 20.5 is given by Eqs. (15.15) and (20.3).  The bond angle parameters of silanes 

determined using Eqs. (15.88-15.117) are given in Table 20.7.  In particular for silanes, the bond angle HSiH  is given by Eq. 

(15.99) wherein  3, .TE atom atom msp AO  is given by Eq. (20.16) in order to match the energy donated from the 33Si sp  HO to 

the Si – H-bond MO due to the energy of silicon being less than the Coulombic energy between the electron and proton of H 
given by Eq. (1.264).  The parameter 2c  is given by Eq. (15.100) as in the case of a H – H  terminal bond of an alkyl or alkenyl 

group, except that 3
2 ( 3 )c Si sp  is given by Eq. (15.63) such that 2c  is the ratio of 2c  of Eq. (15.72) for the H – H bond which is 

one and 2c  of the silicon of the corresponding Si – H-bond considering the effect of the formation of the H – H terminal bond: 

 
 2 3 3

2

1 13.605804 

( 3 )  3Coulomb

eV
c

c Si sp E Si H Si sp
  


 (20.36) 

The color scale, translucent view of the charge-densities of the series 1,2,3,4nSiH   comprising the concentric shells of the central 

Si  atom of each member with the outer shell joined with one or more hydrogen MOs are shown in Figures 20.1A-D.  The 
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charge-density of disilane is shown in Figure 20.2. 
 
 
 
Figure 20.1.   (A)-(D) Color scale, translucent view of the charge-densities of the series 1,2,3,4nSiH  , showing the orbitals of 

each member Si  atom at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO of H  that transitions to the outer 

shell of the Si  atom participating in each Si H  bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
 
Figure 20.2.   Disilane. Color scale, translucent view of the charge-density of 3 3H SiSiH  comprising the linear combination of 

two sets of three Si H -bond MOs and a Si Si -bond MO with the 33silaneSi sp  HOs of the Si Si -bond MO shown 

transparently.  The Si Si -bond MO comprises a 2H -type ellipsoidal MO bridging two 33silaneSi sp  HOs.  For each Si H  and 

the Si Si  bond, the ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to the 33silaneSi sp  HO, the 33silaneSi sp  HO 

shell with radius 00.97295a  (Eq. (20.21)), inner 1Si s , 2Si s , and 2Si p  shells with radii of 01 0.07216Si s a  (Eq. (10.51)), 

02 0.31274Si s a  (Eq. (10.62)), and 02 0.40978Si p a  (Eq. (10.212)), respectively, and the nuclei (red, not to scale), are shown. 
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Table 20.2.   The symbols of the functional groups of silanes. 
 

Functional Group Group Symbol
SiH group of 1,2,3nSiH   Si H  (i) 

SiH group of 4nSiH   Si H  (ii) 

SiSi bond (n-Si) Si Si  
 
Table 20.3.   The geometrical bond parameters of silanes and experimental values [2]. 
 

Parameter Si H  (i) and (ii) Group Si Si  Group 

 0 a a  2.24744 2.74744 

 0'  c a  1.40593 2.19835 

Bond Length  2 '  c Å  1.48797 2.32664 

Exp. Bond Length  Å  1.492 ( 2 6Si H ) 
2.331 ( 2 6Si H ) 

2.32 ( 2 6Si Cl ) 

 0,  b c a  1.75338 1.64792 

e  0.62557 0.80015 
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Table 20.5.   The energy parameters (eV) of the functional groups of silanes. 

 



Chapter 20 1254

 
 

T
a

b
le

 2
0

.6
.  

T
he

 to
ta

l b
on

d 
en

er
gi

es
 o

f 
si

la
ne

s 
ca

lc
ul

at
ed

 u
si

ng
 th

e 
fu

nc
ti

on
al

 g
ro

up
 c

om
po

si
ti

on
 a

nd
 th

e 
en

er
gi

es
 o

f 
T

ab
le

 2
0.

5 
co

m
pa

re
d 

to
 th

e 
ex

pe
ri

m
en

ta
l v

al
ue

s.
 

T
a

b
le

 2
0

.7
. 

 T
he

 b
on

d 
an

gl
e 

pa
ra

m
et

er
s 

of
 s

il
an

es
 a

nd
 e

xp
er

im
en

ta
l v

al
ue

s 
[2

].
  I

n 
th

e 
ca

lc
ul

at
io

n 
of

 
v  

(E
q.

 (
15

.1
12

))
, t

he
 p

ar
am

et
er

s 
fr

om
 th

e 
pr

ec
ed

in
g 

an
gl

e 
w

er
e 

us
ed

. E
T
 is

 E
T
 (

at
om

 -
 a

to
m

 m
sp

3 .
A

O
).

 



Silicon Molecular Functional Groups and Molecules 1255

ALKYL SILANES AND DISILANES (  2 2,   , 1,2,3,4,5...m n m nSi C H m n    ) 
The branched-chain alkyl silanes and disilanes,  2 2m n m nSi C H   , comprise at least a terminal methyl group ( 3CH ) and at least one 

Si  bound by a carbon-silicon single bond comprising a C Si  group, and may comprise methylene ( 2CH ), methylyne (CH ), 

C C , 1,2,3nSiH  , and Si Si  functional groups.  The methyl and methylene functional groups are equivalent to those of 

straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-
chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to 

isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  These groups in branched-chain 
alkyl silanes and disilanes are equivalent to those in branched-chain alkanes, and the 1,2,3nSiH   functional groups of alkyl silanes 

are equivalent to those in silanes ( 2 2n nSi H  ).  The Si Si  functional group of alkyl silanes is equivalent to that in silanes; 

however, in dialkyl silanes, the Si Si  functional group is different due to an energy matching condition with the C Si  bond 
having a mutual silicon atom. 

For the C Si  functional group, hybridization of the 2s  and 2 p  AOs of each C  and the 3s  and 3p  AOs of each Si  to 

form single 32sp  and 33sp  shells, respectively, forms an energy minimum, and the sharing of electrons between the 32C sp  and 
33Si sp  HOs to form a MO permits each participating orbital to decrease in radius and energy.  In branched-chain alkyl silanes, 

the energy of silane is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  Thus, 2c  in 

Eq. (15.61) is one, and the energy matching condition is determined by the 2C  parameter.  Then, the 32C sp  HO has an energy of 

 3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the 33Si sp  HO has an energy of  3,3 10.25487 E Si sp eV   (Eq. (20.7)).  To 

meet the equipotential condition of the union of the C Si  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor 

2C  of Eq. (15.61) for the C Si -bond MO given by Eq. (15.77) is: 

    
 

3

3 3
2 3

,3 10.25487 
2   3 0.70071

14.63489 , 2

E Si sp eV
C C sp HO to Si sp HO

eVE C sp


  


 (20.37) 

For monosilanes,  3, .TE atom atom msp AO  of the C Si -bond MO is 1.20473 eV  corresponding to the single-bond 

contributions of carbon and silicon of 0.72457 eV  given by Eq. (14.151) and 0.48015 eV  given by Eq. (14.151) with 1s   in 
Eq. (15.18).  The energy of the C Si -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in 

Eq. (15.51) with    3/ ,3E AO HO E Si sp  given by Eq. (20.7) and    
2

3/ , .H MO TE AO HO E atom atom msp AO    in order to 

match the energies of the carbon and silicon HOs. 

For the co-bonded Si Si  group of the C Si  group of disilanes,  3, .TE atom atom msp AO  is 0.96031 eV , two 

times  3,3TE Si Si sp  given by Eq. (20.12).  Thus, in order to match the energy between these groups, 

 3, .TE atom atom msp AO  of the C Si -bond MO is 0.92918 eV  corresponding to the single-bond methylene-type 

contribution of carbon given by Eq. (14.513).  As in the case of monosilanes,    3/ ,3E AO HO E Si sp  given by Eq. (20.7) 

and    
2

3/ , .H MO TE AO HO E atom atom msp AO    in order to match the energies of the carbon and silicon HOs. 

The symbols of the functional groups of alkyl silanes and disilanes are given in Table 20.8.  The geometrical (Eqs. (15.1-
15.5), (20.1-20.16), (20.29), (20.32-20.33) and (20.37)) and intercept (Eqs. (15.80-15.87) and (20.21)) parameters of alkyl 
silanes and disilanes are given in Tables 20.9 and 20.10, respectively.  Since the energy of the 33Si sp  HO is matched to that of 

the 32C sp  HO, the radius 32mol sp
r  of the 33Si sp  HO of the silicon atom and the 32C sp  HO of the carbon atom of a given C Si -

bond MO is calculated after Eq. (15.32) by considering  3, 2
molTE MO sp , the total energy donation to all bonds with which 

each atom participates in bonding.  In the case that the MO does not intercept the Si  HO due to the reduction of the radius from 
the donation of 3 3Si sp  HO charge to additional MO’s, the energy of each MO is energy matched as a linear sum to the Si  HO 

by contacting it through the bisector current of the intersecting MOs as described in the Methane Molecule ( 4CH ) section.  The 

energy (Eqs. (15.61), (20.1-20.16), and (20.33-20.37)) parameters of alkyl silanes and disilanes are given in Table 20.11. The 
total energy of each alkyl silane and disilane given in Table 20.12 was calculated as the sum over the integer multiple of each 

 GroupDE  of Table 20.11 corresponding to functional-group composition of the molecule.  The bond angle parameters of alkyl 

silanes and disilanes determined using Eqs. (15.88-15.117) and Eq. (20.36) are given in Table 20.13.  The charge-densities of 
exemplary alkyl silane, dimethylsilane and alkyl disilane, hexamethyldisilane comprising the concentric shells of atoms with the 
outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 

20.3A and B, respectively. 
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Figure 20.3.   (A) Dimethylsilane and (B) Hexamethyldisilane, color scale, translucent views of the charge-density of each 
silane showing the orbitals of the Si  and C  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO 

that transitions to the corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to 
scale). 
 

 
 
 

 
 
Table 20.8.  The symbols of functional groups of alkyl silanes and disilanes. 
 

Functional Group Group Symbol
CSi bond (monosilanes) C Si  (i) 
CSi bond (disilanes) C Si  (ii) 
SiSi bond (n-Si) Si Si  
SiH group of 1,2,3nSiH   Si H  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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SILICON OXIDES, SILICIC ACIDS, SILANOLS, SILOXANES AND DISILOXANES 
The silicon oxides, silicic acids, silanols, siloxanes, and disiloxanes each comprise at least one Si O  group, and this group in 
disiloxanes is part of the  Si O Si  moiety.  Silicic acids may have up to three Si H  bonds corresponding to the 1,2,3nSiH  

functional groups of alkyl silanes, and silicic acids and silanols further comprise at least one OH  group equivalent to that of 
alcohols.  In addition to the 1,2,3nSiH  group of alkyl silanes, silanols, siloxanes, and disiloxanes may comprise the functional 

groups of organic molecules as well as the C Si  group of alkyl silanes.  The alkyl portion of the alkyl silanol, siloxane, or 
disiloxane may comprise at least one terminal methyl group ( 3CH ) the end of each alkyl chain, and may comprise methylene 

( 2CH ), and methylyne (CH ) functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene 

functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane 
C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-

butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise 

functional groups.  The branched-chain-alkane groups in silanols, siloxanes, and disiloxanes are equivalent to those in branched-
chain alkanes.  The alkene groups when present such as the C C  group are equivalent to those of the corresponding alkene.  
Siloxanes further comprise two types of C O  functional groups, one for methyl or t-butyl groups corresponding to the C  and 
the other for general alkyl groups as given for ethers.   

The distinguishing aspect of silicon oxides, silicic acids, silanols, siloxanes, and disiloxane is the nature of the 
corresponding Si O  functional group.  In general, the sharing of electrons between a 33Si sp  HO and an 2O p  AO to form a 

Si O -bond MO permits each participating orbital to decrease in size and energy.  Consider the case wherein the 33Si sp  HO 
donates an excess of 50% of its electron density to the Si O -bond MO to form an energy minimum while further satisfying the 
potential, kinetic, and orbital energy relationships.  By considering this electron redistribution in the molecule comprising a 

Si O  bond as well as the fact that the central field decreases by an integer for each successive electron of the shell, the radius 

33Si O sp
r  of the 33Si sp  shell may be calculated from the Coulombic energy using Eq. (15.18). 

 
   3

2 213

03
10 0 0

9.5
( ) 0.5 1.22825

8 105.23554 8 105.23554 


 
     
 
Si O sp
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e e
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 (20.38) 

Using Eqs. (15.19) and (20.38), the Coulombic energy  3,3Coulomb Si OE Si sp  of the outer electron of the 33Si sp  shell is: 
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,3 11.07743 
8 8 1.22825



 
   Coulomb Si O

Si O sp

e e
E Si sp eV

r a 
 (20.39) 

During hybridization, the spin-paired 3s  electrons are promoted to the 33Si sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (20.6).  Using Eqs. (20.6) and (20.39), the energy  3,3Si OE Si sp  of the outer 

electron of the 33Si sp  shell is: 
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 (20.40) 

Thus,  3,3TE Si O sp , the energy change of each 33Si sp  shell with the formation of the Si O -bond MO is given by the 

difference between Eq. (20.40) and Eq. (20.7): 

        3 3 3,3 ,3 ,3 11.01906 10.25487 0.76419         T Si OE Si O sp E Si sp E Si sp eV eV eV  (20.41) 

Using Eq. (15.28), to meet the energy matching condition in silanols and siloxanes for all   MOs at the 33Si sp  HO and 

2O p  AO of each Si O -bond MO as well as with the 32C sp  HOs of the molecule, the energy  3
' ,3RSi ORE Si sp  ( , 'R R  are 

alkyl or H ) of the outer electron of the 33Si sp  shell of the silicon atom must be the average of  3,3silaneE Si sp  (Eq. (20.11)) and 

 3,3TE Si O sp  (Eq. (20.40)). 

          3 3

3
'

,3 ,3 10.73503 11.01906 
,3 10.87705 

2 2




   
   silane Si O

RSi OR

E Si sp E Si sp eV eV
E Si sp eV  (20.42) 

Using Eq. (15.29),  
,

3,3
silanol siloxaneTE Si O sp , the energy change of each 33Si sp  shell with the formation of each 'RSi OR -bond 

MO, must be the average of  3,3TE Si Si sp  (Eq. (20.12)) and  3,3TE Si O sp  (Eq. (20.41)). 

          
,

3 3

3
,3 ,3 0.48015 0.76419 

,3 0.62217 
2 2

     
    

silanol siloxane

T T

T

E Si Si sp E Si O sp eV eV
E Si O sp eV  (20.43) 



Silicon Molecular Functional Groups and Molecules 1263

To meet the energy matching condition in silicic acids for all   MOs at the 33Si sp  HO and 2O p  AO of each Si O -

bond MO as well as all H  AOs, the energy   
4

3,3
n n

H Si OHE Si sp  of the outer electron of the 33Si sp  shell of the silicon atom 

must be the average of  3,3silaneE Si sp  (Eq. (20.15)) and  3,3TE Si O sp  (Eq. (20.40)). 

           
4

3 3

3
,3 ,3 11.37682 11.01906 

,3 11.16876 
2 2





   
   

n n

silane Si O

H Si OH

E Si sp E Si sp eV eV
E Si sp eV  (20.44) 

Using Eq. (15.29),  
 

3,3
silicic acidTE Si O sp , the energy change of each 33Si sp  shell with the formation of each 'RSi OR -bond 

MO, must be the average of  3,3TE Si H sp  (Eq. (20.16)) and  3,3TE Si O sp  (Eq. (20.41)). 

          
 

3 3

3
,3 ,3 1.06358 0.76419 

,3 0.91389 
2 2

     
    

silicic acid

T T

T

E Si H sp E Si O sp eV eV
E Si O sp eV  (20.45) 

Using Eqs. (20.22-22.26), the general force balance equation for the  -MO of the silicon to oxygen Si O -bond MO in 
terms of en  and iL  corresponding to the angular momentum terms of the 33sp  HO shell is: 
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Having a solution for the semimajor axis a  of: 
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In terms of the angular momentum L , the semimajor axis a  is: 

 01
2

    
 

en L
a a

Z
 (20.48) 

Using the semimajor axis, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117) in the 
same manner as the organic functional groups given in the Organic Molecular Functional Groups and Molecules section.  The 
semimajor axis a  solutions given by Eq. (20.48) of the force balance equation, Eq. (20.46), for the  -MO of the Si O -bond 
MO of each functional group of silicon oxide, silicon dioxide, silicic acids, silanols, siloxanes, and disiloxanes are given in Table 
20.15 with the force-equation parameters 14Z , en , and L  corresponding to the angular momentum of the 33Si sp  HO shell. 

For the Si O  functional groups, hybridization of the 3s  and 3p  AOs of Si  to form a single 33sp  shell forms an energy 

minimum, and the sharing of electrons between the 33Si sp  HO and the O  AO to form a MO permits each participating orbital to 

decrease in radius and energy.  The O  AO has an energy of   13.61805  E O eV , and the 33Si sp  HO has an energy of 

 3,3 10.25487  E Si sp eV  (Eq. (20.7)).  To meet the equipotential condition of the union of the Si O  2H -type-ellipsoidal-

MO with these orbitals, the corresponding hybridization factors 2c  and 2C  of Eq. (15.61) for silicic acids, silanols, siloxanes, 

and disiloxanes and the hybridization factor 2C of silicon oxide and silicon dioxide given by Eq. (15.77) are: 

      
 

3

3 3
2 2

,3 10.25487 
  3   3 0.75304

13.61805 


   



E Si sp eV
c O to Si sp HO C O to Si sp HO

E O eV
 (20.49) 

Each bond of silicon oxide and silicon dioxide is a double bond such that 1 2c  and 1 0.75C  in the geometry relationships 

(Eqs. (15.2-15.5)) and the energy equation (Eq. (15.61)).  Each Si O  bond in silicic acids, silanols, siloxanes, and disiloxanes 
is a single bond corresponding to 1 1c  and 1 0.5C  as in the case of alkanes (Eq. (14.152)). 

Since the energy of the MO is matched to that of the 33Si sp  HO,  /E AO HO  in Eq. (15.61) is  3,3E Si sp  given by 

Eq. (20.7) and twice this value for double bonds.  3, .TE atom atom msp AO  of the Si O -bond MO of each functional group is 

determined by energy matching in the molecule while achieving an energy minimum.  For silicon oxide and silicon dioxide, 

 3, .TE atom atom msp AO  is three and two times 1.37960  eV  given by Eq. (20.20), respectively.  

 3, .TE atom atom msp AO  of silicic acids is two times 0.91389  eV  given by Eq. (20.45).   3, .TE atom atom msp AO  of 

silanols, siloxanes, and disiloxanes is two times 0.62217  eV  given by Eq. (20.43). 
The symbols of the functional groups of silicon oxides, silicic acids, silanols, siloxanes, and disiloxanes are given in 

Table 20.14.  The geometrical (Eqs. (15.1-15.5), (20.1-20.21), (20.29), (20.32-20.33), (20.37), and (20.46-20.49)) and intercept 
(Eqs. (15.80-15.87) and (20.21)) parameters are given in Tables 20.15 and 20.16, respectively.  The energy (Eqs. (15.61), (20.1-
20.20), (20.33-20.35), (20.37-45), and (20.49)) parameters are given in Table 20.17.  The total energy of each silicon oxide, 
silicic acid, silanol, siloxane, or disiloxane given in Table 20.18 was calculated as the sum over the integer multiple of each 

 GroupDE  of Table 20.17 corresponding to functional-group composition of the molecule.  The bond angle parameters determined 
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using Eqs. (15.88-15.117) are given in Table 20.19.  The charge-densities of exemplary siloxane,   3 2 3
CH SiO and disiloxane, 

hexamethyldisiloxane comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal 

MOs or joined with one or more hydrogen MOs are shown in Figures 20.4A and B, respectively. 
 
Figure 20.4.   (A) Color scale, translucent view of the charge-density of   3 2 3

CH SiO  showing the orbitals of the Si , O , 

and C  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding 

outer shell of the atoms participating in each bond, and the nuclei (red, not to scale).  (B) Color scale, translucent view of the 
charge-density of    3 33 3

CH SiOSi CH  showing the orbitals of the Si , O , and C  atoms at their radii, the ellipsoidal surface of 

each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atoms participating in each bond, and 

the nuclei (red, not to scale). 
 
 

 
 
 

 
 
Table 20.14.  The symbols of functional groups of silicon oxides, silicic acids, silanols, siloxanes and disiloxanes. 

 
Functional Group Group Symbol

SiO bond (silicon oxide) Si – O (i)
SiO bond (silicon dioxide) Si – O  (ii)
SiO bond (silicic acid) Si – O  (iii)
SiO bond (silanol and siloxane) Si – O  (iv)
Si-OSi bond (disiloxane) Si – O  (v)
SiH group of 1,2,3nSiH   Si – H  

CSi bond C – Si  (i)
OH group OH
CO ( 3  CH O  and  3 3

 CH C O )  C – O (i) 

CO (alkyl) C – O (ii)

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C – H 
CC bond (n-C) C – C (a)
CC bond (iso-C) C – C (b)
CC bond (tert-C) C – C (c)
CC (iso to iso-C) C – C (d)
CC (t to t-C) C – C (e)
CC (t to iso-C) C – C (f)
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SUMMARY TABLES OF SILICON MOLECULES 
The bond energies, calculated using closed-form equations having integers and fundamental constants only for classes of 
molecules whose designation is based on the main functional group, are given in the following tables with the experimental 
values. 
 
Table 20.20.1.  Summary results of silanes. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

SiH silylidyne 3.07526 3.02008 [6] -0.01827 
SiH2 silylene 6.15052 6.35523 [7] 0.03221 
SiH3 silyl 9.22578 9.36494 [7] 0.01486 
SiH4 silane 13.57257 13.34577 [6] -0.01699 
Si2H6 disilane 21.76713 22.05572 [7] 0.01308 
Si3H8 trisilane 31.23322 30.81334 [7] -0.01363 

 
Table 20.20.2.  Summary results of alkyl silanes and disilanes. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

CH6Si methylsilane 25.37882 25.99491 [9] 0.02370 
C2H8Si dimethylsilane 38.45660 38.64819 [9] 0.00496 
C3H10Si trimethylsilane 51.53438 51.33567 [9] -0.00387 
C4H12Si tetramethylsilane 64.61216 64.22319 [14] -0.00606 
C4H12Si diethylsilane 62.77200 63.37771 [15] 0.00956 
C6H16Si triethylsilane 88.00748 87.46141 [15] -0.00624 
C8H20Si tetraethylsilane 113.24296 112.06547[15] -0.01051 
CH8Si2 methyldisilane 34.56739 34.73920 [16] 0.00495 
C2H10Si2 1,1-dimethyldisilane 47.36764 47.42283 [16] 0.00116 
C2H10Si2 1,2-dimethyldisilane 47.36764 47.42283 [16] 0.00116 
C3H12Si2 1,1,1-trimethyldisilane 60.16789 60.10646 [16] -0.00102 
C3H12Si2 1,1,2-trimethyldisilane 60.16789 60.10646 [16] -0.00102 
C4H14Si2 1,1,1,2-tetramethyldisilane 72.96815 72.79442 [16] -0.00239 
C4H14Si2 1,1,2,2-tetramethyldisilane 72.96815 72.79442 [16] -0.00239 
C5H16Si2 1,1,1,2,2-pentamethyldisilane 85.76840 85.47805 [16] -0.00340 
C6H18Si2 hexamethyldisilane 98.56865 98.32646 [16] -0.00246 

 
Table 20.20.3.  Summary results of silicon oxides, silicic acids, silanols, siloxanes, and disiloxanes. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

SiO silicon oxide 8.30876 8.29905 [18] -0.00117 
SiO2 silicon dioxide 12.94190 12.98073 [19] 0.00299 
SiH4O H3SiOH 18.67184 19.00701a [27] 0.01763 
SiH4O2 H2Si(OH)2 25.04264 25.04264 a [27] 0.00563 
SiH4O3 HSi(OH)3 31.41344 31.47012a [27] 0.00180 
SiH4O4 Si(OH)4 37.78423 38.03638 [28] 0.00663 
C3H10SiO trimethylsilanol 57.31895 57.30073 [29] -0.00032 
C2H6SiO vinylsilanol 37.33784  
CH6SiO4 (HO)3SiOCH3 47.45144 49.28171a [30] 0.03714 
C4H12SiO4 tetramethoxysilioxane 83.48783 84.04681 [31] 0.00665 
C6H16SiO3 triethoxysilioxane 102.74755 102.57961 [31] -0.00164 
C8H20SiO4 tetraethoxysilioxane 132.89639 133.23177 [31] 0.00252 
C6H18Si3O3 ((CH3)2SiO)3 123.61510 123.22485 [31] -0.00317 
C8H24Si4O4 ((CH3)2SiO)4 164.82014 164.79037 [31] -0.00018 
C10H30Si5O5 ((CH3)2SiO)5 206.02517 206.35589 [31] 0.00160 
C6H18Si2O hexamethyldisiloxane 105.24639 105.20196 [31] -0.00042 

a theory 
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Chapter 21 
  
THE NATURE OF THE SEMICONDUCTOR BOND  
OF SILICON 
  
 
 
 
 
GENERALIZATION OF THE NATURE OF THE SEMICONDUCTOR BOND 
Semiconductors are solids that have properties intermediate between insulators and metals.  For an insulator to conduct, high 
energy and power are required to excite electrons into a conducting state in sufficient numbers.  Application of high energy to 
cause electron ionization to the continuum level or to cause electrons to transition to conducing molecular orbitals (MOs) will 
give rise to conduction when the power is adequate to maintain a high population density of such states.  Only high temperatures 
or extremely high-strength electric fields will provide enough energy and power to achieve an excited state population 
permissive of conduction.  In contrast, metals are highly conductive at essentially any field strength and power.  Diamond and 
alkali metals given in the corresponding sections are representative of insulator and metal classes of solids at opposite extremes 
of conductivity.  It is apparent from the bonding of diamond comprising a network of highly stable MOs that it is an insulator, 
and the planar free-electron membranes in metals give rise to their high conductivity.  

Column IV elements silicon, germanium, and  -gray tin all have the diamond structure and are insulators under standard 
conditions.  However, the electrons of these materials can be excited into a conducting excited state with modest amounts of 
energy compared to a pure insulator.  As opposed to the 5.2 eV  excitation energy for carbon, silicon, germanium, and  -gray 
tin have excitation energies for conduction of only 1.1 eV , 0.61 eV , and 0.078 eV , respectively.  Thus, a semiconductor can 
carry a current by providing the relatively small amount of energy required to excite electrons to conducting excited states.  As 
in the case of insulators, excitation can occur thermally by a temperature increase.  Since the number of excited electrons 
increases with temperature, a concomitant increase in conductance is observed.  This behavior is the opposite of that of metals.  
Alternatively, the absorption of photons of light causes the electrons in the ground state to be excited to a conducting state that is 
the basis of conversion of solar power into electricity in solar cells and detection and reception in photodetectors and fiber optic 
communications, respectively.  In certain semiconductors, rather than decay by internal conversion to phonons, the energy of 
excited-state electrons is emitted as light as the electrons transition from the excited conducting state to the ground state.  This 
photon emission process is the basis of light emitting diodes (LEDs) and semiconductor lasers which have broad application in 
industry. 

In addition to elemental materials such as silicon and germanium, semiconductors may be compound materials such as 
gallium arsenide and indium phosphide, or alloys such as silicon germanium or aluminum arsenide.  Conduction in materials 
such as silicon and germanium crystals can be enhanced by adding small amounts (e.g. 1-10 parts per million) of dopants such as 
boron or phosphorus as the crystals are grown.  Phosphorous with five valence electrons has a free electron even after 
contributing four electrons to four single bond-MOs of the diamond structure of silicon.  Since this fifth electron can be ionized 
from a phosphorous atom with only 0.011 eV  provided by an applied electric field, phosphorous as an electron donor makes 
silicon a conductor. 

In an opposite manner to that of the free electrons of the dopant carrying electricity, an electron acceptor may also 
transform silicon to a conductor.  Atomic boron has only three valence electrons rather than the four needed to replace a silicon 
atom in the diamond structure of silicon.  Consequently, a neighboring silicon atom has an unpaired electron per boron atom.  
These electrons can be ionized to carry electricity as well.  Alternatively, a valence electron of a silicon atom neighboring a 
boron atom can be excited to ionize and bind to the boron.  The resulting negative boron ion can remain stationary as the 
corresponding positive center on silicon migrates from atom to atom in response to an applied electric field.  This occurs as an 
electron transfers from a silicon atom with four electrons to one with three to fill the vacant silicon orbital.  Concomitantly, the 
positive center is transferred in the opposite direction.  Thus, inter-atomic electron transfer can carry current in a cascade effect 
as the propagation of a “hole” in the opposite direction as the sequentially transferring electrons. 

The ability of the conductivity of semiconductors to transition from that of insulators to that of metals with the 
application of sufficient excitation energy implies a transition of the excited electrons from covalent to metallic-bond electrons.  
The bonding in diamond shown in the Nature of the Molecular Bond of Diamond section is a network of covalent bonds.  
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Semiconductors comprise covalent bonds wherein the electrons are of sufficiently high energy that excitation creates an ion and 
a free electron.  The free electron forms a membrane as in the case of metals given in the Nature of the Metallic Bond of Alkali 
Metals section.  This membrane has the same planar structure throughout the crystal.  This feature accounts for the high 
conductivity of semiconductors when the electrons are excited by the application of external fields or electromagnetic energy 
that causes ion-pair ( M  — e ) formation.  

It was demonstrated in the Nature of the Metallic Bond of Alkali Metals section that the solutions of the external point 
charge at an infinite planar conductor are also those of the metal ions and free electrons of metals based on the uniqueness of 
solutions of Maxwell’s equations and the constraint that the individual electrons in a metal conserve the classical physical laws 
of the macro-scale conductor.  The nature of the metal bond is a lattice of metal ions with field lines that end on the 
corresponding lattice of electrons comprising two-dimensional charge density   given by Eq. (19.6) where each is equivalent 
electrostatically to an image point charge at twice the distance from the point charge of e  due to M  .  Thus, the metallic bond 
is equivalent to the ionic bond given in the Alkali-Hydride Crystal Structures section with a Madelung constant of one with each 
negative ion at a position of one half the distance between the corresponding positive ions, but electrostatically equivalent to 
being positioned at twice this distance, the M  - M  -separation distance.  Then, the properties of semiconductors can be 
understood as due to the excitation of a bound electron from a covalent state such as that of the diamond structure to a metallic 
state such as that of an alkali metal.  The equations are the same as those of the corresponding insulators and metals. 
 
NATURE OF THE INSULATOR-TYPE SEMICONDUCTOR BOND 
As given in the Nature of the Solid Molecular Bond of Diamond section, diamond C - C bonds are all equivalent, and each C - C 
bond can be considered bound to a t-butyl group at the corresponding vertex carbon.  Thus, the parameters of the diamond C - C 
functional group are equivalent to those of the t-butyl C - C group of branched alkanes given in the Branched Alkanes section.  
Silicon also has the diamond structure.  The diamond Si - Si bonds are all equivalent, and each Si - Si  bond can be considered 
bound to three other Si - Si bonds at the corresponding vertex silicon.  Thus, the parameters of the crystalline silicon Si - Si 
functional group are equivalent to those of the Si - Si group of silanes given in the Silanes ( 2 2n nSi H  ) section except for the 

 3, .TE atom atom msp AO  term of Eq. (15.61).  Since bonds in pure crystalline silicon are only between 33Si sp  HOs having 

energy less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264) 

 3, . 0TE atom atom msp AO  .  Also, as in the case of the C - C functional group of diamond, the 33Si sp  HO magnetic energy 

magE  is subtracted due to a set of unpaired electrons being created by bond breakage such that 3c  of Eq. (15.65) is one, and magE  

is given by Eqs. (15.15) and (20.3). 

  
 

2 2
3 0 0

3 3 333

0

8 8
3 0.04983 

1.31926
B B

magE Si sp c c c eV
r a

   
    (21.1) 

The symbols of the functional group of crystalline silicon is given in Table 21.1.  The geometrical (Eqs. (15.1-15.5), 
(20.3-20.7), (20.29), and (20.33)) parameters of crystalline silicon are given in Table 21.2.  Using the internuclear distance 2 'c , 
the lattice parameter a  of crystalline silicon is given by Eq. (17.3).  The intercept (Eqs. (15.80-15.87), (20.3), and (20.21)) and 
energy (Eqs. (15.61), (20.3-20.7), and (20.33)) parameters of crystalline silicon are given in Tables 21.2, 21.3, and 21.4, 
respectively.  The total energy of crystalline silicon given in Table 21.5 was calculated as the sum over the integer multiple of 
each  GroupDE  of Table 21.4 corresponding to functional-group composition of the solid.  The bond angle parameters of 

crystalline silicon determined using Eqs. (15.88-15.117), (20.4), (20.33), and (21.1) are given in Table 21.6.  The diamond 
structure of silicon in the insulator state is shown in Figure 21.1.  The predicted structure matches the experimental images of 
silicon determined using STM [1] as shown in Figure 21.2. 
 

Figure 21.1.  The diamond structure of silicon in the insulator state.  Axes indicate positions of additional bonds of the 
repeating structure.  (A) Twenty six C C -bond MOs.  (B) Fifty one C C -bond MOs. 
  
 (A) (B) 
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Figure 21.2.  (A)-(B) STM topographs of the clean Si(111)-(7X7) surface.  Reprinted with permission from Ref. [1].  
Copyright 1995 American Chemical Society. 
 

    
(A) (B) 

 
Table 21.1.  The symbols of the functional group of crystalline silicon. 
 

Functional Group Group Symbol
SiSi bond (diamond-type-Si) Si Si  

 
Table 21.2.   The geometrical bond parameters of crystalline silicon and experimental values. 
 

Parameter Si Si  
Group

 0 a a  2.74744 

 0'  c a  2.19835 

Bond Length  2 '  c Å  2.32664 

Exp. Bond Length  Å  2.35 [2] 

 0,  b c a  1.64792 

e  0.80015

Lattice Parameter   la Å  5.37409 

Exp. Lattice Parameter   la Å  5.4306 [3] 
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Table 21.4.   The energy parameters (eV) of the functional group of crystalline silicon. 
 

 
 

Table 21.5.   The total bond energy of crystalline silicon calculated using the functional group composition and the energy of 
Table 21.4 compared to the experimental value [5]. 
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NATURE OF THE CONDUCTOR-TYPE SEMICONDUCTOR BOND 
With the application of excitation energy equivalent to at least the band gap in the form of photons for example, electrons in 
silicon transition to conducting states.  The nature of these states are equivalent to those of the electrons of metals with the 
appropriate lattice parameters and boundary conditions of silicon.  Since the planar electron membranes are in contact 
throughout the crystalline matrix, the Maxwellian boundary condition that an equipotential must exist between contacted perfect 
conductors maintains that all of the planar electrons are at the energy of the highest energy state electron.  This condition with 
the availability of a multitude of states with different ion separation distances and corresponding energies coupled with a near 
continuum of phonon states and corresponding energies gives rise to a continuum energy band or conduction band in the 
excitation spectrum.  Thus, the conducting state of silicon comprises a background covalent diamond structure with free metal-
type electrons and an equal number of silicon cations dispersed in the covalent lattice wherein excitation has occurred.  The band 
gap can be calculated from the difference between the energy of the free electrons at the minimum electron-ion separation 
distance (the parameter d  given in the Nature of the Metallic Bond of Alkali Metals section) and the energy of the covalent-type 
electrons of the diamond-type bonds given in the Nature of the Insulator-Type Semiconductor Bond section. 

The band gap is the lowest energy possible to form free electrons and corresponding Si  ions.  Since the gap is the 
energy difference between the total energy of the free electrons and the MO electrons, a minimum gap corresponds to the lowest 
energy state of the free electrons.  With the ionization of silicon atoms, planar electron membranes form with the corresponding 
ions at initial positions of the corresponding bond in the silicon lattice.  The potential energy between the electrons and ions is a 
maximum if the electron membrane comprises the superposition of the two electrons ionized from a corresponding Si Si  bond, 
and the orientation of the membrane is the transverse bisector of the former bond axis such that the magnitude of the potential is 
four times that of a single —Si e   pair.  In this case, the potential is given by two times Eq. (19.21).  Furthermore, all of the 
field lines of the silicon ions end on the intervening electrons.   Thus, the repulsion energy between Si  ions is zero and the 
energy of the ionized state is a minimum.  Using the parameters from Tables 21.1 and 21.6, the —Si e   distance of 

' 1.16332 c Å , and the calculated Si  ionic radius of 3 03
1.16360 0.61575 

Si sp
r a Å    (Eq. 20.17), the lattice structure of 

crystalline silicon in a conducting state is shown in Figure 21.3. 
 

Figure 21.3.  (A), (B), and (C) The conducting state of crystalline silicon showing the covalent diamond-structure network 
of the unit cell with two electrons ionized from a MO shown as a planar two-dimensional membrane of zero thickness that is the 
perpendicular bisector of the former Si Si  bond axis.  The corresponding two Si  ions (smaller radii) are centered at the 
positions of the atoms that contributed the ionized 33Si sp -HO electrons.  The electron equipotential energy surface may 
superimpose with multiple planar electron membranes.  The surface charge density of each electron gives rise to an electric field 
equivalent to that of an image point charge for each corresponding positive ion of the lattice. 
 
 (A) (B) (C) 

 
 
The optimal Si  ion-electron separation distance parameter d  is given by: 

 10
0' 2.19835 =1.16332  10  d c a X m   (21.2) 

The band gap is given by the difference in the energy of the free electrons at the optimal Si -electron separation distance 
parameter d  given by Eq. (21.2) and the energy of the electrons in the initial state of the Si Si -bond MO.  The total energy of 
electrons of a covalent Si Si -bond MO  T Si SiMOE Si   given by Eq. (15.65) and Table 21.4 is: 

     22.81274 0.04888 0.04983 22.81369 T Si SiMO T osc magE Si E MO E E eV eV eV           (21.3) 
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The minimum energy of a free-conducting electron in silicon for the determination of the band gap       T band gapE free e in Si  is 

given by the sum of twice the potential energy and the kinetic energy given by Eqs. (19.21) and (19.24), respectively:   

    
2 2

 2
0

2 4 1
   

4 3 2T band gap
e

e
E free e in Si V T

d m d
  

     
 


 (21.4) 

In addition, the ionization of the MO electrons increases the charge on the two corresponding 33Si sp  HO with a corresponding 

energy decrease,  3, .TE atom atom msp AO  given by one half that of Eq. (20.20).  With d  given by Eq. (21.2), 

       T band gapE free e in Si  is: 
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 (21.5) 

The band gap in silicon gE  given by the difference between       T band gapE free e in Si  (Eq. (21.5)) and  T Si SiMOE Si   (Eq. (21.3)) 

is: 

 

     
 

    

21.69220 22.81179 

1.120 

g T Si SiMOT band gapE E free e in Si E Si

eV eV

eV


 

   



 (21.6) 

The experimental band gap for silicon [6] is: 

 1.12 gE eV  (21.7) 

The calculated band gap is in excellent agreement with the experimentally measured value.  This result along with the prediction 
of the correct lattice parameters, cohesive energy, and bond angles given in Tables 21.2, 21.5, and 21.6, respectively, confirms 
that conductivity in silicon is due to the creation of discrete ions, Si  and e , with the excitation of electrons from covalent 
bonds.  The current carriers are free metal-type electrons that exist as planar membranes with current propagation along these 
structures shown in Figure 21.3.  Since the conducting electrons are equivalent to those of metals, the resulting kinetic energy 
distribution over the population of electrons can be modeled using the statistics of electrons in metals, Fermi Dirac statistics 
given in the Fermi-Dirac section and the Physical Implications of Free Electrons in Metals section. 
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Chapter 22 
  
BORON MOLECULAR FUNCTIONAL GROUPS  
AND MOLECULES 
  
 
 
 
 
GENERAL CONSIDERATIONS OF THE BORON MOLECULAR BOND 
Boron molecules comprising an arbitrary number of atoms can be solved using similar principles and procedures as those used to 
solve organic molecules of arbitrary length and complexity.  Boron molecules can be considered to be comprised of functional 
groups such as B B , B C , B H , B O , B N , B X  ( X  is a halogen atom), and the alkyl functional groups of organic 
molecules.  The solutions of these functional groups or any others corresponding to the particular boron molecule can be 
conveniently obtained by using generalized forms of the force balance equation given in the Force Balance of the   MO of the 
Carbon Nitride Radical section for molecules comprised of boron and hydrogen only and the geometrical and energy equations 
given in the Derivation of the General Geometrical and Energy Equations of Organic Chemistry section for boron molecules 
further comprised of heteroatoms such as carbon.  The appropriate functional groups with their geometrical parameters and 
energies can be added as a linear sum to give the solution of any molecule containing boron.. 

 
BORANES ( x yB H ) 
As in the case of carbon, silicon, and aluminum, the bonding in the boron atom involves four 3sp  hybridized orbitals formed 

from the 2 p  and 2s  electrons of the outer shells except that only three HOs are filled.  Bonds form between the 32B sp  HOs of 

two boron atoms and between a 32B sp  HO and a 1H s  AO to yield boranes.  The geometrical parameters of each B H  and 
B B  functional group is solved from the force balance equation of the electrons of the corresponding  -MO and the 
relationships between the prolate spheroidal axes.  Then, the sum of the energies of the 2H -type ellipsoidal MOs is matched to 

that of the 32B sp  shell as in the case of the corresponding carbon molecules.  As in the case of ethane (C C  functional group 
given in the Ethane Molecule section) and silane ( Si Si  functional group given in the Silanes section), the energy of the B B  
functional group is determined for the effect of the donation of 25% electron density from each participating 32B sp  HO to the 
B B -bond MO. 

The energy of boron is less than the Coulombic energy between the electron and proton of H given by Eq. (1.264).  A 
minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the Hydroxyl 
Radical (OH) section with the donation of 25% electron density from each participating B2sp3 HO to each B - H and B - B-bond 
MO.  As in the case of acetylene given in the Acetylene Molecule section, the energies of the B - H and B - B functional groups 
are determined for the effect of the charge donation. 

The 32sp  hybridized orbital arrangement is: 

 

3             2sp  state

                            

0,0      1,-1      1,0       1,1

    (22.1) 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the four 

electrons.  The sum  3, 2TE B sp  of experimental energies [1] of B , B , and 2B   is: 

  3, 2 37.93064 25.1548 8.29802 =71.38346 TE B sp eV eV eV eV    (22.2) 
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By considering that the central field decreases by an integer for each successive electron of the shell, the radius 32sp
r  of the 

32B sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 24

02
2 0 0

( ) 6
1.14361

8 71.38346 8 71.38346 sp
n

Z n e e
r a

e eV e eV 


    (22.3) 

where 5Z   for boron.  Using Eq. (15.14), the Coulombic energy  3, 2CoulombE B sp  of the outer electron of the 32B sp  shell is: 

  
3

2 2
3

0 0 02

, 2 11.89724 
8 8 1.14361Coulomb

sp

e e
E B sp eV

r a 
 

     (22.4) 

During hybridization, one of the spin-paired 2s  electrons is promoted to the 32B sp  shell as an unpaired electron.  The energy 
for the promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 2s  electrons.  From Eq. (10.62) with 

5Z  , the radius 3r  of 2B s  shell is 

 3 01.07930r a  (22.5) 
Using Eqs. (15.15) and (22.5), the unpairing energy is: 

 
   

2 2 2
0 0

3 32
3 0

2 8
( ) 0.09100 

1.07930
B

e

e
E magnetic eV

m r a

  
  


 (22.6) 

Using Eqs. (24.4) and (22.6), the energy  3, 2E B sp  of the outer electron of the 32B sp  shell is: 

  
 3

2 22
3 0

32
0 32

2
,2 11.89724 0.09100 11.80624 

8
esp

ee
E B sp eV eV eV

r m r





      


 (22.7) 

Next, consider the formation of the B H  and B B -bond MOs of boranes wherein each boron atom has a 32B sp  
electron with an energy given by Eq. (22.7).  The total energy of the state of each boron atom is given by the sum over the three 
electrons.  The sum  3, 2T boraneE B sp  of energies of 32B sp  (Eq. (22.7)), B , and 2B   is: 

 
    

 

3 3, 2 37.93064 25.1548 , 2

                        37.93064 25.1548 11.80624 74.89168 

T boraneE B sp eV eV E B sp

eV eV eV eV

   

     
 (22.8) 

where  3, 2E B sp  is the sum of the energy of B , 8.29802 eV , and the hybridization energy. 

Each C - H-bond MO forms with the sharing of electrons between each 32B sp  HO and each H1s AO.  As in the case of 
C - H, the H2-type ellipsoidal MO comprises 75% of the B - H -bond MO according to Eq. (13.429) and Eq. (13.59).  Similarly 
to the case of C - C, the B - B H2-type ellipsoidal MO comprises 50% contribution from the participating B2sp3  HOs according 
to Eq. (14.152).  The sharing of electrons between a B2sp3 HO and one or more H1s  AOs to form B - H -bond MOs or between 
two B2sp3 HOs to form a B - B -bond MO permits each participating orbital to decrease in size and energy.  As shown below, the 
boron HOs have spin and orbital angular momentum terms in the force balance which determines the geometrical parameters of 
each   MO.  The angular momentum term requires that each   MO be treated independently in terms of the charge donation.  
In order to further satisfy the potential, kinetic, and orbital energy relationships, each B2sp3  HO donates an excess of 25% of its 
electron density to the B - H or B - B -bond MO to form an energy minimum.  By considering this electron redistribution in the 
borane molecule as well as the fact that the central field decreases by an integer for each successive electron of the shell, the 
radius 32borane sp

r  of the B2sp3 shell may be calculated from the Coulombic energy using Eq. (15.18). 

 
   3

2 24

02
2 0 0

5.75
( ) 0.25 1.04462

8 74.89168 8 74.89168 borane sp
n

e e
r Z n a

e eV e eV 

      
 
  (22.9) 

Using Eqs. (15.19) and (22.9), the Coulombic energy  3, 2Coulomb boraneE B sp  of the outer electron of the 32B sp  shell is: 

  
3

2 2
3

0 0 02

, 2 13.02464 
8 8 1.04462Coulomb borane

borane sp

e e
E B sp eV

r a 
 

     (22.10) 

During hybridization, one of the spin-paired 2s  electrons are promoted to the 32B sp  shell as an unpaired electron.  The energy 

for the promotion is the magnetic energy given by Eq. (22.6).  Using Eqs. (22.6) and (22.10), the energy  3, 2boraneE B sp  of the 

outer electron of the 32B sp  shell is: 

  
 3

2 22
3 0

32
0 32

2
, 2 13.02464 0.09100 12.93364 

8borane

eborane sp

ee
E B sp eV eV eV

r m r





      


 (22.11) 

Thus,  3, 2TE B H sp  and  3, 2TE B B sp , the energy change of each 32B sp  shell with the formation of the B H  and 

B B -bond MO, respectively, is given by the difference between Eq. (22.11) and Eq. (22.7): 
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3 3 3 3, 2 , 2 , 2 ,2

                         12.93364 11.80624 1.12740 

T T boraneE B H sp E B B sp E B sp E B sp

eV eV eV

    

     
 (22.12) 

Next, consider the case that each 32B sp  HO donates an excess of 50% of its electron density to the   MO to form an 
energy minimum.  By considering this electron redistribution in the borane molecule as well as the fact that the central field 
decreases by an integer for each successive electron of the shell, the radius 32borane sp

r  of the 32B sp  shell may be calculated from 

the Coulombic energy using Eq. (15.18). 

 
   3

2 24

02
2 0 0

5.5
( ) 0.5 0.99920

8 74.89168 8 74.89168 borane sp
n

e e
r Z n a

e eV e eV 

 
     
 
  (22.13) 

Using Eqs. (15.19) and (22.13), the Coulombic energy  3, 2Coulomb boraneE B sp  of the outer electron of the 32B sp  shell is: 

  
3

2 2
3

0 0 02

, 2 13.61667 
8 8 0.99920Coulomb borane

borane sp

e e
E B sp eV

r a 
 

     (22.14) 

During hybridization, one of the spin-paired 2s  electrons is promoted to the 32B sp  shell as an unpaired electron.  The energy 

for the promotion is the magnetic energy given by Eq. (22.6).  Using Eqs. (22.6) and (22.14), the energy  3, 2boraneE B sp  of the 

outer electron of the 32B sp  shell is: 

  
 3

2 22
3 0

32
0 32

2
, 2 13.61667 0.09100 13.52567 

8borane

eborane sp

ee
E B sp eV eV eV

r m r





      


 (22.15) 

Thus,  3, 2TE B atom sp , the energy change of each 32B sp  shell with the formation of the B atom -bond MO is given by the 

difference between Eq. (22.15) and Eq. (22.7): 

        3 3 3, 2 , 2 , 2 13.52567 11.80624 1.71943 T boraneE B atom sp E B sp E B sp eV eV eV          (22.16) 

Consider next the radius of the HO due to the contribution of charge to more than one bond.  The energy contribution due 
to the charge donation at each boron atom superimposes linearly.  In general, the radius 32mol sp

r  of the 32B sp  HO of a boron atom 

of a given borane molecule is calculated after Eq. (15.32) by considering  3, 2
molTE MO sp , the total energy donation to all 

bonds with which it participates in bonding.  The general equation for the radius is given by: 

 
       3

2 2

3 3 3 3
0 0

8 , 2 , 2 8 11.89724 , 2
mol mol

mol sp
Coulomb T T

e e
r

E B sp E MO sp e eV E MO sp 


 

  
 (22.17) 

where  3, 2CoulombE B sp  is given by Eq. (22.4).  The Coulombic energy  3, 2CoulombE B sp  of the outer electron of the 32B sp  

shell considering the charge donation to all participating bonds is given by Eq. (15.14) with Eq. (22.4).  The energy  3, 2E B sp  

of the outer electron of the 3 2B sp  shell is given by the sum of  3, 2CoulombE B sp  and ( )E magnetic  (Eq. (22.6)).  The final 

values of the radius of the 32B sp  HO, 32sp
r ,  3, 2CoulombE B sp , and  32boraneE B sp  calculated using  3, 2

molTE MO sp , the total 

energy donation to each bond with which an atom participates in bonding are given in Table 22.1.  These hybridization 
parameters are used in Eqs. (15.88-15.117) for the determination of bond angles given in Table 22.7. 
 
Table 22.1.   Atom hybridization designation (# first column) and hybridization parameters of atoms for determination of 

bond angles with final values of 32sp
r ,  3, 2CoulombE B sp  (designated as CoulombE ), and  32boraneE B sp  (designated as E ) 

calculated using the appropriate values of  3, 2
molTE MO sp  (designated as TE ) for each corresponding terminal bond 

spanning each angle. 
 

# 
TE  TE  TE  TE  TE  33sp

r  

Final 

CoulombE  

(eV) 
Final 

E  
(eV) 
Final 

1 0 0 0 0 0 1.14361 11.89724 11.80624 
2 -1.71943 0 0 0 0 0.99920 -13.61667 -13.52567 
3 -1.18392 -1.18392 0 0 0 0.95378 -14.26508 -14.17408 
4 -1.12740 -1.12740 -0.56370 0 0 0.92458 -14.71574 -14.62474 

 

The MO semimajor axes of the B H  and B B  functional groups of boranes are determined from the force balance 
equation of the centrifugal, Coulombic, and magnetic forces as given in the Polyatomic Molecular Ions and Molecules section 
and the More Polyatomic Molecules and Hydrocarbons section.  In each case, the distance from the origin of the 2H -type-

ellipsoidal-MO to each focus 'c , the internuclear distance 2 'c , and the length of the semiminor axis of the prolate spheroidal 
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2H -type MO b c  are solved from the semimajor axis a .  Then, the geometric and energy parameters of each MO are 

calculated using Eqs. (15.1-15.117).   
The force balance of the centrifugal force equated to the Coulombic and magnetic forces is solved for the length of the 

semimajor axis.  The Coulombic force on the pairing electron of the MO is: 

 
2

2
08Coulomb

e
D

ab 
F i  (22.18) 

The spin-pairing force is: 

 
2

2 22spin pairing
e

D
m a b  F i


 (22.19) 

The diamagnetic force is:  

 
2

1 2 24
e

diamagneticMO
e

n
D

m a b  F i


 (22.20) 

where en  is the total number of electrons that interact with the binding  -MO electron.  The diamagnetic force 2diamagneticMOF  on 

the pairing electron of the   MO is given by the sum of the contributions over the components of angular momentum:  

 2 2 2
, 2

i
diamagneticMO

i j j e

L
D

Z m a b  F i


 (22.21) 

where L  is the magnitude of the angular momentum of each atom at a focus that is the source of the diamagnetism at the  -

MO.  The centrifugal force is:  

 
2

2 2centrifugalMO
e

D
m a b  F i


 (22.22) 

The force balance equation for the  -MO of the two-center B H -bond MO is the given by centrifugal force given by 
Eq. (22.22) equated to the sum of the Coulombic (Eq. (22.18)), spin-pairing (Eq. (22.19)), and 2diamagneticMOF  (Eq. (22.21)) with 

3
4

4
L    corresponding to the four 32B sp  HOs: 

 
2 2 2 2

2 2 2 2 2 2 2
0

3
4

4
8 2 2e e e

e
D D D D

m a b ab m a b Z m a b
  

  
 (22.23) 

 0

3
4

41a a
Z

 
 
  
 

 (22.24) 

With 5Z  , the semimajor axis of the B H -bond MO is: 
 01.69282a a  (22.25) 

The force balance equation for each  -MO of the B B -bond MO with 2en   and 
3

3
4

L    corresponding to three 

electrons of the 32B sp  shell is: 

 
2 2 2 2

2 2 2 2 2 2 2
0

3
3

41
8 2 2e e e

e
D D D D

m a b ab m a b Z m a b

 
 
    
 

  
 (22.26) 

 0

3
3

42a a
Z

 
 
  
 

 (22.27) 

With 5Z  , the semimajor axis of the B B -bond MO is: 
 02.51962a a  (22.28) 

Using the semimajor axis, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.127) in the 
same manner as the organic functional groups given in the Organic Molecular Functional Groups and Molecules section.  For the 
B H  functional group, 1c  is one and 1 0.75C   based on the MO orbital composition as in the case of the C H -bond MO.  In 

boranes, the energy of boron is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  
Thus, the energy matching condition is determined by the 2c  and 2C  parameters in Eqs. (15.51) and (15.61).  Then, the 

hybridization factor for the B H -bond MO given by the ratio of 11.89724 eV , the magnitude of  3, 2Coulomb boraneE B sp  (Eq. 

(22.4)), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and proton of H  (Eq. (1.264)): 
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  3
2 2

11.89724 
2 0.87442

13.605804 

eV
c C borane sp HO

eV
    (22.29) 

Since the energy of the MO is matched to that of the 32B sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3, 2E B sp  given 

by Eq. (22.7), and  3, .TE atom atom msp AO  is one half of 1.12740 eV  corresponding to the independent single-bond charge 

contribution (Eq. (22.12)) of one center. 
For the B B  functional group, 1c  is one and 1 0.5C   based on the MO orbital composition as in the case of the C C -

bond MO.  The energy matching condition is determined by the 2c  and 2C  parameters in Eqs. (15.51) and (15.61), and the 

hybridization factor for the B B -bond MO given is by Eq. (22.29).  Since the energy of the MO is matched to that of the B2sp3 
HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3, 2E B sp  given by Eq. (22.7), and  3, .TE atom atom msp AO  is two times –

 1.12740 eV corresponding to the independent single-bond charge contributions (Eq. (22.12)) from each of the two B2sp3 HOs. 
 
BRIDGING BONDS OF BORANES ( B H B   AND B B B  ) 
As in the case of the 33Al sp  HOs given in the Organoaluminum Hydrides ( Al H Al   and Al C Al  ) section, the 32B sp  
HOs comprise four orbitals containing three electrons as given by Eq. (23.1) that can form three-center as well as two-center 
bonds.  The designation for a three-center bond involving two 32B sp  HOs and a 1H s  AO is B H B  , and the designation for 

a three-center bond involving three 32B sp  HOs is B B B  . 

The parameters of the force balance equation for the  -MO of the B H B  -bond MO are 2en   and 0L   due to the 

cancellation of the angular momentum between borons: 

 
2 2 2 2

2 2 2 2 2 2 2
08 2 2e e e

e
D D D D

m a b ab m a b m a b
  

  
 (22.30) 

From Eq. (22.30), the semimajor axis of the B H B  -bond MO is 
 02a a  (22.31) 

The parameters in Eqs. (15.51) and (15.61) are the same as those of the B H B   functional group except that 

 3, .TE atom atom msp AO  is two times 1.12740 eV  corresponding to the independent single-bond charge contributions (Eq. 

(22.12)) from each of the two 32B sp  HOs. 
 The force balance equation and the semimajor axis for the  -MO of the B B B  -bond MO are the same as those of the 
B B -bond MO given by Eqs. (22.30) and (22.31), respectively.  The parameters in Eqs. (15.51) and (15.61) are the same as 

those of the B B  functional group except that  3, .TE atom atom msp AO  is three times 1.12740 eV  corresponding to the 

independent single-bond charge contributions (Eq. (22.12)) from each of the three 32B sp  HOs. 

The 2H -type ellipsoidal MOs of the B H B   three-center bond intersect and form a continuous single surface.  

However, in the case of the B B B  -bond MO the current of each B B  MO forms a bisector current described in the 
Methane Molecule ( 4CH ) section that is continuous with the center 32B sp -HO shell (Eqs. (15.36-15.44)).  Based on symmetry, 

the polar angle   at which the B H B   2H -type ellipsoidal MOs intersect is given by the bisector of the external angle 

between the B H  bonds: 

 
360 360 85.4

137.3
2 2

BHB    
     (22.32) 

where [2] 
 85.4BHB    (22.33) 

The polar radius ir  at this angle is given by Eqs. (13.84-13.85). 
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 (22.34) 

Substitution of the parameters of Table 22.2 into Eq. (22.34) gives: 
 10

02.26561 1.19891  10  ir a X m   (22.35) 

The polar angle   at which the B B B   2H -type ellipsoidal MOs intersect is given by the bisector of the external 

angle between the B B  bonds: 

 
360 360 58.9

150.6
2 2

BBB    
     (22.36) 

where [3] 
 58.9BHB    (22.37) 
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The polar radius ir  at this angle is given by Eqs. (13.84-13.85): 

  
'

1
'

'
1 cos '

i

c
ar a c

c
a




 


 (22.38) 

Substitution of the parameters of Table 22.2 into Eq. (22.38) gives: 
 10

03.32895 1.76160  10  ir a X m   (22.39) 

 The symbols of the functional groups of boranes are given in Table 22.2.  The geometrical (Eqs. (15.1-15.5) and (22.23-
22.39)), intercept (Eqs. (15.80-15.87) and (22.17)), and energy (Eq. (15.61), (22.4), (22.7), (22.12), and (22.29)) parameters of 
boranes are given in Tables 22.3, 22.4, and 22.5, respectively.  In the case that the MO does not intercept the B  HO due to the 
reduction of the radius from the donation of 3Bsp  HO charge to additional MOs, the energy of each MO is energy matched as a 
linear sum to the B  HO by contacting it through the bisector current of the intersecting MOs as described in the Methane 
Molecule ( 4CH ) section.  The total energy of each borane given in Table 22.6 was calculated as the sum over the integer 

multiple of each  GroupDE  of Table 22.5 corresponding to functional-group composition of the molecule.  magE  of Table 22.5 is 

given by Eqs. (15.15) and (22.3).  The bond angle parameters of boranes determined using Eqs. (15.88-15.117) and (20.36) with 
32B sp  replacing 33Si sp  are given in Table 22.7.  The charge-density in diborane is shown in Figure 22.1. 

 
Figure 22.1.   Diborane. Color scale, opaque view of the charge-density of 2 6B H  comprising the linear combination of two 

sets of two B H -bond MOs and two B H B  -bond MOs.  For each B H  and B H B   bond, the ellipsoidal surface of 
the 2H -type ellipsoidal MO transitions to the 32B sp  HO shell with radius 00.89047a  (Eq. (22.17)).  The inner 1B s  radius is 

00.20670a  (Eq. (10.51)).  

 

 
 

Table 22.2.   The symbols of the functional groups of boranes. 
 

Functional Group Group Symbol
BH group B H
BHB (bridged H) B H B 
BB bond B B
BBB (bridged B) B B B 

 

Table 22.3.   The geometrical bond parameters of boranes and experimental values. 
 

Parameter B H  
Group 

B H B   
Group 

B B  
and 

B B B   
Groups 

 0 a a  1.69282 2.00000 2.51962 

 0'  c a  1.13605 1.23483 1.69749 

Bond Length 

 2 '  c Å  1.20235 1.30689 1.79654 

Exp. Bond 
Length 

 Å  

1.19 [4] 
(diborane) 

1.32 [4] 
(diborane) 

1.798 [3] 
( 13 19B H ) 

 0,  b c a  1.25500 1.57327 1.86199 

e  0.67110 0.61742 0.67371 
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Table 22.5.   The energy parameters (eV) of functional groups of boranes. 
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ALKYL BORANES ( ;x y zR B H R alkyl ) 
The alkyl boranes may comprise at least a terminal methyl group ( 3CH ) and at least one B  bound by a carbon-boron single 

bond comprising a C B  group, and may comprise methylene ( 2CH ), methylyne (CH ), C C , B H , B B , B H B  , and 

B B B   functional groups.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six 
types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the 
C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, 

and t-butyl to t-butyl C C  bonds comprise functional groups. Additional groups include aromatics such as phenyl.  These 
groups in alkyl boranes are equivalent to those in branched-chain alkanes and aromatics, and the B H , B B , B H B  , and 
B B B   functional groups of alkyl boranes are equivalent to those in boranes. 

For the C B  functional group, hybridization of the 2s  and 2 p  AOs of each C  and B  to form single 32sp  shells forms 

an energy minimum, and the sharing of electrons between the 32C sp  and 32B sp  HOs to form a MO permits each participating 
orbital to decrease in radius and energy.  In alkyl boranes, the energy of boron is less than the Coulombic energy between the 
electron and proton of H  given by Eq. (1.264).  Thus, 1c  in Eq. (15.61) is one, and the energy matching condition is determined 

by the 2c  and 2C  parameters.  Then, the 32C sp  HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the 32B sp  

HOs have an energy of  3, 2 11.80624 E B sp eV   (Eq. (22.7)).  To meet the equipotential condition of the union of the C B  

2H -type-ellipsoidal-MO with these orbitals, the hybridization factors 2c  and 2C  of Eq. (15.61) for the C B -bond MO given by 

Eq. (15.77) is: 

      
 

3

3 3 3 3
2 2 3

, 2 11.80624 
2   2 2   2 0.80672

14.63489 , 2

E B sp eV
c C sp HO to B sp HO C C sp HO to B sp HO

eVE C sp


   


 (22.40) 

 3, .TE atom atom msp AO  of the C B -bond MO is 1.44915 eV  corresponding to the single-bond contributions of carbon 

and boron of 0.72457 eV  given by Eq. (14.151).  The energy of the C B -bond MO is the sum of the component energies of 

the 2H -type ellipsoidal MO given in Eq. (15.51) with    3/ , 2E AO HO E B sp  given by Eq. (22.7) and 

   
2

3/ , .H MO TE AO HO E atom atom msp AO    in order to match the energies of the carbon and boron HOs. 

Consider next the radius of the HO due to the contribution of charge to more than one bond.  The energy contribution due 
to the charge donation at each boron atom and carbon atom superimposes linearly.  In general, since the energy of the 32B sp  HO 

is matched to that of the 32C sp  HO, the radius 32mol sp
r  of the 32B sp  HO of a boron atom and the 32C sp  HO of a carbon atom of 

a given alkyl borane molecule is calculated after Eq. (15.32) by considering  3, 2
molTE MO sp , the total energy donation to all 

bonds with which it participates in bonding.  The Coulombic energy  3, 2CoulombE atom sp  of the outer electron of the 32atom sp  

shell considering the charge donation to all participating bonds is given by Eq. (15.14).  The hybridization parameters used in 
Eqs. (15.88-15.117) for the determination of bond angles of alkyl boranes are given in Table 22.8. 
 
Table 22.8.   Atom hybridization designation (# first column) and hybridization parameters of atoms for determination of 
bond angles with final values of r2sp3, ECoulomb(atom,2sp3) (designated as ECoulomb), and ECoulomb(atomalkylborane2sp3)  (designated as 

E) calculated using the appropriate values of  ETmol(MO,2sp3) (designated as ET) for each corresponding terminal bond spanning 

each angle. 
 

# 
TE  TE  TE  TE  TE  33sp

r  

( 0a ) 

Final

CoulombE  

(eV) 
Final 

E  
(eV) 
Final 

1 -0.36229 -0.92918 0 0 0 0.84418 -16.11722 -15.92636 
 

The symbols of the functional groups of alkyl boranes are given in Table 22.9. The geometrical (Eqs. (15.1-15.5) and 
(22.23-22.40)), intercept (Eqs. (15.32) and (15.80-15.87)), and energy (Eq. (15.61), (22.4), (22.7), (22.12), (22.29), and (22.40)) 
parameters of alkyl boranes are given in Tables 22.10, 22.11, and 22.12, respectively.  In the case that the MO does not intercept 
the B  HO due to the reduction of the radius from the donation of 32B sp  HO charge to additional MOs, the energy of each MO 
is energy matched as a linear sum to the B  HO by contacting it through the bisector current of the intersecting MOs as described 
in the Methane Molecule ( 4CH ) section.  The total energy of each alkyl borane given in Table 22.13 was calculated as the sum 

over the integer multiple of each  GroupDE  of Table 22.12 corresponding to functional-group composition of the molecule.  magE  

of Table 22.13 is given by Eqs. (15.15) and (22.3) for B H .  The bond angle parameters of alkyl boranes determined using 
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Eqs. (15.88-15.117) are given in Table 22.14.  The charge-densities of exemplary alkyl boranes, trimethylborane, 
tetramethyldiborane, and methyldecaborane comprising the concentric shells of atoms with the outer shell bridged by one or 
more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 22.2A-B and 22.3A-B, 

respectively. 
 

Figure 22.2.   A. Trimethylborane. Color scale, translucent views of the charge-density of  3 3
H C B  showing the orbitals of 

the B  and C  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale).  
B. Tetramethyldiborane. Color scale, opaque view of the charge-density of    3 2 32 2

CH BH B CH  showing the orbitals of the B  

and C  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding 

outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 

 
 
 
Figure 22.3.   A-B. Methyldecaborane. Color scale, translucent view of the charge-density of methyldecaborane showing the 
orbitals of the B and C atoms at their radii, the ellipsoidal surface of each H or 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Table 22.9.   The symbols of the functional groups of alkyl boranes. 
 

Functional Group Group Symbol
C-B bond C B  
BH bond B H
BHB (bridged H) B H B 
BB bond B B
BBB (bridged B) B B B 
CC  (aromatic bond) 

3e

C C  
CH (aromatic) CH  (i) 

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  (ii) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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ALKOXY BORANES (  ;y zx
RO B H R alkyl ) AND ALKYL BORINIC ACIDS 

(   r sq t
RO B H HO ) 

The alkoxy boranes and borinic acids each comprise a B O  functional group, at least one boron-alkyl-ether moiety or one or 
more hydroxyl groups, respectively, and in some cases one or more alkyl groups and borane moieties.  Each alkoxy moiety, 

2 1n nC H O , of alkoxy boranes comprises one of two types of C O  functional groups that are equivalent to those given in the 

Ethers ( 2 2 ,   2,3,4,5...n n mC H O n   ) section.  One is for methyl or t-butyl groups, and the other is for general alkyl groups.  

Each hydroxyl functional group of borinic acids and alkyl borinic acids is equivalent to that given in the Alcohols 
( 2 2 ,   1, 2,3,4,5...n n mC H O n   ) section.  The alkyl portion may be part of the alkoxy moiety, or an alkyl group may be bound to 

the central boron atom by a carbon-boron single bond comprising the C B  group of the Alkyl Boranes ( ;x y zR B H R alkyl ) 

section.  Each alkyl portion may comprise at least a terminal methyl group ( 3CH ) and methylene ( 2CH ), methylyne (CH ), and 

C C  functional groups.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six 
types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the 
C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, 

and t-butyl to t-butyl C C  bonds comprise functional groups.  Additional R  groups include aromatics such as phenyl.  These 
groups in alkoxy boranes and alkyl borinic acids are equivalent to those in branched-chain alkanes and aromatics given in the 
corresponding sections.  Furthermore, B H , B B , B H B  , and B B B   groups may be present that are equivalent to 
those in boranes as given in the Boranes ( x yB H ) section. 

The MO semimajor axes of the B O  functional groups of alkoxy alkanes and borinic acids are determined from the 
force balance equation of the centrifugal, Coulombic, and magnetic forces as given in the Boranes ( x yB H ) section.  In each case, 

the distance from the origin of the 2H -type-ellipsoidal-MO to each focus 'c , the internuclear distance 2 'c , and the length of the 

semiminor axis of the prolate spheroidal 2H -type MO b c  are solved from the semimajor axis a .  Then, the geometric and 

energy parameters of each MO are calculated using Eqs. (15.1-15.117).   
The parameters of the force balance equation for the  -MO of the B O -bond MO in Eqs. (22.18-22.22) are 2en   and 

0L  : 

 
2 2 2 2

2 2 2 2 2 2 2
08 2 2e e e

e
D D D D

m a b ab m a b m a b
  

  
 (22.41) 

From Eq. (22.41), the semimajor axis of the B O -bond MO is: 
 02a a  (22.42) 

For the B O  functional groups, hybridization of the 2s  and 2 p  AOs of each C  and B  to form single 32sp  shells 

forms an energy minimum, and the sharing of electrons between the 32C sp  and 32B sp  HOs to form a MO permits each 
participating orbital to decrease in radius and energy.  The energy of boron is less than the Coulombic energy between the 
electron and proton of H  given by Eq. (1.264).  Thus, in 1c  and 2c  in Eq. (15.61) is one, and the energy matching condition is 

determined by the 2C  parameter.  The approach to the hybridization factor of O  to B  in boric acids is similar to that of the O  to 

S  bonding in the SO  group of sulfoxides.  The O  AO has an energy of   13.61805 E O eV  , and the 32B sp  HOs has an 

energy of  3, 2 11.80624 E B sp eV   (Eq. (22.7)).  To meet the equipotential condition of the union of the B O  2H -type-

ellipsoidal-MO with these orbitals in borinic acids and to energy match the OH  group, the hybridization factor 2C  of Eq. 

(15.61) for the B O -bond MO given by Eq. (15.77) is: 

    
 

3
2 3

13.61805 
  2 1.15346

11.80624 , 2

E OAO eV
C OAO to B sp HO

eVE B sp


  


 (22.43) 

Since the energy of the MO is matched to that of the 32B sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3, 2E B sp  given 

by Eq. (22.7), and  3, .TE atom atom msp AO  is 1.12740 eV  corresponding to the independent single-bond charge 

contribution (Eq. (22.12)) of one center. 
The parameters of the B O  functional group of alkoxy boranes are the same as those of borinic acids except for 1C  and 

2C .  Rather than being bound to an H , the oxygen is bound to a 32C sp  HO, and consequently, the hybridization of the C O  

given by Eq. (15.133) includes the 32C sp  HO hybridization factor of 0.91771  (Eq. (13.430)).  To meet the equipotential 

condition of the union of the B O  2H -type-ellipsoidal-MO with the 32B sp  HOs having an energy of 

 3, 2 11.80624 E B sp eV   (Eq. (22.7)) and the O  AO having an energy of   13.61805 E O eV   such that the hybridization 
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matches that of the C O -bond MO, the hybridization factor 2C  of Eq. (15.61) for the B O -bond MO given by Eqs. (15.77) 

and (15.79) is: 

    
     

3

3 3
2 2

, 2 11.80624 
2   2 0.91771 0.79562

13.61805 

E B sp eV
C B sp HO to O c C sp HO

E O eV


  


 (22.44) 

Furthermore, in order to form an energy minimum in the B O -bond MO, oxygen acts as an H  in bonding with B  since the 
2 p  shell of O  is at the Coulomb energy between an electron and a proton (Eq. (10.163)).  In this case, 'k  is 0.75 as given by 

Eq. (13.59) such that 1 0.75C   in Eq. (15.61). 

Consider next the radius of the HO due to the contribution of charge to more than one bond.  The energy contribution due 
to the charge donation at each boron atom and oxygen atom superimposes linearly.  In general, since the energy of the 32B sp  

HO and O  AO is matched to that of the 32C sp  HO when the molecule contains a C B -bond MO and a C O -bond MO, 

respectively, the corresponding radius 32mol sp
r  of the 32B sp  HO of a boron atom, the 32C sp  HO of a carbon atom, and the O  AO 

of a given alkoxy borane or borinic acid molecule is calculated after Eq. (15.32) by considering  3, 2
molTE MO sp , the total 

energy donation to all bonds with which it participates in bonding.  The Coulombic energy  3, 2CoulombE atom sp  of the outer 

electron of the 3 2atom sp  shell considering the charge donation to all participating bonds is given by Eq. (15.14).  In the case 

that the boron or oxygen atom is not bound to a 32C sp  HO, 32mol sp
r  is calculated using Eq. (15.31) where  3,CoulombE atom msp  is 

 32 11.89724 CoulombE B sp eV   and   13.61805 E O eV  , respectively. 

The symbols of the functional groups of alkoxy boranes and borinic acids are given in Table 22.15.  The geometrical 
(Eqs. (15.1-15.5) and (22.42-22.44)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eq. (15.61), (22.4), (22.7), 
(22.12), (22.29), and (22.43-22.44)) parameters of alkoxy boranes and borinic acids are given in Tables 22.16, 22.17, and 22.18, 
respectively.  In the case that the MO does not intercept the B  HO due to the reduction of the radius from the donation of 

3 2B sp  HO charge to additional MO’s, the energy of each MO is energy matched as a linear sum to the B  HO by contacting it 

through the bisector current of the intersecting MOs as described in the Methane Molecule ( 4CH ) section.  The total energy of 

each alkyl borane given in Table 22.19 was calculated as the sum over the integer multiple of each  GroupDE  of Table 22.18 

corresponding to functional-group composition of the molecule.  magE  of Table 22.18 is given by Eqs. (15.15) and (22.3) for the 

B O  groups and the B H , B B , B H B  , and B B B   groups.  magE  of Table 22.18 is given by Eqs. (15.15) and 

(10.162) for the OH  group.  The bond angle parameters of alkoxy boranes and borinic acids determined using Eqs. (15.88-
15.117) are given in Table 22.20.  The charge-densities of exemplary alkoxy borane, trimethoxyborane, boric acid, and 
phenylborinic anhydride comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type 

ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 22.4, 22.5, and 22.6, respectively. 
 
Figure 22.4.   Trimethoxyborane. Color scale, translucent views of the charge-density of  3 3

H CO B  showing the orbitals of 

the B , O , and C  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Figure 22.5.  Boric Acid. Color scale, translucent view of the charge-density of  3
HO B  showing the orbitals of the B  and 

O  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer 

shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale). 

 
 

Figure 22.6.   Phenylborinic Anhydride. Color scale, translucent view of the charge-density of phenylborinic anhydride 
showing the orbitals of the B  and O  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that 

transitions to the corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale). 

 
Table 22.15.   The symbols of the functional groups of alkoxy boranes and borinic acids. 

 

Functional Group Group Symbol
B-O bond (borinic acid) B O  (i) 
B-O bond (alkoxy borane) B O  (ii) 
OH group OH  

C-O ( 3CH O   and  3 3
CH C O  ) C O  (i) 

C-O (alkyl) C O  (ii) 
C-B bond C B  
BH bond B H
BHB (bridged H) B H B 
BB bond B B
BBB (bridged B) B B B 
CC  (aromatic bond) 

3e

C C  
CH (aromatic) CH  (i) 

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  (ii) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 



Chapter 22 1302

 
 

T
a

b
le

 2
2

.1
6

. 
 T

he
 g

eo
m

et
ri

ca
l b

on
d 

pa
ra

m
et

er
s 

of
 a

lk
ox

y 
bo

ra
ne

s 
an

d 
bo

ri
ni

c 
ac

id
s 

an
d 

ex
pe

ri
m

en
ta

l v
al

ue
s.

  T
he

 e
xp

er
im

en
ta

l a
lk

yl
 d

is
ta

nc
es

 f
ro

m
 R

ef
. [

10
].

 



Boron Molecular Functional Groups and Molecules 1303

 
T

a
b

le
 2

2
.1

7
.  

T
he

 M
O

 to
 H

O
 in

te
rc

ep
t g

eo
m

et
ri

ca
l b

on
d 

pa
ra

m
et

er
s 

of
 a

lk
ox

y 
bo

ra
ne

s 
an

d 
bo

ri
ni

c 
ac

id
s.

  H
t i

s 
a 

te
rm

in
al

 o
r 

tw
o-

ce
nt

er
 H

.  
H

b 
is

 a
 b

ri
dg

e 
or

 th
re

e-
ce

nt
er

H
. B

b 
is

 a
 b

ri
dg

e 
or

 th
re

e-
ce

nt
er

 B
.  

E
T
 is

 E
T
 (

at
om

 -
 a

to
m

 m
sp

3 .
A

O
).

 



Chapter 22 1304

 
 

T
a

b
le

 2
2

.1
7

 c
o

n
t’

d
.  

T
he

 M
O

 to
 H

O
 in

te
rc

ep
t g

eo
m

et
ri

ca
l b

on
d 

pa
ra

m
et

er
s 

of
 a

lk
ox

y 
bo

ra
ne

s 
an

d 
bo

ri
ni

c 
ac

id
s.

  H
t i

s 
a 

te
rm

in
al

 o
r 

tw
o-

ce
nt

er
 H

.  
H

b 
is

 a
 b

ri
dg

e 
or

 
th

re
e-

ce
nt

er
 H

. B
b 

is
 a

 b
ri

dg
e 

or
 th

re
e-

ce
nt

er
 B

.  
E

T
 is

 E
T
 (

at
om

 -
 a

to
m

 m
sp

3 .
A

O
).

 



Boron Molecular Functional Groups and Molecules 1305

 
 

T
a

b
le

 2
2

.1
8

. 
 T

he
 e

ne
rg

y 
pa

ra
m

et
er

s 
(e

V
) 

of
 f

un
ct

io
na

l g
ro

up
s 

of
 a

lk
ox

y 
bo

ra
ne

s 
an

d 
bo

ri
ni

c 
ac

id
s.

 



Chapter 22 1306

 
 

T
a

b
le

 2
2

.1
9
. 

 T
he

 t
ot

al
 b

on
d 

en
er

gi
es

 o
f 

al
ko

xy
 b

or
an

es
 a

nd
 b

or
in

ic
 a

ci
ds

 c
al

cu
la

te
d 

us
in

g 
th

e 
fu

nc
ti

on
al

 g
ro

up
 c

om
po

si
ti

on
 a

nd
 t

he
 e

ne
rg

ie
s 

of
 T

ab
le

 2
2.

18
 

co
m

pa
re

d 
to

 th
e 

ex
pe

ri
m

en
ta

l v
al

ue
s.

 



Boron Molecular Functional Groups and Molecules 1307

T
a

b
le

 2
2

.2
0

.  
T

he
 b

on
d 

an
gl

e 
pa

ra
m

et
er

s 
of

 a
lk

ox
y 

bo
ra

ne
s 

an
d 

bo
ri

ni
c 

ac
id

s 
an

d 
ex

pe
ri

m
en

ta
l v

al
ue

s.
  H

t i
s 

a 
te

rm
in

al
 o

r 
tw

o-
ce

nt
er

 H
.  

H
b 

is
 a

 b
ri

dg
e 

or
 th

re
e-

ce
nt

er
 

H
.  

In
 th

e 
ca

lc
ul

at
io

n 
of

 
v 
, t

he
 p

ar
am

et
er

s 
fr

om
 th

e 
pr

ec
ed

in
g 

an
gl

e 
w

er
e 

us
ed

.  
T

he
 e

xp
er

im
en

ta
l a

lk
yl

 a
ng

le
 f

ro
m

 R
ef

. [
10

].
  E

T
 is

 E
T
 (

at
om

 -
 a

to
m

 m
sp

3 .
A

O
).

 



Chapter 22 1308

TERTIARY AND QUATERNARY AMINOBORANES AND BORANE AMINES 
( ; ;q r s tR B N R R H alkyl ) 
The tertiary and quaternary amino boranes and borane amines each comprise at least one B  bound by a boron-nitrogen single 
bond comprising a B N  group, and may comprise at least a terminal methyl group ( 3CH ), as well other alkyl and borane 

groups such as methylene ( 2CH ), methylyne (CH ), C C , B H , B C , B H , B B , B H B  , and B B B   

functional groups.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of 
C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  
bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-

butyl to t-butyl C C  bonds comprise functional groups.  These groups in tertiary and quaternary amino boranes and borane 
amines are equivalent to those in branched-chain alkanes, the B C  group is equivalent to that of alkyl boranes, and the B H , 
B B , B H B  , and B B B   functional groups are equivalent to those in boranes. 

In tertiary amino boranes and borane amines, the nitrogen atom of each B N  bond is bound to two other atoms such 
that there are a total of three bounds per atom.  The amino or amine moiety may comprise 2NH ,  N H R , and 2NR .  The 

corresponding functional group for the 2NH  moiety is the 2NH  functional group given in the Primary Amines 

( 2 2 ,   1, 2,3,4,5...n n m mC H N n    ) section.  The  N H R  moiety comprises the NH  functional group of the Secondary Amines 

( 2 2 ,   2,3,4,5...n n m mC H N n    ) section and the C N  functional group of the Primary Amines 

( 2 2 ,   1, 2,3,4,5...n n m mC H N n    ) section.  The 2NR  moiety comprises two types of C N  functional groups, one for the 

methyl group corresponding to the C  of C N  and the other for general alkyl secondary amines given in the Secondary Amines 
( 2 2 ,   2,3,4,5...n n m mC H N n    ) section. 

In quaternary amino boranes and borane amines, the nitrogen atom of each B N  bond is bound to three other atoms 
such that there are a total of four bonds per atom.  The amino or amine moiety may comprise 3NH ,  2N H R ,   2N H R , and 

3NR .  The corresponding functional group for the 3NH  moiety is ammonia given in the Ammonia ( 3NH ) section.  The 

 2N H R  moiety comprises the 2NH  and the C N  functional groups given in the Primary Amines 

( 2 2 ,   1, 2,3,4,5...n n m mC H N n    ) section.  The   2N H R  moiety comprises the NH  functional group and two types of C N  

functional groups, one for the methyl group corresponding to the C  of C N  and the other for general alkyl secondary amines 
given in the Secondary Amines ( 2 2 ,   2,3,4,5...n n m mC H N n    ) section.  The 3NR  moiety comprises the C N  functional 

group of tertiary amines given in the Tertiary Amines ( 2 3 ,   3, 4,5...n nC H N n   ) section. 

The bonding in the B N  functional groups of tertiary and quaternary amino boranes and borane amines is similar to 
that of the B O  groups of alkoxy boranes and borinic acids given in the corresponding section.  The MO semimajor axes of the 
B N  functional groups are determined from the force balance equation of the centrifugal, Coulombic, and magnetic forces as 
given in the Boranes ( x yB H ) section.  In each case, the distance from the origin of the 2H -type-ellipsoidal-MO to each focus 'c , 

the internuclear distance 2 'c , and the length of the semiminor axis of the prolate spheroidal 2H -type MO b c  are solved from 

the semimajor axis a .  Then, the geometric and energy parameters of each MO are calculated using Eqs. (15.1-15.117).   
As in the case of the B O -bond MOs, the  -MOs of the tertiary and quaternary B N -bond MOs is energy matched 

to the 32B sp  HO which determines that the parameters of the force balance equation based on electron angular momentum are 
determined by those of the boron atom.  Thus, the parameters of the force balance equation for the  -MO of the B N -bond 

MOs in Eqs. (22.18-22.22) are 1en   and 

3
3

4L
Z

  corresponding to the three electrons of the boron atom: 

 
2 2 2 2

2 2 2 2 2 2 2
0

3
3

1 4
8 2 2 2e e e

e
D D D D

m a b ab m a b Z m a b

 
 
    
 

  
 (22.45) 

 0

3
3

3 4
2

a a
Z

 
 
  
 

 (22.46) 

With 5Z  , the semimajor axis of the tertiary B N -bond MO is: 
 02.01962a a  (22.47) 

For the B N  functional groups, hybridization of the 2s  and 2 p  AOs of B  to form single 32sp  shells forms an energy 

minimum, and the sharing of electrons between the 32B sp  HO and N  AO to form a MO permits each participating orbital to 
decrease in radius and energy.  The energy of boron is less than the Coulombic energy between the electron and proton of H  
given by Eq. (1.264).  Thus, in 1c  and 2c  in Eq. (15.61) is one, and the energy matching condition is determined by the 1C  and 
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2C  parameters.  The N  AO has an energy of   14.53414 E N eV  , and the 32B sp  HOs have an energy of 

 3, 2 11.80624 E B sp eV   (Eq. (22.7)).  To meet the equipotential condition of the union of the B N  2H -type-ellipsoidal-

MO with these orbitals, the hybridization factor 2C  of Eq. (15.61) for the B N -bond MO given by Eq. (15.77) is: 

    
 

3

3
2

, 2 11.80624 
  2 0.81231

14.53414 

E B sp eV
C NAO to B sp HO

E NAO eV


  


 (22.48) 

Since the energy of the MO is matched to that of the 32B sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3, 2E B sp  given 

by Eq. (22.7), and  3, .TE atom atom msp AO  for ternary B N  is 1.12740 eV  corresponding to the independent single-bond 

charge contribution (Eq. (22.12)) of one center as in the case of the alkoxy borane B O  functional group.  Furthermore, 'k  is 
0.75  as given by Eq. (13.59) such that 1 0.75C   in Eq. (15.61) which is also equivalent to 1C  of  the B O  alkoxy borane 

group. 

 3, .TE atom atom msp AO  of the quaternary B N -bond MO is determined by considering that the bond involves an 

electron transfer from the nitrogen atom to the boron atom to form zwitterions such as 3 3'R N B R  .  By considering the 

electron redistribution in the quaternary amino borane and borane amine molecule as well as the fact that the central field 
decreases by an integer for each successive electron of the shell, the radius 32B Nborane sp

r


 of the 32B sp  shell may be calculated 

from the Coulombic energy using Eq. (15.18) , except that the sign of the charge donation is positive: 

 
   3

2 24

02
2 0 0

7
( ) 1 1.27171

8 74.89168 8 74.89168 B Nborane sp
n

e e
r Z n a

e eV e eV 


      
 
  (22.49) 

Using Eqs. (15.19) and (22.49), the Coulombic energy  3, 2Coulomb B NboraneE B sp  of the outer electron of the 32B sp  shell is: 

  
3

2 2
3

0 0 02

, 2 10.69881 
8 8 1.27171Coulomb B Nborane

B Nborane sp

e e
E B sp eV

r a 



 
     (22.50) 

During hybridization, one of the spin-paired 2s  electrons is promoted to the 32B sp  shell as an unpaired electron.  The energy 

for the promotion is the magnetic energy given by Eq. (22.6).  Using Eqs. (22.6) and (22.50), the energy  3, 2B NboraneE B sp  of 

the outer electron of the 32B sp  shell is: 

  
 3

2 22
3 0

32
0 32

2
, 2 10.69881 0.09100 10.60781 

8B Nborane

eB Nborane sp

ee
E B sp eV eV eV

r m r







      


 (22.51) 

Thus,  3, 2TE B N sp , the energy change of each 32B sp  shell with the formation of the B N -bond MO is given by the 

difference between Eq. (22.51) and Eq. (22.7). 
        3 3 3, 2 , 2 ,2 10.60781 11.80624 1.19843 T B NboraneE B N sp E B sp E B sp eV eV eV         (22.52) 

Thus,  3, .TE atom atom msp AO  of the quaternary B N -bond MO is 1.19843 eV . 

Consider next the radius of the HO due to the contribution of charge to more than one bond.  The energy contribution due 
to the charge donation at each boron atom and nitrogen atom superimposes linearly.  In general, since the energy of the 32B sp  

HO and N  AO is matched to that of the 32C sp  HO when a molecule contains a C B -bond MO and a C N -bond MO, 

respectively, the corresponding radius 32mol sp
r  of the 32B sp  HO of a boron atom, the 32C sp  HO of a carbon atom, and the N  

AO of a given B N -containing borane molecule is calculated after Eq. (15.32) by considering  3, 2
molTE MO sp , the total 

energy donation to all bonds with which it participates in bonding.  The Coulombic energy  3, 2CoulombE atom sp  of the outer 

electron of the 3 2atom sp  shell considering the charge donation to all participating bonds is given by Eq. (15.14).  In the case 

that the boron or nitrogen atom is not bound to a 32C sp  HO, 32mol sp
r  is calculated using Eq. (15.31) where  3,CoulombE atom msp  

is  32 11.89724 CoulombE B sp eV   and   14.53414 E N eV  , respectively.  The hybridization parameters used in Eqs. 

(15.88-15.117) for the determination of bond angles of tertiary and quaternary amino boranes and borane amines are given in 
Table 22.21. 
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Table 22.21.   Atom hybridization designation (# first column) and hybridization parameters of atoms for determination of 
bond angles with final values of r2sp3, ECoulomb(atom,2sp3) (designated as ECoulomb), and E(atom B-Nborane 2sp3) (designated as E) 

calculated using the appropriate values of  ETmol(MO,2sp3) (designated as ET) for each corresponding terminal bond spanning 

each angle. 
# 

TE  TE  TE  TE  TE  33sp
r  

Final 

CoulombE  

(eV) 
Final 

E  
(eV) 
Final 

1 -0.46459 0 0 0 0 0.88983
(Eq. (15.32))

-15.29034 -15.09948 

2 -0.56370 -0.56370 -0.56370 0 0 0.82343
(Eq. (15.32))

-16.52324  

 

The symbols of the functional groups of tertiary and quaternary amino boranes and borane amines are given in Table 
22.22.  The geometrical (Eqs. (15.1-15.5) and (22.47)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eq. 
(15.61), (22.4), (22.7), (22.12), (22.48), and (22.52)) parameters of tertiary and quaternary amino boranes and borane amines are 
given in Tables 22.23, 22.24, and 22.25, respectively.  In the case that the MO does not intercept the B  HO due to the reduction 
of the radius from the donation of 3 2B sp  HO charge to additional MOs, the energy of each MO is energy matched as a linear 
sum to the B  HO by contacting it through the bisector current of the intersecting MOs as described in the Methane Molecule 
( 4CH ) section.  The total energy of each tertiary and quaternary amino borane or borane amine given in Table 22.26 was 

calculated as the sum over the integer multiple of each  GroupDE  of Table 22.25 corresponding to functional-group composition 

of the molecule.  magE  of Table 22.26 is given by Eqs. (15.15) and (22.3) for the B N  groups and the B H , B B , 

B H B  , and B B B   groups.  magE  of Table 22.26 is given by Eqs. (15.15) and (10.142) for 3NH .  The bond angle 

parameters of tertiary and quaternary amino boranes and borane amines determined using Eqs. (15.88-15.117) are given in Table 
22.27.  The charge-densities of exemplary tertiary amino borane, tris(dimethylamino)borane and quaternary amino borane, 
trimethylaminotrimethylborane comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type 

ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 22.7 and 22.8, respectively. 
 
Figure 22.7.   Trisdimethylaminoborane. Color scale, opaque views of the charge-density of   3 2 3

H C N B  showing the 

orbitals of the B, N, and C atoms at their radii, the ellipsoidal surface of each H or H2-type ellipsoidal MO that transitions to the 
corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale). 
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Figure 22.8.   Trimethylaminotrimethylborane. Color scale, opaque view of the charge-density of    3 33 3

CH BN CH  

showing the orbitals of the B, N, and C atoms at their radii, the ellipsoidal surface of each H or H2-type ellipsoidal MO that 
transitions to the corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
Table 22.22.   The symbols of the functional groups of tertiary and quaternary amino boranes and borane amines. 
 

Functional Group Group Symbol
B-N bond 3° B N  (i) 
B-N bond 4° B N  (ii) 
C-N bond 1° amine C N  (i) 
C-N bond 2° amine (methyl) C N  (ii) 
C-N bond 2° amine (alkyl) C N  (iii) 
C-N bond 3° amine C N  (iv) 

NH3 group 3NH  

NH2 group 2NH  

NH group NH  
C-B bond C B  
BH bond B H
BHB (bridged H) B H B 
BB bond B B
CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  (i) 
CC bond (n-C) C C  (a) 
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HALIDOBORANES 
The halidoboranes each comprise at least one B  bound by a boron-halogen single bond comprising a B X  group where 

, , ,X F Cl Br I , and may further comprise one or more alkyl groups and borane moieties.  The latter comprise alkyl and aryl 
moieties and B C , B H , B B , B H B  , and B B B   functional groups wherein the B C  group is equivalent to that 
of alkyl boranes, and the B H , B B , B H B  , and B B B   functional groups are equivalent to those in boranes given in 
the corresponding sections.  Alkoxy boranes and borinic acids moieties given in the Alkoxy Boranes and Alkyl Borinic Acids 
(    r sq t

RO B H HO ) section may be bound to the B X  group by a B O  functional group.  The former further comprise at 

least one boron-alkyl-ether moiety, and the latter comprise one or more hydroxyl groups, respectively.  Each alkoxy moiety, 

2 1n nC H O , comprises one of two types of C O  functional groups that are equivalent to those given in the Ethers 

( 2 2 ,   2,3, 4,5...n n mC H O n   ) section.  One is for methyl or t-butyl groups, and the other is for general alkyl groups.  Each 

borinic acid hydroxyl functional group is equivalent to that given in the Alcohols ( 2 2 ,   1, 2,3,4,5...n n mC H O n   ) section.   

Tertiary amino-borane and borane-amine moieties given in the Tertiary and Quaternary Aminoboranes and Borane 
Amines ( ; ;q r s tR B N R R H alkyl ) section can be bound to the B X  group by a B N  functional group.  The nitrogen atom of 

each B N  functional group is bound to two other atoms such that there are a total of three bonds per atom.  The amino or 
amine moiety may comprise 2NH ,  N H R , and 2NR .  The corresponding functional group for the 2NH  moiety is the 2NH  

functional group given in the Primary Amines ( 2 2 ,   1, 2,3,4,5...n n m mC H N n    ) section.  The  N H R  moiety comprises the 

NH  functional group of the Secondary Amines ( 2 2 ,   2,3, 4,5...n n m mC H N n    ) section and the C N  functional group of the 

Primary Amines ( 2 2 ,   1, 2,3,4,5...n n m mC H N n    ) section.  The 2NR  moiety comprises two types of C N  functional groups, 

one for the methyl group corresponding to the C  of C N  and the other for general alkyl secondary amines given in the 
Secondary Amines ( 2 2 ,   2,3, 4,5...n n m mC H N n    ) section. 

Quaternary amino-borane and boraneamine moieties given in the Tertiary and Quaternary Aminoboranes and Borane 
Amines ( ; ;q r s tR B N R R H alkyl ) section can be bound to the B X  group by a B N  functional group.  The nitrogen atom of 

each B N  bond is bound to three other atoms such that there are a total of four bonds per atom.  The amino or amine moiety 
may comprise 3NH ,  2N H R ,   2N H R , and 3NR .  The corresponding functional group for the 3NH  moiety is ammonia 

given in the Ammonia ( 3NH ) section.  The  2N H R  moiety comprises the 2NH  and the C N  functional groups given in the 

Primary Amines ( 2 2 ,   1, 2,3,4,5...n n m mC H N n    ) section.  The   2N H R  moiety comprises the NH  functional group and two 

types of C N  functional groups, one for the methyl group corresponding to the C  of C N  and the other for general alkyl 
secondary amines given in the Secondary Amines ( 2 2 ,   2,3, 4,5...n n m mC H N n    ) section.  The 3NR  moiety comprises the 

C N  functional group of tertiary amines given in the Tertiary Amines ( 2 3 ,   3, 4,5...n nC H N n   ) section. 

The alkyl portion may be part of the alkoxy moiety, amino or amine moiety, or an alkyl group, or it may be bound to the 
central boron atom by a carbon-boron single bond comprising the C B  group of the Alkyl Boranes ( ;x y zR B H R alkyl ) 

section.  Each alkyl portion may comprise at least a terminal methyl group ( 3CH ) and methylene ( 2CH ), methylyne (CH ), and 

C C  functional groups.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six 
types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the 
C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, 

and t-butyl to t-butyl C C  bonds comprise functional groups.  Additional R  groups include aromatics such as phenyl and 

2HC CH  .  These groups in halidobroanes are equivalent to those in branched-chain alkanes, aromatics, and alkenes given in 

the corresponding sections. 
The bonding in the B X  functional groups of halidoboranes is similar to that of the B O  and B N  groups of alkoxy 

boranes and borinic acids and tertiary and quaternary amino boranes and borane amines given in the corresponding sections.  
The MO semimajor axes of the B X  functional groups are determined from the force balance equation of the centrifugal, 
Coulombic, and magnetic forces as given in the Boranes ( x yB H ) section.  In each case, the distance from the origin of the 2H -

type-ellipsoidal-MO to each focus 'c , the internuclear distance 2 'c , and the length of the semiminor axis of the prolate 
spheroidal 2H -type MO b c  are solved from the semimajor axis a .  Then, the geometric and energy parameters of each MO 

are calculated using Eqs. (15.1-15.117).   
As in the case of the B O - and B N -bond MOs, the  -MOs of the B X -bond MOs are energy matched to the 

32B sp  HO which determines that the parameters of the force balance equation based on electron angular momentum are 
determined by those of the boron atom.  The parameters of the force balance equation for the  -MO of the B F -bond MO in 
Eqs. (22.18-22.22) are 1en   and 0L  : 
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From Eq. (22.53), the semimajor axis of the tertiary B - F -bond MO is 
 01.5a a  (22.54) 

The force balance equation for each  -MO of the B Cl  is equivalent to that of the B B -bond MO with 2en   and 

3
3

4
L    corresponding to three electrons of the 32B sp  shell is: 
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 (22.55) 
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 (22.56) 

With 5Z  , the semimajor axis of the B Cl -bond MO is: 
 02.51962a a  (22.57) 

The hybridization of the bonding in the B - X  functional groups of halidoboranes is similar to that of the C - X  groups of 
alkyl halides given in the corresponding sections.  For the B - X  functional groups, hybridization of the 2s and 2p AOs of B to 
form single 2sp3  shells forms an energy minimum, and the sharing of electrons between the B2sp3  HO and X AO to form a MO 
permits each participating orbital to decrease in radius and energy.  The F AO has an energy of   17.42282 E F eV  , and the 

32B sp  HOs have an energy of  3, 2 11.80624 E B sp eV   (Eq. (22.7)).  To meet the equipotential condition of the union of the 

B F  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor 2c  of Eq. (15.61) for the B F -bond MO given by 

Eq. (15.77) is: 

    
 

3

3
2

, 2 11.80624 
  2 0.68285

17.42282 

E B sp eV
c FAO to B sp HO

E FAO eV


  


 (22.58) 

Since the energy of the MO is matched to that of the 32B sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3, 2E B sp  given 

by Eq. (22.7). 

 3, .TE atom atom msp AO  of the B F -bond MO is determined by considering that the bond involves an electron 

transfer from the boron atom to the fluorine atom to form zwitterions such as 2H B F  .  By considering the electron 

redistribution in the fluoroborane as well as the fact that the central field decreases by an integer for each successive electron of 
the shell, the radius 32B Fborane sp

r


 of the B2sp3 shell may be calculated from the Coulombic energy using Eq. (15.18). 

 
   3

2 24

02
2 0 0

5
( ) 1 0.90837

8 74.89168 8 74.89168 B Fborane sp
n

e e
r Z n a

e eV e eV 


      
 
  (22.59) 

Using Eqs. (15.19) and (22.13), the Coulombic energy  3, 2Coulomb B FboraneE B sp  of the outer electron of the 32B sp  shell is: 
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e e
E B sp eV

r a 



 
     (22.60) 

During hybridization, one of the spin-paired 2s electrons is promoted to the B2sp3 shell as an unpaired electron.  The energy for 

the promotion is the magnetic energy given by Eq. (22.6).  Using Eqs. (22.6) and (22.60), the energy  3, 2B XboraneE B sp  of the 

outer electron of the B2sp3 shell is: 
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2 22
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ee
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 (22.61) 

Thus,  3, 2TE B F sp , the energy change of each 32B sp  shell with the formation of the B F -bond MO is given by the 

difference between Eq. (22.15) and Eq. (22.7). 

        3 3 3, 2 , 2 , 2 14.88734 11.80624 3.08109 T B FboraneE B F sp E B sp E B sp eV eV eV          (22.62) 

Thus,  3, .TE atom atom msp AO  for ternary B F  is 6.16219 eV  corresponding to the maximum charge contribution of an 

electron given by two times Eq. (22.62). 
In chloroboranes, the energies of chlorine and boron are less than the Coulombic energy between the electron and proton 

of H given by Eq. (1.264).  Thus, 1c  and 2c  in Eq. (15.61) are one, and the energy matching condition is determined by the C2 

parameter.  The Cl AO has an energy of E(Cl) = –12.96764 eV, and the B2sp3 HOs have an energy of E(B,2sp3) = –11.80624 eV  
(Eq. (22.7)).  To meet the equipotential condition of the union of the B - Cl H2-type-ellipsoidal-MO with these orbitals, the 
hybridization factor 2c  of Eq. (15.61) for the B - Cl -bond MO given by Eq. (15.77) is: 
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 (22.63) 

Since the energy of the MO is matched to that of the 32B sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3, 2E B sp  given 

by Eq. (22.7), and  3, .TE atom atom msp AO  is given by two times Eq. (22.12) corresponding to the two centers. 

Consider next the radius of the HO due to the contribution of charge to more than one bond.  The energy contribution due 
to the charge donation at each boron atom and halogen atom superimposes linearly.  In general, since the energy of the 32B sp  

HO and X  AO is matched to that of the 32C sp  HO when a molecule contains a C B -bond MO and a C X -bond MO, 

respectively, the corresponding radius 32mol sp
r  of the 32B sp  HO of a boron atom, the 32C sp  HO of a carbon atom, and the X  

AO of a given halidoborane molecule is calculated after Eq. (15.32) by considering  3, 2
molTE MO sp , the total energy 

donation to all bonds with which it participates in bonding.  The Coulombic energy  3, 2CoulombE atom sp  of the outer electron of 

the 3 2atom sp  shell considering the charge donation to all participating bonds is given by Eq. (15.14).  In the case that the boron 

or halogen atom is not bound to a 32C sp  HO, 32mol sp
r  is calculated using Eq. (15.31) where  3,CoulombE atom msp  is 

 32 11.89724 CoulombE B sp eV  ,   17.42282 E F eV  , or   12.96764 E Cl eV  .  The hybridization parameters used in 

Eqs. (15.88-15.117) for the determination of bond angles of halidoboranes are given in Table 22.28. 
 
Table 22.28.   Atom hybridization designation (# first column) and hybridization parameters of atoms for determination of 

bond angles with final values of 32sp
r ,  3, 2CoulombE atom sp  (designated as CoulombE ), and  32B XboraneE atom sp  (designated as E ) 

calculated using the appropriate values of  3, 2
molTE MO sp  (designated as TE ) for each corresponding terminal bond 

spanning each angle. 
 

# 
TE  TE  TE  TE  TE  33sp

r  

Final 

CoulombE  

(eV) 
Final 

E  
(eV) 
Final 

1 -0.56370 0 0 0 0 0.95939
(Eq. (15.31))

-14.18175  

2 -3.08109 -3.08109 0 0 0 0.75339
(Eq. (15.31))

-18.05943 -17.96843 

3 -3.08109 0 0  0 0.66357
(Eq. (15.31))

-20.50391 -20.26346 

 

The symbols of the functional groups of halidoboranes are given in Table 22.29.  The geometrical (Eqs. (15.1-15.5) and 
(22.47)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eq. (15.61), (22.4), (22.7), (22.12), (22.48), and (22.52)) 
parameters of halidoboranes are given in Tables 22.30, 22.31, and 22.32, respectively.  In the case that the MO does not intercept 
the B  HO due to the reduction of the radius from the donation of 32B sp  HO charge to additional MOs, the energy of each MO 
is energy matched as a linear sum to the B  HO by contacting it through the bisector current of the intersecting MOs as described 
in the Methane Molecule ( 4CH ) section.  The total energy of each halidoborane given in Table 22.33 was calculated as the sum 

over the integer multiple of each  GroupDE  of Table 22.32 corresponding to functional-group composition of the molecule.  magE  

of Table 22.33 is given by Eqs. (15.15) and (22.3) for the B X  groups and the B O , B N , B H , B B , B H B  , and 
B B B   groups.  magE  of Table 22.33 is given by Eqs. (15.15) and (10.162) for the OH  group.  The bond angle parameters of 

halidoboranes determined using Eqs. (15.88-15.117) are given in Table 22.34.  The charge-densities of exemplary fluoroborane, 
boron trifluoride and choloroborane, boron trichloride comprising the concentric shells of atoms with the outer shell bridged by 
one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 22.9 and 22.10, 

respectively. 
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Figure 22.10.   (A) Boron Trifluoride. Color scale, translucent view of the charge-density of BF3 showing the orbitals of the B 
and  F atoms at their radii, and the ellipsoidal surface of each H2-type ellipsoidal MO that transitions to the corresponding outer 
shell of the atoms participating in each bond.  (B) Boron Trichloride. Color scale, translucent views of the charge-density of 
BCl3 showing the orbitals of the B and Cl atoms at their radii, and the ellipsoidal surface of each H2-type ellipsoidal MO that 
transitions to the corresponding outer shell of the atoms participating in each bond. 
 

 
 

Table 22.29.  The symbols of the functional groups of halidoboranes. 
 

Functional Group Group Symbol
B-F bond B F
B-Cl bond B Cl  
B-N bond 3° B N  (i) 
B-N bond 4° B N  (ii) 
C-N bond 1° amine C N  (i) 
C-N bond 2° amine (methyl) C N  (ii) 
C-N bond 2° amine (alkyl) C N  (iii) 
C-N bond 3° amine C N  (iv) 

NH3 group 3NH  

NH2 group 2NH  

NH group NH  
B-O bond (borinic acid) B O  (i) 
B-O bond (alkoxy borane) B O  (ii) 
OH group OH  

C-O ( 3CH O   and  3 3
CH C O  ) C O  (i) 

C-O (alkyl) C O  (ii) 
C-B bond C B  
BH bond B H
BHB (bridged H) B H B 
BB bond B B
BBB (bridged B) B B B 
CC (aromatic bond) 

3e

C C  
CH (aromatic) CH  (i) 

CH3 group  3 C H CH  

CH2 alkyl group  2 C H CH  (i) 

CH C H  (ii) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
HC = CH2HC (ethylene bond) C C  

CH2 alkenyl group 2CH  (ii) 
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SUMMARY TABLES OF BORON MOLECULES 
The bond energies, calculated using closed-form equations having integers and fundamental constants only for classes of 
molecules whose designation is based on the main functional group, are given in the following tables with the experimental 
values. 
 
Table 22.35.1.  Summary results of boranes. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative 
Error 

BB diboron 3.12475 3.10405 -0.00667
B2H6 diborane 24.94229 24.89030 -0.00209
B4H10 tetraborane(10) 44.92160 45.33134 0.00904
B5H9 pentaborane(9) 48.25462 48.85411 0.01227
B5H11 pentaborane(11) 54.00546 53.06086 -0.01780
B6H10 hexaborane(10) 56.55063 56.74739 0.00347
B9H15 nonaborane(15) 85.61380 84.95008 -0.00781
B10H14 decaborane(14) 89.73467 89.69790 -0.00041

 
Table 22.35.2.  Summary results of alkyl boranes. 

Formula Name 
Calculated 
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative 
Error 

CH5B methylborane 24.60991 24.49350 [16] -0.00475
C2H7B dimethylborane  37.08821 37.17713 [16] 0.00239
B2CH8 methyldiborane 37.42060 37.58259 [16] 0.00431
B2C2H10 ethyldiborane 49.57830 49.50736 [16] -0.00143
C3H9B trimethylboron 49.56652 49.76102 [17] 0.00391
B2C2H10 1,1-dimethyldiborane 49.89890 50.20118 [16] 0.00602
B2C2H10 1,2-dimethyldiborane 49.89890 50.20118 [16] 0.00602
B4CH12 methyltetraborane 57.39990 57.74604 [16] 0.00599
B5CH11 methylpentaborane 60.73292 61.51585 [16] 0.01273
B2C3H12 trimethyldiborane 62.37721 62.88481 [16] 0.00807
B4C2H14 ethyltetraborane 69.55760 69.99603 [16] 0.00626
B5C2H13 ethylpentaborane 72.89062 73.76585 [16] 0.01186
B2C4H14 1,1-diethyldiborane 74.21430 74.34420 [16] 0.00175
B2C4H14 tetramethyldiborane 74.85551 75.48171 [16] 0.00830
B5C3H15 propylpentaborane 85.04832 85.84239 [16] 0.00925
C6H15B triethylboron 86.03962 86.12941 [18] 0.00104
B2C6H18 triethyldiborane 98.85031 98.59407 [16] -0.00260
B10CH16 methyldecaborane 102.21298 101.91775 [16] -0.00290
C8H17B n-butylboracyclopentane 105.35916 105.69874a [18]  0.00321
B10C2H18 ethyldecaborane 114.37068 113.56066 [16] -0.00713
C9H21B tripropylboron 122.51272 122.59753 [18] 0.00069
C9H21B tri-isopropylboron 122.81539 122.75798 [18] -0.00047
B2C8H22 tetraethyldiborane 123.48631 123.74017 [16] 0.00205
B10C3H20 propyldecaborane 126.52838 125.94075 [16] -0.00467
C12H27B tri-s-butylboron 159.28849 158.50627 [18] -0.00493
C12H27B tributylboron 158.98582 159.03530 [16] 0.00031
C12H27B tri-isobutylboron 159.20350 159.34318 [16] 0.00088
C18H15B triphenylboron 172.15755 172.09681 [18] -0.00035
C15H33B tri-3-methylbutylboron 195.67660 195.78095 [18] 0.00053
C18H33B tricyclohexylboron 217.24711 218.23763 [18] 0.00454
C18H39B tri-n-hexylboron 231.93202 231.76340 [18] -0.00073
C21H45B tri-n-heptylboron 268.40512 268.22285 [18] -0.00068
C24H51B tri-s-octylboron 305.18089 304.61292 [18] -0.00186
C24H51B tri-n-octylboron 304.87822 304.68230 [18] -0.00064

a Crystal. 
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Table 22.35.3.  Summary results of alkoxy boranes and borinic acids. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative 
Error 

BH3O hydroxyborane 18.29311 18.22572 [17] -0.00370
BH3O2 dihydroxyborane 24.45460 24.43777 [17] -0.00069
BH3O3 boric acid 30.61610 30.68431 [7] 0.00222
BC2H7O2 dimethoxyborane 47.75325 47.72358 [16] -0.00062
BC3H9O3 trimethyl borate 65.56408 65.53950 [17] -0.00037
C5H11OB methoxyboracyclopentane 74.21858 74.47566a [18] 0.00345 
C6H7O2B phenylborinic acid 77.79659 78.86121a [18] 0.01350 
C6H15O2B di-isoproxyborane 96.97471 97.41737a [18] 0.00454 
BC6H15O3 triethyl borate 102.62050 102.50197 [16] -0.00116
C8H19OB di-n-butylborinic acid 116.19591 116.45117 [18] 0.00219
BC9H21O3 tri-n-propyl borate 139.09360 139.11319 [16] 0.00014
C12H27OB n-butyl di-n-butylborinate 164.51278 165.29504a [18] 0.00473 
C12H27O2B di-n-butyl n-butylboronate 170.03974 170.86964a [18] 0.00486 
BC12H27O3 tri-n-butyl borate 175.56670 175.62901 [18] 0.00035
C18H15O3B3 phenylborinic anhydride 204.75082 205.96548a [18] 0.00590 
C16H36OB2 di-n-butylborinic anhydride 222.84551 223.70232a [18] 0.00383 
C24H20OB2 diphenylborinic anhydride 240.40782 241.38941a [18] 0.00407 

a Crystal. 
 

Table 22.35.4.  Summary results of tertiary and quaternary amino boranes and borane amines. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative 
Error 

B2H7N aminodiborane 32.36213 31.99218 [16] -0.01156
B2C2H11N n-dimethylaminodiborane 57.21517 57.52855 [17] 0.00545
C6H18N3B tris(dimethylamino)borane 108.95023 108.64490 [18] -0.00281
C8H20NB di-n-butylboronamine 117.45425 119.49184 a [18] 0.01705
C12H28NB di-n-butylboron-n-butylamine 166.49595 167.83269 a [18] 0.00796
C2H10NB dimethylaminoborane 49.30740 49.52189 [18] 0.00433
BC3H12N trimethylaminoborane 61.37183 61.05205 [16] -0.00524
BC3H12N ammonia-trimethylborane 62.91857 62.52207 [16] -0.00634
C6H18NB triethylaminoborane 97.84493 97.42044 [18] -0.00436
BC6H18N trimethylaminotrimethylborane 98.80674 98.27036 [17] -0.00546

a Crystal. 
 

Table 22.35.5.  Summary results of halidoboranes. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative 
Error 

HBF2 difluoroboron  17.55666 17.41845 [17] -0.00793
BF3 boron trifluoride 20.26918 20.09744 [7] -0.00855
BF2HO difluoroborinic acid 23.71816 23.64784 [17] -0.00297
BFH2O2 fluoroboronic acid 27.16713 27.18135 [17] 0.00052
BCH3F2 difluoro-methyl-borane 30.03496 30.33624 [17] 0.00993
BC2H3F2 vinyldifluoroborane 36.21893 36.54981 [17] 0.00905
BC3H9NF3 trimethylamine-trifluoroborane 69.50941 69.11368 [16] -0.00573
HBCl2 dichloroboron 13.21640 13.25291 [17] 0.00276
BCl3 boron trichloride  13.75879 13.80748 [17] 0.00353
BCl2F dichlorofluoroborane 15.92892 15.87507 [17] -0.00339
BClF2 chlorodifluoroborane 18.09905 17.98169 [17] -0.00653
C2H5OCl2B ethoxydichloroborane 43.37936 43.55732 [18] 0.00409
C2H4O2ClB 2-chloro-1,3,2-dioxaborolan 43.68867 43.99361a [18] 0.00693 
C2H6NCI2B dimethylaminodichloroborane 45.48927 45.73940 [16] 0.00547
BC2ClH602 dimethoxychloroborane 48.29565 48.40390 [17] 0.00224
C3H6O2ClB 4-methyl-2-chloro-1,3,2-dioxaborolan 55.94726 56.39537a [18] 0.00795 
BC6H5Cl2 phenylboron dichloride 66.55838 66.97820 [17] 0.00627
C4H8O2ClB 4,5-dimethyl-2-chloro-1,3,2-dioxaborolan 68.23418 68.72342a [18] 0.00712 
C4H10O2ClB diethoxychloroborane 72.99993 73.07735 [18] 0.00106
C4H12N2ClB bis(dimethlamino) chloroborane 77.21975 77.38078 [18] 0.00208
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Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative 
Error 

C8H18ClB di-n-butylchloroborane 110.57681 110.99317 [18] 0.00375
C12H10ClB diphenylchloroborane 119.35796 119.79335 [18] 0.00363

a Crystal. 
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Chapter 23 
  
ORGANOMETALLIC AND COORDINATE FUNCTIONAL 
GROUPS AND MOLECULES 
  
 
 
 
 
GENERAL CONSIDERATIONS OF THE ORGANOMETALLIC AND COORDINATE 
BOND 
Organometallic and coordinate compounds comprising an arbitrary number of atoms can be solved using similar principles and 
procedures as those used to solve organic molecules of arbitrary length and complexity.  Organometallic and coordinate 
compounds can be considered to be comprised of functional groups such as M C , M H , M X  ( , , ,X F Cl Br I ), 
M OH , M OR , and the alkyl functional groups of organic molecules.  The solutions of these functional groups or any others 
corresponding to the particular organometallic or coordinate compound can be conveniently obtained by using generalized forms 
of the force balance equation given in the Force Balance .of the   MO of the Carbon Nitride Radical section for molecules 
comprised of metal and atoms other than carbon and the geometrical and energy equations given in the Derivation of the General 
Geometrical and Energy Equations of Organic Chemistry section for organometallic and coordinate compounds comprised of 
carbon.  The appropriate functional groups with their geometrical parameters and energies can be added as a linear sum to give 
the solution of any organometallic or coordinate compound. 
 
ALKYL ALUMINUM HYDRIDES ( 3n nR AlH  ) 
Similar to the case of carbon and silicon, the bonding in the aluminum atom involves four 3sp  hybridized orbitals formed from 
the outer 3p  and 3s  shells except that only three HOs are filled.  In organoaluminum compounds, bonds form between a 

33Al sp  HO and at least one 32C sp  HO and one or more 1H s  AOs.  The geometrical parameters of each AlH  functional group 
is solved from the force balance equation of the electrons of the corresponding  -MO and the relationships between the prolate 
spheroidal axes.  Then, the sum of the energies of the 2H -type ellipsoidal MOs is matched to that of the 33Al sp  shell as in the 
case of the corresponding carbon and silicon molecules.  As in the case of alkyl silanes given in the corresponding section, the 
sum of the energies of the 2H -type ellipsoidal MO of the Al C  functional group is matched to that of the 33Al sp  shell, and 

Eq. (15.51) is solved for the semimajor axis with 1 1n   in Eq. (15.50). 

The energy of aluminum is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  
A minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the Hydroxyl 
Radical (OH ) section with the donation of 25% electron density from the participating 33Al sp  HO to each Al H -bond MO. 

The 33sp  hybridized orbital arrangement after Eq. (13.422) is 
 

 

3             3sp  state

                            

0,0      1,-1      1,0       1,1

    (23.1) 

 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the three 

electrons.  The sum  3,3TE Al sp  of experimental energies [1] of Al , Al , and 2Al   is 

    3,3 28.44765 18.82856 5.98577 53.26198 TE Al sp eV eV eV eV       (23.2) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 33sp
r  of the 
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33Al sp  shell may be calculated from the Coulombic energy using Eq. (15.13): 

 
   3

2 212

03
10 0 0

( ) 6
1.53270

8 53.26198 8 53.26198 sp
n

Z n e e
r a

e eV e eV 


    (23.3) 

where 13Z   for aluminum.  Using Eq. (15.14), the Coulombic energy  3,3CoulombE Al sp  of the outer electron of the 33Al sp  

shell is: 

  
3

2 2
3

0 0 03

,3 8.87700 
8 8 1.53270Coulomb

sp

e e
E Al sp eV

r a 
 

     (23.4) 

During hybridization, the spin-paired 3s  electrons are promoted to the 33Al sp  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 3s electrons.  From Eq. (10.255) with 13Z  , 
the radius 12r  of  the 3Al s  shell is: 

 12 01.41133r a  (23.5) 
Using Eqs. (15.15) and (23.5), the unpairing energy is: 

 
   

2 2 2
0

3 32
12 0

2 8
( ) 0.04070 

1.41133
o B

e

e
E magnetic eV

m r a

  
  


 (23.6) 

Using Eqs. (23.4) and (23.6), the energy  3,3E Al sp  of the outer electron of the 33Al sp  shell is: 

  
 3

2 22
3 0

32
0 123

2
,3 8.87700 0.04070 8.83630 

8
esp

ee
E Al sp eV eV eV

r m r





      


 (23.7) 

Next, consider the formation of the Al H -bond MO of organoaluminum hydrides wherein each aluminum atom has an 
33Al sp  electron with an energy given by Eq. (23.7).  The total energy of the state of each aluminum atom is given by the sum 

over the three electrons.  The sum  33T organoAlE Al sp  of energies of 33Al sp  (Eq. (23.7)), Al , and 2Al   is: 

 
    

 

3 33 28.44765 18.82856 ,3

                        28.44765 18.82856 8.83630 56.11251 

T organoAlE Al sp eV eV E Al sp

eV eV eV eV

   

     
 (23.8) 

where  3,3E Al sp  is the sum of the energy of Al , 5.98577 eV , and the hybridization energy. 

Each Al H -bond MO of each functional group 1,2,3nAlH   forms with the sharing of electrons between each 33Al sp  HO 

and each 1H s  AO.  As in the case of C H , the 2H -type ellipsoidal MO comprises 75% of the Al H -bond MO according to 

Eq. (13.429).  Furthermore, the donation of electron density from each 33Al sp  HO to each Al H -bond MO permits the 
participating orbital to decrease in size and energy.  As shown below, the aluminum HOs have spin and orbital angular 
momentum terms in the force balance which determines the geometrical parameters of the   MO.  The angular momentum term 
requires that each Al H -bond MO be treated independently in terms of the charge donation.  In order to further satisfy the 
potential, kinetic, and orbital energy relationships, each 33Al sp  HO donates an excess of 25% of its electron density to each 
Al H -bond MO to form an energy minimum.  By considering this electron redistribution in the organoaluminum hydride 
molecule as well as the fact that the central field decreases by an integer for each successive electron of the shell, the radius 

33organoAlH sp
r  of the 33Al sp  shell may be calculated from the Coulombic energy using Eq. (15.18). 

 
   3

2 212

03
10 0 0

5.75
( ) 0.25 1.39422

8 56.11251 8 56.11251 organoAlH sp
n

e e
r Z n a

e eV e eV 

      
 
  (23.9) 

Using Eqs. (15.19) and (23.9), the Coulombic energy  3,3Coulomb organoAlHE Al sp  of the outer electron of the 33Al sp  shell is: 

  
3

2 2
3

0 0 03

,3 9.75870 
8 8 1.39422Coulomb organoAlH

organoAlH sp

e e
E Al sp eV

r a 
 

     (23.10) 

During hybridization, the spin-paired 3s  electrons are promoted to the 33Al sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (23.6).  Using Eqs. (23.6) and (23.10), the energy  3,3organoAlHE Al sp  of the outer 

electron of the 33Al sp  shell is: 

  
 3

2 22
3 0

32
0 123

2
,3 9.75870 0.04070 9.71800 

8organoAlH

esp

ee
E Al sp eV eV eV

r m r





      


 (23.11) 

Thus,  3,3TE Al H sp , the energy change of each 33Al sp  shell with the formation of the Al H -bond MO is given by the 

difference between Eq. (23.11) and Eq. (23.7): 
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        3 3 3,3 ,3 ,3 9.71800 8.83630 0.88170 T organoAlHE Al H sp E Al sp E Al sp eV eV eV          (23.12) 

The MO semimajor axis of the Al H  functional group of organoaluminum hydrides is determined from the force 
balance equation of the centrifugal, Coulombic, and magnetic forces as given in the Polyatomic Molecular Ions and Molecules 
section and the More Polyatomic Molecules and Hydrocarbons section.  The distance from the origin of the 2H -type-ellipsoidal-

MO to each focus 'c , the internuclear distance 2 'c , and the length of the semiminor axis of the prolate spheroidal 2H -type MO 

b c  are solved from the semimajor axis a .  Then, the geometric and energy parameters of the MO are calculated using Eqs. 
(15.1-15.117).   

The force balance of the centrifugal force equated to the Coulombic and magnetic forces is solved for the length of the 
semimajor axis.  The Coulombic force on the pairing electron of the MO is: 

 
2

2
08Coulomb

e
D

ab 
F i  (23.13) 

The spin pairing force is 

 
2

2 22spin pairing
e

D
m a b  F i


 (23.14) 

The diamagnetic force is: 

 
2

1 2 24
e

diamagneticMO
e

n
D

m a b  F i


 (23.15) 

where en  is the total number of electrons that interact with the binding  -MO electron.  The diamagnetic force 2diamagneticMOF  on 

the pairing electron of the   MO is given by the sum of the contributions over the components of angular momentum:  

 2 2 2
, 2

i
diamagneticMO

i j j e

L
D

Z m a b  F i


 (23.16) 

where L  is the magnitude of the angular momentum of each atom at a focus that is the source of the diamagnetism at the  -

MO.  The centrifugal force is:  

 
2

2 2centrifugalMO
e

D
m a b  F i


 (23.17) 

The force balance equation for the  -MO of the Al H -bond MO is the same as that of the Si H  except that 13Z   
and there are three spin-unpaired electron in occupied orbitals rather than four, and the orbital with ,m  angular momentum 

quantum numbers of (1,1) is unoccupied.  With 2en   and 
3

3
4

L    and 
3

3
4

L    corresponding to the spin and orbital 

angular momentum of the three occupied HOs of the 33Al sp  shell, the force balance equation is: 

 
2 2 2 2

2 2 2 2 2 2 2
0

3
6

41
8 2 2e e e

e
D D D D

m a b ab m a b Z m a b

 
 
    
 

  
 (23.18) 

 0

3
6

42a a
Z

 
 
  
 

 (23.19) 

With 13Z  , the semimajor axis of the Al H -bond MO is: 
 02.39970a a  (23.20) 

Using the semimajor axis, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.127) in the 
same manner as the organic functional groups given in the Organic Molecular Functional Groups and Molecules section.  For the 
Al H  functional group, 1c  is one and 1 0.75C   based on the orbital composition as in the case of the C H -bond MO.  In 

organoaluminum hydrides, the energy of aluminum is less than the Coulombic energy between the electron and proton of H  
given by Eq. (1.264).  Thus, 2c  in Eqs. (15.51) and (15.61) is also one, and the energy matching condition is determined by the 

2C  parameter.  Then, the hybridization factor for the Al H -bond MO is given by the ratio of 8.87700 eV , the magnitude of 

 3,3Coulomb organoAlHE Al sp  (Eq. (23.4)), and 13.605804 eV , the magnitude of the Coulombic energy between the electron and 

proton of H  (Eq. (1.264)): 

  3
2

8.87700 
3 0.65244

13.605804 

eV
C organoAlH sp HO

eV
   (23.21)  

Since the energy of the MO is matched to that of the 33Al sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3,3E Al sp  given 

by Eq. (23.7), and  3, .TE atom atom msp AO  is 0.88170 eV  corresponding to the independent single-bond charge 
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contribution (Eq. (23.12)).  The energies  1,2D nE AlH   of the functional groups 1,2nAlH   of organoaluminum hydride molecules 

are each given by the corresponding integer n  times that of Al H : 

    1,2D n DE AlH nE AlH   (23.22) 

The branched-chain organoaluminum hydrides, 3n nR AlH  , comprise at least a terminal methyl group ( 3CH ) and at least 

one Al  bound by a carbon-aluminum single bond comprising a C Al  group, and may comprise methylene ( 2CH ), methylyne 

(CH ), C C , and 1,2nAlH   functional groups.  The methyl and methylene functional groups are equivalent to those of straight-

chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain 
alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to 

isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  These groups in branched-chain 
organoaluminum hydrides are equivalent to those in branched-chain alkanes. 

For the C Al  functional group, hybridization of the 2s  and 2 p  AOs of each C  and the 3s  and 3p  AOs of Al  to form 

single 32sp  and 33sp  shells, respectively, forms an energy minimum, and the sharing of electrons between the 32C sp  and 
33Al sp  HOs to form a MO permits each participating orbital to decrease in radius and energy.  Furthermore, the energy of 

aluminum is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  Thus, in 
organoaluminum hydrides, the 32C sp  HO has a hybridization factor of 0.91771  (Eq. (13.430)) with a corresponding energy of 

 3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the Al  HO has an energy of  3,3 8.83630 E Al sp eV  .  To meet the 

equipotential, minimum-energy condition of the union of the 33Al sp  and 32C sp  HOs, 2c  and 2C  of Eqs. (15.2-15.5), (15.51), 

and (15.61) for the Al C -bond MO given by Eqs. (15.77) and (15.79) is: 

 

   
 
     

3 3 3 3
2 2

3

3
23

2   3 2   3

,3 8.83630 
2 0.91771 0.55410

14.63489 , 2

C C sp HO to Al sp HO c C sp HO to Al sp HO

E Al sp eV
c C sp HO

eVE C sp




  



 (23.23) 

The energy of the C Al -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in Eq. (15.51).  

Since the energy of the MO is matched to that of the 33Al sp  HO,  /E AO HO  in Eqs. (15.51) and (15.61) is  3,3E Al sp  given 

by Eq. (23.7).  Since the 32C sp  HOs have four electrons with a corresponding total field of ten in Eq. (15.13); whereas, the 
33Al sp  HOs have three electrons with a corresponding total field of six,  3, .TE atom atom msp AO  is 0.72457 eV  

corresponding to the single-bond contributions of carbon (Eq. (14.151)).     
2

3/ , .H MO TE AO HO E atom atom msp AO    in 

order to match the energies of the carbon and aluminum HOs. 
 

BRIDGING BONDS OF ORGANOALUMINUM HYDRIDES ( Al H Al   AND Al C Al  ) 
As given in the Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section, the Organic Molecular 
Functional Groups and Molecules section, and other sections on bonding in neutral molecules, the molecular chemical bond 
typically comprises an integer number of paired electrons.  One exception given in the Benzene Molecule section and other 
sections on aromatic molecules such as naphthalene, toluene, chlorobenzene, phenol, aniline, nitrobenzene, benzoic acid, 
pyridine, pyrimidine, pyrazine, quinoline, isoquinoline, indole, adenine, fullerene, and graphite is that the paired electrons are 
distributed over a linear combination of bonds such that the bonding between two atoms involves less than an integer multiple of 
two electrons.  In these aromatic cases, three electrons can be assigned to a given bond between two atoms wherein the electrons 
of the linear combination of bonded atoms are paired and comprise an integer multiple of two. 

The 33Al sp  HOs comprise four orbitals containing three electrons as given by Eq. (23.1).  These three occupied orbitals 

can form three single bonds with other atoms wherein each 33Al sp  HO and each orbital from the bonding atom contribute one 
electron each to the pair of the corresponding bond.  However, an alternative bonding is possible that further lowers the energy 
of the resulting molecule wherein the remaining unoccupied orbital participates in bonding.  (Actually an unoccupied orbital has 
no physical basis.  It is only a convenient concept for the bonding electrons in this case additionally having the electron angular 
momentum state with ,m  quantum numbers of (1,1)).  In this case the set of two paired electrons are distributed over three 

atoms and belong to two bonds.  Such an electron deficient bonding involving two paired electrons centered on three atoms is 
called a three-center bond as opposed to the typical single bond called a two-center bond.  The designation for a three-center 
bond involving two 33Al sp  HOs and a 1H s  AO is Al H Al  , and the designation for a three-center bond involving two 

33Al sp  HOs and a 32C sp  HO is Al C Al  . 
Each Al H Al  -bond MO and Al C Al  -bond MO comprises the corresponding single bond and forms with further 

sharing of electrons between each 33Al sp  HO and each 1H s  AO and 32C sp  HO, respectively.  Thus, the geometrical and 
energy parameters of the three-center bond are equivalent to those of the corresponding two-center bonds except that the bond 
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energy is increased in the former case since the donation of electron density from the unoccupied 33Al sp  HO to each 
Al H Al  -bond MO and Al C Al  -bond MO permits the participating orbital to decrease in size and energy.  In order to 
further satisfy the potential, kinetic, and orbital energy relationships, the 33Al sp  HO donates an additional excess of 25% of its 
electron density to form the bridge (three-center-bond MO) to decrease the energy in the multimer.  By considering this electron 
redistribution in the organoaluminum hydride molecule as well as the fact that the central field decreases by an integer for each 
successive electron of the shell, the radius 33organoAlH sp

r  of the 33Al sp  shell calculated from the Coulombic energy, the Coulombic 

energy  3,3Coulomb organoAlHE Al sp  of the outer electron of the 33Al sp  shell, and the energy  3,3organoAlHE Al sp  of the outer 

electron of the 33Al sp  shell are given by Eqs. (23.9), (23.10), and (23.11), respectively.  Thus,  3,3TE Al H Al sp   and 

 3,3TE Al C Al sp  , the energy change with the formation of the three-center-bond MO from the corresponding two-center-

bond MO and the unoccupied 33Al sp  HO is given by Eq. (23.12): 

    3 3,3 ,3 0.88170 T TE Al H Al sp E Al C Al sp eV        (23.24) 

The upper range of the experimental association enthalpy per bridge for both of the reactions. 
    3 32 2 2

2AlH CH AlH CH     (23.25) 

and  
    3 33 3 2

2Al CH Al CH     (23.26) 

is [2] 
    3 3,3 ,3 0.867 T TE Al H Al sp E Al C Al sp eV        (23.27) 

which agrees with Eq. (23.24) very well. 
 The symbols of the functional groups of alkyl organoaluminum hydrides are given in Table 23.1.  The geometrical (Eqs. 
(15.1-15.5), (23.20), and (23.23)) and intercept (Eqs. (15.80-15.87)) parameters of alkyl organoaluminum hydrides are given in 
Tables 23.2 and 23.3, respectively.  Since the energy of the 33Al sp  HO is matched to that of the 32C sp  HO, the radius 32mol sp

r  of 

the 33Al sp  HO of the aluminum atom and the 32C sp  HO of the carbon atom of a given C Al -bond MO are calculated after 

Eq. (15.32) by considering  3, 2
molTE MO sp , the total energy donation to all bonds with which each atom participates in 

bonding.  In the case that the MO does not intercept the Al  HO due to the reduction of the radius from the donation of 33Al sp  
HO charge to additional MO’s, the energy of each MO is energy matched as a linear sum to the Al  HO by contacting it through 
the bisector current of the intersecting MOs as described in the Methane Molecule ( 4CH ) section.  The energy (Eq. (15.61), 

(23.4), (23.7), and (23.21-23.23)) parameters of alkyl organoaluminum hydrides are given in Table 23.5.  The total energy of 
each alkyl aluminum hydride given in Table 23.5 was calculated as the sum over the integer multiple of each  GroupDE  of Table 

23.4 corresponding to functional-group composition of the molecule.  magE  of Table 23.4 is given by Eqs. (15.15) and (23.3).  

The bond angle parameters of organoaluminum hydrides determined using Eqs. (15.88-15.117) are given in Table 23.6.  The 
charge-density in trimethyl aluminum is shown in Figure 23.1. 
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Figure 23.1.  Trimethylaluminum. Color scale, translucent view of the charge-density of  3 3
H C Al  comprising the linear 

combination of three sets of three C H -bond MOs and three C Al -bond MOs with the 33ogranoAlAl sp  HOs and 32C sp  HOs 

shown transparently.  Each C Al -bond MO comprises a 2H -type ellipsoidal MO bridging 32C sp  and 33Al sp  HOs.  For each 

C H  and C Al  bond, the ellipsoidal surface of the 2H -type ellipsoidal MO that transitions to the 32C sp  HO shell with 

radius 00.89582a  (Eq. (15.32)) or 33Al sp  HO, the 33Al sp  HO shell with radius 00.85503a  (Eq. (15.32)), inner 1Al s , 2Al s , 

and 2Al p  shells with radii of 01 0.07778Al s a  (Eq. (10.51)), 02 0.33923Al s a  (Eq. (10.62)), and 02 0.45620Al p a  (Eq. 

(10.212)), respectively, and the nuclei (red, not to scale), are shown.  

 
 

Table 23.1.  The symbols of the functional groups of organoaluminum hydrides. 
 

Functional Group Group Symbol
AlH group of 1,2nAlH   Al H  

AlHAl (bridged H) Al H Al   
CAl bond C Al  
AlCAl (bridged C) Al C Al   

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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TRANSITION METAL ORGANOMETALLIC AND COORDINATE BOND 
The transition-metal atoms fill the 3d  orbitals in the series Sc  to Zn .  The 4s  orbitals are filled except in the cases of Cr  and 
Cu  wherein one 4s  electron occupies a 3d  orbital to achieve a half-filled and filled 3d  shell, respectively.  Experimentally the 
transition-metal elements ionize successively from the 4s  shell to the 3d  shell [12].  Thus, bonding in the transition metals 
involves the hybridization of the 3d  and 4s  electrons to form the corresponding number of 3 4d s  HOs except for Cu  and Zn  
which each have a filled inner 3d  shell and one and two outer 4s  electrons, respectively. Cu  may form a single bond involving 
the 4s  electron or the 3d  and 4s shells may hybridize to form multiple bonds with one or more ligands.  The 4s  shell of Zn  
hybridizes to form two 4s  HOs that provide for two possible bonds, typically two metal-alkyl bonds. 

For organometallic and coordinate compounds comprised of carbon, the geometrical and energy equations are given in 
the Derivation of the General Geometrical and Energy Equations of Organic Chemistry section.  For metal-ligand bonds other 
than to carbon, the force balance equation is that developed in the Force Balance of the   MO of the Carbon Nitride Radical 
section wherein the diamagnetic force terms include orbital and spin angular momentum contributions.  The electrons of the 
3 4d s  HOs may pair such that the binding energy of the HO is increased.  The hybridization factor accordingly changes which 
effects the bond distances and energies.  The diamagnetic terms of the force balance equations of the electrons of the MOs 
formed between the 3 4d s  HOs and the AOs of the ligands also changes depending on whether the nonbonding HOs are 
occupied by paired or unpaired electrons.  The orbital and spin angular momentum of the HOs and MOs is then determined by 
the state that achieves a minimum energy including that corresponding to the donation of electron charge from the HOs and AOs 
to the MOs.  Historically, according to crystal field theory and molecular orbital theory [13] the possibility of a bonding metal 
atom achieving a so called “high-spin” or “low-spin” state having unpaired electrons occupying higher-energy orbitals versus 
paired electrons occupying lower-energy orbitals was due to the strength of the ligand crystal field or the interaction between 
metal orbitals and the ligands, respectively.  Excited-state spectral data recorded on transition-metal organometallic and 
coordinate compounds has been misinterpreted.  Excitation of an unpaired electron in a 3 4d s  HO to a 3 4d s  paired state is 
equivalent to an excitation of the molecule to a higher energy MO since the MOs change energy due to the corresponding change 
in the hybridization factor and diamagnetic force balance terms.  But, levels misidentified as crystal field levels do not exist in 
the absence of excitation by a photon. 

The parameters of the 3 4d s  HOs are determined using Eqs. (15.12-15.21).  For transition metal atoms with electron 
configuration 23 4nd s , the spin-paired 4s  electrons are promoted to the 3 4d s  shell during hybridization as unpaired electrons.  
Also, for 5n   the electrons of the 3d  shell are spin-paired and these electrons are promoted to the 3 4d s  shell during 
hybridization as unpaired electrons.  The energy for each promotion is the magnetic energy given by Eq. (15.15) at the initial 
radius of the 4s  electrons and the paired 3d  electrons determined using Eq. (10.102) with the corresponding nuclear charge Z  
of the metal atom and the number of electrons, n , of the corresponding ion with the filled outer shell from which the pairing 
energy is determined.  Typically, the electrons from the 4s  and 3d  shells successively fill unoccupied HOs until the HO shell is 
filled with unpaired electrons, then the electrons pair per HO.  The magnetic energy of pairing given by Eqs. (15.13) and (15.15) 
is added to  ,3 4CoulombE atom d s  the for each pair.  Thus, after Eq. (15.16), the energy  ,3 4E atom d s  of the outer electron of 

the  3 4atom d s  shell is given by the sum of  ,3 4CoulombE atom d s  and ( )E magnetic : 

  
2 2 2 2 2 22

0 0 0
2 3 2 3 2 3

3   0 3 4 4 3 3 4

2 2 2
,3 4

8 d pairs HO pairsd s e s e d e d s

e e ee
E atom d s

r m r m r m r

  



      
 (23.28) 

The sharing of electrons between the metal 3 4d s  HOs and the ligand AOs or HOs to form a M L -bond MO ( L  not 
C ) permits each participating hybridized or atomic orbital to decrease in radius and energy.  Due to the low binding energy of 
the metal atom and the high electronegativity of the ligand, an energy minimum is achieved while further satisfying the potential, 
kinetic, and orbital energy relationships, each metal 3 4d s  HO donates an excess of an electron per bond of its electron density to 
the M L -bond MO.  In each case, the radius of the hybridized shell is calculated from the Coulombic energy equation by 
considering that the central field decreases by an integer for each successive electron of the shell and the total energy of the shell 
is equal to the total Coulombic energy of the initial AO electrons plus the hybridization energy.  After Eq. (15.17), the total 
energy  . ,3 4TE mol atom d s  of the HO electrons is given by the sum of energies of successive ions of the atom over the n  

electrons comprising the total electrons of the initial AO shell and the hybridization energy: 

    
2

. ,3 4 ,3 4
n

T m
m

E mol atom d s E atom d s IP


   (23.29) 

where mIP  is the m th ionization energy (positive) of the atom and the sum of 1IP  plus the hybridization energy is 

 ,3 4E atom d s .  Thus, the radius 3 4d sr  of the hybridized shell due to its donation of a total charge Qe  to the corresponding 

MO is given by: 

 
     

2 21 1

3 4
0 0

( ) ( ) 0.25
8 . ,3 4 8 . ,3 4

Z Z

d s
q Z n q Z nT T

e e
r Z q Q Z q s

E mol atom d s E mol atom d s 

 

   

    
        
   
   (23.30) 

where e  is the fundamental electron charge, 1, 2,3s   for a single, double, and triple bond, respectively, and 4s   for typical 

coordinate and organometallic compounds wherein L  is not carbon.  The Coulombic energy  . ,3 4CoulombE mol atom d s  of the 

outer electron of the  3 4atom d s  shell is given by 
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In the case that during hybridization the metal spin-paired 4s  AO electrons are unpaired to contribute electrons to the 3 4d s  HO, 
the energy change for the promotion to the unpaired state is the magnetic energy ( )E magnetic  at the initial radius r of the AO 
electron given by Eq. (15.15).  In addition in the case that the 3 4d s  HO electrons are paired, the corresponding magnetic energy 
is added.  Then, the energy  . ,3 4E mol atom d s  of the outer electron of the 3 4atom d s  shell is given by the sum of 

 . ,3 4CoulombE mol atom d s  and ( )E magnetic : 

  
2 2 2 22
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2 3 2 3
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2 2
. ,3 4

8 HO pairsd s e s e d s

e ee
E mol atom d s

r m r m r

 



    
 (23.32) 

 ,3 4TE atom atom d s , the energy change of each 3 atom msp  shell with the formation of the atom-atom-bond MO is given by 

the difference between  . ,3 4E mol atom d s  and  ,3 4E atom d s : 

      ,3 4 . ,3 4 ,3 4TE atom atom d s E mol atom d s E atom d s    (23.33) 

Any unpaired electrons of ligands typically pair with unpaired HO electrons of the metal.  In the case that no such 
electrons of the metal are available, the ligand electrons pair and form a bond with an unpaired metal HO when available.  An 
unoccupied HO may form by the pairing of the corresponding HO electrons to form an energy minimum due to the effect on the 

bond parameters such as the diamagnetic force term, hybridization factor, and the  3, .TE atom atom msp AO  term.  In the case 

of carbonyls, the two unpaired 3Csp  HO electrons on each carbonyl pair with any unpaired electrons of the metal HOs.  Any 
excess carbonyl electrons pair in the formation of the corresponding MO and any remaining metal HO electrons pair where 
possible.  In the latter case, the energy of the HO for the determination of the hybridization factor and other bonding parameters 
in Eqs. (15.51) and (15.65) is given by the Coulombic energy plus the pairing energy. 

The force balance of the centrifugal force equated to the Coulombic and magnetic forces is solved for the length of the 
semimajor axis.  The Coulombic force on the pairing electron of the MO is: 

 
2

2
08Coulomb

e
D

ab 
F i  (23.34) 

The spin pairing force is 

 
2

2 22spin pairing
e

D
m a b  F i


 (23.35) 

The diamagnetic force is: 

 
2

1 2 24
e

diamagneticMO
e

n
D

m a b  F i


 (23.36) 

where en  is the total number of electrons that interact with the binding  -MO electron.  The diamagnetic force 2diamagneticMOF  on 

the pairing electron of the   MO is given by the sum of the contributions over the components of angular momentum:  

 
2

2 2 22
i

diamagneticMO
i e

L
D

Z m a b  F i


 (23.37) 

where iL  is the magnitude of the angular momentum component of the metal atom at a focus that is the source of the 

diamagnetism at the  -MO.  The centrifugal force is: 

 
2

2 2centrifugalMO
e

D
m a b  F i


 (23.38) 

The general force balance equation for the  -MO of the metal (M) to ligand (L) M L -bond MO in terms of en  and iL  

corresponding to the orbital and spin angular momentum terms of the 3 4d s  HO shell is: 

 
2 2 2 2
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ie e e
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 (23.39) 

Having a solution for the semimajor axis a  of: 

 01
2

ie

i

Ln
a a

Z

 
   
 

  (23.40) 

In term of the total angular momentum L , the semimajor axis a  is: 

 01
2

en L
a a

Z
    
 

 (23.41) 

Using the semimajor axis, the geometric and energy parameters of the MO are calculated using Eqs. (15.1-15.117) in the same 
manner as the organic functional groups given in the Organic Molecular Functional Groups and Molecules section. 
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Bond angles in organometallic and coordinate compounds are determined using the standard Eqs. (15.70-15.79) and 

(15.88-15.117) with the appropriate  3, .TE atom atom msp AO  for energy matching with the B C  terminal bond of the 

corresponding angle BAC .  For bond angles in general, if the groups can be maximally displaced in terms of steric interactions 
and magnitude of the residual TE  term is less that the steric energy, then the geometry that minimizes the steric interactions is 

the lowest energy.  Steric-energy minimizing geometries include tetrahedral ( dT ) and octahedral symmetry ( hO ).  
 

SCANDIUM FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of scandium is   24 3Ar s d  having the corresponding term 2

3/ 2D .  The total energy of the state is 

given by the sum over the three electrons.  The sum  ,3 4TE Sc d s  of experimental energies [1] of Sc , Sc , and 2Sc   is: 

    ,3 4 24.75666 12.79977 6.56149 44.11792 TE Sc d s eV eV eV eV       (23.42) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Sc d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 
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1.85038
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Z n e e
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e eV e eV 


    (23.43) 

where 21Z   for scandium.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Sc d s  of the outer electron of the 3 4Sc d s  

shell is: 

  
2 2

0 3 4 0 0

,3 4 7.35299 
8 8 1.85038Coulomb

d s

e e
E Sc d s eV

r a 
 

     (23.44) 

During hybridization, the spin-paired 4s  electrons are promoted to the 3 4Sc d s  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 4s  electrons.  From Eq. (10.102) with 21Z   
and 21n  , the radius 21r  of the 4Sc s  shell is: 

 21 02.07358r a  (23.45) 
Using Eqs. (15.15) and (23.45), the unpairing energy is: 

 
   

2 2 2
0 0

3 32
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2 8
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B

e

e
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m r a

  
  


 (23.46) 

Using Eqs. (23.44) and (23.46), the energy  ,3 4E Sc d s  of the outer electron of the 3 4Sc d s  shell is: 
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ee
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 (23.47) 

Next, consider the formation of the Sc L -bond MO wherein each scandium atom has an 3 4Sc d s  electron with an 
energy given by Eq. (23.47).  The total energy of the state of each scandium atom is given by the sum over the three electrons.  
The sum  3 4T Sc LE Sc d s  of energies of 3 4Sc d s  (Eq. (23.47)), Sc , and 2Sc   is: 

 
    

 
3 4 24.75666 12.79977 ,3 4

                        24.75666 12.79977 7.34015 44.89658 

T Sc LE Sc d s eV eV E Sc d s

eV eV eV eV

    

     
 (23.48) 

where  ,3 4E Sc d s  is the sum of the energy of Sc , 6.56149 eV , and the hybridization energy. 

The scandium HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the Sc3d4s shell calculated 
from the Coulombic energy is: 

 
   

2 220

3 4 0
18 0 0

5
( ) 1 1.51524

8 44.89658 8 44.89658 Sc L d s
n

e e
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e eV e eV 


      
 
  (23.49) 

Using Eqs. (15.19) and (23.49), the Coulombic energy  ,3 4Coulomb Sc LE Sc d s  of the outer electron of the 3 4Sc d s  shell is: 

  
2 2

0 3 4 0 0

,3 4 8.97932 
8 8 1.51524Coulomb Sc L

Sc L d s

e e
E Sc d s eV

r a 


 
     (23.50) 

The only magnetic energy term is that for the unpairing of the 4s  electrons given by Eq. (23.46).  Using Eqs. (23.32), (23.46), 
and (23.50), the energy  ,3 4Sc LE Sc d s  of the outer electron of the 3 4Sc d s  shell is: 

  
 

2 22
0

32
0 3 4 21

2
,3 4 8.97932 0.01283 8.96648 

8Sc L
Sc L d s e

ee
E Sc d s eV eV eV

r m r







      


 (23.51) 

Thus,  ,3 4TE Sc L d s , the energy change of each 3 4Sc d s  shell with the formation of the Sc L -bond MO is given by the 

difference between Eq. (23.51) and Eq. (23.47). 
        ,3 4 ,3 4 ,3 4 8.96648 7.34015 1.62633 T Sc LE Sc L d s E Sc d s E Sc d s eV eV eV          (23.52) 
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The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Sc L -bond MO of nScL  is given in Table 23.8 with the force-equation parameters 21Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell. 
For the Sc L  functional groups, hybridization of the 4s  and 3d  AOs of Sc  to form a single 3 4d s  shell forms an 

energy minimum, and the sharing of electrons between the 3 4Sc d s  HO and L  AO to form a MO permits each participating 
orbital to decrease in radius and energy.  The F  AO has an energy of   17.42282 E F eV  , the Cl  AO has an energy of 

  12.96764 E Cl eV  , the O  AO has an energy of   13.61805 E O eV  , and the 3 4Sc d s  HOs have an energy of 

 ,3 4 7.34015 E Sc d s eV   (Eq. (23.47)).  To meet the equipotential condition of the union of the Sc L  2H -type-ellipsoidal-

MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the Sc L -bond MO given by 
Eq. (15.77) is: 

      
 2 2

,3 4 7.34015 
  3 4   3 4 0.42130

17.42282 

E Sc d s eV
c FAO to Sc d sHO C FAO to Sc d sHO

E FAO eV


   


 (23.53) 
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  3 4   3 4 0.56604

12.96764 

E Sc d s eV
c ClAO to Sc d sHO C ClAO to Sc d sHO

E ClAO eV


   


 (23.54) 

    
 2

,3 4 7.34015 
  3 4 0.53900

13.61805 

E Sc d s eV
c O to Sc d sHO

E O eV


  


 (23.55) 

Since the energy of the MO is matched to that of the 3 4Sc d s  HO,  /E AO HO  in Eq. (15.61) is  ,3 4E Sc d s  given by Eq. 

(23.47) and twice this value for double bonds.   3, .TE atom atom msp AO  of the Sc L -bond MO is determined by considering 

that the bond involves an electron transfer from the scandium atom to the ligand atom to form partial ionic character in the bond 
as in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.   3, .TE atom atom msp AO  is 

3.25266 eV , two times the energy of Eq. (23.52) for single bonds, and 6.50532 eV , four times the energy of Eq. (23.52) for 
double bonds. 

The symbols of the functional groups of scandium coordinate compounds are given in Table 23.7.  The geometrical (Eqs. 
(15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33))  
parameters of scandium coordinate compounds are given in Tables 23.8, 23.9, and 23.10, respectively.  The total energy of each 
scandium coordinate compound given in Table 23.11 was calculated as the sum over the integer multiple of each  GroupDE  of 

Table 23.10 corresponding to functional-group composition of the compound.  The charge-densities of exemplary scandium 
coordinate compound, scandium trifluoride comprising the concentric shells of atoms with the outer shell bridged by one or 
more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 23.2. 
 

Figure 23.2.  Scandium Trifluoride. Color scale, translucent view of the charge-density of 3ScF  showing the orbitals of the Sc  

and F  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the corresponding outer 
shell of the atoms participating in each bond, and the nuclei (red, not to scale). 
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Table 23.7.  The symbols of the functional groups of scandium coordinate compounds. 
 

Functional Group Group Symbol
ScF group of ScF  Sc F  (a) 
ScF group of 2ScF  Sc F  (b) 

ScF group of 3ScF  Sc F  (c) 
ScCl group of ScCl  Sc Cl  
ScO group of ScO  Sc O  

 
Table 23.8.  The geometrical bond parameters of scandium coordinate compounds and experimental values. 
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Table 23.10.  The energy parameters (eV) of functional groups of scandium coordinate compounds. 
 
 

 
 
 
 

 
Table 23.11.   The total bond energies of gaseous-state scandium coordinate compounds calculated using the functional group 
composition and the energies of Table 23.10 compared to the gaseous-state experimental values [15]. 
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TITANIUM FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of titanium is   2 24 3Ar s d  having the corresponding term 3

2F .  The total energy of the state is given 

by the sum over the four electrons.  The sum  ,3 4TE Ti d s  of experimental energies [1] of Ti , Ti , 2Ti  , and 3Ti   is 

    ,3 4 43.2672 27.4917 13.5755 6.82812 91.16252 TE Ti d s eV eV eV eV eV        (23.56) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Ti d s  shell may be calculated from the Coulombic energy using Eq. (15.13): 

 
   

2 221

3 4 0
18 0 0

( ) 10
1.49248

8 91.16252 8 91.16252 d s
n

Z n e e
r a

e eV e eV 


    (23.57) 

where 22Z   for titanium.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Ti d s  of the outer electron of the 3 4Ti d s  

shell is: 

  
2 2

0 3 4 0 0

,3 4 9.11625 
8 8 1.49248Coulomb

d s

e e
E Ti d s eV

r a 
 

     (23.58) 

During hybridization, the spin-paired 4s  electrons are promoted to the 3 4Ti d s  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 4s  electrons.  From Eq. (10.102) with 22Z   
and 22n  , the radius 22r  of the 4Ti s  shell is: 

 22 01.99261r a  (23.59) 

Using Eqs. (15.15) and (23.59), the unpairing energy is: 

 
   

2 2 2
0 0

3 32
22 0

2 8
( ) 0.01446 

1.99261
B

e

e
E magnetic eV

m r a

  
  


 (23.60) 

Using Eqs. (23.58) and (23.60), the energy  ,3 4E Ti d s  of the outer electron of the 3 4Ti d s  shell is: 
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 (23.61) 

Next, consider the formation of the Ti L -bond MO wherein each titanium atom has a 3 4Ti d s  electron with an energy 
given by Eq. (23.61).  The total energy of the state of each titanium atom is given by the sum over the four electrons.  The sum 

 3 4T Ti LE Ti d s  of energies of 3 4Ti d s  (Eq. (23.61)), Ti , 2Ti  , and 3Ti   is: 

 

    
 

3 4 43.2672 27.4917 13.5755 ,3 4

                        43.2672 27.4917 13.5755 9.10179 

                        93.43619 

T Ti LE Ti d s eV eV eV E Ti d s

eV eV eV eV

eV

     

    

 

 (23.62) 

where  ,3 4E Ti d s  is the sum of the energy of Ti , 6.82812 eV , and the hybridization energy. 

The titanium HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4Ti d s  shell calculated 

from the Coulombic energy is: 

 
   

2 221

3 4 0
18 0 0

9
( ) 1 1.31054

8 93.43619 8 93.43619 Ti L d s
n

e e
r Z n a

e eV e eV 


      
 
  (23.63) 

Using Eqs. (15.19) and (23.63), the Coulombic energy  ,3 4Coulomb Ti LE Ti d s  of the outer electron of the 3 4Ti d s  shell is: 

  
2 2

0 3 4 0 0

,3 4 10.38180 
8 8 1.31054Coulomb Ti L

Ti L d s

e e
E Ti d s eV

r a 


 
     (23.64) 

The only magnetic energy term is that for the unpairing of the 4s  electrons given by Eq. (23.60).  Using Eqs. (23.32), (23.60), 
and (23.64), the energy  ,3 4Ti LE Ti d s  of the outer electron of the 3 4Ti d s  shell is: 

  
 

2 22
0

32
0 3 4 22

2
,3 4 10.38180 0.01446 10.36734 

8Ti L
Ti L d s e

ee
E Ti d s eV eV eV

r m r







      


 (23.65) 

Thus,  ,3 4TE Ti L d s , the energy change of each 3 4Ti d s  shell with the formation of the Ti L -bond MO is given by the 

difference between Eq. (23.65) and Eq. (23.61). 
        ,3 4 ,3 4 ,3 4 10.36734 9.10179 1.26555 T Ti LE Ti L d s E Ti d s E Ti d s eV eV eV          (23.66) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Ti L -bond MO of nTiL  is given in Table 23.13 with the force-equation parameters 22Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell. 
For the Ti L  functional groups, hybridization of the 4s  and 3d  AOs of Ti  to form a single 3 4d s  shell forms an energy 

minimum, and the sharing of electrons between the 3 4Ti d s  HO and L  AO to form a MO permits each participating orbital to 
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decrease in radius and energy.  The F AO has an energy of   17.42282 E F eV  , the Cl AO has an energy of 

  12.96764 E Cl eV  , the Br  AO has an energy of   11.8138 E Br eV  , the I  AO has an energy of 

  10.45126 E I eV  , the O  AO has an energy of   13.61805 E O eV  , and the 3 4Ti d s  HOs have an energy of 

 ,3 4 9.10179 E Ti d s eV   (Eq. (23.61)).  To meet the equipotential condition of the union of the Ti L  2H -type-ellipsoidal-

MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the Ti L -bond MO given by 

Eq. (15.77) is: 

    
 2

,3 4 9.10179 
  3 4 0.52241

17.42282 

E Ti d s eV
C FAO to Ti d sHO

E FAO eV


  


 (23.67) 

    
 2

,3 4 9.10179 
  3 4 0.70188

12.96764 

E Ti d s eV
C ClAO to Ti d sHO

E ClAO eV


  


 (23.68) 

      
 2 2

,3 4 9.10179 
  3 4   3 4 0.77044

11.8138 

E Ti d s eV
c BrAO to Ti d sHO C BrAO to Ti d sHO

E BrAO eV


   


 (23.69) 

      
 2 2

,3 4 9.10179 
  3 4   3 4 0.87088

10.45126 

E Ti d s eV
c IAO to Ti d sHO C IAO to Ti d sHO

E IAO eV


   


 (23.70) 

    
 2

,3 4 9.10179 
  3 4 0.66836

13.61805 

E Ti d s eV
c O to Ti d sHO

E O eV


  


 (23.71) 

Since the energy of the MO is matched to that of the 3 4Ti d s  HO,  /E AO HO  in Eq. (15.61) is  ,3 4E Ti d s  given by Eq. 

(23.61) and twice this value for double bonds.   3, .TE atom atom msp AO  of the Ti L -bond MO is determined by considering 

that the bond involves an electron transfer from the titanium atom to the ligand atom to form partial ionic character in the bond 
as in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.   3, .TE atom atom msp AO  is 

2.53109 eV , two times the energy of Eq. (23.66). 
The symbols of the functional groups of titanium coordinate compounds are given in Table 23.12.  The geometrical (Eqs. 

(15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of titanium coordinate compound are given in Tables 23.13, 23.14, and 23.15, respectively.  The total energy of each 
titanium coordinate compounds given in Table 23.16 was calculated as the sum over the integer multiple of each  GroupDE  of 

Table 23.15 corresponding to functional-group composition of the compound.  The bond angle parameters of titanium coordinate 
compounds determined using Eqs. (15.88-15.117) are given in Table 23.17.  The  3, .TE atom atom msp AO  term for 2TiOCl  

was calculated using Eqs. (23.30-23.33) as a linear combination of 1s   and 2s   for the energies of  ,3 4E Ti d s  given by 

Eqs. (23.63-23.66) corresponding to a Ti Cl  single bond and a Ti O  double bond.  The charge-densities of exemplary 
titanium coordinate compound, titanium tetrafluoride comprising the concentric shells of atoms with the outer shell bridged by 
one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 23.3. 

 
Figure 23.3.  Titanium Tetrafluoride. Color scale, translucent view of the charge-density of 4TiF  showing the orbitals of the Ti  

and F  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the corresponding outer 

shell of the atoms participating in each bond, and the nuclei (red, not to scale). 
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Table 23.12.   The symbols of the functional groups of titanium coordinate compounds. 
 

Functional Group Group Symbol
TiF group of TiF  Ti F  (a) 
TiF group of 2TiF  Ti F  (b) 

TiF group of 3TiF  Ti F  (c) 

TiF group of 4TiF  Ti F  (d) 
TiCl group of TiCl  Ti Cl  (a) 
TiCl group of 2TiCl  Ti Cl  (b) 

TiCl group of 3TiCl  Ti Cl  (c) 

TiCl group of 4TiCl  Ti Cl  (d) 

TiBr group of TiBr  Ti Br  (a) 
TiBr group of 2TiBr  Ti Br  (b) 

TiBr group of 3TiBr  Ti Br  (c) 

TiBr group of 4TiBr  Ti Br  (d) 

TiI group of TiI  Ti I  (a) 
TiI group of 2TiI  Ti I  (b) 

TiI group of 3TiI  Ti I  (c) 

TiI group of 4TiI  Ti I  (d) 

TiO group of TiO  Ti O  (a) 
TiO group of 2TiO  Ti O  (b) 
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VANADIUM FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of vanadium is   2 34 3Ar s d  having the corresponding term 4

3/ 2F .  The total energy of the state is 

given by the sum over the five electrons.  The sum  ,3 4TE V d s  of experimental energies [1] of V , V  , 2V  , 3V  , and 4V   is 

    ,3 4 65.2817 46.709 29.311 14.618 6.74619 162.66589 TE V d s eV eV eV eV eV eV         (23.72) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4V d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 222

3 4 0
18 0 0

( ) 15
1.25464

8 162.66589 8 162.66589 d s
n

Z n e e
r a

e eV e eV 


    (23.73) 

where 23Z   for vanadium.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE V d s  of the outer electron of the 3 4V d s  

shell is: 

  
2 2

0 3 4 0 0

,3 4 10.844393 
8 8 1.25464Coulomb

d s

e e
E V d s eV

r a 
 

     (23.74) 

During hybridization, the spin-paired 4s  electrons are promoted to the 3 4V d s  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 4s  electrons.  From Eq. (10.102) with 23Z   
and 23n  , the radius 23r  of  the 4V s  shell is: 

 23 02.01681r a  (23.75) 

Using Eqs. (15.15) and (23.74), the unpairing energy is: 

 
   

2 2 2
0 0

3 32
23 0

2 8
( ) 0.01395 

2.01681
B

e

e
E magnetic eV

m r a

  
  


 (23.76) 

Using Eqs. (23.73) and (23.75), the energy  ,3 4E V d s  of the outer electron of the 3 4V d s  shell is: 

  
 

2 22
0

32
0 3 4 23

2
,3 4 10.844393 0.01395 10.83045 

8 d s e

ee
E V d s eV eV eV

r m r





      


 (23.77) 

Next, consider the formation of the V L -bond MO wherein each vanadium atom has a 3 4V d s  electron with an energy 
given by Eq. (23.76).  The total energy of the state of each vanadium atom is given by the sum over the five electrons.  The sum 

 3 4T V LE V d s  of energies of 3 4V d s  (Eq. (23.76)), V  , 2V  , 3V  , and 4V   is: 

 
   

65.2817 46.709 29.311 65.2817 46.709 29.311 
3 4

14.618 ,3 4 14.618 10.83045

166.75015 

T V L

eV eV eV eV eV eV
E V d s

eV E V d s eV

eV



     
           
 

 (23.78) 

where  ,3 4E V d s  is the sum of the energy of V , 6.74619 eV , and the hybridization energy. 

The vanadium HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4V d s  shell calculated 

from the Coulombic energy is: 

 
   

2 222

3 4 0
18 0 0

14
( ) 1 1.14232

8 166.75015 8 166.75015 V L d s
n

e e
r Z n a

e eV e eV 


      
 
  (23.79) 

Using Eqs. (15.19) and (23.78), the Coulombic energy  ,3 4Coulomb V LE V d s  of the outer electron of the 3 4V d s  shell is 

  
2 2

0 3 4 0 0

,3 4 11.91072 
8 8 1.14232Coulomb V L

V L d s

e e
E V d s eV

r a 


 
     (23.80) 

The only magnetic energy term is that for the unpairing of the 4s  electrons given by Eq. (23.75).  Using Eqs. (23.32), (23.73), 
and (23.79), the energy  ,3 4V LE V d s  of the outer electron of the 3 4V d s  shell is: 

  
 

2 22
0

32
0 3 4 23

2
,3 4 11.91072 0.01446 11.89678 

8V L
V L d s e

ee
E V d s eV eV eV

r m r







      


 (23.81) 

Thus,  ,3 4TE V L d s , the energy change of each 3 4V d s  shell with the formation of the V L -bond MO is given by the 

difference between Eq. (23.80) and Eq. (23.76): 
        ,3 4 ,3 4 ,3 4 11.89678 10.83045 1.06633 T V LE V L d s E V d s E V d s eV eV eV          (23.82) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
V L -bond MO of nVL  is given in Table 23.19 with the force-equation parameters 23Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell.  The semimajor axis a  of carbonyl and organometallic 
compounds are solved using Eq. (15.51). 

For the V L  functional groups, hybridization of the 4s  and 3d  AOs of V  to form a single 3 4d s  shell forms an energy 
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minimum, and the sharing of electrons between the 3 4V d s  HO and L  AO to form a MO permits each participating orbital to 
decrease in radius and energy.  The F  AO has an energy of   17.42282 E F eV  , the Cl  AO has an energy of 

  12.96764 E Cl eV  , the 32arylC sp  HO has an energy of  3, 2 15.76868 arylE C sp eV   (Eq. (14.246)), the 32C sp  HO has 

an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), the N  AO has an energy of   14.53414 E N eV  , the O  AO has an 

energy of   13.61805 E O eV  , and the 3 4V d s  HO has an energy of  ,3 4 10.84439 CoulombE V d s eV   (Eq. (23.75)) and 

 ,3 4 10.83045 E V d s eV   (Eq. (23.76)).  To meet the equipotential condition of the union of the V L  2H -type-ellipsoidal-

MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the V L -bond MO given by Eq. 

(15.77) is: 

    
 2

,3 4 10.83045 
  3 4 0.62162

17.42282 

E V d s eV
C FAO to V d sHO

E FAO eV


  


 (23.83) 

    
 2

,3 4 10.83045 
  3 4 0.83519

12.96764 

E V d s eV
C ClAO to V d sHO

E ClAO eV


  


 (23.84) 

    
     3 3

2 23

,3 4 10.84439 
2   3 4 2 0.91771 0.68002

14.63489 , 2
CoulombE V d s eV

C C sp HO to V d sHO c C sp HO
eVE C sp


  


 (23.85) 

      
 

3 3
2 2 3

,3 4 10.84439 
2   3 4 2   3 4 0.68772

15.76868 , 2
Coulomb

aryl aryl

aryl

E V d s eV
c C sp HO to V d sHO C C sp HO to V d sHO

eVE C sp


   


 (23.86) 

      
 2 2

,3 4 10.83045 
  3 4   3 4 0.74517

14.53414 

E V d s eV
c NAO to V d sHO C NAO to V d sHO

E NAO eV


   


 (23.87) 

    
 2

,3 4 10.83045 
  3 4 0.79530

13.61805 

E V d s eV
c O to V d sHO

E O eV


  


 (23.88) 

where Eqs. (15.76), (15.79), and (13.430) were used in Eq. (23.84).  Since the energy of the MO is matched to that of the 3 4V d s  
HO of coordinate compounds,  /E AO HO  in Eq. (15.61) is  ,3 4E V d s  given by Eq. (23.76) and twice this value for double 

bonds.  For carbonyls and organometallics, the energy of the MO is matched to that of the Coulomb energy of the 3 4V d s  HO 

such that  /E AO HO  in Eq. (15.61) is  ,3 4CoulombE V d s  given by Eq. (23.73).   3, .TE atom atom msp AO  of the V L -bond 

MO is determined by considering that the bond involves an electron transfer from the vanadium atom to the ligand atom to form 
partial ionic character in the bond as in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.  For 

coordinate compounds,  3, .TE atom atom msp AO  is 2.53109 eV , two times the energy of Eq. (23.81).  For carbonyl and 

organometallic compounds,  3, .TE atom atom msp AO  is 1.65376 eV  and 2.26759 eV , respectively.   The former is based 

on the energy match between the 3 4V d s  HO and the 32C sp  HO of a carbonyl group and is given by the linear combination of 
0.72457 eV  (Eq. (14.151)) and 0.92918 eV  (Eq. (14.513)), respectively.  The latter is equivalent to that of ethylene and the 

aryl group, 2.26759 eV , given by Eq. (14.247).  The C O  functional group of carbonyls is equivalent to that of formic acid 
given in the Carboxylic Acids section except that KvibE  corresponds to that of a metal carbonyl and  /TE AO HO  of Eq. (15.47) 

is: 
      

2
/ /  14.63489 3.58557 18.22046 T H MOE AO HO E AO HO eV eV eV        (23.89) 

wherein the additional  /  14.63489 E AO HO eV   (Eq. (15.25)) component corresponds to the donation of both unpaired 

electrons of the 32C sp  HO of the carbonyl group to the metal-carbonyl bond.  The benzene groups of organometallic, 6 6 2( )V C H  

are equivalent to those given in the Aromatic and Heterocyclic Compounds section. 
The symbols of the functional groups of vanadium coordinate compounds are given in Table 23.18.  The geometrical 

(Eqs. (15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of vanadium coordinate compounds are given in Tables 23.19, 23.20, and 23.21, respectively.  The total energy of 
each vanadium coordinate compound given in Table 23.22 was calculated as the sum over the integer multiple of each  GroupDE  

of Table 23.21 corresponding to functional-group composition of the compound.  The bond angle parameters of vanadium 

coordinate compounds determined using Eqs. (15.88-15.117) are given in Table 23.23.  The  3, .TE atom atom msp AO  term 

for 3VOCl  was calculated using Eqs. (23.30-23.33) with 1s   for the energies of  ,3 4E V d s  given by Eqs. (23.78-23.81).  The 

charge-densities of exemplary vanadium carbonyl and organometallic compounds, vanadium hexacarbonyl (  6
V CO ) and 

dibenzene vanadium ( 6 6 2( )V C H ), respectively, comprising the concentric shells of atoms with the outer shell bridged by one or 

more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 23.4A and B. 
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Figure 23.4.  (A) Vanadium Hexacarbonyl. Color scale, translucent view of the charge-density of  6
V CO  showing the orbitals 

of the V , C , and O  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond, and the nuclei (red, not to scale).  (B) Dibenzene Vanadium. 
Color scale, translucent view of the charge-density of 6 6 2( )V C H  showing the orbitals of the V  and C  atoms at their radii, the 

ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atoms 

participating in each bond, and the hydrogen nuclei (red, not to scale). 
 

 
 
 
Table 23.18.  The symbols of the functional groups of vanadium coordinate compounds. 

Functional Group Group Symbol
VF group of 5VF  V F  

VCl group of 4VCl  V Cl  
VN group of VN  V N  
VO group of VO  and 2VO  V O  

VCO group of  6
V CO  V CO  

C=O C O  
VCaryl group of 6 6 2( )V C H  6 6V C H  

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  

 
Table 23.19.  The geometrical bond parameters of vanadium coordinate compounds and experimental values. 

Parameter V F  
Group 

V Cl  
Group 

V N  
Group 

V O  
Group 

V CO  
Group 

C O  
Group 

6 6
V C H  

Group 

3e

C C  
Group

CH  
Group 

e
n  2 3 1 2      

L  
3

2
4

 2 
3

4 8
4

  
3

3
4

      

 0
 a a  2.07531 2.58696 1.97514 2.11296 2.34957 1.184842 2.21181 1.47348 1.60061 

 0
'  c a  1.49187 2.03222 1.62806 1.62997 1.85880 1.08850 2.07080 1.31468 1.03299 

Bond 
Length 

 2 '  c Å  
1.57893 2.15081 1.72306 1.72509 1.96727 1.15202 2.19164 1.39140 1.09327 

Exp. Bond 
Length 

 Å  

1.71 [18] 

(
5

VF ) 

2.138 [18] 

(
4

VCl ) 
1.612 [24] 

(VN ) 

1.890 [25]
 

1.5893 [18] 
(VO ) 

2.015 [18] 

(  
6

V CO ) 

1.138[18] 

(  
6

V CO ) 

2.17 [26] 

(  6 6 2
V C H ) 

1.399 [3] 
(benzene) 

1.101 [3] 
(benzene) 

 0
,  b c a  1.44264 1.60075 1.11830 1.34454 1.43713 0.46798 0.77710 0.66540 1.22265 

 0.71887 0.78556 0.82428 0.77142 0.79112 0.91869 0.93625 0.89223 0.64537
 



Chapter 23 1360

 
T

ab
le

 2
3.

20
.  

T
he

 M
O

 to
 H

O
 in

te
rc

ep
t g

eo
m

et
ri

ca
l b

on
d 

pa
ra

m
et

er
s 

of
 v

an
ad

iu
m

 c
oo

rd
in

at
e 

co
m

po
un

ds
.  

E
T
 is

 E
T
 (

at
om

–a
to

m
,H

O
.A

O
).

  



Organometallic and Coordinate Functional Groups and Molecules 1361

Table 23.21.   The energy parameters (eV) of functional groups of vanadium coordinate compounds.  
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CHROMIUM FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of chromium is   1 54 3Ar s d  having the corresponding term 7

3S .  The total energy of the state is given 

by the sum over the six electrons.  The sum  ,3 4TE Cr d s  of experimental energies [1] of Cr , Cr , 2Cr  , 3Cr  , 4Cr  , and 
5Cr   is 

  
90.6349 69.46 49.16 

,3 4 263.46711 
30.96 16.4857 6.76651 T

eV eV eV
E Cr d s eV

eV eV eV

  
       

 (23.90) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Cr d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 223

3 4 0
18 0 0

( ) 21
1.08447

8 263.46711 8 263.46711 d s
n

Z n e e
r a

e eV e eV 


    (23.91) 

where 24Z   for chromium.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Cr d s  of the outer electron of the 3 4Cr d s  

shell is: 

  
2 2

0 3 4 0 0

,3 4 12.546053 
8 8 1.08447Coulomb

d s

e e
E Cr d s eV

r a 
 

     (23.92) 

Next, consider the formation of the Cr L -bond MO wherein each chromium atom has a 3 4Cr d s  electron with an 
energy given by Eq. (23.91).  The total energy of the state of each chromium atom is given by the sum over the six electrons.  
The sum  3 4T Cr LE Cr d s  of energies of 3 4Cr d s  (Eq. (23.91)), Cr , 2Cr  , 3Cr  , 4Cr  , and 5Cr   is: 

 

   
90.6349 69.46 49.16 

3 4
30.96 16.4857 ,3 4

90.6349 69.46 49.16 
                        269.24665 

30.96 16.4857 12.546053 

T Cr L
Coulomb

eV eV eV
E Cr d s

eV eV E Cr d s

eV eV eV
eV

eV eV eV



  
     

  
       

 (23.93) 

where  ,3 4E Cr d s  is the sum of the energy of Cr , 6.76651 eV , and the hybridization energy. 

The chromium HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4Cr d s  shell calculated 

from the Coulombic energy is: 

 
   

2 223

3 4 0
18 0 0

20
( ) 1 1.01066

8 269.24665 8 269.24665 Cr L d s
n

e e
r Z n a

e eV e eV 


      
 
  (23.94) 

Using Eqs. (15.19) and (23.93), the Coulombic energy  ,3 4Coulomb Cr LE Cr d s  of the outer electron of the 3 4Cr d s  shell is 

  
2 2

0 3 4 0 0

,3 4 13.46233 
8 8 1.01066Coulomb Cr L

Cr L d s

e e
E Cr d s eV

r a 


 
     (23.95) 

Thus,  ,3 4TE Cr L d s , the energy change of each 3 4Cr d s  shell with the formation of the Cr L -bond MO is given by the 

difference between Eq. (23.94) and Eq. (23.91): 
        ,3 4 ,3 4 ,3 4 13.46233 12.546053 0.91628 T Cr LE Cr L d s E Cr d s E Cr d s eV eV eV          (23.96) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Cr L -bond MO of nCrL  is given in Table 23.25 with the force-equation parameters 24Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell.  The semimajor axis a  of carbonyl and organometallic 
compounds are solved using Eq. (15.51). 

For the Cr L  functional groups, hybridization of the 4s  and 3d  AOs of Cr  to form a single 3 4d s  shell forms an 
energy minimum, and the sharing of electrons between the 3 4Cr d s  HO and L  AO to form a MO permits each participating 
orbital to decrease in radius and energy.  The F  AO has an energy of   17.42282 E F eV  , the Cl  AO has an energy of 

  12.96764 E Cl eV  , the 32arylC sp  HO has an energy of  3, 2 15.76868 arylE C sp eV   (Eq. (14.246)), the 32C sp  HO has 

an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), the O  AO has an energy of   13.61805 E O eV  , and the 3 4Cr d s  

HO has an energy of  ,3 4 12.54605 CoulombE Cr d s eV   (Eq. (23.91)).  To meet the equipotential condition of the union of the 

Cr L  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the 

Cr L -bond MO given by Eq. (15.77) is: 

      
 2 2

,3 4 12.54605 
  3 4   3 4 0.72009

17.42282 
CoulombE Cr d s eV

c FAO to Cr d sHO C FAO to Cr d sHO
E FAO eV


   


 (23.97) 

      
 2 2

,3 4 12.54605 
  3 4   3 4 0.96749

12.96764 
CoulombE Cr d s eV

c ClAO to Cr d sHO C ClAO to Cr d sHO
E ClAO eV


   


 (23.98) 
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3 3
2 2 3

,3 4 12.54605 
2   3 4 2   3 4 0.85727

14.63489 , 2
CoulombE Cr d s eV

c C sp HO to Cr d sHO C C sp HO to Cr d sHO
eVE C sp


   


 (23.99) 

    
 

3
2 3

,3 4 12.54605 
2   3 4 0.79563

15.76868 , 2
Coulomb

aryl

aryl

E Cr d s eV
C C sp HO to Cr d sHO

eVE C sp


  


 (23.100) 

      
 2 2

,3 4 12.54605 
  3 4   3 4 0.92128

13.61805 
CoulombE Cr d s eV

c O to Cr d sHO C O to Cr d sHO
E O eV


   


 (23.101) 

Since the energy of the MO is matched to that of the 3 4CoulombCr d s  HO,  /E AO HO  in Eq. (15.61) is  ,3 4CoulombE Cr d s  given 

by Eq. (23.91) and twice this value for double bonds.   3, .TE atom atom msp AO  of the Cr L -bond MO is determined by 

considering that the bond involves an electron transfer from the chromium atom to the ligand atom to form partial ionic character 
in the bond as in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.  For coordinate compounds, 

 3, .TE atom atom msp AO  is 1.83256 eV , two times the energy of Eq. (23.95).  For carbonyl and organometallic compounds, 

 3, .TE atom atom msp AO  is 1.44915 eV  (Eq. (14.151)), and the C O  functional group of carbonyls is equivalent to that of 

vanadium carbonyls.  The benzene and substituted benzene groups of organometallics are equivalent to those given in the 
Aromatic and Heterocyclic Compounds section. 

The symbols of the functional groups of chromium coordinate compounds are given in Table 23.24. The corresponding 
designation of the structure of the  3 6 33

CH C H  group of  3 6 3 23
( )Cr CH C H  is equivalent to that of toluene shown in Figure 

23.5B.  The geometrical (Eqs. (15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. 
(15.61) and (23.28-23.33)) parameters of chromium coordinate compounds are given in Tables 23.25, 23.26, and 23.27, 
respectively.  The total energy of each chromium coordinate compound given in Table 23.28 was calculated as the sum over the 
integer multiple of each  GroupDE  of Table 23.27 corresponding to functional-group composition of the compound.  The bond 

angle parameters of chromium coordinate compounds determined using Eqs. (15.88-15.117) are given in Table 23.29.  The 

 3, .TE atom atom msp AO  term for 3CrOCl  was calculated using Eqs. (23.30-23.33) with 1s   for the energies of 

 ,3 4CoulombE Cr d s  given by Eqs. (23.93-23.95).  The charge-densities of exemplary chromium carbonyl and organometallic 

compounds, chromium hexacarbonyl (  6
Cr CO ) and di-(1,2,4-trimethylbenzene)  chromium (  3 6 3 23

( )Cr CH C H ), respectively, 

comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with 

one or more hydrogen MOs are shown in Figures 23.5A and C. 
 
Figure 23.5.   (A) Chromium Hexacarbonyl. Color scale, translucent view of the charge-density of  6

Cr CO  showing the 

orbitals of the Cr , C , and O  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond, and the nuclei (red, not to scale).  (B) Toluene.  (C) Di-(1,2,4-
trimethylbenzene) Chromium. Color scale, opaque view of the charge-density of  3 6 3 23

( )Cr CH C H  showing the orbitals of the 

Cr  and C  atoms at their radii and the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond. 
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Table 23.24.   The symbols of the functional groups of chromium coordinate compounds. 
 
 

 
Table 23.25.   The geometrical bond parameters of chromium coordinate compounds and experimental values. 
 

 

Functional Group Group Symbol
CrF group of 2CrF  Cr F  

CrCl group of 2CrCl  Cr Cl  

CrO group of CrO  Cr O  (a) 
CrO group of 2CrO  Cr O  (b) 

CrO group of 3CrO  Cr O  (c) 

CrCO group of  6
Cr CO  Cr CO  

C=O C O  
CrCaryl group of 6 6 2( )Cr C H  and 

 3 6 3 23
( )Cr CH C H  6 6Cr C H  

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  

a bC C  ( 3CH  to aromatic bond) C C  

CH3 group  3 C H CH  
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MANGANESE FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of manganese is   2 54 3Ar s d  having the corresponding term 6

5/ 2S .  The total energy of the state is 

given by the sum over the seven electrons.  The sum  ,3 4TE Mn d s  of experimental energies [1] of Mn , Mn , 2Mn  , 3Mn  , 
4Mn  , 5Mn  , and 6Mn   is: 

  
119.203 95.6 72.4 51.2 

,3 4 401.93233 
33.668 15.6400 14.22133 T

eV eV eV eV
E Mn d s eV

eV eV eV

   
       

 (23.102) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Mn d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 224

3 4 0
18 0 0

( ) 28
0.96411

8 395.14502 8 395.14502 d s
n

Z n e e
r a

e eV e eV 


    (23.103) 

where 25Z   for manganese.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Mn d s  of the outer electron of the 

3 4Mn d s  shell is: 

  
2 2

0 3 4 0 0

,3 4 14.112322 
8 8 0.96411Coulomb

d s

e e
E Mn d s eV

r a 
 

     (23.104) 

During hybridization, the spin-paired 4s  electrons are promoted to the 3 4Mn d s  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 4s  electrons.  From Eq. (10.102) with 25Z   
and 25n  , the radius 25r  of the 4Mn s  shell is: 

 25 01.83021r a  (23.105) 

Using Eqs. (15.15) and (23.104), the unpairing energy is: 

 
   

2 2 2
0 0

4 3 32
25 0

2 8
( ) 0.01866 

1.83021
B

s

e

e
E magnetic eV

m r a

  
  


 (23.106) 

The electrons from the 4s  and 3d  shells successively fill unoccupied HOs until the HO shell is filled with unpaired electrons, 
then the electrons pair per HO.  In the case of the 3 4Mn d s  shell having seven electrons and six orbitals, one set of electrons is 
paired.  Using Eqs. (15.15) and (23.102), the pairing energy is given by: 

 
   

2 2 2
0 0

3 4 3 32
3 4 0

2 8
( ) 0.12767 

0.96411
B

d s

e d s

e
E magnetic eV

m r a

  
     


 (23.107) 

Thus, after Eq. (23.28), the energy  ,3 4E Mn d s  of the outer electron of the 3 4Mn d s  shell is given by adding the magnetic 

energy of unpairing the 4s electrons (Eq. (23.105)) and pairing of one set of 3 4Mn d s  electrons (Eq. (23.106)) to 

 ,3 4CoulombE Mn d s  (Eq. (23.103)). 

 
 

2 2 2 2 2 22
0 0 0
2 3 2 3 2 3

3   0 3 4 4 3 3 4

2 2 2
,3 4

8

14.112322 0.01866 0.12767 14.22133 

d pairs HO pairsd s e s e d e d s

e e ee
E Mn d s

r m r m r m r

eV eV eV eV

  



   

     

   
 (23.108) 

Next, consider the formation of the Mn L -bond MO wherein each manganese atom has a 3 4Mn d s  electron with an 
energy given by Eq. (23.107).  The total energy of the state of each manganese atom is given by the sum over the seven 
electrons.  The sum  3 4T Mn LE Mn d s  of energies of 3 4Mn d s  (Eq. (23.107)), Mn , 2Mn  , 3Mn  , 4Mn  , 5Mn  , and 6Mn   is: 

 

   
119.203 95.6 72.4 51.2 

3 4
33.668 15.6400 ,3 4

119.203 95.6 72.4 51.2 
                        

33.668 15.6400 14.22133 

                 

T Mn L

eV eV eV eV
E Mn d s

eV eV E Mn d s

eV eV eV eV

eV eV eV



   
     

   
     

       401.93233 eV 

 (23.109) 

where  ,3 4E Mn d s  is the sum of the energy of Mn , 7.43402 eV , and the hybridization energy. 

The manganese HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4Mn d s  shell calculated 

from the Coulombic energy is: 

 
   

2 224

3 4 0
18 0 0

27
( ) 1 0.91398

8 401.93233 8 401.93233 Mn L d s
n

e e
r Z n a

e eV e eV 


      
 
  (23.110) 

Using Eqs. (15.19) and (23.109), the Coulombic energy  ,3 4Coulomb Mn LE Mn d s  of the outer electron of the 3 4Mn d s  shell is: 

  
2 2

0 3 4 0 0

,3 4 14.88638 
8 8 0.91398Coulomb Mn L

Mn L d s

e e
E Mn d s eV

r a 


 
     (23.111) 
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The magnetic energy terms are those for the unpairing of the 4s  electrons (Eq. (23.105)) and pairing one set of 3 4Mn d s  
electrons (Eq. (23.106)).  Using Eqs. (23.32), (23.105), (23.106), and (23.110), the energy  ,3 4Mn LE Mn d s  of the outer 

electron of the 3 4Mn d s  shell is: 

 
 

   

2 2 2 22
0 0

3 32 2
0 3 4 25 3 4

2 2
,3 4

8

                         14.88638 0.01866 0.12767 14.99539 

Mn L
Mn L d s e e d s

e ee
E Mn d s

r m r m r

eV eV eV eV

 





  

     

 
 (23.112) 

Thus,  ,3 4TE Mn L d s , the energy change of each 3 4Mn d s  shell with the formation of the Mn L -bond MO is given by the 

difference between Eq. (23.111) and Eq. (23.107): 

 
     

 
,3 4 ,3 4 ,3 4

                         14.99539 14.22133 0.77406 

T Mn LE Mn L d s E Mn d s E Mn d s

eV eV eV

  

     
 (23.113) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Mn L -bond MO of nMnL  is given in Table 23.31 with the force-equation parameters 25Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell.  The semimajor axis a  of carbonyl and organometallic 
compounds are solved using Eq. (15.51). 

For the Mn L  functional groups, hybridization of the 4s  and 3d  AOs of Mn  to form a single 3 4d s  shell forms an 
energy minimum, and the sharing of electrons between the 3 4Mn d s  HO and L  AO to form a MO permits each participating 
orbital to decrease in radius and energy.  The F  AO has an energy of   17.42282 E F eV  , the Cl  AO has an energy of 

  12.96764 E Cl eV  , the 32C sp  HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), the Coulomb energy of 

3 4Mn d s  HO is  ,3 4 14.11232 CoulombE Mn d s eV   (Eq. (23.103)), the 3 4Mn d s  HO has an energy of 

 ,3 4 14.22133 E Mn d s eV   (Eq. (23.107)), and 13.605804 eV  is the magnitude of the Coulombic energy between the 

electron and proton of H  (Eq. (1.264)).  To meet the equipotential condition of the union of the Mn L  2H -type-ellipsoidal-

MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the Mn L -bond MO given by 

Eq. (15.77) is: 

    
 2

,3 4 14.22133 
  3 4 0.81625

17.42282 

E Mn d s eV
C FAO to Mn d sHO

E FAO eV


  


 (23.114) 

    
 2

12.96764 
  3 4 0.91184

,3 4 14.22133 

E ClAO eV
C ClAO to Mn d sHO

E Mn d s eV


  


 (23.115) 

    
     3 3

2 23

,3 4 14.11232 
2   3 4 2 0.91771 0.88495

14.63489 , 2
CoulombE Mn d s eV

c C sp HO to Mn d sHO c C sp HO
eVE C sp


  


 (23.116) 

    
 2

13.605804 
3 4   3 4 0.96411

,3 4 14.11232 Coulomb

E H eV
C Mn d sHO to Mn d sHO

E Mn d s eV


  


 (23.117) 

where Eqs. (15.76), (15.79), and (13.430) were used in Eq. (23.115) and Eq. (15.71) was used in Eq. (23.116).  Since the energy 
of the MO is matched to that of the 3 4Mn d s  HO in coordinate compounds,  /E AO HO  in Eq. (15.61) is  ,3 4E Mn d s  given 

by Eq. (23.107) and  /E AO HO  in Eq. (15.61) of carbonyl compounds is  ,3 4CoulombE Mn d s  given by Eq. (23.103).  

 3, .TE atom atom msp AO  of the Mn L -bond MO is determined by considering that the bond involves an electron transfer 

from the manganese atom to the ligand atom to form partial ionic character in the bond as in the case of the zwitterions such as 

2H B F   given in the Halido Boranes section.  For the coordinate compounds,  3, .TE atom atom msp AO  is 1.54812 eV , 

two times the energy of Eq. (23.112).  For the Mn CO  bonds of carbonyl compounds,  3, .TE atom atom msp AO  is 

1.44915 eV  (Eq. (14.151)), and the C O  functional group of carbonyls is equivalent to that of vanadium carbonyls. 
The symbols of the functional groups of manganese coordinate compounds are given in Table 23.30.  The geometrical 

(Eqs. (15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of manganese coordinate compounds are given in Tables 23.31, 23.32, and 23.33, respectively.  The total energy of 
each manganese coordinate compound given in Table 23.34 was calculated as the sum over the integer multiple of each  GroupDE  

of Table 23.33 corresponding to functional-group composition of the compound.  The charge-densities of exemplary manganese 
carbonyl compound, dimanganese decacarbonyl (  2 10

Mn CO ) comprising the concentric shells of atoms with the outer shell 

bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 23.6. 
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Figure 23.6.   Diamanganese decacarbonyl. Color scale, opaque view of the charge-density of  2 10
Mn CO  showing the 

orbitals of the Mn , C , and O  atoms at their radii and the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to 

the corresponding outer shell of the atoms participating in each bond. 

 
 
Table 23.30.   The symbols of the functional groups of manganese coordinate compounds. 
 

Functional Group Group Symbol
MnF group of MnF  Mn F  
MnCl group of MnCl  Mn Cl  

MnCO group of  2 10
Mn CO  Mn CO  

MnMn group of  2 10
Mn CO  Mn Mn  

C=O C O  
 
 
Table 23.31.   The geometrical bond parameters of manganese coordinate compounds and experimental values. 
 

 
Parameter Mn F  

Group 
Mn Cl  
Group

Mn CO  
Group

Mn Mn  
Group 

C O  
Group

en  2 3  5  

L  
3

2 4
4

  
3

4 6
4

   
3

3
4

  

 0 a a  2.21856 2.86785 2.23676 3.60392 1.184842 

 0'  c a  1.64864 2.04780 1.72695 2.73426 1.08850 

Bond Length  2 '  c Å  1.74484 2.16729 1.82772 2.89382 1.15202 

Exp. Bond Length 

 Å  
1.729 [45] 
( 2MnF ) 

2.202 [15] 
( 2MnCl ) 

1.830 [46] 
(  2 10

Mn CO ) 
2.923 [46] 

(  2 10
Mn CO ) 

1.151 [29, 46] 
(  2 10

Mn CO ) 

 0,  b c a  1.48459 2.00775 1.42153 2.34778 0.46798 

e  0.74311 0.71405 0.77208 0.75869 0.91869
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Table 23.33.   The energy parameters (eV) of functional groups of manganese coordinate compounds.  
 

 
 
Table 23.34.   The total bond energies of gaseous-state manganese coordinate compounds calculated using the functional 
group composition and the energies of Table 23.33 compared to the gaseous-state experimental values.  
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IRON FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of iron is   2 64 3Ar s d  having the corresponding term 5

4D .  The total energy of the state is given by 

the sum over the eight electrons.  The sum  ,3 4TE Fe d s  of experimental energies [1] of Fe , Fe , 2Fe  , 3Fe  , 4Fe  , 5Fe  , 
6Fe  , and 7Fe   is: 

  
151.06 124.98 99.1 75.0 

,3 4 559.68210 
54.8 30.652 16.1877 7.9024 T

eV eV eV eV
E Fe d s eV

eV eV eV eV

   
        

 (23.118) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Fe d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 225

3 4 0
18 0 0

( ) 36
0.87516

8 559.68210 8 559.68210 d s
n

Z n e e
r a

e eV e eV 


    (23.119) 

where 26Z   for iron.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Fe d s  of the outer electron of the 3 4Fe d s  shell is 

  
2 2

0 3 4 0 0

,3 4 15.546725 
8 8 0.87516Coulomb

d s

e e
E Fe d s eV

r a 
 

     (23.120) 

During hybridization, the spin-paired 4s  electrons and the one. set of paired 3d  electrons are promoted to the 3 4Fe d s  shell as 
initially unpaired electrons.  The energies for the promotions are given by Eq. (15.15) at the initial radii of the 4s  and 3d  
electrons.  From Eq. (10.102) with 26Z   and 26n  , the radius 26r  of the 4Fe s  shell is 

 26 01.72173r a  (23.121) 

and with 26Z   and 24n  , the radius 24r  of the 3Fe d  shell is: 

 24 01.33164r a  (23.122) 

Using Eqs. (15.15), (23.120), and (23.121), the unpairing energies are: 

 
   

2 2 2
0 0

4 3 32
26 0

2 8
( ) 0.02242 

1.72173
B

s

e

e
E magnetic eV

m r a

  
  


 (23.123) 

 
   

2 2 2
0 0

3 3 32
24 0

2 8
( ) 0.04845 

1.33164
B

d

e

e
E magnetic eV

m r a

  
  


 (23.124) 

The electrons from the 4s and 3d shells successively fill unoccupied HOs until the HO shell is filled with unpaired electrons, 
then the electrons pair per HO.  In the case of the Fe3d4s shell having eight electrons and six orbitals, two sets of electrons are 
paired.  Using Eqs. (15.15) and (23.118), the pairing energy is given by: 

 
   

2 2 2
0 0

3 4 3 32
3 4 0

2 8
( ) 0.17069 

0.87516
B

d s

e d s

e
E magnetic eV

m r a

  
     


 (23.125) 

Thus, after Eq. (23.28), the energy  ,3 4E Fe d s  of the outer electron of the 3 4Fe d s  shell is given by adding the magnetic 

energies of unpairing the 4s  (Eq. (23.122)) and 3d  electrons (Eq. (23.123)) and pairing of two sets of 3 4Fe d s  electrons (Eq. 
(23.124)) to  ,3 4CoulombE Fe d s  (Eq. (23.119)). 

 
 

 

2 2 2 2 2 22
0 0 0
2 3 2 3 2 3

3   0 3 4 4 3 3 4

2 2 2
,3 4

8

15.546725 0.02242 0.04845 2 0.17069 15.81724 

d pairs HO pairsd s e s e d e d s

e e ee
E Fe d s

r m r m r m r

eV eV eV eV eV

  



   

      

   
 (23.126) 

Next, consider the formation of the Fe L -bond MO wherein each iron atom has an 3 4Fe d s  electron with an energy 
given by Eq. (23.125).  The total energy of the state of each iron atom is given by the sum over the eight electrons.  The sum 

 3 4T Fe LE Fe d s  of energies of 3 4Fe d s  (Eq. (23.125)), Fe , 2Fe  , 3Fe  , 4Fe  , 5Fe  , 6Fe  , and 7Fe   is: 

 

   
151.06 124.98 99.1 75.0 

3 4
54.8 30.652 16.1877 ,3 4

151.06 124.98 99.1 75.0 
                        

54.8 30.652 16.1877 15.81724 

T Fe L

eV eV eV eV
E Fe d s

eV eV eV E Fe d s

eV eV eV eV

eV eV eV eV



   
      

   
     

567.59694 eV 

 (23.127) 

where E(Fe, 3d 4s) is the sum of the energy of Fe, –7.9024 eV, and the hybridization energy. 
The iron HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4Fe d s  shell calculated from 

the Coulombic energy is: 

 
   

2 225

3 4 0
18 0 0

35
( ) 1 0.83898

8 567.59694 8 567.59694 Fe L d s
n

e e
r Z n a

e eV e eV 


      
 
  (23.128) 

Using Eqs. (15.19) and (23.127), the Coulombic energy  ,3 4Coulomb Fe LE Fe d s  of the outer electron of the 3 4Fe d s  shell is 
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2 2

0 3 4 0 0

,3 4 16.21706 
8 8 0.83898Coulomb Fe L

Fe L d s

e e
E Fe d s eV

r a 


 
     (23.129) 

The magnetic energy terms are those for the unpairing of the 4s  and 3d  electrons (Eqs. (23.122) and (23.123), respectively) and 
paring two sets of 3 4Fe d s  electrons (Eq. (23.124)).  Using Eqs. (23.32), (23.128) and (23.122-23.124), the energy 

 ,3 4Fe LE Fe d s  of the outer electron of the 3 4Fe d s  shell is: 

 
 

     
 

2 2 2 2 2 22
0 0 0

3 3 32 2 2
0 3 4 26 24 3 4

2 2 2
,3 4 2

8

                         16.21706 0.02242 0.04845 2 0.17069 16.48757 

Fe L
Fe L d s e e e d s

e e ee
E Fe d s

r m r m r m r

eV eV eV eV eV

  





   

      

  
 (23.130) 

Thus,  ,3 4TE Fe L d s , the energy change of each 3 4Fe d s  shell with the formation of the Fe L -bond MO is given by the 

difference between Eq. (23.129) and Eq. (23.125): 
        ,3 4 ,3 4 ,3 4 16.48757 15.81724 0.67033 T Fe LE Fe L d s E Fe d s E Fe d s eV eV eV          (23.131) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Fe L -bond MO of nFeL  is given in Table 23.36 with the force-equation parameters 26Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell.  The semimajor axis a  of carbonyl and organometallic 
compounds are solved using Eq. (15.51). 

For the Fe L  functional groups, hybridization of the 4s  and 3d  AOs of Fe  to form a single 3 4d s  shell forms an 
energy minimum, and the sharing of electrons between the 3 4Fe d s  HO and L  AO to form a MO permits each participating 
orbital to decrease in radius and energy.  The F  AO has an energy of   17.42282 E F eV  , the Cl  AO has an energy of 

  12.96764 E Cl eV  , the 32arylC sp  HO has an energy of  3, 2 15.76868 arylE C sp eV   (Eq. (14.246)), the 32C sp  HO has 

an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), the O  AO has an energy of   13.61805 E O eV  , the Coulomb 

energy of 3 4Fe d s  HO is  ,3 4 15.546725 CoulombE Fe d s eV   (Eq. (23.119)), and the 3 4Fe d s  HO has an energy of 

 ,3 4 15.81724 E Fe d s eV   (Eq. (23.125)).  To meet the equipotential condition of the union of the Fe L  2H -type-

ellipsoidal-MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the Fe L -bond MO 

given by Eq. (15.77) is: 

      
 2 2

,3 4 15.81724 
  3 4   3 4 0.90785

17.42282 

E Fe d s eV
c FAO to Fe d sHO C FAO to Fe d sHO

E FAO eV


   


 (23.132) 

      
 2 2

12.96764 
  3 4   3 4 0.81984

,3 4 15.81724 

E ClAO eV
c ClAO to Fe d sHO C ClAO to Fe d sHO

E Fe d s eV


   


 (23.133) 

    
     

3

3 3
2 2

, 2 14.63489 
2   3 4 2 0.91771 0.86389

,3 4 15.54673 Coulomb

E C sp eV
c C sp HO to Fe d sHO c C sp HO

E Fe d s eV


  


 (23.134) 
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,2 14.63489 
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,3 4 15.54673 

aryl aryl
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 (23.135) 

      
 2 2

13.61805 
  3 4   3 4 0.86096

,3 4 15.81724 

E O eV
c O to Fe d sHO C O to Fe d sHO

E Fe d s eV


   


 (23.136) 

where Eqs. (15.76), (15.79), and (13.430) were used in Eq. (23.133) and Eqs. (15.76), (15.79), and (14.417) were used in Eq. 
(23.134).  Since the energy of the MO is matched to that of the 3 4Fe d s  HO in coordinate compounds,  /E AO HO  in Eq. 

(15.61) is  ,3 4E Fe d s  given by Eq. (23.125) and  /E AO HO  in Eq. (15.61) of carbonyl and organometallic compounds is 

 ,3 4CoulombE Fe d s  given by Eq. (23.119).   3, .TE atom atom msp AO  of the Fe L -bond MO is determined by considering 

that the bond involves an electron transfer from the iron atom to the ligand atom to form partial ionic character in the bond as in 
the case of the zwitterions such as 2H B F   given in the Halido Boranes section.  For the coordinate compounds, 

 3, .TE atom atom msp AO  is 1.34066 eV , two times the energy of Eq. (23.130).  For the Fe C  bonds of carbonyl and 

organometallic compounds,  3, .TE atom atom msp AO  is 1.44915 eV  (Eq. (14.151)), and the C O  functional group of 

carbonyls is equivalent to that of vanadium carbonyls.  The aromatic cyclopentadienyl moieties of organometallic  5 5 2
Fe C H  

comprise 
3e

C C  and CH  functional groups that are equivalent to those given in the Aromatic and Heterocyclic Compounds 
section. 
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The symbols of the functional groups of iron coordinate compounds are given in Table 23.35.  The geometrical (Eqs. 
(15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of iron coordinate compounds are given in Tables 23.36, 23.37, and 23.38, respectively.  The total energy of each 
iron coordinate compound given in Table 23.39 was calculated as the sum over the integer multiple of each  GroupDE  of Table 

23.38 corresponding to functional-group composition of the compound.  The charge-densities of exemplary iron carbonyl and 
organometallic compounds, iron pentacarbonyl (  5

Fe CO ) and bis-cylopentadienyl iron or ferrocene (  5 5 2
Fe C H ) comprising 

the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more 

hydrogen MOs are shown in Figures 23.7 and 23.8, respectively. 

 

 
 
 
Table 23.35.   The symbols of the functional groups of iron coordinate compounds. 
 

Functional Group Group Symbol
FeF group of FeF  Fe F  (a) 
FeF2 group of 2FeF  Fe F  (b) 

FeF3 group of 3FeF  Fe F  (c) 

FeCl group of FeCl  Fe Cl  (a) 
FeCl2 group of 2FeCl  Fe Cl  (b) 

FeCl3 group of 3FeCl  Fe Cl  (c) 

FeO group of FeO  Fe O  

FeCO group of  5
Fe CO  Fe CO  

C=O C O  
FeCaryl group of 5 5 2( )Fe C H  5 5Fe C H  

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  

Figure 23.7.   Iron Pentacarbonyl. Color scale, translucent 
view of the charge-density of  5

Fe CO  showing the orbitals 

of the Fe , C , and O  atoms at their radii, the ellipsoidal 
surface of each 2H -type ellipsoidal MO that transitions to 

the corresponding outer shell of the atoms participating in 
each bond, and the nuclei (red, not to scale). 

Figure 23.8.   Bis-cylopentadienyl Iron. Color scale, 
opaque view of the charge-density of  5 5 2

Fe C H  showing 

the orbitals of the Fe  and C  atoms at their radii and the 
ellipsoidal surface of each H  or 2H -type ellipsoidal MO 

that transitions to the corresponding outer shell of the atoms 
participating in each bond.
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COBALT FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of cobalt is   2 74 3Ar s d  having the corresponding term 4

9/ 2F .  The total energy of the state is given 

by the sum over the nine electrons.  The sum  ,3 4TE Co d s  of experimental energies [1] of Co , Co , 2Co  , 3Co  , 4Co  , 5Co  , 
6Co  , 7Co  , and 8Co   is: 

  
186.13 157.8 128.9 102.0 79.5 

,3 4 764.09501 
51.3 33.50 17.084 7.88101 T

eV eV eV eV eV
E Co d s eV

eV eV eV eV

    
        

 (23.137) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Co d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 226

3 4 0
18 0 0

( ) 45
0.80129

8 764.09501 8 764.09501 d s
n

Z n e e
r a

e eV e eV 


    (23.138) 

where 27Z   for cobalt.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Co d s  of the outer electron of the 3 4Co d s  shell 

is 

  
2 2

0 3 4 0 0

,3 4 16.979889 
8 8 0.80129Coulomb

d s

e e
E Co d s eV

r a 
 

     (23.139) 

During hybridization, the spin-paired 4s  electrons and the two sets of paired 3d  electrons are promoted to the 3 4Co d s  shell as 
initially unpaired electrons.  The energies for the promotions are given by Eq. (15.15) at the initial radii of the 4s  and 3d  
electrons.  From Eq. (10.102) with 27Z   and 27n  , the radius 27r  of the 4Co s  shell is: 

 27 01.72640r a  (23.140) 

and with 27Z   and 25n  , the radius 25r  of the 3Co d  shell is: 

 25 01.21843r a  (23.141) 

Using Eqs. (15.15), (23.139), and (23.140), the unpairing energies are: 

 
   

2 2 2
0 0

4 3 32
27 0

2 8
( ) 0.02224 

1.72640
B

s

e

e
E magnetic eV

m r a

  
  


 (23.142) 

 
   

2 2 2
0 0

3 3 32
25 0

2 8
( ) 0.06325 

1.21843
B

d

e

e
E magnetic eV

m r a

  
  


 (23.143) 

The electrons from the 4s  and 3d  shells successively fill unoccupied HOs until the HO shell is filled with unpaired electrons, 
then the electrons pair per HO.  In the case of the 3 4Co d s  shell having nine electrons and six orbitals, three sets of electrons are 
paired.  Using Eqs. (15.15) and (23.137), the pairing energy is given by:  

 
   

2 2 2
0 0

3 4 3 32
3 4 0

2 8
( ) 0.22238 

0.80129
B

d s

e d s

e
E magnetic eV

m r a

  
     


 (23.144) 

Thus, after Eq. (23.28), the energy  ,3 4E Co d s  of the outer electron of the 3 4Co d s  shell is given by adding the magnetic 

energies of unpairing the 4s  (Eq. (23.141)) and 3d  electrons (Eq. (23.142)) and pairing of three sets of 3 4Co d s  electrons (Eq. 
(23.143)) to  ,3 4CoulombE Co d s  (Eq. (23.138)). 

 
 

   

2 2 2 2 2 22
0 0 0
2 3 2 3 2 3

3   0 3 4 4 3 3 4

2 2 2
,3 4
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16.979889 0.02224 2 0.06325 3 0.22238 17.49830 

d pairs HO pairsd s e s e d e d s

e e ee
E Co d s

r m r m r m r
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 (23.145) 

Next, consider the formation of the Co L -bond MO wherein each cobalt atom has an 3 4Co d s  electron with an energy 
given by Eq. (23.144).  The total energy of the state of each cobalt atom is given by the sum over the nine electrons.  The sum 

 3 4T Co LE Co d s  of energies of 3 4Co d s  (Eq. (23.144)), Co , 2Co  , 3Co  , 4Co  , 5Co  , 6Co  , 7Co  , and 8Co   is: 

 

   
186.13 157.8 128.9 102.0 79.5 

3 4
51.3 33.50 17.084 ,3 4

186.13 157.8 128.9 102.0 79.5 
                        

51.3 33.50 17.084 17

T Co L

eV eV eV eV eV
E Co d s

eV eV eV E Co d s

eV eV eV eV eV

eV eV eV



    
      

   
 

   
773.71230 

.49830 
eV

eV

 
  

 

 (23.146) 

where  ,3 4E Co d s  is the sum of the energy of Co , 7.88101 eV , and the hybridization energy. 

The cobalt HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4Co d s  shell calculated from 

the Coulombic energy is: 

 
   

2 226

3 4 0
18 0 0

44
( ) 1 0.77374

8 773.71230 8 773.71230 Co L d s
n

e e
r Z n a

e eV e eV 


      
 
  (23.147) 
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Using Eqs. (15.19) and (23.146), the Coulombic energy  ,3 4Coulomb Co LE Co d s  of the outer electron of the 3 4Co d s  shell is: 

  
2 2

0 3 4 0 0

,3 4 17.58437 
8 8 0.77374Coulomb Co L

Co L d s

e e
E Co d s eV

r a 


 
     (23.148) 

The magnetic energy terms are those for the unpairing of the 4s  and 3d  electrons (Eqs. (23.141) and (23.142), respectively) and 
paring three sets of 3 4Co d s  electrons (Eq. (23.143)).  Using Eqs. (23.32), (23.148) and (23.141-23.143), the energy 

 ,3 4Co LE Co d s  of the outer electron of the 3 4Co d s  shell is: 
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 (23.149) 

Thus,  ,3 4TE Co L d s , the energy change of each 3 4Co d s  shell with the formation of the Co L -bond MO is given by the 

difference between Eq. (23.148) and Eq. (23.144): 
        ,3 4 ,3 4 ,3 4 18.10278 17.49830 0.60448 T Co LE Co L d s E Co d s E Co d s eV eV eV          (23.150) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Co L -bond MO of nCoL  is given in Table 23.41 with the force-equation parameters 27Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell.  The semimajor axis a  of carbonyl and organometallic 
compounds are solved using Eq. (15.51). 

For the Co L  functional groups, hybridization of the 4s  and 3d  AOs of Co  to form a single 3 4d s  shell forms an 
energy minimum, and the sharing of electrons between the 3 4Co d s  HO and L  AO to form a MO permits each participating 
orbital to decrease in radius and energy.  The F  AO has an energy of   17.42282 E F eV  , the Cl  AO has an energy of 

  12.96764 E Cl eV  , the 32C sp  HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), the Coulomb energy of 

3 4Co d s  HO is  ,3 4 16.979889 CoulombE Co d s eV   (Eq. (23.138)), 13.605804 eV  is the magnitude of the Coulombic energy 

between the electron and proton of H  (Eq. (1.264)), and the 3 4Co d s  HO has an energy of  ,3 4 17.49830 E Co d s eV   (Eq. 

(23.144)).  To meet the equipotential condition of the union of the Co L  2H -type-ellipsoidal-MO with these orbitals, the 

hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the Co L -bond MO given by Eq. (15.77) is: 
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17.42282 
  3 4 0.99569

,3 4 17.49830 

E FAO eV
c FAO to Co d sHO

E Co d s eV


  


 (23.151) 
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  3 4 0.74108
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 (23.152) 
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2   3 4 2 0.91771 0.79097

,3 4 16.97989 Coulomb
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c C sp HO to Co d sHO c C sp HO
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 (23.153) 

      
 2 2

13.605804 
  3 4   3 4 0.80129

,3 4 16.97989 Coulomb

E H eV
c HAO to Co d sHO C HAO to Co d sHO

E Co d s eV


   


 (23.154) 

where Eqs. (15.76), (15.79), and (13.430) were used in Eq. (23.152) and Eq. (15.71) was used in Eq. (23.153).  Since the energy 
of the MO is matched to that of the 3 4Co d s  HO in coordinate compounds,  /E AO HO  in Eq. (15.61) is  ,3 4E Co d s  given 

by Eq. (23.144) and  /E AO HO  in Eq. (15.61) of carbonyl compounds is  ,3 4CoulombE Co d s  given by Eq. (23.138).  

 3, .TE atom atom msp AO  of the Co L -bond MO is determined by considering that the bond involves an electron transfer 

from the cobalt atom to the ligand atom to form partial ionic character in the bond as in the case of the zwitterions such as 

2H B F   given in the Halido Boranes section.  For the coordinate compounds,  3, .TE atom atom msp AO  is 1.20896 eV , 

two times the energy of Eq. (23.149).  For the Co C  bonds of carbonyl compounds,  3, .TE atom atom msp AO  is 

1.13379 eV  (Eq. (14.247)), and the C O  functional group of carbonyls is equivalent to that of vanadium carbonyls. 
The symbols of the functional groups of cobalt coordinate compounds are given in Table 23.40.  The geometrical (Eqs. 

(15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of cobalt coordinate compounds are given in Tables 23.41, 23.42, and 23.43, respectively.  The total energy of each 
cobalt coordinate compound given in Table 23.44 was calculated as the sum over the integer multiple of each  GroupDE  of Table 

23.43 corresponding to functional-group composition of the compound.  The charge-densities of exemplary cobalt carbonyl 
compound, cobalt tetracarbonyl hydride (  4

CoH CO ) comprising the concentric shells of atoms with the outer shell bridged by 

one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 23.9. 
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Figure 23.9.   Cobalt Tetracarbonyl Hydride. Color scale, translucent view of the charge-density of  4

CoH CO  showing the 

orbitals of the Co , C , and O  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions 

to the corresponding outer shell of the atoms participating in each bond, and the nuclei (red, not to scale). 
 

 
 
Table 23.40.   The symbols of the functional groups of cobalt coordinate compounds. 
 

Functional Group Group Symbol
CoF2 group of 2CoF  Co F  

CoCl group of CoCl  Co Cl  (a) 
CoCl2 group of 2CoCl  Co Cl  (b) 

CoCl3 group of 3CoCl  Co Cl  (c) 

CoH group of  4
CoH CO  Co H  

CoCO group of  4
CoH CO  Co CO  

C=O C O  
 
Table 23.41.   The geometrical bond parameters of cobalt coordinate compounds and experimental values. 
 

Parameter Co F  
Group 

Co Cl  (a) 
Group 

Co Cl  (b) 
Group

Co Cl  (c) 
Group

Co H  
Group 

Co CO  
Group 

C O  
Group 

en  2 3 3 3 1   

L  
3

7
4

 
3

4 3
4

  
3

2 4
4

  
3

6 2
4

  
3

5
4

   

 0 a a  2.22453 2.74437 2.70237 2.78637 1.66038 2.25172 1.184842 

 0'  c a  1.72222 1.92437 1.90959 1.93904 1.43949 1.73271 1.08850 

Bond Length 

 2 '  c Å  1.82272 2.03667 2.02102 2.05219 1.52349 1.83382 1.15202 

Exp. Bond 
Length 

 Å  

1.72 [54] 
( 2CoF ) 

2.09 [15] 
(CoCl ) 

2.09 [15] 
( CoCl ) 

2.09 [15] 
( CoCl ) 

1.542 [3] 
(CoH ) 

1.82 [55] 
(  4

Ni CO ) 
1.145 [29] 
(  5

Fe CO ) 

 0,  b c a  1.40801 1.95662 1.91214 2.00100 0.82748 1.43804 0.46798 

e  0.77420 0.70121 0.70663 0.69590 0.86697 0.76951 0.91869 
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Table 23.43. The energy parameters (eV) of functional groups of cobalt coordinate compounds.  
 

Parameters Co F  
Group 

Co Cl  
(a) 

Group

Co Cl  
(b) 

Group

Co Cl  
(c) 

Group

Co H  
Group 

Co CO  
Group 

C O  
Group 

1f  1 1 1 1 1 1 1 

1n  1 1 1 1 1 1 2 

2n  0 0 0 0 0 0 0 

3n  0 0 0 0 0 0 0 

1C  0.375 0.5 0.5 0.5 0.5 0.375 0.5 

2C  1 0.74108 0.74108 0.74108 0.80129 1 1 

1c  1 1 1 1 0.75 1 1 

2c  0.99569 1 1 1 0.80129 0.79097 0.85395 

3c  0 0 0 0 0 0 2 

4c  1 1 1 1 1 2 4 

5c  1 1 1 1 1 0 0 

1oC  0.375 0.5 0.5 0.5 0.5 0.375 0.5 

2oC  1 0.74108 0.74108 0.74108 0.80129 1 1 

 ( )eV eV  -32.43083 -24.59516 -25.09218 -24.11830 -30.00832 -25.31882 -134.96850

 ( )pV eV  7.90017 7.07026 7.12499 7.01677 9.45183 7.85231 24.99908 

 ( )T eV  7.28938 4.48102 4.64262 4.32790 9.03661 5.62211 56.95634 
 ( )mV eV  -3.64469 -2.24051 -2.32131 -2.16395 -4.51831 -2.81105 -28.47817 
 /  ( )AO HOE eV  -17.49830 -17.49830 -17.49830 -17.49830 -16.97989 -16.97989 0 

 
2

/  ( )AO HOH MOE eV  0 0 0 0 0 0 -18.22046 

 /  ( )AO HOTE eV  -17.49830 -17.49830 -17.49830 -17.49830 -16.97989 -16.97989 18.22046 

 2  ( )H MOTE eV  -38.38427 -32.78269 -33.14419 -32.43588 -33.01808 -31.63534 -63.27080 

 3, .  ( )TE atom atom msp AO eV  -1.20896 -1.20896 -1.20896 -1.20896 0 -1.13379 -3.58557 

   ( )MOTE eV  -39.59324 -33.99165 -34.35315 -33.64484 -33.01808 -32.76916 -66.85630 

 15 10  /rad s  15.1528 9.19478 5.66480 5.41058 12.2308 7.49254 22.6662 

 ( )KE eV  9.97387 6.05217 3.72867 3.56134 8.05053 4.93172 14.91930 

 ( )DE eV  -0.24738 -0.16544 -0.13123 -0.12561 -0.18534 -0.14397 -0.25544 

 ( )KvibE eV  0.09448 
[54] 

0.05222 
[56] 

0.05222 
[56] 

0.05222 
[56] 

0.23887 
[57] 

0.07181 
[58] 

0.24962 
[29] 

 ( )oscE eV  -0.20014 -0.13933 -0.10512 -0.09950 -0.06590 -0.10806 -0.13063 

 ( )magE eV  0.22238 0.22238 0.22238 0.22238 0.22238 0.14803 0.11441 

   ( )GroupTE eV  -39.79337 -34.13098 -34.45827 -33.74434 -33.08398 -32.87722 -67.11757 

 4  /  ( )c AO HOinitialE eV   -17.49830 -17.49830 -17.49830 -17.49830 -16.97989 -14.63489 -14.63489 

 5  /  ( )c AO HOinitialE eV  -17.42282 -12.96764 -12.96764 -12.96764 -13.59844 0 0 

   ( )GroupDE eV  4.87226 3.66504 3.99233 3.27840 2.50565 3.60744 8.34918 
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NICKEL FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of nickel is   2 84 3Ar s d  having the corresponding term 3

4F .  The total energy of the state is given by 

the sum over the ten electrons.  The sum  ,3 4TE Ni d s  of experimental energies [1] of Ni , Ni , 2Ni  , 3Ni  , 4Ni  , 5Ni  , 6Ni  , 
7Ni  , 8Ni  , and 9Ni   is: 

  
224.6 193 162 133 108 76.06 

,3 4 1012.55864 
54.9 35.19 18.16884 7.6398 T

eV eV eV eV eV eV
E Ni d s eV

eV eV eV eV

     
        

 (23.155) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Ni d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 227

3 4 0
18 0 0

( ) 55
0.73904

8 1012.55864 8 1012.55864 d s
n

Z n e e
r a

e eV e eV 


    (23.156) 

where 28Z   for nickel.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Ni d s  of the outer electron of the 3 4Ni d s  shell 

is: 

  
2 2

0 3 4 0 0

,3 4 18.410157 
8 8 0.73904Coulomb

d s

e e
E Ni d s eV

r a 
 

     (23.157) 

During hybridization, the spin-paired 4s  electrons and the three sets of paired 3d  electrons are promoted to the 3 4Ni d s  shell as 
initially unpaired electrons.  The energies for the promotions are given by Eq. (15.15) at the initial radii of the 4s  and 3d  
electrons.  From Eq. (10.102) with 28Z   and 28n  , the radius 28r  of the 4Ni s  shell is 

 28 01.78091r a  (23.158) 

and with 28Z   and 26n  , the radius 26r  of the 3Ni d  shell is: 

 26 01.15992r a  (23.159) 

Using Eqs. (15.15), (23.157), and (23.158), the unpairing energies are: 

 
   

2 2 2
0 0

4 3 32
28 0

2 8
( ) 0.02026 

1.78091
B

s

e

e
E magnetic eV

m r a

  
  


 (23.160) 

 
   

2 2 2
0 0

3 3 32
26 0

2 8
( ) 0.07331 

1.15992
B

d

e

e
E magnetic eV

m r a

  
  


 (23.161) 

The electrons from the 4s  and 3d  shells successively fill unoccupied HOs until the HO shell is filled with unpaired electrons, 
then the electrons pair per HO.  In the case of the 3 4Ni d s  shell having ten electrons and six orbitals, four sets of electrons are 
paired.  Using Eqs. (15.15) and (23.155), the pairing energy is given by: 
 

 
   

2 2 2
0 0

3 4 3 32
3 4 0

2 8
( ) 0.28344 

0.73904
B

d s

e d s

e
E magnetic eV

m r a

  
     


 (23.162) 

 

Thus, after Eq. (23.28), the energy  ,3 4E Ni d s  of the outer electron of the 3 4Ni d s  shell is given by adding the magnetic 

energies of unpairing the 4s  (Eq. (23.159)) and 3d  electrons (Eq. (23.160)) and pairing of four sets of 3 4Ni d s  electrons (Eq. 
(23.161)) to  ,3 4CoulombE Ni d s  (Eq. (23.156)). 
 

 
 

   

2 2 2 2 2 22
0 0 0
2 3 2 3 2 3

3   0 3 4 4 3 3 4

2 2 2
,3 4

8

18.410157 0.02026 3 0.07331 4 0.28344 19.30374 

d pairs HO pairsd s e s e d e d s

e e ee
E Ni d s

r m r m r m r

eV eV eV eV eV

  



   

      

   
 (23.163) 

 

Next, consider the formation of the Ni L -bond MO wherein each nickel atom has a 3 4Ni d s  electron with an energy 
given by Eq. (23.162).  The total energy of the state of each nickel atom is given by the sum over the ten electrons.  The sum 

 3 4T Ni LE Ni d s  of energies of 3 4Ni d s  (Eq. (23.162)), Ni , 2Ni  , 3Ni  , 4Ni  , 5Ni  , 6Ni  , 7Ni  , 8Ni  , and 9Ni   is: 

 

   
224.6 193 162 133 108 76.06 

3 4
54.9 35.19 18.16884 ,3 4

224.6 193 162 133 108 76.06 
                        

54.9 35.19 18.16884

T Ni L

eV eV eV eV eV eV
E Ni d s

eV eV eV E Ni d s

eV eV eV eV eV eV

eV eV



     
      

    
 

  
1024.22258 

 19.30374 
eV

eV eV

 
   

 (23.164) 

 

where  ,3 4E Ni d s  is the sum of the energy of Ni , 7.6398 eV , and the hybridization energy. 

The nickel HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4Ni d s  shell calculated from 

the Coulombic energy is: 
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2 227

3 4 0
18 0 0

54
( ) 1 0.71734

8 1024.22258 8 1024.22258 Ni L d s
n

e e
r Z n a

e eV e eV 


 
     
 
  (23.165) 

Using Eqs. (15.19) and (23.164), the Coulombic energy  ,3 4Coulomb Ni LE Ni d s  of the outer electron of the 3 4Ni d s  shell is 

  
2 2

0 3 4 0 0

,3 4 18.96708 
8 8 0.71734Coulomb Ni L

Ni L d s

e e
E Ni d s eV

r a 


 
     (23.166) 

The magnetic energy terms are those for the unpairing of the 4s  and 3d  electrons (Eqs. (23.159) and (23.160), respectively) and 
paring four sets of 3 4Ni d s  electrons (Eq. (23.161)).  Using Eqs. (23.32), (23.165) and (23.159-23.161), the energy 

 ,3 4Ni LE Ni d s  of the outer electron of the 3 4Ni d s  shell is: 

 
 

     
   

2 2 2 2 2 22
0 0 0

3 3 32 2 2
0 3 4 28 26 3 4

2 2 2
,3 4 3 4

8

                         18.96708 0.02026 3 0.07331 4 0.28344 19.86066 

Ni L
Ni L d s e e e d s

e e ee
E Ni d s

r m r m r m r

eV eV eV eV eV

  





   

      

  
 (23.167) 

Thus,  ,3 4TE Ni L d s , the energy change of each 3 4Ni d s  shell with the formation of the Ni L -bond MO is given by the 

difference between Eq. (23.166) and Eq. (23.162): 
        ,3 4 ,3 4 ,3 4 19.86066 19.30374 0.55693 T Ni LE Ni L d s E Ni d s E Ni d s eV eV eV          (23.168) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Ni L -bond MO of nNiL  is given in Table 23.46 with the force-equation parameters 28Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell.  The semimajor axis a  of carbonyl and organometallic 
compounds are solved using Eq. (15.51). 

For the Ni L  functional groups, hybridization of the 4s  and 3d  AOs of Ni  to form a single 3 4d s  shell forms an 
energy minimum, and the sharing of electrons between the 3 4Ni d s  HO and L  AO to form a MO permits each participating 
orbital to decrease in radius and energy.  The Cl  AO has an energy of   12.96764 E Cl eV  , the 32arylC sp  HO has an energy 

of  3, 2 15.76868 arylE C sp eV   (Eq. (14.246)), the 32C sp  HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), 

the Coulomb energy of 3 4Ni d s  HO is  ,3 4 18.41016 CoulombE Ni d s eV   (Eq. (23.156)), and the 3 4Ni d s  HO has an energy of 

 ,3 4 19.30374 E Ni d s eV   (Eq. (23.162)).  To meet the equipotential condition of the union of the Ni L  2H -type-

ellipsoidal-MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the Ni L -bond MO 

given by Eq. (15.77) is: 

    
 2

12.96764 
  3 4 0.67177

,3 4 19.30374 

E ClAO eV
C ClAO to Ni d sHO

E Ni d s eV


  


 (23.169) 

    
     

3

3 3
2 2

, 2 14.63489 
2   3 4 2 0.91771 0.72952

,3 4 18.41016 Coulomb

E C sp eV
c C sp HO to Ni d sHO c C sp HO

E Ni d s eV


  


 (23.170) 

    
     

3

3 3
2 2

, 2 14.63489 
2   3 4 2 0.85252 0.67770

,3 4 18.41016 aryl aryl
Coulomb

E C sp eV
C C sp HO to Ni d sHO c C sp HO

E Ni d s eV


  


 (23.171) 

where Eqs. (15.76), (15.79), and (13.430) were used in Eq. (23.169) and Eqs. (15.76), (15.79), and (14.417) were used in Eq. 
(23.170).  Since the energy of the MO is matched to that of the 3 4Ni d s  HO in coordinate compounds,  /E AO HO  in Eq. 

(15.61) is  ,3 4E Ni d s  given by Eq. (23.162) and  /E AO HO  in Eq. (15.61) of carbonyl compounds and organometallics is 

 ,3 4CoulombE Ni d s  given by Eq. (23.156).   3, .TE atom atom msp AO  of the Ni L -bond MO is determined by considering 

that the bond involves an electron transfer from the nickel atom to the ligand atom to form partial ionic character in the bond as 
in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.  For the coordinate compounds, 

 3, .TE atom atom msp AO  is 1.11386 eV , two times the energy of Eq. (23.167).  For the Ni C  bonds of carbonyl 

compound,  4
Ni CO  and organometallic, nickelocene,  3, .TE atom atom msp AO  is 1.85837 eV  (two times Eq. (14.513)) 

and 0.92918 eV  (Eq. (14.513)), respectively.  The C O  functional group of  4
Ni CO  is equivalent to that of vanadium 

carbonyls.  The aromatic cyclopentadienyl moieties of organometallic  5 5 2
Ni C H  comprise 

3e

C C  and CH  functional groups 

that are equivalent to those given in the Aromatic and Heterocyclic Compounds section. 
The symbols of the functional groups of nickel coordinate compounds are given in Table 23.45.  The geometrical (Eqs. 

(15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of nickel coordinate compounds are given in Tables 23.46, 23.47, and 23.48, respectively.  The total energy of each 
nickel coordinate compound given in Table 23.49 was calculated as the sum over the integer multiple of each  GroupDE  of Table 
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23.48 corresponding to functional-group composition of the compound.  The charge-densities of exemplary nickel carbonyl and 
organometallic compounds, nickel tetracarbonyl (  4

Ni CO ) and bis-cylopentadienyl nickel or nickelocene (  5 5 2
Ni C H ) 

comprising the concentric shells of atoms with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with 

one or more hydrogen MOs are shown in Figure 23.10A and B, respectively. 
 

 Figure 23.10.   (A) Nickel Tetracarbonyl. Color scale, translucent view of the charge-density of  4
Ni CO  showing the 

orbitals of the Ni , C , and O  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond, and the nuclei (red, not to scale).  (B) Nickelocene. Color 
scale, opaque view of the charge-density of  5 5 2

Ni C H  showing the orbitals of the Ni  and C  atoms at their radii and the 

ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atoms 

participating in each bond. 

 
 

Table 23.45.   The symbols of the functional groups of nickel coordinate compounds. 

Functional Group Group Symbol 
NiCl group of NiCl  Ni Cl  (a) 
NiCl2 group of 2NiCl  Ni Cl  (b) 

NiCO group of  4
Ni CO  Ni CO  

C=O C O  
NiCaryl group of 5 5 2( )Ni C H  5 5Ni C H  

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  

 

Table 23.46.   The geometrical bond parameters of nickel coordinate compounds and experimental values. 

Parameter Ni Cl  (a) 
Group 

Ni Cl  (b) 
Group 

Ni CO  
Group 

C O  
Group 

5 5Ni C H  

Group 

3e

C C  
Group 

CH  
Group 

en  3 3      

L  
3

5 5
4

  
3

4 6
4

       

 0 a a  2.83322 2.82843 2.22132 1.184842 3.00077 1.47348 1.60061 

 0'  c a  2.05367 2.05193 1.72098 1.08850 2.10426 1.31468 1.03299 

Bond 
Length 

 2 '  c Å  
2.17351 2.17167 1.82140 1.15202 2.22705 1.39140 1.09327 

Exp. Bond 
Length 

 Å  

2.137 [15, 59] 
( NiCl ) 

2.09 [15, 59] 
( 2NiCl ) 

2.137 [15, 59] 
( NiCl ) 

2.09 [15, 59] 
( 2NiCl ) 

1.82 [55] 
(  4

Ni CO ) 
1.15 [55] 

(  4
Ni CO ) 

2.185 [60] 
(  5 5 2

Ni C H ) 
1.399 [3] 
(benzene) 

1.101 [3] 
(benzene) 

 0,  b c a  1.95181 1.94669 1.40446 0.46798 2.13933 0.66540 1.22265 

e  0.72485 0.72547 0.77475 0.91869 0.70124 0.89223 0.64537
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Table 23.48.   The energy parameters (eV) of functional groups of nickel coordinate compounds.  
 
Parameters Ni Cl  

(a) 
Group 

Ni Cl  
(b) 

Group

Ni CO  
Group 

C O  
Group 

5 5Ni C H  

Group 

3e

C C  
Group 

CH  
Group 

1f  1 1 1 1 1 0.75 1 

1n  1 1 1 2 1 2 1 

2n  0 0 0 0 0 0 0 

3n  0 0 0 0 0 0 0 

1C  0.5 0.5 0.375 0.5 0.5 0.5 0.75 

2C  0.67177 0.67177 1 1 0.67770 0.85252 1 

1c  1 1 1 1 1 1 1 

2c  1 1 0.72952 0.85395 1 0.85252 0.91771 

3c  0 0 0 2 0 0 1 

4c  1 1 2 4 2 3 1 

5c  1 1 0 0 0 0 1 

1oC  0.5 0.5 0.375 0.5 0.5 0.5 0.75 

2oC  0.67177 0.67177 1 1 0.67770 0.85252 1 

 ( )eV eV  -24.32206 -24.37691 -23.81088 -134.96850 -22.49426 -101.12679 -37.10024 

 ( )pV eV  6.62512 6.63072 7.90586 24.99908 6.46585 20.69825 13.17125 

 ( )T eV  4.29230 4.30926 5.35963 56.95634 3.74808 34.31559 11.58941 
 ( )mV eV  -2.14615 -2.15463 -2.67981 -28.47817 -1.87404 -17.15779 -5.79470 
 /  ( )AO HOE eV  -19.30374 -19.30374 -18.41016 0 -18.41016 0 -14.63489 

 
2

/  ( )AO HOH MOE eV  0 0 0 -18.22046 -0.92918 0 -1.13379 

 /  ( )AO HOTE eV  -19.30374 -19.30374 -18.41016 18.22046 -17.48097 0 -13.50110 

 2  ( )H MOTE eV  -34.85452 -34.89529 -31.63537 -63.27080 -31.63535 -63.27075 -31.63539 

 3, .  ( )TE atom atom msp AO eV  -1.11386 -1.11386 -1.85837 -3.58557 -0.92918 -2.26759 -0.56690 

   ( )MOTE eV  -35.96838 -36.00914 -33.49374 -66.85630 -32.56455 -65.53833 -32.20226 

 15 10  /rad s  8.78663 8.82133 7.64687 22.6662 7.69080 49.7272 26.4826 

 ( )KE eV  5.78351 5.80635 5.03330 14.91930 5.06222 32.73133 17.43132 

 ( )DE eV  -0.17113 -0.17166 -0.14866 -0.25544 -0.14495 -0.35806 -0.26130 

 ( )KvibE eV  0.05257 
[59] 

0.05257 
[59] 

0.04711 
[55] 

0.24962 
[29] 

0.04711 
[55] 

0.19649 
[30] 

0.35532 
Eq. 

(13.458)
 ( )oscE eV  -0.14484 -0.14537 -0.12510 -0.13063 -0.12139 -0.25982 -0.08364 

 ( )magE eV  0.28344 0.28344 0.14803 0.11441 0.14803 0.14803 0.14803 

   ( )GroupTE eV  -36.11322 -36.15452 -33.61884 -67.11757 -32.68594 -49.54347 -32.28590 

 4  /  ( )c AO HOinitialE eV   -19.30374 -19.30374 -14.63489 -14.63489 -14.63489 -14.63489 -14.63489 

 5  /  ( )c AO HOinitialE eV  -12.96764 -12.96764 0 0 0 0 -13.59844 

   ( )GroupDE eV  3.84184 3.88314 4.34906 8.34918 1.14858 5.63881 3.90454 
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COPPER FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of copper is   1 104 3Ar s d  having the corresponding term 2

1/ 2S .  The single outer 4s  [61] electron 

having an energy of 7.72638 eV  [1] forms a single bond to give an electron configuration with filled 3d  and 4s  shells. 
Additional bonding of copper is possible involving a double bond or two single bonds by the hybridization of the 3d  and 4s  
shells to form a 3 4Cu d s  shell and the donation of an electron per bond.  The total energy of the copper 2

1/ 2S  state is given by 

the sum over the eleven electrons.  The sum  ,3 4TE Cu d s  of experimental energies [1] of Cu , Cu , 2Cu  , 3Cu  , 4Cu  , 5Cu  , 
6Cu  , 7Cu  , 8Cu  , 9Cu  , and 10Cu   is 

  
265.3 232 199 166 139 103 79.8 

,3 4 1306.33978 
57.38 36.841 20.2924 7.72638 T

eV eV eV eV eV eV eV
E Cu d s eV

eV eV eV eV

      
        

 (23.172) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 3 4d sr  of the 

3 4Cu d s  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 228

3 4 0
18 0 0

( ) 66
0.68740

8 1306.33978 8 1306.33978 d s
n

Z n e e
r a

e eV e eV 


    (23.173) 

where 29Z   for copper.  Using Eq. (15.14), the Coulombic energy  ,3 4CoulombE Cu d s  of the outer electron of the 3 4Cu d s  

shell is: 

  
2 2

0 3 4 0 0

,3 4 19.793027 
8 8 0.68740Coulomb

d s

e e
E Cu d s eV

r a 
 

     (23.174) 

During hybridization, the unpaired 4s  electron and five sets of spin-paired 3d  electrons are promoted to the 3 4Cu d s  shell as 
initially unpaired electrons.  The energies for the promotions of the initially paired electrons are given by Eq. (15.15) at the 
initial radius of the 3d  electrons.  From Eq. (10.102) with 29Z   and 28n  , the radius 28r  of the 3Cu d  shell is: 

 28 01.34098r a  (23.175) 

Using Eqs. (15.15), and (23.174), the unpairing energy is: 

 
   

2 2 2
0 0

3 3 32
28 0

2 8
( ) 0.04745 

1.34098
B

d

e

e
E magnetic eV

m r a

  
  


 (23.176) 

The electrons from the 4s  and 3d  shells successively fill unoccupied HOs until the HO shell is filled with unpaired electrons, 
then the electrons pair per HO.  In the case of the 3 4Cu d s  shell having eleven electrons and six orbitals, five sets of electrons 
are paired.  Using Eqs. (15.15) and (23.172), the pairing energy is given by:  

 
   

2 2 2
0 0

3 4 3 32
3 4 0

2 8
( ) 0.35223 

0.68740
B

d s

e d s

e
E magnetic eV

m r a

  
     


 (23.177) 

Thus, after Eq. (23.28), the energy  ,3 4E Cu d s  of the outer electron of the 3 4Cu d s  shell is given by adding the magnetic 

energies of unpairing five sets of 3d  electrons (Eq. (23.175)) and pairing of five sets of 3 4Cu d s  electrons (Eq. (23.176)) to 

 ,3 4CoulombE Cu d s  (Eq. (23.173)). 

 
 

   

2 2 2 2 2 22
0 0 0
2 3 2 3 2 3

3   0 3 4 4 3 3 4

2 2 2
,3 4

8

19.793027 0 5 0.04745 5 0.35223 21.31697 

d pairs HO pairsd s e s e d e d s

e e ee
E Cu d s

r m r m r m r

eV eV eV eV eV

  



   

      

   
 (23.178) 

Next, consider the formation of the Cu L -bond MO wherein each copper atom has a 3 4Cu d s  electron with an energy 
given by Eq. (23.178).  The total energy of the state of each copper atom is given by the sum over the eleven electrons.  The sum 

 3 4T Cu LE Cu d s  of energies of 3 4Cu d s  (Eq. (23.178)), Cu , 2Cu  , 3Cu  , 4Cu  , 5Cu  , 6Cu  , 7Cu  , 8Cu  , 9Cu  , and 10Cu   

is: 

 

 
 

265.3 232 199 166 

3 4 139 103 79.8 57.38 

36.841 20.2924 ,3 4

265.3 232 199 166 

                        139 103 79.8 57.38 

T Cu L

eV eV eV eV

E Cu d s eV eV eV eV

eV eV E Cu d s

eV eV eV eV

eV eV eV eV



   
 

      
    

  
      1319.93037 

36.841 20.2924 21.31697 

eV

eV eV eV

 
    
    

 (23.179) 

where  ,3 4E Cu d s  is the sum of the energy of Cu , 7.72638 eV , and the hybridization energy. 

The copper HO donates an electron to each MO.  Using Eq. (23.30), the radius 3 4d sr  of the 3 4Cu d s  shell calculated from 

the Coulombic energy is: 
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2 228

3 4 0
18 0 0

65
( ) 1 0.67002

8 1319.93037 8 1319.93037 Cu L d s
n

e e
r Z n a

e eV e eV 


 
     
 
  (23.180) 

Using Eqs. (15.19) and (23.179), the Coulombic energy  ,3 4Coulomb Cu LE Cu d s  of the outer electron of the 3 4Cu d s  shell is: 

  
2 2

0 3 4 0 0

,3 4 20.30662 
8 8 0.67002Coulomb Cu L

Cu L d s

e e
E Cu d s eV

r a 


 
     (23.181) 

The magnetic energy terms are those for the unpairing of the five sets of 3d  electrons (Eq. (23.175)) and pairing of five sets of 
3 4Cu d s  electrons (Eq. (23.176)).  Using Eqs. (23.32), (23.180), and (23.175-23.176), the energy  ,3 4Cu LE Cu d s  of the outer 

electron of the 3 4Cu d s  shell is: 

 
 

     
   

2 2 2 2 2 22
0 0 0

3 3 32 2 2
0 3 4 29 28 3 4

2 2 2
,3 4 0 5 5

8

                         20.30662 0 5 0.04745 5 0.35223 21.83056 

Cu L
Cu L d s e e e d s

e e ee
E Cu d s

r m r m r m r

eV eV eV eV eV

  





   

      

  
 (23.182) 

Thus,  ,3 4TE Cu L d s , the energy change of each 3 4Cu d s  shell with the formation of the Cu L -bond MO is given by the 

difference between Eq. (23.181) and Eq. (23.177). 
        ,3 4 ,3 4 ,3 4 21.83056 21.31697 0.51359 T Cu LE Cu L d s E Cu d s E Cu d s eV eV eV          (23.183) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Cu L -bond MO of nCuL  is given in Table 23.51 with the force-equation parameters 29Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 3 4d s  HO shell. 
For the Cu L  functional groups, hybridization of the 4s  and 3d  AOs of Cu  to form a single 3 4d s  shell forms an 

energy minimum, and the sharing of electrons between the 3 4Cu d s  HO and L  AO to form a MO permits each participating 
orbital to decrease in radius and energy.  The F  AO has an energy of   17.42282 E F eV  , the Cl  AO has an energy of 

  12.96764 E Cl eV  , the O  AO has an energy of   13.61805 E O eV  , the Cu  AO has an energy of 

  7.72638 E Cu eV  , and the 3 4Cu d s  HO has an energy of  ,3 4 21.31697 E Cu d s eV   (Eq. (23.177)).  To meet the 

equipotential condition of the union of the Cu L  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor(s), at 

least one of 2c  and 2C  of Eq. (15.61) for the Cu L -bond MO given by Eq. (15.77) is: 

    
 2

7.72638 
  0.44346

17.42282 

E CuAO eV
C FAO to CuAO

E FAO eV


  


 (23.184) 

      
 2 2

7.72638 
    0.59582

12.96764 

E CuAO eV
c ClAO to CuAO C ClAO to CuAO

E ClAO eV


   


 (23.185) 

    
 2

17.42282 
  3 4 0.81732

,3 4 21.31697 

E FAO eV
C FAO to Cu d sHO

E Cu d s eV


  


 (23.186) 

    
 2

13.61805 
  3 4 0.63884

,3 4 21.31697 

E O eV
c O to Cu d sHO

E Cu d s eV


  


 (23.187) 

Since the energy of the MO is matched to that of the 3 4Cu d s  HO in coordinate compounds,  /E AO HO  in Eq. (15.61) is 

 ,3 4E Cu d s  given by Eq. (23.177) and twice this value for double bonds.   3, .TE atom atom msp AO  of the Cu L -bond MO 

is determined by considering that the bond involves an electron transfer from the copper atom to the ligand atom to form partial 
ionic character in the bond as in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.  For the two-

bond coordinate compounds,  3, .TE atom atom msp AO  is 1.02719 eV , two times the energy of Eq. (23.182). 

The symbols of the functional groups of copper coordinate compounds are given in Table 23.50.  The geometrical (Eqs. 
(15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of copper coordinate compounds are given in Tables 23.51, 23.52, and 23.53, respectively.  The total energy of each 
copper coordinate compound given in Table 23.54 was calculated as the sum over the integer multiple of each  GroupDE  of Table 

23.53 corresponding to functional-group composition of the compound.  The charge-densities of exemplary copper coordinate 
compounds, copper chloride (CuCl ) and copper dichloride ( 2CuCl ) comprising the concentric shells of atoms with the outer 

shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 23.11A 

and B, respectively. 
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Figure 23.11.   (A) Copper Chloride.  Color scale, translucent view of the charge-density of CuCl  showing the orbitals of 
the Cu  and Cl  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the corresponding 

outer shell of the atoms participating in each bond, and the nuclei (red, not to scale).  (B) Copper Dichloride.  Color scale, 
translucent view of the charge-density of 2CuCl  showing the orbitals of the Cu  and Cl  atoms at their radii, the ellipsoidal 

surface of each 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atoms participating in each bond, 

and the nuclei (red, not to scale). 
 

 
 
 
Table 23.50.   The symbols of the functional groups of copper coordinate compounds. 
 

Functional Group Group Symbol
CuF group of CuF  Cu F  (a) 
CuF2 group of 2CuF  Cu F  (b) 

CuCl group of CuCl  Cu Cl  
CuO group of CuO  Cu O  

 
Table 23.51.  The geometrical bond parameters of copper coordinate compounds and experimental values. 
 

 
Parameter Cu F  (a) 

Group
Cu F  (b) 

Group
Cu Cl  
Group 

Cu O  
Group 

en  1 2 2 1 

L  
3

10 2
4

  
3

2 4
4

  0 
3

3 10
4

  

 0 a a  1.90455 2.18842 2.00000 1.90208 

 0'  c a  1.69208 1.63632 1.83213 1.59251 

Bond Length 

 2 '  c Å  1.79083 1.73181 1.93905 1.68544 

Exp. Bond Length 

 Å  
1.7449 [3] 

(CuF ) 
1.7449 [3] 

( CuF ) 
2.051 [15] 
(CuCl ) 

1.724 [15] 
( CuO ) 

 0,  b c a  0.87417 1.45314 0.80205 1.04009 

e  0.88844 0.74772 0.91607 0.83725 
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Table 23.53.  The energy parameters (eV) of functional groups of copper coordinate compounds.  

Parameters Cu F  (a) 
Group

Cu F  (b) 
Group

Cu Cl  
Group 

Cu O  
Group 

1n  1 1 1 2 

2n  0 0 0 0 

3n  0 0 0 0 

1C  0.75 0.5 0.5 0.375 

2C  0.44346 0.81732 0.59582 1 

1c  0.75 1 1 1 

2c  1 1 0.59582 0.63884 

3c  0 0 0 0 

4c  1 1 1 2 

5c  1 1 1 2 

1oC  0.75 0.5 0.5 0.375 

2oC  0.44346 0.81732 0.59582 1 

 ( )eV eV  -34.12088 -32.18726 -27.68094 -52.91628 

 ( )pV eV  8.04085 8.31487 7.42620 17.08719 

 ( )T eV  8.95771 7.35401 6.92024 13.91013 
 ( )mV eV  -4.47886 -3.67700 -3.46012 -6.95506 
 /  ( )AO HOE eV  -7.72638 -21.31697 -7.72638 -42.633933 

 
2

/  ( )AO HOH MOE eV  0 0 0 0 

 /  ( )AO HOTE eV  -7.72638 -21.31697 -7.72638 -42.633933 

 2  ( )H MOTE eV  -29.32755 -41.51235 -24.52100 -68.46008 

 3, .  ( )TE atom atom msp AO eV  0 -1.02719 0 -1.02719 

   ( )MOTE eV  -29.32755 -42.53954 -24.52100 -69.48726 

 15 10  /rad s  29.1710 8.16340 7.97779 9.65069 

 ( )KE eV  19.20083 5.37329 5.25112 6.35225 

 ( )DE eV  -0.25424 -0.19508 -0.11116 -0.17324 

 ( )KvibE eV  0.07721 
[62] 

0.07721 
[62] 

0.05149 
[62] 

0.07937 
[62] 

 ( )oscE eV  -0.21563 -0.15648 -0.08542 -0.13355 

 ( )magE eV  0 0.35223 0 0.35223 

   ( )GroupTE eV  -29.54319 -42.69602 -24.60642 -69.75437 

 4  /  ( )c AO HOinitialE eV   -7.72638 -21.31697 -7.72638 -21.31697 

 5  /  ( )c AO HOinitialE eV  -17.42282 -17.42282 -12.96764 -13.61806 

   ( )GroupDE eV  4.39399 3.95623 3.91240 2.93219 
 
 
Table 23.54.   The total bond energies of gaseous-state copper coordinate compounds calculated using the functional group 
composition and the energies of Table 23.53 compared to the gaseous-state experimental values.  

Formula Name Cu F  (a) 
Group 

Cu F  (b) 
Group 

Cu Cl  
Group 

Cu O  
Group 

Calculated 
Total Bond 
Energy (eV) 

Experimental 
Total Bond 
Energy (eV)

Relative 
Error 

CuF Copper fluoride 1 0 0 0 4.39399 4.44620 [63] 0.01174
CuF2 Copper difluoride 0 2 0 0 7.91246 7.89040 [63] -0.00280
CuCl Copper chloride 0 0 1 0 3.91240 3.80870 [15] -0.02723
CuO Copper oxide 0 0 0 1 2.93219 2.90931 [63] -0.00787
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ZINC FUNCTIONAL GROUPS AND MOLECULES 
The electron configuration of zinc is   2 104 3Ar s d  having the corresponding term 1

0S .  The two outer 4s  [61] electrons having 

energies of 9.394199 eV  and 17.96439 eV  [1] hybridize to form a single shell comprising two HOs.  Each HO donates an 
electron to any single bond that participates in bonding with the HO such that two single bonds with ligands are possible to 
achieve a filled, spin-paired outer electron shell.  Then, the total energy of the 1

0S  state of the bonding zinc atom is given by the 

sum over the two electrons.  The sum  , 4TE Zn sHO  of experimental energies [1] of Zn , and Zn , is: 

    , 4 17.96439 9.394199 27.35859 TE Zn sHO eV eV eV      (23.188) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 4sHOr  of the 

4Zn s  HO shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   

2 229

4 0
28 0 0

( ) 3
1.49194

8 27.35859 8 27.35859 sHO
n

Z n e e
r a

e eV e eV 


    (23.189) 

where 30Z   for zinc.  Using Eq. (15.14), the Coulombic energy  , 4CoulombE Zn sHO  of the outer electron of the 4Zn s  shell is 

  
2 2

0 4 0 0

, 4 9.119530 
8 8 1.49194Coulomb

sHO

e e
E Zn sHO eV

r a 
 

     (23.190) 

During hybridization, the spin-paired 4s  AO electrons are promoted to the 4Zn s  HO shell as unpaired electrons.  The energy 
for the promotion is given by Eq. (15.15) at the initial radius of the 4s  electrons.  From Eq. (10.102) with 30Z   and 30n  , 
the radius 30r  of the 4Zn s  AO shell is: 

 30 01.44832r a  (23.191) 

Using Eqs. (15.15) and (23.190), the unpairing energy is: 

 
   

2 2 2
0

4 3 32
30 0

2 8
( ) 0.03766 

1.44832
o B

s

e

e
E magnetic eV

m r a

  
  


 (23.192) 

Using Eqs. (23.189) and (23.191), the energy  , 4E Zn sHO  of the outer electron of the 4Zn s  HO shell is: 

  
 

2 22
0

32
0 4 30

2
, 4 9.119530 0.03766 9.08187 

8 sHO e

ee
E Zn sHO eV eV eV

r m r





      


 (23.193) 

Next, consider the formation of the Zn L -bond MO wherein each zinc atom has a 4Zn sHO  electron with an energy 
given by Eq. (23.192).  The total energy of the state of each zinc atom is given by the sum over the two electrons.  The sum 

 4T Zn LE Zn sHO  of energies of 4Zn sHO  (Eq. (23.192)) and Zn  is: 

       4 17.96439 , 4 17.96439 9.08187 27.04626 T Zn LE Zn sHO eV E Zn sHO eV eV eV          (23.194) 

where  , 4E Zn sHO  is the sum of the energy of Zn , 9.394199  eV eV , and the hybridization energy. 

The zinc HO donates an electron to each MO.  Using Eq. (23.30), the radius 4sHOr  of the 4Zn sHO  shell calculated from 

the Coulombic energy is: 

 
   

2 229

4 0
28 0 0

2
( ) 1 1.00611

8 27.04626 8 27.04626 Zn L sHO
n

e e
r Z n a

e eV e eV 


      
 
  (23.195) 

Using Eqs. (15.19) and (23.194), the Coulombic energy  , 4Coulomb Zn LE Zn sHO  of the outer electron of the 4Zn sHO  shell is: 

  
2 2

0 4 0 0

, 4 13.52313 
8 8 1.00611Coulomb Zn L

Zn L sHO

e e
E Zn sHO eV

r a 


 
     (23.196) 

During hybridization, the spin-paired 2s  electrons are promoted to the 4Zn sHO  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (23.191).  Using Eqs. (23.195) and (23.191), the energy  , 4Zn LE Zn sHO  of the 

outer electron of the 4Zn s HO  shell is: 

  
 

2 22
0

32
0 4 30

2
, 4 13.52313 0.03766 13.48547 

8Zn L
Zn L sHO e

ee
E Zn sHO eV eV eV

r m r







      


 (23.197) 

Thus,  , 4TE Zn L sHO , the energy change of each 4Zn sHO  shell with the formation of the Zn L -bond MO is given by the 

difference between Eq. (23.196) and Eq. (23.192): 
        , 4 , 4 , 4 13.48547 9.08187 4.40360 T Zn LE Zn L sHO E Zn sHO E Zn sHO eV eV eV          (23.198) 

The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Zn L -bond MO of nZnL  is given in Table 23.56 with the force-equation parameters 30Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 4s  HO shell.  The semimajor axis a  of organometallic compounds are solved 
using Eq. (15.51). 
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For the Zn L  functional groups, hybridization of the 4s  AOs of Zn  to form a single 4s  HO shell forms an energy 
minimum, and the sharing of electrons between the 4Zn s  HO and L  AO to form a MO permits each participating orbital to 
decrease in radius and energy.  The Cl  AO has an energy of   12.96764 E Cl eV  , the 32C sp  HO has an energy of 

 3, 2 14.63489 E C sp eV   (Eq. (15.25)), the Coulomb energy of the 4Zn s  HO is  , 4 9.119530 CoulombE Zn sHO eV   (Eq. 

(23.189)), and the 4Zn s  HO has an energy of  , 4 9.08187 E Zn sHO eV   (Eq. (23.192)).  To meet the equipotential condition 

of the union of the Zn L  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor(s), at least one of 2c  and 2C  of 

Eq. (15.61) for the Zn L -bond MO given by Eq. (15.77) is: 

    
 2

,34 9.08187 
  4 0.70035

12.96764 

E Zn sHO eV
C ClAO to Zn sHO

E ClAO eV


  


 (23.199) 

 

   
 

     

3 3
2 2

3
23

2   4 2   4

, 4 9.11953 
2 0.91771 0.57186

14.63489 , 2
Coulomb

c C sp HO to Zn sHO C C sp HO to Zn sHO

E Zn sHO eV
c C sp HO

eVE C sp




  



 (23.200) 

where Eqs. (15.76), (15.79), and (13.430) were used in Eq. (23.199).  Since the energy of the MO is matched to that of the 
4Zn sHO  in coordinate compounds,  /E AO HO  in Eq. (15.61) is  , 4E Zn sHO  given by Eq. (23.192) and  , 4E Zn sHO  for 

organometallics is  , 4CoulombE Zn sHO  given by Eq. (23.189).   3, .TE atom atom msp AO  of the Zn L -bond MO is 

determined by considering that the bond involves an electron transfer from the zinc atom to the ligand atom to form partial ionic 
character in the bond as in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.  For the 

coordinate compounds,  3, .TE atom atom msp AO  is 8.80720 eV , two times the energy of Eq. (23.197). 

The symbols of the functional groups of zinc coordinate compounds are given in Table 23.55.  The geometrical (Eqs. 
(15.1-15.5) and (23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) 
parameters of zinc coordinate compounds are given in Tables 23.56, 23.57, and 23.58, respectively.  The total energy of each 
zinc coordinate compound given in Table 22.59 was calculated as the sum over the integer multiple of each  GroupDE  of Table 

23.58 corresponding to functional-group composition of the compound.  The charge-densities of exemplary zinc coordinate and 
organometallic compounds, zinc chloride ( ZnCl ) and di-n-butylzinc (  4 9 2

Zn C H ) comprising the concentric shells of atoms 

with the outer shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in 

Figures 23.12A and B, respectively. 
 
Figure 23.12 .   (A) Zinc Chloride. Color scale, translucent view of the charge-density of ZnCl  showing the orbitals of the 
Zn  and Cl  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the corresponding 

outer shell of the atoms participating in each bond, and the nuclei (red, not to scale).  (B) Di-n-butylzinc.  Color scale, translucent 
view of the charge-density of  4 9 2

Zn C H  showing the orbitals of the Zn  and C  atoms at their radii, the ellipsoidal surface of 

each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atoms participating in each bond, and 

the nuclei (red, not to scale). 
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Table 23.55.   The symbols of the functional groups of zinc coordinate compounds. 
 

Functional Group Group Symbol
ZnCl group of ZnCl  Zn Cl  (a) 
ZnCl2 group of 2ZnCl  Zn Cl  (b) 

ZnCalkyl group of 'RZnR  Zn C  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CC bond (n-C) C C  
 
Table 23.56.   The geometrical bond parameters of zinc coordinate compounds and experimental values.  
 

Parameter Zn Cl  (a) 
Group 

Zn Cl  (b) 
Group 

Zn C  
Group 

 3 C H CH  

Group

 2 C H CH  

Group 

C C  
Group 

en  6 5     

L  
3

4
4

 10     

 0 a a  4.11547 3.83333 1.87715 1.64920 1.67122 2.12499 

 0'  c a  1.97928 1.91023 1.81177 1.04856 1.05553 1.45744 

Bond 
Length 

 2 '  c Å  
2.09478 2.02170 1.91750 1.10974 1.11713 1.54280 

Exp. Bond 
Length 

 Å  

2.05 [15] 
( 2ZnCl ) 

2.05 [15] 
( 2ZnCl ) 

1.930 [15] 
( 3 3CH ZnCH ) 

1.113 [3] 
(trimethylaluminum) 

1.107 [3] 
(C H  propane) 

1.117 [3] 
(C H  butane) 

1.107 [3] 
( C H  propane) 

1.117 [3] 
(C H  butane) 

1.532 [3] 
(propane) 
1.531 [3] 
(butane) 

 0,  b c a  3.60826 3.32347 0.49108 1.27295 1.29569 1.54616 

e  0.48094 0.49832 0.96517 0.63580 0.63159 0.68600
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Table 23.58.  The energy parameters (eV) of functional groups of zinc coordinate compounds.  

Parameters Zn Cl  (a) 
Group 

Zn Cl  (b) 
Group 

Zn C  
Group 

3CH  

Group
2CH  

Group 

C C  
Group 

1n  1 1 1 3 2 1 

2n  0 0 0 2 1 0 

3n  0 0 0 0 0 0 

1C  0.75 0.75 0.5 0.75 0.75 0.5 

2C  0.70035 0.70035 0.57186 1 1 1 

1c  1 1 1 1 1 1 

2c  1 1 0.57186 0.91771 0.91771 0.91771 

3c  0 0 2 0 1 0 

4c  1 1 2 1 1 2 

5c  1 1 0 3 2 0 

1oC  0.75 0.75 0.5 0.75 0.75 0.5 

2oC  0.70035 0.70035 0.57186 1 1 1 

 ( )eV eV  -14.41370 -15.58624 -34.63883 -107.32728 -70.41425 -28.79214 

 ( )pV eV  6.87412 7.12260 7.50965 38.92728 25.78002 9.33352 

 ( )T eV  1.75116 2.03299 9.22644 32.53914 21.06675 6.77464 
 ( )mV eV  -0.87558 -1.01649 -4.61322 -16.26957 -10.53337 -3.38732 
 /  ( )AO HOE eV  -9.08187 -9.08187 -9.11953 -15.56407 -15.56407 -15.56407 

 
2

/  ( )AO HOH MOE eV  0 0 0 0 0 0 

 /  ( )AO HOTE eV  -9.08187 -9.08187 -9.11953 -15.56407 -15.56407 -15.56407 

 2  ( )H MOTE eV  -15.74587 -16.52901 -31.63548 -67.69451 -49.66493 -31.63537 

 3, .  ( )TE atom atom msp AO eV  -8.80720 -8.80720 0 0 0 -1.85836 

   ( )MOTE eV  -24.55307 -25.33621 -31.63537 -67.69450 -49.66493 -33.49373 

 15 10  /rad s  4.37145 3.99216 8.59541 24.9286 24.2751 9.43699 

 ( )KE eV  2.87737 2.62771 5.65765 16.40846 15.97831 6.21159 

 ( )DE eV  -0.08240 -0.08125 -0.14887 -0.25352 -0.25017 -0.16515 

 ( )KvibE eV  0.04842 
[14] 

0.04842 
[14] 

0.06236 
[64] 

0.35532 
(Eq. 

(13.458))

0.35532 
(Eq. 

(13.458)) 

0.12312 
[6] 

 ( )oscE eV  -0.05819 -0.05704 -0.11768 -0.22757 -0.14502 -0.10359 

 ( )magE eV  0.03445 0.03445 0.14803 0.14803 0.14803 0.14803 

   ( )GroupTE eV  -24.61126 -25.39325 -31.75305 -67.92207 -49.80996 -33.59732 

 4  /  ( )c AO HOinitialE eV   -9.08187 -9.08187 -14.63489 -14.63489 -14.63489 -14.63489 

 5  /  ( )c AO HOinitialE eV  -12.96764 -12.96764 0 -13.59844 -13.59844 0 

   ( )GroupDE eV  2.56175 3.34374 2.18721 12.49186 7.83016 4.32754 
 
Table 23.59.  The total bond energies of gaseous-state zinc coordinate compounds calculated using the functional group 
composition and the energies of Table 23.58 compared to the gaseous-state experimental values. 
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GERMANIUM ORGANOMETALLIC FUNCTIONAL GROUPS AND MOLECULES 
The branched-chain alkyl germanium molecules, 2 2n nGeC H  , comprise at least one Ge  bound by a carbon-germanium single 

bond comprising a C Ge  group, and the digermanium molecules further comprise a Ge Ge  functional group.  Both comprise 
at least a terminal methyl group ( 3CH ) and may comprise methylene ( 2CH ), methylyne (CH ), and C C  functional groups.  

The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be 
identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl 
(  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  

bonds comprise functional groups.   
As in the cases of carbon, silicon, and tin, the bonding in the germanium atom involves four 3sp  hybridized orbitals.  For 

germanium, they are formed from the 4 p  and 4s  electrons of the outer shells.  Ge C  bonds form between a 34Ge sp  HO and a 
33C sp  HO, and Ge Ge  bonds form between between 34Ge sp  HOs to yield germanes and digermanes, respectively.  The 

geometrical parameters of each Ge C  and Ge Ge  functional group is solved using Eq. (15.51) and the relationships between 
the prolate spheroidal axes.  Then, the sum of the energies of the 2H -type ellipsoidal MOs is matched to that of the 34Ge sp  shell 

as in the case of the corresponding carbon, silicon, and tin molecules.  As in the case of the transition metals, the energy of each 
functional group is determined for the effect of the electron density donation from each participating 33C sp  HO and 34Ge sp  
HO to the corresponding MO that maximizes the bond energy. 

The Ge  electron configuration is 2 10 2[ ]4 3 4Ar s d p , and the orbital arrangement is: 

 

       4p state

                

  1        0       -1

   (23.201) 

corresponding to the ground state 3
0P .  The energy of the germanium 4 p  shell is the negative of the ionization energy of the 

germanium atom [1] given by 
  , 4  ( ;  ) 7.89943 E Ge p shell E ionization Ge eV     (23.202) 

The energy of germanium is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264), but the 
atomic orbital may hybridize in order to achieve a bond at an energy minimum.  After Eq. (13.422), the 4Ge s  atomic orbital 
(AO) combines with the 4Ge p  AOs to form a single 34Ge sp  hybridized orbital (HO) with the orbital arrangement: 

 

3             4sp  state

                       

 0,0      1,-1      1,0       1,1

     (23.203) 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the four 

electrons.  The sum  3, 4TE Ge sp  of experimental energies [1] of Ge , Ge , 2Ge  , and 3Ge   is: 

  3, 4 45.7131 34.2241 15.93461 7.89943 =103.77124 TE Ge sp eV eV eV eV eV     (23.204) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 34sp
r  of the 

34Ge sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 231

04
28 0 0

( ) 10
1.31113

8 103.77124 8 103.77124 sp
n

Z n e e
r a

e eV e eV 


    (23.205) 

where 32Z   for germanium.  Using Eq. (15.14), the Coulombic energy  3, 4CoulombE Ge sp  of the outer electron of the 34Ge sp  

shell is: 

  
3

2 2
3

0 0 04

, 4 10.37712 
8 8 1.31113Coulomb

sp

e e
E Ge sp eV

r a 
 

     (23.206) 

During hybridization, the spin-paired 4s  electrons are promoted to the 34Ge sp  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 4s  electrons.  From Eq. (10.102) with 32Z   
and 30n  , the radius 30r  of the 4Ge s  shell is: 

 30 01.19265r a  (23.207) 

Using Eqs. (15.15) and (23.207), the unpairing energy is: 
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2 2 2
0

3 32
30 0

2 8
( ) 0.06744 

1.19265
o B

e

e
E magnetic eV

m r a

  
  


 (23.208) 

Using Eqs. (23.206) and (23.208), the energy  3, 4E Ge sp  of the outer electron of the 34Ge sp  shell is: 

  
 3

2 22
3 0

32
0 304

2
, 4 10.37712 0.06744 10.30968 

8
esp

ee
E Ge sp eV eV eV

r m r





      


 (23.209) 

Next, consider the formation of the Ge L -bond MO of gernmanium compounds wherein L  is a ligand including 
germanium and carbon and each gemanium atom has a 34Ge sp  electron with an energy given by Eq. (23.209).  The total energy 

of the state of each germanium atom is given by the sum over the four electrons.  The sum  3, 4T Ge LE Ge sp  of energies of 
34Ge sp  (Eq. (23.209)), Ge , 2Ge  , and 3Ge   is: 

 

    
 

3 3, 4 45.7131 34.2241 15.93461 , 4

                        45.7131 34.2241 15.93461 10.30968 

                        106.18149 

T Ge LE Ge sp eV eV eV E Ge sp

eV eV eV eV

eV

     

    

 

 (23.210) 

where  3, 4E Ge sp  is the sum of the energy of Ge , 7.89943 eV , and the hybridization energy. 

A minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the 
Hydroxyl Radical (OH ) section with the donation of electron density from the participating 34Ge sp  HO to each Ge L -bond 

MO.  Consider the case wherein each 34Ge sp  HO donates an excess of 25% of its electron density to the Ge L -bond MO to 
form an energy minimum.  By considering this electron redistribution in the germanium molecule as well as the fact that the 
central field decreases by an integer for each successive electron of the shell, in general terms, the radius 34Ge L sp

r


 of the 34Ge sp  

shell may be calculated from the Coulombic energy using Eq. (15.18). 

 
   3

2 231

04
28 0 0

9.75
( ) 0.25 1.24934

8 106.18149 8 106.18149 Ge L sp
n

e e
r Z n a

e eV e eV 


      
 
  (23.211) 

Using Eqs. (15.19) and (23.211), the Coulombic energy  3, 4Coulomb Ge LE Ge sp  of the outer electron of the 34Ge sp  shell is: 

  
3

2 2
3

0 0 04

, 4 10.89041 
8 8 1.24934Coulomb Ge L

Ge L sp

e e
E Ge sp eV

r a 



 
     (23.212) 

During hybridization, the spin-paired 4s  electrons are promoted to the 34Ge sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (23.208).  Using Eqs. (23.208) and (23.212), the energy  3, 4Ge LE Ge sp  of the 

outer electron of the 34Ge sp  shell is: 

  
 3

2 22
3 0

32
0 304

2
, 4 10.89041 0.06744 10.82297 

8Ge L

eGe L sp

ee
E Ge sp eV eV eV

r m r







      


 (23.213) 

Thus,  3, 4TE Ge L sp , the energy change of each 34Ge sp  shell with the formation of the Ge L -bond MO is given by the 

difference between Eq. (23.213) and Eq. (23.209): 
        3 3 3, 4 , 4 ,4 10.82297 10.30968 0.51329 T Ge LE Ge L sp E Ge sp E Ge sp eV eV eV          (23.214) 

Now, consider the formation of the Ge L -bond MO of gernmanium compounds wherein L  is a ligand including 
germanium and carbon.  For the Ge L  functional groups, hybridization of the 4 p  and 4s  AOs of Ge  to form a single 34Ge sp  

HO shell forms an energy minimum, and the sharing of electrons between the 34Ge sp  HO and L  HO to form a MO permits 

each participating orbital to decrease in radius and energy.  The 32C sp  HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. 

(15.25)) and the 34Ge sp  HO has an energy of  3, 4 10.30968 E Ge sp eV   (Eq. (23.209)).  To meet the equipotential condition 

of the union of the Ge L  2H -type-ellipsoidal-MO with these orbitals, the hybridization factor 2C  of Eq. (15.61) for the 

Ge L -bond MO given by Eq. (15.77) is: 

      
 

3

3 3 3 3
2 2 3

, 4 10.30968 
4   4 2   4 0.70446

14.63489 , 2

E Ge sp HO eV
C Ge sp HO to Ge sp HO C C sp HO to Ge sp HO

eVE C sp


   


 (23.215) 
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Since the energy of the MO is matched to that of the 34Ge sp  HO,  /E AO HO  in Eq. (15.61) is  3, 4E Ge sp HO  given by Eq. 

(23.209).  In order to match the energies of the HOs within the molecule,  3, .TE atom atom msp AO  of the Ge L -bond MO 

for the ligands carbon or germanium is 
0.72457

2


 (Eq. (14.151)). 

The symbols of the functional groups of germanium compounds are given in Table 23.60.  The geometrical (Eqs. (15.1-
15.5)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) parameters of germanium 
compounds are given in Tables 23.61, 23.62, and 23.63, respectively.  The total energy of each germanium compounds given in 
Table 22.64 was calculated as the sum over the integer multiple of each  GroupDE  of Table 23.63 corresponding to functional-

group composition of the compound.  The bond angle parameters of germanium compounds determined using Eqs. (15.88-
15.117) are given in Table 23.65.  The charge-densities of exemplary germanium and digermanium compounds, 
tetraethylgermanium (  2 3 4

Ge CH CH ) and hexaethyldigermanium (    2 5 2 53 3
C H GeGe C H ) comprising atoms with the outer 

shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 23.13A 

and B, respectively. 
 
Figure 23.13.  (A) Color scale, charge-density of  2 3 4

Ge CH CH  showing the orbitals of the Ge  and C  atoms at their radii, 

the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atoms 

participating in each bond, and the hydrogen nuclei.  (B) Color scale, charge-density of    2 5 2 53 3
C H GeGe C H  showing the 

orbitals of the Ge  and C  atoms at their radii, the ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the 

corresponding outer shell of the atoms participating in each bond, and the hydrogen nuclei. 
 

 
 
 
Table 23.60.  The symbols of functional groups of germanium compounds. 
 

Functional Group Group Symbol
GeC group Ge C  
GeGe group Ge Ge  

CH3 group  3 C H CH  

CH2 alkyl group  2 C H CH  

CH alkyl C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
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TIN FUNCTIONAL GROUPS AND MOLECULES 
As in the cases of carbon, silicon and germanium, the bonding in the tin atom involves four 3sp  hybridized orbitals formed from 

the 5p  and 5s  electrons of the outer shells.  Sn X  ,X halide oxide , Sn H , and Sn Sn  bonds form between 35Sn sp  HOs 

and between a halide or oxide AO, a 1H s  AO, and a 35Sn sp  HO, respectively to yield tin halides and oxides, stannanes, and 
distannanes, respectively.  The geometrical parameters of each Sn X  ,X halide oxide , Sn H , and Sn Sn  functional group 
is solved from the force balance equation of the electrons of the corresponding  -MO and the relationships between the prolate 
spheroidal axes.  Then, the sum of the energies of the 2H -type ellipsoidal MOs is matched to that of the 35Sn sp  shell as in the 

case of the corresponding carbon and tin molecules.  As in the case of the transition metals, the energy of each functional group 
is determined for the effect of the electron density donation from each participating 35Sn sp  HO and AO to the corresponding 
MO that maximizes the bond energy. 

The branched-chain alkyl stannanes and distannanes,  2 2m n m nSn C H   , comprise at least a terminal methyl group ( 3CH ) 

and at least one Sn  bound by a carbon-tin single bond comprising a C Sn  group, and may comprise methylene ( 2CH ), 

methylyne (CH ), C C , 1,2,3nSnH  , and Sn Sn  functional groups.  The methyl and methylene functional groups are 

equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same 
as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups 

and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups. 
The Sn  electron configuration is 2 10 2[ ]5 4 5Kr s d p , and the orbital arrangement is: 
 

 

       5p state

                

  1        0       -1

   (23.216) 

corresponding to the ground state 3
0P .  The energy of the carbon 5p  shell is the negative of the ionization energy of the tin atom 

[1] given by: 
  ,5  ( ;  ) 7.34392 E Sn p shell E ionization Sn eV     (23.217) 

The energy of tin is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264), but the atomic 
orbital may hybridize in order to achieve a bond at an energy minimum.  After Eq. (13.422), the 5Sn s  atomic orbital (AO) 
combines with the 5Sn p  AOs to form a single 35Sn sp  hybridized orbital (HO) with the orbital arrangement is: 
 

 

3              5sp  state

                       

 0,0       1,-1      1,0        1,1

     (23.218) 

 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the four 

electrons.  The sum  3, 4TE Sn sp  of experimental energies [1] of Sn , Sn , 2Sn  , and 3Sn   is: 

  3,5 40.73502 30.50260 14.6322 7.34392 = 93.21374 TE Sn sp eV eV eV eV eV     (23.219) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 35sp
r  of the 

35Sn sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 249

05
46 0 0

( ) 10
1.45964

8 93.21374 8 93.21374 sp
n

Z n e e
r a

e eV e eV 


    (23.220) 

where 50Z   for tin.  Using Eq. (15.14), the Coulombic energy  3,5CoulombE Sn sp  of the outer electron of the 35Sn sp  shell is: 

  
3

2 2
3

0 0 05

,5 9.321374 
8 8 1.45964Coulomb

sp

e e
E Sn sp eV

r a 
 

     (23.221) 

During hybridization, the spin-paired 5s  electrons are promoted to the 35Sn sp  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 5s  electrons.  From Eq. (10.255) with 50Z  , 
the radius 48r  of the 5Sn s  shell is: 

 48 01.33816r a  (23.222) 

Using Eqs. (15.15) and (23.206), the unpairing energy is: 

 
   

2 2 2
0

3 32
48 0

2 8
( ) 0.04775 

1.33816
o B

e

e
E magnetic eV

m r a

  
  


 (23.223) 
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Using Eqs. (23.203) and (23.207), the energy  3,5E Sn sp  of the outer electron of the 35Sn sp  shell is: 

  
 3

2 22
3 0
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2
,5 9.321374 0.04775 9.27363 

8
esp

ee
E Sn sp eV eV eV

r m r





      


 (23.224) 

Next, consider the formation of the Sn L -bond MO of tin compounds wherein L  is a ligand including tin and each tin 
atom has a 35Sn sp  electron with an energy given by Eq. (23.224).  The total energy of the state of each tin atom is given by the 

sum over the four electrons.  The sum  3,5T Sn LE Sn sp  of energies of 35Sn sp  (Eq. (23.224)), Sn , 2Sn  , and 3Sn   is: 

 
    

 

3 3,5 40.73502 30.50260 14.6322 ,5

                        40.73502 30.50260 14.6322 9.27363 95.14345 

T Sn LE Sn sp eV eV eV E Sn sp

eV eV eV eV eV

     

      
 (23.225) 

where  3,5E Sn sp  is the sum of the energy of Sn , 7.34392 eV , and the hybridization energy. 

A minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the 
Hydroxyl Radical (OH ) section with the donation of electron density from the participating 35Sn sp  HO to each Sn L -bond 
MO.  As in the case of acetylene given in the Acetylene Molecule section, the energy of each Sn L  functional group is 
determined for the effect of the charge donation.  For example, as in the case of the Si Si -bond MO given in the Alkyl Silanes 
and Disilanes section, the sharing of electrons between two 35Sn sp  HOs to form a Sn Sn -bond MO permits each participating 
orbital to decrease in size and energy.  In order to further satisfy the potential, kinetic, and orbital energy relationships, each 

35Sn sp  HO donates an excess of 25% of its electron density to the Sn Sn -bond MO to form an energy minimum.  By 
considering this electron redistribution in the distannane molecule as well as the fact that the central field decreases by an integer 
for each successive electron of the shell, in general terms, the radius 35Sn L sp

r


 of the 35Sn sp  shell may be calculated from the 

Coulombic energy using Eq. (15.18). 
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2 249
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  (23.226) 

Using Eqs. (15.19) and (23.210), the Coulombic energy  3,5Coulomb Sn LE Sn sp  of the outer electron of the 35Sn sp  shell is: 
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0 0 05

,5 9.75830 
8 8 1.39428Coulomb Sn L

Sn L sp

e e
E Sn sp eV

r a 



 
     (23.227) 

During hybridization, the spin-paired 5s  electrons are promoted to the 35Sn sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (23.223).  Using Eqs. (23.223) and (23.227), the energy  3,5Sn LE Sn sp  of the 

outer electron of the 35Sn sp  shell is: 

  
 3

2 22
3 0

32
0 485

2
,5 9.75830 0.04775 9.71056

8Sn L

eSn L sp

ee
E Sn sp eV eV eV

r m r







      


 (23.228) 

Thus,  3,5TE Sn L sp , the energy change of each 35Sn sp  shell with the formation of the Sn L -bond MO is given by the 

difference between Eq. (23.228) and Eq. (23.224). 
      3 3 3,5 ,5 ,5 0.43693 T Sn LE Sn L sp E Sn sp E Sn sp eV      (23.229) 

Next, consider the formation of the Sn L -bond MO of additional functional groups wherein each tin atom contributes a 
35Sn sp  electron having the sum  3,5T Sn LE Sn sp  of energies of 35Sn sp  (Eq. (23.224)), Sn , 2Sn  , and 3Sn   given by Eq. 

(23.209).  Each Sn L -bond MO of each functional group Sn L  forms with the sharing of electrons between a 35Sn sp  HO 

and a AO or HO of L , and the donation of electron density from the 35Sn sp  HO to the Sn L -bond MO permits the 
participating orbitals to decrease in size and energy.  In order to further satisfy the potential, kinetic, and orbital energy 
relationships while forming an energy minimum, the permitted values of the excess fractional charge of its electron density that 
the 35Sn sp  HO donates to the Sn L -bond MO given by Eq. (15.18) is  0.25 ;     1, 2,3, 4s s   and linear combinations thereof.  

By considering this electron redistribution in the tin molecule as well as the fact that the central field decreases by an integer for 
each successive electron of the shell, the radius 35Sn L sp

r


 of the 35Sn sp  shell may be calculated from the Coulombic energy using 

Eq. (15.18). 
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  (23.230) 

Using Eqs. (15.19) and (23.230), the Coulombic energy  3,5Coulomb Sn LE Sn sp  of the outer electron of the 35Sn sp  shell is 
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 (23.231) 

During hybridization, the spin-paired 5s  electrons are promoted to the 35Sn sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (23.223).  Using Eqs. (23.223) and (23.231), the energy  3,5Sn LE Sn sp  of the 

outer electron of the 35Sn sp  shell is: 

  
    3

2 22
3 0

32
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8 10 0.25Sn L

eSn L sp

ee eV
E Sn sp eV
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 (23.232) 

Thus,  3,5TE Sn L sp , the energy change of each 35Sn sp  shell with the formation of the Sn L -bond MO is given by the 

difference between Eq. (23.232) and Eq. (23.224). 

           3 3 3 95.14345
,5 ,5 ,5  0.04775  9.27363 

10 0.25T Sn LE Sn L sp E Sn sp E Sn sp eV eV eV
s       


 (23.233) 

Using Eq. (15.28) for the case that the energy matching and energy minimum conditions of the MOs in the tin molecule are met 
by a linear combination of values of s  ( 1s  and 2s ) in Eqs. (23.230-23.233), the energy  3,5Sn LE Sn sp  of the outer electron of 

the 35Sn sp  shell is: 

          
1 23
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  (23.234) 

Using Eqs. (15.13) and (23.234), the radius corresponding to Eq. (23.234) is: 
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 (23.235) 

 3,5TE Sn L sp , the energy change of each 35Sn sp  shell with the formation of the Sn L -bond MO is given by the difference 

between Eq. (23.235) and Eq. (23.224). 
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 (23.236) 

 3,5TE Sn L sp  is also given by Eq. (15.29).  Bonding parameters for the Sn L -bond MO of tin functional groups due to 

charge donation from the HO to the MO are given in Table 23.66. 
 
Table 23.66.   The values of 35Sn sp

r ,  3,5Coulomb Sn LE Sn sp , and  3,5Sn LE Sn sp  and the resulting  3,5TE Sn L sp  of the MO 

due to charge donation from the HO to the MO. 
 

MO 
Bond 
Type 

s  1 s  2  3 05Sn sp
r a  

Final 
 

 3,5Coulomb Sn LE Sn sp  

(eV) 
Final

 3,5Sn LE Sn sp  

(eV) 
Final

 3,5TE Sn L sp  

(eV) 

0 0 0 1.45964 -9.321374 -9.27363 0 
I 1 0 1.39428 -9.75830 -9.71056 -0.43693 
II 2 0 1.35853 -10.01510 -9.96735 -0.69373 
III 3 0 1.32278 -10.28578 -10.23803 -0.96440 
IV 4 0 1.28703 -10.57149 -10.52375 -1.25012 

I+II 1 2 1.37617 -9.88670 -9.83895 -0.56533 
II+III 2 3 1.34042 -10.15044 -10.10269 -0.82906 
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The semimajor axis a  solution given by Eq. (23.41) of the force balance equation, Eq. (23.39), for the  -MO of the 
Sn L -bond MO of nSnL  is given in Table 23.68 with the force-equation parameters 50Z  , en , and L  corresponding to the 

orbital and spin angular momentum terms of the 4s  HO shell.  The semimajor axis a  of organometallic compounds, stannanes 
and distannanes, are solved using Eq. (15.51). 

For the Sn L  functional groups, hybridization of the 5p  and 5s  AOs of Sn  to form a single 35Sn sp  HO shell forms an 

energy minimum, and the sharing of electrons between the 35Sn sp  HO and L  AO to form a MO permits each participating 

orbital to decrease in radius and energy.  The Cl  AO has an energy of   12.96764 E Cl eV  , the Br  AO has an energy of 

  11.8138 E Br eV  , the I  AO has an energy of   10.45126 E I eV  , the O  AO has an energy of   13.61805 E O eV  , 

the 32C sp  HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), 13.605804 eV  is the magnitude of the Coulombic 

energy between the electron and proton of H  (Eq. (1.264)), the Coulomb energy of the 35Sn sp  HO is 

 3,5 9.32137 CoulombE Sn sp HO eV   (Eq. (23.205)), and the 35Sn sp  HO has an energy of  3,5 9.27363 E Sn sp HO eV   (Eq. 

(23.208)).  To meet the equipotential condition of the union of the Sn L  2H -type-ellipsoidal-MO with these orbitals, the 

hybridization factor(s), at least one of 2c  and 2C  of Eq. (15.61) for the Sn L -bond MO given by Eq. (15.77) is: 
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2 2

,5 9.27363 
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E Sn sp eV
c ClAO to Sn sp HO C ClAO to Sn sp HO
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 (23.237) 
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 (23.238) 
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 (23.240) 
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 (23.243) 

where Eq. (15.71) was used in Eqs. (23.241) and (23.243) and Eqs. (15.76), (15.79), and (13.430) were used in Eq. (23.242).  

Since the energy of the MO is matched to that of the 35Sn sp  HO,  /E AO HO  in Eq. (15.61) is  3,5E Sn sp HO  given by Eq. 

(23.224) for single bonds and twice this value for double bonds.   3, .TE atom atom msp AO  of the Sn L -bond MO is 

determined by considering that the bond involves up to an electron transfer from the tin atom to the ligand atom to form partial 
ionic character in the bond as in the case of the zwitterions such as 2H B F   given in the Halido Boranes section.  For the tin 

compounds,  3, .TE atom atom msp AO  is that which forms an energy minimum for the hybridization and other bond 

parameter.   The general values of Table 23.66 are given by Eqs. (23.233) and (23.226), and the specific values for the tin 
functional groups are given in Table 23. 70. 

The symbols of the functional groups of tin compounds are given in Table 23.67.  The geometrical (Eqs. (15.1-15.5) and 
(23.41)), intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) parameters of tin 
compounds are given in Tables 23.68, 23.69, and 23.70, respectively.  The total energy of each tin compound given in Table 
22.71 was calculated as the sum over the integer multiple of each  GroupDE  of Table 23.70 corresponding to functional-group 

composition of the compound.  The bond angle parameters of tin compounds determined using Eqs. (15.88-15.117) are given in 
Table 23.72.  The  3, .TE atom atom msp AO  term for 4SnCl  was calculated using Eqs. (23.230-23.277) with 1s   for the 

energies of  3,5E Sn sp .  The charge-densities of exemplary tin coordinate and organometallic compounds, tin tetrachloride 

( 4SnCl ) and hexaphenyldistannane (    6 5 6 53 3
C H SnSn C H ) comprising the concentric shells of atoms with the outer shell 

bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figures 23.14 and 

23.15, respectively. 
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Figure 23.14.   Tin Tetrachloride.  Color scale, translucent view of the charge-density of 4SnCl  showing the orbitals of the 

Sn  and Cl  atoms at their radii, the ellipsoidal surface of each 2H -type ellipsoidal MO that transitions to the corresponding outer 

shell of the atoms participating in each bond, and the nuclei (red, not to scale). 
 

 
 
Figure 23.15.   (A) and (B) Hexaphenyldistannane.  Color scale, opaque view of the charge-density of (C6H5)3SnSn(C6H5)3 
showing the orbitals of the Sn and C atoms at their radii and the ellipsoidal surface of each H or H2-type ellipsoidal MO that 
transitions to the corresponding outer shell of the atoms participating in each bond. 
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Table 23.67.  The symbols of functional groups of tin compounds. 
 

Functional Group Group Symbol
SnCl group Sn Cl  
SnBr group Sn Br  
SnI group Sn I  
SnO group Sn O  
SnH group Sn H  
SnC group Sn C  
SnSn group Sn Sn  

CH3 group  3 C H CH  

CH2 alkyl group  2 C H CH  (i) 

CH alkyl C H  (i) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 
CC double bond C C  
C vinyl single bond to -C(C)=C C C  (i) 
C vinyl single bond to -C(H)=C C C  (ii) 
C vinyl single bond to -C(C)=CH2 C C  (iii) 

CH2 alkenyl group  2 C H CH  (ii) 

CC  (aromatic bond) 
3e

C C  
CH (aromatic) CH  (ii) 

a bC C  ( 3CH  to aromatic bond) C C  (iv) 

C-C(O) ( )C C O  

C=O (aryl carboxylic acid) C O  
(O)C-O C O  
OH group OH  
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LEAD ORGANOMETALLIC FUNCTIONAL GROUPS AND MOLECULES 
The branched-chain alkyl lead molecules, 2 2n nPbC H  , comprise at least one Pb  bound by a carbon-lead single bond comprising 

a C Pb  group, at least a terminal methyl group ( 3CH ), and may comprise methylene ( 2CH ), methylyne (CH ), and C C  

functional groups.  The methyl and methylene functional groups are equivalent to those of straight-chain alkanes.  Six types of 
C C  bonds can be identified.  The n-alkane C C  bond is the same as that of straight-chain alkanes.  In addition, the C C  
bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups and the isopropyl to isopropyl, isopropyl to t-butyl, and t-

butyl to t-butyl C C  bonds comprise functional groups.   
As in the cases of carbon, silicon, tin, and germanium, the bonding in the lead atom involves four 3sp  hybridized 

orbitals.  For lead, they are formed from the 6 p  and 6s  electrons of the outer shells.  Pb C  bonds form between a 36Pb sp  

HO and a 33C sp  HO to yield alkyl leads.  The geometrical parameters of the Pb C functional group are solved using Eq. 

(15.51) and the relationships between the prolate spheroidal axes.  Then, the sum of the energies of the 2H -type ellipsoidal MOs 

is matched to that of the 36Pb sp  shell as in the case of the corresponding carbon, silicon, tin, germanium molecules.  As in the 
case of the transition metals, the energy of each functional group is determined for the effect of the electron density donation 
from each participating 33C sp  HO and 36Pb sp  HO to the corresponding MO that maximizes the bond energy. 

The Pb  electron configuration is 2 14 10 2[ ]6 4 5 6Xe s f d p , and the orbital arrangement is: 

 

      6p state

                

  1        0       -1

   (23.244) 

corresponding to the ground state 3
0P .  The energy of the lead 6 p  shell is the negative of the ionization energy of the lead atom 

[1] given by: 
  , 6  ( ;  ) 7.41663 E Pb p shell E ionization Pb eV     (23.245) 

The energy of lead is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264), but the atomic 
orbital may hybridize in order to achieve a bond at an energy minimum.  After Eq. (13.422), the 6Pb s  atomic orbital (AO) 
combines with the 6Pb p  AOs to form a single 36Pb sp  hybridized orbital (HO) with the orbital arrangement 

 

3             6sp  state

                       

 0,0      1,-1      1,0       1,1

     (23.246) 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the four 

electrons.  The sum  3,6TE Pb sp  of experimental energies [1] of Pb , Pb , 2Pb  , and 3Pb   is: 

  3,6 42.32 31.9373 15.03248 7.41663 =96.70641 TE Pb sp eV eV eV eV eV     (23.247) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 36sp
r  of the 

36Pb sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 281

06
78 0 0

( ) 10
1.40692

8 96.70641 8 96.70641 sp
n

Z n e e
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e eV e eV 


    (23.248) 

where 82Z   for lead.  Using Eq. (15.14), the Coulombic energy  3,6CoulombE Pb sp  of the outer electron of the 36Pb sp  shell is 
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2 2
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0 0 06

,6 9.67064 
8 8 1.40692Coulomb

sp

e e
E Pb sp eV

r a 
 

     (23.249) 

During hybridization, the spin-paired 6s  electrons are promoted to the 36Pb sp  shell as unpaired electrons.  The energy for the 
promotion is the magnetic energy given by Eq. (15.15) at the initial radius of the 6s  electrons.  From Eq. (10.102) with 82Z   
and 80n  , the radius 80r  of the 6Pb s  shell is: 

 80 01.27805r a  (23.250) 

Using Eqs. (15.15) and (23.250), the unpairing energy is: 

 
   

2 2 2
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3 32
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2 8
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o B

e

e
E magnetic eV

m r a

  
  


 (23.251) 

Using Eqs. (23.249) and (23.251), the energy  3,6E Pb sp  of the outer electron of the 36Pb sp  shell is: 
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 (23.252) 

Next, consider the formation of the Pb L -bond MO of lead compounds wherein L  is a ligand including carbon and 
each lead atom has a 36Pb sp  electron with an energy given by Eq. (23.252).  The total energy of the state of each lead atom is 

given by the sum over the four electrons.  The sum  3,6T Pb LE Pb sp  of energies of 36Pb sp  (Eq. (23.252)), Pb , 2Pb  , and 
3Pb   is: 

 
    

 

3 3,6 42.32 31.9373 15.03248 ,6

                        42.32 31.9373 15.03248 9.61584 98.90562 

T Pb LE Pb sp eV eV eV E Pb sp

eV eV eV eV eV

     

      
 (23.253) 

where  3,6E Pb sp  is the sum of the energy of Pb , 7.41663 eV , and the hybridization energy. 

A minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the 
Hydroxyl Radical ( OH ) section with the donation of electron density from the participating 36Pb sp  HO to each Pb L -bond 

MO.  Consider the case wherein each 36Pb sp  HO donates an excess of 25% of its electron density to the Pb L -bond MO to 
form an energy minimum.  By considering this electron redistribution in the lead molecule as well as the fact that the central 
field decreases by an integer for each successive electron of the shell, in general terms, the radius 36Pb L sp

r


 of the 36Pb sp  shell 

may be calculated from the Coulombic energy using Eq. (15.18). 

 
   3

2 281

06
78 0 0

9.75
( ) 0.25 1.34124

8 98.90562 8 98.90562 Pb L sp
n

e e
r Z n a

e eV e eV 


      
 
  (23.254) 

Using Eqs. (15.19) and (23.254), the Coulombic energy  3,6Coulomb Pb LE Pb sp  of the outer electron of the 36Pb sp  shell is: 

  
3

2 2
3

0 0 06

,6 10.14417 
8 8 1.34124Coulomb Pb L

Pb L sp

e e
E Pb sp eV

r a 



 
     (23.255) 

During hybridization, the spin-paired 6s  electrons are promoted to the 36Pb sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (23.251).  Using Eqs. (23.251) and (23.255), the energy  3,6Pb LE Pb sp  of the 

outer electron of the 36Pb sp  shell is: 

  
 3

2 22
3 0

32
0 806

2
,6 10.14417 0.05481 10.08936 

8Pb L

ePb L sp

ee
E Pb sp eV eV eV

r m r







      


 (23.256) 

Thus,  3,6TE Pb L sp , the energy change of each 36Pb sp  shell with the formation of the Pb L -bond MO is given by the 

difference between Eq. (23.256) and Eq. (23.252). 

        3 3 3,6 ,6 ,6 10.08936 9.61584 0.47352 T Pb LE Pb L sp E Pb sp E Pb sp eV eV eV          (23.257) 

Next, consider the formation of the Pb C -bond MO by bonding with a carbon having a 32C sp electron with an energy 

given by Eq. (14.146).  The total energy of the state is given by the sum over the four electrons.  The sum  3, 2T ethaneE C sp  of 

calculated energies of 32C sp , C , 2C  , and 3C   from Eqs. (10.123), (10.113-10.114), (10.68), and (10.48), respectively, is: 

 
    

 

3 3, 2 64.3921 48.3125 24.2762 , 2

                        64.3921 48.3125 24.2762 14.63489 151.61569 

T ethaneE C sp eV eV eV E C sp

eV eV eV eV eV

    

      
 (23.258) 

where  3, 2E C sp  is the sum of the energy of C , 11.27671 eV , and the hybridization energy.  

The sharing of electrons between the 36Pb sp  HO and 32C sp  HOs to form a Pb C -bond MO permits each 
participating hybridized orbital to decrease in radius and energy.  A minimum energy is achieved while satisfying the potential, 
kinetic, and orbital energy relationships, when the 36Pb sp  HO donates, and the 32C sp  HO receives, excess electron density 
equivalent to an electron within the Pb C -bond MO.  By considering this electron redistribution in the alkyl lead molecule as 
well as the fact that the central field decreases by an integer for each successive electron of the shell, the radius 32Pb C sp

r


 of the 

32C sp  shell of the Pb C -bond MO may be calculated from the Coulombic energy using Eqs. (15.18) and (23.258). 

 
   3

2 25

02
2 0 0

11
( ) 1 0.98713

8 151.61569 8 151.61569 Pb C sp
n

e e
r Z n a

e eV e eV 


 
     
 
  (23.259) 

Using Eqs. (15.19) and (23.259), the Coulombic energy  3, 2Coulomb Pb CE C sp  of the outer electron of the 32C sp  shell is 
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3

2 2
3

0 0 02

, 2 13.78324 
8 8 0.98713Coulomb Pb C

Pb C sp

e e
E C sp eV

r a 



 
     (23.260) 

During hybridization, the spin-paired 2s  electrons are promoted to the 32C sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (14.145).  Using Eqs. (14.145) and (23.260), the energy  3, 2Pb CE C sp  of the 

outer electron of the 32C sp  shell is: 

  
 3

2 22
3 0

32
0 32

2
, 2 13.78324 0.19086 13.59238 

8Pb C

ePb C sp

ee
E C sp eV eV eV

r m r







      


 (23.261) 

Thus,  3, 2TE Pb C sp , the energy change of each 32C sp  shell with the formation of the Pb C -bond MO is given by the 

difference between Eq. (23.261) and Eq. (14.146). 

        3 3 3, 2 , 2 , 2 13.59238 14.63489 1.04251 T Pb CE Pb C sp E C sp E C sp eV eV eV         (23.262) 

Now, consider the formation of the Pb L -bond MO of lead compounds wherein L  is a ligand including carbon.  For 
the Pb L  functional groups, hybridization of the 6 p  and 6s  AOs of Pb  to form a single 36Pb sp  HO shell forms an energy 

minimum, and the sharing of electrons between the 36Pb sp  HO and L  HO to form a MO permits each participating orbital to 

decrease in radius and energy.  The 32C sp  HO has an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)) and the 36Pb sp  HO 

has an energy of  3,6 9.61584 E Pb sp eV   (Eq. (23.252)).  To meet the equipotential condition of the union of the Pb L  

2H -type-ellipsoidal-MO with these orbitals, the hybridization factors 2c  and 2C  of Eq. (15.61) for the Pb L -bond MO given 

by Eq. (15.77) are: 

      
 

3

3 3 3 3
2 2 3

,6 9.61584 
2   6 2   6 0.65705

14.63489 , 2

E Pb sp HO eV
c C sp HO to Pb sp HO C C sp HO to Pb sp HO

eVE C sp


   


 (23.263) 

Since the energy of the MO is matched to that of the 36Pb sp  HO,  /E AO HO  in Eq. (15.61) is  3,6E Pb sp HO  given by Eq. 

(23.252).  In order to match the energies of the carbon and lead HOs within the molecule,  3, .TE atom atom msp AO  of the 

Pb L -bond MO for the ligand carbon is one half  3, 2TE Pb C sp  (Eq. (23.262)). 

The symbols of the functional groups of lead compounds are given in Table 23.73.  The geometrical (Eqs. (15.1-15.5)), 
intercept (Eqs. (15.31-15.32) and (15.80-15.87)), and energy (Eqs. (15.61) and (23.28-23.33)) parameters of lead compounds are 
given in Tables 23.74, 23.75, and 23.76, respectively.  The total energy of each lead compound given in Table 22.77 was 
calculated as the sum over the integer multiple of each  GroupDE  of Table 23.76 corresponding to functional-group composition 

of the compound.  The bond angle parameters of lead compounds determined using Eqs. (15.88-15.117) are given in Table 
23.78.  The charge-densities of exemplary lead compound, tetraethyl lead (  2 3 4

Pb CH CH ) comprising atoms with the outer 

shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs are shown in Figure 23.16. 
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Figure 23.16.   Color scale, charge-density of  2 3 4
Pb CH CH  showing the orbitals of the Pb  and C  atoms at their radii, the 

ellipsoidal surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atoms 

participating in each bond, and the hydrogen nuclei. 

 
 
Table 23.73.  The symbols of functional groups of lead compounds. 
 

Functional Group Group Symbol
PbC group Pb C  

CH3 group  3 C H CH  

CH2 alkyl group  2 C H CH  

CH alkyl C H  
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 

 
Table 23.74.   The geometrical bond parameters of lead compounds and experimental values [3]. 
 
 
Parameter Pb C  

Group 
 3

 C H CH
 

Group 

 2
 C H CH
 

Group 

C H  
Group 

C C  (a) 
Group 

C C  (b) 
Group 

C C  
(c) 

Group 

C C  
(d) 

Group 

C C  
(e) 

Group 

C C  (f) 
Group 

 0
 a a  2.21873 1.64920 1.67122 1.67465 2.12499 2.12499 2.10725 2.12499 2.10725 2.10725 

 0
'  c a  2.12189 1.04856 1.05553 1.05661 1.45744 1.45744 1.45164 1.45744 1.45164 1.45164 

Bond 
Length 

 2 '  c Å  
2.24571 1.10974 1.11713 1.11827 1.54280 1.54280 1.53635 1.54280 1.53635 1.53635 

Exp. 
Bond 

Length 

 Å  

2.238 

(  
3 4

CH Pb ) 

1.107 
( C H  
propane) 

1.117 
( C H  
butane) 

1.107 
( C H  
propane) 

1.117 
( C H  
butane) 

1.122 
(isobutane) 

1.532 
(propane) 

1.531 
(butane) 

1.532 
(propane) 

1.531 
(butane) 

1.532 
(propane) 

1.531 
(butane) 

1.532 
(propane) 

1.531 
(butane) 

1.532 
(propane) 

1.531 
(butane) 

1.532 
(propane) 

1.531 
(butane) 

 0
,  b c a  0.64834 1.27295 1.29569 1.29924 1.54616 1.54616 1.52750 1.54616 1.52750 1.52750 

e  0.95635 0.63580 0.63159 0.63095 0.68600 0.68600 0.68888 0.68600 0.68888 0.68888
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ALKYL ARSINES ( 2 1 3
,   1,2,3,4,5...n nC H As n  ) 

The alkyl arsines,  2 1 3n nC H As , comprise a As C  functional group.  The alkyl portion of the alkyl arsine may comprise at 

least two terminal methyl groups ( 3CH ) at each end of each chain, and may comprise methylene ( 2CH ), and methylyne ( CH ) 

functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional groups are 
equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same 
as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups 

and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  The 
branched-chain-alkane groups in alkyl arsines are equivalent to those in branched-chain alkanes.  The As C  group may further 
join the 34As sp  HO to an aryl HO. 

As in the case of phosphorous, the bonding in the arsenic atom involves 3sp  hybridized orbitals formed, in this case, 

from the 4 p  and 4s  electrons of the outer shells.  The As C  bond forms between 34As sp  and 32C sp  HOs to yield arsines.  
The semimajor axis a  of the As C  functional group is solved using Eq. (15.51).  Using the semimajor axis and the 
relationships between the prolate spheroidal axes, the geometric and energy parameters of the MO are calculated using Eqs. 
(15.1-15.117) in the same manner as the organic functional groups given in the Organic Molecular Functional Groups and 
Molecules section.  

The energy of arsenic is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  A 
minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the Hydroxyl 
Radical (OH ) section with hybridization of the arsenic atom such that in Eqs. (15.51) and (15.61), the sum of the energies of the 

2H -type ellipsoidal MOs is matched to that of the 34As sp  shell as in the case of the corresponding phosphine molecules.   

The As  electron configuration is 2 10 3[ ]4 3 4Ar s d p  corresponding to the ground state 4
3/2S , and the 34sp  hybridized 

orbital arrangement after Eq. (13.422) is: 
 

 

3               4sp  state

                       

  0,0      1,-1      1,0       1,1

     (23.264) 

 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the five 

electrons.  The sum  3, 4TE As sp  of experimental energies [1] of As , As , 2As  , 3As  , and 4As   is: 

  3, 4 62.63 50.13 28.351 18.5892 9.7886 169.48880 TE As sp eV eV eV eV eV eV       (23.265) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 34sp
r  of the 

34As sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 
 

 
   3

2 232

04
28 0 0

( ) 15
1.20413

8 169.48880 8 169.48880 sp
n

Z n e e
r a

e eV e eV 


    (23.266) 

 

where 33Z   for arsenic.  Using Eq. (15.14), the Coulombic energy  3, 4CoulombE As sp  of the outer electron of the 34As sp  shell 

is: 

  
3

2 2
3

0 0 04

, 4 11.29925 
8 8 1.20413Coulomb

sp

e e
E As sp eV

r a 
 

     (23.267) 

During hybridization, the spin-paired 4s  electrons are promoted to the 34As sp  shell as paired electrons at the radius 34sp
r  of the 

34As sp  shell.  The energy for the promotion is the difference in the magnetic energy given by Eq. (15.15) at the initial radius of 

the 4s  electrons and the final radius of the 34As sp  electrons.  From Eq. (10.102) with 33Z   and 30n  , the radius 30r  of the 

4As s  shell is: 
 30 01.08564r a  (23.268) 

Using Eqs. (15.15) and (23.268), the unpairing energy is: 

 
       

3

2 2
20

3 3 3 32

30 0 0
4

2 1 1 1 1
( ) 8 0.02388 

1.08564 1.20413
o B

e
sp

e
E magnetic eV

m r a ar

  
              


 (23.269) 

Using Eqs. (23.267) and (23.269), the energy  3, 4E As sp  of the outer electron of the 34As sp  shell is: 
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ee
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r m r r




 
          

 
 


 (23.270) 

For the As C  functional group, hybridization of the 2s  and 2 p  AOs of each C  and the 4s  and 4 p  AOs of each As  

to form single 32sp  and 34sp  shells, respectively, forms an energy minimum, and the sharing of electrons between the 32C sp  

and 34As sp  HOs to form a MO permits each participating orbital to decrease in radius and energy.  In branched-chain alkyl 
arsines, the energy of arsenic is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  
Thus, 2c  in Eq. (15.61) is one, and the energy matching condition is determined by the 2C  parameter.  Then, the 32C sp  HO has 

an energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the 34As sp  HO has an energy of  3, 4 11.27537 E As sp eV   

(Eq. (23.270)).  To meet the equipotential condition of the union of the As C  2H -type-ellipsoidal-MO with these orbitals, the 

hybridization factor 2C  of Eq. (15.61) for the As C -bond MO given by Eqs. (15.77), (15.79), and (13.430) is: 

    
     

3

3 3 3
2 23

, 4 11.27537 
2   4 2 0.91771 0.70705

14.63489 , 2

E As sp eV
C C sp HO to As sp HO c C sp HO

eVE C sp


  


 (23.271) 

The energy of the As C -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in Eq. (15.51) 

with    3/ , 4E AO HO E As sp  given by Eq. (23.270), and  3, .TE atom atom msp AO  is zero in order to match the energies 

of the carbon and arsenic HOs. 
The symbols of the functional groups of branched-chain alkyl arsines are given in Table 23.79.  The geometrical (Eqs. 

(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
arsines are given in Tables 23.80, 23.81, and 23.82, respectively.  The total energy of each alkyl arsine given in Table 23.83 was 
calculated as the sum over the integer multiple of each  GroupDE  of Table 23.82 corresponding to functional-group composition 

of the molecule.  The bond angle parameters of alkyl arsines determined using Eqs. (15.88-15.117) are given in Table 23.84.  
The color scale, charge-density of exemplary alkyl arsine, triphenylarsine, comprising atoms with the outer shell bridged by one 
or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 23.17. 

 
Figure 23.17.   Color scale, charge-density of triphenylarsine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei. 
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Table 23.79.   The symbols of functional groups of alkyl arsines. 
 

Functional Group Group Symbol
As-C As C  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  (i) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 

CC (aromatic bond) 
3e

C C  
CH (aromatic) CH  (ii) 

 



Organometallic Molecular Functional Groups and Molecules  1431

T
a

b
le

 2
3

.8
0

. 
 T

he
 g

eo
m

et
ri

ca
l b

on
d 

pa
ra

m
et

er
s 

of
 a

lk
yl

 a
rs

in
es

 a
nd

 e
xp

er
im

en
ta

l v
al

ue
s 

[3
].

 
 

T
a

b
le

 2
3

.8
1

. 
 T

he
 M

O
 to

 H
O

 in
te

rc
ep

t g
eo

m
et

ri
ca

l b
on

d 
pa

ra
m

et
er

s 
of

 a
lk

yl
 a

rs
in

es
.  

 R
, R
′, 

R
″ 

ar
e 

H
 o

r 
al

ky
l g

ro
up

s.
  E

T
 is

 E
T
 (

at
om

–a
to

m
,m

sp
3 .

A
O

. 



Chapter 23 1432

 
 
 

T
a

b
le

 2
3

.8
2

. 
 T

he
 e

ne
rg

y 
pa

ra
m

et
er

s 
(e

V
) 

of
 f

un
ct

io
na

l g
ro

up
s 

of
 a

lk
yl

 a
rs

in
es

. 

T
a

b
le

 2
3

.8
3

. 
 T

he
 to

ta
l b

on
d 

en
er

gi
es

 o
f 

al
ky

l a
rs

in
es

 c
al

cu
la

te
d 

us
in

g 
th

e 
fu

nc
ti

on
al

 g
ro

up
 c

om
po

si
ti

on
 a

nd
 th

e 
en

er
gi

es
 o

f 
T

ab
le

 2
3.

82
 c

om
pa

re
d 

to
 th

e 
ex

pe
ri

m
en

ta
l 

va
lu

es
 [

87
].

 



Organometallic Molecular Functional Groups and Molecules  1433

 
T

a
b

le
 2

3
.8

4
. 

 T
he

 b
on

d 
an

gl
e 

pa
ra

m
et

er
s 

of
 a

lk
yl

 a
rs

in
es

 a
nd

 e
xp

er
im

en
ta

l v
al

ue
s 

[3
].

 I
n 

th
e 

ca
lc

ul
at

io
n 

of
 θ
ν, 

th
e 

pa
ra

m
et

er
s 

fr
om

 th
e 

pr
ec

ed
in

g 
an

gl
e 

w
er

e 
us

ed
.  

E
T
 is

 E
T
 (

at
om

–a
to

m
,m

sp
3 .

A
O

).
 



Chapter 23 1434

ALKYL STIBINES ( 2 1 3
,   1,2,3,4,5...n nC H Sb n  ) 

The alkyl stibines,  2 1 3n nC H Sb , comprise a Sb C  functional group.  The alkyl portion of the alkyl stibine may comprise at 

least two terminal methyl groups ( 3CH ) at each end of each chain, and may comprise methylene ( 2CH ), and methylyne ( CH ) 

functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional groups are 
equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same 
as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups 

and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  The 
branched-chain-alkane groups in alkyl stibines are equivalent to those in branched-chain alkanes.  The Sb C  group may further 
join the 35Sb sp  HO to an aryl HO. 

As in the case of phosphorous, the bonding in the antimony atom involves 3sp  hybridized orbitals formed, in this case, 

from the 5p  and 5s  electrons of the outer shells.  The Sb C  bond forms between 35Sb sp  and 32C sp  HOs to yield stibines.  
The semimajor axis a  of the Sb C  functional group is solved using Eq. (15.51).  Using the semimajor axis and the 
relationships between the prolate spheroidal axes, the geometric and energy parameters of the MO are calculated using Eqs. 
(15.1-15.117) in the same manner as the organic functional groups given in the Organic Molecular Functional Groups and 
Molecules section.  

The energy of antimony is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  
A minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the Hydroxyl 
Radical (OH ) section with hybridization of the antimony atom such that in Eqs. (15.51) and (15.61), the sum of the energies of 
the 2H -type ellipsoidal MOs is matched to that of the 35Sb sp  shell as in the case of the corresponding phosphine and arsine 

molecules. 
The Sb  electron configuration is 2 10 3[ ]5 4 5Kr s d p  corresponding to the ground state 4

3/2S , and the 35sp  hybridized 

orbital arrangement after Eq. (13.422) is: 

 

3              5sp  state

                       

 0,0       1,-1      1,0        1,1

     (23.272) 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the five 

electrons.  The sum  3,5TE Sb sp  of experimental energies [1] of Sb , Sb , 2Sb  , 3Sb  , and 4Sb   is: 

  3,5 56.0 44.2 25.3 16.63 8.60839 150.73839TE Sb sp eV eV eV eV eV eV       (23.273) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 35sp
r  of the 

35Sb sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3

2 250

05
46 0 0

( ) 15
1.35392

8 150.73839 8 150.73839 sp
n

Z n e e
r a

e eV e eV 


    (23.274) 

where 51Z   for antimony.  Using Eq. (15.14), the Coulombic energy  3,5CoulombE Sb sp  of the outer electron of the 35Sb sp  

shell is: 

  
3

2 2
3

0 0 05

,5 10.04923 
8 8 1.35392Coulomb

sp

e e
E Sb sp eV

r a 
 

     (23.275) 

During hybridization, the spin-paired 5s  electrons are promoted to the 35Sb sp  shell as paired electrons at the radius 35sp
r  of the 

35Sb sp  shell.  The energy for the promotion is the difference in the magnetic energy given by Eq. (15.15) at the initial radius of 

the 5s  electrons and the final radius of the 35Sb sp  electrons.  From Eq. (10.102) with 51Z   and 48n  ,  the radius 48r  of the 

5Sb s  shell is: 
 48 01.23129r a  (23.276) 

Using Eqs. (15.15) and (23.276), the unpairing energy is: 
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03 3 3 32

48 0 0
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2 1 1 1 1
( ) 8 0.01519 
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B

e
sp

e
E magnetic eV

m r a ar

  
                


 (23.277) 

Using Eqs. (23.275) and (23.277), the energy  3,5E Sb sp  of the outer electron of the 35Sb sp  shell is: 
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 (23.278) 

For the Sb C  functional group, hybridization of the 2s  and 2 p  AOs of each C  and the 5s  and 5p  AOs of each Sb  to 

form single 32sp  and 35sp  shells, respectively, forms an energy minimum, and the sharing of electrons between the 32C sp  and 
35Sb sp  HOs to form a MO permits each participating orbital to decrease in radius and energy.  In branched-chain alkyl stibines, 

the energy of antimony is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  Thus, 2c  

in Eq. (15.61) is one, and the energy matching condition is determined by the 2C  parameter.  Then, the 32C sp  HO has an energy 

of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the 35Sb sp  HO has an energy of  3,5 10.03404 E Sb sp eV   (Eq. (23.278)).  

To meet the equipotential condition of the union of the Sb C  2H -type-ellipsoidal-MO with these orbitals, the hybridization 

factor 2C  of Eq. (15.61) for the Sb C -bond MO given by Eqs. (15.77), (15.79), and (13.430) is: 

    
     

3

3 3 3
2 23

,5 10.03404 
2   5 2 0.91771 0.62921

14.63489 , 2

E Sb sp eV
C C sp HO to Sb sp HO c C sp HO

eVE C sp


  


 (23.279) 

The energy of the Sb C -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in Eq. (15.51) 

with    3/ ,5E AO HO E Sb sp  given by Eq. (23.278), and  3, .TE atom atom msp AO  is zero in order to match the energies 

of the carbon and antimony HOs. 
The symbols of the functional groups of branched-chain alkyl stibines are given in Table 123.85.  The geometrical (Eqs. 

(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
stibines are given in Tables 23.86, 23.87, and 23.88, respectively.  The total energy of each alkyl stibine given in Table 23.89 
was calculated as the sum over the integer multiple of each  GroupDE  of Table 23.88 corresponding to functional-group 

composition of the molecule.  The bond angle parameters of alkyl stibines determined using Eqs. (15.88-15.117) are given in 
Table 23.90.  The color scale, charge-density of exemplary alkyl stibine, triphenylstibine, comprising atoms with the outer shell 
bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 23.18. 

 
Figure 23.18.   Color scale, charge-density of triphenylstibine showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei. 
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Table 23.85.   The symbols of functional groups of alkyl stibines. 

 
Functional Group Group Symbol

Sb-C Sb C  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  (i) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 

CC (aromatic bond) 
3e

C C  
CH (aromatic) CH  (ii) 
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ALKYL BISMUTHS ( 2 1 3
,   1,2,3,4,5...n nC H Bi n  ) 

The alkyl bismuths,  2 1 3n nC H Bi , comprise a Bi C  functional group.  The alkyl portion of the alkyl bismuth may comprise at 

least two terminal methyl groups ( 3CH ) at each end of each chain, and may comprise methylene ( 2CH ), and methylyne ( CH ) 

functional groups as well as C  bound by carbon-carbon single bonds.  The methyl and methylene functional groups are 
equivalent to those of straight-chain alkanes.  Six types of C C  bonds can be identified.  The n-alkane C C  bond is the same 
as that of straight-chain alkanes.  In addition, the C C  bonds within isopropyl (  3 2

CH CH ) and t-butyl (  3 3
CH C ) groups 

and the isopropyl to isopropyl, isopropyl to t-butyl, and t-butyl to t-butyl C C  bonds comprise functional groups.  The 
branched-chain-alkane groups in alkyl bismuths are equivalent to those in branched-chain alkanes.  The Bi C  group may 
further join the 36Bi sp  HO to an aryl HO. 

As in the case of phosphorous, arsenic, and antimony, the bonding in the bismuth atom involves 3sp  hybridized orbitals 

formed, in this case, from the 6 p  and 6s  electrons of the outer shells.  The Bi C  bond forms between 36Bi sp  and 32C sp  HOs 
to yield bismuths.  The semimajor axis a  of the Bi C  functional group is solved using Eq. (15.51).  Using the semimajor axis 
and the relationships between the prolate spheroidal axes, the geometric and energy parameters of the MO are calculated using 
Eqs. (15.1-15.117) in the same manner as the organic functional groups given in the Organic Molecular Functional Groups and 
Molecules section.  

The energy of bismuth is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  A 
minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the Hydroxyl 
Radical (OH ) section with hybridization of the bismuth atom such that in Eqs. (15.51) and (15.61), the sum of the energies of 
the 2H -type ellipsoidal MOs is matched to that of the 36Bi sp  shell as in the case of the corresponding phosphines, arsines, and 

stibines. 
The Bi  electron configuration is 2 14 10 3[ ]6 4 5 6Xe s f d p  corresponding to the ground state 4

3/2S , and the 36sp  hybridized 

orbital arrangement after Eq. (13.422) is: 
 

 

3               6sp  state

                       

  0,0       1,-1      1,0       1,1

     (23.280) 

where the quantum numbers ( ,m ) are below each electron.  The total energy of the state is given by the sum over the five 

electrons.  The sum  3,6TE Bi sp  of experimental energies [1] of Bi , Bi , 2Bi  , 3Bi  , and 4Bi   is: 

  3,6 56.0 45.3 25.56 16.703 7.2855 150.84850 TE Bi sp eV eV eV eV eV eV       (23.281) 

By considering that the central field decreases by an integer for each successive electron of the shell, the radius 36sp
r  of the 

36Bi sp  shell may be calculated from the Coulombic energy using Eq. (15.13). 

 
   3
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1.35293

8 150.84850 8 150.84850 sp
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Z n e e
r a

e eV e eV 


    (23.282) 

where 83Z   for bismuth.  Using Eq. (15.14), the Coulombic energy  3,6CoulombE Bi sp  of the outer electron of the 36Bi sp  shell 

is: 

  
3

2 2
3

0 0 06

,6 10.05657 
8 8 1.35293Coulomb

sp

e e
E Bi sp eV

r a 
 

     (23.283) 

During hybridization, the spin-paired 6s  electrons are promoted to the 36Bi sp  shell as paired electrons at the radius 36sp
r  of the 

36Bi sp  shell.  The energy for the promotion is the difference in the magnetic energy given by Eq. (15.15) at the initial radius of 

the 6s  electrons and the final radius of the 36Bi sp  electrons.  From Eq. (10.102) with 83Z   and 80n  , the radius 80r  of the 

6Bi s  shell is: 
 80 01.20140r a  (23.284) 

Using Eqs. (15.15) and (23.284), the unpairing energy is: 
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 (23.285) 

Using Eqs. (23.283) and (23.285), the energy  3,6E Bi sp  of the outer electron of the 36Bi sp  shell is: 
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 (23.286) 

Next, consider the formation of the Bi L -bond MO of bismuth compounds wherein L  is a very stable ligand and each 
bismuth atom has a 36Bi sp  electron with an energy given by Eq. (23.286).  The total energy of the state of each bismuth atom is 

given by the sum over the five electrons.  The sum  3,6T Bi LE Bi sp  of energies of 36Bi sp  (Eq. (23.286)), Bi , 2Bi  , 3Bi  , and 
4Bi   is: 

 
    

 

3 3,6 56.0 45.3 25.56 16.703 ,6

                        56.0 45.3 25.56 16.703 10.03679 153.59979 

T Bi LE Bi sp eV eV eV eV E Bi sp

eV eV eV eV eV eV

      

       
 (23.287) 

where  3,6E Bi sp  is the sum of the energy of Bi , 7.2855 eV , and the hybridization energy. 

A minimum energy is achieved while matching the potential, kinetic, and orbital energy relationships given in the 
Hydroxyl Radical (OH ) section with the donation of electron density from the participating 36Bi sp  HO to each Bi L -bond 

MO.  Consider the case wherein each 36Bi sp  HO donates an excess of 25% of its electron density to the Bi L -bond MO to 
form an energy minimum.  By considering this electron redistribution in the bismuth molecule as well as the fact that the central 
field decreases by an integer for each successive electron of the shell, in general terms, the radius 36Bi L sp

r


 of the 36Bi sp  shell 

may be calculated from the Coulombic energy using Eq. (15.18). 
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  (23.288) 

Using Eqs. (15.19) and (23.288), the Coulombic energy  3,6Coulomb Bi LE Bi sp  of the outer electron of the 36Bi sp  shell is: 
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 (23.289) 

During hybridization, the spin-paired 6s  electrons are promoted to the 36Bi sp  shell as paired electrons at the radius 36sp
r  of the 

36Bi sp  shell.  The energy for the promotion is the difference in the magnetic energy given by Eq. (15.15) at the initial radius of 

the 6s  electrons and the final radius of the 36Bi sp  electrons.  Using Eqs. (23.285) and (23.289), the energy  3,6Bi LE Bi sp  of 

the outer electron of the 36Bi sp  shell is: 
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ee
E Bi sp eV eV eV

r m r







      


 (23.290) 

Thus,  3,6TE Bi L sp , the energy change of each 36Bi sp  shell with the formation of the Bi L -bond MO is given by the 

difference between Eq. (23.290) and Eq. (23.286). 
        3 3 3,6 ,6 ,6 10.39377 10.03679 0.35698 T Bi LE Bi L sp E Bi sp E Bi sp eV eV eV          (23.291) 

Next, consider the formation of the Bi C -bond MO by bonding with a carbon having a 32C sp electron with an energy 

given by Eq. (14.146).  The total energy of the state is given by the sum over the five electrons.  The sum  3, 2T ethaneE C sp  of 

calculated energies of 32C sp , C , 2C  , and 3C   from Eqs. (10.123), (10.113-10.114), (10.68), and (10.48), respectively, is: 

 
    

 

3 3, 2 64.3921 48.3125 24.2762 , 2

                        64.3921 48.3125 24.2762 14.63489 151.61569 

T ethaneE C sp eV eV eV E C sp

eV eV eV eV eV

    

      
 (23.292) 

where  3, 2E C sp  is the sum of the energy of C , 11.27671 eV , and the hybridization energy.  

The sharing of electrons between the 36Bi sp HO and 32C sp  HOs to form a Bi C -bond MO permits each participating 
hybridized orbital to decrease in radius and energy.  A minimum energy is achieved while satisfying the potential, kinetic, and 
orbital energy relationships, when the 36Bi sp  HO donates, and the 32C sp  HO receives, excess electron density equivalent to an 
electron within the Bi C -bond MO.  By considering this electron redistribution in the alkyl bismuth molecule as well as the 
fact that the central field decreases by an integer for each successive electron of the shell, the radius 32Bi C sp

r


 of the 32C sp  shell 

of the Bi C -bond MO may be calculated from the Coulombic energy using Eqs. (15.18) and (23.292): 
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  (23.293) 

Using Eqs. (15.19) and (23.293), the Coulombic energy  3, 2Coulomb Bi CE C sp  of the outer electron of the 32C sp  shell is: 
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2 2
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, 2 13.78324 
8 8 0.98713Coulomb Bi C
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e e
E C sp eV

r a 



 
     (23.294) 

During hybridization, the spin-paired 2s  electrons are promoted to the 32C sp  shell as unpaired electrons.  The energy for the 

promotion is the magnetic energy given by Eq. (14.145).  Using Eqs. (14.145) and (23.294), the energy  3, 2Bi CE C sp  of the 

outer electron of the 32C sp  shell is: 

  
 3

2 22
3 0

32
0 32

2
, 2 13.78324 0.19086 13.59238 

8Bi C

eBi C sp

ee
E C sp eV eV eV

r m r







      


 (23.295) 

Thus,  3, 2TE Bi C sp , the energy change of each 32C sp  shell with the formation of the Bi C -bond MO is given by the 

difference between Eq. (23.295) and Eq. (14.146). 
        3 3 3, 2 , 2 , 2 13.59238 14.63489 1.04251 T Bi CE Bi C sp E C sp E C sp eV eV eV         (23.296) 

Now, consider the formation of the Bi L -bond MO of bismuth compounds wherein L  is a ligand including carbon.  
For the Bi C  functional group, hybridization of the 2s  and 2 p  AOs of each C  and the 6s  and 6 p  AOs of each Bi  to form 

single 32sp  and 36sp  shells, respectively, forms an energy minimum, and the sharing of electrons between the 32C sp  and 
36Bi sp  HOs to form a MO permits each participating orbital to decrease in radius and energy.  In branched-chain alkyl 

bismuths, the energy of bismuth is less than the Coulombic energy between the electron and proton of H  given by Eq. (1.264).  
Thus, the energy matching condition is determined by the 2c  and 2C  parameters in Eq. (15.61).  Then, the 32C sp  HO has an 

energy of  3, 2 14.63489 E C sp eV   (Eq. (15.25)), and the 36Bi sp  HO has an energy of  3,6 10.03679 E Bi sp eV   (Eq. 

(23.286)).  To meet the equipotential condition of the union of the Bi C  2H -type-ellipsoidal-MO with these orbitals, the 

hybridization factors 2c  and 2C  of Eq. (15.61) for the Bi C -bond MO given by Eqs. (15.77) are: 
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 (23.297) 

The energy of the Bi C -bond MO is the sum of the component energies of the 2H -type ellipsoidal MO given in Eq. (15.51) 

with    3/ ,6E AO HO E Bi sp  given by Eq. (23.286), and  3, .TE atom atom msp AO  is  3, 2TE Bi C sp  (Eq. (23.296)) in 

order to match the energies of the carbon and bismuth HOs. 
The symbols of the functional groups of branched-chain alkyl bismuths are given in Table 23.91.  The geometrical (Eqs. 

(15.1-15.5) and (15.51)), intercept (Eqs. (15.80-15.87)), and energy (Eqs. (15.6-15.11) and (15.17-15.65)) parameters of alkyl 
bismuths are given in Tables 23.92, 23.93, and 23.94, respectively.  The total energy of each alkyl bismuth given in Table 23.95 
was calculated as the sum over the integer multiple of each  GroupDE  of Table 23.94 corresponding to functional-group 

composition of the molecule.  The bond angle parameters of alkyl bismuths determined using Eqs. (15.88-15.117) are given in 
Table 23.96.  The color scale, charge-density of exemplary alkyl bismuth, triphenylbismuth, comprising atoms with the outer 
shell bridged by one or more 2H -type ellipsoidal MOs or joined with one or more hydrogen MOs is shown in Figure 23.19. 
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Figure 23.19.  Color scale, charge-density of triphenylbismuth showing the orbitals of the atoms at their radii, the ellipsoidal 
surface of each H  or 2H -type ellipsoidal MO that transitions to the corresponding outer shell of the atom(s) participating in 

each bond, and the hydrogen nuclei. 
 

 
 

Table 23.91.  The symbols of functional groups of alkyl bismuths. 
 

Functional Group Group Symbol
Bi-C Bi C  

CH3 group  3 C H CH  

CH2 group  2 C H CH  

CH C H  (i) 
CC bond (n-C) C C  (a) 
CC bond (iso-C) C C  (b) 
CC bond (tert-C) C C  (c) 
CC (iso to iso-C) C C  (d) 
CC (t to t-C) C C  (e) 
CC (t to iso-C) C C  (f) 

CC (aromatic bond) 
3e

C C  
CH (aromatic) CH  (ii) 
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SUMMARY TABLES OF ORGANOMETALLIC AND COORDINATE MOLECULES 
The bond energies, calculated using closed-form equations having integers and fundamental constants only for classes of 
molecules whose designation is based on the main functional group, are given in the following tables with the experimental 
values. 
 
Table 23.97.1.   Summary results of organoaluminum compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative 
Error 

C2H7Al dimethylaluminum hydride 34.31171 34.37797a [11] 0.00193
C3H9Al trimethyl aluminum 47.10960 46.95319 [10] -0.00333
C4H11Al diethylaluminum hydride 58.62711 60.10948b [10] 0.02466
C6H15Al triethylaluminum hydride 83.58270 83.58176 [10] -0.00001
C6H15Al di-n-propylaluminum hydride 82.94251 84.40566b [10] 0.01733
C9H21Al tri-n-propyl aluminum 120.05580 121.06458b [10] 0.00833
C8H19Al di-n-butylaluminum hydride 107.25791 108.71051b [10] 0.01336
C8H19Al di-isobutylaluminum hydride 107.40303 108.77556b [10] 0.01262
C12H27Al tri-n-butyl aluminum 156.52890 157.42429b [10] 0.00569
C12H27Al tri-isobutyl aluminum 156.74658 157.58908b [10] 0.00535

 

a Estimated. 
b Crystal 

 
Table 23.97.2.   Summary results of scandium coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative Error

ScF scandium fluoride 6.34474 6.16925 [15] -0.02845
ScF2 scandium difluoride 12.11937 12.19556 [15] 0.00625
ScF3 scandium trifluoride 19.28412 19.27994 [15] -0.00022
ScCl scandium chloride 4.05515 4.00192 [15] -0.01330
ScO scandium oxide 7.03426 7.08349 [15] 0.00695

 

 
Table 23.97.3.   Summary results of titanium coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV) 

Relative Error

TiF titanium fluoride 6.44997 6.41871 [21] -0.00487
TiF2 titanium difluoride 13.77532 13.66390 [21] -0.00815
TiF3 titanium trifluoride 19.63961 19.64671 [21] 0.00036
TiF4 titanium tetrafluoride 24.66085 24.23470 [21] -0.01758
TiCl titanium chloride 4.56209 4.56198 [22] -0.00003
TiCl2 titanium dichloride 10.02025 9.87408 [22] -0.01517
TiCl3 titanium trichloride 14.28674 14.22984 [22] -0.00400
TiCl4 titanium tetrachloride 17.94949 17.82402 [22] -0.00704
TiBr titanium bromide 3.77936 3.78466 [19] 0.00140
TiBr2 titanium dibromide 8.91650 8.93012 [19] 0.00153
TiBr3 titanium tribromide 12.07765 12.02246 [19] -0.00459
TiBr4 titanium tetrabromide 14.90122 14.93239 [19] 0.00209
TiI titanium iodide 3.16446 3.15504 [20] -0.00299
TiI2 titanium diiodide 7.35550 7.29291 [20] -0.00858
TiI3 titanium triiodide 9.74119 9.71935 [20] -0.00225
TiI4 titanium tetraiodide 12.10014 12.14569 [20] 0.00375
TiO titanium oxide 7.02729 7.00341 [23] -0.00341
TiO2 titanium dioxide 13.23528 13.21050 [23] -0.00188
TiOF titanium fluoride oxide 12.78285 12.77353 [23] -0.00073
TiOF2 titanium difluoride oxide 18.94807 18.66983 [23] -0.01490
TiOCl titanium chloride oxide 11.10501 11.25669 [23] 0.01347
TiOCl2 titanium dichloride oxide 15.59238 15.54295 [23] -0.00318
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Table 23.97.4.   Summary results of vanadium coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

VF5 vanadium pentafluoride 24.06031 24.24139 [15] 0.00747
VCl4 vanadium tetrachloride 15.84635 15.80570 [15] -0.00257
VN vanadium nitride 4.85655 4.81931 [24] -0.00775
VO vanadium oxide 6.37803 6.60264 [15] 0.03402
VO2 vanadium dioxide 12.75606 12.89729 [34] 0.01095
VOCl3 vanadium trichloride oxide 18.26279 18.87469 [15] 0.03242
V(CO)6 vanadium hexacarbonyl 75.26791 75.63369 [32] 0.00484
V(C6H6))2 dibenzene vanadium 119.80633 121.20193a [33] 0.01151

a Liquid. 
 
Table 23.97.5.   Summary results of chromium coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

CrF2 chromium difluoride 10.91988 10.92685 [15] 0.00064
CrCl2 chromium dichloride 7.98449 7.96513 [15] -0.00243
CrO chromium oxide 4.73854 4.75515 [37] 0.00349
CrO2 chromium dioxide 10.02583 10.04924 [37] 0.00233
CrO3 chromium trioxide 14.83000 14.85404 [37] 0.00162
CrO2Cl2 chromium dichloride dioxide 17.46158 17.30608 [15] -0.00899
Cr(CO)6 chromium hexacarbonyl 74.22588 74.61872 [44] 0.00526
Cr(C6H6)2 dibenzene chromium 117.93345 117.97971 [44] 0.00039

Cr((CH3)3C6H3)2 
di-(1,2,4-trimethylbenzene) 
chromium 191.27849 192.42933a [44] 0.00598

a Liquid. 
 
Table 23.97.6.   Summary results of manganese coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

MnF manganese fluoride 4.03858 3.97567 [15] -0.01582
MnCl manganese chloride 3.74528 3.73801 [15] -0.00194
Mn2(CO)10 dimanganese decacarbonyl 123.78299 122.70895 [49] -0.00875

 
Table 23.97.7.   Summary results of iron coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

FeF iron fluoride 4.65726 4.63464 [15] -0.00488
FeF2 iron difluoride 10.03188 9.98015 [15] -0.00518
FeF3 iron trifluoride 15.31508 15.25194 [15] -0.00414
FeCl iron chloride 2.96772 2.97466 [15] 0.00233
FeCl2 iron dichloride 8.07880 8.28632 [15] 0.02504
FeCl3 iron trichloride 10.82348 10.70065 [50] -0.01148
FeO iron oxide 4.09983 4.20895 [15] 0.02593
Fe(CO)5 iron pentacarbonyl 61.75623 61.91846 [29] 0.00262

Fe(C5H5)2 
bis-cyclopentadienyl iron 
(ferrocene) 98.90760 98.95272 [53] 0.00046
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Table 23.97.8.   Summary results of cobalt coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

CoF2 cobalt difluoride 9.45115 9.75552 [54] 0.03120
CoCl cobalt chloride 3.66504 3.68049 [15] 0.00420
Col2 cobalt dichloride 7.98467 7.92106 [15] -0.00803
CoCl3 cobalt trichloride 9.83521 9.87205 [15] 0.00373
CoH(CO)4 cobalt tetracarbonyl hydride 50.33217 50.36087 [53] 0.00057

 
Table 23.97.9.   Summary results of nickel coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

NiCl nickel chloride 3.84184 3.82934 [59] -0.00327
NiCl2 nickel dichloride 7.76628 7.74066 [59] -0.00331
Ni(CO)4 nickel tetracarbonyl 50.79297 50.77632 [55] -0.00033

Ni(C5H5)2 
bis-cyclopentadienyl nickel 
(nickelocene) 

97.73062 97.84649 [53] 0.00118 

 
Table 23.97.10.   Summary results of copper coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

CuF copper fluoride 4.39399 4.44620 [63] 0.01174
CuF2 copper difluoride 7.91246 7.89040 [63] -0.00280
CuCl copper chloride 3.91240 3.80870 [15] -0.02723
CuO copper oxide 2.93219 2.90931 [63] -0.00787

 
Table 23.97.11.   Summary results of zinc coordinate compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

ZnCl zinc chloride 2.56175 2.56529 [15] 0.00138
ZnCl2 zinc dichloride 6.68749 6.63675 [15] -0.00764
Zn(CH3)2 dimethylzinc 29.35815 29.21367 [15] -0.00495
(CH3CH2)2Zn  diethylzinc 53.67355 53.00987 [65] -0.01252
(CH3CH2CH2)2Zn di-n-propylzinc 77.98895 77.67464 [65] -0.00405
(CH3CH2CH2CH2)2Zn  di-n-butylzinc 102.30435 101.95782 [65] -0.00340

 
Table 23.97.12.   Summary results of germanium compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

C8H20Ge tetraethylgermanium 109.99686 110.18166 [67] 0.00168
C12H28Ge tetra-n-propylgermanium 158.62766 158.63092 [67] 0.00002
C12H30Ge2 hexaethyldigermanium 167.88982 167.89836 [67] 0.00005
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Table 23.97.13.   Summary results of tin compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

SnCl4 tin tetrachloride 12.95756 13.03704 [82] 0.00610
CH3Cl3Sn methyltin trichloride 24.69530 25.69118a [83] 0.03876 
C2H6Cl2Sn dimethyltin dichloride 36.43304 37.12369 [84] 0.01860
C3H9ClSn trimethyltin chloride 48.17077 49.00689 [84] 0.01706
SnBr4 tin tetrabromide 10.98655 11.01994 [82] 0.00303
C3H9BrSn trimethyltin bromide 47.67802 48.35363 [84] 0.01397
C12H10Br2Sn diphenyltin dibromide 117.17489 117.36647a [83] 0.00163 
C12H27BrSn tri-n-butyltin bromide 157.09732 157.26555a [83] 0.00107 
C18H15BrSn triphenyltin bromide 170.26905 169.91511a [83] -0.00208 
SnI4 tin tetraiodide 9.71697 9.73306 [85] 0.00165
C3H9ISn trimethyltin iodide 47.36062 47.69852 [84] 0.00708
C18H15SnI triphenyltin iodide 169.95165 167.87948a [84] -0.01234 
SnO tin oxide 5.61858 5.54770 [82] -0.01278
SnH4 stannane 10.54137 10.47181 [82] -0.00664
C2H8Sn dimethylstannane 35.22494 35.14201 [84] -0.00236
C3H10Sn trimethylstannane 47.56673 47.77353 [84] 0.00433
C4H12Sn diethylstannane 59.54034 59.50337 [84] -0.00062
C4H12Sn tetramethyltin 59.90851 60.13973 [82] 0.00384
C5H12Sn trimethylvinyltin 66.08296 66.43260 [84] 0.00526
C5H14Sn trimethylethyltin 72.06621 72.19922 [83] 0.00184
C6H16Sn trimethylisopropyltin 84.32480 84.32346 [83] -0.00002
C8H12Sn tetravinyltin 84.64438 86.53803a [83] 0.02188 
C6H18Sn2 hexamethyldistannane 91.96311 91.75569 [83] -0.00226
C7H18Sn trimethyl-t-butyltin 96.81417 96.47805 [82] -0.00348
C9H14Sn trimethylphenyltin 100.77219 100.42716 [83] -0.00344
C8H18Sn triethylvinyltin 102.56558 102.83906a [83] 0.00266 
C8H20Sn tetraethyltin 108.53931 108.43751 [83] -0.00094
C10H16Sn trimethylbenzyltin 112.23920 112.61211 [83] 0.00331
C10H14O2Sn trimethyltin benzoate 117.28149 119.31199a [83] 0.01702 
C10H20Sn tetra-allyltin 133.53558 139.20655a [83] 0.04074 
C12H28Sn tetra-n-propyltin 157.17011 157.01253 [83] -0.00100
C12H28Sn tetraisopropyltin 157.57367 156.9952 [83] -0.00366
C12H30Sn2 hexaethyldistannane 164.90931 164.76131a [83] -0.00090 
C19H18Sn triphenylmethyltin 182.49954 180.97881a [84] -0.00840 
C20H20Sn triphenylethyltin 194.65724 192.92526a [84] -0.00898 
C16H36Sn tetra-n-butyltin 205.80091 205.60055 [83] -0.00097
C16H36Sn tetraisobutyltin 206.09115 206.73234 [83] 0.00310
C21H24Sn2 triphenyl-trimethyldistannane 214.55414 212.72973a [84] -0.00858 
C24H20Sn tetraphenyltin 223.36322 221.61425 [83] -0.00789
C24H44Sn tetracyclohexyltin 283.70927 284.57603 [83] 0.00305
C36H30Sn2 hexaphenyldistannane 337.14517 333.27041 [83] -0.01163

a Crystal. 
 
Table 23.97.14.   Summary results of lead compounds. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

C4H12Pb tetramethyl-lead 57.55366 57.43264 [86] -0.00211
C8H20Pb tetraethyl-lead 106.18446 105.49164 [86] -0.00657

 



Organometallic Molecular Functional Groups and Molecules  1451

Table 23.97.15.   Summary results of alkyl arsines. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

C3H9As trimethylarsine 44.73978 45.63114 [87] 0.01953
C6H15As triethylarsine 81.21288 81.01084 [87] -0.00249
C18H15As triphenylarsine 167.33081 166.49257 [87] -0.00503

 
Table 23.97.16.   Summary results of alkyl stibines. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

C3H9Sb trimethylstibine 44.73078 45.02378 [88] 0.00651
C6H15Sb triethylstibine 81.20388 80.69402 [88] -0.00632
C18H15Sb triphenylstibine 167.32181 165.81583 [88] -0.00908

 
Table 23.97.17.   Summary results of alkyl bismuths. 

Formula Name 
Calculated
Total Bond 
Energy (eV)

Experimental 
Total Bond 
Energy (eV)

Relative Error

C3H9Bi trimethylbismuth 42.07387 42.79068 [88] 0.01675
C6H15Bi triethylbismuth 78.54697 78.39153 [88] -0.00198
C18H15Bi triphenylbismuth 164.66490 163.75184 [88] -0.00558
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Chapter 24 
  
STATISTICAL MECHANICS 
  
 
 
 
 
Large systems of particles are ubiquitous in nature.  The physics of each particle of a large system is determined by physical 
laws considering its initial conditions and history.  However, the amount of information to follow even 2 grams of hydrogen gas 
having Avogadro’s number of molecules ( 23 16.022045  10  AN X mol ) is overwhelming.  Statistical models typically deal with 

insufficient information for an underlying deterministic macrosystem such as the determination of an average property of a 
population with the accuracy only limited by the number of independent samples1.  Fortunately for the cases of atomic systems, 
it is also possible to determine the bulk properties of many systems using statistical models.  The modeling of aggregate behavior 
of a large ensemble of atoms, electrons, or photons obeying classical physics such as molecules in a gas, photons in a cavity, and 
free electrons in a metal is the branch of physics called statistical mechanics.  Statistical mechanics gives state properties of a 
system of many particles that are a manifestation of the properties of the particles themselves.  The necessity to be concerned 
with the actual motions and interactions of individual particles is avoided.  Instead, such models give predictions for the 
probability that the particle has a certain amount of energy at a certain moment.  It gives statistical distributions for all of the 
particles rather than the exact value for a specific particle.   
 
THREE DIFFERENT KINDS OF ATOMIC-SCALE STATISTICAL DISTRIBUTIONS [5] 
It was shown in the State Lifetimes and Line Intensities section, that a mean lifetime arises due to the superposition of transitions 
over an ensemble of individual atoms.  Each atom has an exact lifetime due to an exact transition involving specific initial, final, 
and any intermediate  , m  states and the corresponding exact photon in space relative to the states.  The mean lifetime arises 
from the mean current given by Eq. (2.87) and the spherical radiation field due to the superposition of emitted photons.  
Similarly, Maxwell’s equations apply to macroscopic electromagnetic fields that are in actuality the superposition of quantized 
photons traveling at the speed of light.  Furthermore, using Maxwell’s equations, the reduced speed of light in a transparent 
medium can be shown to be due to the radiation from many induced dipoles that produce a single wave propagating at the 
reduced speed [6].  Thus, deterministic physics arises as the aggregate behavior of entities that also in turn obey deterministic 
physics.  The same principle applies in the case of statistical mechanical models. 

In previous sections, the exact nature of individual particles (e.g. atoms, electrons, and photons) were solved.  The 
interactions of two separate individual particles demonstrated three types of behavior that are correctly modeled by three types of 
corresponding statistical models.  Each statistical model with a corresponding probability distribution function is based on the 
properties of the particle and their corresponding interactions. 
 According to statistical thermodynamics [7], a macroscopic thermodynamic system is viewed as an assembly of myriad 
submicroscopic entities in ever changing quantum states.  Consider the number of distinct ways that a set number of energy 

 
1 Quantum theory is incompatible with probability theory since the latter is based on underlying unknown, but determined outcomes, and the former is not 
[1].  Wavefunction solutions of the Schrödinger equation are interpreted as probability-density functions.  Quantum theory confuses the concepts of a 
wave and a probability-density function that are based on totally different mathematical and physical principles.  The use of “probability” in this instance 
does not conform to the mathematical rules and principles of probability theory.  Statistical theory is based on an existing deterministic reality with 
incomplete information; whereas, quantum measurement acts on a “probability-density function” to determine a reality that did not exist before the 
measurement.  Additionally, it is nonsensical to treat a single particle such as an electron as if it was a population of electrons and to assign the single 
electron to a statistical distribution over many states.  The electron has conjugate degrees of freedom such as position, momentum, and energy that obey 
conservation laws in an inverse-r Coulomb field.  A single electron cannot have multiple positions and momenta or energies simultaneously.  The decision 
to treat the electron as a point-particle-probability wave, a point with no volume with a vague probability wave requiring that the electron have an infinite 
number of positions and energies including negative and infinite energies simultaneously was a turning point in physics.  The adoption of the probabilistic 
versus deterministic nature of atomic particles violates all physical laws including special relativity with violation of causality as pointed out by Einstein 
[2] and de Broglie [3].  Consequently, it was rejected even by Schrödinger [4]. Pure mathematics took the place of physics, but even so, the mathematics is 
not even consistent with probability theory. 
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quanta can be distributed between a set number of energy levels each called a microstate.  The total number of microstates W  
associated with any configuration involving N  distinguishable units is 

 
  

!

! !a b

N
W

 



  (24.1) 

where a  represents the number of units assigned the same number of energy quanta (and, hence, occupying the same quantum 

number), and b  represents the number of units occupying some other quantum level.  As the number of units increases, the total 

number of microstates skyrockets to unimaginable magnitudes.  Thus, one can calculate that an assembly of 1000 localized 
harmonic oscillators sharing 1000 energy quanta possesses more than 60010  different microstates.  This explosive expansion of 
the total number of microstates with increasing N  is a direct consequence of the mathematics of permutations, from which 
arises also a second consequence of no less importance.  Statistical analysis shows that the emergence of a predominant 
configuration is characteristic of any assembly with a large number ( N ) of units.  Of the immense total number of microstates 
that can be assumed by a large assembly, an overwhelming proportion arises from one comparatively, small set of configurations 
centered on, and only minutely different from, the predominant configuration—with which they share an empirically identical 
set of macroscopic properties. 

The first step in the program of statistical mechanics is to find a general expression for W  for the kind of particles being 
considered.  Then W  is maximized subject to the conditions that the system consists of a fixed number of N  particles (except 
when they are photons or their acoustic equivalents called phonons where the total energy is conserved, but the number can 
change since the individual energies are given by Planck’s equation, E h ) and that the system contains a fixed amount of 
energy E that is conserved in populating the conserved number of states where applicable.  The result in each case is an 
expression for  n  , the number of particles with the energy  , that has the form: 

      n g f    (24.2) 

where  g   = number of states of energy   

   = statistical weight corresponding to energy   
  f   = distribution function 

   = average number of particles in each state of energy   
   = probability of occupancy of each state of energy   
 

When a continuous rather than a discrete distribution of energies is involved,  g  is replaced by  g d  , the number of states 

with energies between   and d  . 
 
Each of the three models is based upon the determination of the most probable way in which a certain total amount of 

energy E  is distributed among the N  members of a system of particles in thermal equilibrium at the absolute temperature T .  
Then, it is possible to statistically predict aggregate properties such as the number of particles having an energy 1 , 2 , and so 

on, based on the model.  The particle interactions are assumed to be at thermal equilibrium between themselves and the walls of 
their container in the absence of strongly correlated motion.  More than one particle state may have a certain energy  .  In the 
case of Maxwell-Boltzmann and Bose-Einstein statistics more than one particle may be in a certain state.  In the case of Fermi-
Dirac statistics each particle must be in different state since Fermi-Dirac statistics treats particles such as electrons that spin pair.  
A fundamental assumption of all statistical mechanical models that is supported by experimentation and consistent with physical 
laws, is that the greater the number W  of different ways in which the particles can be arranged among the available states to 
yield a particular distribution of energies, the more probable the distribution.  It is assumed that each state of a certain energy is 
equally likely to be occupied.  The atomic scale distributions derived from deterministic, conditional probability theory [8] are: 
 
MAXWELL-BOLTZMANN—identical, discrete particles such as molecules are separated and act independently such 
that they possess a continuum of momenta with exchange by the predominant interaction of collisional scattering.  Atoms and 
molecules have exact dimensions as shown in the and One-Electron Atom section, Two-Electron Atoms section, Three- Through 
Twenty-Electron Atoms section, Nature of the Chemical Bond of Hydrogen-Type Molecules and Molecular Ions section, 
Polyatomic Molecular Ions and Molecules section, and More Polyatomic Molecules and Hydrocarbons section.  Neutral particles 
such as atoms and molecules undergo one-on-one collisional interactions, which are conservative; otherwise, there is no 
correlation between the separated particles.  Maxwell-Boltzmann statistics is used to model the aggregate properties of a gas at a 
given temperature.  The corresponding Maxwell-Boltzmann distribution function states that the average number of particles 

 MBf   in a state of energy   in a system of particles at the absolute temperature T  is: 
   kT

MBf Ae    (24.3) 

where the value of A  depends of the number of particles in the system and serves to scale the distribution to the number of 
particles and, 23 51.381 10  / 8.617 10  /k J K eV K      is Boltzmann’s constant. 
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BOSE-EINSTEIN—indistinguishable photons called bosons having   of angular momentum excite quantized energy 
levels of electron resonator cavities where superposition and conservation of angular momentum are obeyed.  As shown in the 
Excited States of the One-Electron Atom (Quantization) and the Excited States of Helium sections, each bound electron is a 
resonator cavity, which traps single photons of discrete frequencies.  Thus, photon absorption occurs as an excitation of a 

resonator mode.  The angular momentum of the free space photon given by   41
Re ( )

8
dx

c
   m r E B*   in the Photon 

section is conserved [9] for the solutions for the resonant photons and excited-state electron functions.  The change in angular 
frequency of the electron is equal to the angular frequency of the resonant photon that excites the resonator cavity mode 
corresponding to the transition, and the energy is given by Planck’s equation.  An ensemble of a large number of photons in 
equilibrium with a material comprised of many electron states having resonant transitions excited by the photons may be 
correlated in order to conserve angular momentum.  Certain solid materials have essentially a continuum of discrete excited 
states wherein excitation of any state increases the cross section for the absorption of additional photons of the same energy by 
changing the angular momentum of the electron during excitation to permit further excitation.  In each case, the excited-state 
electron can undergo further transitions by resonant excitation with photons of the same energy, but different polarizations 
having the required angular momentum.  An ensemble of a large number of photons in equilibrium, with such a solid material 
comprised of many electron states having correlated resonant transitions excited by the photons, gives rise to blackbody 
radiation.  The statistics of this model is based on the physics that the presence of a particle in a certain quantum state increases 
the probability that other particles are to be found in the same state.  Bose-Einstein statistics is used to model photons in 
equilibrium with a cavity to account for the spectrum of radiation from a blackbody.  It is also used to model phonons in a solid.  
The corresponding Bose-Einstein distribution function states that the probability  f   that a boson occupies a state of energy   

in a system of particles at the absolute temperature T  is: 

   1

1BE kT
f

e e  


 (24.4) 

 
FERMI-DIRAC—identical, indistinguishable electrons called fermions occupy the lowest energy configuration as given in 
the Two Electron Atom section.  The Pauli Exclusion Principle arises as a minimum of energy for interacting electrons each 
having a Bohr magneton of magnetic moment.  Electrons pair as opposite mirror-image currents such that the occupation of one 
spin state by a first electron (e.g. 1/ 2s  ) causes a second to occupy the opposite spin state ( 1/ 2s   ).  Thus, the statistics of 
this model is based on physics that the presence of a particle in a certain state prevents any other particles from being in that 
state.  Fermi-Dirac statistics is used to model the behavior of electrons in a metal to explain the ability of metals to conduct 
electricity.  The corresponding Fermi-Dirac distribution function states that the probability  f   that a fermion occupies a state 
of energy   in a system of particles at the absolute temperature T  is: 

   1

1FD kT
f

e e  


 (24.5) 

The quantity   depends on the properties of the particular system and may be a function of T . 
 

The Maxwell-Boltzmann distribution function holds for systems of identical particles that can be distinguished one from 
another and there is no conditional-probability factor corresponding to the physics of the occupation of a given quantum state 
influencing the probability that other particles are found in the same state.  In contrast, the –1 term in the denominator of Eq. 
(24.4) expresses the increased likelihood of multiple occupancy of an energy state by bosons compared with the likelihood for 
distinguishable particles such as molecules.  The 1  term in the denominator in Eq. (24.5) is a consequence of the minimization 
of energy corresponding to spin pairing: no matter what the values of  ,  , and T ,  f   can never exceed one.  In both cases, 

when kT  , the functions  f   approach that of the Maxwell-Boltzmann statistics, Eq. (24.3).  Figure 24.1 is a comparison 

of the three distribution functions for 1   .  For a given value of 
kT


,  BEf  , which models bosons (photons and phonons), 

is always greater than  MBf  , and  FDf  , which models fermions (electrons), is always smaller.   

From Eq. (24.5),   1
2FDf    when the energy is: 

 F kT    (24.6) 

This energy defined as the Fermi energy, has significance in analyzing the behavior of a system of fermions, such as the 
conduction electrons in a metal.  The Fermi-Dirac distribution function, expressed in terms of F  is: 

    
1

1F
FD kT

f
e  





 (24.7) 
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Figure 24.1.   A comparison of the three statistical functions that give the probability of occupancy of a state of energy   at 
the absolute temperature T  for 1   .  The Maxwell-Boltzmann is pure exponential.  The Bose-Einstein function is always 
higher and the Fermi-Dirac function is always lower. 
 

 
 

The significance of the Fermi energy can be appreciated by comparing the occupancy of the states a system of fermions at 0T   
whose energies are less than F  with those that are greater than F : 
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 (24.8) 

At absolute zero, all energy states up to F  are occupied, but none above F  as shown in Figure 24.2 for 0T  .  As given in the 

Free Electrons in a Metal Section (Eq. (24.60)), the Fermi energy F  of a system containing N  fermions can be calculated by 

filling up its energy states with the N  particles in order of increasing energy starting from 0  .  The highest state to be 
occupied will then have the energy F  . 

The distribution functions for fermions at 0T  , 0.1 FT
k


 , and 1.0 FT

k


  are shown in Figure 24.2.  As the 

temperature is increased above 0T   with 0 FkT   , fermions shift their population of states from those just below F  to 

states just above it as shown in Figure 24.2 for 0.1 FT
k


 .  At higher temperatures, even fermions in the lowest states will begin 

to be excited to higher ones, so  0FDf  will drop below 1.  In these circumstances  FDf   will assume a shape like that in the 

lowest curve in Figure 24.2 corresponding to 1.0 FT
k


 .  The properties of the three distribution functions are summarized in 

Table 24.1 wherein to obtain the actual number  n   of particles with an energy  , the functions  f   are multiplied by 

 g  , the number of states of energy   : 

      n g f    (24.9) 
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Figure 24.2.   Distribution function for fermions at three different temperatures.  At 0T  , all the energy states up to the 

Fermi energy F  are occupied.  At low temperature ( 0.1 FT
k


 ), some fermions will leave states just below F  and move into 

states just above F .  At a higher temperature ( 1.0 FT
k


 ), fermions from any state below F  may move into states above F . 

 
Table 24.1.   The Three Statistical Distribution Functions 
 

 Maxwell-Boltzmann Bose-Einstein Fermi-Dirac 

Applies to systems of Identical, 
distinguishable 
particles 

Identical, 
indistinguishable 
particles that do not 
spin pair

Identical, 
indistinguishable 
particles that spin pair 

 
Categories of particles 
 

 
Collisional 

 
Bosons 

 
Fermions 

Properties of particles Any spin Spin 0, 1, 2,  Spin 3 51
2 2 2, ,  

 
Examples 

 
Molecules of gas 

 
Photons in a cavity; 
phonons in a solid; 
liquid helium at low 
temperatures

 
Free electrons in a metal 

 
Distribution function 
(number of particles 
in each state of energy 
  at the temperature 
T ) 
 

 
 

  kT
MBf Ae    

 

  1
1BE kTf

e e  


 

 

   
1

1F
FD kT

f
e  





 

Properties of 
distribution 

No limit to number of 
particles per state 

No limit to number of 
particles per state; 
more particles per 
state than MBf  at low 

energies; approaches 

MBf  at high energies 

Never more than 1 
particle per state; fewer 
particles per state than 

MBf  at low energies; 

approaches MBf  at high 

energies 
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APPLICATION OF MAXWELL-BOLTZMANN STATISTICS TO MODEL 
MOLECULAR ENERGIES IN AN IDEAL GAS 
Combining Eqs. (24.2) and (24.3) gives us the number  n   of identical, distinguishable particles in an assembly at the 

temperature T  that have the energy  : 
     kTn Ag e     (24.10) 

Eq. (24.3) predicts that  MBf   decreases with   and increases with increasing T  consistent with observations.  A more 

definite test of the validity of Eq. (24.3) including the 1/ kT  factor in the exponent is to use it to calculate the total internal 
energy E  of a system of particles for which E  is known.  An appropriate test system is a sample of an ideal gas that contains N  
molecules.  The elementary kinetic theory of gases shows that the ideal-gas law will have the correct form PV NkT only if the 

average molecular kinetic energy is 3
2

kT , so that the total molecular energy must be 3
2

E NkT .  As shown by Eq. (24.24), Eq. 

(24.3) does give this result validating the model, which is developed next. 
The translational motion of gas molecules is continuous, and the total number of molecules N  in a sample is usually 

very large.  Therefore, a continuous distribution of molecular energies is used instead of the discrete set 1 2 3, , ,    .  If  n d   

is the number of molecules whose energies lie between   and d  , Eq. (24.3) can be written: 

         kTn d g d f Ag e d               (24.11) 

To find  g d  , the number of states that have energies between   and d  , first consider that a molecule of energy   has 

a momentum p whose magnitude p  is specified by:  

 2 2 22 x y zp m p p p     (24.12) 

Each set of momentum components , ,x y zp p p  specifies a different state of motion.  Further consider a momentum space whose 

coordinate axes are , ,x y zp p p , as in Figure 24.3.  The number of states  g p dp  with momenta whose magnitudes are between 

p  and p dp  are proportional to the volume of a spherical shell in momentum space p  in radius and dp  thick, which is 
24 p dp .  Hence 

   2g p dp Bp dp  (24.13) 

where B  is some constant.  Since each momentum magnitude p  corresponds to a single energy  , the number of energy states 

 g d   between   and d   is the same as the number of momentum states  g p dp  between p  and p dp .  Thus, Eq. 

(24.13) becomes: 
   2g d Bp dp    (24.14) 

 
Figure 24.3.   The coordinates in momentum space are , , x y zp p p .  The number of momentum states available to a particle 

with a momentum whose magnitude is between p  and p dp  is proportional to the volume of a spherical shell in momentum 
space of radius p  and thickness dp . 
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Since 

 2  
2  and 

2

m d
p m dp

m




   (24.15) 

Eq. (24.14) becomes 
   3

22g d m B d     (24.16) 

The number of molecules with energies between   and d  is therefore, 

   kTn d C e d     (24.17) 

where  3
22C m AB  is a constant to be evaluated.  To find C  we make use of the normalization condition that the total 

number of molecules is N , so that 

  
0 0

kTN n d C e d   
      (24.18) 

From integral # 670 of Lide [10] we find that 

 
0

1

2
axxe dx

a a

    (24.19) 

where 1a kT , such that 
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3
2

2
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N kT
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 (24.20) 

Substitution of Eq. (24.20) into Eq. (24.17) gives: 

  
 

3
2

2 kTN
n d e d

kT

   


  (24.21) 

Eq. (24.21) gives the number of molecules with energies between   and d   in a sample of an ideal gas that contains N  
molecules at absolute temperature T .   
 

Figure 24.4.   Maxwell-Boltzmann energy distribution for the molecules of an ideal gas.   
 

 
 

The curve of Equation (24.21) plotted in terms of kT  (Figure 24.4) is not symmetrical about the most probable energy.  
This is because 0   is the lower limit to   while the upper limit is   ; although, the probability of particles with energies 
many times greater than kT  is small. 

The total internal energy of the system is calculated by integrating the product of  n d   and the energy   over all 

energies from 0 to  : 

  
 

3
2

3
20 0

2 kTN
E n d e d

kT

    


      (24.22) 

Using integral #521 and #670 of Lide [11]: 

 
3

2
20

3

4
axx e dx

a a


  (24.23) 

gives  

 
    3

2

22 3 3
4 2

N
E kT kT NkT

kT

 


   (24.24) 
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This is the correct result based on the ideal-gas law’s dependence on the average molecular kinetic energy being 3
2

kT .  Eq. 

(24.24) confirms that the 1
kT  factor in the exponent of the Maxwell-Boltzmann distribution function of Eq. (24.3) properly 

describes the dependence of  n d   on T .  Also, from Eq. (24.24), the average energy of an ideal-gas molecule is 
E

N
, or 

 3
2

kT   (24.25) 

which is independent of the molecule’s mass; however, a light molecule has a greater average speed at a given temperature than 
a heavy one.  The value of   at room temperature is about 0.04eV. 

A gas molecule can be excited to translate in three directions such that it possesses energy in three translational modes or 

degrees of freedom corresponding to motions in the x , y , and z  directions.  1
2

kT  of energy can be associated with each degree 

of freedom.  This association turns out to be a quite general one; the average energy per degree of freedom of any Newtonian 
entity modeled by Maxwell-Boltzmann statistics that is part of a system of such entities in thermal equilibrium at the temperature 

T is 1
2

kT .  

For example, a harmonic oscillator has two degrees of freedom, one corresponding to its kinetic energy and the other to 

its potential energy.  Each oscillator of a system of harmonic oscillators thus has an average energy of   12
2

kT kT .  To a 

first approximation, the atoms of a solid behave like a system of Newtonian harmonic oscillators, as shown in the Application of 
Bose-Einstein Statistics to Model Specific Heats of Solids section. 

The distribution of molecular speeds can be found from Eq. (24.21) by making the substitution 

 
21

2
 

mv

d mv dv








 (24.26) 

First obtained by Maxwell in 1859, the result for the number of molecules with speeds between v  and v dv  is:  

  
 

3
2 2

3
2

2 22 mv kTNm
n v dv v e dv

kT




  (24.27) 

Eq. (24.27) is plotted in Figure 24.5.   
 
Figure 24.5.  Maxwell-Boltzmann speed distribution.   
 

 

rmsv , the square root of the average of the squared molecular speed of a molecule with an average energy of 3
2

kT  is  

 2 3
rms

kT
v v

m
   (24.28) 

since 2 31
2 2mv kT .  This speed is denoted as the root-mean-square speed which is not the same as the simple arithmetic average 

speed v .  The relationship between v  and rmsv  depends on the distribution law that governs the molecular speeds in a particular 

system.  For a Maxwell-Boltzmann distribution, 

 
3

1.09
8rmsv v v


   (24.29) 
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so that the rms speed is about 9 percent greater than the arithmetical average speed.  Due to the asymmetry of the speed 
distribution given by Eq. (24.27), the most probable speed pv  is smaller than either v  or rmsv .  To find pv , the derivative of 

 n v  with respect to v is set equal to zero and the resulting equation is solved for v : 

 
2

p

kT
v

m
  (24.30) 

Molecular speeds in a gas may vary considerably about pv  as shown (Figure 24.6) by the distributions of speeds in 

oxygen at 73 K (–200°C), in oxygen at 273 K (0°C), and in hydrogen at 273 K.  The most probable speed increases with 
temperature and decreases with molecular mass such that molecular speeds in oxygen at 73 K are in totality less than at 273 K.   
Furthermore, the average molecular energy is the same in both oxygen and hydrogen at 273 K, but the molecular speeds in 
hydrogen at 273 K are in totality greater than those in oxygen at the same temperature. 
 
Figure 24.6.   The distributions of molecular speeds in oxygen at 73 K, in oxygen at 273 K, and in hydrogen at 273 K.   
 

 
 
APPLICATION OF BOSE-EINSTEIN STATISTICS TO MODEL BLACKBODY 
RADIATION 
Every substance emits electromagnetic radiation with a spectrum that depends on the nature and temperature of the substance.  
The discrete electronic-excited-state spectra of isolated atoms of gases such as hydrogen and helium are given in the Excited 
States of the One-Electron Atom (Quantization) and the Excited States of Helium sections.  At the other extreme, continuum 
spectra are observed from dense bodies such as solids.  As expected, the ability of a body to radiate is closely related to its ability 
to absorb radiation, since a body at a constant temperature is in thermal equilibrium with its surroundings and must absorb 
energy from them at the same rate as it emits energy.  It is convenient to consider a blackbody as an ideal body that absorbs all 
radiation incident upon it, independent of frequency. 
 
Figure 24.7.  Two pairs of Identical Surfaces in Thermal Equilibrium.  Surfaces I and I' are identical to each other and are 
different from the identical pair of surfaces II and II'.   
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An experiment, illustrated in Figure 24.7, to demonstrate that a blackbody is the best emitter of radiation involves two 
identical pairs (I, I' and II, II') of dissimilar surfaces with no temperature difference observed between two of the surfaces I' and 
II'.  At a given temperature, the surfaces I and I' radiate at the rate of 1e  while the dissimilar surfaces II and II' radiate at the 

different rate 2e .  The surfaces I and I' absorb some fraction 1a  of the incident radiation, while the dissimilar surfaces II and II' 

absorb some other fraction 2a .  Hence I' absorbs energy from II at a rate proportional to 1 2a e , and II' absorbs energy from I at a 

rate proportional to 2 1a e .  For I' and II' to remain at the same temperature,  

 1 2
1 2 2 1

1 2

 and 
e e

a e a e
a a

   (24.31) 

Eq. (24.31) shows that the ability of a body to emit radiation is proportional to its ability to absorb radiation.   
Next, consider that I and I' are blackbodies such that 1 1a  , and II and II' are not with 2 1a  .  Eq. (24.31) becomes: 

 2
1

2

e
e

a
  (24.32) 

Since 2 1a  , Eq. (24.32) gives: 

 1 2e e  (24.33) 

A blackbody at a given temperature is the most effective radiator of energy. 
In the analysis of thermal radiation, the concept of an idealized blackbody permits the precise nature of whatever is 

radiating to be disregarded, since all blackbodies behave identically. A laboratory blackbody can be approximated by a hollow 
object with a very small hole leading to its interior as shown in Figure 24.8.  Any radiation striking the hole enters the cavity, 
where it is trapped by reflecting from the walls until it is absorbed.  The cavity walls are constantly emitting and absorbing 
radiation, and the properties of this radiation (blackbody radiation) can be modeled using Bose-Einstein statistics.   
 
Figure 24.8.   A hole in the wall of a hollow object is an excellent approximation of a blackbody.   
 

 
 

Blackbody radiation can be experimentally sampled by recording the spectrum of the light emitted from the hole in the 
cavity, and the results agree with our everyday experience.  Blackbody radiation increases with temperature, and the spectrum of 
a hot blackbody has its peak at a higher frequency than the peak of the spectrum of a cooler one.  For example, as an iron bar is 
heated to progressively higher temperature, it first glows dull red, then bright orange-red, and eventually becomes “white hot.”  
The spectrum of blackbody radiation for two temperatures is shown in Figure 24.9.   
 
PLANCK RADIATION LAW 
As shown in the Excited States of the One-Electron Atom (Quantization) and the Excited States of Helium sections, each bound 
electron is a resonator cavity, which traps single photons of discrete frequencies.  Thus, photon absorption occurs as an 

excitation of a resonator mode.  The angular momentum of the free space photon given by   41
Re ( )

8
dx

c
   m r E B*   in 

the Photon section is conserved [9] for the solutions for the resonant photons and excited state electron functions.  The change in 
angular frequency of the electron is equal to the angular frequency of the resonant photon that excites the resonator cavity mode 
corresponding to the transition, and the energy is given by Planck’s equation.  The equation of the blackbody spectrum shown in 
Figure 24.9 is derived using the quantization of electromagnetic radiation.   
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Figure 24.9.   Blackbody spectra.  The spectral distribution of energy in the radiation depends only on the temperature of the 
body.   

 
The superposition of photons gives rise to electromagnetic waves that obey the macro Maxwell’s equations.  The 

radiation inside a cavity of temperature T  whose walls are perfect reflectors exists as a series of three-dimensional standing 
electromagnetic waves. 

The condition for standing waves in such a cavity is that the path length from wall to wall in any x , y , or z  direction 
must be an integral number j  of half-wavelengths such that a node occurs at each reflecting surface.   
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Combining the components for a standing wave in any arbitrary direction gives: 
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 (24.35) 

in order that the wave terminate in a node at its ends. 
The number of standing waves  g d   within the cavity whose wavelengths lie between   and d   can be counted 

as the number of permissible sets of , ,x y zj j j  values that yield wavelengths in this interval.  Consider a three-dimensional j-

space whose coordinate axes are xj , yj , and zj  where Figure 24.10 shows part of the xj - yj  plane of such a space.  Each point in 

the j-space corresponds to a standing wave having a permissible set of , ,x y zj j j  values.  The magnitude of each vector j  defined 

from the origin to a particular point , ,x y zj j j  is:  

 2 2 2
x y zj j j j    (24.36) 

The total number of wavelengths between   and d   is equivalent to the number of points in j  space whose 

distances from the origin lie between j  and j dj , the volume of a spherical shell of radius j  and thickness dj  is 24 j dj .   

Taking the octant of this shell having positive values of xj , yj , and zj  as physical and considering the two perpendicular 

directions of polarization of each standing electromagnetic wave, the number of independent standing waves in the cavity is: 

      2 212 4
8

g j dj j dj j dj    (24.37) 
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Figure 24.10.   Each point in j space corresponds to a possible standing electromagnetic wave.   
 

 
 

The number of standing waves in the cavity as a function of j  is converted into their frequency ( ) dependence.  From 
Eqs. (24.35) and (24.36): 

 
2 2L Lv

j
c

   (24.38) 

 
2L

dj dv
c

  (24.39) 

 
Substitution of Eqs. (24.38) and (24.39) into Eq. (24.37) gives: 
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2
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2 2 8
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 (24.40) 

The cavity volume is 3L ; thus, from Eq. (24.40), the number of independent standing waves per unit volume is:  

    
2

3 3

1 8  
  

v dv
G v dv g v dv

L c


   (24.41) 

To determine the average energy per standing wave, Bose-Einstein statistics are used.  The energy of each photon of 
frequency   is quantized in units of h .  The average number of photons  f v  in each state of energy hv   is given by the 

Bose-Einstein distribution function of Eq. (24.4).  The value of   in Eq. (24.4) depends on the number of particles in the system 
being considered, but unlike gas molecules or electrons, photons of different frequencies (energies) are continuously emitted and 
absorbed.  Although the total radiant energy in the cavity must remain constant, the number of free photons having this total 
energy can change.  Because of the way in which   is defined in the derivation of Eq. (24.4) as given by Beiser [8], the 
nonconservation of the total number of photons means that 0   such that the Bose-Einstein distribution function for photons is 

   1

1
hv

kT
f v

e



 (24.42) 

Equation (24.41) for the number of standing waves of frequency   per unit volume in a cavity is valid for the number of 
quantum states of frequency   since photons each have two possible directions of polarization, right-hand and left-hand circular 
polarization.  Thus, the energy density of photons in a cavity is: 
        u v dv hvG v f v dv  (24.43) 

 
3

3

8  

1
hv

kT

h v dv

c e





 (24.44) 

Equation (24.44) is the Planck radiation formula for the spectral energy density of blackbody radiation, which agrees with 
experimental spectra such as those of Figure 24.9.   

An object need not be so hot that it glows conspicuously in the visible region in order to be radiating.  Every body of 
condensed matter radiates according to Eq. (24.44), regardless of its temperature.  For example, an object at room temperature 
radiates predominantly in the infrared part of the spectrum, which are nonvisible frequencies. 

Wien’s displacement law and the Stefan-Boltzmann law can be obtained from the Planck radiation formula.  The 
wavelength whose energy density is the greatest is obtained by expressing Eq. (24.44) in terms of wavelength and solving 

   / 0du d    for max  : 

 
max

4.965
hc

kT
  (24.45) 
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Eq. (24.45) can be more conveniently expressed as: 

 3
max 2.898 10 m K

4.965

hc
T

k
      (24.46) 

Equation (24.46) known as Wien’s displacement law quantitatively expresses the observation that the peak in the blackbody 
spectrum shifts to progressively shorter wavelengths (higher frequencies) as the temperature is increased as shown in Figure 
24.9.   

The total energy density u  within the cavity we can also be obtained from Eq. (24.44) by integrating the energy density 
over all frequencies: 

  
5 4

4 4
3 30

8
 

15

k
u u v dv T aT

c h


    (24.47) 

where a  is a universal constant.  The total energy density is proportional to the fourth power of the absolute temperature of the 
cavity walls.  Similarly, the energy R  radiated by an object per second per unit area is also proportional to 4T .  This result is 
shown by the Stefan-Boltzmann law: 
 4R e T  (24.48) 

where  Stefan’s constant   is given by 8 2 45.670 10 W m
4

ac
K     . 

The emissivity e  depends on the nature of the radiating surface and ranges from 0, for a perfect reflector with zero 
radiation, to 1, for a blackbody.  Some exemplary values of e  are 0.07 for polished steel, 0.06 for oxidized copper and brass, and 
0.97 for matte black paint. 
 
APPLICATION OF BOSE-EINSTEIN STATISTICS TO MODEL SPECIFIC HEATS 
OF SOLIDS 
Consider, VC , the molar specific heat of a solid at constant volume which is the energy that must be added to 1 kmole of the 

substance at fixed volume to raise its temperature by 1 K.  PC , the specific heat at constant pressure, is 3 to 5 percent higher than 

VC  in solids because it includes the work associated with a volume change as well as the change in internal energy.  The internal 

energy of a solid resides in the vibrations of its constituent particles, which may be atoms, ions, or molecules.  These vibrations 
may be resolved into components along three perpendicular axes, such that each particle (designated as an atom for convenience) 
can be represented by three harmonic oscillators.  Using Bose-Einstein statistics, the probability  f v  that an oscillator has the 

frequency   is given by Eq. (24.42),    1 1
hv

kTf v e  .  Hence, the average energy for an oscillator whose frequency of 

vibration is   is: 

  
1

hv
kT

hv
hvf v

e
  


 (24.49) 

Therefore, the total internal energy of a kilomole of a solid is given by: 

 0
0

3
3

1
hv

kT

N hv
E N

e
 


 (24.50) 

and its molar specific heat is: 
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 (24.51) 

Thus, at high temperatures hv kT , and  

 1
hv

kT hv
e

kT
   (24.52) 

since 

 
2 3

1
2! 3!

x x x
e x      (24.53) 

Hence Eq. (24.49) becomes:  
  /hv hv kT kT    (24.54) 

which leads to 3VC R .  At high temperatures the spacing h  between possible energies is small relative to kT , so   is 

effectively continuous and Maxwell-Boltzmann statistics applies.   
As the temperature decreases, the value of VC  given by Eq. (24.51) decreases.  The deviation from Maxwell Boltzmann 

behavior arises as the spacing between possible energies becomes large relative to kT .  The natural frequency v  for a particular 
solid can be determined by comparing Eq. (24.51) with an empirical curve of VC  versus T .  The result in the case of aluminum 

is 126.4 10  Hzv   , which agrees with estimates made in other ways, for instance on the basis of elastic moduli [5].   



Chapter 24 
 

1468

Eq. (24.51) predicts that 0VC   as 0T   in agreement with observations.  However, better models to the actual 
behavior of VC  as 0T   such as Debye’s [5] take into account that a solid is a continuous elastic body wherein the internal 
energy of a solid resides in elastic standing waves, rather than vibrations of individual atoms.  The elastic waves in a solid are of 
two kinds, longitudinal and transverse, and range in frequency from 0 to a maximum mv .  (The interatomic spacing in a solid sets 
a lower limit to the possible wavelengths and hence an upper limit to the frequencies.)  Typically, the total number of different 
standing waves in a mole of a solid is equal to its 3 AN  degrees of freedom.  These waves, like electromagnetic waves, have 
energies quantized in units of hv .  A quantum of acoustic energy in a solid is called a phonon, and it travels with the speed of 
sound since sound waves are elastic in nature.  The concept of phonons is quite general and has applications other than in 
connection with specific heats.  A phonon gas has the same statistical behavior as a photon gas or a system of harmonic 
oscillators in thermal equilibrium, so that the average energy   per standing wave is the same as in Eq. (24.49).  The resulting 
formula for VC , which is fairly complicated, reproduces the curves of VC  versus T  quite well at all temperatures. 
 
APPLICATION OF FERMI-DIRAC STATISTICS TO MODEL FREE ELECTRONS IN 
A METAL 
Fermi-Dirac statistics corresponds to the physics of electrons wherein no more than one electron can occupy each quantum state.  

Although systems of bosons and fermions both approach Maxwell-Boltzmann statistics with average energies 
1

2
kT   per 

degree of freedom at “high” temperatures, in a metal, the transition temperature range for Maxwell-Boltzmann behavior is not 
necessarily the same for the two kinds of systems.  According to Eq. (24.7), the distribution function that gives the average 
occupancy of a quantum state of energy   in a system of fermions is  

    
1

1F
FD kT

f
e  





 (24.55) 

An expression for    g d  , the number of quantum states available to electrons with energies between   and d  , is 

obtained using the same approach as that used to determine the number of standing waves in a cavity with the wavelength   in 
the Planck Radiation Law section.  The correspondence is exact because there are two possible spin states, 1

2sm    and 
1
2sm    (“up” and “down”), for electrons, just as there are two independent directions of polarization for otherwise identical 

standing waves.   
Using Eq. (24.37), the number of standing waves in a cubical cavity L on a side is: 

   2  g j dj j dj  (24.56) 

where 2j L  .  In the case of an electron,   is its de Broglie wavelength of 
h

p
  .  Electrons in a metal have nonrelativistic 

velocities, so 2 ep m   and  

 

2 22 2
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e
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L mL Lp
j

h h
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dj d

h







  



 (24.57) 

Using these expressions for j  and dj  in Eq. (24.37) gives: 

  
3

23

3

8 2
  eL m

g d d
h

     (24.58) 

As in the case of standing waves in a cavity the exact shape of the metal sample does not matter; so, its volume V  can 
substituted for 3L  to give: 

  
3

2

3

8 2
  eVm

g d d
h

     (24.59) 

Using Eq. (24.59), the Fermi energy F can be calculated by filling up the energy states in the metal sample with the N 
free electrons it contains in order of increasing energy starting from 0   such that the highest state to be filled has the energy 

F  .  This is the definition of F  as given in the Three Different Kinds of Atomic-Scale Statistical Distributions section.  The 
number of electrons that can have the same energy   is equal to the number of states that have this energy, since each state is 
limited to one electron.   

  
3 3

2 2
3

2

3 30 0

8 2 16 2
  

3
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F

Vm Vm
N g d d

h h

           (24.60) 

and  
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 (24.61) 

The quantity 
N

V
 is the density of free electrons.   

 

ELECTRON-ENERGY DISTRIBUTION 
Using Eqs. (24.7) and (24.59), the number of electrons in an electron gas that have energies between   and d   is 
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 (24.62) 

Expressing the numerator of Eq. (24.62) in terms of the Fermi energy F  (Eq. (24.61)) gives : 
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 (24.63) 

Eq. (24.63) is plotted in Figure 24.11 for 0,  300, and 1200 KT  .   
 
 
Figure 24.11.   Distribution of electron energies in a metal at various temperatures.   
 

 
 
 
To determine the average electron energy at 0 K, the total energy 0E  at 0 K is first obtained by the following integral: 

  0 0
 

F

E n d

     (24.64) 

Since at 0T  K, all of the electrons have energies less than or equal to the Fermi energy F , the temperature-dependent term 

becomes: 

 
 

0
F

kTe e
 

   (24.65) 
and Eqs. (24.63) and (24.64) gives: 

 
3 3

2 2
0 0

3 3  
52

F

F F

N
E d N


   

   (24.66) 

The average electron energy 0  is this total energy divided by the number of electrons present N , which gives: 

 0

3

5 F   (24.67) 

Since Fermi energies for metals are usually several eVs (Table 24.2), the average electron energy in them at 0 K will also 
be of this order of magnitude.  In contrast, the temperature of an ideal gas whose molecules have an average kinetic energy of 1 
eV is 11,600 K.  
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Table 24.2.  Some Fermi energies. 
 

Metal  Fermi energy, eV 

Lithium Li 4.72
Sodium Na 3.12
Aluminum Al  11.8
Potassium K 2.14
Cesium Cs 1.53
Copper Cu 7.04
Zinc Zn 11.0
Silver Ag 5.51
Gold Au 5.54

 
The failure of the free electrons in a metal to contribute appreciably to its specific heat is due to the behavior of the 

electron energy distribution.  When a metal is heated, only those electrons with thermal energy near the very top of the energy 
distribution—those within about kT  of the Fermi energy—are excited to the higher energy states while the less energetic 
electrons cannot absorb more energy because the states above them are already filled.  An electron with a low energy   in the 
range of 0.5 eV below F  is unlikely to undergo a transition to the nearest vacant state above the intervening states that are 

already filled since kT at room temperature is 0.025 eV and even at 500 K it is only 0.043 eV. 
A detailed calculation shows that the specific heat of the electron gas in a metal is given by [5] : 

 
2

2Ve
F

kT
C R




 
  

 
 (24.68) 

For the metals listed in Table 24.2, 
F

kT


 at room temperature ranges from 0.016 for cesium to 0.0021 for aluminum; so, the 

coefficient of R is very much smaller than the Maxwell Boltzmann figure of 3
2

.  The atomic specific heat VC  in a metal is much 

greater than the electronic specific heat over a wide temperature range.  However, at very low temperatures VeC  becomes 

significant because VC  is then approximately proportional to 3T  whereas VeC  is proportional to T .  At very high temperatures, 

VC  approaches the value of about 3R  while VeC  continues to increase such that the contribution of VeC  to the total specific heat 

is detectable. 
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Chapter 25 
  
SUPERCONDUCTIVITY 
  
 
 
 
 
In the case of a superconductor, an applied voltage gives rise to a transient constant electric field in the z direction 

 0 cosz zE E i  (25.1) 

 0z zEE i  (25.2) 

where zi  is the unit vector along the z-axis. 

The applied field polarizes the material into a superconducting current comprised of current dipoles, i.e. magnetic 
dipoles.  In Cartesian coordinates, the magnetic field, H , at the point ( , , )x y z  due to a magnetic dipole having a magnetic dipole 

moment of a Bohr magneton, B , at the position 0 0 0( , , )x y z  is: 
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H i  (25.4) 

The field is the convolution of the system function,    , ,   , ,h x y z or h z  , (the left-handed part of Eq. (25.4)) with the delta 

function (the right-hand part of Eq. (25.4)) at the position 0 0 0( , , )x y z .  A very important theorem of Fourier analysis states that 

the Fourier transform of a convolution is the product of the individual Fourier transforms [1].  The Fourier transform of the 
system function,  , ,h x y z  or  , ,h z  , is given in Box 25.1. 

 

BOX 25.1  FOURIER TRANSFORM OF THE SYSTEM FUNCTION 
 
The system function,  , ,h z  , in cylindrical coordinates is 
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 (1) 

The spacetime Fourier transform in three dimensions in cylindrical coordinates, ( , , )zH k k  , is given [1] as follows: 
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           (2) 

With circular symmetry [1] : 
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    (3) 

The Fourier transform of the system function is given by the substitution of Eq. (1) into Eq. (3). 
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Consider the integral of Eq. (4) with respect to d  only.  Factorization of  , ,h z   gives: 
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Consider the definite integral 
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and the relationship between modified Bessel functions of the third kind where: 
 [ ] [ ]K x K x    (7) 

The first factor of Eq. (5) is the same form as Eq. (6) with 
3

0;  
2

u   , thus, 
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where 3/2 3/2[ ] [ ]K k z K k z    (Eq. (7)).  The second factor of Eq. (5) can be made into the same form as Eq. (6) using the 

recurrence relationship of Bessel functions of the first kind: 
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Consider the second factor of the integral of Eq. (5) thus, 
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Eq. (9) with 1   is: 
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Substitution of Eq. (13) into Eq. (12) is: 
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Substitution of Eq. (10) into Eq. (14) is: 
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 (15) 

The first factor of the right-hand side of Eq. (15) is the same form as Eq. (6) with 
3

1;  
2

u   , thus,  
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where 1/2 1/2[ ] [ ]K k z K k z    (Eq. (7)).  The second factor of the right-hand side of Eq. (15) is the same form as Eq. (6) with 

3
2;  

2
u   , thus,  
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Combining the parts of the integration with respect to d  of Eq. (4) by adding Eq. (8), Eq. (16), and Eq. (17) gives: 
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The modified Bessel functions of the third kind may be expressed as: 
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Substitution of Eq. (13) into Eq. (19) with 1   is: 
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Substitution of Eq. (13) into Eq. (19) with 0   is: 
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Substitution of Eq. (20) and Eq. (21) into Eq. (18) is: 
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Collecting terms gives: 
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With [3] 2   and   1/25 / 2 3 / 4  , Eq. (24) is: 
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Integration of Eq. (29) with respect to dz  gives: 
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Multiplication of Eq. (31) by: 
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gives: 
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The system function (Eq. (1)) is an even function; thus, the spacetime Fourier transform in three dimensions in cylindrical 
coordinates, ( , )zH k k , is given by taking the real part of Eq. (33) [2]: 
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The spacetime Fourier transform in three dimensions in Cartesian coordinates, ( , )zH k k , is: 
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where the relationship between the wave numbers and the spatial Cartesian coordinates is as follows: 
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BAND-PASS FILTER 
The z component of a magnetic dipole oriented in the z direction has the system function,  , ,h x y z , which has the Fourier 

transform, [ , , ]x y zH k k k , which is shown in Figure 25.1.  
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Figure 25.1.   The Fourier transform [ , , ]x y zH k k k  of the system function  , ,h x y z  corresponding to the z component of a 

magnetic dipole oriented in the z direction. 

 
As shown in the Electron Scattering by Helium section, in the far field, the amplitude of the scattered electromagnetic 

radiation or scattered electron flux density is the Fourier transform of the aperture function.  In the case of a superconductor, the 
electric field is zero—no voltage drop occurs; however, a magnetic field is present.  The relationship between the amplitude of 
the scattered energy and the Fourier transform of the aperture function can be applied to the present case of the scattering of 
magnetic energy by the lattice of the potential superconductor.  The spatial aperture function is the convolution of the array 
pattern with the elemental pattern.  The elemental pattern is the system function,  , ,h x y z , which is the geometric transfer 

function for the z component of a z oriented magnetic dipole.  And, the array pattern is a periodic array of delta functions each at 
the position of a magnetic dipole corresponding to a current carrying electron. 
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The Fourier transform of a periodic array of delta functions (the right-hand side of Eq. (25.7)) is also a periodic array of delta 
functions in k-space: 
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By the Fourier Theorem, the Fourier transform of the spatial aperture function, Eq. (25.7), is the product of the Fourier transform 
of the elemental function, system function given by Eq. (25.6), and the Fourier transform of the array function given by Eq. 
(25.8): 
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The spacetime aperture function corresponding to the current-density function is given by multiplying the spatial aperture 
function (Eq. (25.7)) by a time harmonic function 
  exp i t  (25.10) 

Thus, the spacetime aperture function is: 
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The Fourier transform of the time harmonic function (Eq. (25.10)) is: 

  
   

2
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A very important theorem of Fourier analysis states that the Fourier transform of a product is the convolution of the individual 
Fourier transforms.  Thus, the Fourier transform of Eq. (25.11) is the convolution of Eqs. (25.9) and (25.12) : 
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In the special case that: 
 zk k   (25.14) 

the Fourier transform of the system function (the left-hand side of Eq. (25.13)) is given by: 
 4H   (25.15) 
Thus, the Fourier transform of the system function band-passes the Fourier transform of the time dependent array function.  Both 
the spacetime aperture function, Eq. (25.11) and its Fourier transform, Eq. (25.13), are a periodic array of delta functions.  No 
frequencies of the Fourier transform of the spacetime aperture function are attenuated; thus, no energy is lost in this special case 
where Eq. (25.14) holds.  (This result is also central to a powerful new medical imaging technology—4 Dimensional Magnetic 
Resonance Imaging (4D-MRI [2]).  No energy loss corresponds to a superconducting state.  And the relationship between k-
space and real space is: 
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From Eqs. (25.14) and (25.16), it follows that a cubic array (
0 0 0

x y z  ) of magnetic dipoles centered on the nuclei of the lattice 
is a superconductor when the temperature is less than the critical temperature such that the superconducting electrons can 
propagate.  Propagating electrons that carry the superconducting current and comprise magnetic dipoles form standing waves 
centered on the nuclear centers of the cubic lattice.  Fermi-Dirac statistics apply to electrons as given in the Statistical Mechanics 
section.  It follows from Eqs. (25.14) and (25.16) that the Fermi energy is calculated for a cubical cavity L  on a side.  The 
number of standing waves in a cubical cavity L on a side is given by Eq. (9.33) of Beiser [3] : 
   2g j dj j dj  (25.17) 

where 
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The de Broglie wavelength of an electron is: 
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Electrons in superconductors have non-relativistic velocities; so, 
 2 ep m   (25.20) 

where   is the kinetic energy and 
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Using these expressions for j  and dj  in Eq. (25.17) gives: 
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Substitution of V  for 3L  gives the number of electron states, ( )g   
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The Fermi energy, FE , is calculated by equating the number of free electrons, N , to the integral over the electron states of 
energy   from zero to the highest energy, the Fermi energy, FE E . 
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and the Fermi energy is: 
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The quantity /N V n  is the density of free electrons. 
In the case of superconducting electrons, comprising an array of magnetic dipoles (each dipole in the xy-plane and 

oriented along the z-axis), the dimensions of Eq. (9.33) of Beiser [3] is reduced to 2 from 3. 
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For ( ) 1g j   with the substitution of Eq. (25.18), 
 2 L   (25.29) 
As the temperature of a superconducting material rises from a temperature below the critical temperature, cT , the number 
density, sn , of superconducting electrons decreases.  At the transition temperature, the superconducting electrons condense into 
a nondissipative electron current ensemble, which obeys the statistics of a Bose gas (each electron is identical and 
indistinguishable as indicated in Eq. (25.8) with the constraint of Eq. (25.14)), and Eqs. (25.28) and (25.29) apply: 
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where 
 s F B cn E nk T  (25.31) 

sn  is the number density of superconducting electrons within B ck T  of the Fermi energy and n  is the number density of free 
electrons.  The current carried by each superconducting electron corresponds to a translational or kinetic energy.  The 
relationship between the electron de Broglie wavelength (Eqs. (25.19) and (25.20)) and the average electron energy,  , per 
degree of freedom, f , given by Beiser [4]: 
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where in the present case of an inverse squared central field, the binding energy or energy gap of the superconducting state,  , is 
one half the negative of the potential energy and equal to the kinetic energy [5].  Consider the case wherein the Fermi energy is 
that of a three dimensional system, but the motion of superconducting electrons is restricted to 3,  2,   1or  directions 
corresponding to 3,  2,   1f or , respectively.  Combining Eqs. (25.30-25.33) gives the transition temperature, 
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where the Fermi energy, FE , is given by Eq. (25.27).  An isotope effect can be manifested indirectly by changing the rms. 
position of atoms which effects the condition of Eq. (25.14) or the Fermi energy by changing the bond and vibrational energies.  
The superconducting electrons are equivalent to those of metals and semiconductors in the conduction state given in the Nature 
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of the Metallic Bond of Alkali Metals section and the Nature of the Semiconductor Bond of Silicon section, respectively.  The 
electron supercurrents confined to two-dimensions corresponding to 2f   in Eq. (25.32) are shown pictorially in Figures 
25.2A-25.2F.  Except for their distribution in the lattice, the individual electron planes of superconductors are the same as those 
of metals.  This aspect has been experimentally confirmed by using high-intensity pulsed magnetic fields that cause the 
superconducting electrons to behave the same as those in metals [6]. 
Figure 25.2A-F.   A superconductor comprising covalent bonds and metallic (free) electrons showing the superconducting 
current as two-dimensional membranes of zero thickness that are each an equipotential energy surface comprised of the 
superposition of multiple electrons.  The membranes called bands carry the current along two axes in the plane.  Such a band is 
shown separately in (B). 
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CRITICAL TEMPERATURE, TC 
 

TC FOR CONVENTIONAL THREE DIMENSIONAL METALLIC SUPERCONDUCTORS 
In the case of conventional three dimensional metallic superconductors, the number density of conduction electrons is 
comparable to the number density of atoms—approximately 29 310 / m . 

Thus, the calculated transition temperature (Eq. (25.34)) is 
 30.8 cT K  

As a comparison, the material of this class with the highest known transition of 23.2 K  is Nb3Ge [7]. 
 
TC FOR ONE, TWO, OR THREE DIMENSIONAL CERAMIC OXIDE SUPERCONDUCTORS 

In the case of ceramic oxide superconductors, one, two, and three-dimensional conduction mechanisms are possible.  The 
number density of conduction electrons is less than that of metallic superconductors—approximately 28 310 / m .  For the three-
dimensional case, the calculated transition temperature (Eq. (25.34)) is: 

7 cT K  

As a comparison, a possible material of this class, 2 3Li TiO  has a transition temperature of 13.7 K  [8]. 

For the two-dimensional case, 
 22 cT K  

As a comparison, a possible material of this class, the original Bednorz and Muller Ba La Cu O    material has a transition 
temperature of 35 K  [7]. 

For the one-dimensional case, 
 180 cT K  
As a comparison, a possible material of this class, Tl Ca Ba Cu O     has a transition temperature of 120 125 K  [9].  The 
existence of superconductivity confined to stripes has been observed experimentally by neutron scattering [10]. 

Transition temperatures which are intermediate of each of these limiting cases are possible where combinations of 
conduction mechanisms are present. 
 
JOSEPHSON JUNCTION, WEAK LINK 
As shown in the Electron g Factor section, the electron links flux in units of the magnetic flux quantum.  Thus, the magnetic flux 
that links a superconducting loop with a weak link is the magnetic flux quantum, 0 . 

 0 2

h

e
   (25.35) 

The factor of 2e  in the denominator has been erroneously interpreted [11] as evidence that Cooper pairs are the superconducting 
current carriers, which is central to the BCS theory of superconductors.  This theory fails to explain so called High Temperature 
Superconductors.  These materials have a transition temperature, which corresponds to an internal electron energy that is well 
above the energy limits at which the BCS theory permits conduction electron pairing.  According to CP, Cooper pairs do not 
exist, and CP is consistent with the existence of High Temperature Superconductors as well as the experimental result that the 
magnetic flux that links a superconducting loop with a weak link is the magnetic flux quantum, 0 .  Cooper pairs are also 
disproved by the existence of a spin triplet supercurrent [12]. 
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Chapter 26 
  
QUANTUM HALL EFFECT 
  
 
 
 
 
GENERAL CONSIDERATIONS 
When confined to two dimensions and subjected to a magnetic field, electrons exhibit a range of extraordinary behavior, most 
notably the Quantum Hall Effect (QHE).  Two distinct versions of this phenomenon are observed, the Integral Quantum Hall 
Effect (IQHE) and the Fractional Quantum Hall Effect (FQHE).  The former involves the condition for re-establishment of a 
superconducting state of one well in the presence of a magnetic field; whereas, the latter involves the condition for re-
establishment of a superconducting state of two magnetically linked wells in the presence of a magnetic field. 

Consider a conductor in a uniform magnetic field and assume that it carries a current driven by an electric field 
perpendicular to the magnetic field.  The current in this case is not parallel to the electric field, but is deflected at an angle to it 
by the magnetic field.  This is the Hall Effect, and it occurs in most conductors. 

In the Quantum Hall Effect, the applied magnetic field quantizes the Hall conductance.  The current is then precisely 
perpendicular to the magnetic field, so that no dissipation (that is no ohmic loss) occurs.  This is seen in two-dimensional 
systems, at cryogenic temperatures, in quite high magnetic fields.  Furthermore, the ratio of the total electric potential drop to the 
total current, the Hall resistance, HR , is precisely equal to: 
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The factor n  is an integer in the case of the Integral Quantum Hall Effect, and n  is a small rational fraction in the case of the 
Fractional Quantum Hall Effect.  In an experimental plot [1] as the function of the magnetic field, the Hall resistance exhibits flat 
steps precisely at these quantized resistance values; whereas, the regular resistance vanishes (or is very small) at these Hall steps.  
Thus, the quantized Hall resistance steps occur for a transverse superconducting state. 

As shown in the Superconductivity section, superconductivity arises for an array of current carrying magnetic dipoles 
when: 
 p zk k  (26.2) 

Thus, the Fourier transform of the system function band-passes the Fourier transform of the time dependent array function.  Both 
the spacetime aperture function and its Fourier transform are a periodic array of delta functions.  No frequencies of the Fourier 
transform of the spacetime aperture function are attenuated; thus, no energy is lost in this special case where Eq. (26.2) holds.  
Consider the case that an external magnetic field is applied along the x-axis to a two-dimensional superconductor in the yz-
plane, which exhibits the Integral Quantum Hall Effect.  (See Figure 26.1.)  The magnetic field is expelled from the bulk of the 
superconductor by the supercurrent (Meissner Effect).  The supercurrent-density function is a minimum energy surface; thus, the 
magnetic flux decays exponentially at the surface as given by the London Equation [2].  The Meissner current increases as a 
function of the applied flux.  The energy of the superconducting electrons increases with flux.  This energy increase is equivalent 
to lowering the critical temperature in Eq. (25.31) of the Superconductivity section which is given by: 

 s F cn E nkT  (26.3) 

where sn  is the number density of superconducting electrons within ckT  of the Fermi energy and n  is the number density of free 

electrons.  At the critical current, the material loses superconductivity and becomes normal at a temperature below that of the 
critical temperature in the absence of an applied field.  Conduction electrons align with the applied field in the x direction as the 
field permeates the material.  The normal current carrying electrons experience a Lorentz force, LF , due to the magnetic flux.  

The y directed Lorentz force on an electron having a velocity v in the z direction by an x directed applied flux, B, is 
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 L e F v B  (26.4) 

The electron motion is a cycloid where the center of mass experiences an E B  drift [3].  Consequently, the normal Hall Effect 
occurs.  Conduction electron energy states are altered by the applied field and by the electric field corresponding to the Hall 
Effect.  The electric force, HF , due to the Hall electric field, yE , is: 

 L yeF E  (26.5) 

When these two forces are equal and opposite, conduction electrons propagate in the z direction alone.  For this special case, it is 
demonstrated in Jackson [3] that the ratio of the corresponding Hall electric field and the applied magnetic flux is:  
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(26.6) 

where v  is the electron velocity.  At a temperature below cT , given by Eq. (26.3) where FE  is the Fermi energy, Eq. (26.6) is 

satisfied.  The further conditions for superconductivity are: 
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(26.7) 

 znk k   (26.8) 

And, it is demonstrated in the Integral Quantum Hall Effect section that the Hall resistance, HR , in the superconducting state is 

given by: 
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where n of Eqs. (26.7), (26.8), and (26.9) is the same integer for the case of a single superconducting well.  It is demonstrated in 
the Fractional Quantum Hall Effect section that electrons in different superconducting wells can interact when the two wells are 
separated by a distance comparable to the magnetic length, 0 : 
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In this case, it is further demonstrated that the Hall resistance, HR , in the superconductivity state is given by Eq. (26.9) where n  

is a fraction. 
 

INTEGRAL QUANTUM HALL EFFECT 
A superconducting current-density function is nonradiative and does not dissipate energy as was the case for single electron 
current-density functions described previously in the One-Electron Atom section, the Two Electron Atom section, the Three 
Electron Atom section, the Electron in Free Space section, and the Nature of the Chemical Bond section.  Furthermore, a 
superconducting current-density function is the superposition of single electron current-density functions which are spatially two 
dimensional in nature.  Thus, a superconducting current-density function is an electric and magnetic equipotential energy 
surface.  The nature of electrons in materials as such extended surfaces is observed by scanning tunneling electron microscopy 
(STM) [4]. 

From Eq. (1.36), the angular frequency in spherical coordinates which satisfies the boundary condition for nonradiation 
is: 
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The relationship between the electron wavelength and the radius, which satisfies the nonradiative boundary condition in 
spherical coordinates is given by Eq. (1.15): 

 2 r   (26.12) 

Substitution of Eq. (26.12) into Eq. (26.11) gives: 
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where 
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(26.14) 

It follows from Eq. (1.35) where: 
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In a solid lattice, the coordinates are Cartesian rather than spherical.  The relationship between the wavelength of a standing 
wave of a superconducting electron and the length, x , of a cubical unit cell follows from Eqs. (25.28) and (25.29) of the 
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Superconductivity section 
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The  de Broglie wavelength,   is given by: 
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It follows from Eqs. (26.14), (26.16), and (26.17) that the angular velocity,  , and linear velocity, v , for an electron held in 
force balance by a periodic array of nuclei comprising a cubical unit cell with internuclear spacing x are given by Eqs. (26.13) 
and (26.15) where:  
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In general, the Cartesian coordinate wavenumber, k, given by Eq. (26.18) replaces 
1

r
 of spherical coordinates. 

In the case of an exact balance between the Lorentz force (Eq. (26.4)) and the electric force corresponding to the Hall 
voltage (Eq. (26.5)), each superconducting electron propagates along the z-axis where:  
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where v  is given by Eq. (26.15).  Substitution of Eqs. (26.15) and (26.18) into Eq. (26.19) gives: 
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Eq. (26.20) is the condition for superconductivity in the presence of crossed electric and magnetic fields.  The Hall resistance for 
this superconducting state is derived as follows using the coordinate system shown in Figure 26.1. 
 
Figure 26.1.   Coordinate system of crossed electric field, yE , corresponding to the Hall voltage, magnetic flux, xB , due to 

applied field, and superconducting current, zi . 
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The current is perpendicular to yE , thus there is no dissipation.  This occurs when, 

 e e E v B   (26.21) 
or 
 E B v  (26.22) 
The magnetic flux, B, is quantized in terms of the Bohr magneton because an electron, and therefore a superconductor, links flux 
in units of the magnetic flux quantum, 
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The electric field, yE , corresponding to the Hall voltage, VH, is quantized in units of e  because this electric field arises from 
conduction electrons-each of charge e.  The energy, EH, corresponding to the Hall voltage is calculated using the Poynting Power 
Theorem.  The Hall energy of an integer number of electrons, Z, each in the presence of a magnetic dipole and an electric field of 
magnitude Ze due to the Z electrons follows for Eqs. (7.46) and (7.63) of the Two Electron Atom section where 

 
2 2 3

0
2H mag

e

Z e k
E ZE

Zm


 


 (26.24) 

where k  is given by Eq. (26.13) and where the electric energy of Eq. (7.63) is zero because each electron is a conduction 
electron.  In the limit to a superconducting state, the trajectory of each electron is a cycloid where p  is the angular frequency in 
the xy-plane and z  is angular the frequency along the z-axis.  In this case, the dipole array function given in the 
Superconductivity section is multiplied by a time harmonic function with argument p  
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where 
 z     (26.26) 

The Fourier transform of the convolved functions of Eq. (26.25) is given in the Superconductivity section as: 

 
0 0 0 0 0 0

2

2

4 1
, ,

1
B x y z

nz

n n n
k k k

k x y z x y z
k

 




 
   

 
  (26.27) 

The Fourier transform of the time harmonic function is: 

  
     

2

p z p z               (26.28) 

A very important theorem of Fourier analysis states that the Fourier transform of a product is the convolution of the individual 
Fourier transforms.  Thus, the Fourier transform of Eq. (26.25) is the convolution of Eqs. (26.27) and (26.28) where 
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Eq. (26.29) is a band-pass when 

 p znk k  (26.30) 

and when 
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(26.31)  

where n  is an integer.  The cyclotron angular frequency, p , is derived as follows: 

The force balance between the Lorentz force and the centrifugal force is: 
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The magnetic flux, B, from a magnetic moment of a Bohr magneton is: 
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Cancellation of v  on both sides of Eq. (26.32) gives: 
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Substitution of Eq. (26.33) into Eq. (26.35) gives: 
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Substitution of Eq. (26.31) into Eq. (26.36) gives: 
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The current, zi , along the z-axis is given as the product of the charge, e , and z , the angular frequency along the z-axis where: 
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The Hall voltage is given as the energy per coulomb: 
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Thus, the Hall resistance, HR , is given as the ratio of the Hall voltage (Eq. (26.39)) and the current, zi , (Eq. (26.38))  
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The velocity of each superconducting electron according to Eq. (26.22) is:  
 E B v  (26.41) 
which is derived as follows: 

The Hall electric field, yE , is given by the ratio of the Hall voltage and the distance of the cyclotron orbit, 2 x , where 

the unit cell distance, x , and the wavenumber, k , are related by Eq. (26.18) where: 
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where HV  is given by Eq. (26.39): 
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The magnetic field, B, is given by Eq. (26.33); thus the velocity v  is given as: 
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(26.44) 

Eq. (26.44) is equivalent to the velocity for nonradiation given by Eq. (1.35), where: 
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This superconducting phenomenon whereby the Hall resistance occurs as inverse integer multiples of:  
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is the Integral Quantum Hall Effect (IQHE). 
 
FRACTIONAL QUANTUM HALL EFFECT 
For two superconducting wells separated by the magnetic length, 0 , 
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where 0  given by Eq. (26.23) is the magnetic flux quantum, the wells are linked.  Electrons can propagate from one well to the 

other with activation energy where: 
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In the case that a magnetic field is applied to both well one and well two, and that an exact balance between the Lorentz force 
(Eq. (26.4)) and the electric force corresponding to the Hall voltage (Eq. (26.5)) exists, each superconducting electron propagates 
along the z-axis where  
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Because the two wells are linked, 

 1 2v jv  (26.51) 

where j is an integer.  Eq. (26.51) provides that the electrons are in phase with: 
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where the de Broglie wavelength is given by Eq. (26.17).  Otherwise, 0zE  , and the state is not superconducting.  It follows 

from the derivation of Eq. (26.41) of the Integral Quantum Hall Effect section that: 
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and, 
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where 1n  and 2n  are integers.  From Eqs. (26.52), (26.53), and (26.54) where: 
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The resistance of each well is proportional to the transverse velocity as shown previously, and the resistance across both linked 
wells which are in series is the sum of the individual resistances.  Thus, the total resistance is proportional to the sum of the 
individual velocities. 

 

1 2

1 01 2 01

E E
R

n B n B

 
  
   

(26.56) 

Substitution of Eq. (26.55) into Eq. (26.56) gives: 
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It follows from the derivation of Eq. (26.40) of the Integral Quantum Hall Effect section that Hall resistance, HR , is: 
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(26.58) 

where n  is a fraction.  This superconducting phenomenon whereby the Hall resistance occurs as inverse fractional multiples of 
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is the Fractional Quantum Hall Effect (FQHE). 
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Chapter 27 
  
AHARONOV-BOHM EFFECT 
  
 
 
 
 
The resistance of a circuit corresponds to the decrease in the energy of the current carrying electrons as they propagate through 
the circuit.  Scattering of the electrons is a principal mechanism.  In the case where a magnetic field is applied such that the field 
lines are perpendicular to the plane of a current carrying ring, the current carrying electrons lose energy through the effect of the 
field on the current. 

The application of the magnetic field to the current carrying ring initially gives rise to a changing flux through the ring.  
The changing flux gives rise to an electric field that reduces the current in the ring; thus, the magnetic field contributes a term 
called magnetoresistance to the resistance of the ring.  This term can be derived from the change in velocity (assuming no 
scattering) of a current carrying electron of charge, e, and mass, em , by the application of a magnetic field of strength, B, which 
is given as Eq. (29) of Purcell [1] : 

 
2 e

e

r m




v B
  (27.1) 

where r  is the radius of the ring.  The changes in the force on the electron due to the electric field is: 

 e  F E  (27.2) 

The change in kinetic energy of the electron over length, s , is: 
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where V  is the change in voltage over the distance, s.  From Eq. (27.3), the voltage change is: 
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The change in current, i , per electron due to the change in velocity, v , is given by Eq. (20) of Purcell [1]. 
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And, the total change in current, i , is:  
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where N  is the density of current carrying electrons in the current ring cross section, W  is the width of the current ring, and t is 
the thickness of the ring. 

The resistance change, R , follows from Eqs. (27.4) and (27.6) where 
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Substitution of v  given by Eq. (27.1) into Eq. (27.7) gives the change in resistance corresponding to the magnetoresistance: 
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An additional critically damped, overdamped, or underdamped oscillatory resistive term may arise due to both the 
magnetoresistance and the vector potential of the electron.  The electron possesses an angular momentum of  .  As shown in the 
Electron g Factor section, the electron angular momentum comprises kinetic and vector potential components.  Angular 
momentum is conserved in the presence of an applied magnetic field when the electron links flux in units of the magnetic flux 
quantum,  . 

 0 2

h

e
   (27.9) 

This occurs when the electron rotates by 
2


 radians about an axis perpendicular to the axis parallel to the magnetic flux 

lines.  This electron rotation corresponds to an 
2


  magnitude, 180  , rotation of the electron’s angular momentum vector.  In the  

case that the electrons carry current, this change in momentum of a given current carrying electron increases or decreases the 
current depending on the vector projection of the momentum change onto the direction of the current.  Recently, it has been 
demonstrated that 50-nm-diameter rings of InAs on a GaAs surface can host a single circulating electron in a pure quantum state, 
that is easily controlled by magnetic fields and voltages on nearby plates.  The electrons were observed to link flux in the unit of 
the magnetic flux quantum with a gain in a unit of angular momentum in a specific direction with the linkage [2]. 

At low temperature, the de Broglie wavelength of an electron, 
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has macroscopic dimensions, and the electron scattering length for a given electron in a current carrying ring may be comparable 
to the dimensions of the ring.  A current carrying ring having a magnetic field applied perpendicularly to the plane of the ring 
may be constructed and operated at a temperature, current, and applied magnetic field strength such that resonance occurs 
between the vector potential of a current carrying electron and the flux of the applied magnetic field.  This coupling can give rise 
to a contribution to the resistance, which behaves as an underdamped harmonic oscillator in response to the applied magnetic 
flux.  The general form of the equation for this component of the resistance is the product of an exponential dampening function 
and a harmonic function as given by Fowles [3].  Each electron links flux only in units of the magnetic flux quantum,  , given 
by Eq. (27.9).  Thus, the natural frequency in terms of the applied flux,  , is the magnetic flux quantum,  .  According to Eq. 
(27.8), the magnetoresistance is proportional to the applied flux   where: 

 2r B   (27.11) 

Thus, the argument of the dampening function is proportional to 





.  Furthermore, the magnetoresistance gives rise to a 

distribution of electron velocity changes centered about the average velocity change given by Eq. (27.1) where each electron’s 
current contributing drift velocity along the ring contributes a component to the kinetic term of the electron’s angular 
momentum.  The distribution of velocity changes, dampens the coupling between each electron vector potential and the applied 
magnetic flux at the natural frequency corresponding to the average electron velocity.  And, each electron de Broglie wavelength 
change corresponding to its velocity change alters the electron-lattice scattering cross section, which also contributes to the 

dampening of the oscillatory resistance behavior.  The argument of the dampening function is the product of 





 and the 

corresponding dimensionless damping factor, D , which incorporates both dampening effects.  The underdamped oscillatory 

resistance change due to the applied magnetic field is: 
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The total resistance change due to the applied field is the sum of the magnetoresistance and the underdamped oscillatory 
resistance where: 

 
2

1 cos 2
2

Dr B
R e

NWt e

 
 
 
  






 
   

  
 (27.13) 

This type of contribution to the resistance that is an oscillatory function of the applied flux with a period of 
2

h

e   is 

known as the Aharonov-Bohm Effect.  The resistance contribution given by Eq. (27.13) is consistent with the observed behavior 
[4] as shown in Figure 27.1. 
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Figure 27.1.   The change in the resistance divided by the resistance as a function of the applied flux that demonstrates the 
Aharonov-Bohm effect. 
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Chapter 28 
  
CREATION OF MATTER FROM ENERGY 
  
 
 
 
 
[The general result of particle production equations and relationships derived in the Pair Production and Gravity sections are 
given herein.] 
 

Matter and energy are interconvertible and are in essence different states of the same entity.  The state, matter or energy, 
is determined by the laws of nature and the properties of spacetime.  A photon propagates according to Maxwell’s Equations at 
the speed of light in spacetime having intrinsic impedance  .  Matter, as a fundamental particle, is created in spacetime from a 
photon.  Matter obeys the laws of Special Relativity, the relationship of motion to spacetime, and spacetime is curved by matter 
according to the laws of General Relativity.  Relationships must exist between these laws and the implicit fundamental constants.  
The fundamental elements which determine the evolution of the Universe are the fundamental constants of spacetime, o  and o  
with the property of charge; the capacity of spacetime to be curved by mass-energy; and the photon's angular momentum of  .  
The conversion of energy into matter requires a transition state for which the identification of the entity as matter or energy is 
impossible.  From the properties of the entity, as matter or energy, and from the physical laws and the properties of spacetime, 
the transition state hereafter called a transition state atomic orbital are derived. Concomitantly, the equations for the 
interconversion of matter and energy are determined, and the fundamental constant relationships are determined exactly.  The 
results are: matter and energy possess mass; matter possesses charge, and energy is stored in the electric and magnetic fields of 
matter as a consequence of its charge and the motion of its charge.  Matter can trap photons as an absorption event.  The mass of 
the matter possessing a “trapped photon” increases by the mass-energy of the photon, and the photon acts as if it possesses 
charge.  (The electric field of “trapped photons” is given in the Excited States of the One-Electron Atom (Quantization) section).  
Photons obey Maxwell’s Equations.  At the two-dimensional surface of the atomic orbital containing a “trapped photon,” the 
relationship between the photon’s electric field and its charge at the atomic orbital (See Eq. 2.10) is: 

  1 2
0




  n E E  (28.1) 

Thus, the photon’s electric field acts as surface charge.  This property of a photon is essential because charge arises from 
electromagnetic radiation in the creation of matter.  Furthermore, energy is proportional to the mass of matter as given by: 

 2E mc  (28.2) 

And, energy is proportional to angular frequency as given by Planck’s equation, 

 E    (28.3) 

It is shown in the Gravity section (Eq. (32.29)) that the de Broglie relationship can be derived from Planck’s equation, 
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Matter and light obey the wave equation relationship, 
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  (28.5) 

and Eqs. (28.2) through (28.4).  Light and matter exist as atomic orbitals, as given in the Photon Equation section and the One-
Electron Atom section, respectively. 

The boundary condition for nonradiation by a transition state atomic orbital  is:  

 * * * *
1 12 ( ) 2 ( )n nr nr n       (28.6) 
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where *r  and *  are allowed radii and allowed wavelengths for the transition state matter in question, and n  is a positive real 
number.  A general relationship derived for the electron in the Pair Production section is that when or a , v  of Eq. (28.5) of a 
transition state atomic orbital equals the velocity of light in the inertial reference frame of the photon of angular frequency *  
and energy 2* em c   which forms the transition state atomic orbital of rest mass em .  Substitution of Eq. (28.4) into Eq. (28.6) 
with v c  and 0*r a  (See Spacetime Fourier Transform of the Electron Function and the Determination of Atomic Orbital 
Radii sections) gives the result that the radius of the transition state atomic orbital is the Compton wavelength bar, c , which 
gives the general condition for particle production where: 
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With the substitution of Eq. (28.7) and the appropriate special relativistic corrections into the atomic orbital energy equations, 
the following energies, written in general form, are equal to: 

 2
0*E m c V    (28.8) 

where V  is the potential energy.  In the case of an electron atomic orbital, the rest mass 0 em m , the radius *
or a  , and the 

electron and positron each experience an effective charge of: 
e . 
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This energy and mass are that of the transition state atomic orbital which can be considered to be created from the photon of 
angular frequency * .  Furthermore, the relativistic factor,  ,  
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for the lab frame relative to the photon frame of the transition state atomic orbital of radius 0a  is 2  where Eq. (28.10) is 
transformed from Cartesian coordinates to spherical coordinates1.  (For example, the relativistic mass of the electron transition 
state atomic orbital of radius 0a  is 2 em .  See the Special Relativistic Correction to the Ionization Energies section.)  Using 
the relativistic mass, the Lorentz invariance of charge, and the radius of the transition state atomic orbital as 0a , it is 
demonstrated in the Pair Production section that the electrical potential energy is equal to the energy stored in the magnetic field 
which gives the following equalities of energies written in general form where: 

 2
0*magE V E m c     (28.11) 

The energy stored in the electric and magnetic fields of any photon are equal, and equivalence of these energies occurs for an LC 
circuit excited at its resonance angular frequency, 
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where L  is the inductance and C  is the capacitance of the circuit.  Spacetime is an LC circuit with resonance angular frequency 

 
1 For time harmonic motion, with angular velocity,  , the relationship between the radius and the wavelength given Eq. (1.15) by is 
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The de Broglie wave length is given by Eq. (1.38) 
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In the relativistically corrected case given by Eq. (1.16), 
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Then from Eq. (1.38), 
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Thus, the relativistically corrected electron mass in the mass density is 2m
e

.  Alternatively, with the wavelength in the speed of light frame given by Eq. 

(1.16), the relativistic invariance of the angular momentum of the electron of   (Eq. (1.37)) gives the corresponding electron mass as   2m
e

. 
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where d  is the circuit dimensions.  (This equation is derived in the Pair Production section.)  For od a , this frequency is 
equivalent to that of a photon of energy 2

em c .  When the resonance frequency of an LC circuit is excited, the impedance 
becomes infinite.  Thus, spacetime is excited at its resonance frequency when a photon of angular frequency *  forms a 
transition state atomic orbital of mass-energy 2

em c .  At this event, the equivalence of all energies given previously provides that 
matter and energy are indistinguishable.  (For the transition state atomic orbital, the potential energy corresponds to the stored 
electrical energy of an LC circuit, which in turn corresponds to the energy stored in the electric field of a photon.)  The 
impedance for the propagation of electromagnetic radiation becomes infinite and a photon of energy 2

em c  becomes a 
fundamental particle as the transition state atomic orbital becomes real.  The energy of the photon is equal to the rest mass of the 
particle at zero potential energy.  Therefore, in the case of charged particle production, a particle and an antiparticle each of mass  

2

*

c


 are produced at infinity relative to the mutual central field of: 
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And momentum is conserved by a third body, such as an atomic nucleus. 
The boundary condition, Eq. (1.15) and Eq. (28.6), precludes the existence of the Fourier components of the current-

density function of the atomic orbital that are synchronous with waves traveling at the speed of light.  The nonradiative condition 
is Lorentz invariant because the velocity is perpendicular to the radius.  However, the constancy of the speed of light must also 
hold which requires relativistic corrections to spacetime.  The Schwarzschild metric gives the relationship whereby matter causes 
relativistic corrections to spacetime that determines the curvature of spacetime and is the origin of gravity.  Thus, the creation of 
matter causes local spacetime to become curved.  The geometry of spacetime is transformed from flat (Euclidean) to curved 
(Riemannian).  Time and distances are distorted.  At particle production, the proper time of the particle must equal the coordinate 
time given by Special Relativity for Riemannian geometry affected by the creation of matter of mass 0m  where the metric of 
spacetime is given by the Schwarzschild metric.  This boundary condition determines the masses of the fundamental particles. 

The gravitational radius, G  or Gr , which arises from the solution of the Schwarzschild metric is defined as 
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where G  is the gravitational constant.  The radius of the transition state atomic orbital is: 
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These radii are equal when the gravitational potential, gravE , is: 
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These relationships represent the unification of the fundamental laws of the Universe, Maxwell’s Equations, Newtonian 
Mechanics, Special and General Relativity, and the Planck equation and the de Broglie relationship where the latter two can be 
derived from Maxwell’s Equations as demonstrated in the Gravity section. 
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Chapter 29 
  
PAIR PRODUCTION 
  
 
 
 
 
The conversion of energy into matter requires a transition state for which the identification of the entity as matter or energy is 
impossible.  From the properties of the entity, as matter or energy, and from the physical laws and the properties of spacetime, 
the transition state hereafter called a transition state atomic orbital is derived.  For example, a photon of energy 1.02 MeV  in the 
presence of a third particle becomes a positron and an electron.  This phenomenon, called pair production, involves the 
conservation of mass-energy, charge, and angular and linear momentum.  Pair production occurs as an event in spacetime where 
all boundary conditions are met according to the physical laws: Maxwell’s Equations, Newton’s Laws, and Special and General 
Relativity, where matter and energy are indistinguishable by any physical property.  Matter and photons exist as atomic orbitals; 
thus, the conversion of energy to matter must involve the atomic orbital equations derived in the previous sections.  It must also 
depend on the equations of electromagnetic radiation and the properties of spacetime because matter is created from 
electromagnetic radiation as an event in spacetime. 

Matter and light obey the wave equation relationship, 
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  (29.1) 

The boundary condition for nonradiation by a transition state atomic orbital is: 
 * * * *

1 12 ( ) 2 ( )n nr nr n       (29.2) 

where *r  and *  are allowed radii and allowed wavelengths for the transition state matter in question, and n  is a positive real 
number.  

Consider the production of an electron and a positron providing a mutual central field.  The relationship between the 
potential energy of an electron atomic orbital and the angular velocity of the atomic orbital is: 
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It can be demonstrated that the velocity of the electron atomic orbital satisfies the relationship for the velocity of a wave 
by substitution of Eqs. (1.15) and (1.36) into Eq. (29.1), which gives Eq. (1.35).  Similarly, the relationship between c , the 
velocity of light in free space, and angular frequency,  , and wavelength,  , is:  
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And, the energy of a photon of angular frequency,  , is:  
 E    (29.5) 
Recall from the Excited States of the One Electron (Quantization) section that a photon of discrete angular frequency, , can be 
trapped in the atomic orbital of an electron which serves as a resonator cavity of radius nr  where the resonance excitation energy 

of the cavity is given by Eq. (29.3). 
As demonstrated in the Excited States of the One-Electron Atom (Quantization) section, with the inclusion of the 

contribution of the electron kinetic energy change, the change in the atomic orbital angular velocity is equal to the angular 
velocity of the resonant photon of the corresponding electron transition.  For the initial conditions of an unbound electron at rest, 
the ratio of the linear velocity of the subsequently bound electron to the emitted free-space photon is given by Eq. (29.4). 
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where the n  subscripts refer to atomic orbital quantities and the far-right-hand-side relationship follows from Eq. (2.2) and Eq. 
(4.12). 

Consider a transition state electron atomic orbital, which is defined as the transition state between light and matter where 
light and matter are indistinguishable and the linearly propagating photon becomes a stationary spherical standing wave that only 
possesses light speed of rotation along field lines1.  For this case, the velocity of the electron transition state atomic orbital is the 
speed of light in the inertial reference frame of the photon, which formed the transition state atomic orbital.  The result of the 
substitution into Eq. (29.1) of c  for v , of n  given by Eq. (2.2) where 1r  is given by Eq. (1.257) for  , and of n  given by Eq. 

(1.36) for   is: 
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Maxwell’s Equations provide that 
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The result of substitution of Eqs. (1.256) and (29.8) into Eq. (29.7) is: 
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In fact,   is the fine structure constant (a dimensionless constant for pair production) [1].  The experimental value is 
0.0072973506 .  Recently, alterations to the most up-to-date, self consistent set of the recommended values of the MKS basic 
constants and conversion factors of physics and chemistry resulting from the 1986 least-squares adjustment have been proposed 
[2].  Eq. (29.9), the equations of pair production given below, and the equations in the Unification of Spacetime, the Forces, 
Matter, and Energy section and Gravity section permit the derivation of a more accurate self-consistent set. 

Continuing with the present MKS units, the radius of the transition state electron atomic orbital is 0a , and the potential 

energy, V , is given by Eq. (29.3) where n  where   arises from Gauss’ law surface integral and the relativistic invariance of 
charge where: 
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Furthermore, the result of the multiplication of both sides of Eq. (1.36) by  , 0nr na , and the substitution of n   yields 
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The relativistic factor,   
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for an atomic orbital at radius *r  ( 0a  in the case of the electron) is 2  where Eq. (29.13) is transformed from Cartesian 

coordinates to spherical coordinates.  (See the Special Relativistic Correction to the Ionization Energies section.)  The energy 
stored in the magnetic field of the electron atomic orbital is:  
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Eq. (29.15) is the result of the substitution of 0a  for nr , the relativistic mass, 2 em , for em , and multiplication by the 

relativistic correction,  , which arises from Gauss’ law surface integral and the relativistic invariance of charge. 

 
1 The relationship between the angular frequency  , radius photonr , and speed c  is  

 photonr c   (1) 

It follows from Eq. (1) that  
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where T  is the period of motion such that 

 2 photonr cT    (3) 

corresponding to a match with the particle radius and wavelength in the transition state. 



Pair Production 1495

 2
mag eE m c  (29.15) 

Thus, the energy stored in the magnetic field of the transition state electron atomic orbital equals the electrical potential energy 
of the transition state atomic orbital.  The magnetic field is a relativistic effect of the electrical field; thus, equivalence of the 
potential and magnetic energies when v c  is given by Special Relativity where these energies are calculated using Maxwell’s 
Equations.  The energy stored in the electric and magnetic fields of a photon are equivalent.  The corresponding equivalent 
energies of the transition state atomic orbital are the electrical potential energy and the energy stored in the magnetic field of the 
atomic orbital. 

Spacetime is an electrical LC circuit with an intrinsic impedance of exactly, 
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    (29.16) 

The lab frame circumference of the transition state electron atomic orbital is 02 a ; whereas, the circumference for the v c  

inertial frame is 0a .  The relativistic factor for the radius of 0a  is 2  as shown in the Spacetime Fourier Transform of the 

Electron Function section, the Relativistic Correction to the Ionization Energies section, and the Spin-Orbit Coupling section; 
thus, due to relativistic length contraction, the total capacitance of free space of the transition state atomic orbital of radius 0a  

is: 
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where 0  is the capacitance of spacetime per unit length ( /F m ).  Similarly, the inductance is: 
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where 0  is the inductance per unit length ( /H m ). 

Thus, the resonance angular frequency of a transition state electron atomic orbital is:  
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Thus, 
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Thus, the LC resonance frequency of free space for a transition state electron atomic orbital equals the frequency of the photon, 
which forms the transition state atomic orbital. 

The impedance of any LC circuit goes to infinity when it is excited at the resonance frequency.  Thus, the electron 
transition state atomic orbital is an LC circuit excited at the corresponding resonance frequency of free space.  The impedance of 
free space becomes infinite, and electromagnetic radiation cannot propagate.  At this event, the frequency, wavelength, velocity, 
and energy of the transition state atomic orbital equal that of the photon.  The energy of the photon is equal to the rest mass-
energy of the particle at zero potential energy, and charge is conserved.  Therefore, a free electron and a free positron each of 

mass 
2

*

c


 are produced at infinity relative to the mutual central field of: 

 
2

04

e

r


E  (29.21) 

where all of the electron transition state atomic orbital equations developed herein apply to this central field.  The equation of the 
free electron is given in the Electron in Free Space section.  The transition state is equivalent to the equation of the photon given 
in the Photon Equation section.  Photons superimpose; thus, pair production occurs with a single photon of energy equal to twice 
the rest mass of an electron.  Linear momentum is conserved by a third body such as a nucleus which recoils in the opposite 
direction as the particle pair; thus, permitting pair production to occur.  

For pair production, angular momentum is conserved.  All photons carry   of angular momentum, and the angular 
momentum of all matter as atomic orbitals is  ; see Eq. (1.37).  The radius of particle creation is *

1r .  This radius is equal to 

c , the Compton wavelength bar, where c
em c


 .  It arises naturally from the boundary condition of no radiation, Eq. (1.15) 

and Eq. (29.2) where n  , the de Broglie relationship, Eq. (1.38), and that the velocity of the transition state atomic orbital 
equals c .  
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A schematic of the pair-production process of photon to transition state to free electron-positron pair is shown in Figure 29.1A-
E.  In addition, a free positron and electron may form a bound state with a radius of 02a  called positronium that exists for a 

fraction of a second before decaying into two 510 keV photons in opposite directions.  Positronium is discussed in the 
corresponding section. 
 

Figure 29.1.   Pair Production.  (A) A linearly polarized photon of energy 1.02 MeV comprising the superposition of two 
oppositely circularly-polarized photons collides with a third body such as a proton.  (B) The photon transforms into a transition 
state intermediate between matter and energy.  (C) The photon forms a two-dimensional spherical shell of mass 2

e
m  with the 

same radius as the photon, the electron Compton-wavelength bar (
C
 ).  The shell comprises the superposition of the positron and 

the electron of opposite charges and each having   of total angular momentum. (D) The transition state ionizes.  (E) Free 
particles propagate in different directions with linear momentum conserved.   
 

 
 

The equations derived for the electron in the present section are generally applicable to all fundamental particles, and it is 
shown in the Gravity section that the masses of the fundamental particles are determined by these equations and the curvature of 
spacetime by matter.  During the creation of matter, the constancy of the speed of light must hold which requires relativistic 
corrections to spacetime.  The Schwarzschild metric gives the relationship whereby matter causes relativistic corrections to 
spacetime that determines the curvature of spacetime and is the origin of gravity.  Thus, the creation of matter causes local 
spacetime to become curved.  The geometry of spacetime is transformed from flat (Euclidean) to curved (Riemannian).  Time 
and distances are distorted.  At particle production, the proper time of the particle must equal the coordinate time given by 
Special Relativity for Riemannian geometry affected by the creation of matter of mass 0m  (in the case of pair production, 

0 em m ) where the metric of spacetime is given by the Schwarzschild metric.  This boundary condition determines the masses 

of the fundamental particles. 
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Chapter 30 
  
POSITRONIUM 
  
 
 
 
 
Pair production, the creation of a positron/electron pair, occurs such that the radius of one atomic orbital has a radius 
infinitesimally greater than the radius of the antiparticle atomic orbital as discussed in the Pair Production section and the 
Leptons section.  In addition, a free positron and electron may form a bound state with a radius of 02a  called positronium that 

exists for a fraction of a second before decaying into two 510 keV photons in opposite directions. The sequence of events is 
shown in Figures 30.1 A-F. 

As shown in Figures 30.1A-B, a minimum energy is obtained by the binding of a positron and an electron as concentric 
atomic orbitals at the same radius form a short-lived hydrogen-like atom wherein the electric fields mutually cancel and the   of 
angular momentum of each lepton is conserved.  Before annihilation, positronium can exist with the electron and positron spins 
parallel or antiparallel called orthopositronium ( 3

1S ) and parapositronium (1
0S ), respectively.  Due to the opposite charge of the 

positron, the magnetic moments are opposed to the spin orientations.  The respective decay times are 1 ns and 1  s.  The 
splitting of the spectral lines due to spin orientations is called the hyperfine structure of positronium. 

The forces of positronium are central, and the radius of the outer atomic orbital (electron or positron) is calculated as 
follows.  The centrifugal force is given by Eq. (1.241).  The centripetal electric force of the inner atomic orbital on the outer 
atomic orbital is given by Eq. (1.242).  A second centripetal force is the relativistic corrected magnetic force, magF , between each 

point of the particle and the antiparticle given by Eq. (1.252) with em  substituted for m .  The force balance equation is given by 

Eq. (1.253) with em  substituted for m .  The balance between the centrifugal and electric and magnetic forces is given in the 

Excited States of the One-Electron Atom (Quantization) section and the Excited States of Helium section: 
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where 1 2r r  is the radius of the positron and the electron and where the reduced mass ,  , is: 

 
2

em   (30.3) 

The Bohr radius given by: 
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 (30.4) 

and Eq. (30.3) is substituted into Eq. (30.2) to give the ground-state radius of positronium: 

 1 02r a  (30.5) 
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Figure 30.1.   Formation and Annihilation of Positronium. (A) A free positron and electron are mutually attracted by the 
Coulombic force.  (B) A positron and an electron form a bound state called positronium that exists as a two-dimensional 
spherical shell of mass 2 em  with a radius of 02a .  The particle provides the central force for the antiparticle.  The shell comprises 
the superposition of the positron and the electron of opposite charges and each having   of total angular momentum.  
Transitions between ortho and para magnetic states may occur.  (C) The pair transforms into a transition state intermediate 
between matter and energy.  (D-F) The annihilation is complete as two oppositely circularly-polarized photons each of 510 keV 
and having a radius of twice the electron Compton-wavelength bar ( C ) (not to scale) propagate in opposite directions. 
 

 
 
EXCITED STATE ENERGIES 
The potential energy V  between the particle and the antiparticle having the radius 1r  given by Eq. (1.261) is: 
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       (30.6) 

The calculated ionization energy is 
1

2
V  (Eqs. (1.262-1.264)) which is:  

 6.795 eleE eV  (30.7) 

The experimental ionization energy is 6.795 eV . 
Parapositronium, a singlet state hydrogen-like atom comprising an electron and a positron, can absorb a photon which 

excites the atom to the first triplet state, orthopositronium.  In parapositronium, the electron and positron angular momentum 
vectors are antiparallel; whereas, the magnetic moment vectors are parallel.  The opposite relationships exist for 
orthopositronium.  The balance between the centrifugal and electric and magnetic forces is: 
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 02nr n a  (30.9) 

where n  is an integer and both electrons are at the same excited state radius of 02nr n a .  The principal energy levels for the 
singlet excited states are given by Eq. (2.22) and Eq. (9.12) with the electron reduced mass (Eq. (30.3)) substituted for the mass 
of the electron where 
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The levels given by Eq. (30.10) match the experimental energy levels. 
 
HYPERFINE STRUCTURE 
As shown in the Atomic Orbital Equation of Motion For   = 0 Based on the Current Vector Field (CVF) section, the angular 

momentum of the electron or positron atomic orbital in a magnetic field comprises the initial 
2


 projection on the z-axis and the 

initial 
4


 vector component in the xy-plane that precesses about the z-axis.  As further shown in the Magnetic Parameters of the 

Electron (Bohr Magneton) section, a resonant excitation of the Larmor precession frequency gives rise to an additional 
component of angular momentum which is consistent with Maxwell’s equations.  As shown in the Excited States of the One-
Electron Atom (Quantization) section, conservation of the   of angular momentum of a trapped photon can give rise to   of 
electron angular momentum along the S -axis.  The photon standing waves of excited states are spherical harmonic functions 
which satisfy Laplace’s equation in spherical coordinates and provide the force balance for the corresponding charge (mass)-
density waves.  Consider the photon in the case of the precessing electron with a Bohr magneton of magnetic moment along the 
S -axis.  The radius of the atomic orbital is unchanged, and the photon gives rise to current on the surface that satisfies the 
condition: 

 0J   (30.11) 

corresponding to a rotating spherical harmonic dipole [1] that phase-matches the current (mass) density of Eq. (1.144).  Thus, the 
electrostatic energy is constant, and only the magnetic energy need be considered as given by Eqs. (30.14-30.15).  The 
corresponding central field at the atomic orbital surface given by the superposition of the central field of the lepton and that of 
the photon follows from Eqs. (2.10-2.17) and Eq. (17) of Box 1.1: 
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where the spherical harmonic dipole  , sinmY     is with respect to the S -axis.  The dipole spins about the S -axis at the 

angular velocity given by Eq. (1.36).  The resulting current is nonradiative as shown in Appendix I: Nonradiation Condition.  
Thus, the field in the RF rotating frame is magnetostatic, as shown in Figures 1.28 and 1.29, but directed along the S -axis.   

The application of a magnetic field with a resonant Larmor excitation gives rise to a precessing angular momentum 

vector S  of magnitude   directed from the origin of the atomic orbital at an angle of 
3

   relative to the applied magnetic 

field.  S  rotates about the axis of the applied field at the Larmor frequency.  The magnitude of the components of S  that are 

parallel and orthogonal to the applied field (Eqs (1.129-1.130)) are 
2


 and 

3

4
 , respectively.  Since both the RF field and the 

orthogonal components shown in Figure 1.25 rotate at the Larmor frequency, the RF field that causes a Stern Gerlach transition 
produces a stationary magnetic field with respect to these components as described by Patz [2]. 

The component of Eq. (1.130) adds to the initial 
2


 parallel component to give a total of   in the stationary frame 

corresponding to a Bohr magneton, B , of magnetic moment.  The potential energy of a magnetic moment m  in the presence of 

flux B  [3] is: 

 E  m B  (30.13) 

The angular momentum of the electron gives rise to a magnetic moment of B .  Thus, the energy spin
magE  to switch from parallel 

to antiparallel to the field is given by Eq. (1.168) : 

  2 2 cos 2spin
mag B BE B B      B zi B  (30.14) 

spin
magE  is also given by Planck’s equation.  It can be shown from conservation of angular momentum considerations (Eqs. (26-

32) of Box 1.1) that the Zeeman splitting is given by Planck’s equation and the Larmor frequency based on the gyromagnetic 
ratio (Eq. (2) of Box 1.1).  The electron’s magnetic moment may only be parallel or antiparallel to the magnetic field rather than 
at a continuum of angles including perpendicular according to Eq. (30.13).  No continuum of energies predicted by Eq. (30.13) 
for a pure magnetic dipole is possible.  The energy difference for the magnetic moment to flip from parallel to antiparallel to the 
applied field is: 

 2spin
mag LE     (30.15) 
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corresponding to magnetic dipole radiation wherein L  is the Larmor angular frequency. 

Eq. (30.13) implies a continuum of energies; whereas, Eq. (29) of Box 1.1 shows that the static-kinetic and dynamic 

vector potential components of the angular momentum are quantized at 
2


.  Consequently, as shown in the Electron g Factor 

section, the flux linked during a spin transition is quantized as the magnetic flux quantum:  

 
2

h

e   (30.16) 

Only the states corresponding to:  

 
1

2sm    (30.17) 

are possible due to conservation of angular momentum.  It is further shown using the Poynting power vector with the 
requirement that flux is linked in units of the magnetic flux quantum, that the factor 2  of Eqs. (30.14) and (30.15) is replaced by 
the electron g  factor.  From Eqs. (1.226-1.227), the energy spin

magE  to flip the electron’s magnetic moment from parallel to 

antiparallel to the applied field is: 
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 (30.18) 

 spin
mag BE g B   (30.19) 

The spin-flip transition can be considered as involving a magnetic moment of g  times that of a Bohr magneton.  The calculated 

value of 
2

g
 is 1.001  159  652  137 .  The experimental value [4] of 

2

g
 is 1.001  159  652  188(4) . 

Positronium undergoes a Stern-Gerlach transition.  The energy of the transition from orthopositronium ( 3
1S ) to 

parapositronium (1
0S ) is the hyperfine structure interval.  The angular momentum of the photon given by 

  41
Re ( )

8
dx

c
   m r E B*   in the Photon section is conserved [5] for the solutions for the resonant photons and 

hyperfine-state lepton functions as shown for the cases of one-electron atoms and helium in the Excited States of the One-
Electron Atom (Quantization) section and the Excited States of Helium section, respectively.  To conserve the   of angular 
momentum of each lepton and the photon, orthopositronium possesses orbital angular momentum states corresponding to 

0, 1m   ; whereas, parapositronium possesses orbital angular momentum states corresponding to the quantum number 0m  .  

The orbital angular momentum states of orthopositronium are degenerate in the absence of an applied magnetic field.  As in the 
case of the electron Stern-Gerlach transition, the radius of both leptons remains at the same radius of 02r a  given by Eq. 

(30.5). 
The hyperfine structure interval of positronium can be calculated from the spin-spin and spin-orbit coupling energies of 

the 3 1
1 0S S  transition using the procedure given in the Two-Electron Atoms section and Appendix VI.  The vector projection 

of the atomic orbital angular momentum on the z-axis is 
2z L


 (Eq. (1.128)) with an orthogonal component of 
4xy L


 (Eq. 

(1.127)).  The magnetic flux, B , of the electron (positron) at the positron (electron) due to zL  after McQuarrie [3] (Eqs. (2.183) 

and (7.6)) is: 

 0
32 e

e

m r
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 (30.20) 

where 0  is the permeability of free-space ( 7 2
 4   10 /X N A  ).  The spin-spin coupling energy spin-spinE  between the inner 

atomic orbital and the outer atomic orbital is given by Eq. (1.227) where B , the magnetic moment of the outer atomic orbital 

is given by Eq. (1.169).  Substitution of Eqs. (1.169) and (30.20) into Eq. (30.19) gives: 
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where the factor of 1/ 2  arises from Eq. (30.13) with the presence of the magnetic flux only for the 1
0S  state, the radius is given 

by Eq. (30.5), and Eqs. (2.183-2.194) were used to convert Eq. (30.21) to the electron mass-energy form of Eq. (30.22). 
In the case of atomic hydrogen with 2n  , the radius given by Eq. (2.2) is 02r a , and the predicted energy difference 
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between the 2
3/2P  and 2

1/2P  levels of the hydrogen atom, /s oE , is: 

 
 25

2
/

2 3

8 4s o eE m c
 

  (30.22) 

In the case of the hyperfine transition of positronium, the spin-orbit coupling energy 3 1
/ 1 0( )s oE S S   having 02r a  is 

given by Eq. (2.194) with the requirement that the flux from the partner lepton is linked in units of the magnetic flux quantum 
corresponding to the anomalous g  factor (Eqs. (30.18-30.19)), the source current given by Eq. (30.12) gives rise to a factor of 
3 / 2 , and each lepton contributes to the energy:  
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The hyperfine structure interval of positronium ( 3 1
1 0S S ) is given by the sum of Eqs. (30.21) and (30.23). 
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Using Planck’s equation (Eq. (2.148)), the interval in frequency,  , is: 

  203.39041 GHz   (30.25) 

The experimental ground-state hyperfine structure interval [6] is: 
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Ps hyperfine experimental 8.41143  10   
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 (30.26) 

There is remarkable (six significant figure) agreement between the calculated and experimental values of   that is only limited 

by the accuracy of the fundamental constants [7]. 
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Chapter 31 
  
RELATIVITY 
  
 
 
 
 
BASIS OF A THEORY OF RELATIVITY1 
To describe any phenomenon such as the motion of a body or the propagation of light, a definite frame of reference is required.  
A frame is a certain base consisting of a defined origin and three axes equipped with graduated rulers and clocks.  Bodies in 
motion then have definite positions and definite motions with respect to the base.  The motion of planets is commonly described 
in the heliocentric system.  The origin is defined as the mass center, and the three axes are chosen to point to three fixed stars to 
establish the fixed orientation of the axes.  In general, the mathematical form of the laws of nature will be different in different 
frames.  For example, the motion of bodies relative to the Earth may be described either in a frame with axes pointing to three 
fixed stars or in one rigidly fixed to the Earth.  In the latter case, Coriolis forces arise in the equations of motion.  There exist 
frames of reference in which the equations of motion have a particular simple form; in a certain sense these are the most 
“natural” frames of reference.  They are the inertial frames in which the motion of a body is uniform and rectilinear, provided no 
forces act on it2.  In pre-relativistic physics the notion of an inertial system was related only to the laws of mechanics.  Newton’s 
first law of motion is, in fact, nothing but a definition of an inertial frame.  Similarly, Newton’s second law gives the relationship 
of a force acting on a mass and its acceleration relative to a certain frame of reference.  Newton introduced the concept of 
absolute space to provide an absolute frame for acceleration and rotation as well as uniform motion.  According to Newton, 
acceleration and rotation relative to absolute space are detected by simple experiments.  But, it was believed that there is no such 
means to identify an absolute frame for uniform motion3. 

The relativity principle is postulated on the basis of the impossibility of measuring absolute velocity.  This assumption is 
incorrect.  Absolute space can be defined based on the solution of the exact conserved relationships between matter, energy, and 
spacetime given in the Equivalence of Inertial and Gravitational Masses Due to Absolute Space and Absolute Light Velocity 
section.  Specifically, the production of an isolated particle from a photon of identically the production energy defines the 
absolute inertial frame at rest for the particle and could, in principle, define absolute space that conserves the energy inventory of 
the Universe and resolves paradoxes such as the twin paradox [1-2].  But, even though any motion, or parameter of inertia or 
electromagnetism can ultimately be measured in principle (but perhaps not always in practice) relative to absolute space, a 
principle of relativity based on physical laws can be derived that has great utility.  The principle of relativity given next treats 
relative motion, and the transforms of relativity are Lorentzian. 

Since the constant speed of light is the absolute limiting conversion factor from time to length, it is reasonable to expect 
that the laws of light propagation play a fundamental part in the definition of the basic concepts relating to space and time in 
terms of inertial frames defined according to uniform relative motion.  Therefore it proves more correct to relate the notion of an 
inertial frame not only to the laws of mechanics but also to those of light propagation. 

The usual form of Maxwell’s equations refers to some inertial frame.  It is obvious and has always been assumed, even 
before relativity, that at least one reference frame exists that is inertial with respect to mechanics and in which at the same time 
Maxwell’s equations are true.  The law of propagation of an electromagnetic wave front in the form: 

 
1 A good reference for the historical concepts of the theory of special relativity, which are partially included herein, is Fock [3]. 
2 Regarding the consequences of the motion such as time dilation, mass increase, and length contraction while maintaining energy conservation, the 
constitution of an inertial frame as a frame of reference possessing constant relative rectilinear velocity and absence of forces is generalized to one 
possessing constant relative speed and force balance as discussed in the Equivalence of Inertial and Gravitational Masses Due to Absolute Space and 
Absolute Light Velocity section.  This generalization, supported by experimental data [4-5], is applied in the Special Relativistic Effect on the Electron 
Radius and the Relativistic Ionization Energies section. 
3 Even relative uniform motion is an approximation since it is impossible for any two objects to maintain an exact (infinite precision) relative velocity 
even for a brief time. Inherently, there are always deviations, and acceleration or deceleration is always present even at very short time scales of 
measurement. 
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also refers to this inertial frame.  A frame for which Eq. (31.1) is valid may be called inertial in the electromagnetic sense.  A 
frame that is inertial both in the mechanical and in the electromagnetic senses will be simply called inertial.  

Thus, by the definition we have adopted, an inertial frame is characterized by the following two properties: 
 
1. In an inertial frame, a body moves uniformly and in a straight line, provided no forces act on it.  (The usual 

mechanical inertial property.) 
 

2. In an inertial frame, the equation of propagation of an electromagnetic wave front has the form Eq. (31.1).  (The 
inertial property for the field.) 

 

Eq. (31.1) applies not only to the propagation of an electromagnetic wave.  The electromagnetic field has no preference 
over other fields.  The maximum speed of propagation of all fields must be the same such that Eq. (31.1) is of universal validity. 

The fundamental postulate of the theory of relativity, also called the principle of relativity, asserts that phenomena 
occurring in a closed system are independent of any non-accelerated motion of the system as a whole.  The principle of relativity 
asserts that the two sequences of events will be exactly the same (at least insofar as they are determined at all).  If a process in 
the original systems can be described in terms of certain functions of the space and time coordinates of the first frame, the same 
functions of the space and time coordinates of the second frame will describe a process occurring in the copy.  The uniform 
rectilinear motion of a material system as a whole has no influence on the course of any process occurring within it. 

The theory of relativity is based on two postulates, namely, the principle of relativity and another principle that states that 
the velocity of light is independent of the velocity of its source.  The latter principle is a consequence of the first.  The latter 
principle is implicit in the law of the propagation of an electromagnetic wave front given by Eq. (31.1).  The basis for defining 
inertial reference frames is Eq. (31.1) together with the fact of the uniform rectilinear motion of a body not subject to forces.  
The principle of relativity holds in the case that the reference frames are inertial. 

It is appropriate to give a generalized interpretation of the law of wave front propagation and to formulate the following 
general postulate: 
 

There exists a maximum speed for the propagation of any kind of action—the speed of light in free space. 
 

This principle is very significant because the transmission of signals with greatest possible speed plays a fundamental 
part in the definition of concepts concerning space and time.  The very notion of a definite frame of reference for describing 
events in space and time depends on the existence of such signals.  The principle formulated above, by asserting the existence of 
a general upper limit for all kinds of action and signal, endows the speed of light with a universal significance, independent of 
the particular properties of the agency of transmission and reflecting a certain objective property of spacetime.  This principle 
has a logical connection with the principle of relativity.  For if there was no single limiting velocity but instead different agents, 
e.g. light and gravitation, propagated in vacuum with different speeds, then the principle of relativity would necessarily be 
violated as regards at least one of the agents.  The principle of the universal limiting velocity can be made mathematically 
precise as follows: 

For any kind of wave advancing with limiting velocity and capable of transmitting signals, the equation of front 
propagation is the same as the equation for the front of a light wave. 

Thus, the equation: 
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 (31.2) 

acquires a general character; it is more general than Maxwell’s equations from which Maxwell originally derived it.  As a 
consequence of the principle of the existence of a universal limiting velocity one can assert the following: the differential 
equations describing any field that is capable of transmitting signals must be of such a kind that the equation of their 
characteristics is the same as the equation for the characteristics of light waves.  In addition to governing the propagation of 
any form of energy, the wave equation governs fundamental particles created from energy and vice versa, the associated effects 
of mass on spacetime, and the evolution of the Universe itself.  The equation that describes the electron rotational energy and 
angular momentum given by Eqs. (1.56-1.65) is the wave equation, the relativistic correction of spacetime due to particle 
production travels according to the wave equation as given in the Gravity section, and the evolution of the Universe is according 
to the wave equation as given in the Gravity section and the Unification of Spacetime, the Forces, Matter, and Energy section 
(Eqs. (33.45-33.36)). 

The presence of a gravitational field somewhat alters the appearance of the equation of the characteristics from the form 
of Eq. (31.2), but in this case one and the same equation still governs the propagation of all kinds of wave fronts traveling with 
limiting velocity, including electromagnetic and gravitational ones.  The basis for defining inertial reference frames is Eq. (31.2) 
asserting the universality of the equation together with the fact of the uniform rectilinear motion of a body not subject to forces. 
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Let one and the same phenomenon be described in two inertial frames of reference.  The question arises of relating 
measurements in one frame to those in another.  For example, consider transforming radar data obtained by a satellite circling 
the Earth to that recorded on the ground.  For such a transformation, the relationship between the space and time coordinates 

,  ,  x y z  and t  in the first frame and the corresponding ',  ',  'x y z  and 't  in the second.  Before relativity one accepted as self-

evident the existence of a universal time t  that was the same for all frames.  In this case 't t  or 0't t t  , if a change of time 

origin was used.  Considering two events occurring at 't  and  , the old point of view required the time elapsed between them to 
be the same in all reference frames so that: 

 ' 't t     (31.3) 

Furthermore, it was considered to be evident that the length of a rigid rod, measured in the two frames, would have the same 
value.  (This applies equally to the distance between the “simultaneous” positions of two points that need not necessarily be 
rigidly connected.)  Denoting the spatial coordinates of the two ends of the rod (or the two points) by ( ,  ,  )x y z  and ( ,  ,  )    in 
the one frame and by ( ',  ',  ')x y z  and ( ',  ',  ')    in the other, the old theory required: 

            2 2 2 2 2 2
' ' ' ' ' 'x y z x y z                 (31.4) 

Eqs. (31.3) and (31.4) determine uniquely the general form of the transformation connecting ,  ,  x y z  and t  with ',  ',  'x y z  and 
't .  It consists of a change in origin of spatial coordinates and of time, of a rotation of the spherical axes, and of a transformation 

such as:  
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where xV , xV , and xV  are the constants of velocity with which the primed frame moves relative to the unprimed one; more 
exactly they are the components of this velocity in the unprimed frame.  The transformation (Eq. (31.5)) is known as a Galileo 
transformation.  Thus, pre-relativistic physics asserted that, given an inertial frame ( ,  ,  )x y z , space and time coordinates in any 
other frame moving uniformly and rectilinearly relative to the former are connected by a Galileo transformation, apart from a 
displacement of the origin. 

Galileo transformations satisfy the principle of relativity as far as the laws of (Newtonian) mechanics are concerned, but 
not in relation to the propagation of light.  Indeed the wave front equation changes its appearance when subjected to a Galileo 
transformation.  If Galileo transformations were valid and the Principle of Relativity in its generalized form was not, then there 
would exist only one inertial system as defined above.  The changed form of the wave front equation in any other frame would 
allow one to detect even uniform rectilinear motion relative to the single inertial system—the “immobile ether”—and to 
determine the velocity of this motion.  Experiments devised to discover such motion relative to the “ether” have unquestionably 
eliminated the “ether” as a possibility and confirm that the form of the law of wave front propagation is the same in all non-
accelerated frames4.  Therefore the principle of relativity is certainly also applicable to electromagnetic phenomena.  It also 
follows that the Galileo transformation is in general wrong and should be replaced by another.  The problem can be stated as 
follows.  Let a reference frame be given which is inertial according to the definition given above (i.e. both mechanically and 
electromagnetically).  The space time coordinates in this frame are given by ,  ,  x y z  and t .  Let the space time coordinates in 
another inertial frame be given by ( ', ', ', ')x y z t .  The connection between ( , , , )x y z t  and ( ', ', ', ')x y z t  is to be found.  The 
problem of finding a transformation between two inertial frames is purely mathematical; it can be solved without any further 
physical assumptions other than the definition of an inertial frame given above.  The transformations are given by Lorentz. 
 

 
4 The most famous of such experiments is the Michelson-Morley experiment.  In 1887 in collaboration with Edward Morley, Albert Michelson performed 
an experiment to measure the motion of the Earth through the “ether,” a hypothetical medium pervading the Universe in which light waves propagated.  
The notion of the ether was carried over from the days before light waves were recognized as electromagnetic.  At that time, the physics community was 
unwilling to discard the idea that light propagates relative to some universal frame of reference.  The extremely sensitive Michelson-Morley experiment 
could find no motion through an ether, which meant that there could be no ether and no principle of “absolute motion” relative to it.  All motion is relative 
to a specific frame of reference, not a universal one.  The experiment which in essence compared the speeds of light parallel to and perpendicular to the 
Earth’s motion around the Sun, also showed that the speed of light is the same for all observers.  This is not true in the case of waves that need a material 
medium in which to occur such as sound and water waves.  The experimental results of the Michelson-Morley experiment as well as those of Fizeau 
comprised the basis of a theory proposed in 1904 by Poincaré [6-8] that stated the impossibility of an absolute reference frame and that the speed of light 
is a constant maximum for all observers.  Thus, the Michelson-Morley experiment set the stage for the special theory of relativity as Michelson was 
reluctant to accept this result. 
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LORENTZ TRANSFORMATIONS 
A Lorentz transformation is a set of equations for transforming the space and time coordinates in one inertial frame into those of 
another that moves uniformly and in a straight line relative to the first.  The transformation can be characterized by the fact that 
the quantity, 
  2 2 2 2 2

0 1 2 3ds dx dx dx dx     (31.6) 

or 

  2 2 2 2 2 2ds c dt dx dy dz      (31.7) 

remains invariant in the strict sense (not only the numerical value, but also the mathematical form of the expression remain 
unchanged).  Newtonian mechanics is corrected by Lorentz transformations of the time, length, mass, momentum, and energy of 
an object.  Newtonian mechanics with Galileo transforms give mechanical forces for v c : 
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In the case that v  approaches c , Lorentz transforms apply. 
 
TIME DILATION 
THE RELATIVITY OF TIME 
The postulates of relativity may be used to derive the Lorentz transformation that described how relative motion affects 
measurements of time intervals. 

A clock that moves with respect to an observer appears to tick less rapidly than it does when at rest with respect to him.  
That is, if someone in a spacecraft finds that the time interval between two events in the spacecraft is 0t , we on the ground would 
find that the same interval has the longer duration t .  The quantity 0t , which is determined by events that occur at the same 
place in a observer’s frame of reference, is called the proper time of the interval between the events.  When witnessed from the 
ground, the events that mark the beginning and end of the time interval occur at different places, and as a consequence the 
duration of the interval appears longer than the proper time.  This effect is called time dilation (to dilate is to become larger). 

To see how time dilation comes about, let us consider two clocks of the particularly simple kind shown in Figure 31.1.   
 

Figure 31.1.   A simple clock.  Each “tick” corresponds to a round trip of the light pulse from the lower mirror to the upper 
one and back. 

 
 

Such a clock consists of a stick 0L  long with a mirror at each end.  A pulse of light is reflected up and down between the mirrors, 
and a device attached to one of them produces a “tick” of some kind each time the light pulse strikes it.  Such a device might be 
a photosensitive coating on the mirror that gives an electric signal when the pulse arrives. 

One clock is at rest in a laboratory on the ground and the other is in a spacecraft that moves at the velocity v  relative to 
the ground.  An observer in the laboratory watches both clocks and finds that they tick at different rates. 

Figure 31.2 shows the laboratory clock in operation.  The time interval between ticks is the proper time 0t .  The time 

needed for the light pulse to travel between the mirrors at the speed of light, c , is 0
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  (31.10) 

Figure 31.3 shows the moving clock with its mirrors perpendicular to the direction of motion relative to the ground.   
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Figure 31.2.  A light-pulse clock at rest on the ground as 
seen by an observer on the ground.  The dial represents a 
conventional clock on the ground. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
The time interval between ticks is t.  Because the clock is moving, the light pulse, as seen from the ground, follows a 

zigzag path.  On its way from the lower mirror to the upper one in the time 
2

t
, the pulse travels a horizontal distance of 

2

t
v  and 

a total distance of 
2

t
c .  Since 0L  is the vertical distance between the mirrors, 
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But 02L

c
 is the time interval 0t  between ticks on the clock on the ground, as in Eq. (31.10), and so the time dilation 

relationship is: 
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 (31.15) 

 
wherein the parameters are: 

0t  = time interval on clock at rest relative to an observer 

t  = time interval on clock in motion relative to an observer 
v  = speed of relative motion 
c  = speed of light 

Because the quantity 
2

2
1

v

c
  is always smaller than 1 for a moving object, t is always greater than 0t .  The moving clock 

in the spacecraft appears to tick at a slower rate than the stationary one on the ground, as seen by an observer on the ground.   
Exactly the same analysis holds for measurements of the clock on the ground by the pilot of the spacecraft.  To him, the 

light pulse of the ground clock follows a zigzag path that requires a total time t per round trip.  His own clock, at rest in the 
spacecraft, ticks at intervals of 0t .  He too finds that 

Figure 31.3.   A light-pulse clock in a spacecraft as seen 
by an observer on the ground.  The mirrors are parallel to 
the direction of motion of the spacecraft.  The dial 
represents a conventional clock on the ground. 
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so the effect is reciprocal: Every observer finds that clocks in motion relative to him tick more slowly than clocks at rest relative 
to him. 

The Lorentz transformation of time, length, mass, momentum, and energy which are significant when v  approaches c  
can be derived by a similar procedure [2].  The Lorentz transformations are: 
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When speaking of the relativity of a frame of reference or simply of relativity, one usually means that there exist identical 
physical processes in different frames of reference.  According to the generalized Galilean principle of relativity identical 
processes are possible in all inertial frames of reference related by Lorentz transformations.  On the other hand, Lorentz 
transformations characterize the uniformity of Galilean spacetime. 
 
THE RELATIVITY PRINCIPLE AND THE COVARIANCE OF EQUATIONS IN 
GALILEAN OR EUCLIDEAN SPACETIME AND RIEMANN SPACETIME 
From the geometrical point of view the theory of space and time naturally divides into the theory of uniform, Galilean, space and 
the theory of non-uniform, Riemannian, space. 

Galilean space is of maximal uniformity.  This means that in it: 
 

(a) All points in space and instants in time are equivalent 
 

(b) All directions are equivalent, and 
 

(c) All inertial systems, moving uniformly and in a straight line 
relative to one another, are equivalent (Galilean principle of relativity). 

The uniformity of space and time manifests itself in the existence of a group of transformations which leave the four-
dimensional interval between two points (distance) invariant.  The expression for this interval plays an important part in the 
theory of space and time because its form is directly related to the form taken by the basic laws of physics, viz. the law of motion 
of a free mass-point and the law of propagation in free space of the front of a light wave. 

The indications (a), (b) and (c) of the uniformity of Galilean space are related to the following transformations: 
(a) To the equivalence of all points and instants corresponds to the transformation of displacing the origins of the 

spatial coordinates and of time; the transformation involves four parameters, namely, the three space coordinates 
and the time coordinate of the origin. 

 

(b) To the equivalence of all directions corresponds to the transformation of rotating the spatial coordinate axes; this 
involves three parameters, the three angles of rotation.  

 

(c) To the equivalence of inertial frames corresponds to a change from one frame of reference to another moving 
uniformly in a straight line with respect to the first; this transformation involves three parameters, the three 
components of relative velocity. 

The most general transformation involves ten parameters.  This is the Lorentz transformation.  It is well known that in a 
space of n  dimensions the group of transformations which leave invariant the expression for the squared distance between 

infinitely near points, can contain at most  1
1

2
n n   parameters.  If there is a group involving all  1

1
2

n n   parameters then the 
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space is of maximal uniformity; it may be a space of constant curvature, or, if the curvature vanishes, a Euclidean or pseudo-
Euclidean space. 

In the case of spacetime, the number of dimensions is four and therefore the greatest possible number of parameters is 
ten.  This is also the number of parameters in the Lorentz transformation, so that Galilean space, to which the transformation 
relates, is indeed of maximal uniformity.  It is customary to call the theory based on the Lorentz transformations the special 
theory of relativity.  More precisely, the subject of that theory is the formulation of physical laws in accordance with the 
properties of Galilean space. 

A formulation of the principle of relativity given supra, which together with the postulate that the velocity of light has a 
limiting character, may be made the basis of relativity theory.  We shall now investigate in more detail the question of the 
connection of the physical principle of relativity with the requirement that the equations be covariant. 

In the first place, we shall attempt to give a generally covariant formulation of the principle of relativity, without as yet 
making this concept more precise.  In its most general form, the principle of relativity states the equivalence of the coordinate 
systems (or frames of reference) that belong to a certain class and are related by transformations of the form: 
  0 1 2 3' , , ,x f x x x x   (31.23) 

which may be stated more briefly as: 
  'x f x  (31.24) 

It is essential to remember that, in addition to the group of permissible transformations, the class of coordinate systems 
must be characterized by certain supplementary conditions.  Thus, for instance, if we consider Lorentz transformations, it is self-
evident that these linear transformations must connect not any arbitrary coordinates, but only the Galilean coordinates in two 
inertial reference frames.  To consider linear transformations between any other (non-Galilean) coordinates has no sense, 
because the Galilean principle of relativity has no validity in relation to such artificial linear transformations.  On the other hand, 
if one introduces any other variables in place of the Galilean coordinates, a Lorentz transformation can evidently be expressed in 
terms of these variables, but then the transformation formulae will have a more complicated form. 

The formulation of the principle of relativity based on the equivalence of reference frames depends on the ability to call 
two reference frames  x  and  'x  physically equivalent if phenomena proceed in the same way in them.  Specifically, if a 
possible process is described in the coordinates  x  by the functions: 
      1 2,  ,  ..., nx x x    (31.25) 

then there is another possible process which is describable by the same functions 
      1 2' ,  ' ,  ..., 'nx x x    (31.26) 

in the coordinates  'x .  Conversely any process of the form Eq. (31.26) in the second system corresponds to a possible process 
of the form Eq. (31.25) in the first system.  Thus, a relativity principle is a statement concerning the existence of corresponding 
processes in a set of reference frames of a certain class wherein the corresponding systems are accepted as equivalent.  It is clear 
from this definition that both the principle of relativity itself and the equivalence of two reference frames are physical concepts, 
and validity of either involves a definite physical hypothesis rather than convention.  In addition, it follows that the very notion 
of a “principle of relativity” becomes well defined only when a definite class of frames of reference has been singled out.  In the 
usual theory of relativity, this class is that of inertial systems. 

The functions Eq. (31.25) or Eq. (31.26) describing a physical process will be called field functions or functions of state.  
In a generally covariant formulation of the equations describing physical processes the components g  of the metric tensor 
must be included among the functions of state such as the collection of field functions: 
      , ,F x j x g x    (31.27) 

i.e. the electromagnetic field, the current vector, and the metric tensor, respectively.  The requirement for the formulation of a 
principle of relativity that in two equivalent reference frames corresponding phenomena should proceed in the same way applies 
equally to the metric tensor.  Thus, if we compare two corresponding phenomena in two physically equivalent reference frames, 
then for the first phenomenon, described in the old coordinates, not only the components of electromagnetic field and of current 
density, but also the components of the metric tensor must have the same mathematical form as for the second phenomenon 
described in the new coordinates. 

Further conclusions depend on whether the metric is assumed to be fixed or whether phenomena that influence the metric 
are considered. In the usual theory of relativity, it is assumed that the metric is given, and it does not depend on any physical 
processes. This is also the case for the generally covariant formulation of the theory of relativity. As long as the assumption 
remains in force that the character of spacetime is Galilean and the g  are introduced only to achieve general covariance, these 
quantities will depend only on the choice of coordinate system, not on the nature of the physical process discussed. They are 
functions of state only in a formula sense. In the theory of gravitation on the other hand, a different assumption is made 
concerning the nature of spacetime. There the g  are functions of state, not only in a formal sense, but in fact: they describe a 
certain physical field, namely the field of gravitation. 

To give a definite meaning to the principle of relativity in such circumstances, it is essential to specify more closely not 
only the class of coordinate systems, but also the nature of the physical processes for which the principle is being formulated.  
Starting from the assumption that the metric is fixed (“rigid”), or that it may be considered as fixed for a certain class of physical 
processes, consider the above definition of corresponding phenomena in two physically equivalent coordinate systems, wherein 
all field functions, including the components of the metric tensor, must have the same mathematical form for the first process 
described in the old coordinates as for the second process described in the new coordinates.  If the g  are independent of the 
nature of the physical phenomenon, then a distinction must be made between the first and second process relative to those 
quantities, and only transformations of the coordinates need to be considered.  Thus, the quantities 
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  g x  and  ' 'g x  (31.28) 

will be connected by the tensor transformation rule, and the requirement of the relativity principle that they should have one and 
the same mathematical form reduces (for infinitesimal coordinate transformations) to the equations 0g  . 

The most general class of transformations that satisfies these equations contains 10 parameters and is possible only in 
uniform spacetime, where the relation, 
 , ( )R K g g g g        (31.29) 

is valid.  (A space in which the curvature tensor ,R   has the form of Eq. (31.29) is called a space of constant curvature; it is a 

four-dimensional generalization of Friedmann-Lobachevsky space.  The constant K is called the constant of curvature.)  If in 
these relations, K is zero, the spacetime is Galilean and the transformations in question are Lorentz transformations, except when 
other (non-Galilean) coordinates are used. 

Thus, with the rigidity assumption for the metric, the principle of relativity implies the uniformity of spacetime.  And, if 
the additional condition 0K   holds, we obtain a Galilean metric in appropriate coordinates.  The relativity principle in general 
form then reduces to the Galilean relativity principle.  As for the condition 0K  , it results in an additional uniformity of 
spacetime.  If the scale of the Galilean coordinates is changed, then the scale of the elementary interval changes in the same 
proportion.  This property implies in turn that there is no absolute scale for spacetime, unlike the absolute scale that exists for 
velocities in terms of the velocity of light. The absence of an absolute scale for spacetime leads conversely to the equation 

0K  . 
Furthermore, taking into account phenomena that may influence the metric gives rise to the possibility that under certain 

conditions the principle of relativity will be valid in non-uniform space also.  In this case, it is necessary that the motion of the 
masses producing the non-uniformity be included in the description of the phenomena. 

It can be shown that under the assumption that spacetime is uniform at infinity (where it must be Galilean), a class of 
coordinate systems exist that are analogous to inertial systems and defined up to a Lorentz transformation.  A principle of 
relativity will hold with respect to this class of coordinate systems in the same form as in the usual theory of relativity, despite 
the fact that at a finite distance from the masses the space is non-uniform.  However, ultimately, this relativity principle is also a 
result of uniformity forced by the boundary conditions that require uniformity at infinity. 

Since the greatest possible uniformity is expressed by Lorentz transformations, there is no more general principle of 
relativity than that discussed in ordinary relativity theory.  Moreover, there cannot be a general principle of relativity, as a 
physical principle, which would hold with respect to arbitrary frames of reference.  In order to make this fact clear, it is essential 
to distinguish sharply between a physical principle that postulates the existence of corresponding phenomena in different frames 
of reference and the simple requirement that equations should be covariant transforming from one frame of reference to another.  
It is clear that a principle of relativity implies a covariance of equations, but the converse is not true: covariance of differential 
equations is also possible when no principle of relativity is satisfied.   

Covariance of equations in itself is in no way the expression of any kind of physical law.  For instance, consider the 
mechanics of systems of mass-points.  Lagrange’s equations of the second kind are covariant with respect to arbitrary 
transformations of the coordinates.  However, they do not express any new physical law compared to, for example, Lagrange’s 
equations of the first kind, which are stated in Cartesian coordinates and are not covariant.  In the case of Lagrange’s equations, 
covariance is achieved by introducing the coefficients of the Lagrangian as new auxiliary functions considered as a quadratic 
expression, but not necessarily homogeneous in the velocities.   

Independently considering that not all laws of nature reduce to differential equations, even fields described by differential 
equations not only require these equations for their definitions, but also all kinds of initial, boundary, and other conditions.  
These conditions are not covariant.  Therefore, the preservation of their physical content requires a change in their mathematical 
form and, conversely, preservation of their mathematical form implies a change of their physical content.  But, the realization of 
a process with a new physical content is an independent question that cannot be solved a priori.  If “corresponding” physical 
processes within a given class of reference systems are possible, then a principle of relativity holds.  In the opposite case, it does 
not.  It is clear, however, that such a model representative of physical processes, and in particular such a model representative of 
the metric, is possible at most for a narrow class of reference systems of limited number.  This argument shows once again 
(without invoking the concept of uniformity) that a general principle of relativity, as a physical principle, holding in relation to 
arbitrary frames of reference, is impossible.  

A desire to find a general principle of relativity is unnecessary as a basis of the requirement of the covariance of the 
equations.  The covariance requirement can be justified independently.  It is a self-evident, purely logical requirement that in all 
cases in which the coordinate system is not fixed in advance, equations written down in different coordinate systems should be 
mathematically equivalent.  The class of transformations with respect to which the equations must be covariant must correspond 
to the class of coordinate systems considered.  Thus, if one deals with inertial systems related by Lorentz transformations and if 
Galilean coordinates are used, it is sufficient to require covariance with respect to Lorentz transformations.  If, however, 
arbitrary coordinates are employed, it is necessary to demand general covariance. 

It should be noted that covariance of coordinate systems acquires definite physical meaning if, and only if, a principle of 
relativity exists for the class of reference frames used. Such is the covariance with respect to Lorentz transformations. This 
concept was so useful in the formulation of physical laws because it contains concrete temporal and geometric elements 
(rectilinearity and uniformity of motion) and also dynamic elements (the concept of inertia in the mechanical and the 
electromagnetic sense). Because of this, it is related to the physical principle of relativity and itself becomes concrete and 
physical. 
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However, if arbitrary transformations are considered rather than the Lorentz transformations, one ceases to single out that 
class of coordinate systems relative to which the principle of relativity exists, and by doing this one destroys the connection 
between physics and the concept of covariance.  There remains a purely logical side to the concept of covariance as a 
consistency requirement on equations written in different coordinate systems.  Naturally this requirement is necessary, and it can 
always be satisfied. 

In dealing with classes of reference frames that are more general than that relative to which a principle of relativity holds, 
the necessity arises of replacing the explicit formulation of the principle by some other statement.  The explicit formulation 
consists of indicating a class of physically equivalent frames of reference.  The new formulation must express those properties of 
space and time by which the principle of relativity is possible.  With the assumption of a rigid metric this is achieved by 
introducing an additional Eq. (31.29).  With the additional assumption of the absence of a universal scale ( 0K  ) these 
equations lead to a generally covariant formulation of the theory of relativity, without any alteration of its physical content.  The 
Galileo-Lorentz principle of relativity is then maintained to its full extent.  

The very possibility of formulating the ordinary theory of relativity in a general covariant form clearly demonstrates the 
difference between the principle of relativity as a physical principle and the covariance of the equations as a logical requirement.  
In addition, such a formulation opens the way to generalizations based on a relaxation of the assumption of a rigid metric.  This 
relaxation provides the possibility of replacing the supplementary conditions Eq. (31.29) by others that reflect better the 
properties of space and time corresponding to the theory of gravitation. 

Universal gravitation does not fit into the framework of uniform Galilean space because the gravitational mass of a body 
as well as the inertial mass depends on its energy.  In the latter case, Einstein felt that it was possible to eliminate the effects of 
gravity by transforming to an accelerating frame of reference that defined his “Equivalence Principle.”  A theory of universal 
gravitation is derived in the Gravity section wherein Euclidean, or rather pseudo-Euclidean, geometry is abandoned in favor of 
the geometry of Riemann. But the derivation does not involve the traditional approach based on the Equivalence Principle; rather 
it is based on Eq. (31.2). 

In Riemannian geometry, the coefficients g  of the quadratic form for the squared infinitesimal distance are mechanics 

functions. These functions establish a law regarding their transformation from one coordinate frame to another based on their 
definition as coefficients of a quadratic form, together with the condition that this form is an invariant. Thus, a transformation of 
the coordinates is accompanied by a transformation of the metric g  according to this law. The set of quantities g  is called 

the metric tensor. 
With the introduction of a metric tensor, expressions can be formed that are covariant with respect to any coordinate 

transformation.  Nothing other than the covariance of equations is implicit in the metric tensors that may be obtainable from a 
particular one (e.g. from the Galilean tensor) by coordinate transformation.  But, metric tensors of a more general form that 
cannot be transformed into one another by coordinate transformations are fundamentally different.  In each case, the metric 
tensor will express not only properties of the coordinate system but also properties of space, and the latter can be related to the 
phenomenon of gravitation.  It is shown below that the origin of gravity is the relativistic correction of spacetime itself as 
opposed to the relativistic correction of mass, length, and time of objects of inertial frames in constant relative motion.  The 
production of a particle having an inertial and gravitational mass from a photon traveling at the speed of light requires time 
dilation and length contraction of spacetime.  The present theory of gravity also maintains the constant maximum speed of light 
for the propagation of any form of energy including the gravitational field. 

Having clarified the concept of covariance as applied to Riemannian geometry, consider it together with the previously 
discussed concept of the uniformity of space.  As was shown above, the property of uniformity in Galilean space manifests itself 
in the existence of transformations that leave unchanged the expression for the four-dimensional distance between two points.  
More precisely, these transformations leave unchanged the coefficients of this expression, i.e. the quantities g .  g  are 

functions of the coordinates which means that the mathematical form of these functions is unchanged: The dependence of the 
new g  on the new coordinates has the same mathematical form as that of the old g  on the old coordinates.  In the general 

case of Riemannian geometry, there are no transformations that leave the g  unchanged because Riemannian space is not 

uniform.  One deals with transformations of coordinates accompanied by transformations of the g , and neither such a 

combined transformation nor covariance with respect to it has any relation to the uniformity or non-uniformity of space. 
The geometrical properties of real physical space and time correspond not to Euclidean but to Riemannian geometry.  

Any deviation of geometrical properties from their Euclidean, or to be precise, pseudo-Euclidean form appears in Nature as a 
gravitational field.  The geometrical properties are inseparably linked with the distribution and motion of ponderable matter.  
This relationship is mutual. On the one hand the deviations of geometrical properties from the Euclidean are determined by the 
presence of gravitating masses, on the other, the motion of masses in the gravitational field is determined by these deviations.  In 
short, masses determine the geometrical properties of space and time, and these properties determine the movement of the 
masses. The description of the gravitational field demands the introduction of no functions other than the metric tensor itself 
which is uniquely determined by the presence and motion of matter.  Differing from other kinds of forces, gravity which 
influences the motion of the matter by determining the properties of spacetime, is itself described by the metric of spacetime.  
For this principle of relativity, the class of coordinate systems relative to which the principle of relativity exists is the spherical 
coordinate systems. Spherical harmonic coordinates arise naturally due to the spherical symmetry of the particle production 
(energy/matter conversion) event and its effect on spacetime and provide the connection between physics and the concept of 
covariance as shown in the Gravity section. The corresponding metric is the Schwarzschild metric derived in the Gravity section.   



Chapter 31 1514

The Schwarzschild metric gives the relationship whereby matter causes relativistic corrections to spacetime that 
determines the curvature of spacetime and is the origin of gravity.  The correction is based on the boundary conditions that no 
signal can travel faster that the speed of light including the gravitational field that propagates following particle production from 
a photon wherein the particle has a finite gravitational velocity given by Newton’s Law of Gravitation.  The spacetime 
contraction during particle production is analogous to Lorentz length contraction and time dilation of an object in one inertial 
frame relative to another moving at constant relative velocity. In the former case, the corresponding correction is a function of 
the square of the ratio of the gravitational velocity to the speed of light. In the latter case, the corresponding correction is a 
function of the square of the ratio of the relative velocity of two inertial frames to the speed of light. Thus, the relativity principle 
for both Euclidean and Riemannian geometries is based on the light wave front propagation equation, specifically Eq. (31.2).  

 
REFERENCES 
1. S. Kak, “Moving observers in an isotropic universe,” International Journal of Theoretical Physics, Vol. 46, (2007). 
2. A. Beiser, Concepts of Modern Physics, Fourth Edition, McGraw-Hill Book Company, New York, (1978), pp. 2-40. 
3. V. Fock, The Theory of Space, Time, and Gravitation, The MacMillan Company, (1964). 
4. J. Bailey et al., “Final report on the CERN muon storage ring including the anomalous magnetic moment and the electric 

dipole moment of the muon, and a direct test of relativistic time dilation, Nuclear Physics B150, (1979), pp. 1-75. 
5. P. Sprangle, A. T. Drobot, “The linear and self-consistent nonlinear theory of the electron cyclotron maser instability,” IEEE 

Transactions on Microwave Theory and Techniques, Vol. MTT-25, No. 6, June, (1977), pp. 528-544.  
6. E. Giannetto, The rise of special relativity: Henri Poincaré’s works before Einstein. Atti del 18 Congresso di Storia della 

Fisica e dell’Astronomia, (1998).  
7. H. Poincaré, “L’etat actuel et l’avenir de la physique mathematique,” Bulletin des sciences mathematiques, Vol. 28, (1904), 

pp. 302-324; quoted in Whittaker (1987), p. 30.  
8. E. Whittaker, A History of the Theories of Aether and Electricity, Vol. 2, Modern Theories, Chapter 2, “The Relativity 

Theories of Poincaré and Lorentz,” Nelson, London, (1987), Reprinted, American Institute of Physics, pp. 30–31.  
 
 
 



 1515

 
Chapter 32 
  
GRAVITY 

  
 
 
 
 
QUANTUM GRAVITY OF FUNDAMENTAL PARTICLES 
The attractive gravitational force has been the subject of investigation for centuries.  Traditionally, gravitational attraction has 
been investigated in the field of astrophysics applying a large-scale perspective of cosmological spacetime, as distinguished from 
currently held theories of atomic and subatomic structure.  However, gravity originates on the atomic scale.  In Newtonian 
gravitation, the mutual attraction between two particles of masses 1m  and 2m  separated by a distance r is: 

 1 2
2

m m
G

r
F  (32.1) 

where G  is the gravitational constant, its value being 11 2 2
 6.67  10X Nm kg  .  Although Newton’s theory gives a correct 

quantitative description of the gravitational force, the most elementary feature of gravitation is still not well defined.  What is the 
most important feature of gravitation in terms of fundamental principles?  By comparing Newton’s second law, 
 mF a  (32.2) 
with his law of gravitation, we can describe the motion of a freely falling object by using the following equation: 

 
3i g

GM
m m

r
a r  (32.3) 

where im  and gm  represent respectively the object’s inertial mass (inversely proportional to acceleration) and the gravitational 

mass (directly proportional to gravitational force), M  is the gravitational mass of the Earth, and r is the position vector of the 

object taken from the center of the Earth.  The above equation can be rewritten as: 

 
2

a g

i

m GM

m r
   

 
 (32.4) 

Extensive experimentation dating from Galileo Galilei’s Pisa experiment to the present has shown that irrespective of the object 
chosen, the acceleration of an object produced by the gravitational force is the same, which from Eq. (32.4) implies that the 
value of /g im m  should be the same for all objects.  In other words, we have 

 universal constantg

i

m

m
  (32.5) 

the equivalence of the gravitational mass and the inertial mass.  The fractional deviation of Eq. (32.5) from a constant is 
experimentally confirmed to less 111  10X   [1].  In physics, the discovery of a universal constant often leads to the development 
of an entirely new theory.  From the universal constancy of the velocity of light, c, the special theory of relativity was derived; 
and from Planck’s constant, h, the quantum theory was deduced.  Therefore, the universal constant /g im m  should be the key to 

the gravitational problem.  The theoretical difficulty with Newtonian gravitation is to explain just why relation, Eq. (32.5), exists 
implicitly in Newton’s theory as a separate law of nature besides Eqs. (32.1) and (32.2).  Furthermore, discrepancies between 
certain astronomical observations and predictions based on Newtonian celestial mechanics exist, and they apparently could not 
be reconciled until the development of Einstein’s theory of general relativity which can be transformed to Newtonian gravitation 
on the scale in which Newton’s theory holds. 

General relativity is the geometric theory of gravitation developed by Albert Einstein, whereby he intended to incorporate 
and extend the special theory of relativity to accelerated frames of reference.  Einstein’s theory of general relativity is based on a 
flawed dynamic formulation of Galileo Galilei’s law.  Einstein took as the basis to postulate his gravitational field equations a 
certain kinematical consequence of a law, which he called the “Principle of Equivalence,” which states that it is impossible to 
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distinguish a uniform gravitational field from an accelerated frame.  However, the two are not equivalent since they obviously 
depend on the direction of acceleration relative to the gravitating body and the distance from the gravitating body since the 
gravitational force is a central force.  (In the latter case, only a line of a massive body may be exactly radial, not the entire mass.)  
And, this assumption leads to conflicts with special relativity.  The success of Einstein’s gravity equation can be traced to a 
successful solution which arises from assumptions and approximations whereby the form of the solution ultimately conflicts 
with the properties of the original equation; no solution is consistent with the experimental data in the case of the possible 
cosmological solutions of Einstein’s general relativity.  Furthermore, Einstein’s general relativity is a partial theory in that it 
deals with matter on the scale of celestial objects, but not on an atomic scale.  And, it fails on the cosmological scale.  All 
gravitating bodies are composed of matter and are collections of atoms that are composed of fundamental particles such as 
electrons, which are leptons, and quarks, which make up protons and neutrons.  Gravity originates from the fundamental 
particles. 

Einstein’s theory has as its foundation that gravity is a force unique from electromagnetism.  The magnetic force was 
unified with the Coulomb force by Maxwell.  Lorentz derived the transformations named after him which formalize the origin of 
the magnetic force as a relativistic correction of the Coulomb force.  The unification of electricity and magnetism by Maxwell 
permitted him to derive a wave equation that predicted the propagation of electromagnetic waves at the speed of light.  
Maxwell’s wave equation defines a four-dimensional spacetime and the speed of light as a maximum permitted according to the 
permeability and permittivity of spacetime.  Minkowski originated the concept of a four-dimensional spacetime formally 
expressed as the Minkowski tensor [2].  The Minkowski tensor corresponds to the electromagnetic wave equation derived by 
Maxwell and can be derived from it [3].  Special relativity is implicit in the wave equation of electromagnetic waves that travel 
at the speed of light.  As given in the Relativity section and the Equivalence of Inertial and Gravitational Masses Due to 
Absolute Space and Absolute Light Velocity section, the generalization of this metric to mass as well as charge requiring 
application of Lorentz transformations comprises the theory of special relativity invented by Poincaré in 1904 [4-6]1.  The 
Lorentz transformations quantify the measurement of the increase in mass, length contraction, and time dilation in the direction 
of constant relative motion of separate inertial frames due to the finite maximum speed of light.  The goal of Einstein, who 
worked on special relativity, was to generalize it to accelerated frames of reference as well as inertial frames moving at constant 
relative velocity.  But, gravity is not a force separable from electromagnetism.  The true origin of gravity is the relativistic 
correction of spacetime itself as opposed to the relativistic correction of mass, length, and time of objects of inertial frames in 
constant relative motion.  The production of a massive particle from a photon with zero rest mass traveling at the speed of light 
requires time dilation and length contraction of spacetime.  The present theory of gravity also maintains the constant maximum 
speed of light for the propagation of any form of energy.  (Recently the speed of gravity has been measured to be the speed of 
light [7].)  And, the origin of the gravitational force is also a relativistic correction.  In the metric which arises due to the 
presence of mass, spacetime itself must be relativistically corrected as a consequence of the presence of mass in order that (i) the 
speed of light is constant and a maximum, (ii) the angular momentum of a photon,  , is conserved, and (iii) the energy of the 
photon is conserved as mass.  Spacetime must undergo time dilation and length contraction due to the production event.  The 
event must be spacelike even though the photon of the particle production event travels at the speed of light and the particle must 
travel at a velocity less than the speed of light.  The relativistically altered spacetime gives rise to a gravitational force between 
separated masses.  Thus, the production of matter and its motion alters spacetime and the altered spacetime affects the motion of 
matter, which must follow geodesics.   

When speaking of the relativity of a frame of reference or simply of relativity, one usually means that there exist identical 
physical processes in different frames of reference.  According to the generalized Galilean principle of relativity identical 
processes are possible in all inertial frames of reference related by Lorentz transformations.  On the other hand, Lorentz 
transformations characterize the uniformity of Galilean spacetime.  Using the four-dimensional coordinates x  for describing the 
events and the world-line in spacetime the separation of proper time between two events x  and x dx   is: 
 2d g dx dx 

    (32.6) 

where g  is the metric tensor which determines the geometric character of spacetime.  For different coordinate systems, the 

dx  may not be the same, but the separation 2d  remains unchanged.  The metric g  for Euclidean space called the 

Minkowski tensor   is: 

 
1 In 1900, Lorentz conjectured that gravitation could be attributed to actions that propagate with the velocity of light.  Poincaré, in a paper in July 1905 
(submitted days before Einstein’s special relativity paper), suggested that all forces should transform according to Lorentz transformations.  In this case, he 
notes that Newton’s Law of Gravitation is not valid and proposed gravitational waves that propagated with the velocity of light.  Specifically, Poincaré 
pointed out that all forces must propagate with the finite light velocity, that interaction implies a time delay, and it is mediated by field waves.  Thus, 
Poincaré made for the first time the hypothesis of the existence of gravitational waves [4]. 
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In this case, the separation of proper time between two events x  and x dx   is: 
 2d dx dx 

    (32.8) 

A spherically symmetrical system of mass 0m  applies to the production of a particle which implies spherical coordinates 

with the origin at 0.  Thus, a family of curved surfaces, each with constant r, is a series of concentric spheres on which it is 
natural to adopt the coordinate r so that a sphere with constant r has area 24 r , and the metric on the surface of the sphere 
would then be: 
 2 2 2 2 2 2sinds r d r d     (32.9) 
Such a definition of r is no longer the distance from the origin to the surface, because of the spacetime contraction caused by the 
mass 0m .  The form of the outgoing gravitational field front traveling at the speed of light is: 

 
r

f t
c

  
 

 (32.10) 

Therefore the spatial metric should be expressed as 

   12 2 2 2 2 2 2sinds f r dr r d r d      (32.11) 

In addition, the existence of mass 0m  also causes time dilation of spacetime such that the clock on each r-sphere is no 

longer observed from each r-sphere to run at the same rate.  That is, clocks slow down in a gravitational field [8].  Therefore, the 
general form of the metric due to the relativistic effect on spacetime due to mass 0m  is: 

     12 2 2 2 2 2 2 2
2

1
sind f r dt f r dr r d r d

c
          (32.12) 

In the case where 0 0m  , space would be flat which corresponds to: 

     1
1f r f r

   (32.13) 

Then the spacetime metric is the Minkowski tensor.  In the case that the mass 0m  is finite, the Minkowski tensor is corrected by 

the time dilation and length contraction of spacetime. 
The creation of a particle from light requires the event to be spacelike; yet, particle production arises from a photon 

traveling at the speed of light.  At production, the particle must have a finite velocity called the Newtonian gravitational velocity 
(according to Newton’s Law of Gravitation) that may not exceed the speed of light.  The Newtonian gravitational velocity must 
have an associated gravitational energy.  The photon initially traveling at the speed of light undergoes particle production and 
must produce a gravitational field that travels at the speed of light.  The gravitational energy associated with the field must have 
an inverse radius dependence according to the spreading wave.  Since the gradient of the gravitational energy gives rise to the 
gravitational field, the gravitational field must have an inverse radius squared dependence.  In order that the velocity of light 
does not exceed c in any frame including that of the particle having a finite Newtonian gravitational velocity, gv , the laboratory 

frame of an incident photon, and that of a gravitational field propagating outward at the speed of light, spacetime must undergo 
time dilation and length contraction due to the production event.  During particle production the speed of light as a constant 
maximum as well as phase matching and continuity conditions require the following form of the squared displacements due to 
constant motion along two orthogonal axes in polar coordinates: 

      22 2

gc v t ct    (32.14) 
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Thus,  
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(The derivation and result of spacetime time dilation is analogous to the derivation and result of special relativistic time dilation 
given by Eqs. (30.11-30.15).)  Therefore, the general form of the metric due to the relativistic effect on spacetime due to mass 
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The gravitational energy of a particle during production given by Newton’s Law of Gravitation may be unified with the 
inertial and electromagnetic energies given by Planck’s equation and Maxwell’s equations, respectively.  The physical basis is 
the law of Galileo that in the absence of a resistive medium all bodies fall equally fast, or, more accurately, with equal 
acceleration.  The law of Galileo can be stated in generalized form as the law of the equality of inertial and gravitational mass.  
The equivalence of the Planck equation, electric potential, and the stored magnetic energies occurs for a transition state atomic 
orbital during pair production as shown in the Pair Production section.  During particle production the transition state atomic 
orbital has a charge-density function   given by
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where e  is the fundamental charge.  The corresponding mass-density function is: 
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where mass, 0m , is the rest mass of the particle produced.  In both cases, the radius, nr , is the Compton wavelength bar, C , 

given by 

 *

0
C r

m c  
  (32.21) 

Consider the gravitational radius, G or Gr , of an atomic orbital of mass, 0m , defined as:  

 0
2G G

Gm
r

c
    (32.22) 

where G  is the Newtonian gravitational constant.  Notice that as 0m  increases the gravitational radius, Gr , increases (i.e. the 

curvature of spacetime increases), and the radius of the transition state atomic orbital, *r , decreases.  Remarkably, when 
*

G Cr r   , the gravitational potential energy equals 2
0m c  where 0m  is the rest mass of the fundamental particle created as the 

transition state atomic orbital becomes real.  This is shown by equating the gravitational radius, Gr , to the Compton wavelength 

bar, C , given by Eq. (29.22): 
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Multiplication of both sides of Eq. (32.23) by 2
0m c  and division of both sides by *  gives: 
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Since / 2h  : 
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Since / 2C C   and from Eqs. (27.3) and (27.5), 
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The left-hand side of Eq. (32.26) is the gravitational potential energy and the right-hand side is the energy of the particle-
production photon.  Thus, from Eq. (28.11) and Eq. (32.26), the following energies are equivalent 
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where *  is the angular frequency of the photon which forms the transition state atomic orbital, and *  is also the spacetime 
resonance angular frequency for this particle.  Furthermore, given 
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It follows that  
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and in general, 
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This equation is the de Broglie relationship; it must hold for matter and energy.  In fact, this was de Broglie’s original insight [9] 
which led him to postulate the relationship named after him.  The mass-energy which causes the gravitational radius, Gr , to 

equal C  is hereafter called the Grand Unification Mass-Energy which is equal to   times the angular frequency of the photon 

which becomes the transition state atomic orbital.  This angular frequency is also the spacetime resonance angular frequency of 
the Grand Unification Mass-Energy as given by Eq. (28.13).  The Grand Unification Mass-Energy is further equal to the 
corresponding electric potential, stored magnetic, and gravitational potential energy.  The equality of radii unifies de Broglie’s 
equation, Planck’s equation, Maxwell’s equations, Newton’s equations, and Special and General Relativity, which comprise the 
fundamental laws of the Universe. 

The Grand Unification Mass-Energy, um , can be expressed in terms of Planck’s constant. 
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The Grand Unification Mass-Energy, um , given by Eq. (32.31) is the Planck mass.  From Eq. (28.11), the relationship of the 

equivalent particle production energies (mass energy = Planck equation energy = electric potential energy = magnetic energy = 
gravitational potential energy) is 
 2 *

0 mag gravm c V E E     (32.32a) 

where 0m  is the rest mass of a fundamental particle of the Planck mass um  when the gravitational energy is the gravitational 

potential energy given by Eq. (32.30).  A corresponding general relationship of the equivalent particle production energies (mass 
energy = Planck equation energy = electric potential energy = magnetic energy = gravitational energy) is: 

 
 

2 2 2 22 2
2 * 1 1 10 0 0

0 22 3
0 0 0

4 22C C CC

e e c Gme c
m c

m h Gm

    
 

   
     
 

 
  

 (32.32b) 

where 0m  is the rest mass of a fundamental particle.  For particle production, the gravitational velocity, Gv , is defined as 
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Substitution of the gravitational velocity, Gv , given by Eq. (32.33) and the Planck mass, um , given by Eq. (32.31) into Eq. 

(32.32) followed by division by the speed of light squared gives the mass of a fundamental particle in terms of the Planck mass 
where:   
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The equivalence of the gravitational and inertial masses according to experiments and Eq. (32.32) prove that Newton’s 
Gravitational Law is exact on a local scale.  The production of a particle requires that the velocity of each of the point masses of 
the particle is equivalent to the Newtonian gravitational escape velocity gv  of the superposition of the point masses of the 

antiparticle.  According to Newton’s Law of Gravitation the eccentricity is one (Eqs. (35.17-35.22)) and the particle production 
trajectory is a parabola relative to the center of mass of the antiparticle.  The correction to Newton’s Gravitational Law due to the 
relativistic effect of the presence of mass on spacetime may be determined by substitution of the gravitational escape velocity, 

gv , given by [10]: 
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into Eq. (32.18) for gv .  The corresponding Newtonian gravitational radius is given by: 
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In the case of the boundary conditions of Eq. (32.32), Eq. (32.35) and Eq (32.36), three families of leptons and quarks are 
predicted wherein each particle corresponds to a unique atomic orbital radius equal to its Compton wavelength bar.  At particle 
production, a photon having a radius and a wavelength equal to the Compton wavelength bar of the particle forms a transition 
state atomic orbital of the particle of the same wavelength. 

A fourth family is not observed.  A pair of particles each of the Planck mass corresponding to the conditions of Eq. 
(32.22), Eq. (32.32), and Eq. (32.33), is not observed since the velocity of each of the point masses of the transition state atomic 
orbital is the gravitational velocity Gv  that in this case is the speed of light; whereas, the Newtonian gravitational escape velocity 

gv  of the superposition of the point masses of the antiparticle would be 2  the speed of light (Eq. (32.35)).  In this case, an 

electromagnetic wave of mass energy equivalent to the Planck mass travels in a circular orbit around the center of mass of 
another electromagnetic wave of mass energy equivalent to the Planck mass wherein the eccentricity is equal to zero (Eq. 
(35.21)), and the escape velocity can never be reached.  The Planck mass is a “measuring stick.”  The extraordinarily high 

Planck mass ( 82.18  10  
c

X kg
G




) is the unobtainable mass bound imposed by the angular momentum and speed of the 

photon relative to the gravitational constant.  It is analogous to the unattainable bound of the speed of light for a particle 
possessing finite rest mass imposed by the Minkowski tensor.  It has a physical significance for the fate of blackholes as given in 
the Composition of the Universe section.   

Eq. (32.34) gives the relationship between the mass of each fundamental particle and the ratio of the gravitational 
velocity Gv  to the speed of light times the Planck mass, the mass at which the gravitational radius Gr  is the Compton wavelength 

bar and the production energy is equal to the gravitational potential energy given by Eq. (32.30).  The square of the ratio of the 
gravitational escape velocity gv  of each particle relative to the speed of light gives the corresponding spacetime contraction 

according to Eqs. (32.17-32.18).  During particle production, a particle having the gravitational escape velocity gv  is formed 

from a photon traveling at the speed of light.  The spacetime contraction during particle production is analogous to Lorentz 
length contraction and time dilation of an object in one inertial frame relative to another moving at constant relative velocity.  In 
the latter case, the correction is the square of the ratio of the relative velocity of two inertial frames to the speed of light 
according to Eqs. (31.17-31.18).  The theory of the masses of fundamental particles is given in the Particle Production section, 
the Leptons section, and The Quarks section. 

The resulting metric is valid for the external region of particles and spherically symmetric bodies comprised of 
fundamental particles such as the celestial bodies.  The metric g  for non-Euclidean space due to the relativistic effect on 

spacetime due to mass 0m  is: 
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In this case, the separation of proper time between two events x  and x dx   is: 
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The origin of gravity is fundamental particles, and the masses and fields from particles superimpose.  So, 0m , the mass of a 

fundamental particle, may be replaced by M, the sum of the masses of the particles which make up a massive body.  In this case, 
Eq. (32.38) is equivalent to a modified version of the Schwarzschild metric [8 and footnote 7]. 

One interpretation of the relativistic correction of spacetime due to conversion of energy into matter and matter into 
energy is that spacetime contracts and expands, respectively, in the radial and time dimensions.  Thus, matter-energy conversion 
can be considered to conserve spacetime.  Also, since matter causes spacetime to deviate from flat or Euclidean, matter-energy 
conversion can be considered to curve spacetime.  The result is that spacetime is positively curved to match the boundary 
condition of the positive curvature of particles during production.  The two-dimensional nature of fundamental particles requires 
that the radial and time dimensions are distinct from the angular dimensions.  The curvature of spacetime results from a 
discontinuity of matter having curvature confined to two spatial dimensions.  This is the property of all matter as an atomic 
orbital.  A space in which the curvature tensor has the following form: 
 , ( )R K g g g g        (32.39) 
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is called a space of constant curvature; it is a four-dimensional generalization of Friedmann-Lobachevsky space.  The constant K 
is called the constant of curvature.  Consider an isolated atomic orbital and radial distances, r, from its center.  For r less than nr  

there is no mass; thus, spacetime is flat or Euclidean.  The curvature tensor applies to all space of the inertial frame considered; 
thus, for r less than nr , 0K  .  At nr r  there exists a discontinuity of mass of the atomic orbital.  This results in a discontinuity 

of the metric tensor for radial distances greater than or equal to nr  which defines the curvature tensor given by Eq. (32.39). 

Gauss and Riemann [8, 11] developed the theory of curved spacetime and proposed that our Universe may be curved 
rather than flat.  A generation later, Einstein formalized the ideas of Gauss, Riemann, and Clifford [8, 11, 12] that matter curved 
spacetime to give rise to a gravitational field2.  Einstein proposed the principle of equivalence as the basis that gravity could be 
explained in terms of a spacetime metric that is different from Euclidean [8, 11].  According to Einstein’s theory of general 
relativity, his field equations give the relationship whereby matter determines the curvature of spacetime3, which is the origin of 
gravity.  The definitive form of the equations are as follows4: 
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where R g R
  , R g R

 , the left-half of Eq. (32.40) is Einstein’s Tensor G , and T  is the stress-energy-

momentum tensor.  Einstein proposed Eq. (32.40) starting with the assumption of the local equivalence of accelerated and 
gravitational inertial reference frames called the Principle of Equivalence.  Einstein’s equation postulates that a conservative 
Riemannian tensor is proportional to a conservative stress energy momentum tensor wherein the proportionality constant 
contains Newton’s gravitational constant.  The uniqueness of the radial and time dimensions for particle production (Eq. (32.32) 
and Eqs. (32.37-32.38)) and the corresponding effect on spacetime reveals a fatal flaw in Einstein’s gravity equations.  The 
tensors cannot be conservative.  All cosmological solutions of general relativity predict a decelerating Universe from a 
postulated initial condition of a “Big Bang” expansion [13].  The astrophysical data reveals an accelerating cosmos [14] that 
invalidates Einstein’s equation, as discussed in the Cosmology section.  Recently Lieu and Hillman [15] and Ragazzoni et al. 
[16] have shown using the Hubble space telescope that the infinities in the quantum singularity, which became the Universe with 
the big bang, cannot be reconciled by invoking uncertainty on the Planck-time scale.  Time is continuous rather than quantized, 
the concept of the big bang is experimentally fatally flawed. 

It has been shown that the correct basis of gravitation is not according to Einstein’s equation (Eq. (32.40)); instead the 
origin of gravity is the relativistic correction of spacetime itself which is analogous to the special relativistic corrections of 
inertial parameters—increase in mass, dilation in time, and contraction in length in the direction of constant relative motion of 
separate inertial frames.  On this basis, the observed acceleration of the cosmos is predicted as given in the Cosmology section.   

The popular terms for these effects, general relativity and special relativity, respectively, are confusing at best.  The 
special relativistic corrections of an object corresponding to Newton’s law of mechanics applied to inertial frames with constant 
relative motion are more appropriately named Newtonian Inertial Corrections or Newtonian Corrections of the First Kind.  The 
gravitational relativistic corrections of spacetime, which correspond to Newton’s Laws of Gravitation applied to massive bodies 
are more appropriately named Newtonian Gravitational Corrections or Newtonian Corrections of the Second Kind.  The 
nomenclature used herein will adhere to tradition, but it is implicit that Special Relativity refers to spacetime defined by the 
Minkowski tensor, and General Relativity refers not to Einstein’s equations but to the spacetime defined by the Schwarzschild 
metric wherein the physical basis for the latter is the time dilation and length contraction of spacetime due to particle 
production5.  Furthermore, in the use of traditional nomenclature of the magnetic force as a relativistic correction of the Coulomb 

 
2 It is easy to discuss two-dimensional surfaces since we live in a three-dimensional space.  Gauss considered the problem of whether a being that lives in 
and measures only in a two dimensional surface and can not travel in a three dimensional space can determine whether the surface in which it exists is 
curved or flat.  The solution is not obvious.  “One cannot be sure of the true sights of Lu mountain, since one is on it.”  Gauss found the solution that the 
two dimensional being could determine whether the surface on which it exists is curved by measuring the angle sum of a “geodesic triangle” on the 
surface.  Euclidean plane geometry asserts that in a plane, the sum of the angles of a triangle add up to 180°.  On the surface of a sphere, however, the sum 
of the angles of a “geodesic triangle” exceeds 180°.  Gauss reasoned that the question of whether the three dimensional space in which we live is curved or 
flat could be resolved analogously.  Gauss himself measured the angle sum of a triangle formed by three mountains as vertices, but failed to detect any 
departure from 180° within the limits of accuracy of his experiments.  A generation later Einstein paraphrased this concept, “When a blind beetle crawls 
over the surface of the globe, he doesn’t realize that the track he has covered is curved.  I was lucky enough to have spotted it.” 
3  It is important to realize the distinction between the rationalization that the origin of gravity is by virtue of matter causing spacetime to be curved, and a 
physical basis consistent with Maxwell’s equations and special relativity that the origin of gravity is time dilation and length contraction of spacetime 
based on the speed of light which is a constant maximum for the propagation of any form of energy at particle production.  The relativistic correction of 
spacetime may be viewed as matter causing spacetime to be curved, but this is a consequence rather than the cause of the origin of gravity. 
4 Although historically Einstein is credited with Eq. (32.40), David Hilbert discovered the same form of the field equations days before Einstein.  Einstein 
had reached his final version of general relativity after a slow road with progress but many errors along the way.  In December 1915, he said of himself, 
“That fellow Einstein suits his convenience.  Each year he retracts what he wrote the year before.”  A reference describing the tremendous broad-based 
effort to develop the theory of general relativity in the early 20th century is the web site: http://www-history.mcs.st-
andrews.ac.uk/HistTopics/General_relativity.html.  Also see D. Overbye, “Einstein, Confused in Love, and Sometimes, Physics,” New York Times, 
August 31, 1999, F4. 
5 The Schwarzschild metric was originally derived from Einstein’s field equations and is widely used in astrophysical calculations.  This metric is widely 
regarded as a triumph of Einstein's theory of gravitation.  Implicit in the Schwarzschild solution is a privileged system of coordinates.  Yet, Einstein denied 
the existence of a privileged system of coordinates in all cases based on his view of the local method of discussing properties of space.  The equivalence 
principle used by Einstein as the basis for Riemannian geometry of space is only valid locally.  Einstein underestimated the importance of considering 
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space as a whole.  Having obtained his equation based on the Principle of Equivalence, Einstein realized that the mass of the Universe would cause it to 
collapse.  He would accept only a static Universe.  Thus, he added a cosmological constant to his equation.  This type of antigravity of spacetime was 
intended to exactly balance the tendency of matter to cause spacetime to collapse.  But, according to his basic postulates, the absence of a gravitational 

field signifies the absence of deviations of the geometry of spacetime from Euclidean, and therefore, also vanishing of the curvature tensor R  and of its 

invariant R.  Also, the gravitational field will be absent if the mass tensor T   is zero everywhere.  Therefore, the equations   T
  0  and R  0  must 

certainly be compatible, and this is only possible if the equations relating G   R 
1

2
g  R  to T   do not contain the term  g  .  The cosmological 

constant must be zero.  This is also the case in order to obtain consistency with Newton’s Law of Gravitation in the same limit.  After Hubble’s redshift 
observations in 1929 demonstrated the expansion of the Universe, the original motivation for the introduction of   was lost.  Nevertheless,   has been 
reintroduced on numerous occasions when discrepancies have arisen between theory and observations, only to be abandoned again when these 
discrepancies have been resolved.  Einstein abandoned the constant calling it the greatest mistake of his life.  Einstein failed to notice two other 
tremendously important features of the Universe, which further undermines his view of a static Universe.  A positively curved spacetime has a finite radius 

based on the mass and energy.  And, the Universe is converting about 1033  kilograms of matter into energy per second.  He also failed to develop an 
atomic theory of gravity, which is the means to determine the impact of matter to energy conversion on the expansion of the Universe. 

In Einstein’s equation in its original form, a conservative tensor (the divergence of the tensor is zero) which expresses the curvature of spacetime 
is equated with a conservative stress-energy-momentum tensor of matter.  This approach conserves momentum, matter, and energy.  The Schwarzschild 
metric given as Eq. (57.54) of Fock [17]: 
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is an exact solution of the Einstein’s equation based on a preferred system of coordinates.  According to a theorem by Birkoff [18] the Schwarzschild 
metric is the only solution of Einstein’s gravity equations for the corresponding boundary conditions of a spherically symmetric time-independent or 
dynamic solution with zero cosmological constant for the metric of a space which is empty apart from a central spherical body. 

The Schwarzschild metric is consistent with observations wherein the radius applies to distances between gravitating bodies.  For example, it 
solves the precession of the perihelion of Mercury and the deflection of light in a gravitational field.  However, Einstein’s equation with general 
coordinates has an infinite number of solutions, and none of the possible solutions are consistent with cosmological observations as shown in the 
Cosmology Section.  These solutions are all conservative (the divergence of each metric tensor is zero).  The Schwarzschild metric given by Eq. (32.41) is 
also conservative; whereas, the Schwarzschild metric in the form given by Eq. (32.38) is not conservative. 

The Schwarzschild metric (Eq. (32.38)) gives the relationship whereby matter (energy) causes relativistic corrections to spacetime that 
determines the curvature of spacetime and is the origin of gravity.  The Minkowski space is obtained in the limit of no mass at infinity.  Eq. (32.41) may 

be transformed into Eq. (32.38) by the substitution of the radial coordinate r with the reduced radial coordinate, r 
GM

c2
.   

The origin of gravity is fundamental particles, and the masses and fields from particles superimpose.  The derivation of the correct form of the 
Schwarzschild metric (Eq. (32.38)) is based on contraction of spacetime during particle production that requires a privileged system of coordinates.  
Einstein’s approach to his equation conserves momentum, matter, and energy.  Derivation of the Schwarzschild metric is based on the wave equation that 
conserves momentum, matter, and energy and additionally requires a maximum constant velocity for the propagation of any signal including a 
gravitational field at particle production.  As a consequence of particle production the radius of the Universe contracts by  2  times the gravitational radius 

of each particle with the gravitational radius given by Eq. (32.36) which applies to the observed leptons and quarks formed at the gravitational velocity v
g

 

which is the escape velocity given by Eq. (32.35).  Thus, Q, the mass-energy-to-expansion-contraction quotient of spacetime (Eq. (32.140)), is given by 
the ratio of the mass of a particle at production divided by T the period of the gravitational radius as given by Eq. (32.149) wherein the gravitational radius 
is the Newtonian gravitational radius given by Eq. (32.36).  Thus, T is the period of the orbit of the particle relative to the antiparticle during production.  
By superposition, obtaining the correct solution of the Schwarzschild metric (Eq. (32.38)) requires that the radius of the metric (Eq. (32.41)) be replaced 
by the radius decreased by the gravitational radius of the central mass (Eq. (32.22) which applies to a particle of the Planck mass).  The gravitational 
radius which gives the spacetime dilation at particle production may be considered the “effective thickness” of fundamental particles which are two 
dimensional. 

It is shown in the Cosmology Based on the Relativistic Effects of Matter/Energy Conversion on Spacetime Section that a 3-sphere spatial 
geometry describes the Universe which is finite but has no boundary.  The radius of the Universe oscillates harmonically between two finite radii.  It 
expands as matter is transformed into energy, and it contracts as the radiation filled Universe reverts back to a matter filled Universe.  Matter causes 
spacetime to become curved like a dimple on a ball, but in three spatial dimensions plus time.  Consider such a dimple as shown in Figure 32.3 caused by 
the Sun which is converting 5 billion kg of matter into energy per second.  If the conversion persisted indefinitely, the Sun would vanish.  The local 
spacetime dimple would vanish also.  Thus, spacetime must expand as matter is converted into energy.  The same applies to the Universe as a whole.  Due 
to matter converting to energy the radius of the Universe expands by 2  times the gravitational radius of the converted matter (Eq. (32.140)) with the 

gravitational radius given by Eq. (32.36) wherein   m0
, the mass of a fundamental particle, is replaced by M, the sum of the masses of the particles which 

make up the massive body).  The Hubble constant is consistent with the experimental mass to energy conversion rate of the Universe calculated from the 
number of galaxies (400 billion) times the number of stars per galaxy (400 billion) times the average mass to energy conversion rate per star (5 billion kg / 
sec star).  The Schwarzschild metric (Eq. (32.38)) is shown to explain all current cosmological observations as well as permit the derivation of an equation 
which correctly predicts the masses of fundamental particles.  It is proposed that the Schwarzschild metric (Eq. (32.38)) is an exact description of reality 

which has as its basis the gravitational velocity 
 
v

g
 of a massive object according to Newton’s Law of Gravitation and the constant maximum speed of 

light.  It provides that any discontinuities in the gravitational field caused by matter to energy conversion or vice versa must propagate as a front like a 
light wave in empty space.  This equation does not conserve matter, energy, and momentum separately from spacetime.  In this case, matter, energy, 
momentum, and spacetime are conserved as a totality.  The wave equation conserves matter, energy, and momentum.  It further provides for the 
conservation of these physical entities with spacetime and provides a unifying physical principle that gives an oscillating Universe as given in the Wave 
Equation Section. 
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force and now the origin of gravity as the relativistic correction of spacetime, magnetism and gravity should be considered more 
than corrections, rather they are fundamental relativistic effects. 
 

PARTICLE PRODUCTION 
The equations which unify de Broglie’s Equation, Planck’s Equation, Maxwell’s Equations, Newton’s Equations, and Special 
and General Relativity define the mass of fundamental particles in terms of the spacetime metric.  Eq. (32.32) (Eq. (32.48) 
infra.) gives the equivalence of particle production energies corresponding to mass, charge, current, and gravity according to the 
proportionality constants which are given in terms of a self-consistent set of units.  This equivalence is a consequence of 
equivalence of the gravitational mass and the inertial mass together with special relativity.  Charge is relativistically invariant; 
whereas, mass and spacetime are not.  The fine structure constant is dimensionless and is the proportionality constant 
corresponding to the relativistic invariance of charge.  Thus, it is absolute.  All the other constants are not, and any property of 
mass-energy or spacetime is measurable only in terms of the remaining properties where the metrics and definitions of the 
properties are in terms of experiments which define a self-consistent circular system of units.  In addition to the equivalence of 
particle production energies corresponding to mass, charge, current, and gravity according to the proportionality constants which 
are given in terms of a self-consistent set of units, general relativity further provides for the further proportional equivalence with 
the metric of spacetime of the same self-consistent system of units.  The metric of spacetime is used to calculate the mass of the 
fundamental particles in terms of the same consistent system of units. 

Satisfaction of the nonradiative boundary condition precludes emission of electromagnetic radiation.  Continuity of 
boundary conditions requires that particle production gives rise to a gravitational field front which satisfies the same wave 
equation as electromagnetic radiation and travels at the speed of light.  The charge and mass-density functions of an atomic 
orbital are interchangeable by interchanging the fundamental charge and the particle mass; thus, satisfaction of the boundary 
condition of no Fourier components of the current-density function which are synchronous with waves traveling at the speed of 
light also holds for the mass-density function.  The transverse electric field of the photon of zero rest mass is replaced by a 
central electric and gravitational field and a particle and antiparticle.  For Euclidean spacetime, the radius of the boundary 
condition is invariant because the velocity is perpendicular to the radius of the atomic orbital.  (The radius of the boundary 
condition is not length-contracted by special relativistic effects.)  However, the nonradiative boundary condition and the 
constancy of the speed of light must hold which requires relativistic corrections to spacetime.  

Mass and charge are concomitantly created with the transition of a photon to a particle and antiparticle.  Thus, the 
energies, which are equal to the mass energies apply for the proper time of the particle (antiparticle) given by general relativity, 
Eq. (32.38).  The transition state from a photon to a particle and antiparticle pair comprises two concentric atomic orbitals called 
transition state atomic orbitals.  The gravitational effect of a spherical shell on an object outside of the radius of the shell is 
equivalent to that of a point of equal mass at the origin.  Thus, the proper time of the concentric transition state atomic orbital 
with radius *r  (the radius is infinitesimally greater than that of the inner transition state atomic orbital with radius *r ) is given 
by the Schwarzschild metric, Eq. (32.38).  The proper time applies to each point on the atomic orbital.  Therefore, consider a 
general point in the xy-plane having Cr   ; 0dr  ; 0d  ; 2sin 1  .  Substitution of these parameters into Eq. (32.38) gives: 
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With 2 2v c , Eq. (32.42) becomes: 

 
2 * 2

2 2 g g

c c

r vGM GM
ti ti ti ti

c r c c

    
 

 (32.43) 

where the gravitational radius, gr , and the gravitational velocity, gv , are given by Eqs. (32.35) and (32.36), respectively.  The 

production of a real particle from a transition state atomic orbital is a spacelike event in terms of special relativity wherein 
spacetime is contracted by the gravitational radius of the particle during its production.  Thus, the coordinate time is imaginary 
as given by Eq. (32.43).  On a cosmological scale, imaginary time corresponds to spacetime expansion and contraction as a 
consequence of the harmonic interconversion of matter and energy as given by Eq. (32.140).  The left-hand side of Eq. (32.43) 
represents the proper time of the particle/antiparticle as the photon atomic orbital becomes matter.  The right-hand side of Eq. 
(32.43) represents the correction to the laboratory coordinate metric for time corresponding to the relativistic correction of 
spacetime by the particle production event.  Riemannian space is conservative, and only changes in the metric of spacetime 
during particle production must be considered.  The changes must be conservative.  For example, pair production occurs in the 
presence of a heavy body.  A nucleus which existed before the production event only serves to conserve momentum but is not a 
factor in determining the change in the properties of spacetime as a consequence of the pair production event.  The effect of this 
and other external gravitating bodies are equal on the photon and resulting particle and antiparticle and do not affect the 
boundary conditions for particle production.  For particle production to occur, the particle must possess the escape velocity 
relative to the antiparticle where Eqs. (32.34), (32.48), and (32.140) apply. 
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Eq. (32.43) is valid in the case that gv c 6.  The velocity of each mass-density element of the extended particle is 

equivalent to the gravitational escape velocity gv  of the mass of the antiparticle (Eq. (32.43)).  According to Newton’s Law of 

Gravitation the eccentricity is one and the particle production trajectory is a parabola relative to the center of mass of the 
antiparticle.  The mass of each member of a lepton pair corresponds to an energy of Eq. (32.32).  The electron and antielectron 
correspond to the Planck equation energy.  The muon and antimuon correspond to the electric energy.  And, the tau and antitau 
correspond to the magnetic energy.  However, a pair of particles each of the Planck mass corresponding to the conditions of Eq. 
(32.22), Eq. (32.32), and Eq. (32.33), is not observed since the velocity of each of the point masses of the transition state atomic 
orbital is the gravitational velocity Gv  that in this case is the speed of light; whereas, the Newtonian gravitational escape velocity 

gv  of the superposition of the point masses of the antiparticle would be 2  the speed of light (Eq. (32.35)).  In this case, an 

electromagnetic wave of mass energy equivalent to the Planck mass travels in a circular orbit around the center of mass of 
another electromagnetic wave of mass energy equivalent to the Planck mass wherein the eccentricity is equal to zero (Eq. 
(26.20)), and the escape velocity can never be reached.  The relative velocity of Eq. (32.18) given by the velocity addition 
formula of special relativity for two photons corresponding to a particle and an antiparticle each of the Planck mass is c .  In this 
case, the Compton wavelength bar is the gravitational radius given by Eq. (32.22) where the mass m  is the Planck mass, and no 
matter can escape.  Thus, for example, only three pairs of leptons are observed.  And, a lepton having the Planck mass is not 
observed.  From Eq. (32.43), the masses of fundamental particles are calculated in the Leptons and Quarks sections. 

As stated in the Relativity section, to describe any phenomenon such as the motion of a body or the propagation of light, 
a definite frame of reference is required.  A frame of reference is a certain base consisting of a defined origin and three axes 
equipped with graduated rulers and clocks.  Given the unified relationships between the mass energy, the Planck equation 
energy, electric potential, magnetic energy, the gravitational potential energy, and the mass/spacetime metric energy given by 
Eqs. (32.32-32.34) and Eq. (32.48) infra., it is possible to reduce the graduated rulers and clocks to a clock alone.  The units of 
measure are interdependent.  Eqs. (32.32-32.34) and Eq. (32.48) infra which unify the energies also unify the relationships of the 
units of measurement.  A measure of spacetime does not exist a priori.  Thus, one must be defined.  Based on the unification, 
only the metric of time need be set in the equations such that the other calculable parameters of matter and energy may be 
expressed relative to the time metric in terms of an internally consistent system of units such as the MKS units.  The 
permeability of free space, 0 , is defined in terms of the MKS unit 2NA  as 

 7 2
0 4   10  X NA     (32.44) 

The permeability of free space, 0 , and the permittivity of free space, 0 , are derived by converting the Coulombic force law 

and the magnetic force law from CGS units to MKS units.  In CGS units, the unit of charge is defined such that the Coulomb 
force equation is: 
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From the magnetic force per unit length law, 0  is given by the conversion of:  
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and defined exactly as 7 2
0 4   10  X NA    .  The experimental definition of charge in MKS units is based on the speed of light.  

The Coulomb force law gives 0  in terms of the MKS charge; thus, 0  in terms of MKS units is based on the experimentally 

measured speed of light.  The speed of light is the conversion factor from time to length.  Time can also be converted to inertial 
and gravitational mass and charge according to Eqs. (32.32-32.34) and Eq. (32.48) infra.  MKS units are selected.  In the case of 
MKS units, the time metric is the second which is substituted for the variable t of Eq. (32.43).  (See Box 32.1.)  Eq. (32.43) 
which gives the equivalence of time in the proper and coordinate frames according to a dimensionless correction factor provides 
a definition of the unit of time in terms of fundamental constants.  And, the unification equation provides a superior means to 
define a self-consistent set of units based only on time where 
 2 *
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where the mass, 0m , of the relationship containing the time ruler sec must be corrected for the energy of the particle fields 

corresponding to neutrinos as given in the Leptons section.  A superior measure of time is an atomic standard.  Using Eq. 
(32.48b) all other standards are determined according to the metric of time defined by Eq. (32.43). 
 
BOX 32.1  DEFINITION OF TIME UNIT SEC, AND CALCULATION AND 
MEASUREMENT OF OBSERVABLES OVER ALL SCALES THEREUPON 
A unit of time may be defined arbitrarily in terms of how it is measured (such as the time for a defined number of “clicks” of a 
Cs 133 atom), but mass, charge, energy, spacetime, and other observables are not generalities.  The result of unification is that 
each arises from and is dependent on the other and may be measured on this basis only.  The relationships between observables 
depend on fundamental constants.  So, generalities are lost after a clock is defined in terms of the constants.  The relationships 
are circular since no phenomenon is independent of another.   

The metric of time, sec, is defined by Eq. (36.2) in terms of fundamental constants and the electron mass with the implicit 
contraction of spacetime due to the formation of the electron from energy.  Eq. (32.29) is equivalent to Eq. (36.2) which is the 
definition of the sec.  However, the form given by Eq. (32.29) gives a method of experimentally determining the metric of time 
(sec) which does not require the measurement of the electron mass.  The electron Compton wavelength, C , is equal to the 

wavelength of the photon which gives rise to the electron, and the velocity of each mass-density element of the extended particle 
is equivalent to the gravitational escape velocity, gv , of the mass of the antiparticle (Eq. (32.43)).  According to Newton’s Law 

of Gravitation the eccentricity is one and the particle production trajectory is a parabola relative to the center of mass of the 
antiparticle.  Both parameters, C  and gv , may be measured independently of the electron mass.  The resulting determination of 

the unit of the metric of spacetime, sec, may be used to calculate the electron mass (Eq. (36.3)). 
Another example that follows from Eq. (32.48) with Eq. (28.15) is: 
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which is based on the time definition of Eq. (36.2), but does not require knowledge of the electron mass for the determination of 
the unit sec. 

The electron mass is not a fundamental constant since it can be derived in terms of the actual fundamental constants 
given in the Relationship of Spacetime, Matter, and Charge section.  The electron mass is given by Eq. (36.3) wherein the time 
unit sec may be determined independently of any parameter measured directly on the electron.  The production (annihilation) of 
a particle requires that spacetime contract (expand).  The relationship of matter to energy conversion and space time expansion 
given by Eq. (32.140) is: 
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That is the conversion of 34
 3.22  10 kgX  of matter into energy results in the expansion of the 3-sphere Universe-(Riemannian 

three-dimensional hyperspace plus time of constant positive curvature at each r-sphere) by one sec .  Based on this result with 
the inherent time unit sec, the Universe is time harmonically oscillatory in matter energy and spacetime expansion and 
contraction with a minimum radius that is the gravitational radius.  With the origin of gravity being the contraction of spacetime 
during particle production, the masses of particles and the cosmological parameters such as the Hubble constant, the age of the 
Universe, the observed acceleration of the expansion, the power of the Universe, the mass-density, the power spectrum of the 
Universe, the microwave background temperature, the uniformity of the microwave background radiation, the microkelvin 
spatial variation of the microwave background radiation, and the large scale structure of the Universe are given in terms of sec as 
the definition of the spacetime metric.  The harmonic oscillation period, T , of the Universe given by Eq. (32.149) is: 
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     (32.1.4) 

where the mass of the Universe, Um , is approximately 54
 2  10X kg .  The mass of the Universe is a fundamental constant which 

may be measured by internal consistency of the cosmological parameters.  From Eq. (32.1.4), the time unit sec is given by the 

time required for the Universe to complete 
1

T
 of a cycle.  Thus, the converse of the definition given by Eq. (36.2) holds—

cosmological observables each serve as a clock to give a measurement of and circularly define the time unit sec. 
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The laws of nature are self contained and self consistent such that any phenomena can be described only in terms of all 
the others, but cannot be described in isolation.  A force is simply the change in energy with distance.  When matter decays to 
energy, the energy content of spacetime increases and it expands.  This can be thought of in terms of a corresponding force 
called the “Q force” after Eq. (32.140).  The process can only be described in terms of its relationship to Maxwell’s equations 
and other first principles.  The interdependencies are summarized in Eq. (32.48). 

Eq. (32.48b) gives the circular relationships between matter, energy, and spacetime based on the definition of time given 
by Eq. (36.2).  A unified theory can only provide the relationships between all measurable observables in terms of a clock 
defined according to those observables and used to measure them.  The so defined “clock” measures “clicks” on an observable 
in one aspect, and in another, it is the ruler of spacetime of the Universe with the implicit dependence of spacetime on matter-
energy conversion.  In this case, fundamental physical constants and observables calculated in terms of the fundamental 
constants have no meaning except with regard to the definition of time in terms of the constants.  Then all observables such as 
the excited states of atoms, ionization energies of atoms, chemical bond energies, scattering of electrons from atoms, nuclear 
parameters, cosmological parameters, etc. are given in terms of the definition of the sec (Eq. (36.2)) which is extremely close to 
the MKS second.  Internal consistency is given with a high degree of precision over the scalar range of 85 orders of magnitude 
(mass of the electron to mass of the Universe).  To achieve exact predictions of particle masses and cosmological parameters 
which requires the introduction of the spacetime metric as a fundamental constant, a slight modification of the experimental 
definition of the second may be required.  Presently, all fundamental constants including masses are determined in a self-
consistent manner involving definitions and measurements.  With time defined by Eq. (36.2) and the Compton wavelength bar 
given by Eq. (32.21), the unit system will ultimately have to be revised according to Eq. (32.48b) which gives the exact 
relationships between the measurable constants.  Then from the definition of the metric of time, sec, in terms of fundamental 
constants given by Eq. (36.2) and the relationships between the fundamental constants given by Eq. (32.48b), the periods of 
spacetime expansion (contraction) and particle decay (production) for the Universe are equal as shown in the Period Equivalence 
section, and the atomic, thermodynamic, and cosmological arrows of time discussed in the Arrow of Time and Entropy section 
are based on the same time unit. 

For convenience, the masses of particles derived from Eq. (32.43) and given in the Leptons and Quarks sections as well 
as the cosmological parameters given in The Expanding Universe and the Microwave Background, The Period of Oscillation 
Based on Closed Propagation of Light, Equations of the Evolution of the Universe, Power Spectrum of the Cosmos, The 
Differential Equation of the Radius of the Universe, and Power Spectrum of the Cosmic Microwave Background sections are 
calculated based on the approximation of the sec to the MKS second wherein MKS units are used.  However, the sec may be 
converted to MKS second based on the deviation of Eq. (36.2) from one second (also Eq. (32.1.2)).  The accuracy of the 
conversion factor of 0.9975 second/sec is limited by the error in the value of the gravitational constant (See Box 32.2).  A new 
system of units would eliminate the need for conversion and permit a more accurate determination of the constants including the 
definition of time based on internal consistency. 

 
 

BOX 32.2  RELATIONSHIPS BETWEEN THE EARTH MEAN SOLAR DAY 
DEFINITION OF THE SECOND, THE DEFINITION OF SEC BASED ON PAIR 
PRODUCTION AND ITS EFFECT ON SPACETIME, AND THE DEFINITION OF SEC 
AND THE FUNDAMENTAL CONSTANTS 
The definition of the time unit sec is given in terms of the mass of the electron and fundamental constants in Eq. (36.2). 
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Substitution of the MKS values for the fundamental constants and the electron mass for m  including the correction due to the 
particle fields given by Eq. (36.15) into Eq. (32.2.1) gives sec 0.9975 MKS seconds .  One scenario of how the MKS second 
(presently defined as the time required for 9,192,631,770 vibrations within the cesium-133 atom) evolved such that it matches 
the sec to within a ppt follows from Eq. (32.39). 
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The electron Compton wavelength, C , is equal to the wavelength of the photon which gives rise to the electron, and the 

velocity of each mass-density element of the extended particle is equivalent to the gravitational escape velocity, gv , of the mass 

of the antiparticle (Eq. (32.43)).  According to Newton’s Law of Gravitation, the eccentricity is one and the particle production 
trajectory is a parabola relative to the center of mass of the antiparticle.  In the case of particle production, Eq. (1.16) gives 
 n nr    (32.2.3) 

Substitution of Eq. (32.2.3) into Eq. (32.2.2) gives: 



Gravity 1527

 12 2
 sec

2 ge

r r
i

vGm

r

      (32.2.4) 

which gives the definition of sec in terms of traveling the distance corresponding to one particle orbit at the gravitational 
velocity. 

The Mean Solar Day (1956) definition of the time unit second was based on the day-night cycle of the Earth defined as 
the time for 1/86,400 th of a rotation of the Earth.  This definition was the predecessor to the MKS definition of time which is 
also based on the second.  The exact number, 86,400, permits the day-night cycle to be expressed in terms of 24 hours per day, 
60 minutes per hour, and 60 second per minute.  One method of advancing the definition of second is to develop a relationship 
between the fundamental constants and Newton’s Law of Gravitation regarding the Earth.  The gravitational velocity of the 
Earth, 

Egv , is: 

 42
1.1  10  /

Eg

GM
v X m s

R
   (32.2.5) 

where 66  10  R X m  is the radius of the Earth, and 246  10  gM X k  is the mass of the Earth.  Eq. (32.2.5) is also the 
gravitational escape velocity.  A Mean Solar Day definition of the second based on constants and gravity is: 
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where the fine structure constant,  , is dimensionless, /L m  is the angular momentum per unit mass over 2  radians, 
EgK  is 

the kinetic energy corresponding to the gravitational escape velocity, and the escape velocity, 
Egv , is given by Eq. (32.2.5).  

/L m  is given by 
 / 2m  L R v  (32.2.7) 
Substitution of Eq. (32.2.7) into Eq. (32.2.6) gives: 
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where the linear velocity of the Earth at the equator due to rotation is given by:  
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  (32.2.9) 

where T  is the period of rotation.  From the Mean Solar Day (1956) definition 
 86,400 T s  (32.2.10) 
Substitution of Eqs. (32.2.9) and (32.2.10) into Eq. (32.2.8) gives: 
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Substitution of Eq. (32.2.5) into Eq. (32.2.11) gives: 
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     (32.2.12) 

This close identity may have played a role in choosing the number 86,400 in the definition of the second. 
Now consider the relationship between Eq. (32.2.8) and Eq. (32.2.2).  In the case of pair production, the electron linear 

velocity is the gravitational escape velocity, and the radius is the Compton wavelength bar, C , as given by Eqs. (32.2.2-32.2.4).  

Thus, Eq. (32.2.8) may be written as 
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 (32.2.13) 

where the imaginary number indicates that pair production is spacelike.  Eq. (32.2.13) is identical to Eq. (32.2.2).  Thus, the 
Mean Solar Day definition of the second and the definition of sec given by Eq. (32.2.2) are identical to the extent that Eq. 
(32.2.12) is identically the reciprocal of the fine structure constant.  And, other equivalent parallels between Eq. (32.2.2) and 
(32.2.8) are given in terms of other fundamental constants using Eq. (32.48b) and (Eq. (33.21)) which give the relationships 
between the constants and the time unit sec. 
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ORBITAL MECHANICS 
Newton’s differential equations of motion in the case of the central field are: 
 2( ) ( )m r r f r   (32.49) 

 (2 ) 0m r r     (32.50) 
where ( )f r  is the central force.  The second or transverse equation, Eq. (32.50), gives the result that the angular momentum is 
constant, 
 2 constant /r L m    (32.51) 
where L  is the angular momentum.  The central force equations can be transformed into an orbital equation by the substitution, 

1
u

r
 .  The differential equation of the orbit of a particle moving under a central force is: 
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   (32.52) 

Because the angular momentum is constant, motion in only one plane need be considered; thus, the orbital equation is given in 
polar coordinates.  The solution of Eq. (32.52) for an inverse square force, 
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where e  is the eccentricity and A  is a constant.  The equation of motion due to a central force can also be expressed in terms of 
the energies of the orbit.  The square of the speed in polar coordinates is 
 2 2 2 2( )v r r     (32.57) 
Since a central force is conservative, the total energy, E , is equal to the sum of the kinetic, T , and the potential, V , and is 
constant.  The total energy is 

 2 2 21
( ) ( )  constant

2
m r r V r E     (32.58) 

Substitution of the variable 
1

u
r

  and Eq. (32.51) into Eq. (32.58) gives the orbital energy equation. 
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    (32.59) 

Because the potential energy function ( )V r  for an inverse square force field is: 
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the energy equation of the orbit, Eq. (32.59), 
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which has the solution 
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where the eccentricity, e, is:  
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Eq. (32.63) permits the classification of the orbits according to the total energy, E, as follows: 
 
 0, 1E e   ellipse 
 
 0, 0E e   circle (special case of ellipse) 
 
 0, 1E e   parabolic orbit (32.64) 
 
 0, 1E e   hyperbolic orbit 
  
Since E T V   and is constant, the closed orbits are those for which | |T V , and the open orbits are those for which | |T V .  
It can be shown that the time average of the kinetic energy, T  , for elliptic motion in an inverse square field is 1/ 2  that of the 
time average of the potential energy, V  : 1/ 2T V    . 

In Newtonian gravitation, the central force between two particles of masses 1m  and 2m  separated by a distance r  is: 

 1 2
2

m m
F G

r
  (32.65) 

where G  is the gravitational constant, its value being 11 2 2
 6.67  10X Nm kg  .  The theoretical difficulty with Newtonian 

gravitation is to explain just why Eq. (32.5) exists implicitly in Newton’s theory as a separate law of nature besides Eq. (32.1) 
and Eq. (32.2).  Even so, Newtonian gravitation and mechanics was the first truly successful dynamics, and its most well-known 
application was in celestial mechanics.  The verification of the prediction of the existence of Neptune marked the peak of the 
success of celestial mechanics, but the first real difficulty was also met here.  It was first pointed out in 1850, based on 
astronomical observations, that there was a discrepancy between certain observations of the orbit of Mercury and the predictions 
made by Newtonian mechanics.  According to Newton’s theory of gravitation, the Sun’s gravitational force acting on Mercury 
causes its orbit to be a closed ellipse.  In fact it is not a precise ellipse: with every revolution, its major axis rotates slightly.  The 
observed rate of Mercury’s precession (rotation) of the perihelion (major axis) is 1° 33'20" per century.  This value ought to be 
due to the gravitational perturbations of all other planets and the effect of rotation of our Earth-based coordinate system.  
However, the value calculated from Newtonian mechanics is 1° 32'37" per century.  The discrepancy between them of  
 1  33'20" 1  32 '37 43"     (32.66) 
is extremely small, but it has been observed with a negligible amount of observational error, and it represents a tremendous 
outstanding problem for Newtonian mechanics. 
 
RELATIVISTIC CORRECTIONS OF NEWTONIAN MECHANICS AND NEWTONIAN 
GRAVITY 
Newtonian mechanics (Eqs. (32.2)) is corrected by Lorentz transformations of the time, length, mass, momentum, and energy of 
an object (Eqs. (30.17-30.22)).  Similarly Newtonian gravitation is corrected by relativistic corrections of the metric.  The 
Schwarzschild metric is relativistically correct and may be solved to provide the orbital equation.  The force is central; therefore, 
the angular momentum per unit mass is constant.  The transverse differential equation of motion in the case of the central field, 
 (2 ) 0m r r     (32.67) 
gives the result that the angular momentum is constant 
 2 constant /r L m    (32.68) 

where L  is the   component of the angular momentum of an orbiting body of mass m .  Eq. (32.38) may be expressed as: 
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The relativistic correction for time is: 
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 (32.70) 

It has the same form as the special relativistic correction for time with gv  in place of v .  This correction may be determined by 

considering an object of mass m  orbiting an object of mass M .  The gravitational force is central; thus the angular momentum 
is constant.  Consider that a radial force is applied to increase the radius r  of the object’s orbit with a change of its energy E .  
The angular momentum is conserved; thus,  

 2 2
i f

i f

d d
mr mr

dt dt

       
   

 (32.71) 
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where 
i

d

dt

 
 
 

 is the initial angular velocity, 
f

d

dt

 
 
 

 is the final angular velocity, ir  is the initial radius and fr  is the final radius.  

At fixed radius, 2dr  is zero, but 2dt  is finite.  Applying the time relativistic correction given by Eq. (32.38) and Eqs. (32.14-
32.17) gives the mass fm  at fr  with respect to the mass im  of the inertial frame of ir  as: 
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 (32.72) 

where r  is the increase in the radius.  The proper energy pE  of the object is given by: 
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 (32.73) 

The relativistic correction for energy is of the same form as the special relativistic correction for mass (Eq. (31.21)) with gv  in 

place of v . 

 2

2

1 g

E
mc

v

c


 

  
 

 (32.74) 

where m  is the coordinate mass of the orbiting body and E  is the energy of the orbiting object.  In the case that the gravitational 
velocity is much less than the speed of light ( gv c ), the gravitational energy gE  converges to that given by Newton. 

 2
2

1 2
1

2

GM
E mc

rc

        
 (32.75) 
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PRECESSION OF THE PERIHELION 
Combining Eq. (32.73) and Eq. (32.38) in terms of the time differentials gives: 
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Eq. (32.78) is herein derived from first principles.  It is postulated in previous solutions [8, 11].  Having arrived at the basis for 
the orbital equation using the correct physics, the derivation follows from Fang and Ruffini [8].  Eqs. (32.69), (32.78) and 
(32.68) are the equations of motion of the geodesic, which give 
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The central force equations can be transformed into an orbital equation by the substitution, 
1

u
r

 .  The relativistically corrected 

differential equation of the orbit of a particle moving under a central force is: 
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By differentiating with respect to  , noting that  u u   gives 
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where 
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  (32.82) 

In the case of a weak field, 
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 (32.83) 

and the second term on the right-hand of Eq. (32.81) can then be neglected in the zero-order.  In such a case the solution is 



Gravity 1531
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cos

GM
u A

a
     (32.84) 

where A  and 0  denote the constants of integration.  The orbits of Eq. (32.84) are conic sections and are specified in terms of 

eccentricity 
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and perihelion distance 
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If 1e  , the orbits are bound and elliptical in shape.  In the case for which the minor axis is parallel to 0   (i.e. 0 0  ), the 

ellipse can be written as:  
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u e
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    (32.87) 

The correction to the elliptical orbits caused by the relativistic term 2
2

3 2

2

GM
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c
 
 
 

 in Eq. (32.81) is calculated.  The value of this 

term is only about 710  for Mercury and far less for other planets, so that it is only necessary to calculate the lowest order 
corrections, called the post-Newtonian corrections.  Substituting Eq. (32.87) into the second term on the right-hand side of Eq. 
(32.81), gives:  
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where 
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.  Let 0 1u u u  .  Then the equation for the first-order correction function 1u  is: 
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This is an equation for forced oscillations.  In Eq. (32.89), the only important term on the right-hand side is the first one, which is 
resonant, while the second non-resonant term will only cause a slight periodic variation in the position of the perihelion.  Thus, 
after neglecting the non-resonant term, Eq. (32.87) becomes: 
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A solution can be obtained as: 
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The presence of a multiplicative factor   in the solution causes a cumulative effect which can be observed clearly after a 
sufficiently large number of revolutions. 

Using the above solution, by considering the relativistic correction up to the first order, the orbit is:  
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or 
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as   is small. 
Perihelia occur when the cosine is unity; thus, they are given by the following condition: 

  1 3 2 n     (32.94) 

where n  is any integer.  This can be approximated as: 
 2 6n n      (32.95) 
Therefore, the azimuth angle   increases with increasing n , corresponding to a precession of the major axis of the ellipse.  The 

angular precession 1  per revolution is: 
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and the centennial precession   is: 
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where N  is the number of revolutions per century. 
Only for the planets Mercury, Venus, and the Earth, and the asteroid Icarus, is minr  small enough and M  large enough 

for   to be measured.  The results are as shown in Table 32.1.  The large uncertainty in the measured precession of Venus 
arises from the near-circularity of the orbit ( e  is only 0.0068), which makes it difficult to locate the precession.  These results 
support that the Schwarzschild metric derived from Maxwell’s equations is the correct theory of gravitation. 
 
Table 32.1.   Observed and theoretical angle of precession of the perihelion of Mercury, Venus, Earth, and Icarus. 
 

 
Planet 

Observed 
100  (seconds of arc) 

Theoretical 
100  (seconds of arc) 

 
Mercury 
 
Venus 
 
Earth 
 
Icarus 

 
43.11    0.45 
 
  8.4      4.8 
 
  5.0      1.2 
 
 9.8     0.8

 
43.03 
 
  8.6 
 
  3.8 
 
10.3

 
Other sources of precession must be ruled out in order to definitely assign the remaining precession to a Newtonian 

correction based on the Schwarzschild metric.  The most important source of some precession is the non-spherical symmetry of 
the Sun.  If the Sun is slightly oblate, its gravitational potential would be:  
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where 2J  is the oblateness of the Sun.  The corresponding rotation of the perihelion per revolution of the Sun is: 
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 (32.99) 

The lack of data of 2J  is the major limitation in determining the Sun’s contribution if any.  Measurement of 2J  from the visual 

oblateness of the Sun is difficult, and the results are in dispute.  Dicke and Goldenberg have claimed that this oblateness is as 
large as 5

2 5  10J X   [8], corresponding to about 20% of the remaining precession.  However, recent observations indicate that 

the oblateness of the Sun is far less corresponding to   6
2 1.84 1.25   10J X   .  Inference of 2J  by comparing results for 

Mercury and Mars is also difficult.  The effect for Mars is very small, and the influences of the asteroid belt on the orbit of Mars 
make the interpretation of a measured precession difficult.  2J  should be directly measured by tracking a spacecraft that passes 

close to the Sun.  In one scenario, the spacecraft would be sent from the Earth to pass by Jupiter to obtain a “gravity assist.”  Due 
to the Jupiter encounter, the spacecraft would be made to travel perpendicular to the ecliptic.  After several years of flight, the 
spacecraft would pass by the Sun in less than a day and 2J  would be estimated from that brief encounter. 
 

DEFLECTION OF LIGHT 
The photon has   of angular momentum, which must be conserved while light passes a gravitating body.  In addition, particle 
production causes contraction of spacetime.  According to the Schwarzschild metric matter causes relativistic corrections to the 
spacetime metric that determines the curvature of spacetime and is the origin of gravity.  Due to conservation of angular 
momentum, Newtonian mechanics predicts the bending of the trajectory of light in a gravitational field.  The deflection 
predicted by Newtonian gravitation is less than the experimental value, but closely matches the experimental value when 
relativistically corrected.  As early as 1801, Soldner calculated the deflection of light in gravitational fields using Newtonian 
mechanics.  Eq. (32.87) corresponds to unbound hyperbolic orbits if the eccentricity e  exceeds unity.  The asymptotes, where 
r  , correspond to the angles shown in Figure 32.1 having the following relationship 
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where   is the total Newtonian deflection of the ray, given by: 
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    (32.101) 
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which is equivalent to: 

 
1 1

sin
2 e
   (32.102) 

 
Figure 32.1.   The coordinate parameters of the deflection of light in the gravitational field of the Sun. 
 

 

 

Using the speed of light c , Eq. (32.51) and 
L

a
m
 , the angular momentum per unit mass of the photon, a , is approximately 

 mina r c  (32.103) 

The eccentricity follows from Eq. (32.85) and Eq. (32.86). 
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Since 
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GM
 , e  is very large and   is very small, so that we have approximately, 
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that is 
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   (32.106) 

For light grazing the surface of the Sun, min Sunr R  and SunM M , giving: 

 0".875   (32.107) 
The Newtonian deflection must be corrected relativistically to calculate the true deflection  .  The results obtained in the 

Precession of the Perihelion section can be applied to light propagation in gravitational fields wherein the gravitational mass of 
light is zero (rather than the rest mass of light is zero as typically given [8])7.  Substitution of 0m   in Eq. (32.81) gives 
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If 0M  , the path of the light would be a straight line with the orbit equation, 
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where minr  and 0  are constants of integration.  By making 0 0  , up to the first order correction, Eq. (32.108) gives:  
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which has the solution: 
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7 According to standard general relativity, the solution of the deflection of light in a gravitational field requires that the gravitational mass of the photon be 
zero.  To avoid an inconsistency with the equivalence principle, a hand-waving argument is offered wherein the parameter m in Eq. (32.81) which is 
unequivocally the gravitational mass somehow becomes the photon rest mass.  As shown in the Cosmology section, since the gravitational field and the 
photon both travel at the speed of light, the photon cannot give rise to a gravitational field without violating causality.  The zero rest mass argument is 
made further internally inconsistent by invoking special relativity to magically make the rest mass of the photon be zero, but special relativity absolutely 
requires that the speed of the photon be  c  for all inertial frames with the absence of a special frame.  Specifically, the frame in terms of the historical data 
is that of an Earth observer, not a photon rest frame. 
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The asymptote is determined by taking r  , namely, 
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Since 0   and 
2

min

1
GM

c r
 , the deflection   is: 
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This is twice the unrelativistically corrected Newtonian value.  For light grazing the Sun, 
 1".75   (32.114) 

It is only possible to measure the deflection of light from a star during a total eclipse of the Sun.  A comparison between 
the measured relative positions of the stars around the Sun during an eclipse and six months later (i.e. in the absence of the Sun’s 
gravitational field in the region), gives  , the Sun’s deflection of light from these stars.    has been measured for about 400 
stars since 1919.  The experimental results all lie within the limits 1".57-2".37 with a mean value of 1".89.  These results 
disagree with the prediction of unrelativistically corrected Newtonian theory.  But, the predicted and experimentally observed 
values agree quite well after general relativistic correction of Newton’s Law of Gravitation. 

Observation of deflections is experimentally difficult.  For example, the effect of the solar corona limits measurements of 
the star with min 2 Sunr R .  Total eclipses of the Sun are not usually observable at locations where large telescopes are available.  

The accuracy of the measurement is restricted by the size of the diffraction disc of the telescope (e.g. a 10 cm diameter telescope 
has a diffraction disc of about 65  10X   arc).  Moreover, exposures and developing made at different times give rise to 
systematic errors. 

Recently, radiosources have been used for detecting the deflection of light.  Since the precision of the direction 
measurements made by very long baseline interferometry can be very high compared to telescopes, the corresponding data is 
superior.  For example, QSO 3C279 is occulted annually by the Sun.  The deflection results are obtained by measuring the angle 
between 3C279 and 3C273 before and after an occultation.  Some of these results are listed in Table 32.2. 
 
Table 32.2.   The angle of deflection of the propagation of a light ray   by a gravitating body. 
 

Name of 
Observatory 

Frequency  
(MHz) 

Length of Baseline  
(km) 

 
  

OWENSVALLEY 
 

9602 1 1".7     0".20 

GOLDSTONE 2388 21.566 1".82   0".24 
             0".17 

GOLDSTONE 
HAYSTACK 

7840 3899.22 1".80   0".2 

NRAO 2695 
8085 

 
2.7

 
1".57   0".08 

NRAO 2697 
4993.8 

 
1.41

 
1".87   0".3 

 
In addition, radiosources 0119+11, 0116+08, and 0111+02 are collinear such that when the ecliptic of the Sun crosses 0116+08, 
0119+11 and 0111+02 are each on one side of the ecliptic, making angles of 4° and 6° with the ecliptic, respectively.  The Sun 
passes through the celestial region near 0116+08 in the first ten days of April.  The effects of the corona are eliminated using two 
frequencies, 2695 and 8085 MHz.  Fomaleont and Sramek have obtained the result 1".761 0".010    by measuring the 
change in the relative positions of the three radiosources using the 35 km baseline interferometry at NRAO when the Sun passed 
0116+08. 
 

COSMOLOGY 
The development of the cosmological solutions of Einstein’s general relativity with big bang theory are from Wald [13].  The 
failings of this theory and a discussion of solutions by the author of this book are given in this section in italicized text to 
distinguish the author’s work from that of Wald. 
 

A space in which the curvature tensor ,R   having the form: 

 , ( )R K g g g g        (32.115) 

is satisfied (with constantK  ) is called a space of constant curvature; it is a four-dimensional generalization of Friedmann-
Lobachevsky space.  The constant K is called the constant of curvature.  If in these relations K is zero, the spacetime is Galilean 
and the transformations in questions are Lorentz transformations, except when other (non-Galilean) coordinates are used.  It can 
be shown [19] that any two spaces of constant curvature of the same dimension and metric signature which have equal values of 
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K must be (locally) isometric.  Thus, our task of determining the possible spatial geometries of a hypersurface t  will be 

completed if we enumerate spaces of constant curvature encompassing all values of K.  This is easily done.  All positive values 
of K  are attained by the 3-spheres, defined as the surfaces in four-dimensional flat Euclidean space R4 whose Cartesian 
coordinates satisfy 
 2 2 2 2 2x y z w R     (32.116) 
In spherical coordinates, the metric of the unit 3-sphere is:  
  2 2 2 2 2 2sin sinds d d d        (32.117) 

The value 0K   is attained by ordinary three-dimensional flat space.  In Cartesian coordinates, this metric is 
 2 2 2 2ds dx dy dz    (32.118) 
Finally, all negative values of K are attained by the three-dimensional hyperboloids, defined as the surfaces in a four-
dimensional flat Lorentz signature spaces (i.e., Minkowski spacetime) whose global inertial coordinates satisfy 
 2 2 2 2 2t x y z R     (32.119) 
In hyperbolic coordinates, the metric of the unit hyperboloid is: 
  2 2 2 2 2 2sinh sinds d d d        (32.120) 

The new possibilities for the global spatial structure of our Universe should be stressed.  In prerelativity physics, as well as in 
special relativity, it was assumed that space had the flat structure given by the possibility 0K   above.  But even under the very 
restrictive assumptions of homogeneity and isotropy, the framework of general relativity admits two other distinct possibilities.  
The possibility of a 3-sphere spatial geometry is particularly interesting, as it is a compact manifold and thus describes a 
Universe which is finite but has no boundary.  Such a Universe is called “closed,” while the Universes with noncompact spatial 
sections such as those given by flat and hyperboloid geometries are called “open.”  (One could construct closed Universes with 
flat or hyperboloid geometries by making topological identifications, but it does not appear to be natural to do so.)  Thus, an 
intriguing question raised by general relativity is whether our Universe is closed or open.   

Consider isotropic observers orthogonal to the homogeneous hypersurfaces t .  In this case, we may express the four-

dimensional spacetime metric abg  as: 

  ab a b abg u u h t    (32.121) 

where for each t ,  abh t  is the metric of either (a) a sphere, (b) flat Euclidean space, or (c) a hyperboloid, on t .  We can 

choose, respectively, either (a) spherical coordinates, (b) Cartesian coordinates, or (c) hyperbolic coordinates on one of the 
homogeneous hypersurfaces.  We then “carry” these coordinates to each of the other homogeneous hypersurfaces by means of 
our isotropic observers; i.e., we assign a fixed spatial coordinate label to each observer.  Finally, we label each hypersurface by 
the proper time,  , of a clock carried by any of the isotropic observers.  (By homogeneity, all the isotropic observes must agree 
on the time difference between any two hypersurfaces.)  Thus,   and our spatial coordinates label each event in the Universe. 

Expressed in these coordinates, the spacetime metric takes the form: 

  

 

 

2 2 2 2 2
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d d d

    

 

    

  




    


  

 (32.122) 

where the three possibilities in the bracket correspond to the three possible spatial geometries.  The metric for the spatially flat 
case could be made to look more similar to the other cases by writing it in spherical coordinates as: 
  2 2 2 2 2sind d d       (32.123) 

The general form of the metric, Eq. (32.122) is called a Robertson-Walker cosmological model.  The assumptions of 
homogeneity and isotropy alone determine the spacetime metric up to three discrete possibilities of spatial geometry and 
arbitrary positive function  a  .  Einstein’s equation can be solved for the spatial geometry and  a  .  As shown infra the 

result is that all possible solutions of Einstein’s equation are inconsistent with the observation that the expansion of the cosmos 
accelerates.   
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FAILED COSMOLOGICAL PREDICTIONS REVEAL EINSTEIN’S INCORRECT 
PHYSICAL BASIS OF GENERAL RELATIVITY  
Dynamical predictions for the evolution of the Universe according to Einstein’s equation based on the Equivalence Principle 
may be found by substituting the metric into Eq. (32.40).  In the cases of spherical, flat, and hyperbolic geometries, the general 
evolution equations for homogeneous, isotropic cosmology are: 

 
2

2 2
3 8 3

a k

a a
 


 (32.124) 

  3 4 3
a

P
a

   


 (32.125) 

where 1k    for the 3-sphere, 0k   for flat space, and 1k    for the hyperboloid and   is the (average) mass-density of 

matter, 
da

a
d

 , and P  is the pressure.  The exact solutions of these equations for the cases of dust ( 0P  ) and radiation 

(
3

P


 ) are given below in Table 32.3.   

 
Table 32.3.   Dust and Radiation Filled Robertson-Walker Cosmologies. 

   
 TYPE OF MATTER 

   

 “Dust” Radiation 

 SPATIAL GEOMETRY 0P   
3

P


  

3-sphere, 1k     1
1 cos

2
a C    

 1
sin

2
C     

1
2 2

 ' 1 1
 '

a C
C

      
   

 

Flat, 0k   1
2

3
39

4

C
a    

 
  

11
244  'a C   

Hyperboloid, 1k     1
cosh 1

2
a C    

 1
sinh

2
C     

1
2 2

' 1 1
 '

a C
C

      
   

 

 
Consider some of the important qualitative properties of the solutions.  The first striking result is that the Universe cannot be 
static, provided only that 0   and 0P  .  This conclusion follows immediately from Eq. (32.125) which tells us that a 0 .  
Thus, the Universe must always either be expanding ( 0a  ) or contracting ( 0a  ) (with the possible exception of an instant of 
time when expansion changes over to contraction).  Note the nature of this expansion or contraction:  The distance scale between 
all isotropic observers (in particular, between galaxies) changes with time, but there is no preferred center of expansion or 
contraction.  Indeed, if the distance (measured on the homogeneous surface) between two isotropic observers at time   is R , the 
rate of change of R  is: 

 
dR R da

v HR
d a d 

    (32.126) 

where   a
H

a
 


 is called Hubble’s constant.  (Note, however, that the value of H  changes with time.)  Eq. (32.126) is known 

as Hubble’s law. 
 

Note that v  can be much greater than the speed of light if   a
H

a
 


 is large enough.  This represents a contradiction of 

special relativity that no signal may travel faster than c , the speed of light, for any observer.  The maximum expansion 
rate for a 3-sphere is 4 c  which is given in Eq. (32.186).  In this case a photon traveling at the speed of light may 
complete identically one revolution of the Universe per cycle as shown infra. 
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The expansion of the Universe in accordance with Eq. (32.126) has been confirmed by the observation of the redshifts of distant 
galaxies.  The confirmation of this striking prediction of Einstein’s general relativity is regarded as a dramatic success of the 
theory.  Unfortunately, the historical development of events clouded this success and recent data reveals a fatal flaw in the nature 
of the expansion.  Einstein was sufficiently unhappy with the prediction of a dynamic Universe that he proposed a modification 
of his equation, the addition of a new term, as follows: 
 8ab ab abG g T   (32.127) 

where   is a new fundamental constant of nature, called the cosmological constant.  (It can be shown [20] that a linear 
combination of abG  and abg  is the most general two-index symmetric tensor which is divergence-free and can be constructed 

locally from the metric and its derivatives up to second order; so, Eq. (32.127) gives the most general modification which does 
not grossly alter the basic properties of Einstein’s equation.  If 0  , one does not obtain Newtonian theory in the slow motion, 
weak field limit; but if   is small enough, the deviations from Newtonian theory would not be noticed.)  With this additional 
one-parameter degree of freedom, static solutions exist, though they require exact adjustment of the parameters and are unstable, 
much like a pencil standing on its point.  Thus, Einstein was able to modify the theory to yield static solutions.  After Hubble’s 
redshift observations in 1929 demonstrated the expansion of the Universe, the original motivation for the introduction of   was 
lost.  Nevertheless,   has been reintroduced on numerous occasions when discrepancies have arisen between theory and 
observations, only to be abandoned again when these discrepancies have been resolved.  In the following, we shall assume that 

0  . 
Given that the Universe is expanding, 0a  , we know from Eq. (32.125) that 0a  , so the Universe must have been 

expanding at a faster and faster rate as one goes backward in time.  Einstein’s equation predicts that the Universe must be 
decelerating for all time. 
 

In fact, the opposite is observed experimentally [14]. 
 

If the Universe had always expanded at its present rate, then at the time 1a
T H

a
 


 ago, we would have had 0a  .  Since its 

expansion actually was faster, the time at which a  was zero was even closer to the present.  Thus, under the assumption of 
homogeneity and isotropy, Einstein’s general relativity makes the prediction that at a time less than 1H   ago, the Universe was 
in a singular state:  The distance between all “points of space” was zero; the density of matter and the curvature of spacetime was 
infinite.  This singular state of the Universe is referred to as the big bang.   
 

Such a spacetime structure makes no physical sense.  Furthermore, big bang theory requires the existence of a center of 
the Universe from which the Universe originated.  No such point of origin is observed.  Recently Lieu and Hillman [15] 
and Ragazzoni [16] have shown, using the Hubble space telescope, that the infinities in the quantum singularity that 
became the Universe with the big bang can not be reconciled by invoking uncertainty on the Planck-time scale.  Time is 
continuous rather than quantized, the concepts of the graviton and the big bang are experimentally fatally flawed. 

 
For many years it was generally believed that the prediction of a singular origin of the Universe was due merely to the 

assumptions of exact homogeneity and isotropy, that if these assumptions were relaxed one would get a non-singular “bounce” at 
small a  rather than a singularity.  However, the singularity theorems of general relativity [21] show that singularities are generic 
features of cosmological solutions; they have ruled out the possibility of “bounce” models close to the homogeneous, isotropic 
modes.  

In order to determine the qualitative predictions of Einstein’s general relativity for the future evolution of the Universe, it 
is useful to first obtain an equation for the evolution of the mass-density.  Multiplying Eq. (32.124) by 2a , differentiating it with 
respect to  , and then eliminating a  via Eq. (32.125) gives an equation for the evolution of the mass-density. 

  3 0
a

P
a

   
  (32.128) 

In the case of a dust filled Universe ( 0P  ), the equation for the predicted evolution of the mass-density of the Universe is:  
 3 constanta   (32.129) 

which expresses conservation of rest mass, while in the case of a radiation filled Universe (
3

P


 ) 

 4 constanta   (32.130) 

In this case, the explanation is that the energy density decreases more rapidly as a  increases than by the volume factor 3a , since 
the radiation in each volume element does work on its surroundings as the Universe expands.  (Alternatively, in terms of 
photons, the photon number density decreases as 3a , but each photon loses energy as 1a  because of redshift.)  Comparison of 
Eq. (32.129) and Eq. (32.130) shows that although the radiation content of the present Universe may be negligible, its 
contribution to the total mass-density far enough into the past ( 0a  ) should dominate over that of ordinary matter. 
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In Einstein’s gravity equation, the Einstein tensor and the stress-energy-momentum tensor are each conservative.  This 
forces conservation of curvature and conservation of mass-energy and momentum.  Consequentially, a photon and a 
gravitational field with corresponding energies must each produce a gravitational field corresponding to the equivalent 
mass.  However, for any kind of wave advancing with limiting velocity and capable of transmitting signals, the equation 
of front propagation is the same as the equation for the front of a light wave.  If gravity propagates at the speed of light, 
light travels at c  in all inertial frames, and light gives rise to a gravitation field, then an internal inconsistency arises 
regarding causality. 
 Conservation of mass-energy and momentum under the law of the limiting propagation velocity based on 
Maxwell’s equations requires conservation of spacetime with matter-energy and momentum but nonconservation of 
curvature.  Thus, the wave equation conserves matter, energy, and momentum.  It further provides for the conservation 
of these physical entities with spacetime and provides a unifying physical principle that gives an oscillating Universe 
with predictions that are consistent with observation. 
 Furthermore, in the calculation of the deflection of light by a gravitational field, the mass of the photon was set 
equal to zero in the Deflection of Light section at Eq. (32.108).  The agreement of the observed deflection with that 
predicted with 0m   confirms that the photon has zero gravitational mass. 

 
The qualitative features of the future evolution of the Universe predicted by Einstein’s general relativity may now be 

determined.  If 0k   or 1 , Eq. (32.124) shows that a  never can become zero.  Thus, if the Universe is presently expanding, it 
must continue to expand forever.  Indeed, for any matter with 0P  ,   must decrease as a  increases at least as rapidly as 3a , 

the value for dust.  Thus, 2 0a   as a  .  Hence, if 0k  , the “expansion velocity” a  asymptotically approaches zero as 
  , while if 1k    we have 1a   as   . 

However, if 1k   , the Universe cannot expand forever.  The first term on the right hand of Eq. (32.124) decreases with 
a  more rapidly than the second term, and thus, since the left-hand side must be positive, there is a critical value, ca  such that 

ca a .  Furthermore, a  cannot asymptotically approach ca  as    because the magnitude of a  is bounded from below on 

account of Eq. (32.125).  Thus, if 1k   , then at a finite time after the big bang origin of the Universe, the Universe will achieve 
a maximum size ca  and then will begin to recontract.  The same argument as given above for the occurrence of a big bang of the 

Universe now shows that a finite time after recontraction begins, a “big crunch” end of the Universe will occur.  Thus, the 
dynamical equations of Einstein’s general relativity show that the spatially closed 3-sphere Universe will exist for only a finite 
span of time. 

Let us now turn our attention to solving Eq. (32.124) and Eq. (32.125) exactly for the cases of dust and radiation.  The 
most efficient procedure for doing this is to eliminate   using Eq. (32.129) or, respectively, Eq. (32.130), and substitute into Eq. 
(32.124).  The result for dust is: 

 2 0
C

a k
a

    (32.131) 

where 
38

3

a
C


  is constant; and for radiation, 

 2
2

 '
0

C
a k

a
    (32.132) 

where 
48

 '
3

a
C


 .  Given Eq. (32.129) (or Eq. (32.130)), Eq. (32.125) is redundant; so, the only first order ordinary 

differential Eq. (32.131) (or, respectively, Eq. (32.132)) need be solved.  The solutions for  a   are readily obtained by 

elementary methods.  These solutions for the six cases of interest are given in Table 32.3.  Graphs of  a   versus   for dust-

filled Robertson-Walker Universes are shown in Figure 32.2.  Similar graphs are obtained for radiation-filled Robertson-Walker 
Universes.  The solution for the dust-filled Universe with 3-sphere geometry was first given by Friedmann (1922) and is called 
the Friedmann cosmology, although in some references all the solutions in Table 32.3 are referred to as Friedmann solutions. 
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Figure 32.2.   The dynamics of dust-filled Robertson-Walker Universes. 
 

 
 

Solutions to Einstein’s general relativity yield multiple possible outcomes of  a   with regard to future evolution such 

as whether our Universe is “open” or “closed,” i.e., whether it corresponds to the cases 0k  , 1k   , or the case 1k   .  If the 
Universe is open, it will expand forever, while if it is closed it will eventually recontract.  The basic equations (Eq. (32.124) and 

Eq. (32.125)) governing the dynamics of the Universe may be expressed in terms of Hubble’s constant, 
a

H
a




, and the 

deceleration parameter, q , defined by:  
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a
q a
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 (32.133) 

Assuming 0P   in the present Universe, gives:  
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Defining   as: 
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   (32.136) 

gives the result: 

 
2

q


  (32.137) 

and the Universe is closed ( 1k   ) if and only if 1  , i.e., 
23

8c

H

G
 


  . 

 
Dynamical predictions for the evolution of the Universe according to Einstein’s equation are consistent with the 

expansion of the cosmos; but are fatally flawed since they predict the possibility of an expansion velocity that greatly exceeds the 
speed of light such that a cosmology inconsistent with special relativity is possible, and all cosmological solutions of Einstein’s 
general relativity predict a decelerating Universe from a postulated initial condition of a “big bang” expansion [13]8.  The 
astrophysical data reveal an accelerating cosmos [14], which invalidates Einstein’s equation.  Furthermore, multiple solutions 
with dramatically different consequences are equally valid.  The solutions to Einstein’s equation cannot account for the power 
spectrum of the cosmos or the nature or uniformity of the cosmic microwave background radiation.  Einstein’s Universe is static 
with expanding dust, expanding radiation, or a static expanding mixture.  In actuality, the Universe comprises predominantly 
matter which is undergoing conversion into radiation with a concomitant expansion of spacetime.  The Einstein solutions predict 
the opposite of the actual evolution of the cosmos wherein radiation dominates in the early Universe with matter dominant later.  
The equations are derived infra.  They reconcile the shortcomings of Einstein’s general relativity. The correct basis of 
gravitation is not according to Einstein’s equation (Eq. (32.40)); instead the origin of gravity is the relativistic correction of 
spacetime itself which is analogous to the special relativistic corrections of inertial parameters—increase in mass, dilation in 
time, and contraction in length in the direction of constant relative motion of separate inertial frames.  As matter converts into 
energy spacetime undergoes expansion.  On this basis, the observed acceleration of the expansion of the cosmos is predicted. 
 

 
8 Some of the failings of the “Big Bang” model as well as an even more far-fetched model are given by Linde [22]. 
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COSMOLOGY BASED ON THE RELATIVISTIC EFFECTS OF MATTER/ENERGY 
CONVERSION ON SPACETIME 
 
THE ARROW OF TIME AND ENTROPY 
The first principle laws are time symmetrical.  They are equally valid for reverse time as they are for forward time.  The 
principle of entropy was invented to provide an explanation for the direction of time as it pertains to macroscopic processes.  
And, it is not based on first principles.  It does not provide an atomic arrow of time or provide insight into its existence.  It is not 
clear whether entropy applies to the entire Universe, and the relationship of entropy to the observed large-scale expansion of the 
Universe is not obvious. 

The following retrospect of entropy is adapted from Levine [23].  Consider the spontaneous mixing of two different 
gases. In the mixing process, the molecules move according to Newton’s second law, Eq. (32.2).  This law is symmetric with 
respect to time, meaning that if t is replaced by -t and v by -v, the law is unchanged.  Thus, a reversal of all particle motions 
gives a set of motions that is also a valid solution of Newton’s equation.  Hence it is possible for the molecules to become 
spontaneously unmixed, and this unmixing does not violate the laws of motion.  However, motions that correspond to a 
detectable degree of unmixing are extremely improbable (even though not absolutely impossible).  Although Newton’s laws of 
motion (which govern the motion of individual molecules) do not single out a direction of time, when the behavior of a very 
large number of molecules is considered, the second law of thermodynamics (which is a statistical law) tells us that states of an 
isolated system with lower entropy must precede in time states with higher entropy.  The second law is not time-symmetric but 

singles out the direction of increasing time; we have 0
dS

dt
  for an isolated system, so that the signs of dS  and dt  are the same.  

If someone showed us a film of two gases mixing spontaneously and then ran the film backward, we would not see any violation 
of mF a  in the unmixing process, but the second law would tell us which showing of the film corresponded to how things 
actually happened.  Likewise, if we saw a film of someone being spontaneously propelled out of a swimming pool of water, with 
the concurrent subsidence of waves in the pool, we would know that we were watching a film run backward; although tiny 
pressure fluctuations in a fluid can propel colloidal particles about, the Brownian motion of an object the size of a person is too 
improbable to occur. 

The second law of thermodynamics singles out the direction of increasing time.  The astrophysicist Eddington puts things 

nicely with his statement that “entropy is time’s arrow.”  The fact that 0
dS

dt
  for an isolated system gives us the thermodynamic 

arrow of time.  Besides the thermodynamic arrow, there is a cosmological arrow of time.  Spectral lines in light reaching us from 
other galaxies show wavelengths that are longer than the corresponding wavelengths of light from objects at rest (the famous 
redshift).  This redshift indicates that all galaxies are moving away from us.  Thus, the Universe is expanding with increasing 
time, and this expansion gives the cosmological arrow.  Many physicists believe that the thermodynamic and the cosmological 
arrows are directly related, but this question is still undecided [24].  

Particle physicists feel that there is strong (but not conclusive) evidence that the decay of one of the elementary particles 
(the neutral K meson) follows a law that is not symmetric with respect to time reversal.  Thus, they speculate that there may also 
be a microscopic arrow of time, in addition to the thermodynamic and cosmological arrows [25-27]. 

The second law of thermodynamics shows that S increases with time for an isolated system.  Can this statement be 
applied to the entire physical Universe?  Scientists use Universe to mean the system plus those parts of the world which interact 
with the system.  In the present contexts, Universe shall mean everything that exists—the entire cosmos of galaxies, intergalactic 
matter, electromagnetic radiation, etc.  Physicists in the late nineteenth century generally believed that the second law is valid for 
the entire Universe, but presently they are not so sure.  Scientists make the point that experimental thermodynamic observations 
are on systems that are not of astronomic size, and hence they are cautious about extrapolating thermodynamic results to 
encompass the entire Universe.  They feel that there is no guarantee that laws that hold on a terrestrial scale must also hold on a 
cosmic scale.  Although there is no evidence for a cosmic violation of the second law, their experience is insufficient to rule out 
such a violation. 
 

THE ARROW OF TIME 
The present theory provides an alternative explanation for the expanding Universe which unifies the microscopic, 
thermodynamic, and cosmological arrows of time. 

Physical phenomena involve exchange of energy between matter and spacetime.  The relationship between mass-energy 
and spacetime provides the arrow of time.  The particle production equations which unify de Broglie’s Equation, Planck’s 
Equation, Maxwell’s Equations, Newton’s Equations, and Special and General Relativity, Eq. (32.48a) and Eq. (32.48b), give 
the equivalence of particle production energies corresponding to mass, charge, current, gravity, and spacetime according to the 
proportionality constants which are given in terms of a self-consistent set of units.  As shown by Eq. (32.38), particle production 
requires radial length contraction and time dilation that results in the curvature of spacetime.  Thus, the creation of mass from 
energy causes an infinitesimal contraction or collapse of spacetime much like a dimple in a plastic ball but in three dimensions 
plus time; whereas, the release of energy causes an expansion of spacetime.  Time goes forward in the direction of lower energy 
states and greater entropy because these states correspond to an expansion of spacetime relative to the higher energy states of 
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matter.  Expanded space corresponds to a smaller cross section for reverse time as opposed to forward time.  Thus, the arrow of 
time arising on the subatomic and atomic level gives rise to the Second Law of thermodynamics; 
 

In an isolated system, spontaneous processes occur in the direction of increasing entropy. 
 

Stated mathematically: 
The entropy change, dS, which is equal to the change in heat, dq, divided by the temperature, T, is greater than zero. 

 0
dq

dS
T

   (32.138) 

 
THE EXPANDING UNIVERSE AND THE MICROWAVE BACKGROUND 
The atomic arrow of time also applies to cosmology and provides for the expansion of spacetime on a cosmological scale.  As 
fundamental particles, atoms, molecules, and macroscopic configurations of fundamental particles, atoms, and molecules release 
energy, spacetime increases.  The superposition of expanding spacetime arising at the atomic level over all scales of dimensions 
from the atomic to the cosmological gives rise to the observed expanding Universe which continues to increase in entropy.  
However, due to conservation of mass-energy and spacetime as given by Eqs. (32.43), (32.48a), and (32.48b), the change in 
entropy of the Universe over all spacetime is zero. 

 0
spacetime

dS   (32.139) 

Thus, regions of the world line of the Universe exist wherein entropy decreases.  The implications that are developed supra. are 
that: 
 

• The Universe is closed  (it is finite but with no boundary) 
 
• The total matter in the Universe is sufficient to eventually stop the expansion and is less than that which would result in 

permanent collapse (a 3-sphere Universe-Riemannian three-dimensional hyperspace plus time of constant positive 
curvature at each r-sphere), and  

 
• The Universe is oscillatory in matter/energy and spacetime. 
 

As shown in the Particle Production section, the gravitational equations with the equivalence of the particle production 

energies require the conservation relationship of mass-energy, 2E mc , and spacetime, 
3
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expands as mass is released as energy which provides the basis of the atomic, thermodynamic, and cosmological arrows of time.  
Entropy and the expansion of the Universe are large scale consequences.  It is further shown infra. that the Universe is closed 
independently of the total mass of the Universe, and different regions of space are isothermal even though they are separated by 
greater distances than that over which light could travel during the time of the expansion of the Universe.  The Universe is 
oscillatory in matter/energy and spacetime with a finite minimum radius, the gravitational radius; thus, the gravitational force 
causes celestial structures to evolve on a time scale corresponding to the period of oscillation.  The equation of the radius of the 

Universe,  , is  3 32
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 which predicts the observed acceleration of the expansion.  The 

calculated Hubble constant is 0 78.5 
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km
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.  Presently, stars and large-scale structures exist that are older than the 

elapsed time of the present expansion as stellar and celestial evolution occurred during the contraction phase.  The maximum 

energy release of the Universe which occurs at the beginning of the expansion phase is 
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Figure 32.3.   Shown below are three increasing times in the evolution of an illustrative “star.”  As the star converts matter 
into energy spacetime expands.   
 

 
 

 
 

 
 
 

The amount of mass which is released as energy to cause spacetime to expand by one second can be calculated in the 
following way: Consider the conversion of an electron of mass em  into energy 2

eE m c .  Eq. (32.43) represents the relationship 

between the equivalence of mass-energy conversion and the contraction/expansion of spacetime and gives the relativistic 

factor g
g

v

c
  , which divides the electron mass em  and multiplies the electron proper time   to give the corresponding 

spacetime expansion.  Thus, Q , the mass-energy-to-expansion-contraction quotient of spacetime is given by: 

 

2
1 2 2 3

34
 

22

2

3.22  10
2 2 4 sec2 2

e
e

eg

g e c e c e e

gg e ee

ec

mm
Gmv c

m c m c m c kgm ccQ X
v Gm Gm GGm

m cc c


    



        
  


 




 (32.140a) 

where   and c  are given by Eq. (36.1) of the Lepton section and Eq. (28.7), respectively. 

Alternatively, Q may be calculated as follows: As a consequence of particle production the radius of the Universe 
contracts by 2  times the gravitational radius of each particle with the gravitational radius as given by Eq. (32.36) which 
applies to the observed leptons and quarks formed at the gravitational velocity gv  which is the escape velocity given by Eq. 

(32.35).  Thus, Q the mass-energy-to-expansion-contraction quotient of spacetime is also given by the ratio of the mass of a 
particle at production divided by   the period of the gravitational radius as given by Eq. (32.149) wherein the gravitational 
radius is the Newtonian gravitational radius is given by Eq. (32.36).  Thus,   is the period of the orbit of the particle relative to: 
the antiparticle during production.  Then Q is given by: 
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      (32.140b) 

As shown infra. the minimum radius of the universe is the gravitational radius of 3.12 X 1011 light years given by Eq. 
(32.147), and the maximum radius given by Eq. (32.150) is 1.97 X 1012 light years.  The Universe oscillates between the 
extremes of matter filled and light filled as it correspondingly oscillates between expansion and contraction between these 
extrema.  Throughout its oscillatory cycle the universe always contains both matter and light or energy wherein the exact 
spacetime points of the matter filled condition and the light filled condition only regard one r-sphere at each of the extrema.  In 
the derivations given infra., a matter filled universe regards the maximum matter content, and light filled universe regards the 
maximum light content.  At the beginning of its expansion from its gravitational radius, the Universe is matter filled, and at the 
middle of the cycle, the universe is light filled.  For an observer in an expanding (contracting) universe, observations looking 
backward on evolution of the cosmos can be achieved using light signals with redshift (blueshift) time stamps corresponding to 
the extent of spacetime expansion between the observer and observed.  Consider that the Earth is in an expanding universe at 
about 10 billion years from the cycle clock beginning at zero as contraction transitioned to expansion.  The Universe is not 
observable by using increasing redshift measurements for earlier times.  An Earth observer’s window on the universe is also 
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limited by the dimness of distant spacetime objects so only a small portion of the evolution of the cosmos is accessible to direct 
observation.  Fortunately, the entire cycle of the evolution of the universe can be derived from physical laws as shown infra. 

Regarding the phenomenon involved with the state parameters of a matter filled and light filled universe and the 
corresponding transition, consider a radioactive isotope.  At the instance of ½ life, ½ of the atoms will have decayed.  What 
happens to the decayed atoms is another issue.  Similarly with the universe, after 500B years all the matter of the cycle will have 
decayed to light corresponding to the light filled state.  At this instance, the universe stops expanding and begins contracting.  
After another 500B years, all the light of the cycle will have converted to matter corresponding to the matter filled state.  At this 
instance, the universe stops contracting and begins expanding.  The state of the entire observable universe at any time in the 
oscillatory cycle is given in the radius, velocity, acceleration, Hubble constant, power, mass density, and temperature equations 
and plots derived infra.  Looking to the earliest times possible by increasing redshift, the matter filled state, the size of the 
universe is a minimum and the power is a maximum corresponding to a maximum temperature (a measure of the photon density 
and inventory).  The matter inventory of the universe is a maximum with huge structures and old stars formed during the 
contraction phase to the limit of the observable horizon, the radius since the beginning of the expansion.  The matter and light 
filled extrema only occur for an instant at one r-sphere in the history of the oscillation.  Neither are exactly observable for 
humans, only a record of the evolutionary history with a timeline from the current into the past wherein all natural processes 
including the conversion of matter to energy and corresponding spacetime expansion proceed continuously and universally 
corresponding to a phase factor between observers based on spacetime separation. 

Considering Earth as the frame of reference, the observable mass to energy conversion rate of the Universe calculated 
from the number of galaxies (400 billion) times the number of stars per galaxy (400 billion) times the average mass to energy 

conversion rate per star (5 billion kg / sec star) is 32
 8  10  
sec

kg
X  which is 2.5% of Q given by Eq. (32.140).  The time of the 

present expansion calculated from the observed Hubble constant and the maximum redshift is approximately 10 billion years 
[28].  Assuming the presently observed mass to energy conversion rate was approximately constant over this time, the amount of 
mass to energy released during this time is: 

 34 17 52
 3.2  10   3.2  10  sec   1  10  
sec

kg
X X X X kg  (32.141) 

The mass of the Universe is approximately 54
 2  10X kg  [Eq. (32.147) with ref. 30-32]; thus, 0.5% of the maximum mass of the 

Universe has been converted to energy within the Earth’s redshift and intensity window.  The present Universe is predominantly 
comprised of matter, and according to Eq. (32.158) the mass of the matter of the Universe is close to its maximum.  Given time 
harmonic behavior, the observable Universe is approximately at its minimum size.  The wavefront of energy and spacetime from 
matter to energy conversion travel at the speed of light.  Consider Eq. (32.43).  At the present time in the cycle of the Universe, 
the world line of the expanding spacetime and the released energy are approximately coincident.  In terms of Eq. (32.38), the 
proper time and the coordinate time are approximately equal.  The ratio of the gravitational radius, gr  given by Eq. (32.36), and 

the radius of the Universe equal to one and the gravitational escape velocity given by Eq. (32.35) is the speed of light.  And, Q, 
(Eq. (32.140)) is equal to the matter to energy conversion rate of the time harmonic expansion-contraction cycle of the entire 
Universe (versus the observable Universe) which permits light energy (photons) to propagate (escape the gravitational hole of 
the Universe). 
 

When the gravitational radius gr  is the radius of the Universe, the proper time is equal to the coordinate time (Eq. (32.43)), 

and the gravitational escape velocity gv  of the Universe is the speed of light. 

The cosmic microwave background radiation dominates the total radiation density of the Universe.  The microwave 
background spectrum obtained by COBE is well fitted by a blackbody with a temperature of 2.735 0.06 K , and the deviation 
from a blackbody is less than 1% of the peak intensity over the range 11 20 cm  [33].  From the isothermal temperature of the 
ubiquitous microwave background radiation and the Stefan-Boltzmann law, the minimum size of the Universe is calculated.  
Presently, the mass to energy conversion rate of the Universe is approximately equal to Q, the mass-energy-to-expansion-
contraction quotient of spacetime given by Eq. (32.140).  At the beginning of the cycle of the Universe, the world line of the 
expanding spacetime and the released energy are coincident.  In terms of Eq. (32.38), the proper time and the coordinate time are 
equal.  Therefore, the mass to energy conversion rate of the entire Universe is equated with Q.  Thus, UP , the maximum power 

radiated by the Universe is given by Eqs. (32.27) and (32.140). 
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The observable mass to energy conversion rate of the Universe calculated from the number of galaxies (400 billion) times the 
number of stars per galaxy (400 billion) times the average mass to energy conversion rate per star (5 billion kg / sec star) is 

497.2  10  X W  which is 2.5% of UP  given by Eq. (32.142). 

The Stefan-Boltzmann law [34] equates the power radiated by an object per unit area, R, to the emissivity, e, times the 
Stefan-Boltzmann constant,  , times the fourth power of the temperature, 4T . 
 4R e T  (32.143) 
The area, UA , of the Universe of radius   is: 

 24UA    (32.144) 

The power radiated by the Universe per unit area, UR , is given by the ratio of Eq. (32.142) and Eq. (32.144: 
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The minimum radius of the Universe, min , is calculated in terms of the temperature of the cosmic microwave background 

radiation by the substitution of Eq. (32.145) into Eq. (32.143): 
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 (32.146) 

where 2.735 T K  , 1e   for a blackbody, and 8 2 4
 5.67  10X Wm K    .  Given that the present expansion age is 10 billion 

years [28] and that the power used to calculate Eq. (32.146) is an upper bound, the minimum radius of the Universe, min , 

given by Eq. (32.146) is equal to the gravitational radius of the Universe, gr , given by Eq. (32.36) and Eq. (32.38) where the 

experimental mass of the Universe is 54
 2  10X kg  [Eq. (32.147) with ref. 30-32]. 

 27 11
  

2

2
2.96  10 3.12  10  U

g

Gm
r X m X light years

c
    (32.147) 

Eq. (32.147) is consistent with the mass of the Universe being that which gives the ratio of the gravitational radius, gr , and the 

radius of the Universe equal to one and the gravitational escape velocity given by Eq. (32.35) equal to the speed of light. 
The gravitational equation (Eq. (32.38)) with the equivalence of the particle production energies (Eqs. (32.48a) and 

(32.48b)) permit the equivalence of mass-energy ( 2E mc ) and spacetime (
3

34
 3.22  10

4 sec

c kg
X

G
 ).  Spacetime expands as 

mass is released as energy which provides the basis of the atomic, thermodynamic, and cosmological arrows of time.  Entropy 
and the expansion of the Universe are large scale consequences.  The Universe is closed independently of the total mass of the 
Universe.  Because Eq. (32.140) gives a constant as the ratio of energy to spacetime expansion, the energy density is constant 
throughout the inhomogeneous Universe for a given r-sphere; thus, different regions of space are isothermal even though they 
are separated by greater distances than that over which light could travel during the time of the expansion of the Universe.  
The spacetime expansion and the energy released travel spherically outward at the speed of light.  The sum of the spacetime 
expansion over all points in the Universe and the sum of the energy release over all points in the Universe are each equivalent to 
that of a point source at the observer’s position of magnitude equal to the corresponding sum.  The cosmic microwave 
background radiation is an average temperature of 2.7°K, with deviations of 30 or so K  in different parts of the sky 
representing slight variations in the density of matter.  Peaks in the power spectrum from the temperature fluctuations of the 
cosmic microwave background radiation appear at certain values of   of spherical harmonics [35] as shown in the Power 
Spectrum of the Cosmic Microwave Background section.  The origin of the microwave background radiation (CMBR) as the 
power from the Universe rather than from a Big Bang creation event is demonstrated by the absence of the shadows in the 
CMBR required for the Big Bang model [36]. 
 

THE PERIOD OF OSCILLATION BASED ON CLOSED PROPAGATION OF LIGHT 
Mass-energy must be conserved during the harmonic cycle of expansion and contraction.  The gravitational potential energy 

gravE  of the Universe follows that given by Eq. (32.26) 

 
2
U

grav

Gm
E 


 (32.148) 
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In the case that the radius of the Universe   is the gravitational radius Gr  given by Eq. (32.22), the gravitational potential 

energy is equal to 2
Um c  which follows that given by Eq. (32.27)9.  The gravitational velocity Gv  is given by Eq. (32.33) wherein 

an electromagnetic wave of mass-energy equivalent to the mass of the Universe travels in a circular orbit wherein the 
eccentricity is equal to zero (Eq. (35.21)), and the escape velocity from the Universe can never be reached.  The wavelength of 
the oscillation of the Universe and the wavelength corresponding to the gravitational radius Gr  must be equal.  Both spacetime 

expansion and contraction travel at the speed of light and obey the wave relationship given by Eq. (29.4).  The wavelength is 
given in terms of the radius by Eq. (2.2).  Thus, the harmonic oscillation period, UT , is: 
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      (32.149) 

where the mass of the Universe, Um , is approximately 54
 2  10X kg  [Eq. (32.147) with ref. 30-32].  Thus, the observed Universe 

will expand as mass is released as photons for 11
 4.92  10X years .  At this point in its world line, the Universe will obtain its 

maximum size and begin to contract. 
 

EQUATIONS OF THE EVOLUTION OF THE UNIVERSE 
The Universe is oscillatory in matter/energy and spacetime with a finite minimum radius, the gravitational radius gr .  The 

minimum radius of the Universe, 300 billion light years [32], is larger than that provided by the current expansion, 
approximately 10 billion light years [28]; even though, presently the spacetime expansion and the released energy world lines are 
coincident as a consequence of the equality of Eq. (32.140) and the rate of matter to energy conversion.  In terms of Eq. (32.38), 
the proper time and the coordinate time are approximately equal.  Consequently, the radius of the Universe does not go negative 
during the contraction phase of the oscillatory cycle.   

The maximum excursion of the radius of the Universe, the amplitude, o , of the time harmonic variation in the radius 

of the Universe, is given by the quotient of the total mass of the Universe and Q , the mass-energy-to-expansion-contraction, 
given by Eq. (32.140): 

 
54

19 12 28
  0 3

34
 

2  10  
6.20  10  ec 1.97  10  1.86  10  

3.22  10
sec4

U Um m X kg
X s X light years X m

kgcQ X
G

        (32.150) 

where the conversion factor of space to time is the speed of light according to Minkowski’s tensor [8].  The equation for  , the 
radius of the Universe is: 
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 (32.151) 

where Ur  is the average size of the Universe and UT  is given by Eq. (32.149). 

The Universe has a finite minimum radius equal to its gravitational radius gr  according to Eq. (32.147) and a maximum 

excursion of the radius given by Eq. (32.150).  Therefore, the Universe has an average size which represents an offset of an 
oscillatory cycle of expansion and contraction.  The average size of the Universe, Ur , is determined by substitution of Eq. 

(32.147) into Eq. (32.151) with 0t  . 

  12 11 12 28
     0 1.97  10 3.12  10  2.28  10  2.16  10  U gr r X X light years X light years X m       (32.152) 

 
9 The ratio of 

 
v

g
 to  vG

 is  2 .  The total angle which is traversed twice in the generation of the atomic orbital of the electron as shown in the Atomic 

Orbital Equation of Motion for   = 0 Based on the Current Vector Field (CVF) section is 2 .  Thus, 2  is also the ratio of the angular sum of the 

rotations to generate the atomic orbital to the angle spanned by a great circle of the atomic orbital.  2  is the hypotenuse of the triangle having the sides 

of   radians corresponding to x-axis rotations and   radians corresponding to y-axis rotations.  Similarly, the result that 

  

v
g

v
G

 2  can be considered as 

the projection of two degrees of freedom of a spherical wave to one at the speed of light. 
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Substitution of Eq. (32.152) into Eq. (32.151) gives the radius of the Universe as a function of time. 
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The expansion/contraction rate, 


 , is given by taking the derivative with respect to time of Eq. (32.153). 
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The expansion/contraction acceleration, 


 , is given by taking the derivative with respect to time of Eq. (32.154). 
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 (32.155) 

where 1 Megaparsec (Mpc) is 63.258  10X  light years.  Eq. (32.155) and Figure 32.5 are consistent with the experimental 
observation that the rate of the expansion of the Universe is increasing [37-39].  

The time harmonic radius of the Universe is shown graphically in Figure 32.4.  The time harmonic 
expansion/contraction rate of the radius of the Universe is shown graphically in Figure 32.5. 
 
Figure 32.4.   The radius of the Universe as a function of time.  
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Figure 32.5.   The expansion/contraction rate of the Universe as a function of time. 
 

 
 

The Hubble constant defined by Eq. (32.126) is given by the ratio of the expansion rate given in units of 
sec

km
 divided by the 

radius of the expansion in units of Mpc (1 Megaparsec (Mpc) is 63.258  10X  light years).  The radius of expansion is equivalent 
to the radius of the light sphere with an origin at the time point when the Universe stopped contracting and started to expand.  
Thus, the radius of Eq. (32.126) is given by the time of expansion times the speed of light, c .  From Eq. (32.154), the Hubble 
constant is: 
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For small t , the Hubble constant is also equivalent to the acceleration as given by Eq. (32.155).  For 
10 310   ; 3.069  10t light years ct X Mpc  , 
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Thus, from Eqs. (32.156-32.157), the Hubble, 0H , constant is 0 78.5 
sec

km
H

Mpc



.  The experimental value is 

0 80 17 
sec

km
H

Mpc
 


 [28], or more recently 0 72 8 

sec

km
H

Mpc
 


 [29].  The Hubble constant as a function of time is shown 

graphically in Figure 32.6.  Due to the possibility of observing galaxies at greater distances than the time at which the universe 
stopped contacting and started expanding, the measurement of the Hubble constant based on redshifts is prone to error due the 
ancient light undergoing partial blue-shifting as well as red-shifting during the corresponding phases. 
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Figure 32.6.   The Hubble constant of the Universe as a function of time. 
 

 
 

The mass of the Universe as a function of time,  Um t , follows from the initial mass of 54
 2  10X kg  (based on internal 

consistency with the size, age, Hubble constant, temperature, density of matter, and power spectrum of the Universe given 
herein) and Eq. (32.153).  The positive definite harmonic function that matches the boundary conditions at the extrema is given 
by: 

   57
11

3

2 2
1 cos 1  10 1 cos

22 9.83  10  rs
U

U
U

m t t
m t X g

Gm X y
c

 


 
             

        

 (32.158) 

The volume of the Universe as a function of time  V t  follows from Eq. (32.153). 
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The mass density of the Universe as a function of time  U t  is given by the ratio of the mass as a function of time given by Eq. 

(32.158) and the volume as a function of time given by Eq. (32.159): 
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For 10 310   3.069  10t light years X Mpc  , 32 31.7  10  /U X g cm  .  The density of luminous matter of stars and gas of 

galaxies is about 31 32  10  /U X g cm   [40, 41].  The time harmonic density of the Universe,  U t , is shown graphically in 

Figure 32.7. 
Figure 32.7.   The mass density of the Universe as a function of time. 
 

 
 

The power of the Universe as a function of time,  UP t , follows from Eq. (32.142) and Eq. (32.151) with matching the 

boundary conditions at the extrema. 
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 (32.161) 

The time harmonic power of the Universe,  UP t , is shown graphically in Figure 32.8. 
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Figure 32.8.   The power of the Universe as a function of time. 

 
 

The temperature of the Universe as a function of time can be derived from the Stefan-Boltzmann law.  The Stefan-
Boltzmann law (Eq. (32.143)) equates the power radiated by an object per unit area, R, to the emissivity, e, times the Stefan-
Boltzmann constant,  , times the fourth power of the temperature, 4T .  The area of the Universe as a function of time,  UA t , 

is approximately given by substitution of Eq. (32.153) into Eq. (32.144).  (The Universe is a four-dimensional hyperspace of 
constant positive curvature at each r-sphere.  In the case that the radius of the Universe is equal to the gravitational radius gr , the 

area is given by Eq. (32.144); otherwise, the area of the sphere corresponding to the radius of the Universe is less than that given 
by Eq. (32.144).  The proper area is given by solving Eq. (32.38) for the coordinate radius as a function of the proper radius 
followed by the substitution of the coordinate radius into Eq. (32.144)). 
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The power radiated by the Universe per unit area as a function of time,  UR t , is given by the ratio of Eq. (32.161) and Eq. 

(32.162): 
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The temperature of the Universe as a function of time,  UT t , follows from the Stefan-Boltzmann law (Eq. (32.143)) 

and Eq. (32.163). 
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where the emissivity, e , for a blackbody is one, and 8 2 4
 5.67  10X Wm K    . 

The Universe is a four-dimensional hyperspace of constant positive curvature at each r-sphere.  The coordinates are 
spherical, and the space can be described as a series of spheres each of constant radius r  whose centers coincide at the origin.  
The existence of the mass Um  causes the area of the spheres to be less than 24 r  and causes the clock of each r-sphere to run so 

that it is no longer observed from other r-spheres to be at the same rate.  The Schwarzschild metric given by Eq. (32.38) is the 
general form of the metric which allows for these effects.  Fang and Ruffini [8] show that the time effect is equivalent to a 
gravitational redshift of a photon.  The shifted wavelength due to the gravitational field of a mass Um  is:  

     2
1 UGm

r
c

       
 (32.165) 

Wien’s displacement law gives the relationship between temperature and wavelength [34]. 

 3
max 2.898  10  T X m K    (32.166) 

Thus, the temperature of the Universe as a function of time,  UT t , is: 
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The temperature of the Universe as a function of time,  UT t , during the expansion phase is shown graphically in Figure 32.9. 
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Figure 32.9.   The temperature of the Universe as a function of time during the expansion phase. 
 

 
 

 

BOX 32.3  SIMPLIFIED SET OF COSMOLOGICAL EQUATIONS [42] 
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where 2 /U T   is the angular frequency of the Universe: 
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COMPOSITION OF THE UNIVERSE 
In the case that lower-energy hydrogen, hydrinos, comprises the dark matter, all matter is ordinary (baryonic) matter, and the 
mass of the Universe is sufficient for it to be closed [30, 31].  Whereas, the standard theory of big bang nucleosynthesis explains 
the observed abundance of light elements (H, He, and Li) only if the present density of ordinary (baryonic) matter is less than 10 
% of the critical value [43, 44].  Recently, the missing mass has been showed to be baryonic rather than strange matter [45].  
According to classical physics (CP), the abundance of the lighter elements, H, He, and Li can be explained by neutron, 
proton, and electron production during the contraction phase and stellar nucleosynthesis during the contraction as well as 
the expansion phase of the expansion-contraction cycle.  In the latter case, stellar and galaxy evolution occurred during the 
contraction phase as revealed by high-redshift radio galaxies and galaxies associated with extremely distant, luminous quasars 
that date back to the beginning of the expansion [46, 47].  The presence of metal lines in quasars demand a previous generation 
of stars (two generations for nitrogen) that is consistent with the stellar nucleosynthesis origin of the light elements [46]. 

The abundance of light elements for any r-sphere may be calculated using the power of the Universe as a function of time 
(Eq. (32.161)) and the stellar nucleosynthesis rates.  During the contraction phase of the oscillatory cycle, the electron neutrino 
causes neutron production from a photon.  Planck’s equation and special and general relativity define the mass of the neutron in 
terms of the spacetime metric as given in the Quarks section.  The Planck equation energy, which is equal to the mass energy, 
applies for the proper time of the neutron given by general relativity (Eq. (32.38)) that is created with the transition of a photon 
to a neutron.   

As discussed previously in the Quantum Gravity of Fundamental Particles section, ordinarily, a photon gives rise to a 
particle and an antiparticle.  The event must be spacelike or annihilation would occur.  The event must also conserve energy, 
momentum, charge, and satisfy the condition that the speed of light is a constant maximum.  Eqs. (32.14-32.17) give the 
relationship whereby matter causes relativistic corrections to spacetime that determines the curvature of spacetime and is the 
origin of gravity.  To satisfy the boundary conditions, particle production from a single photon requires the production of an 
antimatter particle as well as a particle.  The transition state from a photon to a particle and antiparticle comprises two concentric 
atomic orbitals called transition state atomic orbitals.  The gravitational effect of a spherical shell on an object outside of the 
radius of the shell is equivalent to that of a point of equal mass at the origin.  Thus, the proper time of the concentric atomic 
orbital with radius *r  (the radius is infinitesimally greater than that of the inner transition state atomic orbital with radius *r ) is 
given by the Schwarzschild metric, Eq. (32.38).  The proper time applies to each point on the atomic orbital.  Therefore, consider 
a general point in the xy-plane having Cr   ; 0dr  ; 0d  ; 2sin 1  .  Substitution of these parameters into Eq. (32.38) 

gives: 
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with 2 2v c , Eq. (32.169) becomes 
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The coordinate time is imaginary because particle/antiparticle production is spacelike.  The left-hand side of Eq. (32.170) 
represents the proper time of the particle/antiparticle as the photon atomic orbital becomes matter.  The right-hand side of Eq. 
(32.170) represents the correction to the laboratory coordinate metric for time corresponding to the curvature of spacetime by the 
particle production event.   

In contrast to the familiar particle production event involving production of particles in matter-antimatter pairs, it is 
possible to form a particle without production of the corresponding antimatter partner.  During the contraction phase, electron 
neutrinos cause neutron production from photons.  In this case, the event must also be spacelike or annihilation would occur.  
Similarly, the event must also conserve energy, momentum, charge, and satisfy the condition that the speed of light is a constant 
maximum.  Eqs. (32.14-32.17) also apply.  They give the relationship whereby matter causes relativistic corrections to spacetime 
that determines the curvature of spacetime and is the origin of gravity.   

Astrophysical observations discussed infra confirm that Hydrino is the dark matter of the universe which comprises the 
total mass of the universe except for a few percent non-hydrino hydrogen and traces of other elements.  Hydrino states, atomic 
dominance during expansion and molecular dominance during contraction, are central to the matter decay to energy and energy 
to matter production reactions which drive the corresponding expansion and contraction phases of the universe.  The nuclear 
reaction for the beta decay of the neutron is given by Eqs. (39.1-39.11) and Eq. (32.173).  From Eq. (32.173), it can be 
appreciated by time reversal symmetry that the product of the reaction of an electron antineutrino with atomic hydrino 
comprising a proton and a beta particle (electron) is a neutron except for the energy deficit of hydrino.  In the absence MeV scale 
hydrino collisional or antineutrino energy, the corresponding reverse beta decay transition state to a neutron is unstable and 
decays ultimately to gamma rays.  To conserve spin (angular momentum), the reaction is:  

 1 H
e e

a
H

p
  

 
   

 
 (32.171) 

where e  is the electron neutrino and e  is the electron antineutrino.  A branch of the decay path may be similar to that of the 
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0  meson.  Gamma and pair-production decay result in characteristic 511 keV annihilation energy emission.  This emission has 
been recently been identified with dark matter [48,49].  Disproportionation reactions to the lowest-energy states of hydrogen 
followed by reverse beta decay with gamma ray emission may be a source of nonthermal  -ray bursts from interstellar regions 
[50].  The energy peak of the gamma ray spectrum of the universe is about 1 GeV, the mass/energy of a hydrino atom consistent 
with Eq. (32.171) [51].  An extreme excess of gamma rays of non-cosmic ray origin is emitted by the Sun.  The energy cutoff is 
at the atomic hydrino annihilation energy consistent with Eq. (32.171) [52] and consistent with the independent hypothesis that 
the source of the Sun’s gamma rays is decaying dark matter [53]. 

Consider the impact of the hydrino electron-proton annihilation reaction on spacetime mechanics.  Hydrinos which 
comprises the dark matter, essentially all of the mass of the universe, annihilate to photons and electron neutrinos as given by 
Eq. (32,173) and in the New “Ground” State section.  The annihilation reaction dominates over matter production reactions 
during the expansion phase due to the relative competing kinetics.  Specifically, during the expansion phase the power and 
temperature of the universe start at a maximum with a consequence that the dominant inventory of hydrino is in atomic form 
rather than the molecular hydrino form.  Moreover, the population and density of electron antineutrinos formed during the 
contraction phase also start at a maximum during spacetime expansion, and the corresponding atomic hydrino nuclear reactions 
dominate those involving molecular hydrino discussed infra.  

In addition to those corresponding to Eq. (32.171), another source of nonthermal  -ray bursts from interstellar regions 
[50] is the conversion of matter to photons of the Planck mass-energy, which may also give rise to cosmic rays.  When the 
gravitational potential energy density of a massive body such as a blackhole equals that of a particle having the Planck mass as 
given by Eqs. (32.22-32.32), the matter may transition to photons of the Planck mass given by Eq. (32.31).  In the case of the 
Planck mass, the gravitational potential energy (Eq, (32.30)) is equal to the Planck, electric, and magnetic energies which equal 

2mc  (Eq. (32.32)), and the coordinate time is equal to the proper time (Eqs. (32.33-32.34) and Eq. (32.43)).  However, the 
particle corresponding to the Planck mass may not form since its gravitational velocity (Eq. (32.33)) is the speed of light.  

 
The limiting speed of light eliminates the singularity problem of Einstein’s equation that arises as the radius of a 
blackhole equals the Schwarzschild radius.  General relativity with the singularity eliminated resolves the paradox of the 
infinite propagation velocity required for the gravitational force in order to explain why the angular momentum of 
objects orbiting a gravitating body does not increase due to the finite propagation delay of the gravitational force 
according to special relativity [54]. 
 

Thus, it remains a photon.  Even light from a blackhole will escape when the decay rate of the trapped matter with the 
concomitant spacetime expansion is greater than the effects of gravity that oppose this expansion.  The annihilation of a 
blackhole may be the source of -ray bursts.  Gamma-ray bursts are the most energetic phenomenon known that can release an 
explosion of gamma rays packing 100 times more energy than a supernova explosion [55].  Cosmic rays are the most energetic 
particles known, and their origin is also a mystery [56].  In 1966, Cornell University’s Kenneth Greisen predicted that interaction 
with the ubiquitous photons of the cosmic microwave background would result in a smooth power-law cosmic-ray energy 
spectrum being sharply cutoff close to 195  10  X eV .  However, in 1998, Schwarzschild reported [57] that the Akeno Giant Air 
Shower Array (AGASA) in Japan has collected data that show the cosmic-ray energy spectrum is extending beyond the Greisen-
Zatsepin-Kuzmin (GZK) cutoff.  According to the GZK cutoff, the cosmic spectrum cannot extend beyond 195  10  X eV , but 
AGASA, the world’s largest air shower array, has shown that the spectrum is extending beyond without any clear sign of cutoff.  
Similarly, the Utah Fly’s Eye had detected cosmic rays with energy up to 203  10  X eV  [58,59].  Photons, each of the Planck 
mass, may be the source of these inexplicably energetic cosmic rays corresponding to tremendous power and concomitant 
spacetime expansion.  The Planck mass conversion of matter into energy may also be the unprecedented X-ray power of the 
ultraluminous pulsar: NuSTAR [60].  The gamma ray burst energy may undergo energy down conversion by interaction with 
matter due to higher energy absorption and re-emission of lower energy gamma rays.  The gamma rays from each of the sources 
may convert back into matter during the contraction phase due to a unique molecular hydrino-catalyzed reaction of an electron 
neutrino and a gamma photon. 

Rather than being particles with non-zero rest mass, neutrinos such as the electron neutrino and the electron antineutrino 
are special types of photons as given in the Neutrino section.  Massless neutrinos travel at light speed for all observers.  In 
addition, neutrinos have spin which must be conserved.  To satisfy the boundary conditions, particle production from an electron 
neutrino and a photon requires the production of a single neutral particle, a neutron.  In this case, the transition state only 
comprises a single particle transition state atomic orbital with the antiparticle partner one absent.  The left-hand side of Eq. 
(32.170) represents the proper time of the neutron as the photon atomic orbital becomes matter.  The right-hand side of Eq. 
(32.170) represents the correction to the laboratory coordinate metric for time corresponding to the relativistic correction of 
spacetime by the particle production.  Thus, during the contraction phase of the oscillatory cycle, the electron neutrino causes 
neutron production from a gamma photon, and the production of protons and electrons occurs by neutron beta decay.  From 
Eq. (32.173), the number of electrons exactly balances the number of protons.  Thus, the Universe is electrically neutral.   

Typically, antimatter and matter are created in the laboratory in equal amounts; yet celestial antimatter is not observed.  
The reason is that electron neutrinos of only one type (electron neutrinos versus electron antineutrinos) dominate the kinetics of 
matter production over antimatter production.  Specially, spin conservation requires that antineutron production does not occur 
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as a separate symmetrical reaction, and particle production from an electron neutrino and a photon prohibits production of the 
antimatter twin.  From Eq. (38.6), the neutron mass is 
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The neutron production reaction and the nuclear reaction for the beta decay of a neutron are: 

 
 

e
 1n

1n 1H   
e
 0.7835 MeV

 (32.173) 

where e  is the electron neutrino and e  is the electron antineutrino.  The molecular orbital of molecular hydrino comprises a 

paired and an unpaired electron whereby ro-vibrational states may undergo transitions involving absorption and emission via 
one-photon, two-photon, and electron neutrino absorption and emission [61].  Thus, molecular hydrino may catalyze neutron 
production by the reaction of Eq. (32.173) when a gamma ray strikes a molecular hydrino in an excited ro-vibrational state such 
that it undergoes de-excitation by emitting an electron neutrino during the gamma-ray collisional event.  During the cold 
contraction phase the molecular hydrino population and its corresponding nuclear reactions dominate over those of atomic 
hydrino.  Moreover, the energy of cosmic gammas rays may be blue shifted during spacetime contraction to further enable the 
production of neutrons by Eq. (32.173).  Consistent with Eq. (32.173), characteristic neutral pion decay gamma rays were 
detected in 2013 originating in two supernova remnants confirm that pions are produced copiously after supernovas, most 
probably in conjunction with production of high-energy protons that are detected on Earth as cosmic rays [62].  In fact, 
essentially all cosmic rays comprise protons followed in abundance by electrons [63,64]. 

Since the atomic radius and the semi-major and semi-minor axes of atomic hydrino and molecular hydrino, respectively, 
are inversely related to the p quantum number, the p quantum state inventory of the atomic hydrino and molecular hydrino as 
well as the relative ratio of the atomic to molecular hydrino in the universe affects the rates that atomic hydrino causes proton-
electron decay to create an inventory of gamma ray photons and molecular hydrino catalyzes proton-electron production from 
cosmic gamma-rays.  As time increases in the expansion phase, the atomic hydrino states comprise high p quantum numbers 
such the reverse beta decay reaction becomes more probable with an antineutrino collision.  In addition, the rovibrational levels 
of the corresponding molecular hydrino may contribute to any mismatch between the gamma ray energy and the resonant 
neutron production energy wherein molecular hydrino further serves as the required third body to conserve momentum during 
the particle production event.  The decay rate is dominant during the expansion phase when the hydrino atomic population of 
high p quantum number overwhelms molecular hydrino population of high p quantum number, whereas the opposite is the case 
during the contraction phase.  A third factor affecting the dominance of the rate of proton-electron decay versus proton-electron 
production is the range of the p quantum number of hydrinos that also varies during the expansion-contraction cycle. 

In addition to these novel mechanisms for the conversion of matter into energy, a light filled from a matter filled universe 
may be the result from a subtle change in the fundamental constants due to spacetime expansion to the maximum radius.  There 
is evidence that with time evolution (spacetime expansion and contraction) the fine structure constant changes as an inherent 
property [65-68].  This would have a profound effect on stability and the inter-conversion rates of matter and energy. 

Thus, the Universe is oscillatory in matter, energy, and spacetime without the existence of antimatter due to 
conservation of spin of the electron neutrino and the relationship of particle production to spacetime contraction.  During the 
expansion phase, the arrow of time runs forward to lower mass and higher entropy states; whereas, during collapse, the arrow 
of time runs backwards relative to the case of the Universe in a state of expansion.  Recent particle physics experiments 
demonstrate that the decay of kaons and antikaons follows a law that is not symmetric with respect to time reversal [39].  The 
data reveals that there is a microscopic arrow of time, in addition to the thermodynamic and cosmological arrows. 

The Universe evolves to higher mass and lower entropy states.  Thus, biological organisms such as humans, which rely 
on the spontaneity of chemical reactions with respect to the forward arrow of time cannot exist in the contracting phase of the 
Universe.  And, compared to the period of the Universe, the origins of life occurred at a time very close to the beginning of the 
expansion of the Universe when the direction of the spontaneity of reactions changed to the direction of increasing entropy and 
the rate of the increase in entropy of the Universe was a maximum. 

The origin of the microwave background radiation (CMBR) as the power from the Universe rather than from a Big Bang 
creation event is demonstrated by the absence of the shadows in the CMBR required for the Big Bang model [36].  As shown in 
the Power Spectrum of the Cosmic Microwave Background section, when the Universe reaches the maximum radius of the time 
harmonic variation in the radius of the Universe, (Eq. (32.150)), it is radiation filled.  Since the photon has no gravitational mass, 
the radiation is uniform.  As energy converts into matter the power of the Universe may be considered negative for the first 
quarter cycle starting from the point of maximum expansion as given by Eq. (32.195), and spacetime contracts according to Eq. 
(32.140).  The gravitational field from particle production travels as a light wave front.  As the Universe contracts to a minimum 
radius, the gravitational radius given by Eq. (32.147), constructive interference of the gravitational fields occurs.  The resulting 
slight variations in the density of matter are observed from our present r-sphere.  As shown in the Power Spectrum of the Cosmic 
Microwave Background section, the cosmic microwave background radiation is an average temperature of 2.725 K, with 
deviations of 30 or so K  in different parts of the sky representing these slight variations in the density of matter.  By this 
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mechanism, the production of particles over time from a photon-filled Universe gave rise to centers that eventually aggregated 
by gravitational attraction into a hierarchy of more massive structures to eventually form the large-scale structure of the cosmos.  

Galaxies formed during the collapsing stage of the evolution of the Universe wherein the mass perturbations occurred 
due to gravity wave interference as demonstrated by the DASI and WMAP data as shown in the Power Spectrum of the Cosmic 
Microwave Background section.  These perturbations resulted in collapsing gas clouds that formed quasars.  Then each of these 
quasars erupted into a supernova and formed a blackhole.  The expelled gas eventually formed galaxies.  The observation of a 
blackhole in the center of each galaxy is consistent with the origin of galaxies from a quasar supernova [69, 70].  Furthermore, 
since angular momentum must be conserved in the rotation of the founding quasar and the resulting blackhole and galactic 
rotating stars, a linear relationship of the plot of the velocity of the outer stars of a given galaxy to the blackhole mass is 
expected.  This ratio called sigma is indeed observed to be linear [69,70].  

The Universe is oscillatory with a finite minimum radius, the gravitational radius.  Thus, stellar and celestial structures 
evolve on a time scale that is greater than the observed time of expansion.  Stars exist which are older than the elapsed time of 
the present expansion as stellar evolution occurred during the contraction phase [71,72].  Galaxy evolution also occurred during 
the contraction phase as revealed by high-redshift radio galaxies and galaxies associated with extremely distant, luminous 
quasars that date back to the beginning of the expansion [46, 47].  The Gemini Deep Deep Survey confirmed the predicted 
existence of old galaxies at the beginning of the expansion at 10 billion light years and further directly disprove the Big Bang 
theory of cosmology [73-75].  These results were confirmed by a spectroscopic redshift survey that probed the most massive and 
quiescent galaxies back at 10 billion light years [76,77].  It was found that a significant fraction of the massive old galaxies 
observed over all of time since the expansion were in place in the early Universe.  This is also shown by the Hubble Ultra Deep 
Field (HUDF) given in Figure 32.10.  A definitive validation of the classical predictions is provided by the Keck survey for 
gravitationally lensed Ly  emitters that found galaxies back at over 13 billion light years [78].  The absence of red dwarf stars 
that contain no metals is another indication of the ancient nature of the universe that is much older than the 10 billion years of 
expansion.  Further confirmation of the older age of the universe is the existence of the brightest quasar in the early universe 
powered by the most massive black hole yet known [79] and that dust, a signature of an old galaxy, has been observed in a 
young universe [80].  Furthermore, the recent unanticipated Webb telescope images confirm additional GUTCP predictions of 
fully formed galaxies and old galaxies at the beginning of the expansion of the universe that disprove the long held metaphysical 
Big Bang and related theories of cosmology [81-84].  In fact, even massive old blackholes [85, 86] and carbon molecules [87] 
are observed to the beginning of expansion, 13.7 B light years from present-day Earth. 

 
Figure 32.10 .   The Hubble Ultra Deep Field (HUDF) shows mature galaxies at the time of the beginning of the expansion of 
the Universe.  The “Big Bang” is NOT observed.  This image is a composite of two separate images taken by the Hubble’s 
Advanced Camera for Surveys (ACS) and the Near Infrared Camera and Multiobject Spectrometer (NICMOS), the result of over 
eleven and a half days of exposure.  It contains an estimated ten thousand galaxies.  Released on 9 March 2004.  Courtesy of 
NASA, ESA, S. Beck with STScI and the HUDF Team.  
 

 
 

In addition to fusion reactions in stars, hydrino transitions to lower energy hydrino states is a source of power 
contribution to the CMBR as well as a source of spacetime expansion as matter is converted into energy.  As given in the 
Disproportionation of Energy States section, classical physical laws predict that atomic hydrogen may undergo a catalytic 
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reaction with certain species, including itself, that can accept energy in integer multiples of the potential energy of atomic 
hydrogen, m ꞏ 27.2 eV, wherein m is an integer.  The predicted reaction involves a resonant, nonradiative energy transfer from 
otherwise stable atomic hydrogen to the catalyst capable of accepting the energy.  The product is H(1/p), fractional Rydberg 
states of atomic hydrogen called “hydrino atoms,” wherein n = 1/2, 1/3, 1/4,…, 1/p (p≤137 is an integer) replaces the well-
known parameter n = integer in the Rydberg equation for hydrogen excited states.  Each hydrino state also comprises an 
electron, a proton, and a photon, but the field contribution from the photon increases the binding energy rather than decreasing it 
corresponding to energy desorption rather than absorption.  Since the potential energy of atomic hydrogen is 27.2 eV, m H  
atoms serve as a catalyst of 27.2 m eV  for another ( 1m  )th H atom (See BlackLight Process section).  For example, a H atom 
can act as a catalyst for another H by accepting 27.2 eV from it via through-space energy transfer such as by magnetic or 
induced electric dipole-dipole coupling to form an intermediate that decays with the emission of continuum bands with short 

wavelength cutoffs and energies of 2
2

91.2
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m eV nm

m
   
 

. The continuum radiation band at 10.1 nm and going to longer 

wavelengths for theoretically predicted transitions of H to lower-energy, so called “hydrino” state H(1/4), was observed only 
arising from pulsed pinch gas discharges comprising some hydrogen and oxygen as an oxide, first at Brilliant Light Power, Inc. 
(BLP) and reproduced at the Harvard Center for Astrophysics (CfA) [88-94].  HOH was shown to be the catalyst in these pinch 
plasma continua as well as in the 10-30 nm EUV continuum observed from plasma having essentially no field.  The latter plasma 
was formed by igniting a solid fuel source of H and HOH catalyst by passing an ultra-low voltage, high current through the fuel 
to produce an explosive plasma [88].  Moreover, m H  catalyst (Eqs. (5.48-5.61)) was identified to be active in astronomical 
sources such as the Sun, stars, and interstellar medium wherein the characteristics of hydrino product match those of the dark 
matter of the Universe [88]. Hydrogen continua from transitions to form hydrinos matches the emission from white dwarfs, 
provides a possible mechanism of linking the temperature and density conditions of the different discrete layers of the 
coronal/chromospheric sources, and provides a source of the diffuse ubiquitous EUV cosmic background with the 10.1 nm 
continuum matching the observed intense 11.0-16.0 nm band in addition to resolving other cosmological mysteries 
[88,92,95,96].  Given the seeding by the anisotropic gravitational forces in a contracting Universe, expansion of the Universe 
depends on the rate of energy release, which varies throughout the Universe; thus, clusters of galaxies, huge voids, and other 
large features which are observed [97-101] are caused by the interaction between the rate of energy release with concomitant 
spacetime expansion and gravitational attraction.  Hydrogen-type atoms and molecules comprise most of the matter of the 
Universe.  The distinction between hydrogen and hydrinos with respect to the interaction with electromagnetic radiation and 
release of energy by transitioning to lower energy states (See Disproportionation of Energy States section) also has an influence 
on the formation of large voids and walls of matter.  Lower-energy atomic hydrogen atoms, hydrinos, each have the same mass 
and a similar interaction as the neutron.  According to Steinhardt and Spergel of Princeton University [101], these are the 
properties of dark matter that are necessary in order for the theory of the structure of galaxies to work out on all scales.  The 
observation that galaxy clusters arrange themselves as predicted for cold dark matter except that the cores are less dense than 
expected is explained.  Hydrinos further account for the observation that small halos of dark matter are evaporated when they 
approach larger ones and that dark matter is easily influenced by black holes, explaining how they grew so large. 

Laboratory EUV continuum results [88] offer resolution to many otherwise inexplicable celestial observations with (a) 
the energy and radiation from the hydrino transitions being the source of extraordinary temperatures and power regarding the 
solar corona problem, the cause of sunspots and other solar activity, and why the Sun emits X-rays [92], (b) the hydrino-
transition radiation being the radiation source heating the WHIM and behind the observation that diffuse H  emission is 
ubiquitous throughout the Galaxy requiring widespread sources of flux shortward of 912 Å , and (c) the identity of dark matter 
being hydrinos. 

Stars also comprise plasmas of hydrogen with surfaces comprised of essentially dense atomic hydrogen permissive of 
multi-body H interactions to propagate transition of H to H(1/(m +1)) wherein m H  serves as the catalyst.  Such transitions are 
predicted to emit EUV continuum radiation according to Eqs. (5.48-5.61).  The emission from white dwarfs arising from an 
extremely high concentration of hydrogen is modeled as an optically thick blackbody of ~ 50,000 K gas comprising 
predominantly hydrogen and helium.  A modeled composite spectrum of the full spectral range from 10 nm to >91.2 nm with an 
abundance He/H=10-5 from Barstow and Holberg [95] is shown in Figure 10 of Ref. [88].  Albeit, while white dwarf spectra can 
be curve fitted using stratification and adjustable He and H column densities and ionization fractions to remove some 
inconsistencies between optical and EUV spectra [103] and independent measurements of the latter, matching the spectrum at 
the short-wavelengths is problematic.  Alternatively, combining the laboratory-observed emission continuum bands gives a 
spectrum with continua having edges at 10.1 nm, 22.8, nm, and 91.2 nm, a match to the white dwarf spectrum [88].  However, 
the proposed nature of the plasmas and the mechanisms are very different.  The emission in our studies is assigned to hydrino 
transitions in cold-gas, optically-thin plasmas absent any helium.  White-dwarf and celestial models may need revision and 
benefit from our discovery of high-energy H continua emission.   

For example, there is no existing physical model that can couple the temperature and density conditions in different 
discrete regions of the outer atmosphere (chromosphere, transition region, and corona) of coronal/chromospheric sources [103].  
Typically, the corona is modeled to be three orders of magnitude hotter than the surface that is the source of coronal heating 
seemingly in defiance of the second law of thermodynamics.  Reconciliation is offered by the mechanism of line absorption and 
re-emission of the 2 13.6 m eV  (Eq. (5.57)) continuum radiation.  The 91.2 nm continuum to longer wavelengths is expected to 
be prominent (less attenuated than the 10.1 nm and 22.8 nm bands) and is observed in the solar extreme ultraviolet spectrum as 
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shown in Figure 11 of Ref. [88] and Ref. [104] despite attenuation by the coronal gas.  High-energy-photon excitation is more 
plausible than a thermal mechanism with T~106 given the 4000 K surface temperature and the observation of the CO absorption 
band at 4.7 m  in the solar atmosphere wherein CO cannot exist above 4000 K [105].  Considering the 10.1 nm band as a 
source, the upper limit of coronal temperature based on excitation of about 106 K is an energy match.  In addition to the 
temperature, another extraordinary observation is that although the total average energy output of the outer layers of the Sun is 
 0.01 % of the photospheric radiation, local transient events can produce an energy flux that exceeds the photospheric flux 
[106].  The energy source of the latter may be magnetic in nature, but identity of the highly ionizing coronal source is not 
established.  Nor, has the total energy balance of the Sun been reconciled.  The possibility of a revolutionary discovery of a new 
source of energy in the Sun based on a prior undiscovered process is an open question [107].  That m H  catalyzed hydrino 
transitions occur in stars and the Sun [108] as evident by corresponding continua in its spectrum resolves the solar corona 
problem, the cause of sunspots and other solar activity, and why the Sun emits X-rays [92]. 

The laboratory EUV continuum results [88] have further implications for the resolution of the identity of dark matter and 
the identity of the radiation source behind the observation that diffuse H  emission is ubiquitous throughout the Galaxy and 
widespread sources of flux shortward of 912 Å  are required [109].  The identity of dark matter has been a cosmological mystery.  
It is anticipated that the emission spectrum of the extreme ultraviolet background of interstellar matter possesses the spectral 
signature of dark matter.  Labov and Bowyer designed a grazing incidence spectrometer to measure and record the diffuse 
extreme ultraviolet background [109].  The instrument was carried aboard a sounding rocket, and data were obtained between 
80 Å and 650 Å  (data points approximately every 1.5 Å ).  Several lines including an intense 635 Å  emission associated with 
dark matter were observed [109] which has considerable astrophysical importance as indicated by the authors:  

 
"Regardless of the origin, the 635 Å  emission observed could be a major source of ionization.  Reynolds (1983, 1984, 
1985) has shown that diffuse H  emission is ubiquitous throughout the Galaxy, and widespread sources of flux 
shortward of 912 Å  are required.  Pulsar dispersion measures (Reynolds 1989) indicate a high scale height for the 
associated ionized material.  Since the path length for radiation shortward of 912 Å  is low, this implies that the ionizing 
source must also have a large scale height and be widespread.  Transient heating appears unlikely, and the steady state 
ionization rate is more than can be provided by cosmic rays, the soft X-ray background, B stars, or hot white dwarfs 
(Reynolds 1986; Brushweiler & Cheng 1988).  Sciama (1990) and Salucci & Sciama (1990) have argued that a variety of 
observations can be explained by the presence of dark matter in the galaxy which decays with the emission of radiation 
below 912 Å . 
The flux of 635 Å  radiation required to produce hydrogen ionization is given by 
F  H /   4.3 X 10413   photons cm2s1 , where 13  is the ionizing rate in units of 1013s1  per H  atom.  Reynolds 
(1986) estimates that in the immediate vicinity of the Sun, a steady state ionizing rate of 13  between 0.4 and 3.0 is 

required.  To produce this range of ionization, the 635 Å  intensity we observe would have to be distributed over 7% - 
54% of the sky." 

 
The 63.5 0.47 nm line [109] matches a hydrino transition predicted for H undergoing catalysis with H (m=1) as the catalyst 
giving rise to a concerted energy exchange of the total energy of 40.8 eV with the excitation of the He 1s2 to 1s12p1 transition.  
The predicted 63.3 nm emission associated with dark matter was observed with the addition of hydrogen to helium microwave 
plasma as shown previously [92,110].  An alternative assignment suggested by Labov and Bowyer [109] is the 63.0 nm line of O 
V requiring a large-scale non-thermal source of ionization.  Continuum radiation from transitions to low-level hydrino states can 
provide this radiation.  Indeed, the observation of the 63.3 nm line is also associated with the presence of an interstellar X-ray 
background. 

The first soft X-ray background was detected and reported [111] about 25 years ago.  Quite naturally, it was assumed that 
these soft X-ray emissions were from ionized atoms within hot gases.  Labov and Bowyer also interpreted the data as emissions 
from hot gases.  However, the authors left the door open for some other interpretation with the following statement from their 
introduction:  

 
"It is now generally believed that this diffuse soft X-ray background is produced by a high-temperature component of the 
interstellar medium.  However, evidence of the thermal nature of this emission is indirect in that it is based not on 
observations of line emission, but on indirect evidence that no plausible non-thermal mechanism has been suggested 
which does not conflict with some component of the observational evidence."  
 
The authors also state "if this interpretation is correct, gas at several temperatures is present."  Specifically, emissions 

were attributed to gases in three ranges: 5.5 < log T < 5.7; log T = 6; 6.6 < log T < 6.8.  Observations in the ultraviolet with HST 
and FUSE [112] and also XMM-Newton [113] confirm these extraordinary temperatures of diffuse intergalactic medium (IGM) 
and reveal that a large component of the baryonic matter of the Universe is in the form of WHIM (warm-hot ionized media) 
[112,113].  The mysteries of the identity of dark matter, the observed dark interstellar medium spectrum, the source of the 
diffuse X-ray background, and the source of ionization of the IGM [112,113] are resolved by the formation of hydrinos that emit 
EUV and X-ray continua depending on the state transition and conditions; the continua create highly ionized ions that emit ion 
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radiation of non-thermal origin; the hydrino transition H to H(1/2) results in a 63.3 nm line [92,110], and He+ acting as a catalyst 
of 54.4 eV ( 2 27.2 eV ) pumps the intensity of helium ion lines such as the 30.4 nm line [90, 92].  

As shown in the Disproportionation of Energy States section, the products of the catalysis reactions (e.g. Eqs. (5.48-
5.51)) have binding energies of 27.2 m eV , such that they may further serve as catalysts.  Thus, further catalytic transitions may 

occur: 
1 1 1 1

,  ,
3 4 4 5

n     and so on.  Thus, lower-energy hydrogen atoms, hydrinos, can act as catalysts by resonantly and 

nonradiatively accepting energy of 27.2 m eV  from another H or hydrino atom (Eq. (5.24)).  Such disproportionation reactions 
of hydrinos are predicted to give rise to features in the X-ray region.  As shown by Eqs. (5.40-5.43) the reaction product of HOH 

catalyst is H
a

H

4









 .  A likely transition reaction in hydrogen clouds containing H2O gas is the transition of a H atom to 

17
Ha

H
 
  

 

wherein H
a

H
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  serves as a catalyst to give a broad peak having a short wavelength cutoff at E  3481.6 eV ;  0.35625 nm .  A 

broad X-ray peak with a 3.48 keV cutoff was recently observed in the Perseus Cluster by NASA’s Chandra X-ray Observatory 
and by the XMM-Newton [114,115] that has no match to any known atomic transition.  The 3.48 keV feature assigned to dark 

matter of unknown identity by BulBul et al. [114] matches the 
4 1 17
H H Ha a a

H H H
                

 transition and further confirms 

hydrinos as the identity of dark matter. 
Evidence for EUV emission from hydrino transitions also comes from the interstellar medium (ISM) since it provides a 

source of the diffuse ubiquitous EUV cosmic background.  Specifically, the 10.1 nm continuum matches the observed intense 
11.0-16.0 nm band [95,96].  Furthermore, it provides a mechanism for the high ionization of helium of the ISM and the excess 
EUV radiation from galaxy clusters that cannot be explained thermally [114].  Moreover, recent data reveals that X-rays from 
distant active galactic nuclei sources are absorbed selectively by oxygen ions in the vicinity of the galaxy [115].  The 
temperature of the absorbing halo is between 1 million and 2.5 million Kelvin, or a few hundred times hotter than the surface of 
the Sun.  The corresponding energy range is 86 eV to 215 eV which is in the realm of the energy released for the transition of H 
to H(1/4).  Additional astrophysical evidence such as the observation that a large component of the baryonic matter of the 
Universe is in the form of WHIM (warm-hot ionized media) in the absence of a conventional source and the match of hydrinos 
to the identity of dark matter was presented previously [116,117].  The latter case is further supported by observations of 
signature electron-positron annihilation energy. 

Dark matter comprises a majority of the mass of the Universe as well as intra-galactic mass [118,119].  It would be 
anticipated to concentrate at the center of the Milky Way galaxy due to the high gravity from the presence of a super massive 
blackhole at the center that emits gamma rays as matter falls into it.  Since hydrinos are each a state of hydrogen having a proton 
nucleus, high-energy gamma rays impinging on dark matter will result in pair production.  The corresponding observed 
characteristic signature being the emission of the 511 keV annihilation energy of pair production identifies dark matter as 
hydrino [120-122].  Another hydrino decay pathway for this radiation is given by Eq. (32.171).  The interstellar medium [122-
125], gamma-ray bursts [125,126], and solar flares [105, 125,127] also emit 511 keV line radiation.  The dominant source of 
positrons in gamma-ray bursts is likely pair production by photon on photons or on strong magnetic fields [125].  The solar-flare 
emission is likely due to production of radioactive positron emitters in accelerated charge interactions [125],whereas the diffuse 
511 keV radiation by interstellar medium is consistent with the role of hydrino as dark matter in pair production from incident 
cosmic radiation [123-125]. 

The characteristic spectral signatures and properties of hydrino match those attributed to the dark matter of the Universe.  
The Universe is predominantly comprised of hydrogen and a small amount of helium.  These elements exist in interstellar 
regions of space, and they are expected to comprise the majority of interstellar matter.  However, the observed constant angular 
velocity of many galaxies as the distance from the luminous galactic center increases can only be accounted for by the existence 
of nonluminous weakly interacting matter, dark matter.  It was previously accepted that dark matter exists at the cold fringes of 
galaxies and in cold interstellar space.  This has since been disproved by the observation of Bournaud et al. [118,119] that 
demonstrated that galaxies are mostly comprised of dark matter, and the data persistently supports that dark matter probably 
accounts for the majority of the universal mass. 

The best evidence yet for the existence of dark matter is its direct observation as a source of massive gravitational mass 
evidenced by gravitational lensing of background galaxies that does not emit or absorb light as shown in Figure 32.11 [128].  
There has been the announcement of some unexpected astrophysical results that support the existence of hydrinos.  In 1995, 
Mills published the GUTCP prediction [129] that the expansion of the Universe was accelerating from the same equations that 
correctly predicted the mass of the top quark before it was measured.  To the astonishment of cosmologists, this was confirmed 
by 2000.  Mills made another prediction about the nature of dark matter based on GUTCP that may be close to being confirmed.  
Bournaud et al. [118,119] suggest that dark matter is hydrogen in dense molecular form that somehow behaves differently in 
terms of being unobservable except by its gravitational effects.  Theoretical models predict that dwarfs formed from collisional 
debris of massive galaxies should be free of nonbaryonic dark matter.  So, their gravity should tally with the stars and gas within 
them.  By analyzing the observed gas kinematics of such recycled galaxies, Bournaud et al. [118,119] have measured the 
gravitational masses of a series of dwarf galaxies lying in a ring around a massive galaxy that has recently experienced a 
collision.  Contrary to the predictions of Cold-Dark-Matter (CDM) theories, their results demonstrate that they contain a massive 
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dark component amounting to about twice the visible matter.  This baryonic dark matter is argued to be cold molecular 
hydrogen, but it is distinguished from ordinary molecular hydrogen in that it is not traced at all by traditional methods, such as 
emission of CO lines.  These results match the predictions of the dark matter being molecular hydrino.  
 
Figure 32.11 .    Dark matter ring in galaxy cluster.  This Hubble Space Telescope composite image shows a ghostly “ring” of 
dark matter in the galaxy cluster Cl 0024+17.  The ring is one of the strongest pieces of evidence to date for the existence of dark 
matter, a prior unknown substance that pervades the Universe.  Courtesy of NASA, M.J. Jee and H. Ford (Johns Hopkins 
University). 
 

 
 

Additionally, astronomers Jee at al. [130] using data from NASA’s Hubble Telescope have mapped the distribution of 
dark matter, galaxies, and hot gas in the core of the merging galaxy cluster Abell 520 formed from a violent collision of massive 
galaxy clusters and have determined that the dark matter had collected in a dark core containing far fewer galaxies than would be 
expected if dark matter was collsionless with dark matter and galaxies anchored together.  The collisional debris left behind by 
the galaxies departing the impact zone behaved as hydrogen did, another indication that the identity of dark matter is molecular 
hydrino.  Moreover, detection of alternative hypothesized identities for dark matter such as super-symmetry particles such as 
neutalinos has failed at the Large Hadron Collider; nor, has a single event been observed for weakly interacting massive particles 
or wimps at the Large Underground Xenon (LUX) experiment [131].  The HADES search for dark matter eliminated the leading 
candidate, “Dark Photon” or U Boson, as a possibility.  This failure also undermines the Standard Model of particle physics 
[126]. 
 

POWER SPECTRUM OF THE COSMOS 
The maximum energy release of the Universe given by Eq. (32.142) occurred at the beginning of the expansion phase, and the 
power spectrum is a function of the r-sphere of the observer.  The power spectrum of the cosmos, as measured by the Las 
Campanas survey, generally follows the prediction of cold dark matter on the scales of 200 million to 600 million light-years.  
However, the power increases dramatically on scales of 600 million to 900 million light-years [70].  This discrepancy means that 
the Universe is much more structured on those scales than current theories can explain.  The Universe is oscillatory in 
matter/energy and spacetime with a finite minimum radius.  The minimum radius of the Universe, 300 billion light years [32], is 
larger than that provided by the current expansion, approximately 10 billion light years [28].  The Universe is a four-dimensional 
hyperspace of constant positive curvature at each r-sphere.  The coordinates are spherical, and the space can be described as a 
series of spheres each of constant radius r  whose centers coincide at the origin.  The existence of the mass Um  causes the area 

of the spheres to be less than 24 r  and causes the clock of each r-sphere to run so that it is no longer observed from other r-
spheres to be at the same rate.  The Schwarzschild metric given by Eq. (32.38) is the general form of the metric that allows for 
these effects.  Consider the present observable Universe that has undergone expansion for 10 billion years.  The radius of the 
Universe as a function of time from the coordinate r-sphere is of the same form as Eq. (32.153).  The average size of the 
Universe, Ur , is given as the sum of the gravitational radius, gr , and the observed radius, 10 billion light years. 
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The frequency of Eq. (32.153) is one half the amplitude of spacetime expansion from the conversion of the mass of Universe 
into energy according to Eq. (32.140).  Thus, keeping the same relationships, the frequency of the current expansion function is 
the reciprocal of one half the current age.  Substitution of the average size of the Universe, the frequency of expansion, and the 
amplitude of expansion, 10 billion light years, into Eq. (32.153) gives the radius of the Universe as a function of time for the 
coordinate r-sphere. 
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The Schwarzschild metric gives the relationship between the proper time and the coordinate time (Eq. (32.38)).  The 
infinitesimal temporal displacement, 2d , is: 
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In the case that 2 2 2 0dr d d    , the relationship between the proper time and the coordinate time is:  
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The maximum power radiated by the Universe is given by Eq. (32.142) and occurs when the proper radius, the coordinate radius, 
and the gravitational radius gr  are equal.  For the present Universe, the coordinate radius is given by Eq. (32.174).  The 

gravitational radius is given by Eq. (32.147).  The maximum of the power spectrum of a trigonometric function occurs at its 
frequency [133].  Thus, the coordinate maximum power according to Eq. (32.175) occurs at 95  10   X light years .  The maximum 

power corresponding to the proper time is given by the substitution of the coordinate radius, the gravitational radius gr , and the 

coordinate power maximum into Eq. (32.179).  The power maximum in the proper frame occurs at: 
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The power maximum of the current observable Universe is predicted to occur on the scale of 6880  10   X light years .  There is 
excellent agreement between the predicted value and the experimental value of between 600 million to 900 million light years 
[134]. 
 

THE DIFFERENTIAL EQUATION OF THE RADIUS OF THE UNIVERSE 
The differential equation of the radius of the Universe,  , can be derived as a conservative simple harmonic oscillator having 
a restoring force, F , which is proportional to the radius.  The proportionality constant, k , is given in terms of the potential 
energy, E , gained as the radius decreases from the maximum expansion to the minimum contraction. 

 
2

E
k


 (32.181) 

The Universe oscillates between a minimum and maximum radius as matter is created into energy and then energy is converted 
to matter.  At the minimum radius, the gravitational velocity, Gv , is given by Eq. (32.33) and the gravitational radius Gr , is given 

by Eq. (32.22) wherein an electromagnetic wave of mass energy equivalent to the mass of the Universe travels in a circular orbit 
wherein the eccentricity is equal to zero (Eq. (35.21)), and the escape velocity from the Universe can never be reached.  At this 
point in time, all of the energy of the Universe is in the form of matter, and the gravitational energy (Eq. (32.148)) is equal to 

2
Um c .  Thus, the proportionality constant of the restoring force with respect to the radius is: 
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Considering the oscillation, the differential equation of the radius of the Universe,  , follows from Eq. (32.182) as given by 
Fowles [135]: 
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The solution of Eq. (32.183) which gives the radius of the Universe as a function of time follows from Fowles [135]: 
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The gravitation force causes the radius of Eq. (32.184) to be offset [135].  After Eq. (32.38), the force equations of general 
relativity give the offset radius, Ur .  The minimum radius corresponds to the gravitational radius gr  whereby the proper time is 

equal to the coordinate time.  The offset radius, Ur , is: 
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The expansion/contraction rate, 


 , is given by taking the derivative with respect to time of Eq. (32.184): 
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According to special relativity no signal may travel faster than c , the speed of light for any observer.  The maximum expansion 

rate for a 3-sphere is 4 c  which is given in Eq. (32.186).  The expansion/contraction acceleration, 


 , is given by taking the 
derivative with respect to time of Eq. (32.186).: 
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Consistent with the vast time difference in spacetime scale between an Earth observer’s view of the universe through a 
redshifted window and the period of oscillation between the matter filled and the light or energy filled universe, ancient stars and 
the large-scale structure of the cosmos comprising galactic superclusters and voids are visible that could not have formed within 
the elapsed time of expansion [70-77,97-101,136,137].  Recently, a uniform cosmic infrared background has been discovered 
which is consistent with the heating of dust with reradiation over a much longer period than the elapsed time of expansion [138].  
The size of the Universe may be detected by observing the early curvature, the power spectrum, and the microwave background 
temperature.  In the latter case, the power released as a function of time over the entire Universe is given by Eq. (32.161).  The 
size of the Universe as a function of time is given by Eq. (32.153).  The microwave background temperature corresponds to the 
power density over the entire Universe that is to within a few parts per million uniform on the scale of the entire Universe.  Thus, 
the microwave background temperature as a function of time for each observer within his light sphere is given by Eq. (32.168). 

The Hubble constant is given by the ratio of the expansion rate (Eq. (32.186)) given in units of 
sec

km
 and the radius of the 

expansion (Eq. (32.126)) in units of Mpc (1 Megaparsec (Mpc) is 63.258  10X  light years). 

 
3

2
4 sin

2

 

U

t
Gm

cH
ct t

 

 
 
      (32.188a) 

Using 
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and 10 t Gyr , Eq. (32.188a) is given by: 
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The differential in the radius of the Universe   due to its acceleration is given by:  
 21/ 2 t   (32.189) 
The expansion of the light sphere due to the acceleration of the expansion of the cosmos given by Eq. (32.155) and Eq. 
(32.187) is shown graphically in Figure 32.12.  The observed brightness of supernovae as standard candles is inversely 
proportional to their distance squared.  As shown in Figure 32.12,   increases by a factor of about three as the time of 
expansion increases from the midpoint to a time comparable to the elapsed time of expansion, 

10 310   3.069  10t light years X Mpc  .  As an approximation, this differential in expanded radius corresponds to a decease in 
brightness of a supernovae standard candle of about an order of magnitude of that expected where the distance is taken as  .  
This result is consistent with the experimental observation [37-39].  Recently, the BOOMERANG telescope [139] imaged the 
microwave background radiation covering about 2.5% of the sky with an angular resolution of 35 times that of COBE [33].  The 
image revealed hundreds of complex structures that were visible as tiny fluctuations—typically only 100 millionths of a degree 
(0.0001 °C)—in temperature of the Cosmic Microwave Background.  Structures of about 1° in size were observed that are 
consistent with a Universe of nearly flat geometry since the commencement of its expansion.  The data is consistent with a large 
offset radius of the Universe as given by Eq. (32.147) with a fractional increase in size (Eq. (32.153)) since the commencement 
of expansion about 10 billion years ago. 
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Figure 32.12.   The differential expansion of the light sphere due to the acceleration of the expansion of the cosmos as a 
function of time. 

 
 
Recently NASA announced Hubble Space telescope results taken on the most distant supernova ever at a distance of 10 billion 
light years [140,141].  The extraordinary brightness of this standard candle compared to other such closer supernovas indicates 
that the Universe accelerated from a stationary state 10 billion years ago.  This result is in agreement with the predictions of Eqs. 
(32.15-32.154) and Figure 32.5 presented before 1995 which predated the startling discovery that the Universe is accelerating. 
 

POWER SPECTRUM OF THE COSMIC MICROWAVE BACKGROUND 
The cosmic microwave background radiation (CMBR) corresponds to an average temperature of 2.725 K, with deviations of 30 

K  or so in different parts of the sky representing slight variations in the density of matter.  Early detailed measurements of the 
anisotropy as well as the discovery of polarization of the CMBR were achieved by the Degree Angular Scale Interferometer 
(DASI) [35].  The angular power spectrum was measured in the range 100 900  , and peaks in the power spectrum from the 
temperature fluctuations of the cosmic microwave background radiation appear at certain values of   of spherical harmonics 
[35].  Peaks were observed at 200 , 550 , and 800  with relative intensities of 1, 0.5, and 0.3, respectively.  Many 
subsequent missions have confirmed these peaks and mapped other higher multipoles of the temperature and polarization 
fluctuations of the CMBR.  These measurements are considered essential to cosmological models.  The standard model is a 
piecemeal set of inferences about the evolution of the cosmos.  First, there is an inflation piece wherein a random infinitesimally 
small region of an infinitesimally small Universe of essentially infinite energy density that for an unknown reason ballooned to 
relative gargantuan size instantaneously by an unknown mechanism and stopped for some unknown reason.  It remains 
inexplicable why inflation doesn’t happen again at any point in the Universe.  Gravity waves existed in whatever underwent 
inflation, but it is inexplicable whether matter, energy, gravity, known forces, or the current properties of spacetime held in the 
inflation state to manifest the gravity waves.  After inflation stopped, for an unknown reason, there was a Big Bang with gravity-
driven acoustic standing wave oscillations of the fireball plasma.  Everything was created in the Big Bang as whatever it was 
expanded.  But, rather than slow down, the Universe was observed to be accelerating in its expansion.  So, at some point, dark 
energy took over; even though, there is no evidence of the identity of dark energy, and its mechanism of causing the accelerated 
expansion is unknown.  The rate of the acceleration caused by dark energy cannot be predicted by the model.  Another challenge 
is that the amount of mass of the Universe that is observable is only a small percentage based on gravity effects of the 
predominantly unseen mass of the Universe.  Thus, nonbaryonic dark matter—exotic unidentified matter that exerts a 
gravitational attraction but has essentially no other interaction observed for normal matter such as absorption of light, is added as 
another parameter in the models.  Many adjustable parameters were invented to try to meld the inhomogeneous pieces into 
continuity of the creation, appearance, behavior, and fate of the Universe.   

The fluctuations in the CMBR are believed to be key since they are attributed to signatures from the early pieces, 
inflation and Big Bang.  Specifically, the CMBR peaks are incorporated into adiabatic inflationary cosmology models wherein 
the at least 10 parameters are fully adjustable to fit the data supposedly corresponding to gravity waves during inflation, gravity-
driven acoustic oscillations in the primordial plasma, and nonbaryonic dark matter.  Yet, there is no guarantee that these 
occurred or that the CMBR is such a signature.  There are many variants of the four-piece standard theory that are no more than 
models comprising conjectures about the state and occurrences of the early Universe.  The four principle conjectures are not 
based on physical laws or mechanisms.  Inflation occurred at infinitely faster than light speed that defies the laws of wave 
propagation of any kind.  But, consider the gravity waves of inflation with the conjecture that the laws of gravity existed under 
the conditions of infinite energy density of unknown composition expanding at an near infinite rate as proposed.  As given in the 
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Absolute Space Confirmed Experimentally section, there is no physical basis for a transverse light-speed propagating gravity 
field to comprise a gravity wave consistent with the absence of the direct experimental observation of gravity waves [142,143].  
Next, consider the gravity-driven acoustic oscillations in the primordial Big Bang plasma.  Acoustic waves are not observed in 
plasmas, and if the Sun were analogous to the primordial plasma, helioseismology data shows no resemblance to orderly 
spherical harmonic waves [144].  Such acoustic waves in plasma, if they could exist, could not seed the structure of the Universe 
since acoustic waves would have a propagation velocity far less than the speed of light.  Acoustic waves would be perturbed by 
plasma instabilities due to electromagnetic forces that dominate plasma physics.  Furthermore, standing waves are precluded in 
rapidly expanding plasma.  Consider that these inflationary models require the assignment of dark matter, which is essentially all 
of the matter in the Universe, as exotic nonbaryonic matter.  The identity of dark matter has been a cosmological mystery.  
Postulated assignments include   neutrinos, but a detailed search for signature emissions has yielded nil [145].  The search for 
signatures by the Cryogenic Dark Matter Search (CDMS) developed to detect theorized Weakly Interacting Massive Particles 
(WIMPs) has similarly yielded nil [146,147].  Moreover, detection of alternative hypothesized identities for dark matter such as 
super-symmetry particles such as neutalinos has failed at the Large Hadron Collider; nor, has a single event been observed for 
weakly interacting massive particles or WIMPs at the Large Underground Xenon (LUX) experiment [131] or the upgrade Gran 
Sasso’s XENON1T [148].  China’s PandaX experiment and IceCube sterile neutrino detector recorded nil as well [148-150].  
WIMP theory’s main competitor known as MACHO theory assigns the Dark Matter to Massive Compact Halo Objects 
(MACHOs) which rather than elusive subatomic particles comprises ordinary baryonic matter in the form of burned-out dark 
stars, stray planets, and other large, heavy, but dark objects that must be ubiquitous throughout the Universe.  However, 
MACHO theory has also recently been ruled out based on lack of evidence of these dark objects observable by the brief ellipses 
caused by them moving in front of distant stars.  Only a few such objects have been observed after exhaustively searching for 
over five years [146,147].   

As given in the Disproportionation of Energy States section, since the potential energy of atomic hydrogen is 27.2 eV, 
m H  atoms serve as a catalyst of 27.2 m eV  for another ( 1m  )th H atom to form hydrino to H(1/(m +1)).  For example, a H 
atom can act as a catalyst for another H by accepting 27.2 eV from it via through-space energy transfer such as by magnetic or 
induced electric dipole-dipole coupling to form an intermediate that decays with the emission of continuum bands with short 

wavelength cutoffs and energies of 2
2

91.2
13.6   

 
m eV nm

m
   
 

.  The recording of high-energy continuum radiation from hydrogen 

as it forms hydrinos in the laboratory [88-94] has astrophysical implications such as hydrino being a candidate for the identity of 
dark matter and the corresponding emission being the source of high-energy celestial and stellar continuum radiation [88-
94,95,96].  m H  catalyst (Eqs. (5.48-5.61)) was shown to be active in astronomical sources [88].  Hydrogen continua from 
transitions to form hydrinos provides a possible mechanism of linking the temperature and density conditions of the different 
discrete layers of the coronal/chromospheric sources.  EUV spectra of white dwarfs matches the continua for H(1/2), H(1/3), and 
H(1/4), and the 10.1 nm continuum is observed from interstellar medium.  The hydrino continuum radiation matches the diffuse 
ubiquitous EUV and soft X-ray cosmic background [109,111] with the 10.1 nm continuum matching the observed intense 11.0-
16.0 nm band, the radiation source behind the observation that diffuse H  emission is ubiquitous throughout the Galaxy and 
widespread sources of flux shortward of 912 Å  are required [109], and the source of ionization of the interstellar medium (ISM) 
wherein a large component of the baryonic matter of the Universe is in the form of WHIM (warm-hot ionized media) in the 
absence of a conventional source [112,113,115].  Moreover, recent X-ray absorption data reveals that the temperature of galactic 
halo gas is in the range of 86 eV to 215 eV which is in the realm of the energy released for the transition of H to H(1/4) [115].  
Indirect emission from ions of nonthermal origin is a feature of the continuum radiation emitted from hydrino transitions in 
celestial sources as well as hydrogen pinch plasmas at oxidized electrodes and solid fuel plasmas in the laboratory [88]. 

Hydrogen is known to comprise about 95% of the visible matter of the Universe.  Recently, the missing mass has been 
showed to be baryonic rather than strange matter [45] (See Composition of the Universe section).  Astrophysical 
[118,119,128,130] and direct laboratory spectroscopic data [61, 88-94] indicate that the dark matter is also hydrogen, but in a 
lower-energy state.  Thus, it comprises ordinary baryonic matter.  Hydrogen atoms in these states exert a gravitational force, but 
do not resonantly absorb photons.  Lower-energy atomic hydrogen atoms, hydrinos, each have the same mass and a similar 
interaction as the neutron.  According to Steinhardt and Spergel of Princeton University [102], these are the properties of dark 
matter that are necessary in order for the theory of the structure of galaxies to work out on all scales.  Rather than curve fitting 
the peaks corresponding to the anisotropy in the CMBR, the data is predicted due to the time harmonic oscillation of the 
Universe due to the relationship between energy-matter (matter-energy) conversion and spacetime contraction (expansion) 
without requiring that the Universe is almost entirely comprised of exotic unidentified matter.  A classical, closed-form solution 
of the CMBR using physical laws provides a rational alternative explanation to inflation-Big Bang-dark energy-exotic 
nonbaryonic dark matter cosmology. 

Molecular hydrino possesses a magnetic moment and is EPR active [61,151].  Dispersion of molecular hydrino in 
vacuum, gases, or liquids results in self-assembly of web structures (Figure 32.13A).  Assembly mechanisms and natural 
phenomena that demonstrate fractal behavior such as crystal growth, fluid turbulence, and galaxy formation are ubiquitous in 
nature.  The ability of molecular hydrino to self-assemble into webs provides an organizing mechanism to seed first gas clouds, 
galaxies, and then clusters of galaxies into a cosmic web wherein ordinary hydrogen and initially gravitational interactions are 
too weak to provide an organizing mechanism for celestial objects and the cosmic web structure (Figure 32.13B).  In this 
process, the catalysis of H by at least another H to from hydrino with further reaction to molecular hydrino initiates the mass 
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aggregation towards large scale cosmic structure. 
 

Figures 32.13A-B .    A. Molecular hydrino uniquely possesses an unpaired electron resulting in the ability to self-assemble 
into webs due to the corresponding magnetic attractive force.  B.  Fractal growth provides an organizing mechanism to seed first 
gas clouds, galaxies, and then clusters of galaxies into a cosmic web.  (Courtesy of ESA.) 

 

             
 (A) (B) 

 
When the Universe reaches the maximum radius corresponding to the maximum contribution of the amplitude, o , of 

the time harmonic variation in the radius of the Universe, (Eq. (32.150)), it is radiation-filled.  Since the photon has no 
gravitational mass, the radiation is uniform.  As energy converts into matter the power of the Universe may be considered 
negative for the first quarter cycle starting from the point of maximum expansion as given by Eq. (32.161), and spacetime 
contracts according to Eq. (32.140).  The gravitational field from particle production travels as a light wave front.  As the 
Universe contracts to a minimum radius, the gravitational radius given by Eq. (32.147), constructive interference of the 
gravitational fields occurs.  The resulting slight variations in the density of matter are observed from our present r-sphere.  The 
observed radius of expansion is equivalent to the radius of the light sphere with an origin at the time point when the Universe 
stopped contracting and started to expand.   

Consider the effect of the expansion and contraction of the Universe on the unperturbed condition of uniform energy-
matter density and a static Universe.  The radius of the Universe time and spatially oscillates wherein the radius as a function of 
time is given by Eqs. (32.153) and (32.184).  The Universe is a 3-sphere hyperspace of constant positive curvature that expands 
and contracts cyclically in all directions relative to an embedded space-time observer at his r-sphere.  The harmonic oscillation 
of the radius of the Universe and thus its volume gives rise to delays and advances to light spheres of the continuum of r-spheres 
of the Universe that would otherwise propagate at relative velocity c.  The gravitational field from particle production travels as 
a light wave front.  As the radius of the Universe changes constructive interference of the gravitational fields occurs as the 
distance between r-spheres changes such that the fronts are advanced or delayed to interfere with each other.  The resulting slight 
variations in the density of matter are observed from our present r-sphere.  These variations would be observed as spherical 
harmonics corresponding to the spherical contraction and expansion in all directions.  For each r-sphere, the angular variation in 
density corresponds to an angular distribution of the power of the Universe (Eq. (32.161)) and thus the temperature of the 
Universe according to the Stefan-Boltzmann law (Eq. (32.168)).  These angular harmonic temperature variations are 
predominantly unpolarized, but posses a slight E-mode polarization and a lesser and B-mode polarization (Figure 32.14). 
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Figure 32.14.   Color scale temperature variations and temperature variations of the E-mode and B-mode polarization of the 
CMBR of the Universe in degrees K .  Courtesy of NASA, G. Hinshaw, et al. 
 

 
 

The angular variation in temperature is given by the Fourier transform of the observer’s r-sphere temperature over the oscillatory 
period starting at matter formation at the initial time of contraction through the initiation of expansion to the present time in the 
expansion cycle.  The temperature of the Universe at each r-sphere  UT t  as a function of time is given by Eq. (32.168).  The 

present r-sphere corresponds to a radial delta function 
2

1
( ( ) ( ))sphere

sphere

f r r r
r

   having the radius spherer .  The temperature 

variation T  given by the spacetime Fourier transform of  UT t  in three dimensions in spherical coordinates plus time is given 

[152,153] as follows: 
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 (32.190) 

With spherical symmetry [152], 
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where the Fourier wavenumber s  is the multipole moment 
2


  due to the observable angular variations at the observer’s 

(present) r-sphere due to radius, power, area, and temperature oscillations is all directions of the four-dimensional hyperspace of 
constant positive curvature.  The corresponding angular multipole of the radius of the present expansion r-sphere after the half-

period of contraction 
sphere




 is substituted for spherer .  The spherical harmonic parameter sphere  of the interference is given by the 

ratio of the amplitude, o , of the time harmonic variation in the radius of the Universe, (Eq. (32.150)) divided by the observer’s 

present r-sphere radius.  The latter is given by the sum of ct  (the light sphere due to light speed for 
10 310   3.069  10t light years X Mpc  ) and the differential in the radius of the Universe   due to its acceleration is given by 

Eq. (32.189) wherein 


  is given by Eq. (32.155).  As shown in Figure 32.11 the differential in the radius of the Universe   
due to its acceleration is: 
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The radius spherer  of the currently observed Universe is, thus 
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The angular scale or spherical harmonic parameter sphere  is: 
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 UT t  given by Eq. (32.168) is a complicated function of ratios of sums of constants and trigonometric equations to different 

exponents.  However, from Figure 32.9, it can be appreciated that  UT t  during the contraction phase is represented to good 

approximation by the equation: 

    12 10.01 5.98  10UT t X yrs t K    (32.196) 

Substitution of Eqs. (32.195) and (32.196) into Eq. (32.192) with the proper limits on the contraction time and considering the 
incremental solid angle gives: 
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The amplitude of the temperature fluctuations are dependent on the relative areas of the current r-sphere to that of the radius of 
the initiation of contraction.  The scaling factor TsphereC  is given by: 
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Using Eq. (32.199), the correction of the temperature for the current r-sphere area relative to the maximum area gives: 

 ( ) 3sinc  77sinc  
140 140TsphereT C K K
          

   
    (32.200) 

The temperature variation is shifted by the relative position of the current light sphere with the limiting one.  Specifically, the 0  

shift is given by the ratio of the amplitude, o , of the time harmonic variation in the radius of the Universe (Eq. (32.150)), 

divided by the present radius of the light sphere, 10 310   3.069  10ct light years X Mpc  .  Using Eq. (32.199), the shift is given 
by 
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Substitution of the shift given by Eq. (32.201) into Eq. (32.200) gives the temperature variations in degrees K  as a function of 
multipole moment  : 

  ( ) 77sinc 197  
140

T K
     

 
   (32.202) 

for 0 .  A plot of Eq. (32.202) is given in Figure 32.15.  The predictions match the DASI observed amplitude of 77 K  and 
the peaks at 200 , 550 , and 800  with relative intensities of 1, 0.5, and 0.3, respectively [35,154-157].  The plot of the 

corresponding power spectrum comprising spherical harmonic coefficient 
  21

2

C
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 amplitudes as a function of 

multipole   is shown in Figure 32.16.  The power spectrum plot is the square of Eq. (32.202) made positive-definite by first 
adding the corresponding constant to it before squaring.  The amplitude was normalized to 77 K  squared.  The experimental 
power spectrum of WMAP with the data of SPT and ACT [158], and best curve fit comprising spherical harmonic coefficient 
  21

2
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 amplitudes as a function of multipole   for the temperature variations of the CMBR of the Universe is shown 

in Figure 32.16.  There is excellent agreement between the predicted and experimental multipole temperature fluctuation curves. 
 
Figure 32.15.   The temperature variations and temperature variations of the E-mode and B-mode polarization of the CMBR 
of the Universe in degrees K  as a function of multipole moment  .  
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Figures 32.16A-B.   The power spectrum comprising spherical harmonic coefficient 
  21

2

C
K




  
 

 amplitudes as a 

function of multipole   for the temperature variations and temperature variations of the E-mode and B-mode polarization of the 
CMBR of the Universe.  The experimental data points of BICEP2 [159,160] for the E-mode peak at 140  and the B-mode 
peak at 70 , 0.07

0.050.20r 
  are superimposed.  A. Plot over the range 0 2500  .  B. Plot over the range 0 200  . 
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(B) 
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Figure 32.17.   The experimental power spectrum of WMAP with the data of SPT and ACT [158] and best curve fit 

comprising spherical harmonic coefficient 
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K




  
 

 amplitudes as a function of multipole   for the temperature 

variations of the CMBR of the Universe.  Courtesy of NASA, G. Hinshaw, et al. 

 
 

Polarized light is produced as correlation multipoles of the CMBR temperature fluctuations by Thompson scattering of 
the CMBR by stellar and interstellar medium plasma electrons (essentially ionized hydrogen) over the half period of contraction 

11/ 2 4.92  10  earsUT X y  plus the time of expansion 1010  t years .  The phase shift corresponds to an opposite sign of the shift 

of Eq. (32.202), an advance in the cosmic microwave background radiation temperature modulation rather than a delay: 

  E-mode ffThompson( ) 77sinc 197  
140eT C K
     

 
   (32.203) 

wherein 0  and effC  is the Thompson polarization constant that is a small fraction corresponding to the weakness of 

Thompson scattering.  The constant may be calculated from the temperature fluctuations, the blackbody electromagnetic 
radiation spectrum, and the plasma density of the Universe over the cycle from the commencement of contraction to the present 
r-sphere.  The first peak is predicted at 140  which matches that observed by BICEP2 [159,160]. 

The polarization pattern of the Thompson scattered CMBR comprises a curl free component call E-mode since it is 
electric-field-like or gradient-mode with no handedness.  Gravitational lensing causes E-mode polarization to convert to a 
gradient free component call B-mode since it is magnetic-field-like or curl-mode with handedness.  Another mechanism to 
achieve polarized B-mode angular variations in the CMBR is based on the acceleration of the expansion of spacetime.  The 
Universe is matter-filled at the transition time point from contraction to expansion.  Thus, the light sphere propagates into a 
Universe that is much older and larger according to Eq. (32.153) with time equal to the elapsed time from the commencement of 
expansion.  The light sphere expands at light speed, but into spacetime that is accelerating in its expansion.  Due to the 
acceleration of the light-speed propagating light sphere, E-mode light experiences the same spacetime gradients as in the case of 

gravitational lensing; consequently, E-mode is converted to B-mode polarization.  The B-mode radiation is shifted by 
2


 relative 

to the E-mode radiation.  Thus, Eq. (32.203) gives the B-mode radiation pattern as: 

  1/2
B-mode effThompson( ) 77sinc 197 70  

140
T r C K

      
 

   (32.204) 

for 0 .  The first peak is predicted at 70 .  The E-mode polarized radiation should be substantially less intense than 
fluctuations in the CMBR since it is Thompson scattered radiation.  Furthermore, the B-mode radiation should been a fraction of 
the E-mode since the latter is converted from the former.  Consider that the mode conversion by accelerating spacetime is limited 
by the relative extent of the acceleration.  The ratio 1/2r  of the amplitude T  of the B-mode to E-mode components is given by 
the ratio of the differential radius due to acceleration   and the radius due to light sphere expansion ct .  Thus, using Eq. 

(32.193), the ratio 
 
 

1/2 B-mode

-mode

T
r

T E





 is: 

 
 
   

9
  1/2

10

- mode 4.02  10  
0.40

- mode 10   

T B X light years
r

T E ct light years

  
      

 (32.205) 

The ratio r  of the amplitude 2T  of the B-mode to E-mode power spectral components is:  
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Substitution of Eq. (32.206) into Eq. (32.204) gives: 

  B-mode effThompson( ) 31sinc 197 70  
140

T C K
      

 
   (32.207) 

BICEP2 [160] reports a value of 0.07
0.050.20r 
  70  that is in good agreement with predictions.  The plots of the corresponding 

E-mode and B-mode power spectra comprising spherical harmonic coefficient 
  21

2

C
K




  
 

 amplitudes as a function of 

multipole   are shown in Figure 32.16.  The E-mode and B-mode power spectral plots are the square of Eqs. (32.203) and 
(32.207), respectively, each made positive-definite by first adding the corresponding constant to it before squaring.  Each plot 
was normalized by the corresponding squared amplitude of the T  plot.  effThompsonC  can be calculated, but for convenience it 

was taken as the experimental ratio of E-mode ( )T   to ( )T  .  The BICEP2 [160] experimental data points for the E-mode peak at 

140  and the B-mode peak at 70  are shown.  There is excellent agreement between the predicted and experimental 
multipole polarization temperature fluctuation curves. 

The definitive form of the field equations of general relativity follow from the Schwarzschild metric (Eq. (32.38)) and 
can be expressed in terms of the contraction of spacetime by the special relativistic mass of a fundamental particle (Eq. 
(32.140)).  The masses and charges of the fundamental particles are determined by the equations of the transition state atomic 
orbital herein derived where the nonradiative boundary condition and the constancy of the speed of light must hold which 
requires relativistic corrections to spacetime.  Fundamental particles can decay or interact to form an energy minimum.  Thus, 
each stable particle arises from a photon directly or from a decaying particle, which arose from a photon.  The photon, and the 
corresponding fundamental particle, possess   of angular momentum.  Nuclei form as binding energy is released as the atomic 
orbitals of participating nucleons overlap.  Atoms form as the potential energy of the fields of electrons and nuclei is released as 
the fields are partially annihilated.  Molecules form as the energy stored in the fields of atoms is minimized.  Planets and 
celestial bodies form as the gravitational potential energy is minimized.  All of these energies correspond to forces, and the 
equations of the forces are given in the Unification of Spacetime, the Forces, Matter, and Energy section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 32 1576

REFERENCES 
1. E. G. Adelberger, C. W. Stubbs, B. R. Heckel, Y. Su, H. E. Swanson, G. Smith, J. H. Gundlach, Phys. Rev. D, Vol. 42, No. 

10, (1990), pp. 3267-3292. 
2. H. Minkowski’s interpretation of special relativity in terms of a four dimensional space time was presented in the form of a 

lecture in Cologne, Germany in September 1908.  An English translation, entitled “Space and Time,” can be found in the 
collection The Principle of Relativity, Dover, New York, 1952. 

3. V. Fock, The Theory of Space, Time, and Gravitation, The MacMillan Company, (1964), pp. 14-15. 
4. E. Giannetto, The rise of special relativity: Henri Poincaré’s works before Einstein. Atti del 18 Congresso di Storia della 

Fisica e dell’Astronomia, (1998), pp. 171-207, [http://www.brera.unimi.it/old/Atti-Como-98/Giannetto.pdf].  
5. H. Poincaré, “L’etat actuel et l’avenir de la physique mathematique,” Bulletin des sciences mathematiques, Vol. 28, (1904), 

pp.302-324; quoted in Whittaker (1987), p. 30. 
6. E. Whittaker, A History of the Theories of Aether and Electricity, Vol. 2, Modern Theories, Chapter 2, “The Relativity 

Theories of Poincaré and Lorentz,” Nelson, London, (1987), Reprinted, American Institute of Physics, pp. 30–31. 
7. E. Fomalont, S. Kopeikin, “How fast is gravity,” New Scientist, Vol. 177, Issue 2377, Jan. 11, (2003), pp. 32. 
8. L. Z. Fang, and R. Ruffini, Basic Concepts in Relativistic Astrophysics, World Scientific, (1983). 
9. A. Beiser, Concepts of Modern Physics, Fourth Edition, McGraw-Hill Book Company, New York, (1978), pp. 88-89. 
10. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 154-155. 
11. V. Fock, The Theory of Space, Time, and Gravitation,  The MacMillan Company, (1964). 
12. W. K. Clifford, The Common Sense of the Exact Sciences, Mathematical Papers, p. 21, presented to the Cambridge 

Philosophical Society in 1870. 
13. R. M. Wald, General Relativity, University of Chicago Press, Chicago, (1984), pp. 91-101. 
14. N. A. Bahcall, J. P. Ostriker, S. Perlmutter, P. J. Steinhardt, Science, May 28, 1999, Vol. 284, pp. 1481-1488. 
15. R. Lieu, L. W. Hillman, “The phase coherence of light from extragalactic sources—direct evidence against first order Planck 

scale fluctuations in time and space,” Astrophysical Journal Letters, March 10, (2003). 
16. R. Ragazzoni, M. Turatto, W. Gaessler, “The lack of evidence for quantum structure of spacetime at Planck scales,” 

Astrophysical Journal, April 10, (2003), Vol. 587, L1-L4. 
17. V. Fock, The Theory of Space, Time, and Gravitation, The MacMillan Company, (1964), pp. 209-215. 
18. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley & 

Sons, New York, (1972), Sect. 11/7, pp. 335 ff. 
19. L. P. Eisenhart, Riemannian Geometry, Princeton: Princeton University Press, (1949). 
20. D. Lovelock, “The Four Dimensionality of Space and the Einstein Tensor,” J. Math. Phys., Vol. 13, (1972), pp. 874-876. 
21. R. M. Wald, General Relativity, University of Chicago Press, Chicago, (1984), Chp. 9 and Chp. 14. 
22. A. Linde, “The Self Reproducing Inflationary Universe,” Scientific American Presents, Spring (1998), Vol. 9 pp. 98-104. 
23. I. Levine, Physical Chemistry, McGraw-Hill Book Company, (1978). 
24. T. Gold, Am. J. Phys., 30, 403 (1962). 
25. R. S. Casella, Phys. Rev. Lett., 21, 1128 (1968). 
26. R. S. Casella, Phys. Rev. Lett., 22, 554 (1969). 
27. Y. Ne’eman, Int. J. Theoret.  Phys., 3, 1 (1970). 
28. W. L. Freeman, et. al., Nature, 371, pp. 757-762, (1994). 
29. W. L. Freeman et. al., “Final Results from the Hubble Space Telescope Key Project to measure the Hubble constant,” 

Astrophysical Journal, Vol. 553, May 20, (2001), pp. 47-72. 
30. R. F. Mushotzky, Meeting of the American Astronomical Society, Phoenix, AZ, (January 4, 1994). 
31. D. N. Schramm, Physics Today, April, (1983), pp. 27-33. 
32. S. W. Hawking, A Brief History of Time, Bantam Books, Toronto, (1988), p. 11. 
33. J. C. Mather, et. al., The Astrophysical Journal, 354, L37-L40, (1990). 
34. A. Beiser, Concepts of Modern Physics, Fourth Edition, McGraw-Hill Book Company, New York, (1978), pp. 329-339. 
35. N. W. Halverson, E. M. Leitch, C. Pryke, J. Kovac, J. E. Carlstrom, W. L. Holzapfel, M. Dragovan, J. K. Cartwright, B. S. 

Mason, S. Padin, T. J. Pearson, M. C. Shepard, and A. C. S. Readhead, “DASI first results: a measurement of the cosmic 
microwave background angular power spectrum,” arXiv:astro-ph/0104489, 30 April, (2001). 

36. R. Lieu, J. P. D. Mittaz, S-N Zhang, “The Sunyaev-zel’dovich effect in a sample of 31 clusters: a comparison between the X-
ray predicted and WMAP observed cosmic microwave background temperature decrement,” The Astrophysical Journal, Vol. 
648, (2006), pp. 176-199. 

37. Science, Vol. 279, Feb., (1998), pp. 1298-1299. 
38. Science News, Vol. 153, May, (1998), p. 344. 
39. Science News, Vol. 154, October 31, (1998), p. 277. 
40. R. M. Wald, General Relativity, University of Chicago Press, Chicago, (1984), pp. 114-116. 
41. P. J. E. Peebles, J. Silk, Nature, Vol. 346, July, 19, (1990), p. 233-239. 
42. Personal communication, Dr.-Ing. Günther Landvogt, Hamburg, Germany, January, (2003). 
43. M. Davis, et. al., Nature, 356, (1992), pp. 489-493. 
44. K. A. Olive, D. N. Schramm, G. Steigman, and T. P. Walker, Phys. Lett., B236, (1990), pp. 454-460. 



Gravity 1577

45. F. Nicastro, A. Zezas, M. Elvis, S. Mathur, F. Fiore, C. Cecchi-Pestellini, D. Burke, J. Drake, P. Casella, “The far-ultraviolet 
signature of the ‘missing’ baryons in the local group of galaxies,” Nature, Vol. 421, No. 13, pp. 719-721. 

46. D. Stern, H. Spinrad, P. Eisenhardt, A. J. Bunker, S. Dawson, S. A. Stanford, R. Elston, “Discovery of a color-selected 
quasar at 5.5z  ,” Astrophysical Journal, Vol. 533, April 20, (2000), pp. L75-L78. 

47. X. Fan, et al., “A survey of 5.8z   quasars in the Sloan Digital Sky Survey I: discovery of three new quasars and the spatial 
density of luminous quasars at 6z  ,” Astrophysical Journal, December, (2001). 

48. M. Chown, “Astronomers claim dark matter breakthrough,” NewScientist.com, Oct. 3, (2003), http://www.newscientist.com/ 
article/dn4214-astronomers-claim-dark-matter-breakthrough.html. 

49. C. Boehm, D. Hooper, J. Silk, M. Casse, J. Paul, “MeV dark matter: Has it been detected,” Phys. Rev. Lett., Vol. 92, (2004), 
p. 101301. 

50. Hurley, K., et. al., Nature, 372, (1994), pp. 652-654. 
51. National Aeronautics and Space Administration, Goddard Space Flight Center, Fermi Gamma-ray Space Telescope, 

“Overview of GRB spectral analysis”, 
https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_GRBs/Overview_GRB_Spec_Anal.html. 

52. G. Share, R. Murphy, “Solar Gamma-Ray Line Spectroscopy - Physics of a Flaring Star”, Part 4: High Energy Phenomena in 
Sun and Stars, Symposium - International Astronomical Union, Vol. 219: Stars as Suns : Activity, Evolution and Planets, 
(2004), pp. 133 – 144; DOI: https://doi.org/10.1017/S0074180900182051. 

53. N. Wolchover, “The Sun Is Stranger Than Astrophysicists Imagined”, Quanta Magazine, May 1, 2019, 
https://www.quantamagazine.org/gamma-ray-data-reveal-surprises-about-the-sun-20190501/. 

54. T. Van Flandern, “The Speed of Gravity—What the Experiments Say,” Physics Letters A, 250 (1998), pp. 1-11. 
55. R. Cowen, Science News, May 9, (1998), p. 292. 
56. M. Chown, New Scientist, May 10, (1997), p. 21. 
57. B. Schwarzschild, Physics Today, Vol. 51, No. 10, October, (1998), pp. 19-21. 
58. G. Taubes, “Pattern emerges in cosmic ray mystery,” Science, News Series, Vol. 262, No. 5140, (Dec. 10, 1993), p. 1649. 
59. D. J. Bird, et al., “Evidence for correlated changes in the spectrum and composition of cosmic rays at extremely high 

energies,” Physical Review Letters, Vol. 71, No. 21, (1993), pp. 3401-3404. 
60. F. Harrison, “An ultraluminous X-ray source powered by an accrediting neutron star”, Nature, (2014), 

dx.doi.org/10.1038/nature13791189. 
61. R. Mills, Hydrino States of Hydrogen, (2023), https://brilliantlightpower.com/pdf/Hydrino_States_of_Hydrogen.pdf. 
62. Ackermann, M.; et al. (2013). “Detection of the characteristic pion-decay signature in supernova remnants”. Science. 339 

(6424): 807–811. arXiv:1302.3307. Bibcode:2013Sci…339..807A. doi:10.1126/science.1231160. PMID 23413352. S2CID 
29815601. 

63. CERN, “Cosmic rays from outer space”, https://home.cern/science/physics/cosmic-rays-particles-outer-
space#:~:text=He%20had%20discovered%20cosmic%20rays,the%20way%20up%20to%20uranium. 

64. IceCube MasterClass, “Cosmic-ray energy spectrum”, https://masterclass.icecube.wisc.edu/en/analyses/cosmic-ray-energy-
spectrum#:~:text=The%20energy%20spectrum%20of%20cosmic,very%20high%20energy%20cosmic%20rays. 

65. J.K. Webb et al. (1999). "Search for Time Variation of the Fine Structure Constant".  Physical Review Letters82 (5): 884–
887.  arXiv:astro-ph/9803165.  Bibcode:1999PhRvL..82..884W.  doi:10.1103/PhysRevLett.82.884. 

66. M.T. Murphy et al. (2001). "Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, 
analysis and results". Monthly Notices of the Royal Astronomical Society327 (4): 1208. arXiv:astro-ph/0012419. 
Bibcode:2001MNRAS.327.1208M. doi:10.1046/j.1365-8711.2001.04840.x. 

67. J.K. Webb et al. (2001). "Further Evidence for Cosmological Evolution of the Fine Structure Constant".Physical Review 
Letters87 (9): 091301. arXiv:astro-ph/0012539. Bibcode:2001PhRvL..87i1301W. doi:10.1103/PhysRevLett.87.091301. 
PMID 11531558. 

68. M.T. Murphy, J.K. Webb, V.V. Flambaum (2003). "Further Evidence for a Variable Fine-Structure Constant from 
Keck/HIRES QSO Absorption Spectra". Monthly Notices of the Royal Astronomical Society345 (2): 609. arXiv:astro-
ph/0306483.Bibcode:2003MNRAS.345..609M. doi:10.1046/j.1365-8711.2003.06970.x. 

69. L. Farrarese, D. Merritt, Astrophysical Journal, Vol. 539, (2000) p. L9. 
70. K. Gebhardt, et al., Astrophysical Journal, Vol. 539, (2000) p. L13. 
71. S. Flamsteed, Discover, Vol. 16, Number 3, March, (1995), pp. 66-77. 
72. J. Glanz, Science, Vol. 273, (1996), p. 581. 
73. http://www.eurekalert.org/pub_releases/2004-01/ci-ogi010504.php. 
74. http://www.eurekalert.org/pub_releases/2004-01/nsf-ase010804.php. 
75. http://www.gemini.edu/gdds/. 
76. K. Glazebrook, R. G. Abraham, P. J. McCarthy, S. Savaglio, H-W Chen , D. Crampton, R. Murowinski, I. Jorgensen, K. 

Roth, I. Hook, R. O. Marzke, R. G. Carlberg, “A high abundance of massive galaxies 3-6 billion years after the Big Bang,” 
Nature, Vol. 430, (2004) pp. 181-184. 

77. A. Cimatti, E. Daddi, A. Renzini, P. Cassata, E. Vanzella, L. Pozzetti, S. Cristiani, A. Fontana, G. Rodighiero, M. Mignoli, 
G. Zamorani, “Old galaxies in the young Universe,” Nature, Vol. 430, (2004), pp. 184-187. 



Chapter 32 1578

78. D. Stark, R. S. Ellis, J. Richard, J-P. Kneib, G. P. Smith, M. R. Santos, “A Keck survey for gravitationally lensed Ly  
emitters in the redshift range 8.5 < z < 10.4: New constraints on the contribution of low-luminosity sources to cosmic 
reionization,” The Astrophysical Journal, Vol. 663, No. 10, (2007), pp. 10-28. 

79. X. Wu, F. Wang, X. Fan, W. Yi, W. Zuo, F. Bian, L. Jiang, I. D. McGreer, R. Wang, J. Yang, Q. Yang, D. Thompson, Y. 
Beletsky, “An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30”, Nature, Vol. 518, (2015), 
(7540): 512 DOI: 10.1038/nature14241. 

80. D. Watson, L. Christensen, K .K. Knudsen, J. Richard, A. Gallazzi, M. J. Michalowski, "A dusty, normal galaxy in the epoch 
of reionization", Nature, March 2,(2015); http://dx.doi.org/10.1038/nature14164. 

81. B. Lewis, “James Webb telescope discovers the 4 oldest galaxies in the universe, born just 300 million years after the Big 
Bang”, LiveScience, April 2, 2023, https://www.livescience.com/james-webb-telescope-discovers-the-4-oldest-galaxies-in-
the-universe-born-just-300-million-years-after-the-big-bang. 

82. H. Devlin, “James Webb telescope detects evidence of ancient ‘universe breaker’ galaxies”, Guardian, February 22, 2023, 
https://www.theguardian.com/science/2023/feb/22/universe-breakers-james-webb-telescope-detects-six-ancient-galaxies. 

83. B. Specktor, “James Webb telescope discovers 2 of the oldest galaxies in the universe”, LiveScience, November 22, 2023, 
https://www.livescience.com/space/astronomy/james-webb-telescope-discovers-2-of-the-oldest-galaxies-in-the-universe. 

84. B. Wang, et al, “UNCOVER: Illuminating the Early Universe—JWST/NIRSpec Confirmation of z > 12 Galaxies”, The 
Astrophysical Journal Letters, Vol. 957, (2023), p. L34, DOI 10.3847/2041-8213/acfe07, 
https://iopscience.iop.org/article/10.3847/2041-8213/acfe07. 

85. R. Lea, “Universe's oldest X-ray-spitting quasar could reveal how the biggest black holes were born”, LiveScience, 
November 8, 2023, https://www.livescience.com/space/black-holes/universes-oldest-x-ray-spitting-quasar-could-reveal-how-
the-biggest-black-holes-were-born. 

86. B. Turner, “James Webb Space Telescope discovers oldest black hole in the universe — a cosmic monster 10 million times 
heavier than the sun”, LiveScience, April 5, 2023, /www.livescience.com/james-webb-space-telescope-discovers-oldest-
black-hole-in-the-universe-a-cosmic-monster-ten-million-times-heavier-than-the-sun. 

87. J. Thompson, “James Webb Space Telescope discovers oldest organic molecules in the known universe, 12 billion light-
years from Earth”, LiveScience, June 7, 2023, https://www.livescience.com/space/cosmology/james-webb-space-telescope-
discovers-oldest-organic-molecules-in-the-known-universe-12-billion-light-years-from-earth. 

88. R. Mills, Y. Lu, R. Frazer, “Power Determination and Hydrino Product Characterization of Ultra-low Field Ignition of 
Hydrated Silver Shots”, Chinese Journal of Physics, Vol. 56, (2018), pp. 1667-1717. 

89.  R. L. Mills, Y. Lu, “Hydrino continuum transitions with cutoffs at 22.8 nm and 10.1 nm,” Int. J. Hydrogen Energy, 35 
(2010), pp. 8446-8456, doi: 10.1016/j.ijhydene.2010.05.098. 

90. R. L. Mills, Y. Lu, K. Akhtar, “Spectroscopic observation of helium-ion- and hydrogen-catalyzed hydrino transitions,” Cent. 
Eur. J. Phys., 8 (2010), pp. 318-339, doi: 10.2478/s11534-009-0106-9. 

91. R. L. Mills, Y. Lu, “Time-resolved hydrino continuum transitions with cutoffs at 22.8 nm and 10.1 nm,” Eur. Phys. J. D, 
Vol. 64, (2011), pp. 65, DOI: 10.1140/epjd/e2011-20246-5. 

92. R. L. Mills, R. Booker, Y. Lu, “Soft X-ray Continuum Radiation from Low-Energy Pinch Discharges of Hydrogen,” J. 
Plasma Physics, Vol. 79, (2013), pp 489-507; doi: 10.1017/S0022377812001109. 

93. A. Bykanov, “Validation of the observation of soft X-ray continuum radiation from low energy pinch discharges in the 
presence of molecular hydrogen,” http://www.blacklightpower.com/wp-content/uploads/pdf/GEN3_Harvard.pdf. 

94. R. Mills, J. Lotoski, Y. Lu, “Mechanism of soft X-ray continuum radiation from low-energy pinch discharges of hydrogen 
and ultra-low field ignition of solid fuels”, Plasma Science and Technology, Vol. 19, (2017), pp. 1-28. 

95. M. A. Barstow and J. B. Holberg, Extreme Ultraviolet Astronomy, Cambridge Astrophysics Series 37, Cambridge University 
Press, Cambridge, (2003). 

96. R. Stern, S. Bowyer, “Apollo-Soyuz survey of the extreme-ultraviolet/soft X-ray background”, Astrophys. J., Vol. 230, 
(1979), pp. 755-767. 

97. W. Sanders, et. al. Nature, 349, (1991), pp. 32-38. 
98. R. P. Kirshner, A. J. Oemler, P. L. Schecter, and A. S. Schectman, AJ, (1983), 88,1285. 
99. V. de Lapparent, V., M. J. Geller, and J. P. Huchra, ApJ, (1988), 332, 44. 
100. A. Dressler, et. al., (1987), Ap. J., 313, L37. 
101. S. A. Thomas, F. B. Abdalla, O. Lahav, “Excess clustering on large scales in the MegaZ DR7 Photometric Redshift 

Survey”, Physical Review Letters, Vol. 106, (2011), pp. 241301-1-24310-4.  
102. G. Musser, Scientific American, May, (2000), p. 24. 
103. M. A. Barstow and J. B. Holberg, Extreme Ultraviolet Astronomy, Cambridge Astrophysics Series 37, Cambridge 

University Press, Cambridge, (2003), Chp 8. 
104. M. Stix, The Sun, Springer-Verlag, Berlin, (1991), Figure 9.5, p. 321. 
105. Phillips, J. H., Guide to the Sun, Cambridge University Press, Cambridge, Great Britain, (1992), pp. 126-127. 
106. M. Stix, The Sun, Springer-Verlag, Berlin, (1991), pp. 351-356. 
107. http://nobelprize.org/nobel_prizes/physics/articles/bahcall/. 
108. N. Craig, M. Abbott, D. Finley, H. Jessop, S. B. Howell, M. Mathioudakis, J. Sommers, J. V. Vallerga, R. F. Malina, 

“The Extreme Ultraviolet Explorer stellar spectral atlas”, The Astrophysical Journal Supplement Series, Vol. 113, (1997), pp. 
131-193. 



Gravity 1579

109. S. Labov, S. Bowyer, "Spectral observations of the extreme ultraviolet background", The Astrophysical Journal, 371, 
(1991), pp. 810-819. 

110. A. F. H. van Gessel, Masters Thesis: EUV spectroscopy of hydrogen plasmas, April (2009), Eindhoven University of 
Technology, Department of Applied Physics, Group of Elementary Processes in Gas Discharges, EPG 09-02, pp. 61-70. 

111. S. Bower, G. Field, and J. Mack, "Detection of an anisotrophic soft X-ray background flux," Nature, Vol. 217, (1968), p. 
32. 

112. C. W. Danforth, J. M. Shull, “The low-z intergalactic medium.  III. H I and metal absorbers at z<0.4”, The Astrophysical 
Journal, Vol. 679, (2008), pp. 194-219. 

113. N. Werner, A. Finoguenov, J. S. Kaastra, A. Simionescu, J. P. Dietrich, J Vink, H. Böhringer, “Detection of hot gas in 
the filament connecting the clusters of galaxies Abell 222 and Abell 223”, Astronomy & Astrophysics Letters, Vol. 482, 
(2008), pp. L29-L33. 

114. E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M. Loewenstein, S. W. Randall, “Detection of an unidentified 
emission line in the stacked X-Ray spectrum of galaxy clusters,” The Astrophysical Journal,Volume 789, Number 1, (2014). 

115. A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, J. Franse, “An unidentified line in X-ray spectra of the Andromeda galaxy 
and Perseus galaxy cluster,” (2014), arXiv:1402.4119 [astro-ph.CO]. 

116. S. Bowyer, J. J. Drake, S. Vennes, “Extreme ultraviolet spectroscopy”, Ann. Rev. Astron. Astrophys., Vol. 38, (2000), 
pp. 231-288. 

117. A. Gupta, S. Mathur, Y. Krongold, F. Nicastro, M. Galeazzi, “A huge reservoir of ionized gas around the Milky Way: 
Accounting for the missing mass?” The Astrophysical Journal Letters, Volume 756, Number 1, (2012), P. L8, 
doi:10.1088/2041-8205/756/1/L8. 

118. F. Bournaud, P. A. Duc, E. Brinks, M. Boquien, P. Amram, U. Lisenfeld, B. Koribalski, F. Walter, V. Charmandaris, 
“Missing mass in collisional debris from galaxies”, Science, Vol. 316, (2007), pp. 1166–1169. 

119. B. G. Elmegreen, "Dark matter in galactic collisional debris", Science, Vol. 316, (2007), pp. 32-33. 
120. P. Jean, et al., “Early SPI/INTEGRAL measurements of 511 keV line emission from the 4th quadrant of the Galaxy”, 

Astron, Astrophys., Vol. 407, (2003), pp. L55-L58. 
121. M. Chown, “Astronomers claim dark matter breakthrough,” NewScientist.com, Oct. 3, (2003), 

http://www.newscientist.com/ article/dn4214-astronomers-claim-dark-matter-breakthrough.html. 
122. C. Boehm, D. Hooper, J. Silk, M. Casse, J. Paul, “MeV dark matter: Has it been detected,” Phys. Rev. Lett., Vol. 92, 

(2004), p. 101301. 
123. G. H. Share, “Recent results on celestial gamma radiation from SMM”, Advances in Space Research, Vol.11, Issue 8, 

(1991), pp. 85-94. 
124. G. H. Share, R. L. Kinzer, D. C. Messina, W. R. Purcell, E. L. Chupp, D. J. Forrest, E. Rieger, “Observations of galactic 

gamma-radiation with the SMM spectrometer”, Advances in Space Research, Vol. 6, Issue 4, (1986), pp. 145-148. 
125. B. Kozlovsky, R. E. Lingenfelter, R. Ramaty, “Positrons from accelerated particle interactions,” The Astrophysical 

Journal, Vol. 316, (1987), pp. 801-818. 
126. E. P. Mazets, S. V. Golenetskii, V. N. Il’inskii, R. L. Aptekar’, Y. A. Guryan, “Observations of a flaring X-ray pulsar in 

Dorado,” Nature, Vol. 282, No. 5739, (1979), pp. 587-589. 
127. G. H. Share, E. L. Chupp, D. J. Forrest, E. Rieger in Positron and Electron Pairs in Astrophysics, ed. M. L. Burns, A. K. 

Harding, R. Ramaty, “Positron annihilation radiation from Solar flares”, (1983), New York: AIP, pp. 15-20. 
128. M. J. Jee, et al., “Discovery of a ringlike dark matter structure in the core of the galaxy cluster C1 0024+17,” 

Astrophysical Journal, Vol. 661, (2007), pp. 728-749. 
129. R. L. Mills, The Grand Unified Theory of Classical Quantum Mechanics, November 1995 Edition, HydroCatalysis 

Power Corp., Malvern, PA, Library of Congress Catalog Number 94-077780, ISBN number ISBN 0-9635171-1-2, Chp. 22. 
130. M. J. Jee, A. Mahdavi, H. Hoekstra, A. Babul, J. J. Dalcanton, P. Carroll, P. Capak, “A study of the dark core in A520 

with the Hubble Space Telescope: The mystery deepens,” Astrophys. J., Vol. 747, No.96, (2012), pp. 96-103. 
131. D. S. Akerib, et al., “First results from the LUX dark matter experiment at the Stanford Underground Research Facility”, 

(2014), http://arxiv.org/abs/1310.8214. 
132. G. Agakishiev, A. Balanda, D. Belver, A. Belyaev, J.C. Berger-Chen, A. Blanco, M. Böhmer, J.L. Boyard, P. Cabanelas, 

S. Chernenko, A. Dybczak, E. Epple, L. Fabbietti, O. Fateev, P. Finocchiaro, P. Fonte, J. Friese, I. Fröhlich, T. Galatyuk, 
J.A. Garzón, R. Gernhäuser, K. Göbel, M. Golubeva, D. González-Díaz, F. Guber, M. Gumberidze, T. Heinz, T. Hennino, R. 
Holzmann, A. Ierusalimov, I. Iori, A. Ivashkin, M. Jurkovic, B. Kämpfer, T. Karavicheva, I. Koenig, W. Koenig, B.W. Kolb, 
G. Kornakov, R. Kotte, A. Krása, F. Krizek, R. Krücken, H. Kuc, W. Kühn, A. Kugler, A. Kurepin, V. Ladygin, R. Lalik, S. 
Lang, K. Lapidus, A. Lebedev, T. Liu, L. Lopes, M. Lorenz, L. Maier, A. Mangiarotti, J. Markert, V. Metag, B. Michalska, J. 
Michel, C. Müntz, L. Naumann, Y.C. Pachmayer, M. Palka, Y. Parpottas, V. Pechenov, O. Pechenova, V. Petousis, J. 
Pietraszko, W. Przygoda, B. Ramstein, A. Reshetin, A. Rustamov, A. Sadovsky, P. Salabura, T. Scheib, H. Schuldes, A. 
Schmah, E. Schwab, J. Siebenson, Yu.G. Sobolev, S. Spataro, B. Spruck, H. Ströbele, J. Stroth, C. Sturm, A. Tarantola, K. 
Teilab, P. Tlusty, M. Traxler, R. Trebacz, H. Tsertos, T. Vasiliev, V. Wagner, M. Weber, C. Wendisch, J. Wüstenfeld, S. 
Yurevich, Y. Zanevsky, “Searching a dark photon with HADES”, Physics Letters B, Vol. 731, (2014), p. 265 DOI: 
10.1016/j.physletb.2014.02.035. 

133. W. McC. Siebert, Circuits, Signals, and Systems, The MIT Press, Cambridge, Massachusetts, (1986), pp. 597-603. 
134. S. D. Landy, Scientific American, June, (1999), pp. 38-45. 



Chapter 32 1580

135. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 57-60. 
136. C. Willott, “A monster in the early Universe,” Nature, Vol. 474, (2011), pp.583-584. 
137. D.J. Mortlock,et al., “A luminous quasar at a redshift of z=7.085,” Nature, Vol. 474, (2011), pp. 616-619. 
138. G. Musser, Scientific American, Vol. 278, No. 3, March, (1998), p. 18. 
139. P. de Bernardis, et al., A flat universe from high-resolution maps of the cosmic microwave background radiation, 

Nature,Vol. 404, (2000), p. 955; http://cmb.phys.cwru.edu/boomerang. 
140. K. Sawyer, “Supernova observations bolster dark energy theory,” April 3, (2001), washingtonpost.com. 
141. A. G. Riess, et. al. “The farthest known supernova: support for an accelerating universe and a glimpse of the epoch of 

deceleration,” Astrophysical Journal, Vol. 560, (2001), pp. 49-71. 
142. B. P. Abbott, R Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen, R. S. Amin, S. B. Anderson, W. G. Anderson, M. A. 

Arain; et al., "LIGO: the Laser Interferometer Gravitational-Wave Observatory," Rep. Prog. Phys. 72 (2009) 076901 (25pp). 
143. P. Shawhan, “Gravitational-wave astronomy: observational results and their impact,” Class. Quantum Grav., Vol. 27 

(2010) 084017 (14 pp). 
144. J. H. Phillips, Guide to the Sun, Cambridge University Press, Cambridge, Great Britain, (1992), pp. 58-67. 
145. A. Davidsen, et al., “Test of the decaying dark matter hypothesis using the Hopkins ultraviolet telescope,” Nature, 351, 

(1991), pp. 128-130. 
146. W. Milan, “Shall the WIMPs Inherit the Universe,” SPACE.com, 28, February, 2000, 

http://space.com/scienceastronomy/ generalscience/dark_matter_000228.html. 
147. R. Abusaidi, et al., “Exclusion limits on the WIMP-nucleon cross section from the cryogenic dark matter search,” 

Physical Review Letters, Vol. 84, No. 25, 19, June, (2000), pp. 5699-5703. 
148. E. Gibney, “Dark-matter hunt fails to find the elusive particles, ”Nature, Vol. 551, (2017), pp. 153–154, 

doi:10.1038/551153a. 
149. E. Aprile et al., “First Dark Matter Search Results from the XENON1T Experiment,” Phys. Rev. Lett., Vol. 119, (2017), 

pp. 181301-1-181301-6. 
150. M. G. Aartsen et al. (IceCube Collaboration), “Searches for Sterile Neutrinos with the IceCube Detector,” Phys. Rev. 

Lett., Vol. 117, (2016), pp. 071801-1-071801-9. 
151. Wilfred R. Hagen, Randell L. Mills, “Electron Paramagnetic Resonance Proof for the Existence of Molecular Hydrino”, 

Vol. 47, No. 56, (2022), pp. 23751-23761; https://www.sciencedirect.com/science/article/pii/S0360319922022406. 
152. R. N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill Book Company, New York, (1978), pp. 

252-253. 
153. W. McC. Siebert, Circuits, Signals, and Systems, The MIT Press, Cambridge, Massachusetts, (1986), p. 415. 
154. B. R. Oppenheimer, N. C. Hambly, A. P. Digby, S. T. Hodgkin, and D. Saumon, “Direct detection of galactic halo dark 

matter,” Science, Vol. 292, 27, April, (2000), pp. 698-702. 
155. M. Zaldarriaga, “Background comes to the fore,” Nature, Vol. 420, No. 6917, (2002), pp. 747-748. 
156. E. M. Leitch, J. M. Kovac, C. Pryke, J. E. Carlstrom, N. W. Halverson, W. L. Holzapfel, M. Dragovan, B. Reddall, E. S. 

Sandberg, “Measurement of the polarization with the Degree Angular Scale Interferometer,” Nature, Vol. 420, No. 6917, 
(2002), pp. 763-771. 

157. J. M. Kovac, E. M. Leitch, C. Pryke, J. E. Carlstrom, N. W. Halverson, W. L. Holzapfel, “Detection of polarization in the 
cosmic microwave background using DASI,” Nature, Vol. 420, No. 6917, (2002), pp. 772-787. 

158. G. Hinshaw, et al., “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological 
parameters results”, The Astrophysical Journal Supplement Series, Vol. 208. No.19, (2013), pp. 1-25. 

159. H. C. Chiang, P. A. R. Ade, D. Barkats, J. O. Battle, E. M. Bierman, J. J. Bock, C. D. Dowell, L. Duband, E. F. Hivon, 
W. L. Holzapfel, V. V. Hristov, W. C. Jones, B. G. Keating, J. M. Kovac, C. L. Kuo, A. E. Lange, E. M. Leitch, P. V. 
Mason, T. Matsumura, H. T. Nguyen, N. Ponthieu, C. Pryke, S. Richter, G. Rocha, C. Sheehy, Y. D. Takahashi, J. E. Tolan, 
K. W. Yoon, “Measurement of cosmic microwave background polarization power spectra from two years of BICEP data”, 
The Astrophysical Journal, Vol. 711, pp. 1123-1140.  

160. Bicep2 Collaboration – P. A. R. Ade, R. W. Aikin, D. Barkats, S. J. Benton, C. A. Bischoff, J. J. Bock, J. A. Brevik, I. 
Buder, E. Bullock, C. D. Dowell, L. Duband, J. P. Filippini, S. Fliescher, S. R. Golwala, M. Halpern, M. Hasselfield, S. R. 
Hildebrandt, G. C. Hilton, V. V. Hristov, K. D. Irwin, K. S. Karkare, J. P. Kaufman, B. G. Keating, S. A. Kernasovskiy, J. 
M. Kovac, C. L. Kuo, E. M. Leitch, M. Lueker, P. Mason, C. B. Netterfield, H. T. Nguyen, R. O’Brient, R. W. Ogburn IV, 
A. Orlando, C. Pryke, C. D. Reintsema, S. Richter, R. Schwarz, C. D. Sheehy, Z. K. Staniszewski, R. V. Sudiwala, G. P. 
Teply, J. E. Tolan, A. D. Turner, A. G. Vieregg, C. L. Wong, K. W. Yoon, “Bicep2 I: Detection of  B-mode polarization at 
degree angular scales, http://arxiv.org/pdf/1403.3985.pdf.  

 
 



 1579

 
Chapter 33 
  
UNIFICATION OF SPACETIME, THE FORCES, MATTER, 
AND ENERGY 
  
 
 
 
 
RELATIONSHIP OF SPACETIME AND THE FORCES 
Spacetime has an intrinsic impedance of  .  It provides a limiting speed of c  for the propagation of any wave, including 
gravitational and electromagnetic waves.  It further provides fields that match boundary conditions.  Matter/energy acts on 
spacetime and spacetime acts on matter/energy.  Thus, a spatial two-dimensional manifold of matter results in a gravitational 
field in spacetime; a three-dimensional spacetime manifold of current gives rise to a magnetic field in spacetime; a spatial two-
dimensional manifold of charge gives rise to an electric field in spacetime.  Thus, General Relativity and Maxwell’s Equations 
are valid on any scale.  Furthermore, the existence of matter with a determined mass as a three-dimensional spacetime manifold 
that is charged maximizes the volume of spacetime to the surface area of matter.  This gives an energy minimum of the resulting 
gravitational, electric, and magnetic fields. 

Matter/energy are interchangeable and are, in essence, the same entity with different boundary values imposed by 
spacetime where the matter/energy has a reaction effect on spacetime.  The intricacy of the action/reaction is evident in that all 
matter/energy obeys the four-dimensional wave equation, and the magnetic, electric, photonic, and gravitational fields can be 
derived as boundary value problems of the wave equation of spacetime where space provides the respective force fields for the 
matter/energy.  That spacetime is four-dimensional is evident because the fundamental forces of gravity and electric attraction 
which are time dependent have a one-over-distance-squared relationship.  This relationship is equivalent to the distance 
dependence of the area of a spherically symmetric wavefront which carries the forces.  The force at the wavefront is nonradial 
and has an inverse r-dependence, traveling at the limiting speed of light provided by spacetime in accordance with Special 
Relativity. 

The action/reaction relationships of the third fundamental force, the mechanical force, are given by Newton’s Laws.  
They provide the motion of matter including charged matter, which can give rise to gravitational, magnetic, and photonic fields.  
The action/reaction provided by forces in one inertial frame is given in a different inertial frame by the Lorentz transformations 
of Special Relativity, which are valid for Euclidean spacetime and are a consequence of the limiting speed of light.  For example, 
the magnetic field in one inertial frame is given as electric field in another inertial frame as a consequence of their relative 
motion.  The presence of matter causes the geometry of spacetime to deviate from Euclidean, which is manifest as a gravitational 
field.  The gravitational equation is derived for all scales from the present atomic orbital model where spacetime is Riemannian. 

The provision of the equivalence of inertial and gravitational mass by the CP theory of fundamental particles permits the 
correct derivation of the General Theory.  And, the former provision of the two-dimensional nature of matter permits the 
unification of atomic, subatomic, and cosmological gravitation.  The unified theory of gravitation is derived by first establishing 
a metric. 

A space in which the curvature tensor has the following form: 
 , ( )R K g g g g        (33.1) 

is called a space of constant curvature; it is a four-dimensional generalization of Friedmann-Lobachevsky space.  The constant 
K  is called the constant of curvature.  The curvature of spacetime will be shown to result from a discontinuity of matter having 
curvature confined to two spatial dimensions.  This is the property of all matter as an atomic orbital.  Consider an isolated 
atomic orbital and radial distances, r , from its center.  For r  less than nr  there is no mass; thus, spacetime is flat or Euclidean.  

The curvature tensor applies to all space of the inertial frame considered; thus, for r  less than nr , 0K  .  At nr r  there exists a 

discontinuity of mass of the atomic orbital.  This results in a discontinuity of the curvature tensor for radial distances greater than 
or equal to nr .  The discontinuity requires relativistic corrections to spacetime itself.  It requires radial length contraction and 
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time dilation that results in the curvature of spacetime.  The gravitational radius gr  of the atomic orbital and infinitesimal 

temporal displacement in spacetime, which is curved by the presence of the atomic orbital, are derived in the Gravity section. 
The Schwarzschild metric gives the relationship whereby matter causes relativistic corrections to spacetime that 

determines the curvature of spacetime and is the origin of gravity.  The separation of proper time between two events x  and 
x dx   given by the Schwarzschild metric is: 
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Eq. (33.2) can be reduced to Newton’s Law of Gravitation for 
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where G  is the Newtonian gravitational constant.  Eq. (33.2) relativistically corrects Newton’s gravitational theory.  In an 
analogous manner, Lorentz transformations correct Newton’s Laws of Mechanics. 
 
Maxwell’s Equations give the electromagnetic forces: 
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Maxwell’s Integral Laws in Free Space are: 
 Ampere’s Law 
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Power flow is governed by the Poynting power theorem: 
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Newtonian mechanics gives mechanical forces for v c : 
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Special Relativity applies when v  approaches c: 
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where the subscript denotes the value in the rest frame. 
 
The following equations are boundary conditions: 
 1 12 ( ) 2 n nnr r n       (33.17) 

 where  
 1  is the allowed wavelength for 1n   

 1r  is the allowed radius for 1n   

 For pair production: 
  n   
 For hydrogen: 
 1, 2,3, 4,...n   
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The weak and strong nuclear forces are discussed in the Weak Nuclear Force: Beta Decay of the Neutron section and the 

Strong Nuclear Force section.  These forces are electromagnetic in nature.  They arise as a minimization of the stored field 
energies.  This also applies for the case of the force of the chemical bond as described in the Nature of the Chemical Bond 
section. 
 
RELATIONSHIP OF SPACETIME, MATTER, AND CHARGE 
In addition to the force laws, the nature of the Universe is determined by the following experimentally observed parameters:  

• Four dimensional spacetime (the only dimensionality consistent with observations [1]); 
• The fundamental constants which comprise the fine structure constant; 
• Fundamental particles including photons have   of angular momentum; 
• The Newtonian gravitational constant, G; 
• The mass of the Universe, and 
• The spin of the electron neutrino. 

 
General Relativity gives the relationship between the proper time and the coordinate time of particle production. 
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The following boundary condition applies at the creation of matter from energy: 

 2 n nr n     (33.20) 

The particle production energies given in the Gravity section are the mass energy, the Planck equation energy, the electric 
potential energy, the magnetic energy, the gravitational potential energy, and the mass/spacetime metric energy1. 

 

 

2 *
0

2 2 2 2 22 2
2 * 1 1 10 0 0

0 22 3
0 0 00

4 2 1 sec 22

mag grav spacetime

C

C C CC

m c V E E E

e e c Gm ce c h
m c

m h G Gmm



     
 

  

    

     



  
  

 (33.21) 

When om  is the Grand Unification Mass or Planck mass, um , 

 
1 Eq. (33.21) is the relationship between matter and energy with an implicit physical basis for particle production.  The current understanding of the 

matter-energy relationship   E  m
0
c2  first recognized by Poincaré [2-4] is based on the derivation of the kinetic energy from Newton’s force equation [5] 

or by applying special relativistic principles to conservation of energy and momentum during particle scattering [6].  These approaches have nothing to do 

with particle production.  Eq. (33.21) is the mass-energy for particle production and is the correct physics for the popular equation E  m
0
c2  and the 

version including relative motion given by Eq. (34.17). 
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The gravitational velocity, Gv , is defined as: 
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Substitution of the gravitational velocity, Gv , given by Eq. (33.23) and the Planck mass, um , given by Eq. (33.22) into Eq. 

(33.21) followed by division by the speed of light squared gives the particle mass in terms of the Planck mass.   
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The relationships between the fundamental constants are given by the equivalence of the particle production energies.  
The magnitude of the quantized angular momentum of the photon and fundamental particles is Planck’s constant bar,  .  The 
wave equation gives the relationship between the velocity, wavelength, and frequency of the wave. 
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When v c  the radius at particle production is given by Eq. (29.22). 
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Substitution of Eq. (33.25) and (33.26) into Eq. (33.21) with v c  gives the relationship between   and the fundamental charge 
squared. 

 

2
* 1

0

2
1

0

2
1

0

4

4

4

C

C C

c e
h

c e

e
c

 
 













 









 



 (33.27) 

Thus, charge is quantized as a consequence of the quantization of the angular momentum of the photon.  The relationship 
between the speed of light, c , and the permittivity of free space, 0 , and the permeability of free space, 0 , is: 
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The fine structure constant, given by Eqs. (1.179) and (29.9), is the dimensionless factor that corresponds to the relativistic 
invariance of charge. 
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It is equivalent to one half the ratio of the radiation resistance of free space, 0

0




, and the hall resistance, 
2

h

e
.  The radiation 

resistance of free space is equal to the ratio of the electric field and the magnetic field of the photon (Eq. (4.10)).  The Hall 
resistance is given by Eq. (26.46).  Substitution of Eq. (33.28) into Eq. (33.27) gives the relationship for the radiation resistance 
of free space,  . 
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It provides a limiting speed of c  for the propagation of any wave, including gravitational and electromagnetic waves and 
expanding spacetime. 
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PERIOD EQUIVALENCE 
The Universe undergoes time harmonic expansion and contraction corresponding to matter/energy conversion.  The equation of 
the radius of the Universe,  , which is derived in the Gravity section is 
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The gravitational equation (Eq. (31.38)) with the equivalence of the particle production energies (Eqs. (31.48a-31.48b)) permit 

the equivalence of mass-energy ( 2E mc ) and spacetime (
3

34
 3.22  10
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X

G
 ).  Spacetime expands as mass is released as 

energy according to Eq. (32.140) which provides the basis of the atomic, thermodynamic, and cosmological arrows of time.  Q , 

the mass-energy-to-expansion-contraction quotient of spacetime is given by the ratio of the electron mass em  and the electron 

proper time   wherein Eq. (32.43) gives the relativistic correction g
g

v

c
   to give the corresponding spacetime expansion for 

the conversion of matter into energy. 
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From Eq. (33.31), the period of the expansion-contraction cycle of the radius of the Universe, T , is: 
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It is herein derived that the periods of spacetime expansion/contraction and particle decay/production for the Universe 
are equal.  It follows from the Poynting Power Theorem (Eq. (7.43)) with spherical radiation that the transition lifetimes are 
given by the ratio of energy and the power of the transition [7].  Magnetic energy is a Special Relativistic consequence of electric 
energy and kinetic energy.  Thus, only transitions involving electric energy need be considered.  The transition lifetime,  , in the 
case of the electric multipole moment given by Jackson [7] as: 
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where in the exemplary case of an excited state of atomic hydrogen nr  is the radius of the electron atomic orbital which is 0na  

(Eq. (33.17)).  From Eq. (33.35), the transition lifetime is proportional to the ratio of 
2

h

e
, the Quantum Hall resistance, and  , 

the radiation resistance of free space where: 
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  (33.36) 

The Quantum Hall resistance given in the Quantum Hall Effect section was derived using the Poynting Power Theorem.  Also, 
from Eq. (33.35), the transition lifetime is proportional to the fine structure constant,  , 
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From Eq. (33.35), the lifetime of an excited state of a hydrogen atom is inversely proportional to the frequency of the transition.  
This is also the case for the Universe that is a 3-sphere Universe.  (More explicitly, the Universe is a Riemannian three-
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dimensional hyperspace plus time with a constant positive curvature at each r-sphere).  During an electromagnetic transition, the 
total energy of the system decays exponentially.  Applying Eqs. (2.119) and (2.120) to the case of exponential decay,  
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( )
tt Th t e u t e u t
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However, Eq. (33.19) determines that the coordinate time is imaginary because energy transitions are spacelike due to General 
Relativistic effects.  For example, Eq. (36.2) gives the mass of the electron (a fundamental particle) in accordance with Eq. 
(33.19) : 
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where Newtonian gravitational velocity gv  is given by Eq. (32.35).  Replacement of the coordinate time, t , of Eq. (33.38) by the 

spacelike time, it , gives: 
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where the period is T.  The periods of spacetime expansion/contraction and particle decay/production for the Universe are equal 
due to Eq. (33.19) which determines the masses of fundamental particles, the equivalence of inertial and gravitational mass, the 
phase matching condition of mass to the speed of light and charge to the speed of light, and that the coordinate time is imaginary 
because energy transitions are spacelike due to general relativistic effects.  From Eq. (33.19), 
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where Newtonian gravitational velocity, gv , is given by Eq. (32.35).  Eq. (33.24) gives the ratio of Eq. (33.41) in terms of the 

coordinate particle mass, 0m , and the Planck mass, um : 
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As fundamental particles, atoms, molecules, and macroscopic configurations of fundamental particles, atoms, and 
molecules release energy, spacetime increases.  The superposition of expanding spacetime arising at the atomic level over all 
scales of dimensions from the atomic to the cosmological gives rise to the observed expanding Universe.  The wavefront of 
energy and spacetime from matter to energy conversion travel at the speed of light.  Consider Eq. (32.43).  As given in the 
Gravity section, at the present time in the cycle of the Universe, the world line of the expanding spacetime and the released 
energy are approximately coincident.  In terms of Eq. (32.38), the proper time and the coordinate time are approximately equal.  
The ratio of the gravitational radius, gr , given by Eq. (32.36), and the radius of the Universe are about equal to one and the 

gravitational escape velocity given by Eq. (32.35) is the speed of light.  And, Q , (Eq. (32.140)) is equal to the matter to energy 
conversion rate of the time harmonic expansion-contraction cycle of the Universe which permits light energy (photons) to 
propagate (escape the gravitational hole of the Universe). 
 

When the gravitational radius gr  is the radius of the Universe, the proper time is equal to the coordinate time (Eq. (31.43)), 

and the gravitational escape velocity gv  of the Universe is the speed of light. 

 
Mass-energy must be conserved during the harmonic cycle of expansion and contraction.  The gravitational potential 

energy gravE  of the Universe follows that given by Eq. (32.26). 
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In the case that the radius of the Universe r is the gravitational radius Gr  given by Eq. (32.22), the gravitational potential energy 

is equal to 2
Um c  which follows that given by Eq. (32.27).  The gravitational velocity Gv  is given by Eq. (32.33) wherein an 

electromagnetic wave of mass-energy equivalent to the mass of the Universe travels in a circular orbit wherein the eccentricity is 
equal to zero (Eq. (35.21)), and the escape velocity from the Universe can never be reached.  The wavelength of the oscillation 
of the Universe and the wavelength corresponding to the gravitational radius Gr  must be equal.  Electromagnetic energy and 

gravitational mass obey superposition, and both spacetime expansion/contraction and electromagnetic energy corresponding to 
particle decay/production travel at the speed of light and obey the wave relationship given by Eq. (29.4).  The wavelength is 
given in terms of the radius by Eq. (2.2).  Thus, the harmonic oscillation period, T, is: 
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where the mass of the Universe, Um . 

 
WAVE EQUATION 
The equation 
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acquires a general character; it is more general than Maxwell’s equations from which Maxwell originally derived it.  As a 
consequence of the principle of the existence of a universal limiting velocity one can assert the following: the differential 
equations describing any field that is capable of transmitting signals must be of such a kind that the equation of their 
characteristics is the same as the equation for the characteristics of light waves.  In addition to governing the propagation of any 
form of energy, the wave equation governs fundamental particles created from energy and vice versa, the associated effects of 
mass on spacetime, and the evolution the Universe itself.  The equation that describes the rotational motion of the charge-density 
wave of the electron given by Eqs. (1.56-1.65) is the wave equation, the relativistic correction of spacetime due to particle 
production travels according to the wave equation as given in the Gravity section, and the evolution of the Universe is according 
to the wave equation.  The speed of light is the conversion factor from time to distance.  Thus, the equation of the radius of the 
Universe,  , (Eq. (33.31)) may be written as: 
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which is a solution to the wave equation. 
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Chapter 34 
  
EQUIVALENCE OF INERTIAL AND GRAVITATIONAL 
MASSES DUE TO ABSOLUTE SPACE AND ABSOLUTE 
LIGHT VELOCITY 
  
 
 
 
 
NEWTON’S ABSOLUTE SPACE WAS ABANDONED BY SPECIAL RELATIVITY 
BECAUSE ITS NATURE WAS UNKNOWN 
Maxwell’s electrodynamic equations predict electromagnetic waves and their propagation velocity of the speed of light c  that is 
determined by the permittivity 0  and permeability 0  of free space such that  

 0 01/c    (34.1) 

Thus, if these spacetime properties were independent of the motion of emitters and observers, then, the speed of light is a 
constant.  This result was proven by the Michelson-Morley experiment in 1887.  The covariance or invariance of form of 
Maxwell’s electrodynamic equations under Lorentz transformations was shown by Lorentz and Poincaré before the formulation 
of special relativity.  The various parameters  , J , E , and B  that are operated on in these equations transform in well-defined 
ways under Lorentz transformations such that the laws of electricity, magnetism, and electrodynamics have the same form 
independent of relative constant motion of observers.  In 1904 [1-4], Poincaré achieved the similar covariance of the equations of 
Newton’s laws of mechanics under Lorentz transformation of the corresponding spatial-temporal and mechanical parameters 
with the invention of special relativity based on his two postulates [1]: 
 

The principle of relativity, according to which the laws of physical phenomena should be the same, whether for an observer fixed, or for an 
observer carried along in a uniform movement of translation; so that we have not and could not have any means of discerning whether or not we 
are carried along in such a motion.  
 

From all these results, if they are confirmed, would arise an entirely new mechanics, which would be, above all, characterized by this fact, 
that no velocity could surpass that of light.  Poincaré added that consistency of the descriptions of different inertial reference frames implies that 
the limiting light velocity is invariant for inertial reference frames. 
 
Poincaré recognized that the inertia of material bodies would become infinite when one approached the velocity of light 

and predicted the relationship of matter to energy: 2E mc  [2].  He further pointed out that all forces must propagate with the 
finite light velocity, that interaction implies a time delay, and it is mediated by field waves.  Thus, Poincaré made for the first 
time the hypothesis of the existence of gravitational waves [1].  He and others who worked on special relativity developed the 
principles and mathematics to make the laws of nature covariant, correctly modeled the propagation of light, particles, and forces 
including the gravitational force, and recognized the relationship between matter and energy.  But, they did not realize or even 
consider the nature of the gravitational force or the relationship between matter-energy and spacetime.  Nor, did they consider 
the implications of relativity as a description of the physical nature of spacetime.  Relativity was developed for a Universe that 
was empty (devoid of matter and light) and infinite in extent.  Yet, the Universe is not only filled with matter and light, it is also 
dynamic in the conversion of matter to light.  Furthermore, it is finite rather than infinite, and its size is also dynamic and 
determined by the inter-conversion of matter to energy as shown in the Gravity section. 

Shortcomings, problems, and paradoxes arise with special relativity.  Since relativity is simply a set of postulates and 
mathematical rules for transformation of coordinates and mechanical parameters, it provides no physical basis for the conversion 
of matter into energy, the absolute loss of time in experiments such as those regarding the twin paradox, the equivalence of the 
inertial and gravitational masses, the masses of fundamental particles, and the limiting velocity c  for the propagation of matter 
in the same sense that Maxwell’s equations do for electromagnetic-waves in terms like Eq. (34.1).  Furthermore, the basis of 
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defining an inertial frame of reference based on relative motion ignores the kinetic energy of the objects in motion.  Indeed, the 
potential for an infinite number of Universes with total kinetic energies from zero to infinities of infinite energy are all equally 
permissible.  For example, a single celestial object could be translating at say 0.99999c  relative to the balance of the objects of 
the Universe, or all of the celestial objects of the Universe could be translating at 0.99999c  relative to the single object.  In terms 
of special relativity, both situations are equivalent, simultaneously.  But the kinetic energy inventory and mass-energy inventory 
is not conserved between the two cases.  By selecting different inertial frames that are all equivalent under special relativity, the 
energy in the former case with 2310  objects weighing a total of 54

 2  10X kg  is:  
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And, in the latter case the energy is:  
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corresponding to essentially zero kinetic energy in the first case compared to the equivalent of over two hundred times the rest 

mass of the Universe mass or   54 2 73
  223.6 2  10 4.02  10X kg c X J  in the latter case! 

The obvious question is how can the mass-energy of the Universe be increased up to arbitrary orders of magnitude by 
simply selecting an inertial frame?  The set of equivalent inertial frames extends over an infinite range of kinetic energies 
relative to even one body for example.  Since the Universe is finite and closed, and matter, energy, and spacetime are conserved 
these infinite possibilities for equivalent inertial frames for the Universe with its unique inventories is untenable1.  The frames of 
reference regarding relative uniform motion are only convenient means to compare measurements in those frames when absolute 
values are not important in the determination, and it is not necessary to determine the relative rank of the frames (e.g. the 
stationary versus the moving one).  These conditions may break down, and paradoxes arise that can only be resolved by 
abandoning the simplified frames of special relativity and invoking an absolute frame of reference. 

Specifically, in addition to the lack of energy conservation and physical mechanism for many of its consequences, 
another problem that arises is the inability to determine which body is in motion when comparing relative motion in order to 
arrive at consistent predictions.  The limitation in uniquely and unequivocally identifying inertial frames centrally impacts the 
ability to interpret and apply special relativity.  This is particularly acute when objects initially in the same inertial frame 
separate and rejoin.  A famous example is the case of the twin paradox.  Here two twins separate and are rejoined with 
intervening periods of acceleration and reversal of physical displacement.  A failure of special relativity is that upon rejoining the 
traveling twin is younger relative to the stationary twin in contradiction to his expectations since to him, it is the stationary twin 
who had been in motion.  Although strained “resolutions” to the asymmetrical time dilation of the traveling twin have been put 
forward including a far-fetched one by Einstein regarding gravitational time dilation of the general relativity theory, none are 
tenable [5].  The fundamental impasse is inherent in the consideration that motion is arbitrarily relative.  There must be an 
absolute frame for each object in order to conserve the mass/energy inventory of the Universe as well as resolve paradoxes such 
as the twin paradox. 

To develop an understanding of spacetime that is described by relativity and to correct its deficiencies, it is insightful to 
consider the history of the laws of mechanics starting with Newton.  The second law is represented by: 
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where m  is the mass of the body, a  is its acceleration relative to a certain frame of reference, and F  is the resultant force acting 
on the body due to all other bodies that apply the force.  Newton’s laws are valid in frames of reference called inertial frames, 
moving relative to each other with uniform velocities.  Experimentally, the laws of physics are the same in all such inertial 
frames which provides a means to identify a frame as inertial.  By this criterion, inertial frames are unaccelerating and 
nonrotating.  Otherwise, all objects would be accelerating or rotating relative to some other frame.  Such a reference frame must 
exist for all cases.  Newton introduced the concept of absolute space to provide such an absolute frame for acceleration and 
rotation as well as uniform motion.  According to Newton, acceleration and rotation relative to absolute space are detected by 
simple experiments.  For example, an observer accelerated relative to the Earth sees the Earth accelerate in the opposite 
direction.  Since there is no force acting on the Earth, the apparent acceleration is not a consequence of the Newton’s second law, 
rather it is due to the acceleration of the observer relative to absolute space.  Another example is rotation wherein the object 
rotating relative to absolute space can be identified by the measurement of centrifugal forces.  Thus, it can be appreciated that 
observations consistent with physical laws permit identifying acceleration and rotation relative to absolute space, but 
consequences of the forces of acceleration or rotation cannot be used to determine an absolute frame for two bodies in uniform 

 
1 Einstein’s interpretation of relativity predicts the existence of “parallel universes” each with a different energy inventory based on measurement as basis 
of reality and eliminates inertial mass and Newton’s Second Law.  This consequence may be considered the origin of the misguided interpretation of 
reality in terms of an observer’s measurement.  This philosophy originally from Mach evolved into quantum mechanics theory with its inherent 
uncertainty principle involving simultaneity of infinite states for a single particle with a “collapse” into a single state with measurement.  Thus, single-
valued exact properties were deemed impossibilities due to perturbations with measurement, and the development of the theory became a discourse 
regarding measurement. 
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motion.  Although Newton could give the criterion for absolute acceleration and absolute rotation, he could not do so for 
absolute velocity.  Locally, motion can only be defined as relative.  So, it seems impossible to define an absolute frame, and in 
particular, the absolute frame at rest could not be identified.  Newton’s absolute space was abandoned by special relativity due to 
this limitation of being unable to reference an inertial frame in an absolute sense.  However, this inability to identify or 
understand the nature of absolute space and an absolute frame at rest should not be confused with the lack of their existence and 
the consequences for the nature of spacetime, matter, and energy. 

The relativity principle is postulated on the basis of the impossibility of measuring absolute velocity.  This assumption is 
incorrect.  Absolute space can be defined based on the solution of the exact conserved relationships between matter, energy, and 
spacetime given in the Gravity section.  Specifically, the production of an isolated particle from a photon of identically the 
production energy defines the absolute inertial frame at rest for the particle and could, in principle, define absolute space that 
conserves the energy inventory of the Universe and resolves paradoxes such as the twin paradox.  The rate at which ones clock is 
ticking can be determined in terms of the absolute time unit defined in the Gravity section as the “sec” of each particle.  It is 
possible as discussed infra. to slow the clock of an object by expending energy to increase its velocity with a consequent and 
concomitant acceleration of the clocks of parts of the object’s surroundings such that the absolute time of the Universe is 
conserved overall. 

A relativity principle based only on frames in uniform motion excludes all of the dynamic properties of the Universe.  
And, no two independent objects can maintain infinitely exact constant relative motion.  Furthermore, matter is dynamic, either 
gaining or losing energy with changing velocities and directions, and, all of the matter in the Universe is accelerating as 
spacetime expands.  The physics of essentially all forms of motion of matter including acceleration, rotation, and motion of any 
type in a gravitational field2 cannot be dealt with within the context of relative space.  However, even though any motion, or 
parameter of inertia or electromagnetism can ultimately be measured in principle (but perhaps not always in practice) relative to 
absolute space as discussed infra., a principle of relativity based on physical laws can be derived that has great utility.  The 
principle of relativity given next treats relative uniform rectilinear motion, and the transforms of relativity are Lorentzian3. 

Since the constant speed of light is the absolute limiting conversion factor from time to length, it is reasonable to expect 
that the laws of light propagation play a fundamental part in the definition of the basic concepts relating to space and time in 
terms of inertial frames defined according to uniform relative motion.  Therefore it proves more correct to relate the notion of an 
inertial frame not only to the laws of mechanics but also to those of light propagation as given in the Relativity section.  

The usual form of Maxwell’s equations refers to some inertial frame.  It is obvious and has always been assumed, even 
before relativity, that at least one reference frame exists that is inertial with respect to mechanics and in which at the same time 
Maxwell’s equations are true.  The law of propagation of an electromagnetic wave front in the form of: 
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also refers to this inertial frame.  A frame for which Eq. (34.5) is valid may be called inertial in the electromagnetic sense.  A 
frame that is inertial both in the mechanical and in the electromagnetic senses will be simply called inertial.  Thus, by the 
definition we have adopted, an inertial frame is characterized by the following two properties: 
 

1. In an inertial frame, a body moves uniformly and in a straight line, provided no forces act on it.  (The usual 
mechanical inertial property.) 

 
2. In an inertial frame, the equation of propagation of an electromagnetic wave front has the form Eq. (34.5).  (The 

inertial property for the field.) 
 

Eq. (34.5) applies not only to the propagation of an electromagnetic wave.  The electromagnetic field has no preference 
over other fields.  The maximum speed of propagation of all fields must be the same such that Eq. (34.5) is of universal validity. 

The fundamental postulate of the theory of relativity, also called the principle of relativity, asserts that phenomena 
occurring in a closed system are independent of any non-accelerated motion of the system as a whole.  The principle of relativity 
asserts that the two sequences of events will be exactly the same (at least insofar as they are determined at all).  If a process in 
the original systems can be described in terms of certain functions of the space and time coordinates of the first frame, the same 
functions of the space and time coordinates of the second frame will describe a process occurring in the copy.  The uniform 
rectilinear motion of a material system as a whole has no influence on the course of any process occurring within it. 

The theory of relativity is based on two postulates, namely, the principle of relativity and another principle that states that 
the velocity of light is independent of the velocity of its source.  The latter principle is a consequence of the first.  The latter 
principle is implicit in the law of the propagation of an electromagnetic wave front given by Eq. (34.5).  The basis for defining 
inertial reference frames is Eq. (34.5) together with the fact of the uniform rectilinear motion of a body not subject to forces.  
The principle of relativity holds in the case that the reference frames are inertial. 

 
2 Another mistake regarding relativity was made by Einstein in the consideration of the extension of relativity to accelerating frames with the postulate of 
the equivalence of a uniform gravitational field and an accelerating frame.  As shown in the Gravity section, in addition to being physically flawed, 
Einstein’s version of general relativity is disproved experimentally with the observation that the expansion of the cosmos is accelerating in contradiction 
with the predictions of decelerating cosmologies by all solutions of Einstein’s equations. 
3 Ironically, some of the most cited experimental validations of special relativity such as the dilation of the half-life of particles such as muons moving at 
near light speed in cyclotrons involve constant acceleration in the storage ring rather than constant uniform rectilinear motion. 



Chapter 34 1590

It is appropriate to give a generalized interpretation of the law of wave front propagation and to formulate the following 
general postulate: 
 

There exists a maximum speed for the propagation of any kind of action—the speed of light in free space. 
 

This principle is very significant because the transmission of signals with greatest possible speed plays a fundamental 
part in the definition of concepts concerning space and time.  The very notion of a definite frame of reference for describing 
events in space and time depends on the existence of such signals.  The principle formulated above, by asserting the existence of 
a general upper limit for all kinds of action and signal, endows the speed of light with a universal significance, independent of 
the particular properties of the agency of transmission and reflecting a certain objective property of spacetime.  This principle 
has a logical connection with the principle of relativity.  For if there was no single limiting velocity, but instead different agents, 
e.g. light and gravitation, propagated in vacuum with different speeds, then the principle of relativity would necessarily be 
violated as regards at least one of the agents.  The principle of the universal limiting velocity can be made mathematically 
precise as follows: 

 
For any kind of wave advancing with limiting velocity and capable of transmitting signals, the equation of front 

propagation is the same as the equation for the front of a light wave. 
 

Thus, the equation: 
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acquires a general character; it is more general than Maxwell’s equations from which Maxwell originally derived it.  As a 
consequence of the principle of the existence of a universal limiting velocity one can assert the following: the differential 
equations describing any field that is capable of transmitting signals must be of such a kind that the equation of their 
characteristics is the same as the equation for the characteristics of light waves.  In addition to governing the propagation of any 
form of energy, the wave equation governs fundamental particles created from energy and vice versa, the associated effects of 
mass on spacetime, and the evolution of the Universe itself.  Specially, the equation that describes the electron dynamics of the 
rotational energy and angular momentum with 0  given by Eqs. (1.56-1.65) is the wave equation, the relativistic correction of 
spacetime due to particle production travels according to the wave equation as given in the Gravity section, and the evolution of 
the Universe is according to the wave equation as given in the Gravity section and the Unification of Spacetime, the Forces, 
Matter, and Energy section (Eqs. (33.45-33.46)). 
 
RELATIONSHIP OF THE PROPERTIES OF SPACETIME AND THE PHOTON TO 
THE INERTIAL AND GRAVITATIONAL MASSES 
LORENTZ TRANSFORMS BASED ON CONSTANT RELATIVE VELOCITY 
The magnetic force was unified with the Coulombic force by Maxwell.  Lorentz derived the transformations named after him 
which formalize the origin of the magnetic force as a relativistic correction of the Coulomb force.  The unification of electricity 
and magnetism by Maxwell permitted him to derive a wave equation, which predicted the propagation of electromagnetic waves 
at the speed of light (Eq. (34.1)).  Maxwell’s wave equation defines a four-dimensional spacetime with the speed of light as a 
maximum permitted according to the permeability and permittivity of spacetime.  Minkowski originated the concept of a four-
dimensional spacetime formally expressed as the Minkowski tensor [6].  The Minkowski tensor corresponds to the 
electromagnetic wave equation derived by Maxwell and can be derived from it [7].  Special relativity is implicit in the wave 
equation of electromagnetic waves that travel at the speed of light.  The generalization of this metric to mass as well as charge 
requiring application of Lorentz transformations to relative parameters comprises the theory of special relativity.  The Lorentz 
transformations quantify the measurement of the increase in mass, length contraction, and time dilation in the direction of 
constant relative motion of separate inertial frames due to the finite maximum speed of light.   

Using the principle that light velocity is the constant maximum c  in all inertial frames, the relationships between 
distances in two frames with one moving a constant velocity relative to the other are shown in the Relativity section to be [8] : 

 
2 2

2
02 2

t t
c L v       
   

 (34.7) 

 

0

2

2

2

1

L

ct
v
c





 (34.8) 

 

 0

2

21

t
t

v
c





 (34.9) 



Equivalence of Inertial and Gravitational Masses Due to Absolute Space and Absolute Light Velocity 1591

The Lorentz transformation of the other spatial-temporal and mechanical parameters that maintain the covariance of mechanical 
laws gives the following relationships between the parameters of inertial frames [8]: 
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Using the Lorentz transformation of the energy of particle production given by Eq. (34.49) gives: 
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Squaring the energy given in Eq. (34.13) gives: 
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The square of the Lorentz momentum given by Eq. (34.12) multiplied by 2c  is: 
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Subtracting 2 2p c  from 2E  gives: 

 

2
2 4
0 22 4 2 2 2

2 2 2 2 40 0
02 2

2 2

1

1 1

v
m c

cm c m v c
E p c m c

v v
c c

 
      

 
 (34.16) 

Thus, 
 2 2 4 2 2

0E m c p c   (34.17) 

 
MINKOWSKI SPACE 
When speaking of the relativity of a frame of reference or simply of relativity, one usually means that there exist identical 
physical processes in different frames of reference.  According to the generalized Galilean principle of relativity, identical 
processes are possible in all inertial frames of reference related by Lorentz transformations.  On the other hand, Lorentz 
transformations characterize the uniformity of Galilean spacetime.  Using the four-dimensional coordinates x  for describing the 
events and the world-line in spacetime the separation of proper time between two events x  and x dx   is: 

 2d g dx dx 
    (34.18) 

where g  is the metric tensor which determines the geometric character of spacetime.  For different coordinate systems, the 

dx  may not be the same, but the separation 2d  remains unchanged.  The metric g  for Euclidean space called the 

Minkowski tensor   is: 
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In this case, the separation of proper time between two events x  and x dx   is: 
 2d dx dx 

    (34.20) 

Relativity deals with definitions and tensor mathematics in space devoid of matter.  To cast relative measurements for 
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bodies in relative motion in physical terms, the relationships of matter to spacetime and spacetime to matter must be included. 
 

ORIGIN OF GRAVITY WITH PARTICLE PRODUCTION 
Gravity is not a force separable from electromagnetism.  The production of a particle having an inertial mass and a gravitational 
mass from a photon initially traveling at the speed of light requires time dilation and length contraction of spacetime itself as 
opposed to the relativistic correction of mass, length, and time of objects of inertial frames in constant relative motion.  The 
derivation of the gravity equations and the inherent masses of particles maintains the relativity principle of Eq. (34.6): the 
constant maximum speed of light for the propagation of light and gravity wave fronts.  The gravity metric corresponding to 
spacetime time dilation and length contraction due to the production event is derived with the boundary conditions: (i) the speed 
of light is constant and a maximum, (ii) the angular momentum of a photon,  , is conserved, and (iii) the energy of the photon is 
conserved as mass.  The event must be spacelike even though the photon of the particle production event travels at the speed of 
light and the particle must travel at a velocity less than the speed of light.  The relativistically altered spacetime gives rise to a 
gravitational force between separated masses.  Thus, the production of matter and its motion alters spacetime, and the altered 
spacetime affects the motion of matter, which must follow geodesics.  The spacetime contraction and time dilation derivation 
based on the same principle as special relativity has a similar form as that of its Lorentz transformations relating observations 
from different inertial frames of reference. 
 
SCHWARZSCHILD SPACE AND LORENTZ-TYPE TRANSFORMS BASED ON THE 
GRAVITATIONAL VELOCITY AT PARTICLE PRODUCTION 
A spherically symmetrical system of mass 0m  applies to the production of a particle which implies spherical coordinates with 

the origin at 0.  Thus, a family of curved surfaces, each with constant r , is a series of concentric spheres on which it is natural to 
adopt the coordinate r  so that a sphere with constant r  has area 24 r , and the metric on the surface of the sphere would then be 

 2 2 2 2 2 2sinds r d r d     (34.21) 

Such a definition of r  is no longer the distance from the origin to the surface, because of the spacetime contraction caused by the 
mass 0m .  The form of the outgoing gravitational field front traveling at the speed of light is: 
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Therefore the spatial metric should be expressed as: 

   12 2 2 2 2 2 2sinds f r dr r d r d      (34.23) 

In addition, the existence of mass 0m  also causes time dilation and length contraction of spacetime such that the 

clock on each r-sphere is no longer observed from each r-sphere to run at the same rate.  That is, clocks slow down in a 
gravitational field [9].  Therefore, the general form of the metric due to the relativistic effect on spacetime due to mass 0m  is 
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In the case where 0 0m  , space would be flat which corresponds to: 
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   (34.25) 

Then the spacetime metric is the Minkowski tensor.  In the case that the mass 0m  is finite, the Minkowski tensor is corrected by 

the time dilation and length contraction of spacetime. 
The photon initially traveling at the speed of light undergoes particle production and must produce a gravitational field 

that travels at the speed of light.  According to Newton’s Law of Gravitation, the particle must have a finite velocity relative to 
the antiparticle called the Newtonian gravitational velocity, gv , (Eq. (32.35)) that may not exceed the speed of light and has an 

associated gravitational energy given in the Gravity section.  The eccentricity is one (Eqs. (35.17-35.22)), the total energy is 
zero, and the particle production trajectory is a parabola relative to the center of mass of the antiparticle.  In order that the 
velocity of light does not exceed c  in any frame including that of the particle having a finite Newtonian gravitational velocity, 

gv , the laboratory frame of an incident photon, and that of a gravitational field propagating outward at the speed of light, 

spacetime must undergo time dilation and length contraction due to the production event.  During particle production the speed 
of light as a constant maximum as well as phase matching and continuity conditions require the following form of the squared 
displacements due to constant motion along two orthogonal axes in polar coordinates: 

      22 2
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Thus,  
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The derivation and result of spacetime time dilation is analogous to the derivation and result of special relativistic time dilation 
given by Eqs. (31.11-31.15) wherein the gravitational velocity replaces the relative velocity of two inertial frames in the Lorentz 
factor.  The general form of the metric due to the relativistic effect on spacetime due to mass 0m  is: 
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The equivalence of the gravitational and inertial masses, according to experiments and Eqs. (34.49) and (34.67-34.68),  
prove that Newton’s Gravitational Law is exact on a local scale.  The correction to Newton’s Gravitational Law due to the 
relativistic effect of the presence of mass on spacetime may be determined by substitution of the gravitational escape velocity, 

gv , given by: 
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into Eq. (34.29) for gv .  The corresponding Newtonian gravitational radius is given by [10]: 
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Thus, Eq. (34.29) can also be expressed as: 
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In the case of the boundary conditions of Eqs. (34.48-34.49), Eq. (34.30) and Eq. (34.31), three families of leptons and quarks 
are predicted in the corresponding sections wherein each particle corresponds to a unique atomic orbital radius equal to its 
Compton wavelength bar.  At particle production, a photon having a radius and a wavelength equal to the Compton wavelength 
bar of the particle forms a transition state atomic orbital of the particle of the same wavelength. 
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The resulting metric g  for non-Euclidean space due to the relativistic effect on spacetime due to mass 0m  with gv  

given by Eq. (34.30) is 
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In this case, the separation of proper time between two events x  and x dx   is: 
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The Schwarzschild-type metric (Eq. (34.35)) gives the relationship whereby matter causes relativistic corrections to 
spacetime that determines the curvature of spacetime and is the origin of gravity. 

 
The origin of gravity is fundamental particles, and the masses and fields from particles superimpose.  So, 0m , the mass of a 
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fundamental particle, may be replaced by M , the sum of the masses of the particles which make up a massive body.  In this 
case, Eq. (34.35) is equivalent to a modified version of the Schwarzschild metric that is conservative of matter, energy, and 

spacetime and lacking the reduced radial coordinate, 
2

GM
r

c
 , and singularity issues of general relativity. 

The Schwarzschild metric provides transforms of the spacetime and mass-energy parameters based on the effect of 
gravity in an analogous manner as the Minkowski tensor provides the Lorentz transforms for the corresponding inertial 
parameters.  As shown in Eq. (32.70), the relativistic correction for time is: 
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Then, 
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The spacetime corrections have the same form as the special relativistic corrections for time and length with gv  in place of v .  

Consider the relationship between proper and coordinate mass derived in the Gravity section by considering an object of mass m  
orbiting an object of mass M .  The gravitational force is central; thus the angular momentum is constant.  Consider that a radial 
force is applied to increase the radius r  of the object’s orbit with a change of its energy E .  The angular momentum is 
conserved; thus,  
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where 
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 is the initial angular velocity, 
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 is the final angular velocity, ir  is the initial radius and fr  is the final radius.  

At fixed radius, 2dr  is zero, but 2dt  is finite.  Applying the time relativistic correction given by Eq. (34.35) and Eqs. (34.26-
34.28) gives the mass fm  at fr  with respect to the mass im  of the inertial frame of ir  as: 
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where r  is the increase in the radius.  The proper energy pE  of the object is given by: 
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The relativistic correction for energy is of the same form as the special relativistic correction for mass (Eq. (31.21)) with gv  in 

place of v . 
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where m  is the coordinate mass of the orbiting body and E  is the energy of the orbiting object.  In the case that the gravitational 
velocity is much less than the speed of light ( gv c ), the gravitational energy gE  converges to that given by Newton’s law of 

Gravitation. 
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PARTICLE PRODUCTION CONTINUITY CONDITIONS FROM MAXWELL’S 
EQUATIONS, AND THE SCHWARZSCHILD METRIC GIVE RISE TO CHARGE, 
MOMENTUM AND MASS 
The photon possesses electric and magnetic fields and the corresponding energies and momentum.  The angular momentum of 
the photon given by:  

   41
Re ( )

8
dx

c
   m r E B*   (34.45) 

in the Photon section is conserved [11] during particle production.  The energy due to the angular frequency of the photon 
according to Planck’s equation and those of its electric and magnetic fields match those of the particle to which it gives rise.  The 
transition state has dimensions of the particle’s Compton wavelength bar such that the speed matches light speed at the photon’s 
frequency as a further constraint of Maxwell’s equations and the inherent special relativity.  This limiting speed is set by the 
permittivity and permeability of spacetime.  Spacetime undergoes time dilation and length contraction at the particle production 
event as a gravitation-field front propagates out as a light-wave front at light speed.  The photon’s effect on spacetime and 
spacetime’s effect on the corresponding production particle then determine its inertial and gravitational mass 0m  and the 

fundamental charge e  where the momentum and energies of the photon are continuous with those of the particle during the 
production event. 

The photon to particle event requires a transition state that is continuous wherein the velocity of a transition state atomic 
orbital is the speed of light.  The radius, r , is the Compton wavelength bar, C , given by Eq. (34.33).  At production, the Planck 

equation energy, the electric potential energy, and the magnetic energy are equal to 2
0m c . 

 The Schwarzschild metric gives the relationship whereby matter causes relativistic corrections to spacetime that 
determines the masses of fundamental particles.  Substitution of Cr    ; 0dr  ; 0d  ; 2sin 1   into the Schwarzschild 
metric gives: 
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with 2 2v c , the relationship between the proper time and the coordinate time is: 

 
2 * 2

2 2 g

c

vGM GM
ti ti ti

c r c c

   


 (34.47) 

When the atomic orbital velocity is the speed of light, continuity conditions based on the constant maximum speed of light given 
by Maxwell’s equations are mass energy = Planck equation energy = electric potential energy = magnetic energy = 
mass/spacetime metric energy.  Therefore,  
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The continuity conditions based on the constant maximum speed of light given by the Schwarzschild metric are:  
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proper time gravitational wave condition gravitational mass phase matching

coordinate time electromagnetic wave condition charge/inertial mass phase matching
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Each of the Planck equation energy, electric energy, and magnetic energy corresponds to a particle given by the 
relationship between the proper time and the coordinate time.  The electron and down-down-up neutron correspond to the Planck 
equation energy.  The muon and strange-strange-charmed neutron correspond to the electric energy.  The tau and bottom-
bottom-top neutron correspond to the magnetic energy.  The particle must possess the escape velocity gv  relative to the 

antiparticle where gv c .  According to Newton’s law of gravitation, the eccentricity is one and the particle production 

trajectory is a parabola relative to the center of mass of the antiparticle.  The masses of the three families of leptons and quarks 
are given in the corresponding sections.  Exemplary relations between fundamental particles are shown in Table 34.1. 
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Table 34.1.   The calculated relations between the lepton masses and neutron to electron mass ratio are given in terms of the 
dimensionless fine structure constant   only and compared to experimental values from the 1998 CODATA and the Particle 
Data Group given in parentheses [12-13]. 
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Consider pair production.  The proper time of the particle is equated with the coordinate time according to the 
Schwarzschild metric corresponding to light speed.  The special relativistic condition corresponding to the Planck energy (Eq. 
(34.49)) gives the mass of the electron [12-13]: 
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where 31
  experimental 9.10945455  10em X kg .  A clock is defined in terms of a self-consistent system of units used to measure the 

particle mass.  Presently the second is defined as the time required for 9,192,631,770 vibrations within the cesium-133 atom.  
The “sec” as defined in Eqs. (34.49) and (34.51) is a fundamental constant, namely, the metric of spacetime (it is almost 
identically equal to the present value of the MKS second for reasons explained in the Gravity section).  A unified theory can only 
provide the relationships between all measurable observables in terms of a clock defined in terms of fundamental constants 
according to those observables and used to measure them.  The so defined “clock” measures “clicks” on an observable in one 
aspect, and in another, it is the ruler of spacetime of the Universe with the implicit dependence of spacetime on matter-energy 
conversion as shown in the Gravity and Relationship of Matter to Energy and Spacetime Expansion sections. 
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RELATIONSHIP OF MATTER TO ENERGY AND SPACETIME EXPANSION 
The Schwarzschild metric gives the relationship whereby matter causes relativistic corrections to spacetime.  The limiting 
velocity c  results in the contraction of spacetime due to particle production, which is given by 2 gr  where gr  is the gravitational 

radius of the particle.  This has implications for the expansion of spacetime when matter converts to energy.  Q  the mass/energy 
to expansion/contraction quotient of spacetime is given by the ratio of the mass of a particle at production divided by T , the 
period of production where: 
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The gravitational equations with the equivalence of the particle production energies (Eq. (34.49)) permit the conservation of 

mass/energy ( 2E mc ) and spacetime (
3

34
 3.22  10

4 sec

c kg
X

G
 ).  With the conversion of 343.22  10  gX k  of matter to energy, 

spacetime expands by 1 sec.  The photon has inertial mass and angular momentum, but due to Maxwell’s equations and the 
implicit special relativity it does not have a gravitational mass.  The observed gravitational deflection of light is predicted as 
given in the Gravity section. 
 
COSMOLOGICAL CONSEQUENCES 
The Universe is closed (it is finite but with no boundary).  It is a 3-sphere Universe-Riemannian three-dimensional hyperspace 
plus time of constant positive curvature at each r-sphere.  The Universe is oscillatory in matter/energy and spacetime with a 
finite minimum radius, the gravitational radius.  Spacetime expands as mass is released as energy which provides the basis of the 
atomic, thermodynamic, and cosmological arrows of time.  Different regions of space are isothermal even though they are 
separated by greater distances than that over which light could travel during the time of the expansion of the Universe [14].  
Presently, stars and large scale structures exist which are older than the elapsed time of the present expansion as stellar, galaxy, 
and supercluster evolution occurred during the contraction phase [15–21].  The maximum power radiated by the Universe, which 

occurs at the beginning of the expansion phase, is 
5
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c
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G
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THE PERIOD OF OSCILLATION OF THE UNIVERSE BASED ON CLOSED 
PROPAGATION OF LIGHT 
Mass/energy is conserved during harmonic expansion and contraction.  The gravitational potential energy gravE  given by Eq. 

(32.148) with 0 Um m  is equal to 2
Um c  when the radius of the Universe r  is the gravitational radius Gr  (Eq. (32.22)).  The 

gravitational velocity Gv  (Eq. (32.33) with Gr r  and 0 Um m ) is the speed of light in a circular orbit wherein the eccentricity is 

equal to zero and the escape velocity from the Universe can never be reached.  The period of the oscillation of the Universe and 
the period for light to transverse the Universe corresponding to the gravitational radius Gr  must be equal.  The harmonic 

oscillation period, T , is: 
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where the mass of the Universe, Um , is approximately 54
 2  10X kg .  (The initial mass of the Universe of 54

 2  10X kg  is based 

on internal consistency with the size, age, Hubble constant, temperature, density of matter, and power spectrum.)  Thus, the 
observed Universe will expand as mass is released as photons for 11

 4.92  10X years .  At this point in its world line, the Universe 
will obtain its maximum size and begin to contract.   
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THE DIFFERENTIAL EQUATION OF THE RADIUS OF THE UNIVERSE 
Based on conservation of mass/energy ( 2E mc ) and spacetime (

3
34

 3.22  10
4 sec

c kg
X

G
 ), the Universe behaves as a simple 

harmonic oscillator having a restoring force, F , which is proportional to the radius.  The proportionality constant, k , is given in 
terms of the potential energy, E , gained as the radius decreases from the maximum expansion to the minimum contraction. 
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Since the gravitational potential energy gravE  is equal to 2
Um c  when the radius of the Universe r  is the gravitational radius Gr  
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and, considering the oscillation, the differential equation of the radius of the Universe,   is: 
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The maximum radius of the Universe, the amplitude, or , of the time harmonic variation in the radius of the Universe, is 

given by the quotient of the total mass of the Universe and Q  (Eq. (34.53)), the mass/energy to expansion/contraction quotient. 
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The minimum radius which corresponds to the gravitational radius, gr , given by Eq. (32.36) with 0 Um m  is  

 27 11
  

2

2
2.96  10 3.12  10  U

g

Gm
r X m X light years

c
    (34.59) 

When the radius of the Universe is the gravitational radius, gr , the proper time is equal to the coordinate time by Eq. (34.47), and 

the gravitational escape velocity gv  of the Universe is the speed of light.  The radius of the Universe as a function of time is 
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As shown in the Gravity section, Eq. (34.60) correctly predicts the observed size, age, Hubble constant, temperature, density of 
matter, power spectrum, large-scale structure, and acceleration rate of the expansion of the Universe.  The latter astonishing 
observation was predicted years before it was observed [22]. 
 
THE PERIODS OF SPACETIME EXPANSION/CONTRACTION AND PARTICLE 
DECAY/PRODUCTION FOR THE UNIVERSE ARE EQUAL 
The period of the expansion/contraction cycle of the radius of the Universe, T , is given by Eq. (34.54).  It follows from the 
Poynting power theorem with spherical radiation that the transition lifetimes are given by the ratio of energy and the power of 
the transition (Eq. (33.35)).  Exponential decay applies to electromagnetic energy decay,  
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The coordinate time is imaginary because energy transitions are spacelike due to spacetime expansion from matter to energy 
conversion.  For example, the mass of the electron (a fundamental particle) is given by: 
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where gv  is the Newtonian gravitational velocity (Eq. (34.30)).  When the gravitational radius gr  is the radius of the Universe, 

the proper time is equal to the coordinate time by Eq. (34.47), and the gravitational escape velocity gv  of the Universe is the 

speed of light.  Replacement of the coordinate time, t , by the spacelike time, it , gives: 
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where the period is T  (Eq. (34.54)).  The continuity conditions based on the constant maximum speed of light (Maxwell’s 
equations) are given by Eqs. (34.48-34.49).  The continuity conditions based on the constant maximum speed of light 
(Schwarzschild metric) are given by Eq. (34.50).  The periods of spacetime expansion/contraction and particle decay/production 
for the Universe are equal because only the particles which satisfy Maxwell’s equations and the relationship between proper time 
and coordinate time imposed by the Schwarzschild metric may exist.  

The general form of the light front wave equation is given by Eq. (34.5).  The equation of the radius of the Universe,  , 
may be written as: 
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which is a solution of the wave equation for a light wave front.  Maxwell’s equations, Planck’s equation, the de Broglie equation, 
Newton’s laws, and special relativity, and gravity are unified.  Classical physical laws apply on all scales wherein space is finite-
absolute rather than infinite-relative4. 
 

EQUIVALENCE OF THE GRAVITATIONAL AND INERTIAL MASSES 
The relationships of relativity and gravity have the same form with the interchange of the inertial and gravitational velocities 
(Compare Eqs. (34.7-34.17) with Eqs. (34.26), and (34.36-34.41)).  The relationships are reciprocal due to the nature of absolute 
space that is produced or annihilated with particle annihilation or production, respectively.  Due to the finite propagation time for 
signals set by the speed of light which is in turn set by the finite permeability and permittivity of free space the mechanics 
parameters are corrected by Lorentz transformations or their equivalent with the gravitational velocity replacing the constant 
kinetic velocity in the case of gravitating bodies. 

Extensive experimentation dating from Galileo Galilei’s Pisa experiment to the present has shown that irrespective of the 
object chosen, the acceleration of an object produced by the gravitational force is the same, which from Eq. (32.4) implies that 
the value of /g im m  should be the same for all objects.  In other words, we have: 

 universal constantg

i

m

m
  (34.65) 

the equivalence of the gravitational mass and the inertial mass.  The fractional deviation of Eq. (34.65) from a constant is 
experimentally confirmed to less 111  10X   [23].  The equivalence of the gravitational mass and the inertial mass is a 
conservation statement of the mass, energy, and spacetime of the Universe.  The overall inventory is a constant with the inter-
conversion related by the ratios of fundamental constants of spacetime. 

At particle production, the outgoing gravitational field, traveling as a wave front, carries the change in the curvature of 
spacetime.  The front must travel at light speed since the permittivity 0  and permeability 0  of free spacetime are and must 

remain independent of curvature in order for the laws of physics to be covariant and the physics of the Universe to be 
conservative.  Thus, any perturbation must travel at the speed of light c  given by Eq. (34.1).  The justification for Eq. (34.26) is 
the relativity principle based on Eq. (34.6) and the invariance of the light speed due to the invariance of the permittivity 0  and 

permeability 0  of free spacetime. 

From Eqs. (34.35) and (34.47-34.53), each r-sphere of the Universe comprising a finite, closed 3-sphere Universe-
(Riemannian three-dimensional hyperspace plus time of constant positive curvature at each r-sphere) is determined by a clock set 

by the conservation relationship of mass-energy, 2E mc , and spacetime, 
3

34
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4 sec

c kg
X

G
 .  Spacetime expands at light 

speed as mass is released as energy which provides the basis of the atomic, thermodynamic, and cosmological arrows of time.   
Consider the relationship  (Eq. (34.41)) between gravitational mass gm  and proper energy pE  of a gravitating object 

based on the absolute light speed and absolute space: 
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Similarly, based on the absolute light speed and absolute space, the relationship (Eq. (34.13)) between inertial mass im  and 

energy is:  
 

4 The views that all phenomena in the universe are purely relative, the basis of gravity is the equivalence principle, and light has a wave-particle duality 
nature determined by the act of measurement were the seeds for the abandonment of the testable physical laws of Newton and Maxwell.  Subsequent 
missteps of the interpretation of the electron as a nonphysical point-particle probability wave with intrinsic spin, the use of mathematics for circumventing 
intrinsic infinites while engendering the vacuum with infinities of virtual particles, and the pursuit of compactified extra dimensions, nonbaryonic dark 
matter and dark energy gave rise to the pure mathematics and the metaphysics of current quantum mechanics and string theory.  This path has been a 
complete failure at achieving the goal of unification of the forces and laws of nature. 
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At particle production gv v  and Eqs. (34.47-34.49) are continuously satisfied with a final free state at rest, such that: 
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thus, 

 0g im m m   (34.69) 

wherein a particle’s absolute frame of reference is determined by the production event having production mass 0m  (e.g. Eq. 

(34.52)), energy 2
0m c  (Eq. (34.49)), velocity gv  (Eq. (34.30)) in the photon-particle transition state and zero as a free particle, 

and the proper time defined in terms of the unit sec of its proper clock which depends on its gravitational and inertial masses 
(Eqs. (34.47), (34.49), (34.51)) which are equivalent.  Following production, conservation of mass-energy relative to absolute 
space and consequently relative space in Eqs. (34.13) and (34.41) requires that:  

 g im m  (34.70) 

where the energy is a Lorentz scalar and the contributions due to kinetic energy and gravitational energy corresponding to v  and 

gv , respectively, superimpose.  The validity of the gravity metric under interchange of the masses of gravitating bodies requires 

that Eqs. (34.69-34.70) apply in general. 
The absolute gravitational and inertial masses are equivalent since they both obey the relativity principle and 

conservation of mass-energy-spacetime.  With regard to gravitational effects, clocks and rulers are affected by the acquisition of 
translational velocity.  The gravitational mass increases by the kinetic energy increase.  This causes a gravitating particle’s 
internal clock to undergo gravitational dilation such that its proper time with respect to the absolute time unit sec is synchronized 
with the mass-energy expansion-contraction cycle of the Universe.  Since the same physical relationships hold for all frames of 
reference (Relativity Principle), the relative inertial and gravitational masses are equivalent in their effects from the perspective 
of the corresponding frames.  This result also provides a gravitational causality constraint regarding the maximum particle speed 
that matches that imposed by the particle’s equivalent gravitational and inertial masses.  In addition to the impossible result that 
the inertia of the particle would become infinite when it approached the velocity of light as first recognized by Poincaré [1], the 
principle that the particle velocity cannot exceed c  also arises from the existence of absolute space.  A particle’s gravitational 
mass cannot become infinite, and the particle’s position cannot outdistance the spacetime perturbation created by its production 
or any mass increase from the acquisition of kinetic energy. 

Regarding the inertial implications, based on the absolute speed of light, measurements by clocks in different inertial 
frames deviate in a manner independent of that due to spacetime curvature caused by gravitating bodies.  These effects are also 
due to an absolute change in the particle’s mass-energy-spacetime parameters.  They are not due to different relative perceptions 
of time measurement as inherent in the current interpretations of special relativity.  For example, the appearance that a stick 
immersed in water appears to bend can be understood in terms of the difference in the speed of light propagation in air and 
water.  The molecules are not really forming new bonds.  But, clocks that were initially synchronized and at relative rest, have 
undergone relative translation, and were rejoined, measure different times in an absolute sense, not just a relative one.  And, 
thereafter the relative velocity is zero, the increase in kinetic energy has gone to zero, and any contraction of physical dimensions 
due to relativity is not observed.  Time has been absolutely lost due to motion.  This conclusion is in agreement with the results 
of the twin paradox and differences in the observation of the simultaneity of events due to motion.  It is possible to slow the 
clock of an object by expending energy to increase its velocity with a consequent and concomitant acceleration of the clocks of 
parts of the object’s surroundings such that the absolute time of the Universe is conserved overall.  As shown supra., spacetime 
expands as mass is released as energy which provides the basis of the atomic, thermodynamic, and cosmological arrows of time.  
The resulting object’s kinetic energy is also an absolute as opposed to a relative parameter.  It represents a conservative physical 
change in the mass-energy-spacetime inventory of the Universe.  It can be quantified in terms of absolutes with the inertial and 
gravitational masses being equivalent as a requirement of the conservation of mass, energy, and spacetime. 
The equivalence of the inertial and gravitational masses is due to mass-energy conservation relative to absolute space whose 
permittivity and permeability and gravitational constant determine the conversion factor between mass and energy and the mass 
and curvature, respectively.  Since the gravitational and inertial mass are equivalent, the same mass value for a gravitating body 
with inertia is used in both the gravitational and inertial equations of motion.  Given that a particle’s mass is absolute relative to 
absolute space according to Eq. (34.11) wherein v  is the absolute velocity, the factor of resistance to any change in velocity due 
to an applied force corresponding to a change in kinetic energy and therefore mass-energy inventory over space and time is the 
inertial mass.  Thus, conservation of mass-energy when there is any change is the basis of an absolute law, namely Newton’s 
second law. 
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NEWTON’S SECOND LAW 
All matter is comprised of charged fundamental particles such as quarks and leptons.  Charge is relativistically invariant.  
Consider a particle that acquires a finite constant velocity.  In the case of the electron atomic orbital, the radius undergoes 
relativistic contraction in the direction of constant velocity relative to a stationary observer according to Eq. (34.10).  Thus, as v  
approaches c , the radius goes to zero, and the Coulomb potential density along the axis of propagation goes to infinity (Eq. 
(1.261)).  However, as the velocity increases, the electric field lines of the particle increase in density relative to the stationary 
observer in a direction perpendicular to the direction of motion of the particle.  The field lines of a stationary proton, electron, 
and hydrogen atom are shown in Figure 1.32.  The field lines in the lab frame follow from the relativistic invariance of charge as 
given by Purcell [24].  The relationship between the relativistic velocity and the electric field of a moving point charge at two 
velocities is shown schematically in Figures 34.1A and 34.1B. 

 
Figure 34.1A.  The electric field lines of a moving point 

charge (
1

3
v c ). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Lorentz correction to maintain the invariance of the field lines identically cancels the Lorentz contraction of the atomic 
orbital such that the Coulomb potential is unchanged.  Thus, inertial mass is purely kinematics, except for radiation from moving 
charges and radiation reaction effects of charged particles given by Jackson [25] where these later effects also arise from 
Maxwell’s equations and special relativity.  The inertial mass is related to the gravitational mass and the momentum of the 
photon corresponding to its electric and magnetic fields as well as the corresponding energies as given by Eq. (34.49) for the 
particle production event.  Thereafter, the constant maximum velocity of the speed of light maintains that the relationships 
between parameters of observers moving at constant relative velocity are given by the Minkowski tensor.  The inertial mass 

arises from the impedance of spacetime of 0
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 for the motion of light or matter at production according 

to Eq. (34.49) wherein matter can be considered a special case of light from which it is formed.  The resistance of mass to 
motion is thereafter based on absolute energy conservation.  Thus, from Eq. (34.49), Newton’s force law can be derived. 
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Consider the invariant momentum given by Eq. (34.12).  The time derivative is given by: 
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Comparison of Eq. (34.71) with Eq. (34.72) gives Newton’s force law (Eq. (34.4)). 

 0

2

21

m vd d
F

dt dtv
c

   
  
 

p
 (34.73) 

Figure 34.1B.  The electric field lines of a moving point 

charge (
4

5
v c ). 
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Thus, the application of a force causes acceleration to a new final absolute velocity corresponding to the final absolute 
mass where the mass difference is the increased kinetic energy.  Since the absolute-mass-energy of the source of force identically 
decreases by that of the increase of the accelerated body, the mass-energy inventory of the Universe is conserved.  This result is 
contrasted to the case in special relativity wherein there are infinites of inertial frames corresponding to infinities of different 
energy inventories.  It is no more tenable that mass-energy can be created by simply selecting an alternative inertial frame, than 
matter can be created from the vacuum as predicted by the Heisenberg Uncertainty principle of quantum mechanics.  Both have 
no basis in physical reality.  In addition to restoring conservation to the Universe, the determination of absolute space resolves 
inconsistencies of special relativity such as the twin paradox as well as other confusing issues in the interpretation of special 
relativity. 

 

RETURN TO THE TWIN PARADOX 
It was discussed supra. that the framers of special relativity were incorrect in their conclusion of the absence of an absolute 
frame based on their limited understanding of the nature of spacetime and their inability to identify such a frame.  In fact, an 
absolute frame at rest exists for each particle at the moment of its creation from a photon wherein its absolute proper time is 
based on the time unit sec.  Newton’s second law and Newton’s Law of Gravitation may be understood in terms of the nature of 
spacetime in the relationship of the photon and the corresponding particle.  Spacetime has a limiting speed of light for the 
propagation of fields including the electromagnetic and gravitational fields with the requirement that the production of matter 
having inertial mass gives rise to the corresponding equivalent gravitational mass.  Mass energy and spacetime are conserved, 
and the clocks for the transition of matter to energy and the expansion of the cosmos are absolute overall and are synchronized. 

The production of a particle from a photon of identically the production energy defines the absolute inertial frame at rest 
for the particle.  Since a typical laboratory object is comprised of trillions of trillions of particles, it is impossible to determine 
the kinetic energy inventory exactly.  However, since the electromagnetic forces dominate the gravitational force by about forty 
orders of magnitude, and accelerated and hot particles typically thermalize by radiation and collisional exchange, the temperature 
of space at each r-sphere is a reasonable measure of the average kinetic energy inventory with space modeled as a blackbody as 
given in the Statistical Mechanics section.  The current absolute temperature is about 4 K; thus, on average, the kinetic energy of 
the mass of the Universe can be assumed near rest relative to an absolute frame.  Thus, the twin paradox is easily resolved in that 
the Earth is identifiable as a good approximation to an absolute frame at rest for near-light-speed space travel by the traveling 
twin5.  For relative motion, the inertial frames are easily ranked based on relative expenditure of energy to increase the 
corresponding spaceship’s absolute energy.  The kinetic energy imparted to the spaceship of the traveling twin causes its clock to 
slow down relative to the Earth-bound one’s to maintain the conservation of matter, energy, and spacetime of the Universe.  
Recall that the defined “clock” measures “clicks” in units of sec on an observable in one aspect, and in another, it is the ruler of 
spacetime of the Universe with the implicit dependence of spacetime on matter-energy conversion as shown in the Gravity and 
Relationship of Matter to Energy and Spacetime Expansion sections.  Even though the twins are rejoined and their clocks read 
identically thereafter, the returning twin is younger since his proper absolute clock underwent dilation.  His retarded clock was at 
the expense of advancing the clocks of parts of his surroundings in the expenditure of the energy required for the acceleration 
and deceleration of his spaceship.  Overall, the absolute periods of particle decay/production (Maxwell’s equations) and 
spacetime expansion/contraction (Schwarzschild metric) for the Universe are equal and conserved.  The synchronized periods 
are based on the corresponding continuity conditions given by Eq. (34.49) and Eq. (34.50), respectively, that arise from the 
relativity principle (Eq. (34.6)). 

In summary, the relationship between inertial and gravitational mass is based on the result that only fundamental particles 
having an equivalence of the inertial and gravitational masses at particle production are permitted to exist since only in these 
cases are Maxwell’s equations and the conditions inherent in the Schwarzschild metric of spacetime satisfied simultaneously 
wherein space must be absolute.  The equivalence is maintained for any velocity thereafter due to the absolute nature of space 
and the absolute speed of light.  The invariant speed c  is set by the permittivity and permeability of absolute space which 
determines the relativity principle based on propagation of fields and signals as light-wave fronts.  The predicted twin-paradox 
result based on Poincaré’s postulates, Lorentz transforms, and absolute space has been verified by experiments in which 
extremely precise and accurate clocks are synchronized, divided into identical Earth-bound and traveling clocks, and the times of 
stationary members are compared with ones flown around the world on airplanes [8]. 

 

 
5 Other celestial objects will also suffice.  A suitable practical object as a reference of absolute space at rest for relativistic astrophysical measurements is a 
bright celestial body that has a zero translational velocity within its r-sphere, or this component is corrected for.  A point at rest on the surface of a given r-
sphere including the expansion horizon corresponding to absolute space can be observed in approximation by identifying a Cepheid of the corresponding 
calculated age (distance) relative to the current r-sphere.  Measurement of the change in angular diameter over its pulsation cycle when combined with 
spectroscopic radial velocity measurements, permits the distance to be determined very accurately in a quasi-geometrical way, and permits the zero-point 
of the Cepheid Period-Luminosity empirical law to be calibrated. 
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ABSOLUTE SPACE CONFIRMED EXPERIMENTALLY 
The absolute nature of spacetime is confirmed by the observation that the power spectra of quasars do not exhibit time dilation [26-
29].  The power spectra of quasars are identical at high and low redshift.  Clocks at earlier r-spheres run slower than those at later r-
spheres due to spacetime dilation/expansion.  But internal processes being time independent of redshift due to the expansion of 
spacetime is expected since time dilation arises from motion relative to an object’s absolute space and not relative to an arbitrary 
observer such as an Earth observer whose position has relatively receded at a corresponding velocity due to spacetime expansion.  The 
independence of time dilation for internal processes due to spacetime expansion is also supported by the spacetime-expansion 
independence of the fundamental constants which determine the clocks of internal processes.  Furthermore, time dilation is not 
predicted due to an apparent relativistic motion due to expansion.  Given that a quasar’s velocity relative to its absolute space is not 
expected to be substantial even though its velocity relative to an Earth observer corresponding to its redshift may be relativistic, the 
power spectrum that arises from internal emission processes is predicted not to show time dilation.  This consequence of absolute 
space is unequivocally experimentally confirmed for quasars that are each essentially stationary relative to their absolute space [26-
29]6.   

In contrast, the ejected matter of a supernova is accelerated to close to light speed relative to its absolute space and is predicted 
to exhibit time dilation observable by the dilation of its spectral evolution.  Indeed, observational results are inconsistent with the null, 
no time dilation, hypothesis at a confidence level of 99.0% [30]. 

In addition to providing for (i) the uniqueness of the energy inventory of the universe, (ii) the basis of inertial and gravitational 
masses and their equivalence, (iii) the restoration of Newton’s laws as well as their relationship to Maxwell’s equations, pillars of 
modern technological society, (iv) the resolution of the twin paradox, and (v) the predictions of the acceleration of the cosmic expansion 
and the mass of the top quark as well providing the means for calculating the masses of the other fundamental particles, the nature of 
absolute space and absolute light velocity resolves the observation of the absence of time dilation in quasars and its presence in 
supernovas.  These results demonstrate that a hypothetical particle dubbed the Higgs boson whose properties are coupled to the 19 
semiempirical parameters of the Standard Model requiring 32 significant figure precision to prevent nonsensical outcomes in the 
corresponding computer algorithms is not the basis of inertial mass.  Such a mass conveying particle will not be observed in experiments 
performed at Fermi National Accelerator Laboratory (Fermilab), the Large Hadron Collider (LHC), or any future collider [31].  Recent 
Higgs hunt results from CERN of a 126 GeV boson match predictions for a high-energy neutron resonance predicted in the Intermediate 
Vector and Higgs Bosons section.  

The nature of spacetime also has implications regarding the possibility of gravity waves analogous to electromagnetic waves.  As 
shown in the Period Equivalence section, the only particles that can exist are those that obey the condition of period equivalence of 
spacetime expansion and contraction and electromagnetic decay such that matter-energy and spacetime are conserved.  However, the 
natures of the electromagnetic and gravitational fields are distinct.  Only matter-energy conversion is capable of causing a change to the 
curvature of spacetime and the corresponding gravitational field.  Charges can emit photons that superpose to form an electromagnetic 
wave; whereas, gravitating bodies cannot emit a particle that similarly forms a transverse light-speed wave.  Any oscillation or change in 
motion of a gravitating body must conserve the relationship between matter-energy and spacetime with a change in time dependent 
curvature propagating inwards and outwards during the corresponding phase of the period of periodic motion to maintain the 
conservation.  The time dependent gravitational field fluctuations would only be experienced radially in the near field with no transverse 
time-dependent gravity wave effect in the far field consistent with the absence of the observation of gravity waves [32-33]. 
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Chapter 35 
THE FIFTH FORCE 

GENERAL CONSIDERATIONS 
The physical basis of the equivalence of inertial and gravitational mass of fundamental particles is given in the Equivalence of 
Inertial and Gravitational Masses Due to Absolute Space and Absolute Light Velocity section wherein spacetime is Riemannian 
due to a relativistic correction to spacetime with particle production.  The Schwarzschild metric gives the relationship whereby 
matter causes relativistic corrections to spacetime that determines the curvature of spacetime and is the origin of gravity.  Matter 
arises during particle production from a photon and comprises mass and charge confined to a two dimensional surface.  Matter of 
fundamental particles such as an electron has zero thickness.  But, in order that the speed of light is a constant maximum in any 
frame including that of the gravitational field that propagates out as a light-wave front at particle production, the production 
event gives rise to a spacetime dilation equal to 2  times the Newtonian gravitational or Schwarzschild radius 

57
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1.3525  10  e
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Gm
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c
   of the particle according to Eqs. (32.36) and (32.140b) and the discussion at the footnote after 

Eq. (32.40).  For the electron, this corresponds to a spacetime dilation of 578.4980  10  X m  or 652.8346  10  X s .  Although the 
electron does not occupy space in the third spatial dimension, its mass discontinuity effectively “displaces” spacetime wherein 
the spacetime dilation can be considered a “thickness” associated with its gravitational field.  Matter and the motion of matter 
effects the curvature of spacetime which in turn influences the motion of matter.  Consider the angular motion of matter of a 
fundamental particle.  The angular momentum of the photon is  .  An electron is formed from a photon, and it can only change 
its bound states in discrete quantized steps caused by a photon at each step.  Thus, the electron angular momentum is always 
quantized in terms of  .  But this intrinsic motion comprises a two-dimensional current surface of the motion of the matter 
through space that may be positively curved, flat, or negatively curved.  The first and second cases correspond to the bound and 
free electron, respectively.  The third case corresponds to an extraordinary state of matter called a pseudoelectron given infra.  
Due to interplay between the motion of matter and spacetime in terms of their respective geometries, only in the first case are the 
inertial and gravitational masses of the electron equivalent.  In the second case, the gravitational mass is zero.  The experimental 
mass of the free electron measured by Witteborn [1] using a free fall technique is less than 0.09 em , where em  is the inertial 

mass of the free electron  319.109534  10  X kg  consistent with the Classical Physics theoretical prediction.  In the third case,

the gravitational mass is negative in the equations of extrinsic or translational motion.  The negative gravitational mass of a 
fundamental particle is the basis of and is manifested as a fifth force that acts on the fundamental particle in the presence of a 
gravitating body in a direction opposite to that of the gravitational force with far greater magnitude1. 

The two-dimensional nature of matter permits the unification of subatomic, atomic, and cosmological gravitation.  The 
theory of gravitation that applies on all scales from quarks to cosmos as shown in the Gravity section is derived by first 
establishing a metric.  A space in which the curvature tensor has the following form: 

, ( )R K g g g g        (35.1) 

is called a space of constant curvature; it is a four-dimensional generalization of Friedmann-Lobachevsky space.  The constant 

1 In the case of Einstein’s gravity equation (Eq. (32.40)), the Einstein Tensor G , is equal to the stress-energy-momentum tensor T .  The only 

possibility is for the gravitational mass to be equivalent to the inertial mass.  A particle of zero or negative gravitational mass is not possible.  However, it 
is shown in the Gravity section that the correct basis of gravitation is not according to Einstein’s equation Eq. (32.40); instead, the origin of gravity is the 
relativistic correction of spacetime itself which is analogous to the special relativistic corrections of inertial parameters—increase in mass, dilation in time, 
and contraction in length in the direction of constant relative motion of separate inertial frames.  On this basis, the observed acceleration of the cosmos is 
predicted as given in the Cosmology section. 
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K  is called the constant of curvature.  The curvature of spacetime results from a discontinuity of matter having curvature 
confined to two spatial dimensions.  This is the property of all matter at the fundamental-particle scale.  Consider an isolated 
bound electron comprising an atomic orbital with a radius nr  as given in the One-Electron Atom section.  For radial distances, r , 

from its center with nr r , there is no mass; thus, spacetime is flat or Euclidean.  The curvature tensor applies to all space of the 

inertial frame considered; thus, for nr r , 0K  .  At nr r  there exists a discontinuity of mass in constant motion within the 

atomic orbital as a positively curved surface.  This results in a discontinuity in the curvature tensor for radial distances nr .  The 

discontinuity requires relativistic corrections to spacetime itself.  It requires radial length contraction and time dilation 
corresponding to the curvature of spacetime.  The gravitational radius of the atomic orbital and infinitesimal temporal 
displacement corresponding to the contribution to the curvature in spacetime caused by the presence of the atomic orbital are 
derived in the Gravity section. 

The Schwarzschild metric gives the relationship whereby matter causes relativistic corrections to spacetime that 
determines the curvature of spacetime and is the origin of gravity.  The correction is based on the boundary conditions that no 
signal can travel faster than the speed of light including the gravitational field that propagates following particle production from 
a photon wherein the particle has a finite gravitational velocity given by Newton’s Law of Gravitation.  The separation of proper 
time between two events x  and x dx   given by Eq. (32.38), the Schwarzschild metric [2-3], is: 
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 (35.2) 

Eq. (35.2) can be reduced to Newton’s Law of Gravitation for gr , the gravitational radius of the particle, much less than *r , the 

radius of the particle at production (
*

1gr

r
 ), where the radius of the particle is its Compton wavelength bar ( *

cr   ): 
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r
  (35.3) 

where G is the Newtonian gravitational constant.  Eq. (35.2) relativistically corrects Newton’s gravitational theory.  In an 
analogous manner, Lorentz transformations correct Newton’s laws of mechanics. 

The effects of gravity preclude the existence of inertial frames in a large region, and only local inertial frames, between 
which relationships are determined by gravity are possible.  In short, the effects of gravity are only in the determination of the 
local inertial frames.  The frames depend on gravity, and the frames describe the spacetime background of the motion of matter.  
Therefore, differing from other kinds of forces, gravity which influences the motion of matter by determining the properties of 
spacetime is itself described by the metric of spacetime.  It was demonstrated in the Gravity section that gravity arises from the 
two spatial dimensional mass-density functions of the fundamental particles. 

It is demonstrated in the One-Electron Atom section that a bound electron is a two-dimensional spherical shell—an 

atomic orbital.  On the atomic scale, the curvature, K, is given by 
2

1

nr
, where nr  is the radius of the radial delta function of the 

atomic orbital.  The velocity of the electron is a constant on this two-dimensional sphere.  It is this local, positive curvature of 
the electron that causes gravity due to the corresponding physical contraction of spacetime due to its presence as shown in the 
Gravity section.  It is worth noting that all ordinary matter, comprised of leptons and quarks, has positive curvature.  Euclidean 
plane geometry asserts that (in a plane) the sum of the angles of a triangle equals 180 .  In fact, this is the definition of a flat 
surface.  For a triangle on an atomic orbital the sum of the angles is greater than 180°, and the atomic orbital has positive 
curvature.  For some surfaces the sum of the angles of a triangle is less than 180 ; these are said to have negative curvature.   

 

sum of angles of triangles type of surface 

> 180° positive curvature
= 180° flat
< 180° negative curvature

 

The measure of Gaussian curvature, K, at a point on a two-dimensional surface is:  

 
1 2

1
K

r r
  (35.4) 

the inverse product of the radius of the maximum and minimum circles, 1r  and 2r , which fit the surface at the point, and the radii 

are normal to the surface at the point.  By a theorem of Euler, these two circles lie in orthogonal planes.  For a sphere, the radii of 
the two circles of curvature are the same at every point and are equivalent to the radius of a great circle of the sphere.  Thus, the 
sphere is a surface of constant curvature; 

 
2

1
K

r
  (35.5) 

at every point.  In the case of positive curvature of which the sphere is an example, the circles fall on the same side of the 
surface, but when the circles are on opposite sides, the curve has negative curvature.  A saddle, a cantenoid, a hyperboloid, and a 
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pseudosphere are negatively curved.  The general equation of a saddle is: 
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a b
   (35.6) 

where a  and b  are constants.  The curvature of the surface of Eq. (35.6) is: 

 
22 2

2 2 4 4

1 1

4 4

x y
K

a b a b
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A saddle is shown schematically in Figure 35.1, a hyperboloid is shown in Figure 35.2, and a conic is shown in Figure 35.3. 
 
Figure 35.1.   A saddle. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
A pseudosphere is constructed by revolving the tractrix about its asymptote.  For the tractrix, the length of any tangent measured 
from the point of tangency to the x-axis is equal to the height R  of the curve from its asymptote—in this case the x-axis.  The 
pseudosphere is a surface of constant negative curvature.  The curvature, K 
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   (35.8) 

given by the product of the two principal curvatures on opposite sides of the surface is equal to the inverse of R squared at every 
point where R is the equitangent.  R is also known as the radius of the pseudosphere.  A pseudosphere is shown schematically in 
Figure 35.4. 

In the case of a sphere, surfaces of constant potential are concentric spherical shells.  The general law of potential for 

Figure 35.3.   A conic. 

Figure 35.2.  A hyperboloid. 

Figure 35.4.   A pseudosphere. 
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surfaces of constant curvature is:  

 
0 1 2 0

1 1 1
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V
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   (35.9) 

In the case of a pseudosphere the radii 1r  and 2r , the two principal curvatures, represent the distances measured along the normal 

from the negative potential surface to the two sheets of its evolute, envelop of normals (cantenoid and x-axis).  The force is 

given as the gradient of the potential that is proportional to 
2

1

r
 in the case of a sphere. 

All matter is comprised of fundamental particles, and all fundamental particles exist as mass confined to two spatial 
dimensions.  The particle’s current surface is positively curved in the case of an atomic orbital, flat in the case of a free electron, 
and negatively curved in the case of an electron as a pseudosphere hereafter called a pseudoelectron.  The effect of this “local” 
curvature on the non-local spacetime is to cause it to be Riemannian in the case of an atomic orbital, or hyperbolic, in the case of 
a pseudoelectron, as opposed to Euclidean in the case of the free electron.  Each curvature is manifest as a gravitational field, a 
repulsive gravitational field, or the absence of a gravitational field, respectively.  Thus, the spacetime is curved with constant 
spherical curvature in the case of an atomic orbital, or spacetime is curved with negative curvature in the case of a 
pseudoelectron.   

Matter arises during particle production from a photon.  The limiting velocity c  results in the contraction of spacetime 
due to particle production.  The contraction is given by 2 gr  where gr  is the gravitational radius of the particle.  This has 

implications for the physics of gravitation.  By applying the condition to electromagnetic and gravitational fields at particle 
production, the Schwarzschild metric (SM) is derived from the classical wave equation, which modifies general relativity to 
include conservation of spacetime in addition to momentum and matter/energy.  The result gives a natural relationship between 
Maxwell’s equations, special relativity, and general relativity.  It gives gravitation from the atom to the cosmos.  The 
Schwarzschild metric gives the relationship whereby matter causes relativistic corrections to spacetime that determines the 
curvature of spacetime and is the origin of gravity.  The gravitational equations with the equivalence of the particle production 
energies permit the equivalence of mass-energy and the spacetime wherein a “clock” is defined which measures “clicks” on an 
observable in one aspect, and in another, it is the ruler of spacetime of the Universe with the implicit dependence of spacetime 
on matter-energy conversion.  The masses of the leptons, the quarks, and nucleons are derived from this metric of spacetime.  

The relativistic correction for spacetime dilation and contraction due to the production of a particle with positive 
curvature is given by Eq. (32.17): 

  
2

1 gv
f r

c

  
       

 (35.10) 

As shown in the Gravity section (Eq. (32.35)), the derivation of the relativistic correction factor of spacetime was based on the 
constant maximum velocity of light and a finite positive Newtonian gravitational velocity gv  of the particle.  The production of a 

particle requires that the velocity of the particle is equivalent to the Newtonian gravitational escape velocity, gv , of the 

antiparticle: 
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g

C

Gm Gm
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 (35.11) 

From Eq. (35.22) and Eqs. (35.18-35.19), the eccentricity is one and the particle production trajectory is a parabola relative to 
the center of mass of the antiparticle.  The right-hand side of Eq. (32.43) represents the correction to the laboratory coordinate 
metric for time corresponding to the relativistic correction of spacetime by the particle production event.  Consider a Newtonian 
gravitational radius, gr , of each atomic orbital of the particle production event, each of mass 0m  

 0
2

2
g

Gm
r

c
  (35.12) 

where G  is the Newtonian gravitational constant.  The substitution of each of Eq. (35.11) and Eq. (35.12) into the 
Schwarzschild metric Eq. (35.2) gives: 
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and 
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respectively.  The solutions for the Schwarzschild metric exist wherein the relativistic correction to the gravitational velocity gv  

and the gravitational radius gr  are of the opposite sign (i.e. negative).  In these cases, the Schwarzschild metric (Eq. (35.2)) is: 
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and 
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The metric given by Eqs. (35.13-35.14) corresponds to positive curvature.  The metric given by Eqs. (35.15-35.16) corresponds 
to negative curvature.  The positive curvature of spacetime arises from the conversion of a photon traveling at light speed and 
having no gravitational mass into a bound particle-antiparticle pair such as an electron-positron pair each having its inertial rest 
mass relative to the corresponding particle’s absolute space (Equivalence of Inertial and Gravitational Masses Due to Absolute 
Space and Absolute Light Velocity section).  The escape velocity is the gravitational velocity gv  following a parabolic orbit with 

both particles traveling to an unbound state with relative velocity with respect to the absolute space corresponding to the excess 
energy over the mass energy of the particles (Gravity section).  Both free particles such as leptons and antileptons exist with zero 
curvature.  Each zero-curvature particle is predicted to have a zero gravitational mass and a zero gravitational radius based on 
continuity of the spacetime metric relationships given by Eqs. (35.13-35.14). 

The equations that govern the production and trajectories of fundamental particles (Quantum Gravity of Fundamental 
Particles section and Particle Production section) also apply to the mechanical equations of existing particles.  Bound and free 
electrons are natural states for inverse-r potentials.  Yet, a third extraordinary state is possible for the correspondence between 
the geometrical form of the mass and the intrinsic motion of particles and their effect on spacetime which in turn affects the 
extrinsic motion of the particles.  Specifically, the particle may possess a negative gravitation radius and a corresponding 
imaginary velocity.  The metric given by Eqs. (35.13-35.14) corresponds to positive curvature; whereas, the metric given by Eqs. 
(35.15-35.16) corresponds to the extraordinary case of negative curvature.  Spacetime having positive curvature in turn affects 
the extrinsic motion of the negatively curved particle such as one having mass and intrinsic motion confined to a negatively 
curved two-dimensional membrane in the form of a pseudosphere, pseudoelectron, to give rise to an imaginary translational 
velocity corresponding to a hyperbolic orbit along the gradient of the positive curvature.  Thus, negative gravity (fifth force) can 
be created by forcing matter into negative curvature.  A fundamental particle such as an electron with negative curvature, a 
pseudoelectron, would experience a central but repulsive force with a gravitating body comprised of matter of positive curvature.  
In this case, the fifth force deflects the pseudoelectron upward such that the negatively curved electron has the translational 
kinetic energy that causes the coordinate and proper times to be equivalent according to the Schwarzschild metric.  Masses and 
their effects on spacetime superimpose; thus, the metric corresponding to the Earth is given by substitution of the mass of the 
Earth, M , for 0m  in Eqs. (35.11-35.16).  The corresponding Schwarzschild metric Eq. (35.2) is: 
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which is the gravitational mechanics equation that can be expressed in terms of the gravitational velocity gv  and the gravitational 

radius gr  as given by Eqs. (35.13-35.16) with the mass being that of the Earth 245.98  10  M X kg .  

 

POSITIVE, ZERO, AND NEGATIVE GRAVITATIONAL MASS 
The geometry of an electron’s 2-dimensional mass surface determines that the electron may have a gravitational mass different 
from its inertial mass.  A bound electron comprising a positively curved mass with its intrinsic surface velocity corresponds to a 
positive gravitational mass equal to the inertial mass (e.g. particle production or a bound electron).  An absolutely free electron 
comprising a flat surface corresponds to zero gravitational mass with inertial mass em .  A pseudoelectron comprising negatively 

curved mass with its intrinsic surface velocity corresponds to a negative gravitational mass with inertial mass em .  Each case is 

considered in turn infra. 
According to Newton’s Law of Gravitation, the production of a particle of finite mass gives rise to a gravitational 

velocity of the particle that is essential in the determination of the particle masses as given in the Quantum Gravity of 
Fundamental Particles section and Particle Production section.  The gravitational velocity of a gravitating body such as the Earth, 
the velocity of an existing particle, and the nature of its gravitational mass determines the energy, eccentricity, and trajectory of 
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the gravitational orbit of the particle.  Consider the case of the equivalence of inertial and gravitational masses.  The eccentricity, 
e, given by Newton’s differential equations of motion in the case of the central field (Eq. (32.49-32.50)) permits the 
classification of the orbits according to the total energy, E, and according to the orbital velocity, 0v , relative to the Newtonian 

gravitational escape velocity, gv , as follows [4].  The same relationships hold for trajectories during particle production and 

motion of existing particles: 
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   (35.18) 
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Since E T V   and is constant, the closed orbits are those for which | |T V , and the open orbits are those for which | |T V .  
It can be shown that the time average of the kinetic energy, T  , for elliptic motion in an inverse square field is 1/ 2  that of the 
time average of the potential energy, V  : 1/ 2T V    . 

In the case that a particle of inertial mass, m , is observed to have a speed, 0v , a distance from a massive object, 0r , and a 

direction of motion that makes an angle,  , with the radius vector from the object (including a particle) of mass, M, the total 
energy is given by: 

 2 2
0

0

1 1
constant

2 2

GMm GMm
E mv mv

r r
      (35.20) 

The orbit will be elliptic, parabolic, or hyperbolic, according to whether E  is negative, zero, or positive.  Accordingly, if 2

0
v  is 

less than, equal to, or greater than 
0

2GM

r
, the orbit will be an ellipse, a parabola, or a hyperbola, respectively.  Since  h, the 

angular momentum per unit mass, is: 
 0 0/ sinh L m r v    r v  (35.21) 

the eccentricity, e, from Eq. (32.63) may be written as: 
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 (35.22) 

The nature of the sign of the parameters 2
gv  and gr  (Eqs. (35.13-35.16)) with the corresponding mechanics equations determine 

the behavior of the electron of a given curvature in terms of the classification of the gravitational mass being positive, zero, or 
negative in the historical Newtonian or general relativistic view.  In the last two cases, the inertial and gravitational masses are 
not equivalent.  Consider the first case.  The particle production equation (Eq. (32.43)) is for isolated particles at infinity wherein 
the gravitational and inertial masses are equal.  A discontinuity in mass in positive curvature gives rise to a discontinuity in the 
positive curvature of spacetime that is the origin of gravity.  Even at infinity relative to each other, each member of a production 
pair of particles is still in positive curvature due to the charge neutrality condition that requires that the field lines of one particle 
terminate on the other.  The central field exists and maintains a positive curvature that maintains the equivalence of inertial and 
gravitational masses.  The electric and magnetic fields of a particle are considered part of its inertial mass.  This inertial mass is 
released as photons corresponding to the binding energy BE  of the oppositely charged particle.  So, the sum of the masses of 

bound particles is less by 
2
BE

c
.  The gravitational mass also decreases by this amount since the released photons have no 

gravitational mass as given in the Deflection of Light section.  In a special case, a free electron can be maintained in the essential 



The Fifth Force 

 

1611

absence of fields and without spin angular momentum by cancellation with orbital angular momentum such that the curvature is 
no longer positive, and the inertial and gravitational masses are no longer equivalent. 

Minkowski space applies to the free electron.  In the Electron in Free Space section, a free electron is shown to be a two-
dimensional plane wave—a flat surface.  Because the gravitational mass depends on the positive curvature of a particle, a free 
electron has inertial mass but not gravitational mass.  If the electric and magnetic fields are essentially eliminated from a region 
of vacuum space containing an electron such that the electron is completely free and unbound and the spin angular momentum is 
cancelled, it may be possible to measure an electron gravitational mass that is less than the inertial mass em .  The gravitational 

mass is zero in the limit of the electron being absolutely free.  With the exclusion of electromagnetic fields and the cancelation of 
the spin angular momentum, Witteborn [1] experimentally measured the gravitational mass of the free electron using a free fall 
technique.  The reported result was less than 0.09 em , where em  is the inertial mass of the free electron  319.109534  10  X kg .  

Thus, a free electron is not gravitationally attracted to ordinary matter, and the gravitational and inertial masses are not 
equivalent.  Witteborn [1] explains the observation that free electrons floated in the drift tube by a postulated Schiff—Barnhill 
effect wherein the electrons in the metal of the drift tube fall in the Earth’s gravitational field to produce an electric field which 
identically balances the force of gravity on the free electrons in the drift tube.  This explanation is untenable.  The binding 
energy of electrons in metals is typically 5 eV; whereas, the gravitational potential energy over atomic dimensions is over 20 
orders of magnitude less and is given by eE m gh  where em  is the mass of the electron, g is the acceleration of gravity, and h is 

the metal internuclear spacing, about 1010  m .  The positive nuclei weigh 4,000 times the mass of the electrons.  And, this zero 
mass equivalent electrical force requires the achievement of a perfect Penning trap having 11 orders of magnitude strength match 
at six-figure accuracy using gravity as the source of the trapping field by pure chance!   

The reluctance to accept the experimental results of the free electron gravitational mass is that it would violate the 
Equivalence Principle and disprove general relativity2.  This bias is evident in the presentation of the findings of the 2nd 
International Workshop on Antimatter and Gravity that took place on November 13–15, 2013 at the Albert Einstein Center for 
Fundamental Physics of the University of Bern.  One of the main topics was on the results of the measurement of the 
gravitational mass of the free electron.  The CERN Courier [5] reports:  

 
“Free-fall experiments with charged particles are notoriously difficult because they must be carefully shielded from 

electromagnetic fields.  For example, the sagging of the gas of free electrons in metallic shielding induces an electric field that 
can counterbalance the effect of gravity.  Indeed, measurements based on dropping electrons led to a value of the acceleration of 
gravity, g, consistent with zero (instead of g = 9.8 m/s2).” 

 
Indeed the predicted gravitational mass of the free electron is zero. 

Another reservation against the acceptance of the measurement of the zero gravitational mass of the free electron is that 
under the equivalence principle a perpetual motion scheme could be devised: (1) the free electron is formed with the application 
of a 13.6 eV photon to a hydrogen atom, (2) the proton and free electron are transported to infinity relative to the Earth, (3) the 
free electron binds with the proton to return the 13.6 eV photon, (4) the atom comprising a bound electron having a gravitational 
mass equivalent to the inertial mass falls to the Earth to net produce “free energy” from the added gravitational energy with the 
free electron now bound becoming gravitationally massive on the return trip.  This scenario is an infinitely repeatable cycle; 
thus, it comprises perpetual motion.  The reason why this is not the case is that it requires exactly the gravitation potential energy 
of the electron’s inertial mass to exclude all fields, cancel spin, and form an absolutely free electron.  The gravitational energy to 
completely eliminate any electric field termination on its surface and cancel the spin angular momentum such that it is absolutely 
free is given by: 
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 (35.23) 

wherein 66.37  10  r X m  is the radius of the Earth. 
Furthermore, it is possible to give the electron negative curvature to cause a fifth force with negative gravitational mass 

behavior.  Hereto, energy must be applied to form this state so no perpetual motion scheme is possible.  The negative mass 
behavior can be modeled as a hyperbolic trajectory of a pseudoelectron.  A particle comprising a gravitating body is the source 
of local spacetime curvature that is negative in the case of a pseudoelectron.  In the presence of the large positive curvature of the 
Earth, the corresponding gravitational velocity is imaginary, the energy of the orbit of the pseudoelectron must always be greater 
than zero, the eccentricity is always greater than one, and the trajectory is a hyperbola (Eqs. (35.18-35.19) and (35.22)).  The 
gravitational mass of the pseudoelectron behaves as negative and the inertial mass em  is constant (e.g. equivalent to its mass 

energy given by Eq. (33.13)).  The trajectory of pseudoelectrons can be found by solving the Newtonian inverse-square 
gravitational force equations for the case of a repulsive force caused by pseudoelectron production.  The trajectory follows from 
the Newtonian gravitational force and the solution of motion in an inverse-square repulsive field is given by Fowles [6].  The 

 
2 The original Equivalence Principle put forth by Einstein was the equivalence of an accelerating inertial frame and a 
gravitational field that was shown to be incorrect and modified by others. 
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trajectory can be calculated rigorously by solving the orbital equation from the Schwarzschild metric (Eqs. (35.15-35.16)) for a 
two-dimensional spatial mass-density function of negative curvature which is repelled by the Earth.  The rigorous solution is 
equivalent to that given for the case of a positive gravitational velocity given in the Orbital Mechanics section except that the 
gravitational velocity is imaginary and the magnitude is determined by the negative curvature. 

In the case of a mass of negative curvature, Eq. (32.77) becomes 

 g

GMm
E

r
   (35.24) 

where M  is the mass of the Earth and m  is the gravitational mass of the pseudoelectron that is negative, different from its 
inertial mass, and depends on the negative curvature.  The negative curvature is determined by the Gaussian curvature, K, at a 
point on a two-dimensional surface given by Eqs. (35.4-35.5) and (35.8).  According to Eqs. (32.48), (32.140) and (32.43), 
matter, energy, and spacetime are conserved with respect to creation of the pseudoelectron which is repelled from a gravitating 
body (e.g. the Earth).  The ejection of a pseudoelectron having a negatively curved mass surface from the Earth must result in an 
infinitesimal decrease in the radius of the Earth (e.g. r  of the Schwarzschild metric given by Eq. (35.2) where 0m M  is the 

mass of the Earth, 245.98  10  X kg ).  The amount that the gravitational potential energy of the Earth is lowered is equivalent to 
the total energy gained by the repelled pseudoelectron.  As an offsetting contribution to the curvature inventory, the conversion 
of matter to energy to produce the photon that excites the pseudoelectron state causes spacetime expansion according to Eq. 
(32.140).  Upon decay, the energy is available to be absorbed to increase the equivalent inertial and gravitational masses of 
matter in positive curvature.  Momentum is also conserved for the pseudoelectron and Earth, wherein the latter gravitating body 
that repels the pseudoelectron, receives an equal and opposite change of momentum with respect to that of the electron.  As a 
familiar example, causing a satellite to follow a hyperbolic trajectory about a gravitating body is a common technique to achieve 
a gravity assist to further propel the satellite.  In this case, the energy and momentum gained by the satellite are also equal and 
opposite those lost by the gravitating body.  Next, the mathematical structure, nature, and energies of the pseudoelectron will be 
elucidated.   
 

DETERMINATION OF THE PROPERTIES OF ELECTRONS, THOSE OF 
CONSTANT NEGATIVE CURVATURE, AND THOSE OF 
PSEUDOELECTRONS 

The candidates for a negatively curved electron state are shown in Figures 35.1-35.4.  By rotating a curve in the xz-plane 
about the z-axis, an exemplary surface of revolution with constant Gaussian curvature having 1K    is generated.  Consider 
that the Cartesian coordinate curve profile is given by:  

       ,0,c t x t z t  (35.25) 

parameterized by arc length 

    2 2
1x t z t    (35.26) 

The Gaussian curvature of the corresponding surface of revolution  

         , cos , sin ,f u v x u v x u v z u  (35.27) 

is then given by  

    
 

, 1
x u

K u v
x u


    (35.28) 

Since 1K    is a constant, Eq. (35.28) gives rise to the second-order differential equation: 

     0x t x t    (35.29) 

that is solved analytically to give: 

   t tx t ae be   (35.30) 

where a  and b  are constants to match boundary conditions.  The corresponding function z  is then calculated from Eq. (35.26) 
by numerical integration to give the surface shown in Figure 35.5 [7].  Alternatively, the analytical expressions are given by M. 
Spivak [8] for the case of a b  :  

     2 sinht tx t a e e a t    (35.31) 
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wherein 0 2 1a   and 1 cosh 1/ 2t a  , so that 10 cosh 1/ 2a  and 20 ( ) 1 4g t a   .  These are functions that can be 
expressed in terms of elliptic integrals with results shown in Figure 35.5.   

A free electron avoids a singularity by having the current density approach zero at the extrema.  A nonphysical aspect of 
the candidate shown in Figure 35.5 having a negatively curved surface are the singularities at the extrema.  In contrast, the 
pseudosphere (Figure 35.6) generated by rotating the tractrix about the asymptote avoids such a singularity and maintains current 
continuity at infinity.  The mass goes to zero at the extrema at infinity since the corresponding area goes to zero, the current has 
an increasing azimuthal component at the extrema at infinity to maintain continuity, and relativistic effects cause the asymptotic 
span to be finite.  Moreover, the constant radius R  of the pseudosphere is permissive of a central force balance that is stable to 
radiation and conserves the electron angular momentum of   as shown in the Fourier Transform of the Pseudoelectron Current 
Density section and the Force Balance and Electrical Energies of Pseudoelectron States section.  The nature of a pseudoelectron 
comprising an autonomous electron with a bound photon to maintain its surface of constant negative curvature can be 
appreciated by comparing it to other photon-electron states and the nature of the unnormalized atomic orbital current density 
distribution shown in Figure 1.20 and the normalized one shown in Figure 1.21. 
 
 
 
 

       
 

NATURE OF PHOTONIC SUPER BOUND HYDROGEN STATES AND THE 
CORRESPONDING CONTINUUM EXTREME ULTRAVIOLET (EUV) 
TRANSITION EMISSION AND SUPER FAST ATOMIC HYDROGEN 

J. R. Rydberg showed that all of the spectral lines of atomic hydrogen were given by a completely empirical relationship: 
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where 1109,677 ,  1, 2,3,...,  2,3, 4,...f iR cm n n    and i fn n .  Bohr, Schrödinger, and Heisenberg, each developed a theory 

for atomic hydrogen that gave the energy levels in agreement with Rydberg's equation: 
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 1, 2,3,...n   (35.35) 

where e  is the elementary charge, o  is the permittivity of vacuum, and Ha  is the radius of the hydrogen atom.  The Rydberg 

equation is a simple integer formula that empirically represents the Rydberg series of spectral lines, the entire hydrogen spectrum 
given in terms of the differences between all of the principal energy levels of the hydrogen atom.  

The excited energy states of atomic hydrogen are given by Eq. (35.35) for 1n   in Eq. (35.34).  The 1n   state is the 
"ground" state for "pure" photon transitions (i.e. the 1n   state can absorb a photon and go to an excited electronic state, but it 
cannot release a photon and go to a lower-energy electronic state).  However, an electron transition from the ground state to a 
lower-energy state may be possible by a resonant nonradiative energy transfer such as multipole coupling or a resonant collision 
mechanism.  Processes such as hydrogen molecular bond formation that occur without photons and that require collisions are 
common [9].  Also, some commercial phosphors are based on resonant nonradiative energy transfer involving multipole 
coupling [10].  Specifically, atomic hydrogen may undergo a catalytic reaction with certain atomized elements and ions which 

Figure 35.5.   The half-space surface rendering of a 
constant Gaussian curvature 1K   .  The complete 
surface comprises additionally the mirror image. 

Figure 35.6.   A pseudosphere showing rulings of the 
tractrix along the asymptote axis. 
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singly or multiply ionize at integer multiples of the potential energy of atomic hydrogen, 27.2 m eV  wherein m  is an integer.  
The predicted reaction involves a resonant, nonradiative energy transfer from otherwise stable atomic hydrogen to the catalyst 
capable of accepting the energy.  The product is  1/H p , fractional Rydberg states of atomic hydrogen called "hydrino atoms" 

wherein 
1 1 1 1

 , , ,...,
2 3 4

n
p

  ( 137p   is an integer) replaces the well-known parameter integern   in the Rydberg equation for 

hydrogen excited states. 

The 1n   state of hydrogen and the 
1

integer
n   states of hydrogen are nonradiative, but a transition between two 

nonradiative states, say 1n   to 1/ 2n  , is possible via a nonradiative energy transfer.  Hydrogen is a special case of the stable 
states given by Eqs. (35.34) wherein the corresponding radius of the hydrogen or hydrino atom is given by: 

 Ha
r

p
 , (35.36) 

where 1, 2,3,...p  .  In order to conserve energy, energy must be transferred from the hydrogen atom to the catalyst in units of  
 27.2 m eV , 1, 2,3, 4,....m   (35.37) 

and the radius transitions to Ha

m p
. The catalyst reactions involve two steps of energy release: a nonradiative energy transfer to 

the catalyst followed by additional energy release as the radius decreases to the corresponding stable final state.  Thus, the 
general reaction is given by: 

  27.2 * 27.2 
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   27.2 q r q
fastCat re Cat m eV        (35.40) 

And, the overall reaction is: 
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q , r , m , and p  are integers.  
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 has the radius of the hydrogen atom (corresponding to 1 in the denominator) and a 

central field equivalent to  m p  times that of a proton, and 
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 is the corresponding stable state with the radius of 

 
1

m p
 that of H .  As the electron undergoes radial acceleration from the radius of the hydrogen atom to a radius of 

 
1

m p
 

this distance, energy is released as characteristic light emission or as third-body kinetic energy.  The emission may be in the form 

of an extreme-ultraviolet continuum radiation having an edge at 2 2[( ) 2 ] 13.6 p m p m eV     or 
2 2

91.2

[( ) 2 ]
nm

p m p m  
 and 

extending to longer wavelengths [11-17].  In addition to radiation, a resonant kinetic energy transfer from 
 

* Ha
H

m p

 
  

to form 

fast H  may occur by an inverse Franck-Hertz mechanism [18] involving H atoms rather than electrons that are selective for H 
based on resonant dipole induction and H being the most efficient momentum acceptor having the least mass of any atom (See 
the Dipole-Dipole Coupling section).  Subsequent excitation of these fast  1H n   atoms by collisions with the background 

gases followed by emission of the corresponding  3H n  atoms gives rise to broadened Balmer   emission.  Fast H may also 

arise from the production of fast protons that conserve the potential energy of the catalyst that is ionized during the energy 
transfer wherein the catalyst comprises a source of H such as HOH or nH  ( n  is an integer) catalyst.  The fast protons recombine 
with electrons to give the characteristic Doppler broadened atomic H lines such as broadened Balmer alpha emission observed 
experimentally [19-25]. 

Visible photons and extremely high-energy photons, respectively, may excite the formation of photon bound, 
autonomous electron states such as spherical states in liquid media and inverse spherical states in vacuum or gas.  The former 
case regards the formation of photon bonding of an atomic orbital current density function as given in the One Electron Atom 
section.  In the latter case, a free electron is in a nonradiative bound state comprising geometry that is the inverse of a bound 
excited state.  Specifically, a free electron may form an inverse spherical bound state of pseudospherical mass, charge, and 
surface current density bound by a trapped photon that travels along the two-dimensional electron surface as in the case of the 
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excited states, but the photon field is repulsive rather than attractive, such that the direction of the centrifugal forces is also 
opposite the spherical case.  Here, the energy to form the stable bound state is not due to a negative electrostatic potential.  
Rather, the binding energy is due to the negative gravitational potential energy that arises from the mass, charge, and current 
density surface in negative curvature.  The pseudospherical electron state is referred to as a pseudoelectron.  The formation of a 
pseudoelectron requires the presence of a gravitating body wherein the gravitational energy is conserved between the gravitating 
body and the pseudoelectron.  Specifically, the positive curvature of spacetime due to the gravitating body is increased causing a 
more negative gravitational energy in response to the negative curvature contribution of the pseudoelectron that consequently 
experiences a force to eject it from the spacetime in proximity to the gravitating body.  The change in positive curvature and 
corresponding gravitational field propagate as a light-like wave as in the case with particle production given in the Quantum 
Gravity of Fundamental Particles section. 
 

NATURE OF PHOTON-BOUND AUTONOMOUS ELECTRON STATES 
As shown in the Free Electrons in Superfluid Helium are Real in the Absence of Measurement Requiring a Connection of 

Ψ(x) to Physical Reality section, free electrons are trapped in superfluid helium as autonomous electron bubbles interloped 
between helium atoms that have been excluded from the space occupied by the bubble [26-29].  The surrounding helium atoms 
maintain the spherical bubble through van der Waals forces.  Each spherical electron cavity comprises an atomic orbital that can 
act as a resonator cavity.  The excitation of the Maxwellian resonator cavity modes by resonant photons forms bubbles with radii 
of reciprocal integer multiples of that of the unexcited n 1 state.  The central force that results in a fractional electron radius 
compared to the unexcited electron is provided by the absorbed photon.  Each stable excited state electron bubble that has a 

radius of 1

integer

r
 may migrate in an applied electric field.  The photo-conductivity absorption spectrum of free electrons in 

superfluid helium and their mobilities predicted from the corresponding size and multipolarity of these long-lived bubble-like 
states with quantum numbers  n , ℓ , and mℓ  matched the experimental results of the 15 identified ions [26]. 

In addition to superfluid helium, free electrons also form bubbles devoid of any atoms in other fluids such as oils and 
liquid ammonia.  In the operation of an electrostatic atomizing device, Kelly [30] observed that with plasma light irradiation the 
mobility of free electrons in oil increased by an integer factor rather than continuously.  Certain metals such as alkali metals that 
have low ionization energy dissolve as ions and free electrons in liquid ammonia and certain other solvents.  As in the case of 
free electrons in superfluid helium, ammoniated free electrons form cavities devoid of ammonia molecules having a typical 
diameter of 3-3.4 Å.  The cavities are evidenced by the observation that the solutions are of much lower density than the pure 
solvent.  From another perspective, they occupy far too great a volume than that predicted from the sum of the volumes of the 
metal and solvent.  The electrolytically conductive solutions have free electrons of extraordinary mobility as their main charge 
carriers [31].  In very pure liquid ammonia the lifetime of free electrons can be significant with less than 1% decomposition per 
day.  The confirmation of their existence as free entities is given by their broad absorption around 15,000 Å that can only be 
assigned to free electrons in the solution that is blue due to the absorption.  In addition, magnetic and electron spin resonance 
studies show the presence of free electrons, and a decrease in paramagnetism with increasing concentration is consistent with 
spin pairing of electrons to form diamagnetic pairs.  

In the case of vacuum, there is no solvent sphere; consequently, new physics may be observed with high energy 
irradiation of electrons, namely the formation of pseudoelectrons each comprising a pseudospherical charge and current density 
membrane held in force balance by a trapped photon.  In the case of free electrons in a liquid medium such as superfluid helium, 
ammonia, or oil, the geometry is driven by minimization of the surface to volume ratio similar to the case with surface tension of 
bubble films.  In contrast, the formation of a pseudoelectron depends on maximizing the negative gravitational potential energy 
that also results in the further minor energy contribution to stability of the minimization of the electric self-field energy.  This 
occurs by maximizing the surface to volume ratio to diffuse the electric field.  By both mechanisms, the energy stability is 
achieved by minimizing the pseudosphere volume (Eq. (35.100)) that also maximizes the curvature K  of pseudoelectron having 
a 2R  dependency where R  is the pseudoelectron radius (Eq. (35.8)).  In addition, the nature of the absorbed photon of the 
particular electronic state determines its stability or instability wherein the nature of the absorbed photon is dependent on the 
geometry or curvature of the electron comprising a 2-D current membrane, any nuclear field, and the energy of the state. 

As shown by Eqs. (35.38-35.41), the photonic contribution to the central field of a hydrino is positive.  Specifically, at 
the position of the electron, the photon field provides the equivalent of a positive integer increase to the central field of the 
proton (Eq. (5.27)) that gives rise to a radial monopole (Eq. (6.9)).  Conversely, at the position of the electron, the excited state 
photon field comprises the superposition of two components, the negative equivalent of the central field of the proton and a 
positive reciprocal integer times the equivalent of the central field of the proton (Eqs. (2.12-2.17)).  The opposing components 
give rise to the sum of a radial dipole (Eq. (2.25))) and a positive spherical and time harmonic monopole having the field 
equivalents of the fundamental charge and a fraction of the fundamental charge, respectively.  The photonic central field of the 
pseudoelectron is purely negative; thus, the photon field gives rise to a corresponding pure radial monopole at the position of the 
electron.  The stability of the pseudoelectron (Eqs. (35.72)) versus the instability of an electronic excited state (Eqs. (2.29-2.35)) 
arises from the different states having negative curvature versus positive curvature, respectively.  The different geometries cause 
the corresponding current densities to be absent and possess Fourier components synchronous with waves traveling at the speed 
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of light, respectively, that determine stability to radiation as given in the Fourier Transform of the Pseudosphere Current Density 
section. 

The radiative states comprise the hydrino intermediate (atomic hydrogen following energy transfer to a catalyst), excited 
states, and free electron states undergoing acceleration wherein the mechanism of charge acceleration may be generalized to all 
three cases.  The nonradiative cases are hydrogen ( 1n   state), hydrino states, spherical states in a liquid medium, these states 
with an absorbed photon, and free electrons at rest or constant velocity.  The lifetime of the pseudoelectron state may be long as 
it is in the case of the continuum excited states of free electrons comprising a bound photon and negative gravitational potential 
energy to maintain the state with kinetic energy equal to ½ the excitation energy as shown in the Classical Physics of the de 
Broglie Relation section. 

 

PSEUDOELECTRONS 
Surfaces shown in Figures 35.1-35.4 are candidates for a negatively curved electron state to produce the sought negative 

gravitational force according to Eqs. (35.15-35.16).  The boundary constraints are a surface of constant negative Gaussian 
curvature and capable of binding a photon and maintaining mechanical and electrical force balance with the relativistic photon 
field normal to the electron surface as given in the Equation of the Electric Field inside the Atomic Orbital section, relativistic 
invariance and total energy conservation of the equation of motion on the surface, and stability of the current to radiation.  Let’s 
first solve the equivalent of the great circle current loop of the Atomic Orbital Equation of Motion for  = 0 Based on the Current 
Vector Field (CVF) section in hyperbolic coordinates.  By rotating a curve in the xz-plane about the z-axis, an exemplary surface 
of revolution with constant Gaussian curvature having 1K    is generated.  Consider that the alternative Cartesian coordinate 
curve profile given by Eqs. (35.25-35.30) for the case of 1a   and 0b  .  Eq. (35.30) becomes:  

   tx t ae  (35.42) 

Using Eq. (35.26), Eq. (35.32) becomes: 

    2 2 1

0

1 1 cosh
t

t t tz t e dt e e        (35.43) 

replacing some variables gives the xz-cross section of a pseudosphere shown in Figure 35.6 having the equation: 

 2 1 1
1 coshz x

x
    (35.44) 

A pseudosphere, also called a tractroid, tractricoid, antisphere, or tractrisoid, comprises a negative-Gaussian curvature 
surface 1K    of revolution generated by a tractrix in the xy-plane about its asymptote, the z-axis.  The pseudosphere of radius 

0r   is the image  R [0, 2 [R   having Cartesian parametric equations of: 
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for u  ,   and v[0,2 ) .  Alternatively, the pseudosphere can be expressed in Cartesian form as: 
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 (35.46) 

A pseudoelectron shown in Figures 35.6 and 35.7 comprises a pseudospherical plane lamina of charge and current density 
comprising a minimum total energy surface having constant negative curvature of 1K   .  The pseudospherical membrane is 
bound by a photon. The absorbed photon of the pseudoelectron provides a repulsive central electric field that maintains the 
pseudoelectron in force balance between the centrifugal and corresponding electrostatic force wherein the directions of the 
centrifugal and electrostatic forces relative to the direction along the central radius are opposite those of hydrino and excited 
states, and negative binding energy is from the negative gravitational potential energy of the state of constant negative curvature. 
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Figure 35.7.   A representation of a pseudoelectron. 

 
 
 

The pseudosphere is a solution of the sine-Gordon equation.  Consider that the pseudosphere may be described as a map 
 ,x u v


 from a patch to the surface.  If the map is parametrized by arclength along asymptotic lines, then the first fundamental 

form for the pseudosphere is: 

 2 22cosdx dx du dudv dv    I
 

 (35.47) 

Similarly, the second fundamental form is: 

 
2

sindx dN dudv


  II


 (35.48) 

Application of the Codazzi-Mainardi equations then yields [32] 

 
2

1
sinuv 


  (35.49) 

which is the sine-Gordon equation that can be written as: 

 
2 2

2 2
sin 0

t x

   
 

    (35.50) 

The sine-Gordon equation also meets the prerequisite of being invariant under Lorentz transforms.  The relevant Lorentz 
transforms are: 

 
2

'
vx

t t
c

    
 

 (35.51) 

  'x x vt   (35.52) 

 'y y  (35.53) 

 'z z  (35.54) 

wherein the inverse Lorentz transformations are given by interchanging the primed and unprimed variables and changing the 
sign of the velocity.  The spacetime sine-Gordon equation (Eq. (35.50)) can be expressed in spacetime coordinates as:  

 sin 0tt xx      (35.55) 

Using the consideration that   is a constant, Eq. (35.55) can be expressed in the primed coordinates using the following 
relationships of the time-coordinate: 
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 ' 't t t

dt

dt
     (35.56) 

 2
' ' ' 't t t tt ttt t

     
 

    (35.57) 

The corresponding space-coordinate relationship is: 

 2
' 'x x xx    (35.58) 

Using Eqs. (35.55-35.58), the transformed sine-Gordon equation is:  

 ' ' ' ' 2

1
sin 0t t x x  


    (35.59) 

The equations of motion of matter and energy that are a solution of the sine-Gordon equation obey the laws of the universe 
wherein higher velocity gives rise to relativistic length contraction and mass increase of the electron mass density function as 
given in the Special Relativistic Effect on the Electron Radius and the Relativistic Ionization Energies section. 

The sine-Gordon equation can be derived from the Lagrangian with the proper setting of the potential energy function.  
The general physical energy equations of the current and mass density of the electron are given by the classical Lagrangian that 
obeys the principle of least action corresponding to conservation of the total energy: 
  u

uL U      (35.60) 

The corresponding general physical equations of motion are:  

 0u
u

U  


 
  
 

 (35.61) 

The function   is the spacetime mass and current density function of the negatively curved electron.  It is also the spacetime 
function of the photon field that is in phase with the electron density functions and maintains the force balance.  The surface is 
equal energy, but not equipotential.  The potential is given by:  
 cosU   (35.62) 
Considering one spatial and time dimension corresponding to one current loop the equation of motion becomes the sine-Gordon 
equation given by Eq. (35.50).   

The sine-Gordon equation meets the prerequisite of being of the proper form for governing motion of mass and 
electromagnetic fields comprising a surface of negative curvature.  The sine-Gordon equation is a hyperbolic, nonlinear wave 
equation in 1 + 1 dimensions having solutions of surfaces with constant negative Gaussian curvature K = −1, also called 
pseudospherical surfaces.  The solutions  ,x t  of Eq. (35.50) determine the internal Riemannian geometry of surfaces of 

constant negative scalar curvature R = −2, given by the line-element: 

 2 2 2 2 2sin cos
2 2

ds dt dx
        
   

 (35.63) 

where the angle   describes the embedding of the surface into Euclidean space R3 [33].  Another common terminology 
regarding the pseudosphere is the hyperboloid model of the hyperbolic plane wherein the hyperboloid is referred to as a 
pseudosphere since the hyperboloid can be thought of as a sphere of imaginary radius, embedded in a Minkowski space.  Like 
the atomic orbital of centrally bound states, the pseudoelectron is stable to radiation; thus, it satisfies all of the boundary 
conditions. 

 
FOURIER TRANSFORM OF THE PSEUDOELECTRON CURRENT 
DENSITY 

Both the atomic excited state photon and the pseudoelectron photon have at least a component of negative radially 
directed central field that gives rise to a radiative electric dipole in the case of an excited state as shown by Fourier transform 
analysis in the Instability of Excited States section.  However, in contrast to the atomic excited state electron, the radial field 
corresponds to a monopole, and the radiative stability of the pseudoelectron can be shown by the absence of Fourier components 

/k c  of the spacetime Fourier transform of the pseudoelectron current density function given by Eq. (35.72) with the 
constant current having angular frequency given by Eq. (35.85) integrated over the parameter u .  Due to the constancy of the 
current that is required to maintain a constant total energy, the time dependent local current fluctuations are zero such that the 
corresponding Fourier transform is zero.  Thus, radiative components /k c  do not exist.   

Consider the alternative pseudospherical Cartesian parametric equations of:  
    cos sinx R u v  (35.64) 

    sin siny R u v  (35.65) 
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   1
cos ln tan

2
z R v v

          
 (35.66) 

for u  (0,2 )  and v (0, ) .  The Fourier transform of the pseudosphere  K s  may be obtained by expressing the Fourier 

transform in pseudospherical coordinates using (Eqs. (35.64-35.66)) and the Jacobian: 

      2 cos ln tan sin
2

v
J v R v v

        
 (35.67) 

The integrals over the parametric variables u  and v  are: 

          
2

2

0 0
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2

v
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              (35.68) 

The integration over u  given by Mathematica is: 
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2

v
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            (35.69) 

The integration over v  is not analytically computable by Mathematica.  However, Eq. (35.69) may be integrated as a power 
series expansion about 0v  : 
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 (35.70) 

Next, the constant time function must be considered.  The constant current is given by the charge density multiplied by 
the constant angular frequency and a constant time function.  The Fourier transform of a constant time function [34] is: 
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 (35.71) 

A very important theorem of Fourier analysis states that the Fourier transform of a product is the convolution of the individual 
Fourier transforms [35].  Treating the radial monopole due to the pseudoelectron photon-electron interface, the spacetime 
Fourier transform of the pseudoelectron current density function  P s  is given by the convolution of the Fourier transforms of 

the current density alone (Eq. (35.70)) and the time function alone (Eq. (35.71)).  The convolution of the frequency delta 
function of Eq. (35.71) with  P s  (Eq. (35.72)) replaces the frequency variable with zero and produces zero resultant: 

        0 0P s K s K s       (35.72) 

Thus, when the light-like condition of Eq. (Ap.I.43) is applied, the spacetime Fourier transform of the pseudoelectron current 
density function (Eq. (35.72)) is absent Fourier components /k c  due to the absence of the equivalent of time and 
spherically harmonic current components of atomic electronic excited states.  There are no time fluctuations of the current.  
Rather, it is constant in spacetime having zero as the corresponding Fourier transform. 
 

FORCE BALANCE AND ELECTRICAL ENERGIES OF 
PSEUDOELECTRONS STATES 

Unlike the case wherein photons are released spontaneously by minimization of the energy in a positive 2R  field such as 
during emission of an excited state or during a hydrino transition corresponding to the inverse of an excited state, the potential 
energy and kinetic energy of the pseudoelectron are both positive.  The total energy must be negative in order for the 
pseudoelectron to be stable, and the negative energy requirement for stability is satisfied when the negative gravitational energy 
exceeds the total energy according to Eq. (35.97).   

The force balance of the pseudoelectron is provided by a trapped photon having an electric field at the inner 
pseudospherical surface corresponding to the electric potential given by Eqs. (35.74) and (35.77).  The far-field of the free 
electron and the far-field of a pseudoelectron are each that of a point charge at the origin along the z-axis, the axis perpendicular 
to the plane of the free electron and the axis in the plane perpendicular to the asymptote of the pseudoelectron, respectively.  The 
pseudoelectron (PE) transition is excited by a linearly polarized photon corresponding to zero angular momentum.  The 
transition is similar to the spherical transition with 0m   (Eq. (2.71)).  Based on the symmetry of the pseudoelectron across 

the plane perpendicular to the asymptote (yz-plane), the cross section is highest for the photon propagating along the z-axis.  The 
angular dependence of the pseudoelectron excitation can be calculated by substituting the photon-e&mvf for the helium atom in 
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the elastic scattering of a free electron from helium as given in the Electron Scattering for Helium Based on the Atomic Orbital 
Model section.  The photon electric field is predominantly forward scattered as shown by Eq. (8.57) and Figure 8.8. 

The photon that maintains the force balance of the pseudoelectron exists only at the inner surface of the pseudoelectron 
described by a Dirac delta function such as given by Eq. (2.15) with the spherical radius replaced by the pseudospherical radius 
 ,u vr  (Eq. (35.45)).  The charge, current, and angular momentum are finite integratable without incurring infinites at the 

extrema of the asymptote such that the average electric field density due to the trapped photon is the same as that of a spherical 
excited electronic state.  Specifically, the area A of the electron atomic orbital and the pseudoelectron are equivalent: 
 24A R  (35.73) 
wherein R  is the radius of the electron atomic orbital and also the pseudoelectron.  A Gauss’s-law approach gives an average 
wherein the average electric field density due to the trapped photon matches that of a spherical excited electronic state. 

    2
0

ˆ,
4photon

Ze
r u v

R





  E r  (35.74) 

However, unlike the case of a sphere, the surface area of the pseudosphere is not independent of the position on the surface.  The 
area element dA  is 

 2 2sech tanh 2 sech tanhdA R u u dudv R u u du   (35.75) 

The normalized area element variation along the pseudosphere current loop is: 

 
2 sech tanh

2

R u u du
dA   (35.76) 

Thus, the normal electric field as a function of area position on the current loop of the pseudosphere is:  

      2
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4 sech tanhphoton

Ze
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  E r  (35.77) 

wherein N̂ is the pseudosphere surface normal vector and  ,u vr  is given by Eq. (35.45).  The photon travels on the inner 

surface of the pseudoelectron at light speed such that the relativistic electric field at each point of contact with the pseudoelectron 
is perpendicular to the tangent at that point and the radius R  is tangential.  The parameter-curve tangent vectors are: 
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e e  (35.78) 

Such a field is a solution to the sine-Gordon equation and is relativistically invariant.  The set of perpendicular field lines 
extended to infinity form a catenoid that is a minimum surface, one having no mean curvature.  The electric fields of the 
pseudosphere or anti-sphere are in the opposite direction than in the case of a bound electron having spherical geometry.  The 
relativistic electric field is negative in sign and perpendicular to the pseudosphere radius  ,u vr  rather than being positive in 

sign and directed along the spherical central radius. The standard unit normal vector field of the electric field shown in Figure 
35.8 is: 
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N e  (35.79) 
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Figure 35.8.   A representation of the standard unit normal vector field of the electric field of a pseudoelectron. 

 
 

The hyperbolic function of the photon electric field (Eq. (35.77)) that gives the outward directed force integrates or 
averages to 2 over one cycle.  Thus, for the pseudosphere as a whole the electric force eleF is equivalent to that of a point charge 

of e  at the origin of a sphere having the pseudosphere radius.  The photon is phase locked with the current, and the force due to 
the mass motion corresponding to the current balances the electric force due to the photon.  The centrifugal force that is normal 
to the surface of the pseudosphere is given by the general equation of force of an object in rotation.  The general force in a 
rotating system is [36]: 

  
2

2
2centrifugal e e e e

d R d dR
m m R m m R

dt dt dt

          F  (35.80) 

In force balance between the electric and centrifugal forces, the overall frequency   and radius R  are constants such that Eq. 
(35.80) becomes: 

  centrifugal em R   F  (35.81) 

The gravitational mass is zero for a free electron having zero net angular momentum such that it is completely 
unbounded.  Otherwise, it is equivalent to an infinite excited state electron.  The scalar angular momentum of a pseudoelectron 
due to the current is  , and it is constant in force balance.  Consider the generator functions of the pseudospherical surface that 
comprises the pseudoelectron current density function.  A tractrix is a curve with the property that the radius hyperbolic R  being 
the segment of the tangent line between the point of tangency and a fixed line called the asymptote is constant, and the 
revolution of the tractrix about the asymptote by 2  forms a pseudosphere.  Both of the electric and centrifugal forces are only 
normal to the surface of the pseudosphere surface, also corresponding to being only normal to the tangent line.  Consider the 
constancy of the integrated, time averaged angular momentum of   along all current loops that possess hyperbolic geometry, the 
constancy of the angular momentum per unit mass of the pseudoelectron, and the effect of the variation of the cylindrical 
coordinate radii   and the corresponding cross sectional area elements along the current path.  The areal velocity as a function 
of the variable u is equal to one half the angular momentum per unit mass [37]: 
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dA u L

dt m m
 


 (35.82) 

The areal velocity as a function of the parameter u  is given by the product of the frequency and   times the differential 
cylindrical coordinate radius squared, the area element of Eq. (35.76): 

 
  2 sech tanh

2 2
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u u dudA u
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  (35.83) 

Using Eqs. (35.82) and (35.83), the position dependent angular velocity u is given by [38]: 

 2 sech tanh

2 2 2
u

e
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 (35.84) 
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Using Eq. (35.81) and (35.85), the centrifugal force  centrifugal uF  becomes: 
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wherein the radius is corrected for position as a function of the parameter u  (Eq. (35.76)).  The opposing electric force  ele uF  

follows from Eq. (35.77): 
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Equating the outward electric force (Eq. (35.87)) to the inward centrifugal force (Eq. (35.86)) gives the pseudoelectron force 
balance equation: 
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From the force balance equation: 
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where the Bohr radius 0a  is given by Eq. (1.256) and Z is the effective charge that may be a rational positive number and 

corresponds to the energy of the photon that determines the electric field strength of the trapped photon such as that given by 
Eqs. (5.26-5.28).  The electric potential energy given by Eqs. (1.261) and (1.293) is: 
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The relativistic kinetic energy is (Eq. (1.291)): 
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The binding energy BE  is given by the sum of the potential V  energy and kinetic energy T , Eq. (1.293) with both contributions 

positive: 
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 (35.92) 

Consider equipotential, minimum energy surfaces with constant positive curvature such as those of spherical H ( 1n  ), excited, 
and hydrino states.  The self-field energy selfE is the energy in the electric fields E  of the electron alone, eleE , given by (Eqs. 

(1.263) and (AII.55)): 
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E  (35.93) 

The same self-energy considerations apply to spherical autonomous photon-bound electron states in liquid media.  In contrast, 
the pseudoelectron exists in vacuum.  Rather than the physical principles of spherical electron bubbles surrounded by species of 
a liquid, the opposite ones apply in vacuum.  Here, each electron does not exist as an interloper in a cage of atoms or molecules 
wherein their interaction energy is disrupted.  The binding energy of the pseudoelectron arises from the negative gravitational 
potential energy overcoming the positive potential, the kinetic, and the self-energy.  The photon fields acting at the electron 
surface provide the negative central electrostatic force to balance the inward centrifugal force (Eq. (35.88)).  The corresponding 
potential and kinetic energies are given by Eqs. (35.90) and (35.91), respectively.  Next consider the self-energy in the 
pseudoelectron electric fields.  The pseudospherical surface area to volume is twice that of the spherical case (Eqs. (35.73) and 
(35.103)).  For a central field photon of a given energy and corresponding field strength (Eqs. (35.77) and (35.87)), the charge 
density is reduced by a factor of two by Gauss’ law.  In this case the self-field energy selfE comprising the energy in the electric 

fields E  of the electron alone eleE is ¼ that given by Eq. (35.93): 
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The total energy TE  to form the pseudoelectron is the sum of the binding energy BE  and self energy selfE given by Eqs. (35.92) 

and (35.94), respectively: 
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Using Planck’s equation for the relationship of the photon’s energy to frequency, the photon energy of state Z  given by Eq. 
(35.95) is: 
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  (35.96) 

wherein photon  is the frequency of the photon that is trapped by the free electron to form the pseudoelectron state. 

Since the electric potential, kinetic, and self-energies are positive, the total energy is positive with the negative binding 
energy provided by the negative gravitational energy provided by the state of negative curvature.  In order for the total energy of 
the pseudoelectron to be negative and consequently energetically stable, the negative gravitational energy must be at least greater 
in magnitude than the total energy TE  (Eqs. (35.95) and (35.96)).  The minimum value of the mass M  to radius R  ratio of a 

massive gravitating body for a photon central field equivalent of Z , for which the negative gravitational potential energy 
exceeds the positive total energy of the pseudoelectron photon, follows from Eqs. (35.95), (35.96), (32.1), (1.285), and (1.286): 
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Eq. (35.97) can be solved reiteratively.  There is no solution using the Newtonian gravitational constant 
11 2 26.67  10  /G X N m kg  , Earth mass 245.98  10  M X kg , Earth radius 66.37  10  R X m , and the limiting value of 1Z  .  

The ratio of the mass to the radius of the Earth is 179.39  10  /
M

X kg m
R

 .  Consider the lowest energy case with 1Z  , then the 

reiterative solution for the mass to radius ratio of the massive object to support the formation of pseudoelectrons is 
179.39  10  /

M
X kg m

R
 .  Black holes are celestial objects that have such mass density and corresponding extreme gravitational 

fields.  Thus, the minimum energy photon to excite a stable pseudoelectron state is given Eqs. (35.96) and (35.97) is: 
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The electric potential energy given by Eqs. (35.90) and (35.97) is: 
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The kinetic energy T  given by Eqs. (35.91) and (35.97) is: 
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The binding energy BE  given by Eqs. (35.92) and (35.97) is: 
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The self-field energy selfE comprising given by Eqs. (35.94) and Eq. (35.97) is: 
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Pseudoelectron production may be achieved by irradiating electrons having zero gravitational mass gm with photons of energy of 

at least 44.2 eV  in the presence of a black hole wherein the incident photons excite the electrons to pseudoelectrons. 
 

Tri-Hydrogen Cation Electron Collision Pseudoelectron Mechanism 
In an alternative mechanism, pseudoelectrons may be formed by collision of free electrons with a partner that conserves 

the total angular momentum of the partners as the pseudoelectron production energy is derived from electron kinetic energy as 
the electron kinetic energy converts to comprise the pseudoelectron excitation photon.  The angular momentum conservation 
must occur between the incident free electron, the collision partner, and the leaving pseudoelectron.  One mechanism for angular 
momentum conservation regards an incident free electron having zero net angular momentum due to cancelation of the intrinsic 
spin angular momentum by interaction of the electron spin and orbital angular momentum.  The cancellation may be achieved in 
a high magnetic field and by a source of microwaves that causes the free electrons of a beam to undergo a transition to the 
ground spin state wherein the spin and orbital magnetic moments essentially cancel. 

Alternatively, the tri-hydrogen cation ( H
3
 ) may serve as a means to convert incident electrons into pseudoelectrons due 

to spin and orbital angular momentum exchange between the incident electron and the H
3
  ion and the product pseudoelectron, 

H
2
, and a proton.  As shown in Figures 35.9 and 35.10, the free electron has the geometry of a two-dimensional planar disc 

and H
3
  has the geometry of an equilateral triangle inside of a circle.   

 
Figure 35.9.   The angular-momentum-axis view of the magnitude of the continuous mass(charge)-density function in the xy-
plane of a polarized free electron propagating along the z-axis and the side view of this electron.  For the polarized electron, the 
angular momentum axis is aligned along the direction of propagation, the z-axis. 
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Figure 35.10.   The equilateral triangular  3 1/H p  MO formed by the superposition of three  2 1/H p -type ellipsoidal 

MOs with the protons at the foci.  (A)-(C) Oblique, top, and side views of the circular and equilateral triangular geometry.  (D)-
(E) Oblique and top views of the charge-density shown in color scale showing the ellipsoid surfaces and the nuclei (red, not to 
scale).  (F) Cross sectional view with one proton cut away. 
 

 
 

Two different nuclear spin configurations for H
3
  are possible, called ortho and para.  Ortho- H

3
  has all three proton 

spins parallel, yielding a total nuclear spin of 3 / 2 .  Para- H
3
  has two proton spins parallel while the other is anti-parallel, 

yielding a total nuclear spin of 1/ 2.  Similarly, H2 also has ortho and para states, with ortho-H2 having a total nuclear spin 1 and 

para-H2 having a total nuclear spin of 0.  When an ortho- H
3
  and a para-H2 collide, the transferred proton changes the total spins 

of the molecules, yielding instead a para- H
3
  and an ortho-H2.  Nuclear spin transfer and conservation may occur more readily 

between a spin polarized electron and a nucleus.  
Electron-nuclear and nuclear-nuclear spin exchanges are exploited in creating spin-polarized nuclei for proton nuclear 

magnetic resonance studies.  In an exemplary method to form electron spin polarized rubidium atoms and transfer the spin to 
form nuclear spin polarized 129Xe [39], the polarizer may comprise a rubidium spin exchange optical pumping system such as 
one based on a fiber coupled laser diode array the produces circularly polarized light at the pumping cell [40,41].  The spin-
polarized xenon-129 may undergo nuclear spin exchange to form hyperpolarization in proton spins.  Paramagnetic spin catalysts, 
each comprising a species comprising a paramagnetic ion may spin polarize species comprising protons [42,43].  The nuclear 
spin polarization may be controlled by controlling the electron spin polarization by means such as laser or electron spin 
excitation with a specific energy and polarization to excite the spin polarized state that may transfer the electron spin polarization 
to a nucleus such as a proton to spin polarize a species comprising protons.  A method called dynamic nuclear polarization 
(DNP) comprises electron spin resonance (ESR) excitation of an ESR active species in a magnetic field at its ESR resonance 
frequency wherein the spin polarized electron transfers the spin polarization to a nucleus to form a nuclear magnetic resonance 
polarization [44].  Conversely, due to time reversal symmetry of the spin exchange, such an exchange during a collision between 
an electron and H

3
with spin conservation in the colliding species and the resulting products supports collisional pseudoelectron 

production. 
Consider the event of an electron colliding with H

3
  to form a pseudoelectron where the initial incident electron 

possesses kinetic energy greater than that required for forming a pseudoelectron in the massive body’s gravitational field 
wherein the threshold energy for pseudoelectron production is given by Eqs. (35.97) and (35.98).  The large mass difference 
between the electron and H

3
 , and the large interaction cross section between the collisional partners may effectively stop the 

electron during a collision wherein the ground spin state of a magnetically polarized electron may be formed from an interaction 
with irradiating microwaves.  Then, the kinetic energy of the incident electron provides the photon to excite the pseudoelectron 
state. 

The photon absorption mechanism of the transition of a free electron to a pseudoelectron states obeys selection rules 
based on conservation of the photon and electron angular momentum.  Based on the vector multipolarity of the corresponding 
source currents and the quantization of the angular momentum of photons in terms of , the selection rules for the electric 
dipole transition after Jackson((Eq. (2.71)) are: 
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The transition is allowed by a collision that obeys the selection rules wherein the total angular momentum before and after the 
collision to form a pseudoelectron may be conserved between the colliding partners with electron-nuclear angular momentum 
exchange.  A collisional partner for incident electrons having a total angular momentum of zero to form a pseudoelectron having 
an angular momentum of 1 according to the selection rules (Eq. (35.103)) is H

3
 .   

Pseudoelectrons may be formed from inelastic scattering of energetic electrons in an H
3
  medium or from a H

3
  

molecular ion beam wherein the electrons possess kinetic energy over the threshold of the pseudoelectron production energy.  

H
3
  generation may be achieved in hydrogen plasma.  The H

3
  reactions are 

 H
2
   e    H

2
    2e  (35.104) 

 H
2
+ H

2
  H

3
  H  (35.105) 

The pseudoelectron reaction is  

 H
3
  e E  E

T  H   H
2
 e pe  (35.106) 

wherein E
T
 is the threshold pseudoelectron production energy and pe designates pseudoelectron.  The hydrogen plasma to 

maintain an inventory of H
3
  may be found in celestial objects such as black hole jets.  At elevated H

2
 pressure such as above 

0.01 mbar, H
3
  dominates the ion inventory [45].  H

3
  may collide with electrons having zero total angular momentum.  The 

collision may occur in a region having a magnetic field to align the angular momentum vectors of the colliding partners that may 
also be polaized by microwaves.  Black holes produce both high magnetic fields and microwaves.  

Consider that incident electron e possesses a total angular momentum of 0 and that the incident magnetic-field aligned 
electron may collide with ortho- H

3
  having a total nuclear spin of 3 / 2 to form para-H2 having a total nuclear spin of 0 and a 

free proton that may have a nuclear spin of 1/ 2 (Eq. (35.106)).  The electron may transition to a pseudoelectron state having 
an angular momentum state comprising spin and orbital components such that the total angular momentum is 1 (Eq. (35.103)).  
The pseudoelectron transition may achieve conservation of angular momentum of the species before and after the collision by 

momentum exchange between the incident e and H
3
  and the resulting e pe  , H

2
, and H  .  In this exemplary case, the 

magnitude of the total angular momentum sum of the species before and after the collision to form a pseudoelectron is 3 / 2 .  

Due to the equilateral symmetry (point group D
3h

) there is no electronic polarization in H
3
 , and there are no unpaired electrons 

in the product H
2
. 

Alternatively, the incident  electron e  possesses a total angular momentum of 0, and the incident magnetic-field aligned 
electron may collide with ortho- H

2
 having a total nuclear spin of 1 to form para-H2 having a total nuclear spin of 0.  The 

electron may transition to a pseudoelectron state having an angular momentum state comprising spin and orbital components 
such that the total angular momentum is 1 (Eq. (35.103)).  The pseudoelectron transition may achieve conservation of angular 
momentum of the species before and after the collision by momentum exchange between the incident e  and ortho- H

2
 and the 

resulting e pe   and para- H
2
.  In this exemplary case, the magnitude of the total angular momentum sum of the species before 

and after the collision to form a pseudoelectron is 1.  However, the reaction with the larger cross section involving energetic free 
electrons is given by Eq. (35.106)) [46]. 

There are natural phenomena that defy conventional explanation that comprise observable manifestations of fifth force 
effects.  Relativistic electrons are ejected from the center of black holes that produce jets along the poles wherein the accretion 
disc has the strongest gravitational field (Figure 35.11).  These ejected electrons are extraordinary since the gravitation field is so 
strong that even light can’t escape.  Gamma ray light has been observed at the poles where these jets originate.  Pseudoelectrons 
may form in black holes by free electron absorption of high intensity gamma rays present therein.  The strong magnetic field 
present may facilitate the transition of the abundant free electrons to their ground spin state to allow the transition to the 
gravitationally repulsive pseudoelectrons state.  Alternatively, pseudoelectrons may form by the collision of high-energy 
electrons with H

3
 , both present in abundances in black holes.  The observed electron plasma jets emitted from black holes 

comprising electrons moving at close to the speed of light are assigned to pseudoelectrons since no other physical mechanism is 
known to permit mass to escape from a black hole.   
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Figure 35.11 .   Jet of electrons accelerated to near light speed from the center of black hole. 

 
 

The black hole plasma jets have been implicated as the source of molecular hydrogen gas moving at extraordinary speeds 
of 1 million kilometers per hour observed at the locations in the galaxy where its jets are impacting regions of dense gas [47].  
However, H2 is fragile in the sense that it is destroyed at relatively low energies.  It is extraordinary that the molecular gas can 
survive being accelerated by jets of electrons moving at close to the speed of light.  The paradox may be resolved by three 
aspects of pseudoelectrons: fast H2 may be formed by the reaction of H

3
  to H2 and H+ by high energy electron collision wherein 

the colliding electron forms a pseudoelectron with momentum conservation in the collisional products, pseudoelectrons may 
have a low cross section for ionization and bond breakage of H2 during collisional momentum transfer, and a relativistic 
pseudoelectron may collide with H

3
  to produce H+ and fast H2 (Eq. (35.106)). 

 

REFERENCES 
1. F. C. Witteborn, W. M. Fairbank, Physical Review Letters, Vol. 19, No. 18, (1967), pp. 1049-1052. 
2. V. Fock, The Theory of Space, Time, and Gravitation, The MacMillan Company, (1964). 
3. L. Z. Fang, and R. Ruffini, Basic Concepts in Relativistic Astrophysics, World Scientific, (1983). 
4. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 154-155. 
5. C. Amsler, CERN Courier, “Antigravity matters at WAG 2013”, March 2014. 
6. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 140-164. 
7. http://demonstrations.wolfram.com/SurfacesOfRevolutionWithConstantGaussianCurvature/. 
8. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 3, 3rd ed., Houston: Publish or Perish, 1999, Chp 

3. 
9. N. V. Sidgwick, The Chemical Elements and Their Compounds, Volume I, Oxford, Clarendon Press, (1950), p.1 
10. M. D. Lamb, Luminescence Spectroscopy, Academic Press, London, (1978), p. 68. 
11. R. Mills, J. Lotoski, Y. Lu. “Mechanism of Soft X-ray Continuum Radiation from Low-Energy Pinch Discharges of 

Hydrogen and Ultra-low Field Ignition of Solid Fuels”, (2015), submitted. 
12. R. L. Mills, Y. Lu, “Hydrino continuum transitions with cutoffs at 22.8 nm and 10.1 nm,” Int. J. Hydrogen Energy, 35 

(2010), pp. 8446-8456, doi: 10.1016/j.ijhydene.2010.05.098. 
13. R. L. Mills, Y. Lu, K. Akhtar, “Spectroscopic observation of helium-ion- and hydrogen-catalyzed hydrino transitions,” Cent. 

Eur. J. Phys., 8 (2010), pp. 318-339, doi: 10.2478/s11534-009-0106-9. 
14. R. L. Mills, Y. Lu, “Time-resolved hydrino continuum transitions with cutoffs at 22.8 nm and 10.1 nm,” Eur. Phys. J. D, 

Vol. 64, (2011), pp. 65, DOI: 10.1140/epjd/e2011-20246-5. 



Chapter 35 1628

15. R. L. Mills, R. Booker, Y. Lu, “Soft X-ray Continuum Radiation from Low-Energy Pinch Discharges of Hydrogen,” J. 
Plasma Physics, Vol. 79, (2013), pp 489-507; doi:10.1017/S0022377812001109. 

16. A. Bykanov, “Validation of the observation of soft X-ray continuum radiation from low energy pinch discharges in the 
presence of molecular hydrogen,” http://www.blacklightpower.com/wp-content/uploads/pdf/GEN3_Harvard.pdf. 

17. R. Mills J. Lotoski, “H2O-based solid fuel power source based on the catalysis of H by HOH catalyst”, Int’l J. Hydrogen 
Energy, Vol. 40, (2015), pp. 25-37. 

18. A. Beiser, Concepts of Modern Physics, Fourth Edition, McGraw-Hill Book Company, New York, (1978), pp. 153-155. 
19. K. Akhtar, J. Scharer, R. L. Mills, “Substantial Doppler broadening of atomic-hydrogen lines in DC and capacitively coupled 

RF plasmas,” J. Phys. D, Applied Physics, Vol. 42, (2009), 42 135207 (2009) doi:10.1088/0022-3727/42/13/135207. 
20. R. Mills, K. Akhtar, “Tests of features of field-acceleration models for the extraordinary selective H Balmer   broadening 

in certain hydrogen mixed plasmas,” Int. J. Hydrogen Energy, Vol. 34, (2009), pp. 6465-6477. 
21. R. L. Mills, B. Dhandapani, K. Akhtar, “Excessive Balmer   line broadening of water-vapor capacitively-coupled RF 

discharge plasmas,” Int. J. Hydrogen Energy, Vol. 33, (2008), pp. 802-815. 
22. R. Mills, P. Ray, B. Dhandapani, “Evidence of an energy transfer reaction between atomic hydrogen and argon II or helium 

II as the source of excessively hot H atoms in RF plasmas,” Journal of Plasma Physics, (2006), Vol. 72, Issue 4, pp. 469-484. 
23. J. Phillips, C-K Chen, K. Akhtar, B. Dhandapani, R. Mills, “Evidence of catalytic production of hot hydrogen in RF 

generated hydrogen/argon plasmas,” International Journal of Hydrogen Energy, Vol. 32(14), (2007), 3010-3025. 
24. R. L. Mills, P. C. Ray, R. M. Mayo, M. Nansteel, B. Dhandapani, J. Phillips, “Spectroscopic study of unique line broadening 

and inversion in low pressure microwave generated water plasmas,” J. Plasma Physics, Vol. 71, Part 6, (2005), pp. 877-888. 
25. R. L. Mills, K. Akhtar, “Fast H in hydrogen mixed gas microwave plasmas when an atomic hydrogen supporting surface was 

present,” Int. J. Hydrogen Energy, 35 (2010), pp. 2546-2555, doi:10.1016/j.ijhydene.2009.12.148. 
26. P. Weiss, Science News, Vol. 158, No. 14, September 30, (2000), p. 216. 
27. P. Ball, Nature, http://helix.nature.com/nsu/000921/000921-1.html. 
28. M. Chown, New Scientist, October 14, (2000), Vol. 168, Issue 2260, pp. 24, 33. 
29. H. J. Maris, Journal of Low Temperature Physics, Vol. 120, (2000), p. 173. 
30. Arnold J. Kelly, “Electrostatic Atomizing Device,” United States Patent No. 4,581,675, April 8, 1986. 
31. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry A Comprehensive Text, Interscience Publishers, New York, NY, 

(1962), pp. 193-194. 
32. J. Lyons, H. Kippenhan, E. Wildforster, “Modeling soliton solutions to the sine-Gordon equation,” Dynamics at the 

Horsetooth, Volume 2, (2010), pp. 1-5. 
33. R. K. Bullough, P. J. Caudrey (Eds.), Solitons, Springer-Verlag, Berlin, (1980). 
34. W. McC. Siebert, Circuits, Signals, and Systems, The MIT Press, Cambridge, Massachusetts, (1986), pp. 415-416.  
35. G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, The New Physical Optics Notebook, SPIE Optical 

Engineering Press, (1990). 
36. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 117-135. 
37. G. R. Fowles, Analytical Mechanics, Third Edition, Holt, Rinehart, and Winston, New York, (1977), pp. 146-147. 
38. D.P. Hardin, E.B. Saff, “Discretizing manifolds via minimum energy points,” Notices of the AMS, Vol. 51, No. 10, pp. 

1186-1194. 
39. “Hyperpolarized Xe”, Optical Spin-Polarization & Magnetic Resonance, Department of Physics and Astronomy, University 

of Utah, http://www.physics.utah.edu/~hpgas/production.html. 
40. A. Zook, B. B. Adhyaru, C. R. Bowers, “High capacity production of >65% spin polarized xenon-129 for NMR spectroscopy 

and imaging”, J Magn Reson, 2002 December, Vol. 159(2), pp. 175-182, https://www.ncbi.nlm.nih.gov/pubmed/12482697. 
41. G. Navon, Y. Q. Song, T. Room, S. Appelt, R. E. Taylor, A. Pines, “Enhancement of Solution NMR and MRI with Laser-

Polarized Xenon”, Science, Vol.  27, 29 March, 1996, pp. 1848-1851. 
42. C. Terenz, S. Bouguet-Bonnet, D. Canet, “Electron spin polarization transfer to ortho-H2 by interaction of para-H2 with 

paramagnetic species: A key to a novel para → ortho conversion mechanism”, J. Phys. Chem. Lett., (2015), Vol. 6 (9), pp. 
1611–1615, DOI: 10.1021/acs.jpclett.5b00518. 

43. M. Matsumoto, J. H. Espenson, “Kinetics of the interconversion of parahydrogen and orthohydrogen catalyzed by 
paramagnetic complex ions”, J. Am. Chem. Soc., (2005), Vol. 127 (32), pp. 11447–11453, DOI: 10.1021/ja0524292. 

44. A. J. Rossini, A. Zagdoun, M. Lelli, A. Lesage, C. Coperet, L. Emsley, “Dynamic Nuclear Polarization Surface Enhanced 
NMR Spectroscopy, Accounts of Chemical Research, Vol. 46, No. 9, (2013), pp. 1942–1951. 

45. I. Mendez, F. J. Gordillo-Vazquez, V. J. Herrero, I. Tanarro, “Atom and ion chemistry in low pressure hydrogen DC 
plasmas”, J. Phys. Chem. A, (2006), Vol. 110, pp. 6060-6066. 

46. H. Tawara, Y. Itikawa, H. Nishimura, M. Yoshino, “Cross sections and related data for electron collisions with hydrogen 
molecules and molecular ions, J. Phys. Chem. Ref. Data, Vol. 19, No. 3, (1990), pp. 617-636. 

47. C. Tadhunter, R. Morganti, M. Rose, J. B. R. Oonk, T. Oosterloo, “Jet acceleration of the fast molecular outflows in the 
Seyfert galaxy”, IC 5063. Nature, 2014; DOI: 10.1038/nature 13520. 

 



1629 

 
Chapter 36 
  
LEPTONS 
  
 
 
 
 
Only three lepton particles can be formed from photons corresponding to the Planck equation energy, the potential energy, and 
the magnetic energy, where each is equal to the mass energy (Eq. (32.27)).  As opposed to a continuum of energies, leptons arise 
from photons of only three energies.  Each “resonant” photon can be considered to be the superposition of two photons—each 
possessing the energy given by Planck's equation, Eq. (32.28), which is equal to the mass energy of the lepton or antilepton, each 
possessing   of angular momentum, and each traveling at the speed of light in the lab inertial frame. 

At particle production, a photon having a radius and a wavelength equal to the Compton wavelength bar of the particle 
forms a transition state atomic orbital of the particle of the same wavelength.  Eq. (32.43) equates the proper and coordinate 
times at particle production wherein the velocity of the transition state atomic orbital in the coordinate frame is the speed of light 
and the relationships between the mass energies given by Eq. (32.32) hold.  To describe any phenomenon such as the motion of 
a body or the propagation of light, a definite frame of reference is required.  A frame of reference is a certain base consisting of a 
defined origin and three axes equipped with graduated rules and clocks as described in the Relativity section.  In the case of 
particle production wherein the velocity is the speed of light, only the time ruler need be defined.  By defining a standard ruler 
for time in the coordinate frame, the mass of the particle is then given in terms of the self-consistent system of units based on the 
definition of the time ruler.  The mass of the particle must be experimentally measured with the same time ruler as part of a 
consistent system of units.  In the case that MKS units are used, the permeability of free space is a fundamental constant defined 
as exactly 7 1

0 4   10  X Hm    .  Similarly, the coordinate time (Eq. (36.2)) is defined as the “second1,” and the mass of the 

particle is given in kilograms based on this definition of the “second” (See Particle Production section).  The production of a real 
particle from a transition state atomic orbital is a spacelike event in terms of special relativity wherein spacetime is contracted by 
the gravitational radius of the particle during its production as given in the Gravity section.  Thus, the coordinate time is 
imaginary as given by Eq. (32.43).  On a cosmological scale, imaginary time corresponds to spacetime expansion and 
contraction as a consequence of the harmonic interconversion of matter and energy as given by Eq. (33.40). 

The mass of each member of a lepton pair corresponds to an energy of Eq. (32.32).  The electron and antielectron 

 
1 Using an atom to define the unit of time is a means to set a more universal standard.  Presently the second is defined as the time required for 
9,192,631,770 vibrations within the cesium-133 atom.  The “second” as defined in Eq. (36.2) is a fundamental constant, namely, the metric of spacetime.  
This definition gives the relationship of energy to matter conversion to spacetime contraction, and it sets the clock (ruler of time) to the conversion rate of 
matter into energy and the corresponding rate of spacetime expansion of the Universe.  A theory that unifies all physics must ultimately be able to describe 
all observations in terms of the definition of time only.  All other measurable parameters of matter, energy, charge, spacetime, etc. are ultimately expressed 
in terms of the unit of time.  If coordinate time is defined by Eq. (36.2), then Eq. (32.43) gives the masses of “allowed particles” in terms of that definition.  
Eq. (32.39) gives another method of experimentally determining the metric of time (sec) which does not require the measurement of the electron mass.  

The electron Compton wavelength 
C
  is equal to the wavelength of the photon which gives rise to the electron, and the velocity of each mass-density 

element of the extended particle is equivalent to the gravitational escape velocity, v
g

, of the mass of the antiparticle (Eq. (32.43)).  Eq. (33.21) gives the 

circular relationships between matter, energy, and spacetime based on this definition of time.  A unified theory can only provide the relationships between 
all measurable observables in terms of a clock defined according to those observables and used to measure them. 

In this case, fundamental physical constants and observables calculated in terms of the fundamental constants have no meaning except with 
regard to the definition of time in terms of the constants.  Then all observables such as the excited states of atoms, ionization energies of atoms, chemical 
bond energies, scattering of electrons from atoms, nuclear parameters, cosmological parameters, etc. are given in terms of the definition of the “second” 
(Eq. (36.2) which is extremely close to the MKS second (See Box 32.1.).  Internal consistency is given with a high degree of accuracy over the scalar 
range of 85 orders of magnitude (mass of the electron to mass of the Universe).  To achieve exact predictions of particle masses and cosmological 
parameters that require the introduction of the spacetime metric as a fundamental constant, a slight modification of the experimental definition of the 
second may be required.  Presently, all fundamental constants including masses are determined in a self-consistent manner involving definitions and 
measurements.  Ultimately the unit system will have to be revised according to Eq. (33.21), which gives the exact relationships between the measurable 
constants. 
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correspond to the Planck equation energy.  The muon and antimuon correspond to the electric energy.  And, the tau and antitau 
correspond to the magnetic energy.  It is shown that the masses are given by Eq. (32.43) and the relative masses differ in their 
specific function of the fine structure constant   only.  These functions are determined by relativistic coefficients given by Eq. 
(32.32) according to the kind of energy that is responsible for the respective level ( e ,  ,  ) of the particular particle within its 
family. 

A neutrino/antineutrino pair is formed in each of three cases of lepton/anti-lepton production to conserve linear and 
angular momentum during the separation of the world lines of each particle and its antiparticle.  The neutrino and antineutrino 
are photons that travel at velocity c  and have energy, but are mass-less.  Equations of such photons are given in the Neutrinos 
section. 
 
THE ELECTRON-ANTIELECTRON LEPTON PAIR 
From Eq. (32.43), when the gravitational radius gr  (Eq. (32.36)) is equal to the radius of the transition state atomic orbital, the 

corresponding gravitational velocity gv  (Eq. (32.35)) is the speed of light c , and the proper time is equal to the coordinate time.  

Thus, the special relativistic corrections to gr  are the same as those of the transition state radius which gives the energy of the 

particle equal to its mass times the speed of light squared as given by Eqs. (32.32a-32.32b). 
Consider the Planck energy equation, Eq. (32.28).  The proper time   is given by: 

 
2

2
2

mc

 


 


 (36.1) 

In the lab frame, the relativistic correction of the radius in the derivation of the Planck's equation for the transition state atomic 
orbital (Eq. (29.12)) is  .  Substitution of (i) gr , the relativistically corrected gravitational radius (Eq. (32.36)) for gr , (ii) 

the sec which is essentially the second—the definition for the coordinate time in MKS units, for ti, and (iii) the Compton 
wavelength bar for the radius r  of the transition state atomic orbital, (Eq. (32.21)), into Eq. (32.43) gives: 
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The left-hand side of Eq. (36.2) is the general relativistic correction of the coordinate time.  The special relativistic factor,    
(factored out of the square root), also follows from Eq. (32.34), from Eqs. (2.118) and (2.123), and from Eq. (5.45) of Fowles 
[1].  The mass of the electron/antielectron in MKS units based on the definition of the coordinate time in terms of the sec is:  
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where um  is the Planck mass given by Eq. (32.31) and 31
  experimental 9.10945455  10em X kg  [3-4].   

With lepton production a particle of electrostatic charge e  and an antiparticle of electrostatic charge e  are produced.  
The corresponding fields travel at the speed of light and interact with each other.  In order to conserve mass-energy, the 
electromagnetic fields of the particles must be included in the mass determination.  The correction to the electron mass is given 
by Eq. (36.15).  The corresponding lepton neutrinos carry any energy not accounted for as binding energy, kinetic energy, or 
carried by photons, and they further conserve linear and angular momentum including the angular momentum of the 
electromagnetic field fronts (Eq. (4.1)) which propagate at the speed of light to give the electrostatic fields of the particles as 
discussed in the Neutrinos section. 

The difference between the calculated and experimental values of the electron mass is due to the very slight difference 
between the present MKS second and the definition of the corresponding time unit defined by Eq. (36.2).  Eq. (33.21) gives the 
circular relationships between matter, energy, and spacetime based on the definition of time given by Eq. (36.2).  Any 
fundamental constant is exactly given in terms of the other members of these relationships and may be determined to the 
experimental accuracy that they are known.  An exact value for the imaginary time ruler ti  given by Eq. (32.43) can be obtained 
by using Eq. (36.2) with the results of Eqs. (36.9-36.22). 
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The accuracy of the conversion factor of 0.9975 second/sec is limited by the error in the value of the gravitational constant (See 
Boxes 32.1 and 32.2).  A new system of units would eliminate the need for conversion and permit a more accurate determination 
of the constants including the definition of time based on internal consistency. 
 



Leptons 1631

THE MUON-ANTIMUON LEPTON PAIR 
The muon (antimuon) decays to the electron (antielectron) and may be considered a transient resonance which decays to the 
stable lepton, the electron (antielectron).  Given that the electron is “allowed” by the Planck energy equation (Eq. (32.28)) and 
that the proper time is given by general relativity (Eq. (32.38)), the muon (antimuon) mass can be calculated from the potential 
energy, V, (Eq. (32.27)) and the proper time relative to the electron inertial frame.  In this case, the special relativistic corrections 
to gr  are the inverse of those of the radius of the transition state atomic orbital, which gives the energy of the particle equal to its 

mass times the speed of light squared as given by Eqs. (32.32a-32.32b).  For the lab inertial frame, the relativistic correction of 
the radius of the transition state atomic orbital given by the potential energy equations (Eq. (29.10) and (29.11)) is 2 .  For the 
electron inertial frame, the relativistic correction of the gravitational radius relative to the proper frame is the inverse, 2 .  
Furthermore, the potential energy equation gives an electrostatic energy; thus, the electron inertial time must be corrected by the 
relativistic factor of 2  relative to the proper time.  (See the Special Relativistic Correction to the Ionization Energies section.)  
Multiplication of the right side of Eq. (32.43) by 2  and substitution of (i) em , the mass of the electron, for M, (ii) the sec which 

is essentially the second—the definition for the coordinate time in MKS units, for ti, (iii) gr  , the relativistically corrected 

gravitational radius, for gr  (Eq. (32.36)), and the Compton wavelength bar for the transition state atomic orbital radius r, (Eq. 

(32.21)), into Eq. (32.43) gives the relationship between the proper time and the electron coordinate time: 
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The mass of the muon/antimuon using the MKS second is:  
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where 28
 experimental 1.88355  10m X kg

  [3]. 

 
THE TAU-ANTITAU LEPTON PAIR 
Given that the electron is “allowed” by the Planck energy equation (Eq. (32.28)) and that the proper time is given by general 
relativity (Eq. (32.38)), the tau (antitau) mass can be calculated from the magnetic energy (Eq. (32.27)) and the proper time 
relative to the electron inertial frame.  For the lab inertial frame, the relativistic correction of the radius of the transition state 

atomic orbital given by the magnetic energy equations (Eq. (29.14) and (29.15)) is 
2 4

1

(2 ) 
2.  For the electron inertial frame, 

the relativistic correction of the gravitational radius relative to the proper frame is the inverse, 2 4(2 )  .  Furthermore, the 
transition state comprises two magnetic moments.  For v c , the magnetic energy equals, the potential energy, equals the 
Planck equation energy, equals 2mc .  The magnetic energy is given by the square of the magnetic field as given by Eqs. (1.154-
1.162).  The magnetic energy corresponding to particle production is given by Eq. (32.32).  Because two magnetic moments are 
produced the magnetic energy (and corresponding photon frequency) in the proper frame is two times that of the electron frame.  
Thus, the electron time is corrected by a factor of two relative to the proper time.  Multiplication of the right side of Eq. (32.43) 
by 2  and substitution of (i) em , the mass of the electron, for M , (ii) the sec which is essentially the second—the definition for 

the coordinate time in MKS units, for ti , (iii) 2 4(2 ) gr  , the relativistically corrected gravitational radius, for gr  (Eq. (32.36)), 

and the Compton wavelength bar for the transition state atomic orbital radius r , (Eq. (32.21)), into Eq. (32.43) gives the 
relationship between the proper time and the electron coordinate time: 
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The mass of the tau/antitau is:  
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where  27 2
  experimental 3.1676  10  1776.9 /m X kg MeV c

  [3]. 

In the case of the production of each lepton a nucleus is present during particle/antiparticle production to conserve 
momentum.  A fourth particle/antiparticle pair can arise by the gravitational potential energy of Eq. (32.27).  However, a pair of 
particles each of the Planck mass corresponding to the conditions of Eq. (32.22), Eq. (32.32), and Eq. (32.33) is not observed 
since the velocity of each of the point masses of the transition state atomic orbital is the gravitational velocity Gv  that in this case 

 
2 The special relativistic correction of the particle masses in the transition state given by Eq. (1.273) avoids the situation of encountering an infinite mass at 
light speed as given by Eq. (33.14). 
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is the speed of light; whereas, the Newtonian gravitational escape velocity gv  of the superposition of the point masses of the 

antiparticle would be 2  times the speed of light (Eq. (32.35)).  In this case, an electromagnetic wave of mass energy equivalent 
to the Planck mass travels in a circular orbit around the center of mass of another electromagnetic wave of mass energy 
equivalent to the Planck mass wherein the eccentricity is equal to zero (Eq. (35.21)), and the escape velocity can never be 

reached.  The Planck mass is a “measuring stick.”  The extraordinarily high Planck mass ( 82.18  10  
c

X kg
G




) is the 

unobtainable mass bound imposed by the angular momentum and speed of the photon relative to the gravitational constant.  It is 
analogous to the unattainable bound of the speed of light for a particle possessing finite rest mass imposed by the Minkowski 
tensor.  It has a physical significance for the fate of blackholes as given in the Composition of the Universe section. 
 
RELATIONS BETWEEN THE LEPTONS 
Based on Eqs. (36.3), (36.6), and (36.8), the relations between the lepton masses which are independent of the definition of the 
imaginary time ruler ti  given by Eq. (32.43) are [2] : 
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The respective experimental lepton mass ratios according to the 1998 CODATA and the Particle Data Group are given in 
parentheses [3-4].  Eqs. (36.9-36.11) do not include the neutrino energies and the coulomb and magnetic field energies.   

With lepton production a particle of electrostatic charge e  and an antiparticle of electrostatic charge e  are produced.  
The corresponding fields travel at the speed of light and interact with each other.  In order to conserve mass-energy, the 
electromagnetic fields of the particles must be included in the mass determination.  Consider the electron given by Eq. (36.3).  
The coulomb field of the electron and positron correspond to a potential energy.  As given in the Positronium section (Eq. 
(30.5)), the potential energy V  between the particle and the antiparticle having the radius 1r  is, 
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The calculated ionization energy is 
1

2
V  which is:  

 6.795 eleE eV . (36.13) 

The experimental ionization energy is 6.795 eV .   
Eq. (36.12) may be written in terms of the mass-energy of the electron: 
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         (36.14) 

Since the electron mass-energy is given by the Planck energy equation given by Eqs. (29.12) and (32.32), the special relativistic 
factor for the bound particle-antiparticle state relative to the particle-production transition state given in Eq. (36.14) is 2 .  In 
addition, due to time dilation at v c  relative to the velocity of the bound state, the frequency and thus the energy increases by 
2  as given by Eq. (1.281).  From Eqs. (1.281) and (36.14) the electron mass is corrected by a factor *  of:  
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 (36.15) 

Similarly to the positron and following Eq. (36.12), the muon mass must be corrected due to the particle fields.  Since the 
muon is given by the electrostatic coulomb energy equation given by Eqs. (28.9) and (32.32), the special relativistic factor for 
the bound particle-antiparticle state relative to the transition state frame given in Eqs. (28.9), (32.32), and (36.5) is   
corresponding to the relative radii where the corresponding potential energy is given by: 

 2 14 5
 6.17671  10 3.85517  10  

2
V m c X J X eV

        (36.16) 

From Eq. (36.16) the muon mass is corrected by a factor *  of:  
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From Eqs. (36.15) and (36.17), the ratio of the differential relativistic correction of the electron mass to that of the muon mass 
due to charge interactions is given by Eq. (1.281). 

Similarly to the positron and following Eq. (36.12), the tau mass must be corrected due to the particle fields where the tau 
is given by the magnetic energy equation given by Eqs. (29.14) and (32.32).  In this case, two magnetic dipoles are formed that 
are spin paired in order to conserve angular momentum.  Since the particle and antiparticle are oppositely charged and the 
magnetic dipoles are antiparallel, the force is repulsive rather than attractive.  In this case, the corresponding energy increases the 
mass of the tau and antitau since the corresponding special relativistic factor for the bound particle-antiparticle state relative to 
the transition state frame is negative.  The magnitude is four times that of the electron correction corresponding to replacing the 
reduced mass in Eq. (36.12) by the mass (Eqs. (30.1-30.4) where the force is purely magnetic) and a factor of two corresponding 
to the interaction of two magnetic dipoles rather than electric monopoles as given by Eqs. (1.154-1.162).  The corresponding 
potential energy is given by: 

 2 2 13 6
 4 1.905  10 1.189  10  V m c X J X eV     (36.18) 

From Eq. (36.16) the tau mass is corrected by a factor *  of:  

   1* 21 4 


   (36.19) 

Based on Eqs. (36.3), (36.6), (36.15), and (36.17), the relation between the muon and electron masses (Eq. (36.9)) which 
is independent of the definition of the imaginary time ruler ti  given by Eq. (32.43) including the contribution of the fields due to 
charge production of magnitude e  is: 
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Based on Eqs. (36.6), (36.8), (36.17), and (36.19), the relation between the tau and muon masses (Eq. (36.10)) which is 
independent of the definition of the imaginary time ruler ti  given by Eq. (32.43) including the contribution of the fields due to 
charge production of magnitude e  is: 
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Based on Eqs. (36.3), (36.8), (36.15), and (36.19), the relation between the tau and electron masses (Eq. (36.11)) which is 
independent of the definition of the imaginary time ruler ti given by Eq. (32.43) including the contribution of the fields due to 
charge production of magnitude e is: 
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  3477.3  (36.22) 

For Eqs. (36.20-36.22), the respective experimental lepton mass ratios according to the 1998 CODATA and Particle Data Group 
tables are given in parentheses [3-4].  There is remarkable agreement.  The corresponding lepton neutrinos carry any energy not 
accounted for as binding energy, kinetic energy, or carried by photons, and they further conserve linear and angular momentum 
including the angular momentum of the electromagnetic field fronts (Eq. (4.1)) which propagate at the speed of light to give the 
electrostatic fields of the particles as discussed in the Neutrinos section. 
 
X17 PARTICLE 
As shown in this section, the electron, muon, and tau masses are based on the relativistic corrections of the Planck, electric, and 
magnetic energies, respectively, as given in Eq. (32.48) wherein, the masses of the heavier leptons, the muon and tau are 
dependent on the first lepton’s mass, the electron mass, and each can be considered a relativistic effect of the electron mass.  As 
shown in the Muonic Hydrogen Lamb shift section, the radiation reaction force RRF  of muonic hydrogen comprises three terms 

that follow from Eq. (2.135) and arise from lepton-photon-momentum transfer during the 2 2
1/2 1/2P S  transition wherein the 

photon couples with the three possible states of the electron mass corresponding to the three possible leptons.  The radiation 
reaction force of relativistic origin is determined by the action on the electron mass with each mass hierarchy having a 
corresponding force component.  Similarly, neutral mass-energy resonances arising from simultaneous satisfaction of Maxwell’s 
equations and the spacetime particle-production condition (Eq. 32.43)) involve the higher mass-energy muon and tau leptons 
states and give rise to particles that may decay to an electron-positron pair ee .  A resonance exists for the tau relativistic 
correction of the muon resonance of the electron mass given by the ratio of the muon to tau masses (Eq. (36.10)) times the mass 
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of the electron.  The neutral electromagnetic production of the tau-to-muon resonance predicts a neutral particle of 16.744 times 
the mass of the electron-positron pair ee .  Since the electron mass is 511 keV, the predicted mass is 17.11 MeV.   

 
  
mX17  2

 1

2








2

3

me  17.11MeV  (36.23) 

Krasznahorkay et al. have reported a particle of 17 MeV that decays to ee [5].  Specifically, when protons were fired at thin 
targets of lithium-7 to create unstable beryllium-8 nuclei that then decayed to pairs of electrons and positrons excess decays were 
observed at an opening angle of 140° between the e  and e  having a combined energy of approximately 17 MeV, which 
indicated that a small fraction of beryllium-8 nuclei each lost excess energy in the form of a new particle.  Recently, a 17 MeV 
particle also was evident by the discovery of a ee  angular correlation of 115 ° and a combined energy of approximately 17 
MeV from the decay of the 21 MeV excited nuclear state of helium-4 formed by the firing of 900 keV protons at helium-3 [6].  
The authors speculate that the existence of a 17 MeV particle missed by the Standard Model regards a new so-called fifth force 
with further speculation that it has relevance to dark matter.  But particles do not mediate forces according to classical laws; 
rather all forces are either electromagnetic in nature or arise from the curvature of spacetime.  Furthermore, the 17 MeV particle 
is not dark matter; rather dark matter is hydrogen in lower chemical energy states as shown in the Composition of the Universe 
section [7]. 
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Chapter 37 
  
PROTON AND NEUTRON 
  
 
 
 
 
Experimental evidence [1] indicates that the proton and neutron each comprise three charged fundamental particles called quarks 
and three massive photons called gluons.  Each quark is found in combination with a gluon.  It is demonstrated in the Excited 
States of the One-Electron Atom (Quantization) section and by Eq. (2.11) that photons trapped inside of an atomic orbital 
resonator cavity provide an effective charge at the two-dimensional atomic orbital.  A model of the nucleons which is consistent 
with experimentation and the present theory is a transition state atomic orbital of mass and charge comprised of three 
superimposed quasiparticles (quarks) held in force balance on a spherical two-dimensional shell by the corresponding matched 
photons (gluons) trapped inside of the atomic orbital.  This model explains the experimental result that 1/3 of the total proton 
spin [2] is due to the spin angular momentum of the quarks and the remaining 2/3 is predicted to be due to quark orbital angular 
momentum.  The neutron angular momentum is based on that of the proton.  The magnetic moments calculated from the model 
as well as the masses of the quarks, gluons, and nucleons in simple closed-form equations containing fundamental constants only 
match the experimental values extraordinarily well.  QCD depends on virtual particles and renormalization of intractable 
infinities and is incapable of such calculations. 

The experimental radius of the proton is 151.3  10X m  [3]: 
 15

 1.3  10pr X m  (37.1) 

The Compton wavelength of the proton, ,C p , is:  

 15
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Substitution of Eq. (1.249) and using Eq. (1.256) yields: 

 15
 , 1

2
1.3214  10o e

C p
p

a m
X m

m
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It appears that ,C p pr  .  To test this assumption we proceed as follows.  We know that a proton is comprised of three quarks 

and three gluons (“trapped photons”).  The quarks superimpose to form an atomic orbital of radius qr  such that: 

 p qr r , and that (37.4) 

 " "
p q g qm m m m   , (37.5) 

where qr  is the radius of the quarks, qm  is the rest mass of the quarks, "
gm  is the relativistic mass of the gluons, and "

qm  is the 

relativistic mass of the quarks.  The proton is in the ground state and, 
 1, 1, ,2 2p p C pr     (37.6) 

The boundary condition for the quarks is:  

 , , 1, ,2 2 2 2n q n q p C p
q nq p

h h
r r

m v m c
          (37.7) 

A solution to Eq. (37.7) is nqv c  and 
2

p
q

m
m


 .  When the quark velocity is the speed of light in the photon frame (gluon frame 

in this case), the relativistic factor,  , for the lab frame is 2 .  (See the Special Relativistic Correction to the Ionization 
Energies section and the Spin Orbit Coupling section.)  Thus, the mass of the quarks in the lab frame (the relativistic mass) is: 
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Furthermore, the (relativistic) mass of the gluons can be determined when: 

 " 1
1

2g p q pm m m m


      
 (37.9) 

The radius of the atomic orbital for nqv c  is then: 
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where ,c q  is the Compton wavelength bar for the quarks.  This result is internally consistent and represents the solution of the 

boundary value problem of the rest mass of the proton. 
The quark mass/charge functions and the gluon mass/charge functions must have the same angular dependence.  Thus, 

the force balance equation is:  
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The result of the substitution of Eq. (37.12) in Eq. (37.11), 1, ,p C pr  , and 
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  is that 1

effZ  , and n  .  Thus, effZ , 

the magnitude of the gluon field is 1 .  The potential energy of the quarks is then:  
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Thus, the total energy of the proton is: 
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The neutron rest mass, nm , the rest mass for the neutron quarks, the Compton wavelength of the neutron, and the Compton 

wavelength bar of the neutron quarks are obtained in a similar fashion, 
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QUARK AND GLUON FUNCTIONS 
Spherical harmonics are solutions to Laplace’s Equations in spherical coordinates, and the constant atomic orbital is also a 
solution.  All matter and energy is a linear combination of these functions.  Thus, matter is created as an atomic orbital with 
mass/charge being linear combinations of spherical harmonics and constant functions.  And, photons whose electric fields are 
linear combinations of solutions to Laplace’s Equation, spherical harmonics and constant angular functions, can be trapped in 
the atomic orbital at the creation of matter from energy.  (See the Excited States of the One-Electron Atom (Quantization) 
section and Hydrino Theory—BlackLight Process section for the equations of these photons.)  The proton and the neutron are 
such hybrids of matter and energy.  The proton and neutron can each be viewed as being comprised of a linear combination of 
three quarks possessing mass and charge and three gluons (photons) which hold the atomic orbital comprised of three quarks per 
nucleon in force balance on a spherical two-dimensional shell.  The proton atomic orbital is comprised of two up quarks and a 

down quark, and the neutron is comprised of two down quarks and an up quark where the charge of an up quark is 
2

3
e  and the 

charge of a down quark is 
1

3
e .  Each quark is associated with its gluon where the quark mass/charge function has the same 

angular dependence as the gluon mass/charge function. 
To be consistent with experimentation, we choose a solution that is a linear combination of the three spherical harmonic 

functions, corresponding to   = 1, and three constant atomic orbitals.  This resultant function can be viewed as being comprised 
of three separate particles.  The three functions are orthogonal, and the corresponding gluon potentials have the same angular 
dependence as each other and each quark where there exists a one-to-one correspondence between each quark and each gluon. 
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THE PROTON 
The proton functions can be viewed as a linear combination of three fundamental particles, three quarks, of 
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The magnitude of effZ  of the radial gluon electric field for a proton is given by the solution of Eq. (37.11) as 1  , and 
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  .  The normalized quark mass-density function of a proton is: 

 
 
 

,

2

,

1 1 1
(1 sin sin ) (1 sin cos ) (1 cos )

2 3 3 3 4

C pp

C p

rm  
    

  

       
 (37.18) 

The normalized charge-density function of the quarks of a proton is: 
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The gluons comprise three trapped orthogonal elliptical polarized photon atomic orbitals as given in the Equation of the Photon 
section and the Excited States of the One-Electron Atom (Quantization) section.  Each gluon travels with the corresponding 
quark at v c  (Eq. (37.7)) as a uniform component with a superimposed light speed spherical harmonic dependent component.  
The quark temporal mass/charge modulation is the same as that of an elliptically polarized photon with v c  at any position on 
the nucleon surface according to the relativistic velocity addition formula.  The gluons are inseparable from the corresponding 
quarks wherein the gluons provide the central field that maintains force balance.  The potential function of the gluons of a proton 
is: 
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The radial electric field of the gluons of a proton is 
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Recent experiments at the Thomas Jefferson National Accelerator Facility, using polarized electrons have shown that the proton 
charge may actually increase with distance from the center at certain radii [4-5] consistent with Eq. (37.19).  The proton is 
shown in Figures 37.1 and 37.2. 
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Figure 37.1.   The proton mass-density function in its inertial frame shown with the low and high mass-density proportional 
to red intensity and blue intensity, respectively.  The proton is comprised of a linear combination of three orthogonal quarks, up, 

up, and down, of equal mass, 
1

3 2
pm


, that form a two-dimensional spherical shell of mass having a radius of the Compton 

wavelength of the proton.  Each quark, in turn, comprises a constant function modulated by a spherically harmonic function.  
The quarks which have the properties of an energy-to-matter transition state spin about the z-axis at the speed of light.  The 

centrifugal force of each quark is balanced by the electric field of its gluon, a heavy photon, each of mass 
1

1
2pm


   
, that is 

phase-locked to the spinning quark and inseparable from it and exists at the radius of the quarks.  The brightness corresponds to 
the intensity of the two-dimensional radial gluon field. 
 

 
 
Figure 37.2.   The proton charge-density function in its inertial frame shown with positive and negative charge-density 
proportional to red intensity and blue intensity, respectively.  The proton is comprised of a linear combination of three 
orthogonal quarks, up, up, and down, of charge +2/3, +2/3, and -1/3, respectively, that form a two-dimensional spherical shell of 
charge having a radius of the Compton wavelength of the proton.  Each quark, in turn, comprises a constant function modulated 
by a spherically harmonic function.  The quarks, which have the properties of an energy-to-matter transition state, spin about the 
z-axis at the speed of light.  The centrifugal force of each quark is balanced by the electric field of its gluon, a heavy photon, that 
is phase-locked to the spinning quark, is inseparable from it, and exists at the radius of the quarks. 
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THE NEUTRON 
The neutron functions can be viewed as a linear combination of three fundamental particles, three quarks, of charge 
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and 
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e .  The magnitude of effZ  of the radial gluon electric field for a neutron is given by the solution of Eq. (37.11) as 1  , 
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   where nm  is the rest mass of the neutron.  The normalized quark mass-density function of a neutron is: 
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The normalized charge-density function of the quarks of a neutron is: 
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The gluons comprise three trapped orthogonal elliptical polarized photon atomic orbitals as given in the Equation of the Photon 
section and the Excited States of the One-Electron Atom (Quantization) section.  The gluons travel with the quarks at v c  (Eq. 
(37.15)); thus, the gluons provide the central field that maintains force balance.  The potential function of the gluons of a neutron 
is:  
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The radial electric field of the gluons of a neutron is: 
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The neutron is shown in Figures 37.3 and 37.4. 
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Figure 37.4.   The neutron charge-density function in its 
inertial frame shown with positive and negative charge-
density proportional to red intensity and blue intensity, 
respectively.  The neutron is comprised of a linear 
combination of three orthogonal quarks, up, down, and 
down, of charge +2/3, -1/3, and -1/3, respectively, that form 
a two-dimensional spherical shell of charge having a radius 
of the Compton wavelength of the neutron.  Each quark, in 
turn, comprises a constant function modulated by a 
spherically harmonic function.  The quarks that have the 
properties of an energy-to-matter transition state spin about 
the z-axis at the speed of light.  The centrifugal force of each 
quark is balanced by the electric field of its gluon, a heavy 
photon, that is phase-locked to the spinning quark, is 
inseparable from it, and exists at the radius of the quarks. 

Figure 37.3.   The neutron mass-density function in its 
inertial frame shown with the low and high mass-density 
proportional to red intensity and blue intensity, respectively.  
The neutron is comprised of a linear combination of three 

orthogonal quarks, up, down, and down, of equal mass, 
1

3 2
nm


, 

that form a two-dimensional spherical shell of mass having a 
radius of the Compton wavelength of the neutron.  Each 
quark, in turn, comprises a constant function modulated by a 
spherically harmonic function.  The quarks which have the 
properties of an energy-to-matter transition state spin about 
the z-axis at the speed of light.  The centrifugal force of each 
quark is balanced by the electric field of its gluon, a heavy 

photon, each of mass 
1

1
2nm


   
, that is phase-locked to the 

spinning quark and inseparable from it and exists at the radius 
of the quarks.  The brightness corresponds to the intensity 
of the two-dimensional radial gluon field. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MAGNETIC MOMENTS 
The spatial-temporal current and corresponding angular momentum distributions of the proton and the neutron give rise to 
magnetic dipole and quadrupole moments.  It is demonstrated in the derivations of the magnetic moments that follow that 1/3 of 
the total angular momentum of the proton is due to the spin angular momentum of the quarks and the remaining 2/3 is due to the 
quark orbital angular momentum.  The spin contribution has been confirmed experimentally [2].  Then, the neutron angular 
momentum follows from that of the proton and the angular momentum change due to conversion of an up quark/gluon to a down 
quark/gluon. 
 
PROTON MAGNETIC MOMENT 
The proton is comprised of three orthogonal mass functions—spherical harmonics with    = 1; these are the quarks.  In addition, 
the proton is comprised of three “trapped orthogonal photons” called gluons of the same angular dependence as the quarks.  
Each gluon is in phase with a quark.  The combination of a quark and its associated gluon is hereafter referred to as a 
quark/gluon.  The projection of the quark/gluon angular momentum onto the z-axis is given by the sum of the independent 
projections.  The angular momentum of the photon is  , and the proton is generated from a photon as demonstrated in the 
Neutron and Proton Production section.  Thus, the   of angular momentum of the production photon is conserved in the sum of 
the magnitude of the angular momentum of the three quarks, and the magnitude of the angular momentum of each quark held in 

force balance by the corresponding gluon is 
3


.  As demonstrated in the Orbital and Spin Splitting section, the z component of 
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the angular momentum of an excited state electron atomic orbital corresponding to a multipole of order (  , m ) is: 

 zL m   (37.26) 

Thus, the z projection of the angular momentum of a quark/gluon corresponding to 1m    is 
3




.  In the case that the two 

orthogonal up quark/gluons each of charge 
2

3
  are in the xy-plane with 1m   and the down quark/gluon of charge 

1

3
  is along 

the z-axis, the magnetic moment is aligned along the z-axis.  The former is time independent and the latter corresponds to a 
time-harmonic current-density wave.  Thus, 1/3 and 2/3 of the total proton angular momentum is associated with quark spin and 
quark orbital angular momentum, respectively. 

The magnetic moment is defined [6] as: 
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The down quark corresponding to quantum number 0m   has no magnetic projection on the z-axis that couple to an 

electromagnetic field.  From Eq. (37.7), the mass of the quark function comprising the superposition of the three quarks is 
2

pm


 

and the charge of each up quark is 
2

3
e .  The angular momentum of Eq. (37.27) for the proton is the sum of the z projections of 

the two up quarks1 thus, 
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3 3 3zL       (37.28) 

Therefore, the magnetic moment of the proton p  given by the sum of the contributions due to each quark of angular 

momentum 
3


 is: 

 

2 1 2 1 2 2
43 3 3 3 3 3 2 2.79253
9 2

2 2 2
2 2 2

p N
p p p p

e e e e
m m m m

  

  

    
   

 (37.29) 

where N  is the nuclear magneton 
2 p

e

m


.  The experimental magnetic moment of the proton is 2.79268p N  . 

 

NEUTRON MAGNETIC MOMENT 
The neutron is unstable and undergoes beta decay with a half-life of 10.2 minutes.  Thus, the neutron can be viewed as the sum 
of an electron, a proton, and the beta decay energy.  (The calculation of the energy of beta decay of a neutron is given below.)  
The magnetic moment of a neutron can be calculated as the sum of the following: N , the magnetic moment of a constant 

atomic orbital of charge e  corresponding to the beta particle at the initial radius of the neutron, 
4

2
9 N , the magnetic moment 

of a proton, and the magnetic moment associated with changing an up quark/gluon to a down quark/gluon [See Quark and Gluon 
Functions of the Proton and Neutron section].  The contribution due to the transformation of an up quark/gluon to a down 
quark/gluon is determined as follows:  

The fractional change in the quark functions equals the fractional change in the gluon function where: 

 
3 / 2 1

3 3 3 / 2 5


 
 (37.30) 

Substitution of the equation for the time-averaged angular-momentum density, m, of a photon (Eq. (4.1)). 

  1
Re ( )

8 c
  m r E B*  (37.31) 

into the vector identity: 

 

1 The projection of the angular momentum is analogous to that of a globe, where I 
2

3
mr 2 , spinning about some axis [7]. 
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           A B C B A C C A B  (37.32) 

gives 

    1
Re

8 c
     m E r B* B* r E  (37.33) 

The first term of Eq. (37.33) is zero wherein the electric field is radial and the magnetic field is transverse.  Using the 
relationship between the photon electric and magnetic fields from Appendix V ( *  B B E  in cgs units): 

    1 1
Re Re

8 8c c 
            m E r E r E E  (37.34) 

The gluon is a photon that is phase-matched to a quark.  The quark/gluon is analogous to the case of an absorbed photon and the 
corresponding electron in an excited state as described in the Excited States of the One-Electron Atom (Quantization) section.  
From Eq. (37.27), Eq. (37.30), and Eq. (37.34), the contribution to the change in the magnetic moment of the nucleon from the 
quark/gluon function is proportional to the dot product of the change in the electric field of the quark/gluon, 

 
1 1 1

5 5 25
   (37.35) 

The contribution to the change in the nucleon magnetic moment from a quark/gluon with   = 1 is a factor of three times greater 
than that of a constant angular distribution of mass (  = 0).  The integral of the dot product of the modulation functions 
(spherical harmonic functions) of each quark/gluon function with itself over all space for all three orthogonal quark/gluons is 
one, and the integral of the modulation function of the mass of each quark/gluon over the nucleon is zero.  The change of an up 
quark/gluon to a down quark/gluon involves one of the three where   = 1.  With the mass of parameter of Eq. (37.27) equal to 
one third the mass of the nucleon, the contribution to the change in the magnetic moment due to the transformation of an up 
quark/gluon to a down quark/gluon is:  

 
1

3    
25 NX X   (37.36) 

The sum of the three components, the magnetic moment of the neutron, n , is: 

 
4 3

1 2 1.91253
9 25n N N          

 (37.37) 

The direction of the positive z-axis is taken as the spin part of the magnetic moment.  The experimental magnetic moment of the 
neutron is 1.913043n N   . 

 
NEUTRON AND PROTON PRODUCTION 
Eq. (32.43) equates the proper and coordinate times in the special case that the velocity of the transition state atomic orbital in 
the coordinate frame is the speed of light.  In this case, the mass of the particle is given by defining a standard ruler for time in 
the coordinate frame whereby the mass of the particle must be experimentally measured with the same time ruler as part of a 
consistent system of units.  In the case that MKS units are used, the coordinate time is defined as the sec which is essentially the 
MKS second (See Leptons section.), the permeability of free space is defined as 7 1

0 4   10  X Hm    , and the mass of the 

particle is given in kilograms.  The production of a real particle from a transition state atomic orbital is a space-like event in 
terms of special relativity wherein spacetime is contracted by the gravitational radius of the particle during its production as 
given in the Gravity section.  Thus, the coordinate time is imaginary as given by Eq. (32.43). 

The considerations for the production of leptons and baryons are the same as those for leptons as described in the 
Leptons section.  Consider the relativistic corrections of the variables of the relationship between the proper and coordinate 
times, Eq. (32.43), for the production of a neutral particle/antiparticle pair, each comprised of three quarks and three gluons of 
equivalent mass.  The charges of each set of three quarks must sum to zero and the lowest energy nonuniform spherical 

harmonics are those corresponding to    = 1 ; thus, the charges are 
1

3
 , 

1

3
 , and 

2

3
  for the neutron quarks and 

1

3
 , 

1

3
 , 

2

3
  

for the antineutron quarks.  The neutron possesses three quarks of total mass 
2

nm


 (Eq. (37.16)); thus, the mass of each quark is:  

 1 (3)2
n

q

m
m


  (37.38) 

The quarks/gluons possess magnetic stored energy.  Concomitant with the “capture” of the gluons by the quark resonator cavity, 
the magnetic flux of the gluons is “captured.”  To conserve the total quark angular momentum,  , the flux is trapped in quanta 
of the magnetic quantum of flux (See Electron g factor section.).  The quark/gluon velocity is v c ; thus, the stored magnetic 
energy is 2

nm c  (Eqs. (29.14) and (29.15) with em  replaced by nm ).  The mass (energy) released due to magnetic flux “capture” 
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(gluon “capture”) follows from Eq. (1.181) : 

  
2nmass deficit m



  (37.39) 

The force corresponding to this mass deficit is the strong nuclear force (which is calculated for the deuterium nucleus in the 
Strong Nuclear Force section).  Combining Eqs. (37.38) and (37.39) gives the bound individual quark mass where: 

 1

1

3 2 2
n

q

m
m


 

    
 (37.40) 

The radius of the quark atomic orbital at neutron production thereafter is given by Eq. (37.15).  No particles or fields propagate 
out from the event radius at the speed of light; thus, the lab frame transition state radius being the Compton wavelength of the 
neutron and the Compton wavelength bar of the neutron quarks is relativistically corrected relative to the v c  inertial frame by 
the factor 2  (Eq. (1.281) with interchange of frames of reference).  Moreover, the mass in the Compton wavelength bar is 
reduced by the factor 2  (Eq. (1.281) or (1.273) with interchange of frames of reference) such that the relativistic radius can be 
identified as 2(2 ) r .  The radius r  is the Compton wavelength bar of the neutron quarks given by Eq. (32.21) wherein three 
fundamental composite particles each comprising a quark-gluon pair of angular momentum   superimpose to form the baryon 
of resultant total angular momentum  .  Additionally, since the velocity of the quarks in the proper frame is v c  (Proton and 
Neutron section), the proper time is relativistically dilated by a factor of 2  (Eq. (1.273)).  Multiplication of the left side of Eq. 
(32.43) by 2 , and making the following substitutions: (i) Eq. (36.1) for  , (ii) the sec which is essentially the second—the 
definition for the coordinate time in MKS units, for ti , (iii) 2(2 ) r  for the transition state radius r  which is also the final 
particle radius, (iv) the Compton wavelength bar for the transition state radius r  (Eq. (32.21)) times three due to the 
superposition of the three fundamental particles each of angular momentum  , and (v) the mass of Eq. (37.40) for M  as well as 
this mass in the Compton wavelength bar formula, gives the relationship between the neutron proper time and the coordinate 
time: 
 

 

2

2
2

1
2

3 2 22
2 sec

1 3 (2 )
3 2 2

n

n

m
G

m cc


 

 
 

      
   




 (37.41) 

The neutron mass in MKS units based on the definition of the coordinate time in terms of the sec is: 

 

1 1

2 4
27

 n 2

1 2 2 (3)
(3)(2 ) 1.6726 10

1 sec 2calculated

h ch
m X kg

c G

 


             
 (37.42) 

where 27
 n experimental 1.6749 10m X kg .  The difference between the calculated and experimental values of the neutron mass is due 

to the very slight difference between the MKS second and the definition of the corresponding time unit defined by Eq. (36.2).  
The relationship between the neutron and electron masses which is independent of the definition of the imaginary time ruler ti  
given by Eqs. (32.43) and (36.2) including the contribution of the fields due to charge production is given by Eq. (38.31).  Three 
families of quarks arise from Eq. (32.27) as given in the case of the leptons in the Leptons section. 

Proton production is given in the Weak Nuclear Force: Beta Decay of the Neutron section via beta decay of the neutron.  
The energy of the neutron can be lowered by neutron decay to a proton and a beta.  The proton mass calculated from the neutron 
decay reaction given in the Weak Nuclear Force: Beta Decay of the Neutron section is 27

 1.672648  10X kg .  The experimental 

proton mass is 27
 1.672648  10X kg . 
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INTERMEDIATE VECTOR AND HIGGS BOSONS 
The only fundamental matter particles that can exist are the three leptons, three sets of quarks, and their antiparticles.  However, 
linear combinations of these fundamental particles may comprise more complicated species beyond neutrons and protons.  
Particle energies in collisions may exceed the particle production energies and consequently exceed the corresponding spacetime 
resonance frequencies during particle production and decay reactions.  The relationship between proper and coordinate time has 
higher order or over-energy resonances due to the same principles regarding the relationship between proper and coordinate time 
that is the basis of production of the fundamental particles.  Then, an increase in the intensity of particle reactions events is 
predicted at the over-energy resonance frequencies.  However, the associated peak at the resonance energy does not represent a 
new fundamental particle.  Nor, does this phenomenon have any association with mediating forces such as the weak nuclear 
force or the conveyance of inertial mass.  The former is due to the electromagnetic force and the latter is due to the absolute 
nature of spacetime and the conservation of matter, energy, and spacetime with satisfaction of Maxwell’s equations and the 
conditions inherent in the Schwarzschild metric of spacetime required for particle production.   

The additional resonances can be predicted by applying these principles to energy exceeding the production energy of a 
given particle.  Specifically, using the spatial dimensions and the velocity at the electron production event, the scaling factor 
between the proper and coordinate time is given by Eq. (34.62) wherein the latter is imaginary because energy transitions are 
spacelike due to spacetime expansion from matter to energy conversion: 

 12 2
sec

2
C C

ge

C

i
vGm

    
 



 (37.43) 

where gv  is Newtonian gravitational velocity (Eq. (34.30)).  Consider the muon that is a lepton arising from a resonance 

involving the electron wherein in addition to pair production, the latter is a product of beta decay.  The correction between 
proper and coordinate time based on the Coulombic potential as the basis of the muonic production energy is 2  (Eqs. (36.5) 
and (1.281)), and further applying Eq. (34.62) , the resonance coupling factor Cg  is: 

 12Cg    (37.44) 

Using the relationship between the proper time and the electron coordinate time for the Coulomb potential energy as the 
production energy, the mass of the muon/antimuon using the MKS second is  (Eqs. (36.5-36.6)): 
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 (37.45) 

Applying resonance coupling factor Cg  (Eq. (37.44)) to the muon production mass (Eq. (37.45)) having its inherent lepton 

member, the electron, gives an over-energy resonance 0Z
E  at: 
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 (37.46) 

Experimentally, the event excess called the intermediate vector boson 0Z  occurs at 91.1876 GeV  [8].  This signature is deemed 
a manifestation of the weak force regarding an ad hoc postulated Standard Model treatment of beta decay. 

In contrast, based on Maxwell’s equations and the conditions inherent in the Schwarzschild metric of spacetime required 
for particle production, the neutron mass is given by Eq. (37.42) in terms of fundamental constants and MKS units based on the 
definition of the coordinate time in terms of the sec.  An over-energy absolute spacetime resonance of the electrically neutral 
neutron 0H

E  due to the relationship between proper and coordinate time given by Eq. (37.43) is predicted at: 

  0

1 1

2 4
1 1 1

2

1 2 2 (3)
(3)(2 ) 0.93956536 128.75 

1 sec 2nH

h ch
E m GeV GeV

c G

    


                 
 (37.47) 

High-energy proton-proton collisions that produce neutron-antineutron pairs decay to two gamma ray photons or 
correspondingly two pairs of electron-positron or muon-antimuon pairs.  Such an excess of events at 126 GeV has recently been 
announced by CERN [9].  Specifically, the corresponding excess of events at the neutron over-energy spacetime resonance 
energy has been announced as the discovery the Higgs boson 0H  that conveys mass to particles according to an ad hoc postulate 
of the Standard Model.  However, there is no physical evidence that this slight excess of events at 126 GeV conveys mass to 
particles, and the energy of the excess events deemed the Higgs boson cannot and was not directly observed as a real particle due 
to the extraordinarily small mean lifetime of the resonance. 

As given in the Weak Nuclear Force: Beta Decay of the Neutron section, a proton is formed via beta decay of the 
neutron.  This requires the initial step of the conversion of a down quark to an up quark having charges -1/3 and +2/3, 
respectively, with the concomitant formation of an electron of the lepton family having a charge of -1.  Considering that the 
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transition occurs on a time scale of 2510 s , the radius of the baryon is unchanged, and the energy change is that of the electric 
energy decrease given by Eq. (1.170).  Using 1/3, the magnitude of the change in charge normalized to that of the proton, and 

  2
2 

, the relativistic correction term of the neutron production condition of Eq. (37.41) with the equivalence of the correction 

for charge and mass density since they are interchangeable by the ratio /e m , an over-energy resonance 
W

E   corresponding to 

0Z
E  of Eq. (37.46) is predicted at: 
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 (37.48) 

Then, by the symmetry of antiparticles, the positron decay of the antineutron corresponds to W  .  Experimentally, the event 
excess called the intermediate vector bosons W   occurs at 80.423 GeV  [8].  These particles convey the weak nuclear force 
according to an ad hoc postulate of the Standard Model that seems nonsensical since each weighs 80 times the mass of the 
neutron.  There is no physical evidence that these particles produce a nuclear force.  Moreover, the intermediate vector bosons 
W   are not real particles in that they cannot and were not directly observed since the experimental mean lifetime of the 
resonance is 253.076  10  X s  [10].  Similarly, the experimental mean lifetime of the 0Z  spacetime resonance is 

252.6379  10  X s  [11].  
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Chapter 38 
  
QUARKS 
  
 
 
 
 
Only three quark families can be formed from photons corresponding to the Planck equation energy, the potential energy, and 
the magnetic energy, where each is equal to the mass energy (Eq. (32.27)).  As opposed to a continuum of energies, fundamental 
quark families arise from photons of only three energies.  The considerations for the production of baryons are described in the 
Neutron and Proton Production section.  Consider the relativistic corrections of the variables of the relationship between the 
proper and coordinate times, Eq. (32.43), for the production of three types of neutral baryon/antibaryon pairs, each comprised of 
three quarks and three gluons.  The charges of each set of three quarks must sum to zero and the lowest energy nonuniform 

spherical harmonics are those corresponding to   = 1; thus, the charges are 
1

3
 , 

1

3
 , and 

2

3
  for the baryon quarks and 

1

3
 , 

1

3
 , 

2

3
  for the antibaryon quarks.  The radius of the quark atomic orbital at baryon production and thereafter follows from by 

Eq. (37.15).  The baryon possesses three quarks of total mass 
2

Bm


 (Eq. (37.16)); thus, the mass of each quark is:  

 1 (3)2
B

q

m
m


  (38.1) 

The quarks/gluons possess magnetic stored energy.  Concomitant with the “capture” of the gluons by the quark resonator cavity, 
the magnetic flux of the gluons is “captured.”  To conserve the total quark angular momentum,  , the flux is trapped in quanta 
of the magnetic quantum of flux (See Electron g Factor section.).  The quark/gluon velocity is v c ; thus, the magnetic stored 
energy is 2

Bm c  (Eq. (29.14) and (29.15) with em  replaced by Bm ).  The mass (energy) released due to magnetic flux “capture” 

(gluon “capture”) follows from Eq. (1.181). 

  
2Bmass deficit m



  (38.2) 

The force corresponding to this mass deficit is the strong nuclear force (which is calculated for the deuterium nucleus in the 
Strong Nuclear Force section).  Combining Eqs. (38.1) and (38.2) gives the bound individual quark mass: 

 1

1

3 2 2
B

q

m
m


 

    
 (38.3) 

No particles or fields propagate out from the event radius at the speed of light; thus, the lab frame transition state radius being 
the Compton wavelength of the neutron and the Compton wavelength bar of the neutron quarks is relativistically corrected 
relative to the v c  inertial frame by the factor 2  (Eq. (1.281) with interchange of frames of reference).  Moreover, the mass 
in the Compton wavelength bar is reduced by the factor 2  (Eq. (1.281) or (1.273) with interchange of frames of reference) 
such that the relativistic radius can be identified as 2(2 ) r .  The radius r  is the Compton wavelength bar of the neutron quarks 
given by Eq. (32.21) wherein three fundamental composite particles each comprising a quark-gluon pair of angular momentum 
  superimpose to form the baryon of resultant total angular momentum  .  Additionally, since the velocity of the quarks in the 
proper frame is v c  (Proton and Neutron section), the proper time is relativistically dilated by a factor of 2  (Eq. (1.273)).  
Multiplication of the left side of Eq. (32.43) by 2 , and making the following substitutions: (i) Eq. (36.1) for  , (ii) the sec 
which is essentially the second—the definition for the coordinate time in MKS units, for ti , (iii) 2(2 ) r  for the transition state 
radius r  which is also the final particle radius, (iv) the Compton wavelength bar for the transition state radius r  (Eq. (32.21)) 
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times three due to the superposition of the three fundamental particles each of angular momentum  , gives the relationship 
between the neutron proper time and the coordinate time: 
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 (38.4) 

The mass of each member of a quark pair corresponds to an energy of Eq. (32.32) where the production state goes 
through the corresponding neutron comprising quarks and gluons.  The down-down-up neutron (ddu) and anti-ddu correspond to 
the Planck equation energy.  The strange-strange-charm neutron (ssc) and anti-ssc correspond to the electric energy.  And, the 
bottom-bottom-top neutron (bbt) and anti-bbt correspond to the magnetic energy.  It is shown that the masses are given by Eq. 
(32.43) and the relative masses differ in their specific function of the fine structure constant   only.  These functions are 
determined by relativistic coefficients in Eq. (38.4) given by Eq. (32.32) according to the kind of energy that is responsible for 
the respective level ( ddu , ssc , bbt ) of the particular particle within its family. 
 
DOWN-DOWN-UP NEUTRON (DDU) 
The down-down-up neutron is comprised of a down, down, and an up quark where the charge of a down quark is 

1

3
e , and the 

charge of an up quark is 
2

3
e .  The mass of the down-down-up neutron corresponds to the Planck equation energy given by Eq. 

(32.28).  Substitution of the mass of Eq. (38.3) for M  as well as this mass in the Compton wavelength bar formula, gives the 
relationship between the down-down-up neutron proper time and the coordinate time: 
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 (38.5) 

The neutron mass in MKS units based on the definition of the coordinate time in terms of the sec is: 
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 (38.6) 

 27
   1.6726  10ddu calculatedm X kg  (38.7) 

 27
  exp 1.6749  10ddu erimentalm X kg  (38.8) 

The difference between the calculated and experimental values of the neutron mass is due to the very slight difference between 
the MKS second and the definition of the corresponding time unit defined by Eq. (36.2) and the slight contribution due to the 
field energies of the quarks’ charges.  The relation between the ddu neutron and electron masses which is independent of the 
definition of the imaginary time ruler ti  given by Eqs. (32.43) and (36.2) including the contribution of the fields due to charge 
production is given by Eq. (38.31). 
 
STRANGE-STRANGE-CHARM NEUTRON (SSC) 
The strange-strange-charm neutron is comprised of a strange, strange, and a charm quark where the charge of a strange quark is 

1

3
e , and the charge of a charm quark is 

2

3
e .  Given that the down-down-up neutron is a solution to Eq. (38.4), other 

solutions follow from this solution and the other energy solutions. 
Consider the case of the potential energy.  Given that the down-down-up neutron is “allowed” by the Planck energy 

equation (Eq. (32.28)) and that the proper time is given by general relativity (Eq. (32.38)), the strange-strange-charm neutron 
mass can be calculated from the potential energy, V , (Eq. (32.27)) and the proper time relative to the down-down-up neutron 
inertial frame.   

Baryons comprised of charm and strange quarks (antiquarks) decay to baryons of up and down quarks (antiquarks) and 
may be considered a transient resonance which decays to the stable baryons, the neutron or proton (antineutron or antiproton).  
For the lab inertial frame, the relativistic correction of the radius of the transition state atomic orbital given by the potential 
energy equations (Eq. (29.10) and (29.11)) is 2 .  As shown in the Muon-Antimuon Lepton Pair section, for the down-down-
up neutron inertial frame, the relativistic correction of the gravitational radius gr  (Eq. (32.36)) relative to the proper frame is the 

inverse, 2 .  Furthermore, the potential energy equation gives an electrostatic energy; thus, the down-down-up neutron inertial 
time must be corrected by the relativistic factor of 2  relative to the proper time.  (See the Special Relativistic Correction to the 
Ionization Energies section.)  Multiplication of the right side of Eq. (38.4) by 2  and substitution of (i) gr  , the relativistically 
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corrected gravitational radius for gr  (Eq. (32.36)), and (ii) ddum , the mass of the down-down-up neutron, for M  into Eq. (38.4) 

gives the relationship between the proper time and the down-down-up neutron coordinate time: 
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 (38.9) 

The strange-strange-charm neutron mass in MKS units based on the definition of the coordinate time in terms of the sec is: 
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 (38.10) 

 27 2
  4.89 10 2.74 /ssc calculatedm X kg GeV c   (38.11) 

The observed mass of the   hyperon that contains three strange quarks (sss) is [1]: 
 21673 /m MeV c

  (38.12) 

Thus, an estimate for the dynamical mass of the strange quark, sm , is: 

 
2

21673 /
558 /

3 3s

m MeV c
m MeV c

    (38.13) 

The dynamical mass of the charm quark, cm , has been determined by fitting quarkonia spectra, and from the observed masses of 

the charm pseudoscalar mesons  0 1865D  and  1869D  [2]: 

 21.580 /cm GeV c  (38.14) 

Thus,  
 2 2

exp 2 2(558 / ) 1580 /ssc erimental s cm m m MeV c MeV c     (38.15) 

 2
exp 2.70 /ssc erimentalm GeV c  (38.16) 

Eqs. (38.11) and (38.16) are in agreement. 
 
BOTTOM-BOTTOM-TOP NEUTRON (BBT) 
The bottom-bottom-top neutron is comprised of a bottom, bottom, and a top quark where the charge of a bottom quark is 

1

3
e , 

and the charge of a top quark is 
2

3
e .  Given that the down-down-up neutron is a solution to Eq. (38.4), other solutions follow 

from this solution and the other energy solutions. 
Consider the case of the magnetic energy.  Given that the down-down-up neutron is “allowed” by the Planck energy 

equation (Eq. (32.28)) and that the proper time is given by general relativity (Eq. (32.38)), the bottom-bottom-top neutron mass 
can be calculated from the magnetic energy (Eq. (32.27)) and the proper time relative to the down-down-up neutron inertial 
frame.  As given in the Proton and Neutron section for the neutron and proton, the bottom-bottom-top neutron and the 
antibottom-bottom-top neutron radius, r , is given by the Compton wavelength: 

 ,
 

C bbt
bbt

h
r

m c
   (38.17) 

Furthermore, the transition state comprises two magnetic moments.  For v c , the magnetic energy equals the potential energy, 
equals the Planck equation energy, equals 2mc .  The magnetic energy is given by the square of the magnetic field as given by 
Eqs. (1.154-1.162).  As in the case of the tau-mass calculation given in the Leptons sections, the magnetic energy corresponding 
to particle production is given by Eq. (32.32).  Because two magnetic moments are produced, the magnetic energy (and 
corresponding photon frequency) in the proper frame is two times that of the down-down-up neutron frame.  Thus, the down-
down-up neutron time is corrected by a factor of two relative to the proper time.  Both the bottom-bottom-top neutron and the 
antibottom-bottom-top neutron undergo and exit the production event with a radius given by Eq. (38.17).  Whereas, in the case 
of tau-antitau production given in the Leptons section, the radius of the lepton and antilepton increased symmetrically to produce 
lepton plane waves at infinity relative to each other.  Thus, in the lab frame, the gravitational radius gr  (Eq. (32.36)) is not 

corrected by 2(2 ) .  Furthermore, a mutual central magnetic field exists for the particles of fixed radius.  The corresponding 
electrodynamic special relativistic correction is given by Eqs. (1.241-1.260) where the mass of each particle in Eq. (1.255) is 

bbtm .  Thus, as a consequence of the mutual magnetic dipole interaction, the mass bbtm  is replaced by the corresponding reduced 

mass bbt  of the two baryonic magnetic dipoles: 

 
2
bbt

bbt

m   (38.18) 

Furthermore, for the lab inertial frame, the relativistic correction of the radius of the transition state atomic orbital given by the 
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magnetic energy equations (Eq. (29.14) and (29.15)) is 
4

1


.  As shown in the Tau-Antitau Lepton Pair section, for the down-

down-up neutron inertial frame, the relativistic correction of the gravitational radius gr  relative to the proper frame is the 

inverse, 4 .  Multiplication of the right side of Eq. (38.4) by 2  and substitution of (i) ddum , the mass of the down-down-up 

neutron, for M , (ii) 4
gr , the relativistically corrected gravitational radius for gr  (Eq. (32.36)), and (iii) the reduced mass bbt  

(Eq. (38.18)) for bbtm  into Eq. (38.4) gives the relationship between the proper time and the down-down-up neutron coordinate 

time: 
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 (38.19) 

The bottom-bottom-top neutron mass in MKS units based on the definition of the coordinate time in terms of the sec is: 
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 25 2
   3.50  10 196 /bbt calculatedm X kg GeV c   

The dynamical mass of the bottom quark, bm , has been determined by fitting quarkonia spectra; and from the observed masses 

of the bottom pseudoscalar mesons  0 5275B  and  5271B  [2]: 

 24.580 /bm GeV c  (38.21) 

Thus, the predicted dynamical mass of the top quark based on the dynamical mass of the bottom quark is: 
 2 2

   2 196 / 2(4.580 / )t calculated bbt calculated bm m m GeV c GeV c     (38.22) 

 2
 187 /t calculatedm GeV c  

Considering all jets, the CDF collaboration determined the mass of the top quark to be 2186 10 /GeV c  [3]. 
All other hadrons comprise linear combinations of the fundamental quarks. 

 
RELATIONS BETWEEN MEMBERS OF THE NEUTRON FAMILY AND THE 
LEPTONS 
As shown in the Leptons section (Eqs. (36.9-36.11)), the mass ratios of the members of the lepton family are based solely on the 
fine structure constant  .  Based on Eqs. (36.3), (38.6), (38.10), and (38.20), the relations between the electron and neutron 
masses which are independent of the definition of the imaginary time ruler ti  given by Eq. (32.43) are [4]: 
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 (38.26) 

The respective experimental neutron/electron mass ratio according to the 1998 CODATA is given in parentheses [5].  
Remarkably, all of the quarks as well as leptons are related by the fine structure constant   only which demonstrates that the 
masses arise as a consequence of special relativity.  This result is analogous to the magnetic field that is a special relativistic 
consequence of the electric field. 

Eq. (38.23) does not include the electron neutrino energy or the coulomb and magnetic field energies.  As shown in the 
Relations Between the Leptons section, in order to conserve mass-energy, the electromagnetic fields of the particles must be 
included in the mass determination.  The correction *  to the electron mass given by Eq. (36.15) is: 

 
12

* 1 2
2

 


 
  
 

 (38.27) 

Similar to the electron-positron pair, the ddu-neutron-anti-ddu-neutron pair depends on the Planck energy equation.  The latter is 
exceptional in that the radius of the charged quarks does not change following particle production.  Since the energy in the 
electrostatic fields of the electron-positron pair are released as photons during binding and photons have no gravitational mass as 
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shown in the Gravity section, the relativistic correction decreases each lepton mass as shown in Eq. (36.15).  However, in the 
case of the neutron, the electrostatic field, for radial distance greater than the radius of the quarks, is zero, and the gluons result 
in a relativistically corrected quark mass as given in the Proton and Neutron section. In this case, the corresponding correction 

*  has the opposite sign as that of Eq. (38.27) and is given by: 
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* 1 2
2

 


 
  
 

 (38.28) 

Substitution of the relationship between the definition of the imaginary time ruler ti  given by Eq. (36.4) and the correction due 
to the contribution of the fields due to charged quark production given by Eq. (38.28) into Eq. (38.6) gives the ddu neutron mass 
as: 
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 (38.29) 

 27
   1.6749  10ddu calculatedm X kg  (38.30) 

To the appropriate number of significant figures, there is good agreement with the experimental value 
of 27

  experimental 1.6749  10ddum X kg . 

Based on Eqs. (36.3), (38.6), (38.27), and (38.28), the relation between the ddu neutron and electron masses (Eq. 
((38.23)) which is independent of the definition of the imaginary time ruler ti  given by Eq. (36.43) including the contribution of 
the fields due to charge production is: 
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  1838.68  (38.31) 

The experimental ddu neutron-electron mass ratio according to the 1998 CODATA given in parentheses matches the predicted 
value very well. 
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Chapter 39 
  
NUCLEAR FORCES AND RADIOACTIVITY 
  
 
 
 
 
THE WEAK NUCLEAR FORCE: BETA DECAY OF THE NEUTRON 
BETA DECAY ENERGY 
The nuclear reaction for the beta decay of a neutron is: 
 1 1

en H        (39.1) 

where e  is the electron antineutrino.  The beta decay energy, E , can be calculated from conservation of mass-energy 

 n p eE E E E      (39.2) 

where nE , pE , and eE  are the mass-energy of the neutron, proton, and electron.  Thus, 

 2
 ( ) 0.7824beta decay n P eE m m m c MeV    (39.3) 

The experimental value is 0.782 MeV  [1]. 

Neutron decay results in the change of the nuclear moment from that of a neutron 
4 3

1 2
9 25 N        

 to that of a 

proton 
4

( 2  )
9 N   where these terms were determined in the Magnetic Moment section.  The radii of the proton and the neutron 

are the corresponding Compton wavelengths given by Eqs. (37.3) and (37.15), respectively: 

 150
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    (39.4) 
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1.31959  10e

C n n
N

a m
X m r
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    (39.5) 

The beta decay energy can be calculated from the magnetic, electric, and kinetic energy transformations which occur during the 
decay.  The energy components are the sum of the following: 
 

• the release of magE , the magnetic energy stored in one N , since the corresponding beta particle no longer contains the 

magnetic fields of the gluons at a radius of ,C p , the radius of the proton, following beta decay; 

 
• minus magE (gluon), the energy to change the gluon field corresponding to a down quark to that corresponding to an up 

quark; 
 
• minus eleE , the electric energy stored in the electric field of the proton; 

 
• minus  , ,,C n C pvE   , the electric potential energy change in going from the radius of the neutron to that of the proton; 

 
• plus T , the initial kinetic energy of the electron in its frame at production with v c  at a radius of the electron 

Compton wavelength bar. 
 

The magnitude of the beta decay energy contributions are given as follows: 
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From the Strong Nuclear Force section, and using Eq. (37.39) with Eqs. (33.13) and (39.40), magE  is given by: 

 2 6
 1.089727  10

2mag pE m c X eV



   (39.6) 

Since the change in the magnetic moment contribution of quark/gluon function is 
3

25
 (Eq. (37.36)) and the change in the energy 

stored in the magnetic field is proportional to the change in magnetic moment squared (Eq. (1.154)), magE (gluon) is given by: 

 
2

43
( ) 1.569207  10  

25mag magE gluon E X eV
    

 (39.7) 

where magE  is given by Eq. (39.6).  From Eqs. (1.264) and (39.5), eleE  is given by: 
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From Eqs. (1.261), (39.4), and (39.5),  , ,,C n C pvE    is given by: 
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 (39.9) 

From the Creation of Matter from Energy and Pair Production sections, and using Eq. (1.35), T  is given by: 
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 (39.10) 

wherein the electron Compton wavelength bar is given by Eq. (28.7).  The beta decay energy, E , given by the sum of the 

energies of Eqs. (39.6-39.10) is: 

 
 , ,,( )

0.7824 

C n C pmag mag ele vE E E gluon E E T

E MeV

 



    


 (39.11) 

The calculated result is in good agreement with Eq. (39.3).  Then the weak force is the negative gradient of the weak energy 
given by Eq. (39.11). 
 
NEUTRINOS 
Photons carry   of angular momentum in their electric and magnetic fields as shown in the Photon section.  All electronic 

transitions require   of angular momentum photons.  Nuclear reactions such as beta decay require emission of neutrinos with 
2


 

of angular momentum.  Thus, they may be photons with different electric and magnetic fields that give 
2


 of angular 

momentum.  Then different trigonometric functions of the electric and magnetic fields would correspond to the different flavor 
neutrinos, the energy of each would depend on its frequency since the speed is light speed, and the cross sections would depend 
on the particular fields and energy.   

To conserve energy and linear and angular momentum an electron antineutrino, e , is emitted with the beta particle.  The 

antineutrino is a unique elliptically polarized photon that has handedness (the neutrino and antineutrino have opposite 
handedness), is massless, and travels at the speed c .  Consider the photon atomic orbital given in the Equation of the Photon 
section.  It may comprise magnetic and electric field lines basis elements that are constant in magnitude as a function of angle 
over the surface.  Or, the magnitude may vary as a function of angular position ( , )   on the atomic orbital which corresponds to 
an elliptically polarized photon.  The general photon equation for the electric field is  

     0
, 02

0

1
1 , Re ,

4 2
nim tm

photon

e
Y Y e r

r n


 
    

 
               

E   (39.12) 

For the particle-production or emission event, photonr  is the radius of the photon atomic orbital which is equal to Hna , the 

change in electron atomic orbital radius given by Eq. (2.21),   is the photon wavelength which is equal to  , the change in 

the de Broglie wavelength of the atomic orbital given by Eqs. (2.21), (1.34), and (1.38), and 
2

n

c


  is the photon angular 

velocity which is equal to  , the change in atomic orbital angular velocity given by Eqs. (2.21).  The magnetic field photon 
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atomic orbital is given by Eqs. (4.14) and (4.2).  The nature of the unique elliptically polarized photon atomic orbital which is 
the antineutrino (neutrino) is determined by the nature of quark/gluon functions and the change in the quark/gluon angular 
harmonic functions during the transition from a neutron to a proton (proton to a neutron) with the emission of a beta particle 
(positron).  A free quark or a free gluon is not a stable state of matter, and both are precluded from existence in isolation.  
Quarks and gluons can only exist in pairs, each comprising a quark and a gluon.  In the case of beta decay, a down quark/gluon 
is converted to an up quark/gluon.  Energy and linear momentum are conserved by the emission of an electron antineutrino, e , 

with the beta particle where the maximum energy of the antineutrino is that of the mass deficit.  To conserve angular 
momentum, the electric field, E , of the electron antineutrino has an angular dependence given by a harmonic function squared 

corresponding to the change between the initial and final quark/gluon functions where the electric field of each gluon and its 
corresponding quark are radial and Eq. (37.34) applies. 
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 (39.13) 

where 1  and the power is given by Eq. (4.16).  In contrast, the electric field of a photon corresponding to electronic 
transitions (Eq. (39.12)) is given by the sum of a constant function plus a spherical harmonic modulation function which 

averages to zero over a period.  The angular momentum of an antineutrino (neutrino) is 
2




 (
2


) 

   41
Re ( )

8 2
dx

c
   m r E B*


 (39.14) 

compared to that of a photon corresponding to an electronic transition of   (Eq. (4.1)).   
The matrices to generate the electric and magnetic vector fields (e&mvf) of neutrinos are the same as those of the right- 

and left-circularly-polarized and linearly-polarized photons with the exception that the magnitude of the basis element field is 
not constant over the spherical surface, but is modulated by a trigonometric function squared.  The right- and left- 2cos   or 

2sin  -polarized neutrinos are mirror images of opposite spin corresponding to a neutrino-antineutrino pair.  The right-hand-
2cos  -polarized neutrino ( 2RHC P ) is given by:  
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 (39.15) 

The 2RHC P  neutrino-e&mvf that is generated by the rotation of the great-circle basis elements in the xz- and yz-planes about 

the  , ,0x y zi i i -axis by 
2


 corresponding to the output of the matrix given by Eq. (39.15) is shown in Figure 39.1 wherein the 

magnitude of each field line is according to 2cos  . 
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Figure 39.1.   The field-line pattern given by Eq. (39.15) from three orthogonal perspectives of a 2RHC P  neutrino-e&mvf 
corresponding to the first great circle magnetic field line and the second great circle electric field line shown with 6 degree 
increments of the angle  .  (Electric field lines red; Magnetic field lines blue). 
 

 
 

The corresponding antineutrino, the left-hand- 2cos  -polarized neutrino ( 2LHC P ), is given by is given by:  
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 (39.16) 

The 2LHC P  neutrino-e&mvf that is generated by the rotation of the great-circle basis elements in the xz- and yz-planes about 

the  , ,0x y zi i i -axis by 
2


 corresponding to the output of the matrix given by Eq. (39.16) is shown in Figure 39.2. 

 
Figure 39.2.   The field-line pattern given by Eq. (39.16) from three orthogonal perspectives of a 2LHC P  neutrino-e&mvf 
corresponding to the first great circle magnetic field line and the second great circle electric field line shown with 6 degree 
increments of the angle  .  (Electric field lines red; Magnetic field lines blue). 
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Based on the invariance of the field lines under Gauss’ Integral Law as given in the Photon section, the spatial distribution of the 
field lines of a cosine-squared neutrino (Eq. (39.13)) in the inertial frame for the stationary observer or laboratory frame is 
shown in Figure 39.3. 
 

Figure 39.3.   The electric (red) and magnetic (blue) field lines of a cosine-squared neutrino given by Eq. (39.13) as seen 
along the axis of propagation in the lab inertial reference frame at a fixed time. A and B. Views transverse to the axis of 
propagation, the z-axis, wherein 2 neutrinor  .  C and D. Off z-axis views showing field aspects both along and transverse to the 

axis of propagation. 
 

 
 

Eq. (39.13) is the equation of the neutrino’s electric field in its frame.  The neutrino’s field called the neutrino electric 
and magnetic vector field (neutrino-e&mvf) follows from that of the photon.  Eq. (25) of Appendix V: Analytical-Equation 
Derivation of the Photon Electric and Magnetic Fields which gives the laboratory-frame relationship of the fields and the angular 
momentum then becomes: 
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Using the wave equation relationship and the relationship between the wavelength and the radius of the photon-e&mvf given by 
Eq. (21) and Eq. (22) of Appendix V, respectively, gives 
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The integrals by Lide [2] give 
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Thus, 
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which has the required MKS units of 1Vm .  From Planck’s law, the energy is given by: 
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In the case of Eq. (39.13), a neutrino of a different flavor can also have an electric field in its frame of: 
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The right-hand- 2sin  -polarized neutrino ( 2RHS P ) is given by:  
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 (39.28) 

The 2RHS P  neutrino-e&mvf that is generated by the rotation of the great-circle basis elements in the xz- and yz-planes about 

the  , ,0x y zi i i -axis by 
2


 corresponding to the output of the matrix given by Eq. (39.28) is shown in Figure 39.4. 

 
Figure 39.4.   The field-line pattern given by Eq. (39.28) from three orthogonal perspectives of a 2RHS P  neutrino-e&mvf 
corresponding to the first great circle magnetic field line and the second great circle electric field line shown with 6 degree 
increments of the angle  .  (Electric field lines red; Magnetic field lines blue). 
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The corresponding antineutrino, the left-hand- 2sin  -polarized neutrino ( 2LHS P ), is given by is given by: 
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 (39.29) 

The 2LHS P  neutrino-e&mvf that is generated by the rotation of the great-circle basis elements in the xz- and yz-planes about 

the  , ,0x y zi i i -axis by 
2


 corresponding to the output of the matrix given by Eq. (39.29) is shown in Figure 39.5. 

 
Figure 39.5.   The field-line pattern given by Eq. (39.29) from three orthogonal perspectives of a 2LHS P  neutrino-e&mvf 
corresponding to the first great circle magnetic field line and the second great circle electric field line shown with 6 degree 
increments of the angle  .  (Electric field lines red; Magnetic field lines blue). 
 

 
 

 
The spatial distribution of the field lines of a sine-squared neutrino (Eq. (39.27)) in the inertial frame for the stationary 

observer or laboratory frame is shown in Figure 39.6. 
 
Figure 39.6.   The electric (red) and magnetic (blue) field lines of a sine-squared neutrino given by Eq. (39.27) as seen along 
the axis of propagation in the lab inertial reference frame at a fixed time. A and B. Views transverse to the axis of propagation, 
the z-axis, wherein 2 neutrinor  .  C and D. Off z-axis views showing field aspects both along and transverse to the axis of 

propagation. 
 

 

 
 In this case, Eq. (25) of Appendix V: Analytical-Equation Derivation of the Photon Electric and Magnetic Fields then 
becomes: 
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Using the wave equation relationship and the relationship between the wavelength and the radius of the photon-e&mvf given by 
Eq. (21) and Eq. (22) of Appendix V, respectively, with the integral by Lide [2] gives 

 

2 2

2 4
0 020 0

4
0 2 2 2 3

0 0

sin 2 3 sin 2 cos 2

128 2
3 sin 2 cos 2 sin 2 cos 2

d d
E

c

d d

 

 

    
 
 

     

 
 

   
   
 

 

 


 (39.33) 

Using the integral #322 and #320 of Lide [2] gives 

 

3

0 0

2 4 4
20 0

4
00 0

3

0

1 sin 2
sin 4 3

2 8 6

sin 2 cos 2
3 64sin8

128 8 10 2

1
cos 2

5

E
c

d







 

    
 

 

        
   
 

               
 
   
 




 (39.34) 

   
2 4

20 0
4 0

0 0 0

3 1
sin 2 cos 2 2

128 2 8 30 2

E
c

     
   

     
 


 (39.35) 

 
2 4

0 0
4

0 0 0

3

128 2 8 2

E
c

   
   

   
 


 (39.36) 

 
2 5
0

4
0

7

1024 2

E
c


 




 (39.37) 



Nuclear Forces and Radioactivity 1661

Thus, 
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 Due to its unusual angular momentum, the antineutrino and neutrino interact extremely weakly with matter.  Essentially, 
it only has a finite cross-section for processes which involve transitions of two fundamental particles simultaneously.  Such cases 
include beta decay, inverse beta decay, and the hydrino decay reaction (Eq. (32.171)). 

 1 H
e e

a
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 (39.39) 

where e  is the electron neutrino and e  is the electron antineutrino.  There are three classes of neutrinos (antineutrinos) 

corresponding to the electron (antielectron), muon (antimuon), and tau (antitau) as described in the Leptons section.  Each flavor 
corresponds to its multipolarity and polarization, 2cos  , 2sin  , and the superposition of 2cos   and 2sin  .  Its particle versus 
antiparticle type corresponds to its handedness.  The determination of the flavor and type assignment can be determined by the 
multipolarity and polarization and handedness of the particle reaction that gives rise to the neutrino that conserves these aspects 
as well as energy and linear momentum.  The energy of the electric and magnetic fields given by Eq. (1.154) and Eq. (1.263), 
respectively, equals the energy given by the Planck equation (Eq. (4.8)).  The multipolarities and polarizations of photons of 
visible light change upon interacting with a dichroic material through which they propagate.  Similar to dichroism, 
interconversion of neutrinos may be possible via interaction with matter that causes corresponding changes in multipolarities and 
polarizations.   

Thus, neutrinos are each a photon that has an exceptional 
2


 angular momentum in its electric and magnetic fields giving 

rise to an intrinsic weak interaction limited to nuclei, travels at the speed of light, and can change polarization in condensed 
matter in a manner that may appear as “oscillation between flavors”.  Light speed is characteristic of and identifies photons.  
Neutrinos have been confirmed to be photons by the measurement of the neutrino velocity with the OPERA detector to be the 
speed of light to within a relative difference of      52.48 0.28 0.30 10sat sys X    [3].  Moreover, the speeds of photons and 

neutrinos are identical within a part per billion from the coincidence of optical and neutrino detection of supernova 1987A [4]. 
 
THE STRONG NUCLEAR FORCE 
THE DEUTERIUM NUCLEUS 
The bonding in multi-nucleon nuclei involves the superposition of the quark and gluon functions of the constituent nucleons to 
form the nuclear version of atomic orbitals wherein the gluons provide the central force and the quarks comprise the two-
dimensional current-density surfaces.  The nuclear bonding gives rise to spherical shells comprising equipotential minimum-
energy surfaces as a linear combination of the nucleons.  For example, the deuterium nucleus is a minimum energy superposition 
of a neutron and a proton.  Thus, the deuterium quark/gluon function is a spherical coordinate atomic orbital solution of 
Laplace’s equation (Eq. (I.44)).  The neutron is electrically neutral; thus, no electric term arises in the energy calculation.  The 
neutron and proton quarks of the same kind or flavor are indistinguishable and superimpose to form the deuterium atomic 
orbital.  The gluon electric and magnetic fields of each nucleon superimpose with conservation of stored electric energy density 
(Eq. (1.263)) and stored magnetic energy density (Eq. (1.154)); however, gluon mass-energy is released as the proton and 
neutron gluon fields superimpose to provide the central field of the deuterium atomic orbital comprising the linear combination 
of quarks from both nucleons.  The quark/gluons possess magnetic stored energy.  Concomitant with the superposition of the 
neutron with the proton, the quark resonator cavity of the proton traps the magnetic flux of the neutron gluons, and the neutron 
quark resonator cavity captures the flux of the proton gluons.  To conserve the total quark angular momentum of each nucleon, 
 , the flux is trapped in quanta of the quantum of magnetic flux.  As shown in the Quark and Gluon Functions of the Proton and 
Neutron section, the quark/gluon proper velocity is c .  Therefore, the quark/gluon stored magnetic energy is 2

Pm c  and 2
Nm c  for 

the proton and the neutron, respectively (Eqs. (29.14) and (29.15) with em  replaced by the nucleon mass).  The energy released 

due to the magnetic flux capture, the deuterium binding energy ( BindingE ), follows from Eq. (1.181) : 
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 (39.40) 

   2

2Binding P NE m m c



   (39.41) 

The calculated mass of deuterium is   

   1 2.014149 
2e P NMass m m m AMU



      
 

 (39.42) 

The NIST experimental mass of deuterium is 2.0141017778 AMU  [5]. 
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NUCLEAR AND X-RAY MULTIPOLE RADIATION 
Using Maxwell’s equations, the essential features of multipole radiation in nuclei can be presented with simple arguments 
developed by Jackson [6].  By using Jackson’s Eq. (16.97) and the multipole coefficients (Jackson’s Eqs. (16.92) and (16.93)), 
the total power radiated by a multipole of order (  , m) is:  
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 (39.43)  

The transition probability (reciprocal mean life) is defined as the power divided by the energy of a photon: 
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 (39.44)  

Using the source structure given in the Proton and Neutron sections, the oscillating nuclear charge density of a nucleus 
comprised of many nucleons may be modeled as being of the form 
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The corresponding electric multipole moment lmQ  is: 
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 (39.46) 

independent of m .  Based on the spherical-shell structure of the nucleons, the divergences of the magnetizations are: 
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where g is the effective g factor for the magnetic moments of the particles in the nuclear system, and /e mc is twice the Bohr 
magneton for those particles.  The sum of magnetic multipole moments is:  
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 (39.48) 

The definitions of the multipole moments mQ  and mQ  given by Jackson’s Eq. (16.94) are:  

 * 3
m mQ r Y d x  
   (39.49) 
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 (39.50) 

Using Eqs. (39.48) and (39.50) gives:  

 
2lm lmQ g Q

mc

   
 
  (39.51) 

Since the energies of radiative transitions in nuclei are always very small compared to the rest energies of the particles involved 
(i.e. 2mc  ), mQ  is always completely negligible compared to mQ .  However, using Eqs. (39.43), (39.44), and (39.46), the 

transition probability for electrical multipole transitions of order   are: 
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 (39.52) 

Using Eqs. (39.43), (39.44), (39.48), and (39.50–39.52), the transition probability for magnetic multipoles is:  
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 (39.53) 

In the long-wavelength limit ( 1)ka , the transition rate predicted by Eq. (39.52) falls off rapidly with increasing multipole 

order, for a fixed frequency due to the 2( ) lka  factor in the transition probability.  Consequently, the lowest nonvanishing 
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multipole will generally be the only one having a significant rate in the radioactive decay.  Omitting numerical factors of relative 
order (1/ ) , the ratio of transition probabilities for successive orders of either electric or magnetic multipoles of the same 
frequency is: 
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 (39.54) 

The transition rates of electric dipole transitions of single-electron-excited-state atoms were given in the State Lifetimes 
and Line Intensities section.  Consider an Auger transition due to a multipole central field created by an inner shell vacancy.  The 
dimensions of the source due to the initial to final state current may be taken as having the same multipolarity as the central field 
and can be approximated as 0( / Z),a a  where 0a  is the Bohr radius and Z  is the nuclear charge.  The energy of any atomic 

transition obeys the relationship: 
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 (39.55) 

where the right-hand side of Eq. (39.55) only holds for one electron atoms as shown in the One-Electron Atom section, Two-
Electron Atoms section, and Three- Through Twenty-Electron Atoms section.  Thus, an estimate of ka  is given by: 

 Zka 


  (39.56) 

where   is the fine structure constant.  According to Eq. (39.54) the transition rates of successive multipoles have the ratio 
2( Z) .  Using 1

0 / Z ( / Z)a a mc   in Eq. (39.53), the magnetic  th multipole transition rate is about a factor of 2( Z)  

smaller than the corresponding electric multipole rate.  The electric dipole transitions are predicted to be the most intense, with 

electric quadrupole and magnetic dipole transitions a factor  2
Z  weaker.  Competition from transitions other than that of the 

lowest-order electric multipole is only possible with X-ray transitions in heavy elements.  
Eq. (39.52) can be used to characterize radiative transitions in atomic nuclei as well, but the values of ka  cover a wide 

range because nuclear radiative transition energies vary greatly (from ~10 keV to several MeV).  Consequently, for a given 
multipole order, the transition probabilities (or mean lifetimes) will range over many orders of magnitude depending on the 
energy release, overlapping the multipoles on either side.  However, because of the strong dependency on  , rate behavior at a 
fixed energy release can be obtained from Eqs. (39.52) and (39.53) that is useful in cataloging nuclear multipole transitions.  
Using Eq. (39.52) with the proton charge e  and 135.6 x10a  cm (nuclear radius appropriate to mass number A 100 ), a log-
log plot of lifetimes of electric multipole transitions versus energy is shown in Figure 39.7.  Although the curves tend to 
converge at high energies, the predicted lifetimes for different multipoles at the same energy differ by factors typically of order 

510  that is permissive of assigning multipole orders.  The experimentally observed lifetime-energy diagram [7] shows broad, but 
well-defined, bands lying in the vicinity of the straight lines shown in Figure 39.7.  With Eq. (39.46) being an upper bound on 
the multipole moment, there is a general tendency for the corresponding estimate given by Eq. (39.52) to serve as a lower bound 
on the lifetime.  But, for certain so-called “enhanced” electric quadrupole transitions the lifetimes can be as much as 100 times 
shorter than those shown in Figure 39.7. 
 
Figure 39.7.  Log-log plot of lifetimes of electric multipole transitions versus energy from Eq. (39.52). 
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Using a typical nucleon g factor of g~3 and source size of 1/3 131.2  10  a R A X cm  in Eq. (39.53), the relationship 
between magnetic and electric multipoles of the same order is: 
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 (39.57) 

Since the numerical factor 
2/3

0.3

A
 ranges from 2 -2 4 10   0.8  10  20 250X to X for A   , given multipole order electric transitions 

are predicted to be 25-120 times more intense than the magnetic transitions.  For most multipoles, this relationship is 
experimentally confirmed.  But, for 1 , there are special circumstances in nuclei at least at low energies whereby strongly 
attractive, charge-independent forces inhibit electric dipole transitions.  In these cases, Eq. (39.57) does not hold, and magnetic 
dipole transitions are far commoner and equally intense as electric dipole transitions.  The weak and strong nuclear forces given 
in the Beta Decay section and the Strong Nuclear Force section, respectively, are examples of where the magnetic energy is 
dominant and Eq. (39.57) with Eq. (39.46) does not apply. 

Based on selection rules corresponding to conservation of angular momentum in the initial and final states and the 
radiation of multipolarity   as shown in the Selection Rules section, a transition between two quantum states involving a 
mixture of multipoles, such as magnetic , ( 2),...  pole and electric ( 1), ( 3),...   pole, can occur.  In the long-wavelength 
limit, only the lowest multipole of each type is significant.  Combining the ratios (39.105) and (39.106) gives the relative 
transition rates of electric ( 1)  pole to magnetic   pole (most commonly used for 1 ): 
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where E is the photon energy in MeV.  For energetic transitions in heavy elements, the electric quadrupole amplitude is ~5 per 
cent of the magnetic dipole amplitude.  If there is an enhancement of the effective quadrupole moment by a factor of 10 as 
observed in the rare earth and transuranic nuclei, the electric quadrupole transition competes favorably with the magnetic dipole 
transition.  Even for energetic transitions, a magnetic  1  pole never comes close to competing with an electric   pole 

because for a mixture, the ratio of transition rates is:  
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In addition to emission, resonant absorption of nuclear radiation is possible.  The gluon fields of a nucleon such as a 
proton or a neutron are given in the Proton and Neutron section.  A resonant photon having gamma-ray energy and   of angular 
momentum in its electric and magnetic fields (Eq. (4.1)) can cause an excited nuclear state with a corresponding source-current 
component induced in the quarks of the same multipolarity as that of the gamma ray.  The process is akin to that of the formation 
of an excited atomic state as given in the Excited States of the One-Electron Atom (Quantization) section.  The absorption of a 
gamma ray gives rise to a trapped-photon standing wave inside the resonator cavity provided by the quarks of the nucleon.  Both 
the photon standing wave and the source current to which it is phase-matched are spherical and time harmonics.  The resonant 
absorption of gamma rays is the Mössbauer Effect.  The nuclear size may increase or decrease depending on the effect of the 
excitation on the strong nuclear force via the absorbed photon field superposing with the gluon field.  Similarly to the case of 
excited atomic states given in the Excited States of the One-Electron Atom (Quantization) section, the change in the total 
nucleon binding energy corresponding to the strong nuclear force is equal to the energy of the gamma ray, and the angular 
frequency change of the quark source current matches that of the gamma ray. 
 

K-CAPTURE 
The nuclear charge produces a high electric field at the radius of the inner shell electrons of heavy atoms.  In addition, the 
nuclear magnetic moment of a nucleus produces a magnetic field at these positions that is substantial.  The electron can also 
produce a magnetic field at the nucleus due to its spin and orbital angular momentum as shown in the Atomic Orbital Equation 
of Motion For   = 0 Based on the Current Vector Field (CVF) and Orbital and Spin Splitting sections.  Thus, in addition to 
nuclear radiation from the nuclear source current directly, Eq. (39.52) also can be applied to the case of K capture.  Here, 

' 2| |lm lmQ Q  and ' 2| |lm lmM M  are, respectively, the magnitudes of the electric and magnetic multipole moments between the 

electron and the nucleus, which correspond to equivalent multipole components of the two dimensional current-density functions 
of the electron and the nucleus. 
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ALPHA DECAY 

ELECTRON TRANSMISSION AND REFLECTION AT A POTENTIAL ENERGY STEP [8] 
The electron in free space has its charge-density in a two-dimensional plane as given in the Electron in Free Space section.  
Electron transition and reflection can be modeled as a plane wave at a potential energy barrier.  An electron of total energy E  is 
incident at an angle i  upon a potential energy barrier of height BV  as shown in Figure 39.8.  The incident and transmitted 

electron wave vectors are shown in Figure 39.9a. 
 
Figure 39.8.   An electron plane wave of wave vector ik  

incident at an angle i  upon a potential barrier of height BV . 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
The kinetic energy of an incident electron (region 1) is: 

     2 * 2 2 2 * 2
1 1/ 2 / 2 ,ix iy iE m k k m k     (39.60) 

where, *m  is the electron effective mass, ixk  and iyk  are the components of the incident electron wave vector normal and 

parallel to the boundary, respectively, and ik , is the magnitude of the incident electron wave vector which is given by 

  1/2*
12 /ik m E   (39.61) 

The incident and reflected electron wave vectors are shown in Figure 39.9b.  The kinetic energy of a transmitted electron (region 
2) is:  

     2 * 2 2 2 * 2
2 2/ 2 / 2 ,B tx ty tE V m k k m k    

 
(39.62) 

where txk  and tyk  are the components of the transmitted electron wave vector normal and parallel to the boundary, respectively, 

and tk  is the magnitude of the transmitted wave vector which is given by: 

   1/2*
22 /t Bk m E V      (39.63) 

The phase of the transmitted electron along the boundary must be identical to that of the incident electron wave.  This 
requirement of the continuity of the instantaneous phase at a boundary is commonly referred to as “phase matching.”  For the 
transmitted electron wave, the component of the wave parallel to the boundary is 

 ty iyk k  (39.64) 

The transmitted wave vector normal to the boundary can be obtained by combining Eqs. (39.61), (39.63), and (39.64).  The 
result is: 

      1/2
* * 2 2 2 * 2
2 1 2/ 2 /tx ix iy iv Bk m m k k k m V       (39.65) 

The kinetic energy of the reflected electron wave (region 1) is: 

     2 * 2 2 2 * 2
1 1/ 2 / 2rx ry rE m k k m k     (39.66) 

where rxk  and ryk  are the components of the reflected electron wave vector normal and parallel to the boundary, respectively, 

and rk , is the magnitude of the reflected wave vector which is given by:  

  1/2*
12 /rk m E   (39.67) 

Figure 39.9.   Electron wave-vector components in the 
parallel (y) and perpendicular (x) directions to the potential 
barrier for (a) incident and transmitted electron plane waves 
and (b) incident and reflected electron plane waves. 
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The requirement that the reflected wave also be phase-matched to the incident wave means that 

 ry iyk k  (39.68) 

Since the kinetic energy of a reflected electron is the same as that of an incident electron, then 

 rx ixk k   (39.69) 

and thus implies the angle of reflection, r , is equal to the angle of incidence, i .  That is: 

 r i   (39.70) 

Equation (39.64) represents the equivalent of Snell’s law for electrons.  It can be rewritten as:  
 sin sint t i ik k   (39.71) 

In terms of the electron energies, Eq. (39.64) becomes: 
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For isotropic materials, the electron-allowed wave-vector surfaces are spheres.  For an electron wave obliquely incident 
upon an infinitely thick potential barrier as shown in Figure 39.8, the allowed wave-vector surfaces may be depicted as shown in 
Figure 39.10. 
 

Figure 39.10.   Allowed wave-vector surfaces for the incident and reflected electron plane wave vectors and for the 
transmitted plane wave vector. 

 
In general the radius of the allowed wave vector surface is: 

   1/2*2 / ,k m E V      (39.73) 

where E V  is the kinetic energy of the electron.  The onset of total internal reflection occurs when 90t   .  This happens 

when the angle of incidence is equal to the critical angle, ic .  Thus from Eq. (39.72), the critical angle is: 
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 (39.74) 

For an electron wave incident at an angle greater than ic , the wave is totally internally reflected for an infinitely thick barrier.  

At steady state, all of the electron current is reflected back into region 1.  The electron wave function decays exponentially into 
region 2.  If the kinetic energy 0BE V  , then total internal reflection occurs for any angle of incidence including normal 

incidence.  This is in contrast to the electromagnetic case where total internal reflection can never occur at normal incidence due 
to the non-zero value of the minimum (free-space) wave-vector magnitude. 
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TRANSMISSION (TUNNELING) OUT OF A NUCLEUS—ALPHA DECAY [9] 
Fundamental particles can demonstrate a phenomenon known as tunneling—they can overcome a potential energy barrier 
greater than that of their total energy.  This is possible because the fundamental particles are extended such that a part of the 
particle that extends to a region of opposite potential energy as the rest can contribute sufficiently to the total energy of the 
particle to exceed that required for the particle to transverse the barrier.  An example is the transmission of alpha particles from a 
nucleus.   

Consider the equation for the propagation of the electron in free space, a two-dimensional plane, given by the plane wave 
equation Eq. (3.1): 

 0
zik z

E E e
  (39.75) 

In the case where electrons of kinetic energy K  are incident on a rectangular potential barrier whose height BV  is greater than 

K .  V  is substituted for BV  and K  is substituted for E  and the wave vector given by Eq. (39.63) becomes imaginary.  An 

approximate value of T , the transmission probability—the ratio between the number of electrons that pass through the barrier 
and the number that arrive is given by  
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From Eqs. (39.63), (39.75), and (39.76) the transmission probability is:  
 22k LT e  (39.77) 
where  
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(39.78) 

and L  is the width of the barrier.  Eqs. (39.77) and (39.78) were derived for electrons.  However, protons and neutrons are also 
two-dimensional in nature, and alpha particles are comprised of protons and neutrons.  Thus, the model applies to alpha 
particles.  Furthermore, Eqs. (39.77) and (39.78) were derived for electrons incident on a rectangular potential barrier; whereas, 
an alpha particle inside a nucleus is faced with a barrier of varying height, as shown in Figure 39.11. 
 
Figure 39.11.   The potential energy of an alpha particle as a function of its distance from the center of the nucleus. 
 

 
 
Eqs. (39.77) and (39.78) can be adapted to the case of a nuclear alpha particle.  The first step is to rewrite Eqs. (39.77) and 
(39.78) in the form: 

 2ln 2T k L   (39.79) 

and then express them as the integral: 
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where 0R  is the radius of the nucleus and R  is the distance from its center at which V K .  The kinetic energy K  is greater 

than the potential energy V  for x R ; so, if it can get past R , the alpha particle will have permanently escaped from the 
nucleus. 

The electrical potential energy of an alpha particle at the distance x  from the center of a nucleus of charge Ze  is given 
by: 
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(39.81) 

Here Ze  is the nuclear charge minus the alpha-particle charge of 2e ; thus, Z  is the atomic number of the daughter nucleus. 
We therefore have 
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Since V K  when x R , 

 

2

0

2

4

Ze
K

x
  (39.83) 

and we can express 2k  in the form: 
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Hence 
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Because the potential barrier is relatively wide, oR R , and  
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with the result that 
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From the Eq. (39.83) 
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and so 
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The result of evaluating the various constants in Eq. (39.90) is  

 1/2 1/2 1/2
0ln 2.97 3.95T Z R ZK    (39.91) 

where K  (alpha-particle kinetic energy) is expressed in MeV, oR  (the nuclear radius) is expressed in fermis ( 151 10fm m ), 

and Z  is the atomic number of the nucleus minus the alpha particle.  The decay probability per unit time,  , can be expressed 
as the product of the number of times per second,  , that an alpha particle within the nucleus strikes the potential barrier and the 
probability, T , that a particle will be transmitted through the barrier.  And,   can be expressed as the alpha particle velocity 
divided by the nuclear distance.  Thus, the decay constant,  , is given by 
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Taking the natural logarithm of both sides and substituting for the transmission probability T , gives: 
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To express Eq. (39.93) in terms of common logarithms, we note that: 
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and so 
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Figure 39.12   Plot of 1/2

10log   versus ZK   for a number of alpha-radioactive nuclides. 

 

 
 
The straight line fitted to the experimental data has the 1.72  slope predicted throughout the entire range of decay constants that 
is in excellent agreement with the experimental data.  We can use the position of the line to determine oR , the nuclear radius.  

The result agrees with the results obtained from nuclear scattering experiments [9].  This approach thus constitutes an 
independent means of determining nuclear sizes. 
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Chapter 40 
  
RETROSPECT:  THE SCHRÖDINGER WAVE FUNCTION IN 
VIOLATION OF MAXWELL’S EQUATIONS 
  
 
 
 
 
The Schrödinger equation implicitly postulates time harmonic motion of the spatial charge function of the electron.  A wave 
equation was assumed, and time-harmonic motion was eliminated by Schrödinger [1], by substituting de Broglie waves, kinetic 
and potential energy relationships, and the equation, 
 v f  (40.1) 
The solution to the Schrödinger equation is a wave function ( )x .  An interpretation of ( )x  is required.  Schrödinger 
postulated that ( )x  represents the amplitude of the particle in some sense, and because the intensity of a wave is the square of 
the amplitude the “intensity of the particle” is proportional to *( ) ( )x x   [ *( )x  is the complex conjugate of ( )x ].  A 
controversy arose over the meaning of intensity.  Schrödinger considered *( ) ( )e x x   to be the charge-density or *( ) ( )e x x   
to be the amount of charge between x  and x dx .  Thus, he presumed the electron to be spread all over the region.  The electron 
has kinetic energy and angular momentum and energy must be conserved; thus, the motion of an electron must be time 
harmonic.  It is demonstrated in the One-Electron Atom section that emission of electromagnetic radiation occurs if the 
spacetime Fourier transform possesses waves that are synchronous with waves traveling at the speed of light.  It is demonstrated 
below that the Schrödinger wave equations have such components; thus, they must radiate.  That no radiation is observed 
demonstrates the invalidity of these equations as an accurate description of an electron. 

The angular functions of Schrödinger wave equations are spherical harmonics and their spacetime Fourier transform is 
given in the One-Electron Atom section (Spacetime Fourier Transform of the Electron Function) as the transforms of ( )g  , 

( )h  , and ( )k t .  The radial solutions (solutions which are a function of the radial variable r) are of the form of r raised to a 
power times a negative exponential of r.  Thus, it is appropriate to take the spacetime Fourier transform of the general solution 
for psi squared times a time harmonic function (which is proportional to /qdr dt ) and apply Haus' nonradiative condition [2].  
The most fundamental solution is chosen for analysis.  Additional powers of the radial functions would give rise to convolution 
integrals in Fourier space and additional terms that do not go to zero.  The same applies to additional linear terms.  It is only 

necessary to demonstrate that one component does not vanish for k
c


 . 

The spacetime Fourier transform of the radial function 0/( ) r af r re  follows: 
 
With spherical symmetry [3]: 
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Using the definition of the function:  
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Eq. (40.3) becomes: 
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From Bateman [4]: 
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and apply Eq. (40.9) to Eq. (40.8). 
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In Appendix I, the Fourier transforms of the angular functions are given by Eqs. (26) and (27), and the Fourier transform of the 
time harmonic function is given by Eq. (34).  By Eq. (35), the complete spacetime Fourier transform of a Schrödinger wave 
equation, ( , , , )W s   , is the convolution of Eqs. (40.11), (26), (27), and (34) where: 
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This transform has components n k
c


  that are not zero and are synchronous with waves traveling at the speed of light.  Thus, a 

charge-density function given by the Schrödinger wave equation must radiate in accordance with Maxwell’s Equations. 
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Chapter 41 
  
RETROSPECT:  CLASSICAL ELECTRON RADIUS 
  
 
 
 
 
Electron scattering from neutral atoms and the classical electron radius are tests of the nature of bound electrons as atomic 
orbitals of the classical model as opposed to point particles of the Schrödinger-Born model. 

Electron scattering experiments support the nature of bound electrons as atomic orbitals of the classical model, and the 
data is inconsistent with the probability point particle model of Schrödinger and Born.  Consider the case given in the Classical 
Photon and Electron Scattering section wherein experimental results by Bromberg [1] were presented.  Quoting from Bromberg 
[1], “At smaller angles; however, the Born approximation calculation fails utterly, the experimental curve rising much more 
steeply than the theoretical.”  This point is explicitly demonstrated in Figure 8.6.  In contrast, the closed form function (Eqs. 
(8.57) and (8.58)) for the elastic differential cross section for the elastic scattering of electrons by helium atoms is in agreement 
with the data of Bromberg as demonstrated in Figure 8.7.  In principle, Quantum mechanics cannot adequately describe the 
results of electron scattering from neutral atoms or the results of the Davidson-Germer experiment.  An assembly of point 
particles cannot give rise to neutral scattering in the absence of the violation of Special Relativity.  Otherwise, an internal 
inconsistency arises—namely violation of the Uncertainty Principle.  Rutherford scattering would be predicted from a point 
particle model. 

Furthermore, the radius of the electron according to quantum mechanics is zero; whereas, the minimum classical electron 
radius is the Compton wavelength bar as required by conservation of mass-energy and relativity as shown in the Gravity section.  
The electron must spin in one dimension and give rise to a Bohr magneton, B , 
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The magnetic energy corresponding to the magnetic moment of Eq. (41.1) is: 
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which in the present case is infinity (by substitution of 0r   for the model that the electron is a point particle) not the required 
2mc .  This interpretation is in violation of Special Relativity [2].  

Eq. (29.14) of the Pair Production section gives the magnetic energy correctly as 2mc .  The “effective” atomic orbital 
radius to be used to calculate the cross section for pair production using the electric energy of Eq. (29.10) and Eq. (29.11) is the 
classical electron radius,  
 2 13
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Based on Eqs. (41.5) and (41.6),  , the geometric cross section of the electron can be derived using the classical electron radius. 
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From the geometric cross section of the electron, the equation for radiation scattering follows from the equation for radiation by 
a Hertzian dipole where: 
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Electron-proton force balance exists and the atomic orbital is nonradiative.  Mechanics and electrodynamics can both be 
satisfied simultaneously to achieve these conditions of force balance with cancellation of all radiation fields.  Directional 
antennae arrays are designed using identical principles of achieving cancellation of desired radiation fields.  For the electron 
atomic orbital,  
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And, the Fourier transform of the atomic orbital is zero when: 
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In contrast, the electron described by a Schrödinger one-electron wave function would radiate.  (See The Schrödinger 
Wavefunction in Violation of Maxwell’s Equation section). 

Furthermore, the correct prediction of the elastic scattering of electrons by helium atoms wherein the electron radius is a 
crucial parameter (Eq. (8.57)), the results of the Stern-Gerlach experiment, the results of the Davisson-Germer experiment, as 
well as the correct derivation of the electron (fluxon) g  factor, the resonant line shape, the Lamb Shift, spin-orbit coupling 
energies, and the excited state spectrum of hydrogen wherein the correspondence principle holds  are direct verifications that 
the electron is an atomic orbital with the calculated radius.  Quantum mechanics has failings in each of these cases. 

Two-dimensional distributions are common in classical physics.  A two-dimensional discontinuity in surface current 
gives rise to a magnetic field; a discontinuity in surface charge gives rise to an electric field.  Ampere’s and Gauss’ Laws also 
apply in the present theory with respect to the electron.  Furthermore, a two-dimensional discontinuity in mass according to the 
classical model gives rise to a gravitational field which is consistent with General Relativity which leads to the correct prediction 
of the masses of leptons (Leptons section), the quarks (Quarks section), and the classical electron radius as given in Eq. (29.14) 
of the Pair Production section wherein the magnetic energy is correctly given as 2

em c  as shown previously. 

Furthermore, Born postulated that the electron is a one dimensional delta function—zero volume and infinite mass-
density.  The Schrödinger solutions for the hydrogen atom exclude the existence of energy levels below the “ground” state 

corresponding to 
1

integer
n   in the Rydberg formula [3]: 
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where 110,967,758 R m , 
1 1 1

, , ,....,
2 3 4

n   and i fn n .  The data given in the Foreword section and the Astrophysics section 

proves that the Schrödinger-Born model is incorrect because it is clearly inconsistent with the experimental findings.  The two-
dimensional function given for a bound electron in the One-Electron Atom section and for a free electron in the Electron in Free 
Space section is the correct description of the electron.  Also, the two-dimensional function given in the Photon Equation section 
is the correct description for electromagnetic radiation that can give rise to the electron.  The models of classical physics are 
supported by the close agreement between experimental observation and theoretical predictions. 
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Chapter 42 
  
RETROSPECT:  WAVE-PARTICLE DUALITY 
  

 
 
 
 

[My father] said, “I understand that they say that light is emitted from an atom when it goes from one state to 
another, from an excited state to a state of lower energy.” 

I said, “That’s right.” 
“And light is kind of a particle, a photon, I think they call it.” 
“Yes.” 
“So if the photon comes out of the atom when it goes from the excited to the lower state, the photon must 

have been in the atom in the excited state.” 
I said, “Well no.” 
He said, “Well, how do you look at it so you can think of a particle photon coming out without it having been 

there in the excited state?” 
I thought a few minutes, and I said, “I’m sorry; I don’t know.  I can’t explain it to you.” 
-Richard P. Feynman, The Physics Teacher (September 1969). 

 
Many great physicists rejected Quantum Mechanics.  Feynman also attempted to use first principles including Maxwell’s 
Equations to discover new physics to replace quantum mechanics [1].  Other great physicists of the 20th century searched.  
“Einstein [...] insisted [...] that a more detailed, wholly deterministic theory must underlie the vagaries of quantum mechanics 
[2].”  He felt that scientists were misinterpreting the data.  In fact, this is the case.  Experiments by the early part of the 20th 
century had revealed that both light and electrons behave as waves in certain instances and as particles in others.  This was 
unanticipated from preconceptions held regarding the nature of light and the electron.  Early 20th century theoreticians 
proclaimed that light and atomic particles have a wave-particle duality that was unlike anything in our common everyday 
experience.  The wave-particle duality is the central mystery of quantum mechanics–the one to which all others could ultimately 
be reduced.  Consider the two-slit experiment.  A gun (obeying classical physics) sprays bullets towards a target.  Before they 
reach the target, they must pass through a screen with two slits.  The pattern they make shows how their probability of arrival 
varies from place to place.  They are more likely to strike directly behind the one slit that they went through as shown in Figure 
42.1.  The pattern happens to be simply the sum of the patterns for each slit considered separately: if half the bullets were fired 
with only the left slit open and then half were fired with just the right slit open, the result would be the same. 
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Figure 42.1.   Two-slit experiment with macroscopic 
particles gives an image of each slit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
With waves, however, the result is very different, because of interference.  If the slits were opened one at a time, the 

pattern would resemble the pattern for bullets: two distinct peaks.  But, when the slits are open at the same time, the waves pass 
through both slits at once and interfere with each other: where they are in phase they reinforce each other; where they are out of 
phase they cancel each other out as shown in Figure 42.2. 

Now the quantum paradox: Electrons, like bullets, strike the target one at a time.  Yet, like waves, they create an 
interference pattern as shown in Figure 42.3. 

If each electron passes individually through one slit, with what does it “interfere”?  Although each electron arrives at the 
target at a single place and a single time, it seems that each has passed through–or somehow felt the presence of both slits at 
once.  Thus, the electron is understood in terms of a wave-particle duality as represented in Figure 42.4. 
 
 
Figure 42.3.   Two-slit experiment with electrons also 
gives an interference pattern. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
The mistake in the direction of the development of the theory of light and the atom occurred when theoreticians 

Figure 42.2.  Two-slit experiment with waves gives an 
interference pattern. 

Figure 42.4.   The interpretation of the observed wave 
interference pattern of the two-slit experiment with electrons 
was in terms of a wave-particle duality to the nature of the 
electron. 
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concluded: The laws of physics that are valid in the macroworld do not hold true in the microworld of the atom.  In contrast, as 
shown in previous chapters classical physics was applied correctly to solve the structures of the electron and photon 
demonstrating that the laws of physics that are valid in the macroworld do hold true in the microworld of the atom.  The 
predictions, which arise from the equations of light and atomic particles, are completely consistent with observation, including 
the wave-particle duality of light and atomic particles as shown explicitly in the Classical Photon and Electron Scattering 
section.  Furthermore, the quantization of atomic energy levels arises classically without invoking new physics.  Continuous 
motion such as electronic transitions between quantized states and translational motion restores continuity and causality with the 
continuous nature of spacetime itself restored consistent with first principles and observation.  The postulates and mathematical 
constructs of quantum mechanics are erroneous.  Physical laws apply to the atomic scale in refutation to quantum mechanics. 

Maxwell unified electricity and magnetism by proposing the existence of electromagnetic waves that travel at the 
velocity c .  In 1888, Hertz showed that electromagnetic waves exist and behave exactly as Maxwell had predicted—they had 
electric and magnetic components, and they could be reflected, refracted, and diffracted.  Toward the end of the 19th century, 
many physicists believed that all of the principles of physics had been discovered.  The accepted principles, now called classical 
physics, included laws relating to Newton’s mechanics, Gibbs’ thermodynamics, LaGrange’s and Hamilton’s elasticity and 
hydrodynamics, Maxwell-Boltzmann molecular statistics, and Maxwell’s Equations.  However, the discovery that the intensity 
of blackbody radiation goes to zero, rather than infinity as predicted by the prevailing laws of electromagnetism, led 
theoreticians to question the validity of Maxwell’s Equations on the atomic scale.  In 1900, Planck made the revolutionary 
assumption that energy levels were quantized, and that atoms of the blackbody could emit light energy only in amounts given by 
h , where   is the radiation’s frequency and h  is a proportionality constant (now called Planck’s constant).  This assumption 
does not conflict with the notion that light is a wave.  However, Hertz’s experiments with light further revealed that 
photoelectrons were emitted from illuminated metals, and the photoelectron energy increases with the frequency of incident light 
and not its intensity.  Einstein explained this photoelectron effect by proposing that light of a given frequency is composed of 
individual photons whose energy is proportional to that frequency according to Planck’s relationship1.  Einstein’s proposal that 
light has a particle nature in that it travels through space as distinct photons2 is opposed to the wave view whereby light waves 
spread out from a source, and the energy is spread continuously throughout the wave pattern.  Thus, light has since been 
regarded as both a wave and a particle which exhibits one feature or the other during observation but never both simultaneously.  
Early 20th century theoreticians proclaimed that light has a wave-particle duality that was unlike anything in our common 
everyday experience [3].  

A similar course arose in the development of the model of the atom.  J. J. Balmer showed, in 1885, that the frequencies 
for some of the lines observed in the emission spectrum of atomic hydrogen could be expressed with a completely empirical 
relationship.  This approach was later extended by J. R. Rydberg, who showed that all of the spectral lines of atomic hydrogen 
were given by the equation: 
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where 110,967,758 R m , 1, 2,3,...fn  , 2,3,4,...in  , and i fn n .  Niels Bohr, in 1913, developed a theory for atomic 

hydrogen based on an unprecedented postulate of stable circular orbits that do not radiate.  Although no explanation was offered 
for the existence of stability for these orbits, the results gave energy levels in agreement with Rydberg’s equation.  Bohr’s theory 
was a straightforward application of Newton’s laws of motion and Coulomb’s law of electric force—both pillars of classical 
physics and is in accord with the experimental observation that atoms are stable.  However, it is not in accord with 
electromagnetic theory—another pillar of classical physics, which predicts that accelerated charges radiate energy in the form of 
electromagnetic waves.  An electron pursuing a curved path is accelerated and therefore should continuously lose energy, 
spiraling into the nucleus in a fraction of a second.  The predictions of electromagnetic theory have always agreed with 
experiment, yet atoms do not collapse.  To the early 20th century theoreticians, this contradiction could mean only one thing: The 
laws of physics that are valid in the macroworld do not hold true in the microworld of the atom.  In 1923, de Broglie suggested 

that the motion of an electron has a wave aspect—
h

p
  .  This concept seemed unlikely according to the familiar properties of 

electrons such as charge, mass and adherence to the laws of particle mechanics.  But, the wave nature of the electron was 
confirmed by Davisson and Germer in 1927 by observing diffraction effects when electrons were reflected from metals.  
Schrödinger reasoned that if electrons have wave properties, there must be a wave equation that governs their motion.  And in 
1926, he proposed the Schrödinger equation, H E   , where   is the wave function, H  is the wave operator, and E  is the 
energy of the wave.  This equation, and its associated postulates, is now the basis of quantum mechanics, and it is the basis for 
the worldview that the atomic realm including the electron and photon cannot be described in terms of “pure” wave and “pure” 
particle but in terms of a wave-particle duality.  The wave-particle duality based on the fundamental principle that physics on an 
atomic scale is very different from physics on a macroscopic scale is central to present day atomic theory [4]. 

The hydrogen atom is the only real problem for which the Schrödinger equation can be solved without approximations; 
however, it only provides three quantum numbers–not four.  Nevertheless, the application of the Schrödinger equation to real 

 
1 In 1900, Planck made the revolutionary assumption that energy levels were quantized, and that atoms of the blackbody could emit light energy only in 
amounts given by  h , where   is the radiation’s frequency and h is a proportionality constant (now called Planck’s constant).  This assumption also led 
to our understanding of the photoelectric effect and ultimately to the concept of light as a particle called a photon. 
2 This view was first proposed by Newton.  Einstein was the founder of the erroneous wave-particle duality concept that’s the source of “weirdness” in 
quantum mechanics. 
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problems has provided useful approximations for physicists and chemists.  Schrödinger interpreted *( ) ( )e x x   as the charge-
density or the amount of charge between x  and x dx  ( *  is the complex conjugate of  ) wherein he pictured the electron to 
be spread over large regions of space.  Three years after Schrödinger’s interpretation, Max Born, who was working with 
scattering theory, found that this interpretation led to inconsistencies and he replaced the Schrödinger interpretation with the 
probability of finding the electron between x  and x dx  as: 

 ( ) *( )x x dx   (42.2) 

Born’s interpretation is generally accepted.  Nonetheless, interpretation of the wave function is a never-ending source of 
confusion and conflict.  Many scientists have solved this problem by conveniently adopting the Schrödinger interpretation for 
some problems and the Born interpretation for others.  This duality allows the electron to be everywhere at one time—yet have 
no volume.  Alternatively, the electron can be viewed as a discrete particle that moves here and there (from 0r   to r   ), and 

*  gives the time average of this motion. 
According to the quantum mechanical view, a moving particle is regarded as a wave group.  To regard a moving particle 

as a wave group implies that there are fundamental limits to the accuracy with which such “particle” properties as position and 
momentum can be measured.  Quantum mechanics predicts that the particle may be located anywhere within its wave group 

with a probability 
2 .  An isolated wave group is the result of superposing an infinite number of waves with different 

wavelengths.  The narrower the wave group is, the greater range of wavelengths involved.  A narrow de Broglie wave group thus 
means a well-defined position ( x  smaller) but a poorly defined wavelength and a large uncertainty p  in the momentum of 
the particle the group represents.  A wide wave group means a more precise momentum but a less precise position.  The 
infamous Heisenberg Uncertainty Principle is a formal statement of the standard deviations of properties implicit in the 
probability model of fundamental particles. 
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x  p


 (42.3) 

According to the standard interpretation of quantum mechanics, the act of measuring the position or momentum of a quantum 
mechanical entity collapses the wave-particle duality because the principle forbids both quantities to be simultaneously known 
with precision.  (The Resonant Line Shape and Lamb Shift section discusses the erroneous nature of the Uncertainty Principle.) 
 
THE WAVE-PARTICLE DUALITY IS NOT DUE TO THE UNCERTAINTY 
PRINCIPLE 
Quantum entities can behave like particles or waves, depending on how they are observed.  They can be diffracted and produce 
interference patterns (wave behavior) when they are allowed to take different paths from some source to a detector—in the usual 
example, electrons or photons go through two slits and form an interference pattern on the screen behind.  On the other hand, 
with an appropriate detector put along one of the paths (at a slit, say), the quantum entities can be detected at a particular place 
and time, as if they are point-like particles.  But any attempt to determine which path a quantum object takes destroys the 
interference pattern.  Richard Feynman described this as the central mystery of quantum physics. 

Bohr called this vague principle “complementarity,” and explained it in terms of the uncertainty principle, put forward by 
Werner Heisenberg, his postdoc at the time.  In an attempt to persuade Einstein that wave-particle duality is an essential part of 
quantum mechanics, Bohr constructed models of quantum measurements that showed the futility of trying to determine which 
path was taken by a quantum object in an interference experiment.  As soon as enough information is acquired for this 
determination, the quantum interferences must vanish, said Bohr, because any act of observing will impart uncontrollable 
momentum kicks to the quantum object.  This is quantified by Heisenberg’s uncertainty principle, which relates uncertainty in 
positional information to uncertainty in momentum—when the position of an entity is constrained, the momentum must be 
randomized to a certain degree. 

More than 60 years after the famous debate between Niels Bohr and Albert Einstein on the nature of quantum 
reality, a question central to their debate—the nature of quantum interference—has resurfaced.  The usual textbook 
explanation of wave-particle duality in terms of unavoidable “measurement disturbances” is experimentally proven 
incorrect by an experiment reported in the September 3, 1998 issue of Nature [5] by Durr, Nonn, and Rempe.  Durr, 
Nonn, and Rempe report on the interference fringes produced when a beam of cold atoms is diffracted by standing waves 
of light.  Their interferometer displayed fringes of high contrast—but when they manipulated the electronic state within the 
atoms with a microwave field according to which path was taken, the fringes disappeared entirely.  The interferometer produced 
a spatial distribution of electronic populations that were observed via fluorescence.  The microwave field canceled the spatial 
distribution of electronic populations.  The key to this new experiment was that although the interferences are destroyed, the 
initially imposed atomic momentum distribution left an envelope pattern (in which the fringes used to reside) at the detector.  A 
careful analysis of the pattern demonstrated that it had not been measurably distorted by a momentum kick of the type invoked 
by Bohr, and therefore that any locally realistic momentum kicks imparted by the manipulation of the internal atomic state 
according to the particular path of the atom are too small to be responsible for destroying interference. 

Durr et al. conclude that the “Heisenberg Uncertainty relationship has nothing to do with wave-particle duality” 
and further conclude that the phenomenon is based on entanglement and correlation.  Their interpretation of the principles 
of the experiment is that directional information is encoded by manipulating the internal state of an atom with a microwave field, 
which entangles the atom’s momentum with its internal electronic state.  Like all such entangled states, the constituent parts lose 
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their separate identity.  But the attachment of a distinguishable electronic label to each path means that the total electronic-plus-
path wavefunction along one path becomes orthogonal to that along the other, and so the paths can’t interfere.  By encoding 
information as to which path is taken within the atoms, the fringes disappear entirely.  The internal labeling of paths does not 
even need to be read out to destroy the interferences:  all you need is the option of being able to read it out.   

According to Durr et al., the mere existence of information about an entity’s path causes its wave nature to disappear.  
But, correlations are observations about relationships between quantities and do not cause physical processes to occur.  The 
existence of information about an entity’s path is a consequence of the manipulation of the momentum states of the 
atoms which resulted in cancellation of the interference pattern.  It was not the cause of the cancellation.  The 
cancellation is predicted by classical atomic theory. 

The explanation for the loss of interference in which-way experiments that endured and is present in essentially all 
quantum physics textbooks is that based on Heisenberg’s position-momentum uncertainty relation.  This has been illustrated in 
famous gedanken experiments like Einstein’s recoiling slit [6] or Feynman’s light microscope [7].  In the light microscope, 
electrons are illuminated with light immediately after they have passed through a double slit with slit separation d .  A scattered 
photon localizes the electron with a position uncertainty of the order of the light wavelength, lightz   .  Owing to Heisenberg’s 

position-momentum uncertainty relation, this localization must produce a momentum uncertainty of the order of /z lightp h   .  

This momentum uncertainty arises from the momentum kick transferred by the scattered photon.  For light d  , which-way 

information is obtained, but the momentum kick is so large that it completely washes out the spatial interference pattern. 
The issue of whether momentum kicks are necessary to explain the two-slit experiment is revisited.  Obviously, 

momentum is involved, because a diffraction pattern is a map of the momentum distribution in the experiment.  But how is it 
involved?  Is it everything, as Bohr would have claimed? 

This is the question addressed by Durr et al. [5] who report on a which-way experiment with an atom interferometer 
wherein an incoming beam of atoms passes through two separated standing wave light beams.  The detuning of the light 
frequency from the atomic resonance, light atom    , is large so that spontaneous emission can be neglected.  The light fields 

each create a conservative potential U  for the atoms, the so-called light shift, with /U I  , where I  is the light intensity.  In 
a standing wave, the light intensity is a function of position where, 
    2

0 cos lightI z I k z  (42.4) 

where lightk  is the wavevector of the light.  Hence the light shift potential takes the form of: 

    2
0 cos lightU z U k z  (42.5) 

with 0 0 /U I  . 

The atoms are Bragg-reflected from this periodic potential, if they enter the standing light wave at a Bragg angle.  This 
process is similar to Bragg reflection of X-rays from the periodic structure of a solid-state crystal, but with the role of matter and 
light exchanged.  The light creates the periodic structure, from which the matter wave is reflected. 

The scheme of the interferometer is shown in Figure 42.5.  The standing light wave splits the incoming atomic beam A 
into two beams, a transmitted beam C and a first-order Bragg-reflected beam B.  The angle between the beams B and C 
corresponds to a momentum transfer of exactly 2 lightk  as determined by the spatial period of ( )U z .  By varying the light 

intensity, the fraction of reflected atoms can be adjusted to any arbitrary value.  Durr et al. tune the reflectivity of the beam 
splitter to about 50%. 
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Figure 42.5.   Scheme of the atom interferometer.  The incoming atomic beam A is split into two beams: beam C is 
transmitted and beam B is Bragg-reflected from a standing light wave.  The beams are not exactly vertical because a Bragg 
condition must be fulfilled.  After free propagation for a time sept , the beams are displaced by a distance d .  Then the beams are 

split again with a second standing light wave.  In the far field, a spatial interference pattern is observed. 

 
 

After switching off the first standing light wave, the two beams are allowed to propagate freely for a time interval sept .  

During this time, beam B moves a horizontal distance / 2d  to the left, and beam C moves / 2d  to the right.  The longitudinal 
velocities (direction normal to the standing light wave of Figure 42.5) of the two beams are not affected by the light field.  Then 
a second standing light wave is switched on, which also serves as a 50% beam splitter.  Now two atomic beams D and E are 
traveling to the left, while beams F and G are traveling to the right.  In the far field, each pair of overlapping beams produces a 
spatial interference pattern.  The fringe period is the same as in a double-slit experiment with slit separation d  as given in the 
Two-Beam Interference section.  The intensity is given by Eq. (8.23) : 

 2 2 2 22 x 2 x
(x) 16 sinc cos

a d
I a C

f f

 
 

   
    

   
 (42.6) 

From Eq. (42.6), it is clear that the resulting pattern has the appearance of 2cosine  fringes of period /f d  with an envelope 

 2sinc 2 x /a f   where f  is the focal length and a  is the slit width.  In the present case, the envelope of the fringe pattern is 

given by the collimation properties of the initial atomic beam A.  Note that Eq. (42.6) corresponds to an amplitude transmission 
of a plane wave.  The bound unpaired electron of each 85Rb  atom behaves as a plane wave of wavelength /h p   as shown in 
the Free Electron section.  The relevant wavelength   of Eq. (42.6) is the de Broglie wavelength associated with the momentum 
of the atoms (Eq. (1.38)) which is transferred to the electrons through atomic interactions. 

The atomic position distribution is observed by exciting atoms with a resonant laser and detecting the fluorescence 
photons.  The observed far-field position distribution is a picture of the atomic transverse momentum distribution after the 
interaction.  The pattern is given by Eq. (42.6).  The pattern may be altered by application of microwave pulses which transfer 
momentum to the electrons of the 85Rb  atoms which add vectorially to that transferred from the interactions with the standing 
light field and atomic interactions.  

Microwave pulses are now added to manipulate the two internal electronic states of the atom according to whether it 
moved along pathway B or C.  A simplified level scheme of 85Rb  is shown in Figure 42.6.  The manipulation of internal states 
by two microwave fields which each apply a / 2  pulse is shown in Figure 42.7.  Rabi oscillations between states 2  and 3  

can be induced by applying a microwave field of about 3 GHz.  To describe the manipulation of the two internal electronic states 
of the atom, we first investigate the properties of a single Bragg beam splitter. 
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Figure 42.6.   Simplified level scheme of 85Rb .  The 

excited state  2
3/25 P  is labeled e .  The ground state 

 2
1/25 P  is split into two hyperfine states with total angular 

momentum 2F   and 3F  , which are labeled 2  and 3 , 

respectively.  The standing light wave has angular frequency 

light . 

 
 

 
 
 

The frequency of the standing light wave, light  is tuned halfway between the 2 e  and 3 e  transitions. Hence 

the detunings from these transitions, 2e , and 3e , have the same absolute value but opposite sign.  The reflectivity of the beam 

splitter, that is, the probability of reflecting an atom, depends on 0Braggt X U , and it is independent of the internal state. 

However, the amplitude of the wavefunction experiences a phase shift which depends on the internal atomic state.  A 
simple analogy for this phase shift can be found in light optics: a light wave reflected from an optically thicker medium 
experiences a phase shift of  , while reflection from an optical thinner medium or transmission into an arbitrary medium does 
not cause any phase shift.  This argument also applies in atomic optics: in the present experiment, an atom in 2  sees a negative 

light shift potential (because 2 0e  ), corresponding to an optically thicker medium, while an atom in 3  sees a positive 

potential (because 3 0e  ), corresponding to an optically thinner medium.  Hence an atom will experience a   phase shift only 

if it is reflected in 2 . 

This phase shift can be converted into a population difference between the hyperfine levels.  For that purpose, two 
microwave / 2  pulses resonant with the hyperfine transition are applied.  They form a Ramsey scheme as shown in Figure 
42.7.  The atom is initially prepared in state 2 .  Then a / 2  microwave pulse is applied, converting the beam into an equal 

mixture of internal states of 2 3 .  After this, each atom interacts with the standing light wave.  As explained above, each 

atom will experience a   phase shift only if it is reflected and in state 2 .  Thus the internal state of the reflected beam is 

changed to an equal mixture of internal states of 3 2 , while the internal state of the transmitted beam is not affected.  As a 

result, the momentum of each atom is a superposition of the internal and external degree of freedom of the atom which is 
specific to the path.  The state vector of the system becomes: 

    3 2 3 2B C         (42.7) 

where B  and C  describe the center-of-mass motion for the reflected and transmitted beams (see Figure 42.5), respectively.  

The second microwave pulse action on both beams (the transmitted and the reflected), converts the internal state of the 
transmitted beam to state 3 , while the reflected beam is converted to state - 2 .  Thus, the state vector after the pulse sequence 

shown in Figure 42.7 becomes: 
 2 3B C        (42.8) 

Eq. (42.8) shows that the internal state is correlated with the way taken by the atom.  The which-way information can be read out 
later by performing a measurement of the internal atomic state.  The result of this measurement reveals which way the atom 
took: if the internal state is found to be 2 , the atom moved along beam B, otherwise it moved along beam C. 

After considering a single beam splitter, now consider the complete interferometer.  Sandwiching the first Bragg beam 
splitter between two / 2  microwave pulses produces a reflected and transmitted beam each of a single internal atomic state, as 
described above.  We note that the second Bragg beam splitter does not change the internal state.  No fringes are 

Figure 42.7.   Scheme of the manipulation of internal 
states of 85Rb  by two microwave fields which each apply a 

/ 2  pulse.  The standing light wave with angular frequency 

light  induces a light shift for both ground states, which is 

given as a function of position.  The beam splitter produces a 
phase shift that depends on the internal and external degree of 
freedom.  A Ramsey scheme, consisting of two microwave 

/ 2  pulses, converts this phase shift into a population 
difference. 



Chapter 42 1682

experimentally observed in this case.  The data is recorded with the same parameters with the only difference being that two 
microwave pulses are added to produce a single internal atomic state according to the particular path of the atom.  Atoms in both 
hyperfine states are detected.  The interference pattern is also not observed when only atoms in state 2  or only atoms in state 

3  are detected.  Of course, the absolute size of the signal is reduced by a factor of two in these cases.  The key to this new 

experiment is that although the interferences are destroyed, the initially imposed atomic momentum distribution leaves an 
envelope pattern (in which the fringes used to reside) at the detector.  A careful analysis of the pattern finds that it has not 
been measurably distorted by a momentum kick of the type invoked by Bohr, and therefore that any locally realistic 
momentum kicks imparted by the manipulation of the internal atomic state according to the particular path of the atom 
are too small to be responsible for destroying interference. 

In order to investigate why the interference is lost, we consider the state vector for the interaction sequence used which 
causes the disappearance of the fringes.  The state vector after the interaction with the first beam splitter sandwiched between the 
two microwave pulses is given by Eq. (42.8).  The second beam splitter transforms this state vector into a left peak and a right 
peak given by: 

 2 3left D E        (42.9) 

and 

 2 3right F G       (42.10) 

where the sign of F  is positive due to the   phase shift during the reflection from the second beam splitter.  Each peak is a 

superposition of atoms which follow separate paths and comprise atoms of a single internal state.  In each case atoms which 
interfere have internal states which are orthogonal; thus, in the far field, the atomic position distribution under each peak of the 
envelope is given by the superposition of two single slit patterns rather than the double slit pattern in the absence of the 
application of the / 2  microwave pulses.  In the far field, the amplitude of the atomic position distribution under each peak of 
the envelope (x)  is the sum of the independent Fraunhofer planes and the intensity of the atomic position distribution under 

each peak of the envelope 2 (x)  is given by: 

  22 2 x
(x) 2  sinc

f

ka
aC     

 
  (42.11) 

where f  is the focal length and a  is the slit width.  In the present case, the envelope of the fringe pattern is given by the 
collimation properties of the initial atomic beam A. 

A dramatic change in the spatial momentum distribution occurs when adding the microwave fields to the interferometer 
that manifests itself as loss of interference; even though, the microwave itself does not transfer enough momentum to the atom to 
wash out the fringes according to the Heisenberg Uncertainty Principle.  The addition of the microwave fields modifies the 
probability for momentum transfer by the light fields.  This modification of the momentum transfer probability is due to the 
manipulation of the internal atomic state according to the particular path of the atom.  The disappearance of interference is 
explained by classical physics.  In addition to the invalidation of the HUP as the basis of the wave particle duality, the other 
aspect of the HUP, the measurement-disturbance relationship of the HUP, has been tested for the first time and experimentally 
disproved [L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, A. M. Steinberg, “Violation of Heisenberg’s 
Measurement-Disturbance Relationship by Weak Measurements,” Phys. Rev. Lett., 109 (2012), 100404.]. 
 
INCONSISTENCIES OF QUANTUM MECHANICS 
Quantum mechanics failed to predict the results of the Stern-Gerlach experiment which indicated the need for an additional 
quantum number.  Quantum electrodynamics was proposed by Dirac in 1926 to provide a generalization of quantum mechanics 
for high energies in conformity with the theory of Special Relativity and to provide a consistent treatment of the interaction of 
matter with radiation.  From Weisskopf [8], “Dirac’s quantum electrodynamics gave a more consistent derivation of the results 
of the correspondence principle, but it also brought about a number of new and serious difficulties.”  Quantum electrodynamics: 
(1) does not explain nonradiation of bound electrons;  (2) contains an internal inconsistency with Special Relativity regarding the 
classical electron radius–the electron mass corresponding to its electric energy is infinite;  (3) it admits solutions of negative rest 
mass and negative kinetic energy;  (4) the interaction of the electron with the predicted zero-point field fluctuations leads to 
infinite kinetic energy and infinite electron mass;  (5) Dirac used the unacceptable states of negative mass for the description of 
the vacuum; yet, infinities still arise.  In 1947, Lamb discovered a 1000 MHz  shift between the 2

1/2S  state and the 2
1/2P  state of 

the hydrogen atom.  This so called Lamb Shift marked the beginning of modern quantum electrodynamics.  In the words of 
Dirac [9], “No progress was made for 20 years.  Then a development came initiated by Lamb’s discovery and explanation of the 
Lamb Shift, which fundamentally changed the character of theoretical physics.  It involved setting up rules for discarding 
...infinities...” Renormalization is presently believed to be required of any fundamental theory of physics [10].  However, 
dissatisfaction with renormalization has been expressed at various times by many physicists including Dirac [11]. who felt that, 
“This is just not sensible mathematics.  Sensible mathematics involves neglecting a quantity when it turns out to be small—not 
neglecting it just because it is infinitely great and you do not want it!”  

Modern quantum mechanics has encountered several obstacles that have proved insurmountable as pointed out 
previously in the General Considerations section and the Classical Electron Radius section.  It is not based on physical laws, and 
is not predictive as discussed previously [8, 12–24].  SQM has never dealt with the nature or structure of fundamental particles.  
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They are treated as zero-dimensional points that occupy no volume and are everywhere at once.  This view is impossible since 
occupying no volume would preclude their existence; the inherent infinities are not observed nor are they possible, and the 
possibility of a particle being everywhere at once violates all physical laws including conservation of energy and causality.  
Furthermore, it leads to certain philosophical interpretations [25] which are not sensible.  Some conjure up multitudes of 
Universes including “mind” Universes; others require belief in a logic that allows two contradictory statements to be true.  The 
question addressed is whether the Universe is determined or influenced by the possibility of our being conscious of it.  The 
meaning of quantum mechanics is debated, but the Copenhagen interpretation is predominant.  Its asserts that “what we observe 
is all we can know; any speculation about what a photon, an atom or even a SQUID (Superconducting Quantum Interference 
Device) really is or what it is doing when we are not looking is just that speculation [26].”  According to this interpretation every 
observable exists in a state of superposition of possible states, and observation or the potential for knowledge causes the 
wavefunction corresponding to the possibilities to collapse into a definite one.  As shown by Platt [27] in the case of the Stern-
Gerlach experiment, “the postulate of quantum measurement [which] asserts that the process of measuring an observable forces 
the state vector of the system into an eigenvector of that observable, and the value measured will be the eigenvalue of that 
eigenvector.” 

According to the Zeno no-go theorem which is a consequence of the postulate of quantum measurement, observation of 
an atom collapses its state into a definite; thus, transitions cannot occur under continuous observation.  Recently, it has become 
possible to test this postulate via an experiment involving transitions of a single atom, and the results are inconsistent with the 
predictions.  Quoting from the caption of Figure 10 of the article, by Dehmelt [28],  
 

“Shelving” the Ba+ optical electron in the metastable D  level.  Illuminating the ion with a laser tuned close to its 
resonance line produces strong resonance fluorescence and an easily detectable photon count of 1600 photons/sec.  
When later an auxiliary, weak Ba+ spectral lamp is turned on, the ion is randomly transported into the metastable 5/2D  

level for 30-s lifetime and becomes invisible.  After dwelling in this shelving level for 30 s on average, it drops down to 
the S  ground state spontaneously and becomes visible again.  This cycle repeats randomly.  According to the Zeno no-
go theorem, no quantum jumps should occur under continuous observation. 

 
The Copenhagen interpretation equally applies to witnessing the presence of the moon.  According to quantum 

mechanics the moon is not there until it is observed.  Since the act of measuring is relative to each individual observer and it is 
“entangled” with each observer, the “collapse” must result in different realities for different observers of presumably the same 
object.  Thus, Man’s consciousness has a special position in the most popular interpretation of quantum mechanics as the engine 
of reality and individualism results in the conjuring up of multitudes of Universes including parallel “mind” Universes [25]. 

Of course this is nonsense and is a consequence of the mistake of originally postulating that fundamental particles are 
probability waves rather than real.  Furthermore, the brain obeys the same physical laws as the rest of the matter of the Universe.  
Sodium, potassium, and chloride ions in the brain are obtained from the ambient environment and are constantly being 
interchanged with that environment.  The same rules apply irrespective of where that matter is found.  In fact, the phenomena of 
the ability of the brain to reason and to produce a state called consciousness has nothing to do with god-like properties unique to 
humans that are deeply seated in quantum folklore.  Rather, it can be traced to simple properties of excitable neurons, their 
organization, and simple thermodynamic principles exploited by biological systems to more or lesser extents over millions of 
years of evolution.   

At the most fundamental level, a conscious being is made of energy, quarks, gluons, electrons, atoms, molecules, etc. that 
originate from and are part of the Universe.  For example, the elements of humans other than hydrogen originate in stars.  
Therefore, in broader terms, the physics of the Universe dynamically gives rise to a conscious being, and it is implicit that the 
Universe is aware of itself.  Then, distinctions exist between animate beings and inanimate objects that must follow first 
principles.  Consciousness, the ability of a chemical reaction to be aware of itself arises from the relationship of energy changes 
to entropy.  If the brain chemistry of conscious beings behaved as typical chemical reactions following an arrow of time 
according to typical enthalpy and concomitant entropy changes, then any information stored and processed by the brain would 
decrease over time, and consciousness would not be possible.  The brain chemistry comprising ion channel conductance 
changes, ion flows, ion pump activity, metabolic reactions, etc., comprise an energy state in opposition to the thermodynamic 
arrow of time.  Living beings produce negative entropy at the expense of their surroundings.  In other words, consciousness is 
achieved against the arrow of time discussed in the Arrow of Time and Entropy section by increasing the entropy of the 
surroundings to offset its relatively low entropic state.  Consciousness is shaped by and requires the environment with which the 
brain interacts and depends for a source of energy and materials to maintain the local-temporal high entropic state relative to its 
surroundings.   

A previous publication [29-30] showed that the brain is governed by the entropy principle of thermodynamics whereby 
the wet-chemistry-based system comprising excitable neurons arranged in a spatial-temporal hierarchy of ensembles in a 
dynamical state of activation and connectivity dependent on present and past activation rates, influenced by past and present 
input from the environment, achieves a state representative of a predominant configuration, the most probable state in time.  The 
brain must be active continuously as a predominant configuration.  This time-dependent state based on the second law of 
thermodynamics and comprising representations of aspects of the physical Universe is the basis of consciousness.   

In addition to exploiting the second law of thermodynamics with the formation of a predominant configuration, the brain 
has evolved to exploit several fundamental signal processing principles to achieve consciousness.  For example, the brain 
functions as an analog Fourier processor which transduces and processes information representative of physical characteristics or 
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representations of physical characteristics as Fourier series in Fourier space.  The brain also exploits time using spatial 
segregation of stored information as a means to encode context of the physical characteristics of the information.  Specific time 
delays arising from the spatial separation of propagating signals correspond to modulation of the Fourier series at corresponding 
frequencies to encode the context.  The brain associates information by exploiting the principle that cascaded stages such as 
association neurons give rise to delayed Gaussian filters.  And, filtered signals may be associated based on the physics of energy 
exchange between two or more harmonic states.  Given the evolutionary ascension of multicellular organisms each producing 
negative entropic states and having specialized cells with excitable membranes, the progress to consciousness and intelligence 
was inevitable.  The first-principles-based theory of the signal processing mechanism of the brain and the origin of 
consciousness was published previously with a means to computer-simulate these phenomena [29-30]. 

Specifically, a method and system for pattern recognition and processing involving processing information in Fourier 
space was reported [29-30].  The theoretical results given previously are that (1) action potentials carry information with digital 
and analog aspects that allows the brain to operate as a Fourier processor in Fourier space with encoding of context in the 
structure of transducers mapping one-to-one with corresponding structural elements of the memory, (2) an ensemble of 
interlinked neurons can filter information as delayed Gaussian filters, (3) the neuronal ensembles propagating cascaded action 
potentials may couple with Poisson probability to form associations of information encoded in the action potentials, (4) 
ensembles of neurons as delayed Gaussian filters may order format information by forming associations of the corresponding 
filtered action potentials with memory elements, and (5) a predominant configuration of activation may arise that is analogous to 
that of interacting quantum levels with partition of energy as given by statistical thermodynamics.  These aspects are modeled 
such that a simulation may be programmable on digital processing systems.   

This novel approach anticipates the signal processing action of an ensemble of neurons as a unit and intends to simulate 
aspects of the brain that give rise to capabilities such as intelligence, pattern recognition, reasoning, and ultimately consciousness 
that have not been reproduced with past approaches such as neural networks that are based on individual simulated “neuronal 
units.”  Information representative of physical characteristics or representations of physical characteristics is transformed into a 
Fourier series in Fourier space within an input context of the physical characteristics that is encoded in time as delays 
corresponding to modulation of the Fourier series at corresponding frequencies.  Associations are formed between Fourier series 
by filtering the Fourier series and by using a spectral similarity between the filtered Fourier series to determine the association 
based on Poissonian probability.  The associated Fourier series are added to form strings of Fourier series.  Each string is ordered 
by filtering it with multiple selected filters to form multiple time order formatted subset Fourier series, and by establishing the 
order through associations with one or more initially ordered strings to form an ordered string.  Associations are formed between 
the ordered strings to form complex ordered strings that relate similar items of interest.  The components of the system based on 
the algorithm are active based on probability using weighting factors based on activation rates.  The probabilistic activation, 
based on past activation rates, gives rise to a system state akin to a time-dependent predominate configuration of statistical 
thermodynamics that can be associated with consciousness. 
 
THE ASPECT EXPERIMENT—NO SPOOKY ACTIONS AT A DISTANCE 
In addition to the interpretation that photons, electrons, neutrons, and even human beings [25] have no definite form until they 
are measured, a more disturbing interpretation of quantum mechanics is that a measurement of a quantum entity can 
instantaneously influence another light years away.  Einstein argued that a probabilistic versus deterministic nature of atomic 
particles leads to disagreement with Special Relativity.  In fact, the nonlocality result of the Copenhagen interpretation violates 
causality.  As a consequence of the indefinite nature of the Universe according to quantum mechanics and the implied 
Uncertainty Principle, Einstein, Podolsky, and Rosen (EPR) in a classic paper [31] presented a paradox which led them to infer 
that quantum mechanics is not a complete theory.  They concluded that the quantum-mechanical description of a physical system 
should be supplemented by postulating the existence of “hidden variables,” the specification of which would predetermine the 
result of measuring any observable of the system.  They believed the predictions of quantum mechanics to be correct, but only as 
consequences of statistical distribution of the hidden variables.  But, Bell [32] showed that in a Gedanken experiment of Bohm 
[34] (a variant of that of EPR) no local hidden-variable theory can reproduce all of the statistical predictions of quantum 
mechanics.  Thus, a paradox arises from Einstein’s conviction that quantum-mechanical predictions concerning spatially 
separated systems are incompatible with his condition for locality unless hidden variables exist.  Bell’s theorem provides a 
decisive test of the family of local hidden-variable theories (LHVT).  In a classic experiment involving measurement of 
coincident photons at spatially separated detectors, Aspect [34] showed that local hidden-variable theories are inconsistent with 
the experimental results.  Although Aspect’s results are touted as a triumph of the predictions of quantum mechanics, the correct 
coincidence rate of detection of photons emitted from a doubly excited state of calcium requires that the z component of the 
angular momentum is conserved on a photon pair basis.  As a consequence, a paradox arises between the deterministic 
conservation of angular momentum and the Uncertainty Principle.  The prediction derived from the quantum nature of the 
electromagnetic fields for a single photon is inconsistent with Aspect’s results, and Bell’s theorem also disproves quantum 
mechanics.  However, the results of Aspect’s experiment are predicted by classical physics wherein locality and causality hold. 

The Aspect experiment is often invoked as the proof of the quantum-mechanical nature of reality [34-42].  According to 
the quantum explanation of the Aspect experiment [34], the polarization of each photon of a pair is not determined until a 
measurement is made, and the act of measuring the polarization of one photon causes an action at a distance with regard to the 
measurement of the polarization of the other member of a given pair.  These results are interpreted as proof of a spooky action at 
a distance.  Thus, information travels faster than the speed of light in violation of Special Relativity, or nonlocality and 
noncausality are implicit. 

Bell’s theorem is a simple proof of statistical inequalities of expectation values of observables given that quantum 
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statistics are correct and that the physical system possesses “hidden variables.”  Classical physics does not possess hidden-
variables.  It is deterministic, and Bell’s theorem does not apply to it.  The correct interpretation of the results of the Aspect 
experiment follows from a classical derivation from the physical nature of excited-state atoms and the corresponding emitted 
photons.  The expectation value of the coincidence rate at separated randomly oriented polarization analyzers for pairs of 
photons emitted from a doubly excited state atom is derived from the equation of the photon which appears in the Equation of 
the Photon section. 

Aspect [34] reports the measurement of polarization correlation (coincidence count rate) of visible photons 
( 1 551.3 nm  ; 2 422.7 nm  ) emitted in a      0 1 0J J J      calcium atomic cascade 

 2 1 1 2 1
0 1 04  4 4  4  p S s p P s S  .  The calcium atoms were selectively pumped to the upper level of the cascade from the ground 

state by the two photon absorption via two lasers, a single-mode krypton ion laser and a cw single-mode Rhodamine 6G dye 
laser tuned to the resonance for the two photon process.  The fluorescent light was collected by lenses and made incident on two 
detectors–one at position -z and the other at position +z relative to the emitting calcium atoms.  The polarizers were 
independently rotated in the xy-plane, and the coincidence count rate was measured. 

The equation for the transmission of an electromagnetic wave through a barrier as given in any text of classical 
electrodynamics such as that of Kong [43] is: 
 zi z

T iTE e kE  (42.12) 

where TE  is the transmitted wave, iE  is the incident wave, and T  is the transmission coefficient.  For a wave that propagates at 

an angle with respect to the z-axis, the transmitted photon is given by a sum of equations of the form of Eq. (42.12) for each 
vector component.  Using the convention of Horne [39], the vector transmission efficiencies (coefficients) can be written in 
matrix form with a matrix corresponding to each linear polarizer.  In a basis of linear polarizations along 1x  and 1y  in the 

coordinates of photon 1, the most general linear polarizer with axis along 1x  is described by an efficiency matrix 
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where 1
M  is the probability of transmitting an 1x  linearly polarized photon and 1

m  is the probability of transmitting a 1y  

linearly polarized photon (leakage).  In the ideal case 1 1M   and 1 0m  .  If the polarizer is not parallel to the 1x -axis but 

rotated in the plane perpendicular to the interdetector axis by an angle 1  from 1x , and  1  is expressed in the basis of right 

hand circular (RHC) and left hand circular (LHC) photon states formed from 1x  and 1y , then the elementary transformations 

give the elements of  1  as a function of 1  in matrix form: 
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where  '
11 1    is defined as the expectation value of the transmission of the photon 1 with polarization 1 , 1 1    are 

RHC and LHC, respectively, and the angle between polarizer 1 ( 1P ) and 1x  is: 

 1 1    (42.15) 

Similarly,  2 , the efficiency matrix as a function of 2   of the second polarizer ( 2P ) in the circular polarization basis of 

photon 2, is 
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 (42.16) 

where the angle between polarizer 2 and the x-polarization of photon 2 (i.e. the angle between 2P  and 2x ) is: 

 2 2      (42.17) 

The efficiency matrix for coincidence transmission of photon 1 and photon 2 is given by the product of their independent 
probabilities,    1 2  .  The normalized coincidence counting rate is 
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The normalized coincidence counting rate with polarizer 2 removed, 1

0

R

R
, is 
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The normalized coincidence counting rate with polarizer 1 removed, 2

0

R

R
, is: 

 
 

 
2

2

0

f

f

Tr pR

R Tr Ip

    (42.20) 

where I  is the identity matrix and fp  is the probability that photon 1 and photon 2 have the same polarization and is a function 

of solid angle of the projection of the propagation vector of each photon onto the z-axis.  In terms of Eq. (42.12), fp  

corresponds to the vector correlated electric field incident on the opposed detectors.  It is given by the normalized electric field 
of photons of matched momentum projected onto the z-axis over the solid angle of the detectors.   

The Excited States of the One-Electron Atom (Quantization) section gives the method to calculate the Einstein A 
coefficient in terms of the electric field based on classical electrodynamics that is applicable to each photon of the two photon 
     0 1 0J J J      cascade of calcium.  The Excited States of Helium section further applies the dependence of the 

transition energy, and Jackson [44] applies the transition probability, on the integral of the product of the multipole of the 
photon,  , ,p

l mX   , and the initial,  , ,i
l mX   , and final,  , ,f

l mX   , states as is the case with classical electrodynamics 

calculations involving antennas.  The transition probability 
1


 is given by the power of the transition divided by the energy: 
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The distribution of multipole radiation and the multipole moments of the electron for absorption and emission are given in the 
Excited States of the One-Electron Atom (Quantization) section and in Jackson [44].  The electric-field amplitude of the emitted 
photon follows from that given in the Equation of the Photon section. 

Horne postulates the emission as a plane wave which is replaced by a spherical multipole expansion.  The spherical 
multipole expansion of a plane wave such as given in Jackson [45] is consistent with the Green Function as the function which 
corresponds to the superposition of an ensemble of photons given classically by Eqs. (4.18-4.23).  Using classical Eqs. (2.64-
2.65), the projection of the photon pair propagation vector onto the axis perpendicular to the plane of each detector gives a factor 
of one corresponding to the conservation of angular momentum for each photon pair times a solid angle correction.  The result 
for the numerator of Eq. (42.18) is:  
            

' '
1 1 2 2

' ' 1 ' 2 ' ' '
1 2 1 1 2 2 1 1 2 2 1 2 1 2, , , * ,fTr p g g

   

                     (42.22) 

where    ' '
1 2 1 2, * ,g g     is a factor corresponding to the solid angle. 

 
Eq. (42.22) is equivalent to Eq. (5.17) of Horne.  To obtain this result, Horne suppressed the integration over 1d  and 

2d  as well as the explicit dependence on the photon propagation vectors, 1k  and 2k , respectively.  (The integration was also 

suppressed over frequency space as well as the explicit dependence on the photon propagation vectors, 1k  and 2k  in the case 

that QED holds.)  This is only valid if the z component of angular momentum is conserved on a photon by photon basis such that 
the polarization correlation distribution function is independent of angle.  Otherwise, it cannot be removed from the integral.  
HORNE’S CALCULATION IS NOT CONSISTENT WITH THE QUANTUM-MECHANICAL NATURE OF THE 
ELECTROMAGNETIC FIELDS FOR A SINGLE PHOTON as described below. 

 
Substitution of Eq. (42.14) and (42.15) and the results of the solid angle term of Eq. (42.22) into Eq. (42.18) gives the 
normalized coincidence count rate. 
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                (42.23) 

where the solid angle factor,  1F  , for the 0 1 0   electric dipole cascade is: 

        
1

2 2 2
1 1 2 3

1
2

2
F G G G   


    

 (42.24) 

The normalized coincidence count rate with polarizer 2 removed, 1

0

R

R
, is: 

  1 11
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2 M m

R

R
    (42.25) 
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The normalized coincidence count rate with polarizer 1 removed, 2

0

R

R
, is: 

  2 22

0

1

2 M m

R

R
    (42.26) 

The transmittances i
M  and i

m  of the polarizers (i=1 or 2) for light polarized parallel or perpendicular to the polarization axis 
were measured by Aspect [34]:  

 

1 1

2 2

0.971 0.005,  0.029 0.005,  

0.968 0.005,  0.028 0.005

M m

M m

 

 

   

   

 (42.27) 

And, the solid angle factor,  1F  , for the 0 1 0   electric dipole cascade which accounts for the solid angles subtended by the 

collecting lenses of the Aspect experiment is: 
    1 2 0.984F F    (42.28) 

Substitution of Eqs. (42.27) and (42.28) into Eq. (42.23) gives the normalized coincidence count rate as a function of the relative 
angle between the polarizers. 

 
 

0

0.2490 0.2178cos 2
R

R


   (42.29) 

 
ASPECT EXPERIMENTAL RESULTS ARE PREDICTED CLASSICALLY 
The sequence of events based on physical laws for Aspect’s measurement of the polarization correlation (coincidence count rate) 
of visible photons ( 1 551.3 nm  ; 2 422.7 nm  ) emitted in a      0 1 0J J J      calcium atomic cascade 

 2 1 1 2 1
0 1 04  4 4  4  p S s p P s S   is shown in Figures 42.8A-E.   

The expectation value of the coincidence rate at separated randomly oriented polarization analyzers for pairs of photons 
emitted from a doubly-excited state atom was derived from the equation of the photon in Eqs. (42.12-42.29).  Rather than a point 

that obeys a probability-density wave, the photon is an extended particle with a radius given by 
2

r



  wherein   is the 

wavelength of the photon.  Consequently, the photon’s electric field vector has a projection onto the axis of each rotated 
polarizer’s axis.  Angular momentum of the doubly excited-state atom is conserved by emitting photons of the same linear 
polarization in opposite directions.  Thus, the photon polarization is exactly correlated based on physics.  Based on these 

physical attributes of the emitted photons, the normalized coincidence count rate, 
 

0

R

R


, as a function of the relative polarizer 

orientation,  , given by Eq. (42.29) matches with the results of Aspect [34] as shown in Figure 42.9.  A computer simulation is 
given in Ref. [46]. 
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Figure 42.8.   (A) Calcium atoms were selectively pumped to the upper level of the cascade from the ground state by a two 
photon absorption via two lasers (blue beam).  The fluorescent light was collected by lenses and made incident on two detectors 
(smooth plates)—one at position -z and the other at position +z relative to the emitting calcium atoms (blue sphere).  The 
polarizers (plates with lines along each optical axis) were independently rotated in the xy-plane, and the coincidence count rate 
was measured (box connected to both detectors).  (B) The source current of the doubly-excited state atom gives rise to 
electromagnetic fields that become emitted photons in opposite directions wherein the radius of each photon is given by the ratio 
of the speed of light to the velocity change of the excited state electron upon de-excitation.  (C) The plane (green) of polarization 
of each photon pair is exactly correlated to conserve the angular momentum of the excited state.  (D) The transmittance of each 
photon at each detector depends on the alignment or angle of the plane of polarization of the photons (random but matched) and 
the axis of each polarizer (rotated relative to each other by the experimenter).  When the polarizers are parallel, the photons are 
both transmitted if each is sufficiently aligned with the polarizer.  (E) Or, both are blocked if the transmittance is low due to a 
condition of crossed polarization of each photon and polarizer.  Intermediate cases depend on the relative angle of each photon 
and its polarizer as shown in (C).  
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Figure 42.9 .  The normalized coincidence count rate as a function of the relative polarizer orientation as given by Eqs. 
(42.23), (42.24), and Eq. (42.29) (solid curve) with the results of Aspect [34] (•) match.  This result is based on the physical 
treatment of the photon as an extended particle that obeys Maxwell’s equations with conservation of angular momentum of the 
doubly-excited state calcium atom and the corresponding emission of two photons of the same linear polarization in opposite 
directions. 

 
 
ASPECT EXPERIMENTAL RESULTS ARE NOT PREDICTED BY QUANTUM 
MECHANICS 
Eq. (5.17) of Horne (same as Eq. (42.22)) is the sum over the product of the transmission efficiencies of photon pairs of identical 
polarization at two independent detectors and a correction for the solid angle of the detectors for the photon pairs emitted from a 
remote isotropic source.  The probability integral over momentum space was “suppressed” and set equal to one.  Thus, the 
calculation is a deterministic equation.  It does not correspond to the equation for coincident detection predicted by quantum 
mechanics.  According to Jackson [47]: 

 
For a multipole with a single m  value, xM  and yM  vanish, while a comparison of (17.67) and (17.60) shows that:  

 zdM m dU

dr dr
  (17.68) 

independent of r .  This has the obvious quantum interpretation that the radiation from a multipole of order ( , )l m  carries 
off m  units of z component of angular momentum per photon of energy  .  Even with a superposition of different m  
values, the same interpretation of (17.67) holds, with each multipole of definite m  contributing incoherently its share of 
the z component of angular momentum.  Now, however the x and y components are in general nonvanishing, with 
multipoles of adjacent m  values contributing in a weighed coherent sum.  The behavior continued in (17.64) and exhibited 
explicitly in (17.65)-(17.67) is familiar in the quantum mechanics of a vector operator and its representation with respect to 
basis states of 2J  and *zJ .  The angular momentum of multipole fields affords a classical example of this behavior, with 

the z component being diagonal in the ( , )l m  multipole basis and the x and y components not. 
The characteristics of the angular momentum just presented hold true generally, even though our example (17.57) was 

somewhat specialized.  For a superposition of both electric and magnetic multipoles of various ( , )l m  values, the angular 
momentum expression (16.63) is generalized to: 
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 (17.69) 

The first term in (17.69) is of the same form as (17.63) and represents the sum of the electric and magnetic multipoles 
separately.  The second term is an interference between electric and magnetic multipoles.  Examination of the structure of 
its angular integral shows that the interference is between electric and magnetic multipoles whose l  values differ by unity.  
This is a necessary consequence of the parity properties of the multipole fields (see below).  Apart from this complication 

of interference, the properties of 
d

dr

M
 are as before. 

The quantum-mechanical interpretation of (17.68) concerned the z component of angular momentum carried off by each 
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photon.  In further analogy with quantum mechanics, we would expect the ratio of the square of the angular momentum to 
the square of the energy to have the value, 

 
     

2 2 22

2 2 2

1q
x y z q

M M M l lM

U U 

  
   (17.70) 

But from (17.60) and (17.65)-(17.67), the classical result for a pure ( , )l m  multipole is:  

 
 2 2 2

2 2 2

c
zMM m

U U 
   (17.71) 

The reason for this difference lies in the quantum nature of the electromagnetic fields for a single photon.  If the z 
component of angular momentum of a single photon is known precisely, the uncertainty principle requires that the other 
components be uncertain, with mean square values such that (17.70) holds.  On the other hand, for a state of the radiation 
field containing many photons (the classical limit) the mean square values of the transverse components of angular 
momentum can be made negligible compared to the square of the z component.  Then the classical limit (17.71) applies.  
For a ( , )l m  multipole field containing N  photons it can be shown* that: 
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 (17.72) 

This contains (17.70) and (17.71) as limiting cases. 
 

Consider the quantum nature of the electromagnetic fields for a single photon.  According to Eqs. (17.70-17.72) of 
Jackson, photon pairs cannot have identical z components of angular momentum; therefore, each pair cannot have identical 
polarization.  Each quantum-mechanical photon is a superposition of RHC, LHC, linear, and elliptic polarization.  And, in the 
case of Quantum Electrodynamics (QED), each photon is also a superposition over frequency space.  In the quantum-mechanical 
case Eq. (17.71) of Jackson applies–the z component of angular momentum is conserved on the average of many photons.  
Probability applies to the emission of a pair of photons of identical polarizations (the correlation of polarizations cannot be one 
(  , 1P A B  )) as well as to the detection of the photons of equal polarizations.  Furthermore, QED requires that the probability 

associated with emission as well as detection applies to a distribution of photon wavelengths with expectation values of 

1 551.3 nm   and 2 422.7 nm  .  The coincidence count rate is a function of the dot product of the electric field vector of each 
photon pair having correlated polarization onto the z-axis, and the probability of detection of the separate members of each pair 
at the separate detectors where the associated probabilities are independent.  Thus, the probability of detecting a coincident event 
is given by the product of their independent probabilities.  The quantum nature of the electromagnetic fields for a single photon 
requires a fp  of Eq. (42.18) that includes all distributions.  Thus, the coincident rate predicted by quantum mechanics is less 

than the experimental rate.  The extent of the error, which is a function of the relative angle of the polarizers, is given by Bell’s 
theorem. 
 
BELL’S THEOREM TEST OF LOCAL HIDDEN VARIABLE THEORIES (LHVT) AND 
QUANTUM MECHANICS 
Using the convention of Clauser and Horne [37, 39], consider an ensemble of correlated pairs of photons emitted from the 
0 1 0   cascade of excited state calcium atoms each moving so that one enters polarizer 1 ( 1P ) and the other polarizer 2 ( 2P ), 

where 1  and 2  are adjustable angles of polarizer 1 and 2.  In each polarizer a photon is recorded as +1 corresponding to RHC 

and LHC polarized, respectively.  Let the results of these selections be represented by  A a  and  B b , each of which equals +1 

according as the RHC or LHC is recorded. 
Suppose now that a statistical correlation of  A a  and  B b  is due to information carried by and localized within each 

photon, and that at some time in the past the photons constituting one pair were in contact and in communication regarding this 
information.  The information is quantum mechanical or is part of the content of a set of hidden variables, denoted collectively 
by  .  The results of the two polarization outcomes are then to be functions  ,A a   and  ,B b  .  Locality reasonably requires 

 ,A a   to be independent of the parameter b  and  ,B b   to be likewise independent of a , since the two outcomes may occur 

at an arbitrarily great distance from each other.  Finally, since the pair of photons is generally emitted by a source in a manner 
physically independent of the adjustable parameters a  and b , we assume that the normalized probability distribution     

characterizing the ensemble is independent of a  and b .  The requirement that the expectation value of a  and b  is equal to one 
(  , 1E a b  ) (on the average, the polarization of photons incident on each polarizer are equal) implies    , ,B a A a  .  

Defining the correlation function ( , ) ( , ) ( , ( )P a b A a B b d        where   is the total   space, generalization of Bell’s 
theorem gives 
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 (42.30) 

In the case of the 0 1 0   cascade, the coincidence count rate,  ,R a b , replaces the correlation function,  ,P a b , of the 

generalization of Bell’s theorem which then yields the following inequalities [34]: 
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 (42.31) 

where  ,R a b  is the rate of coincidences with polarizer 1 in orientation a  and polarizer 2 in orientation b ,  1 'R a  is the 

coincidence rate with polarizer 2 removed and polarizer 1 in orientation 'a ,  2 'R b  is the coincidence rate with polarizer 1 

removed and polarizer 2 in orientation 'b , and 0R  is the coincidence rate with the two polarizers removed.  The maximum 
violation of Bell’s inequalities (Eq. (42.31)) is predicted by substituting Eqs. (42.23-42.26) into  Eq. (42.31) and by taking 
derivatives with respect to the orientation angles and setting them equal to zero [39].  Assuming the rotational invariance of 
 ,R a b , the inequalities (Eq. (42.31)) contract to [34] : 
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    (42.32) 

The calculated value, cal , from Eqs. (42.23) and Eq. (42.32) is: 

 2 25.8  10 0.2  10cal X X     (42.33) 

The experimental value, exp , is [34]: 

 2 2
exp 5.72 10 0.43 10X X     (42.34) 

The experimental value is in agreement with the calculated value and violates the inequality of Eq. (42.32) by 13 standard 
deviations.  From Eq. (42.23) and Eq. (42.31), the inequality parameter, calS , corresponding to orientations: 
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                 (42.35) 

is 
 0.118 0.005calS    (42.36) 

The experimental value, expS , is [34]: 

 exp 0.126 0.014S    (42.37) 

The experimental value is in agreement with the calculated value and violates the inequality of Eq. (42.31) by 9 standard 
deviations.  These results refute LHVT and quantum mechanics because both theories require a distribution function of 
correlated angular momentum.  Only classical physics correctly predicts the coincidence count rate as a function of the relative 
orientation of the polarizers. 

A fundamental difference exists between classical physics versus quantum mechanics and quantum electrodynamics 
(QED).  In the case of classical physics, Eq. (17.70) of Jackson applies–the z component of angular momentum is conserved on 
a photon by photon basis.  Whereas, in the quantum mechanical case, Eq. (17.71) of Jackson–the z component of angular 
momentum is conserved on the average of many photons.  The photon is the cause of quantization in the deterministic classical 
physics; whereas, quantization arises from the expectation values of probability distribution functions in quantum mechanics and 
QED.  Bell’s theorem accepts quantum-mechanical statistics and hidden variables as correct simultaneously.  The resulting 
inequalities predicted for the measurement of two spatially separated observables that were historically in communication with 
the condition that local hidden variables theories (LHVT) are correct is inconsistent with experimental results.  Thus, the data 
refute LHVT.  Furthermore, the calculation of Horne is not quantum mechanical, the implicit physics is deterministic with the 
statistics of the measurement associated with two independent, inefficient detectors.  For a true quantum-mechanical and QED 
calculation, the z component of angular momentum is only conserved on average over momentum space, and in the case of 
QED, the z component of angular momentum is only conserved on average over momentum space as well as over a continuum 
of frequencies centered about the expectation values of 1  and 2 .  (The expectation value of the z component of angular 
momentum must include an integral over all momentum space and over all frequency space.)  Bell’s inequalities apply not only 
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to LHVT, but also to quantum mechanics and QED.  Consider the consequences of the postulate of quantum mechanics that 
photon momentum has a distribution function, and the change in the z component of angular momentum is zero on the average 
of many emission events.  The associated average momentum distribution function is equivalent to a hidden variable distribution 
function in Eqs. (42.18) and (42.30).  The observed coincidence count rate of Aspect [34] is equal to that predicted classically 
from the statistics of measurement at an inefficient detector only.  The additional finite distribution function required in the case 
of quantum mechanics and QED results in incorrect predictions as demonstrated in the Bell’s Theorem Test of Local Hidden 
Variable Theories (LHVT) and Quantum Mechanics section.  The observed results disprove LHVT, quantum mechanics, and 
QED and support classical physics that is deterministic, not statistical. 

As a further consideration discussed by Mills [12], Bell’s theorem is just an inequality relationship between 
ARBITRARY probability-density functions with certain assumptions about independence, expectation value equal to one, etc. 
wherein an additional probability distribution function is introduced which may represent local hidden variables or something 
else for that matter.  And, the initial functions may correspond to quantum mechanical statistics or something else for that 
matter.  Standard probability rules are accepted such as the probability of two independent events occurring simultaneously is 
the product of their independent probabilities.  What is calculated and plugged into the formula for the functions and whether the 
substitutions are valid are the issues that determine what Bell’s inequality tests when compared with data.  Historically, Bell’s 
inequality is a simple proof of statistical inequalities of expectation values of observables given that quantum statistics is correct 
and that the physical system possesses “hidden variables.”  However, if deterministic statistics are actually calculated and 
quantum statistics is equivalent to deterministic statistics (e.g. detection of a wave at an inefficient detector) but possesses 
further statistics based on the probability nature of the theory (statistical conservation of photon angular momentum), then Bell’s 
inequality actually tested and confirmed determinism versus quantum theory when compared to the data.   

The arbitrary nature of Bell’s probability inequality equation has fundamental ramifications regarding its validity in the 
first place as pointed out by Mills [12].  Hess and Phillips [48] have recently published on the results of considering the arbitrary 
assumptions Bell proposed in his probability inequality equation.  In addition to the assumption that hidden variables exist, Bell 
tacitly made a variety of other assumptions such as the assumption that the proposed hidden variables are governed by a single 
probability measure independent of the analyzer settings.  Hess and Phillips show that the mathematical model of Bell excludes 
a large set of local hidden variables and a large variety of probability densities such as time correlated parameters and 
generalized probability density.  Their extended space of local hidden variables does permit deviation of the quantum result and 
is consistent with all known experiments.  The results of Hess and Phillips further eliminates the need to default to spooky 
actions at a distance to explain the results of EPR experiments. 
 
WHEELER: BACK TO REALITY NOT BACK TO THE FUTURE 
Another version of the Aspect experiment called Wheeler’s delayed-choice gedanken experiment has been realized according to 
a group comprising Aspect and others [49, 50].  It involves the single-photon detection of the random input of orthogonally 
polarized photons at two independent output detectors.  When an electro-optical modulator (EOM) is not active each photon can 
be assigned to a specific path of an interferometer at the corresponding detector that is determined by the input polarization.  But, 
the path is presumed unknown when the EOM is activated after a given photon has entered the interferometer.  In the EOM-not-
active case, the output at each detector is random and equal over many photons, but in the EOM-active case, output is observed 
at only one detector.  Furthermore, when the relative path length of the two paths of the interferometer is varied to cause a 
correspondingly proportional phase angle, photon detection is then observed to occur at both detectors wherein the output 
demonstrates a modulation having a trigonometric dependence on the phase angle with a relative phase angle of   between the 
output of the two orthogonal detectors.  The EOM-not-active output is recognized as the expected classical result with adherence 
to causality with each photon propagating along a single path and detected by the corresponding detector wherein the path and 
detector are determined by the input polarization state of the single photon.  The phase independence is interpreted as due to the 
possession of knowledge of each single-photon propagation path based on the measurement of the corresponding detector 
output.  The knowledge, in turn, determines the photon path, and with single-path propagation, interference associated with 
phase dependency is not deemed possible.  Conversely, in the EOM-active case, the absence of knowledge determines that each 
photon must travel along two paths simultaneously, even when the device is activated when the photon is traveling at light speed 
along a path in route to the corresponding detector.  Thus, the EOM-active results are interpreted as being due to each single 
photon traveling at light speed through the two possible paths simultaneously requiring that it had to first go back in time after 
the EOM was turned on and change history from one path to two-path propagation.  The subsequent inference from the dual-
flight path of the single photon explains the inference.  This metaphysical interpretation is despite the authors’ contradictory 
view on “the intuitive image that a single particle cannot be detected simultaneously in the two paths of the interferometer [49].” 
 In reality, these results can be explained in terms of classical physical laws based on the nature of the photon and the 
hardware of the experiment.  The experimental device is shown in Figure 42.10.  Linearly polarized single photons emitted by a 
single N-V color center are transmitted by a polarization beamsplitter ( inputBS ) to an interferometer having two spatially 

separated paths 1 and 2 associated with orthogonal S and P polarizations, respectively, wherein the propagation path is 
determined by the initial state of the two permitted orthogonal polarization states of each single photon.  The tiltable output 
beamsplitter outputBS  comprises the combination of (i.) a half-wave plate that interchanges the S or P polarization state, (ii.) a 

second polarization beamsplitter 'BS  that merges the propagation paths, (iii.) an EOM that is randomly in an open or half-wave-
plate state for each photon according to the output voltage of a quantum random number generator (QRNG) ( 0EOMV  or 

EOMV V , respectively) wherein the input polarizations are rotated by 45 when the EOM is in the active state ( EOMV V ) 
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since the EOM optical axis is at 22.5 from the input polarizations, and (iv.) a Wollaston prism (WP) aligned such that the initial 
S or P polarization state associated with each separate path 1 or 2 is selectively transmitted to detector 1D  or 2D , respectively. 
 
Figure 42.10.  A schematic of the single-photon, two-path interferometer that operates in EOM-not-active and EOM-active 
modes to give different detection statistics at two independent output detectors that are selective for a given path of propagation 
determined by the initial linear polarization state of the single photon. 

 
 

Now, the results of the Aspect group can be predicted based on the physics of the optical components and the nature of 
linearly polarized single photons wherein each is comprised of inseparable right hand circular polarized (RHCP) and left hand 
circular polarized (LHCP) components that must conserve the   of angular momentum associated with its electric and magnetic 

fields as given by Eq. (4.1).  The EOM rotates the RHCP and LHCP components to tilt the angle of linear polarization by 
4


 

with a relative phase angle of   between the components.  As the beam splitter 'BS  is tilted the orientation and path length 
changes by z  which corresponds to the tilt-phase angle  :  
   k z  (42.38) 
Then, the WP adds the two components to give an output having the appearance of interference between separate linearly 
polarized photons or a linear combination of circular polarized photons when there is a relative tilt-phase angle   between the 
original RHCP and LHCP components.  As shown infra. the predicted modulated output at the polarization-selective detectors 
matches the observed modulated output shown in Figure of the Aspect group [49].   

Consider the components of the input photon linearly polarized along the y-axis as given in the Equation of the Photon 
section.  Since the photon is an extended particle comprised of spatially varying fields, the action of the EOM and WP for the 
transmission of the oppositely rotating RHCP or LHCP components for the determination of the detection statistics depends on 
the orientation and the corresponding tilt-phase of the beam splitter 'BS .  The components having a dependency on the relative 
tilt-phase angle   are: 

RHCP component 
  sin    xE a t kz  (42.39) 

  cos    yE a t kz  (42.40) 

LHCP component 
  sin   xE a t kz  (42.41) 

  cos  yE a t kz  (42.42) 

To conserve angular momentum during the response to the EOM, the vectors of the oppositely polarized photon components 

rotate in the opposite directions corresponding to a relative phase angle of   corresponding to 
2


 per component: 

RHCP component 
  sin    xE a t kz  (42.43) 

  cos    yE a t kz  (42.44) 

LHCP component 
  sin     xE a t kz  (42.45) 

  cos    yE a t kz  (42.46) 

At the WP, the superposition is  
    sin sin      xE a t kz a t kz  (42.47) 

    cos cos      yE a t kz a t kz  (42.48) 

Next, consider the components of the input photon linearly polarized along the x-axis: 
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RHCP component 
  cos    xE a t kz  (42.49) 

  sin    yE a t kz  (42.50) 

LHCP component 
  cos  xE a t kz  (42.51) 

  sin   yE a t kz  (42.52) 

The action of the EOM on the opposite circular polarized component vectors is antisymmetrical about the axes with the 
interchange of initial direction of the linear polarization from yE  to xE .  Again, to conserve angular momentum during the 

response to the EOM, the vectors of the oppositely polarized photon components rotate in the opposite directions corresponding 

to a relative phase angle of   corresponding to 
2


 per component.  In addition, for the initially x-polarized case, there is a 

change to the opposite parity for the xE  (RHCP) and yE  (LHCP) components corresponding to the electric-dipole selection 

rules with the rotated photon field vector having a projection in the opposite direction as that of the initially y-axis-polarized case 
[51]: 

RHCP component 
  cos     xE a t kz  (42.53) 

  sin    yE a t kz  (42.54) 

LHCP component 
  cos    xE a t kz  (42.55) 

  sin    yE a t kz  (42.56) 

At the WP, the superposition is  
    cos cos       xE a t kz a t kz  (42.57) 

    sin sin      yE a t kz a t kz  (42.58) 

With a tilt-phase angle 0, 2  n  where n  is an integer, the WP output is totally xE  giving rise to the maximum output at 2D  

only, and with a phase angle   n  where n  is an integer, the WP output is totally yE  giving rise to the maximum output at 1D  

only.  Thus, the detection rate corresponding to the detection probabilities at the outputs 1 and 2 are given by an equation of the 
same form as that of the Aspect experiment give by Eq. (42.29).  The normalized EOM-active 2D  and 1D  count rates,  2 R  

and  1 R , as a function of the tilt-phase angle   are: 

 
   2

1/ 2
0

0.5 0.5cos 2


 
R

R
 (42.59) 

 
   1

1/ 2
0

0.5 0.5cos 2


 
R

R
 (42.60) 

where the angular variable of  1/ 2 0.5   corresponds to the effect of the rotation of the EOM and 0R  is the total EOM-not-

active count rate (sum of 2D  and 1D  count rates).  Without the antisymmetrical rotational effect of the EOM, the detection rates 

at the orthogonal detectors for random xE  and yE  polarized input are constant as a function of  .  This is because the output at 

each detector over time is due to the superposition of two sets of RHCP and LHCP components, each comprised of xE  and yE  

components wherein only one term of each of the latter is phase dependent.  The phase independent term of each xE  and yE  

component gives an equal detection contribution at both detectors corresponding to the detection of circularly polarized light at 
the detectors, and the phase-dependent terms statistically balance since the sum of the phase dependency at each detector is unity 
( 2 2cos sin  ).  That is, the crossover between xE  input to yE  output with 2D  detection is statistically balanced by yE  input 

to xE  output with 1D  detection such that the detection rate at both detectors is constant, independent of phase angle.  Thus, the 

normalized EOM-not-active 2D  and 1D  count rates,  2 R  and  1 R , as a function of the tilt-phase angle   are: 

 
     2

0

0.25 0.25 0.25cos 2 0.25 0.25 0.25cos 2 1
0.5

R

R


         (42.61) 

 
     1

0

0.25 0.25 0.25cos 2 0.25 0.25 0.25cos 2 1
0.5

R

R


         (42.62) 

The predicted results are shown in Figure 42.11. 
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Figure 42.11.   The normalized 2D  (red curve) and 1D  (blue curve) count rates,  2 R  and  1 R , as a function of the tilt-

phase angle  .  (A)  EOM-active count rates as given by Eqs. (42.59) and (42.60), respectively.  (B)  EOM-not-active count 
rates as given by Eqs. (42.61) and (42.62), respectively.  These results are based on the physical treatment of the linearly 
polarized single photon comprised of RHCP and LHCP components that obey conservation of angular momentum at the EOM. 

 
(A) 

 
(B) 

 
These physical results match the experimental observations of the Aspect group [49] without requiring the photon traveling back 
in time, changing history, and being in two places at the same time.  Physics is restored, and an EOM is not a time machine. 
 
SCHRÖDINGER “BLACK” CATS 
A recent report in New York Times [52] entitled “Physicists Put Atom in 2 Places at Once” states, “a team of physicists has 
proved that an entire atom can simultaneously exist in two widely separated places.”  The article further states, “In the quantum 
‘microscale’ world, objects can tunnel magically through impenetrable barriers.  A single object can exist in a multiplicity of 
forms and places.  In principle, two quantum-mechanically ‘entangled’ objects can respond instantly to each other’s experiences, 
even when the two objects are at the opposite ends of the Universe.”  (This quantum mechanical prediction of the Spooky 
Actions at a Distance was disproved in the previous sections—Aspect Experiment-No Spooky Action at a Distance and Bell’s 
Theorem Test of Local Hidden Variable Theories (LHVT) and Quantum Mechanics).  Experimentally, interference patterns 
were observed by Monroe et al. [53] for a single 9Be  ion in a trap in a continuous Stern-Gerlach experiment.  The phenomenon 
is similar to that of the Aharonov-Bohm Effect which was erroneously interpreted as interference of electron wave-functions as 
given in the Aharonov-Bohm Effect section.  In this case, the erroneous interpretation of the experimental observation was that 
the ion wave-function interfered with itself wherein the ion was at two separate places at the same time corresponding to a wave 
function state called a “Schrödinger cat” state [52-54].  According to Monroe et al. [53], 

“A ‘Schrödinger cat’-like state of matter was generated at the single atom level.  A trapped 9Be  ion was laser-cooled to the 
zero-point energy and then prepared in a superposition of spatially separated coherent oscillator states.  This state was 
created by application of a sequence of laser pulses, which entangles internal (electronic) and external (motional) states of 
the ion.  The ‘Schrödinger cat’ superposition was verified by detection of the quantum mechanical interference between the 
localized wave packets.  This mesoscopic system may provide insight into the fuzzy boundary between the classical and 
quantum worlds by allowing controlled studies of quantum measurement and quantum decoherence.” 

The “Schrödinger cat” state analysis relies on the postulate that the Pauli Exclusion Principle applies to Rabi states 



Chapter 42 1696

wherein a rotation of the magnetic moment of the unpaired electron of an RF-trapped 9Be  ion is represented by a linear 

combination of spin 1/2 (
i

 ) and spin -1/2 (
i

 ) states.  Three steps of rotation of the spin magnetic moment by a time 

harmonic field provided by pairs of copropagating off-resonant laser beams which drove two-photon-stimulated Raman 
magnetic resonance transitions were each separated by displacement laser pulses which excited a resonant translational harmonic 
oscillator level of the trapped ion by coupling only with the 

i
  state.  According to Monroe, “this selectivity of the 

displacement force provides quantum entanglement of the internal state with the external motional state.  Although the motional 
state can be thought of as nearly classical, its entanglement with the internal atomic quantum levels precludes any type of 
semiclassical analysis.”  The interference was detected by exciting a fluorescent transition, which only appreciatively coupled to 
the 

i
  state.  Thus, the fluorescence reading was proportional to the probability P  the ion was in state 

i
 .  The “Schrödinger 

cat” superposition was supposedly verified by detection of the quantum mechanical interference between the localized wave 
packets. 

However, the interference arises not from the existence of the ion at two places at once.  The positively charged ion was 
excited to a time harmonic translational energy state, and the spin quantization axis was defined by an applied 0.20 mT  

magnetostatic field at an angle of 
4


 with respect to the x-axis of the RF-trap.  The frequency of the energy to “flip” the spin 

state was equivalent to the projection of that of the translational harmonic oscillator onto the spin axis 

   2cos 11.2 0.5 5.605 
2 4

spin
magx

E
MHz MHz

h

 



    (42.63) 

given by Eqs. (42.70-42.73), infra.  Thus, interference occurred between the Stern-Gerlach transition and the synchrotron 
radiation corresponding to the charged harmonic oscillator.  Since the displacement beams affected only motion correlated 
with the 

i
  state, a rotation of the magnetic moment such that 0   with application of the displacement beams gives rise to a 

phase shift of the interference pattern. 
 
EXPERIMENTAL APPROACH 
A classical approach to the description of the experiment and the results of Monroe [53] are given herein.  The corresponding 
description according to a “Schrödinger cat” state is given by Monroe [53]. 

A single 9Be  ion was confined in a coaxial-resonator radio frequency (RF)-ion trap [55] that provided harmonic 

oscillation frequencies of    , , / 2 11.2,  18.2,  29.8  x y z MHz      along the principal axes of the trap.  The ion was laser-

cooled to the quantum ground state of motion [56], and then the electronic and motional states were coherently manipulated by 
applying pairs of off-resonant laser beams, which drove two-photon stimulated Raman transitions.  The two internal states of 
interest were the stable  2

1/2 2, 2FS F m    and  2
1/2 1, 1FS F m    hyperfine ground states (denoted by 

i
  and 

i
 , 

respectively), separated in frequency by / 2 1.250 HF GHz   .  Here, F  and Fm  are quantum numbers representing the total 

internal angular momentum of the atom and its projection along a quantization axis.  The Raman beams were detuned by 
12 GHz    from the  2

1/2 2, 2FP F m    excited state, which acted as the virtual level, providing the Raman coupling.  The 

external motional states were characterized by the quantized vibrational harmonic oscillator states 
e

n  in the x dimension, 

separated in frequency by / 2 11.2 x MHz   . 

When the Raman beam difference frequency was tuned near HF  and the “carrier beams” a and b were applied, the 
magnetic moment of the ion was rotated away from the spin axis as described by Slichter [57].  By adjusting the exposure time 
of the carrier beams, for example, the electronic state was “flipped”—a 

i
  to 

i
  transition by a  -pulse or rotated into the 

x'y'-plane (the plane perpendicular to the spin axis) of the rotating coordinate system by a 
2


-pulse.  Transitions on the carrier 

did not significantly affect the state of motion, because beams a and b were copropagating.  When the Raman beam difference 
frequency was tuned near x , and the “displacement” beams b and c were applied, the displacement beams produced a “walking 

wave” pattern whose time-dependent dipole force resonantly excited the harmonic motion.  According to Monroe [53], this force 
promoted an initial zero-point state of motion 0

e
 to a coherent state expressed as: 

 
 

2

1/2exp
2 !

n

e en
n

n

 
 

  
 
 

  (42.64) 

where ie    is a dimensionless complex number that represents the amplitude and phase of the motion in the harmonic 
potential.  The probability distribution of vibrational levels in a coherent state is Poissonian with mean number of vibrational 
quanta 
 2n   (42.65) 
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The coherent state of motion is much like classical motion in a harmonic potential with amplitude  
 02 x  (42.66) 

where 

 
1/2

0 7.1 
2 x

x nm
M

 
  
 


 (42.67) 

was the root mean square Gaussian amplitude of the oscillating ion and M  was the mass of the ion. 
The polarizations of the three Raman beams, a, b, and c produced ,  /    , and    couplings, respectively, with 

respect to a quantization axis defined by an applied 0.20 mT  magnetic field which was at an angle of 
4


 with respect to the x-

axis of the RF-trap.  As a result, the displacement beams (b and c) affected only the motional state correlated with the 
i

  state, 

because the    polarized beam c could not couple the 
i

  state to any virtual 2
1/2P  states. 

The energy to flip the orientation of the atomic orbital due to its magnetic moment of a Bohr magneton, B , given by Eq. 

(1.227) is: 

 2
2

spin
mag B

g
E   B  (42.68) 

where  

 
2B

e

e

m
 


 (42.69) 

In the case that the magnetic flux density was 0.2 mT , the energy was: 

    24 3 272 2 1.00116 9.2741 10 0.2 10  3.714 10  spin
mag B

J
E g T J

T
           

 
B  (42.70) 

The resonance frequency is given by Planck’s equation 

 
27

73.714 10  
3.522 10  5.605 

spin
magE J rads

MHz
s


 

    
 

 (42.71) 

As demonstrated by Eq. (42.97) and Eq. (42.98), infra., energy is exchanged between the harmonic oscillator state and the spin 
state according to the dot product of the wavenumber vector of the spin transition and the harmonic displacement vector  

   2 2, cos 0.5
4

l
    k u  (42.72) 

Because the positively charged ion was excited to a time harmonic translational energy state along the x-axis, and the spin 

quantization axis was defined by an applied 0.20 mT  magnetostatic field at an angle of 
4


 with respect to the x-axis of the RF-

trap the frequency of the energy to “flip” the spin state was equivalent to the projection of that of the translational harmonic 
oscillator onto the spin axis 

   2cos 11.2 0.5 5.605 
2 4

spin
magx

E
MHz MHz

h

 



    (42.73) 

Each Raman beam contained 1 mW  of power at 313 nm .  This resulted in a two-photon Rabi frequency of 

250 
2

kHz



  for the copropagating Raman carrier beams a and b, or a  -pulse exposure time of about 1 s .  The 

displacement Raman beams (b and c) were applied to the ion in directions such that their wave vector difference dk  pointed 
nearly along the x-axis of the trap.  Motion in the y or z dimensions was therefore highly insensitive to the displacement beams.  

When the displacement beams were applied to a zero-point translational state (correlated with the 
i

  state) for time   on 

average a harmonic oscillator state of amplitude,  
 d     (42.74) 

was created.  Here, 0.205   is the Lamb-Dicke parameter and 300 
2

d kHz



  is the coupling strength of the displacement 

beams.  After each preparation cycle (described below), which spin state (
i

  or 
i

 ) the ion occupied was detected 

independent of its state of motion.  This was accomplished by applying a few microwatts of   -polarized light (“detection” 

beam d) resonant with the cycling  2
3/2 3,  3Fi

P F m      transition [radiative linewidth 19.4 
2

MHz


  at wavelength 

  313 nm  ] and observing the resulting ion fluorescence.  Because this radiation does not appreciably couple to the 
i

  

state, the fluorescence reading was proportional to the probability P  the ion was in state 
i

 .  The experiment was 
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continuously repeated—cooling, state preparation, detection—while slowly sweeping the harmonic oscillator phase  . 
 
STATE PREPARATION AND DETECTION 
The ion was first laser-cooled so that the 0x ei

n   state was occupied about 95% of the time.  Then, five sequential pulses of 

Raman beams were applied.  In step 1, a 
2


-pulse on the carrier rotated the magnetic moment into the plane perpendicular to the 

spin axis (z'-axis) in a coordinate system which rotates around the z'-axis.  The moment precessed about the x'-axis of the 
rotating coordinate frame described by Slichter [57].  The precessing moment had a time averaged projection onto the z'-axis 
equivalent to an equal superposition of states 0

ei
  and 0

ei
 .  In step 2, the displacement beams excited the motion 

correlated with the 
i

  component to a harmonic oscillator state /2i

e
e   .  In step 3, a  -pulse rotated the magnetic moment 

in the plane perpendicular to the spin axis such that the moment precessed about the negative x'-axis of the rotating coordinate 

frame described by Slichter [57].  The precessing moment was equivalent to the swap of the superposition of states 0
ei

  and 

ei
n  produced in step 1 to give component states 

ei
n  and 0

ei
 .  In step 4, the displacement beams excited the 

motion correlated with the 
i

  component to a second harmonic oscillator state /2i

e
e  .  In step 5, a final 

2


-pulse on the 

carrier rotated the magnetic moment to the spin axis to give 
ei

n , the initial spin state excited to an oscillator state of 

quantum number n , or 
ei

n , the flipped spin state excited to an oscillator state of quantum number n .  In the absence of 

interference between the oscillatory state and the spin state, 
ei

n  and 
ei

n  occur with equal probability.  The relative 

phases of the above steps were determined by the phases of the RF difference frequencies of the Raman beams which were 
easily controlled by phase-locking RF sources.  The experiment was continuously repeated—cooling, state preparation, 
detection—while slowly sweeping the harmonic oscillator phase  .  The relative populations of 

i
  and 

i
  depended on the 

phase difference   between the two oscillator states because of the interference of these states, and each coupled (interfered) 

with the Stern-Gerlach transition.  The state 
ei

n  underwent a transition to the higher energy spin state 
i

  by coupling to 

the energy of the oscillator state.  The amplitude of the oscillation,  , given by Eq. (42.74) is modulated by the interference 

between the displacement beam of step 2 having a phase 
2


 and step 4 having a phase 

2


.  The resultant amplitude,    , of 

the oscillation as a function of harmonic oscillator phase 
2


 was given by: 

  
2 2

2 2 sin
2

i i
e e

      
   

     
   

 (42.75) 

where the probability (Eq. (42.106), infra.) of detecting the 
i

  was 
2

   out of phase with the probability of the ion 

oscillatory state 
e

n  because the spin flip to the higher energy state occurred—
i i

   .  The interference of the oscillator 

states with the Stern-Gerlach transition was measured by detecting the probability  P   that the ion was in the 
i

  state for a 

given value of  .  The magnitude of the harmonic oscillator state was controlled by the duration of the applied displacement 
beams (Eq. (42.74)) in steps 2 and 4.  The phase of the harmonic oscillator state was controlled by the phase of the applied 
displacement beams in steps 2 and 4.  Monroe et al. report [53] on average the detection of one photon per measurement cycle 
when the ion was in the 

i
  state.  The data represented an average of about 4000 measurements, or 1 second of integration. 

The physical behavior of a large number of continuous Stern-Gerlach experiments (an ensemble) each detecting the spin 
state of a harmonic oscillating RF-trapped ion is equivalent to that of the interaction of ultrasound with Mössbauer gamma rays 
(interference of an electronic transition and an oscillator transition).  Consider the Lamb-Mössbauer formula for the absorption 
of a   ray of energy E by a nucleus in a crystal given by Maradudin [58] where, 
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 (42.76) 

In this equation, 0E  is the energy difference between the final and initial nuclear states of the absorbing nucleus, mE  and nE  are 

the energies of the eigenstates m  and n  of the crystal, respectively,   is the natural width of the excited state of the nucleus, 
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p is the momentum of the   ray,  lR  is the instantaneous position vector of the absorbing nucleus, Z is the crystal’s partition 

function,   1
T k  , and 0  is the resonance absorption cross section for the absorbing nucleus.  By expressing the 

denominator of Eq. (42.76) as an integral, Eq. (42.76) is equivalent to:  

      0

1
exp ; exp ;0

2
i t t

a E dte i l t i l   






           k u k u  (42.77) 

wherein the position vector  lR  is 

      l l l R x u  (42.78) 

For, Eq. (42.78),  lx  is the position vector of the mean position of the absorbing nucleus, and  lu  is its displacement from the 

mean position.  Eq. (42.77) follows from Eq. (42.76) with the following substitutions: 

 
1   

 
p k


 (42.79) 

 0E E    (42.80) 

 
2

 



 (42.81) 

and  ;l tu  denotes the Heisenberg operator, 

    ; ;0
t t

i H i H

l t e l e
      
   u u   (42.82) 

where H  is the Hamiltonian.  The angular brackets in Eq. (42.77) denote an average over the canonical ensemble of the crystal. 
The probability  P   that the ion of the experiments of Monroe et al. [53] was in the 

i
  state for a given value of   is 

herein derived from the correlation function for the statistical average of large number of continuous Stern-Gerlach experiments 
(an ensemble) each detecting the spin state of a harmonic oscillating RF-trapped ion which is equivalent to that of the interaction 
of ultrasound with Mössbauer gamma rays.  From Eq. (42.77), the correlation function  Q t  of acoustically modulated gamma 

ray absorption by Mössbauer nuclei is  

      exp ; exp ;0Q t i l t i l         k u k u  (42.83) 

In the present case, the position vector is given by Eq. (42.78) where  lx  is the position vector of the mean position of the 

trapped ion, and  lu  is its displacement from the mean position.  In this case, p and k of Eq. (42.79) are the momentum and the 

wavenumber, respectively, of the ion corresponding to the spin flip, E  of Eq. (42.80) is the energy of the harmonic oscillator, 

0E  is the difference in energy between the 
i

  and 
i

  states, and  ;l tu  of Eq. (42.82) is:  

    ; ;0
t t

i E i E

l t e l e
      
   u u   (42.84) 

The matrix elements of Eq. (42.83) are calculated by using the theorem [59]: 

 
     

1
,

2          if  , , , , 0
A BA B A Be e e e A B A A B B           (42.85) 

For a harmonic oscillator, the commutator of  ;l tk u  and  ;0lk u  is a c  number; thus, 
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 (42.86) 

Since the correlation function applies to an ensemble of harmonic oscillator states, the first thermodynamic average can be 
simplified as follows: 

         21
exp ; ;0 exp ; ;0

2
i l t l l t l                  
k u u k u u  (42.87) 

This theorem is known in lattice dynamics as Ott’s theorem [60] or sometimes as Bloch’s theorem [61].  Using the time 
independence of the harmonic potential, Eq. (42.87) is: 

         
2 2 21 1 1

exp ; ;0 exp ; ;0
2 2 2

l t l l t l                          
k u u k u k u  (42.88) 

   2
                                                   exp l    k u  (42.89) 

Substitution of Eqs. (42.87-42.89) into Eq. (42.86) gives 
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        2 1
exp ; exp ; ,   ;0

2
Q t l t l t l

              
k u k u k u  (42.90) 

Expanding  ;l tu  in terms of the normal coordinates of the harmonic potential and the phonon operators of that harmonic 

potential gives: 

  
   
 

 
1

2
†

1

2

;
2

s s

s
i t i t

s s
sl

s

B l
u l t b e b e

M
 





 
  
 


 (42.91) 

where   labels the Cartesian components, lM  is the mass of the ion in the l th experiment, s  is the frequency of the s th 

normal mode,    sB l  is the associated unit eigenvector, and †
sb  and sb  are the phonon creation and destruction operators for the 

s th normal mode.  By use of the coordinate expansion, the exponential of the correlation function appearing in Eq. (42.90) can 
be written as 
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where the following substitutions were made: 
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and where the Bessel function relationship [62]: 

 
   

11

2
x y y n

n
n

e J x y
 



   (42.96) 

was used.  sn  is the mean number of phonons in the s th mode at temperature T .  In the case of Monroe’s experiments [53], the 

correlation function for the exchange of energy between a harmonic oscillator state and a spin state was independent of time—
not a function of si te   and si te  .  Thus, the time dependent factors are dropped in Eq. (42.92), and combining Eqs. (42.90-42.92) 
and Eq. (42.92) gives the correlation function as 

    2 2 2
0exp 2s s s

s

Q c c J c      (42.97) 

For the experiment of Monroe et al. [53], the ion was laser-cooled so that the 0x ei
n   state was occupied about 95% of the 

time; thus, the partition function of Eq. (42.76) is equal to one.  Eq. (42.95) is 
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 (42.98) 

The harmonic frequency was s x   with 1s   in Eq. (42.92) where the sum is over the ensemble of translational harmonic 

oscillator modes for a series of “Schrödinger cat” state experiments—each a specific Raman beam pulse sequence with 
measurement; therefore, the correlation function is 

    2 2 2
0exp 2s s sQ c c J c      (42.99) 

Monroe et al. [53] measured the probability of spin state 
i

  as a function of the phase angle of the displacement lasers of steps 

2 and 4.  The probability  P   of detecting the 
i

  state as a function of phase angle,  , can be derived from the correlation 
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function, Eq. (42.99).  The expansion of the Bessel function is:  
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where  1 !m m    was used.  The probability distribution function of vibrational levels in a coherent state is Poissonian.  The 

probability [63] of a spin flip with the emission of m  phonons is: 
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    (42.101) 

with mean number of vibrational quanta 2n   (Eq. (42.65)).  The probability  P   can be derived by factoring Eq. (42.101) 

from the Bessel function of the correlation function (Eq. (42.99)) and its expansion which follows from Eq. (42.100). 
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Combining Eq. (42.101) and Eq. (42.102) demonstrates that the probability  P   is proportional to: 
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Let 2x y , then the change of variable in Eq. (42.103) is: 
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Let ' / 2m m , then the change of variable in Eq. (42.104) is: 
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The series expansion of  cos x  is: 

    
 

2

0

cos
2 !

m

m

x
x

m






   (42.106) 

Combining Eq. (42.99) and Eqs. (42.103-42.106) gives the probability  P   proportional to: 

    2cos 2 sP c    (42.107) 

where 2
sy x c  .  The quantization axis was at an angle of 

4


 with respect to the x-axis.  From Eqs. (42.65-42.67), Eq. 

(42.75), and Eq. (42.98), 

 2 2 2sin
2sc
  (42.108) 

Combining Eq. (42.107) and Eq. (42.108) gives the probability  P   proportional to: 
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Combining Eq. (42.99), Eq. (42.108), and Eq. (42.109) gives the probability  P   proportional to: 

   2 2 2 2 21 cos
exp sin cos 2 sin exp cos 2 sin

2 2 2
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 (42.110) 

The rotation of the magnetic moment with RF fields such that 0   with application of the displacement beams is 
equivalent to a phase shift of the correlation function given by Eq. (42.83). 

      exp exp ; exp ;0Q t i i l t i l         k u k u  (42.111) 

Thus, Eq. (42.110) is phase shifted. 

   2 21 cos
, exp cos 2 sin

2 2
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 (42.112) 

The probability of detecting either 
i

  or 
i

  is one.  The initial state of the ion for each cycle is 
i

 .  Consider the 

2


-pulses (steps 2 and 5).  In the absence of interference between the oscillator states and the Stern-Gerlach transition with 

0  , the probability of detecting 
i

  or 
i

  is the same—1/2.  However, with interference, the spin flip to the higher energy 

state occurs, 
i i

   .  The probability of detecting 
i

  with interference is given by 1/2 minus the probability function, Eq. 

(42.112), normalized to 1/2.  The probability function for the detection of 
i

  with interference as a function of phase angle,  , 

harmonic oscillator amplitude,  , and phase shift,  , is:  

  
2 21 cos

1 exp cos 2 sin
2 2

,
2

P

   
 

                 (42.113) 

The plot of the probability  P   of detecting the 
i

  state as a function of phase angle,  , harmonic oscillator amplitude,  , 

and phase shift,  , using the values of the curve fit parameters of Monroe et al. [53] are given in Figures 42.12 and 42.13.  

Monroe et al. report [53] on average the detection of one photon per measurement cycle when the ion is in the 
i

  state.  The 

data represented an average of about 4000 measurements, or 1 second of integration. 
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Figure 42.12.   The plot of the probability  P   (Eq. (42.113)) of detecting the 
i

  state as a function of phase angle,  , 

for the harmonic oscillator amplitude,  , and phase shift, 0  .  Curves in (A) to (D) represent experiments with various 
values of   (2, 3, 5, and 15  s, respectively).  The curves are fits of the measurements to the values of Monroe et al. [53] for 
the parameter   of  =0.84, 1.20, 1.92, and 2.97, respectively. 
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Figure 42.13.   The plot of the probability  P   (Eq. (42.113)) of detecting the 
i

  state as a function of phase angle,  , 

for the harmonic oscillator amplitude, 1.5  , and phase shift,  .  Curves in (A) to (C) are fits of the measurements to the 
values of Monroe et al. [53] for the parameter   of  =1.03 , 0.48 , and 0.06 , respectively. 
  

 
 
These results confirm that classical physics predicts the interference patterns observed by Monroe et al. [53] for a single 

9Be  ion in a trap in a continuous Stern-Gerlach experiment without the requirement of Monroe [53] or Browne [52], “that an 
entire atom can simultaneously exist in two widely separated places.” 
 
SCHRÖDINGER FAT CATS—ANOTHER FLAWED INTERPRETATION 
In 1935, Schrödinger [65] proposed a famous thought experiment in an attempt to demonstrate the limitations of quantum 
mechanics.  He proposed a preposterous situation predicted by quantum mechanics in which a cat is put in a quantum 
superposition of alive and dead states.  Believing in the validity of quantum mechanics has repetitively caused theoreticians to 
misinterpret and misrepresent physical observations as supporting such notions that lie outside the bounds of common sense or 
physical reality.  For example, a recent report in The New York Times [64] entitled “Here, There and Everywhere: A Quantum 
State of Mind” states, “Physicists at Delft University of Technology have put a 5-micrometer-wide loop of superconducting wire 
into a ‘quantum superposition’ of two contradictory possibilities: in one, the current flows clockwise; in the other, current flows 
counterclockwise.”  The article further states, “In the realm of atoms and smaller particles, objects exist not so much as objects 
as mists of possibilities being here there and everywhere at the same time–and then someone looks and the possibilities suddenly 
collapse into definite locations.”  The experiment was a simplified version of the concept of Schrödinger’s cat. 

Instead of a cat, Friedman et al. [66], a Stony-Brook group working separately from the researchers at Delft, used a small 
square loop of superconducting wire linked to a SQUID (Superconducting Quantum Interference Device).  A SQUID comprises 
a superconducting loop with a Josephson junction, a weak link that causes magnetic flux to be linked in integer units of the 
magnetic flux quantum.  When the loop is placed in an external magnetic field, the loop spontaneously sets up an electrical 
current to cancel the field or generate an additional magnetic field, adjusting the magnetic field to a unit of the magnetic flux 
quantum, one of the allowed values.  In the experiment of Friedman et al. [66], the loop was placed in a magnetic field equal to 
one half of the first allowed value, a magnetic flux quantum.  Thus, the loop could set up either a current to raise the field 
strength to the first allowed value, or with equal probability, a current of equal magnitude flowing in the opposite direction to 
cancel out the external field.  A pulse of microwaves was applied at the frequency to cause a transition of the magnetic moment 
of the current loop as an entirety.  The absorption of microwaves caused the magnetic state of the SQUID to change and the 
current to reverse its direction. 

Experimentally, a measurement always gave one of the two possible answers, clockwise or counterclockwise, never a 
zero cancellation.  A difference in energy at which the flip transition occurred between the two possibilities was detected by a 
group led by J. Lukens and J. Friedman at the State University of New York (SUNY) [66].  A simple explanation was that the 
microwaves simply flipped the current direction which had an energy bias in one direction versus the opposite based on the 
corresponding presence or absence of a magnetic flux quantum within the SQUID.  Rather, they interpreted the results as 
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experimental evidence that a SQUID can be put into a superposition of two magnetic flux states: one corresponding to a few 
microamperes of current flowing clockwise and the other corresponding to the same amount of current flowing anticlockwise.  
“Just as the cat is neither alive nor dead but a ghostly mix of the two possibilities, the current flows neither clockwise or 
counterclockwise, but is a mix of the two possibilities [64].”  According to Friedman, “we can have two of these 
macroscopically well-defined states at the same time.  Which is something of an affront to our classical intuitions about the 
world [64].” 

Current running in both directions simultaneously is nonsensical.  Current is a vector and must have only one direction. 
The energy difference observed by Friedman et al. can be explained CLASSICALLY.  The experimental apparatus comprised 
a small SQUID coupled to a large current loop.  A second SQUID magnetometer read the flux state of the first sample SQUID.  
The energy difference was not due to superposition of flux states.  Rather, it was due to the nature of the electron which carries 
the superconducting current and links flux in units of the magnetic flux quantum.  Consequently, the sample SQUID linked zero 
or one magnetic flux quantum.  When excited by electromagnetic radiation of a resonant frequency, individual electrons undergo 
a spin-flip or Stern-Gerlach transition corresponding to a reversal of the electron magnetic moment, angular moment, and 
current.  The Stern-Gerlach transition energies of electrons superimpose.  The energy difference observed by Friedman et al. 
matches the energy corresponding to the flux linkage of the magnetic flux quantum by the ensemble of superconducting 
electrons in their entirety with a reversal of the corresponding macroscopic current.  The linkage was caused by high power 
microwave excitation of a Stern-Gerlach transition of the magnetically biased loop which caused a concomitant change in the 
flux state of the separately magnetically biased sample SQUID.  In this case, the microwave frequency was kept constant, and 
the bias flux of the loop was scanned at a fixed magnetic bias of the sample SQUID until the resonance with the superposition of 
the Stern-Gerlach transitions of the superconducting electrons in their entirety was achieved. 
 
SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE (SQUID) 
The electron possesses an angular momentum of  .  As shown in the Electron g Factor section, the electron angular momentum 
comprises kinetic and vector potential components.  Angular momentum is conserved in the presence of an applied magnetic 
field when the electron links flux in units of the magnetic flux quantum,  . 

 0 2

h

e
   (42.114) 

This occurs when the electron rotates by 
2


 radians about an axis perpendicular to the axis parallel to the magnetic flux lines.  

This electron rotation corresponds to an 
2


 magnitude, 180  rotation of the electron’s angular momentum vector.  In the case 

that the electrons carry current, this change in momentum of a given current-carrying electron increases or decreases the current 
depending on the vector projection of the momentum change onto the direction of the current.  Recently, it has been 
demonstrated that 50-nm-diameter rings of InAs  on a GaAs  surface can host a single circulating electron in a pure quantum 
state, that is easily controlled by magnetic fields and voltages on nearby plates.  The electrons were observed to link flux in the 
unit of the magnetic flux quantum with a gain in a unit of angular momentum in a specific direction with the linkage [67] as 
given in the Aharonov-Bohm Effect section.  Since the electron links flux in units of the magnetic flux quantum, the magnetic 
flux that links a superconducting loop with a weak link called a Josephson junction is the magnetic flux quantum.  The factor of 
2e  in the denominator of the magnetic flux quantum (Eq. (42.114)) has been erroneously interpreted [68] as evidence that 
Cooper pairs are the superconducting current carriers which is central to the BCS theory of superconductors.  However, single 
electrons, not electron pairs, are the carriers of the superconducting current. 

The supercurrent and the linkage of flux is dissipationless; thus, the general form of the equation for the energy of a 
Josephson junction is a harmonic function as given by Fowles [69].  Each electron links flux only in units of the magnetic flux 
quantum,  , given by Eq. (42.114).  Thus, the parameter in terms of the applied flux,  , that corresponds to the natural 

frequency of a harmonic oscillator is the magnetic flux quantum,  .  From Friedman et al. [66]: 

 
The simplest SQUID (the radio frequency (r.f.) SQUID) is a superconducting loop of inductance L  broken by a 
Josephson junction with capacitance C  and critical current cI .  In equilibrium, a dissipationless supercurrent can flow 

around this loop, driven by the difference between the flux   that threads the loops and the external flux x  applied to 

the loop.  The dynamics of the SQUID can be described in terms of the variable   and are analogous to those of a 

particle of “mass” C  (and kinetic energy 21

2
C ) moving in a one-dimensional potential given by the sum of the 

magnetic energy of the loop and the Josephson coupling energy of the junction. 
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where 0  is the flux quantum, 
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  (42.116) 
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and  

 
0

2 C
L

LI 


 (42.117) 

For the parameters of our experiment, this is a double-well potential separated by a barrier with a height depending on 

cI .  When 0

2x


   the potential is symmetric.  Any change in x  then tilts the potential [...].   

 
In the experiment of Friedman et al. [66], the flux state of the sample SQUID was zero or one fluxon.  A static current 

flowed either clockwise or counterclockwise around the loop to cancel or augment x  such that an allowed fluxon state was 

maintained.  
 
EXPERIMENTAL APPROACH 
The SUNY experiment was a macroscopic Stern-Gerlach experiment on a macroscopic current loop coupled to a small d.c. 
SQUID (sample SQUID).  The SQUID and the current loop were independently biased with externally applied flux.  From 
Friedman et al. [66]: 
 

The SQUID used in these experiments was made up of two / /xNb AlO Nb  tunnel junctions in parallel as shown in 

Figure 42.14.  This essentially acts as a tunable junction in which cI  can be adjusted with a flux . .xd c  applied to the 

small loop of the d.c. SQUID.  Another flux x  applied to the loop tuned the tilt   of the potential wherein . .xd c  tuned 

the barrier height 0U  at 0  .  The SQUID was biased such that it was in a zero or one fluxon state.  A separate d.c. 

SQUID inductively coupled to the sample acted as a magnetometer, measuring the flux state of the sample SQUID: zero 
or one fluxon.   
 
The sample SQUID used in the experiments was characterized by the following three energies:  

 
the charging energy 
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e
E mK

C
   (42.118) 

the inductive energy 
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   (42.119) 

and a tunable Josephson coupling energy 

 0 . . . .
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 (42.120) 

The angular frequency of the plasma, J , associated with these parameters was 11 11.5 1.8  10   (24 29 )X rad s GHz   

depending on the value of . .xd c .  The fact that ,  c L JE E E
 
confirms that flux was the proper basis to describe the SQUID’s 

dynamics. 
The sample was encased in a PdAu radiation shield with a coaxial cable entering the shield to provide for the controlled 

application of external microwaves.  The apparatus was carefully filtered and cooled to about 40 mK in a dilution refrigerator. 

The flux x  tilted the potential from being symmetric at 0

2x


   according to Eq. (42.115).  It was varied over the 

range 0 0
0 0 011.5  < < 15.5 

2 2
m m

 
     .  The barrier height 0U  was varied over the range 08.559  9.117 K U K   .  

The SQUID was established in one state and excited with a pulse of high power 96.0  (4.61 )GHz K  microwaves as x  was 

scanned.  The values of x  at which photon absorption occurred with a change of flux state of the SQUID was recorded at a 

fixed barrier height 0U .  The experiment was repeated with 0U  changed. 

The system was initially prepared in a zero or one fluxon state with an energy barrier 0U  and a tilt energy  .  

Millisecond pulses of 96 GHz microwave radiation at a fixed power were then applied.  When the energy difference between the 
initial and final states matched the resonance frequency as   was varied for a given 0U , the system had an appreciable 

probability of changing flux state which was detected by the magnetometer.  The experiment was repeated for different values of 

0U . 
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Figure 42.14 .  The experimental set-up. 

 
 
DATA 
The probability of the sample SQUID making a flux state transition when a millisecond pulse of 96.0  (4.61 )GHz K  

microwaves was applied was recorded as shown in Figure 42.15.  For each 0U , two peaks were observed as x  was varied.  

As the energy barrier 0U  was reduced, the observed peaks moved closer together and then separated without crossing.  For 

0 9.117 U K   (thick solid curve), the right peak corresponds to level 0  which has a greater relative amplitude than the left 

peak which corresponds to level 1 .  When 0U  was decreased to 8.956 K  (dotted curve), the peaks moved closer, and the 

asymmetry disappeared.  As the barrier was decreased further (8.797 K  is the dashed curve), the peaks moved apart again, and 
the asymmetry reappeared.  But, in this case, the left larger peak corresponded to level 0 .  Thus, with a barrier change of about 

2  0.14 X K , the two levels passed through the point at which the levels were symmetrical according to Eq. (42.115) at about 

0 8.956 U K   and changed roles without actually intersecting.  The insert shows the position of the peaks in the main figure 

(as well as other peaks) in the 0 xU   plane.  Two examples of the convergence and divergence of the peaks in the 0 xU   

plane at point where the levels were symmetrical according to Eq. (42.115) were observed.  The dashed line in the insert 
represents the locus of points where the calculated top of the energy barrier was 96 GHz above state i .  All of the data lies to 

the left of the dashed line and therefore, corresponds to levels that are below the top of the barrier according to Eq. (42.115). 
 
Figure 42.15.   The probability switchP  of making a flux state transition when a millisecond pulse of 96-GHz microwave 

radiation is applied.  For clarity, each curve is shifted vertically by 0.3 relative to the previous one.  The insert shows the position 
of the observed peaks in the 0 xU   plane.  This image reproduced with permission from Nature. 

 
 

The inductance L and the impedance /Z L C  of the loop, and the Josephson coupling parameter L  of the sample 

SQUID were measured independently.  The values were 240 15 L pH  , 48.0 0.1 Z    , and 2.33 0.01L   .  The energy 



Chapter 42 1708

levels of the flux states 0  and 1  levelE  as a function of   relative to their mean energy  0 ,mean xE U   using the 

experimentally measured L, Z, and L  are shown in Figure 42.16.  At the middle at which point the levels were symmetrical 

according to Eq. (42.115), the two levels have a splitting of about 0.14 K   in energy and the upper level is about 0.14 K   
below the top of the energy barrier as calculated from Eq. (42.115).   
 
Figure 42.16.   Energy of the measured peaks relative to the calculated mean of the two levels as a function of  .  This image 
reproduced with permission from Nature. 
 

 
 

The quantum dynamics of the SQUID was determined by the flux through the loop, a collective phenomenon 
representing the superposition of about 1010  electrons acting in tandem.  Since the experimental temperature was about 500 
times smaller than the superconducting gap, almost all of the microscopic degrees of freedom were frozen out, and only the 
collective flux transition retained any dynamic relevance.  The flux states 0  and 1  differed in flux by 0  and differed in 

current by 2 3 A .  Given the geometry of the SQUID this corresponded to a local magnetic moment of 1010  B . 

 

QUANTUM INTERPRETATION 
According to quantum theory, a superposition of fluxoid states 0  and 1  would manifest itself in an anticrossing defined as 

the lifting of the degeneracy of the energy levels of the two states at the point at which the states would be degenerate in the 
absence of coherence.  Coherent tunneling lifts the degeneracy so that at the degeneracy point, the energy eigenstates are the 

symmetric and antisymmetric superposition of flux-basis states:  1
0 1

2
  and  1

0 1
2

 .  The energy difference E  

between the two states is given approximately by 

 2 2   E  (42.121) 
where 

 
is known as the tunnel spitting.  For a given 0U , Eq. (42.115) predicts that two peaks would be observed as   is 

varied by varying x .  It further predicts that the peak separation should decrease and cross as the experiment is repeated for 

different values of 0U .  The lifting of degeneracy or splitting was anticipated to be observed as a decrease in peak separation 

and a reversal of the flux states in the 0 xU   plane without crossing.  Friedman et al. sought to demonstrate the existence of 

such a splitting to support the notion of superposition of flux states corresponding to clockwise and counterclockwise currents 
simultaneously. 
 
CLASSICAL INTERPRETATION 
Two sets of peaks are given by Eq. (42.115) which is derived from CLASSICAL PHYSICS.  The nondegeneracy of the energy 
levels and the absence of crossing of the peaks was due to the linkage of flux by the electrons of the supercurrent. 

As given in the Electron g Factor section (Eq. (1.164)), the angular momentum of the electron in the presence of an 
applied magnetic field is  
 ( )em e  L r v A  (42.122) 

where A  is the vector potential of the external field evaluated at the location of the electron.  Conservation of angular 

momentum of the electron permits a discrete change of its “kinetic angular momentum” ( )mr v  by the field of 
2


, and 
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concomitantly the “potential angular momentum” ( )er A  must change by 
2




.  To conserve angular momentum in the 

presence of an applied magnetic field, the electron magnetic moment can be parallel or antiparallel to an applied field as 

observed with the Stern-Gerlach experiment, and the flip between orientations  (a rotation of 
2


) is accompanied by the 

“capture” of the magnetic flux quantum by the electron. 
According to Eq. (1.168), the energy to flip the orientation of the atomic orbital due to its magnetic moment of a Bohr 

magneton, B , is  

  2spin moment
mag BE B   (42.123) 

where  

 
2B

e

e

m
 


 (42.124) 

The energy change corresponding to the “capture” of the magnetic flux quantum is derived below.  From Eq. (1.171), the energy 
stored in the magnetic field of the electron is: 
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The atomic orbital is equivalent to a Josephson junction which can trap integer numbers of fluxons where the quantum of 

magnetic flux is 
2

h

e  .  Thus, Eq. (1.181) gives: 

 2
2

fluxon
mag BE B

 


   (42.126) 

The principal energy of the transition of reorientation of the atomic orbital is given by Eq. (1.168).  And, the total energy of the 
flip transition is the sum of Eq. (1.181), the energy of a fluxon treading the atomic orbital and Eq. (1.168), the energy of 
reorientation of the magnetic moment (Eqs. (1.226-1.227)).  Considering only the magnetic energy term, 

 2
2

spin
mag B BE B B

 


    
 

 (42.127) 
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    (42.128) 

 spin
mag BE g B   (42.129) 

The spin-flip transition can be considered as involving a magnetic moment of g  times that of a Bohr magneton.  The g  factor is 

redesignated the fluxon g  factor as opposed to the anomalous g  factor.  The value of 
2

g
 considering only the first term is 

1.00116.  The experimental value is 1.00116.  (See Eqs. (1.236-1.237)). 
The energy difference   of the flux states 0  and 1  was not the tunnel spitting energy sought by Friedman et al. to 

support the notion of superposition of flux states corresponding to clockwise and counterclockwise currents simultaneously.  The 
microwaves simply flipped the current direction which had an energy bias in one direction versus the opposite based on the 
corresponding presence or absence of a magnetic flux quantum within the SQUID.  The energy difference was due to the linkage 
of flux by the current carrying superconducting electrons with a reversal of the current direction and a corresponding change in 
the flux state of the sample SQUID.  The loop and SQUID transition resulted from a Stern-Gerlach transition of a magnetic 
moment of 1010  B  that was equivalent to the superposition of 1010  electrons.  The macroscopic spin-flip occurred by the 

absorption of high power microwave energy at the 96 GHz resonance frequency of the equivalent macroscopic magnetic 

moment.  The energy of the 1010  electrons linking flux of 0

1

2
  is calculated from Eq. (42.126) by determining the magnetic flux 

due to 1010  electrons. 
The magnetic moment of 1010  electrons,  , is given by the number of electrons times a Bohr magneton B  of magnetic 

moment per electron. 
 1010 B   (42.130) 

The magnetic moment is equal to the current of the loop I  times the area of the loop A . 
 1010 B IA    (42.131) 

The magnetic flux B  is given by one half the magnetic flux quantum   divided by the area of the loop which is given by Eq. 

(42.131). 
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The energy of the 1010  electrons linking flux of 0

1

2
  by reversing the direction of supercurrent is calculated from Eq. (42.126) 

and Eq. (42.132) wherein the energy is one half that given by Eq. (42.126) because the flux state of the loop is initially biased at 
about the symmetrical point. 
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The linkage of 0

1

2
  occurs when the electron rotates by 

2


 radians about an axis perpendicular to the axis parallel to the 

magnetic flux lines.  This electron rotation corresponds to an 
2


 magnitude, 180  rotation of the electron’s angular momentum 

vector.  Since the electrons carry current, this reversal in momentum reverses the current according to the vector projection of 
the momentum change onto the direction of the current.  Since the current reverses direction when a magnetic fluxon treads the 
loop of the SQUID, the current I  is given by one half of the critical current cI .  The critical current cI  may be calculated from 

the Josephson coupling parameter L  of the sample SQUID given by Eq. (42.117) using the independently measured value of 

2.33 0.01L    and the inductance 240 15 L pH  . 
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Substitution of one half cI  given by Eq. (42.134) into Eq. (42.133) gives the energy difference between the flux states. 
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Using Eqs. (42.115-42.117), the Josephson coupling energy of the junction JU  can be written in a form that is similar to that 

given by Eq. (42.135).  From Eq. (42.115), 

 0 cos 2J LU U  


 
   

 (42.136) 

Substitution of Eq. (42.116) for 0U  and Eq. (42.117) for L  gives 
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The SQUID links flux in integer units of the magnetic flux quantum; thus, the Josephson coupling energy of the junction JU  is 
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  (42.138) 

The switch between Stern-Gerlach states is predicted to be Lorentz with a maximum transition intensity or probability at 
the energy level of 96 GHz difference between the states.  The energy of the magnetic level 0  or 1  was tuned by the flux 

. .xd c  which was tilted by flux x  applied to the large current loop.  In the case that the flux . .xd c  corresponded to an energy 

level above the symmetrical case according to Eq. (42.115), the initial flux state 0  underwent a transition to the state 1  at a 

higher flux x  than in the case that 1  under went a transition to the state 0 .  In the case that the flux . .xd c  corresponded to 

an energy level above the symmetrical case according to Eq. (42.115), the situation was reversed.  The states were 
nondegenerate at the symmetrical point according to Eq. (42.115) because an energy bias existed based on the presence or 
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absence of a magnetic flux quantum within the SQUID.  Consequently, the energy difference of the peaks decreased to a 
minimum as the symmetrical point was approached, reversed assignments without crossing, and separated again.  The data 
demonstrate a difference in the energies of the flux states even at the point at which they were symmetrical according to Eq. 
(42.115).  The difference was due to linking of flux by the superconducting electrons.  The transition probability of state 0  to 

the state 1  occurred with slightly greater probability than the later since the potential energy of the state 0  was greater than of 

the state 1 .  Thus, the intensity ratios of the peaks reversed also with the interchange of the assignments of the peaks as shown 

in Figure 42.15.  

The energy of the 1010  electrons linking flux of 0

1

2
  is equivalent to the energy difference   of the flux states 0  and 

1  of about 0.14 K   measured by Friedman et al as shown in Figure 42.16.  The energy of the highest energy level is 

predicted to be about 0.14 K   below that given by Eq. (42.115) since the SQUID is biased by about 0

1

2
  with flux . .xd c  

which is perturbed by flux x .  The measured value of about 0.14 K   is in good agreement with the predicted value. 

The phenomenon observed by Friedman et al. [66] is similar to that of the Aharonov-Bohm Effect and the results of 
Monroe et al. [53] given in the Aharonov-Bohm Effect section and the Schrödinger “Black” Cats section, respectively.  In the 
first case, the results of a damped harmonic oscillatory behavior of the ratio of the change in resistance and the resistance as a 
function of the flux applied to a current loop was erroneously interpreted as interference of electron wave-functions.  The results 
were due to the linkage of flux by electrons in units of the magnetic flux quantum.  In the latter case, the results were 
erroneously interpreted as demonstrating that an entire atom can simultaneously exist in two widely separated places and 
interfere with itself.  The results were due to an interference between an oscillatory translational mode and a Stern-Gerlach 
transition of the electron of a trapped charged ion.  Similarly, the SUNY results confirm that classical physics predicts the 
splitting or difference in energy between flux states observed by Friedman et al.  The behavior of a biased SQUID coupled to a 
biased macroscopic loop having the possibility of either clockwise or counterclockwise current that is interchanged by a Stern-
Gerlach experiment is predicted quantitatively.  The prediction is without the requirement of Friedman et al. [66] or Chang [64], 
that “Physicists have put a loop of superconducting wire into a ‘quantum superposition’ of two contradictory possibilities: in 
one, the current flows clockwise; in the other, current flows counterclockwise.” 

 
CLASSICAL ALL THE WAY UP 
Since a SQUID is quantized in its excited-energy states according to the magnetic flux quantum imposed by the intrinsic z-

component of angular momentum of each electron of 
2


, it can be integrated into instrumentation that has unique capabilities 

such as extreme measurement sensitivity or control via exploiting this quantization.  For example, SQUID magnetometers 
employ a resonant RF tank circuit that is inductively coupled to the SQUID as the primary flux-sensing component that has 
extreme sensitivity due to the flux quantization of the measured field at the fine level of the magnetic flux quantum 0 . The 

characteristic frequency of a SQUID based on the Josephson effect called the Josephson constant is precisely reproducible 
independent of device design, material, measurement setup, etc.  The recommended value is [70]: 

 
2

0.483597879 /J

e
K GHz V

h
   (42.139) 

No correction terms are required in a practical implementation of using the Josephson effect and constant as a standard for 
calibrating or defining the volt by an exact voltage-to-frequency conversion, combined with the cesium-133 time reference, as 
decided by the 18th General Conference on Weights and Measures.  Typically an array of several thousand or tens of thousands 
of junctions are used, excited by microwave signals between 10 and 80 GHz depending on the array design [71].  A Josephson 
junction qbit is another device comprising a SQUID.  The qbit, in principle, can accept energy in quantized units from an excited 
resonator.  Conversely, by exploiting the SQUID quantization of energy levels, the qbit is also permissive of driving systems, 
even macroscopic systems, with quantized excitation when such as system is capable of quantized resonances.  The resonance 
energy exchanges between the energy levels of the two systems, qbit and macroresonator, may occur when the pair are tuned to 
be coupled.  Familiar quantized macrodevice candidates are lasers, masers, resonators, and waveguides.  The list of candidate 
quantization-capable devices may even be extended to those that employ mechanical with optoelectronic elements that are 
inherently quantized.  Both of the resonantly coupled systems must obey the same physical laws in order to exchange energy.  
Such a classical-physics based tunable resonance energy coupling between qbit and an optoelectronics-mechanical macrodevice 
has been achieved experimentally [72] again demonstrating that classical physics applies to all levels, atomic to macroscale.  
Lacking the knowledge of the classical solutions and behavior of electrons, the device has been mischaracterized in terms of 
quantum mechanics. 

Recently O’Connell et al. [72] claimed to have achieved a quantum state of motion for a mechanical object by causing a 
Josephson junction qbit to be entangled with a macroscopic mechanical resonator and thereby extending, in their opinion, the 
weird rules of quantum mechanics such as zero-order vibration and entanglement to the macroworld.  In reality, O’Connell’s 
team has only shown that classical physics applies to the macroworld by a mechanism that also proves that it applies to the 
atomic scale; moreover, zero-order vibration is experimentally shown to be nonexistent.  Based on the experimental data 
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provided [72], it is easy to confirm that the device that they fabricated and tested is no more than a variant of a SQUID, a known 
macrodevice.  However, it uniquely exploits piezoelectricity to form the weak link of a superconducting loop to enable the 
device.  Specifically, the device comprised a superconducting microwave circuit having a circuit element of a capacitor with 
aluminum electrodes filled with an AlN piezoelectric dielectric wherein the assembly was attached only by aluminum leads such 
that it was mechanically free to vibrate by contraction and expansion of the piezoelectric layer.  The mechanical resonator 
produced and responded to an electric field due to the correspondence between the mechanical distortion manifested as vibration 
and the piezoelectric field.  The constraint of quantized flux linkage in units of the magnetic flux quantum, 0 / 2h e  , 

correspondingly quantized the mechanical vibrational frequency.  The circuit dimensions and resonant circuit including 
excitation electronics were typically of those of prior SQUIDs.   

As shown in the exemplary corresponding sections regarding macrocurrent loops that comprise SQUIDs and demonstrate 
the Aharonov-Bohm Effect, the physics of single electrons can be manifest on the macroscale when the metal becomes a 
superconductor.  The operating temperature of 25 mK of O’Connell et al. [72] was well below critical temperature cT  of Al 

(1.175 K) [73].  The piezoelectric vibration of their mechanical resonator gives rise to an oscillatory electric field that carries an 
electric displacement current in the dielectric and acts as a weak link of a superconducting current loop.  Thus, the piezoelectric 
device comprises a SQUID with a characteristic resonance frequency for linkage of flux in quantized units of the magnetic flux 
quantum.  The resonance frequency may be determined from the magnetic flux quantum, 0 / 2h e  , the corresponding 

fundamental charge that carries the linkage current, 2e , and the measured inductance of the circuit element, 1.043 mL H : 
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This frequency is shifted slightly due to the other RLC components of the circuit.  The mechanical frequency of vibration is 
given by  
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where v  is the average sound speed and t  is the resonator thickness that is also the length of the displacement current and weak 
link portion of the superconducting loop.  The existence of a mechanical frequency that can support the quantized SQUID 
resonance frequency is a necessary condition for the operation of the circuit element as a quantized macrodevice.   

O’Connell et al. [72] experimentally measured the reactive and resistive microwave circuit elements according to their 
inductance, capacitance, and resistance, and performed classical circuit analysis.  An open circuit condition between the two 
SQUIDS was achieved via detuning the qbit to cause an impendence mismatch between them.  Then, O’Connell et al. [72] 
applied microwaves to the first mechanical SQUID independently of the second (qbit) and demonstrated that the first was 
excited in a quantized manner.  This independent quantized excitability feature of the resonator shown experimentally with 
classical direct microwave excitation of the mechanical resonator disproved entanglement.  Furthermore, no RF reactive signal 
was detectable in the qbit when it was set to interact with the mechanical SQUID in its “ground” vibrational state.  This 
confirmed that the mechanical vibrator was at rest; otherwise, an electric field must be generated based on the correspondence of 
the mechanical vibration and the piezoelectric oscillatory electric field.  That is, a reactive electric field must be present for a 
vibrating oscillator, and it was absent.  Moreover, no motion is possible in the “ground” state of vibration.  The mechanical 
resonator element comprises a SQUID that links flux only with the corresponding required vibrational excitation.  Conversely, 
since the flux of the SQUID ground state is known to be zero, the corresponding state of the mechanical resonator must be in the 
rest state.  Thus, zero order vibration was proved to be nonexistent.   

Conversely to uncoupled measurements, the qbit SQUID tank circuit microwave excitation and flux bias were tuned to 
impedance match the mechanical SQUID resonance to cause exchange of quanta of energy determined by the quantized flux 
linkage of each SQUID.  The excitations, exchange behavior with tuning, transition times, cross-sections, and dynamic coupling 
involving linear combinations of the SQUID energy states matched those predicted by classical circuit modeling.  Thus, classical 
laws were shown to apply on the macroscale based on their validity on the atomic scale.  In future experiments, the classical 
behavior of the mechanical resonator circuit comprising a SQUID can be further confirmed by the testing of the predicted effect 
of flux bias on the resonance behavior uncoupled and coupled to the qbit.  This will provide more insight into the linkage of 
classical physics between different orders of magnitude of scale. 
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FREE ELECTRONS IN SUPERFLUID HELIUM ARE REAL IN THE ABSENCE OF 
MEASUREMENT REQUIRING A CONNECTION OF  x  TO PHYSICAL REALITY 
A challenge to the fundamental foundations of quantum mechanics has arisen based on experiments of free electrons injected 
into superfluid helium [12].  From the time of its inception, the quantum mechanical meaning of the electron wave function has 
been enigmatic, debated, and fluid.  A now popular interpretation is a zero or one-dimensional point in an all-space probability-
wave function  x  that only becomes “real” by act of measurement.  However, the behavior of free electrons in superfluid 

helium has again forced the issue of the meaning of the wavefunction and its connection with reality.  Electrons form bubbles in 
superfluid helium, which reveal that the electron is real and that a physical interpretation of the wavefunction is necessary.  
Furthermore, when irradiated with low energy light, the electrons carry increased current at different rates as if they exist with at 
least 15 different sizes. 

Interpretations of quantum mechanics such as hidden variables, multiple worlds, consistency rules, and spontaneous 
collapse have been put forward in an attempt to base the theory in reality.  The Copenhagen interpretation asserts that what we 
observe is all we can know; any speculation about what an electron, photon, atom, or other atomic-sized entity really is or what it 
is doing when we are not looking is just that—speculation.  The postulate of quantum measurement asserts that the process of 
measuring an observable forces it into a state of reality.  In other words, reality is irrelevant until a measurement is made.  In the 
case of electrons in helium, the fallacy with this position is that the “ticks” (migration times of electron bubbles) reveal that the 
electron is real before a measurement is made.  Maris and other experimental physicists believe that the data on electrons in 
liquid helium reveals that the electron is real and physical and exposes a fundamental flaw in quantum theory [74–76].  
Physicists have always been content to think of the wave function, the immeasurable entity which describes quantum systems, as 
a mathematical device with observable consequences.  The time has come for the idea to be grounded in reality.  For the electron 
bubbles in helium, Maris’ position is that the size of the bubble is determined by how much of the wave function is trapped 
inside the bubble.  “If there is no part of the wave function inside the bubble, the bubble will collapse.  This makes the wave 
function seem to be a tangible object.  Theoreticians are going to have to address the question: what is a wave function?  Is it a 
real thing, or just a mathematical convenience? [74]” 

In the 111 years since its discovery, there has been no evidence whatsoever that the electron is divisible.  But, in order to 
explain the increase in conductivity of free electrons in superfluid helium when irradiated with low energy light and the 
observation of an unexpected plethora of exotic negative charge carriers in superfluid helium with mobilities greater than that of 
the normal electron Maris has proposed [77] that the electron breaks into equal-sized fragments which he calls “electrinos.”  
According to Maris, this process of division of the electron may continue to such that the electron breaks into two and then the 
1/2 electrons may divide into two forming 1/4 electrons, and the process may repeat indefinitely.  Maris argues that the 
Schrödinger equation solution of the wavefunction of the 1p  state, an excited state, will break into two following the 1s  to 1p  
transition of an electron in superfluid helium.  This result is a consequence of the localization of the maximum electron 
probability density,  x , in the extremes of the dumb-bell shaped 1p  orbital with the existence of a node at the center of the 

orbital.  Maris likens  x  to a physical electron density bubble.  The large differences in time scales of the motion of the 

electron and the motion of the bubble wall means that the Franck-Condon principle should apply and that the wave function of 
the electron will deform adiabatically (Born-Oppenheimer principle) at this node to result in electron fission.  Following the 
break, one half of the electron’s wave function is trapped in each of the two daughter bubbles.  As the wave function is the 
essence of an electron, the electron splits into two.  One piece acquires all of the charge and the other is neutral. 

Of course the electron cannot break into two or more pieces, and  x  can not be an electron density function based on 

scattering experiments as pointed out by Max Born who formulated the currently accepted probability wave interpretation of 

 x .  The physical explanation for the free-electron photoconductivity and mobility observations is provided by the nature of 

the free electron as an atomic orbital in liquid helium and by the nature of its excited states.  The nature of these states follows 
from the solution of the bound electron and its excited states given in One-Electron Atom and the Excited States of the One-
Electron Atom (Quantization) sections, respectively.  Free electrons in liquid helium form physical hollow bubbles that serve as 
resonator cavities that transition to long-lived metastable states of fractional (1/integer) sizes that migrate at different rates when 
an electric field is applied as shown in Figure 42.17.  The predicted behavior for allowed fractional-principal-quantum-energy 
states of the electron in liquid helium matches the formerly inexplicable photoconductivity and mobility observations. 
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Figure 42.17.   Free electrons in liquid helium form physical hollow bubbles that serve as resonator cavities that transition to 
fractional (1/integer) sizes and migrate at different rates when an electric field is applied.  (A) Free electrons are trapped in 
superfluid helium as autonomous hollow electron bubbles.  (B) Photons are absorbed by the bubble-like atomic orbital that serve 
as resonator cavities.  (C) The excitation of the Maxwellian resonator cavity modes by resonant photons form long-lived states 
having quantum numbers n ,  , and m  with radii of reciprocal integer multiples that of the unexcited 1n  state.  (D-F) The 

normal bubble (F) with the radius, r1, and each stable excited state electron bubble with radius 1r

int eger
 (D-E) may migrate in an 

applied electric field, and the time of flight to a detector decreases with the size of the bubble.  The absorption spectrum of free 
electrons in superfluid helium and their mobilities predicted from the corresponding size and multipolarity of these bubble-like 
states with quantum numbers n ,  , and m  matched the experimental results of 15 identified ions.   

 
 

Specifically, free electrons are trapped in superfluid helium as autonomous electron bubbles interloped between helium atoms 
that have been excluded from the space occupied by the bubble.  The surrounding helium atoms maintain the spherical bubble 
through van der Waals forces.  The bubble-like “wavefunction” called an atomic orbital can act as a resonator cavity.  The 
excitation of the Maxwellian resonator cavity modes by resonant photons form bubbles with radii of reciprocal integer multiples 
of that of the unexcited 1n   state.  The central force that results in a fractional electron radius compared to the unexcited 

electron is provided by the absorbed photon.  Each stable excited state electron bubble which has a radius of 1

integer

r
 may 

migrate in an applied electric field.  Superfluid helium is an ideal medium to study individual trapped electrons in much the same 
way that individual ions may be studied in Penning traps.  An equation for the electron bubble mobility is based on a well known 
roton-bubble momentum transfer cross section using the geometrical cross section and the multipolarity of the different electron 
states.  Experiments to study the effect of light on ion mobility have been conducted [12, 74].  The photo-conductivity absorption 
spectrum of free electrons in superfluid helium and their mobilities predicted from the corresponding size and multipolarity of 
these long-lived bubble-like states with quantum numbers n ,  , and m  matched the experimental results of the 15 identified 

ions.  Electrons bubbles in superfluid helium reveal that the electron is real and that a physical interpretation of the wavefunction 
is necessary.  The concept of probability waves of quantum mechanics must be abandoned and atomic theory must be based in 
reality. 
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STABILITY OF FRACTIONAL-PRINCIPAL-QUANTUM STATES OF FREE ELECTRONS IN 
LIQUID HELIUM 
Photon absorption occurs as an excitation of a resonator mode; consequently, the hydrogen atomic energy states are quantized as 
a function of the parameter n  as shown in the Excited States (Quantization) section.  Each value of n  corresponds to an allowed 
transition caused by a resonant photon that excites the transition of the atomic orbital resonator cavity.  In the case of free 
electrons in superfluid helium, the central field of the proton is absent; however, the electron is maintained as an atomic orbital 
by the pressure of the surrounding helium atoms.  In this case, rather than the traditional integer values (1, 2, 3,...,) of n , values 
of reciprocal integers are allowed according to Eq. (2.2) where both the radii and wavelengths of the states are reciprocal integer 
multiples of that of the 1n   state and correspond to transitions with an increase in the effective central field that decreases the 
radius of the atomic orbital.  In these cases, the electron undergoes a transition to a nonradiative higher-energy state.  The 
trapped photon electric field which provides force balance for the atomic orbital is a solution of Laplace’s equation in spherical 
coordinates and is given by Eq. (42.144). 

In each case, the “trapped photon” is a “standing electromagnetic wave” which actually is a circulating wave that 
propagates around the z-axis, and its source current superimposes with each great circle current loop of the atomic orbital.  The 
time-function factor, ( )k t , for the “standing wave” is identical to the time-function factor of the atomic orbital in order to satisfy 
the boundary (phase) condition at the atomic orbital surface.  Thus, the angular frequency of the “trapped photon” has to be 
identical to the angular frequency of the electron atomic orbital, n , given by Eq. (1.36).  Furthermore, the phase condition 

requires that the angular functions of the “trapped photon” have to be identical to the spherical harmonic angular functions of the 

electron atomic orbital.  Combining ( )k t  with the  -function factor of the spherical harmonic gives  ni m te    for both the 
electron and the “trapped photon” function.  The angular functions in phase with the corresponding photon functions are the 
spherical harmonics.  The charge-density functions including the time-function factor (Eq. (1.27-1.29)) are:  
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where  ,mY    are the spherical harmonic functions that spin about the z-axis with angular frequency n  with  0
0 ,Y    the 

constant function and       Re , cos cos      
nim tm m

nY e P m m t .  The solution of the “trapped photon” field of electrons 

in helium that is analogous to those of hydrogen excited states given by Eq. (2.15) is 
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In Eq. (42.144), a  is the radius of the electron in helium without an absorbed photon.  C  is a constant expressed in terms of an 
equivalent central charge.  It is determined by the force balance between the centrifugal force of the electron atomic orbital and 
the radial force provided by the pressure from the van der Waals force of attraction between helium atoms given infra. 
 For fractional quantum energy states of the electron, photon , the two-dimensional surface charge density due to the 

“trapped photon” at the electron atomic orbital, follows from Eqs. (5.27) and (2.11). 
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And,  electron , the two-dimensional surface charge density of the electron atomic orbital is 
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The superposition of  photon  (Eq. (42.145)) and electron , (Eq. (42.146)) where the spherical harmonic functions satisfy the 

conditions given in the Bound Electron “Atomic Orbital” section gives a radial electric monopole represented by a delta 
function. 
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The radial delta function does not possess spacetime Fourier components synchronous with waves traveling at the speed of light 
[78–80].  Thus, the fractional quantum energy states are stable as given in the Boundary Condition of Nonradiation and the 
Radial Function—the Concept of the “Atomic Orbital” section. 
 The speed of light in vacuum c  is given by 
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where o  is the permeability of free-space and 0  is the permittivity of free-space.  The wavenumber is given by:  
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The speed of light in a medium such as superfluid helium v  is given by: 
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where o  is the permeability of free-space and   is the permittivity of the medium.  The wavenumber is given by:  
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The ratio of the wavenumber in vacuum and the wavenumber in superfluid helium is given by: 
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The frequency of the photon in free space and in helium at the electron must be the same.  Thus,  
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Since 0  , the wavenumber in helium is greater than the wavenumber in vacuum.  Thus, a photon traveling in liquid helium 

may excite a mode in an electron bubble which is nonradiative.  In this case, spacetime harmonics of n k
c
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which the Fourier transform of the current-density function is nonzero do not exist.  Radiation due to charge motion does not 
occur in any medium when this boundary condition is met. 

As discussed infra., the phenomenon of photon absorption by electrons in superfluid helium to give rise to an increase in 
conductivity is temperature dependent.  This temperature dependence may be explained on the basis of the loss of viscosity of 
superfluid helium that is permissive of an electron supercurrent.  That is, at 1.7 K, the viscosity is sufficiently close to zero such 
that the angular current of the electron may propagate without energy loss.  Roton scattering dominates over phonon scattering at 
this temperature and below [81].  Then, the two dimensional surface charge due to a “trapped photon” at the electron atomic 
orbital of a free electron in helium is given by Eq. (42.147) such that the corresponding state is stable.  Resonant photon 
absorption may occur between these stable states.  The central force which results in a fractional electron radius compared to the 
unexcited electron is provided by the absorbed photon as discussed in the Ion Mobility Results in Superfluid Helium Match 
Predictions section. 
 
ION MOBILITY RESULTS IN SUPERFLUID HELIUM MATCH PREDICTIONS 
Experiments to study the effect of light on ion mobility have been conducted by Northby and Sanders [82, 83], Zipfel and 
Sanders [84, 85], and Grimes and Adams [86, 87].  For example, in the Northby and Sanders experiments [82, 83], ions were 
introduced into the liquid from a radioactive source, and had to pass through two grids in order to reach the detector.  The 
voltages on the grids were varied in time in a way such that normal negative ions could not reach the detector.  It was found that 
when the liquid was illuminated, a small ion current reached the detector.  Thus, they observed an increase in ion mobility under 
illumination, but recognized that the origin of the effect was unclear.  It appears that the absorption of a photon by an electron 
bubble or atomic orbital in superfluid helium provides a natural explanation for the majority of the photo-conductivity results. 
 The photon absorption is determined by the correspondence principle—the conservation of the   of angular momentum 
of the free space photon and the equivalent change in the angular momentum of the electron upon excitation.  Thus, the radius of 

the electron following the absorption of a resonant photon is given by 
1

integer
n   times that of the original radius.   

 1r nr  (42.154) 

where 
1

integer
n   and 1r  is the radius of the electron in superfluid helium which has not absorbed a photon.  This radius is 

determined by a force balance between the van der Waals pressure (force per unit area) of superfluid helium and the centrifugal 
force of the electron.  The latter is given by 
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where 
2

14
em

r
 is the mass density of the atomic orbital and 1v  is given by Eq. (1.35).  The radius 1r  can be determined from the 

photo-conductivity experiments of Zipfel and Sanders [85].  At zero pressure a photo-conductivity peak was observed at 
approximately 0.5 eV .  From Eqs. (2.18-2.22), the change in the frequency of the electron which matches the frequency of the 
exciting photon is given by: 
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where 
1

integer
n  .  The radius 1r  is given by 
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The relationship between energy and angular frequency of a photon is given by Planck’s equation. 
 photonE    (42.158) 

The angular frequency corresponding to a photon of 0.5 eV  is:  
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In the case that 0.5 eV  is the lowest energy transition for an electron in superfluid helium, the 
1

1
2

n n    transition 

corresponds to 
1

2
n   in Eq. (42.156).  From Eq. (42.156) and Eq. (42.159), the radius 1r  is:  
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where 
1

2
n  .  Comparing the case of the electron of a hydrogen atom to the case of an electron in helium, no initial central 

Coulomb field due to a proton is present, and the electron increases in kinetic energy upon photon absorption.  Thus, the energy 
required to cause a transition in the latter case is twice that of the former.  The photon stores energy in the electric field of the 
resonator mode and increases the potential energy of the electron.  The potential is the sum of the binding energy and the kinetic 
energy.  The corresponding photon wavelength that will be absorbed by the electron is 2.5 m . 

The radius calculated in Eq. (42.160), is an approximation since the energy due to the pressure volume work and the 
surface energy change of the bubble were neglected.  The former is given by: 
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where P  is the applied pressure, the integral is over the volume of the bubble, and 1r  and nr  are the initial and final radii of the 

electron bubble.  The latter is given by 
  2 2

14 ndA r r     (42.162) 

where   is the surface energy of helium per unit area, the integral is over the surface of the bubble, and 1r  and nr  are the initial 

and final radii of the electron bubble. 
 The contribution of these terms can be estimated by comparing the next experimental photo-conductivity peak at higher 
energy compared to the prediction given by Eqs. (42.156) and (42.158).  Northby and Sanders [82, 83] found that in the range of 
0.7 eV  to 3 eV  the photo-induced current had a peak when the photon energy was 1.21 eV  at zero pressure.  Zipfel and 
Sanders [84, 85] confirmed the peak at 1.21 eV .  In experiments similar to those of Northby and Sanders [82, 83], Zipfel and 
Sanders [84, 85] made measurements of the photo-conductivity as a function of pressure up to 16 bars.  The photo-conductivity 
peak detected by Northby and Sanders [82, 83] was found to shift to higher photon energies as the pressure increased.  This is 
expected since the radius of the normal electron decreases and the corresponding initial angular frequency increases with 
increasing pressure.  Thus, the transition angular frequencies and energies increase (Eq. (42.156)). 

The next higher energy transition for an electron in superfluid helium is 
1

1
3

n n   .  The transition energy 

corresponds to 
1

3
n   in Eqs. (42.156) and (42.158).  The calculated energy neglecting the energy due to the pressure volume 

work and the surface energy change of the bubble is: 
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where 1r  is given by Eq. (42.160).  Given the experimental uncertainty of the energy of the lowest energy transition, 1.21 eV , 

this result confirms that the contributions due to pressure volume work and the surface energy change of the bubble may be 
neglected. 

In the experiments of Northby and Sanders [82, 83], Zipfel and Sanders [84, 85], and Grimes and Adams [86, 87], it was 
noted that the photo-conductivity effect was absent above a critical temperature.  This temperature was approximately 1.7 K at 
zero pressure, and decreased to 1.2 K at 20 bars.  Roton scattering dominates over phonon scattering at 1.7 K and below [81].  
The photo-conductivity signal disappears because of phonon excitation of the bubble motion which causes the excited electron 
state to decay.  As the pressure is increased, the roton energy gap goes down, and so the phonon scattering increases.  Thus, it is 
to be expected that the critical temperature decreases with increasing pressure. 

Each stable excited state electron bubble, which has a radius of 1

integer

r
 may migrate in an applied electric field.  The 

bubble may be scattered by rotons, phonons, and 3He  impurities.  At temperatures less than 1.7 K, roton scattering dominates 
[81].  An equation for the electron bubble mobility is derived by Baym, Barrera, and Pethick [88] in terms of the roton-bubble 
momentum transfer cross section by calculating the rate of roton-bubble momentum transfer using a statistical mechanical 

approach.  In the case of an elementary excitation k


 scattered by the bubble with a differential cross section  ,k   and 

obeying 'k k
 

, their result may be written, 
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where   is the bubble mobility, n  is the distribution function of the excitation,  gv k  is the group velocity of the excitation, 

and  T k  is the momentum-transfer cross section defined by: 

      1 cos ,T k k d       (42.165) 

Schwarz and Stark [81] made the reasonable assumption that  T k  is a weak function of 0k k .  Because of the strong 

minimum at 0 1.91k   Å-1 in the roton energy spectrum, Eq. (42.164) then gives to a good approximation: 
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where / 8.65 0.04 Bk K    is the roton energy gap derived from neutron scattering [89].  Schwarz and Stark [81] propose that 

the roton de Broglie wavelength corresponding to 0 1.91k   Å-1 is 0 3.3   Å, which is small compared with 
 0T k


; thus, 

the collision cross section may be nearly geometrical.  Although the roton carries a great deal of energy and momentum, its 

effective mass is much less than that of the ion.  Assume that the scattering is elastic, then 'k k
 

 is satisfied.  They conclude a 

hard-sphere cross section given by: 

    2

0T rk a a     (42.167) 

where a  is the radius of the ion and ra  is the effective collision radius of the roton.  Using experimental values for a  and 

 T k , they find that 

 3.7 0.2ra    Å (42.168) 

They surmise from this that the roton is localized within a region of radius 3.7 4.0   Å, and that it interacts strongly with any 
disturbance, which penetrates this region.  They point out that 3.7 4.0   Å is only slightly larger than the nearest neighbor 
distance in liquid helium [90] and that a roton may thus be pictured as a highly correlated motion of an energetic 4He  atom and 
its nearest neighbors only. 
 The geometric cross-section of the normal electron bubble e  is given as: 

 2
1e r   (42.169) 

where 1r  is the radius of the unexcited electron bubble given by Eq. (42.160).  From Eq. (42.160) and Eqs. (42.166-42.169), the 

mobility of the normal electron bubble is given by 
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 (42.170) 

At 1 K , Eq. (42.170) gives 2 1 15.7 c secm V    for the mobility of the normal electron bubble ( 1n  ), which is in reasonable 

agreement with the experimental value of 2 1 15 c secm V    [77, 91]. 
The normal electron bubble has a uniform constant spherical charge density.  This charge density may be modulated by a 

time and spherically harmonic function as given by Eq. (42.143).  In the case of excited state electron bubbles, the contribution 
to the roton scattering cross section given by Eq. (42.165) is larger than the geometric cross section given in Eq. (42.169) where 
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the radius is given by Eq. (42.154).  In this case,  T k  given by Eq. (42.165) follows the derivation of Baym, Barrera, and 

Pethick [88] where the spherical harmonic angular function causes a gain in the scattering cross section that may be modeled 
after that of a Hertzian dipole antenna.  The radiation power pattern of a Hertzian dipole is given by Shen and Kong [92].  The 
radiation power pattern is  

   21
ˆRe sin

2 2 4

k I z

r

 


  
    

 
S E H r  (42.171) 

where I  is the current, z  is the length of the dipole, and   is the impedance of free space.  The antenna directive gain 

 ,D    is defined as the radiation of the Poynting power density rS  over the power P , divided by the area of the sphere: 
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The plot of  ,D    given by Eq. (42.172) is known as the gain pattern.  The directivity of an antenna is defined as the value of 

the gain in the direction of its maximum value.  For the Hertzian dipole the maximum of 1.5  occurs at 
2

  .  Thus, the 

directivity of a Hertzian dipole is 1.5 . 
 The spherical harmonic angular functions are 
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where is the normalization constant given by 
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In the case of excited states,  ,k   of Eq. (42.165) is 
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For excited states, the geometric cross-section of the electron bubble e  is then given as 

 2
, ,e n mnr 

  (42.176) 

where 
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1r  is the radius of the unexcited electron bubble given by Eq. (42.132) and 
1

integer
n  .  The angular parameters ,

0,0

mN

N
  are given 

with the first few spherical harmonics in Table 42.1.  In this case,  T k  is given by Eq. (42.165) where 1r  is replaced by , ,n mr
  

(Eq. (42.177)).  The roton scattering cross section given by the hard-sphere cross section is then: 

    2

0 , ,T n m rk r a  
  (42.178) 

where ra  is the effective collision radius of the roton given by Eq. (42.168).  From Eq. (42.170) and Eqs. (42.173-42.178), the 
mobilities of electron bubbles are given by: 
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 (42.179) 

where 
1

integer
n  .  The mobility of an excited state electron bubble having a fractional principal quantum number (

1

integer
n  ) 

relative to the normal electron bubble as a function of quantum numbers n ,  , and m  is given in Table 42.2.  The temperature 
dependence of the mobility predicted by Eq. (42.179) is in good agreement with the data of Ihas [91] and the plots of Maris [77]. 
 

Table 42.1.   The first few spherical harmonics and ,

0,0

mN

N
  of Eq. (42.174) as a function of  , and m . 
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Table 42.2.   The mobility of an excited state electron bubble having a fraction principal quantum number (
1

integer
n  ) 

relative to the normal electron bubble as a function of quantum numbers n ,  , and m  given by Eq. (42.179).  The peaks that 
appear in Figure 42.18 and Table 42.3 are indicated. 
 

n  0  1  0m   1  1m   2  0m  2  1m   2  2m  
 

   

1

2
 

2.21 
peak # 8 

1.22 
peak # 3 

1.81
peak # 5 

 

1

3
 

3.12 
peak # 10 

1.92 
peak # 6 

2.66 2.86 1.14
peak # 2 

2.41 

1

4
 

3.81 
peak # 11 

2.52 
peak # 9 

3.33 3.54 1.60
peak # 4 

3.06 

1

5
 

4.33 
peak # 12 

3.03 3.86 4.07 2.03
peak # 7 

3.59 

1

6
 

4.74 
peak # 13 

3.47 4.28 4.49 2.41 4.02 

1

7
 

5.07 
peak # 14 

3.83 4.63 4.83 2.75 4.38 

1

8
 

5.34 
peak # 15 

4.15 4.93 5.12 3.06 4.68 

1

9
 

5.57 
peak # 15 

4.42 5.17 5.35 3.34 4.94 

1

10
 

5.76 
peak # 15 

4.66 5.38 5.56 3.59 5.16 

1

11
 

5.92 
peak # 15 

4.87 5.56 5.73 3.82 5.35 

1

12
 

6.07 
peak # 15 

5.05 5.72 5.88 4.02 5.52 

1

100
 

7.75 
peak # 15 

7.55 7.69 7.72 7.29 7.65 

 
Using time-of-flight, Doake and Gribbon [93] detected negatively-charged ions that had a mobility substantially higher 

than the normal electron bubble negative ion.  This ion, which has become known as the “fast ion,” was next seen in another 
time-of-flight experiment by Ihas and Sanders in 1971 [94].  They showed that the fast ion could be produced by an   or   
source, or by an electrical discharge in the helium vapor above the liquid.  In addition, they reported the existence of two 
additional negative carriers, referred to as “exotic ions,” that had mobilities larger than the mobility of the normal negative ion, 
but less than the mobility of the fast ion.  These exotic ions were detected only when there was an electrical discharge above the 
liquid surface.  In a paper the following year [95], Ihas and Sanders reported on further experiments in which at least 13 carriers 
with different mobilities were detected.  The experimental details are described in the thesis of Ihas [91].  Eden and McClintock 
[96, 97] also detected as many as 13 ions with different mobilities.  Both Ihas and Sanders and Eden and McClintock put 
forward a number of proposals to explain the exotic ions, but all of these proposals were shown to be unsatisfactory by Maris 
[77].  It is significant that the exotic ions appear only when an electrical discharge takes place close to the free surface of the 
liquid.  Under these conditions, the electrons that enter the liquid and form bubbles may absorb light emitted from the discharge.  
Thus, it is natural to consider the possibility that the exotic ions are electron bubbles in fractional energy states. 

Following a pulse discharge with an electric field applied to superfluid helium, Ihas [91] recorded ion peaks using time of 
flight.  Fifteen ion peaks recorded by Ihas and Sanders are identified in Figure 42.18.  The mobilities relative to the normal 
electron bubble ( 1n  ) are given in Table 42.3.  The assignments of the mobilities of excited state electron bubbles having 

fractional principal quantum number (
1

integer
n  ) relative to the normal electron bubble as a function of quantum numbers n , 

 , and m  are also given in Table 42.3 based on the theoretical values given in Table 42.2.  The agreement between theory and 

experiment is excellent. 
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Figure 42.18.  Data trace from Ihas [91] showing the detected ion signal as a function of time. N and F denote the normal and 
fast ion peaks. The peaks labeled 1 to 15 are assigned in Table 42.3. For a description of experimental condition see Ihas [91]. 

 
 

Table 42.3.   The migration times and experimental mobilities of the 15 ion peaks shown in Figure 42.18 relative to the 
normal ion with their assignments to excited state electron bubbles with quantum numbers n ,  , and m  and theoretical 
mobilities given in Table 42.2. 
 

Peak # Migration 
Time 

(Arbitrary 
Units) 

Mobility 
Relative to 

Peak #1 

Theoretical 
Mobility 

Relative to 
Peak #1 

Assignment 
n ,  , and m . 

1 9.8 1.00 1 1 0  0n m    

 
2 

 
8.2 1.20 1.14 

1
2  1

3
n m     

 
3 

 
7.6 1.29 1.22 

1
1  0

2
n m    

 
4 

 
6.2 1.58 1.6 

1
2  1

4
n m     

 
5 

 
5.4 1.81 1.81 

1
1  1

2
n m     

 
6 

 
5 1.96 1.92 

1
1  0

3
n m    

 
7 

 
4.85 2.02 2.03 

1
2  1

5
n m     

 
8 

 
4.35 2.25 2.21 

1
0  0

2
n m    

 
9 

 
3.9 2.51 2.52 

1
1  0

4
n m    

 
10 

 
3.3 2.97 3.12 

1
0  0

3
n m    

 
11 

 
2.8 3.50 3.81 

1
0  0

4
n m    

 
12 

 
2.1 4.67 4.33 

1
0  0

5
n m    

 
13 

 
2 4.90 4.74 

1
0  0

6
n m    

 
14 

 
1.8 5.44 5.07 

1
0  0

7
n m    

 
15 

 
1.3 7.54 7.75 

1
0  0

100
n m    
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 Peaks 14-15 of Figure 42.18 and Table 42.3 represent a band with a cutoff at a migration velocity of about 7.5 times the 

velocity of the normal ion as 
1

integer
n   approaches zero (

1

100
n   was used to calculate this limiting case).  The electron radius 

is predicted to decrease such that the effective collision radius of the roton determines the maximum mobility as given by Eq. 
(42.179).  The theoretically predicted maximum of electron bubble mobility of about seven times that of the normal ion is 

confirmed by the Ihas data [91] where the band comprising peaks 14-15 correspond to 
1

7
n  .  Furthermore, Eden and 

McClintock [96] and Doake and Gribbon [93] measured the drift velocity as a function of applied electric field.  The fast ion 
showed a slope of the drift velocity versus applied electric field of about seven times that of the normal ion.  Thus, these results 
agree with the data of Ihas and with theoretical predictions. 

The agreement between the experimental data and theoretical mobilities is excellent.  The existence of multiple peaks 
under the fast peak such as peak #14 and #15 of Figure 42.18 is also supported by the data of Eden and McClintock [96] because 
the peak of highest mobility split into the two peaks at higher fields. 

In summary, the photo-conductivity absorption spectrum of free electrons in superfluid helium and their mobilities 
predicted from the corresponding bubble-like wavefunctions matched the experimental results of the 15 identified ions.  The data 
support the existence of fractional-principal-quantum-energy states of free electrons in superfluid helium.  The implications to 
atomic hydrogen states were discussed previously [98].  These results also have implications that the concept of probability 
waves of quantum mechanics must be abandoned and atomic theory must be based in reality. 

In addition to superfluid helium, free electrons also form bubbles devoid of any atoms in other fluids such as oils and 
liquid ammonia.  In the operation of an electrostatic atomizing device Kelly [99] observed that the mobility of free electrons in 
oil increased by an integer factor rather that continuously.  Above the breakdown of the discharge device, the slope of the current 
versus electric field was discontinuous.  It shifted to one half that before breakdown.  This corresponds to a higher mobility of 
electrons to the grounded electrode of a triode of the atomizer, with a concomitant reduction in charging of the moving oil and 
the corresponding charged fluid current at the outlet of the dispersion device.  As in the case of the discharge effect on the 
mobility of free electrons in superfluid helium, the breakdown current is a light source which excites the electron to transition 

from the 1n   to the 
1

2
n   state given by Eq. (42.154).  Excitation of electrons to fractional states is a method to increase their 

mobility to more effectively charge a fluid in order to form a dispersed fluid.  The apparatus patented by Kelly [99] may be 
improved by a modification to include a source of light to cause the electron transitions to fractional states. 

Alkali metals, and to a lesser extent other metals such as Ca , Sr , Ba , Eu , and Yb  are soluble in liquid ammonia and 
certain other solvents.  The electrolytically conductive solutions have free electrons of extraordinary mobility as their main 
charge carriers [100].  In very pure liquid ammonia the lifetime of free electrons can be significant with less than 1% 
decomposition per day.  The confirmation of their existence as free entities is given by their broad absorption around 15,000 Å 
that can only be assigned to free electrons in the solution that is blue due to the absorption.  In addition, magnetic and electron 
spin resonance studies show the presence of free electrons, and a decrease in paramagnetism with increasing concentration is 
consistent with spin pairing of electrons to form diamagnetic pairs.  As in the case of free electrons in superfluid helium, 
ammoniated free electrons form cavities devoid of ammonia molecules having a typical diameter of 3-3.4 Å.  The cavities are 
evidenced by the observation that the solutions are of much lower density than the pure solvent.  From another perspective, they 
occupy far too great a volume than that predicted from the sum of the volumes of the metal and solvent.  An understanding of the 
structure of free electrons in other fluids such as liquid ammonia may further lead to means to control the electron mobility and 
reactivity by controlling the fractional state using light.   
 
ONE DIMENSION GRAVITY WELL—ANOTHER FLAWED INTERPRETATION 
Nesvizhevsky et al. [101] claim that they created a potential well for falling neutrons formed by the Earth’s gravitational field 
and a horizontal mirror.  According to Nesvizhevsky et al., “we now consider how to demonstrate that bound states exist for 
neutrons trapped in the Earth’s gravitational field.  The gravitational field alone does not create a potential well, it can only 
confine particles by forcing them to fall along field lines.  We need a second ‘wall’ to create the well.”  Supposedly, a neutron 
falling in the Earth’s gravitational field hits the bottom mirror, is reflected, and the neutron wavefunction interferes with itself.  
The self-interference creates a standing wave in the neutron density: the probability of finding a neutron at a given height 
exhibits maxima and minima along the vertical direction which is a function of the quantum number of the bound states.  The 
quantum mechanical probability wave problem is solved as a particle on a box or one-dimensional well problem [102]. 

Nesvizhevsky et al. [101] give the standing waves as asymmetric sinusoidal waves—the claimed distortion due to the 
argument that “the gravitational field is much softer than an infinite sharp wall; as a result, the gravitational well extends in the 
opposite direction to the gravity with increasing quantum number.”3  Consequently, the neutron wavefunctions are deformed 
upwards, and the energy differences between states become very slightly smaller as the quantum numbers increase.  For 
example, the energy of the n=1 state is 1.4 peV, and that of the n=4 state is 4.1 peV, rather than 5.6 peV for a linear relationship.  

 
3 How the particle “knows” that “the field extends beyond the reflecting barrier” is not addressed.  Nor is the internal inconsistency that the Standard 
Model attributes the force of gravity to exchange of gravitons and not to a classical field.  Ironically, even though gravity is a ubiquitous force, gravitons 
have never been observed after 70 years of searching.  In addition, quantum electrodynamics requires that the vacuum be filled with an infinite number of 
virtual particles that occupy quantum states.  The consequences such as the prediction of an infinite cosmological constant and the failure of quantum 
mechanics to provide a successful quantum gravitational theory are also not addressed.  See Mills article [12]. 
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For comparison, the classical potential energy V  of a neutron lifted a height of 15  z m  against the Earth’s gravitational field 
is given by:  
    27 2 6 121.67 10  9.8 / 15 10  1.5 10  1.5 nV m gz kg m s m eV peV          (42.180) 

where nm  is the mass of the neutron and g  is the acceleration due to gravity. 

Nesvizhevsky et al. [101] directed ultracold neutrons with a horizontal velocity of 10 /m s  through a parallel plate 
channel wherein the top plate was a neutron absorber and the bottom plate was a neutron mirror.  The neutrons were selected by 
a collimator that projected the neutrons at a slightly upward angle such that they followed a parabolic trajectory in the Earth’s 
gravitational field.  The neutron’s vertical velocity at the peak height of the parabola corresponded to classical result of zero, and 
increased as the neutron fell to the bottom mirror.  The vertical velocity component was limited by the variable height of the 
vertical neutron absorber.  For example, a vertical velocity of -21.7 X10  /m s  corresponded to a parabolic height of 15 z m  
wherein the kinetic energy K  given by: 

   22 27 21/ 2 1.67 10  1.7 10  / 1.5 nK m v kg m s peV       (42.181) 

was converted to gravitational potential energy given by Eq. (42.180). 
The neutron as well as the proton and electron are fundamental particles with a de Broglie wavelength.  They 

demonstrate interference patterns during diffraction as given in the Electron Scattering by Helium section.  The observed far-
field position distribution is a picture of the particle’s transverse momentum distribution after the interaction.  The momentum 

transfer is given by k  where k is the wavenumber (
2


).  The relevant wavelength lambda is the de Broglie wavelength 

associated with the momenta of the particles which is transferred through interactions.  An example is the interference pattern 
for rubidium atoms given in the Wave-Particle Duality is Not Due to the Uncertainty Principle section.  Also see the Electron in 
Free Space section.   

The de Broglie wavelength   is given by: 

 
n

h h

p m v
    (42.182) 

where h  is Planck’s constant, nm  is the mass of the neutron, and v  is the neutron velocity in the direction of the wavelength.  In 

the Nesvizhevsky experiment, a neutron with an initial vertical velocity of -21.7 X10  /m s  has zero velocity at the top of the 
parabolic trajectory.  The corresponding velocity of the falling neutron at the mirror before reflection is negative 

-21.7 X10  /m s , and after reflection, it is positive -21.7 X10  /m s .  The de Broglie wavelength of the neutron in the vertical 
direction corresponding to the momentum acquired by falling from the top of the trajectory and undergoing momentum reversal 
at the mirror is given by 
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 (42.183) 

which is less than 15 z m  corresponding to the initial vertical velocity of -21.7 X10  /m s . 

The time scale for the collision of a neutron with the bottom mirror was much less than the transit time tt  of the neutron 

through the slits which is given by the ratio of the channel length ( 0.1 m ) and the horizontal speed ( 10 /m s ). 
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   (42.184) 

The time scale dt  for the fall of a neutron with a parabolic height of 15 z m  was also much less than the transit time of a 

neutron through the slits.   
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     (42.185) 

The interaction scale in the vertical direction is the de Broglie wavelength for the neutron-mirror collision; thus, neutron 
transmission through the slits is limited by the height of the absorber relative to the de Broglie wavelength.  The de Broglie 
wavelength is inversely proportional to the initial velocity (Eq. (42.183)).  And, from Eqs. (42.180) and (42.181) the parabolic 
height increases as 2v .  Then, the slit-width for transmission threshold 1z  is the de Broglie wavelength that equals the parabolic 

height corresponding to the initial kinetic energy.  The de Broglie wavelength is larger than the slit width for widths less than 1z , 

and the opposite relationship occurs for slits wider than 1z .  The velocity given by equating the initial kinetic energy (Eq. 
(42.181)) and the corresponding gravitational potential energy (Eq. (42.180)) is: 
 12v gz  (42.186) 

The corresponding de Broglie wavelength given by Eqs. (42.183) and (42.186) is: 
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 (42.187) 

Nesvizhevsky et al. [101] flowed neutrons between the mirror below and the absorber above and recorded the 
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transmission N (counts/s) as a function of the width z  of the slit formed by the mirror and the absorber.  Thus, the width z  
acted as a vertical velocity selector.  The expected classical prediction is that there is some transmission at a slit width greater 
that of the neutron cross section for neutrons propagating with no vertical velocity component.  This was in fact observed.  For 
neutrons with a vertical velocity component, no transmission of neutrons is expected until the slit width is greater than the 
vertical de Broglie wavelength corresponding to momentum reversal at the mirror.  This is due to the interaction of the reflected 
neutrons with the absorber with a separation less than this length.  From Eq. (42.187), the slit height at which neutrons are 
predicted to be transmitted is about 13 m .  This was exactly what was observed.  At this point, the detection rate N should 
increase as a linear function of the slit width corrected for any changes in the vertical component of the neutron velocity due to 
changes in the acceptance angle for neutrons.  Nesvizhevsky et al. [101] give a correction factor of 0.5z  to N  due to the increase 
in the accepted spread of velocities.  Thus, the classically predicted transmission as a function of slit width z  is: 

  1.5

1N c z z   (42.188) 

where c  is a constant dependent on the neutron flux and 1z  is the vertical de Broglie wavelength given by Eq. (42.187).  There 
was remarkable agreement between the experimental data of Nesvizhevsky et al. and the classical prediction given by Eq. 
(42.188). 

In contrast, the experimental data did not match critical predictions of quantum mechanics.  According to Nesvizhevsky 
et al. [101], “we expect a stepwise dependence of N  as a function of z .  If z  is smaller than the spatial width of the lowest 
quantum state, then N  should be zero.  When z  is equal to the spatial width of the lowest quantum state, then N  should 
increase sharply.  Further increase in z  should not increase N  as long as z  is smaller than the spatial width of the second 
quantum state.  Then N  should again increase stepwise.”  In contrast to these predictions, some transmission was observed at a 
slit width of an order of magnitude less than that of the predicted transmission threshold.  Also, no stepwise transmission 
between quantum states was observed.   Nesvizhevsky et al. [101] erred by not considering the vertical de Broglie wavelength in 
the cutoff for transmission.   

Moreover, at sufficiently large slit width z , Nesvizhevsky et al. [101] predict that the classical dependence N z   
should be approached.  Their data shows that their erred classical prediction actually coincides with the data at the n=3 state—a 
far cry from the point at which the quantum and classical results are expected to coincide based on the one-dimensional-well 
problem of quantum mechanics.  (The two are not to converge until the quantum number n  becomes very large and approaches 
infinity [103].)  Their results further point to the tendency to misinterpret data in order to support quantum theory when in fact 
the data disproves it. 
 
PHYSICS IS NOT DIFFERENT ON THE ATOMIC SCALE 
The central feature of nature is that all particles (atomic-size particles and macroscopic particles) obey the same physical laws. 
Whereas Schrödinger postulated the boundary condition: “ 0  as r  ,” which leads to a purely mathematical model of 
the electron, the boundary condition in classical physics was derived from Maxwell’s equations by Haus [78]: 
 

For non-radiative states, the current-density function must not possess spacetime Fourier components that are 
synchronous with waves traveling at the speed of light. 
 

Application of the latter boundary condition leads to an entirely different model of particles, atoms, molecules, and to a very 
different concept of the nature of the physical Universe.  The classical physical laws are unified and are shown to apply on all 
scales. 

The seemingly esoteric wave-particle duality of light and particles including the experimentally observed de Broglie 
relationship can be simply understood in terms of first principles.  The independent variables of four-dimensional spacetime, the 
fundamental constants comprising the fine structure constant,  , 
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the gravitational constant, G, the mass of the Universe, and the spin of the electron neutrino determine the nature of the Universe 
as shown in particular in the Gravity section and the Unification of Spacetime, the Forces, Matter, and Energy section.  Photons 
and fundamental particles which arise from photons possess   of angular momentum and are two-dimensional.  As a 
consequence of this nature with first principle laws, absorption and emission of photons occurs in units or quanta of energy 
according to the Planck equation as described in particular in the One-Electron Atom section.  Photons and electromagnetic 
fields arise from fundamental particles as given in the Photon Equation section and superimpose due to the linearity of 
Maxwell’s Equations and spacetime.  Interference patterns, surface waves, diffraction, reflection, standing waves, and/or 
corpuscular behavior can be observed depending on the means of observation.  These phenomena are explained according to 
first principles [104]. 

The wave-particle duality of the photon can be understood in terms of classical physics from the equation of the photon 
(Eq. (4.14)), a two-dimensional atomic orbital, given in the Photon Equation section.  This function provides a photon angular 
momentum of  , an energy given by the Planck relationship, a solution to the wave equation and Maxwell’s Equations, a 
velocity of c , a zero rest mass, and linearly, circularly, or elliptically polarized light.  Furthermore, photons superimpose in 
space and time to give a spherical wave described by the Green Function (Eq. (4.23)) which is consistent with the Airy pattern 
(Eq. (8.23)) in double slit diffraction experiments. 
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The wave-particle duality of the electron can be understood in terms of classical physics from the equation of the bound 
electron, a two-dimensional atomic orbital, given in the One-Electron Atom section and from the equation of the free electron 
given in the Electron in Free Space section.  In both cases, the electron has an electric field equivalent to a point charge, e , has 
mass, em , the electron wavelength is given by the de Broglie relationship, the angular momentum of the electron is   (Two 
possible orientations are possible in a magnetic field as observed in the Stern-Gerlach experiment, and the energy of the flip 
transition is proportional to the electron (fluxon) g  factor (Eq. (1.227)).  The ionized electron has its electron density in a plane 
(Eq. (3.7)), and the superposition of electrons provides a plane wave having the de Broglie wavelength which is consistent with 
the Davisson-Germer experiment given in the Electron Scattering by Helium section.  Furthermore, the correct prediction of the 
elastic scattering of electrons by helium atoms given in the Electron Scattering by Helium section wherein the electron radius is 
a crucial parameter (Eq. (8.57)), and the excited state spectrum of hydrogen given in the Excited States of the One-Electron atom 
(Quantization) section (wherein the correspondence principle holds) are direct verifications that the electron is an atomic orbital 
with the calculated radius. 

Atoms are stable according to classical principles as shown in the Spacetime Fourier Transform of the Electron Function 
section, Appendix I, and the Stability of Atoms and Hydrinos section.  The infinities of quantum electrodynamics are removed at 
once by having a finite electron radius as given in the One-Electron Atom section and the Electron in Free Space section.  In 
addition, the Lamb Shift is due to conservation of energy and linear momentum and arises from the radiation reaction force 
between the electron and the photon as given in the Resonant Line Shape and Lamb Shift section.  The negative result of the 
Michelson-Morley experiment rendered untenable the hypothesis of the ether by demonstrating that the ether had no measurable 
properties.  And, the more recent related concepts of vacuum fluctuations, vacuum polarization, and virtual particles which are a 
source of infinities have no basis in physical reality; so, they are discarded.  
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Appendix I 
  
NONRADIATION CONDITION 
  
 
 
 
 
DERIVATION OF THE CONDITION FOR NONRADIATION 
The condition for radiation by a moving point charge given by Haus [1] is that its spacetime Fourier transform does possess 
components that are synchronous with waves traveling at the speed of light.  Conversely, it is proposed that the condition for 
nonradiation by an ensemble of moving charge that comprises a charge-density function is that its spacetime Fourier transform 
does NOT possess components that are synchronous with waves traveling at the speed of light.  The Haus derivation applies to a 
moving charge-density function as well because charge obeys superposition.  The Haus derivation is summarized below. 
 
The Fourier components of the current produced by the moving charge are derived.  The electric field is found from the vector 
equation in Fourier space (k,  -space).  The inverse Fourier transform is carried over the magnitude of k .  The resulting 

expression demonstrates that the radiation field is proportional to ( , )
c

 J n  where ( , )J k  is the spacetime Fourier transform 

of the current perpendicular to k  and 
| |k
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n .  Specifically, 
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J n , namely, the Fourier component for which 
c


k .  Factors of   that 

multiply the Fourier component of the current are due to the density of modes per unit volume and unit solid angle.  An 
unaccelerated charge does not radiate in free space, not because it experiences no acceleration, but because it has no Fourier 

component ,
c

 
 
 
 

J n . 

 
SPACETIME FOURIER TRANSFORM OF THE ELECTRON FUNCTION 
The electron charge-density (mass-density) function is the product of a radial delta function 

2

1
( ( ) ( ))nf r r r

r
  , two angular 

functions (spherical harmonic functions), and a time-harmonic function.  The spacetime Fourier transform of the spherical 
current membrane in three dimensions in spherical coordinates plus time is given [2, 3] as follows: 
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0 0 0 0
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With circular symmetry [2] 
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With spherical symmetry [2], 
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The functions that model the electron charge density are separable. 
 ( , , , ) ( ) ( ) ( ) ( )r t f r g h k t       (5) 
The atomic orbital function is separable into a product of functions of independent variables, , , ,r    and t .  The radial function, 

that satisfies the boundary condition is a delta function.  The time functions are of the form i te  , the angular functions are 
spherical harmonics, sine or cosine trigonometric functions or sums of these functions, each raised to various powers.  The 
spacetime Fourier transform is derived of the separable variables for the angular space function of sin  and sin .  It follows 
from the spacetime Fourier transform given below that other possible spherical harmonic angular functions give the same form 

of result as the transform of sin  and sin .  Using Eq. (4), ( )F s , the space Fourier transform of 
2

1
( ) ( )nf r r r

r
   is given as 

follows: 

 2
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1
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 ( ) 4 sinc(2 )nF s sr  (7) 

 
The subscript n is used hereafter; however, the quantization condition appears in the Excited States of the 
One-Electron Atom (Quantization) section.  Quantization arises as “allowed” Maxwellian solutions 
corresponding to a resonance between the electron and a photon. 

 
Using Eq. (3), 1

1 ( , )G s  , the space Fourier transform of ( ) sing    is given as follows where there is no dependence on  : 
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From Luke [4] and Abramowitz and Stegun [5]: 
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Let  
 2 sin sinz sr    (11) 
With the substitution of Eqs. (11) and (10) into Eq. (9),  
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From Luke [6], with Re(υ) > 
1
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Let  
 2 cosz sr   and n   (16) 
Applying the relationship, the integral of a sum is equal to the sum of the integrals to Eq. (14), and transforming Eq. (14) into the 
form of Eq. (15) by multiplication by:  
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and by moving the constant outside of the integral gives: 
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Applying Eq. (15), 
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Collecting the r  raised to a power terms, Eq. (20) becomes, 
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Consider the Hankel transform formula from Bateman [7]: 
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where the radius is normalized to the dimensionless parameter r  that satisfies the conditions, 
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By applying Eq. (23), Eq. (22) becomes, 
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By collecting power terms of s  gives 
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 H H  (26) 

Next, 1
1 ( , )H s  , the space Fourier transform of h()  sin , is considered wherein the radius is normalized to the 

dimensionless parameter r  as given in Eq. (24).  Using Eq. (2) 1
1 ( , )H s   is 

 
2 1

1 2
1

0 0 0

( , ) sin exp( 2 [cos cos sin sin cos( )]) sinH s i sr r drd d
 

                 (27) 

By setting  
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  (s,,,,)  2s[coscos  sinsin cos(  )]  (28) 
Eq. (28) simplifies to: 

 
2 1

1 2
1

0 0 0

( , , ) sin sin i rH s e r drd d
 

          (29) 

Following the radial integration [8], 1
1 ( , )H s   is: 

 
2

1
1 2 3 3 2 3

0 0

2cos sin 2sin cos 2cos 2sin 2
( , , ) sin sinH s i d d

          
      

              
   (30) 

Based on the spatial similarity of   h()  sin  and g()  sin , the respective Fourier transforms are similar and considered 
nonzero since the inverse Fourier transforms are the original trigonometric functions. 

The time Fourier transform of ( ) Re{exp( )}nq t i t  is given as follows [3]: 

 
0

1 1
( ) cos exp( ) [ ( ) ( )]

2 2n n nQ t i t dt        




       (31) 

where n  is the angular frequency given by Eq. (1.36) corresponding to the frequency of a potentially emitted photon as given in 

Chp. 2. 
A very important theorem of Fourier analysis states that the Fourier transform of a product is the convolution of the 

individual Fourier transforms [9].  By applying this theorem, the spacetime Fourier transform of an atomic orbital, 
( , , )mM s 

  is of the following form: 

 ( , , ) ( ) ( , ) ( , , ) ( )m m mM s F s G s H s Q          
    (32) 

Therefore, the spacetime Fourier transform, 1
1 ( , , )M s  , is the convolution of Eqs. (7), (26), and (30-31). 
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 (33) 

The spherical harmonics functions are: 
    ,, cosm m im

mY N P e       (34) 

Generalizing the exemplary functions sin  and sin , the Fourier transforms of the spherical harmonics expressed in terms of 
the respective integrals are given by: 

       2
, 0

0 0

( , ) 2 cos 2 sin sin exp 2 cos cos sinm m
mG s N P J sr i sr r d dr



       


     
    (35) 

and  

 
2

2

0 0 0

( , , ) exp( 2 [cos cos sin sin cos( )]) sinm imH s e i sr r d d dr
 

       


         
  (36) 

In the general case, the spacetime Fourier transform, ( , , )mM s 
 , is the convolution of Eqs. (7), (31), and (35-36). 

 
1

( , , ) 4 sinc(2 ) ( , ) ( , , ) [ ( ) ( )]
4

m m m
n n nM s sr G s H s       


            

    (37) 

wherein ( , )mG s 
  and ( , , )mH s  

  are the spherical-coordinate Fourier transforms of  , cosm
mN P    and ime  , respectively.  

The condition for nonradiation of a moving charge-density function is that the spacetime Fourier transform of the current-density 

function must not have waves synchronous with waves traveling at the speed of light, that is synchronous with n

c


 or 

synchronous with 
0

n

c

 


 where   is the dielectric constant of the medium.  The Fourier transform of the charge-density 

function of the atomic orbital (membrane bubble of radius r ) is given by Eq. (37).  In the case of time-harmonic motion, the 
current-density function is given by the time derivative of the charge-density function.  Thus, the current-density function is 
given by the product of the constant angular velocity and the charge-density function.  The Fourier transform of the current-
density function of the atomic orbital is given by the product of the constant angular velocity and Eq. (37).  Consider the radial 
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and time parts of ( , , )mK s 
 , the Fourier transform of the current-density function, where the angular transforms 

( , ) ( , , )m mG s H s    
   are taken as not zero: 

 
1sin(2 )

( , , ) 4 ( , ) ( , , ) [ ( ) ( )]
2 4

m m mn
n n n

n

sr
K s G s H s

sr
       


            

    (38) 

For the case that the current-density function is constant corresponding to  0
0 ,Y   , the proceeding factor n  of the RHS of Eq. 

(38) is zero.  For time harmonic motion, with angular velocity,  , Eq. (38) is nonzero only for n  ; thus, s     

becomes finite only for the corresponding wavenumber, ns .  The relationship between the radius and the wavelength is: 

 n n nv f  (39) 

 2n n n n nv r f f    (40) 

 2 n nr   (41) 

Radiation of the bound electron requires an excited state wherein a potentially emitted photon circulates along the atomic orbital 
at light speed.  The nature of an excited state as shown in the Excited States of the One-Electron Atom (Quantization) section is a 
superposition of an electron and a photon comprising two-dimensional shells of current and field lines, respectively, at the same 
radius as defined by  nr r  1.  Due to the further nature of the photon possessing light-speed angular motion, the electron 

motion and corresponding spatial and temporal parameters may be considered relative to light-speed for the laboratory frame of 
the electron’s constant angular velocity.  A radial correction exists due to Special Relativistic effects.  Consider the wave vector 
of the sinc function.  When the velocity is c  corresponding to a potentially emitted photon, 
 n n n n   s v s c  (42) 

the relativistically corrected wavelength given by Eq. (1.279) is2: 
 n nr   (43) 

The charge-density functions in spherical coordinates plus time are given by Eqs. (1.27-1.29).  In the case of Eq. (1.27), the 
wavelength of Eq. (42) is independent of  ; whereas, in the case of Eqs. (1.28-1.29), the wavelength in Eq. (42) is a function of 
sin .  Thus, in the latter case, Eq. (43) holds wherein the relationship of wavelength and the radius as a function of   are given 
by sin sinn nr    . 

Substitution of Eq. (43) into the sinc function (Eq. (38)) results in the vanishing of the entire Fourier transform of the 

current-density function.  Thus, spacetime harmonics of n k
c


  or 

0

n k
c

 


  do not exist for which the Fourier transform of 

the current-density function is nonzero.  Radiation due to charge motion does not occur in any medium when this boundary 
condition is met.  Note that the boundary condition for the solution of the radial function of the hydrogen atom with the 
Schrödinger equation is 0   as r  .  Here, however, the boundary condition is derived from Maxwell’s equations: For 
non-radiative states, the current-density function must not possess spacetime Fourier components that are synchronous with 
waves traveling at the speed of light.  An alternative derivation to that of Haus [1] considering the macro-Maxwellian case and 
boundary conditions that provides acceleration without radiation is given by Abbott [10]. 
 
NONRADIATION BASED ON THE ELECTROMAGNETIC FIELDS AND THE 
POYNTING POWER VECTOR 
A point charge undergoing periodic motion accelerates and as a consequence radiates power P  according to the Larmor 
formula: 

 
2

2
3

0

1 2

4 3

e
P a

c
  (44) 

where e  is the charge, a  is its acceleration, 0  is the permittivity of free space, and c  is the speed of light.  Although an 

accelerated point particle radiates, an extended distribution modeled as a superposition of accelerating charges does not have to 
radiate [1, 10-13].  An ensemble of charges, all oscillating at the same frequency, create a radiation pattern with a number of 

 
1 Note that the equations of exited state photons given by Eq. (2.15) are not the macro-Maxwellian spherical resonator cavity solutions.  The latter is the 
superposition of many photons comprising a three-dimensional electromagnetic wave in the cavity with the associated macro-boundary conditions.  Haus 
[1] does not address the quantization of single-photon radiation of a bound state that conserves the angular momentum of the photon and single bound 
electron based on their respective natures.  However, the superposition of many photons obeying the quantization condition on a single electron converges 
to the macro-Maxwellian result.  Haus considers an example of rectilinear oscillation of a free point charge that would radiate many photons of many 
frequencies.  It is the macro-Maxwellian case and boundary conditions that Haus addresses in his paper [1] on radiation from point charges.  Since 
Maxwell’s equations are obeyed on all scales, the converse of the condition for radiation gives rise to the condition of nonradiation of the bound electron. 
2 In the frame synchronous with waves traveling at the speed of light, the lab-frame electron motion is on a sphere with a radius contracted by the factor 
2 .  The derivation is given in the Special Relativistic Effect on the Electron Radius and the Relativistic Ionization Energies section.  With the 
wavelength in the speed of light frame given by Eq. (43), the relativistic invariance of the angular momentum of the electron of   (Eq. (1.37)) provides 

that the corresponding relativistic electron mass (integral of the mass density over the surface) is 2
e

m . 
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nodes.  The same applies to current patterns in phased array antenna design [14].  It is possible to have an infinite number of 
charges oscillating in such as way as to cause destructive interference or nodes in all directions.  The electromagnetic far field is 
determined from the current distribution in order to obtain the condition, if it exists, that the electron current distribution given 
by Eq. (49) must satisfy such that the electron does not radiate.   

The charge-density functions of the electron atomic orbital in spherical coordinates plus time are given by Eqs. (1.27-

1.29).  For   = 0, 
28 n

e
N

r


 , and the charge-density function is: 

  
   = 0  

    0
02

( , , , ) [ ( )] , ,
8

m
n

n

e
r t r r Y Y

r
       


      (45) 

The equipotential, uniform or constant charge-density function (Eq. (1.27) and Eq. (49)) further comprises a current pattern 
given in the Atomic Orbital Equation of Motion for   = 0 Based on the Current Vector Field (CVF) section.  It also corresponds 
to the nonradiative 1n  ,   = 0 state of atomic hydrogen and to the spin function of the electron.  The current-density function is 
given by multiplying Eq. (47) by the modulation frequency corresponding to the constant angular velocity n .  There is 

acceleration without radiation, in this case, centripetal acceleration.  A static charge distribution exists even though each point on 
the surface is accelerating along a great circle.  Haus’ condition predicts no radiation for the entire ensemble.  The same result is 
trivially predicted from consideration of the fields and the radiated power.  Since the current is not time dependent, the fields are 
given by:  
  H J  (46) 
and 
 0 E  (47) 
which are the electrostatic and magnetostatic cases, respectively, with no radiation.  

In cases of orbitals of heavier elements and excited states of one electron-atoms and atoms or ions of heavier elements 
that are not constant as given by Eqs. (1.28-1.29), the constant spin function is modulated by a time and spherical harmonic 
function.  The modulation or traveling charge-density wave corresponds to an orbital angular momentum in addition to a spin 
angular momentum.  These states are typically referred to as p, d, f, etc. orbitals and correspond to an   quantum number not 
equal to zero.  Haus’ condition also predicts nonradiation for a constant spin function modulated by a time and spherically 
harmonic orbital function.  However, in the case that such a state arises as an excited state by photon absorption, it is radiative 
due to a radial dipole term in its current-density function since it possesses spacetime Fourier transform components 
synchronous with waves traveling at the speed of light as given in the Instability of Excited States section. 

The nonradiation condition given by Eqs. (38) and (42-43) may be confirmed by determining the fields and the current 
distribution condition that is nonradiative based on Maxwell’s equations.   

For   ≠ 0, 
24 n

e
N

r


 .  The charge-density functions including the time-function factor are: 

   ≠ 0 

     0
02

( , , , ) [ ( )] , Re ,
4

nim tm
n

e
r t r r Y Y e

r
       


      (48) 

where       Re , cos cosnim tm m
nY e P m m t       .  In the cases that 0m  , Eqs. (1.28-1.29) and Eq. (48) is a spherical 

harmonic traveling charge-density wave of quantum number m  that moves on the surface of the atomic orbital about the z-axis 
at angular frequency n  and modulates the atomic orbital corresponding to 0  at nm .  Since the charge is modulated time 

harmonically about the z-axis with the frequency nm  and the current-density function is given by the time derivative of the 

charge-density function, the current-density function is given by the normalized product of the constant modulation angular 
velocity and the charge-density function.  The first current term of Eq. (48) is static.  Thus, it is trivially nonradiative.  The 
current due to the time dependent term is 
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 (49) 

where N  and 'N  are normalization constants.  The vectors are defined as: 

 
ˆ ˆ ˆ ˆˆ ˆ ˆ;  
ˆ ˆ sin

u r u r
u z orbital axis

u r



 

   


 (50) 

 ˆ ˆ r̂    (51) 

 “^” denotes the unit vectors û 
u

u
, non-unit vectors are designed in bold, and the current function is normalized.  For time-

varying electromagnetic fields, Jackson [15] gives a generalized expansion in vector spherical waves that are convenient for 
electromagnetic boundary-value problems possessing spherical symmetry properties and for analyzing multipole radiation from 
a localized source distribution.  The Green function  ,G x' x  which is appropriate to the equation:  

      2 2 ,k G     x' x x' x  (52) 

in the infinite domain with the spherical wave expansion for the outgoing wave Green function is: 

            1 *
, ,

0

, ', ' ,
4

ik

m m
m

e
G ik j kr h kr Y Y   



  

 
 

 
  

x x'

x' x
x x'



   
 

 (53) 

General spherical coordinates are shown in Figure AI.1.   
 
Figure AI.1.   Far field approximation. 
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Jackson [15] further gives the general multipole field solution to Maxwell’s equations in a source-free region of empty 
space with the assumption of a time dependence i te  . 
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 (54) 

where the cgs units used by Jackson are retained in this section.  The radial functions  f kr  and  g kr  are of the form: 

          1 1 2 2g kr A h A h       (55) 

,mX  is the vector spherical harmonic defined by: 

  
 

 , ,

1
, ,

1
m mY   


X L 

 
 (56) 

where 

  1

i
 L r  (57) 

The coefficients  ,Ea m  and  ,Ma m  of Eq. (54) specify the amounts of electric  , m  multipole and magnetic  , m  

multipole fields, and are determined by sources and boundary conditions as are the relative proportions in Eq. (55).  Jackson 
gives the result of the electric and magnetic coefficients from the sources as: 
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* 34
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M  (58) 

and 
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* 34
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1
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k
a m j kr Y d x

c

       
  

J
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M  (59) 

respectively, where the distribution of charge  , t x , current  , tJ x , and intrinsic magnetization  , txM  are harmonically 

varying sources:   te  x ,   te J x , and   te xM .  From Eq. (49), the charge and intrinsic magnetization terms are zero.  

Also, the current  , tJ x  is in the ̂  direction; thus, the  ,Ea m  coefficient given by Eq. (58) is zero since 0 r J .  

Substitution of Eq. (49) into Eq. (59) gives the magnetic multipole coefficient  ,Ma m : 
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 (60) 

wherein the separable time harmonic function of the current is considered separately in Eq. (81).  Each mass-density element of 
the electron moves about the z-axis along a circular orbit of radius sinnr   in such a way that  , changes at a constant rate.  That 

is t   at time t  where nm  is the constant angular modulation frequency given in Eq. (49), and 

 ( ) sin cos sin sinn nr t r t r t    i j  (61) 

is the parametric equation of the circular orbit.  The relationships between the Cartesian ( ijk ) and spherical ( r  e e e ) coordinates 

are [16]: 

 

sin cos sin sin cos

cos cos cos sin sin

sin cos

r





    
    
 

  
  

  

e i j k

e i j k

e i j

 (62) 

The selection rules (Eq. (2.86)) for the conservation of angular momentum must be satisfied during the emission of a single 
photon of angular momentum  : 

 1    (63) 

The photon’s angular momentum given by Eq. (4.1) is: 

   41
Re ( )

8
dx

c
   m r E B*   (64) 

requiring a matching change in the electron’s angular momentum.  With emission, the radius must decrease in order to conserve 
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the photon’s energy 

 E    (65) 

and the electron’s energy in the inverse-radius Coulomb potential: 

 
2

04

Ze
V

r


  (66) 

The radial electric dipole current for a potentially emitted photon for the selection-rule condition of Eq. (2.86) given by Eq. 
(2.90) is 

  cos sinrJ J     
r

J k e e
r

 (67) 

Then, for radiation to occur from the rotating spherical harmonic current (Eq. (49)) while obeying the selection rules and the 
requirement of an allowed azimuthal-only B  (Eq. (2.102)) pertaining to the emission of a single photon, the radiated magnetic 
field must have e  only dependence.  Further given Jackson’s Eq. (16.84-16.89) [15] for the relationship of  ,Ma m  to B , the 

components of L  in Eq. (60) are restricted to those in the xy-plane, the xL  and yL  components.  It can easily be appreciated that 

this result also arises from application of L J  to Eq. (67) with the use of the vector identity given by Eq. (16.90) of Jackson 
[15]: 
  i    L J r J  (68) 

Then, the nonradiation condition tests whether the components of the rotating spherical harmonic current that are parallel to 
those of Eq. (67) give rise to radiation. 

Jackson gives the operator in the xy-plane corresponding to the current motion in this plane and the relations for 
 ,mY    [15]: 

 coti
x yL L iL e i  

 

 
    

 
 (69) 
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Using Eq. (69), L J  of Eq. (59) is 
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 (71) 

Using Eq. (70) in Eq. (71) gives: 

          1, sin , cos sin 1 ,m i m mL Y e Y m m Y        
          (72) 

The spherical harmonic is given as 
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Thus, Eq. (72) is given as: 

            11
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            (74) 

Substitution of Eq. (74) into Eq. (60) gives: 
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 (75) 

Substitution of      *, 1 ,
mm mY Y        and Eq. (73) into Eq. (75) and integration with respect to dr  gives: 
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The integral in Eq. (76) separated in terms of d  and d  is: 
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Consider that the d  integral is finite and designated by  , then Eq. (77) is given as: 

  
 

 
22

0

,
21

in
M n

ek
a m Nj kr e d

c


 




 
 

 
 (78) 

From Eq. (54), the far fields are given by: 
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 (79) 

where  ,Ma m  is given by Eq. (78). 

The power density  P t  given by the Poynting power vector is: 

  P t  E H  (80) 

For a pure multipole of order  , m , the time-averaged power radiated per solid angle 
 ,dP m

d


 given by Eqs. (16.74) and 

(16.75) of Jackson [15] is: 
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8 M m

dP m c
a m

d k



X


  (81) 

where  ,Ma m  is given by Eq. (78). 

The modulation function  , ,mY    is a traveling charge-density wave that moves time harmonically on the surface of 

the atomic orbital, spins about the z-axis with frequency n , and modulates at nm  corresponding to the term nm t  in Eq. (49).  

The independent variable   is also a term of the argument of the spherical harmonic function as shown in Eq. (49).  Consider the 
entire potentially radiating surface and the single quantized potentially emitted photon that carries all of the conserved angular 
momentum of   and energy given by Planck’s equation.  The time dependence of the power is eliminated in Eq. (81), but the 
boundary condition of the azimuthal spatial integral for  ,Ma m over its   dependence can also be evaluated in Eqs. (78) and 

(81) according to the source current’s space and time dependence using a substitution of variable for  .  From the azimuthal 
dependency of the source current corresponding to one period, Eq. (78) that can be written as: 
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 (82) 

where s  is the distance along a current path with the corresponding limit of integration being the angular displacement of the 

rotating modulation function during one period nT  at the linear velocity in the ̂  direction of v , and k  is the wavenumber 

corresponding to the angular frequency.  Thus, 
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In the case that k  is the light-like 0k , then /nk c , and the  sin ks  term in Eq. (84) vanishes for, 

 nR cT  (85) 

 1
nRT c   (86) 

 Rf c  (87) 

Here n  refers to Eq. (48) regarding the angular frequency given by Eq. (1.36) corresponding to the frequency of a potentially 

emitted photon as given in Chp. 2.  Thus, 
 n n ns vT R r      (88) 

as given by Eq. (1.279) which is identical to the Haus condition for nonradiation given by Eq. (43), and the photon emission 
condition given by Eq. (88) is equivalent to that of Eq. (67).  Then, the multipole coefficient  ,Ma m  is zero as it also has to be 

according to Eq. (78).  For the condition given by Eq. (88), the time-averaged power radiated per solid angle 
 ,dP m

d


 given by 

Eqs (81) and (84) is zero.  There is no radiation. 
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Appendix II 
   
STABILITY AND ABSENCE OF SELF INTERACTION AND 
SELF ENERGY 
  
 
 
 
 
STABILITY 
Quantum mechanics does not provide for the stability of matter.  The Schrödinger and Dirac solutions violate Maxwell’s 
equations [1-3] and the textbook argument for stability based on the Heisenberg Uncertainty Principle is false [4-5].  Dirac 
originally attempted to solve the bound electron physically with stability with respect to radiation according to Maxwell’s 
equations with the further constraints that it was relativistically invariant and gave rise to electron spin [74].  He and many 
founders of QM such as Sommerfeld, Bohm, and Weinstein wrongly pursued a planetary model, were unsuccessful, and resorted 
to the current mathematical-probability-wave model that has many problems [2, 5-18] such as violation of causality and locality, 
negative kinetic energy states, violation of conservation of energy as shown by the Klein Paradox with an infinite self energy in 
the electric and magnetic fields as well as instability to radiation. 

In contrast, the atomic orbital is stable to radiation as given in Appendix I, and the current pattern is a uniform, 
minimum-energy equipotential surface,  0

0 ,Y   , that gives rise to electron spin.  The uniformity proof of the current density 

and the corresponding angular momentum that gives rise to electron spin is derived in the Atomic Orbital Equation of Motion 
For   = 0 Based on the Current Vector Field (CVF) section.  The atomic orbital geometry and its intrinsic angular momentum of 
  are relativistically invariant as given in the Classical Physics of the de Broglie Relation section and Special Relativistic 
Correction to the Ionization Energies section, respectively.  Furthermore, the centrifugal and Coulombic force-densities that are 
in balance according to Eq. (1.253) are enormous.  From Eqs. (1.35), (1.253), and (1.259), the equivalent pressure HP  is: 
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  (1) 

This is equivalent to twenty million atmospheres.  But, even given the incredible forces of the bound atomic orbital, the energy 
state can be altered by atomic events such as a resonant collision or the absorption of a resonant photon to form an excited state; 
whereas, non-resonant collisions and photons cannot change the energy state.  Only resonant photons are emitted or absorbed 
according to the Maxwellian-based conservation rules given in the Excited States section and the Equation of the Photon section 
to result in an energy state change.  No states exist between the resonant states.  Moreover, state stability to minor perturbations 
is an inherent electron property. 

Specifically, the electron can only exist as a particle that has mass me  with a total magnitude of intrinsic angular 
momentum of   based on the physical laws and constants of the universe (Eqs. (36.1-36.4)).  Only specific masses that obey the 
physical laws of Maxwell’s equations and those of spacetime while satisfying the conservation conditions can exist.  The 
possible particles can be inter-converted, but not broken into smaller particles that do not satisfy these conditions.  (See 
Introduction, Table I.1, and Chapters 32-38.)  Chapter 36 (Leptons) provides the conditions for the creation of an electron from a 
photon that alters spacetime corresponding to a gravitational field contribution.  Leptons such as the electron are indivisible, 
perfectly conducting, and possess an inalienable   of intrinsic angular momentum such that any inelastic perturbation involves 
the entire particle wherein the intrinsic angular momentum remains unchanged.  Bound state transitions are allowed involving 
the exchange of photons between states, each having   of angular momentum in their fields.  Thus, changes in electron state 
involve photons that carry the quantized conserved energy and   of angular momentum in their fields.  A physical approach to 
solving the structure of the bound electron was followed in Chapter 1 and Appendix I based on the principles of radiation and the 
corresponding electron state change.  These properties maintain the stability of a bound electron to perturbations that do not 
cause a transition between states and provide that the integral of the physical properties such as the angular momentum of   and 
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energies in the inverse r-squared electric field originating at the nucleus over the entire electron match the boundary conditions.  
Consequently, the electron atomic orbital behaves as if it has rigidity based on the integrated conserved angular momentum of   
as well as kinetic energy T  wherein T  is one-half the magnitude of the potential eV  as required for an inverse-squared force 

wherein eV  is the source of T .  Based on the same physical principles, molecular orbitals are stable to non-state-changing 

perturbations as given in Chapter 11. 
It was shown in the Electron g Factor section that as a requirement of the conservation of the electron’s intrinsic angular 

momentum corresponding to spin, the magnetic momentum of the electron can only be parallel or antiparallel to an applied 
magnetic field, and it must link flux in units of the magnetic flux quantum that is the origin of the electron g factor.  Similarly, in 
order to maintain the electron’s intrinsic angular momentum with photon induced states that conserve the photon’s orbital 
angular momentum by inducing a time harmonic orbital distribution in the electron current, the electron orbital angular 
momentum integrates to zero over each cycle (Eqs. (1.72) and (1.76)).  Moreover, the electron’s velocity changes in at least one 
of magnitude and direction during a transition.  Then, further considering photons that change the electron’s orbital angular 
momentum and those that don’t, all excited state photons carry angular momentum in their electric and magnetic fields only in 
quantized units of   (Equation of the Photon section) with a corresponding energy of   due to the inalienable electron 
intrinsic angular momentum of  .  The electron atomic orbital cannot change its state in a continuous manner.  Rather any 
change is quantized (Excited States of the One-Electron Atom (Quantization) section).  This condition also applies to any state 
change mediated by a collision as well as those mediated by photons wherein the collision creates the resonant photon of the 
excited state with angular momentum and energy conserved.  Thus, any potential self interaction of the elements of the current 
density distribution of the bound electron associated with its intrinsic angular momentum (Atomic Orbital Equation of Motion 
For   = 0 Based on the Current Vector Field (CVF) section) requires the emission of a photon having an angular momentum that 
is a fraction of   and a commensurate fractional change in the electron’s intrinsic angular momentum.  This possibility is not 
allowed as a condition for the existence of the electron.   

Furthermore, any allowed self interaction is a radiation-reaction type wherein k  is also the lightlike 0k  such that 
/nk c .  Any such light-like interaction can only be central.  Since the velocity of each point of the electron is the same, the 

current of the atomic orbital is confined to a two-dimensional shell in the v c  frame as well as the lab frame as given by Eq. 
(1.280).  Since the current is orthogonal to the radial vector at the same radius for each great circle current density element, there 
is no self interaction.  However, as shown in the Electron in Free Space section a radiation-reaction force results when the 
current is confined to a plane lamina.  This force and the conservation of the angular momentum of the free electron and the 
photon in quantized units of   gives rise to the de Broglie relationship as shown in the Classical Physics of the de Broglie 
Relationship section. 

There is no electrostatic self-energy as shown infra, and there is also no magnetic self-energy for the bound electron 
according to Maxwell’s equations.  The magnetic moment is invariant for all states as given in the Special Relativistic 
Correction to the Ionization Energies section, and the surface current is the source of the discontinuous field that does not exist 
inside of the electron as given by Eq. (1.136). 

   ( )a bX  n H H K  (2) 

No energy term is associated with the magnetic field unless another source of magnetic field is present. 
 
SELF INTERACTION 
In addition to the electrodynamic interaction between the electron and the nucleus, the self interaction of the electron must be 
considered in the derivation of Eq. (1.253).  The bubble-like geometry of the atomic orbital requires the presence of the proton; 
otherwise, the electron would exist in the free-electron geometry.  As given in the Free Electron section, a free electron 
comprises a two-dimensional planar lamina with field lines that are discontinuous and orthogonal from opposite surfaces of the 
lamina such that the Maxwellian condition 

  1 2
0




  n E E  (3) 

is satisfied where n  is the radial normal unit vector, 1E  and 2E  are the electric field vectors that are discontinuous at the 

opposite surfaces, and   is the charge density of the electron corresponding to a total charge of e .  There is no self interaction 
for the free electron that behaves as a two-dimensional perfect conductor.  Consider the transformation of the electron’s field 
lines during binding due to the central field of the proton.  The spherical symmetry requires that the field lines of the proton and 
the bound electron are radial.  In order to minimize the energy, the continuous charge density function is a two-dimensional 
equipotential energy surface with an electric field that is strictly normal-radial (Eq. (2.11)) for 1r r  according to Gauss’ law and 

Faraday’s law given in the Gauss’ Law in Two Dimensions Equates a Discontinuous Field Due to a Discontinuous Charge Layer 
Source section.  The relationship between the electric field equation and the electron source charge-density function is also given 
by Eq. (3), Maxwell’s equation in two dimensions [19-21].  As shown in Figure 1.32, 1E , the electric field inside of the atomic 

orbital, is zero, 2E , the electric field outside of the atomic orbital, is equivalent to that of a point charge at the origin, and   is 

the surface charge density corresponding to a total charge of e . 
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Eq. (3) applies to a perfect conductor.  The electron is a perfect conductor, and zero field inside of a perfect conductor is 
confirmed experimentally.  This relation shows that only a 2-D geometry meets the criterion for a fundamental particle and is 
required for particle production in order to satisfy Maxwell’s equations, special and general relativity, and other first principles 
such as conservation of energy and momentum as shown in the Gravity, Leptons, and Quarks sections.  2-D is the non-
singularity geometry, which is no longer divisible.  It is the dimension from which it is not possible to lower the dimensionality 
without encountering intrinsic field infinities.  In this case, there is no electrostatic self interaction since the corresponding 
potential is discontinuous radially across the surface according to Faraday’s law in the electrostatic limit, and the field is 
discontinuous, normal, and radial to the charge according to Gauss’ law [19-21].  Thus, only the continuous current density 
function need be considered. 
 
GAUSS’ LAW IN TWO DIMENSIONS EQUATES A DISCONTINUOUS FIELD DUE TO 
A DISCONTINUOUS CHARGE LAYER SOURCE 
Haus [19], Jackson [20], and Stratton [21], give the derivation for Gauss’ law in two dimensions.  In the electrostatic limit, the 
pertinent laws are Faraday’s law without magnetic induction and Gauss’ law.  The corresponding continuity conditions are: 

 0    
a bn E E  (4) 

  0 0
a b

s    n E E  (5) 

where n  is the normal unit vector, aE  and bE  are the electric field vectors that are discontinuous at the opposite surfaces, and 

s  is the discontinuous two-dimensional surface charge density.  The contour enclosing the integration surface over which 

Faraday’s law is integrated to obtain Eq. (4) and the integration volume used to obtain Eq. (5) from Gauss’ law are shown in 
Figures AII.1 and 2, respectively.  
 
Figure AII.1.   The differential contour intersecting the surface charge density   enclosing the integration surface over which 
Faraday’s law is integrated to obtain Eq. (4) (positive charge is shown by convention). 
 

 
 
Figure AII.2.   The differential integration volume enclosing the surface charge density   having normal n  used to obtain 
Eq. (5) from Gauss’ law. 

 
 

The conditions that the tangential components of the electric field on either side of the interface are the same according to 
Eq. (4) requires that the potential is continuous over a surface of discontinuity even if that surface carries a surface charge 
density.  Specifically, as shown for the integration of E around the contour in Figure AII.1, the contributions from A B  cancel 
those from ' 'B A .  Thus, the line integral of E from 'A A  must be the same as that from 'B B . 

 '
' '

constant
A B

A A
A B

d d       E s E s  (6) 

If the potential difference across the surface of discontinuity is constant, then the tangential component of E is continuous.  
Furthermore, since the thickness of the layer 0h  , any finite constant potential requires that E is infinite.  To avoid this 
infinity, the continuity condition on   is required to be 
 0a b    (7) 
From Haus [19]: 

“Continuity of tangential E is equivalent to continuity of  .” 
To determine the Gauss’ law jump condition through the surface of discontinuity, Gauss’ law is integrated over the 
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volume shown intersecting the surface in Figure AII.2.  The resulting continuity condition (Eq. (5)) is given in terms of the 
potential using the electrostatic limit where: 

  E  (8) 

Eqs. (3) and (5) become 

    
0

a b s


       n  (9) 

From Haus [91]: 
“At a surface of discontinuity that carries a surface charge density, the normal derivative of the potential is discontinuous.” 

 
SELF FORCE DUE TO A LAYER OF CHARGE WITH NONZERO THICKNESS 
It is shown by Purcell [22] that a self force does arise in the case of a charge layer that has thickness which is an inescapable 
problem for the quantum mechanical electron; whereas, the two-dimensional electron atomic orbital has no self interaction.  
Following the example given by Purcell, consider a spherical surface such as that of a balloon of radius 10 cm charged with 
about 104  10X  additional electrons.  Each additional electron is stuck to a rubber molecule that fixes it to the balloon surface 
where the separation between electrons is about 410  cm .  The electric field inside of the sphere is zero according to Gauss’ law 
since there is no charge here.  Outside of the sphere, the electric field given by Gauss’ law is: 
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  r rE i i  (10) 

where the total charge on the sphere of radius 0.01 R m
 

and the charge density 6 25.10  10  /X C m   givesis 
96.41  10  Q X C .  In the case of a two dimensional layer of charge, there is no self force since there is no self charge for this 

field to act on.  But, in the case that the charges of the layer are distributed such that there is a radial distribution, there exists a 
corresponding radial self force.  A fundamental particle is two dimensional, but the layer of the charged balloon and other such 
charged surfaces cannot be two dimensional and must have finite thickness. 

Regarding aggregates of charges on macroscopic objects Purcell [22] states that “real charge layers do not have zero 
thickness.”  He obviously missed the implications for electrons as fundamental particles, even though the absence of self 
interaction at each radial position was involved in his derivation.  And, he states that the self energy corresponding to self force 
is eliminated “when we replace the actual distribution of discrete elementary charges (the electrons on the rubber balloon) by a 
perfectly continuous charge distribution [23].” 

Purcell uses Gauss’ law in two dimensions as well as Newton’s third law to conclude that there cannot be any charge-
charge interaction for charges at the same radial position.  According to Purcell, the force within of any two-dimensional 
spherical shell must be zero.  “Coulomb repulsion between charges in the patch is just another example of Newton’s law; the 
patch as a whole cannot push on itself.”  Purcell gives the force on each nth shell as 
 n nd dq dA F E E  (11) 

where the electric field E is external to the shell—not from the shell itself.  Purcell affirms that the correct form of Gauss’ law 
for the two-dimensional spherical shell is: 

  1 2
0




  n E E  (12) 

and that the proper form in the case of the charge layer of finite thickness is: 

 
0

E



   (13) 

The radial distribution of charge is the source of an external field to act on each shell of increasing radius wherein the original 
charge layer given in Eq. (3) is now considered to have thickness and is modeled as a series of radial subshells corresponding to 
a radial charge density distribution shown in Figure AII.3. 
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Figure AII.3.   Charge pushes against charge in the radial direction such that within the charge layer of density  x , 

   E x dx E x dx   . 

 

 
 
Consider that the field is continuously increasing from 1 0 rE i  to that at the radius of the largest shell now redefined as R: 
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The total force per unit area 'F  on the three-dimensional layer of radial thickness 0x  is: 
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Using Eq. (13) gives dE, the change in E through each increment in the radial direction, dx, as dx .  Thus, dx  in Eq. (15) may 
be replaced with dE to give: 
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where Eq. (10) was used.  The self force per unit area of a three-dimensional layer of charge is then proportional to the average 
of the field inside and outside of the layer of charge which is zero and given by Eq. (10), respectively.  Here, the charge density 
given by Purcell is: 

 
0

0

x

dx    (17) 

This usage is misleading and should not be confused with a two-dimensional charge density according to Eq. (3).  In the case of 
the charged balloon, the force per unit area is: 

 
2

2

0

1
' 1.47 /

2
N m




 F  (18) 

An expression similar to that given Eq. (16) arises when using Coulomb’s law to calculate the field of a spherical layer of 
charge at the radius of the shell.  The calculation of the field inside of the shell alone implies that the layer must have thickness 

so that the field of 
1

2
Q  and self interaction applies.  This situation does not arise if Coulomb’s law is applied correctly for 

regions outside of a two-dimensional charge discontinuity as given in the Conditions for the Absence or Presence of a Self Force 
Using Coulomb’s Law section. 

Quantum mechanics is internally inconsistent.  Electron shielding or self interaction of the electron cloud is ignored in 
cases involving one electron such as H and 2H  , but electron-electron repulsion terms as well as shielding are considered in 

multielectron problems such as He  and 2H ; even though, the charge densities occupy the same space whether there is one or 

more electrons—the only difference being the magnitude.  The electron cloud model is also mandatory to achieve neutral 
scattering despite the internal inconsistency with scattering experiments that the momentum transfer is with the entire mass of 
the electron as pointed out by Max Born.  The subsequent probability-wave model violates special relativity and causality by 
requiring a point electron to be over all space at once, weighted according to a “guiding” probability density function. 

The electron spread over all space must interact with itself since Gauss’ law applied to the volumetric charge density 
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gives rise to a radial electric field from zero to infinity.  Consequently, there is the inescapable problem that the electron cloud is 
unstable, not to mention the nonphysical nature of the infinities in the electric and magnetic fields of the point electron 
manifested as a probability cloud distribution. 
 
CONDITIONS FOR THE ABSENCE OR PRESENCE OF A SELF FORCE USING 
COULOMB’S LAW 
Following the derivation by Fowles [24] for the inverse r-squared gravitational force on a point test mass due to a shell of mass, 
the electric force of a spherical shell of charge on a test charge q  is derived using Coulomb’s law, which is also an inverse r-
squared force.  The charge-density is integrated over the spherical surface rather than the mass, but the results are of the same 
form.  The Coulomb derivation is also given by Nansteel [25]. 
 
Figure AII.4.   Coordinates for calculating the field of a spherical shell of charge e  of zero thickness. 

 
 

The shell of zero thickness, total charge e , and radius a  shown in Figure AII.4 has a uniform, two-dimensional charge 
density of: 
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centered on the origin O.  Based on symmetry, the r-axis is defined as the z-axis, and the azimuthal directions are defined as the 
xy-plane. 

The incremental force dF  on the test charge at point P on the z-axis at a distance r from the center O of the spherical 
shell due to the incremental charge dA  at a point Q of the shell is given by: 
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where the test charge may lie inside ( r a ) or outside ( r a ) of the 2-D sphere and the force at r a  is given by r a   since 

Coulomb’s and Gauss’ laws are only defined outside of the charge that is the source of the field, the angle POQ  between the 

z-axis and point Q is defined as  , u is the vector PQ


, u  u , and the area increment dA on the surface at Q is given by: 

 2 sindA a d d    (21) 

where   is the azimuthal angle about the z-axis.  The vector projections of u from the triangle POQ are: 

  cos sinr a a   z xyu i i  (22) 

where zi  is the unit vector along the z-axis and xyi  is the unit vector lying in the plane of POQ and perpendicular to the z-axis.  

With the substitution of Eq. (22) into Eq. (20) the incremental force on the test charge is: 
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and the total force is 
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Due to symmetry the azimuthal forces cancel out over each circular integral: 
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Thus, the force is only a function of  : 
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The integration variable may be changed to u  by obtaining the scalar by squaring Eq. (22): 

    2 22 cos sinu r a a     (27) 

and then differentiating with respect to  : 

     2 2 cos sin 2 sin cosudu r a a d a a d         (28) 

Then, 

  2 2sin cos sin cos sin sinudu ra a d a d ra d             (29) 

From triangle POQ, the law of cosines gives: 
 2 2 22 cosu r ur a    (30) 
where 
 cos cosr a u    (31) 
Substitution of Eq. (31) into Eq. (30) gives: 

  2 2 22 cosu r r r a a     (32) 
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Multiplication of the right-hand side of Eq. (33) by 1
u

u
  gives: 
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Substitution of Eqs. (29) and (34) into Eq. (26) gives 
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where 
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Evaluation of Eq. (36) for  I r  gives 
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Thus, the force on the test charge given by Coulomb’s law is: 
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which is the field of a point charge at the origin for radial distances greater than or equal to the radius.  This result is consistent 
with Gauss’ and Faraday’s laws at a two-dimensional layer of charge given by Eq. (3).  Then,  I r  increases by unity as the test 

charge is moved from the inside of the sphere ( r a ) to outside ( r a ).   
 But, the behavior of  I r : 
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suggests the definition 
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for the case that the test charge lies at the spherical shell.  The corresponding force is: 
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in conflict with the result of Eq. (3).  Although, mathematically Eq. (24) leads to the result of Eq. (41), it is nonphysical, 
applicable to a charged insulator.  To achieve a minimum energy for the bound electron, a perfect conductor, the electric field 
lines are radial from the surface.  The Eq. (38) result is obtained trivially by application of Gauss’ law.  A perfectly conducting 
cavity acts as a Faraday cage wherein experimentally the field inside is zero since the interior contains no charge.  The following 
Gauss-law result holds, 
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For a two-dimensional spherical shell that is a perfect conductor the field inside of the spherical cavity, or any hollow conductor 
for that matter, is zero as shown by Bueche [26].  Thus, the integral given by Eq. (24) is trivially zero since there is no remote 
action1 of any surface point on another2.  Using Eq. (3), the field is given by Eq. (38).  

In contrast to the bound-electron case, an ensemble of point charges that are on the surface of a spherical shell insulator 
gives rise to the result of Eq. (41) with an inherent self interaction due to the remote action of each other surface point charge on 
any given point charge.  An additional self interaction arises when the spherical layer of point charges possesses thickness.  A 
charge density of nonzero thickness is of the form considered by Purcell with:  
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Specifically, for a linear radial distribution, Gauss’ law gives the force as:   
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Thus, 
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And, the corresponding force on the test charge q  at r a  is: 
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This result is also equivalent to the self force given by Purcell in Eq. (16).  It is also important to notice that the electric field in 
both cases is a continuous function of the radial displacement dx  such that the final force with the test charge outside of the 
charge layer is equivalent to that given by Eq. (38) with the exception that the radius includes the thickness of the layer.  The 
caution of confusing the use of   as defined in Eqs. (12) and (19) with that given in Eqs. (17) and (44) was also discussed in the 
Self Force Due to a Layer of Charge with Nonzero Thickness section. 

 
1 Remote action refers to that of a point with a different  ,   from a selected point.   
2 The same result arises with the consideration of the cancellation of the bound electron’s field by that of the proton. 
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In the case that the test charge is a proton at the origin and the charge layer is the electron cloud of the hydrogen atom 
according to quantum mechanics, the factor of 1/2 must also be considered with the requirement that field lines of the proton end 
on the electron charge.  The proton’s field is continuous and must end in a continuous manner throughout the electron cloud, 
which results in an infinite-body problem to solve for the form of the cloud and the corresponding energy.  Another fatal flaw in 
quantum mechanics is the corresponding self energy.  This problem does not arise in the case of the electron atomic orbital as 
shown in the Self Energy section. 
 
SELF ENERGY 
The force balance equation can also be arrived at by the familiar minimization of the energy, which demonstrates the absence of 
a self-energy term for the atomic orbital and the presence of an infinite term for the quantum mechanical solutions.  The atomic 
orbital electron kinetic energy 1T  obtained by integration over the mass density at spherical position 'r r  (Eq. (1.27)) is:  
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where the velocity is given by Eq. (1.35).  The electron atomic orbital is a two-dimensional equipotential energy surface at 
spherical position 'r r .  The potential energy is given by integrating Poisson’s equation over the continuous two-dimensional 
surface charge density given by Eq. (1.27) at the equipotential due to the proton at spherical position 'r r  where the electric 
field of the electron is strictly normal-radial (Eq. (2.11)) for 1r r  according to Gauss’ law, and the potential is continuous 

across the surface according to Faraday’s law in the electrostatic limit. 

  
2

2
2

0 0

2

0 0 0

' sin
4 4 ' 4

Ze e Ze
V r r r drd d

r r r

 

   
  



        (50) 

And, the energy due to the electrodynamic interaction of the electron and the proton 2T  due to their relative motion given by Eq. 

(1.35) is 

 
2

2
2 2

1 1

2 2
T mv

mr
 


 (51) 

The total energy E  is the sum of Eqs. (49-51). 

 
2 2 2

1 2 2 2
0

1 1

2 4 2e

Ze
E T V T

m r r mr
     

 
 (52) 

Then, the minimum energy is obtained by taking the derivative of Eq. (52) and setting it to zero, which is 

 
2 2 2

3 2 3
04e

Ze

m r r mr
 

 
 (53) 

Eq. (53) can be written in terms of the densities: 

 
2 2

1
2 2 2 2 3

1 1 1 0 1 1 1

1

4 4 4 4
em v e Ze

r r r r r mr   
 


 (54) 

where 1Z   and pm m  for the hydrogen atom.  Then, Eq. (54) is the same as Eq. (1.253). 

As shown in Figure 1.32, the electric field of the proton alone is over all space, and the electric field of the bound 
electron alone is finite only for 1r r .  The radius goes to infinity in the case of the ionized or free electron, and the 

corresponding charge and current density functions are given in the Free Electron Section.  During binding of the free electron 
which is a two-dimensional disc lamina, the electron charge distribution becomes that of a 2-D uniform spherical shell of charge, 
and the electric field of the electron superimposes and cancels part of that of the proton for 1r r  as shown in Figure 1.32.  The 

energy in the electric fields of each of the proton and the electron alone is given as 

 2
0

0

1

2eleE dv


 E  (55) 

where E  is the electric field of each independently.  The binding energy of the hydrogen atom, which is released as photons is 
given as the change in the electric field energy due to the change in the electric field due to the superposition of the fields of the 
electron and proton. 
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 (56) 

For 1 Hr a  as given by Eq. (1.260), 

 
2

0

13.5984 
8 H

ele
e

T E eV
a

     (57) 

In the case of nuclear charge Z , eleE  increases by a factor of Z , and the radius given by Eq. (1.260) is 1
Ha

r
Z

 .  These 

substitutions in Eq. (57) give Eq. (1.264). 
Eq. (57), matches the experimental binding energy.  In contrast, the corresponding energy does not match in the case of 

the solutions of the Schrödinger equation.  Even if it is assumed that the electron is everywhere at once in order to achieve 
electroneutrality, which is impossible, the energy stored in the electric field of the electron does not match the binding energy 
since the average radius of the hydrogen atom in this case is 3/2 the Bohr radius.  Even more problematic is that the self-energy 
in the quantum mechanical electron is infinite wherein the radius in Eq. (56) goes to zero as given by Purcell [27]. 
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Appendix III 
  
MUON g FACTOR 
  
 
 
 
 
The muon, like the electron, is a lepton with   of angular momentum.  The magnetic moment of the muon is given by Eq. 
(1.169) with the electron mass replaced by the muon mass.  It is twice that predicted using the gyromagnetic ratio (given in Eq. 
(2) of Box 1.2) in Eq. (2.65) of the Orbital and Spin Splitting section wherein the intrinsic angular momentum for the spin 1/2 

fermion is 
2


.  As is the case with the electron, the magnetic moment of the muon is the sum of the component corresponding to 

the kinetic angular momentum, 
2


, and the component corresponding to the vector potential angular momentum, 

2


, (Eq. 

(1.164)).  The spin-flip transition can be considered as involving a magnetic moment of g times that of a Bohr magneton of the 
muon.  The g factor (Eq. (1.261)) is: 

 
2

22 4
1

2 2 3 2 3 2

g   
  

         
   

 (1) 

For 1 137.03603(82)   (Eq. (1.235)),  

 1.001  159  652  137
2

g
  (2) 

The muon anomalous magnetic moment has been measured in a new experiment at Brookhaven National Laboratory 
(BNL) [1].  Polarized muons were stored in a superferric ring, and the angular frequency difference a  between the spin 
precession and orbital frequencies was determined by measuring the time distribution of high-energy decay positrons.  The ratio 
R of a  to the Larmor precession frequency of free protons p  in the storage-ring magnetic field was measured.  R is given by 

 a

p

R



  (3) 

The anomalous g value a  of the   was determined where the anomalous g value is related to the gyromagnetic ratio by 

 
 2

2

g
a 


  (4) 

and 

 
R

a
R 




 (5) 

where  is the ratio of the muon and proton magnetic moments: 

 
p




  (6) 
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According to Carey et al. [1], “For polarized muons moving in a uniform magnetic field B


, which is perpendicular to the muon 
spin direction and to the plane of the orbit, and with an electric quadrupole field E


 for vertical focusing, the angular frequency 

difference, a , between the spin precession frequency  s and the cyclotron frequency c is given by:  

 
2

1 ˆ
1a

e
a a

mc   


  
        

B E
 

 (7) 

The dependence of a  on the electric field is eliminated by storing muons with the ‘magic’   29.3, which corresponds to a 
muon momentum p  3.09 GeV /c .  Hence measurement of a  and of B  determines a .” 

Based on Lorentz covariance Jackson [2] gives the BMT equation which is the relativistic equation of motion for spin in 
uniform or slowly varying external fields.  The rate of change of the component of spin s  parallel to the velocity may be 

determined from the BMT equation.  This is the longitudinal polarization or net helicity of the particle.  If ̂  is a unit vector in 

the direction of  
v

c
, the longitudinal polarization is ̂ s .  It changes in time because s changes and also   changes.  The 

BMT equation in cgs units gives: 

   1ˆ ˆ1
2 2

d e g g

dt mc

 


              
    

s s B E  (8) 

where s  is the component of s perpendicular to the velocity.  Eq. (8) demonstrates a remarkable property of a particle with 
g  2.  In a purely magnetic field, the spin precesses in such a manner that the longitudinal polarization remains constant, 
whatever the motion of the particle.  If the particle is relativistic ( 1), even the presence of an electric field causes the 
longitudinal polarization to change only very slowly, at a rate proportional to 2  times the electric field component 
perpendicular to v. 

The “magic”   given by Eq. (8) wherein the contribution to the change of the longitudinal polarization by the electric 
quadrupole focusing fields are eliminated occurs when:  

 
1

0
2

g


   (9) 

where g  is the muon g  factor which is required to be different from the electron g  factor in the standard model due to the 

dependence of the mass dependent interaction of each lepton with vacuum polarizations due to virtual particles.  For example, 
the muon is much heavier than the electron, and so high energy (short distance) effects due to strong and weak interactions are 
more important here [3].  Also, according to the BNL collaboration [1]: 
 

“The hadronic contribution and uncertainty are dominated by the single vacuum polarization loop with hadrons present, 
which is determined from a dispersion relationship using data from annihilation to hadrons and from hadronic decay.  A 
contribution from higher order hadronic vacuum polarization and light-by-light scattering must be included” 

The BNL Muon (g-2) Collaboration [1] used a “magic”   29.3 which satisfied Eq. (9) identically for 
g
2

; however, their 

assumption that this condition eliminated the affect of the electrostatic field on a  is flawed as shown below.  The relativistic 
factor   is given by: 

 2

1

1





  
(10) 

where 

 
v

c
   (11) 

Substitution of Eq. (9) into Eq. (10) gives: 

 

1

2
1

g

 
  

(12) 

and  

 
2

2 1
1

g





  
 

(13) 
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From the BNL99 results and the average of the CERN and BNL97 results [1] an estimated value of 
2

g  is: 

 1.00116593
2

g   (14) 

Substitution of Eq. (14) into Eq. (12) gives the “magic”   as: 

 29.3033176   (15) 

and from Eq. (13), 

 
0.999417544 

 
(16) 

As shown in the Electron g Factor section, in the case of an exact balance between the Lorentz force (Eq. (1.183)) and the 
electric force corresponding to the Hall voltage (Eq. (1.184)), the superconducting condition is met when:  

 

E
v

B


 
(17) 

which in cgs units is: 

 

Bv
E B

c  
 

(18) 

Consider the case that the g  factor for the muon and the electron are the same and the “magic”   29.3 selected by the BNL 

Muon (g-2) Collaboration which satisfied Eq. (9) identically for  
2

g  (Eq. (1.229)) does not satisfy Eq. (9) for 
2

eg
 given by the 

experimental value (Eq. (27)).  In this case, the second term of Eq. (8) contributes to a .  With eg g  and   , the BMT 

equation is: 

   1ˆ ˆ1
2 2

e eggd e

dt mc





 



                   
s s B E  (19) 

Since B is parallel to ̂ s  and since E and s  are anti-parallel, the electric field from Eq. (18) is: 

 ˆ
   E B  (20) 

 
Figure AIII.1.   Coordinate system of crossed electric field, xE , corresponding to the Hall voltage, magnetic flux, zB , due to 

the applied field, the velocity, yv , in the ̂  direction, and s  where BE . 

 

 
 

Then 

  
2

ˆ ˆ1 1
2 2

e eggd e

dt mc
 

                   
s s B  (21) 

  
2

ˆ
2 2

ee
gge

mc
 

 
     

  
s B  (22) 

    2 ˆ1
2

ege

mc  
       

s B  (23) 

In the case that eg g g  , the term in E  of Eq. (8) 
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    ˆ ˆ1
2

gd e

dt mc
 

 
      

 
s s B  (24) 

vanishes and a change in longitudinal polarization due to the finite electric term can be considered as an additional term to the 

electron g  factor which gives rise to an effective g  factor corresponding to
2

g .  Comparison of Eq. (23) and Eq. (24) gives the 

effective value of 
2

g  which is the predicted experimental value for 
2

g : 

  21 1
2 2

e
g g

    (25) 

  21 1
2 2

e
g g

    (26) 

Eq. (19), which gives the predicted experimental value for 
2

g  (Eq. (26)), corresponds to the experimental situation of the BNL 

measurement of 
2

g .  The experimental value of 
2

eg
  [4] is:  

 1.001  159  652  188(4)
2

eg
  (27) 

Substitution of 
2

eg
 and   given by Eq. (27) and Eq. (16), respectively, into Eq. (26) gives the calculated effective muon g  

factor which is: 

 1.001 165 923
2

g   (28) 

The calculated result based on the equivalence of the muon and electron g  factors is in agreement with the result of Carey et al. 
[1]: 

 1.001 165 925 (15)
2

g   (29) 

Rather than indicating an expanded plethora of postulated super-symmetry virtual particles which make contributions 
such as smuon-neutralino and sneutrino-chargino loops as suggested by Brown et al. [5], the deviation of the experimental value 

of 
2

g  from that of the standard model prediction simply indicates that the muon g  factor is identical to the electron g  factor.  

This could have been spotted immediately had the objectivity of the experimental design been given precedence over the 
assumption of the validity of the standard model.  Given the ad hoc nonphysical nature of QED (See Refs. [6-7]) and the internal 
inconsistency of the theoretical basis of this experiment regarding using the classical BMT equation in a test of nonclassical 
QED, more scrutiny was especially warranted.   

From Eqs. (26), (27), and (16), the difference between 
2

g  and 
2
eg

 due to the finite electric term of Eqs. (8) and (19) 

with eg g  is: 

 21 0.0000062705
2 2 2

e e
g g g

     (30) 

With the equivalence of the muon g  factor and the electron g  factor, the possibilities are limited for the occurrence of internal 

consistency during the determination of 
2

g  using the BMT equation with the flawed assumption that 
2 2

e
g g  .  Consider the 

case of Eq. (9) with eg g g   and u   with the corresponding “magic”   given by Eqs. (10-13).  An equation equivalent 

to Eq. (30) that gives rise to an internally consistent experimental observation of an effective muon g  factor corresponding to 

u   is: 

 

2

1 2
0.0000062705

22

eg
g

g

g







 
 
   
 
  

 (31) 
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 21 0.0000062705

2

eg

g
   (32) 

where g  is the muon anomalous g  factor selected before the experiment to fix the “magic”  , 0.0000062705 given by Eq. 

(32) (also see Eq. (30)) is the difference between the projected experimental value of 
2

g  and the experimentally measured value 

of 
2

eg
.  The experimental value of 

2
eg

 from Eq. (27) and the selected value of 
2

g  from Eq. (14) satisfy Eqs. (31-32) and are in 

close agreement with the experimental value of 
2

g  determined by Carey et al. [1] (Eqs. (28-29)).  The “magic”   of BNL 

which gave an internally consistent but misinterpreted result was most likely arrived at by trial and error.  Consider the following 

relationship between   and 
 2

2

yg 
 of the “magic”   that follows from Eq. (32): 

 21

2

e

y

g

g
   (33) 

where 

 
   22

2 2
e

gg 


   (34) 

and eg  is the experimentally measured electron anomalous g  factor and g  is the projected experimental value of the muon 

anomalous g  factor based on g , the selected value of the muon anomalous g  factor to fix the “magic”  .  A plot of   versus 

 2

2
yg 

 from Eq. (33) is shown in Figure AIII.2. 

 

Figure AIII.2.   Plot of   versus 
 2

2

g 
 of the “magic”   from Eq. (33). 

 

 
 

Only a narrow range of values of 
 2

2

g 
 about the value of 

 2

2

g 
 measured by Carey et al. [1] are internally consistent.   

Similar misinterpretations of data based on a bias towards quantum theory are described in the Schrödinger “Black” Cats 
section.  For example, NIST claimed to have placed a 9Be  ion in two places at once when in reality an applied magnetic field 
and a potential well were found which forced a resonance between an oscillatory and a Stern-Gerlach transition.  And, the 
resulting interference pattern in the fluorescence emission was misinterpreted as indicating that the ion was in two widely 
separated positions simultaneously [8].  The BNL experiment should be repeated to determine the dependence of a  on the 
“magic”  .  The current BNL results and classical theory support the equivalence of the electron and muon g factors. 
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EXPERIMENTAL DETERMINATION OF THE PROPER   [9] 
The angular frequency difference between the spin procession frequency and the cyclotron frequency, [4], is: 

 
2

1 ˆ
1a

e
a a

mc   


  
        

B E
 

 (35) 

Introducing the velocity ratio,  , and g, 

 
2

2
2

1 , 1
1 2

g
a




   


 (36) 

yields 

 
2

1 ˆ1
2 2a

e g g

mc
 


            
    

B E
 

 (37) 

The unique value of   for which the term in E vanishes is * : 

 
*2

1

2

g


  (38) 

For *   

  *
*2

1
1a

e

mc
 


 

   
 

B


 (39) 

Taking the magnitude results in 

  *
*2

1
1a

e
B

mc
 


 

  
 

 (40) 

The experimental measurement of the frequency difference for various   allows the graphical determination of * , (See Figure 
AIII.3), with no assumption regarding g. 
 
Figure AIII.3.   Plot of the experimental measurement of the frequency difference for various   which allows the graphical 
determination of * . 
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Appendix IV 
  
ANALYTICAL EQUATIONS TO GENERATE THE FREE 
ELECTRON CURRENT-VECTOR FIELD AND THE ANGULAR-
MOMENTUM-DENSITY FUNCTION 0

0 ,  
 
 

Y  
  
 
 
 
 

ROTATION OF A GREAT CIRCLE IN THE XY-PLANE ABOUT THE  ,0 ,x y zi i i -AXIS 

BY 2  
With the electron current in the counter clockwise direction, the Larmor precession of the angular momentum vector of the free 

electron is about two axes simultaneously, the  ,0 ,x y zi i i -axis and the laboratory-frame z-axis defined by the direction of the 

applied magnetic field.  The precessions are about the opposite axes with the current in the opposite direction.  The motion 
generates CVFs equivalent to those of the bound electron given in the Atomic Orbital Equation of Motion for   = 0 Based on 
the Current Vector Field (CVF) section.  Over one time period, the first motion sweeps out the equivalent of a BECVF, and the 
rotation about the z-axis sweeps out the equivalent of an OCVF.  The combined motions sweep out the equivalent of the 
convolution of the BECVF with the OCVF, a distribution having the angular momentum equivalent of 0

0 ( , ) Y  of the bound 

electron.  The electron may flip between the two states wherein the BECVF, OCVF, and 0
0 ( , ) Y  precession distributions 

developed infra apply to both states, but the currents are opposite.   
Specifically, the Larmor precession of the free electron with the current in the counter clockwise direction corresponds to 

the two superimposed independent time-harmonic rotations of the plane-lamina disc initially in the xy-plane.  One is about the 

 ,0 ,x y zi i i -axis by 2  wherein the angular momentum vector of the free electron that is perpendicular to the plane-lamina of its 

current sweeps out a cone about the  ,0 ,x y zi i i -axis.  The plane-lamina is comprised of concentric great circle current loops 

each of a radius given by the continuous variable   for 00    .  For each great circle, the first Larmor precession generates 

the equivalent vector-field pattern as that of a BECVF.  Simultaneously, the distribution corresponding to the first rotation 
precesses or rotates about the laboratory z-axis defined by the applied magnetic field direction wherein the  ,0 ,x y zi i i -axis 

sweeps out a cone about the z-axis.  Over one time period, the rotational motion about the z-axis generates the equivalent vector-
field pattern as that of an OCVF of the bound electron.  The combined motions over time generate the equivalent distribution 
and angular momentum as those of 0

0 ( , )Y    of the bound electron given by the convolution of the OCVF with the BECVF. 

The rotation of a great circle in the xy-plane about the  ,0 ,x y zi i -axis by 2  generates a free electron BECVF 

corresponding to the precession motion with its resultant angular momentum of 2  along the  ,0 ,x y zi i i -axis having 

components of  xyL  and  zL .  Equally valid is the substitution of the  ,0 , x y zi i i -axis for the  ,0 ,x y zi i -axis since the 

corresponding orthogonal BECVFs have the same distribution and are simply related by a half cycle of precession motion about 
the z-axis.  Both will be considered. 
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The BECVF corresponding to the  ,0 ,x y zi i i -axis over 2  will be generated first following the procedure given in 

Fowles [1] and using the matrices given by Eqs. (1.80-1.82).  The rotational matrix about the  ,0 ,x y zi i i -axis by  , 

   
,0 ,

R
x y zi i i

, is given by: 

      
,0 , 4 4y z yR R R R

         
   x y zi i i

 (1) 

Then, using Eqs. (1) and Eqs. (1.81-1.82), the great circle basis elements and rotational matrix are given by: 
 
BECVF MATRICES (    

,0 , R
x y zi i i

) 

 

1 cos sin 1 cos
          

2 2 2 22' cos

sin sin
'             cos      sin

2 2

' 0
1 cos sin 1 cos

       
2 2 2 22

x

y

z

  

 

   

  

   
    
    
    
     
    
    
        

    

 (2)

 

Using Eq. (2), the BECVF matrix representation of the convolution is given by: 

         

2

,0 , , ,0
0 1

   lim





   






  

      
m

basis
M

m

BECVF R GC m
x y z x y zi i i i i i

 (3) 

wherein    
,0 ,

R
x y zi i i

 is the rotational matrix about the    
,0 ,

R
x y zi i i

-axis,  , ,0

basisGC
x y zi i i

 is the great circle basis element initially in 

the xy-plane, and   designates the convolution with the delta function of the infinitesimal incremental angle  Mm .  The 

integral form of the convolution is 

         

2

2

,0 , , ,0
0 10

 lim


 


    






  

  
m

basis
M

m

BECVF R GC m d
x y z x y zi i i i i i
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The integration gives the infinite sum of great circles that constitute the BECVF: 
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 (5) 

The current pattern for the rotation of the xy-plane great circle about the  ,0 ,x y zi i i -axis is shown in Figure IV.1 wherein   is 

varied from 0  to 2 . 
 

Figure IV.1.   The current pattern for the rotation of the xy-plane great circle about the  ,0 ,x y zi i i -axis (Eqs. (2) and (5)) 

shown with 6 degree increments of   from the perspective of looking along the z-axis.  The great circle current loop that served 
as a basis element that was initially in the xy-plane is shown as red.   
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CONICAL SURFACES FORMED BY VARIATION OF   
The rotation of the free-electron disc having a continuous progression of larger current loops along   forms two conical 

surfaces over a period that join at the origin and face in the opposite directions along the  ,0 ,x y zi i i -axis, the axis of rotation, as 

shown in Figure IV.2.  At each position of 0  , there exists a BECVF of that radius that is concentric to the one of 

infinitesimally larger radius to the limit at 0  .  The BECVF at each position   generated over a period by the Larmor 

precession about the  ,0 ,x y zi i i - axis by 2  is given by Eqs. (2) and (5).  The conical surfaces were generated by varying   in 

Eqs. (2) and (5). 
 
Figure IV.2.   The two conical surfaces formed by rotation of the plane-lamina disc comprised of concentric great circles 

about the  ,0 ,x y zi i i -axis that join at the origin and face in the opposite directions along the axis of rotation, the  ,0 ,x y zi i i -

axis. 
 

 
 

ROTATION OF A GREAT CIRCLE IN THE XY-PLANE ABOUT THE  ,0 , x y zi i i -AXIS 

BY 2  
Similarly, the Larmor precession of the free electron about the z-axis also corresponds to the time-harmonic rotation of the 

plane-lamina disc about the  ,0 , x y zi i i -axis by 2 .  The Larmor precession of the plane-lamina comprised of concentric 

great-circle current loops each of a radius given by the continuous variable   for 00     generates the equivalent BECVF.  

The rotational matrix about the  ,0 , x y zi i i -axis by  ,    
,0 ,




R
x y zi i i

, is given by 

      
,0 , 4 4

  


       
   

y z yR R R R
x y zi i i

 (6) 

Then, using Eqs. (6) and Eqs. (1.81-1.82), the great circle basis elements and rotational matrix are given by  
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BECVF MATRICES (  
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Using Eq. (7), the BECVF matrix representation of the convolution is given by: 
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wherein    
,0 ,




R
x y zi i i

 is the rotational matrix about the    
,0 ,




R
x y zi i i

-axis,  , ,0

basisGC
x y zi i i

 is the great circle basis element initially in 

the xy-plane, and   designates the convolution with the delta function of the infinitesimal incremental angle  Mm .  The 

integral form of the convolution is 
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The integration gives the infinite sum of great circles that constitute the BECVF: 
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 (10) 

The current pattern for the rotation of the xy-plane great circle about the  ,0 , x y zi i i -axis is shown in Figure IV.3 wherein   is 

varied from 0  to 2 . 
 
Figure IV.3.   The current pattern for the rotation of the xy-plane great circle about the  ,0 , x y zi i i -axis (Eqs. (7) and (10)) 

shown with 6 degree increments of   from the perspective of looking along the z-axis.  The great circle current loop that served 
as a basis element that was initially in the xy-plane is shown as red.   
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CONICAL SURFACES FORMED BY VARIATION OF   
The rotation of the free-electron disc having a continuous progression of larger current loops along   forms two conical 

surfaces over a period that join at the origin and face in the opposite directions along the  ,0 , x y zi i i -axis, the axis of rotation, 

as shown in Figure IV.4.  At each position of 0  , there exists a BECVF of that radius that is concentric to the one of 

infinitesimally larger radius to the limit at 0  .  The BECVF at each position   generated over a period by the Larmor 

precession about the  ,0 , x y zi i i - axis by 2  is given by Eqs. (7) and (10).  The conical surfaces were generated by varying   

in Eqs. (7) and (10). 
 
Figure IV.4.   The two conical surfaces formed by rotation of the plane-lamina disc comprised of concentric great circles 

about the  ,0 , x y zi i i -axis that join at the origin and face in the opposite directions along the axis of rotation, the  ,0 , x y zi i i -

axis. 

 
 

THE MOMENTUM-DENSITY FUNCTION 0
0 ( , ) Y  

Each basis-element great circle of the plane lamina current-density function of the free electron at a position   generates the 
BECVF that is perpendicular to the rotation axis used for the generation of the distribution of great circles.  The rotation of a 
great circle in the xy-plane about the  ,0 ,x y zi i -axis by 2  generates a precessing free electron BECVF corresponding to a 

Bohr magneton of magnetic moment about the z-axis as given in the Rotation of a Great Circle in the xy-Plane about the 

 ,0 ,x y zi i i -Axis by 2  section.  An OCVF is formed by the 2  rotation of a great circle perpendicular to the  ,0 ,x y zi i -axis 

about the z-axis.  Using the same type of convolution of CVFs as in the Atomic Orbital Equation of Motion for   = 0 Based on 
the Current Vector Field (CVF) section, the function  0

0 , Y  corresponding to the motion of a free electron is obtained by 

convolving the BECVF given by Eqs. (2) and (5) as the basis element with the OCVF.  This operation is equivalent to 
incrementally rotating the BECVF about the z-axis by 2 .   

Similarly, the rotation of a great circle in the xy-plane about the  ,0 , x y zi i -axis by 2  generates the orthogonal 

BECVF given in the Rotation of a Great Circle in the xy-Plane about the  ,0 , x y zi i -Axis by 2  section.  An OCVF is also 

formed by the 2  rotation of a great circle perpendicular to the  ,0 , x y zi i -axis about the z-axis.  The function  0
0 , Y  

corresponding to the motion of a free electron is obtained by convolving the BECVF given by Eqs. (7) and (10) as the basis 
element with the OCVF.  This operation is equivalent to incrementally rotating the BECVF about the z-axis by 2 . 
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MATRICES TO VISUALIZE THE MOMENTUM-DENSITY OF  0
0 , Y  FOR THE 

COMBINED PRECESSION MOTION OF THE FREE ELECTRON ABOUT THE  ,0 ,x y zi i i -

AXIS AND Z-AXIS 
The free BECVFs are given by Eqs. (2) and (5) and Eqs. (7) and (10).  Consider the case of the  0

0 , Y  momentum-density 

pattern for the combined precessional motion of the free electron about the  ,0 ,x y zi i i -axis and z-axis having the magnetic 

moment of B  on the z-axis.  The free electron OCVF is given by rotating a basis-element great circle that is perpendicular to 

the  ,0 ,x y zi i i -axis about the z-axis by 2 .  The transformation matrix to give the OCVF is generated by the combined rotation 

of a great circle in the xy-plane about the y-axis by 
4


  then about the z-axis by  .  The coordinates of the great circle basis 

element to generate the OCVF are given by the matrix that rotates a great circle in the xy-plane about the y-axis by 
4


 : 

    
T

T Tcos cos
', ', ' , sin , cos , sin ,0

42 2

         
           

yx y z R  (11) 

The OCVF is generated by rotating the basis element great circle given by Eq. (11) about the z-axis using  zR  over the span 

of 2 .  Using Eqs. (11) and Eq. (1.82), the great circle basis elements and rotational matrix are given by: 
 
OCVF MATRICES (  zR ) 
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Using Eq. (12), the infinite sum of great circles representation of the OCVF is given by: 
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 (13) 

The current pattern for the 2  rotation of the great circle perpendicular to the  ,0 ,x y zi i i -axis about the z-axis is shown in 

Figure IV.5 wherein   is varied from 0  to 2 . 

Figure IV.5.   The current pattern given by Eqs. (12) and (13) shown with 6 degree increments of   from the perspective of 
looking along the z-axis.  The great circle current loop that served as a basis element that was initially in the xy-plane before 
applying Eq. (11) and then Eq. (12) is shown as red.   
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CONVOLUTION GENERATION OF 0
0 ( , ) Y  

The great-circle distribution 0
0 ( , ) Y  is generated by the convolution of either BECVF with the corresponding OCVF over a 

2  span.  The convolution operator treats each CVF independently and results in the placement of a BECVF at each great circle 
of the OCVF such that momentum density pattern over time matches the bound-electron current pattern 0

0 ( , )Y   , the initial 

angular momentum matches that of the great circle basis element of the OCVF, and the angular momentum rotates about the z-
axis along the initial resultant angular momentum axis.  This is achieved by rotating the orientation, phase, and vector-matched 
basis-element, the BECVF, about the same axis as that which generated the OCVF from the corresponding basis element great 
circle.  Thus, the corresponding BECVF replaces the great circle basis element initially perpendicular to one of the orthogonal 

axes such as the  ,0 ,x y zi i i -axis and matches its resultant angular momentum of 2  along the  ,0 ,x y zi i i -axis having 

components of  xyL  and  zL .  Then, 0
0 ( , ) Y  is generated by rotation of the BECVF about the z-axis by an infinite set of 

infinitesimal increments of the rotational angle over the 2  span such that coverage of the spherical surface is complete.  The 
corresponding convolution operator comprises an autocorrelation-type function that demonstrates the resulting azimuthal 
uniformity of the distribution when the orthonormality of the operator matrices is utilized as shown in the Azimuthal Uniformity 
Proof of 0

0 ( , ) Y  section. 

The operator to form 0
0 ( , ) Y  comprises the BECVF convolution [2] of the rotational matrix of the great circles basis 

element about the  ,0 ,x y zi i i -axis with an infinite series of delta functions of argument of the infinitesimal angular increment 

that is further convolved with the OCVF convolution of the rotational matrix of the great circles basis element about the z-axis 
with an infinite series of delta functions of argument of the infinitesimal angular increment.  Using the BECVF matrix 
representation of its convolution operation (Eqs. (2) and (5)) and the OCVF matrix representation of its convolution operation 
(Eqs. (12) and (13)), the 0

0 ( , ) Y  matrix representation of the convolution is given by: 
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where the commutative property of convolutions [2] allows for the interchange of the order of CVFs, but the rotational matrices 
are noncommutative [1].  The integral form of the convolution is: 
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The integration gives the infinite double sum of great circles that constitute 0
0 ( , ) Y : 
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 (17) 

The positions of the basis-element great circle over time comprises a continuous distribution.  However, using Eq. (17), a 
discrete representation of the current distribution 0

0 ( , ) Y  that shows a finite number of current elements over time can be 

generated by showing the BECVF as a finite sum of the convolved great circle elements using Eqs. (2) and (5) and by showing 
the continuous convolution of the BECVF with the OCVF as a superposition of discrete incremental rotations of the position of 
the BECVF rotated according to Eqs. (12) and (13) corresponding to the matrix which generated the OCVF.  In the case that the 
discrete representation of the BECVF comprises N  great circles and the number of convolved BECVF elements is M , the 
representation of the azimuthally uniform current density function showing current loops is given by Eq. (18) and shown in 
Figures IV.6 and IV.7.  The corresponding mass(momentum) density is also represented by Figures IV.6 and IV.7 wherein the 
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charge and mass are interchangeable by the conversion factor /em e .  Computer modeling of the analytical equations to generate 

the free electron current vector fields and the azimuthally uniform momentum-density function  0
0 , Y  is available on the web 

[3]: 
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 (18) 

 
Figures IV.6 and IV.7.   Representations of the current pattern of the 0

0 ( , ) Y  free electron motion over a period of both 

precessional motions shown with 30 degree increments ( 12 N M  in Eq. (18)) of the angle to generate the free electron 
BECVF corresponding to Eqs. (2) and (5) and 30 degree increments of the rotation of this basis element about the z-axis 
corresponding to Eqs. (12) and (13).  The great circle current loop that served as a basis element that was initially in the xy-plane 
of each free electron BECVF is shown as red 
 
Figure IV.6  The perspective is along the z-axis. Figure IV.7  The perspective is along the x-axis. 
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MATRICES TO VISUALIZE THE MOMENTUM-DENSITY OF  0
0 , Y  FOR THE 

COMBINED PRECESSION MOTION OF THE FREE ELECTRON ABOUT THE 
 ,0 , x y zi i i -AXIS AND Z-AXIS 
Consider the case of the  0

0 , Y  momentum-density pattern for the combined precessional motion of the free electron about the 

 ,0 , x y zi i i -axis and z-axis having the magnetic moment of B  on the z-axis.  The corresponding free BECVF is given by Eqs. 

(7) and (10).  The free electron OCVF is given by rotating a basis-element great circle that is perpendicular to the  ,0 , x y zi i i -

axis about the z-axis by 2 .  The transformation matrix to give the OCVF is generated by the combined rotation of a great circle 

in the xy-plane about the y-axis by 
4


 then about the z-axis by  .  The coordinates of the great circle basis element to generate 

the OCVF are given by the matrix that rotates a great circle in the xy-plane about the y-axis by 
4


: 

    
T

T Tcos cos
', ', ' , sin , cos , sin ,0

42 2

         
          

yx y z R  (19) 

The OCVF is generated by rotating the basis element great circle given by Eq. (19) about the z-axis using  zR  over the span 

of 2 .  Using Eqs. (19) and Eq. (1.82), the great circle basis elements and rotational matrix are given by: 
 
OCVF MATRICES (  zR ) 
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Using Eq. (20) and the procedure of Eqs, (3-5), the infinite sum of great circles that constitute the OCVF is given by: 
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 (21) 

The current pattern for the 2  rotation of the great circle perpendicular to the  ,0 , x y zi i i -axis about the z-axis is shown in 

Figure IV.8 wherein   is varied from 0  to 2 . 
 
Figure IV.8.   The current pattern given by Eqs. (20) and (21) shown with 6 degree increments of   from the perspective of 
looking along the z-axis.  The great circle current loop that served as a basis element that was initially in the xy-plane before 
applying Eq. (19) and then Eq. (20) is shown as red.   
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The great-circle distribution 0
0 ( , ) Y is generated by the convolution of the BECVF with the OCVF over a 2  span.  The 

corresponding BECVF replaces the great circle basis element initially perpendicular to the  ,0 , x y zi i i -axis and matches its 

resultant angular momentum of 2  along the  ,0 , x y zi i i -axis having components of  xyL  and  zL .  Then, 0
0 ( , ) Y  is 

generated by rotation of the BECVF, about the z-axis by an infinite set of infinitesimal increments of the rotational angle over 
the 2  span such that coverage of the spherical surface is complete and azimuthally uniform.  Using the BECVF given by Eqs. 
(7) and (10), the OCVF given by Eqs. (20) and (21), and the procedure given by Eqs. (14-17), the infinite double sum of great 
circles that constitute 0

0 ( , ) Y  is given by: 

        

2 2

0
 0 ,0 , , ,0

0 01 1

( , )      lim lim

 
 

 
   

 
 

 


    

 
       
  

 
m n

OCVF BECVF basis
z M N

m n

Y R m R n GC
x y z x y zi i i i i i

 (22) 

The positions of the basis-element great circle over time comprises a continuous distribution.  However, using Eq. (22), a 
discrete representation of the current distribution 0

0 ( , ) Y  that shows a finite number of current elements over time can be 

generated by showing the BECVF as a finite sum of the convolved great circle elements using Eqs. (7) and (10) and by showing 
the continuous convolution of the BECVF with the OCVF as a superposition of discrete incremental rotations of the position of 
the BECVF rotated according to Eqs. (20) and (21) corresponding to the matrix which generated the OCVF.  In the case that the 
discrete representation of the BECVF comprises N  great circles and the number of convolved BECVF elements is M , the 
representation of the azimuthally uniform current density function showing current loops is given by Eq. (23).  The 
corresponding mass(momentum) density is given by Eq. (23) wherein the charge and mass are interchangeable by the conversion 
factor /em e . 
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 (23) 

 
Representations of the 0

0 ( , ) Y  current pattern of the free electron motion over a period of both precessions shown with 

30 degree increments ( 12 N M  in Eq. (23)) of the angle to generate the free electron BECVF corresponding to Eqs. (7) and 
(10) and 30 degree increments of the rotation of this basis element about the z-axis corresponding to Eqs. (20) and (21) are 
equivalent to those shown in Figures IV.6 and IV.7.  As shown in these figures, the distribution generated by the precessional 
motion of the free electron over time in the presence of an applied magnetic field matches that of 0

0 ( , )Y    of the bound electron 

given in the Atomic Orbital Equation of Motion for   = 0 Based on the Current Vector Field (CVF) section. 
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AZIMUTHAL UNIFORMITY PROOF OF 0
0 ( , ) Y  

By using the matrices to generate 0
0 ( , ) Y , it is shown to be azimuthally uniform about the z-axis.  Consider the 0

0 ( , ) Y  

convolution in summation form given by Eqs. (14) and (17): 
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wherein 
1 1

, ,
2 2

  
 

basisBECVF
x y zi i i

 is the distribution that replaced the great circle basis element of the OCVF distribution in the 

convolution given by Eqs. (5), (11), (13), and (14), respectively.  Consider the rotation of both sides of Eq. (24) about the y-axis 

(Eq. (1.81)), the orthogonal axis to that which generated the OCVF, by 
4
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The rotation of a sum is the same as the sum of the rotations 
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When the distribution given by Eq. (21) having its C -axis along the z-axis is rotated about the y-axis by 
4


 , the resulting 

distribution having the C -axis along the  ,0 ,x y zi i i -axis is equivalent to the distribution given by Eq. (5) of matching C -axis.  

Substitution of Eq. (5) into Eq. (26) gives: 
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Substitution of Eq. (5) for BECVF gives: 
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Using the distributive property of the double sum gives: 
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Rotation of the BECVF about its C -axis, the  ,0 ,x y zi i i -axis, leaves the BECVF distribution unchanged. 
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Eq. (30) represents the properties of the distribution perpendicular to the z-axis since the distribution was rotated about the y-axis 

to align the z-axis with the  ,0 ,x y zi i i -axis.  This result confirms that the distribution is uniform about the z-axis since the 

1 1
, ,

2 2

  
 

basisBECVF
x y zi i i

 that served to generate the distribution of 0
0 ( , ) Y  is azimuthally uniform.  Furthermore, as shown in the 

Electron in Free Space section the angular momentum distribution swept out during a period of both precessional motions for 
each position   of the free electron is equivalent that of the bound electron. 
 

SPIN-FLIP TRANSITIONS 
Consider the momentum-density pattern for the combined precessional motion of the free electron about either the  ,0 ,x y zi i i -

axis or the  ,0 , x y zi i i -axis and z-axis.  The corresponding free BECVFs are given by Eqs. (2) and (5) and Eqs. (7) and (10).  

As shown in Figures IV.1 and IV.3, respectively, the great circle basis element is in the xy-plane and the counterclockwise 
current together with the counter clockwise precession of the  ,0 ,x y zi i i -axis or the  ,0 , x y zi i i -axis about the z-axis gives rise 

to a resultant angular momentum of 2  along the  ,0 ,x y zi i i  or  ,0 , x y zi i i -axis having components of  xyL  and  zL  

and a corresponding magnetic moment of B  on the z-axis.  As shown in Figures IV.6 and IV.7, the corresponding distribution 

over time due to both components of motion is equivalent to the current pattern and angular momentum of 0
0 ( , ) Y  of the bound 

electron.  The electron may flip between the two spin states having the magnetic moment parallel to the z-axis or antiparallel to 
the z-axis.  This spin flip transition corresponds to a reversal of the orientation of the electron magnetic moment with the applied 
magnetic field.  The BECVFs, OCVF, and 0

0 ( , ) Y  precession distributions developed supra apply to both states, but the 

currents are opposite.  Based on symmetry, the transition corresponds to a   rotation of the distribution 0
0 ( , ) Y  (designated 

0
0 ( , )  zY ) given by Eqs. (17) and (22) about the x-axis using  xR  given by Eq. (1.80). 

Using Eqs. (17) and (1.80) for the z to –z-axis spin transition, the infinite double sum of great circles that constitute the 
corresponding 0

0 ( , )   zY  from flipping 0
0 ( , )  zY  is given by: 
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 (31) 

The positions of the basis-element great circle over time comprises a continuous distribution.  However, using Eq. (31), a 
discrete representation of the current distribution 0

0 ( , )   zY  that shows a finite number of current elements over time can be 

generated by showing the BECVF as a finite sum of the convolved great circle elements using Eqs. (2) and (5) and by showing 
the continuous convolution of the BECVF with the OCVF as a superposition of discrete incremental rotations of the position of 
the BECVF rotated according to Eqs. (12) and (13) corresponding to the matrix which generated the OCVF.  In the case that the 
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discrete representation of the BECVF comprises N  great circles and the number of convolved BECVF elements is M , the 
representation of the flipped azimuthally uniform current density function showing current loops given by Eq. (32) is equivalent 
to that shown in Figures IV.6 and IV.7 but the current direction is reversed. 
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Appendix V 
  
ANALYTICAL-EQUATION DERIVATION OF THE PHOTON 
ELECTRIC AND MAGNETIC FIELDS 
  
 
 
 
 
ANALYTICAL EQUATIONS TO GENERATE THE RIGHT-HANDED CIRCULARLY 
POLARIZED PHOTON ELECTRIC AND MAGNETIC VECTOR FIELD BY 
ROTATION OF THE GREAT-CIRCLE BASIS ELEMENTS ABOUT THE  , ,0x y zi i i  -
AXIS BY 

2
  

The right-handed circularly polarized (RHCP) photon electric and magnetic vector field (photon-e&mvf) is also generated 
following a similar procedure as that used to generate the atomic orbital in the Atomic Orbital Equation of Motion for 0  
Based on the Current Vector Field (CVF) section using the rotational matrices given therein.  The RHCP photon-e&mvf is 
generated by the rotation of the basis elements comprising the great circle magnetic field line in the xz-plane and the great circle 

electric field line in the yz-plane about the  , , 0x y zi i i -axis by 
2


.  A first transformation matrix is generated by the combined 

rotation of the great circles about the z-axis by 
4


 then about the x-axis by   where positive rotations about an axis are defined 

as clockwise: 
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The transformation matrix about  , ,0x y zi i i  is given by multiplication of the output of the matrix given by Eq. (1) by the matrix 

corresponding to a rotation about the z-axis of 
4


 .  The output of the matrix given by Eq. (1) is shown in Figure AV.1 wherein 

  is varied from 0  to 
2


. 
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Figure AV.1.   The electric, magnetic, and combined field-line pattern given by Eq. (1) from the perspective of looking along 
the z-axis corresponding to the first great circle magnetic field line and the second great circle electric field line shown with 6 
degree increments of the angle  .  (Electric field lines red; Magnetic field lines blue).   
 

 
 

The rotation matrix about the z-axis by 
4
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zR , is given by: 
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Substitution of the matrix given by Eq. (2) into Eq. (3) gives: 
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The RHCP photon-e&mvf that is generated by the rotation of the great-circle basis elements in the xz- and yz-planes about the 

 , ,0x y zi i i -axis by 
2


 corresponding to the output of the matrix given by Eq. (5) is shown in Figure AV.2. 

 
Figure AV.2.   The field-line pattern given by Eq. (5) from three orthogonal perspectives of a RHCP photon-e&mvf 
corresponding to the first great circle magnetic field line and the second great circle electric field line shown with 6 degree 
increments of the angle  .  (Electric field lines red; Magnetic field lines blue). 
 

 
 
 
ANALYTICAL EQUATIONS TO GENERATE THE LEFT-HANDED CIRCULARLY 
POLARIZED PHOTON ELECTRIC AND MAGNETIC VECTOR FIELD BY 
ROTATION OF THE GREAT-CIRCLE BASIS ELEMENTS ABOUT THE  , ,0x y zi i i -

AXIS BY 
2
   

The left-handed circularly polarized (LHCP) photon electric and magnetic vector field (photon-e&mvf) is also generated 
following a similar procedure as that used to generate the atomic orbital in the Atomic Orbital Equation of Motion for 0  
Based on the Current Vector Field (CVF) section using the rotational matrices given therein.  The LHCP photon-e&mvf is 
generated by the rotation of the basis elements comprising the great circle magnetic field line in the xz-plane and the great circle 

electric field line in the yz-plane about the  , ,0x y zi i i -axis by 
2


.  A first transformation matrix is generated by the combined 

rotation of the great circles about the z-axis by 
4


 then about the x-axis by   where positive rotations about an axis are defined 

as clockwise: 
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The transformation matrix about  , ,0x y zi i i  is given by multiplication of the output of the matrix given by Eq. (6) by the 

matrix corresponding to a rotation about the z-axis of 
4


.  The output of the matrix given by Eq. (6) is shown in Figure AV.3 

wherein   is varied from 0  to 
2


. 

 
Figure AV.3.   The electric, magnetic, and combined field-line pattern given by Eq. (6) from the perspective of looking along 
the z-axis corresponding to the first great circle magnetic field line and the second great circle electric field line shown with 6 
degree increments of the angle  .  (Electric field lines red; Magnetic field lines blue). 
 

 
 

The rotation matrix about the z-axis by 
4
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Substitution of the matrix given by Eq. (7) into Eq. (8) gives: 
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The LHCP photon-e&mvf that is generated by the rotation of the great-circle basis elements in the xz- and yz-planes about the 

 , ,0x y zi i i -axis by 
2


 corresponding to the output of the matrix given by Eq. (10) is shown in Figure AV.4. 

 
Figure AV.4.   The field-line pattern given by Eq. (10) from three orthogonal perspectives of a LHCP photon-e&mvf 
corresponding to the first great circle magnetic field line and the second great circle electric field line shown with 6 degree 
increments of the angle  .  (Electric field lines red; Magnetic field lines blue).   
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GENERATION OF THE LINEARLY-POLARIZED PHOTON ELECTRIC AND 
MAGNETIC VECTOR FIELD 
The linearly polarized (LP) photon-e&mvf is generated by the superposition of the RHCP photon-e&mvf and the LHCP photon-
e&mvf as shown in Figure AV.5. 
 
Figure AV.5.   The field-line pattern given by Eqs. (5) and (10) from three orthogonal perspectives of a LP photon-e&mvf 
corresponding to the first great circle magnetic field line and the second great circle electric field line shown with 6 degree 
increments of the angle   about each of the  , ,0x y zi i i - and  , ,0x y zi i i -axes.  (Electric field lines red; Magnetic field lines 

blue).  

 
 
PHOTON FIELDS IN THE LABORATORY FRAME 
Since the power flow, P, is governed by the Poynting power theorem given by: 

 ( )  P E H  (11) 

and the time-averaged angular momentum density is given by Eq. (4.1),   41
Re ( )

8
dx

c
   m r E B*  , it is apparent that the 

photon propagation axis is along the E H -vector at the intersection point of the basis elements, the orthogonal great-circle 
electric and magnetic field lines.  Consider the RHCP photon-e&mvf.  The primary intersection occurs at the z-axis of the 
stationary xyz-coordinate system as shown in Figure 4.1.  This point is also the initial position of the z'-axis of the x'y'z'-

coordinate system that is rotated about the  , ,0x y zi i i -axis by 
2


 wherein the great-circle field lines are stationary with respect 

to this system.  Then, as the photon-e&mvf is generated by rotation of the basis elements about the  , ,0x y zi i i -axis, the z' and -

z'-intersection of the two orthogonal great-circle field lines move along great quarter circles in the (-x+y+z)-octant and (+x-y-z)-
octant, respectively, each in a plane that is parallel with the z-and  , ,0 x y zi i i -axes.  Alternatively, the intersection point that 

gives rise to the E H -vector of the RHCP photon-e&mvf is always on a quarter circle in a plane orthogonal to the 
2


-rotational 

axis, the  , ,0x y zi i i -axis.   

Consider the resulting curve formed by the intersection point of the basis elements, the orthogonal great-circle electric 
and magnetic field lines, when considering that the RHCP photon-e&mvf propagates through a plane perpendicular to the z-axis 
as shown in Figure 4.1.  From this perspective using the coordinates shown in Figure 4.1, the two quarter circles add in time to 
give a trajectory that always follows a circle that initiates at (0,0,1) and ends at (0,0,-1).  Additionally, since the density of the 
intersection points over the spherical surface in the (-x+y+z)-octant and (+x-y-z)-octant is constant, the pitch of the intersection 
point viewed along the z-axis is constant.  It is shown infra, that the magnitude of the transverse electric and magnetic fields vary 
at twice the frequency along the z-axis as the circular rotation of the intersection point.  When the vector projection on the 
transverse fields is superimposed on the manifold of circular rotation at constant pitch, the form is a right handed-helix.  Thus, 
geometrically the set of all such intersection points over the spherical surface of the RHCP photon-e&mvf defines a parametric 
helical curve relative to the z-axis for the field lines when their projections in times are considered.  The orthogonally-related 
electric and magnetic fields observed in the laboratory frame are transverse to the z-axis along this right-handed helical curve as 
shown infra, and the LHCP photon-e&mvf has the opposite handedness. 

Consider the Fields Based on Invariance Under Gauss’ Integral Law section [1].  As shown in the Excited States of the 
One-Electron Atom (Quantization) section, since the linear velocity at each point along a great circle of the photon-e&mvf is c , 
the field on the spherical surface of the photon-e&mvf at each point is radially inward in its frame.  In addition, this law requires 
that the electric and magnetic field lines are perpendicular to the direction of power flow, the direction of photon propagation, 
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being the z-axis.  The electric and magnetic field basis elements that transfer power according to E H  are 
2


 out of phase in 

the photon frame as shown in Figure 4.1 and must also be perpendicular in all frames that transfer power in order to conserve 
power transfer.  The field vectors in a stationary laboratory frame are determined by the projection onto the two orthogonal axes 
in the transverse directions and one in the parallel direction relative to the propagation axis, the z-axis.  Thus, the natural 
coordinates are Cartesian used infra wherein the transform is given by considering total field invariance under Gauss’ integral 
law. 

Consider an observer at the origin of his frame with the photon propagating by at light-speed c  along the z-axis relative 
to him as shown in Figure AV.6.  Since the photon field is purely radial in its frame, and the observer sees the transverse 
component of this radial field with respect to the z-axis, the observer sees a field with a sin  dependence over time along the z-
axis wherein   is the spherical coordinate with respect to the z-axis.  This corresponds to the transverse projection of the radial 
photon field along the z-axis.  In addition, the distribution of E and B fields on the spherical surface has a vector cos  

dependence corresponding to an inversion center in the distribution formed by the  , ,0x y zi i i -axis rotation by 
2


 and matching 

the continuity condition of the transverse field.  Thus the transverse electric field has the following trigonometric dependence: 

 0 cos sin  xyE  E i  (12) 

Using a trigonometric identity 

 
1

cos sin  sin 2
2

    (13) 

gives 

 0 sin 2
2 xy

E E i  (14) 

Since the magnetic field is perpendicular to the electric field according to Maxwell’s equations (Eqs. (4.2-4.3)), Eq. (4.10) 
follows from Eq. (14), and the magnetic field H  is given by: 

 0 0
z

0

sin 2
2 xy

E 


 H i i  (15) 

 
Figure AV.6.  An observer at the origin of his frame with the photon-e&mvf stationary in its own frame propagating at 
light-speed c  relative to the observer along its z-axis ( &photon e mvfz  ) that is collinear to the z-axis of the observer, laboratoryz . 

 

 
 

The photon-e&mvf, the electric and magnetic field lines make a helical trajectory relative to an observer who is passed at 
the light speed (Eqs. (4.10) and (4.11)).  The transverse-plane-projected electric and magnetic fields rotate about the z-axis over 
a 2  angular span of the arguments of Eqs. (14) and (15) corresponding to the 2 photonz r   span along the z-axis.  The electric 

and magnetic fields also rotate time harmonically transverse to and about the z-axis according to the time function ( )k t  given by 

 ( ) j tk t e   (16) 
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over the time span of one period, 
c


.  For example, the spatial distribution of the fields of a right-handed circularly polarized 

photon-e&mvf in the laboratory frame is shown in Figures 4.5 and 4.6.  More specifically, Figure AV.7 shows the visualization 
of the fields in the laboratory frame for the observer shown in Figure AV.6.  The rotation about the z-axis requires that the 
photon angular momentum is along the z-axis.  Using the time-averaged angular momentum density give by Eq. (4.1), the 
direction of *E B  is the z-axis, and the vector rotates at angular frequency   about the z-axis in the direction of i  (cylindrical 

coordinates).  Thus, the corresponding time-averaged integral of the unit-vector cross products of Eq. (4.1) is given by:  

    zi i i  (17) 

 
Figure AV.7.   The electric (red) and magnetic (blue) field lines of a right-handed circularly polarized photon-e&mvf as seen 
in the lab inertial reference frame at a fixed time.  A and B. Views transverse to the axis of propagation, the z-axis, wherein 
2 photonr  .  C and D. Off z-axis views showing field aspects both along and transverse to the axis of propagation. 

 

 
 

 
The corresponding photon-e&mvf equation in the lab frame is: 

  0
zjk z j tE i e e   E x y  (18) 

    0
0

z zjk z j t jk z j tE
i e e E i e e 

 
    

    
 

H y x y x  (19) 

with a wavelength of 

 2
c 


  (20) 

The relationship between the photon atomic orbital radius and wavelength is:  

 2 photonr   (21) 

Using Eqs. (4.1), and (14-17) with 

 sinphotonr   (22) 

the electric and magnetic-field parameter 0E  can be solved: 
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where Eq. (4.1) was converted to MKS units.  The integration over the period and the surface gives: 
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Using the wave equation relationship and the relationship between the wavelength and the radius of the photon-e&mvf given by: 
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Eq. (20) and Eq. (21), respectively, with the integral by Lide [2] gives: 
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The second integral by Lide [1] gives: 
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Thus, 
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 (29) 

which has the required MKS units of 1Vm .  From Planck’s law, the energy is given by: 
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    (30) 

The z-axial electric and magnetic fields cancel over time in agreement with relativistic effects of no field in the direction of 
propagation at light speed further satisfying required equivalence of the electric and magnetic stored energy given by Eqs. 
(1.263) and (1.154), respectively, and the energy given by Eq. (30) corresponding to the transverse field. 
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Appendix VI 
  
THE RELATIVE ANGULAR MOMENTUM COMPONENTS 
OF ELECTRON 1 AND ELECTRON 2 OF HELIUM TO 
DETERMINE THE MAGNETIC INTERACTIONS AND THE 
CENTRAL MAGNETIC FORCE 
  
 
 
 
 
The vector orientations and the corresponding magnetic moments of two-electron atoms to determine the radius of the two 
bound electrons are given in the Two-Electron Atoms section.  From the corresponding ground state, the momentum-vector 
orientations for the two possible types of excited spin states, singlet and triplet, as well as each of these states with and without 
orbital angular momentum in addition to spin angular momentum is determined from conservation of angular momentum and 
torque balance.  The central magnetic force is derived and is used in the Excited States of Helium section to calculate all of the 
excited states of the helium atom.  Similar forces arise in the interaction of multi-electron atoms as shown in the Three- Through 
Twenty-Electron Atoms section. 
 

SINGLET EXCITED STATES WITH   = 0 ( 12 11 1   
 s s ns ) 

Due to the relative motion of the charge-density elements of each electron of the helium atom, a radiation reaction force arises 
between the two electrons.  This force given in Sections 6.6, 12.10, and 17.3 of Jackson [1] achieves the condition that the sum 
of the mechanical momentum and electromagnetic momentum is conserved.  The magnetic central force Fmag is derived from the 

Lorentz force which is relativistically corrected following the same procedure as given in the Two-Electron Atoms section.  The 
magnetic force is derived by first determining the interaction of the two electrons due to the field of the outer electron 2 acting 
on the magnetic moments of electron 1 and vice versa.  Insight to the behavior is given by considering the physics of a single 
bound electron in an externally applied uniform magnetic field as shown in the Resonant Precession of the Spin-1/2-Current-
Density Function Gives Rise to the Bohr Magneton section and the physics of the binding of the two electrons of two-electron 
atoms given in the Two-Electron Atoms section.  As discussed in the latter section, each of the two interacting electrons have 
two orthogonal components of angular momentum which give rise to a purely radial net magnetic force.  

With 0  of the helium atom, the excited-state photon carries   of angular momentum that gives rise to a spin state in 
electron 1 to balance the dipole current about the S2-axis in electron 2 to achieve torque balance.  Then, the electron source 

current of electron 2 in the excited state is a constant function given by Eq. (1.27) that spins as a globe about an axis.  The 
angular momentum, 

2SL , of the atomic orbital due to rotation about an axis defined as the S2-axis at angular velocity 2  is given 

by: 
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where the 
2Szi  is the unit vector along the S2-axis.   
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In the ground state, the magnetic moments of electrons 1 and 2 cancel as they are spin paired to form an energy minimum 
at the radius (i.e. 1 2r r ).  As shown in the Exact Generation of 0

0 ( , )Y    from the Atomic Orbital-cvf section, the atomic orbital 

uniform current density function 0
0 ( , )Y    comprises 

4


  (Eq. (1.127)) and 

2


 (Eq. (1.128)) components of angular momentum.  

In the excited singlet state, these components of electron 2 spin in the plane perpendicular to the S2-axis and time-average to 

zero.  The spin state of electron 1 comprises a photon standing wave that is phase-matched to a spherical harmonic source 
current, a spherical harmonic dipole  , sinmY     with respect to the S-axis.  The dipole spins about the S-axis at the angular 

velocity given by Eq. (1.36) with   of angular momentum.  The intrinsic spin and photon angular momentum vectors are shown 
in Figure AVI.1.   

In the stationary coordinate system of electron 2 (denoted by the axes labeled X, Y, and Z in Figure AVI.1A), the angular 

momentum vector S2 of magnitude 
2

3
  is in the YZ-plane at an angle of 

6

   relative to the Z-axis.  The Z-axis projection of: 

S2 is 
2 3

3 4
 , and the Y-axis projection of S2 is 

2

3 2


. 

In the stationary coordinate system of electron 1 (denoted by the axes labeled 'X , 'Y , and 'Z  in Figure AVI.1B), the 
4


 

of intrinsic angular momentum is along 'X , the 
2


 of intrinsic angular momentum is along 'Y , and the photon angular 

momentum vector S1 of magnitude   is in the ' 'Y Z -plane at an angle of 
3

   relative to the 'Y -axis.  The 'Z -axis projection 

of S1 is 
3

4
 , and the 'Y -axis projection of S1 is 

2


. 

The torque from the corresponding magnetic moments given by Eq. (2.65) is balanced in the absence of Larmor 
precession for the angular momentum projections of electron 2 shown in Figure AVI.1A relative to those of electron 1 shown in 

Figure AVI.1B.  The 
4


 of intrinsic angular momentum of electron 1 'X  is orthogonal to the other components such that there is 

no net central force contribution.  The 
2

3 2


 Y -axis projection of S2 of electron 2 gives rise to a magnetic field corresponding to 

2

3 2
B  in the direction of the 

3

4
  'Z -axis projection of S1 of electron 1.  The 

2


 of intrinsic angular momentum of electron 1 

along 'Y  and the 'Y -axis projection of S1 of 
2


 gives rise to a magnetic field corresponding to B  in the direction of the 

2 3

3 4
  

Z -axis projection of S2 of electron 2. 
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Figure AVI.1.   The relative angular momentum components of electron 1 and electron 2 to determine the magnetic 
interactions and the central magnetic force.  (A) The atomic orbital and S2 of electron 2 in the stationary coordinate system X,Y,Z 

that is designated the unprimed spherical coordinate system relative to the Z-axis as shown.  The rotational angular momentum 

vector S2 of magnitude 
2

3
  is in the YZ-plane at an angle of 

6


   relative to the Z-axis.  (B) The angular momentum 

components of the atomic orbital and S1 of electron 1 in the stationary coordinate system X',Y',Z' that is designated the primed 

spherical coordinate system relative to the Z'-axis as shown.  The photon angular momentum vector S1 of magnitude   is in the 

Y'Z'-plane at an angle of 
3


   relative to the Y'-axis. 

 

 
 A 

 

 
 

The magnetic central force is due to the interaction of the magnetic field of the electron 2 and the current dipole of the 
photon at the radius of electron 1 and vice versa.  Considering the angular momentum vectors given in Figures AVI.1A and 

AVI.1B, the magnetostatic magnetic flux of electron 2 and electron 1 corresponding to 
2

3 2
B  and B , respectively, follow from 

Eqs. (1.132) and (1.133) and after McQuarrie [2]: 
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3

( 2cos sin )
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  (3) 

where 0  is the permeability of free space ( 7 2
 4   10 /X N A  ) and the coordinates of the magnetic field due to electron 2 acting 

on the magnetic moments of electron 1 is designated as the primed system and the magnetic field of electron 1 acting on the 
magnetic moments of electron 2 is designated as the unprimed system.  It follows from Eq. (1.131), the relationship for the Bohr 
magneton, and relationship between the magnetic dipole field and the magnetic moment m [3] that Eqs. (1.132) and (1.133) are 

the equations for the magnetic field due to a magnetic moment of one third of a Bohr magneton, 
2

3 2
B zm i  and one Bohr 

magneton, B zm i , respectively, where cos sin  z ri i i .  The spherical harmonic dipole  , sinmY     spins about the 

S-axis at the angular velocity given by Eq. (1.36).  Thus, angular velocity ̂  and linear velocity v projections onto each Z(Z')-
axis are: 
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The Lorentz force density at each point moving at velocity v given by Eq. (7.10) is 

 
2

24mag

e

r
 F v B  (8) 

Substitution of Eqs. (2-3), (5), and (7) into Eq. (8) while maintaining the designation of the coordinates of the magnetic field of 
electron 2 acting on the magnetic moments of electron 1 as the primed system and the coordinates of the magnetic field of 
electron 1 acting on the magnetic moments of electron 2 as the unprimed system gives: 
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As shown in Eqs. (7.16-7.24), the relativistic form of Eq. (9) results in the equivalence of the velocity at the two radii; thus, r1 

may be substituted for r2 in the velocity factor of the second term to give: 
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The 'ri  unit vector is transformed to ri  by substituting   with 
2

   in the second term of Eq. (10): 
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The magF i  and 'magF i  average to zero over the surface for 0    .  The relativistic correction given by Eq. (7.23) is based on 

quantized-angular-momentum conservation with the emission of a photon.  The relativistic correction for the lightlike frame 
causes the circumferential distances on the surface to dilate to the radial dimension alone as given in the Two-Electron Atoms 
section.  This causes the angular force to vanish since it averages to zero such that only the radial force remains.  Since there is 
no net angular force on the electron, only the resultant radial force need be considered: 
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Eq. (12) may be written in the form 
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where 1/ 2s   and 
3

( 1)
4

s s    is the historical designation of the spin-angular momentum magnitude.  Then, the balance 

between the centrifugal and electric and magnetic forces is given by the Eq. (9.10): 
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TRIPLET EXCITED STATES WITH   = 0 ( 12 11 1s s ns  

  ) 
For the 0  singlet state, the time-averaged spin angular momentum of electron 2 is zero.  The 0  triplet state requires a 
further excitation to unpair the spin states of the two electrons.  The angular momentum corresponding to the excited state is  , 
and the angular momentum change corresponding to the spin-flip is also   as given in the Magnetic Parameters of the Electron 
(Bohr Magneton) section.  Then, the triplet state comprises spin interaction terms between the two electrons plus a contribution 
from the unpairing photon.  As shown in the Resonant Precession of the Spin-1/2-Current-Density Function Gives Rise to the 
Bohr Magneton section, the electron spin angular momentum gives rise to a trapped photon with   of angular momentum along 
an S-axis.  Then, the spin state of each of electron 1 and 2 comprises a photon standing wave that is phase-matched to a spherical 
harmonic source current, a spherical harmonic dipole  , sinmY     with respect to the S-axis.  The dipole spins about the S-

axis at the angular velocity given by Eq. (1.55) with   of angular momentum.  To conserve angular momentum, electron 2 
rotates in the opposite direction about S, the axis of the photon angular momentum due to the spin, and this rotation corresponds 

to 
2

3
   of angular momentum relative to S.  The intrinsic spin and photon angular momentum vectors are shown in Figure 

AVI.2.  

In the stationary coordinate system of electron 2 (denoted by the axes labeled X, Y, and Z in Figure AVI.2A), the 
4


 of 

intrinsic angular momentum is along X, the 
2


 of intrinsic angular momentum is along Y, and S3, the   photon angular 

momentum vector due to spin interaction, is in the YZ -plane at an angle of 
3

   relative to the Y -axis.  The Z -axis projection 

of 3S  is 
3

4
 , and the Y -axis projection of 3S  is 

2


. 

Electron 2 is excited by the additional spin-unpairing photon.  The angular momentum vector S4 of magnitude   in the 

XZ-plane is aligned in the plane perpendicular to S3 at an angle of 
6

   relative to the Z-axis.  The Z-axis projection of S4 is 

3

4
 , and the X-axis projection of S4 is 

2



. 

In order to conserve angular momentum, the rotational angular momentum vector of the singlet state S2 is now aligned in 

the opposite direction to that of the photonic spin vector 3S .  The angular momentum vector S2 of magnitude 
2

3
  is in the YZ-

plane at an angle of 
6

   relative to the Z -axis.  The Z-axis projection of 2S  is 
2 3

3 4
  , and the Y-axis projection of S2 is 

2

3 2



.  Then, the total angular momentum along the Z-axis due to spin, unpairing, and rotation is: 
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S i i     (15) 

and the total angular momentum along the Y-axis comprising the sum of the initial 
2


 intrinsic angular momentum, the Y-axis 

projection of S3 of 
2


, and the Y-axis projection of S2 of 

2

3 2



 is: 

 
2 4

2 2 3 2 3 2Y Y

     
 

S i i
   

 (16) 

In the stationary coordinate system of electron 1 (denoted by the axes labeled X', Y', and Z' in Figure AVI.2B), the 
4


 of 

intrinsic angular momentum is along X', the 
2


 of intrinsic angular momentum is along 'Y , and the photon angular momentum 

vector 1S  of magnitude   is in the Y'Z'-plane at an angle of 
3

   relative to the Y'-axis.  The Z'-axis projection of 1S  is 
3

4
 , 

and the Y'-axis projection of S1 is 
2


. 

The torque from the corresponding magnetic moments is given by Eq. (2.65) are balanced in the absence of Larmor 
precession for the angular momentum projections of electron 2 shown in Figure AVI.2A relative to those of electron 1 shown in 

Figure AVI.2B.  The superposition of the 
4


 of intrinsic angular momentum of electrons 1 and 2 along X' and X, respectively, 

each with a corresponding magnetic moment of 
4

B  (Eq. (2.65))
 
cancel the X-axis projection of S4 of 

2



 with a corresponding 

magnetic moment of 
2

B .  The 
4

3 2


 of total angular momentum of electron 2 along Y gives rise to magnetic field 

corresponding to 
4

3 2
B  in the direction of the 

3

4
  'Z -axis projection of S1 of electron 1.  The 

2


 of intrinsic angular 

momentum of electron 1 along Y' and the Y'-axis projection of S1 of 
2


 gives rise to a total of   with a magnetic field 

corresponding to B  in the direction of the 
4 3

3 4
  total Z-axis projection of electron 2. 
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Figure AVI.2.   The relative angular momentum components of electron 1 and electron 2 to determine the magnetic 
interactions and the central magnetic force.  (A) The atomic orbital and S2, S3, and S4 of electron 2 in the stationary coordinate 

system X,Y,Z that is designated the unprimed spherical coordinate system relative to the Z-axis as shown.  The rotational angular 

momentum vector S2 of magnitude 
2

3
  is in the YZ-plane at an angle of 

6

   relative to the –Z-axis.  S3, the   photon angular 

momentum vector due to spin interaction, is in the YZ-plane at an angle of 
6

   relative to the Z-axis.  S4, the   photon angular 

momentum vector due to spin unpairing, is in the XZ-plane at an angle of 
6

   relative to the Z-axis.  (B) The angular 

momentum components of the atomic orbital and S1 of electron 1 in the stationary coordinate system X',Y',Z' that is designated 

the primed spherical coordinate system relative to the Z'-axis as shown.  The photon angular momentum vector S1 of magnitude 

  is in the Y'Z'-plane at an angle of 
3

   relative to the Y'-axis. 
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B

 

 
For each electron, the magnetic field corresponding to a magnetic moment of B  interacting with an aligned magnetic 

momentum of 
4 3

3 4 B  gives the magnetic force for electron 2 that is twice that of the singlet states.  The magnetic central force 

is due to the interaction of the magnetic field of electron 2 and the current dipole of the photon at the radius of electron 1 and 
vice versa.  Considering the angular momentum vectors given in Figures AVI.2A and AVI.2B, the magnetostatic magnetic flux 

of electron 2 and electron 1 corresponding to 
4

3 2
B  and B , respectively, follow from Eqs. (1.132) and (1.133) and after 

McQuarrie [2]: 
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where 0  is the permeability of free space ( 7 2
 4   10 /X N A  ) and the coordinates of the magnetic field due to electron 2 acting 

on the magnetic moments of electron 1 is designated as the primed system and the magnetic field of electron 1 acting on the 
magnetic moments of electron 2 is designated as the unprimed system.  The angular velocity ̂  and linear velocity v projections 
onto each Z(Z')-axis are: 
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The Lorentz force density at each point moving at velocity v is given by Eq. (8).  Substitution of Eqs. (17-18), (20), and (22) into 
Eq. (8) while maintaining the designation of the coordinates of the magnetic field of electron 2 acting on the magnetic moments 
of electron 1 as the primed system and the coordinates of the magnetic field of electron 1 acting on the magnetic moments of 
electron 2 as the unprimed system gives 
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From Eqs. (10-13), the magnetic force is: 
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The force balance between the centrifugal and electric and magnetic forces given by Eq. (9.31) is: 
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SINGLET EXCITED STATES WITH   ≠ 0 
With 0 , the electron source current in the singlet excited state is the sum of constant and time-dependent functions where the 
latter, given by Eqs. (1.28-1.29), travels about the Z-axis in the case of electron 2.  The corresponding angular momentum along 

the rotational axis of 
1
 


 superimposes with the projection of the spin angular momentum of 
3

4
 .  The vectors are in 

opposite directions in order to conserve angular momentum during excitation.  The intrinsic spin and photon angular momentum 
vectors are shown in Figure AVI.3. 

In the stationary coordinate system of electron 2 (denoted by the axes labeled X, Y, and Z in Figure AVI.3A), the 
4


 of 

intrinsic angular momentum is along X , the 
2


 of intrinsic angular momentum is along –Y, and S3, the   photon angular 

momentum vector due to spin interaction, is in the XZ-plane at an angle of 
6

   relative to the –Z-axis.  The Z-axis projection 

of S3 is 
3

4
  , and the X-axis projection of S3 is 

2



.  S4, the orbital angular momentum of 
1
 


, is directed along the Z-axis 

in the opposite direction of the Z-axis component of S3.  Thus, in order to conserve angular momentum, the orbital angular 

momentum vector S4 corresponding to the rotational angular momentum vector of the 0  singlet and triplet states is now 

aligned in the opposite direction to that of the Z-axis component of the photonic spin vector S3, and the total angular momentum 

along the Z-axis due to spin and orbital contributions is: 
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1 4 Z

 
    

S i
  


 (26) 

In the stationary coordinate system of electron 1 (denoted by the axes labeled X', Y', and Z' in Figure AVI.3B), the 
4


 of 

intrinsic angular momentum is along X', the 
2


 of intrinsic angular momentum is along Y', and the photon angular momentum 

vector S1 of magnitude   is in the Y'Z'-plane at an angle of 
3

   relative to the Y'-axis.  The Z'-axis projection of S1 is 
3

4
 , 

and the 'Y -axis projection of 1S  is 
2


.  2S , the orbital angular momentum of 

1
 


, is directed along the –Z'-axis in the 

opposite direction of the Z-axis component of S1.  Thus, in order to conserve angular momentum, the orbital angular momentum 

vector S2 is aligned in the opposite direction to that of the Z'-axis component of the photonic spin vector S1, and the total angular 

momentum along the Z'-axis due to spin and orbital contributions is: 
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The torque from the corresponding magnetic moments given by Eq. (2.65) are balanced in the absence of Larmor 
precession for the angular momentum projections of electron 2 shown in Figure AVI.3A relative to those of electron 1 shown in 

Figure AVI.3B.  The superposition of the 
4


 of intrinsic angular momentum of electrons 1 and 2 along X' and X, respectively, 

each with a corresponding magnetic moment of 
4

B  (Eq. (2.65))
 
cancel the X -axis projection of S3 of 

2



 with a corresponding 

magnetic moment of 
2

B .  The 
2




 of total angular momentum of electron 2 along Y gives rise to magnetic field 

corresponding to 
2

B  in the direction of the 
3

4 1

 
   

 


 total Z-axis projection of electron 1.  The 
2


 of intrinsic angular 

momentum of electron 1 along Y' and the Y'-axis projection of S1 of 
2


 gives rise to a total of   with a magnetic field 

corresponding to B  in the direction of the 
3

1 4

 
   

  


 total Z-axis projection of electron 2. 

 
Figure AVI.3.   The relative angular momentum components of electron 1 and electron 2 to determine the magnetic 
interactions and the central magnetic force.  (A) The atomic orbital and S3 and S4 of electron 2 in the stationary coordinate 

system X,Y,Z that is designated the unprimed spherical coordinate system relative to the Z-axis as shown. S3, the   photon 

angular momentum vector due to spin interaction, is in the XZ-plane at an angle of 
6

   relative to the –Z-axis.  S4, the orbital 

angular momentum of 
1
 


, is directed along the Z-axis in the opposite direction of the Z-axis component of S3.  (B) The 

angular momentum components of the atomic orbital and S1 of electron 1 in the stationary coordinate system X',Y',Z' that is 

designated the primed spherical coordinate system relative to the Z'-axis as shown.  The photon angular momentum vector S1 of 

magnitude   is in the Y'Z'-plane at an angle of 
3

   relative to the Y'-axis.  S2, the orbital angular momentum of 
1
 


, is 

directed along the –Z'-axis in the opposite direction of the Z-axis component of S1. 
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The magnetic central force is due to the interaction of the magnetic field of the electron 2 and the current dipole of the 

photon at the radius of electron 1 and vice versa.  Considering the angular momentum vectors given in Figures AVI.3A and 

AVI.3B, the magnetostatic magnetic flux of electron 2 and electron 1 corresponding to 
2

B  and B , respectively, follow from 

Eqs. (1.132) and (1.133) and after McQuarrie [2]: 
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where 0  is the permeability of free space ( 7 2
 4   10 /X N A  ) and the coordinates of the magnetic field due to electron 2 acting 

on the magnetic moments of electron 1 is designated as the primed system and the magnetic field of electron 1 acting on the 
magnetic moments of electron 2 is designated as the unprimed system.  The angular velocity ̂  and linear velocity v projections 
onto each Z(Z')-axis are: 
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The Lorentz force density at each point moving at velocity v is given by Eq. (8).  Substitution of Eqs. (28-29), (31), and (33) into 
Eq. (8) while maintaining the designation of the coordinates of the magnetic field of electron 2 acting on the magnetic moments 
of electron 1 as the primed system and the coordinates of the magnetic field of electron 1 acting on the magnetic moments of 
electron 2 as the unprimed system gives 
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From Eqs. (10-13), the magnetic force is 
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The magnetic force between the two electrons is given by the product of magnetic multipole coefficient  ,Ma m  given 

by Eq. (9.49) and the sum of the relativistically corrected Lorentz force terms due to the spin angular and orbital angular 

momenta of  1s s    and 
1
 


, respectively: 
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The force balance between the centrifugal and electric and magnetic forces given by Eq. (9.52) is: 
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TRIPLET EXCITED STATES WITH   ≠ 0 
With 0 , the electron source current in the singlet excited state is the sum of orbital and spin components.  The 

1
 


 of 

orbital angular momentum of electron 2 superimposes with the projection of the spin angular momentum that is twice that of the 
0  singlet state.  The vectors are in opposite directions in order to conserve angular momentum during excitation. 

The 0  triplet state requires a further excitation to unpair the spin states of the two electrons.  The angular momentum 
corresponding to the excited state is   and the angular momentum change corresponding to the spin-flip is also   as given in 
the Magnetic Parameters of the Electron (Bohr Magneton) section.  Then, the triplet state comprises spin interaction terms 
between the two electrons plus a contribution from the unpairing photon.  As shown in the Resonant Precession of the Spin-1/2-
Current-Density Function Gives Rise to the Bohr Magneton section, the electron spin angular momentum gives rise to a trapped 
photon with   of angular momentum along an S-axis.  Then, the spin state of each of electron 1 and 2 comprises a photon 
standing wave that is phase-matched to a spherical harmonic source current, a spherical harmonic dipole  , sinmY     with 

respect to the S-axis.  The dipole spins about the S-axis at the angular velocity given by Eq. (1.36) with   of angular 
momentum.  To conserve angular momentum, the orbital angular momentum is in the opposite direction of each Z-axis 
component of S, the axis of the photon angular momentum due to spin and the axis of the photon angular momentum due to 

unpairing, and the corresponding opposite current rotation corresponds to 
1

2 1



 


 of angular momentum relative to each 

photon vector S.  The intrinsic spin and photon angular momentum vectors are shown in Figure AVI.4.  

In the stationary coordinate system of electron 2 (denoted by the axes labeled X, Y, and Z in Figure AVI.4A), the 
4


 of 

intrinsic angular momentum is along X, the 
2


 of intrinsic angular momentum is along Y, and S3, the   photon angular 

momentum vector due to spin interaction, is in the YZ-plane at an angle of 
6

   relative to the Z-axis.  The Z-axis projection of 

S3 is 
3

4
 , and the Y-axis projection of S3 is 

2


. 

Electron 2 is excited by the additional spin-unpairing photon.  The angular momentum vector 4S  of magnitude   in the 

XZ-plane is aligned in the plane perpendicular to S3 at an angle of 
6

   relative to the Z-axis.  The Z-axis projection of S4 is 

3

4
 , and the X-axis projection of S4 is 

2



. 

In order to conserve angular momentum, the orbital angular momentum vector S2 corresponding to the rotational angular 

momentum vector of the 0  singlet and triplet states state is now aligned in the opposite direction to that of the photonic spin 
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vectors S3 and S4. S2, the orbital angular momentum of 
1
 


, is directed along the –Z-axis in the opposite direction of the Z-

axis component of S3 and S4.  The total angular momentum along the Z-axis due to spin, unpairing, and orbital components is 

 
3 3 3

2
4 4 1 4 1Z Z

   
              

S i i
     
 

 (38) 

and the total angular momentum along the Y-axis comprising the sum of the initial 
2


 intrinsic angular momentum and the Y-axis 

projection of S3 of 
2


 is: 

 
2 2 Y Y

    
 

S i i
    (39) 

In the stationary coordinate system of electron 1 (denoted by the axes labeled X', Y', and Z' in Figure AVI.4B), the 
4


 of 

intrinsic angular momentum is along X', the 
2


 of intrinsic angular momentum is along Y', and the photon angular momentum 

vector S1 of magnitude   is in the Y'Z'-plane at an angle of 
3

   relative to the Y'-axis.  The Z'-axis projection of S1 is 
3

4
 , 

and the Y'-axis projection of S1 is 
2


.  Since the 

3

4


 
'Z -axis projection of S1 is one half that of the Z-axis component of S3 and 

S4, the orbital angular momentum S2 is 
1

2 1
 


 and is directed along the –Z'-axis in the opposite direction of the Z-axis 

component of S1.  Thus, in order to conserve angular momentum, the orbital angular momentum vector of the triplet state S2 is 

aligned in the opposite direction to that of the Z'-axis component of the photonic spin vector S1, and the total angular momentum 

along the Z'-axis due to spin and orbital contributions is 

 '

3 1

4 2 1 Z

 
    

S i
 


 (40) 

The torque from the corresponding magnetic moments given by Eq. (2.65) is balanced in the absence of Larmor 
precession for the angular momentum projections of electron 2 shown in Figure AVI.4A relative to those of electron 1 shown in 

Figure AVI.4B.  The superposition of the 
4


 of intrinsic angular momentum of electrons 1 and 2 along X' and X, respectively, 

each with a corresponding magnetic moment of 
4

B  (Eq. (2.65))
 
cancel the X-axis projection of S4 of 

2



 with a corresponding 

magnetic moment of 
2

B .  The   of total angular momentum of electron 2 along Y gives rise to magnetic field corresponding 

to B  in the direction of the 
3 1

4 2 1

 
   

 


 total Z-axis projection of electron 1.  The 
2


 of intrinsic angular momentum of 

electron 1 along Y' and the Y'-axis projection of S1 of 
2


 gives rise to a total of   with a magnetic field corresponding to B  in 

the direction of the 
3

2
4 1

 
 

 
 


 total Z-axis projection of electron 2. 
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Figure AVI.4.   The relative angular momentum components of electron 1 and electron 2 to determine the magnetic 
interactions and the central magnetic force.  (A) The atomic orbital and S2, S3, and S4 of electron 2 in the stationary coordinate 

system X,Y,Z that is designated the unprimed spherical coordinate system relative to the Z-axis as shown.  The orbital angular 

momentum vector S2 of magnitude 
1
 


 is along the –Z-axis.  S3, the   photon angular momentum vector due to spin 

interaction, is in the YZ-plane at an angle of 
6

   relative to the Z-axis.  S4, the   photon angular momentum vector due to spin 

unpairing, is in the XZ-plane at an angle of 
6

   relative to the Z-axis.  (B) The angular momentum components of the atomic 

orbital and S1 of electron 1 in the stationary coordinate system X',Y',Z' that is designated the primed spherical coordinate system 

relative to the Z'-axis as shown.  The photon angular momentum vector S1 of magnitude   is in the Y'Z'-plane at an angle of 

3

   relative to the Y'-axis. S2, the orbital angular momentum of 
1

2 1
 


, is directed along the –Z'-axis in the opposite 

direction of the Z-axis component of S1. 
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The magnetic central force is due to the interaction of the magnetic field of electron 2 and the current dipole of the 

photon at the radius of electron 1 and vice versa.  Considering the angular momentum vectors given in Figures AVI.4A and 
AVI.4B, the magnetostatic magnetic flux of electron 2 and electron 1 corresponding to B  and B , respectively, follow from 

Eqs. (1.132) and (1.133) and after McQuarrie [2]: 

 0
' '3

2

( cos sin )r
e

e

m r 
   B i i


 (41) 
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( 2cos sin )
2 r

e

e

m r   B i i


  (42) 

where 0  is the permeability of free space ( 7 2
 4   10 /X N A  ) and the coordinates of the magnetic field due to electron 2 acting 

on the magnetic moments of electron 1 is designated as the primed system and the magnetic field of electron 1 acting on the 
magnetic moments of electron 2 is designated as the unprimed system.  The angular velocity ̂  and linear velocity v projections 
onto each Z(Z') -axis are: 
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3 1
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4 2 1em r 
 

    
v i

  


 (46) 

The Lorentz force density at each point moving at velocity v is given by Eq. (8).  Substitution of Eqs. (41-42), (44), and (46) into 
Eq. (8) while maintaining the designation of the coordinates of the magnetic field of electron 2 acting on the magnetic moments 
of electron 1 as the primed system and the coordinates of the magnetic field of electron 1 acting on the magnetic moments of 
electron 2 as the unprimed system gives 
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 (47) 

From Eqs. (10-13), the magnetic force is 
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 (48) 

The magnetic force between the two electrons is given by the product of magnetic multipole coefficient  ,Ma m  given 

by Eq. (9.49) and the sum of the relativistically corrected Lorentz force terms due to the spin angular and orbital angular 

momenta of  1s s    and 
1
 


, respectively: 
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 (49) 

The force balance between the centrifugal and electric and magnetic forces given by Eq. (9.63) is 
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POSTFACE 
  
 
GUTCP REVIEW COMPLETED, WEBB SHOWS PREDICTED BIG BANG 
BUST 

Dr. Randy Booker, Professor of Physics, University of North Carolina, Asheville recently completed the peer review [1] 

of the entire Grand Unified Theory of Classical Physics (GUTCP), involving a five-year effort.  All the final derivations, 

computations, and comparisons with experimental observations were confirmed correct.  Rather than assuming that the electron 

was a singularity, yet exists over all space simultaneously, the origins of Mills GUTCP was based on first seeking a physical 

solution of the electron by treating it as a source current for the absorption and emission of discrete electromagnetic waves, 

photons.  This starting point revisits the stability of the atom to radiation. 

In the atom such as the simplest one, hydrogen, the electron is constantly accelerating around the proton in an atomic 

orbit.  Yet, classical physics requires that accelerating charges radiate energy, which would cause the electron to spiral into the 

nucleus in a fraction of a second.  This seminal problem of the stability of the atom was one of the key obstacles that physicists 

faced early in the 20th century, and their inability to solve it led to the construction of quantum theory.  Mills solved the structure 

of the electron using classical physical laws, such that electron orbits were stable to radiation.  This allowed Mills to construct a 

new theory of atoms and molecules that was based entirely on classical physics that provides exact solutions for core phenomena 

and observables of chemistry and physics over the scale of quarks to cosmos, 85 orders of magnitude.  These results confirm that 

it was a colossal mistake to assume that physical laws do not apply to the atomic scale, the founding postulate of quantum 

theory.  The same is true on the cosmological scale regarding the quantum-fluctuation-singularity to Big Bang to inflation to 

dark-energy origin and evolution theories of the universe recently observationally disproved. 

Physical laws such as those of mechanics (Newton-Lorentz) and those of electrodynamics (Maxwell) require that as 

matter converts into energy according to 
2

E mc , spacetime expands according to 
3

4

c

G
 wherein G  is the Newtonian 

gravitational constant.  The resulting dynamic behavior is a universe that oscillates between matter-filled and energy-filled with a 

period of one trillion years.  In 1995, Mills published an earlier GUTCP prediction [2] that the expansion of the universe was 

accelerating from the same equations that correctly predicted the present Hubble constant and the mass of the top quark before 

they were measured as well as those of the other fundamental particles and cosmological parameters.  To the astonishment of 

cosmologists, Mills acceleration prediction was confirmed by 2000.  Moreover, Mills GUTCP value for the Hubble constant 

matches the present observed value which has created another crisis in astrophysics regarding cosmological models that 

inescapably predict an unacceptable fitted value of Hubble constant from other fitted terms.  Mills made another prediction based 

on GUTCP that the identity of dark matter is Hydrino, a more stable allotrope of molecular hydrogen, now isolated and 

confirmed by 23 spectroscopic methods [3-5].  Furthermore, the recent unanticipated Webb telescope images confirm additional 

GUTCP predictions of fully formed galaxies and old galaxies at the beginning of the expansion of the universe that disprove the 

long held metaphysical Big Bang and related theories of cosmology.  
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Dr. Mills has replaced the field generally known as Quantum Mechanics which postulates that classical
physical laws do not apply at the atomic scale by deriving a new atomic theory of from those first
principles, which unifies Maxwell’s Equations, Newton’s Laws, and General and Special Relativity. The
central feature is that physical laws hold over all scales, from the scale of subatomic particles to that of
the cosmos.

Quantum Mechanics has remained mysterious to all who have encountered it. Schrödinger postulated a
boundary condition Ψ → 0 as r → ∞ of a wavelike positional probability for a singularity that is
everywhere at once until measurement. The result was a purely algorithmic mathematical model of the
hydrogen atom. In contrast, Mills solved the exact structure of matter and energy and related
phenomena from known classical physics, (e.g. Maxwell's Equations wherein under special conditions,
an extended distribution of charge may accelerate without radiating energy). This leads to a physical
model of subatomic particles, atoms, and molecules. The closed-form solutions containing fundamental
constants only agree with experimental observations demonstrating that the fundamental quantum
mechanical postulate, “classical physical laws do not apply to the atomic scale”, was erroneous.

“Mills’ theory explains the answers to some very old scientific questions, such as ‘what happens to a
photon upon absorption’ and some very modern ones, such as ‘what is dark matter.’ ...Lastly, Mills
has made an extremely important contribution to the philosophy of science. He has reestablished
cause and effect as the basic principle of science.” - Dr. John J. Farrell, former Chair of the Dept. of
Chemistry, Franklin & Marshall College

“Mills’ ingenious way of thinking creates in different physical areas astonishing results with fascinating
mathematical simplicity and harmony. And his theory is strongly supported by the fact that nearly all
these results are in comfortable accordance with experimental findings, sometimes with breathtaking
accuracy.” - Dr Günther Landvogt, Retired Scientist, Philips Research Lab

“Dr. Mills has apparently completed Einstein’s quest for a unified field theory… without largesse from
the US Government, and without the benediction of the US scientific priesthood.” - Shelby T. Brewer,
former Assistant Secretary of Energy, former CEO of ABB Combustion Engineering, MS/Ph.D. MIT - Nuclear Engineering.

“Mills proposes such a basic approach to quantum theory that it deserves considerably more
attention from the general scientific community than it has received so far. The new theory appears to
be a realization of Einstein's vision and a fitting closure of the "Quantum Century" that started in
1900...” - Dr. Reinhart Engelmann, Professor of Electrical Engineering, Oregon Graduate Institute of Science and
Technology

Dr. Randell Mills holds a Doctor of Medicine degree from Harvard, a BA degree in Chemistry from
Franklin and Marshall College, and studied Electrical Engineering at MIT. He is President, Chairman
and CEO of Brilliant Light Power, Inc.

From two basic equations, the key building blocks
of organic chemistry have been solved, allowing
the true physical structure and parameters of an
infinite number of organic molecules up to infinite
length and complexity to be obtained. These
equations were also applied to bulk forms of
matter, such as the allotropes of carbon, the solid
bond of silicon and the semiconductor bond; as
well as fundamental forms of matter such as the
ionic bond and the metallic bond; and major fields
of chemistry such as that of silicon, tin, aluminum,
boron, and coordinate compounds.

Further, the Schwarzschild Metric is derived by
applying Maxwell’s Equations to electromagnetic
and gravitational fields at particle production. This

modifies General Relativity to include the conservation of spacetime and gives the origin of gravity,
the families and masses of fundamental particles, the acceleration of the expansion of the universe
(predicted by Dr. Mills in 1995 and since confirmed experimentally), and overturns the Big Bang
model of the origin of the universe.
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