Modeling of the Larmor Precession

© 2004 Blacklight Power Inc.

```
<< Calculus`VectorAnalysis`
<< Graphics`ParametricPlot3D`
<< Graphics`Shapes`
<< Graphics`Animation`
<< Graphics`Colors`
SetCoordinates[Spherical];
```

This is a computational appendix to the Stern Gerlach discussion in Chapter 1 of R. Mills, The Grand Unified Theory of Classical Quantum Mechanics, January 2004 Edition, posted at: http://www.blacklightpower.com/bookdownload.shtml.

The bound electron is here colored with a blue stripe to show the propagation of current on the surface; however, the charge density of the electron is uniform.

```
colors[theta_, phi_, det_] = Which[
    det < .6, Cyan,
    det < .9, LightBlue,
    det < 1.1, DodgerBlue,
    det < 1.4, LightBlue,
    det < 2, Cyan
    ];
OS =
```



```
        {0, 0, \pi}, {\phi, 0, 2\pi}, Boxed }->\mathrm{ False, Axes }->\mathrm{ False, Lighting }->\mathrm{ False];
```


Superimpose the bound electron on its angular momentum axis, which is spherical-coordinate angle $\theta=\frac{\pi}{3}$ from the z axis of the orbitsphere as given in Modeling the Orbitsphere,

```
LVect = ParametricPlot3D[{0, 0, t, {AbsoluteThickness[3]}},
    {t, -1.5, 1.5}, Boxed }->\mathrm{ False, Axes }->\mathrm{ False];
Both = Show[LVect, OS, Lighting }->\mathrm{ False];
```


Array[j, \{30\}];

```
Do \(\left[\mathrm{j}[\mathrm{t}]=\operatorname{Show}\left[\operatorname{RotateShape[Both,} \frac{8 \pi}{30} * \mathrm{t}, 0,0\right]\right.\),
    SphericalRegion \(\rightarrow\) True, ImageSize \(\rightarrow 72\) * 5, Lighting \(\rightarrow\) False], \{t, 1, 30\}]
```

In reality, the current is propagating around the angular momentum axis at approximately $10^{5} \mathrm{~m} / \mathrm{s}$ faster than the Larmor frequency (the frequency of the precession of the \mathbb{S}-angular-momentum axis in a magnetic field). Here a representation of the current is shown propagating at three times the Larmor frequency. Click GIF or AVI for a physical animation (with fixed viewpoint) of the Larmor Precession.

```
Do[Show[RotateShape[RotateShape[j[i], 0, \pi/ 3, 0], 年五*i, 0, 0],
    SphericalRegion }->\mathrm{ True, PlotRange }->{{-1.3,1.3}, {-1.3, 1.3}, {-1.3, 1.3}},
    ViewPoint }->{0,2,0}, ImageSize -> 72*6.5], {i, 1, 30}]
```


