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Review of Theory 
Assume physical laws apply on all scales including 
the atomic scale 

Start with first principles 
Conservation of mass-energy 
Conservation of linear and angular momentum 
Maxwell’s Equations 
Newton’s Laws 
Special Relativity 

 
• Highly predictive– application of Maxwell’s equations precisely predicts 

hundreds of fundamental spectral observations in exact equations with no 
adjustable parameters (fundamental constants only). 

 
• In addition to first principles, the only assumptions needed to predict the 

Universe over 85 orders of magnitude of scale (Quarks to Cosmos): 
– Four-dimensional spacetime 
– The fundamental constants that comprise the fine structure constant 
– Fundamental particles including the photon have  

  of angular momentum 
– The Newtonian gravitational constant G 
– The spin of the electron neutrino 



Electron as a Source Current: 
Maxwell’s Equations Determines Its 

Structure 

Using Maxwell's equations, the structure of the electron 
is  derived  as  a  boundary-value  problem  wherein  the 
electron comprises the source current of time-varying 
electromagnetic   fields   during   transitions   with   the 
constraint  that  the  bound   n =1  state  electron  cannot 
radiate energy. 

Although it is well known that an accelerated 
point particle radiates, an extended distribution 
modeled  as  a  superposition  of  accelerating  charges 
comprising a current does not have to radiate.   The 
physical boundary condition of nonradiation that was 
imposed on the bound electron follows 
derivation by Haus. 

from a 



Boundary Constraint Derived from 
Maxwell’s Equations 

The function that describes the motion of the electron must not 
possess spacetime Fourier components that are synchronous with 
waves traveling at the speed of light.   Similarly, nonradiation is 
demonstrated based on the electron's electromagnetic fields and 
the Poynting power vector. 

H. A. Haus, Am. J. Phys., 54, 1126 (1986) 
T. A. Abbott, D. J. Griffiths, Am. J. Phys., 53, 1203 (1985) 
G. Goedecke, Phys. Rev. B, 135, 281 (1964) 



Generalized Expansion in Vector Spherical 
Waves for Time-Varying Spherical 

Electromagnetic Fields for the Electron 
Transition as the Matching Source Current 

The electron is considered a localized source distribution 
comprising harmonically varying sources of charge , 
current , and intrinsic magnetization for 
multipole radiation. 
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Electromagnetic Waves 
to solve the electron source current 

The Green function G (x', x) which is appropriate to the equation 
 

in the infinite domain with the spherical wave expansion for the 
outgoing wave Green function is 
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Electron Multipole Electromagnetic Fields 

The general multipole field solution to Maxwell’s equations in a source-free 
region of empty space with the assumption of a time dependence is 

     is the vector spherical harmonic defined by 

where 
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Electron Multipole Electromagnetic Fields 

The electric and magnetic coefficients aE (, m) and aM  (, m) specify 

the amounts of electric (, m) multipole and magnetic (, m) multipole 

fields, and are determined by sources and boundary conditions as 
are the relative proportions: 

and 
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0 Constant Two-Dimensional Current Y0 (θ ,φ) 
Additional Boundary Conditions Give the 

Corresponding to Spin 
The  potential  energy, ,  is  an  inverse-radius-squared  relationship  given  by 
Gauss’  law  which  for  a  point  charge  or  a  two-dimensional  spherical  shell  at  a 
distance  r  from the nucleus the potential is 

Thus, consideration of conservation of energy would require that the electron radius 
must be fixed. 

Addition constraints requiring a two-dimensional source current of fixed radius are 
matching  the  delta  function  of  the  equation  operating  on  the  Green  with  no 
singularity,  no  time  dependence  and  consequently  no  radiation,  absence  of  self- 
interaction,  and  exact  electroneutrality  of  the  hydrogen  atom  wherein  the  electric 
field is given by 

 
 

is the normal unit vector , where n E1   and  E2   are the electric field vectors that are 
discontinuous  at  the  opposite  surfaces, is  the  discontinuous  two-dimensional 
surface charge density, and . 

σ s 

E2 = 0 

( )V r

( )
2

04
eV r rπε= −

( )1 2
0

sσ
ε• − =n E E



Radial Electron Function 

The solution for the radial function which satisfies the boundary conditions is a 
delta function in spherical coordinates—a spherical shell : 

where rn=nr1 is an allowed radius 

This function defines the charge density on a spherical shell of a fixed radius, 
not yet determined, with the charge motion confined to the two-dimensional 
spherical  surface. The  integer  subscript is  determined  during  photon 
absorption wherein the force balance between the electric fields of the 
electron and  proton plus any resonantly absorbed  photons gives the  result 
that wherein     is an integer in an excited state. 

n 

1nr nr=



Leptons  such  as  the  electron  are  indivisible,  perfectly  conducting,  and  possess  an 
inalienable  of intrinsic angular momentum such that any inelastic perturbation involves 
the entire particle wherein the intrinsic angular momentum remains unchanged.  Bound 
state  transitions  are  allowed  involving  the  exchange  of  photons  between  states,  each 
having  of angular momentum in their fields. 

The electron atomic orbital or spin function is a constant two-dimensional spherical 
surface of  charge  –e  and  mass  me   with the  Bohr radius of  the  hydrogen atom,  r=aH. 

 

Electron Atomic Orbital 

The atomic orbital has a thickness of 

the Schwarzschild radius: 

It is a nonradiative,  minimum-energy  surface,  that  is  absolutely  stable  except  for  
quantized state  changes  with  the  corresponding  balanced  forces  in  the  n=1  state  
providing  a pressure equivalent of twenty million atmospheres. 

The corresponding uniform current- 

density function having intrinsic angular 

= 1.3525×10−57 m. = 2Gme 

c2 
r g 

excitation in a magnetic field give rise 

to the phenomenon of electron spin. 
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de Broglie Relationship from the Angular 
Momentum 

Given time harmonic motion and a radial delta function, the relationship between an 
allowed radius and the electron wavelength is given by 
 

2π rn  = λn 
 
The  magnitude  of  the  velocity  and  the  angular  frequency  for  every  point  on  the 
surface  of  the  bound  electron  and  their  relationships  with  the  wavelengths  and 

are rn 
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where the velocity and angular frequency are determined by the boundary conditions 
that the angular momentum density at each point on the surface is constant and the 
magnitude  of  the  total  angular  momentum  of  the  atomic orbital   must  also  be 
constant. 

L 



de Broglie Relationship from the Angular 
Momentum cont’d 

The constant total is 
 given by the integral 

The integral of the magnitude of the angular momentum of the electron is  

inertial frame and is relativistically invariant (Lorentz scalar). 
in any 

n pn mevn 

λ = h = h 

The relationship between wavelength and velocity gives the de Broglie relationship : 
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Spherical  and  Time-Harmonic  Two-Dimensional  Currents:  match  the 
time-varying  spherical  electromagnetic  fields  during  transitions  between  states 
with the further constraint that the electron is nonradiative in a state defined as 
the state. 

To   further   match   the   required   multipole   electromagnetic   fields   between 
transitions of states, the trial nonradiative source current functions are time and 
spherical harmonics, each having an exact radius and an exact energy. 

Angular Functions 

n =1 



Then, each allowed electron charge-density (mass-density) function is the 

product of a radial delta function                            , two angular functions 

(spherical harmonic functions ), and a time-harmonic 

function             . 

Angular Functions cont’d 

The spherical harmonic                                is also an allowed solution that is in fact required  
in order for the electron charge and mass densities to be positive definite and to 
give rise to the phenomena of electron spin. 

The form of the angular solution must be a superposition: 

 
The current is constant at every point on the surface for the s orbital corresponding 
to            . 
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Charge-Density Functions 

The quantum numbers of the spherical harmonic currents can be related to 
the observed electron orbital angular momentum states. 
corresponding to s, p, d, f, etc. orbitals are 

 

The currents 

where Y θ ,φ are the spherical harmonic functions that spin about the z-axis 
with angular frequency with Y θ ,φ the constant function and 
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Spin and Orbital Parameters 

• The constant spin function is modulated by a time and 
spherical harmonic function. 

 
 
• The modulation or traveling charge density wave 

corresponds to an orbital angular momentum in 
addition to a spin angular momentum. 
 

 
• These states are typically referred to as p, d, f, etc. 

states or orbitals and correspond to an   quantum 
number not equal to zero. 
 
 
 



The orbital function 
modulates the constant 
(spin) function. (shown 
for t=0; three- 
dimensional view) 

Orbital and Spin 
Functions 

Modulation 
Function 
(Orbital) 

Constant Function 
(Spin) 

Spatial Charge 
Density 
Function 

Surface Charge 
Density Function 

(Atomic Orbital) 
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Increasing Electron Density 
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Charge Density Wave Moves on the 
Surface About the Z-Axis 

Increasing Electron Density 

Click the above image to view animation online 

http://www.brilliantlightpower.com/wp-content/uploads/animations/P_Orbital_HighRes2.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/P_Orbital_HighRes2.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/P_Orbital_HighRes2.mp4�


Intrinsic Spin Angular Momentum and 
Rotational Energy 
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Orbital Angular Momentum and 
Rotational Energies 

The mechanics of the electron is solved from the two-dimensional wave 
equation  plus  time  in  the  form  of  an  energy  equation  wherein  it 
provides for conservation of energy and angular momentum. 
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Orbital Angular Momentum and 
Rotational Energies cont’d 

= 0 Lz  orbital 
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Special Relativistic Correction 
to the Electron Radius 

The relationship between the electron wavelength and its radius is given by 
 

2πr = λ where λ is the de Broglie wavelength. 
 
The distance along each great circle in the direction of instantaneous motion 
undergoes  length  contraction  and  time  dilation.    Using  a  phase  matching 
condition,  the  wavelengths  of  the  electron  and  laboratory  inertial  frames  are 
equated, and the corrected radius is given by 

where the electron velocity is given by 

of the electron, the electron angular momentum of ħ, and μB  are invariant, 

but the mass and charge densities increase in the laboratory frame due to the 
relativistically contracted electron radius. As ν → c, r / r '→ and r = λ. 
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The Normalized Radius as a Function 
of the Velocity Due to Relativistic Contraction 



Radiation of the bound electron requires an excited state wherein a potentially 
emitted photon circulates along the atomic orbital at light speed. Spacetime 
harmonics 

 of             or                for which the Fourier transform of the lightlike  

current-density function is nonzero do not exist. Radiation due to charge 
motion does not occur in any medium when this boundary condition is met. 

Nonradiation Condition  
(Acceleration Without Radiation) 
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Nonradiation Based on the Electron Electromagnetic 
Fields and the Poynting Power Vector 

 
The general multipole field solution to Maxwell’s equations in a source-free 
region of empty space with the assumption of a time dependence is 
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Nonradiation Based on the Electron Electromagnetic 
Fields and the Poynting Power Vector cont’d 

where is 

(4) 

For the electron source current comprising a multipole of order 
far fields are given by 

i 

(, m), the 

(2) 
k 
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 (kr ) X

,m 

and the time-averaged power radiated per solid angle is 

(3) 

In the case that k is the lightlike k 0, then k = ω / c regarding a potentially 
emitted photon, in Eq. (4), and Eqs. (2-3) vanishes for 

s = vTn   = R = rn   = λn 
There is no radiation. 
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Spin Function 

The  spin  function  comprises  a  constant  charge  (current)  density  function 
with  moving  charge  confined  to  a  two-dimensional  spherical  shell  and 
comprises a uniform complete coverage. 

The uniform magnetostatic current-density function of the 
atomic orbital spin function comprises a continuum of correlated orthogonal 
great-circle  current  loops  wherein  each  point  charge(current)  density- 
element moves time harmonically with constant angular velocity, ωn   , and 
velocity, vn , in the direction of the current. 
 
The current-density is generated from orthogonal great-circle current- 
density elements (one dimensional “current loops”) that serve as basis 
elements to form two distributions of an infinite number of great circles 
wherein each covers one-half of a two-dimensional spherical shell and is 
defined as a basis element current vector field (“BECVF”) and an atomic 
orbital current-vector field (“OCVF”). 

0 Y0   (θ ,φ) 



Spin Function Cont’d. 

Then, the continuous uniform electron current density function 
that covers the entire spherical surface as a distribution 

momentum vector of the basis elements of is stationary on 

this axis. 

of an infinite number of great circles is generated using the CVFs. 
 
First, the generation of the BECVF is achieved by rotation of two 
great circle basis elements, one in the x’z’-plane and the other in 
the y’z’-plane, about the (-ix, iy, 0iz)-axis by an infinite set of 
infinitesimal increments of the rotational angle over a π span 
wherein the current direction is such that the resultant angular 

0 
0 Y ( θ ,φ) 

2 2 
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Spin Function Cont’d. 

The generation of the OCVF is achieved by rotation of two great 

circle basis elements, one in the x’y’-plane and the other in the 

plane that bisects the x'y'-quadrant and is parallel to the z'-axis, 

about the                   -axis by an infinite set of infinitesimal 

increments of the rotational angle over a   span wherein the 

current direction is such that the resultant angular momentum 

vector of the basis elements of       having components of 

             and           is stationary on this axis.   
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Spin Function Cont’d. 

Then, a uniform great-circle distribution Y 0 (θ ,φ) is exactly generated 0 

from the CVFs by the convolution of the BECVF with the OCVF that 
results in the placement of a BECVF at each great circle of the OCVF 
followed by density normalization. 

Since the angular momentum vector of the BECVF matches that of the 
replaced    great    circle    basis    elements    and    is    unaffected    by 
normalization, the resultant angular momentum of the distribution is 
the same as that of the OCVF, except that coverage of the spherical 
surface is complete and uniform. 



Generation of the BECVF 

The BECVF is generated from two orthogonal great-circle current loops that serve as 

basis elements.   The current on the great circle in the y'z'-plane moves clockwise 

and  the  current  on  the  great  circle  in  the  x'z'-plane  moves  counter  clockwise 

(arrows).   Each  point  or  coordinate  position  on  the  continuous  two-dimensional 

BECVF defines an infinitesimal charge(mass)-density element, which moves along a 

geodesic orbit comprising a great circle.   Two such infinitesimal charges (masses) 

are shown at point one, moving clockwise on the great circle in the y'z'-plane, and 

at point two moving counter clockwise on the great circle in the x'z'-plane.  The xyz- 

system  is  the  laboratory  frame,  and  the  orthogonal-current-loop  basis  set  is  rigid 

with respect to the x'y'z'-system that rotates about the (-ix, iy, 0iz)- axis by π radians 

to generate the elements of the BECVF.  The resultant angular momentum vector of 

the  orthogonal great-circle  current  loops  that  is  stationary  in  the  xy-plane  that  is 
evenly distributed over the half-surface is in the direction of (-ix, iy, 0iz). 

2 2 
 



Generation of the BECVF cont’d. 

The rotational matrix about the (-ix, iy, 0iz)-axis by θ, R(− ) (θ ) , 
is  

, ,0iz ix   iy 
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BECVF Matrices ( R(− ) (θ )) ix ,iy ,0iz 

Generation of the BECVF cont’d. 

1 cos 1 cos sin       
2 2 2 2 2 cos' 0

1 cos 1 cos sin'            cos 0
2 2 2 2 2' sinsin

sin sin                            cos
2 2

θ θ θ

φ
θ θ θ φ

φφ
θ θ θ

 + − + − 
       
        = − + + − • +       
       −−       

  

n

n

nn

rx
y r
z rr 



Generation of the BECVF cont’d. 

The infinite sum of great circles that constitute the BECVF: 
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Algorithm of the Current Loops 

3D View of the Resultant BECVF Semi- 
Sphere 

BECVF: 

Click the above images to 
view animations online 

http://www.brilliantlightpower.com/wp-content/uploads/animations/BECVF_animation.swf�
http://www.brilliantlightpower.com/wp-content/uploads/animations/BECVF_animation.swf�
http://www.brilliantlightpower.com/wp-content/uploads/animations/BECVF_spin.swf�
http://www.brilliantlightpower.com/wp-content/uploads/animations/BECVF_spin.swf�
http://www.brilliantlightpower.com/wp-content/uploads/animations/BECVF_animation.mp4�
http://www.brilliantlightpower.com/wp-content/uploads/animations/BECVF_spin.mp4�


Generation of the OCVF 

In the generation of the OCVF, the current on the great circle in the 

plane  that  bisects  the  x'y'-quadrant  and  is  parallel  to  the  z'-axis 

moves  clockwise,  and  the  current  on  the  great  circle  in  the  x'y'- 

plane moves counter clockwise.  Rotation of the great circles about 
the i  , i   -axis by    radians generates the elements of the 

OCVF. The stationary resultant angular momentum vector of the 

orthogonal great-circle current loops along the i  , i  -axis is 

corresponding to each of the z and -xy-components of 

magnitude 2  . 
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Generation of the OCVF cont’d. 

The rotation about the                       -axis by   ,                       , is 

 given by  
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OCVF Matrices (   ) 
 

Generation of the OCVF cont’d. 
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The infinite sum of great circles that constitute the OCVF: 

Generation of the OCVF cont’d. 
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Algorithm of the Current Loops 

3D View of the Resultant OCVF Semi- 
Sphere 

OCVF: 

Click the above images to 
view animations online 

http://www.brilliantlightpower.com/wp-content/uploads/animations/RedSpinningLoops.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/RedSpinningLoops.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/Component_2.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/Component_2.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/RedSpinningLoops.mp4�
http://www.brilliantlightpower.com/wp-content/uploads/animations/Component_2.mp4�


Generation of Y 0 (θ ,φ) 0 

The further constraint that the current density is uniform such that 
the  charge  density  is  uniform,  corresponding  to  an  equipotential, 
minimum energy surface is satisfied by using the CVFs to generate 
the uniform great-circle distribution Y 0 (θ ,φ) by the convolution of 
the BECVF with the OCVF followed by density normalization. 
 
The convolution operator treats each CVF independently and results 
in the placement of a BECVF at each great circle of the OCVF such 
that the resultant angular momentum of the distribution is the same 
as that of the OCVF. 
 
This  is  achieved  by  rotating  the  orientation,  phase,  and  vector- 
matched  basis-element,  the  BECVF,  about  the  same  axis  as  that 
which generated the OCVF. 

0 



Then,                is generated by rotation of the BECVF, about the                  

         -axis by an infinite set of infinitesimal increments of the 

rotational angle.   
 

The current direction is such that the resultant angular momentum vector of 

the BECVF basis element rotated over the 2π span is equivalent that of the 

OCVF great circle basis elements,       having components of              and      

 that is stationary on the                     -axis.  
  

Since the resultant angular momentum vector of the BECVF over the 2π 
span matches that of the replaced great circle basis elements and is 
stationary on the rotational axis as in the case of the OCVF, the resultant 
angular momentum of the distribution is the same as that of the OCVF, 
except that coverage of the spherical surface is complete.  

Generation of                  cont’d 0
0 ( , )Y θ φ

0
0 ( , )Y θ φ
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The infinite double sum of great circles that constitute Y 0 (θ ,φ) : 0 

A discrete representation of the current distribution can be 
generated from the continuous convolution of the BECVF with the OCVF as 
a  superposition  of  M discrete  incremental  rotations  of  the  position  of  the 
BECVF comprising N great circles about the 
number of convolved BECVF elements is M. 

 -axis such that the 

0 Y0   (θ ,φ) 

Generation of cont’d 0 Y0 (θ ,φ) 
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Generation of Y 0 (θ ,φ) cont’d 0 
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Discrete representations of the current distribution 

(30 degree increments, N = M =12) viewed along the z-axis and along the 

-axis with current vectors superimposed. Normalization gives 
the uniform distribution without changing the angular momentum. 

Generation of cont’d 

Y 0 (θ ,φ) 0 

0 Y0 (θ ,φ) 

3-D View of Y 0 (θ ,φ) 0 

1 1, ,
2 2

 − 
 

x y zi i i

Click the image to the left 
to view animation online 

http://www.brilliantlightpower.com/wp-content/uploads/animations/Uniform_Orbitsphere.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/Uniform_Orbitsphere.mp4�


The bound electron exists as a spherical 
two-dimensional  supercurrent  (electron 
atomic orbital), an extended distribution of 
charge and 
surrounding the 

current      completely 
nucleus.      Unlike   a 
there  is  a  complex spinning sphere, 

pattern of motion on its surface 
(indicated by vectors) that generate two 
orthogonal 
momentum 
phenomenon 

components of angular 
that  give rise to the 

of electron spin.  A 
representation of the   -axis 
view of the total uniform supercurrent- 
density pattern of the atomic orbital 
with 144 vectors overlaid on the 
continuous bound-electron  current  
density  giving the  direction  of  the  
current  of  each great  circle  element  
(nucleus  not  to scale) is shown. 

Generation of cont’d 
0 Y0 (θ ,φ) 

1 1, ,
2 2

 − 
 

x y zi i i



Spin Angular Momentum of Y 0 (θ ,φ) 0 

During  the  generation  of  the  BECVF,  the  orthogonal  great-circle  basis 
set is rotated about the (-ix, iy, 0iz)-axis. 

The resultant angular momentum vector is along this axis. Thus, the 
is stationary resultant angular momentum vector of magnitude 

throughout the rotations. 

The convolution operation of the BECVF with the OCVF is also about the 
resultant angular momentum axis, the -axis. 

Here, the resultant angular momentum vector of twice the BECVF of 
in the direction of (-ix, iy, 0iz) is matched to and replaces that of the 
basis element great circles. 

2 2 
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2 2 

 
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Spin Angular Momentum of Y 0 (θ ,φ) 
cont’d 

0 

This current vector distribution is normalized by scaling the constant 
current of each great circle element resulting in the exact uniformity of 
the distribution independent of time since Ñ  × K = 0 along each great 
circle. 

There is no alteration of the angular momentum with normalization 
since it only affects the density parallel to the angular momentum axis 
of the distribution, the   -axis. 

This was proven by numerical integration of the normalized 
distribution. 

1 1, ,
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Then, the boundary condition of Y 0 (θ ,φ) having the desired angular 0 
momentum components, coverage, element motion, and uniformity are 
shown to be achieved by designating the 
axis. 

i  , i    -axis as the z- 

Specifically, this uniform spherical shell of current meets the boundary 
conditions of having an angular velocity magnitude at each point on 
the surface of ωn 

 

and three angular momentum projections of 
 

and that give rise to the Stern Gerlach experiment 
and the phenomenon corresponding to the spin quantum number. 

Spin Angular Momentum of Y 0 (θ ,φ) 
cont’d 

Lz  = 
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Lxy  = + / − 
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Spin Angular Momentum of Y 0 (θ ,φ) 
cont’d 

0 

With the application of a magnetic field, the magnetic moment corresponding to the 
 

intrinsic angular momentum of the electron of aligns with the applied field 

direction designated the z-axis. Thus, the resultant angular momentum initially 
along the -axis aligns with the z-axis. The new projections relative to the 
Cartesian coordinates are shown. 

 
The vector projections of the angular momentum that 
are Zeeman-splitting active whereby they give rise to 
the Stern Gerlach phenomenon and other aspects of 
spin are those components that are onto the xy-plane 
and the z-axis. 
 
Zeeman L Components 

2 

1 1, ,
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/
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The charge, current, mass, and angular momentum 
distributions of are uniform. 

The electron charge, current, mass, 
are given 

and angular 
momentum density by equating the 
surface area integral to -e , -eωn , 
respectively. 

me , and , 

The atomic orbital is a uniform two dimensional 

spherical shell of zero thickness with the Bohr radius 

of the hydrogen atom, r = aH , 

angular momentum components of 

having intrinsic 

and 

following Larmor excitation in a magnetic field. 

Spin Angular Momentum of Y 0 (θ ,φ) cont’d 0 

0 Y0   (θ ,φ) 

4 xy 
=  

L =  

2 z L 



Stern-Gerlach Experiment 

The  Stern-Gerlach  experiment  implies  a  magnetic  moment  of  one  Bohr  magneton  and  an 
associated angular momentum quantum number of 1/2.  Historically, this quantum number is called 
the spin quantum number , s (                        ) . 

The superposition of the vector projection of the atomic orbital angular momentum on the z-axis is 
with one of the orthogonal components of 
of the Larmor frequency photon. 

being Zeeman active depending on the handedness 

Excitation of a resonant Larmor precession gives rise to ħ on an axis S that precesses about the z- 
axis called the spin axis at the Larmor frequency at an angle of 

The projections of the precessing components are: 
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Stern-Gerlach Experiment cont’d 
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The  intrinsic  angular  momentum  is  on  the  z-axis  is,      but  the  excitation  of  the  precessing  S 
 

component gives ħ — twice the angular momentum on the z-axis due to the contribution from the 

precessing vector S. 
 

 

The superposition of the    z-axis component of the atomic orbital angular momentum and the                   
  

z-axis component of S gives ħ corresponding to the observed Zeeman splitting due to an electron 

magnetic moment of a Bohr magneton, 
e 

Animation of 
Larmor 

Precession 

Click the above right image 
to view animation online 
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

2


2


http://www.brilliantlightpower.com/wp-content/uploads/animations/LarmorPrecession.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/LarmorPrecession.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/LarmorPrecession.mp4�
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Electron g Factor 

Conservation of angular momentum of the atomic orbital permits 
a discrete change of its "kinetic angular momentum”       by 
the applied magnetic field of    , and concomitantly the “potential 
angular momentum”          must change by     . 

2


2


−

In order that the change of angular momentum,     , equals zero, 
    must be              , the magnetic flux quantum. 

The magnetic moment of the electron is parallel or antiparallel to 
the applied field only. 

e
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Electron g Factor cont’d 
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The total energy of the flip transition is the sum of the energy of reorientation of 
the magnetic moment, the magnetic energy, the electric energy, and the 
dissipated energy of a fluxon treading the atomic orbital, respectively.  

The spin-flip transition can be considered as involving a magnetic moment of g 
times that of a Bohr magneton.  The calculated value of the    factor is  
1.001 159 652 137.  The experimental value of      is 1.001 159 652 188(4).  

Power flow during the spin-flip transition is governed by the Poynting power theorem,  
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Where the stored magnetic energy corresponding to the                 term 

increases, the stored electric energy corresponding to the               term 

increases, and the       term is dissipative. 
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Magnetic Field of 
the Electron 

(i r  cosθ − iθ  sinθ ) 3 H = 
e   n m r 

e 

for r < rn 

(i r 2 cosθ + iθ  sinθ ) 
2mer 3 H = 

e 

for r > rn 



Derivation of the Magnetic Energy 

The energy stored in the magnetic field of the electron is 
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Electric Fields of Proton, Electron, and 
Hydrogen Atom 



Force Balance Equation 
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Energy Calculations 
 
• Potential Energy 

• Kinetic Energy 

where  

• Electric Energy 
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Relativistic Ionization Energies 
The electron motion is perpendicular to the radius; thus, the radius is invariant to length contraction, 
the charge is invariant, and only the dependency of the radius on the relativistic mass needs to be 
considered. 
 
Using the relativistic velocity with me  = me (v), the relativistic electron mass, and the radius from the 
force balance equation, the relativistic parameter β is 

(1) 

where Z is the nuclear charge and m = Amp is the nuclear mass with A being the atomic mass number. 

Then, the relativistic radius of the bound electron is given by 

(2) 

The binding energy EB is given by the negative of the sum of the relativistic potential V and kinetic 
energies T: 

(3) 

In the case that the electron spin-nuclear interaction is negligible, EB reduces to 

(4) 
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Some Calculated Parameters for the 
Hydrogen Atom (n=1) 

radius   r1=aH   5.2918 × 10-11 m 

potential energy     -27.196 eV 

kinetic energy     13.598 eV 

angular velocity (spin)    4.13 × 1016 rads-1 

linear velocity     2.19 × 106 ms-1 

wavelength     3.325 × 10-10 m 

spin quantum number  

moment of inertia     1.277 × 10-51 kgm2 

angular kinetic energy    6.795 eV 
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Some Calculated Parameters for the 
Hydrogen Atom (n=1) cont’d 

magnitude of the 
angular momentum 

 
1. 0545 X 10 −34  Js 

projection of the angular 
momentum  onto the 
transverse-axis 

mass density 
4 r π 1 

2 2.589 X 10 kgm 
−11 −2 

charge-density 
   e   
4 r π 1 

2 4.553 Cm −2 

2.636 X 10 −35  Js 

projection of the 
angular momentum 
onto the z-axis 

=  

2 
Sz 5.273 X 10 Js 

−35 

me 

 

4 



Relativistic ionization energies for some 
one-electron atoms  

One e 
Atom 

Z β  
(Eq. (1.267) of 

Ref. [7]) 
 

Theoretical 
Ionization 
Energies 

(eV)  
(Eq. (1.272) of 

Ref. [7]) 

Experimental 
Ionization 
Energies 

(eV) a 

Relative 
Difference 
between 

Experimental and 
Calculated b 

 
H 1 0.00730 13.59847 13.59844 -0.000002 

He+ 2 0.01459 54.41826 54.41778 -0.000009 
Li2+ 3 0.02189 122.45637 122.45429 -0.000017 
Be3+ 4 0.02919 217.72427 217.71865 -0.000026 
Be4+ 5 0.03649 340.23871 340.2258 -0.000038 
C5+ 6 0.04378 490.01759 489.99334 -0.000049 
N6+ 7 0.05108 667.08834 667.046 -0.000063 
O7+ 8 0.05838 871.47768 871.4101 -0.000078 
F8+ 9 0.06568 1103.220 1103.1176 -0.000093 

Ne9+ 10 0.07297 1362.348 1362.1995 -0.000109 
Na10+ 11 0.08027 1648.910 1648.702 -0.000126 
Mg11+ 12 0.08757 1962.945 1962.665 -0.000143 
Al12+ 13 0.09486 2304.512 2304.141 -0.000161 

a From theoretical calculations, interpolation of H isoelectronic and Rydberg series, and 
experimental data [35-38]. 

b (Experimental-theoretical)/experimental. 



Relativistic ionization energies for some 
one-electron atoms cont’d 

One e 
Atom 

Z β  
(Eq. (1.267) of 

Ref. [7]) 
 

Theoretical 
Ionization 
Energies 

(eV)  
(Eq. (1.272) of 

Ref. [7]) 

Experimental 
Ionization 
Energies 

(eV) a 

Relative 
Difference 
between 

Experimental and 
Calculated b 

 
Si13+ 14 0.10216 2673.658 2673.182 -0.000178 
P14+ 15 0.10946 3070.451 3069.842 -0.000198 
S15+ 16 0.11676 3494.949 3494.1892 -0.000217 
Cl16+ 17 0.12405 3947.228 3946.296 -0.000236 
Ar17+ 18 0.13135 4427.363 4426.2296 -0.000256 
K18+ 19 0.13865 4935.419 4934.046 -0.000278 
Ca19+ 20 0.14595 5471.494 5469.864 -0.000298 
Sc20+ 21 0.15324 6035.681 6033.712 -0.000326 
Ti21+ 22 0.16054 6628.064 6625.82 -0.000339 
V22+ 23 0.16784 7248.745 7246.12 -0.000362 
Cr23+ 24 0.17514 7897.827 7894.81 -0.000382 
Mn24+ 25 0.18243 8575.426 8571.94 -0.000407 
Fe25+ 26 0.18973 9281.650 9277.69 -0.000427 

a From theoretical calculations, interpolation of H isoelectronic and Rydberg series, and 
experimental data [35-38]. 

b (Experimental-theoretical)/experimental. 
 



Relativistic ionization energies for some 
one-electron atoms cont’d 

One e 
Atom 

Z β  
(Eq. (1.267) of 

Ref. [7]) 
 

Theoretical 
Ionization 
Energies 

(eV)  
(Eq. (1.272) of 

Ref. [7]) 

Experimental 
Ionization 
Energies 

(eV) a 

Relative 
Difference 
between 

Experimental and 
Calculated b 

 
Co26+ 27 0.19703 10016.63 10012.12 -0.000450 
Ni27+ 28 0.20432 10780.48 10775.4 -0.000471 
Cu28+ 29 0.21162 11573.34 11567.617 -0.000495 
Zn29+ 30 0.21892 12395.35 12388.93 -0.000518 
Ga30+ 31 0.22622 13246.66 13239.49 -0.000542 
Ge31+ 32 0.23351 14127.41 14119.43 -0.000565 
As32+ 33 0.24081 15037.75 15028.62 -0.000608 
Se33+ 34 0.24811 15977.86 15967.68 -0.000638 
Kr35+ 36 0.26270 17948.05 17936.21 -0.000660 
Rb36+ 37 0.27000 18978.49 18964.99 -0.000712 
Mo41+ 42 0.30649 24592.04 24572.22 -0.000807 
Xe53+ 54 0.39406 41346.76 41299.7 -0.001140 
U91+ 92 0.67136 132279.32 131848.5 -0.003268 

a From theoretical calculations, interpolation of H isoelectronic and Rydberg series, and 
experimental data [35-38]. 

b (Experimental-theoretical)/experimental. 
 



Excited States 
•The  discretization  of  the  angular  momentum  of  the  electron 
and the photon gives rise to quantized electron radii and energy 
levels. 
 
•Transitions  occur  in  integer  units  of  the  electron’s  inalienable 
intrinsic  angular momentum of  

  wherein the exciting photons 
carry an integer multiple of   . 
 
•Thus, for r × me ve  = p to be constant, the velocity of the electron 
source  current  decreases  by  a  factor  of  the  integer  and  the 
radius increases by the factor of the integer. 
 
•Concomitantly, the photon field superposes that of the proton 
causing  a  resultant  central  field  of  a  reciprocal  integer  that 
establishes the force balance at the excited state radius. 



• This  quantization  condition  is  equivalent  to  that  of  Bohr 
except that the electron angular momentum is   , the angular 
momentum of one or more photons that give to an excited 
state  is  n

,  and  the  photon  field  changes  the  central  force 
balance. 
 
 

• Also, the standing wave regards the photon field and not the 
electron  that  comprises  an  extended  current  and  is  not  a 
wave function.   Thus, the quantization condition can also be 
considered  as  arising  from  the  discretization  of  the  photon 
standing  wave  including  the  integer  spherical  periodicity  of 
the  spherical  harmonics  of  the  exited  state  of  the  bound 
electron as a spherical cavity. 

Excited States cont’d 



Excited States cont’d 

• The atomic orbital is a dynamic spherical resonator cavity which 
traps photons of discrete frequencies. 

• The relationship between an allowed radius and the "photon 
standing wave" wavelength is 

where n is an integer. 
• The relationship between an allowed radius and the electron 
wavelength is 2πr = nλ 

where n=1,2,3,4,… 

• The radius of an atomic orbital increases with the absorption 
of electromagnetic energy. 

•The solutions to Maxwell's equations for modes that can be excited 
in the atomic orbital resonator cavity give rise to four quantum 
numbers, and the energies of the modes are the experimentally 
known hydrogen spectrum. 

2πr = nλ 



Excited States cont’d 

The relationship between the electric field equation and the 
"trapped photon" source charge-density function is given by 
Maxwell’s equation in two dimensions 

The photon standing electromagnetic wave is phase matched to 
with the electron 
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• The change in angular velocity of the electron atomic orbital is 
identical to the angular velocity of the photon necessary for 
the excitation,  

• The correspondence principle holds 

Photon Absorption 

•The energy of the photon which excites a mode in the electron 
spherical resonator cavity from radius aH to radius naH is 

ω
πε

=



 −=∆ 2

0

2
2 11

8
)(

2
1

na
evm

H
e

• The change in angular velocity of the atomic orbital for an 
excitation from n=1 to n=n is 
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• The kinetic energy change of the transition is 



Source Current of Excited States Gives the 
Excited State Lifetimes and Transition Rates  
In a nonradiative state, there is no emission or absorption of radiation 
corresponding to the absence of radial motion wherein the electric coefficient aE is 
zero since r · J = 0.   
  
The physical characteristics of the photon and the electron are the basis of 
physically solving for excited states according to Maxwell’s equations.   
  
The vector potential of the current that connects the initial and final states of a 
transition is 
  
   (1) 
 
The magnetic and electric fields are derived from the vector potential and are used 
in the Poynting power vector to give the power.   
  
The transition probability or Einstein coefficient Aki for intial state ni and final state 
nf of atomic hydrogen given by the power divided by the energy of the transition is 
  
   (2) 
 
which matches the NIST values for all transitions extremely well.  
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The radiation of a mulipole of order (  , m) carries        units of the z 
component of angular momentum per photon of energy       .  Thus, 
the z component of the angular momentum of the corresponding 
excited state electron oribitsphere is             . 

Therefore, 

     where     is the Bohr magnton. 

The orbital splitting energy is   

Orbital and Spin Splitting 
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B
e
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m
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The ratio of the square of the angular momentum, M2, to the square 
of the energy, U2, for a pure (l, m) multipole 

The magnetic moment is defined as 
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Orbital and Spin Splitting cont’d 

The spin and orbital splitting energies superimpose; 
thus, the principal excited state energy levels of the 
hydrogen atom are split by the energy  
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Resonant Line Shape 

( )
ωα

ωαω
i

dttiete
−

=−−∝ ∫
∞ 1

0

E

The relationship between the rise-time and the band-
width for exponential decay is 
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The energy radiated per unit frequency interval is 

19

22

2
0

2

10678.2

111
24

11

−ℜ×=






















−

−







==

s

nnnnam
e

cmenergy
power

iffiee



π
η

τ

2
111






















−

−
=ℜ

iffi nnnn
where      is defined as         ℜ



Broadening of the Spectral Line 
and the Radiative Reaction 

Broadening of the spectral line due to the rise-time and shifting 
of the spectral line due to the radiative reaction. The resonant 
line shape has width Γ. The level shift is ∆ω . 

ω 

Γ 

∆ω 

ωο 

dI 
dω 

(ω) 



Hydrogen Lamb Shift 
The hydrogen Lamb Shift corresponding to the transition energy of 2P1/2 → 2S1/2  is due to the 
radiation reaction force between the electron and the photon and conservation of energy and 
linear momentum involving recoil during emission. 
 

The radiation reaction force shifts the H radius from r0 = 2aH to 
  
  
 
The change in energy             is given as the sum of the electric and magnetic energy changes 
and photon recoil energy: 
 
 
 
  
 
 
 
 
The Lamb shift energy expressed in terms of frequency: 
 
 
The experimental Lamb shift: 
 
 
Given the 100 MHz natural linewidth of the 2P state, the 0.07% relative difference is within 
measurement error and the propagated errors in the fundamental constants of the equations. 
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Muonic Hydrogen Lamb Shift 
The muonic hydrogen Lamb shift corresponding to the transition energy of 2P1/2 → 2S1/2 is 
also due to the radiation reaction force between the electron and the photon and 
conservation of energy and linear momentum involving recoil during emission wherein 
the muon, and also the tau, is a resonant particle production state of an electron. 
  

The radiation reaction force shifts the muonic H radius from 
 

                                              (      is defined as           ) to 
 
 

 
The change in energy               is given as the sum of the electric and magnetic energy 

 

 changes and photon recoil energy: 
 
 

 
 
 
 
The magnitude of the muonic H Lamb shift energy expressed in terms of frequency: 
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Muonic Hydrogen Lamb Shift Cont’d 
Using the literature values for             , the      level shift with respect to the  

unperturbed 2P1/2 level, and          , the         level shift with respect to the unperturbed 

2S1/2 level,                can be compared to the total energy of the muonic hydrogen Lamb 

shift corresponding to the transition 2P3/2F =2 → 2S1/2F =1; 
 
  

 

 
The magnitude of the 2P3/2F =2 → 2S1/2 F =1 muonic hydrogen Lamb shift energy 
expressed in terms of frequency: 
 
 
The magnitude of the experimental muonic hydrogen Lamb shift matching the 2S1/2 state 
lower than the 2P1/2  state: 

 
 

Given the 18.6 GHz natural linewidth of the 2P state, the 0.0058% relative difference is 
within the measurement error and the propagated errors in the fundamental constants 
of the equations.  For example, the relative difference is 0.0025% using the 2002 
CODATA constants. 

2 2
3/2 1/2

2 1
3/2 1/2 1/2

  2  1  
2 2 2

20 21 22

20
  3.24225  10  1.54199  10  9.13841  10  
 3.30507  10  

F F
p Lamb P F S F p Lamb

total total P P SE E E E

X J X J X J
X J

µ µ
= =

= → =
→

− − −

−

∆ = ∆ − +

= − − +
= −

2 2
3/2 1/2  2  1 49,879.0 p Lamb P F S F

totalf GHzµ = → =∆ =

( )2 2
3/2 1/2  2  1 experimental 49,881.88 p Lamb P F S F

totalf GHzµ = → =∆ =

2
3/2 1/22 2FP PE = →

2 2
3/2
FP =

1
1/22 FSE =

2 1
1/2
FS =

 p Lamb
totalEµ∆



Fine Structure Spin-Orbital Coupling 
The energy of the 2P level is split by a relativistic interaction between the spin and orbital 
angular momentum as well as the corresponding radiation reaction force.   
  

The corresponding energy      and frequency       for the transition 2P1/2 → 2P3/2 is 
known as the hydrogen fine structure and is given by the sum of the spin-orbital coupling 
energy 

 
 

and the radiation reaction force that shifts the H radius from r0 = 2aH to 
 
 
The radiation reaction energy of the hydrogen fine structure            is given as the sum of 
the electric and magnetic energy changes: 
 
 
 
 
Then, the total energy of the hydrogen fine structure  is given by the sum: 
 
 

The fine structure energy expressed in terms of frequency: 

 
The experimental hydrogen fine structure: 

 
Given the large natural linewidth of the 2P state, the 0.005% relative difference is within the 
measurement error and propagated errors in the fundamental constants of the equations. 
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Hyperfine Structure 

The hyperfine structure of the hydrogen atom is calculated from the force balance 
contribution between the electron and the proton.   

The energy corresponds to the Stern-Gerlach and electric and magnetic energy changes. 

The total energy of the transition from antiparallel to parallel alignment,     ,  
is given as the sum:  
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The experimental value from the hydrogen maser is 21.10611 cm.  
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Muonium Hyperfine Structure Interval 
The hyperfine structure of muonium is calculated from the force balance contribution 
between the electron and the muon.   

The energy corresponds to the Stern-Gerlach and electric and magnetic energy changes. 

The energy of the ground state (12S1/2) hyperfine structure interval of muonium,           

is given as the sum: 
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Muonium Hyperfine Structure Interval cont’d 

Using Planck’s equation, the interval frequency,          , and wavelength,            , are 
  
  
  
 
 
The experimental hyperfine structure interval of muonium is 
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Positronium Hyperfine Structure 

The leptons are at the same radius, and the positronium hyperfine interval is given by the 
sum of the Stern-Gerlach, , and spin-orbital coupling, , energies. 

The hyperfine structure interval of positronium ( 0   ) is given by the sum: 
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Using Planck’s equation, the interval in frequency, Δυ, is 

∆υ = 203.39041GHz 
The experimental ground-state hyperfine structure interval is 

∆EPs hyperfine(experimental) = 8.41143×10−4  eV 

∆υ (experimental) = 203.38910(74)GHz (3.6ppm) 
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Excited States of Helium 

The atomic orbital is a resonator cavity which traps single photons of discrete 
frequencies. 
 
In the ground state of the helium atom, both electrons are at r1  = r2  = 0.567a0 . 
 
When  a  photon  is  absorbed,  one  of  the  initially  indistinguishable  electrons  called 
electron 1 moves to a smaller radius, and the other called electron 2 moves to a greater 
radius. 
 
The radii of electron 2 are determined from the force balance of the electric, magnetic, 
and centrifugal forces that corresponds to the minimum of energy of the system. 
 
The excited-state energies are then given by the electric energies at these radii. 



Exemplary color scale, translucent 
views  of  the  charge-densities  of 
the  inner  and  outer  electrons  of 
helium    excited    states.       The 
spherical    harmonic    modulation 
functions  propagate  about  the  z- 
axis  as  spatially  and  temporally 
harmonic   charge-density   waves. 
The corresponding orbital function 
of  the  outer-electron  modulates 
the time-constant (spin) function, 
(shown    for    t    =    0;    three- 
dimensional view). The 
electron is essentially that of 
(nuclei red, not to scale). 

inner 
He+ 



Excited States of Helium cont’d 

Singlet Excited States with ℓ = 0 (1s21s1(ns)1) 
  
Force Balance Equation 
  
  
 
 
 
Radius of electron 2 
          
  
 
 
 
 
The excited-state energy is the energy stored in the electric field, Eele, which is the energy 
of electron 2 relative to the ionized electron at rest having zero energy: 
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Excited States of Helium cont’d 

Triplet Excited States with ℓ = 0 (1s21s1(ns)1)  
  
Force Balance Equation 
  
 
 
 
 Radius of electron 2 
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Excited States of Helium cont’d 

Singlet Excited States with ℓ ≠ 0 
  
Force Balance Equation 
  
  
 
 
 
 
Radius of electron 2 
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Excited States of Helium cont’d 

Triplet Excited States with ℓ ≠ 0 
  
Force Balance Equation 
  
  
 
 
 
 
 
 
Radius of electron 2 
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Excited States of Helium cont’d 

For  over  100  states,  the  r-squared  value  is  0.999994,  and  the  typical  average  relative 
difference is about 5 significant figures which is within the error of the experimental data. 
 
Calculated and experimental energies of states of helium. 



  Excited States of Helium cont’d   

(CQM-NIST) 



Excited States of Helium cont’d 
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Instability of Excited States 
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Excited states are radiative since spacetime harmonics of       

or              do exist for which the spacetime Fourier 

transform of the current density function is nonzero. 
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The relationship between the electric field equation and the "trapped photon" 
source charge-density function is given by Maxwell’s equation in two dimensions 



Stability of  “Ground” and Hydrino States 
 

These states are nonradiative since spacetime harmonics of           or                                          

for which the Fourier transform of the current-density function is nonzero 

do not exist. 
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Photon Equations 

The angular-momentum density, m, of the emitted photon is 

The Cartesian coordinate system x'y'z' wherein the first great circle 
magnetic field line lies in the x'z'-plane, and the second great circle 
electric field line lies in the y'z'-plane. 
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The Field-Line Pattern of the Right-Handed 
Circularly Polarized Photon is Generated by a 

Rotation of the Orthogonal Great Circle Electric 
and Magnetic Field Lines  

The right-handed-circularly-polarized photon electric and magnetic vector field (RHCP 

photon-e&mvf) is generated by the rotation of the basis elements comprising the great 

circle magnetic field line in the xz-plane and the great circle electric field line in the yz-

plane about the (ix, iy, 0iz)-axis by     :  

E FIELD and H FIELD:  
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The Field-Line Pattern of a Right-Handed 
Circularly-Polarized Photon 

Electric field lines red --- Magnetic field lines blue 



The Field-Line Pattern of the Left-Handed 
Circularly Polarized Photon is Generated 

by a Rotation of the Orthogonal Great 
Circle Electric and Magnetic Field Lines  

The left-handed-circularly-polarized photon electric and magnetic vector field (LHCP 
photon-e&mvf) is generated by the rotation of the basis elements comprising the 
great circle magnetic field line in the xz-plane and the great circle electric field line in 
the yz-plane about the (ix, -iy, 0iz)-axis by    :  

E FIELD and H FIELD:  
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The Field-Line Pattern of a Left-Handed 
Circularly Polarized Photon 

Electric field lines red --- Magnetic field lines blue 



The Field-Line Pattern of a Linearly 
Polarized Photon 

The  linearly  polarized  (LP)  photon-e&mvf  is  generated  by  the  superposition  of 
the RHCP photon-e&mvf and the LHCP photon-e&mvf: 
 
 

Electric field lines red --- Magnetic field lines blue 



Facing the 
Observer 

Toward the 
observer 

RHCP photon in 
its own reference 

frame 

RHCP photon in the lab 
reference frame as it passes 

a fixed point over time. 

Time 
axis 

Consider an observer at the origin of his frame with the photon-e&mvf stationary in its own frame 
propagating at light-speed c relative to the observer along its z-axis (zphoton-e&mvf) that is collinear 
to the z-axis of the observer, zlaboratory. Electric field lines red, magnetic field lines blue. 

 

The Field of the Photon Observed from the Laboratory Frame  



Electric Field of a 
Moving Point 
Charge v=1/3c 

Electric Field of a 
Moving Point 
Charge v=4/5c 



The relationship between the photon e&mvf radius and 
wavelength is 

The Photon Equation in the Lab Frame of 
a Right-Handed Circularly-Polarized 

Photon Atomic Orbital 
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The electric (red) and magnetic (blue) field lines of a right-handed circularly 
polarized photon-e&mvf as seen in the lab inertial reference frame at a fixed 
time.    A  and  B.  Views  transverse  to  the  axis  of  propagation,  the  z-axis, 
wherein = λ . C and D. Off z-axis views showing field aspects both 
along and transverse to the axis of propagation. 

2rphoton 

The Electric Field Lines of a Right-Handed 
Circularly-Polarized Photon E&MVF 



The Electric Field Rotation 

The rotation of the electric field rotation of a right-handed circularly 
polarized photon e&mvf as seen transverse to the axis of propagation 
in the lab inertial reference frame as it passes a fixed point. 



Elliptically Polarized Photons 

Magnitude of the magnetic and electric field lines vary as a function of angular 
position         on the spherical e&mvf. 
                                                                                   
             
                      

A photon is emitted when an electron is bound. Relations between the free-
space photon wavelength, radius, and velocity and the corresponding 
parameters of a free electron as it is bound are: 

•                , the radius of the photon e&mvf, is equal to                              , 

the electron atomic orbital radius times the product of      and the ratio of the 

speed of light c and       , the velocity of the atomic orbital. 

•    , the photon wavelength, is equal to           , where        is the atomic 
orbital de Broglie wavelength. 

•                , the photon angular velocity, is equal to       , the atomic orbital 
angular velocity. 
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Photons superimpose, and the amplitude due to N photons is 
   
 
In the far field, the emitted wave is a spherical wave  
 
  
•The Green Function is given as the solution of the wave 
equation.  Thus, the superposition of photons gives the classical 
result.   
•As r goes to infinity, the spherical wave becomes a plane wave. 

•The double slit interference pattern is predicted.   
•From the equation of a photon, the wave-particle duality arises 
naturally.   
•The energy is always given by Planck's equation; yet, an 
interference pattern is observed when photons add over time or 
space. 
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Equations of the Free Electron 

ρ (ρ,φ, z) = ρ 2  − ρ 2 δ (z) 
πρ0 

3 
2 0 

3 

me 
m 

Mass Density Function of a Free Electron is a two dimensional disk 
having the mass density distribution in the xy(p)-plane 

Charge Density Distribution,ρe (ρ,φ, z), in the xy-plane 

ρ  (ρ,φ, z) = ρ 2  − ρ 2 δ (z) 
πρ0 

3 
2 0 

3 

e 
e 

The wave-particle duality arises naturally. 

Consistent with scattering experiments. 



The angular-momentum-axis view of the magnitude of 
the mass (charge) density function in the xy-plane of a 
polarized free electron; side-view of a free electron along 
the axis of propagation—z-axis. 

Charge Density 
Function 

(the size of the electron in 
the xy-plane centered 
about the origin as a 

function of its velocity is 
shown with the charge 

density plotted in on the 
z-axis) 

Electron Ionization 

Click the above right images 
to view animations online 

http://www.brilliantlightpower.com/wp-content/uploads/animations/FreeElectron.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/FreeElectron.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/Ionization.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/Ionization.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/Ionization.mp4�
http://www.brilliantlightpower.com/wp-content/uploads/animations/FreeElectron.mp4�


Current-Density Function 

The magnitude plotted along the z-axis of the current-density function, J, 
of the free electron traveling at 105 ms-1 relative to the observer. 

The radius of the xy-plane-lamina disc is 1.16×10-9 m.  

The maximum current density at ρ = 0 is 1.23×1013 Am-2.  
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Angular Momentum 
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Nonradiation Condition 
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Consider the wave vector of the sinc function. When the the velocity is c 
corresponding to a potentially emitted photon, s is the lightlike s0 wherein 
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Classical Physics of the de Broglie 
Relation  

The linear velocity of the free electron can be considered to be due to absorption 
of photons that excite surface currents corresponding to a decreased de Broglie 
wavelength where the free electron is equivalent to a continuum excited state 
with conservation of the parameters of the bound electron. 
  
The relationship between the electron wavelength and the linear velocity is  
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In this case, the angular frequency ωz is given by 
  
 
 
 
which conserves the photon’s angular momentum of ħ with that of the 
electron.  
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Classical Physics of the de Broglie 
Relation cont’d 

The total energy, ET, is given by the sum of the change in the free-electron translational 
kinetic energy, T, the rotational energy, Erot, corresponding to the current of the loops, 
and the potential energy, Emag, due to the radiation reaction force Fmag, the magnetic 
attractive force between the current loops due to the relative rotational or current 
motion: 
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Thus, the total energy, ET, of the excitation of a free-electron transitional state by a 
photon having ħ of angular momentum and an energy given by Planck’s equation of ħω is  
  
 
 
 
where λ is the de Broglie wavelength. 
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Classical Physics of the de Broglie 
Relation cont’d 

The angular momentum of the free electron of ħ is unchanged. 
 
The energies in the currents in the plane lamina are balanced so that the total 
energy is unchanged. 
 
The radius ρ0  decreases to match the de Broglie wavelength and frequency at 
an increased velocity. 
 
At this velocity, the kinetic energy matches the energy provided by the photon 
wherein the de Broglie frequency matches the photon frequency and both the 
electron-kinetic energy and the photon energy are given by Planck’s equation. 



Classical Physics of the de Broglie 
Relation cont’d 

The  correspondence  principle  is  the  basis  of  the  de  Broglie  wavelength 
relationship. 
 
The  de  Broglie  relationship  is  not  an  independent  fundamental  property  of 
matter in conflict with physical laws as formalized in the wave-particle-duality- 
related postulates of quantum mechanics and the corresponding Schrödinger 
wave equation. 
 
The Stern-Gerlach experimental results and the double-slit interference 
pattern of electrons are also predicted classically. 



The Central Mystery of Quantum 
Mechanics 

Like waves, 
electrons form a 

diffraction pattern 
over time. 

Like particles, 
electrons land in 

discrete 
locations. 



Classical Electron Diffraction 

• The electron interacts with both slits via charge-induced photons. 
• The angular momentum vector of the electron precesses about that of 

the absorbed photon. 
• The photon-momentum distribution is imprinted onto that of the 

electrons such that transverse momentum distribution in the far-field 
is a result of this interaction. 

• Rather than uncertainty in position and momentum according to the 
Uncertainty Principle: 

 
 

• Δp is the physical momentum change of the incident electron, and Δx 
is the physical distance change from the incident direction such that 
the distribution in the far field is the Fourier transform of the slit 
pattern. 

Animation of the 
Double Slit Exp 

Top View 

Click the above images to 
view animations online 

http://www.brilliantlightpower.com/wp-content/uploads/animations/DoubSlitPersp_071708.swf�
http://www.brilliantlightpower.com/wp-content/uploads/animations/DoubSlitPersp_071708.swf�
http://www.brilliantlightpower.com/wp-content/uploads/animations/DoubleSlit_HighRes_Top_B.swf�
http://www.brilliantlightpower.com/wp-content/uploads/animations/DoubleSlit_HighRes_Top_B.swf�
http://www.brilliantlightpower.com/wp-content/uploads/animations/DoubSlitPersp_071708.mp4�
http://www.brilliantlightpower.com/wp-content/uploads/animations/DoubleSlit_HighRes_Top_B.mp4�


With the electron current in the counter clockwise direction, the Larmor 
precession  of  the  angular  momentum  vector  of  the  free  electron  is 
about two axes simultaneously, the (ix, 0iy, iz)-axis and the laboratory- 
frame z-axis defined by the direction of the applied magnetic field. 
 
The motion generates CVFs equivalent to those of the bound electron. 
 
Over one time period, the first motion sweeps out the equivalent of a 
BECVF, and the rotation about the z-axis sweeps out the equivalent of 
an OCVF. 

Spin of Free Electron 



The combined motions sweep out the equivalent of the convolution of 
the BECVF with the OCVF, a distribution and angular momentum 
equivalent to Y 0 (θ ,φ) of the bound electron. 

The electron may flip between the two states wherein the BECVF, 
OCVF, and  Y 0 (θ ,φ) precession distributions apply to both states, but 0 
the currents are opposite. 

The rotation of a great circle in the xy-plane about the (ix, 0iy, iz)-axis 
by   2π   generates   a   free   electron   BECVF   corresponding   to   the 
precession motion with its resultant angular momentum of    2  along 
the (ix, 0iy, iz)-axis having components of Lxy =  

and Lz = 
 
 

corresponding to a magnetic moment of μB  on the z-axis. 

0 

Spin of Free Electron cont’d 



The infinite sum of great circles that constitute the BECVF: 
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progression of larger current loops 
along ρ forms two conical surfaces 
over a period that join at the origin 
and face in the opposite directions 
along the  (ix, 0iy, iz)-axis, the axis 
of rotation. 
 
At each position of 0 < ρ, there 
exists a BECVF of that radius that 
is concentric to the one of 
infinitesimally larger radius to the 
limit at ρ = ρ0. 

Conical Surfaces Formed by Variation of ρ 

The rotation of the free-electron 
disc having a continuous 



  Combined Precession Motion of the Free   
Electron about the (ix, 0iy, iz)- Axis and Z-Axis 

The combined precessional motion of the free electron 
about the (ix,  0iy,  iz)-axis and z-axis having the magnetic 
moment of μB on the z-axis is the Y 0 (θ ,φ) momentum- 
density distribution for each position ρ given by the 
convolution of the BECVF with the OCVF. 
 
The OCVF is generated by rotating a basis-element great 
circle that is perpendicular to the (ix, 0iy, iz)- axis about 
the z-axis by 2π. 

The Momentum-Density for the 0 Y0 (θ ,φ) 

0 
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components of Lxy  =   and Lz  =   . 

The  BECVF  replaces  the  great  circle  basis  element  initially 
perpendicular to the (ix,  0iy,  iz)- axis and matches its resultant 
angular momentum of   2 along the (ix,  0iy,  iz)- axis having 

(θ ,φ) is  generated  by  rotation  of  the  BECVF, about  the  z- 
axis  by  an  infinite  set  of  infinitesimal  increments  of  the 
rotational  angle  over  the  2π  span  such  that  coverage  of  the 
spherical surface is complete. 

0 Y0 

0 The Y0 (θ ,φ) Momentum-Density cont’d 



The infinite double sum of great circles that constitute Y 0 (θ ,φ) : 

 

A discrete representation of the current distribution can 
be generated from the continuous convolution of the BECVF with the 
OCVF as a superposition of M discrete incremental rotations of the 
position  of  the  BECVF  comprising  N  great  circles  about  the  z-axis 
such that the number of convolved BECVF elements is M. 

0 

Y 0 (θ ,φ) 0 

The Momentum-Density cont’d 0 
0 Y ( θ ,φ) 
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The Momentum-Density         cont’d 

m=M

m=1

2 2  cos    sin     0
'

2 2'  sin   cos      0  

 
'

          0                    0            1

2cos
1   
2 2

         

π π

π π

π

    
         

  
         = −         
  
      

 
 
 +

•

∑

m m
M M

x

m my
M M

z

n
N

n

2 2 sin cos
1           
2 22

2 2 sin  sin
2           cos       

2 2

 
2 2 2cos  sin cos

1 1        
2 2 2 22

π π

π π
π

π π π

    
        −

 
 
 
    

         −  
  

 
 
 
 

                 − − +  

n n
N N

n n
nN N
N

n n n
N N N

n=N

=1

cos

 sin

0

ρ φ

ρ φ

 
 
 
 
 
 
  

∑

0
0 ( , )θ φY



The  electron may  flip  between the two spin  states  having  the magnetic 
moment parallel to the z-axis or antiparallel to the z-axis by a ±π rotation of 
the distribution about the x-axis with the application of a photon of 
the corresponding Larmor frequency energy with its angular momentum 
along this axis. 

Discrete representations of the 
(θ ,φ) current distribution 

(30 degree increments, N = M =12) 
viewed along the x-axis. 

0 Y0   (θ ,φ) 

0 Y0 

The Momentum-Density         cont’d 0
0 ( , )θ φY



Stern-Gerlach Experiment 

The Stern Gerlach experiment demonstrates that the magnetic moment 

of the electron can only be parallel or antiparallel to an applied magnetic 

field.   

  

This implies a spin quantum number of 1/2 corresponding to an angular 

momentum on the z-axis of   .  However, the Zeeman splitting energy 

corresponds to a magnetic moment of a Bohr magneton μB and implies 

an electron angular momentum on the z-axis of ħ —twice that expected.  

2




Stern-Gerlach Experiment cont’d 

The application of a magnetic field causes a resonant excitation of the 

Larmor  precession  wherein  the  corresponding  photon has  ħ of  angular 

momentum on the x'-axis. 

The corresponding torque causes the electron to precess about the 

(ix, 0iy, iz)-axis and the z-axis to give the equivalent of the distribution 

at each radial position ρ of the free electron. Y 0 (θ ,φ) 0 



Stern-Gerlach Experiment cont’d 

Free Electron Precession About the (ix, 0iy, iz)-Axis 
 
 
Free Electron (ix, 0iy, iz)-Axis Precession About the Z-Axis 
Showing the ρ Dependency 
 
 
Free Electron (ix, 0iy, iz)-Axis Precession About the Z-Axis 
Shown at a Fixed ρ 

3-D View of the Distribution Y 0 (θ ,φ) 0 

Click the above images to 
view animations online 

http://www.brilliantlightpower.com/wp-content/uploads/animations/FreeElectronWobble.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/FreeElectronConvolution.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/Component Wobble 072809.swf�
http://www.brilliantlightpower.com/wp-content/uploads/animations/Convolution Rotation LowRes.swf�
http://www.brilliantlightpower.com/wp-content/uploads/animations/FreeElectronWobble.mp4�
http://www.brilliantlightpower.com/wp-content/uploads/animations/FreeElectronConvolution.mp4�
http://www.brilliantlightpower.com/wp-content/uploads/animations/Component Wobble 072809.mp4�
http://www.brilliantlightpower.com/wp-content/uploads/animations/Convolution Rotation LowRes.mp4�


Stern-Gerlach Experiment cont’d 

The static projection of the resultant angular momentum onto the z-axis 

is ħ with a contribution of 

and the photon. 

from each of the intrinsic electron current 

The  precessing  electron  can  further  interact  with  a  resonant  photon 

directed   along   the   x-axis   that   rotates   the   z-axis-directed   constant 

projection of the resultant of ħ such that it flips to the opposite direction. 

 
The   RF   photon   gives   rise   to   Zeeman   splitting—energy   levels 

corresponding to flipping of the parallel or antiparallel alignment of the 

electron magnetic moment of a Bohr magneton with the magnetic field. 

 

2 



The spherical momentum density over a period interacts with the external 
applied magnetic field in a manner that is equivalent to that of 
atomic orbital function, , having the momentum density on a 
spherical shell of radius ρ0, a total integral of the magnitude of the 

angular momentum density on the atomic orbital of ħ and               . 

Stern-Gerlach Experiment cont’d 

Y 0 (θ ,φ) 0 

2


=zL



Since the projection of the intrinsic free electron angular momentum and 
that of the resonant photon that excites the Larmor precession onto the z-
axis are both    , the Larmor-excited free electron behaves equivalently to the 
bound electron.   
  
Flux must be linked in the same manner in units of the magnetic flux 
quantum,  
 
 Consequently, the g factor for the free electron is the same as that of the 
bound electron, and the energy of the transition between these states is that 
of the resonant photon given by 

Stern-Gerlach Experiment cont’d 

2


Φ0 =
h
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Two Electron Atoms 

Central Force Balance Equation with Nonradiation 
Condition 

2 2
2

2 2 2 2 3
2 2 2 0 2 2 2

( 1) 1 ( 1)
4 4 4 4

e

e

m v e Z e s s
r r r r r Zm rπ π πε π

−
= + +



( )
( ) 2

1 ;
1
1

1
1

012 =










−
+

−
−

== s
ZZ
ss

Z
arr



Two Electron Atoms cont’d 

 ( ) ( ) ( )Ionization Energy He E electric E magnetic= − +
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Where 

For 

where 

Ionization Energies Calculated Using the Poynting Power 
Theorem 

For helium, which has no electric field beyond r1 



The Calculated Energies for Some 
Two-Electron Atoms 

Atom r1 

( ao ) 
Electric 
Energy 

Magnetic 
Energy 

Calculated 
Ionization 

Experimental 
Ionization 

(eV) (eV) Energy(eV) Energy (eV) 

He 0.567 -23.96 0.63 24.59 24.59 

Li+ 0.356 -76.41 2.54 75.56 75.64 

Be2+ 0.261 -156.08 6.42 154.48 153.89 

B3+ 0.207 -262.94 12.96 260.35 259.37 

C4+ 0.171 -396.98 22.83 393.18 392.08 

N5+ 0.146 -558.20 36.74 552.95 552.06 

O6+ 0.127 -746.59 55.35 739.67 739.32 

F7+ 0.113 -962.17 79.37 953.35 953.89 



Elastic Electron Scattering from Helium 
Atoms 

Aperture distribution function, a(ρ,φ, z), for the scattering of an 
incident electron plane wave π(z ) 

 
by the He atom 

2 
4π (0.567aο ) 

2 [δ(r − 0.567aο )] 

a(ρ,φ, z) = π (z) ⊗ 
2 

4π (0.567aο ) 
2 [δ (r − 0.567a  )] ο 

(0.567a  )2  − z 2 ) (0.567a  )2  − z 2 δ (ρ − 
4π (0.567a  )2 

2 a(ρ,φ, z) = ο ο 
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is 



Far Field Scattering 
(Circular Symmetry) 
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Experimental Results 
and Born Approximation 

Angle (degrees) 

The experimental results of Bromberg, the extrapolated experimental data of Hughes, the small angle data of Geiger, 
and the semiexperimental results of Lassettre for the elastic differential cross section for the elastic scattering of 
electrons by helium atoms and the elastic differential cross section as a function of angle numerically calculated by 
Khare using the first Born approximation and first-order exchange approximation. 



The Closed Form Function 

The closed form function for the elastic differential cross section for the elastic scattering of electrons by helium 
atoms. The scattering amplitude function, F(s), is shown as an insert. 



One- Through Twenty-Electron Atoms 

The physical approach based on Maxwell's equations was applied to multielectron atoms 

that were solved exactly. 

 
The classical predictions of the ionization energies were solved for the physical electrons 

comprising  concentric atomic orbitals  ("bubble-like"  charge-density  functions)  that  

are electrostatic  and  magnetostatic  corresponding  to  a  constant  charge  distribution  

and  a constant current corresponding to spin angular momentum. 
 

Alternatively, the charge is a superposition of a constant and a dynamical component. 
 
In the latter case, charge density waves on the surface are time and spherically harmonic 

and correspond additionally to electron orbital angular momentum that superimposes the 

spin angular momentum. 



One- Through Twenty-Electron Atoms cont'd 

Thus, the electrons of multielectron atoms all exist as atomic orbitals of discrete 
radii which are given by rn  of the radial Dirac delta function, δ(r – rn). 
 
These electron atomic orbitals may be spin paired or unpaired depending on the 
force balance which applies to each electron. 
 
Ultimately,  the  electron  configuration  must  be  a  minimum  of  energy.    Minimum 
energy configurations are given by solutions to Laplace’s equation. 
 
Electrons of an atom with the same principal and ℓ quantum numbers align parallel 
until each of the mℓ  levels are occupied, and then pairing occurs until each of the mℓ 
levels contain paired electrons. 
 
The electron configuration for one through twenty-electron atoms that achieves an 
energy minimum is: 1s < 2s < 2p < 3s < 3p < 4s. 



Sectional View 
of the 
Potassium (K) 
Atom 
 
(Electrons 
shown at 
relative size 
scale, but 
nucleus not to 
scale.) 

Into the K Atom 

Click the above image to view 
animation online 

http://www.brilliantlightpower.com/wp-content/uploads/animations/KAtomZoom.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/KAtomZoom.avi�
http://www.brilliantlightpower.com/wp-content/uploads/animations/KAtomZoom.mp4�


Visualization of the One-Through-Twenty Electron Atoms. 

Color-Scaled Charge-Densities shown with relative-size-scale. 



Visualization of the One-Through-Twenty Electron Ions 

Color-Scaled Charge-Densities shown with relative-size-scale. 



One- Through Twenty-Electron Atoms cont'd 

In each case, the corresponding force balance of the central Coulombic, paramagnetic, 
and diamagnetic forces was derived for each n-electron atom that was solved for the 
radius of each electron. 
 
The central Coulombic force was that of a point charge at the origin since the electron 
charge-density functions are spherically symmetrical with a time dependence that was 
nonradiative. 
 
This  feature  eliminated  the  electron-electron  repulsion  terms  and  the  intractable 
infinities of quantum mechanics and permitted general solutions. 
 
The ionization energies were obtained using the calculated radii in the determination of 
the Coulombic and any magnetic energies. 
 
The  radii  and  ionization  energies  for  all  cases  are  given  by  equations  having 
fundamental constants and each nuclear charge, Z, only. 
 
The predicted ionization energies and electron configurations are in remarkable 
agreement with the experimental values known for 400 atoms and ions. 



General Equation for the Ionization 
Energies of Five Through Ten-Electron 
Atoms  

For example, for each n-electron atom having a central charge of Z times that of the proton and 
an electron configuration 1s22s22pn-4, there are two indistinguishable spin-paired electrons in an 
atomic orbital with radii r1 and r2 both given by: 
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two indistinguishable spin-paired electrons in an atomic orbital with radii r3 and r4 both given by: 



Equation for the Ionization Energies of 
Five through Ten-Electron Atoms cont’d 

and n - 4 electrons in an atomic orbital with radius rn given by 
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1s 2 2s 2 2p n-4-Atom Ionization Energies 
cont'd  

The parameter A corresponds to the diamagnetic force, Fdiamagnetic: 
  
  
  
 
 
The parameter B corresponds to the paramagnetic force, Fmag2: 
  
  
  
  
or  
  
 
 
depending on the positive or negative superposition of spin and orbital angular momentum.   
 
 The ionization energies for the n-electron atoms are given by the negative of the electric 
energy, E(electric): 
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Summary of 
the 

Parameters 
of Five 

through Ten- 
Electron 
Atoms 

Atom Type Electron 
Configuration 

Ground 
State 
Term 

Orbital Arrangement 
of 2p Electrons 

(2p state) 

Diamagnetic 
Force 

Factor A 

Paramagnetic 
Force 

Factor B 
Neutral 5 e Atom B 1s2 2s2 2 p1 2 P0 1 / 2 2 0 

Neutral 6 e Atom C 1s2 2s2 2 p2 3P 0 2 
3 0 

Neutral 7 e Atom N 1s  2s  2 p 2 2 3 4    0 S 3/ 2 
   ↑ ↑ ↑ 

1 0 -1 

↑   ↓     ↑   ↑ 
1 0 -1 

↑   ↓   ↑   ↓   ↑ 
1 0 -1 

↑   ↓   ↑   ↓ ↑   ↓ 
1 0 -1 

  ↑       

1 
3 1 

Neutral 8 e Atom O 1s2 2s2 2 p4 3P 2 1 2 

Neutral 9 e Atom F 1s2 2s2 2 p5 2     0 P 3/ 2 2 
3 3 

Neutral 10 e Atom Ne 1s2 2s2 2 p6 1S 0 0 3 

5 e Ion 1s2 2s2 2 p1 2 P0 1 / 2 5 
3 1 

6 e Ion 1s2 2s2 2 p2 3P 0 5 
3 4 

7 e Ion 1s2 2s2 2 p3 4S0 3/ 2 

1 0 -1 

↑   ↓     ↑   ↑ 
1 0 -1 

↑   ↓   ↑   ↓   ↑ 
1 0 -1 

↑   ↓   ↑   ↓ ↑   ↓ 
1 0 -1 

5 
3 6 

8 e Ion 1s2 2s2 2 p4 3P 2 5 
3 6 

9 e Ion 1s2 2s2 2 p5 2 P0 3/ 2 5 
3 9 

10 e Ion 1s2 2s2 2 p6 1S 0 5 
3 12 

  ↑ 
1 

   
0 

   
-1 

  ↑ 
1 
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Ionization Energies for Some Five- 
Electron Atoms 

5 e 
Atom 

Z r1 
(a0) 

r3 
(a0) 

r5 
(a0) 

Theoretical 
Ionization 

Energies (eV) 

Experimental 
Ionization 

Energies (eV) 

Relative 
Error 

B 5 0.20670 1.07930 1.67000 8.30266 8.29803 -0.00056 
C+ 6 0.17113 0.84317 1.12092 24.2762 24.38332 0.0044 

N 2+ 7 0.14605 0.69385 0.87858 46.4585 47.44924 0.0209 
O 3+ 8 0.12739 0.59020 0.71784 75.8154 77.41353 0.0206 
F 4+ 9 0.11297 0.51382 0.60636 112.1922 114.2428 0.0179 
Ne 5+ 10 0.10149 0.45511 0.52486 155.5373 157.93 0.0152 
Na 6+ 11 0.09213 0.40853 0.46272 205.8266 208.5 0.0128 
Mg 7+ 12 0.08435 0.37065 0.41379 263.0469 265.96 0.0110 
Al 8+ 13 0.07778 0.33923 0.37425 327.1901 330.13 0.0089 
Si 9+ 14 0.07216 0.31274 0.34164 398.2509 401.37 0.0078 
P 10+ 15 0.06730 0.29010 0.31427 476.2258 479.46 0.0067 
S 11+ 16 0.06306 0.27053 0.29097 561.1123 564.44 0.0059 
Cl 12+ 17 0.05932 0.25344 0.27090 652.9086 656.71 0.0058 
Ar 13+ 18 0.05599 0.23839 0.25343 751.6132 755.74 0.0055 
K 14+ 19 0.05302 0.22503 0.23808 857.2251 861.1 0.0045 
Ca 15+ 20 0.05035 0.21308 0.22448 969.7435 974 0.0044 
Sc 16+  21 0.04794 0.20235 0.21236 1089.1678 1094 0.0044 
Ti 17+ 22 0.04574 0.19264 0.20148 1215.4975 1221 0.0045 
V 18+ 23 0.04374 0.18383 0.19167 1348.7321 1355 0.0046 
Cr 19+ 24 0.04191 0.17579 0.18277 1488.8713 1496 0.0048 
Mn 20+ 25 0.04022 0.16842 0.17466 1635.9148 1644 0.0049 
Fe 21+ 26 0.03867 0.16165 0.16724 1789.8624 1799 0.0051 
Co 22+ 27 0.03723 0.15540 0.16042 1950.7139 1962 0.0058 
Ni 23+ 28 0.03589 0.14961 0.15414 2118.4690 2131 0.0059 
Cu 24+ 29 0.03465 0.14424 0.14833 2293.1278 2308 0.0064 
 



Ionization Energies for Some Six-Electron 
Atoms 

6 e 
Atom 

Z r1 
(a0) 

r3 
(a0) 

r6 
(a0) 

Theoretical 
Ionization 

Energies (eV) 

Experimental 
Ionization 

Energies (eV) 

Relative 
Error 

C 6 0.17113 0.84317 1.20654 11.27671 11.2603 -0.0015 
N + 7 0.14605 0.69385 0.90119 30.1950 29.6013 -0.0201 
O 2+ 8 0.12739 0.59020 0.74776 54.5863 54.9355 0.0064 
F 3+ 9 0.11297 0.51382 0.63032 86.3423 87.1398 0.0092 

Ne 4+ 10 0.10149 0.45511 0.54337 125.1986 126.21 0.0080 
Na 5+ 11 0.09213 0.40853 0.47720 171.0695 172.18 0.0064 
Mg 6+ 12 0.08435 0.37065 0.42534 223.9147 225.02 0.0049 
Al 7+ 13 0.07778 0.33923 0.38365 283.7121 284.66 0.0033 
Si 8+ 14 0.07216 0.31274 0.34942 350.4480 351.12 0.0019 
P 9+ 15 0.06730 0.29010 0.32081 424.1135 424.4 0.0007 
S 10+ 16 0.06306 0.27053 0.29654 504.7024 504.8 0.0002 
Cl 11+ 17 0.05932 0.25344 0.27570 592.2103 591.99 -0.0004 
Ar 12+ 18 0.05599 0.23839 0.25760 686.6340 686.1 -0.0008 
K 13+ 19 0.05302 0.22503 0.24174 787.9710 786.6 -0.0017 

Ca 14+ 20 0.05035 0.21308 0.22772 896.2196 894.5 -0.0019 
Sc 15+ 21 0.04794 0.20235 0.21524 1011.3782 1009 -0.0024 
Ti 16+ 22 0.04574 0.19264 0.20407 1133.4456 1131 -0.0022 
V 17+ 23 0.04374 0.18383 0.19400 1262.4210 1260 -0.0019 
Cr 18+ 24 0.04191 0.17579 0.18487 1398.3036 1396 -0.0017 
Mn 19+ 25 0.04022 0.16842 0.17657 1541.0927 1539 -0.0014 
Fe 20+ 26 0.03867 0.16165 0.16899 1690.7878 1689 -0.0011 
Co 21+ 27 0.03723 0.15540 0.16203 1847.3885 1846 -0.0008 
Ni 22+ 28 0.03589 0.14961 0.15562 2010.8944 2011 0.0001 
Cu 23+ 29 0.03465 0.14424 0.14970 2181.3053 2182 0.0003 

 



Ionization Energies for Some Seven- 
Electron Atoms 

7 e 
Atom 

Z r1 
(a0) 

r3 
(a0) 

r7 
(a0) 

Theoretical 
Ionization 

Energies (eV) 

Experimental 
Ionization 

Energies (eV) 

Relative 
Error 

N 7 0.14605 0.69385 0.93084 14.61664 14.53414 -0.0057 
O + 8 0.12739 0.59020 0.78489 34.6694 35.1173 0.0128 
F 2+ 9 0.11297 0.51382 0.67084 60.8448 62.7084 0.0297 
Ne 3+ 10 0.10149 0.45511 0.57574 94.5279 97.12 0.0267 
Na 4+ 11 0.09213 0.40853 0.50250 135.3798 138.4 0.0218 
Mg 5+ 12 0.08435 0.37065 0.44539 183.2888 186.76 0.0186 
Al 6+ 13 0.07778 0.33923 0.39983 238.2017 241.76 0.0147 
Si 7+ 14 0.07216 0.31274 0.36271 300.0883 303.54 0.0114 
P 8+ 15 0.06730 0.29010 0.33191 368.9298 372.13 0.0086 
S 9+ 16 0.06306 0.27053 0.30595 444.7137 447.5 0.0062 

Cl 10+ 17 0.05932 0.25344 0.28376 527.4312 529.28 0.0035 
Ar 11+ 18 0.05599 0.23839 0.26459 617.0761 618.26 0.0019 
K 12+ 19 0.05302 0.22503 0.24785 713.6436 714.6 0.0013 

Ca 13+ 20 0.05035 0.21308 0.23311 817.1303 817.6 0.0006 
Sc 14+ 21 0.04794 0.20235 0.22003 927.5333 927.5 0.0000 
Ti 15+ 22 0.04574 0.19264 0.20835 1044.8504 1044 -0.0008 
V 16+ 23 0.04374 0.18383 0.19785 1169.0800 1168 -0.0009 
Cr 17+ 24 0.04191 0.17579 0.18836 1300.2206 1299 -0.0009 
Mn 18+ 25 0.04022 0.16842 0.17974 1438.2710 1437 -0.0009 
Fe 19+ 26 0.03867 0.16165 0.17187 1583.2303 1582 -0.0008 
Co 20+ 27 0.03723 0.15540 0.16467 1735.0978 1735 -0.0001 
Ni 21+ 28 0.03589 0.14961 0.15805 1893.8726 1894 0.0001 
Cu 22+ 29 0.03465 0.14424 0.15194 2059.5543 2060 0.0002 

 



Ionization Energies for Some Eight- 
Electron Atoms 

8 e 
Atom 

Z r1 
(a0) 

r3 
(a0) 

r8 
(a0) 

Theoretical 
Ionization 

Energies (eV) 

Experimental 
Ionization 

Energies (eV) 

Relative 
Error 

O 8 0.12739 0.59020 1.00000 13.60580 13.6181 0.0009 
F + 9 0.11297 0.51382 0.7649 35.5773 34.9708 -0.0173 

Ne 2+ 10 0.10149 0.45511 0.6514 62.6611 63.45 0.0124 
Na 3+ 11 0.09213 0.40853 0.5592 97.3147 98.91 0.0161 
Mg 4+ 12 0.08435 0.37065 0.4887 139.1911 141.27 0.0147 
Al 5+ 13 0.07778 0.33923 0.4338 188.1652 190.49 0.0122 
Si 6+ 14 0.07216 0.31274 0.3901 244.1735 246.5 0.0094 
P 7+ 15 0.06730 0.29010 0.3543 307.1791 309.6 0.0078 
S 8+ 16 0.06306 0.27053 0.3247 377.1579 379.55 0.0063 
Cl 9+ 17 0.05932 0.25344 0.2996 454.0940 455.63 0.0034 
Ar 10+ 18 0.05599 0.23839 0.2782 537.9756 538.96 0.0018 
K 11+ 19 0.05302 0.22503 0.2597 628.7944 629.4 0.0010 

Ca 12+ 20 0.05035 0.21308 0.2434 726.5442 726.6 0.0001 
Sc 13+ 21 0.04794 0.20235 0.2292 831.2199 830.8 -0.0005 
Ti 14+ 22 0.04574 0.19264 0.2165 942.8179 941.9 -0.0010 
V 15+ 23 0.04374 0.18383 0.2051 1061.3351 1060 -0.0013 
Cr 16+ 24 0.04191 0.17579 0.1949 1186.7691 1185 -0.0015 
Mn 17+ 25 0.04022 0.16842 0.1857 1319.1179 1317 -0.0016 
Fe 18+ 26 0.03867 0.16165 0.1773 1458.3799 1456 -0.0016 
Co 19+ 27 0.03723 0.15540 0.1696 1604.5538 1603 -0.0010 
Ni 20+ 28 0.03589 0.14961 0.1626 1757.6383 1756 -0.0009 
Cu 21+ 29 0.03465 0.14424 0.1561 1917.6326 1916 -0.0009 
 



Ionization Energies for Some Nine- 
Electron Atoms 

9 e 
Atom 

Z r1 
(a0) 

r3 
(a0) 

r9 
(a0) 

Theoretical 
Ionization 

Energies (eV) 

Experimental 
Ionization 

Energies (eV) 

Relative 
Error 

F 9 0.11297 0.51382 0.78069 17.42782 17.42282 -0.0003 
Ne + 10 0.10149 0.45511 0.64771 42.0121 40.96328 -0.0256 
Na 2+ 11 0.09213 0.40853 0.57282 71.2573 71.62 0.0051 
Mg 3+ 12 0.08435 0.37065 0.50274 108.2522 109.2655 0.0093 
Al 4+ 13 0.07778 0.33923 0.44595 152.5469 153.825 0.0083 
Si 5+ 14 0.07216 0.31274 0.40020 203.9865 205.27 0.0063 
P 6+ 15 0.06730 0.29010 0.36283 262.4940 263.57 0.0041 
S 7+ 16 0.06306 0.27053 0.33182 328.0238 328.75 0.0022 
Cl 8+ 17 0.05932 0.25344 0.30571 400.5466 400.06 -0.0012 
Ar 9+ 18 0.05599 0.23839 0.28343 480.0424 478.69 -0.0028 
K 10+ 19 0.05302 0.22503 0.26419 566.4968 564.7 -0.0032 

Ca 11+ 20 0.05035 0.21308 0.24742 659.8992 657.2 -0.0041 
Sc 12+ 21 0.04794 0.20235 0.23266 760.2415 756.7 -0.0047 
Ti 13+ 22 0.04574 0.19264 0.21957 867.5176 863.1 -0.0051 
V 14+ 23 0.04374 0.18383 0.20789 981.7224 976 -0.0059 
Cr 15+ 24 0.04191 0.17579 0.19739 1102.8523 1097 -0.0053 
Mn 16+ 25 0.04022 0.16842 0.18791 1230.9038 1224 -0.0056 
Fe 17+ 26 0.03867 0.16165 0.17930 1365.8746 1358 -0.0058 
Co 18+ 27 0.03723 0.15540 0.17145 1507.7624 1504.6 -0.0021 
Ni 19+ 28 0.03589 0.14961 0.16427 1656.5654 1648 -0.0052 
Cu 20+ 29 0.03465 0.14424 0.15766 1812.2821 1804 -0.0046 

 



Ionization Energies for Some Ten-Electron 
Atoms 

10 e 
Atom 

Z r1 
(a0) 

r3 
(a0) 

r10 
(a0) 

Theoretical 
Ionization 

Energies (eV) 

Experimental 
Ionization 

Energies (eV) 

Relative 
Error 

Ne 10 0.10149 0.45511 0.63659 21.37296 21.56454 0.00888 
Na + 11 0.09213 0.40853 0.560945 48.5103 47.2864 -0.0259 

Mg 2+ 12 0.08435 0.37065 0.510568 79.9451 80.1437 0.0025 
Al 3+ 13 0.07778 0.33923 0.456203 119.2960 119.992 0.0058 
Si 4+ 14 0.07216 0.31274 0.409776 166.0150 166.767 0.0045 
P 5+ 15 0.06730 0.29010 0.371201 219.9211 220.421 0.0023 
S 6+ 16 0.06306 0.27053 0.339025 280.9252 280.948 0.0001 
Cl 7+ 17 0.05932 0.25344 0.311903 348.9750 348.28 -0.0020 
Ar 8+ 18 0.05599 0.23839 0.288778 424.0365 422.45 -0.0038 
K 9+ 19 0.05302 0.22503 0.268844 506.0861 503.8 -0.0045 

Ca 10+ 20 0.05035 0.21308 0.251491 595.1070 591.9 -0.0054 
Sc 11+ 21 0.04794 0.20235 0.236251 691.0866 687.36 -0.0054 
Ti 12+ 22 0.04574 0.19264 0.222761 794.0151 787.84 -0.0078 
V 13+ 23 0.04374 0.18383 0.210736 903.8853 896 -0.0088 
Cr 14+ 24 0.04191 0.17579 0.19995 1020.6910 1010.6 -0.0100 
Mn 15+ 25 0.04022 0.16842 0.19022 1144.4276 1134.7 -0.0086 
Fe 16+ 26 0.03867 0.16165 0.181398 1275.0911 1266 -0.0072 
Co 17+ 27 0.03723 0.15540 0.173362 1412.6783 1397.2 -0.0111 
Ni 18+ 28 0.03589 0.14961 0.166011 1557.1867 1541 -0.0105 
Cu 19+ 29 0.03465 0.14424 0.159261 1708.6139 1697 -0.0068 
Zn 20+ 30 0.03349 0.13925 0.153041 1866.9581 1856 -0.0059 

 



Proton and Neutron 

The proton and neutron each comprise three charged fundamental 
particles called quarks and three massive photons called gluons. 
 
Proton Parameters 
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Proton and Neutron cont’d 

qc  ,

neutron rest mass 

is the Compton wavelength of the neutron 

is the Compton wavelength bar of the quarks 

is the radius of the neutron 

is the radius of the quarks 

is the rest mass of the quarks 

is the relativistic mass of the gluons 

is the relativistic mass of the quarks 
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Quark and Gluon Functions of the Proton 
The proton functions can be viewed as a linear combination of three 
fundamental particles, three quarks, of charge        ,       , and       . 
Each quark is associated with its gluon where the quark 
mass/charge function has the same angular dependence as the 
gluon mass/charge function. 

The quark mass function of a proton is 

The charge function of the quarks of a proton is 

The radial electric field of a proton is 

)( , pCr λδ −

)( , pCr λδ −

)( , pCr λδ −



Quark and Gluon Functions of the Proton 
Cont… 

Low 
High 

Click the above images to 
view animations online 

http://www.brilliantlightpower.com/wp-content/uploads/animations/Proton Charge.mp4�
http://www.brilliantlightpower.com/wp-content/uploads/animations/Proton Mass.mp4�


Quark and Gluon Functions of the Neutron 
The neutron functions can be viewed as a linear combination of three 
fundamental particles, three quarks, of charge        ,       , and       . 
Each quark is associated with its gluon where the quark mass/charge 
function has the same angular dependence as the gluon mass/charge 
function. 

The quark mass function of a neutron is 

The charge function of the quarks of a neutron is 

The radial electric field of a neutron is 
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Quark and Gluon Functions of the Neutron 
Cont… 

Low 
High 

Click the above images to 
view animations online 

http://www.brilliantlightpower.com/wp-content/uploads/animations/Neutron Charge.mp4�
http://www.brilliantlightpower.com/wp-content/uploads/animations/Neutron Mass.mp4�


Magnetic Moments 

Proton Magnetic Moment 

Neutron Magnetic Moment 

where µN  is the nuclear magneton 

The experimental magnetic moment of the proton is 2.79268 µN 

The magnetic moment of the neutron, µn , is 

The experimental magnetic moment of the neutron is –1.91315 µn  
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The Weak Nuclear Force: Beta Decay of 
the Neutron 

The nuclear reaction for the beta decay of a neutron is 

where     is the electron antineutrino. The energy terms of the beta decay are 

The beta decay energy is 
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